
HP Unified Functional Testing
Software Version: 12.52
Windows ® operating systems

Add-ins Guide

Document Release Date: January 2016
Software Release Date: January 2016

Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable
for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for
Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notice
© Copyright 1992 - 2016 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Google™ and Google Maps™ are trademarks of Google Inc

Intel® and Pentium® are trademarks of Intel Corporation in the U.S. and other countries.

Microsoft®, Windows®, Windows® XP, and Windows Vista ® are U.S. registered trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to:
https://softwaresupport.hp.com.

This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, go to
https://softwaresupport.hp.com and click Register.

Support
Visit the HP Software Support Online web site at: https://softwaresupport.hp.com

This web site provides contact information and details about the products, services, and support that HP Software
offers.

Add-ins Guide

HP Unified Functional Testing (12.52) Page 2

https://softwaresupport.hp.com/
https://softwaresupport.hp.com/
https://softwaresupport.hp.com/

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can benefit by
using the support web site to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HP support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support
contract. To register for an HP Passport ID, go to: https://softwaresupport.hp.com and click Register.

To find more information about access levels, go to: https://softwaresupport.hp.com/web/softwaresupport/access-
levels.

HP Software Solutions & Integrations and Best Practices
Visit HP Software Solutions Now at https://h20230.www2.hp.com/sc/solutions/index.jsp to explore how the products
in the HP Software catalog work together, exchange information, and solve business needs.

Visit the Cross Portfolio Best Practices Library at https://hpln.hp.com/group/best-practices-hpsw to access a wide
variety of best practice documents and materials.

Add-ins Guide

HP Unified Functional Testing (12.52) Page 3

https://softwaresupport.hp.com/
https://softwaresupport.hp.com/web/softwaresupport/access-levels
https://softwaresupport.hp.com/web/softwaresupport/access-levels
https://h20230.www2.hp.com/sc/solutions/index.jsp
https://hpln.hp.com/group/best-practices-hpsw

Contents

Welcome to the Add-ins Guide 12

Part 1: Working with UFT Add-ins 13
UFT Add-ins Overview 14

UFT Add-in Support - Overview 15
Loading UFT Add-ins 16
Add-in Licenses 17
Considerations for Working with UFT Add-ins 17

Record and Run Settings for Add-ins - Overview 18
Considerations for Defining Record and Run Settings 19
Environment Variables in Record and Run Settings 20

UFT Add-in Extensibility 21
How to Manage UFT Add-ins 22
How to Define Record and Run Settings for UFT Add-ins 23

Web-Based Application Support 25
Web-Based Application Support - Overview 26

Considerations - Web-Based Application Support 26
Registering Browser Controls 28
Accessing Password-Protected Resources in the Active Screen 28
Checkpoints for Web Pages 29
Event Recording Configuration for Web-Based Applications 30

Web Event Recording Configuration XML File Structure 31
Advanced Operations on Web-Based Applications 32

Activating methods associated with a Web-based object using the Object property 32
Using programmatic descriptions for the WebElement object 33

Web Object Identifiers 33
Web Object Identifier Types 34

CSS Web Object Identification 34
User-Defined XPath Web Object Identification 34
Automatic X-Path Web Object Identification 35
Attribute/* Notation Web Object Identification 35
Style/* Notation Web Object Identification 36

Considerations - Web Object Identifiers 39
How to Use Web Object Identifiers - Exercise 39

Web Object Recognition Using the Web Accessibility Toolkit 42
How to Modify Event Recording Configuration for Web-Based Applications 43
How to Configure UFT to Record Mouse Clicks 44

Add-ins Guide

HP Unified Functional Testing (12.52) Page 4

Environment Variables for a Web-Based Environment 46
Troubleshooting and Limitations - Web-Based Application Support 48

Windows-Based Application Support 52
Windows-Based Application Support - Overview 53
UFT Configuration for Windows-Based Applications 53
Record and Run Settings for Windows-Based Applications 54
Environment Variables for Windows-based Applications 55
Considerations for Advanced Windows-based Application Testing 55
Record and Run Setting Guidelines for Windows-Based Add-ins 57

Part 2: .NET Add-in 59
.NET Add-in - Overview 60
.NET Silverlight Add-in 61

.NET Silverlight Add-in - Quick Reference 62
Silverlight Add-in Extensibility 64
Known Issues - Silverlight Add-in 65

.NET Web Forms Add-in 67
.NET Web Forms Add-in - Quick Reference 68
Considerations for Testing .NET Web Forms 69
Accessing Internal Properties and Methods of Run-Time .NET Web Forms Objects 69
Known Issues- .NET Web Forms 69

.NET Windows Forms Add-in 73
.NET Windows Forms Support - Quick Reference 74
.NET Windows Forms Support - Testing and Configuration 76

Considerations for Testing .NET Windows Forms Applications 77
.NET Windows Forms Objects - Checkpoints and Output Values 77
.NET Add-in Extensibility 78
.NET Windows Forms Spy 79
How to Use the .NET Windows Forms Spy 80
Known Issues - .NET Windows Forms 83

.NET Windows Presentation Foundation (WPF) Add-in 85
.NET Windows Presentation Foundation (WPF) Add-in - Quick Reference 86
.NET Windows Presentation Foundation (WPF) Add-in - Testing and Configuration 88

Considerations for Working with the WPF Add-in 89
WPF Objects, Methods, and Properties to Enhance Your Test or Component 89
About WPF User Interface Automation 90

Automation Elements 90
Control Patterns 90

WPF Add-in Extensibility 91
Known Issues - .NET WPF 91

Add-ins Guide

HP Unified Functional Testing (12.52) Page 5

Part 3: ActiveX Add-in 93
ActiveX Add-in - Quick Reference 94
Considerations for Working with the ActiveX Add-in 95
Known Issues - ActiveX Add-in 96

Part 4: Delphi Add-in 99
Delphi Add-in - Quick Reference 100
Delphi Add-in Extensibility 101
How to Enable Communications Between UFT and Your Delphi Application 102
Known Issues - Delphi Add-in 103

Part 5: Flex Add-in 104
Flex Add-in - Quick Reference 105
Flex Add-in - Testing and Configuration 106

Enabling UFT to Identify Objects in your Flex Application 106
Considerations for Working with the Flex Add-in 109
How to Set Up the Adobe Flash Player Debugger to Enable UFT GUI Testing 110
How to Open Flex Applications Using the Runtime Loader 112
How to Embed a Flex Application in a Web Page with the Runtime Loader 114
How to Compile Flex Applications for UFT Testing 116
How to Work With Embedded Objects in Flex Lists, Tables, or Tree-Views 118
Known Issues - Flex Add-in 120

Part 6: Java Add-in 122
Java Add-in - Quick Reference 123
Java Add-in - Testing and Configuration 125

Java Add-in - Overview 126
Java Add-in Environments 126

Considerations - Java Add-in 127
Java Add-in Extensibility 128
How to Disable Dynamic Transformation Support (Advanced) 129
Java Environment Variables Settings 131

Record and Run Environment Variables for Java Objects 132
Known Issues - Java Add-in 132

Running Another Java Application or Applet with the Same Settings 133
Identifying and Solving Common Problems 133
General Notes and Limitations 135

Java Add-in - Test Objects 140
Recording Steps on Java Objects 141

Recording Steps on Jtable Cell Editors 142

Add-ins Guide

HP Unified Functional Testing (12.52) Page 6

Text Checkpoint and Text Output Value Steps for Java Objects 142
Full Object Hierarchy Views 143

Advanced Java Test Object Methods 143
CreateObject Method 144
GetStatics Method 144
FireEvent / FireEventEx Methods 145

How to Modify Options for Recording on Java Tables 146

Part 7: Mobile Add-in 149
Mobile Add-in - Quick Reference 150

Part 8: Oracle Add-in 152
Oracle Add-in - Quick Reference 153
Oracle Add-in - Testing and Configuration 155

Considerations for Working with the Oracle Add-in 156
Recording Tests on Oracle Applications 157
Dynamic Transformation Support 158
How to Verify or Enable the Oracle Server Unique Name Attributes 159
How to Enable the Oracle Name Attribute 159
How to Set Oracle Environment Variables 161
How to Disable Dynamic Transformation Support 161
Oracle Record and Run Environment Variables 163
Known Issues - Oracle Add-in 164

Part 9: PeopleSoft Add-in 166
PeopleSoft Add-in - Quick Reference 167
Considerations for Working with the PeopleSoft Add-in 168
Known Issues - PeopleSoft Add-in 169

Part 10: PowerBuilder Add-in 170
PowerBuilder Add-in - Quick Reference 171
Considerations for Working with the PowerBuilder Add-in 172
Known Issues - PowerBuilder Add-in 173

Part 11: Qt Add-in 174
Qt Add-in - Quick Reference 175
Considerations - Qt Add-in 177

Part 12: Add-in for SAP Solutions 178

Add-ins Guide

HP Unified Functional Testing (12.52) Page 7

Add-in for SAP Solutions - Overview 179
Web-based SAP Support 180

Web-Based SAP Support - Quick Reference 181
Considerations for Working with SAP GUI for HTML 183
Known Issues - Web-based SAP 185

Windows-based SAP Support 189
Windows-based SAP Support - Quick Reference 190
Windows-based SAP Support - Testing and Configuration 192

SAP GUI Scripting API and UFT 193
How to Enable Support for SAP GUI for Windows 195

How to Enable Scripting on the SAP Application (Server-Side) 197
Considerations - Windows-based SAP Add-in for SAP Solutions 200
Environment Variables for Windows-based SAP Applications 201
Package and Patch Versions Requirements - SAP Application Server and SAP GUI for
Windows 201
Known Issues - Windows-based SAP 202

Windows-Based SAP Support - Test Objects 207
Checkpoints and Output Values in SAP GUI for Windows 208
Using the Auto-Parameterize Option to Parameterize Table and Grid Cell Values 208

How UFT Records in Auto-Parameterize Mode 209
Parameterized Cell Values in the Input Data Sheet 211
Considerations for Auto-Parameterization 212
Data in Rows that Require Scrolling 213

Low-Level or Analog Mode Recording on SAP GUI for Windows 214
Spooling Data from a Table 214
How to Record on Standard Windows Controls During an SAP GUI for Windows
Recording Session 215

UFT-SAP Solution Manager Integration 216
UFT-SAP Solution Manager Integration - Overview 217

Test Management in SAP Solution Manager 217
Resource Files in Solution Manager 218

Solution Manager Testing Modes: Standalone or Integrated 218
Standalone Mode 219
Integrated Mode 220

SAP Structured Parameters 220
How to Configure Solution Manager to Work with UFT 221
How to Work with Tests in Solution Manager in Standalone Mode 223
How to Run a Test Stored in Solution Manager 228
How to Display or Edit a GUI Test from Solution Manager in Integrated Mode 229
How to Transfer Data To and From GUI Tests in Integrated Mode Using Test
Parameters 230
How to Work with SAP Structured Parameters 231

Add-ins Guide

HP Unified Functional Testing (12.52) Page 8

Part 13: Siebel Add-in 235
Siebel Add-in - Quick Reference 236
Siebel Add-in - Testing and Configuration 239

Siebel Add-in - Overview 240
Considerations - Siebel Add-in 240
Siebel Test Object Model - Overview 241

Recording Steps on Siebel Objects 242
Native Operations and Properties in Siebel 7.0.x and 7.5.x Applications 243

Siebel Add-in - Checkpoints and Output Values 243
Spooling Data from a Siebel Table 245

Siebel 7.7.x or Later - Test Automation Module Configuration 246
How to Define Environment Variables for Siebel Applications 247
Known Issues - Siebel Add-in 248

Siebel 7.7.x or Later 249
Siebel 7.0.x and 7.5.x 250

Siebel Test Express 252
Using Siebel Test Express to Generate or Update Shared Object Repositories 253
How to Use Siebel Test Express to Generate or Update a Shared Object Repository 253

Part 14: Standard Windows Testing Support 255
Standard Windows Support -Quick Reference 256
Known Issues - Standard Windows 258

Part 15: Stingray Add-in 259
Stingray Add-in - Quick Reference 260
Stingray Add-in - Testing and Configuration 262

Setting Up Stingray Object Support 263
Considerations for Working with the Stingray Add-in 263
Stingray Run-time Agent (Agent DLL) 263
Stingray Precompiled Agent Mode 264
Record Cell Editing Options - Example 264
How to Set Up Your Stingray Project Using the Precompiled Agent Mode 265
Known Issues - Stingray Add-in 267

Part 16: Terminal Emulator Add-in 270
Terminal Emulator Add-in - Quick Reference 271
Terminal Emulator Add-in - Testing and Configuration 273

Terminal Emulator Add-in - Overview 274
Recording Tests and Components on Terminal Emulator Applications 275

Considerations for Recording and Running Tests and Components on Terminal 276

Add-ins Guide

HP Unified Functional Testing (12.52) Page 9

Emulators
Run Session Synchronization 277
Terminal Emulator Recovery Scenarios 277
How to Configure an Emulator to Work with the Terminal Emulator Add-in 278
How to Set Your HLLAPI Terminal Emulator to Work with UFT 282
How to Manage Terminal Emulator Configuration Settings 282
How to Copy Existing Terminal Emulator Configurations 283
How to Check the Validity of a Terminal Emulator Configuration 285

Validating a Terminal Emulator - Possible Error Responses 285
Invalid HLLAPI DLL 285
Cannot detect an open session 286
Cannot locate the main window class 286
Cannot detect the emulator screen 286
Cannot connect to the open session 286
Cannot retrieve session text 287
Cannot detect open session, or Cannot locate the main window class 287
HLLAPI DLL not found 287
More than one session open 287
Unknown error 287

How to Synchronize Steps on Terminal Emulators 288
Checkpoints and Output Values - Terminal Emulators 290
Known Issues - Terminal Emulator 291

Part 17: VisualAge Smalltalk Add-in 296
VisualAge Smalltalk Add-in - Quick Reference 297
How to Configure the VisualAge Smalltalk Add-in 299

Part 18: Visual Basic Add-in 300
Visual Basic Add-in - Quick Reference 301
Known Issues - Visual Basic Add-in 303

Part 19: Web Add-in 304
Web Add-in - Quick Reference 305
Web Add-in - Testing and Configuration 308

Event Recording Configuration for Web Objects - Overview 309
Event Listening and Recording for Web Objects 310
Considerations - Event Listening and Recording 311
Event Listening and Recording - Use-case Scenario 311

Web Add-in Extensibility 312
Extensibility Accelerator for HP Functional Testing 313

Add-ins Guide

HP Unified Functional Testing (12.52) Page 10

How to Manage Custom Web Event Recording Configurations 314
How to Manage Listening and Recording Events for Web Objects 315
Troubleshooting and Limitations - Web Add-in 316

Web Add-in - Multiple Browser Support 318
Testing Applications on Multiple Browsers 319

Working with Multiple Browsers - Object Identification Issues 319
Testing Applications on Multiple Browsers - Creating a Single Test for All Browser
Testing 324
Testing Applications on Multiple Browsers - Running the Test on Multiple Browsers 325
Using Descriptive Programming for Multiple Browser Testing - Use-case Scenario 326

Working With Mozilla Firefox 334
Working With Apple Safari on a Remote Mac Computer 336

The UFT Connection Agent for Mac Computers 338
Securing the Communication With the Remote Mac Computer 340

How to Set Up Multiple Browser Testing 341
How to Enable the HP Functional Testing Agent Chrome Extension 346
How to Enable UFT to Test Local HTML Pages in Google Chrome 347
How to Connect to a Remote Mac Computer 347
How to Install and Configure UFT Connection Agent on Your Mac 350
Known Issues - Internet Explorer and Microsoft Edge 354
Known Issues - Mozilla Firefox 357
Known Issues - Google Chrome and Apple Safari 360

Part 20: Web 2.0 Add-ins 365
Web 2.0 Add-ins - Quick Reference 366
Web 2.0 Toolkit Support 368
Known Issues - Web 2.0 Add-ins 371

Part 21: Windows Runtime Add-in 374
Chapter 35: Windows Runtime Add-in - Quick Reference 375
Using the Windows Runtime Add-in in UFT - Overview 377
How to Use UFT in a Windows Runtime Environment 377
Known Issues - Windows Runtime 379

Part 22: Appendix 381
Appendix A: GUI Checkpoints and Output Values Per Add-in 382

Supported Checkpoints 383
Supported Output Values 385

Send Us Feedback 388

Add-ins Guide

HP Unified Functional Testing (12.52) Page 11

Welcome to the Add-ins Guide
The HP Unified Functional Testing Add-ins Guide explains how to set up support for, and work with, the
UFT add-ins and standard Windows testing support, enabling you to test any supported environment
using GUI tests and business components. This guide begins with an introductory section that describes
working with GUI testing add-ins, and specific aspects of working with Windows-based and Web-based
add-ins. After this overview section, the add-ins are presented alphabetically.

The information, examples, and screen captures in this guide often focus specifically on working with
GUI tests. However, much of the information applies equally to keyword components and scripted
components. Information that is unique to using a specific add-in with BPT is indicated as such.

Note: Keyword components and scripted components are part of HP BPT, which utilizes a keyword-
driven methodology for testing applications. For more information, see the section on working with
BPT in the HP Unified Functional Testing User Guide.

For users that work with UFT add-in extensibility, UFT also provides developer guides that describe how
to extend UFT support for third-party and custom controls for supported environments, such as Delphi,
Java, .NET, or Web. For more information, see the relevant Add-in Extensibility Guide, available from the
UFT Extensibility Documentation program group (Start > All Programs > HP Software > HP Unified
Functional Testing > Extensibility > Documentation or the <UFT installation
folder>\help\Extensibility folder.

Note: For details on accessing UFT and UFT tools and files in Windows 8.X or higher and Windows
Server 2012, see "Accessing UFT in Windows 8.X or Higher Operating Systems" on page 387.

Prerequisite Background

This guide is intended for UFT users at all levels. You should already have some understanding of
functional testing concepts and processes, and know which aspects of their application you want to
test.

In addition, because each UFT add-in takes advantage of commonly used UFT features such as the
object repository, Keyword View, and checkpoints and output value steps, you should also have at least
a basic understanding of these concepts before you begin working with a UFT add-in.

This guide assumes that you are familiar with UFT features and options. It describes the functionality
that is added or changed in UFT when you work with specific GUI testing add-ins, as well as other add-in-
specific considerations and best practices.

This guide should be used in conjunction with the HP Unified Functional Testing User Guide and the
HP UFT Object Model Reference for GUI Testing.

HP Unified Functional Testing (12.52) Page 12

HP Unified Functional Testing (12.52) Page 13

Part 1: Working with UFT Add-ins
This section includes:

"UFT Add-ins Overview" on page 14

"Web-Based Application Support" on page 25

"Windows-Based Application Support" on page 52

UFT Add-ins Overview
This chapter includes:

• UFT Add-in Support - Overview 15

• Loading UFT Add-ins 16

• Add-in Licenses 17

• Considerations for Working with UFT Add-ins 17

• Record and Run Settings for Add-ins - Overview 18

• Considerations for Defining Record and Run Settings 19

• Environment Variables in Record and Run Settings 20

• UFT Add-in Extensibility 21

• How to Manage UFT Add-ins 22

• How to Define Record and Run Settings for UFT Add-ins 23

HP Unified Functional Testing (12.52) Page 14

UFT Add-in Support - Overview
UFT add-ins help you to create and run tests and business components on applications in a variety of
development environments. After you load an add-in, you can record and run tests or business
components on applications in the corresponding development environment, similar to the way you do
with any other application. When you work with UFT add-ins, you can use special methods, properties,
and various special options to create the best possible test or business component for your application.

You can install UFT add-ins when you install UFT, or you can install the add-ins at a later time by running
the installation again in Modifymode. For details about installing and loading add-ins, see "How to
Manage UFT Add-ins" on page 22.

When UFT opens, you can choose which of the installed add-ins you want to load using the Unified
Functional Testing Add-in Manager Dialog Box, but to maximize performance, you should load only the
add-ins you need for that testing session.

UFT includes built-in support for testing standard Windows applications. Standard Windows testing
support is automatically loaded when UFT opens.

Your UFT license enables all UFT features, including the use of all UFT add-ins. You can use the latest
released version of all add-ins with UFT. If you upgrade from a version earlier than 9.5, only licensed
add-ins are available. Additional non-licensed add-ins that you install are disabled in the Add-in Manager
Dialog Box. For details on installing add-ins and licenses, see the HP Unified Functional Testing
Installation Guide. For details, see "Add-in Licenses" on page 17.

Using Add-ins in Your Test or Component

l You can use the Keyword View, the Step Generator, and the Editor to activate environment-specific
test object and native (run-time object) operations, retrieve and set the values of properties, and
check that objects exist.

l You can enhance your tests and business components using environment-specific checkpoints and
output values. See the sections describing checkpoints and output values in the HP Unified Functional
Testing User Guide.

l You can customize the Active Screen capture settings for some of the UFT add-ins. When you apply
custom Active Screen settings, you override your previous capture-level settings with all of the
settings in the Custom Active Screen Capture Settings dialog box. If you want to customize only
specific settings, use the Reset to option to ensure that all other settings are using the capture-level
setting you prefer and then modify the specific settings you need. For details, see the section
describing Active Screen capture setting options in the HP Unified Functional Testing User Guide.

Available Add-ins Environments

l Several UFT Add-ins are designed to support special objects that are generally available in Web
applications, such as standard Web (HTML), Siebel, .NET Web Forms, and Web-based SAP objects.

HP Unified Functional Testing (12.52) Page 15

These add-ins are known as Web-based Add-ins. The interface options, capabilities, and other
functionality that is available for the Web-based add-ins are often identical or similar. These Web-
specific features are described in "Web-Based Application Support" on page 25

l UFT provides a set of add-ins designed to support special objects that are generally part of Windows
applications, such as .NET Windows Forms, Windows Presentation Foundation, PowerBuilder, SAP GUI
for Windows, VisualAge Smalltalk, Stingray, and others. These add-ins are known as Windows-based
Add-ins. The interface options, capabilities, and other functionality that is available for the Windows-
based add-ins are often identical or similar. These Windows-specific features are described in
"Windows-Based Application Support" on page 52

To learn more, see:

• Loading UFT Add-ins 16

• Add-in Licenses 17

• Considerations for Working with UFT Add-ins 17

Loading UFT Add-ins
To test applications developed in various environments, you must ensure that the relevant UFT add-in is
installed and loaded on the computer on which you create and run your tests and business components.
Loading the relevant add-in enables UFT to work with the corresponding environment.

When you start UFT, the Add-in Manager Dialog Box opens. It displays a list of all installed add-ins.

If you have UFT add-ins installed, you can specify which add-ins to load at the beginning of each UFT
session. You can also load UFT without add-in support if you want to test only standard Windows-based
objects.

While UFT is open, you can check whether a specific add-in is installed by choosing Help > About Unified
Functional Testing. Loaded add-ins are indicated by a check mark in the add-ins list.

Tip: The Web Services Add-in is supported for backwards compatibility only and is not enabled by
default. New tests and components can use UFT's API testing solution for web service testing
purposes. To enable the Web Services Add-in for previously created tests, contact HP Software
support.

When you load an add-in, UFT recognizes the objects you work with on the corresponding environment.
In many cases, loading the add-in also adds new user interface options and capabilities to UFT, as well
as adding support for the add-in's object model—the set of test objects, methods, and properties
specially designed for working with the objects in your development environment. Details of these
objects, methods, and properties can be found in the relevant section of the HP UFT Object Model
Reference for GUI Testing (select Help > HP Unified Functional Testing Help).

Add-ins Guide
UFT Add-ins Overview

HP Unified Functional Testing (12.52) Page 16

Add-in Licenses
When you open UFT, if an add-in license has not yet been installed for a specific add-in, the add-in is
displayed as Not Licensed in the License column of the Add-in Manager Dialog Box. An add-in may also
be displayed as Not Licensed if no concurrent license server within your subnet has a registered license
for the specific add-in, or if all concurrent licenses are in use (and are, therefore, unavailable). In this
case, you can use the LSFORCEHOST or LSHOST variable to connect to a concurrent license server
outside of the subnet that has the relevant add-in license installed on it, if one is available. For details
on connecting to concurrent license servers, see the HP Unified Functional Testing Installation Guide.

You can also view license details for all currently loaded licensed add-ins in the About Unified Functional
TestingDialog Box (Help > About Unified Functional Testing).

l For seat licenses, the category for each license is displayed. The license category may be Demo,
Permanent, Commuter, or Time-Limited. For Demo, Commuter (used with concurrent licenses), and
Time-Limited UFT seat licenses, the number of days and hours remaining until the license expires is
also displayed.

l For concurrent licenses, the URL or host name of the concurrent license server used for each license
is displayed.

l To switch between a seat and a concurrent license, click Modify License. Note that you can use only
one license type per session for UFT and all loaded add-ins—either seat or concurrent. For more
information on license types, installing licenses, and modifying licenses, see the HP Unified Functional
Testing Installation Guide.

Considerations for Working with UFT Add-ins
Consider the following when loading and using UFT add-ins:

Installing and Loading Add-ins

l You must install and load an add-in to enable UFT to recognize objects from the corresponding
environment. To load an add-in, select the add-in from the Add-in Manager Dialog Box that opens
when you start UFT.

l For optimal performance when testing your applications, it is strongly recommended that you load
only the required add-in or add-ins. For example, if you want to test a process that spans a Web
application and a .NET application, load only the Web and .NET Add-ins. Do not load all add-ins unless
you need to work with all of them. As a reminder, the tip at the bottom of the Add-in Manager
changes to red text if more than three add-ins are selected.

l Some UFT add-ins require additional configuration after the installation is complete. Similarly, some
environments may require configuration to enable UFT to interact with them. Configuration
requirements, if any, are described in the introductory section of each relevant environment.

l Some applications must be opened prior to opening UFT, while some must be opened after UFT is

Add-ins Guide
UFT Add-ins Overview

HP Unified Functional Testing (12.52) Page 17

opened. These requirements are described in the introductory section for each relevant
environment.

l When testing applications that do not contain .NET objects, it is strongly recommended that you do
not load the .NET Add-in.

l When you open a test or business component, UFT compares the add-ins that are currently loaded
with the add-ins associated with your test or with your business component's application area. If they
do not match, UFT issues a warning message. For details on matching loaded add-ins with installed
add-ins, see "Match loaded add-ins with associated add-ins" on page 22.

Running UFT from ALM with Add-ins

l When you run a UFT test from ALM, ALM instructs UFT to load the add-ins that are associated with
the test.

If you created the test in ALM (and not in UFT), the test contains the settings specified in the
template test you chose when creating the test. If you need to modify the associated add-ins, you
can do so by opening the test in UFT. For details, see the section on template tests in the HP Unified
Functional Testing User Guide.

l Before you run a UFT test from ALM, make sure that the required UFT add-ins are installed on the
computer on which you want to run the UFT test.

Record and Run Settings for Add-ins - Overview
Before you record or run a test on an application, you can use the Record and Run Settings Dialog Box to
instruct UFT which applications to open when you begin to record or run your test.

For some Windows-based applications, you also use the dialog box to specify the specific applications
you want UFT to recognize during record, run, and Object Spy sessions. For example, you can choose to
have UFT open a specific application when you start a record or run session.

You can set your record and run options in the Record and Run Settings dialog box, or you can set the
options using environment variables.

The Record and Run Settings dialog box opens automatically each time you begin recording a new test
and saves your settings with that test. Subsequently, when you perform additional record or run
sessions on existing tests, the Record and Run Settings dialog box does not open. This is because UFT
automatically applies the saved record and run settings.

You can modify the record or run settings prior to any session using the Record and Run Settings dialog
box (Record > Record and Run Settings).

The Record and Run Settings dialog box always contains the Windows Applications tab. It may contain
other tabs corresponding to add-ins that are loaded. For details on which tab of the Record and Run
Settings dialog box you should use with an add-in, see the relevant add-in chapter.

Add-ins Guide
UFT Add-ins Overview

HP Unified Functional Testing (12.52) Page 18

For details on defining record and run settings, see the relevant add-in environment section, for
example, the Windows Applications tab of the Record and Run Settings dialog box if you are testing a
standard Windows-based application.

To learn more, see:

• Considerations for Defining Record and Run Settings 19

• Environment Variables in Record and Run Settings 20

Considerations for Defining Record and Run Settings
l The setting of the Active Screen capture level (Tools > Options > GUI Testing tab > Active Screen

pane) can significantly affect the recording time for your test and the functionality of the Active
Screen while editing your test. Confirm that the level selected answers your testing needs. For
details, see the section on setting active screen options in the HP Unified Functional Testing User
Guide.

l You can set the record and run settings for some add-in environments using the corresponding tab in
the Record and Run Settings dialog box (displayed only when the add-in is installed and loaded).

In addition to setting the appropriate settings in the specific application tabs, you should confirm
that the other tabs in the dialog box have the appropriate settings.

The following settings are recommended:

l Windows Applications tab.When not running Windows-based applications, select Record and run
only on: and confirm that all three check boxes are cleared.

l Other tabs. (If displayed.) Select the option to record and run on any open application (upper radio
button of each tab).

While these settings do not directly affect your record or run sessions, they prevent you from
inadvertently recording operations performed on Windows applications (such as e-mail) during your
recording session. These settings also prevent UFT from opening unnecessary applications when you
record or run tests on Windows-based applications.

l You can set record and run options such that no applications open at the beginning of record and run
sessions. In this case, you may need to open the application after you open UFT to ensure that UFT
recognizes the application. For details, see the relevant add-in chapter.

l After you set the record and run settings for a test, the Record and Run settings dialog box will not
open the next time you record operations in that test. If needed, you open the Record and Run
Settings dialog box by choosing Record > Record and Run Settings.

If you change the record and run settings for additional recording sessions, confirm that you return
the settings to match the needs of the first step in your test before you run it.

You should set or modify your record and run preferences in the following scenarios:

l You have already recorded one or more steps in the test and you want to modify the settings
before you continue recording.

Add-ins Guide
UFT Add-ins Overview

HP Unified Functional Testing (12.52) Page 19

l You want to run the test on a different application than the one you previously set in the Record
and Run Settings dialog box.

l If you define environment variables to specify the record and run details, those values override the
values in the Record and Run Settings dialog box. For details, see "Environment Variables in Record
and Run Settings" below.

l After defining the connection information for HP Mobile Center in the Mobile pane of the Options
dialog box (Tools > Options > GUI Testing tab > Mobile node), a remote access window opens every
time a record or run session begins. To prevent this window from opening when you are not testing
mobile applications, select Do not record and run tests on mobile in the Mobile pane of the Record
and Run settings dialog box.

Environment Variables in Record and Run Settings
You can use special, predefined environment variables to specify the applications or browsers you want
to use for your test. This can be useful if you want to test how your application works in different
environments. For example, you may want to test that your Web application works properly on identical
or similar Web sites with different Web addresses.

When you define an environment variable for one (or more) of the application details, the environment
variable values override any values that were added using these areas of the Record and Run Settings
dialog box.

Note: If you select the option to Record and Run on any application (the upper radio button in each
tab of the Record and Run Settings dialog box), UFT ignores any defined Record and Run
environment variables.

You can define the environment variables as internal user-defined variables, or you can add them to an
external environment variable file and set your test to load environment variables from that file.

You can set your Record and Run settings manually while recording your test and then define the
environment variables or load the environment variable file only when you are ready to run the test (as
described in the procedure below).

Alternatively, you can define environment variables before you record your test. In this case, UFT uses
these values to determine which applications or browsers to open when you begin recording—assuming
that the option to open an application when starting record and run sessions for the particular
environment is selected. (This option corresponds to the lower radio button in each tab of the Record
and Run Settings dialog box, and the third check box in the Windows Applications tab.)

For details on setting and modifying environment variables, see "How to Define Record and Run Settings
for UFT Add-ins" on page 23.

Add-ins Guide
UFT Add-ins Overview

HP Unified Functional Testing (12.52) Page 20

UFT Add-in Extensibility
UFT add-in extensibility, available for some environments, enables you to extend the relevant UFT add-
in to support third-party and custom controls that are not supported out-of-the-box.

When UFT learns an object in an application, it recognizes the object as belonging to a specific test
object class. This type of test object might not have certain characteristics that are specific to the
control you are testing. Therefore, when you try to create test steps with this test object, the available
identification properties and test object operations might not be sufficient.

By developing support for a control using Add-in Extensibility, you can direct UFT to recognize the
control as belonging to a specific test object class, and you can specify the behavior of the test object.

You can also teach UFT to treat a control that contains a set of lower-level controls as a single
functional control, instead of relating to each lower-level control separately. For example, a calendar
control may consist of buttons and text boxes. If you teach UFT to recognize the control as a calendar,
ignoring the individual buttons and text boxes, you can create more meaningful tests on the calendar
control.

In most environments, you can also extend the list of available test object classes that UFT is able to
recognize. This enables you to create tests that fully support the specific behavior of your controls.

UFT add-in extensibility is currently supported for the Delphi, Java, .NET, Silverlight, Web, and WPF add-
ins.

If you cannot develop support for your controls using the extensibility options provided for these
environments, you might be able to take advantage of the Testing Extensibility for UFT program.
Testing Extensibility is intended for customers who want to extend UFT testing capabilities for
technologies or applications not supported by existing UFT add-ins. Participation in the program
requires a separate license agreement with HP.

For details on Testing Extensibility, contact HP Software support.

For details on UFT Add-in Extensibility, see:

l "Delphi Add-in Extensibility" on page 101

l "Java Add-in Extensibility" on page 128

l ".NET Add-in Extensibility" on page 78

l "Silverlight Add-in Extensibility " on page 64

l "Web Add-in Extensibility" on page 312

l "WPF Add-in Extensibility" on page 91

Add-ins Guide
UFT Add-ins Overview

HP Unified Functional Testing (12.52) Page 21

How to Manage UFT Add-ins
This task contains the following steps:

l "Load or remove add-ins from UFT" below

l "Match loaded add-ins with associated add-ins" below

Load or remove add-ins from UFT

1. Start UFT.

The Unified Functional Testing Add-in Manager Dialog Box opens.

2. In the add-in list, select or clear the check box for the relevant add-in and click OK.

Match loaded add-ins with associated add-ins

If there are add-ins associated with your test or with your business component's application area that
are not currently loaded, you can:

l Close and reopen UFT, and select the required add-ins in the Add-in Manager Dialog Box.

l Remove the add-ins from the list of associated add-ins for your test or business component. To
change the list of add-ins associated with your test or business component, select File > Settings
and click Modify in the Properties pane.

If add-ins are loaded but are not associated with your test or with your business component's
application area, you can:

l Close and reopen UFT, and clear the check boxes for the add-ins in the Add-in Manager Dialog Box, if
they are not required.

l Add the add-ins to the list of associated add-ins for your test or for your business component's
application area.

l To change the list of add-ins associated with your test, select File > Settings and click Modify in
the Properties pane.

l To change the list of add-ins associated with your business component, open the application area
associated with your business component, and modify the list in the Properties pane.

For details on associating add-ins with your test or business component, see the HP Unified Functional
Testing User Guide.

Add-ins Guide
UFT Add-ins Overview

HP Unified Functional Testing (12.52) Page 22

How to Define Record and Run Settings for UFT Add-
ins
This task contains the following steps:

l "Define record and run settings for specific add-ins" below

l "Set record and run environment variables for add-ins" below

Define record and run settings for specific add-ins

1. Review "Considerations for Defining Record and Run Settings" on page 19.

2. Use one of the following to open the Record and Run Settings dialog box:

l Select Record > Record and Run Settings.

l Click the Record button or select Record > Record. If you are recording for the first time in a
test and have not yet set your recording preferences (by opening the dialog box manually), the
Record and Run Settings dialog box opens.

The Record and Run Settings dialog box is divided by environment into several tabbed pages.

3. Select the relevant environment by clicking a tab.

4. Set the required options, as described in the relevant add-in chapter.

5. To apply your changes and keep the Record and Run Settings dialog box open, click Apply.

6. Close the Record and Run Settings dialog box to begin your record or run session, click OK.

Set record and run environment variables for add-ins

1. Review "Environment Variables in Record and Run Settings" on page 20.

2. Use one of the following to open the Record and Run Settings dialog box:

l Select Record > Record and Run Settings.

l Click the Record button or select Record > Record. If you are recording for the first time in a
test and have not yet set your recording preferences (by opening the dialog box manually), the
Record and Run Settings dialog box opens.

The Record and Run Settings dialog box is divided by environment into several tabbed pages.

3. Set your record and run preferences normally before recording your test.

Note: If you already have environment variables set for one or more application details, and
you select the option to open an application when the record session begins (the lower radio
button in each tab of the Record and Run Settings dialog box), UFT ignores the record settings
you enter in the dialog box.

Add-ins Guide
UFT Add-ins Overview

HP Unified Functional Testing (12.52) Page 23

4. Record and edit your test normally.

5. If you did not define environment variables prior to recording your test, define an environment
variable for each application detail you want to set using the appropriate variable name. For details
on the variable names required, see:

l For Web browsers and URLs to open, see "Environment Variables for a Web-Based Environment"
on page 46.

l For Windows applications on which you want to record and run tests, see "Record and Run
Settings for Windows-Based Applications" on page 54.

l For other tabs in the Record and Run Settings dialog box, see the relevant add-in chapter in this
guide.

For details on how to define a user-defined environment variable and how to create environment
variable files, see the section on using environment variable parameters in the HP Unified
Functional Testing User Guide.

6. Run the test. UFT uses the environment values to determine which applications to open at the
beginning of the run session, and on which processes to record.

Add-ins Guide
UFT Add-ins Overview

HP Unified Functional Testing (12.52) Page 24

Web-Based Application Support
This chapter includes:

• Web-Based Application Support - Overview 26

• Considerations - Web-Based Application Support 26

• Registering Browser Controls 28

• Accessing Password-Protected Resources in the Active Screen 28

• Checkpoints for Web Pages 29

• Event Recording Configuration for Web-Based Applications 30

• Web Event Recording Configuration XML File Structure 31

• Advanced Operations on Web-Based Applications 32

• Activating methods associated with a Web-based object using the Object property 32

• Using programmatic descriptions for the WebElement object 33

• Web Object Identifiers 33

• Web Object Identifier Types 34

• Considerations - Web Object Identifiers 39

• How to Use Web Object Identifiers - Exercise 39

• Web Object Recognition Using the Web Accessibility Toolkit 42

• How to Modify Event Recording Configuration for Web-Based Applications 43

• How to Configure UFT to Record Mouse Clicks 44

• Environment Variables for a Web-Based Environment 46

• Troubleshooting and Limitations - Web-Based Application Support 48

HP Unified Functional Testing (12.52) Page 25

Web-Based Application Support - Overview
UFT provides a number of add-ins for testing Web-based applications. The way you configure many of
your UFT settings is the same or similar for most UFT Web-based add-ins. These common configuration
options are described in the remainder of this chapter.

For additional details on how to work with Web-based add-ins, see the following sections:

l ".NET Web Forms Add-in - Quick Reference" on page 68

l "PeopleSoft Add-in - Quick Reference" on page 167

l "Siebel Add-in - Quick Reference" on page 236

l ".NET Silverlight Add-in - Quick Reference" on page 62

l "Web Add-in - Quick Reference" on page 305

l "Web 2.0 Add-ins" on page 365

l "Web-Based SAP Support - Quick Reference" on page 181

In addition to using the add-ins described above, you can also use the Extensibility Accelerator to
develop your own Web-based add-in support for third-party and custom Web controls that are not
supported by any of the above UFT Web-based add-ins. For details, see "Extensibility Accelerator for HP
Functional Testing" on page 313.

Considerations - Web-Based Application Support
This section contains the following items to consider when testing Web-based applications:

l "Recording and Running Steps on Web Controls" below

l "Working with Web Browsers" on the next page

l "Testing Applications with Embedded Web Browser Controls" on the next page

Recording and Running Steps on Web Controls

l If UFT does not record Web events in a way that matches your needs, you can also configure the
events you want to record for each type of Web object. For example, if you want to record events,
such as moving the pointer over an object to open a sub-menu, you may need to modify the Web
event configuration to recognize such events. For details, see "Event Recording Configuration for
Web-Based Applications" on page 30.

l If you are recording on a list in an application, you must highlight the list, scroll to an entry that was
not originally showing, and select it. If you want to select the item in the list that is already displayed,
you must first select another item in the list (click it), then return to the originally displayed item and
select it (click it). This is because UFT records a step only if the value in the list changes.

l If a Web element in an HTML page is set to be disabled or invisible, for example if a <DIV> element
above it controls its appearance, but the elements on the page are available in the DOM, then UFT

HP Unified Functional Testing (12.52) Page 26

can perform operations on those objects even though a human user of the application could not.

Working with Web Browsers

l You select your browser in the Web Tab of the Run and Record Settings dialog box.

l UFT does not support the option to zoom in and out of a Web page. If you use this option, some UFT
functionality may not work as expected. For example, the Object Spy may be unable to correctly
highlight objects or display object details. (These problems do not occur if the Zoom Text Only
Firefox menu item is selected.)

Additionally, bitmap checkpoints will fail if a different zoom level is used when capturing the
expected bitmap than the zoom level used when running the checkpoint step.

l By default, the name assigned to the Browser test object in the object repository is always the name
assigned to the first Page object that is learned or recorded for the Browser object. The same
Browser test object is used each time you learn an object or record in a browser with the same
ordinal ID. Therefore, the name used for the Browser test object in the steps you record may not
reflect the actual browser name.

l UFT Web support behaves as a browser extension in Microsoft Internet Explorer. Therefore, you
cannot use the Web Add-in on Microsoft Internet Explorer without selecting the Enable third-party
browser extensions option. To set the option, in Microsoft Internet Explorer select Tools > Internet
Options > Advanced and select the Enable third-party browser extensions option.

l For UFT to run JavaScript methods, the security settings in your browser must be set to allow active
scripting. (In Internet Explorer, for example, you can find these security settings under: Tools >
Internet Options > Security > Custom Level > Scripting > Active scripting.)

This is relevant if your test steps include RunScript or EmbedScriptmethods, or if you are working
with test objects supported using Web Add-in Extensibility, such as Web 2.0 test objects.

l Creating and running steps that start an InPrivate Browsing session is supported only by using Tools
> InPrivate Browsing. Using toolbars or extensions for this operation may cause Microsoft Internet
Explorer to behave unexpectedly.

l Creating and running steps that are related to tabs, such as selecting a tab or creating a new tab is
not supported when Microsoft Internet Explorer is in Full Screen mode.

Workaround: Add a <Browser>.FullScreen step before and after the desired step to toggle Full
Screen mode.

Testing Applications with Embedded Web Browser Controls

Working with applications that contain embedded Web browser controls is similar to working with Web
objects in a Web browser.

Note: Embedded browser controls are supported only for Microsoft Internet Explorer.

To test objects in embedded browser controls, ensure that:

l The Web Add-in is loaded.

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 27

l The application opens only after UFT is open.

l (For tests) In the Web Tab of the Record and Run Settings dialog box, the Record and run test on any
open browser option is selected. (This option is not relevant for business components.)

After these conditions are met, you can start adding steps or running your test or business component.

Registering Browser Controls
A browser control adds navigation, document viewing, data download, and other browser functionality
to a non-Web application. This enables the user to browse the Internet as well as local and network
folders from within the application.

UFT cannot automatically recognize the objects that provide browser functionality in your non-Web
application as Web objects. For UFT to record or run on these objects, the application hosting the
browser control must be registered.

Note: You can register applications developed in different environments, such as those written in
Java, .NET, and so on.

Accessing Password-Protected Resources in the
Active Screen
When UFT creates an Active Screen page for a Web-based application, it stores the path to images and
other resources on the page, rather than downloading and storing the images with your test.

Note: The Active Screen pane is not available when working with keyword components (although it
is available for scripted components).

Storing the path to images and other resources ensures that the disk space used by the Active Screen
pages captured with your test is not affected by the file size of the resources displayed on the page.

For this reason, a page in the Active Screen (or in your run results) may require a user name and
password to access certain images or other resources within the page. If this is the case, a pop-up login
windowmay open when you select a step corresponding to the page (see Active Screen Dialog Box), or
you may note that images or other resources are missing from the page.

For example, the formatting of your page may look very different from the actual page on your Web
site if the cascading style sheet (CSS) referenced in the page is password-protected, and therefore
could not be downloaded to the Active Screen.

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 28

You may need to use one or both of the following methods to access your password-protected
resources, depending on the password-protection mechanism used by your Web server:

l Standard Authentication. If your server uses a standard authentication mechanism, you can enter
the login information in the Web Pane of the Settings dialog box. UFT saves this information with
your test and automatically enters the login information each time you select to display an Active
Screen page that requires the information.

If you do not enter this information in the Web pane of the Test Settings dialog box and attempt to
access the password-protected resources, the Active Screen Dialog Box opens.

l Advanced Authentication. If your server uses a more complex authentication mechanism, you may
need to log in to the Web site manually using the Advanced Authentication Dialog Box. This gives the
Active Screen access to password-protected resources in your Active Screen pages for the duration
of your UFT session. When using this method, you must log in to your Web site in the Advanced
Authentication dialog box each time you open the test in a new UFT session.

In most cases, the automatic login is sufficient. In some cases, you must use the manual login method.
In rare cases, you may need to use both login mechanisms to enable access to all resources in your
Active Screen pages.

Note: If your Web site is not password-protected, but you are still unable to view images or other
resources on your Active Screen, you may not be connected to the Internet, the Web server may be
down, or the source path that was captured with the Active Screen page may no longer be
accurate.

Checkpoints for Web Pages
This section describes the checkpoint types that are supported only for Web-based add-ins. For a list of
all supported checkpoints per add-in, see "Supported Checkpoints " on page 383

Accessibility Checkpoints

Accessibility checkpoints are designed to help you easily locate the areas of your Web site that require
special attention according to the W3C Web Content Accessibility Guidelines. They do not necessarily
indicate whether or not your Web site conforms to the guidelines.

Accessibility checkpoints are not supported for keyword components.

For details, see the section on accessibility checkpoints in the HP Unified Functional Testing User Guide.

Page Checkpoints

When working with tests, you can check statistical information about your Web pages by adding page
checkpoints to your test. These checkpoints check the links and the sources of the images on a Web
page. You can also instruct page checkpoints to include a check for broken links.

Page checkpoints are not supported for keyword components.

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 29

For details, see the section on page checkpoints in the HP Unified Functional Testing User Guide.

Tip: You can instruct UFT to create automatic page checkpoints for every page in all tests by
selecting the Create a checkpoint for each Web page while recording check box in the Web >
Advanced pane of the Options dialog box (Tools > Options > GUI Testing tab > Web > Advanced
node).

Event Recording Configuration for Web-Based
Applications
When you record on a Web application, UFT generates steps by recording the events you perform on the
Web objects in your application. An event is a notification that occurs in response to an operation, such
as a change in state, or as a result of the user clicking the mouse or pressing a key while viewing the
document.

UFT includes event recording configurations that have been optimized for each Web-based add-in, so
that in most cases UFT records steps for relevant events on each object and avoids recording steps for
events that usually do not impact the application. For example, by default, UFT records a step when a
click event occurs on a link object, but does not record a step when a mouseover event occurs on a link.

Each Web-based add-in has its own .xml file that defines the Web-event recording configuration for
objects in that environment.

When you perform an operation on a Web-based object during a recording session (and the appropriate
add-in is installed and loaded), UFT uses the recording configuration defined for that environment.

If your application contains several types of Web-based controls, the appropriate Web event recording
configuration is used for each object and the configuration for one environment does not override
another.

Customizing Event Recording Configurations for Web-Based Applications

You can view and customize the configuration settings for the Web Add-in in the Web Event Recording
Configuration Dialog box. The settings in that dialog box affect the recording behavior only for objects
that UFT recognizes as Web test objects.

Note: For the purposes of Web event recording, UFT treats Web test objects that are child objects
of a PSFrame test object as PeopleSoft objects and thus applies the settings in the PeopleSoft
event configuration XML file when recording those objects.

In most cases, it is not necessary to customize the Web event recording configuration of other add-ins.
If you do need to customize these settings, you can do so either by editing the XML for the relevant add-
in manually, or you can import the XML into the Web Event Recording Configuration dialog box to make
the necessary changes and then export the modified file.

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 30

Web Event Recording Configuration XML File Structure
The Web event recording configuration XML file is structured in a specific format when you export it
from the Custom Web Event Recording Configuration Dialog Box. If you are modifying the file, or
creating your own file, you must ensure that you adhere to this format for your settings to take effect.

For task details, see "How to Modify Event Recording Configuration for Web-Based Applications" on
page 43.

Sample XML File

<XML>
 <Object Name="Any Web Object">
 <Event Name="onclick" Listen="2" Record="2"/>
 <Event Name="onmouseup" Listen="2" Record="1">
 <Property Name="button" Value="2" Listen="2" Record="2"/>
 </Event>
 </Object>
 . . .
 . . .
 . . .
 <Object Name="WebList">
 <Event Name="onblur" Listen="1" Record="2"/>
 <Event Name="onchange" Listen="1" Record="2"/>
 <Event Name="onfocus" Listen="1" Record="2"/>
 </Object>
</XML>

The following attributes enable you to define the listening criteria and recording status options in the
XML file:

Attribute Possible Values

Listen 1.Always

2. If Handler

4. If Behavior

6. If Handler or Behavior

0.Never

Record 1.Disabled

2.Enabled

6.Enabled on Next Event

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 31

Advanced Operations on Web-Based Applications
This section describes various advanced operations you can perform on Web-based objects, and
includes the following:

• Activating methods associated with a Web-based object using the Object property 32

• Using programmatic descriptions for the WebElement object 33

Activating methods associated with aWeb-based object using
the Object property
In the Editor, you can use the Object property to activate the method for a Web object. Activating the
method for a Web object has the following syntax:

WebObjectName.Object.Method_to_activate()

For example, suppose you have the following statement in your script:

document.MyForm.MyHiddenField.value = "My New Text"

The following example achieves the same thing by using the Object property, where MyDoc is the DOM's
document:

Dim MyDoc
Set MyDoc = Browser(browser_name).page(page_name).Object
MyDoc.MyForm.MyHiddenField.value = "My New Text"

In the following example, LinksCollecton is assigned to the link collection of the page through the
Object property. Then, a message box opens for each of the links, with its innerHTML text.

Dim LinksCollection, link
Set LinksCollection = Browser(browser_name).Page(page_name).Object.links
For Each link in LinksCollection

MsgBox link.innerHTML
Next

For details on the Object property (.Object), see the section on retrieving and setting identification
property values in the HP Unified Functional Testing User Guide.

For a list of a Web object's internal properties and methods, see: http://msdn2.microsoft.com/en-
us/library/ms531073.aspx

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 32

http://msdn2.microsoft.com/en-us/library/ms531073.aspx
http://msdn2.microsoft.com/en-us/library/ms531073.aspx

Using programmatic descriptions for theWebElement object
When UFT recognizes an object as a Web-based object that does not fit into any other UFT test object
class, it learns the object as a WebElement object. You can also use a programmatic description with a
WebElement test object to perform methods on any Web object in your Web site.

For example, when you run either of the examples below, UFT clicks the first Web object in the Mercury
Tours page with the name UserName.

Browser("Mercury Tours").Page("Mercury Tours").WebElement("Name:=UserName",
"Index:=0").Click

or

set WebObjDesc = Description.Create()
WebObjDesc("Name").Value = "UserName"
WebObjDesc("Index").Value = "0"
Browser("Mercury Tours").Page("Mercury Tours").WebElement(WebObjDesc).Click

For details on the WebElement object, see the HP UFT Object Model Reference for GUI Testing. For details
on programmatic descriptions, see the section on programmatic descriptions in the HP Unified
Functional Testing User Guide.

Web Object Identifiers
During a run session, UFT attempts to identify each object in your application by matching the
description properties stored for the corresponding test object with the properties of the DOM element
in the application. For complex Web applications that contain many objects, using only the standard
identification methods may have unreliable results. For details on the standard methods UFT uses to
identify objects, see the section on how UFT identifies objects in the HP Unified Functional Testing User
Guide.

You can instruct UFT to use Web object identifiers before the regular object identification process to
help limit the number of candidate objects to identify. UFT accesses the application's DOM and returns
objects that match the object identifier property values. UFT then continues to identify this smaller set
of returned objects using the normal object identification process. Therefore, using Web object
identifiers can lead to a more reliable and accurate object identification, and a quicker object
identification process.

To follow an exercise describing the identification process using Web object identifiers, see " How to Use
Web Object Identifiers - Exercise" on page 39.

For details about the general workflow of the object identification process, see the section on object
identification in the HP Unified Functional Testing User Guide.

To learn more, see:

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 33

• Web Object Identifier Types 34

• CSS Web Object Identification 34

• User-Defined XPath Web Object Identification 34

• Automatic X-Path Web Object Identification 35

• Attribute/* Notation Web Object Identification 35

• Style/* Notation Web Object Identification 36

• Considerations - Web Object Identifiers 39

• How to Use Web Object Identifiers - Exercise 39

Web Object Identifier Types
The following Web object identifiers are available:

• CSS Web Object Identification 34

• User-Defined XPath Web Object Identification 34

• Automatic X-Path Web Object Identification 35

• Attribute/* Notation Web Object Identification 35

• Style/* Notation Web Object Identification 36

For general considerations on working with Web object identifiers, see "Considerations - Web Object
Identifiers" on page 39.

CSSWeb Object Identification

CSS (Cascading Style Sheet) is a language used to define formatting of elements in HTML pages. You
can define a CSS identification property value for a test object to help identify a Web object in your
application based on its CSS definition.

UFT uses CSS identifiers only when identifying objects and not when learning objects. Therefore, they
are not available from the Object Spy dialog box or the Object Identification dialog box.

For usage examples, see " How to Use Web Object Identifiers - Exercise" on page 39.

For more details on the Object Identification dialog box and on programmatic descriptions, see the
sections on the Object Identification dialog box and Programmatic Descriptions in the HP Unified
Functional Testing User Guide.

User-Defined XPath Web Object Identification

XPath (XML Path) is a language used to define the structure of elements in XML documents. You can
define an XPath identification property to help identify a Web object in your application based on its

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 34

location in the hierarchy of elements in the Web page. Because of the flexible nature of the language,
you can define the XPath according to the unique way your Web page is structured.

UFT uses XPath identifiers only when identifying objects and not when learning objects. Therefore, they
are not available from the Object Spy dialog box or the Object Identification dialog box.

For usage examples, see " How to Use Web Object Identifiers - Exercise" on page 39.

Automatic X-Path Web Object Identification

You can instruct UFT to automatically generate and store an XPath value when learning Web test
objects. During the run session, if the automatically learned XPath for a particular object results in
multiple matches or no matches, the learned XPath is ignored. Additionally, if you have added a user-
defined XPath or CSS identification property to a test object description, then the automatically learned
XPath is ignored.

Automatic XPath is a UFT-generated property, and therefore it is not available from the Object Spy
dialog box , the Add/Remove Properties dialog box, or the Object Identification dialog box.

You enable this option in the Web > Advanced pane of the Options dialog box.

Attribute/* Notation Web Object Identification

You can use the attribute/* notation to access custom native properties of Web-based objects or
events associated with Web-based objects. You can then use these properties or events to identify such
objects by adding the notation to the object's description properties using the Object Identification
dialog box, or by using programmatic descriptions.

The following examples describe how you can use the attribute/* notation to identify Web objects:

l "Example of using attribute/<property> to identify a Web object" below

l "Example of using attribute/<event> to identify a Web object" on the next page

Example of using attribute/<property> to identify a Web object

Suppose a Web page has the same company logo image in two places on the page:

You could identify the image that you want to click by adding the attribute/LogoID notation to the
object's description properties and using a programmatic description to identify the object:

Browser("Mercury Tours").Page("Find Flights").Image
("src:=logo.gif","attribute/LogoID:=123").Click 68, 12

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 35

Example of using attribute/<event> to identify a Web object

Suppose a Web page has an object with an onclick event attached to it:

"alert('OnClick event for edit.');"

You can identify the object by adding the attribute/onclick notation to the object’s description
properties and using a programmatic description to identify the object:

Browser("Simple controls").Page("Simple controls").WebEdit("attribute/onclick:=
alert\('OnClick event for edit\.'\);").Set "EditText"

Style/* Notation Web Object Identification

You can use the style/* notation to access the values of CSS properties for a Web-based object. You
can then use these property values to identify such objects by adding the notation to the object's
description properties using programmatic descriptions.

The following examples describe how you can use the style/* notation to identify Web objects:

l "Example of using style/<property> to identify a Web object using the background-color property"
below

l "Example of using style/<property> to identify a Web object using the background-position property"
on the next page

l "Example of using style/<property> to identify a Web object and update invalid input controls" on the
next page

For more details, see "Considerations for using the Style/* notation" on page 38

Example of using style/<property> to identify a Web object using the background-
color property

Suppose a web page has different colored button objects on the same page:

<input type="button" style="background-color:rgb(255, 255, 0)">
<input type="button" style="background-color:rgb(255, 0, 0)">

You can identify the button that you want to click by adding the style/background-color notation to
the object's description properties or using a programmatic description to identify the object:

Browser("Simple controls").Page("Simple controls").WebButton("style/background-
color:=rgb\(255, 255, 0\)").Click

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 36

Example of using style/<property> to identify a Web object using the background-
position property

Suppose a web page has different image objects on the same page:

<head>
<style>
img.home {
width:46px;
height:44px;
background:url(img_navsprites.gif) 0px 1px;
}
img.next {
width:43px;
height:44px;
background:url(img_navsprites.gif) -91px 1px;
}
</style>
</head>
<body>
<img class="home" src="img_trans.gif" onclick="var info =
document.getElementById('info'); info.value = 'HOME';" id="home"/>

<img class="next" src="img_trans.gif" onclick="var info =
document.getElementById('info'); info.value = 'NEXT';" id="next"/>

<input type="text" id="info" />
</body>

You can identify the image that you want to click by adding the style/background-position notation
to the object's description properties and using a programmatic description to identify the object:

Browser("Browser").Page("Page").WebElement("html tag:=img", "style/background-
position:=-91px 1px").Click

Example of using style/<property> to identify a Web object and update invalid
input controls

Suppose a web page has different edit objects on the same page, each defined to use a red background
color if the input is invalid:

<head>
<STYLE TYPE="text/css">
input:required:invalid, input:focus:invalid {

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 37

background-color: rgb(255, 0, 0);
}
input:required:valid {
background-color: rgb(0, 255, 0);
}
</STYLE>
</head>
<body>
<form>
<p>email:</p>
<input id="emailTxt" type="email" placeholder="test@.com" required>

<p>url:</p>
<input id="urlTxt" type="url" pattern="https?://.+" placeholder="https?://.+"
required>

</form>

You can identify the invalid values that need to be corrected by adding the style/background-color
notation to the object's description properties and using a programmatic description to identify the
object. You can then enter valid input into the edit object based on the object's type property:

Set oDesc = Description.Create()
oDesc("micclass").Value = "WebEdit"
oDesc("style/background-color").Value = "rgb\(255, 0, 0\)"

Set invalidEdit = Browser("Browser").Page("Page").ChildObjects(oDesc)
numberOfEdits = invalidEdit.Count
For i = 0 To numberOfEdits - 1
If invalidEdit(i).GetROProperty("type") = "email" Then
invalidEdit(i).Set "test@.com"
End If
invalidEdit(i).GetROProperty("type") = "url" Then
invalidEdit(i).Set "http://www.test."
End If

Considerations for using the Style/* notation

l The CSS property values are returned using the browser's functions, and values may differ depending
on the browser you are using.

l UFT retrieves the CSS property values from the browser. When designing tests or components that
will run on different browsers, keep in mind that different browsers may have different CSS
functionality and return different property values for the same object.

l CSS shorthand properties, such as animation, font, background, and outline are not supported.
Instead, use a concrete CSS property in your descriptions, such as background-image, font-family,
border-width, and so on.

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 38

Considerations - Web Object Identifiers
Consider the following when using Web object identifiers:

General

l Defining xpath and css properties using Frame HTML tags is not supported. This may cause incorrect
identification when identifying Frame objects or retrieving Frame objects using the ChildObjects
method.

l xpath and css properties are not supported for .NET Web Forms test objects or for other Web-based
test objects that have .NET Web Forms parent test objects.

l When running in Maintenance Mode, UFT may replace test objects with XPath or css identifier
property values with new objects from your application.

Workaround: Use the Update from Application option in the Object Repository Manager to update
specific test objects with XPath or css identifier property values.

Differences Between User-Defined XPath and Automatic XPath Behavior During Run
Sessions

Behavior in case of... User-defined XPath Automatic XPath

Multiple objects
match the XPath
value

UFT continues to identify thematching objects. UFT ignores the learned XPath and continues
with the regular object identification process.

No objects match the
XPath value

Object identification fails, and UFT continues to
identify the object using Smart Identification

UFT ignores the learned XPath and continues
with the regular object identification process.

How to UseWeb Object Identifiers - Exercise
In this exercise, you use XPath and CSS identifiers in a test object description to help locate the correct
button in an HTML table.

This exercise includes the following steps:

1. "Prerequisites" on the next page

2. "Create a sample Web application" on the next page

3. "Learn the button objects in the Web application" on the next page

4. "Remove the ordinal identifiers from the button objects" on the next page

5. "Add a CSS identifier based on the object's parent container" on page 41

6. "Add an XPath identifier based on the object's parent container" on page 41

7. "Add an XPath identifier based on the object's sibling element" on page 41

8. "Results" on page 41

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 39

1. Prerequisites

a. Open UFT and create a new test.

b. Disable Smart Identification for the Button test object class by selecting Tools > Object
Identification, selecting the Web environment in the Object Identification dialog box, and then
selecting the Button test object class from the Test Object classes list.

c. Disable automatic XPath in the Web > Advanced node (Tools > Options > GUI Testing tab >
Web > Advanced node) by clearing the Learn and run using automatic XPath identifiers
check box.

2. Create a sample Web application

a. Open the Help version of this exercise, copy the syntax content into a text document, and save
the document with an .html extension. The document is saved as an HTML page.

b. Review the appearance and content of your newly created HTML page in any browser. Make
sure that it matches the following image.

3. Learn the button objects in the Web application

a. In UFT, open the Object Repository Manager, and select Object > Navigate and Learn. UFT is
hidden, and the cursor changes to a pointing hand.

b. To verify that UFT learned the objects correctly, in the object repository, select each Button
object and select View > Highlight in Application. UFT highlights each button object in the
HTML page.

c. Rename the Button objects to make them more clear:

o Rename Buy to Buy_BPT.

o Rename Buy_2 to Buy_ALM.

o Rename Buy_3 to Buy_UFT.

4. Remove the ordinal identifiers from the button objects

Because all of the Button objects have identical property values, when UFT learned the objects it
assigned an ordinal identifier to each test object based on the location of each object in the
application. This may cause UFT to identify the objects incorrectly if the sorting order of the
buttons in the application changes.

a. In the Object Repository Window, select the first button object to display its object properties
on the right side of the object repository window.

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 40

b. In the Ordinal Identifier section, select the Browse button. The Ordinal Identifier Dialog Box
opens.

c. In the Identifier type drop-down list, select None and close the dialog box. The ordinal
identifier is removed from the test object's identification properties.

d. Repeat the previous steps for each of the buttons.

e. Verify that the test object descriptions are no longer unique by selecting each test object and
selecting View > Highlight in Application. UFT cannot identify the objects.

5. Add a CSS identifier based on the object's parent container

a. Select the Buy_BPT button. The test object details are displayed on the right side of the object
repository window.

b. In the Object Description section, click the Add button, and add the css property to the test
object description.

c. Copy and paste the following syntax into the Value edit box:

tr.BPTRow input

6. Add an XPath identifier based on the object's parent container

a. Select the Buy_UFT button. The test object details are displayed on the right side of the object
repository window.

b. In the Object Description section, click the Add button, and add the xpath property to the test
object description.

c. Copy and paste the following syntax into the Value edit box:

//TR[@id='UFT']/*/INPUT

7. Add an XPath identifier based on the object's sibling element

a. Select the Buy_ALM button. The test object details are displayed on the right side of the object
repository window.

b. In the Object Description section, click the Add button, and add the xpath property to the test
object description.

c. Copy and paste the following syntax into the Value edit box:

//td[contains(text(),'ALM')]/../*/INPUT

8. Results

Select each object and select View > Highlight in Application. UFT can now identify each button
based on the Web object identifiers you added.

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 41

Web Object Recognition Using theWeb Accessibility
Toolkit
By default, when loading UFT's Web support, the Web Accessibility toolkit is loaded. This toolkit enables
you to work with Web objects that have defined the role property in the HTML code of the object. For
details on this property and its implementation in Web pages and applications, see
http://www.w3.org/TR/wai-aria/roles.

This toolkit enables UFT to correctly map objects in your application by identifying the value of the role
property and then creating a test object accordingly. For example, if you have an object that with this
structure:

<ul role="menubar">

<!-- Rule 2A: "File" label via aria-labelledby -->
<li role="menuitem" aria-haspopup="true" aria-labelledby="fileLabel"><span

id="fileLabel">File
<ul role="menu">

<!-- Rule 2C: "New" label via Namefrom:contents -->
<li role="menuitem">New
<li role="menuitem">Open…
…

…

UFT reads the role= attribute and creates (in this case) a WebMenu object, according to the role:

Rp;e UFT Test Object

button WebButton

link Link

listbox WebList

tablist WebTabStrip

menubar
menu

WebMenu

tree WebTree

This toolkit is enabled by default when starting UFT, unless you have one or more of the Web 2.0 toolkits
(ASP .NET AJAX, Dojo, Ext-JS, GWT, jQueryUI, SiebelOpenUI, or YahooUI), the Add-in for SAP Solutions, or
the PeopleSoft Add-in loaded.

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 42

http://www.w3.org/TR/wai-aria/roles

If you want to manually activate or turn off this toolkit's support, you can use the Setting object in your
test or component steps:

To activate the
toolkit: Setting,Packages.WebPackage.Settings("EnableWebRoleBasedKit")

= 1

To turn off the
toolkit support: Setting,Packages.WebPackage.Settings("EnableWebRoleBasedKit")

= 0

How to Modify Event Recording Configuration for Web-
Based Applications
This task includes the following steps:

l "Modify the event recording configuration XML file manually" below

l "Modify the event recording configuration in the Web Event Recording Configuration dialog box"
below

Modify the event recording configuration XML file manually

1. In a text or XML editor, open the appropriate MyEnvEventConfiguration.xml file from the <UFT
installation folder>\dat folder, according to the following table:

Object Type: XML File Name

.NET Web Forms WebFormsEventConfiguration.xml

Siebel 7.5 or earlier SiebelEventConfiguration.xml

Siebel 7.7 or later CASEventConfiguration.xml

PeopleSoft Frameobjects and all Web objects that are children of a
PeopleSoft frameobject

PSEventConfiguration.xml

2. Edit the file as necessary.

3. Save the file.

Modify the event recording configuration in the Web Event Recording Configuration
dialog box

1. Back up the event recording configuration for the Web environment:

a. Select Record > Web Event Recording Configuration. The Web Event Recording Configuration
dialog box opens.

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 43

b. Click Custom Settings.

c. Select File > Save Configuration As and specify an XML filename for the backup file.

2. Back up the event recording configuration for the environment you want to modify:

Create a copy of the relevant <MyEnv>EventConfiguration.xml file from the <UFT installation
folder>\dat folder.

3. Modify the <MyEnv>EventConfiguration.xml file in the Web Event Recording Configuration dialog
box:

a. In the Web Event Recording Configuration dialog box, select File > Load Configuration and
browse to the relevant <UFT installation folder>\dat\<MyEnv>EventConfiguration.xml file.
The event configuration for the selected environment is displayed in the dialog box.

b. Modify the configuration using the Web Event Recording Configuration dialog box options, as
described in "Event Recording Configuration for Web Objects - Overview" on page 309.

c. Select File > Save Configuration As and overwrite the previous <UFT installation
folder>\dat\<MyEnv>EventConfiguration.xml file.

4. Restore the configuration file for the Web environment:

Select File > Load Configuration and browse to the backup copy of the Web configuration XML file
that you saved earlier.

Caution: UFT always applies the configuration that is loaded in the Web Event Recording
Configuration Dialog Box to all Web objects. If you do not restore the Web configuration file,
then UFT will apply the configuration for the <MyEnv>EventConfiguration.xml file you last
loaded, and as a result, UFT may not record Web events properly.

How to Configure UFT to Record Mouse Clicks
This task describes how to instruct UFT to record right mouse clicks by modifying the configuration file
manually.

1. (Web Add-in only) Prerequisite - Export the configuration file from the Custom
Web Event Recording Configuration dialog box

a. Select Record > Web Event Recording Configuration, and then click Custom Settings.

b. Export your custom configuration to an .xml file by selecting File > Save Configuration As.
Then, navigate to the folder in which you want to save the Web event recording configuration
file, and enter a configuration file name. The extension for configuration files is .xml.

2. Open the XML file in a text editor

Open the configuration file for editing in any text editor. The configuration file uses a predefined
XML structure.

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 44

The following example illustrates the beginning of an exported configuration file:

The Property Name element controls the recording of the mouse buttons. The values of the mouse
buttons are defined as follows:

l 1. Left

l 2. Right

l 4. Middle

3. Modify the XML file to enable mouse click recording

a. Edit the .xml file as follows:

o To record a left mouse click for the onmouseup event, add the following line:

<Property Name="button" Value="1" Listen="2" Record="2"/>

o To record right and left mouse clicks for the onmousedown event, add the following lines:

<Event Name="onmousedown" Listen="2" Record="1">
<Property Name="button" Value="2" Listen="2" Record="2"/>
<Property Name="button" Value="1" Listen="2" Record="2"/>
</Event>

Note: Only one event, either onmouseup or onmousedown, should be used to handle
mouse clicks. If both events are used, UFT records two clicks instead of one. By default,
UFT listens for the onmouseup event.

b. Save the .xml file.

4. (Web Add-in only) Load the XML file into the Custom Web Even Recording
Configuration dialog box

a. In the Custom Web Event Recording Configuration Dialog Box, select File > Load
Configuration. The Open dialog box opens.

b. Navigate to the folder in which you saved the edited configuration file, select the file, and click
Open. The Custom Web Recording Configuration dialog box reopens.

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 45

c. Click OK. The new configuration is loaded, with all preferences corresponding to those you
defined in the .xml configuration file. Any Web objects you now record will be recorded
according to these new settings.

Environment Variables for a Web-Based Environment
You can use predefined environment variables to specify the applications or browsers you want to use
for your test. This can be useful if you want to test how your application works in different
environments.

Note: For details on environment variables and how to use them in tests, see "Environment
Variables in Record and Run Settings" on page 20.

To use environment variables to define the Web browser and URL to open, set the appropriate variable
names as specified below:

Option Variable
Name

Description

Type BROWSER_
ENV

Thebrowser program to open. For example, Microsoft Internet Explorer, Google Chrome, or Mozilla
Firefox.

Possible values:

IE.Opens Internet Explorer.

IE64.Opens a64-bit version of Internet Explorer.

CHROME.Opens Google Chrome.

FIREFOX.Opens the latest version of Mozilla Firefox that is both installed on the computer and
supported by UFT.

FIREFOX64.Opens the latest version of 64-bit Mozilla Firefox that is both installed on the computer
and supported by UFT.

FF<VersionNumber>.Opens the specified version of Mozilla Firefox. For example: FF36 (version
3.6), FF40 (version 4.0), FF140 (version 14.0).

SAFARI.Opens Safari on the remoteMac computer connected to UFT (defined in theWeb tab of the
Record and Run Settings dialog box or in theREMOTE_HOST environment variable).

EDGE.Opens the locally installed version of Microsoft Edge loaded with the EdgeAgent for
Functional Testing.

Note:

l If the specified browser program is not installed, the default browser is used.

l Mozilla Firefox is supported only for theWeb Add-in.

l When specifying a Firefox version number, make sure to specify a supported version. For a
list of all supported browser versions, see theHP Unified Functional Testing Product
Availability Matrix.

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 46

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

Option Variable
Name

Description

Address URL_ENV TheWeb address to display in the browser.

Remote
Host

REMOTE_
HOST

Thehost nameor IP address of theMac computer to which UFT connects.

By default, UFT connects to theMac using port 8822. To use adifferent port, append the port
number to the host name: <hostname>:<port number>.

Make sure to configure the sameport number on theMac, in theUFT port option in the
UFT Connection Agent preferences.

For more details, see "How to Connect to a Remote Mac Computer" on page 347.

Note: Relevant only for running tests and components on theApple Safari browser.

use SSL
flag

USE_SSL Specifies whether to secure the connection to theMac computer by using SSL for the connection.

Possible values:

l TRUE

l FALSE (Default)

Note: Relevant only for running tests and components on theApple Safari browser.

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 47

Troubleshooting and Limitations - Web-Based
Application Support
This section contains general troubleshooting and limitation information about the Web add-in, and
includes the following sections:

l "Test Objects, Methods, and Properties" below

l "Creating and Running Testing Documents" below

l "Recognition of WebTable Test Objects" on the next page

l "Registering Browsers" on page 50

l "Checkpoints, Output Values, and the Active Screen" on page 50

l "Working with Multiple Web Browsers" on page 50

Test Objects, Methods, and Properties

l Web test objects do not support the Class Name identification property. If you try to run a
ChildObjects(<Descr>) step on a Web object, and the Descr argument includes the Class Name
property, a General Run Errormessage is displayed.

Workaround: Use the micclass property in the Descr argument.

l If you record drag and drop steps on a Web element within the same frame, the test steps may fail
during the run session if the screen resolution is not identical to the screen resolution during the
recording session. This is because the target location coordinates may be different for different
screen resolutions.

Workaround: If this problem occurs, adjust the Drop coordinates according to the new location.

l UFT records changes in the edit field only on <input type="file"> tags. Browsing operations are
not recorded.

l Clicks on form tags of type POST may not run correctly.

Workaround: If this problem occurs, change the replay type before the click to Run by mouse
operations using: Setting.WebPackage("ReplayType") = 2. It is recommended to return the
replay type to the default (Run by Events) setting after the click step: Setting.WebPackage
("ReplayType") = 1.

Creating and Running Testing Documents

l If you use the Tab key when recording password fields in the AutoComplete dialog box, UFT may
record incorrectly.

Workaround: Press ENTER after entering the user name or click the button for logging in.

HP Unified Functional Testing (12.52) Page 48

l When UFT opens a browser, it may not correctly recognize multiple tabs that were opened and saved
from a previous browser session.

Workaround: If multiple tabs are required, open them during the run session by adding the relevant
steps to your test or business component.

Recognition of WebTable Test Objects

By default, when using the UFT Web Add-in, UFT recognizes any HTML table as a WebTable test object.

However, in QuickTest 9.5 or 10.00, the default behavior was to ignore HTML tables with one row and
one column during Object Spy, learn, and record sessions.

In specific situations, this changed default behavior may result in differences when learning new test
objects or when running steps containing Web test objects that were learned in QuickTest 9.5 or 10.00.
For example, the ChildObjectsmethod may return a different value for parent objects that contain Web
tables.

If necessary, you can revert to the previous behavior by enabling (and optionally modifying) abstract
table support.

Abstract tables are defined in a built-in Web Add-in Extensibility toolkit support set called HPInternal.
By default, this toolkit support set is not loaded.

To activate the abstract table support:

1. Open
<UFT installation folder>\dat\Extensibility\Web\Toolkits\HPInternal\loadalways.
ind

2. Change the single line in the file to: load=true

To modify which types of tables UFT treats as an abstract table:

Edit the IsHPAbstractTable JavaScript located in:
<UFT installation folder>\dat\Extensibility\Web\Toolkits\HPInternal\HPAbstractTable
.js.

The sample IsHPAbstractTable JavaScript function below causes UFT to treat Web table elements
containing one row and one column as abstract tables:

function IsHPAbstractTable()
{

// Treat all tables with only one cell as abstract tables
if (_elem.rows.length == 1 && _elem.rows[0].cells.length == 1)
{

return true;
}
return false;

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 49

To instruct UFT to ignore additional types of Web table elements, modify the IsHPAbstractTable
JavaScript function to return true for those types based on their HTML properties or other information.
(Use the token _elem to represent the Web element UFT is currently handling.)

Caution: HPAbstractTable.js affects the way UFT identifies Web objects and can cause problems
if modified incorrectly. Edit this file only if you are an experienced JavaScript programmer and are
familiar with the implementation of your Web controls. Make sure to create a backup copy of the
file before making changes.

Registering Browsers

UFT supports applications with embedded browsers only for applications that embed Internet Explorer.

Checkpoints, Output Values, and the Active Screen

l Checkpoints on page source/HTML tags cannot be inserted from the Active Screen and must be
inserted while recording. These checkpoints may fail during the first run session.

Workaround: Perform an update run (Run > Update Run Mode) of your test or business component
before you run a test or business component that includes a page source/HTML tag checkpoint.

l If you insert checkpoints from the Active Screen when you are working with an application containing
a browser control instead of a Web browser, your checkpoints may fail.

Workaround: Insert checkpoints while recording.

Working with Multiple Web Browsers

UFT retrieves the CSS property values from the browser. When designing tests or components that will
run on different browsers, keep in mind that different browsers may have different CSS functionality
and return different property values for the same object.

Problem

When running steps that are intended to be performed on different browsers, and UFT tries to perform
the step intended for the second browser before the second browser has finished loading, UFT will
perform the step on the first browser, and the step may fail.

Solution

Insert a Wait() statement before the first step on the second browser to enable the second browser to
finish loading.

Reason

By default, a Browser test object does not have any identification properties in its description. When
only one browser is open, the open browser matches the (empty) description for any Browser test
objects. When multiple browsers are open, UFT uses smart identification or the ordinal identifier
property value stored with the relevant Browser test object to distinguish between the browsers and to
select the correct browser.

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 50

However, if a second browser has not fully loaded when UFT tries to perform a step intended for that
browser, UFT will assume that only one browser is open and it will try to perform the step on the first
browser without reverting to smart identification or ordinal identifiers.

Add-ins Guide
Web-Based Application Support

HP Unified Functional Testing (12.52) Page 51

Windows-Based Application Support
This chapter includes:

• Windows-Based Application Support - Overview 53

• UFT Configuration for Windows-Based Applications 53

• Record and Run Settings for Windows-Based Applications 54

• Environment Variables for Windows-based Applications 55

• Considerations for Advanced Windows-based Application Testing 55

• Record and Run Setting Guidelines for Windows-Based Add-ins 57

HP Unified Functional Testing (12.52) Page 52

Windows-Based Application Support - Overview
UFT provides a number of add-ins for testing Windows-based applications.

The way you configure many of your UFT options is the same or similar for most UFT Windows-based
add-ins (as well as for the built-in standard Windows testing support). For details, see "UFT
Configuration for Windows-Based Applications" below.

Many UFT add-ins rely on the settings in the Windows Applications Tab (Record and Run Settings Dialog
Box) to determine on which applications UFT records and runs. For some add-ins, these settings may
also affect the applications that UFT recognizes for certain operations while in edit mode, such as using
the Object Spy or other pointing hand operations.

You can also use predefined environment variables to specify the applications or browsers you want to
use for your test. This can be useful if you want to test how your application works in different
environments.

There may also be additional issues that you need to address to ensure that UFT recognizes your
objects properly during record, run, and/or pointing hand operations. For details, see "Record and Run
Setting Guidelines for Windows-Based Add-ins" on page 57.

For details about standard Windows testing support, see "Standard Windows Support -Quick Reference"
on page 256

For details on how to work with Windows-based add-ins, see the specific sections describing these add-
ins in the guide:

l "ActiveX Add-in - Quick Reference" on page 94

l "Delphi Add-in - Quick Reference" on page 100

l ".NET Windows Forms Support - Quick Reference" on page 74

l "PowerBuilder Add-in" on page 170

l "Qt Add-in" on page 174

l "Windows-based SAP Support - Quick Reference" on page 190

l "Stingray Add-in" on page 259

l "Terminal Emulator Add-in" on page 270

l "VisualAge Smalltalk Add-in" on page 296

l "Visual Basic Add-in" on page 300

l "Windows Runtime Add-in" on page 374

UFT Configuration for Windows-Based Applications
Use the Windows Applications pane of the Options dialog box (Tools > Options > GUI Testing tab >
Windows Applications node) to configure general and advanced Windows-based application options, as

HP Unified Functional Testing (12.52) Page 53

follows:

l General options. Configure how UFT records and runs tests and business components for Windows-
based applications, such as Standard Windows, ActiveX, .NET Windows Forms, WPF, SAP GUI for
Windows, Visual Basic applications, and Windows Runtime.

Tip: When recording tests or scripted components on Windows-based applications, you can
choose to save all Active Screen information in every step, save information only in certain
steps, or disable Active Screen captures entirely. You set this preference in the Active Screen
pane of the Options dialog box (Tools > Options > GUI Testing tab > Active Screen node). The
less information saved, the faster your recording times will be.

This option is not relevant for keyword components.

For details, see the section describing the Active Screen pane in the HP Unified Functional Testing
User Guide.

l Advanced options. Modify how UFT records and runs tests or business components on Windows-
based applications, such as ActiveX or Visual Basic.

Record and Run Settings for Windows-Based
Applications
You can set options that affect how you start creating and running tests for Windows-based
applications in the Windows Applications tab of the Record and Run Settings dialog box. These options
instruct UFT which applications to open when you begin to record or run your test.

Additionally, you can specify the applications on which you want to record in the Application Details
Dialog Box. You can use environment variables to define the details for the Windows-based applications
on which you want to record and run tests. If you do this, use the appropriate variable names as
specified in "Environment Variables for Windows-based Applications" on the next page.

Note: The Record and Run Settings dialog box applies only to tests. Record settings for business
components are specified in the Applications pane or Applications dialog box of the relevant
application area. However, specific record and run settings do not need to be defined for business
components. For details on the Applications pane in the Additional Settings pane of an application
area, see the HP Unified Functional Testing User Guide.

Add-ins Guide
Windows-Based Application Support

HP Unified Functional Testing (12.52) Page 54

Environment Variables for Windows-based
Applications
You can use environment variables to define the details for the Windows-based applications on which
you want to record and run tests. If you do this, use the appropriate variable names as specified below.

Note:

l For details on environment variables and how to use them in tests, see "Environment Variables
in Record and Run Settings" on page 20.

l The environment variables described in this section correspond with the settings you define in
the Application Details Dialog Box.

Option Variable Names Description

Application EXE_ENV_1
EXE_ENV_10

The executable files on which UFT records operations when record and run
sessions begin. You can specify up to ten executable files.

Working folder DIR_ENV_1
DIR_ENV_10

The folder to which the corresponding executable file refers (for each
corresponding application).

Program
arguments

ARGS_ENV_1 ...
ARGS_ENV_10

The command line arguments to beused for the specified application (for each
corresponding application).

Launch
application

LNCH_ENV_1 ...
LNCH_ENV_10

Whether to open the application when starting the record and run session (for each
corresponding application).

Possible values:

l 0 (do not launch the application)

l 1 (launch the application)

Include
descendant
processes

CHLD_ENV_1 ...
CHLD_ENV_10

Whether to record and run on processes created by the application during the
record and run session (for each corresponding application).

Possible values:

l 0 (do not record on descendant processes)

l 1 (record descendant processes)

Considerations for Advanced Windows-based
Application Testing
The following information is intended for users with expertise in the Win32 API and the Windows
messages model. It expands on the information provided for some of the options described in Windows
Applications pane of the Options dialog box..

Add-ins Guide
Windows-Based Application Support

HP Unified Functional Testing (12.52) Page 55

Always enumerate child windows

If UFT does not correctly record an object in your application, you can select this option to force UFT to
enumerate all windows in the system. This means that even when UFT looks for a window without WS_
CHILD style, it enumerates all windows in the system and not only the top-level windows.

You should select this option if there is a window in your application that does not have a WS_CHILD
style but does have a parent (not an owner) window.

Record only the object's basic operation

In general, UFT records operations on Windows objects based on Windows messages sent by the
application. UFT recognizes the sequence of Windows messages sent to a specific application window by
the system, and uses a smart algorithm to determine which operation to record.

In rare cases (where a non-standard message sequence is used), the smart algorithm may record
unwanted operations. Select this option if you want to record only the object's basic operation when the
selected event occurs. When you select this option, you can also select when to record the operation. If
you select On mouse button down, UFT records the operation performed when a WM_LBUTTONDOWN
message is detected; if you select On mouse button up, UFT records the operation performed when a
WM_LBUTTONUPmessage is detected.

Keyboard state detection

If UFT does not correctly record keyboard key combinations (for example, CTRL+Y, or ALT+CTRL+HOME),
you can try changing the default setting for this option. Following is a brief explanation of each of the
options:

l Standard. Uses the GetKeyboardState API to detect the keyboard state. For details, see
http://msdn2.microsoft.com/en-us/library/ms646299.aspx.

l Alternate synchronous. Uses the GetKeyState API to detect the keyboard state. For details, see
http://msdn2.microsoft.com/en-us/library/ms646301.aspx.

l Alternate asynchronous. Uses the GetAsyncKeyState API to detect the keyboard state. For details,
see http://msdn2.microsoft.com/en-us/library/ms646293.aspx.

Menu recording mode

In most applications, Windows sends a WM_CONTEXTMENUmessage, WM_ENTERMENULOOPmessage, WM_
INITMENUmessage, WM_INITMENUPOPUPmessage, or other initialization message when a user opens a
menu. Windows then sends a WM_MENUSELECTmessage when a user selects a menu item.

The Verify menu initialization event option instructs UFT to record menu operations only after
detecting a menu initialization message. If UFT does not correctly record menu operations, or if your
application does not send initialization messages before sending WM_MENUSELECTmessages, try using
the Ignore menu initialization event option. This instructs UFT to always record menu operations.

Add-ins Guide
Windows-Based Application Support

HP Unified Functional Testing (12.52) Page 56

http://msdn2.microsoft.com/en-us/library/ms646299.aspx
http://msdn2.microsoft.com/en-us/library/ms646301.aspx
http://msdn2.microsoft.com/en-us/library/ms646293.aspx

Record and Run Setting Guidelines for Windows-Based
Add-ins
Special considerations are detailed below for each UFT add-in that is affected by the settings in the
Windows Applications tab of the Record and Run Settings dialog box.

Add-in Environment Guidelines

ActiveX l If you select theRecord and Run only on radio button, the settings also define and limit which
applications are recognized by theObject Spy and other pointing hand operations.

l UFT recognizes ActiveX objects only in applications that are opened after changing the settings in
theWindows Applications tab of theRecord and Run Settings dialog box.

Delphi l UFT recognizes only Delphi applications that have been precompiled with theDelphi agent module
(MicDelphiAgent.pas). For details, see "How to Enable Communications Between UFT
and Your Delphi Application" on page 102.

l In some cases, if you select theRecord and Run only on radio button, the settings may also
define and limit which applications are recognized by theObject Spy and other pointing hand
operations.

.NET Windows Forms If you select theRecord and Run only on radio button, the settings also define and limit the
applications that are recognized by the .NET Windows Forms Spy, theObject Spy, and other pointing
hand operations.

.NET Windows
Presentation
Foundation
Environment

If you select theRecord and Runonly on radio button, the settings also define and limit the
applications that are recognized by the .NET Spy, theObject Spy, and other pointing hand operations.

PowerBuilder If you select theRecord and Run only on radio button, the settings also define and limit the
applications that are recognized by theObject Spy and other pointing hand operations.

Standard Windows l TheRecord and Run only on radio button applies only to record and run sessions. UFT
recognizes all standard Windows objects for Object Spy and pointing hand operations, regardless
of the settings in theRecord and Run Settings dialog box.

l It is recommended that applications are opened after changing the settings in theWindows
Applications tab of theRecord and Run Settings dialog box.

Stingray l In addition to the settings in theRecord and Run Settings dialog box, you must also configureUFT
to recognize your Stingray applications in theStingray paneof theOptions dialog box (Tools >
Options > GUI Testing tab > Stingray node).

l If you select theRecord and Run only on radio button, the settings also define and limit the
applications that are recognized by theObject Spy and other pointing hand operations.

Terminal Emulators l UFT recognizes only the terminal emulator set in theTerminal Emulator paneof theOptions
dialog box (Tools > Options > GUI Testing tab > Terminal Emulator node).

l TheRecord and Run only on radio button does not affect the applications on which UFT
records, recognizes, and runs.

Add-ins Guide
Windows-Based Application Support

HP Unified Functional Testing (12.52) Page 57

Add-in Environment Guidelines

Visual Basic l If you select theRecord and Run only on radio button, the settings may also define and limit the
applications that are recognized by theObject Spy and other pointing hand operations.

l UFT recognizes Visual Basic objects only in applications that are opened after changing the
settings in theWindows Applications tab of theRecord and Run Settings dialog box.

VisualAge l UFT can recognize only VisualAge Smalltalk applications that have been precompiled with the
VisualAge Smalltalk agent (qt-adapter). For details, see "How to Configure the VisualAge
Smalltalk Add-in" on page 299.

l TheRecord and Run only on radio button applies only to record and run sessions. UFT
recognizes all VisualAge Smalltalk objects for Object Spy and pointing hand operations, regardless
of the settings in theRecord and Run Settings dialog box.

Windows Runtime l UFT cannot open Windows Runtimeapplications as part of recording or running. Therefore, the
Applications opened by UFT and Applications opened via the Desktop are not supported.

l If you specify a specific application for recording or running using theApplications specified
below option, enter the following information:

l For WPF or XAML-based applications: the nameof the.exe process for the application

l For HTML or JavaScript-based applications:WWAHOST.exe

Add-ins Guide
Windows-Based Application Support

HP Unified Functional Testing (12.52) Page 58

HP Unified Functional Testing (12.52) Page 59

Part 2: .NET Add-in
This section includes:

".NET Silverlight Add-in" on page 61

".NET Web Forms Add-in" on page 67

".NET Windows Forms Add-in" on page 73

".NET Windows Presentation Foundation (WPF) Add-in" on page 85

.NET Add-in - Overview
You can use the UFT .NET Add-in to test user interface objects (controls) in Silverlight, .NET Web Forms,
.NET Windows Forms, and Windows Presentation Foundation applications. You can create and run tests
and business components on these objects, and check their properties.

This section contains:

l ".NET Silverlight Add-in" on page 61

l ".NET Web Forms Add-in" on page 67

l ".NET Windows Forms Add-in" on page 73

l ".NET Windows Presentation Foundation (WPF) Add-in" on page 85

HP Unified Functional Testing (12.52) Page 60

.NET Silverlight Add-in
This chapter includes:

• .NET Silverlight Add-in - Quick Reference 62

• Silverlight Add-in Extensibility 64

• Known Issues - Silverlight Add-in 65

HP Unified Functional Testing (12.52) Page 61

.NET Silverlight Add-in - Quick Reference
You can use the UFT Silverlight Add-in to test user-interface objects (controls) in Silverlight applications.

The following tables summarize basic information about the Silverlight Add-in and how it relates to
some commonly-used aspects of UFT.

General

Add-in Type This is aWeb-based add-in. Much of its functionality is the sameas other Web-based add-ins.

This add-in is installed as a sub add-in of the .NET Add-in.

See "Web-Based Application Support" on page 25.

Supported
Environments

For details on supported Silverlight environments, see the .NET Add-insection of theHP Unified
Functional Testing Product Availability Matrix.

Important
Information

l To workwith the Silverlight Add-in, your Silverlight application must be initialized with the
EnableHtmlAccessproperty value set to 'True'. For details, seehttp://msdn.microsoft.com/en-
us/library/cc838264.aspx

l Registering Microsoft sllauncher.exe.You can use theUFT Silverlight Add-in to test Silverlight out-
of-browser applications. To do this you must register theMicrosoft sllauncher.exe as abrowser
control. This executable is located in the Silverlight installation folder, for example,
%ProgramFiles%\Microsoft Silverlight. You can do this using theUFT Register
Browser Control Utility, which is available from Start > All Programs > HP Software > HP Unified
Functional Testing > Tools > Register New Browser Control.or <UFT installation
folder>\bin\SettingNewBrowserControlApplication.exe. For details, see
"Registering Browser Controls" on page 28.

Note: For details on accessing UFT and UFT tools and files in Windows 8.X or higher and Windows
Server 2012, see "Accessing UFT in Windows 8.X or Higher Operating Systems" on page
387.

Test Object
Methods and
Properties

TheSilverlight Add-in provides test objects, methods, and properties that can beused when testing
objects in Silverlight applications. For details, see theSilverlight section of theHPUFT Object Model
Reference for GUI Testing.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Extending the
Silverlight Add-
in

"Silverlight Add-in Extensibility " (described on page64enables you to develop support for testing
third-party and custom Silverlight controls that are not supported out-of-the-box by theUFT Silverlight
Add-in.

Troubleshooting
and Limitations

"Known Issues - Silverlight Add-in" on page 65.

Prerequisites

Add-ins Guide
.NET Silverlight Add-in

HP Unified Functional Testing (12.52) Page 62

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
http://msdn.microsoft.com/en-us/library/cc838264.aspx
http://msdn.microsoft.com/en-us/library/cc838264.aspx

Opening Your
Application

You must open UFT before opening your Silverlight application.

Add-in
Dependencies

TheWeb Add-in must be loaded.

Other l To workwith the Silverlight Add-in, .NET FrameWork 3.0 or later must be installed on your computer.

l To test your Web application in Mozilla Firefox version 33 and later, you must enable the Functional
Testing Extension in oneof the following ways:

l If theSelect Your Add-ons screen is displayed when you open Firefox, select to enable the
Functional Testing Extension.

l If the Install Add-on tab opens and displays Functional Testing Extension when opening Firefox,
select theAllow this installation check box and clickContinue.

Otherwise:

i. In Firefox, open the browser menu.

ii. In themenu, clickAdd-ons.

iii. In theAdd-ons Manager tab, select theExtensionsnode.

iv. In the Functional Testing Extension row, click theEnable button.

To test your Web application in Mozilla Firefox versions earlier than 33, you must enable the legacy
Firefox agent:

a. Open the<UFT installation folder>\Installations\Firefox folder.

b. From the Firefox folder, drag theLegacy.xpi file into Firefox.

c. In Firefox, open the browser menu.

d. In themenu, click Add-ons.

e. In theAdd-ons Manager tab, select the Extensions node.

f. In the Functional Testing Extension row, disable the Functional Testing 12.50 extension and
enable the extension you added to Firefox.

Configuration

Options Dialog Box Use theWebpane.
(Make sure that aGUI test is open and select Tools > Options > GUI Testing tab >
Web > General node.)

Record and Run Settings Dialog
Box
(tests only)

Use theWeb tab.
(Record > Record and Run Settings.)

Test Settings Dialog Box
(tests only)

Use theWebpane.
(File > Settings > Web node)

Custom Active Screen Capture
Settings Dialog Box
(tests only)

Use theWeb section.
(Tools > Options > GUI Testing tab > Active Screennode> Custom Level)

See the section on the Custom Active Screen Capture Settings dialog box in the
HPUnified Functional Testing User Guide.

Add-ins Guide
.NET Silverlight Add-in

HP Unified Functional Testing (12.52) Page 63

Application Area Additional
Settings pane
(business components only)

Use theWebpane.
In the application area, select Additional Settings > Web in the sidebar.

Silverlight Add-in Extensibility
UFT Silverlight Add-in Extensibility enables you to develop support for testing third-party and custom
Silverlight controls that are not supported out-of-the-box by the UFT Silverlight Add-in.

If the test object class that UFT uses to represent a control does not provide the operations and
properties necessary to operate on your control, you can use Silverlight Add-in Extensibility to create a
new test object class.

You can then map the control to the new test object class, and design the test object class behavior
using .NET programming. You can program how operations are performed on the control, how
properties are retrieved, and more.

You can also teach UFT to treat a control that contains a set of lower-level controls as a single
functional control, instead of relating to each lower-level control separately.

To implement Silverlight Add-in Extensibility, you need to be familiar with:

l UFT and its Object Model Reference

l The behavior of the custom control (operations, properties, events)

l .NET programming in C#

l XML (basic knowledge)

You can install the WPF and Silverlight Add-in Extensibility SDK from the Add-in Extensibility and Web
2.0 Toolkits option in the UFT setup program.

The SDK also includes project templates and a wizard for Microsoft Visual Studio, that simplify setting
up of your Silverlight Add-in Extensibility project.

For details on implementing Silverlight Add-in Extensibility, see the WPF and Silverlight Add-in
Extensibility Help, available from the UFT Extensibility Documentation program group (Start > All
Programs > HP Software > HP Unified Functional Testing > Extensibility > Documentation or the
<UFT installation folder>\help\Extensibility folder).

Note: For details on accessing UFT and UFT tools and files in Windows 8.X or higher and Windows
Server 2012, see "Accessing UFT in Windows 8.X or Higher Operating Systems" on page 387.

A printer-friendly (PDF) version of the HP Unified Functional Testing WPF and Silverlight Add-in
Extensibility Developer Guide is available in the <Unified Functional Testing installation
folder>\help\Extensibility folder.

Add-ins Guide
.NET Silverlight Add-in

HP Unified Functional Testing (12.52) Page 64

Known Issues - Silverlight Add-in
This section describes troubleshooting and limitations for the Silverlight Add-in, and contains the
following sections:

l "General" below

l "Checkpoints" below

l "Creating and editing testing documents" below

l "Running steps on Silverlight applications" on the next page

General

l UFT retrieves incorrect values for the all items and selection properties for ListBox and ComboBox
controls that are bound to data via a template.

l If a recovery scenario uses the Object State trigger, the following may occur:

l The recovery scenario may detect redundant test objects when checking a SlvWindow state.

l The run results may not include all nodes related to the recovery scenario.

l The Silverlight Add-in is not supported on Internet Explorer 11 when the Enhanced Protected Mode is
turned on.

l You cannot create a virtual object for an area in a Silverlight application.

l The Silverlight Add-in does not support 64-bit Firefox browsers.

Checkpoints

l If you insert a text area checkpoint or a text area output value using the Windows API text
recognition mechanism (as opposed to the OCR mechanism), all of the text on the Silverlight control
is captured (instead of only the text from the selected area).

l For some test objects, if you try to insert a text checkpoint from the Active Screen, the text
checkpoint cannot be inserted and an error message is displayed.

Creating and editing testing documents

l Recording on windowless Silverlight applications is not supported on Mozilla Firefox.

l If you open a Silverlight context menu when creating or editing a test, you must close the context
menu control (for example, by pressing ESC) before you close the browser. Otherwise, during a run
session, the browser window will remain open.

Workaround: Add the following line to the test before the line that closes the browser:

Browser("SilverLightAUT").Page("SilverLightAUT").SlvWindow("Page").SlvButton

Add-ins Guide
.NET Silverlight Add-in

HP Unified Functional Testing (12.52) Page 65

("Login").Type micEsc

Example:

Browser("SilverLightAUT").Page("SilverLightAUT").SlvWindow("Page").SlvButton
("Login").ShowContextMenu
Browser("SilverLightAUT").Page("SilverLightAUT").SlvWindow("Page").SlvButton
("Login").Type micEsc
Browser("SilverLightAUT").Close

Running steps on Silverlight applications

l If a Web page contains a Silverlight application that is windowless and is scrolled out of view when
the page opens the first time, UFT will not be able to make this application visible. (For example, in
this scenario, UFT will not be able to perform an SlvWindow.MakeVisible step).

l In some versions of Internet Explorer, the Silverlight application becomes active only after a Click
operation is performed. In these cases, UFT may fail to run test steps unless an initial Click operation
is performed.

Workaround: Insert a step containing a Click operation on the Silverlight application before
performing other operations on the application.

l To improve performance when running legacy tests in UFT, update your Silverlight test object
descriptions to include the devnamepath property.

Add-ins Guide
.NET Silverlight Add-in

HP Unified Functional Testing (12.52) Page 66

.NET Web Forms Add-in
This chapter includes:

• .NET Web Forms Add-in - Quick Reference 68

• Considerations for Testing .NET Web Forms 69

• Accessing Internal Properties and Methods of Run-Time .NET Web Forms Objects 69

• Known Issues- .NET Web Forms 69

HP Unified Functional Testing (12.52) Page 67

.NET Web Forms Add-in - Quick Reference
You can use the .NET Add-in to test .NET Web Forms user-interface objects (controls).

The following tables summarize basic information about the .NET Web Forms application support and
how it relates to some commonly-used aspects of UFT.

General Information

Add-in Type The .NET Add-in functions like aWeb-based add-in when testing .NET Web Forms controls. Much of its
functionality is the sameas other Web-based add-ins.

See "Web-Based Application Support" on page 25.

Supported
Environments

For details on supported .NET Web Forms environments, see the .NET Add-in section of theHP Unified
Functional Testing Product Availability Matrix.

Test Object
Methods and
Properties

The .NET Add-in provides test objects, methods, and properties that can beused when testing objects in
.NET Web Forms applications. For details, see the .NET Web Forms section of theHPUFT Object Model
Reference for GUI Testing.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

l See "Accessing Internal Properties and Methods of Run-Time .NET Web Forms Objects" on the
next page.

Troubleshooting
and Limitations

See "Known Issues- .NET Web Forms" on the next page.

Prerequisites

Opening Your
Application

You must open UFT and set theRecord and Run options before opening your .NET Web Forms application.
Open your application only after you begin the recording session.

Add-in
Dependencies

TheWeb Add-in must be loaded.

Configuration

Options Dialog Box Use theWebpane.
(Make sure that aGUI test is open and select Tools> Options > GUI Testing tab >
Web > General node.)

Record and Run Settings Dialog
Box
(tests only)

Use theWeb tab.
(Record > Record and Run Settings)

Test Settings Dialog Box
(tests only)

Use theWebpane.
(File > Settings > Web node)

Custom Active Screen Capture Use theWeb section.

Add-ins Guide
.NET Web Forms Add-in

HP Unified Functional Testing (12.52) Page 68

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

Settings Dialog Box
(tests only)

(Tools > Options > GUI Testing tab > Active Screennode> Custom Level)

See the section on the Custom Active Screen Capture Settings dialog box in the
HPUnified Functional Testing User Guide.

Application Area Additional
Settings pane
(business components only)

Use theWebpane.
In the application area, select Additional Settings > Web in the sidebar.

Considerations for Testing .NET Web Forms
When testing .NET Web Forms Applications applications, consider the following:

l When UFT learns .NET Web Forms objects, it does not learn the HTML elements that comprise the
test objects. For example, when UFT learns the WbfGrid test object, the WbfGrid object is the
bottommost object in the hierarchy, and the HTML elements used to create the grid's cells are not
learned.

l When you load the .NET Add-in, the Web event recording configurations designed for this add-in are
loaded and are used whenever you record on a .NET Web Forms object. The.NET Web Forms Web
event recording configurations do not affect the way UFT behaves when you record on other
non-.NET Web Forms Web objects. For details, see "Event Recording Configuration for Web-Based
Applications" on page 30.

Accessing Internal Properties and Methods of Run-
Time .NET Web Forms Objects
You can use the Object property to retrieve internal (native) properties and activate internal methods
of any .NET Web Forms object in your application.

In the example below, the orientation property of the WbfTabStrip control is returned and displayed in
a message box.

MsgBox Browser("WebControls:").Page("Page").WbfTabStrip
("WbfTabStrip").Object.Orientation

The Object property is also useful for verifying the value of properties that are not available using a
standard checkpoint.

For details on the Object property and for details on .NET Web Forms test objects, methods, and
properties see the .NET Web Forms section of the HP UFT Object Model Reference for GUI Testing.

Known Issues- .NET Web Forms
This section describes troubleshooting and limitations for the .NET Web Forms Add-in.

Add-ins Guide
.NET Web Forms Add-in

HP Unified Functional Testing (12.52) Page 69

General

l xpath and css properties are not supported for .NET Web Forms test objects or for other Web-based
test objects that have .NET Web Forms parent test objects.

l Tests onWbfTreeView test objects that contain special characters may not run as expected.

Workaround: To run a test on a WbfTreeView item that contains special characters, use the #index
format. See the .NET Web Forms Object Model Reference Help for details.

l WbfTreeView, WbfToolbar, and WbfTabStrip test objects are not supported for browser control
applications.

l Active Screen operations are not supported for WbfTreeView, WbfToolbar, and WbfTabStrip objects.

l Performing a Select or Expand operation on a WbfTreeView object that causes page navigation may
fail due to a synchronization problem.

Workaround: Try running the test on the WbfTreeView object step-by-step. For example, change:

WbfTreeView.Select "item1;item2;item3;"

to:

WbfTreeView.Expand "item1
WbfTreeView.Expand "item1;item2"
WbfTreeView.Select "item1;item2;item3;"

l Working on a .NET Web Forms application that has calendars with more than one unified style is not
fully supported.

l The value of the Selected Date and Selected Range identification properties is always none for
WbfCalendar objects in selection mode none.

l To retrieve correct values for WbfCalendar Selected Date and Selected Range identification
properties, the selected date or range must be currently visible in your Web Forms application.

l All operations on grouping areas in WbfUltraGrid objects (InfragisticsUltraWebGrid) are not
recorded.

l Operations performed in a rapid sequence on WbfUltraGrid objects may not be recorded.

Workaround: Try to limit the recording to 1-2 operations per second.

WbfUltraGrid column names are comprised of the inner HTML of the column header, and therefore
may include extraneous information.

l WbfUltraGrid may fail to sort columns in a descending order when the column is not already sorted.

Workaround: Split the Sort call into two calls—first sort in ascending order, then sort in descending
order. For example, change:

WbfUltraGrid("UltraWebGrid1").Sort "Model","Descending"

Add-ins Guide
.NET Web Forms Add-in

HP Unified Functional Testing (12.52) Page 70

to:

WbfUltraGrid("UltraWebGrid1").Sort "Model","Ascending"
WbfUltraGrid("UltraWebGrid1").Sort "Model","Descending"

l Note that Visual Basic .NET applications are supported by the UFT .NET Add-in.

Creating, Editing, and Running Testing Documents

l UFT may recognize some Web Forms grids as WebTables instead of WbfGrid test objects.

Workaround: Do one of the following:

l Modify the Web forms control so that it meets one of the following conditions:

o The class attribute contains the string DataGrid.

o The id attribute contains at least one of the strings DataGrid or GridView.

l Modify the rules that UFT uses to determine when to identify a Web Forms table control as a
DataGrid or GridView (and learn it as a WbfGrid test object).

These rules are defined in:<UFT installation folder>\dat\WebFormsConfiguration.xml.

The file contains comments that describe its format and explain how to use it.

l .NET Web Forms objects are supported only on Microsoft Internet Explorer.

l When recording, you must open UFT and define record options before opening your .NET Web Forms
application.

Checkpoint and Output Values

l WbfTreeView, WbfToolbar, and WbfTabStrip objects are not properly recognized in the Active Screen.
Therefore:

l You cannot insert checkpoint or output value steps for these objects from the Active Screen.

l If you select to insert checkpoints for these objects from the Keyword View or Editor while in edit
mode, the expected values of these objects may be incorrect.

Workaround: Insert checkpoint or output value steps on these objects during a recording session or
remove the Active Screen for the relevant step and then insert a checkpoint from the Keyword View
or Editor with your application open to the proper location, so that the values will be retrieved from
the application.

l Text checkpoints are not supported for WbfTreeView, WbfToolbar, and WbfTabStrip objects.

l The Active Screen image for a WbfCalendar object is always saved before navigation. For example, if
you click a NextMonth link, the Active Screen displays the current month. Therefore, if you create a
checkpoint from the Active Screen and insert it after the Calendar.ShowNextMonth line, the
checkpoint will fail.

Add-ins Guide
.NET Web Forms Add-in

HP Unified Functional Testing (12.52) Page 71

Workaround: Do one of the following:

l Insert checkpoints on calendar objects while recording.

l While editing your test, edit the expected value for the checkpoint or insert the checkpoint before
the current step.

l Table checkpoints are supported for WbfUltraGrid objects only while recording.

l When using the WbfUltraGrid.RowCount andWbfUltraGrid.ColumnCountmethods or performing a
table checkpoint on a grid that also contains additional grid controls inside it, UFT retrieves the rows
or columns only for the outermost table. Note that the rows property and RowCountmethod count
only the non-grouping rows.

Add-ins Guide
.NET Web Forms Add-in

HP Unified Functional Testing (12.52) Page 72

.NET Windows Forms Add-in
This section includes:

• .NET Windows Forms Support - Quick Reference 74

• .NET Windows Forms Support - Testing and Configuration 76

• Considerations for Testing .NET Windows Forms Applications 77

• .NET Windows Forms Objects - Checkpoints and Output Values 77

• .NET Add-in Extensibility 78

• .NET Windows Forms Spy 79

• How to Use the .NET Windows Forms Spy 80

• Known Issues - .NET Windows Forms 83

HP Unified Functional Testing (12.52) Page 73

.NET Windows Forms Support - Quick Reference
You can use the UFT .NET Add-in to test .NET Windows Forms user-interface objects (controls).

The following tables summarize basic information about .NET Windows Forms application support and
how it relates to some commonly-used aspects of UFT.

General Information

Add-in Type The .NET Windows Forms testing support functions like aWindows-based add-in. Much of its functionality
is the sameas other Windows-based add-ins.

See "Windows-Based Application Support" on page 52.

Supported
Environments

For details on supported .NET Windows Forms environments, see the .NET Add-in section of the
HP Unified Functional Testing Product Availability Matrix.

Important
Information

l You can also test most custom .NET controls inherited from theSystem.Windows.Forms.Control
regardless of which languagewas used to create the application (for example, Visual Basic .NET, C#,
and so on)

l See " Considerations for Testing .NET Windows Forms Applications"

Test Object
Methods and
Properties

The .NET Add-in provides test objects, methods, and properties that can beused when testing objects in
.NET Windows Forms applications. For details, see the .NET Windows Forms section of theHPUFT
Object Model Reference for GUI Testing.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See " Considerations for Testing .NET Windows Forms Applications" on page 77.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Extending the
.NET Add-in

".NET Add-in Extensibility" (described on page78enables you to develop support for testing third-party
and custom .NET Windows Forms controls that are not supported out-of-the-box by theUFT .NET Add-in.

Troubleshooting
and Limitations

See "Known Issues - .NET Windows Forms" on page 83.

Prerequisites

Opening Your Application You must open UFT before opening your .NET Windows Forms application

Add-in Dependencies The .NET Add-in must be installed.

Configuration

Options Dialog Box Use theWindows Applicationspane.
(Select Tools> Options > GUI Testing tab > Windows Applications node).

Record and Run Settings Dialog
Box
(tests only)

Use theWindows Applications tab.
(Record > Record and Run Settings)

Add-ins Guide
.NET Windows Forms Add-in

HP Unified Functional Testing (12.52) Page 74

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

Note: If you select theRecord and Run only on radio button in theRecord and
Run Settings dialog box, the settings also apply to (limit) the applications that are
recognized for the .NET Windows Spy, theObject Spy, and other pointing hand
operations.

Custom Active Screen Capture
Settings Dialog Box
(tests only)

Use theWindows applications section.
(Tools > Options > GUI Testing tab > Active Screen node > Custom Level)

See the section on the Custom Active Screen Capture Settings dialog box in the
HPUnified Functional Testing User Guide.

Application Area Additional
Settings pane
(business components only)

Use theApplicationspane.
In the application area, select Additional Settings> Applications in the sidebar.

See the section on theApplications pane in theHPUnified Functional Testing User
Guide.

Add-ins Guide
.NET Windows Forms Add-in

HP Unified Functional Testing (12.52) Page 75

.NET Windows Forms Support - Testing and
Configuration
This section includes

• Considerations for Testing .NET Windows Forms Applications 77

• .NET Windows Forms Objects - Checkpoints and Output Values 77

• .NET Add-in Extensibility 78

• .NET Windows Forms Spy 79

• How to Use the .NET Windows Forms Spy 80

• Known Issues - .NET Windows Forms 83

Add-ins Guide
.NET Windows Forms Add-in

HP Unified Functional Testing (12.52) Page 76

Considerations for Testing .NET Windows Forms Applications
l You can use the Keyword View and Editor to activate .NET Windows Forms test object operations and

native (run-time object) operations, retrieve and set the values of properties, and check that objects
in your application exist and function as expected.

l When you create a checkpoint on a .NET Windows Forms object, UFT stores the selected property
values of the object. If your application changes, you can modify the captured values to match the
new expected values.

.NET Windows Forms Objects - Checkpoints and Output Values
You can check or output values from supported .NET Windows Forms grid controls and use the Object
property to retrieve internal properties.

For details, see:

l "Checking .NET Windows Forms Tables and Outputting Their Values" below

l "Accessing Internal Properties and Methods of Run-Time .NET Windows Forms Objects" on the next
page

Checking .NET Windows Forms Tables and Outputting Their Values

You check or output values from supported .NET Windows Forms grid controls using the Table
Checkpoint Properties dialog box.

For tables with more than 100 rows, you can specify the rows you want to include in the checkpoint or
output value in the Define/Modify Row Range Dialog Box. If you do not specify the rows to include, the
table checkpoint or output value captures all data in the current level or view as follows:

When working with: The table checkpoint or output value captures:

ComponentOne C1FlexGrid
and C1TrueDBGrid

The entire grid.

Microsoft Data Grid and
DataGrid View

The currently displayed table (parent or child).

Infragistics
UltraWinGrid

Theband in which a cell, column, or row is selected.

DevExpress XtraGrid The view that was most recently set.

Tip: Insert aSetViewmethod before your table checkpoint to ensure that the
view you want is displayed when the table checkpoint runs.

Apart from the difference in captured information as listed above, you define a table checkpoint or
output value for .NET Windows Forms in the same way as you do for any other table. For details, see the
sections on checkpoints and output values in the HP Unified Functional Testing User Guide.

Add-ins Guide
.NET Windows Forms Add-in

HP Unified Functional Testing (12.52) Page 77

Accessing Internal Properties and Methods of Run-Time .NET Windows Forms
Objects

You can use the Object property to retrieve internal (native) properties and activate internal methods
of any .NET Windows Forms object in your application.

For example, you can set the focus to a particular button and change its caption using statements
similar to the following:

Set theButton = SwfWindow("frmWin").SwfButton("OK").Object
theButton.SetFocus
theButton.Caption = "Yes"

The Object property is also useful for verifying the value of properties that are not available using a
standard checkpoint.

When you use the Object property to retrieve arrays of structures, the Object property returns the COM
wrapper of the system.array object. In your VBScript test or business component steps, you can then
use the system.array object to access the array members.

For example, suppose a button object in your application has a PointArray property, which is an array of
Point structures. To access the first item in the PointArray property, you would use the following
expression:

SwfWindow("Form1").SwfButton("button1").Object.PointArray.GetValue1(0)

If the same object had an IntArray property, which was an array of integers, you would use the following
expression to access the first item in the IntArray property:

SwfWindow("Form1").SwfButton("button1").Object.IntArray(0)

For details on the Object property and for details on .NET Windows Forms test objects, methods, and
properties see the .NET Windows Forms section of the HP UFT Object Model Reference for GUI Testing.

.NET Add-in Extensibility
UFT .NET Add-in Extensibility enables you to develop support for testing third-party and custom .NET
Windows Forms controls that are not supported out-of-the-box by the UFT .NET Add-in.

Add-ins Guide
.NET Windows Forms Add-in

HP Unified Functional Testing (12.52) Page 78

If the test object class that UFT uses to represent a control does not provide the operations and
properties necessary to operate on your control, you can use .NET Add-in Extensibility to customize this
behavior.

l You can instruct UFT to use a different test object class to represent the control.

l You can add operations or override existing ones, using .NET programming, to operate as necessary
on the control.

l You can also teach UFT to treat a control that contains a set of lower-level controls as a single
functional control, instead of relating to each lower-level control separately.

To implement .NET Add-in Extensibility, you need to be familiar with:

l UFT and its Object Model Reference

l The behavior of the custom control (operations, properties, events)

l .NET programming in C# or Visual Basic

l XML (basic knowledge)

You can install the .NET Add-in Extensibility SDK from the Add-in Extensibility and Web 2.0 Toolkits
option in the UFT setup program.

The SDK also includes:

l Project templates and a wizard for Microsoft Visual Studio, that simplify setting up of your .NET Add-
in Extensibility project.

l Samples of support developed using .NET Add-in Extensibility, which you can use to gain a better
understanding of how to create your own support.

For installation and implementation details, see the .NET Add-in Windows Forms Extensibility Help,
available from the UFT Extensibility Documentation program group (Start > All Programs >
HP Software > HP Unified Functional Testing > Extensibility > Documentation or the <UFT
installation folder>\help\Extensibility folder).

Note: For details on accessing UFT and UFT tools and files in Windows 8.X or higher and Windows
Server 2012, see "Accessing UFT in Windows 8.X or Higher Operating Systems" on page 387.

A printer-friendly (PDF) version of the HP UFT .NET Add-in Extensibility Developer Guide is available in the
<Unified Functional Testing installation folder>\help\Extensibility folder.

.NET Windows Forms Spy
The .NET Windows Forms Spy (described in .NET Windows Forms Spy Dialog Box) enables you to select a
specific control in your .NET application, view its run-time object properties and values, change property
values in the application in run-time, listen to events on a specific control, view the event arguments,
and fire events back at the application.

You can use the .NET Windows Forms Spy to help you develop extensibility for .NET Windows Forms
controls.

Add-ins Guide
.NET Windows Forms Add-in

HP Unified Functional Testing (12.52) Page 79

To spy on a .NET Windows Forms application, make sure that the application is specified in the Windows
Applications tab of the Record and Run Setings dialog box and that the application is running with Full
Trust. If the application is not defined to run with Full Trust, you cannot spy on the .NET application's
Windows Forms controls with the .NET Windows Forms Spy. For details on defining trust levels for .NET
applications, see Microsoft documentation.

The .NET Windows Forms Spy is intended for advanced UFT users, especially those who are using .NET
Add-in Extensibility to create support for custom .NET Windows Forms controls. The .NET Windows
Forms Spy can assist you in examining .NET Windows Forms controls within your application and seeing
which events cause it to change (to facilitate recording and running) and how the changes manifest
themselves in the control's state.

Note: The .NET Windows Forms Spy runs in the context of your .NET application, not in the UFT
context. The objects and run-time object properties on which you are spying are the raw .NET
objects in your application, and not the .NET test objects used in UFT. Since the .NET Windows Forms
Spy runs in the context of your .NET application, you can close UFT while you use the .NET Windows
Forms Spy. However, UFT must be open if you want to use the pointing hand mechanism to spy on
additional objects. If you close the .NET application on which you are spying, the UFT .NET Windows
Forms Spy window is closed automatically.

How to Use the .NET Windows Forms Spy
This task describes elements of the .NET Windows Forms Spy including how to:

Spy on an object

1. Make sure that the application on which you want to spy is specified in the Windows Applications
tab of the Record and Run Settings dialog box, and that the application is running with Full Trust.

2. Open the .NET Windows Forms application to the window containing the object on which you want
to spy.

3. Select Tools > .NET Windows Forms Spy. The UFT.NET Windows Forms Spy Dialog Box opens.

4. In the UFT .NET Windows Forms Spy window, click the pointing hand . Both UFT and the
.NET Windows Forms Spy are minimized so that you can point to, and click on, any object in the
open application.

For details on using the pointing hand, see the section describing the pointing hand in the
HP Unified Functional Testing User Guide.

5. Click the object whose properties you want to view. If the location you clicked in your application is
associated with more than one object, the Object Selection dialog box opens. The objects
associated with the location you clicked are displayed in hierarchical order.

6. Select the .NET Windows Forms object on which you want to spy and click OK. The UFT .NET
Windows Forms Spy window opens showing the properties and values for the selected object.

7. You can repeat these steps to spy on additional objects and add them to the Objects pane in the

Add-ins Guide
.NET Windows Forms Add-in

HP Unified Functional Testing (12.52) Page 80

UFT .NET Windows Forms Spy window.

Remove objects from the Objects pane

1. Select the object that you want to remove.

2. Perform one of the following:

l Right-click the object and select Remove Object.

l Press DELETE.

View values of run-time object properties

In the Objects pane, select the object whose run-time object properties you want to view. The properties
for the selected object are displayed in the Properties tab, with the property names on the left, and the
property values on the right. A description of the selected property is displayed below the properties
grid.

Note: Any changes you make to the values of run-time object properties in the .NET application
remain in effect only for the current instance of the .NET application. The next time you run the
.NET application, the properties will return to their original run-time values.

View properties of embedded objects

1. In the Properties tab, select the property whose embedded object properties you want to view. For
details on locating a property by value, see "Locate a property by its value" below.

2. Click the Add selected property to the Objects tree button . The property is added to the
Objects pane, and its run-time object properties and property values (if any) are shown in the
Properties tab. Each time you add an embedded object to the Objects pane, it is added below its
parent object, in a hierarchical format.

Note: The Add selected property to the Objects tree button is disabled if the property's value
is null, or the property is an object with no properties of its own.

Locate a property by its value

1. Click the Search a property by value button . The Find Property by Value dialog box opens.

2. In the Find what box, specify the value for which you want to search.

3. To find only those occurrences in which the capitalization matches the text you entered, select
Match case.

4. Specify the direction from the current cursor location in which you want to search: Up or Down.

5. Click Find Next. The .NET Windows Forms Spy locates the property whose value you specified.

Add-ins Guide
.NET Windows Forms Add-in

HP Unified Functional Testing (12.52) Page 81

Sort the properties grid

Click one of the following buttons to sort the properties grid in the Properties tab:

l Categorized. Lists all properties and property values for the selected object, by category.
Categories are listed alphabetically. You can collapse a category to reduce the number of visible
properties. When you expand or collapse a category, a plus (+) or minus (-) is displayed to the left of
the category name.

l Alphabetical. Alphabetically sorts all run-time object properties for the selected object.

Note: The Property Pages button is not currently supported.

Modify values of run-time object properties

1. In the Properties tab, click the property value you want to modify. Properties shown in gray are
defined as read-only in the .NET application and cannot be modified.

2. Edit the property value as required. The property value displays different types of edit fields,
depending on the needs of a particular property. These edit fields include edit boxes, drop-down
lists, and links to custom editor dialog boxes.

After you modify a property value, the new value is applied to the run-time instance of the .NET
application. For example, you can change the text of an edit box label, change the background color
of a dialog box from gray to red, and so on.

View event arguments on an object

1. In the Objects pane, select the object whose event arguments you want to view.

2. Select the event in the Fired Events list whose arguments you want to view. The selected events
arguments and argument values are shown directly below the event, in the Event Arguments list.

Listen to specified events of an object

1. In the Objects pane, select the object to whose events you want to listen.

2. In the Events list, select the check boxes for the event types to which you want to listen.

Note: The events that you select affect only the events that are listened to and logged by UFT.
If you select or clear a check box for an event type after listening to events for an object, the
events in the Fired Events list are not changed.

Tip: You can click the Select All Events or Clear All Events buttons to select or
clear all the event check boxes. You can also right-click the Events list and select Select All or
Clear All.

Add-ins Guide
.NET Windows Forms Add-in

HP Unified Functional Testing (12.52) Page 82

3. Click the Listen to Selected Events button . UFT starts listening to the specified events on the
selected object, and Listening is displayed in the status bar.

4. In your .NET application, perform the operations on the object to whose events you want to listen.
The specified events are logged as they occur and are shown in the Fired Events list.

5. When you want to stop listening to events, click the Stop Listening to Events button . UFT
stops listening to and logging the specified events.

Fire selected events on an object

1. In the Objects pane, select the object whose events you want to fire.

2. In the Fired Events list, select one or more events that you want to fire on your .NET application.
You can select multiple events using standard Windows selection techniques (CTRL and SHIFT
keys).

Tip: The selected events are fired in the order in which they appear in the Fired Events list. If
the events do not appear in the Fired Events list in the order in which you want to fire them,
listen to more events on the object until the events you want are added to the Fired Events list
in the required order.

3. If the events you selected have editable arguments, you can change their argument values in the
Event Arguments list if needed before firing the events. When the events are fired, they will be
fired with the modified argument values.

4. Click the Fire Selected Events button . The selected events are fired in the order in which they
appear in the Fired Events list. You can view the effect that firing these events has on the relevant
object in your .NET application. The status bar displays that the event firing is in progress, and
when it ends.

Remove specific events from the Fired Events list

1. In the Objects pane, select the object whose events you want to remove from the Fired Events list.

2. Select the events in the Fired Events list that you want to remove. You can select multiple events
using standard Windows selection techniques (CTRL and SHIFT keys).

3. Click the Clear Selected Events button . The selected events are removed from the Fired
Events list.

Clear all events from the Fired Events list

1. In the Objects pane, select the object whose events you want to remove from the Fired Events list.

2. Click the Clear Event List button . All the logged events are removed from the Fired Events list.

Known Issues - .NET Windows Forms
This section describes troubleshooting and limitations for the .NET Windows Forms Add-in.

Add-ins Guide
.NET Windows Forms Add-in

HP Unified Functional Testing (12.52) Page 83

l Navigating in grid controls using keyboard keys (for example, to select cells, rows, and so on) may not
be recorded correctly.

Workaround: Use the mouse to navigate in the grid control.

l If you call the Backmethod for a Microsoft DataGrid control on a table that does not have a parent
row, no operation is performed when the statement runs, and no error message is displayed.

l Grid controls in the Card Viewmode are not supported.

l Changing the format of a DateTimePicker control during a test run or between record and run
sessions (for example, from "Long Date" to "Time") will cause the test run to fail.

l Combo box objects of style Simple ComboBox are not supported.

l If a window in the tested application has an opacity property value not equal to 100% (that is, the
form is completely or partially transparent), the Active Screen captures the image displayed below
the form, and not the transparent window.

l .NET Windows Forms table checkpoints and output value steps can be created only for objects that
UFT recognizes as SwfTable objects. UFT does not treat SwfPropertyGrid test objects as table
objects.

l Operations on a grid cell that was selected before you started recording on the grid control may be
recorded incorrectly. For example, a child cell element operation may be recorded instead of the
parent grid operation (for example, SetCellData).

Workaround: Before performing operations on a cell that is already selected, begin recording, move
the focus to another cell, select the required cell, and then perform the required operation.

l When recording steps using low-level recording, default description properties for WinObject and
Window objects do not have constant values. This may lead to different description property values
during a run session, which causes steps on these objects to fail.

Workaround:

l Window test objects. Before recording, remove the regexpwndclass property from the list of
mandatory, assistive, and Smart Identification properties using the Object identification dialog
box.

l WinObject test objects. Do the following:

o Before recording, remove the window id property from the list of mandatory, assistive, and
Smart Identification properties using the Object identification dialog box.

o After recording, change the regexpwndclass property value to a regular expression for each
WinObject test object in the object repository, and edit the property value to remove
everything except for the control type,

For example, change WindowsForms10.BUTTON.app3 to .*BUTTON.*

l Note that Visual Basic .NET applications are supported by the UFT .NET Add-in.

Add-ins Guide
.NET Windows Forms Add-in

HP Unified Functional Testing (12.52) Page 84

.NET Windows Presentation Foundation (WPF)
Add-in
This section includes:

• .NET Windows Presentation Foundation (WPF) Add-in - Quick Reference 86

• .NET Windows Presentation Foundation (WPF) Add-in - Testing and Configuration 88

• Considerations for Working with the WPF Add-in 89

• WPF Objects, Methods, and Properties to Enhance Your Test or Component 89

• About WPF User Interface Automation 90

• WPF Add-in Extensibility 91

• Known Issues - .NET WPF 91

HP Unified Functional Testing (12.52) Page 85

.NET Windows Presentation Foundation (WPF) Add-in -
Quick Reference
You can use the UFT Windows Presentation Foundation (WPF) Add-in to test WPF (Windows Presentation
Foundation) user-interface objects (controls).

The following tables summarize basic information about the Windows Presentation Foundation Add-in
and how it relates to some commonly-used aspects of UFT.

General Information

Add-in Type This is aWindows-based add-in. Much of its functionality is the sameas other Windows-based add-ins.

This add-in is installed as a sub add-in of the .NET Add-in.

See "Windows-Based Application Support" on page 52.

Supported
Environments

For details on supported Windows Presentation Foundation environments, see theWPF Add-in section of
theHP Unified Functional Testing Product Availability Matrix.

Note: See also Child Add-ins, below.

Test Object
Methods and
Properties

TheWPFAdd-in provides test objects, methods, and properties that can beused when testing objects in
WPF applications. For details, see the .NET Windows Presentation Foundation section of theHPUFT
Object Model Reference for GUI Testing.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l To check properties that are not included in the Checkpoint Properties dialog box you can use the
Object, AutomationElement, or AutomationPattern property. For details, see
"Accessing Internal Properties and Methods of WPF Objects" on page 89.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Extending the
WPF Add-in

"WPF Add-in Extensibility" (described on page91enables you to develop support for testing third-party
and customWPF controls that are not supported out-of-the-box by theUFT WPFAdd-in. For details, see
"WPF Add-in Extensibility" on page 91

Troubleshooting
and Limitations

See "Known Issues - .NET WPF" on page 91.

Prerequisites

Opening Your Application You can open your WPF application before or after opening UFT.

Add-in Dependencies TheWeb and .NET Add-ins must be installed.

Configuration

Options Dialog Box Use theWindows Applicationspane.
(Tools> Options > GUI Testing tab > Windows Applications node)

Add-ins Guide
.NET Windows Presentation Foundation (WPF) Add-in

HP Unified Functional Testing (12.52) Page 86

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

Record and Run Settings Dialog
Box
(tests only)

Use theWindows Applications tab.
(Record > Record and Run Settings)

Custom Active Screen Capture
Settings Dialog Box
(tests only)

Use theWindows applications section.
(Tools > Options > GUI Testing tab > Active Screennode> Custom Level)

See the section on the Custom Active Screen Capture Settings dialog box in the
HPUnified Functional Testing User Guide.

Application Area Additional
Settings pane
(business components only)

Use theApplicationspane.
In the application area, select Additional Settings > Applications in the sidebar.

See the section on theApplications pane in theHPUnified Functional Testing User
Guide.

Add-ins Guide
.NET Windows Presentation Foundation (WPF) Add-in

HP Unified Functional Testing (12.52) Page 87

.NET Windows Presentation Foundation (WPF) Add-in -
Testing and Configuration
This section includes

• Considerations for Working with the WPF Add-in 89

• WPF Objects, Methods, and Properties to Enhance Your Test or Component 89

• About WPF User Interface Automation 90

• Automation Elements 90

• Control Patterns 90

• WPF Add-in Extensibility 91

• Known Issues - .NET WPF 91

Add-ins Guide
.NET Windows Presentation Foundation (WPF) Add-in

HP Unified Functional Testing (12.52) Page 88

Considerations for Working with theWPF Add-in
l You can test most custom WPF controls inherited directly or indirectly from the

System.Windows.Controls.Control class regardless of which language was used to create the
application (for example, Visual Basic, .NET, C#, and so on), as well as third-party WPF controls that
are inherited from the System.Windows.Controls.Control class and implement automation
interfaces.

l You can use the Keyword View and Editor to activate WPF test objects, Automation objects and run-
time object methods, retrieve and set the values of properties, and check that objects exist.

WPF Objects, Methods, and Properties to Enhance Your Test or
Component
A test or business component consists of statements coded in Microsoft VBScript. These statements
are composed of objects, methods, and/or properties that instruct UFT to perform operations or
retrieve information. You add these statements using objects from your object repositories, and
methods and properties that are available for each object type. In addition, when you record, these
statements are generated automatically in response to input to the application. You can also program
statements manually, or mix recorded and programmed statements in the same test or business
component. You create, view, and edit these statements in the Keyword View and/or Editor.

Accessing Internal Properties and Methods of WPF Objects

When accessing the internal properties and methods of WPF objects, it is important to know which
property to use to access the object that contains the information you want to set or retrieve.

l AutomationElement property. Returns the object that gives access to the set of standard
properties that expose information about the Automation Element.

l AutomationPattern property. Returns the object that gives access to the specific instance of a
Control Pattern. For details on the methods and properties that are accessible through the
AutomationPattern property, see the .NET Framework Developer Center of the Microsoft Developer
Network library at http://msdn2.microsoft.com/en-us/library/system.windows.automation.aspx.

l Object property. Returns the object that gives access to properties specific to the actual run-time UI
object, as defined by the developer.

Many of the properties and methods accessible through the AutomationElement and
AutomationPattern properties contain the same information as the properties and methods accessible
through the Object property. However, information available through UI Automation that is accessed
through the Object property lacks the standardization provided by UI Automation.

Custom properties designed by the developer are accessible only through the Object property.

Add-ins Guide
.NET Windows Presentation Foundation (WPF) Add-in

HP Unified Functional Testing (12.52) Page 89

http://msdn2.microsoft.com/en-us/library/system.windows.automation.aspx
http://msdn2.microsoft.com/en-us/library/system.windows.automation.aspx
http://msdn2.microsoft.com/en-us/library/system.windows.automation.aspx

AboutWPF User Interface Automation
UI Automation provides a single, consistent, reference object for UI elements in multiple frameworks
(For example, Win32, WPF, and Trident). With UI Automation, the functionality of objects in the UI is
defined by a set of standard control patterns and properties that are common to all objects of that
type.

WPF uses UI (User Interface) Automation to define UI objects. UI Automation provides standardization of
controls and properties for the functionality of objects. The .NET Add-in supports UI Automation through
the AutomationElement and AutomationPattern properties.

To learn more about UI Automation, see the UI Automation Fundamentals page of the Microsoft
Developer Network library at http://msdn2.microsoft.com/en-us/library/ms753107.aspx.

To learn more, see:

• Automation Elements 90

• Control Patterns 90

Automation Elements

UI Automation exposes every element in the UI as an Automation Element. Automation Elements
expose common properties of the UI elements they represent.

For example, a button control has the Automation Element property NameProperty, which references
the name or text associated with a button control. That same property is called caption or alt in Win32
and HTML, respectively. With UI Automation, all button controls have a NameProperty, which is mapped
to the corresponding property in each framework.

The Automation Element also exposes control patterns that provide properties and expose methods
specific to their control types.

Control Patterns

Control patterns represent discrete pieces of functionality that a control in the UI can perform. The
total set of control patterns for a control type define the functionality of that control type.

Control patterns expose methods that provide the ability to programmatically manipulate the control.

Control patterns expose properties that provide information on the control's functionality and current
state.

The set of supported control patterns for a particular control can be dynamically defined. Therefore, a
particular control type may not always support the same set of control patterns. For example, a
multiline edit box supports scrolling (scrollpattern pattern) only if its text exceeds the viewable area.

Some controls types, such as Image controls do not support any control patterns.

Add-ins Guide
.NET Windows Presentation Foundation (WPF) Add-in

HP Unified Functional Testing (12.52) Page 90

http://msdn2.microsoft.com/en-us/library/ms753107.aspx

UFT enables you to access the methods and properties of automation elements and control patterns
using special properties in the UFT object model for WPF.

For details on how to work with UI Automation in your test or business component, see "Accessing
Internal Properties and Methods of WPF Objects" on page 89.

WPF Add-in Extensibility
UFT WPF Add-in Extensibility enables you to develop support for testing third-party and custom WPF
controls that are not supported out-of-the-box by the UFT WPF Add-in.

If the test object class that UFT uses to represent a control does not provide the operations and
properties necessary to operate on your control, you can use WPF Add-in Extensibility to create a new
test object class.

You can then map the control to the new test object class, and design the test object class behavior
using .NET programming. You can program how operations are performed on the control, how
properties are retrieved, and more.

You can also teach UFT to treat a control that contains a set of lower-level controls as a single
functional control, instead of relating to each lower-level control separately.

To implement WPF Add-in Extensibility, you need to be familiar with:

l UFT and its Object Model Reference

l The behavior of the custom control (operations, properties, events)

l .NET programming in C#

l XML (basic knowledge)

You can install the WPF Add-in Extensibility SDK from the Add-in Extensibility and Web 2.0 Toolkits
option in the UFT setup program.

Known Issues - .NET WPF
l The UFT .NET Add-in supports:

l Testing standard .NET Windows Forms controls from the System.Windows.Forms library.

l Testing third-party .NET Windows Forms controls that are inherited from
System.Windows.Forms.Control class.

l The UFT .NET Add-in supports testing WPF controls inherited directly or indirectly from the
System.Windows.Controls.Control class regardless of which language was used to create the
application (for example, VisualBasic, .NET, C#, and so forth), as well as third-party WPF controls that
are inherited from the System.Windows.Controls.Control class and implement automation
interfaces when the WPF Add-in is loaded.

l In addition to the controls listed in the HP Unified Functional Testing Product Availability Matrix,
custom-built UFT support for a variety of Infragistics .NET Windows Forms controls is provided out-

Add-ins Guide
.NET Windows Presentation Foundation (WPF) Add-in

HP Unified Functional Testing (12.52) Page 91

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

of-the-box by Infragistics TestAdvantage. For more information, refer to:
http://www.infragistics.com/dotnet/testadvantageoverview.aspx#Overview

l UFT does not treat text block elements as children of WPF objects, such as lists, treeviews, and
tables. Therefore, they will not be returned in a ChildObjects statement, nor will they be learned as
test objects when you select to learn a WPF object and its children.

If you want to work with the text block elements of a WPF object, use a GetItem() or
GetItemProperty() statement.

l When you spy on a WPF object using the Object Spy (or the .NET Windows Forms Spy when the .NET
Add-in is loaded), and the Record and Run Settings dialog box is not configured to record on the WPF
application on which you are spying, UFT recognizes the object as a standard Windows object.

Workaround: Close your WPF application. In UFT, open the Record and Run Settings dialog box
(Record > Record and Run Settings) and in the Windows Application tab, select the Record and run
test on any Windows application option. Reopen your WPF application and then spy on it again.

l When you spy on a WpfComboBox control on a Microsoft Windows 7 operating system, to enable
displaying the correct all items property value, you must first manually expand and collapse the
combo box.

l To view the full type name of a .NET Windows Forms object in your application, view the
SwfTypeName identification property in the Object Spy.

You can also view a list of the base types of a selected object by running a statement using the
following syntax:

MsgBox <SwfTestObj>(<descr>).GetROProperty("SwfTypeNames")

where SwfTestObj(<descr>) is the test object you want to check. Running this statement causes a
message box to open displaying the actual class at the top of the list and the base classes below it.

l When recording steps using low-level recording, default description properties for Windows
Presentation Foundation test objects do not have constant values. This may lead to different
description property values during a run session, which causes steps on these objects to fail.

l When recording dynamically changing objects in your application, UFT records the object properties
of the object after the change instead of on the original object before the change. This causes run
sessions using this object to fail.

Workaround: Manually change the object description in the editor.

l UFT does not treat text block elements as child objects of WPF objects, such as lists, treeviews, and
tables. Therefore, they will not be returned in a ChildObjects statement, nor will they be learned as
test objects when you select to learn a WPF object and its children.

If you want to work with the text block elements of a WPF object, use a GetItem() or
GetItemProperty() statement.

Note: The above behavior was implemented after QTP 11.00. Therefore, if you have ChildObject
steps in existing tests that previously returned these text block elements, those tests may fail
or produce unexpected results. In this case, update such steps as recommended above.

Add-ins Guide
.NET Windows Presentation Foundation (WPF) Add-in

HP Unified Functional Testing (12.52) Page 92

http://www.infragistics.com/dotnet/testadvantageoverview.aspx#Overview

HP Unified Functional Testing (12.52) Page 93

Part 3: ActiveX Add-in
This section includes:

"ActiveX Add-in - Quick Reference" on page 94

"Considerations for Working with the ActiveX Add-in" on page 95

"Known Issues - ActiveX Add-in" on page 96

ActiveX Add-in - Quick Reference
You can use the UFT ActiveX Add-in to test ActiveX user-interface objects (controls).

The following tables summarize basic information about the ActiveX Add-in and how it relates to some
commonly-used aspects of UFT.

General Information

Add-in Type This is aWindows-based add-in. Much of its functionality is the sameas other Windows-based add-ins.

See "Windows-Based Application Support" on page 52.

Supported
Environments

For details on supported ActiveX environments, see theActiveX Add-in section of theHP Unified
Functional Testing Product Availability Matrix.

Important
Information

See "Considerations for Working with the ActiveX Add-in" on the next page.

Test Object
Methods and
Properties

TheActiveX Add-in provides test objects, methods, and properties that can beused when testing ActiveX
objects in applications. For details, see theActiveX section of theHPUFT Object Model Reference for
GUI Testing.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Troubleshooting
and Limitations

See "Known Issues - ActiveX Add-in" on page 96.

Prerequisites

Opening Your
Application

The application containing theActiveX controls on which you want to record must be closed before you begin
aUFT recording session and set theRecord and Run options. Open the application only after you begin the
recording session.

Add-in
Dependencies

Loading theActiveX and Siebel add-ins together may cause problems when recording on someActiveX
methods.

Configuration

Options Dialog Box Use theWindows Applicationspane.
(Tools > Options > GUI Testing tab > Windows Applications node)

Record and Run
Settings Dialog Box
(tests only)

Use theWindows Applications tab.
(Run > Run Settingsor Record > Record Settings)

Note:

l If you select theRecord and Run only on radio button in theRecord and Run Settings
dialog box, the settings also apply to (limit) the applications that are recognized for Object
Spy and other pointing hand operations.

HP Unified Functional Testing (12.52) Page 94

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

l UFT recognizes ActiveX objects only in applications that are opened after changing the
record and replay settings in theWindows Applications tab of theRecord and Run Settings
dialog box.

Custom Active Screen
Capture Settings
Dialog Box
(tests only)

Use theWindows applications section.
(Tools > Options > GUI Testing tab > Active Screennode> Custom Level)

See the section on the Custom Active Screen Capture Settings dialog box in theHPUnified
Functional Testing User Guide.

Application Area
Additional Settings
pane
(business components
only)

Use theApplicationspane.
In the application area, select Additional Settings > Applications in the sidebar.

See the section on theApplications pane in theHPUnified Functional Testing User Guide.

Considerations for Working with the ActiveX
Add-in
l When you create a checkpoint on an ActiveX control, UFT captures all the properties for an ActiveX

control, but it does not select any properties to check.

l When testing ActiveX objects in a browser, the top-level ActiveX object is inserted within the standard
Web object hierarchy, for example, Browser.Page.ActiveX.

l UFT can record on standard controls within an ActiveX control and if an ActiveX control contains
another ActiveX control, then UFT can record and run on this internal control as well. For example,
suppose your ActiveX control is a calendar that contains a drop-down list from which you can choose
the month. If you record a click in the list to select the month of May, UFT records this step in the
Editor as:

Dialog("ActiveX Calendars").ActiveX("SMonth Control").WinComboBox
("ComboBox").Select "May"

l Loading the ActiveX and Siebel add-ins together may cause problems when recording on some
ActiveXmethods.

l When creating a programmatic description for an ActiveX test object and the relevant run-time
object is windowless (has no window handle associated with it), you must add the windowless
property to the description and set its value to True.

For example:

Set ButDesc = Description.Create
ButDesc("ProgId").Value = "Forms.CommandButton.1"

Add-ins Guide
Considerations for Working with the ActiveX Add-in

HP Unified Functional Testing (12.52) Page 95

ButDesc("Caption").Value = "OK"
ButDesc("Windowless").Value = True
Window("Form1").AcxButton(ButDesc).Click

For details, see the section on using programmatic descriptions in the HP Unified Functional Testing
User Guide.

l If a "windowless" ActiveX radio button object is not first activated by clicking on it
(AcxRadioButton.Click) or by using the Setmethod, a step containing the
AcxRadioButton.GetVisibleTextmethod will return an error stating that the object is not visible.

Workaround: Insert a step using the Click or Setmethods prior to any step that uses the
GetVisibleTextmethod on a "windowless" ActiveX radio button object.

Known Issues - ActiveX Add-in
This section describes troubleshooting and limitations for the ActiveX Add-in.

Creating, Editing, and Running Testing Documents

l The ActiveX Add-in is not supported on Internet Explorer 11 when the Enhanced Protected Mode is
turned on.

l In the following ActiveX test object methods, if you specify the column by name, an error occurs when
you run the test: ActivateCell, ActivateColumn, SelectCell, SetCellData, SelectColumn.

Workaround:When calling these methods, specify the column by number.

l When inserting steps in the Editor for a Web application that has a mixed hierarchy of Java objects
inside an ActiveX control, then it may take a long time for UFT to retrieve the possible argument
values (dynamic list of values) for ActiveX arguments.

Workaround: Insert these steps using the Keyword View (where the dynamic list of values
functionality is not used).

l If UFT does not recognize an ActiveX control inside a Web page, reduce the security level within your
Microsoft Internet Explorer browser.

l If an ActiveX control's internal properties have the same name as the ActiveX properties created by
UFT, retrieval and verification of such properties may be problematic.

Workaround: You can access the internal properties of an ActiveX control using the Object property.

l Methods performed on row and column positions for Apex, DataBound, and Sheridan grids return the
values of the visible positions and not the absolute positions within the tables.

Workaround: Use the scroll bar while recording in order to display the required cells.

l If an ActiveX control is registered after UFT was started, UFT may not recognize the controls
correctly. For example, UFT may recognize an AcxCalendar as a ActiveX object.

Add-ins Guide
Known Issues - ActiveX Add-in

HP Unified Functional Testing (12.52) Page 96

Workaround: Install the application running the ActiveX controls and register all ActiveX objects
before starting UFT.

Checkpoints and Output Values

l ActiveX table checkpoints capture only visible rows in data bound grids.

l When you insert a checkpoint on an ActiveX table from the Active Screen, the browser (or application)
must be open to the same page (or screen). Otherwise, some data from the ActiveX table will be
missing.

Workaround: Create ActiveX table checkpoints while recording.

l Checkpoints and output values for ActiveX properties of type VT_DISPATCH are not supported.

l Checkpoints and output values for write-only ActiveX properties are not supported.

l If you perform an update run (Run > Update Run Mode) on a test that contains checkpoints or
output values for windowless ActiveX controls, and then you rerun the test, the run session may fail.
This is because a hidden property called "windowless" is missing from the test object description.

Workaround: You can either relearn the problematic ActiveX controls, or you can add the
"windowless" property with a value of 1 to all problematic, windowless ActiveX controls.

Unsupported Controls

UFT does not support certain ActiveX controls or controls with certain prefixes. These controls are listed
in the table below.

Unsupported Control Prefixes Unsupported Controls

Msawt AMOVIE.ActiveMovieControl.2

SpectrumHR.GrabBag MediaPlayer.MediaPlayer.1

SpectrumHR.EDataControl Trident.HTMLEditor.1

SpectrumHR.SSDBGridEventHandler htmlfile

ShockwaveFlash xmlfile

Spider90 htmlfile_FullWindowEmbed

XGO xmlfile_FullWindowEmbed

lnkfile

JScript

VBScript

MSJava

PDF.PdfCtrl.1

ScriptBridge.ScriptBridge.1

Add-ins Guide
Known Issues - ActiveX Add-in

HP Unified Functional Testing (12.52) Page 97

Unsupported Control Prefixes Unsupported Controls

JavaSoft.JavaBeansBridge.1

Oracle.JavaBeansBridge.1

Spider.Loader.1

COMCTL.ImageListCtrl.1

ActiveTabs.SSTabPanel.4

ActiveTabs.SSTabPanel.2

ActiveTabs.SSTabPanel.3

{3050f67D-98b5-11cf-bb82-00aa00bdce0b}

{3050F5C8-98B5-11CF-BB82-00AA00BDCE0B}

TriEditDocument.TriEditDocument.1

Miner3D.Miner3DObj.1

ActiveBar2Library.ActiveBar2.2

{275C23E2-3747-11D0-9FEA-00AA003F8646}

SpectrumHR.GrabBag.1

SpectrumHR.EDataControl.1

SpectrumHR.SSDBGridEventHandler.1

Add-ins Guide
Known Issues - ActiveX Add-in

HP Unified Functional Testing (12.52) Page 98

HP Unified Functional Testing (12.52) Page 99

Part 4: Delphi Add-in
This section includes:

"Delphi Add-in - Quick Reference" on page 100

"Delphi Add-in Extensibility" on page 101

"How to Enable Communications Between UFT and Your Delphi Application" on page 102

"Known Issues - Delphi Add-in" on page 103

Delphi Add-in - Quick Reference
You can use the UFT Delphi Add-in to test Delphi user-interface objects (controls).

The following tables summarize basic information about the Delphi Add-in and how it relates to some
commonly-used aspects of UFT.

General Information

Add-in Type This is aWindows-based add-in. Much of its functionality is the sameas other Windows-based add-ins.

See "Windows-Based Application Support" on page 52.

Supported
Environments

TheDelphi Add-in supports testing on Delphi controls created in theDelphi IDE and based on theWin32 VCL
library. For details on supported Delphi environments, see theDelphi Add-in section of theHP Unified
Functional Testing Product Availability Matrix.

Test Object
Methods and
Properties

TheDelphi Add-in provides test objects, methods, and properties that can beused when testing objects in
Delphi applications. For details, see theDelphi section of theHPUFT Object Model Reference for GUI
Testing.

Checkpoints
and Output
Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Extending the
Delphi Add-in

"Delphi Add-in Extensibility" (described on page101enables you to develop support for testing third-
party and custom Delphi controls that are not supported out-of-the-box by theUFT Delphi Add-in.

Prerequisites

Opening Your
Application

You can open your Delphi application before or after opening UFT.

Add-in
Dependencies

None

Other Before running a test on aDelphi application, the application being tested must be compiled with the
UFT agentMicDelphiAgent.

See "How to Enable Communications Between UFT and Your Delphi Application" on page 102.

Configuration

Options Dialog Box Use theWindows Applicationspane.
(Tools > Options > GUI Testing tab > Windows Applications node)

Record and Run
Settings Dialog Box
(tests only)

Use theWindows Applications tab.
(Record > Record and Run Settings)

Note:

l UFT recognizes only Delphi applications that have been precompiled with the
MicDelphiAgent.pasmodule. For details, see "How to Enable Communications

HP Unified Functional Testing (12.52) Page 100

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

Between UFT and Your Delphi Application" on page 102.

l In some cases, if you select theRecord and Run only on radio button, the settings may
also apply to (limit) the applications that are recognized for Object Spy and other pointing
hand operations.

Custom Active Screen
Capture Settings
Dialog Box
(tests only)

Use theWindows section.
(Tools > Options > GUI Testing tab > Active Screenpane> Custom Level button)

See the section on the Custom Active Screen Capture Settings dialog box in theHPUnified
Functional Testing User Guide.

Application Area
Additional Settings
pane
(business components
only)

Use theApplicationspane.
In the application area, select Additional Settings > Applications in the sidebar.

See the section on theApplications pane in theHPUnified Functional Testing User Guide.

Delphi Add-in Extensibility
UFT Delphi Add-in Extensibility enables you to develop support for testing third-party and custom Delphi
controls that are not supported out-of-the-box by the UFT Delphi Add-in.

If the test object class that UFT uses to represent your control does not provide the operations and
properties necessary to operate on your control, you can use Delphi Add-in Extensibility to customize
this behavior.

l You can map the control to an existing test object class.

l You can map the control to a new test object class that you create, and design the test object class
behavior in Delphi code. You can program how operations are performed on the control, how
properties are retrieved, and more.

l You can also teach UFT to treat a control that contains a set of lower-level controls as a single
functional control, instead of relating to each lower-level control separately.

To implement Delphi Add-in Extensibility, you need to be familiar with:

l UFT and its Object Model Reference

l The behavior of the custom control (operations, properties, events)

l XML (basic knowledge)

l Delphi programming

Delphi Add-in Extensibility is available as part of the Delphi Add-in and does not require an additional
installation.

UFT also provides samples of support developed using Delphi Add-in Extensibility, which you can use to
gain a better understanding of how to create your own support.

For details on implementing Delphi Add-in Extensibility, see the Delphi Add-in Extensibility Help, available
from the UFT Extensibility Documentation program group (Start > All Programs > HP Software >

Add-ins Guide
Delphi Add-in Extensibility

HP Unified Functional Testing (12.52) Page 101

HP Unified Functional Testing > Extensibility > Documentation or the <UFT installation
folder>\help\Extensibility folder).

Note: For details on accessing UFT and UFT tools and files in Windows 8.X or higher and Windows
Server 2012, see "Accessing UFT in Windows 8.X or Higher Operating Systems" on page 387.

A printer-friendly (PDF) version of the HP UFT Delphi Add-in Extensibility Developer Guide is available in
the <UFT installation folder>\help\Extensibility folder.

How to Enable Communications Between UFT
and Your Delphi Application
This task describes how to:

Link to the MicDelphiAgent.pas Module to Enable Communications

You must perform the following steps for each application that you want to test.

1. Add the <UFT Installation folder>\dat\Extensibility\Delphi folder to your Delphi project
search path, or copy the contents of the <UFT Installation
folder>\dat\Extensibility\Delphi folder to your project folder.

2. Add MicDelphiAgent to the Uses section of your application's project file (project.dpr) as shown
in the example below:

program flight;
uses

MicDelphiAgent,
Forms,
Windows;

($R*.RES)
begin

Application.Initialize
Application.Title :='Flight Reservation';
Application.Run;

end.

3. Compile your Delphi project.

Note: If your application includes the TwwDBGrid from InfoPower, you must add support for
this grid as described below..

Add-ins Guide
How to Enable Communications Between UFT and Your Delphi Application

HP Unified Functional Testing (12.52) Page 102

Configure Support for TwwDBGrid

If your application includes the TwwDBGrid from InfoPower, do the following to enable support for this
grid:

1. Add MicWWSupport to the Uses section of your application's project file (project.dpr) after
MicDelphiAgent, as shown in the example below:

program flight;
uses

MicDelphiAgent,
MicWWSupport,
Forms,
Windows;

($R*.RES)
begin

Application.Initialize
Application.Title :='Flight Reservation';
Application.Run;

end.

2. Recompile your application.

You are now ready to create and run tests on Delphi applications.

Known Issues - Delphi Add-in
l Button controls in message boxes are identified asWinButton objects instead of DelphiButton

objects.

Workaround: Replace the button control test objects in the object repository with DelphiButton
objects.

l By default, UFT recognizes objects in your application as Delphi objects only if the application was
built with a supported version of Delphi. You can compile your application with an unsupported Delphi
compiler version but UFT may experience unexpected results.

For details on supported versions of Delphi, see the HP Unified Functional Testing Product Availability
Matrix.

Add-ins Guide
Known Issues - Delphi Add-in

HP Unified Functional Testing (12.52) Page 103

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

HP Unified Functional Testing (12.52) Page 104

Part 5: Flex Add-in
This section includes:

"Flex Add-in - Quick Reference" on page 105

"Flex Add-in - Testing and Configuration" on page 106

Flex Add-in - Quick Reference
You can use the UFT Flex Add-in to test Flex user-interface objects (controls).

The following tables summarize basic information about the Flex Add-in and how it relates to some
commonly-used aspects of UFT.

General Information

Supported
Environments

Tested applications must be built with Flex SDK versions that are supported by theUFT Flex Add-in.

For details on supported Flex SDK versions, see theFlex section of theHP Unified Functional Testing
Product Availability Matrix.

Important
Information

l You can useUFT with Flex applications that satisfy oneof the following conditions:

l Applications opened with Adobe Flash Player Debugger

l Application s opened using theUFT Runtime Loader

l Applications prepared manually for testing.

Preparing the application consists of embedding the application in aWeb page together with the
Runtime Loader, or recompiling the application with the relevant Adobeor Apache Flex automation
libraries and aUFT Flex pre-compiled agent.

For details, see:

l "Considerations for Working with the Flex Add-in" on page 109

l "How to Set Up the Adobe Flash Player Debugger to Enable UFT GUI Testing" on page 110

l "How to Open Flex Applications Using the Runtime Loader" on page 112

l "How to Compile Flex Applications for UFT Testing" on page 116

Test Object
Methods and
Properties

The Flex Add-in provides Flex test objects, methods, and properties that can beused when testing Flex
objects in Flex applications. For details, see theFlex section of theHPUFT Object Model Reference for
GUI Testing.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Troubleshooting
and Limitations

"Known Issues - Flex Add-in " on page 120

Prerequisites

Opening Your
Application

You can open your Flex application before or after opening UFT.

Add-in l Different versions of the Flex SDK require different versions of Adobe Flash Player, Adobe Flash Player

HP Unified Functional Testing (12.52) Page 105

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

Dependencies Debugger, or AdobeAir.

The Flex Add-in requires the versions of Adobe Flash Player / Debugger or AdobeAir that are required by
the version of the Flex SDK used to build the application being tested. For more details, see theAdobe Flex
SDK or Apache Flex SDK documentation.

l For Flex applications that you recompilewith UFT's pre-compiled agent:

If the Flex applications were compiled using Adobe Flex SDK versions 4.5.x or 4.6.x, verify that you have
licensed versions of the relevant AdobeAutomation libraries before running full UFT GUI tests and
components.

If you do not have licensed versions of the libraries, consider upgrading to Apache Flex SDK version 4.9.x
or 4.12.x.

l UFT interacts with the Flex application it is testing via a local TCP socket object, selecting an available
communication port in the range24654 - 24663.

Make sure that at least oneof these ports is available on theUFT computer. If no ports in this range are
available, the add-in fails to load properly.

On aWindows server, multiple users can run multiple instances of UFT. To test Flex applications, you must
haveoneport in this range available for each UFT instance.

Configuration

Record and Run Settings Dialog Box
(tests only)

Use theFlex tab.
(Record > Record and Run Settings)

Flex Add-in - Testing and Configuration
This chapter includes:

• Enabling UFT to Identify Objects in your Flex Application 106

• Considerations for Working with the Flex Add-in 109

• How to Set Up the Adobe Flash Player Debugger to Enable UFT GUI Testing 110

• How to Open Flex Applications Using the Runtime Loader 112

• How to Embed a Flex Application in a Web Page with the Runtime Loader 114

• How to Compile Flex Applications for UFT Testing 116

• How to Work With Embedded Objects in Flex Lists, Tables, or Tree-Views 118

• Known Issues - Flex Add-in 120

Enabling UFT to Identify Objects in your Flex
Application
Some preparation is required to enable UFT to communicate with and identify objects in your Flex
application. Specifically, you must do one of the following:

Add-ins Guide
Flex Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 106

l Install and pre-configure the relevant Flash Player Debugger

l Set up the UFT Runtime Loader on the computer or server where the application runs.

l Recompile your Flex application with the UFT Flex Agent

Depending on the type of Flex application you are testing, you may be able to choose from any of the
above, or you may be limited to one or two of the above options.

The table below summarizes these possibilities, and the basic process to follow for each option:

Open Flex
application

using →

Application
path ↓

Preconfigured
Flash Player
Debugger

(Configure once per
testing computer;
Flex application not
modified)

Runtime Loader

(Configure once per host
computer/server;
Flex application not modified)

Precompiled
Application

(Configure once per
application;
Must recompile Flex
application)

*.html/.htm 1. Install and
preconfigure
the relevant
debugger.

2. Open with:
Internet
Explorer

* Relevant only for Web pages that
embed an .swf application and the UFT
Runtime loader

1. Make sure the RTL exists on the
application host computer/server.

2. Embed the Swf application and RTL
in the Web page.

3. Open with: Internet Explorer

1. Precompile
your application
with the UFT
agent.

2. Open with:
Internet
Explorer

*.swf 1. Install and
preconfigure
the relevant
debugger.

2. Open with:

l Internet
Explorer

l Flash Player
Projector
debugger

1. Make sure the RTL exists on the
application host computer/server.

2. Open with:

l Internet Explorer using the
relevant command.

l Flash Player Projector

1. Precompile
your application
with the UFT
agent.

2. Open with:

l Internet
Explorer

l Flash Player
Projector

*.exe Not Supported Not Supported 1. Precompile
your application
with the UFT
agent.

2. Open the

Add-ins Guide
Flex Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 107

Open Flex
application

using →

Application
path ↓

Preconfigured
Flash Player
Debugger

(Configure once per
testing computer;
Flex application not
modified)

Runtime Loader

(Configure once per host
computer/server;
Flex application not modified)

Precompiled
Application

(Configure once per
application;
Must recompile Flex
application)

application
directly.

Add-ins Guide
Flex Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 108

Considerations for Working with the Flex Add-in
Consider the following when working with the Flex Add-in :

l "Working with or without the Web Add-in" below

l "Register local Web-based Flex applications as trusted applications" below

Working with or without the Web Add-in

You can use the Flex Add-in with or without the Web Add-in enabled. The test object hierarchy differs as
follows:

l With the Web Add-in enabled. Flex test objects have a Web parent hierarchy.

For example:

Browser.Page.FlexWindow.FlexButton

l Without the Web Add-in enabled. Flex objects have a Windows parent hierarchy.

For example:

Window.WinObject.FlexWindow.FlexButton

Tip: It is recommended to enable the Web Add-in when you are testing Flex applications so that you
can test Flex applications in browser windows.

Register local Web-based Flex applications as trusted applications

Local Web-based Flex applications are Flex applications that are stored locally and run in a browser
window. UFT does not recognize local Web-based Flex applications as Flex test objects unless all
relevant elements are registered as trusted applications:

l In all cases, your local Flex application and its HTML wrapper must be registered.

l If you are opening your local Web applications using a (local) runtime loader file you also need to
register the (local) Flex Runtime Loader file.

l If you use the Open the following applications when a record or run session begins option in the
Flex tab of the Record and Run Settings dialog box and you set a local Web-based Flex application to
be opened using a runtime loader, then UFT automatically creates an HTML wrapper for your
application and stores the wrapper in your user profile %temp% folder (For example,
C:\Users\myname\AppData\Local\Temp). In this case, you must additionally register the %temp%
folder.

Add-ins Guide
Flex Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 109

To register your local Web-based Flex applications, the HTML-wrappers, the and Runtime Loader file,
add the paths of the folders that contain them (along with the %temp% folder if relevant) to one of the
following:

l If you have an Internet connection, you can use the Trusted Locations list in the Flash Player Global
Settings:

Use this link to access the Settings pane:
http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_
manager04.html and select Edit locations > Add location to edit the list).

l Otherwise, add or edit a text file located in the FlashPlayerTrust folder in the following location:
%appdata%\Macromedia\Flash Player\#Security\FlashPlayerTrust

Each line in the text file must contain the name of a folder to trust. For each specified folder, all files
in that folder or any sub-folders are trusted. For example:

Trust all files in the Employee online calendar application folder
%ProgramFiles%\Personnel\Employees\OnlineCalendar

Note:

l The %appdata% folder is hidden in Windows by default. To show hidden folders, open the
Windows Explorer Folder Options dialog box and select Show hidden files and folders.

l Create the #Security\FlashPlayerTrust folder, if it does not exist.

l The UFT Flex Runtime Loader files are installed with UFT, in the <UFT installation
folder>\dat\Flash\Flex\Runtime Loader folder.

How to Set Up the Adobe Flash Player Debugger to
Enable UFT GUI Testing
This task describes how to set up the Adobe Flash Player Debugger on your UFT computer, and configure
it for UFT testing.

After you do this, you can run Flex applications using the Adobe Flash Player Debugger (or the Adobe
Flash Player Projector Debugger) and test them using UFT like you would any other type of application.
You do not need to prepare the application for testing or load it in any special way.

This method can be used for SWF and HTML Flex applications.

Note: If you do not want to use the debugger to run your Flex applications, you can choose an
alternative method of enabling UFT to communicate with your Flex application. For details, see
"Enabling UFT to Identify Objects in your Flex Application" on page 106.

Add-ins Guide
Flex Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 110

http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager04.html
http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager04.html

Make sure that you have the Adobe Flash Player Debugger installed

If you do not have the Adobe Flash Player Debugger, download and install the program file that is
relevant for your operating system and browser from this site:
https://www.adobe.com/support/flashplayer/downloads.html.

Tip: Some tips on locating and installing the Flash Player Debugger:

l The names Flash Player Debugger and Flash Player ActiveX control content debugger are
interchangeable.

l To successfully complete the Flash Player Debugger installation on Windows 2012 or 2012 R2,
add the Desktop Experience feature in the Windows Server Manager before installing the Flash
Player Debugger from Adobe's site.

Set up the Adobe Flash Player Debugger to integrate with UFT

In this step you edit the Adobe Flash Player Debugger configuration file and add UFT's Flex Agent to the
trusted locations in the Flash Player's global security settings.

l Configure the Flash Player to load the UFT Flex Agent every time it runs an application and to refrain
from opening message boxes during the run session (direct the messages to the player's log file
instead):

a. Create or open the %USERPROFILE%\MM.CFG file

b. Add the following lines to the file (replace <UFT installation folder>with the relevant path):

PreloadSWF=<UFT installation
folder>\dat\Flash\Flex\UFTFlexAgentInjector.swf
SuppressDebuggerExceptionDialogs=1
ErrorReportingEnable=1
TraceOutputFileEnable=1

You can use this default file as an example: <UFT Installation folder>\dat\Flash\Flex\MM.CFG

l (Optional) Add UFT's Flex Agent folder to the trusted locations in the Flash Player's global security
settings.
(You need to perform this step only if you find that UFT does not properly interact with your Flex
applications.)

If you have an Internet connection:

a. Open http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_
manager04.html

This opens the Flash Player Help, which opens the actual Global Security Settings panel.

b. Open the Edit locations drop-down list and select Add location.

c. In the dialog box that opens, enter <UFT installation folder>\dat\Flash\Flex\ in the text
box (replace <UFT installation folder>with the relevant path), and click Confirm.

Add-ins Guide
Flex Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 111

https://www.adobe.com/support/flashplayer/downloads.html
http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager04.html
http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager04.html

Otherwise:

a. Create or open a text file located in the FlashPlayerTrust folder in the following location:
%appdata%\Macromedia\Flash Player\#Security\FlashPlayerTrust

Note:

o The %appdata% folder is hidden in Windows by default. You may need to show hidden
folders to see it.

o Create the #Security\FlashPlayerTrust folder, if it does not exist.

b. Each line in the text file contains the name of a file or folder to trust.

Add the following line (replace <UFT installation folder>with the relevant path):

<UFT installation folder>\dat\Flash\Flex\

How to Open Flex Applications Using the Runtime
Loader
This task describes how to open Flex applications for UFT testing in Internet Explorer, using the UFT Flex
Runtime Loader.

The UFT Flex Runtime Loader enables you to test Flex applications (.swf files) directly without having to
prepare the application manually for testing.

This method is supported only when testing .swf files directly.

Note:

l If you are testing an .swf application that must remain embedded in an HTML file, or other types
of Flex applications, you can choose an alternative method of enabling UFT to communicate with
your Flex application. For details, see "Enabling UFT to Identify Objects in your Flex Application"
on page 106.

l Do not use the Runtime Loader to load applications that you already compiled with the UFT Flex
pre-compiled agent.

Prerequisites

The UFT Flex Runtime Loader files are installed with UFT, in the <UFT installation
folder>\dat\Flash\Flex\Runtime Loader folder.

l Use one of the following Flex Runtime Loaders:

l UFTFlexAUTLoader_4_9_1.swf - for testing Flex applications developed using the Flex SDK 4.9.1
or earlier

l UFTFlexAUTLoader_4_12_1.swf - for testing Flex applications developed using the Flex SDK 4.12.x

Add-ins Guide
Flex Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 112

l Make sure that the UFT Flex Runtime Loader is located in the same application and security domain
as the Flex application you are testing.

If the application you are testing resides on a Web server, you must place a copy of the Runtime
Loader on the same Web server and use that copy to open the application.

Note:

If you use tests that were recorded on pre-compiled Flex applications to test Flex applications
opened with the Runtime Loader (or vice versa), you may need to modify the object repositories
associated with the test and any test scripts that use programmatic descriptions to identify Flex
test objects.

The uid property value in all Flex test objects and the id property value in FlexWindow test
objects will differ between applications opened with the Runtime Loader and pre-compiled Flex
applications. Before running your test, make sure that test objects whose descriptions includes
these properties match the objects found in the application you are testing.

If the application is on the file system, use the Runtime Loader stored in the file system.

l If you use a copy of the Runtime Loader, and not one of the ones stored in the <UFT installation
folder>\dat\Flash\Flex\Runtime Loader folder, make sure to recopy the file after any UFT upgrade
to ensure that you use the most recent file version provided with UFT.

Open the Flex Web application using the Runtime Loader

Open the application in a 32-bit Internet Explorer, using the following syntax in the URL box:

<UFTFlexAUTLoaderPath.swf>?swf_url=<ApplicationName.swf>&<param_name1>=<param_
value1>&<param_name2>=<param_value2>

UFTFlexAUTLoaderPath TheURL or file system path to theUFT Flex Runtime Loader file.

If using file system paths, prefix the path with file://.
For example:
file://C:\...\UFTFlexAUTLoader.swf?swf_url=C:\...\ApplicationName.swf

Make sure to use theRuntime Loader file suitable for your application:

l UFTFlexAUTLoader_4_9_1.swf - for testing Flex applications developed using the
Flex SDK 4.9.1 or earlier

l UFTFlexAUTLoader_4_12_1.swf - for testing Flex applications developed using the
Flex SDK 4.12.x

ApplicationName The file nameof the Flex application that you want to open.

If the application is stored in a different folder than theRuntime Loader, include theURL or
file system path to the application.

Tip: A file system path can be a full path or the path relative to the location of the
Runtime Loader.

Add-ins Guide
Flex Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 113

param_names=param_values (Optional) A list of parameters and their values to pass to the application being opened.
Parameters are separated by the ampersand (&) character.

How to Embed a Flex Application in a Web Page with
the Runtime Loader
This task describes how to embed a Flex application in a Web page together with the UFT Flex Runtime
Loader. UFT can then test the application when this Web page is opened in Internet Explorer.

This method is useful if you are testing a Flex Web (.swf) application that is not already embedded in an
HTML file.

Note: If this method does not fit your needs, you can choose an alternative method of enabling
UFT to communicate with your Flex application. For details, see "Enabling UFT to Identify Objects in
your Flex Application" on page 106.

1. Prerequisites

The UFT Flex Runtime Loader files are installed with UFT, in the <UFT installation
folder>\dat\Flash\Flex\Runtime Loader folder.

l Use one of the following Flex Runtime Loaders:

o UFTFlexAUTLoader_4_9_1.swf - for testing Flex applications developed using the Flex
SDK 4.9.1 or earlier

o UFTFlexAUTLoader_4_12_1.swf - for testing Flex applications developed using the Flex
SDK 4.12.x

l Make sure that the UFT Flex Runtime Loader is located in the same application and security
domain as the Flex application you are testing.

If the application you are testing resides on a Web server, you must place a copy of the Runtime
Loader on the same Web server and use that copy to open the application.

Note:

If you use tests that were recorded on pre-compiled Flex applications to test Flex
applications opened with the Runtime Loader (or vice versa), you may need to modify the
object repositories associated with the test and any test scripts that use programmatic
descriptions to identify Flex test objects.

The uid property value in all Flex test objects and the id property value in FlexWindow test
objects will differ between applications opened with the Runtime Loader and pre-compiled
Flex applications. Before running your test, make sure that test objects whose descriptions
includes these properties match the objects found in the application you are testing.

If the application is on the file system, use the Runtime Loader stored in the file system.

Add-ins Guide
Flex Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 114

l If you use a copy of the Runtime Loader, and not one of the ones stored in the <UFT
installation folder>\dat\Flash\Flex\Runtime Loader folder, make sure to recopy the file after
any UFT upgrade to ensure that you use the most recent file version provided with UFT.

2. Create the Web page

Make a copy of the UFT sample Web page located in <UFT installation
folder>\dat\Flash\Flex\Runtime Loader\UFTFlexAUTLoader_Sample.html. Store this file in the
same application and security domain as the UFT Flex Runtime Loader and the Flex application you
are testing.

When you test your application using UFT, run the application by opening this file in Internet
Explorer.

3. Update the Runtime Loader location specified in the Web page

a. (Optional) If the Runtime Loader is located in a different folder than the html file you created,
modify the Runtime Loader file name to include a path.

The path can be a URL (if the Runtime Loader is located on a Web server), a full file system
path, or a path relative to the location of the html file.

Locate this line to make the change:

<param name="movie" value="UFTFlexAUTLoader.swf" />

For example:

<param name="movie" value="C:\MyApps\FlexRT\UFTFlexAUTLoader.swf" />

b. In both places that the Runtime Loader file name appears in the file as
UFTFlexAUTLoader.swf, change it to UFTFlexAUTLoader_4_9_1.swf or UFTFlexAUTLoader_4_
12_1.swf according to the version of the Flex SDK used to develop the application you are
testing.

4. Embed the Flex application in the Web page

Enter your application file name and, optionally, parameters, in the swf_url parameter, in the
following lines (2 places):

<param name="FlashVars" value="swf_url=YourApplication.swf" />
<embed id="loader"
 width="100%" height="100%" align="middle"
 src="UFTFlexAUTLoader<version number>.swf"
 flashvars="swf_url=YourApplication.swf"/>

Add-ins Guide
Flex Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 115

Use the following syntax:

swf_url=<ApplicationName.swf>&<param_name1>=<param_value1>&<param_
name2>=<param_value2>

ApplicationNa
me

The file nameof the Flex application that you want to open.

If the application is stored in a different folder than theRuntime Loader, provide theURL or file system
path to the application.

For example:

swf_url=http://some_server/MyApp.swf

swf_url=C:\\Flex\\AUTs\\MyApp45.swf

Tip: A file system path can be a full path or the path relative to the location of theRuntime
Loader.

param_
names=para
m_values

(Optional) A list of parameters and their values to pass to the application being opened. Parameters are
separated by the ampersand (&) character.

For example:

swf_url=MyApplication.swf¶m_name=param_value¶m2_
name=param2_value

How to Compile Flex Applications for UFT Testing
This task describes how to compile your Flex applications for UFT testing.

This method can be used for all supported Flex application types.

Note:

l For all Flex applications except Adobe Air:When you compile your Flex application with a UFT
Flex pre-compiled agent, you must set the Flash Player target version to 10.0 or later.

l If you do not want to recompile your Flex application, and you are testing an HTML or
SWF application, you can choose an alternative method of enabling UFT to communicate with
your Flex application. For details, see "Enabling UFT to Identify Objects in your Flex Application"
on page 106.

This section includes:

l "Prepare a Flex application for Web, when the Flex application is embedded in an HTML file" on the
next page

l "Prepare a Flex application for Adobe AIR for testing" on the next page

Add-ins Guide
Flex Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 116

l "Prepare a Flex application hosted by the Adobe Flash Player ActiveX control or Adobe Flash Player
Projector (including the content debuggers)" below

l "Prepare a Flex application that uses the Flex charting or AdvancedDataGrid classes" on the next
page

Prepare a Flex application for Web, when the Flex application is embedded in an
HTML file

1. Link the Flex application to Adobe or Apache Flex automation libraries and a UFT Flex pre-compiled
agent. To do this, add the following compiler arguments in the Flex project, and then recompile the
application:

For all Flex versions except Flex SDK 3.6:

-include-libraries "<PATH_TO_UFT_ROOT>\dat\Flash\Flex\HpQTPAgent.swc"
-include-libraries "${flexlib}\libs\automation\automation_agent.swc"
-include-libraries "${flexlib}\libs\automation\automation.swc"
-include-libraries "${flexlib}\libs\automation\automation_spark.swc"

For Flex SDK 3.6:

-include-libraries "<PATH_TO_UFT_ROOT>\dat\Flash\Flex\HpQTPAgent_3_6.swc"
-include-libraries "${flexlib}\libs\automation\automation_agent.swc"
-include-libraries "${flexlib}\libs\automation\automation.swc"

2. Embed the Flex application in a host .html document.

3. When testing, run your application by opening the host document in a Web browser.

Prepare a Flex application for Adobe AIR for testing

Link the Flex AIR application to Adobe or Apache Flex automation libraries and a UFT Flex pre-compiled
agent. To do this, add the following compiler argument in the Flex AIR project, and then recompile the
application:

-include-libraries "<PATH_TO_UFT_ROOT>\dat\Flash\Flex\HpQTPAgent.swc"
-include-libraries "${flexlib}\libs\automation\automation_agent.swc"
-include-libraries "${flexlib}\libs\automation\automation.swc"
-include-libraries "${flexlib}\libs\automation\automation_spark.swc"
-include-libraries "${flexlib}\libs\automation\automation_air.swc"
-include-libraries "${flexlib}\libs\automation\automation_airspark.swc"

Prepare a Flex application hosted by the Adobe Flash Player ActiveX control or
Adobe Flash Player Projector (including the content debuggers)

1. Link the Flex application to Adobe or Apache Flex automation libraries and a UFT Flex pre-compiled

Add-ins Guide
Flex Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 117

agent. To do this, add the following compiler argument in the Flex project, and then recompile the
application:

-include-libraries "<PATH_TO_UFT_ROOT>\dat\Flash\Flex\HpQTPAgent.swc"
-include-libraries "${flexlib}\libs\automation\automation_agent.swc"
-include-libraries "${flexlib}\libs\automation\automation.swc"
-include-libraries "${flexlib}\libs\automation\automation_spark.swc"

2. When testing, run your application by opening it in one of the following:

l an Adobe Flash Player ActiveX control

l the Adobe Flash Player Projector

Prepare a Flex application that uses the Flex charting or AdvancedDataGrid classes

Link the Flex application to the automation_dmv.swc library. To do this, add the following compiler
argument in the Flex project and then recompile your application:

-include-libraries "${flexlib}\libs\automation\automation_dmv.swc"

How to WorkWith Embedded Objects in Flex Lists,
Tables, or Tree-Views
Sometimes, Flex objects are embedded inside of other non-container Flex objects. For example, a Flex
table cell or a Flex list item might contain edit boxes, text boxes, check boxes, and so on.

UFT does not identify these objects when using the Object Spy, recording on Flex applications, or
learning Flex objects.

However, for Flex objects embedded or contained inside FlexList, FlexTable, or FlexTreeView objects, you
can manually add steps to your test or component that retrieve the embedded objects. Once you
retrieve these child objects, you can use them as you would other test objects, though they are not
stored in the object repository.

This task describes the steps you can use to access and test Flex objects embedded in FlexList,
FlexTable, or FlexTreeView objects.

1. Record or learn the containing FlexTable, FlexList, or FlexTreeView objects.

2. (Optional) Activate the containing table cell, list item, or tree-view node, using the
FlexTable.SelectCell, FlexList.Select, or FlexTreeView.Selectmethods.

In some situations, this changes the embedded objects. In others, it is required in order to bring the
containing object into view.

3. Retrieve the embedded Flex objects using the FlexTable.GetCellChildObjects,

Add-ins Guide
Flex Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 118

FlexTreeView.GetItemChildObjects, or FlexList.GetItemChildObjects methods.

In these methods, you can provide a Description parameter that limits the returned child objects to
the ones that match the description.

4. (Optional) Iterate through the collection of returned test objects to check what objects are
contained inside the FlexTable cell, FlexList item, or FlexTreeView node to perform operations on
the different objects.

5. Add steps to your test or component that perform operations on the embedded objects. For
example, add Set steps on FlexSpin, FlexEdit,or FlexCheckBox objects.

You can also perform steps on embedded objects without retrieving them, by clicking the relevant
location inside the containing object. To do this, for example, use the FlexTable.SelectRow,
FlexTreeView.Select or FlexTable.SelectCellmethod, providing the relevant coordinates within
the row, node, or cell.

6. Check the properties of embedded objects. You can do this using the CheckProperty or
GetROPropertymethods, or checkpoints.

To create a checkpoint to use for an embedded object, create the checkpoint on an object of the
same type that is not embedded. The checkpoint is stored in the object repository and you can
then use it for the embedded object, as demonstrated in the following example:

'Retrieve child objects from Options column in the table's first row
Set child_buttons = grid.GetCellChildObjects(0, "Options")
'iterate through all retrieved options and run a checkpoint on each
For n=0 to (child_buttons.count-1)
 child_buttons(n).Check CheckPoint("Option_radiobutton")
Next

For details and examples on using the FlexTable and FlexList methods in your tests, see the Flex section
of the HP UFT Object Model Reference for GUI Testing (Help > HP Unified Functional Testing Help >
Object Model Reference for GUI Testing > Flex).

Add-ins Guide
Flex Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 119

Known Issues - Flex Add-in
This section describes troubleshooting and limitations for the Flex Add-in.

General Functionality

l The Flex Add-in does not provide backward compatibility with the Adobe Flex Add-in for QuickTest,
and uses a different set of test objects, methods, and properties. Legacy QuickTest tests recorded
using the Adobe Flex Add-in cannot be used, and they cannot be upgraded to be used with the UFT
Flex Add-in.

l The Flex Add-in does not support cross-domain or cross-host Flex applications. These types of
applications are Flex applications where the HTML and SWF files are served from different domains,
or from different hostnames within the same domain. For example, if an HTML page on
www.mysite.com references an SWF file located on www.anothersite.com, or in
content.mysite.com.

l The Flex Add-in is not supported on Internet Explorer 11 when the Enhanced Protected Mode is
turned on.

l Testing Flex applications in UFT is only supported in Internet Explorer 32-bit browser versions.

l The UFT Flex Runtime Loader does not support applications that containmx::AreaChart controls.

l To communicate with the Flex application, UFT selects an available port within the range 24654 -
24663. Make sure that at least one of these ports is available on the UFT computer.

l On a Windows server, multiple users can run multiple instances of UFT. To test Flex applications,
you must have one port in this range available for each UFT instance.

l If you are testing a Flex application, you may experience a delay (up to one minute) from the
moment you open UFT and your Flex application, until UFT can recognize objects in the application.
This is due to the time it may take for UFT to locate an available port, as it cycles through the
ports in this range, waiting for the socket connection timeout for each.

l If you are using Flex SDK version 3.6.0, you must set the Flash Player target version to 10.2 or higher
when compiling your Flex application.

Active Screen

l The Active Screen pane is not fully supported for Flex test objects, and may not display the recorded
steps correctly.

Object Identification and Functionality

l When identifying objects in a Flex application opened in a Web browser, the FlexWindow top-level test
object is contained in a Page object.

l The UFT Flex add-in recognizes Advanced Data Grid controls as FlexTable test objects, and supports

Add-ins Guide
Flex Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 120

basic table functionality for these controls. In addition, UFT supports ExpandRow, CollapseRow, and
SortByColumn operations for tables of this type. Other abilities of Advanced Data Grid controls are
not supported.

l The Flex Add-in does not support the mx.controls::OLAPDataGrid Flex control.

l The Navigate and Learn option is not supported in the following cases:

l Windowless Flex applications.

l Flex applications opened on Windows 8 or Windows 2012 (or later). (Such applications are opened
as windowless Flex applications)

l Flex applications opened in Internet Explorer using a URL with an .swf file extension.

Workaround: To simultaneously add all or specific child objects from a windowless Flex application to
an object repository, do the following:

a. Start by adding one of the Flex child objects to the repository. In the Object Selection - Add to
Repository dialog box, select the parent FlexWindow object instead of the original object you had
selected.

b. In the Define Object Filter dialog box, select either All object types to learn all child objects, or
click Select to select the specific types of child objects you want to add.

For more details about adding objects to object repositories, see the chapter on test objects in the
HP Unified Functional Testing User Guide.

Add-ins Guide
Flex Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 121

HP Unified Functional Testing (12.52) Page 122

Part 6: Java Add-in
This section includes:

"Java Add-in - Quick Reference" on page 123

"Java Add-in - Testing and Configuration" on page 125

"Java Add-in - Test Objects" on page 140

Java Add-in - Quick Reference
You can use the UFT Java Add-in to test Java user-interface objects (controls).

The following tables summarize basic information about the Java Add-in and how it relates to some
commonly-used aspects of UFT.

General Information

Supported
Environments

l You can run steps on Javaobjects in environments such as Internet Explorer, Mozilla Firefox, JavaWeb
Start, Applet Viewer, and in standalone Java applications.

l For details on supported Java toolkits and versions, see the Java Add-in section of theHP Unified
Functional Testing Product Availability Matrix.

Important
Information

"Considerations - Java Add-in" on page 127

Test Object
Methods and
Properties

The JavaAdd-in provides customized Java test objects, methods, and properties that can beused when
testing objects in Java applications. For details, see the Java section of theHPUFT Object Model
Reference for GUI Testing.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "Text Checkpoint and Text Output Value Steps for Java Objects" on page 142.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Extending the
Java Add-in

"Java Add-in Extensibility" (described on page128) enables you to develop support for testing third-
party and custom Java controls that are not supported out-of-the-box by theUFT JavaAdd-in.

Troubleshooting
and Limitations

"Known Issues - Java Add-in" on page 132

Prerequisites

Opening Your
Application

You can open your Java application before or after opening UFT.

Note: If you cannot open your Java application after starting UFT, you may have amemory
fragmentation issue. Check your memory settings, and see "Opening Java Applications After
Opening UFT" on page 135.

Add-in
Dependencies

TheUFT JavaAdd-in can be installed and run together with any other UFT add-in. When testing Java applets in
aWeb browser, if your tests include operations on Web test objects, you must load theWeb Add-in as well as
the JavaAdd-in and use theWeb tab of theRecord and Run Settings dialog box to specify your record and run
preferences.

Configuration

Options Dialog Box Use the Java pane.
(Make sure that aGUI test is open and select Tools > Options > GUI Testing tab > Java node.)

HP Unified Functional Testing (12.52) Page 123

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

Record and Run
Settings Dialog Box
(tests only)

Use the Java tab.
(Record > Record and Run Settings

Test Settings Dialog
Box
(tests only)

Use the Java pane.
(File > Settings > Java node)

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Java section.
(Tools > Options > GUI Testing tab > Active Screennode> Custom Level)

See the section on the Custom Active Screen Capture Settings dialog box in theHPUnified Functional
Testing User Guide.

Application Area
Additional Settings
pane
(business components
only)

l Use the Java pane.
In the application area, select Additional Settings > Java in the sidebar.

l For business components, the settings displayed in this pane are read-only. To change the Java
pane settings for a business component, open its associated application area and use the
application area's Additional Settings > Java pane.

Add-ins Guide
Java Add-in - Quick Reference

HP Unified Functional Testing (12.52) Page 124

Java Add-in - Testing and Configuration
This chapter includes:

• Java Add-in - Overview 126

• Java Add-in Environments 126

• Considerations - Java Add-in 127

• Java Add-in Extensibility 128

• How to Disable Dynamic Transformation Support (Advanced) 129

• Java Environment Variables Settings 131

• Record and Run Environment Variables for Java Objects 132

• Known Issues - Java Add-in 132

• Running Another Java Application or Applet with the Same Settings 133

• Identifying and Solving Common Problems 133

• General Notes and Limitations 135

HP Unified Functional Testing (12.52) Page 125

Java Add-in - Overview
This chapter explains how to use UFT to set testing preferences and to record and run steps on Java
applets and applications. The chapter assumes basic knowledge of UFT features and capabilities. For
details on working with UFT, see the HP Unified Functional Testing User Guide.

Note: Some of the features described in this chapter are relevant only for tests and scripted
components. For details on the features that are available when working with keyword
components, see the HP Unified Functional Testing User Guide.

Java Testing Options

You can use the Java pane of the Options dialog box (Tools > Options > GUI Testing tab > Java node) to
set UFT record and run options on Java applets or applications. You can also open the Advanced Java
Options dialog box that enables you to set table record mode preferences, enable text retrieval for
checkpoints and output values, and specify lists of controls.

Java Settings - Tests and Components

You define and view Java test or business component settings using one of the following:

l The Java pane of the Test Settings dialog box.

l The Java pane of the Business Component Settings dialog box (view only).

l The Java pane of the application area's Additional Settings pane.

Java Add-in Environments
The Java Add-in uses a mechanism that supports multiple Java environments (such as IBM JRE, Oracle
JRE, and Oracle JInitiator) and multiple Java versions (such as, JDK 1.5.x, 1.6.x and so on) without
requiring any configuration changes. (For a list of supported environments and versions, see the
HP Unified Functional Testing Product Availability Matrix.

This mechanism, known as the dynamic transformation support mechanism, adjusts the Java Add-in
support classes according to the Java environment and version used. The dynamic transformation
support mechanism uses the Tool Interface of the Java Virtual Machine (JVMTI) (or the Profiler Interface
(JVMPI) when working with JDK 1.5 and earlier).

The dynamic transformation support mechanism is invoked by the -Xrunjvmhook option, which is
supplied to the JVM. If the -Xrunjvmhook option is specified, the JVM hook profiler (part of the Java Add-
in support) is loaded with every Java application or applet that loads. The JVM hook profiler dynamically
transforms the necessary classes to enable context-sensitive Java support.

HP Unified Functional Testing (12.52) Page 126

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

When you run the Java Add-in on Java 6 or Java 7 environments, the dynamic transformation support
mechanism is invoked by the -agentlib:jvmhook, which is defined in the JAVA_TOOL_OPTIONS
environment variable.

Note: When working with Oracle Java 6 or Java 7 there is no conflict between -agentlib:jvmhook
(defined in the JAVA_TOOL_OPTIONS environment variable) and -Xrunjvmhook (defined in the _
JAVA_OPTIONS environment variable) because Java 6 and Java 7 ignore -Xrunjvmhook.

When working with IBM Java 6 or Java 7, these environment variables may conflict. For workaround
details, see "Running Java applications on the IBM Java Runtime Environment (JRE) 1.6 " on page
139.

The Java agent searches for the jvmhook.dll according to the java.library.path system property.
You can identify any override of this system property using the Java command line: -
djava.library.path = <path> However, although you can override the java.library.path system
property, it is recommended to extend the java.library.path and not to overwrite it.

By default, the value of the java.library.path system property is the system path. If your application is
loaded with a different library path, you must either add the jvmhook.dll to a location within the
java.library.path, or change the java.library.path to contain <Windows installation
folder>/system32.

The <JRE root folder>/bin folder is always located in the java.library.path. If needed, you can
manually copy the jvmhook.dll to this folder. However, if you need to modify more than one computer,
it is recommended to modify the batch file that alters the java.library.path.

For task details, see "How to Disable Dynamic Transformation Support (Advanced)" on page 129.

Considerations - Java Add-in
When learning objects and running steps on Java applications, consider the following:

l After installing the Java Add-in, Java applets and applications will always open with Java support
active. You can confirm that your Java environment has opened properly by checking the Java
console for a message similar to the following confirmation message: "Loading Unified
Functional Testing Java Support (version x.x.x.x) (<App> version x.x.x.x)." (where
<App> is IE, IBM, or Oracle).

l The Object property can access only publicmethods and properties. A recommended alternative to
using the Object property is to extend UFT support for the required Java object using UFT Java Add-in
Extensibility. For details, see the HP UFT Java Add-in Extensibility Developer Guide.

l You cannot add SWT-based JavaMenu objects directly to an object repository using the Add Objects
to Local button in the Object Repository window or the Add Objects button in the Object Repository
Manager. If you want to add an SWT-based JavaMenu objects to the object repository, you can use
the Add Objects or Add Objects to Local button to add its parent object and then select to add the
parent object together with its descendants. Alternatively, you can add a JavaMenu object using the
Navigate and Learn option in the Object Repository Manager. For details, see the section on adding

Add-ins Guide
Java Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 127

test objects using the Navigate and Learn toolbar in the HP Unified Functional Testing User Guide.

l If you want to use a control's native property for object identification, you can add the property to a
Java test object as an identification property in the Add/Remove Properties Dialog Box dialog box. If
you do this, consider the following:

l You can add only native properties for which the control has a public get or ismethod that returns
the property value.

l If the native property name includes upper-case letters, then in the corresponding identification
property name that you create, you must replace each of the upper-case letters except the first
one with _<lower-case letter>. For example, to use the native property OneSmallProp, add an
identification property named One_small_prop.

For more details on adding identification properties, see the section on the Object Identification
dialog box in the HP Unified Functional Testing User Guide.

l In early releases of QuickTest, Java identification properties were not case-sensitive. If you learned a
test object in a QuickTest version earlier than 11.00, you need to re-learn the object with properties
that are case-sensitive by performing an Update Run (using the Update test object descriptions
option). For details, see the section on Updating Test Object Descriptions in the HP Unified Functional
Testing User Guide.

l In UFT, table data is always loaded from the application itself, even if the Active Screen contains an
image of the table. For this reason, you must first open the table in the application before creating a
table checkpoint in a test.

l In some cases you may have to scroll to the last row of the table to make sure that all the data is
loaded.

l It is not necessary to open the table in your application to edit an existing table checkpoint.

l If you load or unload an add-in that is displayed as a child of the Java add-in in the Add-in Manager,
only applications that are opened after loading or unloading the add-in are affected.

l When working with tests, if you create a checkpoint on an SWT-based Java tree with columns, a table
checkpoint is created.

l For details on UFT functionality, see the HP Unified Functional Testing User Guide.

Java Add-in Extensibility
UFT Java Add-in Extensibility enables you to develop support for testing third-party and custom Java
controls that are not supported out-of-the-box by the UFT Java Add-in.

Add-ins Guide
Java Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 128

If the test object class that UFT uses to represent a control does not provide the operations and
properties necessary to operate on your control, you can use Java Add-in Extensibility to customize this
behavior.

l You can map a custom control to an existing test object class, or to a new test object class that you
define

l You can design and customize the behavior of the test object classes by developing custom Java
support classes. You can program how operations are performed on the control, how properties are
retrieved, and more.

l You can also teach UFT to treat a control that contains a set of lower-level controls as a single
functional control, instead of relating to each lower-level control separately.

To implement Java Add-in Extensibility, you need to be familiar with:

l UFT and its Object Model Reference

l The behavior of the custom control (operations, properties, events)

l XML (basic knowledge)

l Java programming

You can install the Java Add-in Extensibility SDK from the Add-in Extensibility and Web 2.0 Toolkits
option in the UFT setup program.

The SDK also includes:

l A plug-in for the Eclipse Java development environment, which provides wizards and commands that
help you create and edit the support that you develop.

l Samples of support developed using Java Add-in Extensibility, which you can use to gain a better
understanding of how to create your own support.

For details on installing and implementing Java Add-in Extensibility, see the Java Add-in Extensibility
Help, available from the UFT Extensibility Documentation program group (Start > All Programs >
HP Software > HP Unified Functional Testing > Extensibility > Documentation or the <UFT
installation folder>\help\Extensibility folder).

Note: For details on accessing UFT and UFT tools and files in Windows 8.X or higher and Windows
Server 2012, see "Accessing UFT in Windows 8.X or Higher Operating Systems" on page 387.

A printer-friendly (PDF) version of the HP UFT Java Add-in Extensibility Developer Guide is available in the
<UFT installation folder>\help\Extensibility folder.

How to Disable Dynamic Transformation Support
(Advanced)
This task describes how to disable the dynamic transformation support mechanism if it does not work
properly, and how to manually configure the Java environment to use the Java Add-in without dynamic

Add-ins Guide
Java Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 129

transformation support. For general details about using the Java Add-in with multiple environments, see
"Java Add-in Environments" on page 126.

Note: The dynamic transformation support mechanism is not supported when using the
incremental garbage collector (-Xincgc option). Therefore, if you absolutely must use the -Xincgc
option, you need to disable dynamic transformation support.

This task includes the following steps:

l "Save the dynamically transformed classes" below

l "Disable dynamic transformation support" below

l "Results" on the next page

1. Save the dynamically transformed classes

a. Specify the folder in which to save the dynamically transformed classes that will be generated
during the preliminary launching of your java applet or application.

To do this, open the registry editor (select Start > Run, type regedit in the Open box and click
OK) and navigate to the JavaAgentmain key, located in: HKEY_LOCAL_
MACHINE\SOFTWARE\Mercury Interactive\JavaAgent. Define a new string value named
ClassesDumpFolder, and set its value data to an existing folder (preferably empty) on your
computer, for example, C:\JavaSupportClasses.

Note: If the ClassesDumpFolder string value already exists, you can modify its value data
to an existing folder on your computer.

b. If you are using the -Xincgc option, temporarily remove it from the command line to enable
the JVM hook profiler to transform and save the necessary classes.

c. Launch your applet or application and perform some basic operations on it. This ensures that
all of the necessary classes are transformed and saved. Close your applet or application. All of
the dynamically transformed classes are now saved in the folder you specified in the previous
step (for example, C:\JavaSupportClasses).

d. If you temporarily removed the -Xincgc option from the command line, you can restore it
now.

Now that you saved the transformed classes, you are ready to disable dynamic transformation
support.

2. Disable dynamic transformation support

a. Remove the -Xrunjvmhook option from the _JAVA_OPTIONS (or IBM_JAVA_OPTIONS for IBM
VM-based applications, and JAVA_TOOL_OPTIONS if you are working with Java 6) environment
variable.

Add-ins Guide
Java Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 130

b. Add the following option instead: -Xbootclasspath/p:<ClassesDumpfolder>\Finalwhere
<ClassesDumpfolder> is the value of the folder in which the dynamically transformed classes
were saved, such as C:\JavaSupportClasses. For example, after your modification the _
JAVA_OPTIONS environment variable might look like this:

-Xbootclasspath/p:C:\JavaSupportClasses\Final -
Xbootclasspath/a:C:\PROGRA~1\HP\
UNIFIE~1\bin\JAVA_S~1\classes;C:\PROGRA~1\HP\UNIFIE~1\bin\JAVA_
S~1\classes\jasmine.jar

3. Results

The saved transformed classes are now used instead of dynamic transformation.

Java Environment Variables Settings
This section describes the environment variables that need to be set when you load your Java
application with UFT Java Add-in support. You need to set one or more environment variables to the
path name of the Java Add-in support classes folder.

Set the _JAVA_OPTIONS environment variable (Oracle) or the IBM_JAVA_OPTIONS environment variable
(IBM) as follows:

-Xrunjvmhook
-Xbootclasspath/a:"<UFT installation folder>\bin\java_shared\classes";
"<UFT installation folder>\bin\java_shared\classes\jasmine.jar"

The above settings should appear on one line (no newline separators).

Note: If you are updating to Java 8, you must temporarily rename this variable before performing
the Java 8 update. After the update is finished, you can restore the variable name.

If you are working with Oracle Java 6 or 7 (versions 1.6 or 1.7), you must set an additional environment
variable, JAVA_TOOL_OPTIONS, with the value -agentlib:jvmhook

Tip: If needed, you can temporarily remove Java support by renaming the _JAVA_OPTIONS or IBM_
JAVA_OPTIONS environment variable. (If you are working with Java 5 or 6, you need to rename the
JAVA_TOOL_OPTIONS environment variable as well.) For example, you must remove Java support if
you want to test ActiveX controls that are embedded in SWT- or Eclipse-based applications.

Note:

You can also use short paths in these commands. For example:

Add-ins Guide
Java Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 131

-Xrunjvmhook -Xbootclasspath/a:C:\PROGRA~2\
HP\UNIFIE~1\bin\ JAVA_S~1\classes;C:\PROGRA~2\
HP\UNIFIE~1\bin\JAVA_S~1\classes\jasmine.jar

In this example, UFT is installed in the default installation folder (C drive, Program Files) on a
Windows 7 computer. PROGRA~2 denotes the Program Files (x86) folder, which is the Program
Files folder on 64-bit operating systems.

Record and Run Environment Variables for Java Objects
You can override the values in the Executable file, Command line, andWorking directory boxes in the
Java tab of the Record and Run Settings dialog box by defining the Java application details using the
following variables:

Option Variable Name Description

Executable file EXEPATH_ENV The executable file or a batch file to open.

Command line CMDLINE_ENV The command line to use to open the file.

Working directory WORKDIR_ENV The folder to which the specified command line or executable file refers.

For details on defining and working with environment variables, see the HP Unified Functional Testing
User Guide.

Known Issues - Java Add-in
This section is intended to help pinpoint and resolve some common problems that may occur when
testing Java applets and applications.

In some cases, running another Java application or applet with the exact same settings helps determine
whether you are encountering a general problem with the Java Add-in or an application-specific
problem. For details, see

This section includes:

l "Running Another Java Application or Applet with the Same Settings" on the next page

l "Identifying and Solving Common Problems" on the next page

l "General Notes and Limitations" on page 135

Add-ins Guide
Java Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 132

Running Another Java Application or Applet with the Same
Settings
You can run another Java application or applet with the same settings as the one you are currently
running to help determine whether you are encountering a general problem with the Java Add-in or an
application-specific problem.

When running another Java application or applet, do the following:

l Determine whether the application is a standalone application or an applet.

l If the application is an applet, check the browser type.

l If the applet is executed from a shortcut, execute another applet with the same command.

l If the applet is executed from a batch file, copy the batch file and change only the class file that
invokes the applet.

Note: If the classpath must also be changed, add only the new items needed. Do not remove any
of the items from the original application or applet classpath.

Identifying and Solving Common Problems
The UFT Java Add-in provides a number of indicators that help you identify whether your add-in is
properly installed and functioning. The following table describes the indicators you may see when your
add-in is not functioning properly and suggests possible solutions:

Indicator Solution

You cannot record or run tests on Java
applets or applications, or theObject Spy
identifies Javaobjects as Standard
Windows objects.

Make sure that the JavaAdd-in is loaded with UFT. To check this, select Help >
About Unified Functional Testingand verify that the Java Add-in check box is
selected.

You load the JavaAdd-in using theAdd-in Manager. For details, see "How to
Manage UFT Add-ins" on page 22.

You cannot record or run tests on Java
applets running on Microsoft Internet
Explorer, and theObject Spy identifies
Javaobjects in these applets as Standard
Windows objects.

If you are using Oracle Java JRE 5 or 6 on Microsoft Internet Explore, the JVM might
not use the Java settings added to your system's environment variables.

Use the JavaAdd-in JRE Support Tool to adjust your computer's configuration to
overcome this problem. The tool is available in theStart > All Programs >
HP Software > HP Unified Functional Testing > Toolsprogram group or the
UFT installation
folder\bin\java\classes\QTPJavaEnabler.jar file

Note: For details on accessing UFT and UFT tools and files in Windows 8.X or
higher and Windows Server 2012, see "Accessing UFT in Windows 8.X or
Higher Operating Systems" on page 387.

For details, see:

Add-ins Guide
Java Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 133

Indicator Solution

l "Java Environment Variables Settings" on page 131

l "Using the Java Add-in on Applets Running on Internet Explorer" on page
139

The Java console does not display a line
containing text similar to "Loading Java
Support".

Check that the settings in your environment correspond to the environment
settings defined in this chapter, or check for a batch file that may override the
settings.

For details, see:

l "Java Environment Variables Settings" on page 131

Note: For details on accessing UFT and UFT tools and files in Windows 8.X or
higher and Windows Server 2012, see "Accessing UFT in Windows 8.X or
Higher Operating Systems" on page 387.

A different applet or application works
with the JavaAdd-in, but the application
you want to test does not work.

First checkwhether you can record and run tests if you invoke the other Java applet
or application using exactly the same settings.

Check that the settings in your environment correspond to the environment
settings defined in this chapter, or check for a batch file that may override the
settings.

For details, see:

l "Java Environment Variables Settings" on page 131

After installing the JavaAdd-in, you
cannot run Java applications using the
IBM Java 6 JVM.

Check that the settings in your environment correspond to the environment
settings defined in "Java Environment Variables Settings" on page 131, or
check for a batch file that may override the settings.

In addition, you may need to do the following:

1. Remove-Xrunjvmhook from the_JAVA_OPTIONS and IBM_JAVA_
OPTIONS environment variables.

Remove -Xrunjvmhook from the_JAVA_OPTIONS and IBM_JAVA_
OPTIONS environment variables.

2. Add -agentlib:jvmhook at the beginning of the_JAVA_OPTIONS
and IBM_JAVA_OPTIONS environment variables.

Add -agentlib:jvmhook at the beginning of the_JAVA_OPTIONS and
IBM_JAVA_OPTIONS environment variables.

3. Delete the JAVA_TOOL_OPTIONS environment variable.

The add-in does not function properly
with applications that run with the-
Xincgc option.

Either remove the -Xincgc option, or run without dynamic transformation
support.

For details, see: "How to Disable Dynamic Transformation Support
(Advanced)" on page 129.

Your Java console contains the line:
Could not find -Xrun
library: jvmhook.dll.

Check that the jvmhook.dll is located within your java.library.path.

Check that thejvmhook.dll is located within your java.library.path.

Noneof the indicators abovedescribemy
problem.

See "General Notes and Limitations" on the next page

Add-ins Guide
Java Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 134

General Notes and Limitations
This section contains general information and limitations about the Java Add-in, and includes the
following sections:

l "Opening Java Applications After Opening UFT" below

l "Loading a Child Add-in of the Java Add-in" on the next page

l "Creating and Running Testing Documents" on the next page

l "Java Environmental Variables" on page 137

l "Record and Run Options" on page 137

l "Working with Java Controls" on page 137

l "Test Objects and Methods" on page 138

l "Checkpoints and Output Values " on page 138

l "Running Java applications on the IBM Java Runtime Environment (JRE) 1.6 " on page 139

l "Using the Java Add-in on Applets Running on Internet Explorer" on page 139

Opening Java Applications After Opening UFT

l If you are not able to open your Java application after you've opened UFT, you may have a memory
space fragmentation issue, caused by loading a Windows .dll file. If Eclipse fails to start with higher
memory settings, do one of the following:

l Use a 64-bit Windows operating system and 64-bit JVM, with 64-bit Eclipse. Have a 64-bit virtual
memory space can prevent you from encountering memory fragmentation issues.

l Force Eclipse to start using the java.exe or javaw.exe file instead of the default jvm.dll
startup file. To do this edit the eclipse.ini file by adding the following text, on two separate
lines:

-vm
<full path to the java.exe or javaw.exe file>

l Modify the Eclipse memory setting in the eclipse.ini file. For example, if the application fails to
start with a parameter setting of -Xmx512m, use a parameter setting of -Xmx256m or -Xmx384m
instead.

l In some cases, Java applications that run successfully when UFT is closed, fail to run if you open them
while UFT is open. An error message is displayed: Could not create the Java Virtual Machine.

Workaround: Activate UFT's memory defragmenting by adding a line to the mercury.ini file:

Locate the mercury.ini file in your Windows folder (%windir%) and add a line to the Memory_Defrag
section, as follows:

Add-ins Guide
Java Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 135

[Memory_Defrag]
<process_name>.exe=1

process_name: The name of the Java engine or application that you are using.
1: Turns on defragmenting (use 0 to turn off, if necessary).

Loading a Child Add-in of the Java Add-in

When you select a child add-in under Java in the Add-in Manager, you load Java Add-in extensibility
support for the selected environment.

If you load support that was developed using a Java Add-in Extensibility SDK version earlier than version
10.00, then when you open one of the UFT dialog boxes that display test object classes for a selected
environment (such as the Object Identification dialog box), the extensibility test object classes are
displayed in the wrong list. If you select the child add-in in the Environment list, the list of test object
classes is empty. Instead, the extensibility test object classes are displayed directly under the Java
environment instead of being displayed under the child add-in in the Environment list.

Additionally, in some cases, the Generate Script button in the Object Identification Dialog Box does not
function properly.

Workaround:

1. Locate the test object configuration file associated with the child add-in. This file is located in the
following locations:

l <UFT Installation Folder>\dat\Extensibility\Java\<add-in
name>TestObjects.xml.

l If working with ALM: <UFT Add-in for ALM Installation
Folder>\dat\Extensibility\Java\<add-in name>TestObjects.xml.

2. In the XML file, locate the PackageName attribute in the TypeInformation element, and change its
value from JavaPackage to the name of the child add-in.

3. Save the file and reopen UFT.

4. If this extensibility support (child add-in) was developed by a third party, you may want to contact
them for assistance.

Creating and Running Testing Documents

l If, while recording keyboard operations in a JFC single-line edit box in an IME composition window, you
press the ENTER key to select the composition string, the key press may be recorded as the Activate
method, thereby generating an extra step. For example:

JavaWindow("Application").JavaEdit("User Name").Activate

Add-ins Guide
Java Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 136

This extra step generally does not affect the run session adversely.

Workaround: Before running your test or business component, remove the extra step that was
recorded.

l The ALT+F4 keyboard shortcut (used for closing a Java applet or Java application) is not supported
for recording or running.

Workaround: Use a Close menu command or button to close a Java applet or Java application during
a recording session. Alternatively, manually add a JavaWindow(...).Close step.

Java Environmental Variables

If you are updating to Java 8, you must temporarily rename the _JAVA_OPTIONS variables before
performing the Java 8 update. After the update is finished, you can restore the variable name.

Record and Run Options

l Adding a -Xincgc flag to the java.exe command line (in the Record and Run Settings dialog box or
in a batch file) prevents the Java support from working properly.

Workaround: When testing with UFT Java support, do not use -Xincgc in your command line, or,
alternatively, do not use the dynamic transformation support mechanism. For details, see the
HP Unified Functional Testing Add-ins Guide.

l When selecting a JAR file from the command line in the Record and Run Settings dialog box, you
should manually add -jar to the Command line box before you invoke the Java application.

l If you intend to launch your Java application using the Record and Run Settings dialog box without
using a batch file (or another executable file), and without the -jar command line option (after
selecting a JAR file), you should include the fully qualified name of the Java class in the Command line
box.

Working with Java Controls

l By default, moving and resizing of Java windows are not recorded. This is because it may cause
redundant recordings in some cases.

Workaround: To instruct the Java Add-in record these actions, use the Setting.Javamethod to set
the record_win_ops variable to 1. For example:

Setting.Java("RECORD_WIN_OPS") = 1

l AWT popup menus are recorded by the Standard Window control support WinMenu test object (while
other Java menus are recorded using the JavaMenu test object). You cannot perform checkpoints or
Active Screen operations on such menus.

Workaround: Use other verification methods (such as using GetTOProperty). For more details on
verification methods, see the HP Unified Functional Testing User Guide.

l A call to .Object.startModal of a JavaInternalFrame or JavaDialog object may cause UFT to behave

Add-ins Guide
Java Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 137

unexpectedly until the dialog box is closed.

l The use of multi-byte characters in a multiline edit field object is not supported.

l The Java Add-in does not record or run steps for hovering over identifiers in an Eclipse window.

l When you record a step that closes a Java dialog box, UFT records an additional Close statement.

Workaround: Manually delete the extraneous Close statement.

l For button objects (either JavaButton or a button in a JavaToolbar) whose label is determined by the
name of the image file they display, the process of naming the test object when running in JDK 1.6 is
different than the one used when running in JDK 1.5.

Therefore, if you have a test or business component containing button objects that were learned on
JDK 1.5 and labeled according to their image file, when you run it on JDK 1.6, the test or business
component may fail.

Workaround:

l For a JavaButton object—relearn the object on JDK 1.6. Then modify the test to use the new test
object, or delete the old object from the object repository and rename the new test object to
match the object name used in the step. Make sure the Automatically update test and business
components steps when you rename test objects option is selected in the General pane of the
GUI Testing tab in the Options dialog box (Tools > Options > GUI Testing tab > General node).

l For a button in a JavaToolbar object—modify the Item argument in the JavaToolbar statement to
refer to the relevant button. You can specify the button's index, or you can use the Object Spy to
spy on the toolbar button, and then provide the label identification property as the Item
argument.

l When the Active Screen displays a Java applet or ActiveX control within a Web page, the applet or
control is for viewing purposes only and you cannot perform operations (for example, create
checkpoints, add methods, and so forth) on the object.

Workaround: Record an operation on the Java applet/ActiveX control to create a step on the object
with the ActiveX Add-in and/or Java Add-in loaded. Then you can create a checkpoint, parameterize a
step, or add a method from the individual Java applet/ActiveX control in the Active Screen.

Test Objects and Methods

The PropertyValue argument (second argument) of the WaitPropertymethod for any Java test object
can be only of type string.

Workaround: Use a string instead of the original type. For example, instead of 1, use "1". For example:

y = JavaCheckBox("Active").WaitProperty ("enabled", "1", 1000)

Checkpoints and Output Values

l You can create text checkpoints and text output values only for Java objects that meet specific

Add-ins Guide
Java Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 138

criteria. For details, see "Text Checkpoint and Text Output Value Steps for Java Objects" on page 142.

l To create a new table checkpoint on a Java table while editing a test or business component, you
must first open the application containing the table you want to check and display the table in the
application.

l If you add a checkpoints on a JavaList or JavaTree object while editing a test or business component,
the list_content or tree_content property is not available in the checkpoint.

Workaround: Create checkpoints on Java lists and Java trees while recording.

l Performing a checkpoint on an object that is not always visible (such as a list opening from a combo
box selection or a menu item) is not fully supported.

Workaround: If a checkpoint on a transient object is required, make sure the object is visible prior to
executing the checkpoint. For example, in the case of combo box list, you should insert a statement
that clicks the combo box button before executing the checkpoint.

Running Java applications on the IBM Java Runtime Environment (JRE) 1.6

In some cases, after installing the Java Add-in, Java applications running on the IBM Java 6 JVM cannot
be started. The error message displayed may indicate that Mercury Interactive support could not be
loaded and the Java Virtual Machine could not be created.

Workaround:

1. Remove -Xrunjvmhook from the _JAVA_OPTIONS and IBM_JAVA_OPTIONS environment variables.

2. Add -agentlib:jvmhook at the beginning of the _JAVA_OPTIONS and IBM_JAVA_OPTIONS
environment variables.

3. Delete the JAVA_TOOL_OPTIONS environment variable.

Using the Java Add-in on Applets Running on Internet Explorer

In some cases, when running Java applets using Oracle Java JRE 5 or 6 on Microsoft Internet Explorer,
the Java Add-in does not recognize the applet as belonging to the Java environment. It does not
recognize objects in the applet as Java objects, and cannot record or run steps on them.

This happens when the JVM does not use the Java Add-in's settings from the environment variables. In
this case, you need to set -agentlib:jvmhook -Xbootclasspath/ a:"<UFT installation
folder>\bin\java_shared\classes";"<UFT installation folder>\bin\java_
shared\classes\jasmine.jar" in the JVM Runtime Parameters.

Use the Java Add-in JRE Support Tool to set this string in the Runtime Parameters for the relevant JVM.
The tool is available from: Start > All Programs > HP Software > HP Unified Functional Testing >
Tools > Java Add-in JRE Support Tool or UFT installation
folder\bin\java\classes\QTPJavaEnabler.jar file

Note: For details on accessing UFT and UFT tools and files in Windows 8.X or higher and Windows
Server 2012, see "Accessing UFT in Windows 8.X or Higher Operating Systems" on page 387.

Add-ins Guide
Java Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 139

Java Add-in - Test Objects
This chapter includes:

• Recording Steps on Java Objects 141

• Recording Steps on Jtable Cell Editors 142

• Text Checkpoint and Text Output Value Steps for Java Objects 142

• Full Object Hierarchy Views 143

• Advanced Java Test Object Methods 143

• CreateObject Method 144

• GetStatics Method 144

• FireEvent / FireEventEx Methods 145

• How to Modify Options for Recording on Java Tables 146

HP Unified Functional Testing (12.52) Page 140

Recording Steps on Java Objects
When you record an operation on an applet, application, or Java object, UFT records the appropriate
object icon next to the step in the Keyword View (for tests and business components) and adds the
relevant statement in the Editor (for tests only).

If you try to record an operation on an unsupported or custom Java object, UFT records a generic Java
Object.Click statement that includes the coordinates of the click and the mouse button (that is, left
or right) that was clicked. You can create support for your custom object using the UFT Java Add-in
Extensibility. For details, see the HP UFT Java Add-in Extensibility Developer Guide.

Note: The way in which UFT records operations depends on the type of JTable cell editor in the
table cell. For details, see "Recording Steps on Jtable Cell Editors" on the next page.

The UFT recorded hierarchy is composed of two or three levels of Java test objects. The top level is
represented by the JavaApplet, JavaDialog, or JavaWindow object, as appropriate. The actual object on
which you performed an operation may be recorded as a second or third level object. If the object is
located directly in the top level object, it is recorded as a second level object (for example,
JavaApplet.JavaButton). If a JavaDialog or JavaInternalFrame exists at the second level, then the
object on which you performed the operation is recorded as a third level object (for example,
JavaWindow.JavaDialog.JavaButton).

When testing applets in a browser, the two- or three-level hierarchy is recorded within the standard
Web object hierarchy (for example, Browser.Page.JavaApplet.JavaTestObject.SubJavaTestObject).

Even though the object on which you record may be embedded in several levels of objects, the recorded
hierarchy does not include these objects. For example, if the JavaList object on which you record is
actually contained in several JPanel objects, which are all contained in a JavaWindow, the recorded
hierarchy is only JavaWindow.JavaList.

Example

In a test, if you record a click on a Java check box, the Keyword Viewmay be displayed as follows:

UFT records this step in the Editor as:

Window("Microsoft Internet Explorer").JavaApplet("Periodic").JavaCheckBox
("Toggle").Set "ON"

HP Unified Functional Testing (12.52) Page 141

In a keyword component, if you record a click on this same Java check box, the Keyword View would
displayed as follows:

You can view the recorded hierarchy of a test object in the object repository. You can also access the
full hierarchy of an object when using the pointing hand mechanism in the Step Generator (tests only),
when inserting a checkpoint or output value step while recording, or when using the Object Spy.

For a related task, see "How to Modify Options for Recording on Java Tables" on page 146.

This section also includes:

• Recording Steps on Jtable Cell Editors 142

• Text Checkpoint and Text Output Value Steps for Java Objects 142

• Full Object Hierarchy Views 143

Recording Steps on Jtable Cell Editors
UFT records operations differently, depending on the type of JTable cell editor in the table cell.

If you are recording on standard cell editors in Swing Jtable tables, UFT records operations by default in
the same way it records other table objects, using SetCellData statements.

However, when a JTable contains a custom (non-standard) cell editor, the default SetCellData
statement cannot be recorded. For example, if a cell contains both a check box and a button that opens
a dialog box, then a SetCellData statement may not always provide an accurate description of the
operations performed inside the cell.

If you record an operation on a custom cell editor, UFT records a statement that reflects the operation
you performed on the object inside of the cell. For example, if the cell editor contains a custom check
box, UFT might record the following statement:

Browser("Periodic").Page("Periodic").JavaWindow("CoolJava").JavaDialog
("SetOptions").JavaCheckBox("MyCheckBox").Set "ON"

instead of:

Browser("Periodic").Page("Periodic").JavaWindow("CoolJava").JavaDialog
("SetOptions").JavaTable("MyTable").SetCellData "ON"

Text Checkpoint and Text Output Value Steps for Java Objects
When working with tests, you can use checkpoints or output values to check that text in your Java
application or applet displays correctly. Similar to many other supported environments, it is
recommended to retrieve and check text from your Java applet or application by inserting a standard

Add-ins Guide
Java Add-in - Test Objects

HP Unified Functional Testing (12.52) Page 142

checkpoint or output value for the object containing the desired text, and selecting to check or output
its text (or similar) identification property (for example, text, attached text, or label).

If the object you want to work with does not have an appropriate identification property, or, if for any
other reason, the above recommendation does not answer your needs (for example, the text before or
after the selected text is important), you can consider inserting a UFT text checkpoint or text output
value step for a Java object if it meets the following criteria:

l The object must draw the text itself (and not delegate the drawing task to the underlying operating
system, as is the case with most AWT business components).

l The object must draw text by overriding the paint()method and calling the standard
graphics.drawString()method to draw text. For example, the object cannot use special drawing
methods for writing text, such as using a method that can draw oval circles to draw the letter O.

l The object cannot use the double (image) buffering drawing technique.

Note: Because many Java objects do not answer these criteria, the text checkpoint and text
output mechanism for Java objects is disabled by default. You can enable it in the Advanced Java
Options Dialog Box.

Full Object Hierarchy Views
The Java Add-in enables you to view the full object hierarchy of each of the objects in your application in
the Object Spy and Object Selection dialog boxes. In contrast to the recorded object hierarchy, the full
object hierarchy shows you all of the parent objects associated with the clicked locations and, in some
cases, the child objects of the clicked object.

The full object hierarchy enables you to view associated operations and properties of non-recorded
objects in the Object Spy. You can also access non-recorded objects from the Object Selection dialog box
that opens when using the Step Generator dialog box (tests only) or when inserting a checkpoint or
output value step during a recording session.

The Object Spy and Object Selection dialog boxes enable you to view details, insert statements, or
perform operations even for elements of an object (class business components) that are not recorded,
such as java.awt.Component. For example, you can access the edit box, drop-down list, and button
elements of a combo box.

For details on the Object Spy and Object Selection dialog box, see the HP Unified Functional Testing User
Guide.

Advanced Java Test Object Methods
Java test object classes include test object methods that you can use in your tests to enhance the
interaction between UFT and the application being tested.

Add-ins Guide
Java Add-in - Test Objects

HP Unified Functional Testing (12.52) Page 143

This section includes:

• CreateObject Method 144

• GetStatics Method 144

• FireEvent / FireEventEx Methods 145

CreateObject Method
You can use the CreateObjectmethod to create an instance of any Java object within your applet or
application. The CreateObjectmethod returns an object reference to the newly created Java object. For
details on the syntax of this method, see the Java section of the HP UFT Object Model Reference for GUI
Testing.

You can activate the methods of an object you create in the same way as you would activate the
methods of any returned object from a prior call. Because the CreateObjectmethod returns an object
reference, there is no need to use the Object property when activating methods of the created object.

For example, you can use the CreateObjectmethod to create a rectangle object. The return value is an
object reference.

Set Rect = Browser("Periodic").Page("Periodic").JavaApplet
("Periodic").JavaObject("Panel").CreateObject ("java.awt.Rectangle", 10, 20)

Note: The CreateObjectmethod can be performed on any Java test object. The class loader of the
Java test object on which the CreateObjectmethod is performed is used to load the class of the
newly created Java object.

It is recommended to use the CreateObjectmethod on a Java test object from the same toolkit as
the object you want to create. For example, to create a Swing/JFC object, use the CreateObject
method on an existing Swing/JFC Java test object.

GetStatics Method
You can invoke any static method, or you can set or retrieve the value of any static property of a Java
class using the GetStaticsmethod. For details on the syntax of this method, see the Java section of the
HP UFT Object Model Reference for GUI Testing.

GetStatics returns a reference to an object that can access static members of the specified class. The
class loader of the Java test object on which the GetStaticsmethod is performed is used to load the
class specified as a parameter of the GetStaticsmethod.

For example, to invoke the gcmethod of class.java.lang.System, which runs the garbage collector on
the application, you can insert a statement similar to the following:

Browser("Browser").Page("Page").JavaApplet("mybuttonapplet.htm").JavaObject

Add-ins Guide
Java Add-in - Test Objects

HP Unified Functional Testing (12.52) Page 144

("MyButton").GetStatics("java.lang.System").gc

To retrieve the value of the out property of the java.lang.System class, you can insert a statement
similar to the following:

Set OutStream= Browser("Browser").Page("Page").JavaApplet("mybuttonapplet.htm").
JavaObject("MyButton").GetStatics("java.lang.System").out

To print a message to the Java console, you can insert a statement similar to the following:

Set OutStream= Browser("Browser").Page("Page").JavaApplet("mybuttonapplet.htm").
JavaObject("MyButton").GetStatics("java.lang.System").out
OutStream.println "Hello, World!"

FireEvent / FireEventExMethods
You can simulate an event on a Java object during a run session with the FireEvent and FireEventEx
methods. The FireEventmethod simulates an event on a Java object using one of several pre-defined
event constants. If the list of pre-defined constants does not cover the event you want to fire, you can
use the FireEventExmethod to fire any Java event. For details on the syntax of these methods and for
the list of pre-defined event constants, see the Java section of the HP UFT Object Model Reference for
GUI Testing.

For example, you can use the FireEventmethod to fire a MouseClick event on the JavaObject called
MyButton_0.

Browser("Browser").Page("Page").Applet("mybuttonapplet.htm").JavaObject
("MyButton_0").FireEvent micMouseClick, 0, "BUTTON1_MASK", 4, 4, 1, "OFF"

Alternatively, you can use the FireEventExmethod to fire the same event as follows:

Browser("Browser").Page("Page").Applet("mybuttonapplet.htm").JavaObject
("MyButton_0").FireEventEx "java.awt.event.MouseEvent", "MOUSE_CLICKED", 0,
"BUTTON1_MASK", 4,4, 1, "False"

Note that you can pass any Java constant that is used as one of the event's constructor parameters
using its string, rather than its value. In the example above, the "java.awt.event.MouseEvent" Java
constant MOUSE_CLICKED is supplied as a string argument instead of its value (500 in this example).

Add-ins Guide
Java Add-in - Test Objects

HP Unified Functional Testing (12.52) Page 145

How to Modify Options for Recording on Java Tables
This task describes how to modify some recording options for recording on Java table, as well as
identify the toolkit class for an editor for use with the table_external_editors_list

This task includes the following steps:

l "Modify the default JTable recording behavior for SetCellData statements (advanced)" below

l "Modify table cell control options" below

l "Find the toolkit class of a JTable cell editor" on the next page

Modify the default JTable recording behavior for SetCellData statements
(advanced)

If the default recording behavior for JTables does not provide the desired value for the SetCellData
statement of a particular editor, set that editor to be recorded, like a custom cell editor, in terms of the
operation performed on the object inside the cell.

Do one of the following:

l In the Advanced Java Options Dialog Box, select Table cell controls > Controls to identify as
separate test objects, and then specify specific cell editor types that should always be treated as
separate objects, and not as part of a JavaTable object.

l Create a Setting.Java ("table_internal_editors_list") statement. For details, see Advanced
Java Options Dialog Box, and the HP UFT Object Model Reference for GUI Testing.

Modify table cell control options

You can specify a list of table cell controls that you want UFT to identify as separate test object, or for
which you want UFT to record and run JavaTable operations.

Note:

l Any changes you make are not applied to the currently open test or business component.

l You can restore the default settings in the Advanced Java Options Dialog Box by clicking the
Reset button.

1. In the Advanced Java Options Dialog Box, click the relevant option once to highlight it.

2. Click the option again or press F2 to open an edit box in which you can add or modify a list of
controls.

3. Change the value as necessary.

Note: Specify editor class names separated by a space, tab, newline, or return character.
Values are case sensitive.

Add-ins Guide
Java Add-in - Test Objects

HP Unified Functional Testing (12.52) Page 146

4. When you finish editing the value, click another location in the dialog box to set the value.

5. To apply your changes to the currently open test or business component, close the document and
then reopen it.

Find the toolkit class of a JTable cell editor

If you do not know the value of the toolkit class for an editor for use with the table_external_editors_
list variable, you can find it by doing one of the following:

l Use the Object Spy to retrieve the value.

l Run a short test in UFT to retrieve the value. You may want to do this when working with a cell that
does not stay activated for long enough to capture the cell with the Object Spy. For example, a cell
that is no longer active after a check box is selected or cleared.

l Create a user-defined function and insert it as a step in your test. You may want to do this when
working with business components.

You can insert steps similar to the following example:

' Sample test to retrieve the toolkit class of a table cell editor
' that cannot be made continuously active
Set table = JavaWindow("TableDemo").JavaTable("Left table").Object
Set JTableCS = table.mic_get_supp_class()
Set comp = JTableCS.getComponentAt(table, 0, 6) ‘row 0, col 6
MsgBox comp.getClass().getName()
' Set the value of TABLE_EXTERNAL_EDITORS_LIST
Setting.Java("TABLE_EXTERNAL_EDITORS_LIST") = comp.getClass().getName()

To find the toolkit class of a JTable cell editor using the Object Spy:

1. Open the table and activate a cell in the cell editor column. For example, make sure the cursor is
blinking inside an edit field or display the drop-down list of a combo box.

2. With the appropriate cell activated, use the Object Spy to point to the active cell. For details on
using the Object Spy dialog box , see the HP Unified Functional Testing User Guide.

3. Make sure the Properties tab of the Object Spy is displayed and select the Identification radio
button.

4. In the Properties column, scroll to toolkit class.

5. In the Values column, select the value of the toolkit class. The value is displayed in the box below
the Properties tab.

6. Copy and paste the value from the Object Spy to the Table cell controls > Controls to identify as

Add-ins Guide
Java Add-in - Test Objects

HP Unified Functional Testing (12.52) Page 147

separate test objects option or your Setting.Java ("table_internal_editors_list")
statement.

Add-ins Guide
Java Add-in - Test Objects

HP Unified Functional Testing (12.52) Page 148

HP Unified Functional Testing (12.52) Page 149

Part 7: Mobile Add-in
This section includes:

"Mobile Add-in - Quick Reference" on page 150

Mobile Add-in - Quick Reference
Built on native HP technology, HP Mobile Center integrates mobile testing with many HP testing tools
including Unified Functional Testing (UFT), Lean Functional Testing (LeanFT), Business Process Testing
(BPT), Sprinter, LoadRunner, and Performance Center.

You can use UFT to record and run GUI tests and components on mobile applications that are running on
real mobile devices hosted on HP Mobile Center. After you connect your devices to HP Mobile Center, you
can immediately start testing them using the Mobile Add-in.

Note: For details on using UFT with HP Mobile Center, see the UFT section in the Mobile Center Help.

For details about known issues when testing mobile devices, see the Mobile Center Readme
(Passport required).

The following tables summarize basic information about the Mobile Add-in and how it relates to some
commonly-used aspects of UFT.

General Information

Supported
Environments

l For supported versions of HP Mobile Center, see:My product matrix in theMobile Center Help.

l For supported mobile devices, see: Connect devices to HP Mobile Center in theMobile Center Help.

Test Object
Methods and
Properties

TheMobile Add-in provides test objects, methods, and properties that can beused when testing objects in
mobile applications. For details, see theMobile section of theHPUFT Object Model Reference for GUI
Testing.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See: "GUI Checkpoints and Output Values Per Add-in" on page 382

Considerations
and Limitations

See limitations in theMobile Center Readme (Passport required).

Configuration

Options Make sure that aGUI test is open and select Tools > Options > GUI Testing tab > Mobile
node.

For details, seeDefine connections and record and run settings in theMobile Center Help.

Record and Run Settings Make sure that aGUI test is open and select Record > Record and Run Settings.

For details, seeDefine connections and record and run settings in theMobile Center Help.

Test/Component
Settings

Make sure that aGUI test is open and select File > Settings > Mobile Hybridpane.

Relevant only for a test that meets BOTH of the following conditions:

l The test was created prior to UFT version 12.51.

l The test includes steps on ahybrid application.

HP Unified Functional Testing (12.52) Page 150

http://mobilecenter.hpe.com/docs/en/1.52/
https://softwaresupport.hp.com/group/softwaresupport/search-result?keyword=KM02051446
http://mobilecenter.hpe.com/docs/en/1.52/Content/My_Product_Matrix.htm
http://mobilecenter.hpe.com/docs/en/1.52/Content/Configuring_and_connecting_devices.htm
https://softwaresupport.hp.com/group/softwaresupport/search-result?keyword=KM02051446
http://mobilecenter.hpe.com/docs/en/1.52/Content/mobile_on_UFT_define_cnx.htm
http://mobilecenter.hpe.com/docs/en/1.52/Content/mobile_on_UFT_define_cnx.htm

For details, see: Testing hybrid applications in theMobile Center Help.

Add-ins Guide
Mobile Add-in - Quick Reference

HP Unified Functional Testing (12.52) Page 151

http://mobilecenter.hpe.com/docs/en/1.52/Content/mobile_on_UFT_hybrid.htm

HP Unified Functional Testing (12.52) Page 152

Part 8: Oracle Add-in
This section includes:

"Oracle Add-in - Quick Reference" on page 153

"Oracle Add-in - Testing and Configuration" on page 155

Oracle Add-in - Quick Reference
You can use the UFT Oracle Add-in to test Oracle Applications and Oracle Forms objects (controls).

The following tables summarize basic information about the Oracle Add-in and how it relates to some
commonly-used aspects of UFT.

General Information

Add-in Type This is aWeb-based add-in. Much of its functionality is the sameas other Web-based add-ins.

See "Web-Based Application Support" on page 25.

Supported
Environments

For details on supported Oracle environments, see theOracle Add-in section of theHP Unified
Functional Testing Product Availability Matrix.

Important
Information

When working with theOracle Add-in, you must:

l Verify that theOracleName attribute is unique.

See "How to Verify or Enable the Oracle Server Unique Name Attributes" on page 159.

l Enable theOracleName attribute.

See "How to Enable the Oracle Name Attribute" on page 159.

Test Object
Methods and
Properties

TheOracle Add-in provides test objects, methods, and properties that can beused when testing objects in
Oracle applications. For detail, see theOracle section of theHPUFT Object Model Reference for GUI
Testing.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Troubleshooting
and Limitations

See "Known Issues - Oracle Add-in" on page 164.

Prerequisites

Opening Your
Application

You can open your Oracle application before or after opening UFT.

Testing in
Mozilla Firefox

To test your Web application in Mozilla Firefox version 33 and later, you must enable the Functional Testing
Extension in oneof the following ways:

l If theSelect Your Add-ons screen is displayed when you open Firefox, select to enable the Functional
Testing Extension.

l If the Install Add-on tab opens and displays Functional Testing Extension when opening Firefox,
select theAllow this installation check box and clickContinue.

Otherwise:

a. In Firefox, open the browser menu.

b. In themenu, clickAdd-ons.

c. In theAdd-ons Manager tab, select theExtensionsnode.

HP Unified Functional Testing (12.52) Page 153

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

d. In the Functional Testing Extension row, click theEnable button.

To test your Web application in Mozilla Firefox versions earlier than 33, you must enable the legacy Firefox
agent:

1. Open the<UFT installation folder>\Installations\Firefox folder.

2. From the Firefox folder, drag theLegacy.xpi file into Firefox.

3. In Firefox, open the browser menu.

4. In themenu, click Add-ons.

5. In theAdd-ons Manager tab, select the Extensions node.

6. In the Functional Testing Extension row, disable the Functional Testing 12.50 extension and enable
the extension you added to Firefox.

Add-in
Dependencies

l TheWeb Add-in must be loaded. TheWeb Add-in supports Web-based forms.

l The JavaAdd-in must be loaded if your Oracle test or business component includes Java test objects.

Configuration

Options Dialog Box Use the Javapane if your Oracle test or business component includes Java test objects.
(Make sure that aGUI test is open and select Tools > Options > GUI Testing tab > Java
node).

Record and Run Settings
Dialog Box
(tests only)

Use theOracle tab.
(Record > Record and Run Settings)

Test Settings Dialog Box
(tests only)

l Use theWebpane.
(File > Settings > Webnode)

l Use the Javapane if your Oracle test or business component includes Java test objects.
(File > Settings > Java node)

Custom Active Screen
Capture Settings Dialog Box
(tests only)

Use theOracle applications section.
(Tools > Options > GUI Testing tab > Active Screennode> Custom Level)

For details, see the section on the Custom Active Screen Capture Settings dialog box in the
HPUnified Functional Testing User Guide.

Application Area Additional
Settings pane
(business components only)

l Use theWebpane if your test includes Web test objects.
In the application area, select Additional Settings > Web in the sidebar.

l Use the Java pane if your Oracle test or business component includes Java test objects.
In the application area, select Additional Settings > Java in the sidebar.

(The options shown in the Javapaneof the Test Settings dialog box are the sameas the
options that are available in theAdditional Settings in the application area.)

Add-ins Guide
Oracle Add-in - Quick Reference

HP Unified Functional Testing (12.52) Page 154

Oracle Add-in - Testing and Configuration
This chapter includes:

• Considerations for Working with the Oracle Add-in 156

• Recording Tests on Oracle Applications 157

• Dynamic Transformation Support 158

• How to Verify or Enable the Oracle Server Unique Name Attributes 159

• How to Enable the Oracle Name Attribute 159

• How to Set Oracle Environment Variables 161

• How to Disable Dynamic Transformation Support 161

• Oracle Record and Run Environment Variables 163

• Known Issues - Oracle Add-in 164

HP Unified Functional Testing (12.52) Page 155

Considerations for Working with the Oracle Add-in
l If you installed a version of JInitiator 1.1.x after installing the Oracle Add-in, a warning is displayed

when you start recording your test or business component. Versions of JInitiator 1.1.x installed after
you install the Oracle Add-in are not supported by UFT. In this case, you can repair the Oracle Add-in
to enable full support of all currently installed versions of JInitiator 1.1.x. For details, see the section
on repairing your UFT installation in the HP Unified Functional Testing Installation Guide.

If you try to record an action on an Oracle object with an unsupported version of JInitiator 1.1.x, UFT
records a generic WinObject.Click statement that includes the coordinates of the click and the
mouse button that was clicked.

l After installing the Oracle Add-in, your applications will always open with Java support active. You can
confirm that your Oracle environment has opened properly by checking the Java console for the
confirmation message similar to:

Loading Oracle Support (version x.x build xxx) (Oracle Corporation x.x.x.xx).

For details, see " Dynamic Transformation Support " on page 158.

Note: The UFT Oracle Add-in supports only Oracle clients that are Java-based. Oracle
Developer/2000 is not supported.

l Before using the Oracle Add-in to test Oracle Applications, you must first enable the Name attribute
supplied by the Oracle Applications server. details, see "How to Enable the Oracle Name Attribute" on
page 159.

l The Oracle Applications server supplies a unique Name attribute for many application objects. You
can also find the Oracle Applications server Name attribute in the Oracle Add-in developer name
identification property. The developer name identification property is used by UFT in most test
object descriptions to identify Oracle objects. For details, see "How to Enable the Oracle Name
Attribute" on page 159.

l In UFT, table data is always loaded from the application itself, even if the Active Screen contains an
image of the table. For this reason, you must first open the table in the application before creating a
table checkpoint in a test.

l In some cases you may need to scroll to the last row of the table to make sure that all the data is
loaded.

l If the table object is not open in your application when you create the checkpoint, the Table
Checkpoint Properties dialog box contains only the Properties tab, and the option to select which
type of information to check (content or properties) is disabled.

l It is not necessary to open the table in your application to edit an existing table checkpoint.

l For details on UFT functionality, see the HP Unified Functional Testing User Guide.

HP Unified Functional Testing (12.52) Page 156

Recording Tests on Oracle Applications
As you record on an Oracle Applications session, UFT inserts statements into your test or business
component that represent the operations you perform. The UFT Oracle Add-in recognizes specific
Oracle objects such as button, form, navigator, list, and tree. It records these objects in relation to the
data selected or entered and to the object within its parent object.

Note: UFT does not record the selection of Oracle tabs. Each object in an Oracle tab is included in
the object repository within the tab hierarchy. UFT then uses this hierarchy when the test or
business component is run, switching to the appropriate tab if needed.

The UFT learned object hierarchy is composed of one, two, or three levels of Oracle test objects.
Depending on the actual object on which you performed an operation, that object may be recorded as a
first level object (for example, OracleLogon), as a second level object (for example,
OracleFormWindow.OracleList), or as a third level object (for example,
OracleFormWindow.OracleTabbedRegion.OracleTable).

Even though the object on which you record may be embedded in several levels of objects, the recorded
hierarchy does not include these objects. For example, even if the OracleListOfValues object in which
you select an item is actually within an Oracle form, which is contained within an Oracle Applications
session window, the recorded hierarchy is only OracleListOfValues.

Example of a Step on an Oracle Object

If you record the selection of an item in an Oracle List of Values window, the Keyword Viewmay be
displayed as follows:

UFT records this step in the Editor as:

OracleListOfValues("Responsibilities").Select "Assets, Vision Operations (USA)"

Working with Tests

Each time you begin recording a test, you can use the Oracle Tab of the Record and Run Settings dialog
box to instruct UFT to connect to a specified Oracle Applications server. Alternatively, you can instruct
UFT to record on any open browser. For details, see "Recording Tests on Oracle Applications" above.

Working with Components

The Record and Run Settings dialog box is used for tests only. When you record a business component
on an Oracle Applications session, you cannot instruct UFT to open or connect to a specified Oracle
Applications server. You can open and connect to it manually or include statements in your business

Add-ins Guide
Oracle Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 157

component (using the OpenApp operation or the SystemUtil utility object and the OracleLogon test
object) that open and connect to the Oracle Applications server. For details on the Applications pane and
Applications dialog box, see the HP Unified Functional Testing User Guide.

Working with Java Test Objects

You may have a combination of Oracle and Java test objects in your Oracle test or business component.
This occurs when UFT encounters a Java applet within your Oracle Applications session and records it
using the Java test object hierarchy.

You can edit steps that use Java test objects, methods, and properties in the same way as you edit
other standard steps. You can add new steps to existing tests or business components using the new
Oracle test object model. For details on Java objects, methods, and properties, see the Java section of
the HP UFT Object Model Reference for GUI Testing, installed together with the Oracle Add-in. For details
on Oracle objects, methods, and properties, see the Oracle section of the HP UFT Object Model Reference
for GUI Testing.

There are specific options and settings you can use in your test or business component that apply only
to steps that use Java test objects. These options and settings are located in the Java pane of the Test
Settings dialog box (File > Settings > Java node) and the Java pane of the Options dialog box (Tools >
Options > GUI Testing tab > Java node). For more information, click the Help button in the relevant
Java pane. Note that the options in the Java panes do not have any effect on Oracle object steps in your
test or business component.

Dynamic Transformation Support
The Oracle Add-in uses a mechanism for supporting multiple Java environments (Oracle Plug-in,
JInitiator) and their versions (JInitiator 1.1.8, 1.3.1, and so on) without requiring any configuration
changes. This mechanism is known as dynamic transformation support.

Dynamic transformation support uses the profiler interface of the Java Virtual Machine (JVM) to adjust
the Oracle Add-in support classes according to the Java environment and version in use.

The dynamic transformation support mechanism is invoked by the -Xrunjvmhook option (for JInitiator
1.3.1.x and Sun Plug-in 1.4.1) or the _classload_hook=jvmhook option (for JInitiator 1.1.x) supplied to
the JVM. If this option is specified, the JVM hook profiler, which is part of the Oracle Add-in support, is
loaded with every application or applet and dynamically transforms the necessary classes to enable
context-sensitive Oracle support.

l If the dynamic transformation support mechanism does not work properly, you can disable it and
manually configure the Oracle environment to use the Oracle Add-in without dynamic transformation
support. For details, see "How to Disable Dynamic Transformation Support" on page 161.

l The dynamic transformation support mechanism is not supported when using the incremental
garbage collector (-Xincgc option). Therefore, if you absolutely must use the -Xincgc option, you
need to disable dynamic transformation support. For details, see "How to Disable Dynamic
Transformation Support" on page 161

Add-ins Guide
Oracle Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 158

How to Verify or Enable the Oracle Server Unique
Name Attributes
This task includes the following steps:

l "Prerequisite" below

l "Enable the Oracle server to supply unique Name attributes" below

1. Prerequisite

Use the Object Spy to point to a few edit boxes inside the Oracle application and view the
developer name attribute. If the developer name is displayed in all capital letters in the format
FORM:BLOCK:FIELD or FORM_BLOCK_FIELD, then the developer name attribute is supplied
correctly.

If the developer name value is empty, then the server does not supply unique Name attributes. To
use the Oracle Add-in to test Oracle Applications, your Oracle server must supply unique Name
attributes.

Your Oracle server administrator can assist you in enabling unique Name attributes.

2. Enable the Oracle server to supply unique Name attributes

a. Add the following line to the server configuration file (for example, $OA_HTML/bin/appsweb_
UKTRN_hwu00001.cfg):

otherparams=record=names

b. Restart the Oracle server.

How to Enable the Oracle Name Attribute
This task describes the different ways in which you can enable the Name attribute supplied by the
Oracle Applications server before using the Oracle Add-in to test Oracle Applications.

This task includes:

l "Enable the Name attribute when accessing the application directly" on the next page

l "Enable the Name attribute when using HTML to launch the Oracle application" on the next page

l "Enable the Name attribute when using the Personal Home Page to launch your Forms 6 application"
on the next page

Add-ins Guide
Oracle Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 159

Enable the Name attribute when accessing the application directly

Add record=names to the URL parameters.

Example:

http://oracleapps.mydomain.com:8002/dev60cgi/f60cgi?record=names

Enable the Name attribute when using HTML to launch the Oracle application

1. In the startup HTML file that is used to launch the application, locate the line: <PARAM
name="serverArgs fndnam= APPS">

2. Add the Oracle key: record=names

Example:

<PARAM name="serverArgs" value="module=f:\FNDSCSGN userid=XYZ fndnam=apps
record=names">

Enable the Name attribute when using the Personal Home Page to launch your
Forms 6 application

Set up the following system profile option at (your) user level to enable the Name attribute:

1. Sign on to your Oracle application and select System Administrator responsibility.

2. Select Nav > Profile > System.

3. In the Find System Profile Values form:

l Confirm that Display: Site and Users contains your user logon.

l Enter %ICX%Launch% in the Profile box.

l Click the Find button.

4. Copy the value from the Site box of the ICX: Forms Launcher profile and paste it in the User box.
Add &play=&record=names to the end of the URL in the User box.

5. Save your transaction.

6. Sign on again using your user name.

Note: If the ICX: Forms Launcher profile option is not updatable at the user level, access
Application Developer and select the Updatable check box for the ICX_FORMS_LAUNCHER profile.

Add-ins Guide
Oracle Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 160

How to Set Oracle Environment Variables
This task describes how to set the environment variables you need for loading your Oracle application
with UFT Oracle Add-in support. For all the environments, you need to set one or more environment
variables with the path name of the Oracle Add-in support classes folder.

This task includes the following steps:

l "Sun Plug-in 1.4.1 and Oracle JInitiator 1.3.1.x" below

l "Oracle JInitiator 1.1.x" below

Sun Plug-in 1.4.1 and Oracle JInitiator 1.3.1.x

Set the _JAVA_OPTIONS environment variable as follows:

-Xrunjvmhook
-Xbootclasspath/a:"<UFT installation folder>\bin\java
shared\classes";"<UFT installation folder>\bin\java_sharedclasses\jasmine.jar"

The above variables should appear on one line (no newline separators).

Note:

You can also use short paths in this command. For example:

-Xrunjvmhook -Xbootclasspath/a:C:\PROGRA~2\HP\UNIFIE~1\bin\JAVA_
S~1\classes;C:\PROGRA~2\HP\UNIFIE~1\bin\JAVA_S~1\classes\jasmine.jar

In this example, UFT is installed in the default installation folder (C drive, Program Files) on a
Windows 7 computer. PROGRA~2 denotes the Program Files (x86) folder, which is the Program
Files folder on 64-bit operating systems.

Oracle JInitiator 1.1.x

Set the _classload_hook environment variable to jvmhook.

How to Disable Dynamic Transformation Support
This task includes the following steps:

l "Save the dynamically transformed classes" on the next page

l "Disable dynamic transformation support " on the next page

This task describes how to disable dynamic transformation support if the dynamic transformation
support mechanism does not work properly.

Add-ins Guide
Oracle Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 161

Save the dynamically transformed classes

1. Specify the folder in which to save the dynamically transformed classes that will be generated
during the preliminary launching of your Oracle application.

To do this:

a. Open the registry editor (select Start > Run, type regedit in the Open box and click OK)

b. Navigate to the JavaAgentmain key, located in: HKEY_LOCAL_MACHINE\SOFTWARE\Mercury
Interactive\JavaAgent.

c. Define a new string value named ClassesDumpFolder, and set its value data to an existing
folder (preferably empty) on your computer, for example, C:\JavaSupportClasses.

d. If the ClassesDumpFolder string value already exists, you can modify its value data to an
existing folder on your computer.

2. If you are using the -Xincgc option, temporarily remove it from the command line to enable the
JVM hook profiler to transform and save the necessary classes. You can add it back to the
command line after performing the following step.

3. Launch your applet or application and perform some basic operations on it. This ensures that all of
the necessary classes are transformed and saved. Close your application. All of the dynamically
transformed classes are now saved in the folder you specified in the previous step (for example,
C:\JavaSupportClasses).

Disable dynamic transformation support

For Sun Plug-in 1.4.1 or JInitiator 1.3.1.x:

1. Remove the -Xrunjvmhook option from the _JAVA_OPTIONS environment variable.

2. Add the following option instead: -Xbootclasspath/p:<ClassesDumpFolder>\Final, where
<ClassesDumpFolder> is the value of the folder in which the dynamically transformed classes
were saved, such as C:\JavaSupportClasses, appended by the Final subfolder. For example,
after your modification the _JAVA_OPTIONS environment variable might look like this:

-Xbootclasspath/p:C:\JavaSupportClasses\Final -
Xbootclasspath/a:"%ProgramFiles%\HP Software\Unified Functional
Testing\bin\java_shared\classes";

For Initiator 1.1.x:

1. Remove the _classload_hook option from the JDK settings by deleting the environment variable.

2. Manually copy the classes from the <ClassesDumpFolder>, where <ClassesDumpFolder> is the
value of the folder in which the dynamically transformed classes were saved, such as
C:\JavaSupportClasses, appended by the Final subfolder, to the JInitiator 1.1.x classes folder.
You can find the JInitiator 1.1.x classes folder under %ProgramFiles%\Oracle\JInitiator
1.1.x\classes.

Add-ins Guide
Oracle Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 162

Oracle Record and Run Environment Variables
You can use record and run environment variables to specify the applications you want to use for
recording and running your test. These variables can also be used in external library files for automation
scripts.

If you define any of these record and run environment variables, they override the values in the
corresponding boxes in the Oracle tab of the Record and Run Settings dialog box. For details, see
"Recording Tests on Oracle Applications" on page 157.

Use the variable names listed in the table below to define Oracle record and run variables:

UI Elements Variable Name Description

Address ORACLE_URL_
ENV

TheURL of theOracle Applications server to which you want to connect.

Auto-login ORACLE_AUTO_
LOGIN_ENV

Instructs UFT to log on automatically to theOracle Applications server.

Possible values:

l True

l False

User name ORACLE_USER_
NAME_ENV

Theuser nameused to log on to the specified server.

Password ORACLE_
PASSWORD_ENV

Thepassword for the specified user name.

Log out of the
application when the
test closes

ORACLE_
LOGOUT_ENV

Instructs UFT to log out of theOracle Applications session specified in Oracle
Tab of theRecord and Run Settings dialog boxwhen the test is closed.

Possible values:
True
False

Close the browser when
the test closes

ORACLE_
CLOSE_
BROWSER_ENV

Instructs UFT to close the browser on which the test is recorded when the
test is closed.

Possible values:
True
False

For details on defining and working with environment variables, see the HP Unified Functional Testing
User Guide.

Add-ins Guide
Oracle Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 163

Known Issues - Oracle Add-in
This section contains general information and limitations about the Oracle add-in, and includes the
following sections:

l "Installing the Oracle Add-in " below

l "Creating and Running Testing Documents" on the next page

l "Record and Run Options" on the next page

l "Checkpoints" on the next page

For limitations relevant to specific test objects and methods, see the Oracle section of the HP UFT
Object Model Reference for GUI Testing.

Installing the Oracle Add-in

l If you install an Oracle JInitiator 1.1.x version after you install the UFT Oracle Add-in, you must repair
UFT to test applications running in the newly installed JInitiator version. For details, see the HP Unified
Functional Testing Add-ins Guide.

Note: It is not necessary to re-install or otherwise configure the UFT Oracle Add-in if you
installed a new Oracle environment other than JInitiator 1.1.x.

l The UFT Oracle Add-in provides a number of indicators that help you identify whether your add-in is
properly installed and functioning. The following table describes the indicators you may see when
your add-in is not functioning properly, and suggests possible solutions:

Indicator Solution

You cannot record or run tests
on Oracle Applications.

Ensure that theOracle Add-in is loaded. For details, see "How to Manage UFT Add-ins"
on page 22.

The Java console does not
display a line containing the text
similar to: Loading Oracle
Support.

Check that the settings in your environment correspond to the environment settings
defined in this chapter, or check for a batch file that may override the settings.

For details, see:

l "Recording Tests on Oracle Applications" on page 157.

l " Dynamic Transformation Support " on page 158.

Your Java console contains the
lineCould not find –
Xrun library:
jvmhook.dll.

Check that you havejvmhook.dll in your system folder (WINNT\system32,
Windows\System32, or Windows\SysWOW64, depending on your operating
system).

You cannot useUFT to record
on Oracle Applications running
on Oracle JInitiator versions
1.1.X.

The version of Oracle JInitiator 1.1.X on which your Oracle Application runs must be
installed before you install theUFT Oracle Add-in.

If you installed Oracle JInitiator versions 1.1.X on your computer after you installed the

Add-ins Guide
Oracle Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 164

Indicator Solution

Oracle Add-in, you should repair theOracle Add-in installation. For details, see the section
on repairing your UFT installation in theHPUnified Functional Testing Installation
Guide.

If, after reviewing the above indicators and solutions, you are still unable to record and run tests on
your Oracle application, contact HP Software Support.

Creating and Running Testing Documents

l Test objects that require the index property for their description (for example, range flexfield
objects) cannot be created from the Active Screen.

Workaround: Use the Add Objects button in the Object Repository window to add these test objects
directly from your Oracle Applications instead.

l Active Screen captures are not supported for OracleListOfValues and OracleNotification test objects.

l The recovery scenario pop-up window trigger event is not supported when testing Oracle
Applications.

l Simultaneous testing of multiple Oracle Applications sessions is not supported.

Record and Run Options

The Log out of the application when the test closes option in the Record and Run Settings dialog box
does not work if the Responsibilities List of Values window is displayed in the Oracle Applications
session.

Checkpoints

l Performing a checkpoint on an object that is not always visible (such as a list opening from a combo
box selection or a menu item) is not fully supported.

Workaround: If a checkpoint on a transient object is required, make sure the object is visible prior to
executing the checkpoint. For example, in the case of combo box list, you should insert a statement
that clicks the combo box button before executing the checkpoint.

l When testing Oracle applications, a table checkpoint may not capture the values of columns that are
not visible.

Workaround: Before creating a table checkpoint, scroll in the table so that the last column is visible.

Add-ins Guide
Oracle Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 165

HP Unified Functional Testing (12.52) Page 166

Part 9: PeopleSoft Add-in
This section includes:

"PeopleSoft Add-in - Quick Reference" on page 167

"Considerations for Working with the PeopleSoft Add-in" on page 168

"Known Issues - PeopleSoft Add-in" on page 169

PeopleSoft Add-in - Quick Reference
You can use the UFT PeopleSoft Add-in to test PeopleSoft user-interface objects (controls).

The following tables summarize basic information about the PeopleSoft Add-in and how it relates to
some commonly-used aspects of UFT.

General Information

Add-in Type This is aWeb-based add-in. Much of its functionality is the sameas other Web-based add-ins.

See "Web-Based Application Support" on page 25.

Supported
Environments

For details on supported PeopleSoft environments, see thePeopleSoft Add-in section of theHP Unified
Functional Testing Product Availability Matrix.

Important
Information

See "Considerations for Working with the PeopleSoft Add-in" on the next page.

Test Object
Methods and
Properties

ThePeopleSoft Add-in provides test objects, methods, and properties that can beused when testing
objects in PeopleSoft applications. For details, see thePeopleSoft section of theHPUFT Object Model
Reference for GUI Testing.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Troubleshooting
and Limitations

See "Known Issues - PeopleSoft Add-in" on page 169.

Prerequisites

Opening Your
Application

You must open UFT before opening your PeopleSoft application.

Testing in
Mozilla Firefox

To test your Web application in Mozilla Firefox version 33 and later, you must enable the Functional Testing
Extension in oneof the following ways:

l If theSelect Your Add-ons screen is displayed when you open Firefox, select to enable the Functional
Testing Extension.

l If the Install Add-on tab opens and displays Functional Testing Extension when opening Firefox,
select theAllow this installation check box and clickContinue.

Otherwise:

a. In Firefox, open the browser menu.

b. In themenu, clickAdd-ons.

c. In theAdd-ons Manager tab, select theExtensionsnode.

d. In the Functional Testing Extension row, click theEnable button.

To test your Web application in Mozilla Firefox versions earlier than 33, you must enable the legacy Firefox

HP Unified Functional Testing (12.52) Page 167

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

agent:

1. Open the<UFT installation folder>\Installations\Firefox folder.

2. From the Firefox folder, drag theLegacy.xpi file into Firefox.

3. In Firefox, open the browser menu.

4. In themenu, click Add-ons.

5. In theAdd-ons Manager tab, select the Extensions node.

6. In the Functional Testing Extension row, disable the Functional Testing 12.50 extension and enable
the extension you added to Firefox.

Add-in
Dependencies

TheWeb Add-in must be loaded.

Configuration

Options Dialog Box Use theWebpane.
(Make sure that aGUI test is open and select Tools > Options > GUI Testing tab >
Web > General node.)

Record and Run Settings Dialog
Box
(tests only)

Use theWeb tab.
(Record > Record and Run Settings)

Test Settings Dialog Box
(tests only)

Use theWebpane.
(File > Settings > Webnode)

Custom Active Screen Capture
Settings Dialog Box
(tests only)

Use theWeb section.
(Tools > Options >GUI Testing tab > Active Screennode> Custom Level)

See the section on the Custom Active Screen Capture Settings dialog box in the
HPUnified Functional Testing User Guide.

Application Area Additional
Settings pane
(business components only)

Use theWebpane.
In the application area, select Additional Settings > Web in the sidebar.

Considerations for Working with the PeopleSoft
Add-in
l When learning PSFrame objects, or Web pages containing PSFrame objects, the following child

objects are automatically filtered out and are not added to the object repository:

Add-ins Guide
Considerations for Working with the PeopleSoft Add-in

HP Unified Functional Testing (12.52) Page 168

l WebElement

l WebTable

l Images of type "Plain Image"

l Images with type "Image Link"

If you want to add an object that is automatically filtered out, you can manually add it by selecting it
in the Object Selection Dialog Box .

l The PeopleSoft Add-in provides a customized PSFrame test object to identify PeopleSoft frames. The
PSFrame object differs from the Web Frame object both in its test object description and its
algorithm for generating object names. This customization helps make your PeopleSoft tests easy to
read and maintain.

l The PeopleSoft Add-in identifies all other objects in your PeopleSoft application using Web test
objects.

For details on PeopleSoft and Web test objects, methods, and properties, see the PeopleSoft and
Web sections of the HP UFT Object Model Reference for GUI Testing.

l For the purposes of Web event recording, UFT treats Web test objects that are child objects of a
PSFrame test object as PeopleSoft objects and thus applies the settings in the PeopleSoft event
configuration XML file when recording those objects.

For details on Web event recording configurations, see "Event Recording Configuration for Web-
Based Applications" on page 30.

Known Issues - PeopleSoft Add-in
l The Active Screen may not function correctly when working with non-English UI servers.

l If you use the ENTER key to activate a search operation while recording a test, UFT may not perform
the operation as expected during the test run.

Workaround: Activate the search by clicking the Search button with the mouse.

l The use of keyboard shortcut keys to perform operations while recording is not supported.

Add-ins Guide
Known Issues - PeopleSoft Add-in

HP Unified Functional Testing (12.52) Page 169

HP Unified Functional Testing (12.52) Page 170

Part 10: PowerBuilder Add-in
This section includes:

"PowerBuilder Add-in - Quick Reference " on page 171

"Considerations for Working with the PowerBuilder Add-in " on page 172

"Known Issues - PowerBuilder Add-in" on page 173

PowerBuilder Add-in - Quick Reference
You can use the UFT PowerBuilder Add-in to test PowerBuilder user-interface objects (controls).

The following tables summarize basic information about PowerBuilder Add-in and how it relates to some
commonly-used aspects of UFT.

General Information

Add-in Type This is aWindows-based add-in. Much of its functionality is the sameas other Windows-based add-ins.

See "Windows-Based Application Support" on page 52.

Supported
Environments

For details on supported PowerBuilder environments, see thePowerBuilder Add-in section of the
HP Unified Functional Testing Product Availability Matrix.

Important
Information

See "Considerations for Working with the PowerBuilder Add-in " on the next page.

Test Object
Methods and
Properties

ThePowerBuilder Add-in provides test objects, methods, and properties that can beused when testing
objects in PowerBuilder applications. For details, see thePowerBuilder section of theHPUFT Object
Model Reference for GUI Testing.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "Considerations for Working with the PowerBuilder Add-in " on the next page.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Troubleshooting
and Limitations

See "Known Issues - PowerBuilder Add-in" on page 173.

Prerequisites

Opening Your Application You can open your PowerBuilder application before or after opening UFT.

Configuration

Options Dialog Box Use theWindows Applicationspane.
(Tools > Options > GUI Testing tab >Windows Applications node)

Record and Run
Settings Dialog Box
(tests only)

Use theWindows Applications tab.
(Record > Record and Run Settings

Note: If you select theRecord and Run only on radio button in theRecord and Run Settings
dialog box, the settings also apply to (limit) the applications that are recognized for Object Spy
and other pointing hand operations.

Custom Active Screen
Capture Settings
Dialog Box
(tests only)

Use theWindows applications section.
(Tools > Options > GUI Testing tab > Active Screennode> Custom Level)

See the section on the Custom Active Screen Capture Settings dialog box in theHPUnified

HP Unified Functional Testing (12.52) Page 171

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

Functional Testing User Guide.

Application Area
Additional Settings
pane
(business components
only)

Use theApplicationspane.
In the application area, select Additional Settings > Applications in the sidebar.

See the section on theApplications pane in theHPUnified Functional Testing User Guide.

Considerations for Working with the
PowerBuilder Add-in
The PowerBuilder Add-in provides the PbDataWindow test object with customized methods and
properties to help you test PowerBuilder's DataWindow control.

l When you insert a checkpoint or output value step on a DataWindow control, UFT treats it as a table
and opens the Table Checkpoint Properties or Table Output Value Properties dialog box (not
supported for business components). It enables you to check or retrieve values for the table content
and the object properties.

l When you insert a checkpoint or output value step on a DataWindow control during a recording
session, the properties available to be checked or retrieved in the Properties tab include the
DataWindow control's inner attributes (such as DataWindow.color) in addition to the identification
properties (such as enabled and focused).

The set of DataWindow inner attributes available in the dialog box is the same as the list of
properties that would be returned if you run a DataWindow.Describe
("DataWindow.attributes") statement. Properties of the inner objects of the table (objects that
can be retrieved using a DataWindow.Describe ("DataWindow.objects") statement) are not
available in this list.

l When you insert a checkpoint or output value step on a DataWindow control while editing (from the
Active Screen, or on a step for which Active Screen data was captured), only the identification
properties are available in the list.

For details on the DataWindow test object, see the PowerBuilder section of the HP UFT Object Model
Reference for GUI Testing.

Add-ins Guide
Considerations for Working with the PowerBuilder Add-in

HP Unified Functional Testing (12.52) Page 172

Known Issues - PowerBuilder Add-in
l When learning or recording on toolbars in PowerBuilder applications, UFT no longer records the

PbToolbar test object. Instead, it records a PbObject.Click step. The PbToolbar test object is no
longer available in UFT dialog boxes or in the documentation.

l If a PbToolbar test object exists in an old object repository, it will be recognized and supported, but
toolbar-specific methods such as CheckItem, GetContent, GetItem, GetItemProperty, GetItemCount,
GetSelection, Press, ShowDropDown, andWaitItemProperty are not supported for this object. To fix
this, update object repositories and tests to use the PbObject test object for toolbar steps.

l By default, UFT recgonizes objects in your application as PowerBuilder objects only if the application
was built with a supported version of PowerBuilder.

If you want to try to use UFT with an unsupported PowerBuilder version, you can make the following
change:

a. Open C:\Windows\wrun.ini in a text editor. If this file does not exist, create it.

b. Under the [WrCfg] section, add a line in the format: PBRuntimeDllName=<YourPB_Dll>. For
example:

[WrCfg]

PBRuntimeDllName=pbvm126.dll

Caution: This is an ‘As-Is’, unsupported option.

For details on supported versions of PowerBuilder, see the HP Unified Functional Testing Product
Availability Matrix.

Add-ins Guide
Known Issues - PowerBuilder Add-in

HP Unified Functional Testing (12.52) Page 173

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

HP Unified Functional Testing (12.52) Page 174

Part 11: Qt Add-in
This section includes:

"Qt Add-in - Quick Reference" on page 175

"Considerations - Qt Add-in" on page 177

Qt Add-in - Quick Reference
You can use the Qt testing support provided by UFT to test user-interface objects (controls) developed
using the Qt framework for mobile devices.

The following tables summarize basic information about Qt testing support and how it relates to some
commonly-used aspects of UFT.

General Information

Add-in Type TheQt Add-in is aWindows-based add-in. Much of its functionality is the sameas other Windows-based add-
ins.

See "Windows-Based Application Support" on page 52

Important
Information

"Considerations - Qt Add-in" on page 177

Test Object
Methods and
Properties

TheQt Add-in uses a sub-set of the standard Windows test objects, methods, and properties, which can be
used when testing objects (controls) in Qt applications. For details, see theStandard Windows section of the
HPUFT Object Model Reference for GUI Testing.

For a list of supported Qt controls, see "Considerations - Qt Add-in" on page 177.

Checkpoints
and Output
Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Prerequisites

Opening Your
Application

You must open UFT before opening your Qt application.

Add-in
Dependencies

None

Low Level
Recording

To enable low level recording on Qt controls, you must first modify the object identification properties list
for theWinObject test object class, as follows:

l Add the regexpwndtitle property to themandatory properties list.

l Move theobject classproperty up theassistive properties list so that it is learned before the text
property.

For details, see the section describing theObject Identification Dialog Box in theHPUnified Functional
Testing User Guide.

Configuration

Options Dialog Box Use theWindows Applicationspane.
(Tools > Options > GUI Testing tab > Windows Applications node)

Record and Run Settings
Dialog Box

Use theWindows Applications tab.
(Run > Run Settingsor Record > Record Settings)

HP Unified Functional Testing (12.52) Page 175

(tests only)
Note: UFT recognizes Qt objects only in applications that are opened after changing
settings in theWindows Applications tab of theRecord and Run Settings dialog box.

Custom Active Screen
Capture Settings Dialog
Box
(tests only)

Use theWindows applications section.
(Tools > Options >GUI Testing tab > Active Screennode> Custom Level)

See the section on the Custom Active Screen Capture Settings dialog box in theHPUnified
Functional Testing User Guide.

Application Area
Additional Settings tab
(business components only)

Use theApplicationspane.
In the application area, clickAdditional Settings in the sidebar and select the Java node

See the section on theApplications Pane in theHPUnified Functional Testing User Guide.

Add-ins Guide
Qt Add-in - Quick Reference

HP Unified Functional Testing (12.52) Page 176

Considerations - Qt Add-in
l Qt Add-in support is provided using standard Windows test objects. The following table lists each

supported Qt control and its corresponding standard Windows test object.

Qt Control Standard Windows Test Object

QCheckBox WinCheckBox

QComboBox WinComboBox

QComboBoxPrivateContainer Window

QExpandingLineEdit WinEdit

QLabel Static

QLineEdit WinEdit

QListWidget WinList

QMenu Window

QMenuBar WinToolBar

QPlainTextEdit WinEditor

QPushButton WinButton

QRadioButton WinRadioButton

QSpinBox WinSpin

QTabWidget WinTab

QToolButton WinButton

QTreeWidget WinTreeView

l UFT supports only Visual Studio as the compiler for QT applications.

HP Unified Functional Testing (12.52) Page 177

HP Unified Functional Testing (12.52) Page 178

Part 12: Add-in for SAP Solutions
This section includes:

"Web-based SAP Support" on page 180

"Windows-based SAP Support" on page 189

Add-in for SAP Solutions - Overview
You can use the UFT Add-in for SAP Solutions to test user-interface objects (controls) in SAP GUI for
Windows applications and in Web-based SAP applications. You can create and run tests and business
components on these objects, and check their properties.

After you create your test or business component, you can enhance it by adding checkpoints, retrieving
output values, and parameterizing values. Where relevant, you can also add SAP GUI for Windows or
SAP Web objects, methods and properties to it.

This section contains:

l "Web-based SAP Support" on page 180

l "Windows-based SAP Support" on page 189

HP Unified Functional Testing (12.52) Page 179

Web-based SAP Support
This chapter includes:

• Web-Based SAP Support - Quick Reference 181

• Considerations for Working with SAP GUI for HTML 183

• Known Issues - Web-based SAP 185

HP Unified Functional Testing (12.52) Page 180

Web-Based SAP Support - Quick Reference
You can use the SAP Web testing support provided with the UFT Add-in for SAP Solutions to test user-
interface objects in Web-based SAP applications. These applications include SAP Enterprise Portal,
Internet Transaction Server, SAP Customer Relationship Management (CRM), and the Interaction Centre
Web Client.

The following tables summarize basic information about the Web-based SAP environment and how it
relates to some commonly-used aspects of UFT.

General Information

Add-in Type Web-based SAP testing support is similar to other Web-based add-ins.

For details, see "Web-Based Application Support" on page 25.

Supported
Environments

For details on supported Web-based SAP environments, see theAdd-in for SAP Solutions section of the
HP Unified Functional Testing Product Availability Matrix.

Note: Firefox is supported for testing SAPUI5 Desktop applications, but not other Web-based SAP
environments.

Important
Information

l Before you begin recording tests on Web-based SAP applications, you can define your required
recording settings. This enables you to specify the browser on which you want UFT to record, specify
any environment variables, and select the required Web options to optimize performance.

l When theUFT Add-in for SAP Solutions is loaded, UFT can learn objects and run steps on both Web-
based (requires theWeb Add-in, too) and Windows-based SAP applications.

l For details on recording and running tests and business components on SAP GUI for Windows
applications, see "Low-Level or Analog Mode Recording on SAP GUI for Windows" on page
214and "How to Record on Standard Windows Controls During an SAP GUI for Windows
Recording Session" on page 215.

l For details on working with SAP GUI from HTML, see "Considerations for Working with SAP GUI
for HTML" on page 183.

l TheSAPUI5 Add-in and SAPWDJ Add-ins are installed when you install the Add-in for SAP Solutions.
However, in order for full support for SAPUI5 and SAPWebDynpro (WDJ) applications, you must do the
following:

l Install the Add-in for SAP Solutions and theWeb Add-in

l When starting UFT, in theAdd-ins Manager, select the SAPUI5 and/or the SAPWDJ add-in under the
SAP add-in and theWeb Add-in.

l TheSAPWDJ Add-in is supported only on Internet Explorer.

Test Object
Methods and
Properties

TheAdd-in for SAP Solutions provides test objects, methods, and properties that can beused when
testing objects in Web-based SAP applications. For details, see theSAP Web section of theHPUFT Object
Model Reference for GUI Testing.

Add-ins Guide
Web-based SAP Support

HP Unified Functional Testing (12.52) Page 181

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

Note: If you working with SAPUI5 applications, see theSAPUI5 section of theHPUFT Object Model
Reference for GUI Testing, in theWeb Child Add-ins section.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "Considerations for Working with SAP GUI for HTML" on the next page.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Troubleshooting
and Limitations

See "Known Issues - Web-based SAP" on page 185.

Prerequisites

Opening Your
Application

l Open UFT before you open your Web-based SAP application.

l If you areworking in an SAP GUI application that contains HTML objects, you can log on to your
application before opening UFT, but you must open UFT before navigating to the transaction containing
any HTML objects.

l For SAP GUI for HTML, Interaction CentreWeb Client (ICWC) applications, and Customer Relationship
Management (CRM) applications, confirm that your SAP server and client are configured properly.

See "How to Enable Support for SAP GUI for Windows" on page 195.

Testing in
Mozilla Firefox

To test your Web application in Mozilla Firefox version 33 and later, you must enable the Functional Testing
Extension in oneof the following ways:

l If theSelect Your Add-ons screen is displayed when you open Firefox, select to enable the Functional
Testing Extension.

l If the Install Add-on tab opens and displays Functional Testing Extension when opening Firefox,
select theAllow this installation check box and clickContinue.

Otherwise:

a. In Firefox, open the browser menu.

b. In themenu, clickAdd-ons.

c. In theAdd-ons Manager tab, select theExtensionsnode.

d. In the Functional Testing Extension row, click theEnable button.

To test your Web application in Mozilla Firefox versions earlier than 33, you must enable the legacy Firefox
agent:

1. Open the<UFT installation folder>\Installations\Firefox folder.

2. From the Firefox folder, drag theLegacy.xpi file into Firefox.

3. In Firefox, open the browser menu.

4. In themenu, click Add-ons.

5. In theAdd-ons Manager tab, select the Extensions node.

6. In the Functional Testing Extension row, disable the Functional Testing 12.50 extension and enable
the extension you added to Firefox.

Add-in
Dependencies

TheWeb Add-in must be loaded.

Add-ins Guide
Web-based SAP Support

HP Unified Functional Testing (12.52) Page 182

Configuration

Options Dialog
Box

Use theWebpane.
(Make sure that aGUI test is open and select Tools > Options> GUI Testing tab > Web > General
node.)

Record and Run
Settings Dialog
Box
(tests only)

l Use the SAP tab (Record > Record and Run Settings) to connect to the SAP GUI Client for SAP GUI
for HTML or Interaction CentreWeb Client (ICWC) applications. This is because ICWCopens from inside
the SAP GUI Client.

See "How to Enable Support for SAP GUI for Windows" on page 195.

l Use theWeb tab (Record > Record Settings) to instruct UFT to use a specific URL and browser to
open aWeb-based SAP application, or the SAP Enterprise Portal, at the beginning of each record and
run session. Alternatively, you can instruct UFT to record and run on any open browser.

Test Settings
Dialog Box
(tests only)

Use theWebpane.
(File > Settings > Web node)

Custom Active
Screen Capture
Settings Dialog
Box
(tests only)

Use theWeb section.
(Tools > Options > GUI Testing tab > Active Screennode> Custom Level button)

See the section on the Custom Active Screen Capture Settings dialog box in theHPUnified Functional
Testing User Guide.

Application Area
Additional
Settings pane
(business
components only)

Use theWebpane.
In the application area, select Additional Settings > Web in the sidebar.

Web Event
Recording
Configuration
Dialog Box

When you load theAdd-in for SAP Solutions, the settings in theWeb Event Recording Configuration
Dialog box (Record > Web Event Recording Configuration) are automatically customized. You do not
need to make anyWeb event configuration changes.

Considerations for Working with SAP GUI for HTML
l You can add a table checkpoint while recording or editing your test.

l If a table has a column header row, it is counted as the first row in the table.

l If you have not recorded a step on the table object you want to check, but you have an Active Screen
capture that displays the table object, you can add a table checkpoint if the Active Screen Capture
level was set to Complete when the object was captured, and the Active Screen is currently selected
(View > Active Screen).

(You set the Capture level in the Active Screen pane of the Options dialog box (Tools > Options >
GUI Testing tab > Active Screen node). For details, see the section on Active Screen options in the
HP Unified Functional Testing User Guide.)

l You can spool all of the available data from an SAP GUI for HTML application table into an external file

Add-ins Guide
Web-based SAP Support

HP Unified Functional Testing (12.52) Page 183

using the GetCellDatamethod, which loops through each cell in the table. You can then save the
information to an external file.

The following example uses the GetCellDatamethod to list the data of each cell in a table of 10 rows
and 10 columns:

For i=1 to 10
For j=1 to 10

Dat=Browser("ITS System Informati").Page("Table control").SAPTable
("MySAPTable").GetCellData (i, j)

‘Enter lines of code that use the value of the returned Dat variable
Next

Next

For details on the GetCellDatamethod, see the SAP Web section of the HP UFT Object Model Reference
for GUI Testing.

Add-ins Guide
Web-based SAP Support

HP Unified Functional Testing (12.52) Page 184

Known Issues - Web-based SAP
This section contains general troubleshooting and limitation information about the Web-based SAP add-
in, and includes the following sections:

l "General" below

l "SAPUI5 Objects" below

l "SAP WDJ Objects" on the next page

l "SAP Enterprise Portal" on page 187

l "SAP GUI for HTML—Internet Transaction Server (ITS) " on page 187

l "Using the Active Screen " on page 188

l "Web-based CRM Systems" on page 188

General

l It is not recommended to work with other Web-based add-ins when the UFT Add-in for SAP Solutions
is loaded. The Add-in for SAP Solutions modifies certain Web configuration settings that may affect
other add-ins or applications.

l When recording and running steps on a table control, only the table content that is visible on the
client is actually available.

l During a run session, the SAP platform response time may be slower than the time it takes for UFT to
run the corresponding step.

Workaround: Add a Wait statement prior to the relevant step.

l In some cases, when running tests on SAPEdit, SAPNavigationBar, or SAPPortal, you may receive a
Cannot find object error.

Workaround: Do one of the following:

l Ensure that the object properties are unique and correct.

l Modify the registry as specified below:

For 32 bit computers: In the HKEY_LOCAL_MACHINE\Software\Mercury
Interactive\QuickTestProfessional\MicTest\AbortIfHangInSendData key, set the value of
DWORD to 0.

For 64-bit computers: In the HKEY_LOCAL_MACHINE\Software\Wow6432Node\Mercury
Interactive\QuickTestProfessional\MicTest\AbortIfHangInSendData key, set the value of
DWORD to 0.

SAPUI5 Objects

l Because the SAPUI5 add-in supports both desktop and mobile applications, not all methods for all
objects are supported for both desktop and mobile applications.

HP Unified Functional Testing (12.52) Page 185

l When running a test or component on SAPUI5 test objects, application Alert messages for some
objects are not displayed.

Workaround: Do one of the following:

l Make sure your test does not contain steps that need to be performed on the Alert message.

l Add an If statement to your test for the object that triggers the alert to check if the Alert exists.

l If your SAPUI5 application contains nested table objects, inserting a checkpoint on the nested table
object shows only the parent SAPUITable object.

Workaround: Select the nested WebTable objects and create checkpoints for the WebTable object
instead of the parent SAPUITable object.

l When using the Object Spy to view an SAPUIMenu object or recording an SAPUIMenu object which is
hidden in closed status, you may be unable to add the menu object to the repository with the Add

Object to the Repository button or record the object.

l When working with mobile SAPUI5 applications, UFT cannot use the Object Spy on some disabled
controls (like the SAPUIButton and SAPUITextEdit) due to the application object properties.

SAP WDJ Objects

l If you try to record objects in a SAP WDJ application without the SAPWDJ add-in loaded, UFT records
only some of the objects correctly.

Workaround: Restart UFT and load the SAP WDJ Add-in.

l During a run session, the response time of the SAP platform running a SAPWeb Dynpro Java (WDJ)
application may be slower than the time it takes for UFT to run the corresponding step.

Workaround: Add a Wait statement prior to the relevant step or set the Delay each step execution
option in the Test Runs pane of the Options dialog box (Tools > Options > GUI Testing tab > Test
Runs node) to the necessary wait period (in milliseconds)

l The following functionalities are not supported for SAP WDJ applications:

l Selection of non-visible table rows

l Interaction with the application scroll bar

l Menus inside table cells

l Date navigator windows inside the application

l When recording steps on an SAPWDJTable object, the SelectCell method is not always recorded if you
are selecting non-editable cells.

l If your table contains links that open a popup window, when using the
SAPWDJTable.SelectItemInCellmethod to click thel link, UFT does not run the the .SelectItemInCell
properly.

Add-ins Guide
Web-based SAP Support

HP Unified Functional Testing (12.52) Page 186

Workaround: Associate the linkFuncLibr function library with your test. This function library is found
at <UFT installation
directory>\dat\Extensibility\Web\Toolkits\SAPWDJ\FunctionLibraries\linkFuncLibr.qfl.

SAP Enterprise Portal

l Operations on the iView option menu and on objects within the page title bar of SAP Enterprise
Portal are recorded as Web operations on the Frame object and not as SAP operations on the iView
object.

l Minimized or collapsed iViews may not be recognized correctly.

l In some cases, when more than one browser is open during the test run, UFT is unable to correctly
identify certain objects.

Workaround: Clear the Enable Smart Identification check box for the Browser test objects in the
Object Repository window. You may also want to disable the Enable Smart Identification option for
Browser test objects in the Object Identification dialog box for future test recording.

l In some cases, a frame in SAP Enterprise Portal may be recognized as a Web Frame object instead of
an iView object. In some of these, the frame name is generated dynamically. Because the Web Frame
object uses the name property to identify the object, you must modify the recorded name value to
use an appropriate regular expression so that UFT will be able to recognize it during the test run.

SAP GUI for HTML—Internet Transaction Server (ITS)

l When using the Object Spy or creating a checkpoint on an object inside an SAPWeb table cell, UFT
may recognize the object as a WebElement (and not as the appropriate SAP Web object), if a click has
not yet been performed on the object.

Workaround: Click on the object inside the SAPWeb table cell before using the Object Spy or creating
a checkpoint on it.

l Dragging the SAP GUI for HTML table scroll bar is not recorded.

Workaround: You can record scrolling in SAP GUI for HTML tables by clicking the scroll button.
Alternatively, use the Step Generator or Editor to insert a SAPTable.Object.DoScroll("up") or
SAPTable.Object.DoScroll("down") statement in your test.

l The appearance of toolbar buttons may differ, and toolbar buttons may or may not be displayed,
depending on the size of your browser window.

Workaround: Try to maintain the same browser window size and the resulting menu appearance
when recording and running your test.

l When running a test on an ITS frame in an SAP Enterprise Portal iView, the ITS menu sometimes fails
to operate properly.

Workaround: Enlarge the iView size and/or increase the Object Synchronization Timeout and then
run the test again.

l When recording a SAPList object, you need to click the input part of the list, not its button part in
order to enable UFT to recognize the object.

Add-ins Guide
Web-based SAP Support

HP Unified Functional Testing (12.52) Page 187

Using the Active Screen

l The Active Screen may not display the entire HTML page captured while recording your test.

Workaround: Resize the Active Screen so that it best fits the HTML page size.

l When testing an SAP Enterprise Portal application, it is recommended to set advanced authentication
for Active Screen access (File > Settings > Web).

l Avoid using an Active Screen that was captured when a pop-up dialog was open to add an object from
the main window to the object repository. Doing this results in an incorrect object hierarchy in the
object repository.

Web-based CRM Systems

l When using UFT to test Web-based CRM systems, make sure that the CRM system is in test mode.
You can do this by adding "?sap-testmode=X" to the URL.

Add-ins Guide
Web-based SAP Support

HP Unified Functional Testing (12.52) Page 188

Windows-based SAP Support
This chapter includes:

• Windows-based SAP Support - Quick Reference 190

• Windows-based SAP Support - Testing and Configuration 192

• SAP GUI Scripting API and UFT 193

• How to Enable Support for SAP GUI for Windows 195

• Considerations - Windows-based SAP Add-in for SAP Solutions 200

• Environment Variables for Windows-based SAP Applications 201

• Package and Patch Versions Requirements - SAP Application Server and SAP GUI for Windows 201

• Known Issues - Windows-based SAP 202

• Windows-Based SAP Support - Test Objects 207

• Checkpoints and Output Values in SAP GUI for Windows 208

• Using the Auto-Parameterize Option to Parameterize Table and Grid Cell Values 208

• Low-Level or Analog Mode Recording on SAP GUI for Windows 214

• Spooling Data from a Table 214

• How to Record on Standard Windows Controls During an SAP GUI for Windows Recording
Session 215

• UFT-SAP Solution Manager Integration 216

• UFT-SAP Solution Manager Integration - Overview 217

• Solution Manager Testing Modes: Standalone or Integrated 218

• SAP Structured Parameters 220

• How to Configure Solution Manager to Work with UFT 221

• How to Work with Tests in Solution Manager in Standalone Mode 223

• How to Run a Test Stored in Solution Manager 228

• How to Display or Edit a GUI Test from Solution Manager in Integrated Mode 229

• How to Transfer Data To and From GUI Tests in Integrated Mode Using Test Parameters 230

• How to Work with SAP Structured Parameters 231

HP Unified Functional Testing (12.52) Page 189

Windows-based SAP Support - Quick Reference
You can use the Windows-based SAP testing support provided with the UFT Add-in for SAP Solutions to
test user-interface objects in SAP GUI for Windows user-interface objects.

The following tables summarize basic information about the Windows-based SAP environment and how
it relates to some commonly-used aspects of UFT.

General Information

Add-in Type When testing SAP GUI for Windows applications, much of the functionality is the sameas other Windows-
based add-ins.

See "Windows-Based Application Support" on page 52.

Supported
Environments

For details on supported Windows-based SAP environments, see theAdd-in for SAP Solutions section of
theHP Unified Functional Testing Product Availability Matrix.

Important
Information

l When theAdd-in for SAP Solutions is loaded, UFT can learn objects and run steps on both Web-based
and Windows-based SAP applications. For details on recording and running tests and business
components on Web-based SAP applications, see "Web-based SAP Support" on page 180.

l TheSAPNWBC Desktop Add-in is installed with theAdd-in for SAP solutions. However, in order for full
support for NWBCDesktop applications, you must do the following:

l Install both theAdd-in for SAP Solutions and theWPF Add-in

l When opening UFT, in theAdd-in Manager, select the SAPNWBCDesktop Add-in under the SAP Add-
in and theWPF Add-in.

Test Object
Methods and
Properties

TheAdd-in for SAP Solutions provides test objects, methods, and properties that can beused when
testing objects in SAP GUI for Windows applications. For details, see theSAP GUI for Windows section of
theHPUFT Object Model Reference for GUI Testing.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "Checkpoints and Output Values in SAP GUI for Windows" on page 208.

l See "Supported Checkpoints " on page 383and "Supported Output Values " on page 385Per Add-
In.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Troubleshooting
and Limitations

See "Known Issues - Windows-based SAP" on page 202

Prerequisites

Before Using
this Add-in

For details on the following prerequisites, see "How to Enable Support for SAP GUI for Windows" on page
195.

l TheSAP GUI Scripting option must be installed.

l Your server and client must have the proper package and patch versions installed. For details, see
"Package and Patch Versions Requirements - SAP Application Server and SAP GUI for Windows"

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 190

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

on page 201.
See also: SAP OSS note# 480149

l TheScripting API must be enabled on both the server and client. For details, see "Enable scripting on the
SAP application (server-side)" on page 195.

l Your client must be configured to use theDialogdisplaymode for F4Help screens.

l Make sure that the server is not set to use aLow speed connection.

l TheF1and F4Help display setting must be configured correctly to support testing the use of theF1and
F4Help screens in your SAP GUI for Windows application.

l If you plan to use theUFT-Solution Manager integration features, you must also install the appropriate
support package and configure the Solution Manager server to workwith UFT. For details, see "How to
Configure Solution Manager to Work with UFT" on page 221.

Add-in
Dependencies

None

Configuration

Options Dialog Box Use theSAP> General pane.
(Tools > Options > GUI Testing tab > SAP > General node)

Record and Run Settings Dialog
Box
(tests only)

Use theSAP tab.
(Record > Record and Run Settings)

Custom Active Screen Capture
Settings Dialog Box
(tests only)

Use the SAP GUI for Windows section.
(Tools > Options > GUI Testing tab > Active Screennode> Custom Level
button)

See the section on the Custom Active Screen Capture Settings dialog box in the
HPUnified Functional Testing User Guide.

Application Area Additional
Settings pane
(business components only)

Use theApplicationspane.
In the application area, select Additional Settings > Applications in the sidebar.

See the section on theApplications pane in theHPUnified Functional Testing User
Guide.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 191

Windows-based SAP Support -
Testing and Configuration
This section includes

• SAP GUI Scripting API and UFT 193

• How to Enable Support for SAP GUI for Windows 195

• How to Enable Scripting on the SAP Application (Server-Side) 197

• Considerations - Windows-based SAP Add-in for SAP Solutions 200

• Environment Variables for Windows-based SAP Applications 201

• Package and Patch Versions Requirements - SAP Application Server and SAP GUI for Windows 201

• Known Issues - Windows-based SAP 202

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 192

SAPGUI Scripting API and UFT
UFT works directly with the SAP GUI Scripting API to record your operations. Therefore, UFT adds steps
to your test or business component only when API events are sent to the server. This means that while
recording a test or business component, you may perform several operations on your application before
the corresponding steps are added. When you perform a step that sends information to the server, UFT
inserts steps with the relevant Windows-based SAP objects in the Keyword View (tests and business
components) and adds corresponding statements in the Editor (tests only).

Note: The UFT Add-in for SAP Solutions provides an alternative recording mechanism for specific
SAP GUI for Windows objects that do not have built-in test object support. For details, see "Low-
Level or Analog Mode Recording on SAP GUI for Windows" on page 214.

For details on the test object model, the object repository, and the Object Spy, see the HP Unified
Functional Testing User Guide.

Example 1: Check Boxes

Suppose you record the steps of filling in a Price Simulation for Material form. You select the three
check boxes in the form (Incl. cash discount, Delivery costs, and Effective price) and click Continue.
When you click the Continue button, information is sent to the SAP server, and the steps in which you
select the check boxes and click the Continue button are added to your test at once. In the Keyword
View, the process described above is displayed as follows.

UFT records these steps in the Editor as follows:

SAPGuiSession("Session").SAPGuiWindow("Price Simulation for
Material").SAPGuiCheckBox("Incl. cash discount").Set "ON"
SAPGuiSession("Session").SAPGuiWindow("Price Simulation for
Material").SAPGuiCheckBox("Delivery costs").Set "ON"
SAPGuiSession("Session").SAPGuiWindow("Price Simulation for
Material").SAPGuiCheckBox("Effective price").Set "ON"
SAPGuiSession("Session").SAPGuiWindow("Price Simulation for
Material").SAPGuiCheckBox("Effective price").SetFocus
SAPGuiSession("Session").SAPGuiWindow("Price Simulation for
Material").SAPGuiButton("Continue (Enter)").Click

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 193

Example 2: Radio Buttons

Suppose you select a radio button to change the reporting period in the Reconcile Plan Versions
transaction of your SAP GUI for Windows application. This radio button is labeled Current Year.

UFT uses the SAP GUI business component type (41) to identify the object as a SAPGuiRadioButton
object. It creates a SAPGuiRadioButton test object with the name Current Year and records the
following properties and values as the description for the radio button.

Note: The guicomponenttype and name property values are supplied by the SAP GUI Scripting API.

UFT also records that you performed a Setmethod to turn ON the radio button.

UFT displays your step in the Keyword View as follows:

UFT displays your step in the Editor like this:

SAPGuiSession("Session").SAPGuiWindow("Reconcile Plan
Versions").SAPGuiRadioButton("Current Year").Set

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 194

When you run a test or business component, UFT identifies each object in your application by its test
object class and its description—the set of identification properties and values used to uniquely identify
the object. In the above example, during the run session, UFT looks up the description for the
SAPGuiRadioButton object with the name Current Yearby searching the object repository. UFT finds the
following description:

guicomponenttype:=41
name:=PCHZTR_Y
attachedtext:=Current Year

UFT then looks in the application for an SAPGuiRadioButton object that matches the above description.
When it finds the object, it performs the Setmethod on it to change the value of the field to ON (selects
the radio button).

How to Enable Support for SAPGUI for Windows
This task describes how to enable SAP GUI for Windows to work with UFT.

1. Prerequisite: Make sure that SAP GUI Scripting is installed

When you install your SAP GUI for Windows application, you must select the SAP GUI Scripting
installation option. If you did not select this option when you installed the SAP GUI for Windows
application, it is essential that you reinstall it and select this option before setting the other
configuration options described in this chapter.

Note: SAP provides a range of security mechanisms that enable the administrator to limit the
use of SAP GUI Scripting by system, by group, by user, and by scripting functionality. To test
SAP GUI for Windows applications, you must ensure that these security mechanisms are not
activated. For details on the various security options, see the online SAP GUI Scripting Security
Guide at the SAP Service Marketplace.

2. Enable scripting on the SAP application (server-side)

a. Confirm that you have the proper support package and kernel patch levels installed. For
details, see "Package and Patch Versions Requirements - SAP Application Server and SAP GUI
for Windows" on page 201.

b. Enable scripting on your SAP application. (By default, scripting is disabled.) You do this by
entering the Maintain Profile Parameters window with administrative permissions and setting
the sapgui/user_scripting profile parameter to TRUE on the application server.

o To enable scripting for all users, set this parameter on all application servers.

o To enable scripting for a specific group of users, set the parameter only on application
servers with the appropriate access restriction settings.

For more details, see "How to Enable Scripting on the SAP Application (Server-Side)" on page
197.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 195

Note: If you connect to a server on which scripting is disabled, an error message displays
when you try to record on your SAP GUI for Windows application.

3. Enable scripting on the SAP application (client-side)

You can do this on your SAP client only if the SAP GUI Scripting option is installed. If this option is
not installed, reinstall your SAP GUI for Windows application and be sure to select the SAP GUI
Scripting check box. For details, see your SAP GUI for Windows documentation.

4. Eliminate warning messages

By default, you regularly receive two warning messages when using UFT with an SAP GUI for
Windows application:

l When UFT connects to the Scripting API, the following warning message is displayed: A script
is trying to attach to the GUI.

l When UFT opens a new connection using the Scripting API, the following warning message is
displayed: A script is opening a connection to system <system_name>.

It is recommended to disable these warning messages in the SAP GUI for Windows application when
working with UFT.

5. Check the connection speed on the SAP server

Confirm that the Low speed connection option is NOT selected for the server to which you are
connecting before recording and running GUI tests.

This is because when you log on to SAP using the Low speed connection option to communicate
with the server, the SAP server does not send sufficient information for UFT to properly record and
run tests. (UFT displays an error message if the Low speed connection option is selected.)

For details, see SAP OSS note #587202.

6. Set F1 Help to use the modal dialog box mode

Confirm that the modal dialog box option is selected. This enables UFT to record the display of F1
Help in your tests. (The F1 Help in your SAP GUI for Windows application can be displayed using
either the Performance Assistant or as a modal dialog box.)

7. Set F4 Help to use the dialog display mode

Confirm that your client is set to load F4 Help screens in Dialog mode. (The SAP GUI for Windows
application cannot load F4 Help screens in Control mode when using the SAP GUI Scripting API
(Enable Scripting option.)

Note: This is a per-user setting. You must set this option on each client that you want to test
using the UFT Add-in for SAP Solutions. Alternatively, the SAP system administrator can change
the system default for you.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 196

How to Enable Scripting on the SAP Application (Server-Side)

UFT records and runs steps based directly on the API events that are sent from the client to the SAP
server because UFT communicates directly with the SAP GUI Scripting API. Therefore, to record and run
tests and business components on your SAP GUI for Windows application, you must enable scripting on
both the server and client computers.

After you confirm that you have the proper support package and kernel patch levels installed, you must
enable scripting on your SAP application. By default, scripting is disabled.

You enable scripting by entering the Maintain Profile Parameters window with administrative
permissions and setting the sapgui/user_scripting profile parameter to TRUE on the application
server.

To enable scripting for all users, set this parameter on all application servers. To enable scripting for a
specific group of users, set the parameter only on application servers with the appropriate access
restriction settings.

Note: If you connect to a server on which scripting is disabled, an error message displays when you
try to record on your SAP GUI for Windows application.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 197

To change the profile parameter:

1. Enter /nrz11 in the OKCode edit box to open transaction rz11.

2. In the Param. Name box of the Maintain Profile Parameters window, enter sapgui/user_
scripting and click the Display button.

Note: If the message Parameter name is unknown is displayed in the status bar, your client
lacks the required support package (see "Package and Patch Versions Requirements - SAP
Application Server and SAP GUI for Windows" on page 201). Download and install the support
package that corresponds to the SAP release you are using and then begin this task again.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 198

The Display Profile Parameter Attributes window opens.

3. If ProfileVal is FALSE, you must modify its value. To modify it, click the Change value button. The
Change Parameter Value window opens.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 199

4. Enter TRUE (in capital letters) in the New value box and click Save .

Note: The change takes effect only when you log on to the system. Therefore, before
beginning to work with UFT, you must log off and log on again. You may also need to restart
the SAP Service from the SAP Console.

If you find that even after restarting the SAP Service from the SAP Console and logging on again to
the client, your change to the ProfileVal parameter was not saved, you may have an outdated
kernel version. In this case, either restart the application server, or download and import the
required kernel patch, as specified below.

Release Kernel Version Patch Level

6.10 6.10 391

6.20 all versions all levels

6.40 all versions all levels

7.10 all versions all levels

For details, see SAP OSS note # 480149.

Considerations - Windows-based SAPAdd-in for SAP Solutions
When recording and running tests or business components on SAP GUI for Windows applications,
consider the following:

l When working in tests, the Record and Run Settings dialog box in UFT enables you to specify a server
and client to open at the beginning of every test record and run session. The servers available in the
dialog box are the same as those available in the SAP Logon Pad and SAP Logon dialog box.

l When you record a business component on an SAP GUI for Windows session, the Record and Run
Settings dialog box is not available. Instead, you need to open the SAP session manually or include
statements in your business component that connect to the SAP server (using the SAPGuiUtil test
object).

l You can also record specific operations in your SAP GUI for Windows Application in Standard Windows
Recording mode, if required. For details, see "How to Record on Standard Windows Controls During an
SAP GUI for Windows Recording Session" on page 215.

l As you record a test or business component on your SAP GUI for Windows application, UFT records the
operations you perform. UFT works directly with the SAP GUI Scripting API to record your operations.
Therefore, although UFT records a step for each operation you perform, it adds the steps to your
test only when API events are sent to UFT (when information is sent to the SAP server).

For details on the SAP GUI Scripting API events, see your SAP documentation.

l When you select a test step in UFT, the corresponding object is highlighted in the Active Screen
(unless you chose not to capture Active Screen information when you recorded your test). However,
the values of the object properties stored with the Active Screen are the values of the properties at
the time that the steps were added to the test (when you performed the step that sent information

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 200

to the SAP server). These values may potentially be different from the values of the properties at the
time that the selected step was actually performed. For details on Active Screen capture levels, see
the section on the Custom Active Screen Capture Settings Dialog Box in the HP Unified Functional
Testing User Guide.

Environment Variables for Windows-based SAPApplications
You can use environment variables to specify details for the applications you want to use during a
recording or run session. These variables can also be used in external library files for automation
scripts.

If you define any of these environment variables, they override the values in the Server description,
User, Password, Client, and Language boxes in the SAP Tab of the Record and Run Settings dialog box.

Use the variable names listed in the table below to define SAP application details:

Option Variable Name Description

Server
description

SAP_SERVER_ENV Thedescription of the server to which you want to connect.

User SAP_USERNAME_
ENV

Theuser nameused to log on to the specified client number.

Password SAP_PASSWORD_
ENV

The encrypted password for the specified user name.

Client SAP_CLIENT_ENV The client number.

Language SAP_LANGUAGE_
ENV

The language that you want the specified SAP GUI for Windows application to
display.

For details on defining and working with environment variables, see the HP Unified Functional Testing
User Guide.

Package and Patch Versions Requirements - SAP Application
Server and SAPGUI for Windows
To test your application using UFT, you must confirm that you have the correct support package and
kernel patch levels for your software component release. The following tables show the minimum
required versions and levels. You must have these versions and levels or higher:

Software Component Release Support Package Kernel Patch Level

SAP_APPL 31I SAPKH31I96 Kernel 3.1I level 650

SAP_APPL 40B SAPKH40B71 Kernel 4.0B level 903

SAP_APPL 45B SAPKH45B49 Kernel 4.5B level 753

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 201

Software Component Release Support Package Kernel Patch Level

SAP_BASIS 46B SAPKB46B37 Kernel 4.6D level 948

SAP_BASIS 46C SAPKB46C29 Kernel 4.6D level 948

SAP_BASIS 46D SAPKB46D17 Kernel 4.6D level 948

SAP_BASIS 610 SAPKB61012 Kernel 6.10 level 360

For details, see SAP OSS note # 480149.

Known Issues - Windows-based SAP
This section contains general troubleshooting and limitation information about the Windows-based SAP
add-in, and includes the following sections:

l "Creating and Running Testing Documents" below

l "Working with Windows-based SAP Controls" on the next page

l "Checkpoints, Output Values, and the Object Spy" on page 204

l "Test Objects, Methods, and Properties" on page 204

l "SAP Scripting API" on page 205

l "SAP Scripting API" on page 205

l "SAP Structured Parameters" on page 206

Creating and Running Testing Documents

l Running a test on HTML elements embedded in an SAP GUI for Windows application may result in an
"Object is disabled" error. This may happen if the HTML control is not ready for the test run.

Workaround: Add a Sync statement such as SAPGuiSession.Sync or a Wait statement to the script
in order to run the test successfully.

l By default, the recording and running of steps on HTML elements embedded in an SAP GUI for
Windows application is performed using the UFT Web Add-in. In some cases, steps recorded using the
Web Add-in are inserted into the script before SAP Add-in steps that use the SAP Scripting API.

Workaround: Use the option of recording HTML elements embedded in SAP GUI application using the
SAP Scripting Interface. To do so, stop recording, select the Record HTML elements using SAPGui
Scripting interface check box in the SAP pane of the Options dialog box (Tools > Options > GUI
Testing tab > SAP > General node). Then close and reopen the test and then begin recording again.

l The SAP Gantt chart (SAP Bar Chart) and Image/Picture controls are supported by the SAP GUI
for Windows alternative recording mechanism. The current support for these controls is limited. You
can override the default recording behavior for SAP Windows test objects, or add limited recording
support for other SAP GUI for Windows objects.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 202

l If you insert a call to an external action or a copy of an action, and that action includes an
SAPGuiTable.Input, SAPGuiGrid.Input, or SAPGuiAPOGrid.Input statement, the corresponding
input data sheet is not copied to the Data pane with the action.

Workaround: Insert and run Datatable.AddSheet and Datatable.ImportSheet statements to
import the sheet referenced by the action's Inputmethod. Ensure that the name of the data sheet
exactly matches the name specified in the corresponding Input statement.

l In the SAP Enterprise Portal environment, occasional synchronization problems may occur during the
test run when alternating between SAPWeb and SAPWindows environments.

Workaround: Add a WaitProperty or Wait statement between the Web steps and the Windows
steps.

l UFT can connect to your SAP Logon or SAP Logon Pad application for recording and running tests on
SAP GUI for Windows sessions. If you use both SAP Logon and SAP Logon Pad processes on your
computer, UFT connects to the latest process that was launched.

l Use the SAP Tab of the Record and Run Settings Dialog Box to instruct UFT to open your SAP GUI for
Windows application. Do not use the Windows Applications tab of the dialog box for this purpose.

Working with Windows-based SAP Controls

l Separate toolbar controls (ones that are not part of a grid or other object) are supported by the
SapGuiToolbar test object (GuiComponentType is 202), and the Object Spy recognizes them
because they are separate objects.

Note that tree controls do not have associated toolbars. Toolbars displayed on top of tree controls
are recognized as separate toolbars, and are therefore supported as described above.

l Toolbars inside grid controls are supported by the SapGuiToolbar test object (GuiComponentType is
204). However, the Object Spy does not recognize these toolbars because they are part of the grid.
You cannot add these toolbars to the object repository using the Add to repository option from the
Active Screen or the Add Objects option in the Object Repository window. To add these toolbars to
the object repository, record on them.

l Toolbars inside other controls (such as a toolbar within a text area control) are not supported.

l Microsoft Office controls within the SAP window are not supported.

l If you record the step of pressing an F4 key, and that key press results in setting new values for
multiple fields, a step is recorded only for the field from which the F4 key was pressed, and
therefore, only that field will be populated during the run.

l The SAP Editor control is not supported.

l UFT fails to run steps on SAP tree nodes that contain the ";" character.

l UFT does not automatically record standard Windows dialog boxes used by your SAP GUI for Windows
application (such as the Open File and Save As dialog boxes). This is because the SAP scripting API
does not support these dialog boxes. This may also occur when using SAP GUI for Windows with GuiXT.

Workaround: Do one of the following:

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 203

l Change to Standard Windows Recording mode (select Standard Windows Recording from the
Recording Modes drop-down in the Record toolbar) to record on these objects. (Make sure that
you switch to Standard Windows Recordingmode before you perform the operation that opens
the standard Windows control in your SAP application.)

l Use low-level recording to record on these objects.

l Use programmatic descriptions to run steps on these objects.

Checkpoints, Output Values, and the Object Spy

l To ensure that the correct object properties are captured with your checkpoint, always record a step
that results in communication with the server (such as pressing ENTER) before inserting a checkpoint
or output value.

l You cannot use the Object Spy or create checkpoints for the controls listed below. However, you can
successfully record and run steps on them.

l Toolbar buttons in grid controls.

l Internal controls in tree or table objects.
(For example, a radio button in a table cell or a check box in a tree.)

l Creating checkpoints or using the Object Spy on an object that is located in a currently inactive SAP
screen (for example, if the screen is behind an invoked dialog box) is not supported. However, you can
create checkpoints on status bar messages (displayed in an inactive window) using the Record status
bar messages option (Tools > Options > GUI Testing tab > SAP node > Record status bar
messages).

l When running old 6.20 tests on a 6.40 client, checkpoints on radio buttons, check boxes, edit boxes,
or regular buttons may fail due to changes to tooltip property values for these objects in the 6.40
client.

l UFT can estimate the number of rows in a table control, but it cannot retrieve the exact number
because only the table content that is visible on the client is actually available. Data from non-visible
rows are stored only on the back-end server. Therefore, when inserting or modifying checkpoints for
a table control object, the number of rows specified in the Define/Modify Row Range dialog box may
not be accurate.

l Do not perform any operations on the SAP GUI window (such as changing the transaction state or
navigating to another window) while UFT retrieves the data for a table checkpoint even if it seems to
take a long time, as this may cause severe problems.

l When inserting a checkpoint on a table or grid from the Active Screen, the actual table must be open
in your SAP GUI for Windows application to extract the correct information from the table or grid.

Test Objects, Methods, and Properties

l When using the SAPGuiTableInputmethod, check the scrolling mode of the current table. If you
parameterize a table with a Data pane sheet that contains more rows in the sheet than are displayed

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 204

in the table's current view, UFT tries to scroll down the table while running the test, to insert more
rows from the data sheet. UFT supports two ways of scrolling rows in tables—by pressing the ENTER
key, or by pressing the PAGEDOWN key. By default, the Add-in for SAP Solutions tries PAGEDOWN if
needed. You can configure the required mode using the second argument of the Inputmethod.

For details, see the HP Unified Functional Testing Add-ins Guide.

l Right-click operations are not supported for the SAPGuiTextArea object.

l Drag-and-drop operations in the SAP Gui for Windows application are disabled when UFT is open.

Using the Active Screen

l Active Screen images are based on captured screen bitmaps. Therefore, objects that are not visible
in the SAP GUI for Windows view are not part of the Active Screen image. You cannot add objects to
the script from the Active Screen if they were not in the captured view.

l Drop-down menus are not captured in the Active Screen. Active Screen technology captures the data
after the menu is closed and the menu item is selected.

l While recording, UFT captures one Active Screen image for several steps. UFT records steps only
when the SAP GUI for Windows client sends information to the SAP back-end server. When this
occurs, all steps that were performed between the previous communication and the current one are
added to the script. The last screen that was sent to the server is captured by the Active Screen for
all steps recorded during that communication.

l When recording on Web elements inside SAP GUI for Windows applications, HTML images are not
captured.

l Adding objects to the object repository (using the View/Add Object option, or creating checkpoint or
output value steps) from an Active Screen created from a step recorded on a Web element inside a
SAP GUI for Windows application generates an incorrect object hierarchy in the object repository.

SAP Scripting API

l For security reasons, the SAP scripting API prevents the recording of passwords. When you record the
operation of inserting a password in a password box, UFT records a Set statement using asterisks
(****) as the method argument value.

Workaround: Do one of the following:

l Configure and enable the Auto-logon settings in the SAP Tab of the Record and Run Settings
Dialog Box.

l Insert a step using one of the SAPGuiUtil object's AutoLogonmethods.

l Record the password normally during the recording session. After the recording session, modify
the password step to use the SetSecuremethod, and enter the encrypted password value or
parameterize the value.

For details, see the SAP Windows section of the HP UFT Object Model Reference for GUI Testing(Help
> HP Unified Functional Testing Help > Object Model Reference for GUI Testing > SAP Windows).

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 205

SAP Structured Parameters

When you launch UFT by clicking the Edit Test Script button directly in the SAP Solution Manager Test
Automation:Initial Screen transaction(Transaction Code: stce) or in the SAP Solution Manager
Configuration transaction (Transaction Code :Solar02), clicking the Maintain SAP Parameter button in
UFT might not return you to the correct page in SAP Solution Manager.

Workaround: Use the External Test button in the Change Test Configuration transaction to launch UFT.

When you create a test in the Change Test Script transaction of SAP Solution Manager and then click
the Back button, UFT may not show the test.

Workaround: Save and close UFT and click the External Test button to call UFT.

When you click the Maintain SAP Parameter button or the Back/External Test button to switch from
UFT to SAP, you may receive an error in SAP Solution Manager: OBJECT_OBJREF_NOT_ASSIGNED.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 206

Windows-Based SAP Support - Test Objects
This chapter includes:

• Checkpoints and Output Values in SAP GUI for Windows 208

• Using the Auto-Parameterize Option to Parameterize Table and Grid Cell Values 208

• Low-Level or Analog Mode Recording on SAP GUI for Windows 214

• Spooling Data from a Table 214

• How to Record on Standard Windows Controls During an SAP GUI for Windows Recording Session 215

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 207

Checkpoints and Output Values in SAPGUI for Windows
l When inserting a table checkpoint (tests only), consider how other steps performed on the table may

affect the checkpoint.

Example 1: If you have a step in your test that clicks the Total toolbar button on a grid control, that
click refreshes all data in the table. The refresh could potentially cause a table checkpoint on a cell in
the table to fail.

Example 2: If you click a toolbar button in a grid control that adds rows to your table before creating
a table checkpoint, the extra rows are captured as part of the grid checkpoint (if you capture all
rows). Therefore, confirm that the same rows are displayed during the run session.

l To insert a new table checkpoint while editing your test or business component, the actual table or
grid must be open to the appropriate level or view. This is true even if your Active Screen (tests only)
contains a capture of the table or grid.

l In general, it is not necessary to open the table or grid in the application to edit an existing
checkpoint. However, if you want to modify the row range for the checkpoint, the actual table or grid
must be open to the appropriate level or view.

l When creating a checkpoint on ActiveX grid controls (these generally have toolbars), UFT captures
the data from all columns and all rows in the grid in the table checkpoint. If you do not need to check
data from all rows in your grid, you can specify the rows you want to include in the checkpoint in the
Define Row Range dialog box. You can also increase or decrease the number of rows included in the
checkpoint at a later time.

l The Visible Rows option in the Define/Modify Row Range Dialog Box is not available for checkpoints
created on grid controls.

Using the Auto-Parameterize Option to Parameterize Table and
Grid Cell Values
When working with tests, UFT records a SetCellData statement, by default, each time you modify the
value of a cell in a table or grid. If you want to modify the values of several cells in a single table or grid,
and then parameterize your test so that different values are entered into the cells each time your test
action runs, you can do this by parameterizing each statement individually, or by enabling the Auto-
parameterize table and grid controls option.

When this option is selected, UFT automatically captures all values you set for a particular table or grid
during a recording session and stores them in a special data sheet in the Data pane. UFT inserts a single
SAPGuiTable.Input, SAPGuiGrid.Input, or SAPGuiAPOGrid.Input statement into your test, which
refers to this new data sheet. Before running the test, you can easily modify the values or add
additional sets of data to the data sheet for each action iteration.

To learn more:

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 208

• How UFT Records in Auto-Parameterize Mode 209

• Parameterized Cell Values in the Input Data Sheet 211

• Considerations for Auto-Parameterization 212

• Data in Rows that Require Scrolling 213

How UFT Records in Auto-Parameterize Mode

In tests, when you record with the Auto-parameterize table and grid controls option and you perform
an operation that sends data to the SAP server after setting table or grid cell values, UFT:

l Creates a new data sheet to represent the table or grid. Each data sheet is a sub-sheet of the action
in which the table or grid operations were recorded. The data sheet name is always the action name
followed by a period (.) and the internal name of the table or grid. For example: Action1.FLIGHT_
TABLE

l Adds a column to the data sheet for each table or grid column in which you record. (Columns in which
you did not set any cell data are not added to the data sheet.)

The name of the column in the data sheet is generally the same as the name of the column in your
application.

If a column in the application does not have a header, or more than one column header has the same
name, UFT inserts a column with a name in the format: _ _<index>, where <index> represents the
column number according to its location when you record the Input step.

l Inserts the values you set during the recording session into the appropriate cells in the data sheet.
Each row in which you entered data is represented by a row in the data sheet. Place-holder (empty)
rows are added for rows above the rows in which you recorded. For example, if you set data in rows 2,
4, and 7, seven rows are added to the data sheet. The cells in rows 1, 3, 5, and 6 do not contain any
data.

l Inserts an additional end row where the value of the first cell in the row is .END.

l Inserts an Input <DataSheetName> statement (followed by a SelectCell statement) into your
test.

UFT records these steps in the Editor as follows:

SAPGuiSession("Session").SAPGuiWindow("SAP_2").Resize 141,29

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 209

SAPGuiSession("Session").SAPGuiWindow("SAP_2").SAPGuiTable("Table control tc
spfli").Input "Action1.Table control tc spfli"
SAPGuiSession("Session").SAPGuiWindow("SAP_2").SAPGuiEdit("Fixed_
cols").SetFocus
SAPGuiSession("Session").SAPGuiWindow("SAP_2").SendKey ENTER

The Input statement instructs UFT to enter values from the data sheet into the table or grid
corresponding to the data sheet name, similar to an automatically parameterized statement
referring to a special sheet in the Data pane.

Suppose you update values in a table control containing airline flight information. You update some
airline codes, add state and country names to some of the departure and destination cities, update
one of the destination airport codes, and update some of the departure times. The edited table in
your application may look something like this:

UFT inserts the following Input statement in your test to represent the data input:

SAPGuiSession("Session").SAPGuiWindow("SAP R/3").SAPGuiTable("SPFLI").Input
"Action1.SPFLI"

Note: If you record on a table or grid that scrolls using the ENTER key rather than the
PAGEDOWN key, you may need to manually add the ScrollMethod optional argument. For details,

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 210

see "Data in Rows that Require Scrolling" on page 213.

The corresponding data sheet in your Data pane looks like this:

There are three rows in the data sheet, because data was modified in the first three rows of the
table or grid in the application. Note that the data sheet does not contain columns for the Airfare
and Plane Type columns, because no values were modified in those columns during the recording
session.

Parameterized Cell Values in the Input Data Sheet

When working in tests, after you record an Input statement to create an input data sheet, you can
modify the values to be used in the run session, and you can create multiple sets of table or grid cell
data to be used in different iterations of an action.

As described above, when you record the Input statement, UFT records the values you set in the
appropriate rows and columns in the input data sheet for that table or grid. Below the data it adds an
end row (shaded in blue) with the text .END in the first cell of the row. This row indicates the end of the
first set of data for the table or grid. This set of data and its corresponding end row represents a single
data set.

To supply different data values for each action iteration, you add new data sets. You add a new data set
for a table or grid by entering the values in the appropriate rows and columns below the previous end
row. To indicate the end of the new data set, copy and paste the end row from the first set of data to
the row below the new set of data. You can include a different number of rows in each data set.

Note: The Input statement can run successfully only if it can find the end row. Therefore, the first
cell of the end rowmust contain only the text .END. You can enter text into other cells in that row,
if needed. For example, you can enter a number in the second cell of the end row to indicate the
iteration number corresponding to that set of data.

Because the input data sheets are added as a sub-sheet of the current action, the Input statement
uses the data set corresponding to the current action iteration. For example, if you set the action to run

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 211

on all iterations and your action sheet includes five rows of data, then your input data sheet should also
include five data sets (and five .END rows).

The input data sheet below contains three sets of data. The first set contains data for the top three
rows of the table or grid. The second set contains data for the top two rows of the table or grid. The
third set contains data for rows 2-5. The blank first row (row 8 in the data sheet), indicates that no data
should be entered or modified in the first row of the table or grid.

Note that a number was manually entered into the second cell of each END row to make it easier to
identify the action iteration to which each data set corresponds.

Considerations for Auto-Parameterization

Consider the following when using the Auto-parameterize table and grid controls option:

l UFT inserts an Input statement and a new input data sheet each time information including
modified table or grid cell data is sent to the server. If you set data in the cells of a particular table or
grid both before and after sending information to the server, you will have more than one input data
sheet (and more than one Input statement) representing the same table or grid. For best results:

l Enter data only in the visible rows of the table or grid while recording, especially if scrolling results
in sending information to the server. You can add additional rows to the recorded data set while
editing your test.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 212

l Perform sorting, calculations, and other such operations either before beginning or after you
finish entering data in a table or grid.

l The end of each data set in the input table or grid must be indicated by an end row with only the text
.END in the first cell of the row.

l You can enter additional text, such as comments or an iteration number, in other cells of the .END
row.

l You can include a different number of rows in each data set.

If you enter data for rows that require scrolling to display them in your application, you may need to
modify your Input statement. For details, see "Data in Rows that Require Scrolling" below.

l When recording, UFT adds a column to the input data sheet only for table or grid columns in which
you set data. You can add additional columns from your table or grid to the data sheet while editing
your test. Double-click the column header in the data sheet to rename it. Enter the name of your
table or grid column. If the table or grid column name has spaces, replace the spaces with
underscores.

l In general, the columns in your data sheet can be in any order, as long as the column names match
the column names in your table or grid. However, if you record data in a column without a column
header name or if more than one column in the table or grid has the same header name, UFT adds a
column to the data sheet in the format: __<index>, where <index> indicates the number of the
column in the table or grid when you record the Input statement, for example, __1 or __2. You can
also use this format for columns in the data sheet if the column header names in your table or grid
may change from iteration to iteration.

l To use multiple sets of data from an input data sheet, you must have at least one other Data pane
parameter in your action that is set to use Current action sheet (local). Also, confirm that the action
is set to run multiple iterations in the Run Tab of the Action Call Properties Dialog Box.

l The number of data sets in your input data sheet should match the number of rows in the
corresponding action data sheet.

If your input data sheet contains fewer data sets than the number of rows in the action sheet, no
data will be inserted in the table or grid during those action iterations. For example, if the action runs
five iterations, and your input data sheet contains only four data sets, during the fifth iteration no
data will be entered into the table or grid when the Input statement runs.

If your data sheet contains more data sets than the number of rows in the action sheet, those data
sets will not be used.

Data in Rows that Require Scrolling

When working in tests, UFT inserts a new Input statement and creates a new input data sheet each
time you send information to the server that includes table or grid cell data. Therefore, if scrolling
results in sending data to the server, it is recommended to add data only to visible cells during the
recording session. If you want to enter data into additional rows during the run session, you can add
those rows to the data sheet manually while editing your test.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 213

If you create an input data set for rows that are not visible on the table or grid in your application, then
UFT must scroll the table or grid during the run session to insert the data for those rows. If you create
an input data set for a row that needs to be added to the table or grid, UFT must send a command to
add the row. By default, UFT sends a PageDown command if the rows in the data sheet exceed those
currently displayed in the application. If UFT needs to use the ENTER key to add additional rows to the
table or grid, then you need to manually add the optional ScrollMethod argument (with the value
ENTER) to your Input statement before running your test.

For example:

SAPGuiSession("Session").SAPGuiWindow("Create Standard").SAPGuiTable
("SAPMV45ATCRTL_V_ERF_").Input "Action1.All items", ENTER

Low-Level or Analog Mode Recording on SAPGUI for Windows
When working in tests, if you are unable to record steps on an object in the normal recording mode, or if
you want to record mouse clicks and keyboard input with the exact x- and y-coordinates, you can record
steps on those objects using low-level or analog recording (select Low-Level Recording or Analog
Recording from the Recording Mode drop-down in the Record toolbar during a recording session).

When recording in one of these modes, your steps are added to your test (or to the analog file) as you
record them rather than when information is sent to the server. If you begin recording in low-level or
analog mode, do not switch back to the normal recording mode until you perform a step that results in
communication with the SAP server. Switching between one of these modes and the normal recording
mode before the server communication, may result in your steps being recorded twice (once in low-
level/analog mode and once in normal mode).

For details on low-level and analog recording, see the HP Unified Functional Testing User Guide.

Spooling Data froma Table
If you want to spool all the data from an SAP GUI for Windows table into an external file, use the
GetCellDatamethod to loop through each cell in the table. You can then save the information to an
external file.

The following example uses the GetCellDatamethod to list the data of each cell in a table of 10 rows
and 10 columns:

For i=1 to 10
for j=1 to 10

col="#" & j
Dat=SAPGuiSession("Session").SAPGuiWindow("Create Standard").SAPGuiTable

("SAPMV45ATCTRL_U_ERF_").GetCellData (i, col)
'Enter lines of code that use the value of the returned Dat variable

next

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 214

next

For details on the GetCellDatamethod, see the SAP GUI for Windows section of the HP UFT Object
Model Reference for GUI Testing.

How to Record on Standard Windows Controls During an SAP
GUI for Windows Recording Session
To enable UFT to record steps on standard Windows controls during an SAP GUI for Windows recording
session, you must switch to Standard Windows Recordingmode prior to performing steps on these
controls. (If you switch to Standard Windows Recording mode after performing an operation on a
standard Windows control, both UFT and the SAP application may sometimes become unresponsive.)

This task describes how to toggle between the relevant recording options.

To switch to Standard Windows recording mode while recording a test in an SAP GUI for Windows
application:

On the Record toolbar, select Standard Windows Recording from the Recording Modes drop-down, or
press ALT+SHIFT+F3.

To record steps as SAP GUI for Windows objects again:

Do one of the following:

l On the Record toolbar, select Default from the Recording Modes drop-down.

l Stop the recording session.

This restores the normal recording mode for SAP GUI for Windows.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 215

UFT-SAP Solution Manager Integration
This section includes

• UFT-SAP Solution Manager Integration - Overview 217

• Test Management in SAP Solution Manager 217

• Resource Files in Solution Manager 218

• Solution Manager Testing Modes: Standalone or Integrated 218

• Standalone Mode 219

• Integrated Mode 220

• SAP Structured Parameters 220

• How to Configure Solution Manager to Work with UFT 221

• How to Work with Tests in Solution Manager in Standalone Mode 223

• How to Run a Test Stored in Solution Manager 228

• How to Display or Edit a GUI Test from Solution Manager in Integrated Mode 229

• How to Transfer Data To and From GUI Tests in Integrated Mode Using Test Parameters 230

• How to Work with SAP Structured Parameters 231

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 216

UFT-SAP Solution Manager Integration - Overview

Note: Unless otherwise specified, references to Solution Manager in this Help file apply to all
currently supported versions of SAP eCATT (SAP Extended Computer Aided Test Tool) and SAP
Solution Manager. Note that some features and options may not be supported in the specific
edition of Solution Manager or eCATT that you are using.

For a list of the supported versions of Solution Manager or eCATT, see the HP Unified Functional
Testing Product Availability Matrix.

In addition to ALM, HP's Web-based test management tool, you can also store and manage GUI tests in
SAP Solution Manager.

UFT Add-in for SAP Solutions integrates with SAP Solution Manager. This means that you can use
Solution Manager with UFT to run quality tests in environments that span beyond Windows and SAP
environments including complex, multi-platform, highly-integrated composite, legacy, and proprietary
enterprise applications.

Note: UFT cannot connect to both Solution Manager and ALM in the same session. Therefore, you
cannot use Solution Manager to manage business components and application areas.

You can work with GUI tests stored in Solution Manager in standalone or integrated mode. The current
mode is indicated in the UFT title bar.

l "Standalone Mode" (described on page 219). The test is opened from UFT.

l "Integrated Mode" (described on page220). The test is opened from Solution Manager.

Solution Manager support is available only when:

l SAP Frontend software is installed on your computer (including support for Unicode).

l SAP GUI for Windows software installed on your computer, including support for RFC libraries. You
add support for RFC libraries by selecting the Unicode RFC Libraries check box (under Development
Tools) during the SAP installation.

l The UFT Add-in for SAP Solutions is installed and loaded. For details, see "How to Manage UFT Add-
ins" on page 22.

l Solution Manager integration components are installed.

Test Management in SAP Solution Manager

You can store and manage GUI tests for your SAP application in the file system or in a test management
tool, such as HP ALM or SAP Solution Manager, depending on your testing needs.

To work with SAP Solution Manager, you must configure your Solution Manager server to work with UFT.
After the server is configured, you can connect to Solution Manager from UFT in standalone mode, or
you can connect to UFT from Solution Manager in integrated mode. For details, see "How to Configure
Solution Manager to Work with UFT" on page 221.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 217

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

You can create tests from UFT or from Solution Manager, store tests and associated resource files in
the Solution Manager database, edit tests, run tests, and review run results. For details see, "How to
Work with Tests in Solution Manager in Standalone Mode" on page 223.

You can also call and pass values from a Solution Manager test script to a GUI test. For details, see "How
to Transfer Data To and From GUI Tests in Integrated Mode Using Test Parameters" on page 230.

For details on performing basic Solution Manager test management operations, see:

l "How to Configure Solution Manager to Work with UFT" on page 221

l "How to Work with Tests in Solution Manager in Standalone Mode" on page 223

l "How to Run a Test Stored in Solution Manager" on page 228

l "How to Display or Edit a GUI Test from Solution Manager in Integrated Mode" on page 229

l "How to Transfer Data To and From GUI Tests in Integrated Mode Using Test Parameters" on page
230

Resource Files in Solution Manager

When you save a GUI test in Solution Manager, make sure you store all associated resource files in
Solution Manager so that any user who opens the test from Solution Manager will have access to all of
the test's resource files.

Like test names, all test resource files stored in Solution Manager must begin with a valid prefix
according to the server settings. For example, if your Solution Manager server requires all file names to
begin with z, you would use the following naming convention: z<filename> (for example: zSOR_dwdm).
You can set the default prefix for files in the Solution Manager pane of the Options dialog box.

When you create a file in UFT, such as a new shared object repository or recovery file, you can create
the file as you normally would in UFT and then save the file directly to Solution Manager.

You can also upload existing files that are stored in the file system (such as external data table files,
function library files, shared object repository files, recovery files, and environment variable files).

For details on uploading resource files to Solution Manager, see "How to Work with Tests in Solution
Manager in Standalone Mode" on page 223.

Solution Manager Testing Modes: Standalone or Integrated
The table below describes the basic differences between the standalone and integrated testing modes.

Standalone Mode Integrated Mode

Open test
from

UFT Solution Manager

Solution
Manager -
UFT

Connect to Solution Manager from UFT
using the Solution Manager Connection
Dialog Box.

Solution Manager automatically establishes the Solution Manager -
UFT connection.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 218

Standalone Mode Integrated Mode

connection

Available
UFT
features

All UFT features are available. You can
open and workwith any test in Solution
Manager or in the file system.

You can work onlywith the currently open test.

File > Open, File > New, and theRecent files list options are
disabled.

If you select File > Save As, UFT warns you that it will disconnect
from Solution Manager and switch UFT to standalonemode.

Resource
files

When you open the test, you can also
edit and save all the test's resource
files, including those stored in Solution
Manager.

When you open the test, test resources stored in Solution Manager
are opened in read-onlymode.

Save
location

Tests and uploaded files are
automatically saved to the local
package ($TMP) in Solution Manager.

You can save tests to any package (including non-local packages).

Solution
Manager
dependence

Although UFT is connected to Solution
Manager, you can work and navigate in
Solution Manager independently.

Solution Manager is locked while the test is open in UFT. To release
Solution Manager, closeUFT.

Run results All run results are stored in the file
system. They cannot be accessed from
your Solution Manager log list.

Run results are stored to the network drive you specify in the
Solution Manager paneof theOptions dialog box and in the
Solution Manager server. You can access the run results from the
Solution Manager log.

Standalone Mode

You can connect to Solution Manager from UFT. This is known as standalone mode. After you connect to
Solution Manager in standalone mode, you can:

l Store tests in the Solution Manager database.

l Open existing tests from the Solution Manager database.

l Upload files to or download files from Solution Manager.

l Store a test's external resource files in Solution Manager. For example, you can store shared object
repository files, data table files, function library files, environment variable files, and recovery files in
your Solution Manager database. UFT provides a special set of Solution Manager-specific options
that enable you to control certain elements of the Solution Manager-UFT integration.

l Pass values from a Solution Manager test script to a GUI test, or vice versa, using GUI test
parameters. For example, if you want to create tests or actions that you can use for different
purposes or in different scenarios based on the data supplied to them, you can take advantage of
the Automatically parameterize steps using Test Parameters option (in the General node of the
GUI Testing tab in the Options dialog box (Tools > Options > GUI Testing tab > General node)). This
option instructs UFT to automatically parameterize all the operation arguments in the steps of one
or more actions in your test, at the end of a UFT recording session. You can then supply the values for

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 219

these test parameters from Solution Manager. For more details on parameters, see the HP Unified
Functional Testing User Guide.

Note:

You can also perform many of these operations from Solution Manager in integrated mode. For
details, see "Integrated Mode" below. For a comparison of Solution Manager testing modes, see
"Solution Manager Testing Modes: Standalone or Integrated" on page 218.

You can also download resource files already stored in Solution Manager and save them in the file
system.

Integrated Mode

You can connect to UFT from Solution Manager. This is called integrated mode. When you work in
integrated mode, only UFT features related to the Solution Manager test are available in UFT. When you
run tests in integrated mode, your run session results are accessible in the Solution Manager log.

When you log on to a Solution Manager server that is configured to integrate with UFT, you can view,
edit, and run GUI tests that are stored in Solution Manager. You can also use the standard Solution
Manager commands to copy, rename, and delete GUI tests, just as you would with any other file stored
in Solution Manager.

When you open a GUI test from Solution Manager, UFT opens in integrated mode. In this mode, you can
use all UFT features that are associated with the open test. However, you cannot save the open test
with another name.

You can run a test in integrated mode by using the Run option in UFT or using the Execute Test Script
(F8) option for a selected GUI test in Solution Manager. You can also execute a Solution Manager test
script (or blob—Binary Large Object) that calls a GUI test. Creating Solution Manager scripts that call GUI
tests is useful if you want to pass or retrieve values to or from a GUI test.

For details on configuring Solution Manager to work with UFT, see "How to Configure Solution Manager
to Work with UFT" on the next page.

Note: You can also work with tests stored in Solution Manager from the UFT interface in
standalone mode. For details, see "Standalone Mode" on the previous page. For a comparison of
Solution Manager testing modes, see "Solution Manager Testing Modes: Standalone or Integrated"
on page 218.

SAP Structured Parameters
When you work in integrated mode with SAP Solution Manager, you can use structure-type test
parameters to pass complex values such as XML values or arrays from a Solution Manager test script to
a GUI test, or vice versa,

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 220

You create and maintain the structured parameters in SAP Solution Manager. Then you can map action
parameters to the structured parameters in your test. When you run your test, UFT receives parameter
values from SAP Solution Manager; and resolves the mapped local parameter with the actual value from
SAP Solution Manager.

For more details, see "How to Work with SAP Structured Parameters" on page 231.

How to Configure Solution Manager to Work with UFT
This task describes how to configure Solution Manager to work with UFT so that you can use the
Solution Manager-UFT integration features available with the UFT Add-in for SAP Solutions.

This task includes the following steps:

l "Prerequisites" below

l "Set external tool parameters in the ECCUST_ET table" below

l "Apply necessary roles or profiles to Solution Manager-UFT Users" on the next page

l "Register UFT to work with Solution Manager" on the next page

Prerequisites

You (or a Solution Manager system administrator) must install the appropriate support package and
configure the Solution Manager server to work with UFT.

Set external tool parameters in the ECCUST_ET table

This step enables Solution Manager to communicate with UFT. (You perform this procedure only once in
the system.)

1. Navigate to transaction se17. The General Table Display window opens.

2. In the Table Name box, enter ECCUST_ET and press ENTER.

3. The Display Table ECCUST_ET window opens and displays an empty table with the required
parameter names.

4. Enter the values exactly as shown below:

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 221

Note: You can also use the function module SET_EXTERNAL_TOOL to create entries in the
customizing table. For details, see your Solution Manager documentation.

Apply necessary roles or profiles to Solution Manager-UFT Users

1. Make sure you have permission to:

l Run Solution Manager scripts

l Edit Solution Manager scripts

l Work with an external tool (UFT) in integrated mode

l Connect to Solution Manager from an external tool (UFT) in standalone mode

2. Confirm with your system administrator that the user name you use is assigned the necessary
roles or profiles to perform the above tasks before you begin working with the UFT-Solution
Manager integration. For example, to work with UFT in standalone mode, you must be assigned the
role S_ECET or the profile SAP_ECET in the Solution Manager system. This is because each of these
tasks requires special roles or profiles.

For details, contact your system administrator or see your SAP and Solution Manager
documentation.

Register UFT to work with Solution Manager

To enable UFT to communicate with Solution Manager, you must register UFT and then verify the
registration. You perform this procedure only once in the system.

1. Navigate to transaction SPRO, click SAP Reference IMG, and browse to SAP Solution Manager >
Capabilities (Optional) > Test Management > External Integration > External Test Tool with
eCATT > Register Test Tool.

2. Click New Entries.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 222

3. Enter the values exactly as shown below:

4. Navigate to transaction SM30, and enter V_AGS_SMT_TCT, as shown in the example below.

5. Click Display and verify that a row exists with the following information:

UFT is now registered to work with your SAP application.

How toWork with Tests in Solution Manager in StandaloneMode
This task describes how to:

l "Save a test in standalone mode" on the next page

l "Open a test from Solution Manager in standalone mode" on the next page

l "Upload external resource files from the file system to Solution Manager" on page 225

l "Create a new shared object repository file and store it in Solution Manager" on page 226

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 223

l "Copy or export an object repository to Solution Manager" on page 226

l "Create a new recovery file in Solution Manager" on page 227

Note: You can also open, edit, and save existing tests that are stored in Solution Manager, and
you can save existing tests with a new name in the Solution Manager database or in the file
system.

Save a test in standalone mode

1. In UFT, create or open a test.

2. From UFT, connect to a Solution Manager server. UFT connects to Solution Manager in standalone
mode.

3. In UFT, select File > Save As. The Save GUI Test to Solution Manager dialog box opens.

4. Do one of the following

l To save a test directory to the file system, click File System.. The Save Test dialog box opens.
For user interface details, see the HP Unified Functional Testing User Guide.

l To save the test to Solution Manager, enter the required information and click OK. When the
save process finishes, the status bar displays the word Ready, and the test is saved to the local
package ($TMP) in Solution Manager. When the save process is complete, the UFT title bar
displays the test information in the following format:

[Solution Manager] TestName: Version Number (Mode)

Open a test from Solution Manager in standalone mode

1. Connect to a Solution Manager server.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 224

2. In UFT, select File > Open > Test to open the test. The Open Test from Solution Manager Dialog Box
opens.

Note: The Open GUI Test from Solution Manager dialog box opens when UFT is connected to a
Solution Manager server. To open a test directly from the file system while you are connected
to Solution Manager, click the File System button to open the Open Test dialog box.

3. Enter the required information and click OK.

When the test opens, the UFT title bar displays the test information in the following format:

[Solution Manager] TestName: VersionNumber (Mode)

Upload external resource files from the file system to Solution Manager

1. Create and save the resource file in the file system.

2. Connect to Solution Manager.

3. Select File > Upload File to Solution Manager option. The Upload File to Solution Manager Dialog
Box opens.

4. Browse or enter the file path of the Local file you want to upload.

5. Specify the Solution name and Version number you want to assign to the uploaded file.

6. Associate the uploaded file with your test in the appropriate UFT dialog box. For more details on
associating Data pane files, library files, environment variable files, and shared object repositories

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 225

with your test, see the HP Unified Functional Testing User Guide.

Create a new shared object repository file and store it in Solution Manager

1. Open a blank test.

2. Select Resources > Object Repository Manager and add test objects as needed.

3. Select File > Save. The Save External File to Solution Manager Dialog Box opens.

4. In the File name field, enter the name you want to use for the shared object repository according
to the naming conventions of the Solution Manager server. For example, if your Solution Manager
server requires all file names to begin with z, save the file in the following format: z<filename>.
For example: zSOR_dwdm

5. In the File version field, enter the version number you want to use for the shared object
repository.

6. If a warning message opens, click Yes to create the new object repository file in Solution Manager.

For more details on creating object repository files, see the HP Unified Functional Testing User Guide.

Copy or export an object repository to Solution Manager

1. Open the test whose object repository you want to copy or export.

Note: If you are exporting objects from a local object repository:

l You must select the action whose object repository you want to export.

l The object repository name must contain at least 14 characters.

2. Select one of the following:

l Resources > Object Repository Manager to open the shared Object Repository Manager.

l Resources > Object Repository to open the local Object Repository for the selected action.

3. Do one of the following:

l In the shared Object Repository Manager, select File > Save As to save a copy of the object
repository file with a new name in Solution Manager.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 226

l In the Object Repository Window, select File > Export Local Objects to export the object
repository to a shared object repository file in Solution Manager.

The Save External File to Solution Manager Dialog Box opens.

4. Enter the required information and click OK.

For details on exporting and saving object repository files, see the HP Unified Functional Testing User
Guide.

Create a new recovery file in Solution Manager

1. Select Resources > Recovery Scenario Manager. The Recovery Scenario Manager opens.

2. Click the New Scenario button. The Recovery Scenario Wizard opens. Follow the instructions in the
wizard to create a new scenario. When you are finished, the scenario is displayed in the Recovery
Scenario Manager

To add more scenarios to the new scenario file, repeat this step.

When you are ready to save the scenario file, click Save. The Save External File to Solution Manager
Dialog Box opens.

3. Enter the required information and click OK.

For details on creating and saving recovery files, see the HP Unified Functional Testing User Guide.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 227

How to Run a Test Stored in Solution Manager
This task describes how to run tests from UFT. The run results are stored in the location you specify in
the file system. You cannot access these results from Solution Manager.

When working with UFT in standalone mode, you run a test stored in a Solution Manager database just
like any other UFT test.

This task describes how to:

l "Run a test in standalone" below

l "Run a UFT test from Solution Manager in Integrated Mode using the Execute Test Script option" on
the next page

l "View results of a GUI test run in integrated mode" on the next page

Run a test in standalone

1. Open UFT in standalone mode.

2. In UFT, open the test you want to run.

3. Click the Run button or select Run > Run. The Run Dialog Box opens.

4. Accept the default results folder or browse to select another one.

Note:

l The default results folder is created under the folder where the cache (local) copy of your
test is stored. You set the location of your Solution Manager test cache folder in the
Solution Manager pane of the Options dialog box.

l When running tests in standalone mode, no Solution Manager log is created.

l To run the test and overwrite the previous run session results, select the Temporary run
results folder (overwriting older temporary results) option.

l UFT stores temporary run session results for all tests in <System
Drive>:\%Temp%\TempResults. The path in the text box of the Temporary run results
folder (overwriting older temporary results) option is read-only and cannot be changed.

5. Click OK. The Run dialog box closes and UFT begins running the test.

When the run session ends, the run results open (unless the View results when run session ends
check box is cleared in the Run Sessions pane of the Options dialog box (Tools > Options > GUI
Testing tab > General tab > Run Sessions node).

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 228

Run a UFT test from Solution Manager in Integrated Mode using the Execute Test
Script option

For details, see your SAP documentation.

View results of a GUI test run in integrated mode

You can view the results of a GUI test that was run from Solution Manager in the following ways:

l In the Solution Manager Log Display. You can view the results of the test or the results of a specific
event, such as a checkpoint, in the Solution Manager log. You can view the folder in which the results
are saved in the UNCPathToLocalLog line of the Solution Manager log.

l In UFT. You can view the run results in the run results, which you can either access from UFT (as
separate tab in the document pane) or open directly from your browser.

If a test includes steps that log on to Solution Manager using the SAP Tab of the Record and Run
Settings dialog box, the logon steps are displayed in the run results tree.

You can set the Run Results Viewer to open automatically after a test runs from Solution Manager.
To do this, in Solution Manager, select the Log Display check box in the Shared tab in Start Options
window.

l Via the generated XML Report. Each time you run a GUI test from Solution Manager, an .xml file is
generated. This file contains all details of the run session. To view the file, click the line containing
the text: XML-DATA in the Solution Manager log.

How to Display or Edit a GUI Test fromSolution Manager in
Integrated Mode
This task describes how to display or edit any existing GUI test that is stored in Solution Manager. When
you open the test, UFT opens in integrated and read-only mode. When you display or open a GUI test in
integrated mode, you can work only with the open test. You cannot open another test or save the open
test with another name.

Despite this, resource files that are saved with the test (for example, a local repository or the test's
local data table) are editable. To edit external resource files, open the test in standalone mode.

Note: If you select the UFT File > Save As menu command when working in integrated mode, UFT
displays a warning message indicating that you can save a test with a new name in the file system,
but doing so disconnects UFT from Solution Manager and switches UFT to standalone mode.

For more details on integrated and standalone modes, see "Standalone Mode" on page 219 and
"Integrated Mode" on page 220.

This task describes how to:

l "Display or open a GUI test from Solution Manager" on the next page

l "Create a new GUI test from Solution Manager" on the next page

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 229

Display or open a GUI test from Solution Manager

1. Log on to Solution Manager and open a test script. Make sure to specify Unified Functional Testing
as the external tool. For details on how to open test scripts in Solution Manager, see your SAP
documentation.

You can open the test in:

l Read-only (Display) mode. (If the test uses external resource files, the test and its resources
open in read-only mode by default.)

l Edit mode. This enables you to use most UFT options. For details, see the HP Unified Functional
Testing User Guide.

2. To return to Solution Manager, close UFT.

Create a new GUI test from Solution Manager

1. Log on to Solution Manager. Then create and save a test script. Make sure to specify Unified
Functional Testing as the external tool. For details on how to open test scripts in Solution Manager,
see your SAP documentation.

When you create the script, UFT opens with a blank test.

2. Create the test in UFT. For details on creating GUI tests in UFT, see the other chapters in this guide
and the HP Unified Functional Testing User Guide.

3. In UFT, select File > Save As. A dialog box opens in Solution Manager.

4. In Solution Manager, specify the package in which you want to store the test. Confirm that the
other edit boxes contain correct values.

If the test has external resource files, they are stored by default in the $TMP (local) package. If
you select another package for the test, you must manually move any external resource files
to the same package.

5. In Solution Manager, save the test. UFT is restored in integrated mode and displays the saved test
for additional editing.

6. To return to Solution Manager, close UFT.

How to Transfer Data To and FromGUI Tests in Integrated Mode
Using Test Parameters
You can pass values from a Solution Manager test script to a GUI test, or vice versa, using GUI test
parameters.

To send values to your input arguments, you must run your test via a call from a Solution Manager test
script. After you define input and output arguments for your GUI test, you can insert a call to that test
from a Solution Manager test script and specify argument values for the input arguments.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 230

Prerequisites

Define test parameters and use them in your GUI test. For details, see the section on the "Parameters
Tab (Properties Pane - Testing)" in the HP Unified Functional Testing User Guide.

If you are working with SAP structured parameters, see also "How to Work with SAP Structured
Parameters" below.

Call a GUI test and specify arguments from Solution Manager

To send values to your input arguments from Solution Manager, you must run your test via a call from a
Solution Manager test script.

Tip: You can enter the name of a Solution Manager parameter from the Solution Manager script as
the value of a GUI input parameter.

After you define input and output arguments for your GUI test, you can insert a call to that test
from a Solution Manager script and specify argument values for the input arguments.

How toWork with SAP Structured Parameters
When you work in integrated mode with SAP Solution manager, you can pass values from a Solution
Manager test script to a GUI test, or vice versa, using the structure value type for your test parameters.

You create and maintain the structured parameters in SAP Solution Manager. After you have defined
your test parameters via SAP Solution Manager you can map action parameters to the structured
parameters in the test. When you run a test, UFT receives the defined structure from SAP Solution
Manager, and resolves the mapped local parameter with the actual structured parameter value from
SAP Solution Manager.

Create or modify the structured parameters of a test

1. From SAP Solution Manager, Launch your test as an external test.

UFT opens with your test displayed.

2. In the Parameters tab of the Properties pane, click the Maintain SAP Parameters icon . If the
Properties Pane is not already open, select View > Properties to open it.

SAP Solutions Manager opens and UFT is hidden.

Note: SAP Structured Parameters can be maintained only in SAP Solution Manager.

3. In SAP Solutions Manager, create or modify the structure parameters you want to use for your
test, save your changes and click Back.

UFT re-opens with the changes you made now available.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 231

Assign or modify the structured parameters for an action

To use the SAP structured parameter to run the test, you must define parameters of type structure,
associate the test and action parameters, and then map the action’s structured parameter to the test’s
structured parameter. You can also map a simple type action parameter to a single element in a
structured parameter defined for the test.

1. Select the relevant action.

2. In the Parameters tab of the Properties pane, you can add or remove parameters, as described in
Add/Edit Input/Output Parameter Dialog Box (Properties Pane - GUI Testing) in the HP Unified
Functional Testing User Guide. If the Properties Pane is not already open, select View > Properties
to open it.

Note: If the test contains structured parameters, you can add parameters with the structure
type to the action.

3. Map action parameters to the test structured parameters

a. Right-click the relevant actions.

b. In the context menu, select Action Call Properties.

c. In the Action Call Properties Dialog Box > Parameter Values tab, in the Value cell/column of an
input parameter or the Store In cell/column of an output parameter, click the Configure Value
button.

d. In either the Value Configuration Options Dialog Box (for input parameters) or the Storage
Location Options Dialog Box (for output parameters), select the Parameter radio button and
click Browse.

The Value Map dialog box opens.

e. Define the mapping, as described in Value Map Dialog Box.

You can select the root node to map the entire structure, or a sub tree node to map to an
embedded structure, or you can select a leaf node to map to a specific value in the structure.

f. Click OK.

The parameters are mapped

Note: If an action is called inside another action, you can map a parameter to an input
parameter of the parent action. If the action is called after another action, you can map a
parameter to an output parameter of any previous action.

For more details on test and action parameters, see the HP Unified Functional Testing User
Guide.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 232

Use structured parameters in a script

The examples below show how you can use structured parameters directly from a script.

<?xml version="1.0" encoding="utf-16"?>
<ZMOVIE>
<TITLE>Avatar</TITLE>
<DIRECTOR>
<FIRST_NAME>James</FIRST_NAME>
<LAST_NAME>Cameron</LAST_NAME>
<BIRTHDAY>16-8-1954</BIRTHDAY>

</DIRECTOR>
<REL_DATE>10-12-2009</REL_DATE>
<GENRE>SF</GENRE>
<STARRING>
<item>
<FIRST_NAME>Michelle</FIRST_NAME>
<LAST_NAME>Rodriguez</LAST_NAME>

</item>
<item>
<FIRST_NAME>Stephen</FIRST_NAME>
<LAST_NAME>Lang</LAST_NAME>

</item>
<item>
<FIRST_NAME>Zoe</FIRST_NAME>
<LAST_NAME>Saldana</LAST_NAME>

</item>
</STARRING>

</ZMOVIE>

l To access an element in a structured parameter, type the parameter name followed by a colon (:)
and then the element path. Use a period (.) between elements and their sub-elements. For example:

Print Parameter(“Param1:ZMOVIE.DIRECTOR.FIRST_NAME”)

Output:

James

Print Parameter(“Param1:ZMOVIE.STARRING.item[1].FIRST_NAME”)

Output:

Michelle

Note: UFT provides statement completion for structured parameters, displaying the elements
available for the relevant structure type.

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 233

l If the path represents an element that contains additional sub-elements, the returned value will be a
XML string. The path follows the XPath expression rule

Print Parameter(“Param1:ZMOVIE.DIRECTOR”)

Output:

<DIRECTOR>
<FIRST_NAME>James</FIRST_NAME>
<LAST_NAME>Cameron</LAST_NAME>
<BIRTHDAY>16-8-1954</BIRTHDAY>

</DIRECTOR>

l If the structure is an array or a table, you can use it in a loop:

rowCount = Parameter("Param1:ZMOVIE.STARRING.item.count()")
For Iterator = 1 To rowCount Step 1

first_name = "Param1:ZMOVIE.STARRING.item[" & Iterator & "].FIRST_NAME"
last_name = "Param1:ZMOVIE.STARRING.item[" &Iterator &"].LAST_NAME"
print Parameter(first_name) & " " & Parameter(last_name)

Next

Output:

Michelle Rodriguez
Stephen Lang
Zoe Saldana

Note: You can omit the root element from the path. For example,

Print Parameter("Param1:ZMOVIE.DIRECTOR.FIRST_NAME")

Can also be written as

Print Parameter("Param1:DIRECTOR.FIRST_NAME")

Add-ins Guide
Windows-based SAP Support

HP Unified Functional Testing (12.52) Page 234

HP Unified Functional Testing (12.52) Page 235

Part 13: Siebel Add-in
This section includes:

"Siebel Add-in - Quick Reference" on page 236

"Siebel Add-in - Testing and Configuration" on page 239

"Siebel Test Express" on page 252

Siebel Add-in - Quick Reference
You can use the UFT Siebel Add-in to test Siebel user-interface objects (controls).

The following tables summarize basic information about the Siebel Add-in and how it relates to some
commonly-used aspects of UFT.

General Information

Add-in Type This is aWeb-based add-in. Much of its functionality is the sameas other Web-based add-ins.

See "Web-Based Application Support" on page 25.

Supported
Environments

For details on supported Siebel environments, see theSiebel Add-in section of theHP Unified
Functional Testing Product Availability Matrix.

If you are testing SiebelOpenUI applications, the SiebelOpenUI Add-in is supported as a child add-in of the
Web Add-in and appears in theAdd-in Manager as a child add-in of theWeb Add-in. The SiebelOpenUI Add-
in must be installed as oneof theWeb 2.0 toolkits. You should load theWeb Add-in and the SiebelOpenUI
Add-in, but do not load the Siebel Add-in. If you load both the Siebel and the SiebelOpenUI add-ins, the
add-ins sometimes conflict with each other, and prevent successful object recognition.

Important
Information

l You can use Siebel Test Express to automatically generate a new object repository, or update an
existing object repository. For details, see "Siebel Test Express" on page 252.

l For general considerations, see "Considerations - Siebel Add-in" on page 240.

Test Object
Methods and
Properties

TheSiebel Add-in provides test objects, methods, and properties that can beused when testing objects in
Siebel applications. For details, see theSiebel section of theHPUFT Object Model Reference for GUI
Testing.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "Considerations - Siebel Add-in" on page 240.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Troubleshooting
and Limitations

"Known Issues - Siebel Add-in" on page 248

Prerequisites

Opening Your
Application

You must open UFT and set Record and Run options before opening your Siebel application. Open the
application only after you begin the recording session.

Add-in
Dependencies

None

Other l To test a Siebel 7.7.x or later application, you must:

l Modify the Siebel Test Automation module configuration.

l Instruct your Siebel application to generate test automation information.

HP Unified Functional Testing (12.52) Page 236

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

See "Siebel 7.7.x or Later - Test Automation Module Configuration" on page 246.

l To test your Web application in Mozilla Firefox version 33 and later, you must enable the Functional
Testing Extension in oneof the following ways:

l If theSelect Your Add-ons screen is displayed when you open Firefox, select to enable the
Functional Testing Extension.

l If the Install Add-on tab opens and displays Functional Testing Extension when opening Firefox,
select theAllow this installation check box and clickContinue.

Otherwise:

i. In Firefox, open the browser menu.

ii. In themenu, clickAdd-ons.

iii. In theAdd-ons Manager tab, select theExtensionsnode.

iv. In the Functional Testing Extension row, click theEnable button.

To test your Web application in Mozilla Firefox versions earlier than 33, you must enable the legacy
Firefox agent:

a. Open the<UFT installation folder>\Installations\Firefox folder.

b. From the Firefox folder, drag theLegacy.xpi file into Firefox.

c. In Firefox, open the browser menu.

d. In themenu, click Add-ons.

e. In theAdd-ons Manager tab, select the Extensions node.

f. In the Functional Testing Extension row, disable the Functional Testing 12.50 extension and
enable the extension you added to Firefox.

Configuration

Options Dialog Box Use theWebpane.
(Make sure that aGUI test is open and select Tools > Options > GUI Testing tab > Web > General
node.)

Record and Run
Settings Dialog Box
(tests only)

Use theSiebel tab.
(Record > Record and Run Settings)

Test Settings Dialog
Box
(tests only)

Use theWebpane.
(File > Settings > Web node)

Custom Active Screen
Capture Settings
Dialog Box
(tests only)

Use theWeb section.
(Tools > Options > GUI Testing tab >Active Screen node> Custom Level)

See the section on the Custom Active Screen Capture Settings dialog box in theHPUnified
Functional Testing User Guide.

Application Area
Additional Settings
pane

l Use theWebpane.
In the application area, clickAdditional Settings>Web in the sidebar.

l Use theApplicationspane.

Add-ins Guide
Siebel Add-in - Quick Reference

HP Unified Functional Testing (12.52) Page 237

(business components
only)

In the application area, select Additional Settings > Applications in the sidebar.

In theSiebel versionbox, specify the Siebel version for the applications on which you want to
record your business component. The version that you choose remains selected for all
subsequent business components.

Add-ins Guide
Siebel Add-in - Quick Reference

HP Unified Functional Testing (12.52) Page 238

Siebel Add-in - Testing and Configuration
This chapter includes:

• Siebel Add-in - Overview 240

• Considerations - Siebel Add-in 240

• Siebel Test Object Model - Overview 241

• Recording Steps on Siebel Objects 242

• Native Operations and Properties in Siebel 7.0.x and 7.5.x Applications 243

• Siebel Add-in - Checkpoints and Output Values 243

• Spooling Data from a Siebel Table 245

• Siebel 7.7.x or Later - Test Automation Module Configuration 246

• How to Define Environment Variables for Siebel Applications 247

• Known Issues - Siebel Add-in 248

• Siebel 7.7.x or Later 249

• Siebel 7.0.x and 7.5.x 250

HP Unified Functional Testing (12.52) Page 239

Siebel Add-in - Overview
The Siebel eBusiness platform is widely used in many organizations for their business process
applications. UFT can create and run tests and business components on these applications using special
test objects and operations (methods and properties) that are customized for Siebel.

The customized Siebel test objects, methods, and properties make scripts simpler to read, maintain,
enhance, and parameterize, enabling both advanced and novice users to create sophisticated tests and
business components on Siebel applications.

UFT supports testing on both standard-interactivity and high-interactivity Siebel applications:

l Standard-interactivity applications download data as it becomes necessary. This interface is
designed for users accessing the application from outside the corporate network.

l High-interactivity applications download the majority of the required data at one time, requiring
fewer navigations. This interface is designed for heavy use, for example, by call centers.

Considerations - Siebel Add-in
General Considerations

l UFT learns objects in Siebel 7.7.x or later applications in a different way than in Siebel 7.0.x and 7.5.x
applications. The Siebel Add-in has two different groups of test objects. The test object used to
represent an object in your application depends on the Siebel version of your application and the
implementation of the object. For details, see "Siebel Test Object Model - Overview" on the next page.

l When you load the Siebel Add-in, the Web event recording configurations designed for this add-in are
loaded and are used whenever you record on a Siebel object. The Siebel Web event recording
configurations do not affect the way UFT behaves when you record on other non-Siebel Web objects.
For details, see "Event Recording Configuration for Web-Based Applications" on page 30.

l When you load the Siebel Add-in, the object identification settings are also automatically customized
for Siebel. You do not need to make any changes to them. Therefore, the Siebel and Web options in
the Object Identification dialog box are unavailable.

l Loading the ActiveX and Siebel add-ins together may cause problems when recording on some
ActiveXmethods.

Siebel 7.7.x or Later

l As you record a test or business component on your Siebel 7.7.x or later application, UFT records the
operations you perform. UFT works directly with the Siebel Test Automation API (SiebelAx_Test_
Automation_18306.exe) to record your operations. Therefore, although UFT records a step for each
operation you perform, it adds the steps to your test or business component only when API events
are sent to UFT (when information is sent to the Siebel server).

HP Unified Functional Testing (12.52) Page 240

l When test automation is activated on a Siebel 7.7.x or later server and requested in the URL, the
Siebel Web Engine (SWE) generates additional information about each object in the Siebel application
when constructing the Web page. Each object has a specific set of properties, events, and methods
that provide functionality for the Siebel application. The Siebel Test Automation API maps to these
objects to enable you to manipulate your Siebel application from UFT when recording and running
tests or business components on the Siebel application.

Siebel 7.0.x/7.5.x

The Siebel Add-in can also identify Siebel objects by the siebel attached text property (the static text
displayed with a Siebel object), rather than by the HTML name of the object. This enables you to
maintain the test or business component with dynamically created pages.

Siebel Test Object Model - Overview
The Siebel test object model is comprised of two different groups of test objects: test objects with the
prefix Sbl and test objects with the prefix Sieb. If you are recording on a Siebel 7.0.x or 7.5.x application,
UFT learns only Sbl test objects. If you are learning objects on a Siebel 7.7.x or later application, UFT may
learn only Sieb test objects or a combination of Sbl and Sieb test objects, depending on the way in which
your Siebel application was implemented.

For details on each of the Siebel test objects, see the Siebel section of the HP UFT Object Model
Reference for GUI Testing.

When you perform an operation on your Siebel application while recording a test or business
component, UFT:

l identifies the object on which you performed the operation and creates the appropriate test object
in the test or business component.

l reads the current value of the object's properties in your application and stores them in the object
repository as the test object's property values.

l chooses a unique name for the test object, generally using the value of one of its prominent
properties.

l records the operation (method) that you performed on the object and displays the operation as a
step in the Keyword View and as a statement in the Editor.

For example, suppose you select a check box for a specific account on a page of your Siebel application.
This check box has the label Competitor.

UFT identifies the check box as a SiebCheckbox object. It creates a SiebCheckbox test object with the
name Competitor and records the following properties and values as the description for the Competitor
SiebCheckbox.

Add-ins Guide
Siebel Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 241

It also records that you performed a SetOnmethod to select the SiebCheckbox object.

UFT displays your step in the Keyword View like this:

UFT displays your step in the Editor like this:

SiebApplication("Siebel Call Center").SiebScreen("Accounts").SiebView("Account
Details").SiebApplet("Account").SiebCheckbox("Competitor").SetOn

When you run a test or business component, UFT identifies each object in your application by its test
object class and its description: the set of identification properties and values used to uniquely identify
the object. In the above example, during the run session, UFT searches the object repository for the
SiebCheckbox object named Competitor to look up its description. Based on the description it finds
(repositoryname = Competitor and classname = SiebCheckbox), UFT searches the application for a
SiebCheckbox object named Competitor. When it finds the object, UFT performs the SetOnmethod on
the object to select the check box.

To learn more, see:

• Recording Steps on Siebel Objects 242

• Native Operations and Properties in Siebel 7.0.x and 7.5.x Applications 243

Recording Steps on Siebel Objects
When you record an operation on a Siebel object, UFT inserts a step with the relevant Siebel object in
the Keyword View and adds the corresponding statement in the Editor.

For example, if you select an item from a list, the Keyword Viewmay be displayed as follows:

Add-ins Guide
Siebel Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 242

UFT records this step in the Editor as:

SiebApplication("Siebel Call Center").SiebScreen("Accounts").SiebView("Account
Details").SiebApplet("Account").SiebPicklist("Account Type").Select "Consultant"

Tip: It is recommended to log out of your Siebel application at the end of the recording session
before closing the browser.

If you have the Siebel Add-in installed, you can use UFT to generate an object repository for your
application. For details, see "Siebel Test Express" on page 252

Native Operations and Properties in Siebel 7.0.x and 7.5.x
Applications
In addition to the Siebel-specific test objects and operations, you can also use the Object property to
access native (internal) operations and properties of the HTML or ActiveX elements that wrap Siebel
objects. The Object property is available for all Siebel 7.0.x and 7.5.x objects.

Tip: You can use the Object Spy to view the native operations and properties of an object in your
application.

The Object property is also useful for checking the value of properties that are not available using a
standard Siebel checkpoint.

The following example uses the Object property to access the raw HTML element that represents the
SblTabStrip object, retrieve its HTML tag name and size, and display this information in message boxes

set obj = Browser("Siebel Call").Page("Siebel Call").Frame("Siebel
Call").SblTabStrip("ScreenTabStrip").Object
msgbox obj.tagName
msgbox obj.height
msgbox obj.width

Note: Relying on native properties may be problematic if you are upgrading your Siebel application
to a newer version, in which objects may have a different structure. For example, the conversion of
HTML objects to ActiveX objects in the Internet Explorer Option Pack.

For details on using the Object property, see the HP Unified Functional Testing User Guide.

Siebel Add-in - Checkpoints and Output Values
After you create your test or business component, you can enhance it by adding checkpoints, retrieving
output values, parameterizing values, and inserting Siebel objects, methods and properties.

Add-ins Guide
Siebel Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 243

You check most Siebel objects or output their property values in the same way as you do for other
objects supported by UFT, with exceptions for SblTable objects and Sieb tabular test objects.

Considerations - Siebel Add-in Checkpoints and Output Values

l You check SblTable objects and output their values in the same way as you do for other table objects
supported by UFT—using the Table Checkpoint Properties dialog box or Table Output Value
Properties dialog box—with the following differences:

l In Siebel 7.0.x or 7.5.x high-interactivity applications, you must have your Siebel application open
to the page that contains the table while creating a table checkpoint or output value.

When creating table checkpoints or output values, do not include the header line of the SblTable
object when selecting cells to check or output. To clear the selection in this first row of cells,
double-click row heading 1 to the left of the table.

Tip: When working with SblTable objects, you can spool all of the visible data from a table
into an external file. For details, see "Spooling Data from a Siebel Table" on the next page.

l Specific test objects in Siebel 7.7.x applications (with Sieb prefixes) have tabular characteristics.
UFT treats Sieb tabular test objects as table-type objects and enables you to check both their
content and/or their identification properties. You can also output content and/or identification
property values for use in your test or business component. The following Sieb test objects have
tabular characteristics: SiebCommunicationsToolbar, SiebList, SiebMenu, SiebPageTabs, SiebPDQ,
SiebPicklist, SiebScreenViews, SiebThreadbar, SiebToolbar, and SiebViewApplets.

Tip: When working with Sieb tabular objects, you can spool all of the visible data from the
object into an external file. For details, see "Spooling Data from a Siebel Table" on the next
page.

l When testing high-interactivity applications:

l If the Sieb tabular object is not open in your Siebel application when you create a checkpoint, the
Table Checkpoint Properties dialog box contains only the Properties tab and the option to select
which type of information to check (content or properties) is disabled.

l If the Sieb tabular object is not open in your Siebel application when you create the output value,
the Table Output Value Properties dialog box contains only the Properties tab, and the option to
select which type of information to output (content or properties) is disabled.

l If you want to access an inner object contained in a SiebList object, hold the CTRL key while you click
the SiebList object with the pointing hand mechanism.

To learn more, see:

Add-ins Guide
Siebel Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 244

• Spooling Data from a Siebel Table 245

Spooling Data froma Siebel Table
If you want to spool all the visible data from a SblTable or a Sieb tabular object (such as a SiebList
object) into an external file, you can loop through each cell in the table and then save the information to
an external file.

The following example uses the GetCellDatamethod to list the data of each cell in a SblTable object
with 10 rows and 10 columns:

For i=0 to 10
For j=0 to 10

Dat=Browser("Siebel eChannel").Page("Siebel eChannel_8").
Frame("Campaign Explorer").SblTable("Campaign").
GetCellData (i, j)
SaveToExternalFile (Dat)

Next
Next

The following example uses the RowsCount and ColumnsCountmethods to list the data of each cell in a
SiebList object:

RowsCount = SiebApplication("Siebel Call Center").SiebScreen
("Accounts").SiebView("My Accounts").SiebApplet("Accounts").SiebList
("List").RowsCount
ColsCount = SiebApplication("Siebel Call Center").SiebScreen
("Accounts").SiebView("My Accounts").SiebApplet("Accounts").SiebList
("List").ColumnsCount
For i=0 to RowsCount-1

For j=0 to ColsCount-1
ColumnName = SiebApplication("Siebel Call Center").SiebScreen

("Accounts").SiebView("My Accounts").SiebApplet("Accounts").SiebList
("List").GetColumnRepositoryNameByIndex(j)

Dat=SiebApplication("Siebel Call Center").SiebScreen("Accounts").SiebView("My
Accounts").SiebApplet("Accounts").SiebList("List").GetCellText(ColumnName,i)

SaveToExternalFile (Dat)
Next

Next

For details on the GetCellData, RowsCount, and ColumnsCountmethods, see the Siebel section of the
HP UFT Object Model Reference for GUI Testing.

Add-ins Guide
Siebel Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 245

Siebel 7.7.x or Later - Test Automation Module
Configuration
UFT support for Siebel 7.7.x or later applications is based on the Siebel Test Automation API (SiebelAx_
Test_Automation_18306.exe). Before you can create or run tests or business components on your
Siebel 7.7.x or later application, you must modify the Siebel Test Automation module configuration and
instruct your Siebel application to generate test automation information.

You do not need to make any configuration changes in Siebel 7.0.x and 7.5.x applications to create and
run tests or business components on these Siebel application versions.

To test your Siebel 7.7.x or later application using the Siebel Add-in, you must confirm that your Siebel
server has the Siebel Test Automation module installed and correctly configured to perform test
automation. For detailed information, see the section that describes how to set up your functional
testing environment in Testing Siebel eBusiness Applications Version 7.7, provided with your Siebel
installation.

Generating Test Automation Information - Siebel Application

To create and run tests or business components on your Siebel 7.7.x or later application, you must
instruct the Siebel Web Engine (SWE) to generate test automation information for the Siebel
application, using a SWE command. To do so, append the SWECmd=AutoOn token to the URL of your
Siebel server. For example: http://hostname/callcenter/
start.swe?SWECmd=AutoOn. If you do not append this token, the SWE does not generate test
automation information.

If you select the Open the following application when a record or run session begins option in the
Siebel tab of the Record and Run Settings dialog box, UFT automatically appends the Siebel Test
Automation information to the URL (you do not need to specify it manually in the URL). For details on the
Record and Run Settings dialog box options, see "How to Define Environment Variables for Siebel
Applications" on the next page.

If you select the Open the following application when a record or run session begins option in the
Siebel tab of the Record and Run Settings dialog box, UFT automatically appends the Siebel Test
Automation information to the URL (you do not need to specify it manually in the URL). For details on the
Record and Run Settings dialog box options, see "How to Define Environment Variables for Siebel
Applications" on the next page.

Note: If a session timeout error occurs in your Siebel 7.7.x or later application, the Siebel Test
Automation URL parameter values are not saved. After you log out and log in again, you must
navigate to the correct URL that contains the required Siebel Test Automation parameter values
(including password parameter values, if any—see below).

Add-ins Guide
Siebel Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 246

Generating Test Automation Information - Secured Siebel Application

If a password for generating test automation information is defined on your Siebel Server, you must
also indicate that password in the URL (in addition to the SWECommand=AutoOn token described above).
The URL token is in the format AutoToken=password. For example:
http://hostname/callcenter/start.swe?SWECmd=AutoOn&AutoToken=mYPass. This enables UFT to
run the Siebel Test Automation API SiebelAx_Test_Automation_18306.exe even in secure mode.

If a password is defined for the Siebel Server and you do not append this token to the URL, the SWE
does not generate test automation information.

For details on whether your Siebel Server is secured for test automation, contact your Siebel system
administrator.

If you select the Open the following application when a record or run session begins option in the
Siebel tab of the Record and Run Settings dialog box, click the Advanced button, and specify the
password in the Siebel automation access code box in the Advanced Siebel Record and Run Settings
dialog box, UFT automatically appends the password information to the URL (you do not need to specify
it manually in the URL). For details on the Record and Run Settings dialog box options, see "How to
Define Environment Variables for Siebel Applications" below.

How to Define Environment Variables for Siebel
Applications

Note:

l If you define any of these environment variables, it overrides the corresponding values in the
Siebel Tab (Record and Run Settings Dialog Box) (for components), or the Applications pane in
the application area's Additional Settings pane (for application areas).

l For details on defining and working with environment variables, see "Environment Variables in
Record and Run Settings" on page 20.

Use the variable names listed in the following table to define Siebel application details:

Option Variable Name Description

Siebel version APPLICATION_
ENV

TheSiebel version for the applications on which you want to record
your test or business component.

Possible values:

l 77

l 7075

This option is available for tests and business components.

Address URL_ENV TheURL of the application you want to open. This option is available
only for tests.

Add-ins Guide
Siebel Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 247

Option Variable Name Description

Auto-login AUTO_LOGIN_
ENV

Indicates whether to automatically log in to the application to open.
This option is available only for tests.

Possible values:

l True

l False

User USER_NAME_
ENV

Theuser nameused to log in to the application to open. This option is
available only for tests.

Password PASSWORD_ENV The encrypted password for the application to open. This option is
available only for tests.

Log out of the application
when the test closes

LOGOUT_ENV Indicates whether to automatically log out of the application when the
test closes. This option is available only for tests.

Possible values:

l True

l False

Known Issues - Siebel Add-in
This section contains general troubleshooting and limitation information about the Siebel Add-in.

General

Recording on multiple Siebel application versions in the same computer may cause steps not to be
recorded.

Checkpoints and the Object Spy

l To create a table content checkpoint or output value for the appropriate object type (for example,
SiebList, SiebPicklist, or SiebPageTabs) when editing your test or business component, you must open
the application to the exact screen in which the object appears. Otherwise, only the Properties tab is
displayed in the Table Checkpoint dialog box or Table Output Value dialog box.

l Checkpoints created for SiebList objects that contain a Total rowmay fail during a run session if the
action that led to the update of the Total row was not recorded.

l The Object Spy and checkpoints identify expanded calculator and calendar popup objects as Window
("Siebel control popup").

This section also includes troubleshooting and limitation information about the following Siebel
versions:

l "Siebel 7.7.x or Later" on the next page

l "Siebel 7.0.x and 7.5.x " on page 250

Add-ins Guide
Siebel Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 248

Siebel 7.7.x or Later
l Certain objects, methods, or properties may be available from within UFT even though they are not

described in the documentation. This is because UFT retrieves the latest SiebelObject.xml file
when loading the Siebel add-in and opening a Siebel application, and because the documentation is
updated according to version of the .xml file that is available at the time of the UFT product release.

l Certain objects, for example, in the SmartScript module, do not have a value for the repository name
property and are therefore not recorded and are not recognized by the Object Spy.

Workaround: Use low-level recording.

l Gantt chart operations and RichText editor toolbar operations are not recorded.

Workaround: Use low-level recording.

l The appointment calendar object can be recorded only if the ActiveX Add-in is enabled.

l If you record the creation of a new appointment in an appointment calendar, the test or business
component may fail when you run it.

Workaround: Manually add an onkeypress FireEvent to the WebElement before the Set step.

l The Active Screen is empty for steps recorded on pop-up tables.

l Inner objects that are placed in cells of a SiebList object cannot be accessed in the standard way,
even if they are recorded. This may cause the following limitations:

l The entire SiebList object is highlighted if the test or business component script line contains an
operation on a SiebList inner object.

l The ChildObjectsmethod for SiebList objects returns 0.

l The Add Objects option in the Object Repository window cannot be used to add SiebList inner
objects to the object repository.

l If a warning message opens while recording your test or business component, for example, if you
insert invalid data, UFT may record these operations in the incorrect order.

Workaround: Manually change the order of the steps in your test after recording.

l Context-sensitive help (F1 Help) may not be available for Siebel 7.7.x or later objects and/or methods
that were added by Siebel after the UFT 11.50 release. In addition, auto-documentation (in the
Keyword View Documentation column) and step documentation (in the Step Generator) may not be
available for these objects and/or methods.

l When using Siebel version 8.1.1.11, the SiebCalculator.ClickKeysmethod may not work when
running the test of the application calculator

Workaround: Enter the value of the calculator directly into the edit field instead of using the
ClickKey/ClickKeysmethod to enter the value.

Add-ins Guide
Siebel Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 249

Siebel 7.0.x and 7.5.x

Creating and Running Testing Documents

l UFT does not support recording on Siebel applications using keyboard shortcuts.

Workaround: Use the mouse to record on Siebel applications.

l UFT does not record the scrolling of a set of records in an SblTable.

Workaround:While recording, scroll the table row by row.

Tip: You can use the Editor to manually edit the statement to scroll multiple rows.

l By default, UFT does not record Editor control operations (used mainly in long Description fields).

Workaround: Use low-level recording, making sure you record the scrolling to the control if needed.

Working with Siebel Controls

l When you click the Search icon for the first time during a browser session, a frame opens that is
different from all other search frames. When running test iterations, the correct frame may not be
identified.

Workaround: Close the browser at the end of every iteration.

l Each Siebel version includes changes/modifications to the user interface. As a result, steps last
modified in previous Siebel versions on elements that no longer exist in the interface will probably
fail and should be replaced.

For example, the button arrow used to view the next set of records on the top line of the Siebel table
that appears in earlier versions of Siebel was replaced in Siebel version 7.5.2 with a scroll bar at the
side of the table. In this case, replace Image("Next Record").Clickwith an operation on the scroll
bar.

l The name of the first column in an SblTable object cannot be retrieved.

Workaround: Use the column index to perform the operation on the cells in the first column.

Standard-Interactivity (SI) Applications

l In some SI application dialog boxes, in cases where selecting a check box causes a navigation to occur
(for example, in a check box table column, such as the New column), UFT may not record the
subsequent steps or may record them inaccurately.

Workaround: To continue recording accurately, click anywhere in the page before the next operation.

l When recording on a Currency Calculator pop-up control, clicking OK immediately after entering a
currency value may result in a recording error.

Workaround: Before clicking OK in a Currency Calculator pop-up control within a SblAdvancedEdit
object, select another control within the pop-up and click OK.

Add-ins Guide
Siebel Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 250

High-Interactivity (HI) Applications

l Depending on your browser's security settings and the Siebel patches that are installed, several
dialog boxes may open when logging in to your Siebel application. It is recommended to run tests or
business components when all required Siebel patches are downloaded and installed. If for some
reason, you cannot do this, manually delete the Sync steps added between the steps recorded on the
security alerts.

l UFT cannot record a SblTable.Sort operation if it is the first operation inside an MVG (Multi-Value
Group) applet.

Workaround: Click anywhere in the MVG applet and then sort it.

l When recording on a SblAdvancedEdit object that opens a pop-up object, UFT records only the Set
method and does not record the operations within the pop-up object. However, if you open a table
from the pop-up object, UFT does record the operations performed within this secondary table.
These statements are not required in the test or business component, since the operation of
inserting the Pickup table selected item into the main table is also recorded. In some cases, these
redundant statements interfere with the run session.

Workaround: If the test or business component does not run as expected, delete the statements
recorded on secondary tables opened from a pop-up object.

l When adding an attachment to a Siebel table, UFT records additional statements that may interfere
with the run session.

Workaround: After recording, delete the OpenCellElement and Add statements that were recorded
when you added an attachment.

l When inserting a value into a Siebel table cell using the Currency Calculator control, UFT may record a
new SelectCell step before the SetCellData if you move the cursor to another cell before clicking
in the cell in which you entered a value.

Workaround:While recording, always close the Currency Calculator by pressing the ENTER key. If, for
some reason, the Currency Calculator was not closed using the ENTER key, you can manually change
the order between the SetCellData and SelectCell steps.

Add-ins Guide
Siebel Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 251

Siebel Test Express
This chapter includes:

• Using Siebel Test Express to Generate or Update Shared Object Repositories 253

• How to Use Siebel Test Express to Generate or Update a Shared Object Repository 253

HP Unified Functional Testing (12.52) Page 252

Using Siebel Test Express to Generate or Update
Shared Object Repositories
If the Siebel Add-in is installed on UFT, you can use Siebel Test Express to automatically generate a new
shared object repository, or to update an existing object repository.

You can create new shared object repositories using the Create Object Repository Wizard. Using the
wizard you can select the applications or top-level application objects for which to create an object
repository. Siebel Test Express scans the Siebel application and creates test objects for every child
object contained in the applications or top-level objects that you specify. After you have created the
shared object repository, you can save it to the file system or to an ALM project using the Object
Repository Manager.

You can also use Siebel Test Express to update an existing object repository. The Update Object
Repository Wizard enables you to select the applications or top-level objects to include in the update, as
well as the date from which to search for and include new or modified objects. The date refers to when
the objects were last added or modified in the object repository.

After you update an object repository, the Object Repository Merge Tool merges the new and modified
objects with objects from your existing object repository.

This chapter explains how to create or update an object repository using Siebel Test Express. For details
on working with object repositories in general, see the HP Unified Functional Testing User Guide.

For details on creating and updating object repositories using Siebel Test Express, see "How to Use
Siebel Test Express to Generate or Update a Shared Object Repository" below.

How to Use Siebel Test Express to Generate or Update
a Shared Object Repository
This task describes how to use Siebel Test Express to generate a new shared object repository for a
Siebel application or to update an existing shared object repository.

This task includes the following steps:

l "Prerequisites" below

l "Create or update a shared object repository" on the next page

l "(Optional) Use the Object Repository Merge Tool to merge the updated Siebel object repository" on
the next page

l "Save the shared object repository" on the next page

1. Prerequisites

l To successfully run Siebel Test Express, the Siebel Add-in must be installed and loaded.

HP Unified Functional Testing (12.52) Page 253

l Siebel Test Express supports Siebel 7.7 or later high-interactivity applications that are based on
the Siebel Test Automation API.

l To work with Siebel Test Express in UFT, ensure that the Siebel Test Automation API version
installed on your server is one that supports Siebel Test Express.

2. Create or update a shared object repository

a. Select Resources > Object Repository Manager. The Object Repository Manager opens.

b. (Optional) To update an existing object repository, open the object repository file you want to
update in editable format.

Note: By default, the object repository file opens in read-only mode. To open it in editable
format, either clear the Open in read-only mode check box in the Open Shared Object
Repository window, or enable editing by selecting File > Enable Editing after you open
the repository.

c. Open the Create Object Repository Wizard

d. Follow the steps of the wizard to create the new shared object repository.

After the import process ends, the Object Repository Merge Tool opens. This may take a few
minutes.

3. (Optional) Use the Object Repository Merge Tool to merge the updated Siebel
object repository

Conflicts between objects in the primary and secondary repository files are resolved automatically
by the Merge Tool according to the default resolution settings. After the merge, the Merge Tool
displays the Statistics dialog box, which lists the files that were merged, and the number and type
of any conflicts that were resolved during the merge. You can accept or modify these resolutions
to match your needs.

For details on working with the Object Repository Merge Tool, see the HP Unified Functional Testing
User Guide.

4. Save the shared object repository

Save the shared object repository to the file system or to an ALM project. For details on working
with or saving shared object repositories, see the section on the Object Repository Manager in the
HP Unified Functional Testing User Guide.

Add-ins Guide
Siebel Test Express

HP Unified Functional Testing (12.52) Page 254

HP Unified Functional Testing (12.52) Page 255

Part 14: Standard Windows Testing
Support
This section includes:

"Standard Windows Support -Quick Reference" on page 256

"Known Issues - Standard Windows" on page 258

Standard Windows Support -Quick Reference
You can use the standard Windows testing support provided by UFT to test user-interface objects
(controls) developed using the Win32 API or MFC platforms. UFT standard Windows testing support is
built-in and does not require you to load any UFT add-in.

The following tables summarize basic information about standard Windows testing support and how it
relates to some commonly-used aspects of UFT.

General Information

Add-in Type The standard Windows testing support functions like aWindows-based add-in. Much of its functionality is
the sameas other Windows-based add-ins.

See "Windows-Based Application Support" on page 52

Important
Information

UFT uses built-in standard Windows testing support and standard Windows test objects to identify the
following:

l Objects from other environments if the relevant add-in is not installed and loaded.

l Stingray, VisualAge Smalltalk, and Qt (widget toolkit) controls when the relevant add-in is installed and
loaded. For details, see the relevant add-in documentation.

l Manywindowless objects, if theywere developed using theMSAA (Microsoft Active Accessibility) API.
For example, the controls within theMicrosoft Office ribbons are identified as independent objects.

Test Object
Methods and
Properties

Standard Windows testing support provides test objects, methods, and properties that can beused when
testing objects in standard Windows applications. For more information, see theStandard Windows
section of theHPUFT Object Model Reference for GUI Testing.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "Supported Checkpoints " on page 383and "Supported Output Values " on page 385Per Add-
In.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Troubleshooting
and Limitations

"Known Issues - Standard Windows" on page 258

Prerequisites

Opening Your
Application

You can open your standard Windows application before or after opening UFT.

Standard Windows testing support is always loaded in UFT. It is therefore not an available option in
theAdd-in Manager.

Add-in Dependencies None

Configuration

Options Dialog Box Use theWindows Applicationspane.
(Tools > Options > GUI Testing tab > Windows Applications node)

HP Unified Functional Testing (12.52) Page 256

Record and Run Settings
Dialog Box
(tests only)

Use theWindows Applications tab.
(Record > Record and Run Settings)

Note: UFT recognizes standard Windows objects only in applications that are opened after
changing the settings in theWindows Applications tab of theRecord and Run Settings
dialog box.

Custom Active Screen
Capture Settings Dialog
Box
(tests only)

Use theWindows applications section.
(Tools > Options > GUI Testing tab > Active Screennode> Custom Level)

See the section on the Custom Active Screen Capture Settings

dialog box in theHPUnified Functional Testing User Guide.

Application Area
Additional Settings pane
(business components only)

Use theApplicationspane.
In the application area, select Additional Settings > Applications in the sidebar.

See the section on theApplications pane in theHPUnified Functional Testing User Guide.

Add-ins Guide
Standard Windows Support -Quick Reference

HP Unified Functional Testing (12.52) Page 257

Known Issues - Standard Windows
This section describes troubleshooting and limitations for working with Standard Windows test objects.

l When recording on WinMenu objects, the Active Screen is not captured.

l You cannot insert a checkpoint on a WinMenu object.

Workaround: Use the CheckProperty and CheckItemPropertymethods to check specific property
and item property values.

l If you record using Windows logo key shortcuts, the recording may be inaccurate.

Workaround: Use the Startmenu instead of the Windows logo key when recording.

l Changing the style of a WinCalendar (from single selection to multi-selection, for example) will cause
the run session to fail.

l When using the pointing hand mechanism from the Object Spy to point to MFC static text or tab
controls, UFT may fail to return the correct object.

Workaround: Add the object to the object repository. To do this, point to the object's parent window,
select the parent window object in the Object Selection dialog box, click OK, and perform one of the
following in the Define Object Filter dialog box:

l Select the All object types option to add all of the objects in the parent window to the object
repository.

l Select the Selected object types option, click the Select button, and then select the specific
object type(s) you want to add to the object repository.

After you add the object to the object repository, you can use the GetROPropertymethod to retrieve
the run-time values of its properties. For example:

width = Dialog("Login").Static("Agent Name:").GetROProperty("width")
MsgBox width

l Checkpoints are not supported for WinComboBox objects of style Simple ComboBox.

l Windowless objects developed using an API other than the MSAA API are not identified.

l The description properties of a windowless control must include the acc_name property. By default,
this property is not available in the list properties when you add a new test object.

Workaround: Add the acc_name property to the list of properties. To do this from the Define New
Test Object Dialog Box, in the Test object details area, click the Add description properties button

. In the Add Properties dialog box, click the Define new property button and add the acc_
name property.

HP Unified Functional Testing (12.52) Page 258

HP Unified Functional Testing (12.52) Page 259

Part 15: Stingray Add-in
This section includes:

"Stingray Add-in - Quick Reference" on page 260

"Stingray Add-in - Testing and Configuration" on page 262

Stingray Add-in - Quick Reference
The following tables summarize basic information about the Stingray Add-in and how it relates to some
commonly-used aspects of UFT.

General Information

Add-in Type This is aWindows-based add-in. Much of its functionality is the sameas other Windows-based add-ins.

See "Windows-Based Application Support" on page 52.

Supported
Environments

TheUFT Stingray Add-in recognizes and records on supported Stingray ObjectiveGrid and Stingray
Objective Toolkit controls. For details on supported Stingray environments, see theStingray Add-in
section of theHP Unified Functional Testing Product Availability Matrix.

Important
Information

"Considerations for Working with the Stingray Add-in " on page 263

Test Object
Methods and
Properties

TheStingray Add-in uses a sub-set of the standard Windows test objects, methods, and properties, which
can beused when testing objects (controls) in Stingray applications. For details, see theStingray section
of theHPUFT Object Model Reference for GUI Testing.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Troubleshooting
and Limitations

"Known Issues - Stingray Add-in" on page 267

Prerequisites

Opening Your
Application

You can open your Stingray application before or after opening UFT.

Add-in
Dependencies

None

Other You must configure the Stingray Add-in to workwith your application. See "Setting Up Stingray
Object Support" on page 263.

Configuration

Wizard Stingray Support Configuration Wizard

Options Dialog Box l Use theStingray pane.
(Make sure that aGUI test is open and select Tools > Options > GUI Testing tab > Stingray
node.)

l Use theWindows Applicationspane.
(Tools > Options> GUI Testing tab >Windows Applications node)

Record and Run Use theWindows Applications tab.

HP Unified Functional Testing (12.52) Page 260

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

Settings Dialog Box
(tests only)

(Record > Record and Run Settings)

Note:

l In addition to the settings in theRecord and Run Settings dialog box, you must also
configureUFT to recognize your Stingray applications in theStingray paneof theOptions
dialog box (Tools > Options > GUI Testing tab > Stingray node).

l If you select theRecord and Run only on radio button in theRecord and Run Settings
dialog box, the settings also apply to (limit) the applications that are recognized for Object
Spy and other pointing hand operations.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use theWindows applications section.
(Tools > Options > GUI Testing tab > Active Screennode> Custom Level)

See the section on the Custom Active Screen Capture Settings dialog box in theHPUnified Functional
Testing User Guide.

Application Area
Additional Settings
pane
(business components
only)

Use theApplicationspane.
In the application area, clickAdditional Settings > Applications in the sidebar.

See the section on theApplications pane in theHPUnified Functional Testing User Guide.

Add-ins Guide
Stingray Add-in - Quick Reference

HP Unified Functional Testing (12.52) Page 261

Stingray Add-in - Testing and Configuration
This chapter includes:

• Setting Up Stingray Object Support 263

• Considerations for Working with the Stingray Add-in 263

• Stingray Run-time Agent (Agent DLL) 263

• Stingray Precompiled Agent Mode 264

• Record Cell Editing Options - Example 264

• How to Set Up Your Stingray Project Using the Precompiled Agent Mode 265

• Known Issues - Stingray Add-in 267

HP Unified Functional Testing (12.52) Page 262

Setting Up Stingray Object Support
Before you begin working, you need to configure the Stingray Add-in to work with your application. UFT
support for Stingray objects is based on an agent entity that exists in the Stingray application. This
agent interacts with UFT to enable record and run operations. There are two different modes for
establishing the agent entity:

l Run-time Agent Mode UFT injects an agent .dll into the application's process during run-time. This
is the recommended mode. For details, see "Stingray Run-time Agent (Agent DLL)" below.

l Precompiled Agent Mode. You make slight modifications to your Visual C++ project in addition to
configuring the Stingray Add-in. Use this mode only if the run-time agent mode is unsuitable or
cannot be used. For details, see "Stingray Precompiled Agent Mode" on the next page.

You choose your preferred mode and configure support for the Stingray Add-in using the Stingray
Support Configuration Wizard. For details, see Stingray Support Configuration Wizard.

After you configure support for the Stingray Add-in, you can fine-tune the configuration options, if
needed. For details, see the Stingray pane in the Options dialog box.

Considerations for Working with the Stingray Add-in
UFT stores Stingray support configuration for each configured Stingray application separately. By
default, UFT uses the latest configured Stingray agent version for all Stingray applications except those
applications that are already configured.

For example, suppose you have two Stingray applications; application grid1.exe that uses Stingray Grid
control version 9.03, and application tree1.exe that uses Stingray TreeView control version 11.00.

You can configure UFT to support both applications as follows:

1. Run the Stingray Support Configuration Wizard and configure support for the grid1.exe
application. UFT saves the configuration for this application.

2. Run the Stingray Support Configuration Wizard again and configure support for the tree1.exe
application. UFT saves the configuration for this application.

After performing these steps, UFT will support the grid1.exe application and support all Stingray
applications that have Stingray TreeView controls version 11.00, including the tree1.exe application.

Stingray Run-time Agent (Agent DLL)
When you choose the run-time agent mode, UFT injects an agent DLL into the application's process
during run-time. This recommended mode is non-intrusive and does not require any modifications to
the source code of the application being tested.

HP Unified Functional Testing (12.52) Page 263

You can use the run-time agent mode only with Stingray applications that are created with dynamically-
linked MFC libraries. You can verify if your MFC libraries are linked dynamically or statically by launching
the Stingray Support Configuration Wizard. If the wizard identifies that your Stingray application uses
statically-linked MFC libraries, it issues a warning.

The run-time agent mode supports the most commonly used major Stingray versions, as well as some—
but not all—minor versions. For a list of supported version combinations, see the HP Unified Functional
Testing Product Availability Matrix. You can also verify if your Stingray application version is supported
by launching the Stingray Support Configuration Wizard. If the wizard identifies that your Stingray
application version is not supported, it issues a warning.

Note: The Stingray Add-in is designed to support only applications that are compiled in Release
mode.

If you cannot use the run-time agent mode for any reason, you can still work with your Stingray
application using the precompiled agent mode, instead. For details, see "Stingray Precompiled Agent
Mode" below, or contact HP Software Support.

Stingray Precompiled Agent Mode
If your application is statically linked with the MFC libraries, you can use the precompiled agent mode to
enable Stingray object support. The precompiled agent mode requires you to make slight modifications
to your Visual C++ project to enable UFT to support your Stingray application. If you select the
precompiled agent mode in the Stingray Support Configuration Wizard, you can compile your project
using the Stingray Add-in agent files.

Note: If your Stingray application project was compiled with an earlier version of the Stingray Add-
in agent, your project already contains the required support code. To take advantage of the latest
functionality provided with this add-in, it is recommended to remove the existing Stingray Add-in
agent files from your project and recompile using the latest agent files.

Setting up Stingray support using the precompiled agent mode requires adding one support header file
to your application's Visual C++ project and copying one library file to your Visual C++ project directory.
After you complete these steps, you can compile your application, as usual.

Note: Use the precompiled agent mode only if the run-time agent mode is unsuitable or cannot be
used.

Record Cell Editing Options - Example
Suppose that during a recording session, you place the cursor in an edit-type cell that already contains
the value abc. You place the cursor before the b, delete the b and c characters, and then you type
bcde.

Add-ins Guide
Stingray Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 264

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

If you are using the WinTable.SetCellData statements option, UFT records the following in the Editor:

Window("GRIDAPP").Window("GridAp1").WinTable("StingrayGrid").SelectCell "#2",
"#3"
Window("GRIDAPP").Window("GridAp1").WinTable("StingrayGrid").SelectCell "#2",
"#3", "abcde"

UFT inserts these steps as follows in the Keyword View:

If you are using the WinEditor statements option, UFT records the following in the Editor:

Window("GRIDAPP").Window("GridAp1").WinTable("StingrayGrid").SelectCell "#2",
"#3"
Window("GRIDAPP").Window("GridAp1").WinEditor("Edit").SetCaretPos 0,1
Window("GRIDAPP").Window("GridAp1").WinEditor("Edit").Type micDel
Window("GRIDAPP").Window("GridAp1").WinEditor("Edit").Type micDel
Window("GRIDAPP").Window("GridAp1").WinEditor("Edit_2").Type "bcde"

UFT inserts these steps as follows in the Keyword View:

How to Set Up Your Stingray Project Using the
Precompiled Agent Mode

Note:

l Use the precompiled agent mode only if the run-time agent mode is unsuitable or cannot be
used.

l For a conceptual overview, see "Stingray Precompiled Agent Mode" on the previous page.

This task includes the following steps:

l "Prerequisites" on the next page

l "Copy StgAgentLib.h and StgAgentLib.lib files" on the next page

l "Add #include "StgAgentLib.h" to a .cpp file" on page 267

Add-ins Guide
Stingray Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 265

l "Add the ReleaseWRVC(); function call" on the next page

l "Make sure that the Precompiled Agent option is selected in the Stingray Support Configuration
Wizard" on the next page

l "Results" on the next page

1. Prerequisites

l Both Stingray Objective Grid and Stingray Objective Toolkit must be installed on your computer,
even if your application contains only one type of Stingray control, such as a grid control or a
tab control.

l The installed versions must match the version combinations supported for this add-in. For a list
of supported version combinations, see the HP Unified Functional Testing Product Availability
Matrix.

Note: If you do not have the required Stingray Objective Grid and Stingray Objective Toolkit
version combination, contact HP Software Support for assistance.

l If your Stingray application was previously compiled with agent files from an earlier version of
the Stingray Add-in, remove the existing agent files from your project.

Caution: If you choose not to replace your existing Stingray Add-in agent files with the
latest agent files, do not continue with this procedure. Although you will be able to work
with the UFT Stingray Add-in, you will not be able to take advantage of the latest
functionality.

2. Copy StgAgentLib.h and StgAgentLib.lib files

a. Copy the StgAgentLib.h header file from <UFT Installation
Folder>\bin\StingrayAgent\
AgentLib\src\StgAgentLib.h to your Visual C++ project directory. (You can optionally add
the header file to the list of header files in your workspace.)

b. Check the version of the Stingray Objective Grid or Stingray Objective Toolkit used by your
application and search for the corresponding support library file, StgAgentLib.lib.

For example, if your application is not compiled in Unicode and uses Objective Grid version 9.03
and Objective Toolkit version 8.03 linked with MFC version 7.1, search for the library file in:
<UFT Installation Folder>\bin\StingrayAgent\
AgentLib\bin\MFC71\OG903_OT803

If the application is linked with MFC80, is compiled in Unicode and uses Objective Grid version
10.0 and Objective Toolkit version 9.0, search for the library file in: <UFT
InstallationFolder>\bin\
StingrayAgent\AgentLib\bin\MFC80\OG1000U_OT900U

Note: Each support library file specifies a combination of Objective Grid and Objective
Toolkit versions. You must choose a combination of Objective Grid or Objective Toolkit

Add-ins Guide
Stingray Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 266

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

versions, even if your application uses only one of these Stingray tools. For a list of
supported Stingray version combinations, see the HP Unified Functional Testing Product
Availability Matrix.

c. Copy the StgAgentLib.lib support library file to your Visual C++ project directory.

3. Add #include "StgAgentLib.h" to a .cpp file

Add the #include "StgAgentLib.h" statement to one of your cpp files, such as, MainFrm.cpp.

4. Add the ReleaseWRVC(); function call

Insert the ReleaseWRVC(); function call in one of the functions called when your application
terminates, for example, CMainFrame::OnDestroy().

Note: Inserting this function call instructs the agent to perform required clean up operations
related to the support library code.

5. Make sure that the Precompiled Agent option is selected in the Stingray
Support Configuration Wizard

Follow the steps in the Stingray Support Configuration Wizard (Start > All Programs > HP
Software > HP Unified Functional Testing > Tools > Stingray Support Configuration Wizard).

6. Results

When you build your application executable, the added header file automatically links the
StgAgentLib.lib support library to your application statically, enabling the library code to be
activated automatically during the run session.

Known Issues - Stingray Add-in
This section describes troubleshooting and limitations for the Stingray Add-in.

General

l Applying Stingray Support Configuration settings to all users on the computer has no effect on users
that have opened UFT at least once.

Workaround: Apply Stingray Support Configuration settings separately for each user that has opened
UFT at least once.

l UFT does not support both Unicode and non-Unicode in the same application when the Stingray Add-
in is loaded.

Add-ins Guide
Stingray Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 267

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

Creating and Running Tests and Components

l If your Stingray application was built using the precompiled agent mode and you have used the
Stingray Support Configuration Wizard at least once to set a Stingray run-time agent, then recording,
learning, or running steps on the application may fail.

l By default, only single-threaded Stingray applications are supported.

To provide support for multithreaded applications, in UFT, select Tools > Options > GUI Testing tab >
Stingray node. Select the Support multithreaded Stingray applications check box and click OK.
Close and restart UFT.

l The Stingray Add-in does not support Objective Edit or Objective Chart controls.

l The ExpandAllmethod is not supported for Stingray tree controls.

l When working with nested tab controls, you may need to manually modify the corresponding entries
in the object repository to enable unique identification. For example, you may need to add an ordinal
identifier to the existing description.

l Sometimes, the MFC internal map that correlates a window handle of a control with the Visual C++
object may not contain an entry for all Stingray controls. In such cases, the Stingray Add-in may fail
to recognize certain Stingray controls because it relies on this map when retrieving information from
the application.

Workaround: The Stingray Add-in contains an auxiliary mechanism that serves as a fallback for the
lack of MFC map entries in the situation described above. To activate this mechanism, in UFT, select
Tools > Options > GUI Testing tab > Stingray node. Select the Cache MFC map check box and click
OK. Close and restart UFT.

Note: This mechanism is not activated by default because it imposes some performance
overhead.

l By default, edit boxes, check boxes, and drop-down (combo) lists are supported when recording on a
Stingray grid. Other types of controls embedded in Stingray grids may be supported partially or may
not be supported at all.

Note: The CGXTabbedComboBox control and the CGXCheckBoxEx control type are not supported
during recording.

Workaround: To work with controls other than the supported ones, manually add SetCellData
statements to your test or business component (instead of recording user actions inside cells).

l GetCellData and SetCellDatamethods are limited to 3000 characters.

Add-ins Guide
Stingray Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 268

l By default, only the following grid classes are supported:

l CGXBrowserView

l CGXBrowserWnd

l CGXGridWnd

l CGXGridView

l CGXGridHandleView

l When Stingray tree control items have tooltips, recording the selection of an item by clicking its label
may fail.

Workaround: Select the requested item by performing a click on the item's icon.

Add-ins Guide
Stingray Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 269

HP Unified Functional Testing (12.52) Page 270

Part 16: Terminal Emulator Add-in
This section includes:

"Terminal Emulator Add-in - Quick Reference" on page 271

"Terminal Emulator Add-in - Testing and Configuration" on page 273

Terminal Emulator Add-in - Quick Reference
The following tables summarize basic information about the Terminal Emulator Add-in and how it
relates to some commonly-used aspects of UFT.

General Information

Add-in Type This is aWindows-based add-in. Much of its functionality is the sameas other Windows-based add-ins.

See "Windows-Based Application Support" on page 52.

Supported
Environments

For details on supported emulators, see theTerminal Emulator Add-in section of theHP Unified
Functional Testing Product Availability Matrix.

Important
Information

l Before using the Terminal Emulator Add-in for the first time, you must enableUFT to identify your
terminal emulator.

l You must configure your terminal emulator settings to workwith UFT.

See "How to Set Your HLLAPI Terminal Emulator to Work with UFT" on page 282.

Test Object
Methods and
Properties

TheTerminal Emulator Add-in provides test objects, methods, and properties, which can beused when
testing objects (controls) in Terminal Emulator applications. For details, see theTerminal Emulators
section of theHPUFT Object Model Reference for GUI Testing.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "Checkpoints and Output Values - Terminal Emulators" on page 290.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Troubleshooting
and Limitations

"Known Issues - Terminal Emulator" on page 291

Prerequisites

Opening Your
Application

You can open your Terminal Emulator application before or after opening UFT and creating a
test.

Add-in Dependencies None

Configuration

Wizard Terminal Emulator Configuration Wizard

Options Dialog Box l Use theTerminal Emulator pane.
(Make sure that aGUI test is open and select Tools > Options > GUI Testing tab
>Terminal Emulator node.)

l Use theWindows Applicationspane.
(Tools > Options > GUI Testing tab > Windows Applications node)

Custom Active Screen Capture
Settings Dialog Box

Use the Terminal Emulator section in the dialog box.
(Tools > Options > GUI Testing tab > Active Screennode> Custom Level)

HP Unified Functional Testing (12.52) Page 271

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

(tests only) See the section on the Custom Active Screen Capture Settings dialog box in the
HPUnified Functional Testing User Guide.

Application Area Additional
Settings pane
(business components only)

Use theApplicationspane.
In the application area, clickAdditional Settings > Applications in the sidebar.

See the section on theApplications pane in theHPUnified Functional Testing User
Guide.

Add-ins Guide
Terminal Emulator Add-in - Quick Reference

HP Unified Functional Testing (12.52) Page 272

Terminal Emulator Add-in - Testing and
Configuration
This chapter includes:

• Terminal Emulator Add-in - Overview 274

• Recording Tests and Components on Terminal Emulator Applications 275

• Considerations for Recording and Running Tests and Components on Terminal Emulators 276

• Run Session Synchronization 277

• Terminal Emulator Recovery Scenarios 277

• How to Configure an Emulator to Work with the Terminal Emulator Add-in 278

• How to Set Your HLLAPI Terminal Emulator to Work with UFT 282

• How to Manage Terminal Emulator Configuration Settings 282

• How to Copy Existing Terminal Emulator Configurations 283

• How to Check the Validity of a Terminal Emulator Configuration 285

• Validating a Terminal Emulator - Possible Error Responses 285

• How to Synchronize Steps on Terminal Emulators 288

• Checkpoints and Output Values - Terminal Emulators 290

• Known Issues - Terminal Emulator 291

HP Unified Functional Testing (12.52) Page 273

Terminal Emulator Add-in - Overview
You can use UFT with the Terminal Emulator Add-in to test terminal emulator applications that support
HLLAPI (High Level Language Application Programming Interface) as well as those that do not, for
example, emulator sessions configured to work with the VT100 protocol (using the Text-only option).
HLLAPI allows a PC application to communicate with a mainframe application with extended capabilities.

UFT distinguishes between the window of the terminal emulator and the screens in the host application.
The terminal emulator window consists of the frame, menus, toolbar, and status bar of the terminal
emulator itself. This window remains constant throughout each terminal emulator session.

The terminal emulator screen refers to the area of the window in which the application is displayed.
Each time the host responds to user input to the application, the screen changes.

If your emulator supports HLLAPI, UFT recognizes the screen and field objects in your emulator screen. If
your emulator does not support HLLAPI, or you have configured UFT in Text-onlymode, UFT records
operations in terms of the text as it appears in the rows and columns of your emulator screen.

The UFT Terminal Emulator Add-in includes preconfigured settings for several terminal emulators. The
Terminal Emulator Add-in also enables you to configure the settings for most other terminal emulators
using the Terminal Emulator Configuration Wizard.

To configure your HLLAPI emulator to work with UFT, see "How to Set Your HLLAPI Terminal Emulator to
Work with UFT" on page 282.

HP Unified Functional Testing (12.52) Page 274

Recording Tests and Components on Terminal
Emulator Applications
As you record, the test or business component reflects the objects in your application and the type of
operation you perform (such as pressing function keys or typing in fields). Each object has a defined set
of properties that determines its behavior and appearance. UFT learns these properties and uses them
to identify and locate objects during a run session.

Tip: You can launch your terminal emulator using the SystemUtil.Runmethod as the first step of
your test or business component. For more details, see the section in the HP Unified Functional
Testing User Guide on running and closing applications programmatically, and the Standard
Windows section of the HP UFT Object Model Reference for GUI Testing.

By default, when you record a test or business component, UFT automatically inserts synchronization
points so that during a run session, execution will be delayed until the application is ready to receive
input. You can also add synchronization points manually. For more details, see "How to Synchronize
Steps on Terminal Emulators" on page 288.

The following is a sample of a UFT test recorded on a terminal emulator application that fully supports
HLLAPI.

While recording, the user pressed the ENTER key in the first screen of an application, waited for the
screen to change, and then typed the name MERCTEST and a password in the appropriate fields.

TeWindow("TeWindow").TeScreen("Welcome").SendKey TE_ENTER
TeWindow("TeWindow").TeScreen("Welcome").Sync
TeWindow("TeWindow").TeScreen("Sign On").TeField("User").Set "MERCTEST"
TeWindow("TeWindow").TeScreen("Sign On").TeField("Password").SetSecure
"3c4feb5bc6233d6e6898bc"

UFT displays this test in the Keyword View like this:

The following is a sample test on a terminal emulator that does not support HLLAPI or that has been
configured to support text-only HLLAPI operations.

Note that UFT records the TeTextScreen object instead of the TeScreen object and that it does not
record TeField objects. The operations are recorded in terms of keyboard and mouse operations on the

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 275

text screen, rather than operations within fields.

TeWindow("TeWindow").TeTextScreen("TeTextScreen").ClickPosition 24,2
TeWindow("TeWindow").TeTextScreen("TeTextScreen").Type "l"
TeWindow("TeWindow").TeTextScreen("TeTextScreen").Type micReturn
TeWindow("TeWindow").TeTextScreen
("TeTextScreen").WaitString"FRSMAIN",1,2,1,8,2000
TeWindow("TeWindow").TeTextScreen("TeTextScreen").Type "qa1"
TeWindow("TeWindow").TeTextScreen("TeTextScreen").Type micReturn
TeWindow("TeWindow").TeTextScreen("TeTextScreen").Sync

UFT displays this test in the Keyword View like this:

This section also includes "Considerations for Recording and Running Tests and Components on
Terminal Emulators" below.

Considerations for Recording and Running Tests and
Components on Terminal Emulators
l Connect your emulator to the host and ensure that the emulator is configured properly. For details,

see "How to Set Your HLLAPI Terminal Emulator to Work with UFT" on page 282.

l Make sure that only one terminal emulator session is open. (Multiple open sessions may cause
problems with recording and running tests or business components.)

l If your test or business component includes calls to WinRunner tests, make sure that these tests do
not use the WinRunner Terminal Emulator Add-in. Similarly, when running WinRunner tests with the
WinRunner Terminal Emulator Add-in, make sure that these tests do not use the UFT Terminal
Emulator Add-in if they include calls to UFT tests.

l If you are using an emulator that is configured as fully supporting HLLAPI and you need to record
specific steps in terms of keyboard and mouse operations on the text screen (instead of operations
within fields), you can change the recording mode for your emulator by adjusting the configuration.
For details, see "How to Manage Terminal Emulator Configuration Settings" on page 282.

l UFT does not record operations on the toolbar and status bar in the terminal emulator window.
However, you can insert checkpoints or output values for the status bar of the terminal emulator

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 276

window while recording. For more details, see "Checkpoints and Output Values - Terminal Emulators"
on page 290.

Run Session Synchronization
When testing a terminal emulator application, many factors can affect its speed of operation and
therefore can potentially interfere with the run session. For example, host response time can vary
depending on the system load.

Synchronizing your run session helps to ensure that UFT performs the next step in the test or business
component only when your terminal emulator application is ready to continue. This prevents incidental
differences in host response time and other factors from affecting successive run sessions.

The following table illustrates the synchronization options available for various terminal emulator
applications:

Emulator
type

Synchronization options

All
emulator
types

You can instruct UFT to delay the run session:

l For a specified period of time

l Until a specific string appears in a defined area

l Until a specified property achieves a defined value

Emulators
that fully
support
HLLAPI

You can synchronize the run session with the response timeof the host. By default, during a record session, UFT
automatically generates aSync statement for the TeScreen object each time the emulator waits for a response
from thehost.

Emulators
that do
not
support
HLLAPI

When you record using a terminal emulator that does not support HLLAPI, or that has been configured as
supporting text-only HLLAPI operations, UFT automatically generates aSync statement for the TeTextScreen
object each timea specified key is pressed. The default is theENTER key. UFT waits a specified period of time, to
allow thehost sufficient response time.

For a list of tasks describing how to synchronize, see "How to Synchronize Steps on Terminal Emulators"
on page 288.

Terminal Emulator Recovery Scenarios
UFT allows you to define recovery scenarios for your tests or business components, to cater for various
unexpected events, such as crashes and error situations, which can disrupt your tests or business
components and distort your results.

You can use the values of the Emulator status property and the other properties of the TeWindow
object to define specific recovery scenarios for your terminal emulator application tests or business
components.

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 277

The possible values for the Emulator status property are:

l Busy. Emulator is communicating with the server.

l Disconnected. Emulator is not connected to the server.

l Locked. Emulator cannot currently accept input.

l Ready. Emulator is waiting for input.

l Unavailable. Emulator status cannot be identified.

For each emulator status, you can create a recovery scenario that performs an appropriate recovery
operation. For example:

l Disconnected. Reconnect to the server, using a function call recovery operation that includes
recorded steps for connecting, API commands in a VB Script, or a keyboard shortcut key, according to
the capabilities of your terminal emulator.

l Ready. Perform specific operations according to the content of a displayed error message, including
pressing the relevant key.

l Locked. Activate the emulator's RESET key, or use a handler function to disconnect from the server
and reconnect.

For more details on defining recovery scenarios, see the HP Unified Functional Testing User Guide.

How to Configure an Emulator to Work with the
Terminal Emulator Add-in
This section describes how to configure an emulator to work with the Terminal Emulator Add-in:

"Attachmate EXTRA!" on the next page

"Attachmate myEXTRA! Terminal Viewer" on the next page

"Attachmate INFOConnect" on the next page

"Hummingbird HostExplorer" on page 280

"IBM Personal Communications (PCOM)" on page 280

"IBM WebSphere Host On-Demand" on page 280

"NetManange RUMBA" on page 281

"NetManage RUMBA Web-to-Host" on page 281

"Seagull BlueZone" on page 281

"WRQ Reflection" on page 282

"Zephyr Passport" on page 282

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 278

Attachmate EXTRA!

To connect your EXTRA! terminal emulator to UFT:

1. Open EXTRA!.

2. In EXTRA!, select Options > Global Preferences. The Global Preferences dialog box opens.

3. Click the Advanced tab.

4. In the HLLAPI shortname list, select the uppercase letter A as the Short Name.

5. Click the browse button, browse to and select your session profile, and click OK.

6. Save the profile before you start testing with UFT. This enables you to configure the terminal
emulator once and then reuse the saved settings.

Attachmate myEXTRA! Terminal Viewer

To connect your myEXTRA! terminal viewer to UFT:

1. Open the myEXTRA! Management and Control Services window.

2. In the Management and Control Services window, select Products > Terminal Viewers. The
Terminal Viewers tree is displayed in the left pane.

3. In the Terminal Viewers tree, select the required terminal.

4. In the right pane, select the required session and click Properties.

5. In the Properties pane, click Configure to configure the connection.

6. In the General tab of the Configure pane, select the Support HLLAPI check box and set the session
name to A.

7. Save the session.

8. If this is the first time that you are connecting to a myEXTRA! terminal viewer, install the HLLAPI
DLL, as follows:

a. Click Preferences.

b. Click the Install HLLAPI Client Components link.

Attachmate INFOConnect

To connect your INFOConnect terminal emulator to UFT:

1. Open Attachmate INFOConnect.

2. Select Options > Global Preferences from the main menu.

3. Select the Advanced tab.

4. Select A as the session short name.

5. To associate the session short name (A), with your session, click Browse and locate your session
profile in the file system.

6. Click OK.

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 279

Hummingbird HostExplorer

To connect your HostExplorer terminal emulator to UFT:

1. Open HostExplorer.

2. From the HostExplorer main menu, select File > Save Session Profile.

3. In the Save Profile dialog box, set the HLLAPI Short Name to the uppercase letter A.

4. From the main menu, select Options > API Settings.

5. In the API Global Settings dialog box, select the Update screen after PS update and Auto sync
options.

6. Click OK.

Alternatively:

1. Open HostExplorer.

2. Open a saved session.

3. Select Options > Edit Session Profile.

4. Select Terminal > API in the categories tree.

5. Select A as the session short name and click OK.

6. Save the session profile.

IBM Personal Communications (PCOM)

The preconfigured settings enable UFT to work with IBM PCOM terminal emulators.

IBM WebSphere Host On-Demand

To connect your WebSphere Host On-Demand terminal emulator to UFT:

1. Open the WebSphere Host On-Demand EHLLAPI Enablement Tool. (If you do not have this tool,
contact IBM for details on how to acquire and install it.)

2. To enable UFT to record on the IBM WebSphere Host On-Demand terminal emulator, define the
session options as follows:

a. Click Configure and select Properties from the list. Then select Preferences > Start Options
and set Auto-Start HLLAPI Enabler to Yes.

b. Set the Start In Separate Window option to Yes.

c. Set the Alternate Terminal option to Disable.

Make sure that the server and client are not installed on a computer on which another terminal
emulator is installed.

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 280

NetManange RUMBA

To connect your RUMBA terminal emulator to UFT:

1. Open RUMBA.

2. In RUMBA, select Options > API. The API Options dialog box opens.

3. Click the Identification tab.

4. In the Session Short Name field, type the uppercase letter A.

5. Click OK.

6. Save the profile.

Tip: It is recommended to save the profile before you start testing with UFT. This enables you
to configure the terminal emulator once and then reuse the saved settings.

NetManage RUMBA Web-to-Host

To connect your RUMBA Web-to-Host terminal emulator to UFT:

1. Open the RUMBAWeb-to-Host Session Configuration Manager and open a session.

2. In addition to your standard configuration steps in the Configuration Manager:

a. Select Pro client from the Implementation drop-down list.

b. Click HLLAPI Configuration and select A from the Session Short Name drop-down list.

3. Save the profile.

Note:

l For versions 5.x: Only Mainframe Display is supported for the Java client Only Replay is
supported for both Java client and Pro client.

l For version 6.x: Java Client is not supported. Only Replay is supported for Pro client.

For more details on supported versions RUMBAWeb-to-Host, see the HP Unified Functional Testing
Product Availability Matrix.

Seagull BlueZone

To connect your BlueZone terminal emulator to UFT:

1. Open BlueZone.

2. In BlueZone, select Options > API. The API Properties dialog box opens.

3. Click the Options tab.

4. In the Short NameSession Identifier field, type the uppercase letter A.

5. Click OK.

6. Save the session.

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 281

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

WRQ Reflection

To connect your Reflection terminal emulator to UFT:

1. Open a new or existing session.

2. Select Setup > Terminal.

3. In the Short Name field, type the uppercase letter A.

4. Click OK.

Zephyr Passport

To connect your Zephyr Passport terminal emulator to UFT:

1. Open a new or existing session.

2. Check that the session shortname (A) Passport.zws appears in the window title bar.

How to Set Your HLLAPI Terminal Emulator to Work
with UFT
The steps below provide a general overview of how to enable testing on your terminal emulator
application when working with an emulator that supports HLLAPI. For details on how to configure a
specific emulator, see "How to Configure an Emulator to Work with the Terminal Emulator Add-in" on
page 278.

1. Connect your emulator to the host before running the Terminal Emulator Configuration Wizard and
before recording each test or business component.

2. Assign the uppercase letter A as the short name for the current emulator session.

3. (Optional) Restart the emulator after changing these settings.

Note: For details on supported emulator versions and protocols, see the HP Unified Functional
Testing Product Availability Matrix.

How to Manage Terminal Emulator Configuration
Settings
The following steps describe how to manage your terminal emulator configuration settings.

l "Change configuration settings" on the next page

l "Restore default settings for the selected preconfigured emulator" on the next page

l "Restore settings for a user-defined configuration" on the next page

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 282

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

Change configuration settings

The Terminal Emulator Configuration Adjustments dialog box contains check boxes, radio buttons, and
options that require a numeric or text value.

1. Open the Terminal Emulator Configuration Adjustments Dialog Box.

2. Enter a numeric or text value for an option:

a. Click the option once to highlight it.

b. Click the option again or press F2 to access the value to be changed.

c. Change the value as necessary.

d. Click another location in the dialog box to set the value.

3. Click OK to update the current terminal emulator configuration and close the dialog box.

Restore default settings for the selected preconfigured emulator

1. Open the Terminal Emulator Configuration Adjustments Dialog Box.

2. Click the Reset button. (This button is enabled only if a preconfigured emulator is selected.)

Restore settings for a user-defined configuration

1. Locate the saved registry file that contains the configuration settings in the <UFT installation
folder>\dat folder on your computer. The file has a .reg extension. (The path for the dat folder
in a typical installation is: %ProgramFiles%\HP\Unified Functional Testing\dat.)

2. Double-click the registry file to activate the registry file. A confirmation message opens.

3. Click Yes. A message opens confirming that the information was copied into the registry.

4. Click OK. The settings in the saved file are restored.

Tip: You can also restore the settings for a user-defined terminal emulator, if these settings
were saved previously using the wizard.

How to Copy Existing Terminal Emulator
Configurations
This task describes how to copy a terminal emulator configuration from another user who has already
configured the UFT settings for a specific emulator using the Terminal Emulator Configuration Wizard.

For example, if the settings for your terminal emulator were configured and saved to a file on another
computer (or on a network drive), you can copy this file to your computer, instead of running the wizard
and configuring the settings yourself.

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 283

This task includes the following steps:

l "Prerequisites" below

l "Copy the registry file to your computer" below

l "Register the file" below

l "Set the new emulator as the default emulator - Optional" below

l "Modify the emulator settings - Optional" below

l "Results" below

1. Prerequisites

l The existing configuration file must be saved to a registry file, using the Save terminal
emulator settings to file option in the wizard's final page.

l Before you copy the saved configuration, make sure you know the vendor name and the
emulator name assigned to the configuration, and the exact name and location of the file. The
file has a .reg extension.

2. Copy the registry file to your computer

a. Locate the registry file containing the configuration settings for your emulator. The file has a
.reg extension.

b. Copy the file to the <UFT installation folder>\dat folder on your computer.

The path for the dat folder in a typical installation is: %ProgramFiles%\HP\Unified
Functional Testing\dat

3. Register the file

a. Double-click the registry file to open the Registry Editor message box.

b. Click Yes to add the information into the registry. A message opens confirming that the
information has been copied into the registry.

c. Click OK. The emulator name assigned to this configuration is added to the list of available
terminal emulators for your UFT installation.

4. Set the new emulator as the default emulator - Optional

a. Open UFT with the Terminal Emulator Add-in loaded.

b. Select the new emulator name from the list in the Tools > Options > GUI Testing tab >
Terminal Emulator pane, and set it as your default emulator.

5. Modify the emulator settings - Optional

a. Open UFT with the Terminal Emulator Add-in loaded.

b. Open the Terminal Emulator Configuration Wizard.

6. Results

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 284

After you copy a configuration file from another location, the emulator name assigned to this
configuration is added to the list of available terminal emulators for your UFT installation.

Note: If you copy a configuration file after starting UFT, you need to close and reopen UFT to
see the updated list of available emulators.

How to Check the Validity of a Terminal Emulator
Configuration
1. Make sure that a GUI test is open.

2. Open the Terminal Emulator pane of the Options dialog box (Tools > Options > GUI Testing tab >
Terminal Emulator node).

3. Click Validate.

If a problem is detected, a brief description (error response) is displayed in the pane. For details on
handling the error, click Troubleshoot to open a Help page that displays error-specific information.

Validating a Terminal Emulator - Possible Error Responses
The following possible error responses may be displayed in the Terminal Emulator pane of the Options
dialog box (Tools > Options > GUI Testing tab > Terminal Emulator node) when you click the Validate
button:

l "Invalid HLLAPI DLL" below

l "Cannot detect an open session" on the next page

l "Cannot locate the main window class " on the next page

l "Cannot detect the emulator screen" on the next page

l "Cannot connect to the open session" on the next page

l "Cannot retrieve session text" on page 287

l "Cannot detect open session, or Cannot locate the main window class" on page 287

l "HLLAPI DLL not found" on page 287

l "More than one session open" on page 287

l "Unknown error" on page 287

Invalid HLLAPI DLL

The required HLLAPI or EHLLAPI function cannot be found, because the configured DLL is invalid.

Ensure that you have configured the correct DLL path and name in the Terminal Emulator Configuration
Wizard (Tools > Options > GUI Testing tab > Terminal Emulator node > Open Wizard).

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 285

For more details, see the table listing the DLL names used by supported terminal emulators in the
Configure HLLAPI Properties Page of the Terminal Emulator Configuration Wizard, or the documentation
provided by your emulator provider.

Cannot detect an open session

UFT cannot detect an open terminal emulator session.

l Ensure that you have opened a current session in your terminal emulator.

l For HLLAPI emulators, ensure that the emulator short session name is set to the uppercase letter A.
You may need to restart the emulator after changing this setting.

Cannot locate the main window class

UFT cannot find the terminal emulator main window class name.

l Ensure that the terminal emulator main window class name is configured correctly in the Terminal
Emulator Configuration Wizard (Tools > Options > GUI Testing tab > Terminal Emulator node >
Open Wizard).

l If the main window class name has a postfix that changes each time you launch the emulator, enter
only the non-changing portion of the name in the Terminal Emulator Configuration Wizard.

Cannot detect the emulator screen

UFT cannot find the terminal emulator main window class name.

l Ensure that the terminal emulator main window class name is configured correctly in the Terminal
Emulator Configuration Wizard (Tools > Options > GUI Testing tab > Terminal Emulator node >
Open Wizard).

l If the main window class name has a postfix that changes each time you launch the emulator, enter
only the non-changing portion of the name in the Terminal Emulator Configuration Wizard.

Cannot connect to the open session

Although a current session is open, invoking an HLLAPI function resulted in an error.

Restart UFT and then restart the emulator. If this does not resolve the problem, contact your emulator
provider.

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 286

Cannot retrieve session text

UFT cannot display text captured in the current session.

l HLLAPI Emulators—Restart UFT and then restart the emulator. If this does not resolve the problem,
contact your emulator provider.

l Non-HLLAPI Emulators—Click Validate again. If the error message is repeated, check that the
emulator screen is brought to the front during the validate process (even when using remote
access). If this is the case, contact HP Customer Support.

Cannot detect open session, or Cannot locate the main window class

UFT cannot detect an open terminal emulator session, or find the terminal emulator main window class
name.

l Ensure that you have opened a current session in your terminal emulator.

l Ensure that the terminal emulator main window class name is configured correctly in the Terminal
Emulator Configuration Wizard (Tools > Options > GUI Testing tab > Terminal Emulator node >
Open Wizard).

l If the main window class name has a postfix that changes each time you launch the emulator, enter
only the non-changing portion of the name in the Terminal Emulator Configuration Wizard.

HLLAPI DLL not found

UFT cannot find the HLLAPI DLL specified for the selected emulator.

Ensure that you have configured the correct DLL path and name in the Terminal Emulator Configuration
Wizard (Tools > Options > GUI Testing tab > Terminal Emulator node > Open Wizard).

For more details, see the table listing the DLL names used by supported terminal emulators in the
Configure HLLAPI Properties page of the Terminal Emulator Configuration Wizard, or the documentation
provided by your emulator provider.

More than one session open

More than one terminal emulator session is currently open.

Close additional sessions.

Unknown error

The validation process failed due to an unknown error.

Restart UFT and then restart the emulator.

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 287

How to Synchronize Steps on Terminal Emulators
The following steps describe how to perform various types of synchronization operations. For
conceptual details, see "Run Session Synchronization " on page 277.

l "Insert a synchronization step while recording" below

l "Set synchronization timeout" below

l "Insert a synchronization point for an object" below

l "Wait for a specified text string" on the next page

Insert a synchronization step while recording

1. Select Design > Emulator Synchronization.

2. (Optional) Specify a timeout in milliseconds for the Sync statement, after which the run session
continues regardless of the status of the emulator. If you do not specify a timeout value, UFT uses
the default timeout interval, as described in "Set synchronization timeout" below.

Note:

l You can adjust your emulator configuration to prevent UFT from automatically inserting
Sync steps for TeScreen objects in your test or business component.

l You can specify the keys that generate Sync steps for TeTextScreen objects.

For details, see "How to Manage Terminal Emulator Configuration Settings" on page 282

Set synchronization timeout

In the Run Pane of the Test Settings Dialog Box (File > Settings > Run node), set the Object
Synchronization Timeout. For details, see the HP Unified Functional Testing User Guide.

This enables you to specify the maximum interval (in milliseconds) that UFT waits before running each
test step.

Note:

l This option is not available for business components.

l This setting is also used as the default timeout for the Sync andWaitStringmethods for both
the TeScreen and the TeTextScreen objects if a timeout argument is not specified.

Insert a synchronization point for an object

Select Design > Synchronization Point. For details, see the HP Unified Functional Testing User Guide.

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 288

When you insert a synchronization point into your test or business component, UFT generates a
WaitProperty statement in the Editor. This statement instructs UFT to pause the test or business
component until a particular object property achieves the value you specify.

Example:

If you want the run session to wait until the Text property of the Result field has a value of
Successful, insert the following statement:

TeScreen("LogOn").TeField("Result").WaitProperty "Text", "Successful"

Wait for a specified text string

UFT'sWaitStringmethod delays the run session until a specific text string appears in a specified
rectangle on the terminal emulator screen. The specified text string can be a constant string or a
regular expression.

To insert a WaitString statement while recording:

1. Select Design > Emulator WaitString. Your cursor becomes a crosshairs pointer.

2. Drag the pointer to draw a rectangle on your emulator screen containing the text string for which
you want the run session to wait. UFT inserts a step into your test or business component with the
following syntax:

TeScreen object:

TeScreen(description).WaitString String [, TopRow, LeftColumn,
BottomRow, RightColumn, Timeout, RegExp]

TeTextScreen object:

TeTextScreen(description).WaitString String, [TopRow, LeftColumn,
BottomRow, RightColumn, Timeout, RegExp]

The position on the screen is defined by the values of the four corners of the rectangle, each
corner with its own argument.

3. Optionally, you can:

l Specify that the value specified in the String argument is a regular expression by setting the
value of the RegExp argument to True. Regular expressions enable UFT to identify objects and
text strings with varying values. For more details on regular expressions, see the HP Unified
Functional Testing User Guide.

l Add a timeout value in milliseconds after which the run session continues regardless of whether
the text string appears on the screen. If you do not specify this value, UFT uses the default
timeout interval. For details, see "Set synchronization timeout" on the previous page.

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 289

Checkpoints and Output Values - Terminal Emulators
While recording your test, you can add text checkpoints for the following:

l TeScreen and TeTextScreen objects

l status bar of the terminal emulator window

l dialog boxes that open after menu options are selected

While editing your test or business component, you can:

l add text checkpoints for TeScreen objects.

l add text checkpoints for TeTextScreen objects if the test was recorded using an emulator with full
HLLAPI support that was configured to record in Text screenmode. For details on changing the
emulator mode, see "How to Manage Terminal Emulator Configuration Settings" on page 282.

l output property or text values from the objects in your terminal emulator application to use in your
test or business component.

Guidelines for Using Checkpoints and Output Values

l You can create bitmap checkpoints for TeWindow, TeScreen and TeTextScreen objects, but not for
TeField objects.

l You can create text output values (tests only) only for TeScreen and TeTextScreen objects.

l In the terminal emulator window you can add text checkpoints or output values (tests only) and
standard checkpoints and output values for the status bar and the dialog boxes that open from the
menu options. UFT recognizes these as standard Windows objects. For more details on the properties
of standard Windows objects, see the Standard Windows section of the HP UFT Object Model
Reference for GUI Testing.

For details on standard, text, and bitmap checkpoints, and on standard and text output values, see the
HP Unified Functional Testing User Guide.

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 290

Known Issues - Terminal Emulator
This section contains general troubleshooting and limitation information about the Web add-in, and
includes the following sections:

l "Installing and Loading the Terminal Emulator Add-in" below

l "Connecting and Disconnecting from the Terminal Emulator Add-in" below

l "Configuration and Settings" on the next page

l "Creating and Running Tests and Components" on the next page

l "Working with Terminal Emulator Controls" on page 294

l "Test Objects, Methods, and Properties" on page 294

l "Checkpoints and Output Values " on page 295

l "Multilingual Support" on page 295

Installing and Loading the Terminal Emulator Add-in

l When installing a Hummingbird HostExplorer terminal emulator or patches, make sure that UFT is
closed.

l If the UFT Terminal Emulator Add-in is installed and loaded, but there is no terminal emulator
installed on your computer, the following error message is displayed: UFT Terminal Emulator
support is not configured correctly. Either the terminal emulator is not
installed on your computer or the HLLAPI DLL was not found.

Workaround:When you open UFT, clear the Terminal Emulators check box in the Add-in Manager.

Note: You can prevent this message from appearing by adjusting your emulator's configuration
settings. For more details, see "How to Manage Terminal Emulator Configuration Settings" on
page 282.

l You may experience unexpected behavior after you install an EXTRA! emulator. You may not be able
to run UFT or various features may stop working. This happens because the EXTRA! installation may
have copied and registered an outdated version of the atl.dll file on your computer.

Workaround: Locate the atl.dll in your system folder (WINNT\system32). Its version should be 3.0
or higher. Register it with the regsvr32 utility.

Connecting and Disconnecting from the Terminal Emulator Add-in

l If you have more than one terminal emulator session open, UFT does not recognize either session.

Workaround:While recording or running your test or business component, make sure that only one
terminal emulator session is connected at a time.

HP Unified Functional Testing (12.52) Page 291

l If your test or business component contains steps that disconnect the current emulator session
during the run session, followed immediately by a TeScreen.Sync command, the test or business
component run might stop responding or take a long time to respond.

Workaround: Remove the Sync command from the test or business component, or replace it with a
Wait statement. For more details, see the Utility Objects section of the HP UFT Object Model
Reference for GUI Testing.

l Inserting a checkpoint, creating a new test or business component, or opening an existing test or
business component when the emulator session is busy may cause unexpected problems.

Workaround: Check the connection status of your emulator on the status line of the emulator screen
before performing any of these operations.

l Unexpected behavior may occur after disconnecting from a Host On-Demand session while recording.

Workaround: Stop recording before disconnecting from the session. Then, manually add a step that
disconnects from the session.

l You may experience unexpected behavior if the terminal emulator is closed while UFT is recording.

Configuration and Settings

l When working with an emulator that does not support HLLAPI, or with an emulator that has been
configured as supporting text-only HLLAPI operations, do not change the size of the terminal
emulator window after configuring the emulator settings.

l To enable support for a NetManage Web-To-Host Java Client session that is configured to open in a
separate window, specify the title of your session window using the Tools > Options > GUI Testing
tab > Terminal Emulator > Adjust Configuration > Object identification settings > Identify
emulator window based on title bar prefix option.

Tip: You may need to clear this value when switching to another configuration.

l When using the Terminal Emulator Configuration Wizard to configure the screen sizes of NetManage
RUMBAWeb-to-Host, you cannot use the Mark Text Area option to draw on top of the emulator
window.

Workaround: Configure the text area position of the screen manually.

Creating and Running Tests and Components

l When using the OCR mechanism in order to perform steps requiring text recognition on non-HLLAPI
emulators, the steps run slowly due to the required processing power of the OCR mechanism.
Therefore, when testing non-HLLAPI emulators, it is recommended to select the default text
recognition option: First Windows API then OCR in the Text Recognition pane of the Options dialog
box. (For details on this option, see the HP Unified Functional Testing User Guide.)

l The UFT Terminal Emulator Add-in can identify emulator window objects only when the emulator is
connected. For example, you cannot use the following statement to connect to an emulator session:

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 292

TeWindow("TeWindow").WinMenu("Menu").Select "Communication;Connect"

Workaround: You can record any steps that need to be performed prior to connection with the
emulator. These steps are recorded as if the Terminal Emulator Add-in is not loaded. After the
emulator is connected, stop the recording session and begin a new recording session to record
terminal emulator objects.

l When using an emulator that supports HLLAPI, if your emulator session disconnects from the host
while recording, UFT no longer recognizes the emulator, even after reconnecting.

Workaround: Stop recording, reconnect the session, and continue recording.

l When recording on a Hummingbird HostExplorer emulator, menu and toolbar operations in the
emulator window are disabled.

Workaround: Stop recording, select the required menu item or click the required toolbar button, and
continue recording.

l When using an emulator that supports HLLAPI, closing the emulator window while recording may
cause unexpected results.

Workaround: Stop recording before closing the emulator window.

l The UFT Terminal Emulator Add-in does not support recording operations on toolbar objects in
terminal emulator applications.

Workaround: Record on the corresponding menu command for the toolbar button. Alternatively, you
can use low-level recording to record operations on toolbars. For more details about low-level
recording, see the HP Unified Functional Testing User Guide.

l If you record a test or business component using one terminal emulator, it may not run correctly on
another terminal emulator. For example, tests recorded on RUMBAmay not run on IBM PCOM.

l HostExplorer has a bug in the HLLAPI GetKey function. As a result, UFT will stop recording terminal
emulator keyboard events after recording for a while, and the emulator might stop responding to
keyboard events.

Workaround: Contact Hummingbird customer support to get the patch that fixes the problem with
the HLLAPI GetKey function (where it stops responding after several calls).

l Clicking, typing, or moving objects in the terminal emulator window while UFT is running a test or
business component may cause unexpected results.

Workaround:Wait until the end of the test or business component, or pause the test or business
component execution before using the emulator.n

l To record and run tests or business components on Hummingbird 9.0 5250 sessions, you need to
install a patch for Hummingbird.

Workaround: Contact Hummingbird customer support to get the patch that fixes the problem with
HLLAPI where all 5250 fields appear protected.

l You might encounter unexpected results when you run the Reflection HLL API in multiple threads
mode.

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 293

Working with Terminal Emulator Controls

l When working with Attachmate Terminal Viewer 3.1 5250 session, all of the fields that appear on the
screen before the first unprotected field are recognized as a single field.

l UFT may not recognize a TeField object in a NetManage RUMBA session immediately after installing
the emulator.

Workaround: Restart your computer after installing RUMBA, even if the installation does not request
a restart.

Test Objects, Methods, and Properties

l When using the SendKeymethod to unlock a terminal emulator, for example, TeWindow
("TeWindow").TeScreen("screen5296"). SendKey TE_RESET, some emulators (such as Host On-
Demand) may not be unlocked.

Workaround: Specify the keyboard event to send for the RESET command, using the Tools > Options
> GUI Testing tab > Terminal Emulator pane > Adjust Configuration > Run Settings > Run steps
containing special emulator keys using keyboard events > Keys for RESET function option.

l By default, UFT uses the attached text and protected properties in TeField test object descriptions. If
the attached text for a field changes from session to session, UFT cannot find the field during the run
session.

Workaround: Open the Object Repository Window or the Object Repository Window for the object.
Remove the attached text property from the field's description and add another property (or
properties) such as start row, start column, or index to uniquely identify the object.

Tip: You can also create a smart identification definition for TeField objects so that your
recorded test or business component can run successfully even if the attached text property
value for a particular TeField object changes. (Select Tools > Object Identification > Enable
Smart Identification and click Configure.) For more details on Smart Identification, see the
HP Unified Functional Testing User Guide.

l You cannot use the label property in a programmatic description of the TeScreen object. However,
since only one screen can exist in the given TeWindow at any one time, you can use TeScreen
("MicClass:=TeScreen").

For example:

TeWindow("short name:=A").TeScreen("MicClass:=TeScreen").TeField("attached
text:=User", "Protected:=False").Set "33333"

l The TeTextScreen properties current column and current row are available only for emulators that
support HLLAPI.

l The location property is not recorded for TeField objects.

Workaround: Use the index property instead.

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 294

Checkpoints and Output Values

In some cases, a bitmap checkpoint on a TeScreen may fail because the cursor shows in the expected
bitmap, and not in the actual bitmap (or the other way around).

Workaround: Set the emulator cursor to a slow blink rate, or not to blink at all. This enhances the
probability that the cursor is not captured in the bitmap.

Multilingual Support

When working with the IBM PCOM emulator, UFT may ignore special European language characters while
recording or running a test or business component.

Workaround: Set the code page for your IBM PCOM emulator in UFT, using the Tools > Options > GUI
Testing tab > Terminal Emulator > Adjust Configuration > Emulator settings > Code page number
(IBM PCOM only) option.

Tip: Try setting the Code page number (IBM PCOM only) option to 1252.

Add-ins Guide
Terminal Emulator Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 295

HP Unified Functional Testing (12.52) Page 296

Part 17: VisualAge Smalltalk Add-in
This section includes:

"VisualAge Smalltalk Add-in - Quick Reference" on page 297

"How to Configure the VisualAge Smalltalk Add-in" on page 299

VisualAge Smalltalk Add-in - Quick Reference
You can use the UFT VisualAge Smalltalk Add-in to test VisualAge Smalltalk user-interface objects
(controls).

The following tables summarize basic information about the VisualAge Smalltalk Add-in and how it
relates to some commonly-used aspects of UFT.

General Information

Add-in Type This is aWindows-based add-in. Much of its functionality is the sameas other Windows-based add-ins.

See "Windows-Based Application Support" on page 52.

Supported
Environments

For details on supported VisualAge Smalltalk environments, see theVisualAge Smalltalk Add-in section of the
HP Unified Functional Testing Product Availability Matrix.

Important
Information

You must configure your VisualAge Smalltalk environment by importing theqt-adapter.dat file and
then recompiling your application.

See "How to Configure the VisualAge Smalltalk Add-in" on page 299.

Test Object
Methods and
Properties

TheVisualAge Smalltalk Add-in uses a sub-set of the standard Windows test objects, methods, and
properties, which can beused when testing objects in VisualAge Smalltalk applications. For details, see the
Visual Age Small Talk section of theHPUFT Object Model Reference for GUI Testing.

Checkpoints
and Output
Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Prerequisites

Opening Your Application You can open your VisualAge Smalltalk application before or after opening UFT.

Add-in Dependencies None

Configuration

Configuring Your
Application

You configure your VisualAge Smalltalk environment by importing theqt-adapter.dat file and
then recompiling your application.

See "How to Configure the VisualAge Smalltalk Add-in" on page 299.

Record and Run
Settings Dialog Box
(tests only)

Use theWindows Applications tab.
(Record > Record and Run Settings)

Note:

l UFT can recognize only VisualAge Smalltalk applications that have been precompiled with the
qt-adapter agent. For details, see "How to Configure the VisualAge Smalltalk Add-
in" on page 299.

l TheRecord and Run only on radio button applies only to record and run sessions. UFT
recognizes all VisualAge Smalltalk objects for Object Spy and pointing hand operations,

HP Unified Functional Testing (12.52) Page 297

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

regardless of the settings in theRecord and Run Settings dialog box.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Tools > Options > GUI Testing tab > Active Screennode> Custom Level

See the section on the Custom Active Screen Capture Settings dialog box in theHPUnified Functional
Testing User Guide.

Application Area
Additional Settings
pane
(business
components only)

Use theApplicationspane.
In the application area, select Additional Settings > Applications in the sidebar.

See the section theApplications pane in theHPUnified Functional Testing User Guide.

Add-ins Guide
VisualAge Smalltalk Add-in - Quick Reference

HP Unified Functional Testing (12.52) Page 298

How to Configure the VisualAge Smalltalk Add-
in
This task describes how to configure the VisualAge Smalltalk Add-in by importing the qt-adapter.dat
file to your VisualAge Smalltalk development environment and then recompiling your application to
include the qt-adapter agent.

1. Start VisualAge Smalltalk.

2. In the System Transcript window, select Tools > Browse Configuration Maps.

3. In the Configuration Maps Browser window, right-click the AllNames pane and select Import >
Selected Versions.

4. In the Information Required box, enter the IP address or host name of the server, or leave the text
box blank to use the native (fileio) access. Click OK. The Selection Required dialog box opens.

5. In your file system, browse to the <UFT installation folder>/dat folder and select qt-
adapter.dat.

6. In the Selection Required dialog box, do the following:

l In the Names pane, select Unified Functional Testing.

l In the Versions pane, select UFT Adapter 1.0.

l Click the >> button and click OK.

7. In the Configuration Maps Browser window, do the following:

l In the AllNames pane, click Unified Functional Testing.

l In the Editions and Versions pane, click UFT Adapter 1.0. A list of available applications displays
in the Applications pane.

l Right-click the Editions and Versions pane and select Load.

8. To save your changes, select File > Save Image, or click OK in the Warning dialog box when closing
the VisualAge Smalltalk application.

9. Recompile your VisualAge Smalltalk application with the qt-adapter agent.

You are now ready to create and run tests on VisualAge Smalltalk applications.

HP Unified Functional Testing (12.52) Page 299

HP Unified Functional Testing (12.52) Page 300

Part 18: Visual Basic Add-in
This section includes:

"Visual Basic Add-in - Quick Reference" on page 301

"Known Issues - Visual Basic Add-in" on page 303

Visual Basic Add-in - Quick Reference
You can use the UFT Visual Basic Add-in to test Visual Basic user-interface objects (controls).

The following tables summarize basic information about the Visual Basic Add-in and how it relates to
some commonly-used aspects of UFT.

General Information

Add-in Type This is aWindows-based add-in. Much of its functionality is the sameas other Windows-based add-ins.

See "Windows-Based Application Support" on page 52.

Supported
Environments

For details on supported Visual Basic environments, see theVisual Basic Add-in section of the
HP Unified Functional Testing Product Availability Matrix.

Test Object
Methods and
Properties

TheVisual Basic Add-in provides test objects, methods, and properties that can beused when testing
objects in Visual Basic applications. For details, see theVisual Basic section of theHPUFT Object Model
Reference for GUI Testing.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Troubleshooting
and Limitations

See "Known Issues - Visual Basic Add-in" on page 303.

Prerequisites

Opening Your Application You can open your Visual Basic application before or after opening UFT.

Add-in Dependencies None

Configuration

Options Dialog Box Use theWindows Applicationspane.
(Tools > Options > GUI Testing tab > Windows Applications node)

Record and Run Settings
Dialog Box
(tests only)

Use theWindows Applications tab.
(Record > Record and Run Settings)

Note:

l If you select theRecord and Run only on radio button, the settings may also apply
to (limit) the applications that are recognized for Object Spy and other pointing hand
operations.

l UFT recognizes Visual Basic objects only in applications that are opened after changing
the settings in theWindows Applications tab of theRecord and Run Settings dialog
box.

Custom Active Screen
Capture Settings Dialog

Use theWindows applications section.
(Tools > Options > GUI Testing tab > Active Screennode> Custom Level)

HP Unified Functional Testing (12.52) Page 301

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

Box
(tests only)

See the section on the Custom Active Screen Capture Settings dialog box in theHPUnified
Functional Testing User Guide.

Application Area
Additional Settings pane
(business components only)

Use theApplicationspane.
In the application area, select Additional Settings > Applications in the sidebar.

See the section on theApplications pane in theHPUnified Functional Testing User Guide.

Add-ins Guide
Visual Basic Add-in - Quick Reference

HP Unified Functional Testing (12.52) Page 302

Known Issues - Visual Basic Add-in
This section describes troubleshooting and limitations for the Visual Basic Add-in.

l When working with the Visual Basic Add-in, it is recommended to select the Record and run on these
applications (opened on session start) option and then to specify the application name in the
Windows Applications Tab of the Record and Run Settings dialog box.

If you select the Record and run test on any open Windows-based application option, you should
open the Visual Basic application after the first time you start recording.

l Combo box objects of style Simple ComboBox are not supported.

l Visual Basic .NET applications are supported by the UFT .NET Add-in.

HP Unified Functional Testing (12.52) Page 303

HP Unified Functional Testing (12.52) Page 304

Part 19: Web Add-in
This section includes:

"Web Add-in - Quick Reference" on page 305

"Web Add-in - Testing and Configuration" on page 308

"Web Add-in - Multiple Browser Support" on page 318

Web Add-in - Quick Reference
You can use the Web Add-in to test HTML user-interface objects (controls).

The following tables summarize basic information about the Web Add-in and how it relates to some
commonly-used aspects of UFT. This information is also relevant for all child add-ins that extend the
Web Add-in.

General Information

Add-in Type Much of the functionality of this add-in is the sameas other Web-based add-ins.

l See "Web-Based Application Support" on page 25.

Supported
Environments

l For details on supported Web browsers and versions, see theHP Unified Functional Testing Product
Availability Matrix.

l See also Child Add-ins, below.

Child Add-ins l UFT also provides a set of add-ins that support testing specialized controls from anumber of Web 2.0
toolkits using test object classes that were developed by HP using Web Add-in Extensibility. These add-ins
are displayed as child nodes of theWeb Add-in in theAdd-in Manager. For details, see "Web 2.0 Toolkit
Support " on page 368.

Test Object
Methods and
Properties

TheWeb Add-in provides test objects, methods, and properties that can beused when testing objects in Web
applications. For details, see theWeb section of theHPUFT Object Model Reference for GUI Testing.

Checkpoints
and Output
Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "Checkpoints for Web Pages" on page 29.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Extending the
Web Add-in

"Web Add-in Extensibility" enables you to develop support for testing third-party and customWeb
controls that are not supported out-of-the-box by theUFT Web Add-in.

Other l When you load the Siebel Add-in in addition to theWeb Add-in, the object identification settings are
automatically customized. For this reason, theWeb Add-in is not available in theEnvironment list in the
Object Identification dialog box (Tools > Object Identification), even though theWeb Add-in is loaded.

For details, see "Siebel Add-in - Overview" on page 240.

l You can create steps on more than onebrowser tab, if your browser supports tabbed browsing.

Prerequisites

Opening Your Application You must open UFT before opening your Web application.

Testing in Mozilla Firefox The Functional Testing Extension for Firefox is supported from Firefox versions 33 and
higher. If you need to test versions of Firefox earlier than 33, you need to enableUFT support
for these Firefox versions.

To test your Web application in Mozilla Firefox version 33 and later, you must enable the
Functional Testing Extension in oneof the following ways:

HP Unified Functional Testing (12.52) Page 305

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

l If theSelect Your Add-ons screen is displayed when you open Firefox, select to enable
the Functional Testing Extension.

l If the Install Add-on tab opens and displays Functional Testing Extension when opening
Firefox, select theAllow this installation check box and clickContinue.

Otherwise:

a. In Firefox, open the browser menu.

b. In themenu, clickAdd-ons.

c. In theAdd-ons Manager tab, select theExtensionsnode.

d. In the Functional Testing Extension row, click theEnable button.

To test your Web application in Mozilla Firefox versions earlier than 33, you must enable the
legacy Firefox agent:

1. Open the<UFT installation folder>\Installations\Firefox folder.

2. From the Firefox folder, drag theLegacy.xpi file into Firefox.

3. In Firefox, open the browser menu.

4. In themenu, click Add-ons.

5. In theAdd-ons Manager tab, select the Extensions node.

6. In the Functional Testing Extension row, disable the Functional Testing 12.50
extension and enable the extension you added to Firefox.

Note: Only one version of theUnified Functional Testing Extension can be enabled in
Firefox at a time.

For more details, see "Working With Mozilla Firefox" on page 334.

Testing in Google Chrome l UFT communicates with the Functional Testing Agent ChromeExtension to test Web
applications running in Google Chrome.

The extension is available on the Chromeweb store and downloads automatically when
possible, for Chromeversions 31 or later. If the extension does not download, go to
https://chrome.google.com/webstore/detail/kgpdpdnaoephdehalonapacdgjhamnb
c and download it manually. If you do not have an Internet connection or areworking with
Chromeversion 30 or earlier, see "How to Enable the HP Functional Testing Agent
Chrome Extension" on page 346.

IMPORTANT: If you have aprevious version of the Functional Testing Agent for
Google Chrome installed, you must manually remove this extension before enabling
the new version.

l If you need to test local HTML pages in Google Chrome, you must make additional
configuration changes. For details, see "How to Enable UFT to Test Local HTML Pages
in Google Chrome" on page 347.

Testing in Microsoft Edge l If you are using theMicrosoft Edge Insider version, you should use version 10576 or later.
However, due to changes in theWeb Driver insider build byMicrosoft, later versions may
not workwith UFT.

l If you update the Insider build of Edge, you need to update theMicrosoft Web Driver

Add-ins Guide
Web Add-in - Quick Reference

HP Unified Functional Testing (12.52) Page 306

https://chrome.google.com/webstore/detail/kgpdpdnaoephdehalonapacdgjhamnbc
https://chrome.google.com/webstore/detail/kgpdpdnaoephdehalonapacdgjhamnbc

version in theUFT installation. Copy yourWebDriver.exe files to the<UFT installation
folder>\bin\ folder to enableUFT to workwith the updated version of Edge.

l In order to record and run tests on Microsoft Edgebrowsers, you must start the Edge
Agent for Functional Testing. UFT cannot spy, record, or run tests on an already open
Edge session.

You can start the EdgeAgent for Functional Testing from oneof the following locations:

l Thedesktop shortcut

l Start -> All apps -> HP Software -> Edge Agent for Functional Testing

l In theRecord and Run Settings dialog box, select Edge as theBrowser type

Testing in Apple Safari on a
Remote Mac

See "Working With Apple Safari on a Remote Mac Computer" on page 336.

Add-in Dependencies None

Configuration

Options Dialog Box Use theWebpane.
(Make sure that aGUI test is open and select Tools > Options > GUI Testing tab >
Web > General node.)

Record and Run Settings Dialog
Box
(tests only)

Use theWeb tab.
(Record > Record and Run Settings)

Test Settings Dialog Box
(tests only)

Use theWebpane.
(File > Settings > Web pane)

Custom Active Screen Capture
Settings Dialog Box
(tests only)

Use theWeb section.
(Tools > Options > GUI Testing tab > Active Screennode> Custom Level)

See the section on the Custom Active Screen Capture Settings dialog box in the
HPUnified Functional Testing User Guide.

Application Area Additional
Settings pane
(business components only)

Use theWebpane.
In the application area, select Additional Settings > Web in the sidebar.

l See the section on defining Application Settings for your application area in the
HPUnified Functional Testing User Guide.

Add-ins Guide
Web Add-in - Quick Reference

HP Unified Functional Testing (12.52) Page 307

Web Add-in - Testing and Configuration
This chapter includes:

• Event Recording Configuration for Web Objects - Overview 309

• Event Listening and Recording for Web Objects 310

• Considerations - Event Listening and Recording 311

• Event Listening and Recording - Use-case Scenario 311

• Web Add-in Extensibility 312

• Extensibility Accelerator for HP Functional Testing 313

• How to Manage Custom Web Event Recording Configurations 314

• How to Manage Listening and Recording Events for Web Objects 315

• Troubleshooting and Limitations - Web Add-in 316

HP Unified Functional Testing (12.52) Page 308

Event Recording Configuration for Web Objects -
 Overview
When you record on a Web application, UFT generates steps by recording the events you perform on the
Web objects in your application. An event is a notification that occurs in response to an operation, such
as a change in state, or as a result of the user clicking the mouse or pressing a key while working in a
Web application.

You may need to record more or fewer events than UFT automatically records by default. If so, you can
modify the default event recording settings for Web objects using the Web Event Recording
Configuration Dialog Box to use one of three predefined configurations, or you can customize the
individual event recording configuration settings to meet your specific needs.

For example, UFT does not generally record mouseover events on link objects. If, however, you have
mouseover behavior connected to a link, it may be important for you to record the mouseover event. In
this case, you could customize the configuration to record mouseover events on link objects whenever
they are connected to a behavior.

Considerations for Configuring Web Event Recording for Web Objects

l Event configuration is a global setting and therefore affects all steps that are recorded after you
change the settings.

l Changing the event configuration settings does not affect steps that have already been recorded. If
you find that UFT recorded more or less than you need, change the event recording configuration and
then re-record the steps that are affected by the change.

l Changes to the custom Web event recording configuration settings do not affect open browsers. To
apply your changes, make the changes you need in the Web Event Recording Configuration dialog
box, refresh any open browsers, and then start a new recording session.

l The settings in the Web Event Recording Configuration Dialog Box affect recording only for objects
that UFT recognizes as Web test objects. The recording configuration for other Web-based objects
(such as Siebel, PeopleSoft, .NET Web Forms, and SAPWeb controls) is defined by environment-
specific XML configuration files.

Note: For the purposes of Web event recording, UFT treats Web test objects that are child
objects of a PSFrame test object as PeopleSoft objects and thus applies the settings in the
PeopleSoft event configuration XML file when recording those objects.

l You can restore predefined settings after you set custom settings by resetting the event recording
configuration settings to the basic level from the Web Event Recording Configuration Dialog Box. You
can also restore the default custom level settings from the Custom Web Event Recording
Configuration Dialog Box.

To learn more, see:

HP Unified Functional Testing (12.52) Page 309

l "Event Listening and Recording for Web Objects" below

l "Considerations - Event Listening and Recording" on the next page

Event Listening and Recording for Web Objects
For each event, you can instruct UFT to:

l listen every time the event occurs on the object.

l listen only if an event handler is attached to the event.

l listen only if a DHTML behavior is attached to the event.

l listen if either an event handler or DHTML behavior are attached to the event.

l never listen to the event.

An event handler is code in a Web page, typically a function or routine written in a scripting language,
that receives control when the corresponding event occurs.

Note: UFT supports event handlers that are attached using an on* attribute (such as onclick or
onmouseover). It does not support other event handlers, such as those attached using an
addEventListener or attachEvent command.

A DHTML behavior encapsulates specific functionality or behavior on a page. When applied to a
standard HTML element on a page, a behavior enhances that element's default behavior.

For each event, you can enable recording, disable recording, or enable recording only if the next event is
dependent on the selected event.

For example, suppose a mouseover behavior modifies an image link. You may not want to record the
mouseover event each time you happen to move the pointer over this image. It is essential, though, that
the mouseover event be recorded before a click event on the same object because only the image that
is displayed after the mouseover event enables the link event. This option applies only to the Image and
WebArea objects.

For task details, see "How to Manage Listening and Recording Events for Web Objects" on page 315.

Recording Right Mouse Button Clicks

UFT enables you to record click events made using left, center, and right mouse buttons. By default, only
left clicks are recorded, but you can modify the configuration to record clicks from the right and center
buttons, as well.

UFT records the Click statement when the OnClick event is triggered. UFT differentiates between the
mouse buttons by listening for events configured for each of the mouse buttons. By default, it listens
for the OnMouseUp event, but you can also configure it to listen for the OnMouseDown event using the
Web Event Recording Configuration Dialog box.

Note:

Add-ins Guide
Web Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 310

l UFT does not record the simultaneous clicking of more than one mouse button.

l UFT does not record the right-click that opens the browser context menu, or the selection of an
item from the context menu. For details on modifying the script manually to enable these
options, visit the HP Software Self-solve knowledge base and search for document ID KM185231.

For details, see "How to Configure UFT to Record Mouse Clicks" on page 44.

Considerations - Event Listening and Recording
It can sometimes be difficult to find the ideal listen and recording settings. When defining these
settings, keep in mind the following guidelines:

l If settings for different objects in the Objects pane conflict, UFT gives first priority to settings for
specific HTML Tag Objects and second priority to Web Objects settings. UFT applies the settings
for Any Web Object only to Web objects that do not belong to any other loaded Web-based
environment and were not defined in the HTML Tag Object or Web Objects areas.

l To record an event on an object, you must instruct UFT to listen for the event, and to record the
event when it occurs. You can listen for an event on a child object, even if a parent object contains
the handler or behavior, or you can listen for an event on a parent object, even if the child object
contains the handler or behavior.

However, you must enable recording for the event on the source object (the object on which the
event actually occurs, regardless of which parent object contains the handler or behavior). For an
example of this, see "Event Listening and Recording - Use-case Scenario" below.

l Instructing UFT to listen for many events on many objects may lower performance, so it is
recommended to limit Listen settings to the required objects.

l In Internet Explorer, listening to the object on which the event occurs (the source object) can, in rare
situations, interfere with the event.

If you find that your application works properly until you begin recording on the application using UFT,
your Listen settings may be interfering.

l If this problem occurs with a mouse event, try selecting the appropriate Use standard Windows
mouse events options in the Web > Advanced pane of the Options dialog box (Tools > Options > GUI
Testing tab > Web > Advanced node).

l If this problem occurs with a keyboard or internal event, or the Use standard Windows mouse
events option does not solve your problem, set the Listen settings for the event to Never on the
source object (but keep the record setting enabled on the source object), and set the Listen settings
to Always for a parent object.

Event Listening and Recording - Use-case Scenario
When you are creating your test, you may want UFT to record a specific event on an object. As a result,
you must instruct UFT to listen for the event and to record the event when it occurs.

Add-ins Guide
Web Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 311

In this use-case scenario, you are trying to record an onmouseoverevent for a table cell containing two
images. When the mouse moves over either of the images contained in the table cell, the event bubbles
up to the cell, and the bubbling action includes information on the image that the mouse moved over.
You want to record the steps performed on the images.

In order to enable UFT to record the image mouseover event, you can do a number of things:

l In the Custom Web Event Recording Configuration Dialog Box, you configure the mouseover event for
the <TD> tag (table cell) to If Handler. You also disable the Record for the cell to Never, thereby
disabling the recording option. This enables UFT to "hear" the mouseover event on the table cell
when it happens in the application but not record the event as part of the test flow. (This is
important because the actual "work" of the application is done with the images contained in the
table cells.)

l Also in the Custom Web Event Recording Configuration Dialog Box, you disable listening on the
tag (the image) by setting the Listen option to Never. In addition, you set the Record option on the
image(s) to Enable. This enables UFT to record the actual action on the images.

By setting the recording to be done on the images, but listening to be done on the table cells, you
have taught UFT that while something happens (the images appear) when you mouseover the table
cell, the important part and the objects to include in the test flow are the images that appear when
performing a mouseover on the table cell.

You can also record the actions on the images by setting the Listen option on the tag to Always
(which enables UFT to listen for the mouseover event even though the image does not contain a
behavior or event handler). You then set Record option on the image to Enable.

For task details on setting event listening and recording options, see "How to Manage Custom Web
Event Recording Configurations" on page 314.

Web Add-in Extensibility
UFT Web Add-in Extensibility enables you to develop support for testing third-party and custom Web
controls that are not supported out-of-the-box by the UFT Web Add-in.

If the test object class that UFT uses to represent a control does not provide the operations and
properties necessary to operate on your control, you can use Web Add-in Extensibility to create a new
test object class.

You can then map the control to the new test object class, and design the test object class behavior in
JavaScript. You can program how operations are performed on the control, how properties are
retrieved, and more.

You can also teach UFT to treat a control that contains a set of lower-level controls as a single
functional control, instead of relating to each lower-level control separately.

Add-ins Guide
Web Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 312

To implement Web Add-in Extensibility, you need to be familiar with:

l UFT and its Object Model Reference

l The behavior of the custom control (operations, properties, events)

l Web programming (HTML and JavaScript)

l XML (basic knowledge)

"Extensibility Accelerator for HP Functional Testing" (described on page 313) is an IDE that facilitates
the design, development, and deployment of Web Add-in Extensibility support. You can install it from
the Add-in Extensibility and Web 2.0 Toolkits option in the UFT setup program.

Extensibility Accelerator also provides samples of support developed using Web Add-in Extensibility,
which you can use to gain a better understanding of how to create your own support.

For details on implementing Web Add-in Extensibility, see the Web Add-in Extensibility Help, available
from the UFT Extensibility Documentation program group (Start > All Programs > HP Software >
Unified Functional Testing > Extensibility > Documentation or the <UFT installation
folder>\help\Extensibility folder).

Note: For details on accessing UFT and UFT tools and files in Windows 8.X or higher and Windows
Server 2012, see "Accessing UFT in Windows 8.X or Higher Operating Systems" on page 387.

A printer-friendly (PDF) version of the HP UFT Web Add-in Extensibility Developer Guide is available in the
<UFT installation folder>\help\Extensibility folder.

Extensibility Accelerator for HP Functional Testing
An increasing number of Web applications are making use of Web 2.0-based toolkits, such as ASP.NET
AJAX, Dojo, YahooUI, GWT, and JQueryUI to add dynamic and interactive content to their sites. The
controls in these toolkits are complex and require sophisticated and flexible testing capabilities.

UFT Web Add-in Extensibility enables you to extend the Web Add-in to customize how UFT recognizes
and interacts with different types of controls. Until now, using Web Add-in Extensibility consisted of
manually developing and maintaining toolkit support sets.

Extensibility Accelerator for HP Functional Testing is an IDE that facilitates the design, development, and
deployment of these support sets. It makes it faster and easier to create the required extensibility XML
files so that you can invest your main efforts in the development of the JavaScript functions that will
enable UFT to work with your custom Web controls.

The Extensibility Accelerator user interface helps you define new test object classes, operations, and
properties. It also provides a point-and-click mechanism you can use to map the test object classes you
defined to controls in your application. Extensibility Accelerator deployment capabilities enable you to
automatically deploy your new toolkit support set to UFT or to package it so that you can share it with
other UFT users.

Add-ins Guide
Web Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 313

The Extensibility Accelerator for HP Functional Testing installation is available from the Add-in
Extensibility and Web 2.0 Toolkits option in the Unified Functional Testing setup program.

Note: As part of the installation process, an html page opens in your browser. To complete the
installation successfully, this page must be opened in Internet Explorer.

How to Manage CustomWeb Event Recording
Configurations
This task describes the different ways you can define, modify, export, and reset custom Web event
recording configurations.

This task includes the following steps:

l "Add objects to the HTML Tag Objects list" below

l "Modify a custom configuration file manually - Optional" below

l "Reset configuration settings to a pre-configured basic level" below

Add objects to the HTML Tag Objects list

1. In th Custom Web Event Recording Configuration dialog box (Record > Web Event Recording
Configuration), select Object > Add. A New Object object is displayed in the HTML Tag Objects list.

2. Click New Object cell and enter the exact HTML Tag name.

By default the new object is set to listen and record onclick events with handlers attached.

You can load additional objects by importing an event configuration file (saved with an .xml
extension). In the Custom Web Event Recording Configuration dialog box, select File > Load
Configuration and locate the .xml file you need.

Load a custom configuration from an XML file

1. Select File > Load Configuration. The Open dialog box opens.

2. Locate the event configuration file (.xml) that you want to load and click Open. The dialog box
closes and the selected configuration is loaded.

Modify a custom configuration file manually - Optional

Open the .xml file that you saved in any text editor, and modify the file according to your needs. To
enable UFT to recognize the modifications that you made, the .xml file must keep its original structure.
For details on the XML file structure, see "Web Event Recording Configuration XML File Structure" on
page 31.

Reset configuration settings to a pre-configured basic level

l From the Custom Web Event Recording Configuration dialog box. In the Reset to box, select the

Add-ins Guide
Web Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 314

predefined event recording level you want, and click Reset. All event settings are restored to the
defaults for the level you selected.

l From the Web Event Recording Configuration dialog box. Reset basic level configuration settings
by selecting Default Settings. The configuration slider is displayed again, and all event settings are
restored to the Basic event recording configuration level.

Note: When you choose to reset predefined settings, your custom settings are cleared completely.
If you do not want to lose your changes, make sure to save your settings in an event configuration
file.

How to Manage Listening and Recording Events for
Web Objects
This task describes the different ways you can manage listening and recording events for Web objects.

Note: The listen and record settings are mutually independent. This means that you can choose to
listen to an event for a particular object, but not record it, or you can choose not to listen to an
event for an object, but still record the event. For details, see "Considerations - Event Listening and
Recording" on page 311.

This task contains the following steps:

l "Add listening events for an object" below

l "Specify the listening criterion for an event" below

l "Set the recording status for an event" on the next page

l "Configure UFT to record mouse click events" on the next page

Add listening events for an object

1. In the Custom Web Event Recording Configuration dialog box (Record > Web Event Recording
Configuration), select the object to which you want to add an event, or select Any Web Object.

2. Select Event > Add. A list of available events opens.

3. Select the event you want to add. The event is displayed in the Event Name column in alphabetical
order. By default, UFT listens to the event when a handler is attached and always records the event
(as long as it is listened to at some level).

Specify the listening criterion for an event

1. Select the object for which you want to modify the listening criterion or select Any Web Object.

2. In the row of the event you want to modify, select the listening criterion you want from the Listen
column:

Add-ins Guide
Web Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 315

l Always, If Handler

l If Behavior

l If Handler or Behavior

l Never.

Set the recording status for an event

1. Select the object for which you want to modify the recording status or select Any Web Object.

2. In the row of the event you want to modify, select a recording status from the Record column.

Configure UFT to record mouse click events

For details, see "How to Configure UFT to Record Mouse Clicks" on page 44.

Troubleshooting and Limitations - Web Add-in
This section contains troubleshooting and limitation information about working with the Web Add-in. For
details on browser-specific limitations, see "Known Issues - Internet Explorer and Microsoft Edge" on
page 354, "Known Issues - Mozilla Firefox" on page 357, and "Known Issues - Google Chrome and Apple
Safari" on page 360.

Object Identification

l If UFT does not recognize your objects in the correct location, check to see that you are viewing the
page at 100%, and are not zooming in or out of the page.

For example, if you view the page at 90% or 120%, you may be required to click or select an area to
the left or the right of the actual object in order to recognize it.

l If you open UFT with the Siebel Add-in loaded, the Web Add-in does not appear in the Object
Identification dialog box.

Workaround: Change the value of the HKEY_CURRENT_USER\Software\Mercury
Interactive\QuickTest Professional\MicTest\Packages\SiebelPackage\Settings\AllowWebToConfig
registry key value to 1.

l If your application objects do not implement the aria-selected attribute in the application's
controls, certain identification properties, such as the selected, items count, selected items,
selection, and value return empty values.

l If the child items in a WebTree object are generated dynamically (for example, they are not visible or
present in the application until the parent node is expanded), UFT may not be able to select the items
in the tree automatically using the .Selectmethod.

Workaround: Manually add steps to make the nodes visible or expand tree nodes to create the object
in the application.

Add-ins Guide
Web Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 316

Recording

l Autocomplete is not supported during recording sessions. When recording on an autocomplete
control, enter the full string instead of selecting the suggestion provided by the control. The step is
recorded in the same way as other (non-autocomplete) controls.

Workaround: You can disable the AutoComplete feature in Microsoft Internet Explorer by selecting
Tools > Internet Options > Advanced and deselecting the Use inline AutoComplete under the
Browsing options.

l If a WebTree object contains separate objects inside the tree (such as a checkbox object), these child
objects are not recorded.

Workaround: Do one of the following:

l Spy on the child object to get the relative Xpath value of the tree item. Then, add a
WebTree.Selectmethod, with the Xpath value you retrieved from the spy for the XPath argument
of the .Select method.

l Add the object into the object repository and manually add it to the test or component.

Add-ins Guide
Web Add-in - Testing and Configuration

HP Unified Functional Testing (12.52) Page 317

Web Add-in - Multiple Browser Support
This chapter includes:

• Testing Applications on Multiple Browsers 319

• Working with Multiple Browsers - Object Identification Issues 319

• Testing Applications on Multiple Browsers - Creating a Single Test for All Browser Testing 324

• Testing Applications on Multiple Browsers - Running the Test on Multiple Browsers 325

• Using Descriptive Programming for Multiple Browser Testing - Use-case Scenario 326

• Working With Mozilla Firefox 334

• Working With Apple Safari on a Remote Mac Computer 336

• The UFT Connection Agent for Mac Computers 338

• Securing the Communication With the Remote Mac Computer 340

• How to Set Up Multiple Browser Testing 341

• How to Enable the HP Functional Testing Agent Chrome Extension 346

• How to Enable UFT to Test Local HTML Pages in Google Chrome 347

• How to Connect to a Remote Mac Computer 347

• How to Install and Configure UFT Connection Agent on Your Mac 350

• Known Issues - Internet Explorer and Microsoft Edge 354

• Known Issues - Mozilla Firefox 357

• Known Issues - Google Chrome and Apple Safari 360

HP Unified Functional Testing (12.52) Page 318

Testing Applications on Multiple Browsers
Web applications and Web controls may be implemented or displayed differently on different browsers.
This may affect the behavior of your tests and components, especially if you design them on one
browser, and then run them on another. The run results may also differ when running the same test or
component on different browsers. For example, if properties are implemented or stored differently on
different browsers, UFT may use different properties for object identification or checkpoints depending
on the browser you use to open the application.

If you are aware of differences in your application's behavior on different browsers, you may be able to
design your tests and components to be browser-independent by anticipating these differences.

There are a number of areas where potential issues can exist:

l Object Identification

l Creating a Single Test for Cross-Browser Testing

l Running Cross Browser Tests

For details on steps to assist you with cross browser testing, see "How to Set Up Multiple Browser
Testing" on page 341.

For a use-case scenario, see "Using Descriptive Programming for Multiple Browser Testing - Use-case
Scenario" on page 326.

Working with Multiple Browsers - Object Identification Issues
When testing web applications and web pages in multiple browsers, one of the foremost challenges is
identification of the application/page controls or objects. Due to differences in browser architecture,
each of the browsers recognizes and displays the controls and/or objects differently. This can be a
visual difference or a property difference that is invisible to the eye. However, because UFT uses these
properties (both the visual and hidden ones) as described in the HTML tags, object identification can
present issues between browser types.

This can be due to something as basic as different browser layout settings. For example, each browser
type structures their toolbar, bookmark, and tab layout differently. However, because of this, the
amount of available space for the browser content differs, and likewise the display of the content
differs. If you are using location-based identification properties to identify different objects in an
application, the layout of the browser can change these properties.

Object property differences also provide a point of potential issue. Within each browser, the properties
for a given object can be different (even when your application or Web page uses a CSS to standardize
the appearance of application or page elements). For example:

l Link controls are displayed differently on Firefox and Chrome than in Internet Explorer. A link from
the Mercury Tours website is identified differently between each of the browsers (with the font,
color, and background color properties highlighted):

HP Unified Functional Testing (12.52) Page 319

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 320

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 321

If you were using these properties to ensure correct identification of the link object, or using these
properties in a checkpoint, you would achieve varying results.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 322

l When using Chrome or Safari, the innertext, outertext, innerhtml and outerhtml property values
may differ from other browsers:

Note that while the content of the innerhtml and outerhtml is basically the same - the browsers are
definitely representing the properties differently. This can potentially cause identification problems
for objects, especially if the property values are critical elements in identifying the object.

l In some cases, applications or Web sites detect which browser you are using and change the actual
HTML content of the page. In this case, the identification properties that UFT uses to identify the
object in the browser could be looking for a specific HTML tag, which may or may not exist in a
different browser.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 323

l Some HTML5 input types are not supported in older browsers or browser versions. This means that a
control might have different properties, depending on the browser you use. If you record a test on a
browser that supports HTML5 but run it on a browser that does not support HTML5, or vice versa, UFT
might not be able to match the object description in your test to an object in the Web page being
tested.

Testing Applications on Multiple Browsers - Creating a Single
Test for All Browser Testing
When you are testing your application or Web page on multiple browsers, you are trying to see that the
application or Web page performs the same between browser types (unless designed otherwise). When
you set up your test, you would also expect that the same test can be used for each browser type, with
minimal maintenance and updating to account for browser differences. However, creating a single test
for cross browser testing provides a set of challenges:

Having the
correct
objects with
the correct
properties
for each
browser

In UFT, a test of your application accesses the object repository or repositories for your test, which contains the
necessary objects to test the application's objects. Ideally, you would create a single object repository or object
repositories (per application section or Web page). Then, you would run the test in all the browser versions
using that single object repository or set of object repositories, and UFT could identify the objects in the
application or Web pagewithout issue.

In reality, providing the correct objects in the correct object repository is not always simple. Firstly, there are
the object identification issues. If UFT identifies a certain object very differently between browser types or
versions, you may need to create separate repositories for each browser type to enableUFT to find the right
object. However, when the test runs on a specific browser, you need the correct object repository for that test
run.

When you have a scenario such as this, you can enableUFT to dynamically add an object repository at the
beginning of the test run. For details, see "Dynamically load an object repository during the test run" on
page 344.

Dynamically
created
objects that
are not
included in
an object
repository

In some cases, you may also have dynamically created objects that are displayed on apage as a result of
previous operations performed in the application. However, in the process of creating the test and the object
repositories, these objects are not identified (as they do not exist when UFT is learning the application initially).
Likemany other objects, these objects can be created and identified very different between browsers, making it
even more difficult for UFT to identify them.

To help UFT identify these objects, you can use descriptive programming. For details, see the section on
Programmatic Descriptions in theHPUnified Functional Testing User Guide.

Dynamic
page
updates

Each browser version can also have dynamic updates to the browser or page as part of its normal workflow.
For example, alert dialogs are different between each of the browser versions, making it difficult to UFT to
know how to recognize, handle or ignore the dialogs. As a result, if you create test steps to close the alert
dialog using onebrowser type, the other browser types may have trouble recognizing or performing steps on
the dialog. In other cases, these dialogs do not exist in the other browsers. In some cases, the browser may not
even enable you to continue the test if the alert dialog is not closed, thereby causing the test to fail, simply
because it did not recognize the dialog and perform the correct steps on it.

In the case of the browser dialog boxes, there are special methods that can ensure you handle the pop-up
dialogs appropriately, including theBrowser.HandleDialog, Browser.GetDialogText, and the
Browser.DialogExistsmethods. (Note that even thesemethods do not work exactly the samebetween

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 324

browsers also.)

In other cases, you can add steps to your test to account for browser-specific behavior. For details, see "Add
steps for browser specific behavior" on page 345.

Browser-
specific or
application-
specific
behavior for
user actions

There are scenarios where the sameapplication operation - such as pressing theBackbutton -may result in
very different behavior between browsers. For example, in an appointment booking application, pressing the
Backbutton for Internet Explorer returns you to the previously viewed page, while pressing Back in Firefox or
Chrome logs you out of the application.

However, because of such problems, your test must be prepared to address the different behaviors. There are
somepotential solutions to help:

l Navigate to a specific URL/location in the application instead of a previous/next page (such as in the example
above)

l InsertWait steps that pause the test until an application or an application object achieves a certain state
(which can be checked using theExist property for an object)

For details, see "Add steps for browser specific behavior" on page 345

Testing Applications on Multiple Browsers - Running the Test on
Multiple Browsers
After you create a single test of your application or Web page to use in different browsers, you still
must run it to actually test the application or Web page. You have a number of options on how to run
the test across different browser types:

Manually configure
the browser type
for each test run

UFT provides you the opportunity to select the browser type before each test run. You can do this in
oneof the following places:

l The Web tab of the Record and Run Settings dialog box.

In theWeb tab, you can select the browser type from thedrop-down list. Then, when you run the
test, UFT opens the appropriate browser and runs the test.

l A user-defined environment variable specified in the Environment pane of the Test
Settings dialog box.

UFT uses theBROWSER_ENV environment variable, and the requisite values for each browser type
to enable you to set this variable before each test run. When you enter a value for theBROWSER_
ENV variable, UFT automatically opens up the necessary browser (ignoring any other browser
launch settings).

However, this requires manual intervention by the person running the test, and does not enable you
to run subsequent tests of the application or Web pageon the different browser types in sequence.

For details, see "Configure the Record and Run settings to launch a browser" on page 341or
"Set the value of the BROWSER_ENV environment variable to launch a specific browser" on
page 342

Instruct UFT to open
a browser type
defined by a
parameter in the
test step

Instead of manually setting the browser before each test run (which thereby defeats the purpose of
automated testing), you can insert a parameter into a test step that defines the browser to open. (You
can also define a single reusable action that opens the browser, which can be reused in all the tests of
your application or Web page.)

The values for this parameter (which are the.exe programs for each browser) are then defined in

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 325

theData pane. When UFT reaches this test step, it reads the data pane and decides which browser
needs to open based on the selected data.

This removes the need for you or another person to manually configure settings or variables in a test
before running the test, enabling you automatically test your application or Web pageon all browser
types and/or versions. If you create a reusable action with the step that opens the browser, the
parameter and datamust be added to every test that calls this external action.

For task details on how to set up automatic opening of browser types from UFT, see "Configure UFT
to automatically launch a browser using a data parameter" on page 343.

Use a test
parameter or data
table parameter to
launch the
appropriate
browser

In theRecord and Run Settings dialog box (Web tab), you can instruct UFT to use either a test
parameter or data table parameter to launch the browser. You set the parameter at the beginning of
the test run (for a test parameter) or insert theBROWSER_ENV value in theData table in theData
pane.

Then, when UFT runs the test, it launches the correct browser according to the values you inserted.

For details, see "Configure UFT to automatically launch a browser with a parameter using the
Record and Run Settings" on page 343.

Using Descriptive Programming for Multiple Browser Testing -
Use-case Scenario
One of the challenging parts of cross-browser testing of your applications or Web pages is the object
identification of objects in different browser types. Since each browser type can read the HTML code of
your application and translate this differently, UFT may have trouble identifying the same objects in
different browsers.

One technique that you can use when UFT is not identifying objects correctly is descriptive
programming. When you insert a programmatic description into your test instead of the actual test
object name, UFT searches for the object in your application matching the description.

In this use-case scenario, you can see how UFT can find a problematic object using description instead
of the test object name for the object (as stored in the object repository.).

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 326

In your application, you are trying to test this area of your application, containing a number of edit
fields:

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 327

In Chrome and Firefox, the application area displays as seen above. However, in Internet Explorer, the
window has a different appearance, particularly the Color field:

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 328

Even though the visual appearance is different, a closer look shows that the object properties of the
Color field are basically the same:

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 329

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 330

In the object repository, the Color field object is recognized as a WebEdit object with the name
colorexample (as it was by the Object Spy):

Based on this, when you insert a test step for this object, it is displayed like this:

Browser("Objects Demo").Page("HTML5 testing").WebEdit("colorexample").Set

However, when you run the test step, there are varying results:

l The step runs on Chrome and Firefox without problem.

l The step fails on Internet Explorer:

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 331

A closer look at the properties in the Object Spy for the colorexample object shows slight differences in
the properties between Internet Explorer and Chrome:

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 332

In this case, the property difference is causing UFT to not identify the object in Chrome. As a result, you
can modify the step using descriptive programming:

Browser("Objects Demo").Page("HTML5 testing").WebEdit("name:=colorexample",
"htmltag:=INPUT").Set "#ed1c24"

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 333

Using this statement, when the test runs, the step runs without a problem:

Thus, by changing the test step to use descriptive programming, UFT is able to identify the object and
run the test step across all browsers.

Working With Mozilla Firefox
UFT tests and business components are generally cross-browser—you can record Web steps on
Microsoft Internet Explorer or Mozilla Firefox, or you can create steps with the keyword-driven
methodology using any supported browser. You can run Web steps in any supported browser.

For general considerations on working with Web browsers, see "Considerations - Web-Based Application
Support" on page 26.

The following sections describe specific items to consider when working with Mozilla Firefox:

l "Running Steps on Mozilla Firefox Browser Controls" below

l "Running Steps on Mozilla Firefox Dialog Boxes" on the next page

l "Checkpoints and Output Values" on the next page

Running Steps on Mozilla Firefox Browser Controls

Generally, steps that were recorded on Microsoft Internet Explorer will run on Mozilla Firefox without
requiring any modification. However, there are several differences to consider:

l UFT does not support Mozilla Firefox menus or sidebars.

l UFT supports specific Browser menu operations that are represented by the following toolbar
buttons:

l Back

l Forward

l Home

l Refresh

l Stop

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 334

All other toolbars and toolbar buttons are not supported. If you record steps on any unsupported
menu or toolbar objects when working with Microsoft Internet Explorer, you may need to remove or
replace the steps before running the test or business component on Mozilla Firefox.

Running Steps on Mozilla Firefox Dialog Boxes

l Due to the difference in standard dialog boxes, pop-up recovery scenarios that use the Click button
with label recovery operation and were built for Microsoft Internet Explorer will not work for Mozilla
Firefox, and vice versa.

l Mozilla Firefox uses different standard dialog boxes than the Windows standard dialog boxes used by
Microsoft Internet Explorer. If you create steps on such dialog boxes, you should create additional
steps to be used when running on Mozilla Firefox, and precede them with an If statement to check
which browser is running.

For example, the following two dialog boxes are a security alert of the same Web site. The one on the
left is from Microsoft Internet Explorer, and the one on the right is from Mozilla Firefox. Although
they both look like a Windows dialog box, the Mozilla Firefox one is actually a browser window.

Checkpoints and Output Values

Cross-browser UFT operations may affect the results of some types of checkpoints and output values:

l Standard or page checkpoints for links and images that are created on Internet Explorer using
Record, or using the Active Screen, may not pass when run using Mozilla-based browsers, even if the
checkpoints pass when the test is run using Internet Explorer.

l Standard checkpoints for links and images created on Active Screen captures that were captured
from a Mozilla-based browser may not pass when run using Internet Explorer, even if the checkpoints
pass when the test is run using the Mozilla-based browser.

You can use regular expressions if you want to create checkpoints for links and images that run on
both Internet Explorer and Mozilla-based browsers. For details on regular expressions, see the
section on understanding and using regular expressions in the HP Unified Functional Testing User
Guide.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 335

l Standard checkpoints that use the inner_html property may not pass when run using Mozilla-based
browsers because blanks, slashes, backslashes, or other special characters are handled differently in
different browser types.

l Before running text/text area checkpoint or output value steps, you must set the text recognition
options to use only OCR, by selecting the Use Only OCR option in the Text Recognition pane of the
Options dialog box (Tools > Options > GUI Testing tab > Text Recognition node).

Working With Apple Safari on a Remote Mac Computer
You can use UFT to test Web applications on an Apple Safari browser that is running on a remote Mac
computer. UFT uses the WebSockets protocol to connect to the Mac computer that you specify. Note
that only Web test object steps can run on Safari. All other steps, including Utility object steps, such as
SystemUtil.Run, run locally on the UFT computer.

To test Web applications on the Safari browser, you must install the UFT Connection Agent and the
Unified Functional Testing Agent Safari browser extension on your Mac computer. For details on how to
do this, see "The UFT Connection Agent for Mac Computers" on page 338.

Recording steps and learning objects (in the Object Repository Window or Manager) are not supported
on the Safari browser. However, you can use the Remote Object Spy on a Safari browser to view the
properties and operations of Web controls, and optionally, add the corresponding test objects to your
object repository.

Creating and Editing Tests and Components that Run on Safari

It may be more convenient to create and edit your object repositories, tests and components working
with a supported browser installed locally on the UFT computer,and then connect to a remote Mac
computer, fine-tune your tests, and run them on Safari.

Tip: Use Google Chrome to create, edit, and debug your tests and components, as Chrome and
Safari render Web pages similarly.

Once your basic test is designed, you can connect UFT to a remote Mac computer running Safari, and
fine-tune or debug your test based on the object properties available on Safari:

l Use the Remote Object Spy to see how UFT recognizes the objects in your application.

l View object properties using statement completion for the Objectmethod.

Note: Statement completion for the Object method is only available if the connection to the
remote Mac is fast enough.

l Create standard checkpoints and output value steps on objects displayed in the Safari browser

Use the Design > Checkpoint and Design > Output Value > Standard Output Value commands.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 336

Multiple UFT-Mac Connections

l Multiple users from different UFT instances can connect to the same Mac simultaneously using
different ports.

Each user must install the UFT Connection Agent and UFT Safari extension in their Mac user account,
and configure the relevant port number in UFT, in the connection agent on the Mac.

l The Mac connection information is in the Record and Run settings, which are defined per test,
therefore you can connect to different Macs or different ports when running different tests.

However, UFT can connect to only one Mac at any time.

How UFT Handles Connection Attempts When a Previous Connection Exists

UFT attempts to set up a remote connection using the
RemoteConnection.Connect method, but...

Result

... it is already connected to the same Mac and port with
the same security level.

The existing connection is used and a statement about this is
added to the test results.

... it is already connected using adifferent Mac, port, or
security level.

A run error occurs on theConnect step

UFT attempts to set up a remote connection using the
Record and Run settings, but...

Result

... it is already connectedwith the same security level or
higher (to the sameMac and port, or different ones).

Note: This means UFT initiates a connection without
SSL, or it is initiating an SSL connection and the existing
connection is also using SSL.

The existing connection is used and awarning is added to the
test results.

Note: This may lead to a situation where steps that were
to be carried out on the new connection on adifferent
Mac or port, are carried out on the existing one.

... it is already connectedwith a lower security level (to
the sameMac and port, or different ones).

Note: This means UFT initiates an SSL connection but
the existing connection is not using SSL.

The existing connection is closed and anew connection is
initiated. (The new connection can succeed only if the
UFT Connection Agent on theMac is also set up to require an
SSL connection.)

Notifications about the connection changes are added to the
test results.

Note: This behavior prevents communication intended
for a secure connection from being carried out on anon-
secured connection.

For details about how to connect UFT to the remote Mac computer, see "How to Connect to a Remote
Mac Computer" on page 347.

For additional details about working with UFT and the Safari browser, see "Known Issues -
Google Chrome and Apple Safari" on page 360.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 337

For general considerations on working with Web browsers, see "Considerations - Web-Based Application
Support" on page 26.

The UFT Connection Agent for Mac Computers
This section includes:

l "What is the UFT Connection Agent?" below

l "What happens when UFT activates the Remote Object Spy?" below

l "What Do I Need to Do to Upgrade from UFT 12.00" below

l "What Do I Need to Configure on the Mac so UFT Can Test Web Applications?" on the next page

l "How Do I Secure the Communication Between UFT and the Mac Computer" on the next page

What is the UFT Connection Agent?

The UFT Connection Agent is a service installed on your Apple Mac computer, which enables UFT to
communicate with the Safari browser using the WebSockets protocol. This enables UFT to run tests on
Web applications running in Safari on the Mac and to spy on objects in these applications.

When you install the UFT Connection Agent, the agent service is installed on your Mac, and the Unified
Functional Testing Agent extension is installed on the Apple Safari browser.

The UFT Connection Agent runs automatically after installation and after each restart of the Mac and
communicates with UFT on the one hand and the Unified Functional Testing Agent Safari extension on
the other.

What happens when UFT activates the Remote Object Spy?

When UFT initiates a Spy session (using the Remote Object Spy), the mouse on the Mac computer can be
used only for spying on Web objects in Safari.

The Unified Functional Testing Agent extension icon in the Safari toolbar changes to a UFT Spy

button , which you can use to suspend and then resume the Spy session.

For more details on using UFT to spy on Web objects in Safari, see the section on the Remote Object Spy
in the HP Unified Functional Testing User Guide.

What Do I Need to Do to Upgrade from UFT 12.00

If you previously used UFT 12.00 to test Web applications on Safari, then after you upgrade UFT you
must reinstall the UFT Connection Agent on the Mac from the current UFT version.

The UFT Connection Agent preferences and the Unified Functional Testing Agent Safari extension
preferences are reset to their defaults.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 338

If you want to use non-default preferences, for example, if you configured UFT to use a port other than
the default 8822 for remote connections, then you must reconfigure these preferences on the Mac
computer.

This is required because of significant changes in the UFT Connection Agent's preferences. For example,
the UFT Connection Agent now uses different ports to communicate with UFT and the Safari extension.
In UFT 12.00, the same port was used for both communications.

What Do I Need to Configure on the Mac so UFT Can Test Web Applications?

By default, you do not need to modify the preferences set for the UFT Connection Agent and the Unified
Functional Testing Agent extension.

l UFT and the connection agent communicate using port 8822

l The connection agent and the UFT Safari extension communicate using port 8823.

However, in some situations, you might want to specify different ports. For example:

l If another application on the Mac uses these ports.

l If multiple UFT users need to connect to the same Mac computer. Each UFT user can use a connection
agent installed under a different Mac user account, with a different port number configured.

Caution: If you modify the port numbers, make sure that:

l The UFT port defined in the UFT Connection Agent preferences matches the one defined in UFT.

For details on setting this in UFT, see "How to Connect to a Remote Mac Computer" on page 347.

l The Safari port defined in the UFT Connection Agent preferences matches the one defined in
the Unified Functional Testing Agent extension in Safari.

In addition to the port numbers, you can configure the level of log messages to collect. By default, log
messages are collected from the connection agent, but not the Safari extension.

How Do I Secure the Communication Between UFT and the Mac Computer

When UFT communicates with the Mac, UFT acts as a client and the UFT Connection Agent acts as a
server.

You can secure this communication on different levels:

1. You can set up client authentication by defining a passphrase for UFT to use when contacting the
Mac.

2. You can secure the communication between UFT and the UFT Connection Agent by requiring that
they use an SSL connection.

For more details, see "Securing the Communication With the Remote Mac Computer" on the next page

For task details on configuring the UFT Connection Agent preferences, the Unified Functional Testing
Agent Safari extension preferences, and the security settings, see "Configure the UFT Connection Agent
Preferences (Optional)" on page 350.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 339

Securing the Communication With the RemoteMac Computer
When UFT connects to a remote Mac computer, it can access the Safari application and perform steps
on Web applications running in Safari. Therefore, it is important to secure this connection, to prevent
inappropriate access to your Mac and Web pages that the Mac can access.

When UFT communicates with the Mac, UFT acts as a client and the UFT Connection Agent acts as a
server.

You can secure this communication on different levels. You can:

Set up client authentication by defining a passphrase for UFT to use when
connecting to the Mac.

Define the same passphrase in UFT's Remote Connection pane in the Options dialog box (Tools
> Options > GUI Testing > Remote Connection) and in the UFT Connection Agent's preferences.

By default, the passphrase is empty. To provide better security, provide a passphrase that is long,
complicated, and difficult to guess.

UFT uses this passphrase whenever it initiates a connection with any Mac computer.

The UFT Connection Agent accepts a connection request only if the passphrase included in the request
matches the passphrase defined in the agent's preferences.

You can define the same passphrase on multiple UFT instances (on different computers, or in different
user accounts on the same computer), and multiple instances of the UFT Connection Agent, (on
different Mac computers or in different Mac user accounts). This way, you can set up a group of
computers that all share the same passphrase and are used for similar testing purposes (like a virtual
lab).

Secure the communication between UFT (the client) and the UFT Connection Agent
(the server) by requiring that they use an SSL connection.

In the UFT Connection Agent preferences, set the following:

l Specify whether communications with this agent must take place over SSL connections (use SSL)

l If they must, then:

l Specify the path to an SSL certificate file for the server to use for the communication. (Chain
certificate files are also supported)

l Specify the path to the SSL private key that matches the certificate.

In UFT:

l In the Remote Connection pane in the Options dialog box (Tools > Options > GUI Testing > Remote
Connection), specify the path to an SSL CA certificate file that UFT can use to validate the
SSL certificate provided by the server. (Certificate bundles are also supported.)

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 340

l When defining the details for a specific remote connection, you specify whether the connection
should use SSL. This can be done in the Remote Connection dialog box, in the Record and Run
settings (on a per-test basis), or using the RemoteConnection utility method in a test step. For
details, see "How to Connect to a Remote Mac Computer" on page 347.

l For a connection to succeed, the use SSL option must have the same value in UFT and the
UFT Connection Agent.

At different times, UFT can connect to different UFT Connection Agents, by using different Mac or
port numbers. You can instruct UFT to initiate non-SSL connections with agents that you know do not
require SSL, and SSL connections with agents that you know require it. UFT uses the CA certificate file
for certificate validation only on connections initiated using SSL.

How to Set Up Multiple Browser Testing
This task describes some of the techniques you can use to enable effective cross-browser testing for
your application or Web page.

Tip: For a use-case scenario related to this task, see "Using Descriptive Programming for Multiple
Browser Testing - Use-case Scenario" on page 326.

This task includes the following steps:

l "Prerequisite- turn off auto updates for the browsers" below

l "Configure the Record and Run settings to launch a browser" below

l "Set the value of the BROWSER_ENV environment variable to launch a specific browser" on the next
page

l "Configure UFT to automatically launch a browser with a parameter using the Record and Run
Settings" on page 343

l "Configure UFT to automatically launch a browser using a data parameter" on page 343

l "Dynamically load an object repository during the test run" on page 344

l "Add steps for browser specific behavior" on page 345

Prerequisite- turn off auto updates for the browsers

To ensure that you are testing on the specific browser version you want, turn off the automatic update
feature for your browser.

Configure the Record and Run settings to launch a browser

Using the Record and Run settings, you can change the browser on which you run the test for each test
run.

1. Select Record > Record and Run Settings.

2. In the Record and Run Settings dialog box, select the Web tab.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 341

3. In the Web tab, select the Open the following address when a record or run session begins:
option.

4. In the web address drop-down list, enter a Web address to open or select a Web address from the
drop-down list.

5. In the Open the following browser when a record or run session beings: drop-down list, select
the browser on which you want to run your test.

Note: If you choose Apple Safari, you must provide additional connection information. For
details, see "How to Connect to a Remote Mac Computer" on page 347

When you start the test run, the specified browser opens the Web address entered.

Set the value of the BROWSER_ENV environment variable to launch a specific
browser

Using the BROWSER_ENV environment value, you can change the browser to launch each test run, and
in some cases specify a specific browser version (if installed).

1. Select File > Settings.

2. In the Settings dialog box, select the Environment node.

3. In the Environment node, from the Variable type drop-down list, select User-defined.

4. In the user-defined variables list, click the Add button .

5. In the Add New Environment Parameter dialog box, in the Name field, enter BROWSER_ENV (case-
sensitive).

6. In the Value field, enter the value (case-sensitive) for the browser to open:

IE Opens the installed version of Internet Explorer.

IE64 Opens the installed 64-bit version of Internet Explorer.

CHROME Opens the installed version of Google Chrome.

FIREFOX Opens the latest installed and supported version of Firefox.

FIREFOX64 Opens the latest version of 64-bit Mozilla Firefox that is both installed on the computer and supported
by UFT.

FF<version#> Opens a specified version of Firefox.

SAFARI Opens Safari on the remoteMac computer connected to UFT.

EDGE Opens the installed version of Microsoft Edgewith the EdgeAgent for Functional Testing already
enabled.

7. Click OK to save the Name and Value of the variable.

8. In the Test Settings dialog box, click Apply and OK to save the variable and close the dialog box.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 342

Configure UFT to automatically launch a browser with a parameter using the Record
and Run Settings

You can instruct UFT to automatically launch a specific browser for a test run using the Record and Run
Settings:

1. Select Record > Record and Run Settings.

2. In the Record and Run Settings dialog box, select the Web tab.

3. In the Web tab, select the Open the following when a record and run session begins: option.

4. (Optional) In the Address field, enter the address to which to open the browser.

You can leave the Browser drop-down list as the default value.

5. In the Parameter type drop-down list, select the parameter type: Global Data Table or Test
Parameter.

6. In the Parameter Name field, enter the parameter name. (The default parameter name is
Browser.)

7. Click Apply to save the changes and OK to close the dialog box.

UFT automatically adds a column to the Global tab in the Data pane or a test parameter.

8. Before running the test, do one of the following, depending on the parameter type selected:

For a Global
Data Table
parameter

In theGlobal tab of the
Data pane, set the value of
the parameter.

Value to use:

l IE.Opens Internet Explorer.

l IE64.Opens a64-bit version of Internet Explorer.

l CHROME.Opens Google Chrome.

l FIREFOX.Opens the latest version of Mozilla Firefox that is both
installed on the computer and supported by UFT.

l FIREFOX64.Opens the latest version of 64-bit Mozilla Firefox that is
both installed on the computer and supported by UFT.

l FF<VersionNumber>.Opens the specified version of Mozilla Firefox.
For example: FF36 (version 3.6), FF40 (version 4.0), FF140
(version 14.0).

l SAFARI.Opens Safari on the remoteMac computer connected to UFT
(defined in theWeb tab of theRecord and Run Settings dialog box or
in theREMOTE_HOST environment variable).

For a Test
Parameter

a. In the toolbar, click

theRunbutton .

b. In theRun dialog box,
select the Input
Parameters tab.

c. In theValue column
for the parameter,
enter the value of the
parameter

Configure UFT to automatically launch a browser using a data parameter

1. (Optional) Create a reusable action to use in all your tests for launching the browsers.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 343

2. In the Data pane, open the Global tab.

3. In the Global tab, double-click the header of the first column in the table or the first column of the
column where you want to store the parameter.

4. In the Change Parameter Name dialog box, enter the name for the parameter and click OK.

For example, you could name this parameter BrowserName (to identify it as the name of the
browser to open).

The column name of the selected column is renamed to reflect the renamed parameter.

5. In the data table, enter the .exe names for the browsers you want to open.

For example, if you need to run the test on Internet Explorer, Firefox, and Chrome, you would enter
iexplore.exe, firefox.exe, and chrome.exe in the first three rows of the column, respectively:

6. Add a test step with the following format:

SystemUtil.Run DataTable("<parameter name>", dtGlobalSheet), <address to
open the browser to>

For example, if you wanted to open up to the Mercury Tours site, you could enter the following:

SystemUtil.Run DataTable("BrowserName", dtGlobalSheet),
http://newtours.demoaut.com

Note: If you add this step to a reusable action which is then called by other tests, the relevant rows
must be added in the Global tab of all tests that call that action.

Dynamically load an object repository during the test run

If your test requires you to have different object repositories for each browser type, you can load the
relevant object repositories as part of the test run without having to manually configure anything
before the test run:

1. In the Data pane, open the Global tab.

2. In the Global tab, double-click the header of the first column in the table or the first column of the
column where you want to store the parameter.

3. In the Change Parameter Name dialog box, enter the name for the parameter and click OK.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 344

For example, you could name this parameter Browser (to identify it as the name of the browser on
which to run the test).

The column name of the selected column is renamed to reflect the renamed parameter.

4. In the data table, enter the names for the browsers on which you want to run the test.

5. Add a test step with the following format:

If DataTable("<data table parameter>") = <Browser 1> Then
RepositoriesCollection.Add "<location to object repository>"

ElseIf DataTable("<data table parameter>") = <Browser 2> Then
RepositoriesCollection.Add "<location to object repository>"

End If

Example

If DataTable("Browser") = "Internet Explorer" Then
RepositoriesCollection.Add "C:\IE.tsr"

ElseIf DataTable("Browser") = "Chrome" Then
RepositoriesCollection.Add "C:\Chrome.tsr"

End If

6. Add the additional steps for the application/Web page.

When the test runs, the appropriate object repository loads, and the test steps use the objects in
the loaded object repository.

Add steps for browser specific behavior

If you need to add steps to perform browser specific behavior in the course of the test, you can use test
parameters to create steps for this behavior.

1. In the canvas, select an action.

2. In the Properties pane, select the Parameters tab.

3. In the Parameters tab, click the Add button.

4. In the Add Parameter dialog box, provide a name for the parameter. For example, you could name
the parameter ActiveBrowser to show that the value of the parameter represents the browser
currently in use.

5. Add steps to the test. You can use the value of the parameter by using the Parameter object:

Select Case Parameter("<parameter name>")
Case "<Browser 1>"
'Do something specific for browser 1
Case "<Browser 2>"
'Do something specific for browser 2

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 345

End Select

Note: You can add additional Case statement as needed for each browser type.

When the test runs, the test steps run as specified in the necessary Case statement.

How to Enable the HP Functional Testing Agent
Chrome Extension

Note: For the most up-to-date list of supported versions of Google Chrome, see the HP Unified
Functional Testing Product Availability Matrix.

UFT communicates with the Functional Testing Agent Chrome Extension to test Web applications
running in Google Chrome.

IMPORTANT: If you have a version of the Functional Testing Agent for Google Chrome from version
12.00 or earlier installed, you must manually remove this extension before enabling the new
version.

l If you are connected to the internet and Chrome updates automatically, Google Chrome
automatically downloads and installs the Agent the first time you open your Chrome browser.

If you do not have an internet connection at that moment, Chrome will try to download and install the
UFT Agent each time you open Chrome.

After downloading the Agent, Chrome prompts you to activate the Agent.

l If you do not have an internet connection, or if Chrome does not update automatically, enable
the extension manually as follows:

Chrome version
31 or later

l If you are connected to the internet, install and enable the Extension from theWeb
Store: https://chrome.google.com/webstore/detail/kgpdpdnaoephdehalonapacdgjhamnbc

l If you are not connected to the internet, see "For Google Chrome versions 31 and later" below.

Chrome version
30 or earlier

See "For Google Chrome versions 30 and earlier" on the next page.

For Google Chrome versions 31 and later

1. Select Tools > Extensions in Google Chrome.

Note: You can also access this page by opening the chrome://extensions page in the Google
Chrome browser.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 346

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://chrome.google.com/webstore/detail/kgpdpdnaoephdehalonapacdgjhamnbc

The Extensions page opens.

2. In the Extensions page, select the Developer mode option. Additional options are displayed after
you select this option.

3. Click on the Load unpacked extension button.

4. In the Browse for Folder dialog, navigate to the <UFT installation folder>\Installations\Chrome
folder and select the AgentLegacy.crx file.

5. In the Confirm New Extension dialog, click Add when prompted,

The Functional Testing Agent is now displayed in the Chrome extensions list.

For Google Chrome versions 30 and earlier

1. If you have a previous version of the UFT Agent for Google Chrome installed, manually remove this
extension.

2. Open the Chrome folder included with the UFT installation, found at <UFT installation
folder>\Installations\Chrome.

3. Select Tools > Extensions in Google Chrome.

Note: You can also access this page by opening the chrome://extensions page in Google
Chrome. The Extensions page opens.

4. From the <UFT installation folder>\Installations\Chrome folder, drag the AgentLegacy.crx file to
the chrome://extension page.

5. In the Confirm New Extension dialog, click Add to install the extension.

The Functional Testing Agent for Google Chrome is now displayed in the Chrome extensions list.

How to Enable UFT to Test Local HTML Pages in
Google Chrome
By default, the ability to run extensions on local HTML files is disabled in Google Chrome. Do the
following to allow the UFT Google Chrome extension to run on local HTML files:

1. In Google Chrome, browse to the following URL: chrome://extensions

2. Locate the UFT extension, named Unified Functional Testing Agent.

3. Click the arrow located to the left of the icon to expand details about the extension.

Select Allow access to file URLs. Your selection is automatically saved.

How to Connect to a Remote Mac Computer
This task describes how to control the UFT connection to a remote Mac computer, to enable testing
Web applications on the Safari browser.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 347

For details on how to work with a connected remote computer and how UFT handles connection
attempts when a previous connection exists, see "Working With Apple Safari on a Remote Mac
Computer" on page 336.

This task includes the following steps:

l "Prerequisite" below

l "Use the Remote Connection dialog box to control the connection to the Mac while designing your
test" below

l "In the Record and Run Settings dialog box, specify the remote Mac computer to use when running
the test or component" on the next page

l "Alternatively, you can add steps to your test or component to control the remote connection to the
Mac during the run session" on the next page

l "Configuring the Port Number to Use for the UFT-Mac Connection" on the next page

Prerequisite

To test Web applications on the Safari browser, you must install the UFT Connection Agent and the
Unified Functional Testing Agent Safari browser extension on your Mac computer. For details on how to
do this, see "The UFT Connection Agent for Mac Computers" on page 338.

Use the Remote Connection dialog box to control the connection to the Mac while
designing your test

l Click the Remote Connection button in UFT's toolbar.

In the dialog that opens, enter the host name or IP Address to use for the Mac.

Optionally, append a port number to the host name. For details, see "Configuring the Port Number to
Use for the UFT-Mac Connection" on the next page.

l If the UFT Connection Agent on the Mac is configured to expect an SSL connection,you must select
the Use SSL option.

To use an SSL connection to secure the communication between UFT and the Mac, make sure that
the relevant certificates and key are defined in the Options dialog box in UFT (Tools > Options >GUI
Testing > Remote Connection) and in the UFT Connection Agent preferences on the Mac. For details,
see the "Securing the Communication With the Remote Mac Computer" on page 340.

l Use the Connect/Disconnect button on this dialog to control the connection status while you edit the
test.

l This dialog also displays the current status of the connection.

l Before you run the test, make sure that you use one of the methods below to set up the UFT-Mac
connection for the run session.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 348

In the Record and Run Settings dialog box, specify the remote Mac computer to use
when running the test or component

Do one of the following:

l Select Record > Record and Run Settings to open the Record and Run Settings dialog box.
a. In the Web tab, select Open the following browser when a record or run session begins.

b. Select Apple Safari (on remote Mac computer) from the list of browsers.

c. Set the host (and port) information.

d. Select whether to initiate an SSL connection.

e. Select whether to disconnect from the Mac at the end of the run session, and whether to close
the browser.

l Set the environment variables REMOTE_HOST, BROWSER_ENV, URL_ENV, and USE_SSL (the last two
being optional).

In these environment variables, you specify the Mac connection details, the SAFARI browser, and,
optionally, the URL to open in the browser.

If you need an SSL-secured connection, set the USE_SSL variable to TRUE. For details, see
"Environment Variables for a Web-Based Environment" on page 46.

UFT sets up the connection with the specified Mac and runs the Safari browser at the beginning of the
run session, whether the test runs it from UFT’s UI, or from an ALM test set.

Alternatively, you can add steps to your test or component to control the remote
connection to the Mac during the run session

Use the RemoteConnection utility object and its methods: Connect (hostname, [useSSL]), Disconnect,
IsConnected to set up and disconnect the connection with the Mac.

Use RemoteConnection.Run (Safari, <URL>), to run the Safari browser on the remote Mac after
you establish the connection.

For details, see the Utility Objects section of the HP UFT Object Model Reference for GUI Testing.

Configuring the Port Number to Use for the UFT-Mac Connection

By default, UFT connects to the Mac using port 8822. However, in some situations, you might want to
use a different port. For example:

l If another application on the Mac uses this port.

l If multiple UFT users need to connect to the same Mac computer. Each UFT user can use a connection
agent installed under a different Mac user account, with a different port number configured.

To use a different port, append the port number to the host name: <hostname>:<port number>.

Make sure to configure the same port number on the Mac, in the UFT port option in the UFT Connection
Agent preferences.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 349

How to Install and Configure UFT Connection Agent on
Your Mac
The UFT Connection Agent is a service installed on your Apple Mac computer, which enables UFT to
communicate with the Safari browser using the WebSockets protocol. This enables UFT to run tests on
Web applications running in Safari on the Mac and to spy on objects in these applications. For details,
see "The UFT Connection Agent for Mac Computers" on page 338.

This task describes installing and configuring the UFT Connection Agent, and includes the following
steps:

l "Install or Uninstall the UFT Connection Agent" below

l "Configure the UFT Connection Agent Preferences (Optional)" below

l "Configure the Unified Functional Testing Agent Extension in Safari (Optional)" on page 352

l "Troubleshooting the UFT Connection Agent" on page 353

Install or Uninstall the UFT Connection Agent

l You must have administrator permissions to install the UFT Connection Agent.

l All Mac users that use the UFT Connection Agent must have the agent installed in their Mac user
account.

1. Copy the installer image file (UFTConnectionAgent.dmg) from the <UFT installation
folder>/Installations/Safari folder to the Mac.

2. Open the UFTConnectionAgent.dmg image file.

3. Double-click (HP UFT Connection Agent.pkg) to start the installation wizard, or Uninstall to
remove the agent from your Mac.

This installs or removes both the UFT Connection Agent and the Unified Functional Testing Agent
Safari extension.

Note: If Safari or the System Preferences pane are open when you uninstall the agent, reopen
them for the uninstallation to take effect.

Configure the UFT Connection Agent Preferences (Optional)

1. To check or modify the status of the UFT Connection Agent, or to update its preferences, open
System Preferences and double-click HP UFT Connection Agent.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 350

2. You can modify any of the following preferences (separately for each Mac user):

l Connection Port Numbers

o Safari port. The port on which the UFT Connection Agent communicates with the Unified
Functional Testing Agent Safari extension. (Default: 8823)

This number must match the Remote Agent Port number defined in the Unified Functional
Testing Agent extension in Safari.

o UFT port. The port on which UFT communicates with the UFT Connection Agent.
(Default: 8822)

This number must match the number defined in UFT for initiating the remote connection to
the Mac.

l Security Configuration

o Passphrase. The passphrase that UFT must use for authentication when initiating a remote
connection to the Mac computer.

This string must match the passphrase defined in UFT's Remote Connection pane in the
Options dialog box (Tools > Options > GUI Testing > Remote Connection).

The passphrase can be empty, but a long and complicated passphrase that is difficult to
guess provides better security.

o Use SSL. Indicates that UFT must use SSL when initiating the connection to the Mac
computer.

If you select this option, then:

l The Use SSL option, available in UFT when initiating a remote connection, must also be
selected.

l You must specify the paths to the SSL certificate file to use for the communication and
its SSL private key.

These files must be accessible to the UFT Connection Agent when it sets up the
connection. (Chain certificate files are also supported)

l In UFT (Tools > Options > GUI Testing > Remote Connection), specify the CA certificate
that UFT can use to validate the SSL certificate file when received from the
UFT Connection Agent.

For more details, see "Securing the Communication With the Remote Mac Computer" on page
340.

l Log Messages Configuration

o Log folder. The folder in which to save activity log messages.

Make sure you have write permissions for this folder.

o Agent log level. The level of information to save in the agent log (Fatal, Error, Warning,
Debug).

The log is saved in the UFTAgent.log file in the specified folder.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 351

o UFT Safari extension logs. Specifies whether to maintain a log of the Unified Functional
Testing Agent Safari extension activity in addition to the UFT Connection Agent log. (Default:
OFF).
There is no need to turn these logs on, unless HP Support personnel request it.

This log is saved in the SafariLog.log file in the same folder.

Note: To activate the Unified Functional Testing Agent Safari extension log, you must
also select Enable Remote Logging in the extension's preferences in Safari.

3. Make sure the Safari browser is closed and then click Apply & Save to save your changes and
restart the agent with the new preferences.

l The agent's status is displayed in the HP UFT Connection Agent preference pane.

Check the status to make sure the agent runs successfully with the new preferences. If it does
not, check the UFTAgent.log file for problem details.

l If you set the UFT Safari extension logs option to ON and the remote logger service that logs
the Safari extension activity fails to run, this option is automatically set back to OFF. Check the
SafariLog.log file for problem details.

Configure the Unified Functional Testing Agent Extension in Safari (Optional)

1. Open the Unified Functional Testing Agent extension in Safari.

a. Select Safari > Preferences

b. In the Preferences dialog box, select the Extensions tab.

c. In the Extensions list in the left pane of the dialog box, select the Unified Functional Testing
Agent extension.

2. In the right pane, you can modify any of the following preferences:

l Remote Agent Port: The port number on which the UFT Connection Agent communicates with
the Safari browser. (Default: 8823)

Caution: This number must match the Safari port number defined in the UFT Connection
Agent preferences.

l Show Object Spy popover when Spy starts: If you turned off the notification displayed on
Safari when UFT initiates a Spy session, you can turn it back on using this option.

l Options related to maintaining a log of the Unified Functional Testing Agent Safari extension
activity.There is no need to modify these options, unless HP Support personnel request it.

o Default Logging Level. The level of information to save in the Unified Functional Testing
Agent Safari extension log file. (All, Trace, Debug, Info, Warn, Error, Fatal, Off)

o Enable Remote Logging. Specifies whether to maintain a log of the Unified Functional
Testing Agent Safari extension activity in addition to the UFT Connection Agent log. (By

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 352

default, this option is cleared.)

This log is saved in the SafariLog.log file in the same folder as the UFT Connection Agent
logs.

Note: To activate the Unified Functional Testing Agent Safari extension log, you must
also select UFT Safari Extension logs in the UFT Connection Agent preferences.

o Leave the Logging Exceptions box empty. This is intended for use by HP Support only.

Troubleshooting the UFT Connection Agent

l If the agent remains in not running status after you update its preferences, check the UFTAgent.log
file for problem details.

For example, the ports you specified might be busy. They may be used by another application, or they
may be in use by a UFT Connection Agent installed on the Mac under another user's account.

Alternatively, you might have entered a port number that is restricted by Apple. Consult the Apple
support site regarding restricted or blocked ports.

l If UFT fails to connect to the Mac, make sure that the security settings defined in UFT match those
defined in the UFT Connection Agent. For more details, see "Securing the Communication With the
Remote Mac Computer" on page 340.

l If UFT fails to run tests on Safari or to recognize that it is installed on the Mac:

l Make sure that Safari port number defined in the UFT Connection Agent preferences, matches
the Remote Agent Port number defined in the Unified Functional Testing Agent extension.

Make sure that the UFT port number defined in the UFT Connection Agent preferences, matches
the number defined in UFT for initiating the remote connection to the Mac.

l Make sure that you are not using a port number that is blocked by Safari. Consult the Apple
support site regarding restricted or blocked ports.

l If you manually remove the Unified Functional Testing Agent extension from Safari, or the HP
UFT Connection Agent preferences pane from the System Preferences, you can reinstall them by
reinstalling the UFT Connection Agent on the Mac.

Reinstalling the UFT Connection Agent resets its preferences to their defaults. Make sure to update
the preferences, if necessary, so that the correct port numbers are defined in the agent preferences
and in the Safari extension.

l If you turn on the UFT Safari extension logs, and when you save the preferences, the log option is set
to OFF, check the SafariLog.log file for problem details.

For example, the port used for these logs is the Safari port + 1. If this port is busy, the remote logger
service fails.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 353

Known Issues - Internet Explorer and Microsoft Edge

Internet Explorer

General

If Internet Explorer 9 displays the message: Speeding up browsing by disabling add-ons, choose
Don't disable or select a bigger threshold value.

Test Objects, Methods, and Properties

l Recognition of test objects when using AutoXPath is very slow for web pages in Quirks Mode and
Almost Standards Mode.

Workaround: Convert the web page into Standards Mode by adding or changing the DOCTYPE of the
page into <!DOCTYPE.htlm> or <!DOCTYPE.HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd" or disabling AutoXPath capabilities in UFT by
clearing the Learn and run using automatic XPath identifiers in the Web > Advanced pane (Tools >
Options > GUI Testing tab > Web > Advanced node).

l When using the RunScript or RunScriptFromFile methods, Alert, Confirm, or Prompt dialogs are not
displayed.

Workaround:When writing a RunScriptmethod, use the following method syntax:

Set wnd=Browser("<browser name>").Page("<page name>").RunScript("window")
wnd.alert()

or

Browser("<browser name>").Page("<page name>").RunScript "setTimeout(function ()
{alert(); }, 0)"

l The WebXML test object is not supported on Internet Explorer 9 or later running in standard mode.
Accordingly, features related to WebXML test objects, such as XML checkpoints and output value
steps, are not supported on such browsers.

l In some cases, UFT does not support or recognize about:blank tabs in Internet Explorer 11.

l When using Internet Explorer 9, the innertext, outertext, innerhtml and outerhtml property values
may differ from earlier versions of Internet Explorer. Therefore, using these values in parameters or
running checkpoints that use these property values may cause the steps to fail.

Recording

l When recording a test on Internet Explorer 8 or earlier with the Active Screen enabled, performance
on the site may become very slow. This is due to a performance issue in the JavaScript engine used in
these browsers.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 354

Workaround: Record the test using Internet Explorer 9, or disable the Active Screen. For details, see
the HP Unified Functional Testing User Guide.

l If you are using Internet Explorer with:

l UAC enabled

l Protected mode enabled for either the Internet zone or the Intranet zone (Internet Options
> Security tab)

l Protected mode disabled for the other zone (the Internet or Intranet zone)

UFT does not record steps when switching between an Internet site and an Intranet site.

Workaround: Set the integrity level (Protected mode enabled or not enabled) to be the same for the
Internet and Intranet zones.

l If you record a click on an area of an image map that is not mapped to a URL in Microsoft Internet
Explorer, UFT will perform a click on the first mapped area of that map during the run session.

l UFT does not record on customized toolbar buttons in Microsoft Internet Explorer. (It records only on
the toolbar buttons that are displayed by default in the browser.)

l UFT does not record on the Find window of the Microsoft Internet Explorer browser.

l UFT may respond slowly during a recording session if the drop-down boxes in a Web page contain a
lot of data.

Workaround: Learn the objects on a Web page that contains a lot of data (instead of recording).

l In Internet Explorer, the AutoComplete operation on edit fields is not recorded.

Workaround: You can disable the AutoComplete feature in Microsoft Internet Explorer by selecting
Tools > Internet Options > Advanced and deselecting the Use inline AutoComplete under the
Browsing options in Microsoft Internet Explorer.

l When recording on an combo box object in which the role property is "listbox" (and is recorded as a
WebList object), when you select a value from the object with the .Selectmethod, UFT adds
additionalWebEdit.Set steps to the test.

Workaround: Delete the unneeded WebEdit.Set steps.

Active Screen

When using Internet Explorer versions 10 or 11, if you use the Active Screen to view objects or add steps
to a test or component, the Active Screen does not capture the updated state of the Web page.

Workaround: Open the Developer Tools for the Web page and change the Document Mode to 8 or lower.

Microsoft Edge

General

l You must open the Edge browser session using the Edge Agent for Functional Testing. UFT cannot
spy, record, or run tests on an existing Edge browser session.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 355

You can start the Edge Agent for Functional Testing from one of the following locations:

l The desktop shortcut

l Start -> All apps -> HP Software -> Edge Agent for Functional Testing

l In the Record and Run Settings dialog box, select Edge as the Browser type

l If you are using the Microsoft Edge insider version, you must have insider version 10576 or later.
However, due to changes in the Web Driver insider build by Microsoft, later versions may not work
with UFT.

l Each step performed by Edge has a short delay due to the Edge Agent's injection of Javascript in the
browser.

l All Web 2.0 toolkits (ASP .NET AJAX, Dojo, Ext-JS, GWT, jQueryUI, SiebelOpenUI, and YahooUI), are not
supported when using Edge versions 10576 and earlier.

l The Ext-JS, SiebelOpenUI, and YahooUI are not supported on any Edge versions.

l If you open a tab in an Edge browser with the Edge Agent for Functional Testing, you should perform
at least one action in the browser to enable UFT to use the necessary mechanism to communicate
with this tab.

l When identifying objects in an application or running test using multiple tabs in an Edge browser, the
focus may unexpectedly switch between tabs in the browser window. This does not affect your test
run or object identification.

Object Identification

l If you open multiple tabs on an Edge browser, then manually close a tab, UFT will experience
unexpected behavior when attempting to spy on the remaining tabs.

Workaround: Open only one tab at a time when using Edge with UFT or open/close tabs using UFT
test object methods.

Test Objects, Methods, and Properties

l The following test objects, methods, and other Web-specific functionalities are not supported:

l Browser.Home

l Browser.ClearCache

l Browser.DeleteCookies

l Browser.Stop

l Browser.FullScreen

l Browser.IsSiblingTab

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 356

l Browser.Object

l WebFile object

l ViewLink object

l Browser About:* pages

l The following test objects are not supported when using Edge versions before 10576:

l Frame and Frameset objects

l Dialog objects

l Multiple tab are not supported on Edge versions 10576 earlier.

l Multiple Edge browsers windows are not supported.

l The Web > Advanced settings in the Options dialog box (Tools > Options > GUI Testing tab > Web
> Advanced node)are not supported.

Recording

Recording is not supported.

Active Screen

The Active Screen is not supported on Edge browsers.

Known Issues - Mozilla Firefox
General Limitations

l If two minor versions of Mozilla Firefox are installed on the same computer, and the earlier version
was installed after the later version, UFT may not recognize which is the latest version.

l If you are working on a computer where the UAC (User Account Control) option is set to ON, UFT does
not support testing on Mozilla Firefox browsers that were installed (or upgraded to a new version)
after you installed UFT.

Workaround: After installing Mozilla Firefox on the environment described above, log in as an
administrator and open UFT. This enables UFT to install files that are required for Mozilla Firefox
support.

l The legacy Functional Testing Agent for Firefox is supported only for Firefox versions 39 and earlier.

l The legacy Functional Testing Agent for Firefox (found at <UFT installation
folder>\Installations\Firefox\AgentLegacy.xpi) may experience unexpected results on a Windows 8
operating system.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 357

l UFT does not support anonymous content elements in non-XUL frames. (For example, the buttons in
the Mozilla Firefox SSL exception page.)

l It is recommended to disable other Mozilla Firefox add-ins when performing tests of your Web
application or Web page.

l The SAPWDJ Add-in is not supported on Firefox browsers.

l If you have the Add-ons Manager enabled, in the Web tab of the Run and Record Settings dialog box,
if you set Firefox to open to a specific URL, Firefox does not open to the specified URL at the
beginning of a recording or run session.

Workaround: Disable the Add-ons Manager before using Firefox.

Recording

l Recording on Mozilla Firefox pages is only possible when the page is fully loaded.

l When recording steps in Mozilla Firefox, additional steps may be recorded.

Workaround: Manually remove the extraneous steps after the recording session ends.

l Low-level recording is not supported on Firefox.

l The following methods are not supported for recording on Mozilla Firefox:

l Browser.Home

l Browser.FullScreen

l When recording on some Mozilla Firefox versions, if you perform a search on google.com by entering
the search string and then pressing Enter, the Submit operation is not recorded. Subsequently, when
you run the test, UFT enters the search string but does not perform the search.

Workaround: Do one of the following:

l When recording the search operation, click the search button instead of pressing Enter.

l Manually add the Submit (or Click) step to the test or component.

l The If Handler option in the Web Event Recording Configuration Dialog Box works on Mozilla Firefox
browsers only if the handler is assigned as an attribute (for example, <A onclick = "some
code"/>) and not if it is assigned as a property (for example, aObj.onclick = function() {some
code})

l The Active Screen is not supported for use with Mozilla Firefox browsers.

l UFT does not record steps performed on browser dialog boxes (such as alert, confirmation, or
prompt) if these dialog boxes are opened from a new browser tab.

l When recording on Mozilla Firefox, UFT does not use the location identifier identification property to
learn the object.

l When accessing FTP servers using Mozilla Firefox, UFT does not record actions on the server
authentication dialogs.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 358

Test Objects, Methods, Properties, and Checkpoints

l UFT does not support accessing browser dialog boxes (such as alert, confirmation, or prompt) directly
in Mozilla Firefox.

Workarounds for Firefox only:

l Use the HandleDialog or GetDialogTextmethods described in the Web section of the HP UFT
Object Model Reference for GUI Testing.

l If the Browser("xxx").Dialog("xxx").Page("xxx") object is recognized, either use a recovery
scenario with the HandleDialogmethod, or a Browser("xxx").Dialog("xxx").Page("xxx").Type
step to handle the pop-up dialog box. For example, use an Enter key to click the default button
and close the dialog box.

l The Object Spy and Checkpoint Properties dialog boxes do not retrieve the current value of edit
boxes in Mozilla Firefox dialog boxes.

l The Object Spy and Navigate and Learn dialog boxes do not retrieve the current value of tabmodal
dialogs in Mozilla Firefox.

l The Type property of the WebButton test object has a different default value in Microsoft Internet
Explorer and Mozilla Firefox. In Microsoft Internet Explorer the default value is Button, but in Mozilla
Firefox the default value is Submit.

Workaround: Do not use the Type property in the description of a WebButton test object.

l When using Mozilla Firefox, the innertext, outertext, innerhtml and outerhtml property values
may differ from other browsers. Therefore, using these values in parameters or running checkpoints
that use these property values may cause the steps to fail.

l The following test objects, methods, and other Web-specific functionalities are not supported in
Firefox:

l iFrame (with a Javascript source) and Frameset objects are not supported in Mozilla Firefox
browsers.

l Firefox Start Page

l about://* pages

l Modal or modaless dialog boxes

l ViewLink test object

l WebXML test object (and, accordingly, XML checkpoints and output value steps)

l Browser.Objectmethod

l Browser.Stop

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 359

l Text area checkpoints are not supported on Mozilla Firefox.

l If you drag a tab to create a separate window in Firefox, UFT stops recognizing, recording, or running
any web objects in the new window.

l If you need to test Java applets in Mozilla Firefox browsers, you must use the legacy Functional
Testing Agent for Firefox, found in the <UFT installation folder>\Installations\Firefox folder.

Note: The legacy Functional Testing Agent for Firefox is supported for Firefox versions 39 and
earlier.

l If you take a snapshot of an ASPAjaxRichTextArea object on FireFox, it might not be displayed
correctly in the Active screen.

l If a test or business component contains a step that closes a Mozilla Firefox browser, UFT may
behave unexpectedly when that step is reached during a run session.

Workaround: Do not include a step that closes a Mozilla Firefox browser.

l If you open the Search toolbar or developer toolbar in Mozilla Firefox, when you spy on an object or
highlight an object in the object repository, the highlight rectangle is displayed in the wrong location
in the browser window.

Workaround: Float the toolbar in the browser window.

l When using the RunScriptmethod on Mozilla Firefox browsers, you should disable the Content
Security Policy before running the test:

a. In Firefox, native to about:config.

b. Search for security.csp.enable.

c. Change the value to false.

Known Issues - Google Chrome and Apple Safari

Google Chrome and Apple Safari
See below for additional issues relevant only to Chrome or Safari.

Functionality and Settings

l Web pages that modify the browser's JavaScript functionality (for example, a Web page that
replaces the JSON object) may cause UFT to behave unexpectedly.

l The font and color properties for link objects contain different values in different browsers.
Therefore, if you create standard checkpoints in Microsoft Internet Explorer and select the font and
color properties, running these checkpoints in Chrome or Safari may cause the checkpoints to fail.

l If you have multiple Chrome or Safari users defined, you must delete all users.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 360

Test Objects, Methods and Properties

l When using Chrome or Safari, the innertext, outertext, innerhtml and outerhtml property values
may differ from other browsers. Therefore, using these values in parameters or running checkpoints
that use these property values may cause the steps to fail.

l The following test objects, methods, and other Web-specific functionalities are not supported in
Chrome or Safari:

l ViewLink test object

l chrome://* pages

l about://* pages

l Browser.Home method

l Browser.FullScreenmethod

l Browser.Objectmethod

l Browser.Stop

l Modal or modaless dialog boxes

l Developer Tools pane. (Running steps on Chrome or Safari while the Developer Tools pane is open
is supported.)

l Dialog boxes opened by the browser, such as Alert, Confirmation, or Prompt messages on versions
of Chrome earlier than 26.

l WebXML test object (and, accordingly, XML checkpoints and output value steps).

l Web-based environments, such as Web-based SAP, Siebel, Java, .NET Web Forms, and so on.

Google Chrome
l In the following cases, you must manually enable the Functional Testing Agent for Google Chrome

extension:

l You have no internet connection

l You have not enabled the automatic updates for Google Chrome

l You are using Google Chrome versions 31 or earlier.

For details on manually enabling the Extension, see "How to Enable the HP Functional Testing
Agent Chrome Extension" on page 346.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 361

l Recording on Google Chrome is supported only from versions 31 and higher.

l If you have the Chrome developer tools currently open, UFT cannot spy on Web objects.

l If you have a Chrome alert or warning dialog open, UFT cannot run or record tests or components on
the browser.

Workaround: Close the alert or warning dialog before trying to run or record a test or component.

l Internal Google Chrome pages, such as the about:blank page, Google Chrome sign-in page, Google
Chrome Web Store, and Google Chrome's default tabs homepage are not recognized as Web pages
but WinObjects.

l When working with Chrome version 36 or earlier, UFT does not support Web test objects located
inside iFrame controls with a blank or about:blank SRC identification property value.

l Page checkpoints and bitmap checkpoints may fail when running on Google Chrome because of
differences between Chrome and Internet Explorer. For page checkpoints this is related to
differences in the handling of casing in HTML source files.

l Text checkpoints fail when running on Google Chrome.

l When recording on Google Chrome, UFT does not use the location identification property to learn the
object.

l When spying on a Web file in Google Chrome, you get a fakepath for a Webfile value property.

l If you manually uninstall the UFT Agent extension from Chrome, you must manually reinstall it if you
reinstall UFT.

l The Active Screen is not supported for use with Google Chrome browsers.

l The Page/Frame options (Tools > Options > GUI Testing tab > Web > Page/Frame Options node) are
not supported for recording in Google Chrome.

l If the Record Coordinates option is selected in the Web > Advanced pane of the Options dialog box
(Tools > Options > GUI Testing tab > Web > Advanced > Record Settings section), UFT does not
record correct coordinates on images in Google Chrome browsers.

Workaround: Manually add the correct coordinates for the image after recording.

l iFrame and Frameset objects are not supported in Google Chrome browsers.

l Using the Object Spy on Alert or Confirm dialogs in Google Chrome causes unexpected behavior in
UFT.

l When testing applications on Google Chrome in Windows 10, UFT does not record many user actions.

Workaround: In Chrome, do the following:

a. Navigate to the chrome://flags/ page.

b. In the flags page, disable the Enable touch events option.

l When accessing FTP servers using Google Chrome, UFT does not record actions on the server
authentication dialogs.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 362

Apple Safari
l Only Web test object steps can run on Safari. All other steps run locally on the UFT computer.

l Recording steps on Safari is not supported.

l Web 2.0 test objects or Web Add-in Extensibility-based test objects are not supported on Safari
Browsers

l UFT does not recognize internal Safari pages, such as the New Tab page.

l The following functionalities are not supported when working with the Safari browser:

l Learning objects in the Object Repository Window or Object Repository Manager (you can learn
objects using the Remote Object Spy)

l Maintenance Mode

l Highlighting an object from the object repository in the application

l Creating an Active Screen or using the Update Run Mode to update the Active Screen

l Checkpoints and output values that are not standard (such as File Content checkpoints and
output values, Text checkpoints and output values, and Bitmap checkpoints).

Note that Page checkpoints are supported, with the following limitations:

o Page checkpoints and bitmap checkpoints may fail when running on Google Chrome because
of differences between Chrome and Internet Explorer. For page checkpoints this is related to
differences in the handling of casing in HTML source files.

o The value of the load time identification property for Page and Frame test objects is always 0
when running on Safari. In Page checkpoints, the load time property is selected by default,
therefore Page checkpoints may fail when running on Safari.

Workaround: Deselect the load time property in Page checkpoints that need to run on Safari.

l The following test objects and test object methods are not supported when running on Safari:

l WebFile.Setmethod

l Browser.ClearCache method

l Browser.DeleteCookiesmethod

l Drag & Dropmethods (on all Web test objects)

l Web test objects located inside iFrame controls with a blank or about:blank SRC identification
property value.

l Depending on the performance of your connection to the Mac, statement completion for the Object
property might not work.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 363

l During a run session, steps that click on a Web object that is supposed to open a new browser tab fail
to open the new tab.

Workaround: Disable the popup blocker in Safari. (Safari > Preferences > Security, clear the Block
pop-up windows check box).

l When running tests or components on Safari, recovery scenarios are not supported.

l Running tests or components on Safari using the Mouse replay type is not supported.

Make sure that Event is selected as the Replay type in the Run settings section of the Web >
Advanced options pane (Tools > Options > GUI Testing tab > Web pane > Advanced node).

l In the automation object model,WebLauncher.Browser does not support the Safari browser. To
connect to a remote Mac during a test run and open the Safari browser, use the RemoteConnection
utility object and its methods. For details, see the Utility Objects section of the HP UFT Object Model
Reference for GUI Testing.

Add-ins Guide
Web Add-in - Multiple Browser Support

HP Unified Functional Testing (12.52) Page 364

HP Unified Functional Testing (12.52) Page 365

Part 20: Web 2.0 Add-ins
This section includes:

"Web 2.0 Add-ins - Quick Reference" on page 366

"Web 2.0 Toolkit Support " on page 368

"Known Issues - Web 2.0 Add-ins" on page 371

Web 2.0 Add-ins - Quick Reference
You can use the Web 2.0 Add-ins to test HTML user-interface objects (controls) in Web 2.0
environments.

The Web 2.0 Add-ins include the following:

l ASP .NET AJAX

l Dojo

l Google Web Toolkit (GWT)

l jQueryUI

l Siebel Open UI

l EXT-JS

l Yahoo User Interface (Yahoo UI)

The following tables summarize basic information about the Web 2.0 Add-ins and how they relates to
some commonly-used aspects of UFT.

General Information

Add-in Type Much of the functionality of these add-ins is the sameas other Web add-ins. These add-ins extend the
capabilities of theWeb Add-in functionalities.

l See the section on the "Web Add-in" on page 304and "Web-Based Application Support" on page 25.

Supported
Environments

For details on supported Web 2.0 toolkits and versions, see theHP Unified Functional Testing Product
Availability Matrix.

Test Object
Methods and
Properties

TheWeb 2.0 Add-ins provide test objects, methods, and properties that can beused when testing objects in
Web applications. For details, see the relevant toolkit section in theWeb 2.0 toolkits sectionof theHPUFT
Object Model Reference for GUI Testing.

Checkpoints
and Output
Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Prerequisites

Opening Your
Application

You must open UFT before opening your Web application.

Add-in Dependencies You must have theWeb Add-in installed and loaded.

Other Important
Information for
SiebelOpenUI users

l When working with SiebelOpenUI objects, load theWeb Add-in and the SiebelOpenUI Add-in,
but do not load the Siebel Add-in.

If you load both the Siebel and the SiebelOpenUI add-ins, the add-ins sometimes conflict with
each other, and prevent successful object recognition.

l In order to enableUFT to run tests for SiebelOpenUI objects, you must associate a special

HP Unified Functional Testing (12.52) Page 366

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

function librarywith your test.

This function library is found at <UFT installation
folder>\dat\Extensibility\Web\Toolkits\SiebelOpenUI\Functio
n Libraries\SiebelOpenUI.qfl.

You can set this function library as the default function library in theResources pane in the
Test Settings dialog box. For details, see the section on the Test Settings Resources pane in
theHPUnified Functional Testing User Guide.

Other Important
Information for EXT-
JS users

In order to enableUFT to run tests for EXT-JS objects, you must associate a special function
librarywith your test.

This function library is found at <UFT installation
folder>\dat\Extensibility\Web\Toolkits\ExtJS\Function
Libraries\ExtJS.qfl.

You can set this function library as the default function library in theResources pane in the Test
Settings dialog box. For details, see the section on the Test Settings Resources pane in the
HPUnified Functional Testing User Guide.

Configuration

Options Dialog Box Use theWebpane.

(Make sure that aGUI test is open and select Tools > Options > GUI Testing tab >
Web > General node.)

Record and Run Settings Dialog
Box
(tests only)

Use theWeb tab. (Record > Record and Run Settings)

Test Settings Dialog Box
(tests only)

Use theWeb pane (File > Settings > Webpane).

Custom Active Screen Capture
Settings Dialog Box
(tests only)

Use theWeb section (Tools > Options > GUI Testing tab > Active Screennode>
Custom Level).

See the section on the Custom Active Screen Capture Settings dialog box in the
HPUnified Functional Testing User Guide.

Application Area Additional
Settings pane
(business components only)

Use theWebpane.

In the application area, select Additional Settings > Web in the sidebar.

l See the section on defining Application Settings for your application area in the
HPUnified Functional Testing User Guide.

Add-ins Guide
Web 2.0 Add-ins - Quick Reference

HP Unified Functional Testing (12.52) Page 367

Web 2.0 Toolkit Support

The Complexities of Testing Web 2.0 Controls
Web 2.0 sites often include a feature-rich, user-friendly interface based on client-side interactivity
frameworks. The controls in these sites are generally created using a combination of HTML and client-
side JavaScript code that create complex, interactive application objects.

Many groups and organizations have published Web 2.0 toolkits. These toolkits comprise open source
JavaScript libraries that define Web 2.0 controls. Developers can use or customize these toolkits to
build Web 2.0 applications instead of developing Web 2.0 controls from scratch.

The UFT Web Add-in does not recognize these complex controls and, instead, relates to the HTML
elements that comprise them. This results in low-level steps on generic Web test objects. Such steps
may be difficult to create, read, and maintain.

Testing Web 2.0 Controls with UFT Web 2.0 Add-in
Support
UFT Web Add-in Extensibility makes it possible to develop Web-based add-ins that can identify the
controls in a Web 2.0 application in a way that better matches the intended purpose and functionality of
those controls.

UFT provides built-in Web Add-in Extensibility support for several public Web 2.0 toolkits. The support
for each toolkit is packaged as a child add-in of the Web Add-in. If you install the Web 2.0 Toolkit
Support, you can load this support by selecting the relevant toolkit name in the Add-in Manager. The
Web 2.0 Toolkit Support Setup is available from the Add-in Extensibility and Web 2.0 Toolkits option
in the UFT setup, or on your UFT computer:
<UFT installation folder>\Installations\Web2AddinSetup\Web2AddinSetup.exe.

The operations supported for each Web 2.0 test object class are a combination of custom operations
developed for that test object class and operations directly inherited from the corresponding (base)
Web Add-in test object class.

You work with a Web 2.0 toolkit add-in much the same way as you work with the regular Web Add-in.
When the toolkit support is loaded, you can learn, record, create checkpoints, run steps, and use all
standard UFT functionality on controls from these toolkits.

UFT provides support for the following toolkits:

l ASP .NET Ajax - http://www.asp.net/ajax/

l Dojo - http://www.dojotoolkit.org

Add-ins Guide
Web 2.0 Toolkit Support

HP Unified Functional Testing (12.52) Page 368

http://www.asp.net/ajax/
http://www.dojotoolkit.org/

l Google Web Toolkit (GWT) - http://code.google.com/webtoolkit/

l jQuery UI - http://jqueryui.com/

l Siebel Open UI

l Yahoo User Interface (Yahoo UI) - http://developer.yahoo.com/yui/

l EXT-JS: http://www.sencha.com/products/extjs/S

For details on the test objects and operations supported for these toolkits, see the Web 2.0 Toolkits
section of the HP UFT Object Model Reference for GUI Testing.

Considerations for Working with Web 2.0 Add-ins

l jQuery Library Injection. The Web 2.0 Add-in support is based on the jQuery JavaScript library.
Therefore, if you load any Web 2.0 add-in, UFT injects the jQuery JavaScript library into every Web
page that opens in a browser while UFT is open (unless a jQuery library is already included in the
page).

The specific jQuery UI file injected for each Web 2.0 add-in is specified in the add-in's toolkit XML file,
located in: <UFT installation>\dat\Extensibility\Web\Toolkits\
<ToolkitName>\<ToolkitName>.xml.

l F1 Help Support.When you press F1 on a test object operation that was inherited from the Web
Add-in, the Help displays information about that operation for the Web Add-in test object class from
which the operation was inherited, and not for the extensibility-based test object class used in your
step.

Additionally, the details in the Help file reflect the behavior of the test objects and operations in the
XML files provided with UFT. If these files were customized or modified in any way, the details in the
Help files supplied with UFT may no longer be accurate.

In general, when the content of the extensibility files for a Web 2.0 toolkit is modified, the Help file
should also be changed as described in "Customization Guidelines" on page 371. In these cases, you
should contact the person or organization who customized the files as your first contact point for
support.

l Checkpoints and Output Values. Inserting checkpoints and output values on Web 2.0 objects is
supported only when recording steps.

l Container Objects. Some Web 2.0 objects that visually or behaviorally seem to contain other objects
in a Web application are not learned as container objects in terms of the test object hierarchy. For
example, this is the case for the YUIDialogBox and GWTDialogBox test objects.

l Identification property values.When working in Mozilla Firefox, the value of the selected item or
selected identification property is not available in the Object Spy for some Web 2.0 test object
classes. The same is true when updating property values from the application in the object
repository. This is because the value is only retrievable when the browser is in focus.

Workaround: Retrieve the property value without removing focus from the browser. For example:

Browser("Dijit Tree Test").Page("Dijit Tree Test").DojoTree("mytree").Select

Add-ins Guide
Web 2.0 Toolkit Support

HP Unified Functional Testing (12.52) Page 369

http://code.google.com/webtoolkit/
http://jqueryui.com/
http://developer.yahoo.com/yui/
http://www.sencha.com/products/extjs/

"Continents;Africa"
msgbox Browser("Dijit Tree Test").Page("Dijit Tree Test").DojoTree("mytree").
GetROProperty("selected item")

l Object Type Identification. In the toolkit XML file, the <HTMLTags> and <Conditions> elements in
the <Identification> section for the relevant test object class define how UFT maps Web controls to
that class.

In the example below, UFT identifies a control as a GWTToggleButton test object (when the GWT Add-
in is loaded) if it has a <div> HTML tag and a className HTML property with a value that matches
the regular expression: .*gwt-ToggleButton.*

<Control TestObjectClass="GWTToggleButton">
<Settings>
<Variable name="default_imp_file" value="JavaScript\GWTToggleButton.js"/>
</Settings>
<Identification>

<Browser name="*">
<HTMLTags>
<Tag name="div"/>
</HTMLTags>
<Conditions type="IdentifyIfPropMatch">

<!-- The search string in this condition is treated as a regular expression
and is therefore equivalent to .*gwt-ToggleButton.* -->

<Condition prop_name="className" expected_value="gwt-ToggleButton" is_
reg_exp="true"/>

</Conditions>
</Browser>

In some cases (for example, when <Conditions type="CallIDFuncIfPropMatch">), a JavaScript
function that contains identification criteria is also used to help map controls to a test object class.

Keep in mind that the support provided in the HP-furnished Web 2.0 add-ins is dependent on the
HTML and DOM structure of the controls. If developers of a Web 2.0-based application change the
values of a control's properties, then the values defined for the <HTMLTags> and <Conditions>
elements of the toolkit XML files (or JavaScript files) may not enable UFT to correctly identify those
controls.

If UFT is not identifying an object in your application as you expect, you can view or adjust these
values in the relevant toolkit support files.

The toolkit XML files are located in: <UFT installation>\dat\Extensibility\Web\
Toolkits\<ToolkitName>\<ToolkitName>.xml

The JavaScript files are in a JavaScript folder under the above folder.

If you modify this (or any) HP-furnished toolkit support set file, follow the guidelines described in
"Customization Guidelines" on the next page.

Add-ins Guide
Web 2.0 Toolkit Support

HP Unified Functional Testing (12.52) Page 370

For more details on the way UFT identifies supported controls and for details on the implementation
of the supported operations, see the comments provided in the XML and JavaScript files for the
relevant toolkit support set.

Customization Guidelines

If you are familiar with Web Add-in Extensibility, then you can customize or further extend the built-in
Web 2.0 support to match the needs of the Web 2.0 toolkit application you are testing.

Additionally, if you have installed Extensibility Accelerator, you can use this IDE to make it faster and
easier to design and develop the required extensibility XML files so that you can invest your main efforts
in the development of the JavaScript functions that will enable UFT to work with your custom Web
controls.

Extensibility Accelerator also comes with built-in projects for the UFT Web 2.0 add-ins. You can use
these projects to help you learn the Extensibility Accelerator features or to more easily add to or modify
the provided support files.

If you customize or further extend any of the HP-furnished Web Add-in Extensibility files, you
should also do the following:

l Make a copy of, or otherwise back up, the original HP-provided files.

l Change the name and description that are displayed in the Add-in Manager for the toolkit. Include
the text: "Provided by <YourOrganization>" in the Add-in Manager description (in the
Controls\Description element of the toolkit XML file).

l Create your own Help file to be opened for the customized test object classes or operations. You
must use a different file name than the HP-provided Help file. (Change the file name in the HelpInfo
element of the Test Object XML file.)

Note: When installing the Web 2.0 add-ins, if a previous version of a selected add-in is installed
on your computer, the setup stores the previous files in a backup folder before installing. You
may need to merge any customizations you made to the previous version into the new version.

For details on how to make these changes and how to customize the support files, see the UFT Web
Add-in Extensibility documentation, available in the <UFT installation
folder>\help\Extensibility folder.

For details on working with Extensibility Accelerator, see the HP UFT Extensibility Accelerator for
HP Functional Testing User Guide.

Known Issues - Web 2.0 Add-ins
This section contains troubleshooting and limitation information about working with the Web 2.0 Add-
ins.

Add-ins Guide
Known Issues - Web 2.0 Add-ins

HP Unified Functional Testing (12.52) Page 371

General Limitations

l When working with test objects that are supported using Web Add-in Extensibility, such as Web 2.0
test objects, if you create a checkpoint from the Active Screen, or try to view the object's properties
from the Active Screen, some property values may be empty.

Note: Using the Active Screen for Google Chrome is not supported.

l When working with Web 2.0 toolkits on Firefox browsers, it is recommended to load only one toolkit
at a time.

Browser Specific Limitations

l Due to synchronization issues, if you navigate to a newWeb page in Internet Explorer or Mozilla
Firefox while recording, then UFT may not record certain operations on certain ASP .NET Ajax or
jQuery UI objects in the page. Similarly, when running steps that navigate to a new page, UFT may fail
to perform certain steps on certain ASP .NET Ajax or jQuery UI objects.

Workaround: If the problem occurs while recording, refresh the Web page and record the step again.
If the problem occurs while running, insert a Wait() statement before the problematic step.

l Web 2.0 test objects or Web Add-in Extensibility-based test objects are not supported on Safari
browsers.

ASP .NET AJAX

l When working with the Web 2.0 ASPAjax Add-in, running scripts in the Active Screen is not enabled by
default.

Workaround:

a. In the Options dialog box, enable running scripts in the Active Screen. In Tools > Options > GUI
Testing tab > Active Screen node, set Run scripts to Enabled.

b. Close and reopen your test or component for the setting to take effect.

Dojo

You cannot not record on objects created with Dojo 1.10 in Internet Explorer 10 or 11.

Workaround: Record the objects on Internet Explorer 9, Firefox, or Chrome.

EXT-JS

When loading the Ext-JS toolkit, ensure that the Siebel Add-in is not loaded.

Siebel Open UI

l In order to enable UFT to run tests for SiebelOpenUI objects, you must associate a special function
library with your test.

Add-ins Guide
Known Issues - Web 2.0 Add-ins

HP Unified Functional Testing (12.52) Page 372

This function library is found at <UFT installation
folder>\dat\Extensibility\Web\Toolkits\SiebelOpenUI\Function
Libraries\SiebelOpenUI.qfl.

You can set this function library as the default function library in the Resources pane in the Test
Settings dialog box. For details, see the section on the Test Settings Resources pane in the HP Unified
Functional Testing User Guide.

l By default, all SiebelOpenUI objects appear as child objects of the same Page object, even for objects
embedded in objects that are opened from the main page.

If you need to group objects under separate Page objects, select the Every navigation option under
the Create a new page test object for section in the Page/Frame Options pane of the Options
Dialog box (Tools > Options > GUI Testing tab > Web pane > Page/Frame Options).

l When recording entering information for a SblOUIAdvancedEdit object, UFT records the Set method
for the entered information after the opening of another object.

Workaround: Manually change the order of the steps after recording.

l When selecting a method for Siebel OpenUI objects, the autocompletion list displays some of the
object's internal methods. These methods should not be used in your test.

Add-ins Guide
Known Issues - Web 2.0 Add-ins

HP Unified Functional Testing (12.52) Page 373

HP Unified Functional Testing (12.52) Page 374

Part 21: Windows Runtime Add-in
This section includes:

"Windows Runtime Add-in - Quick Reference" on page 375

"Using the Windows Runtime Add-in in UFT - Overview" on page 377

"How to Use UFT in a Windows Runtime Environment" on page 377

"Known Issues - Windows Runtime" on page 379

Chapter 35: Windows Runtime Add-in - Quick
Reference
You can use the Windows Runtime Add-in to test Windows Runtime applications (from the Windows
Store) created to run on Windows Runtime environments (Windows 8.x and later, Windows RT, or
Windows Server 2012).

Note: If you are testing a non-Windows Runtime application (that opens from the Desktop section
in Windows 8.x or higher or Windows Server 2012), you should use the Standard Windows Add-in.
For details on the Standard Windows add-in, see "Standard Windows Support -Quick Reference" on
page 256.

The following tables summarize basic information about the Windows Runtime Add-in and how it relates
to some commonly-used aspects of UFT.

General Information

Add-in Type l The standard Windows testing support functions like aWindows-based add-in. Much of its
functionality is the sameas other Windows-based add-ins. For details, see "Windows-Based
Application Support" on page 52.

l There are some significant differences between theWindows Runtimeadd-in and the other Windows-
based add-ins, due to the changes implemented in Windows 8.x and Windows Server 2012. For details,
see "Using the Windows Runtime Add-in in UFT - Overview" on page 377.

Supported
Environments

l For details on supported technologies and versions, see theHP Unified Functional Testing Product
Availability Matrix.

Test Object
Methods and
Properties

TheWindows RuntimeAdd-in provides test objects, methods, and properties that can beused when
testing objects in Windows Runtimeapplications. For details, see theWindows Runtime section of the
HPUFT Object Model Reference for GUI Testing.

Checkpoints and
Output Values

l See the sections describing checkpoints and output values in theHPUnified Functional Testing User
Guide.

l See "GUI Checkpoints and Output Values Per Add-in" on page 382

Troubleshooting
and Limitations

See "Known Issues - Windows Runtime" on page 379.

UFT4WinRT
Service

When you install UFT, a service named UFT4WinRT is installed on your computer. By default, this service
is running on your computer.

This service enables you to useUFT in theWindows Runtimeenvironment by running UFT with theUAC for
the user enabled.

This service enables you to use common UFT tools, such as theObject Spy, Navigate and Learn toolbar, and
recording for aWindows Runtimeapplication.

HP Unified Functional Testing (12.52) Page 375

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM438391

Prerequisites

Opening Your Application You can open your Windows Runtimeapplication before or after opening UFT.

When UFT is installed on a computer running Windows 8.x or later or Windows
Server 2012, theWindows Runtime testing support is always enabled. This add-
in is therefore not listed in theAdd-in Manager.

Add-in Dependencies None

Configuration

Options Dialog Box Use theWindows Applicationspane (Tools > Options > GUI Testing tab > Windows
Applicationsnode).

(Make sure that aGUI test is open and select Tools > Options > GUI Testing tab > Web >
General node.)

Record and Run Settings
Dialog Box
(tests only)

Use theWindows Applications tab. (Record > Record and Run Settings)

l TheApplications opened by UFT and Applications opened via the Desktop (by the
Windows shell) options are not supported for theWindows RuntimeAdd-in.

l For theApplications specified below option, you enter the information differently,
depending on the typeof application being tested:

l For WPF and XAML-based applications: the nameof the.exe process of the
application

Note: You do not need to enter the location of theworking folder for the
application.

l For HTML and Javascript-based applications:WWAHOST.exe

l Analog recording and Low level recording are not supported for theWindows Runtime
add-in.

Custom Active Screen
Capture Settings Dialog
Box
(tests only)

Use theWindows applications section (Tools > Options > GUI Testing tab > Active
Screennode> Custom Level).

See the section on the Custom Active Screen Capture Settings dialog box in theHPUnified
Functional Testing User Guide.

Application Area
Additional Settings pane
(business components only)

Use theApplicationspane.

In the application area, select Additional Settings > Applications in the sidebar.

See the section on defining Application Settings for your application area in theHPUnified
Functional Testing User Guide.

Add-ins Guide
Chapter 35: Windows Runtime Add-in - Quick Reference

HP Unified Functional Testing (12.52) Page 376

Using the Windows Runtime Add-in in UFT -
Overview
The Windows Runtime Add-in enables you to test applications running in a Windows Runtime
environment. AWindows Runtime environment describes the area in Windows 8.x or higher or Windows
Server 2012 that runs applications from the Windows Store.

Note: On Windows 8.x or higher or Windows Server 2012, UFT uses the Standard Windows Add-in to
test applications that run on the desktop.

You can test different types of Windows Runtime applications using UFT:

l WPF or XAML-based Windows applications

For details on WPF or XAML-based applications, see http://msdn.microsoft.com/en-
us/magazine/jj651571.aspx.

l HTML or JavaScript-based Windows applications

For details on HTML-based Windows Runtime application, see http://msdn.microsoft.com/en-
us/library/windows/apps/hh770842.aspx. For details on Javascript-based Windows Runtime
applications, see http://msdn.microsoft.com/en-us/library/hh710230(v=vs.94).aspx.

Note: If you are testing an HTML or JavaScript-based Windows application, you must also load
the Web add-in when starting UFT.

For basic configuration details for the Windows Runtime Add-in, see "Windows Runtime Add-in - Quick
Reference" on page 375.

How to Use UFT in a Windows Runtime
Environment
This task describes how to perform common UFT tasks in a Windows Runtime environment.

This task includes the following steps:

l "Prerequisites " below

l "Display UFT and the Windows Runtime application together" on the next page

l "Use UFT tools with a Windows Runtime application " on the next page

Prerequisites

You must meet the following requirements before using the Windows Runtime add-in:

Add-ins Guide
Using the Windows Runtime Add-in in UFT - Overview

HP Unified Functional Testing (12.52) Page 377

http://msdn.microsoft.com/en-us/magazine/jj651571.aspx
http://msdn.microsoft.com/en-us/magazine/jj651571.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh770842.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh770842.aspx
http://msdn.microsoft.com/en-us/library/hh710230(v=vs.94).aspx

l UFT must be installed on a computer running Windows 8.x or higher or Windows Server 2012

l The UFT4WinRT service must be running. For details on the service, see the description of the service.

Display UFT and the Windows Runtime application together

UFT runs on the desktop in Windows 8.x or higher or Windows Server 2012. Therefore, direct interaction
between UFT dialog boxes, panes, and windows is difficult. To enable UFT to work with Windows Runtime
applications available on the Start screen, you can resize the open window:

l Dock the desktop window containing UFT on an edge of the screen:

a. On the Desktop window, move the mouse to the upper edge of the window. The mouse cursor
changes to a hand.

b. Drag the desktop window toward the bottom of the screen.

c. Move the dragged window to either edge of the screen.

d. Resize the window as needed.

Note: The window can be resized to use 1/3 or 2/3 of the screen.

l Use UFT in full screen view.

By default, the desktop window containing your UFT session is displayed at full screen view. To
navigate to your Windows Runtime application, use the keyboard shortcuts described in the following
steps.

Use UFT tools with a Windows Runtime application

Because UFT runs on the Desktop screen in Windows 8.x or higher, direct navigation between the Object
Spy dialog box, Navigate and Learn toolbar, and the Record Toolbar is difficult. Use the following steps
to enable UFT to access your Windows Runtime application:

1. Open the relevant UFT tool.

2. Do one of the following:

Object Spy Press theWindows + SHIFT key. Windows cycles through all open Windows Runtimeapplications.

After selecting your application, theObject Spy dialog box is displayed on top of the open application.

Note: If you use this option to switch to your application, theKeep on Top option in theObject
Spy dialog box does not work.

Navigate and
Learn toolbar

a. Press ALT + TAB. Windows displays awindow displaying the list of open applications:

Add-ins Guide
How to Use UFT in a Windows Runtime Environment

HP Unified Functional Testing (12.52) Page 378

b. Using the arrow keys, select your application. When theWindows Runtimeapplication is displayed
in themain window, theNavigate and Learn toolbar is displayed on top of the open application.

Record
Toolbar

a. Press ALT + TAB. Windows displays a list of open applications.

b. Using the arrow keys, select your application. When theWindows Runtimeapplication is displayed
in themain window, theRecord toolbar is displayed on top of the open application.

Note: If you close your application using ALT + F4 while recording or spying on an object, the
application automatically reopens when continuing to record or spy.

3. Continue spying on objects, adding objects to the object repository, or recording actions as
necessary.

Known Issues - Windows Runtime
l You cannot use the .Object property to invoke native methods for a Windows Runtime object.

l Analog recording and Low level recording are not supported for the Windows Runtime add-in.

l If you modify the mandatory and assistive identification properties of a Windows Runtime object in
the Object Identification dialog, UFT does not recognize the modified properties when spying on or
adding the same object in the same UFT session.

Workaround: Restart UFT and spy on or add the object again.

l If you close a Windows Runtime application using ALT + F4 while recording, UFT does not record the
application close.

Workaround: Manually add a WindowsApp.Close statement step after recording.

l UFT cannot record or spy on a Windows Runtime application that is in a suspended state.

Workaround: Restart the Windows Runtime application.

Add-ins Guide
Known Issues - Windows Runtime

HP Unified Functional Testing (12.52) Page 379

l UFT cannot record over applications that have a higher integrity level, such as setup programs or
programs that are run as administrator.

Workaround: Run UFT as administrator if you need to record over an application with a higher
integrity level.

Add-ins Guide
Known Issues - Windows Runtime

HP Unified Functional Testing (12.52) Page 380

HP Unified Functional Testing (12.52) Page 381

Part 22: Appendix
This section includes:

"GUI Checkpoints and Output Values Per Add-in" on page 382

Appendix A: GUI Checkpoints and Output Values
Per Add-in
The tables in this chapter show the categories of checkpoints and output values that are supported by
UFT for each add-in.

For details about using checkpoints and output values in a specific add-in, see the relevant add-in
section.

This chapter includes:

l "Supported Checkpoints " on the next page

l "Supported Output Values " on page 385

HP Unified Functional Testing (12.52) Page 382

Supported Checkpoints
The following table shows the categories of checkpoints that are supported by UFT for each add-in.

Table Legend

l S: Supported

l NS: Not Supported

l NA: Not Applicable

Note: Only standard and bitmap checkpoints are supported for keyword components.

For additional information, see "Footnotes" on the next page.

Accessibil
ity

Bitm
ap

Databa
se

File
Conte
nt

Ima
ge

Pa
ge

Standa
rd

Tab
le

Te
xt

Te
xt
Are
a

XML
(Applicati
on)

XML
(Resour
ce)

.NET Web
Forms3

S S NA NA NA NA S S S6 S6 S S

.NET
Windows
Forms

NA S NA NA NA NA S S S6 S6 NA NA

ActiveX NS S NA NA NS NA S S S S NA NA

Delphi NS S NA NA NS NA S S S S NA NA

Flex NA S NA NA NA NA S S S S NA NA

Java NA S NA NA NA NA S S S S4 NA NA

Mobile NA S NA NA NA NA S NA S NS NA NA

Oracle NA S NA NA NA NA S S NS NS NA NA

PeopleSof
t

S S NA NA S S S S S1 NS S S

PowerBuil
der2

NS S NA NA NS NA S S S S NA NA

Qt NS S NA NA NS NA S S S S NA NA

SAP Web-
based

S S NA NA S S S S S NS S S

SAP
Windows-
based

S5 S NA NA S5 S5 S S S5 NS S5 NA

HP Unified Functional Testing (12.52) Page 383

Accessibil
ity

Bitm
ap

Databa
se

File
Conte
nt

Ima
ge

Pa
ge

Standa
rd

Tab
le

Te
xt

Te
xt
Are
a

XML
(Applicati
on)

XML
(Resour
ce)

Siebel S S NA NA S S S S S NS S S

Silverlight NA S NA NA NA NA S S S S NA NA

Standard
Windows

NS S NA NA NS NA S S S S NA NA

Stingray NA S NA NA NA NA S S S S NA NA

Terminal
Emulator

NA S NA NA NA NA S NA NA NA NA NA

VisualAge
for
Smalltalk

NA S NA NA NA NA S S S S NA NA

Visual
Basic

NS S NA NA NS NA S S S S NA NA

Web S S NA NA S S S S S1 S S7 NA

Windows
Runtime

NA S NA NA NA NA S S S S NA NA

WPF NA S NA NA NA NA S S S S NA NA

Footnotes

1 Text checkpoints are supported only for Page, Frame, and ViewLink objects.

2 When you insert a checkpoint on a PowerBuilder DataWindow control, UFT treats it as a table and
opens the Table Checkpoint Properties dialog box.

3 For NET Web Forms, text checkpoints for WbfTreeView, WbfToolbar, and WbfTabStrip objects are not
supported.

4 The text area checkpoint mechanism for Java Applet objects is disabled by default. You can enable it
in the Advanced Java Options dialog box.

5 This is supported only when UFT records HTML elements using the Web infrastructure, but not when it
records using the SAPGui Scripting Interface (as selected in the SAP pane of the Options dialog box).

6 This is supported only when UFT is configured to use the OCR (optical character recognition)
mechanism.

7 XML checkpoints are not supported on Internet Explorer 9 or later running in standard mode, on
Google Chrome, on Mozilla Firefox, or on Apple Safari because the WebXML test object is not supported
for these browsers.

8 - Checkpoints on Mobile object are supported only when recording your test.

Add-ins Guide
Appendix A: GUI Checkpoints and Output Values Per Add-in

HP Unified Functional Testing (12.52) Page 384

Supported Output Values
The following table shows the categories of output values that are supported by UFT for each add-in.

Table Legend

l S: Supported

l NS: Not Supported

l NA: Not Applicable

Note: Only standard and bitmap output values are supported for keyword components.

For additional information, see "Footnotes" on the next page.

Accessibil
ity

Bitm
ap

Databa
se

File
Conte
nt

Ima
ge

Pa
ge

Standa
rd

Tab
le

Te
xt

Te
xt
Are
a

XML
(Applicati
on)

XML
(Resour
ce)

.NET Web
Forms

NA NA NA NA NA S S S S5 S5 NA NA

.NET
Windows
Forms

NA NA NA NA NA NA S S S5 S5 NA NA

ActiveX NS NA NA NA NA NA S S S S NA NA

Delphi NS NA NA NA NA NA S S S S NA NA

Java NA NA NA NA NA NA S NA S S3 NA NA

Mobile NA NA NA NA NA NA S NA S NS NA NA

Oracle NA NA NA NA NA NA S S NA NA NA NA

PeopleSof
t

NA NA NA NA NA S S S S1 NS S S

PowerBuil
der2

NA NA NA NA NA NA S NA S S NA NA

Qt NA NA NA NA NA NA S S S S NA NA

SAP Web-
based

NA NA NA NA NA S S S S NS S S

SAP
Windows-
based

NA NA NA NA NA S4 S S S4 NS S4 S

Add-ins Guide
Appendix A: GUI Checkpoints and Output Values Per Add-in

HP Unified Functional Testing (12.52) Page 385

Accessibil
ity

Bitm
ap

Databa
se

File
Conte
nt

Ima
ge

Pa
ge

Standa
rd

Tab
le

Te
xt

Te
xt
Are
a

XML
(Applicati
on)

XML
(Resour
ce)

Siebel NA NA NA NA NA S S S S NS S S

Silverlight NA NA NA NA NA NA S S S S NA NA

Standard
Windows

NA NA NA NA NA NA S S S S NA NA

Stingray NA NA NA NA NA NA S S S S NA NA

Terminal
Emulator

NA NA NA NA NA NA S8 NA S7 NA NA NA

VisualAge
for
Smalltalk

NA NA NA NA NA NA NA S S S NA NA

Visual
Basic

NA NA NA NA NA NA S NA S S NA NA

Web NA NA NA NA NA S S S S1 NS S6 NA

Windows
Runtime

NA NA NA NA NA NA S S S S NA NA

WPF NA NA NA NA NA NA S S S S NA NA

Footnotes

1 Text output values are supported only for Page, Frame, and ViewLink objects.

2 When you insert an output value step on a PowerBuilder DataWindow control, UFT treats it as a table
and opens the Table Output Value Properties dialog box.

3 The text area output mechanism for Java Applet objects is disabled by default. You can enable it in the
Advanced Java Options dialog box.

4 This is supported only when UFT records HTML elements using the Web infrastructure, but not when it
records using the SAPGui Scripting Interface (as selected in the SAP pane of the Options dialog box).

5 This is supported only when UFT is configured to use the OCR (optical character recognition)
mechanism.

6 XML output values are not supported on Internet Explorer 9 or later running in standard mode, on
Google Chrome, or on Mozilla Firefox, because the WebXML test object is not supported for these
browsers.

7 You can create text output values (tests only) only for TeScreen and TeTextScreen objects.

8 In the terminal emulator window you can add text checkpoints or output values (tests only) and
standard checkpoints and output values for the status bar and the dialog boxes that open from the
menu options. UFT recognizes these as standard Windows objects.

Add-ins Guide
Appendix A: GUI Checkpoints and Output Values Per Add-in

HP Unified Functional Testing (12.52) Page 386

Accessing UFT in Windows 8.X or Higher
Operating Systems
By default, you can access UFT directly from the Start or Apps Screen in Windows 8.x or higher.

In addition, you can add UFT tools and files that were accessible from the Startmenu in previous
versions of Windows to the Start screen, including:

l Applications (.exe files). For example:

l The Run Results Viewer

l All UFT tools, such as the Password Encoder and the License Validation Utility

l The API testing sample Flight applications

l Non-program files. You can access documentation and the link to the Mercury Tours Website from
the Apps screen.

Note: By default, the Start and Apps screens on Windows 8.x or higher are set to open Internet
Explorer in Metro Mode. However, if User Account Control is turned off on your computer, Windows
8 will not open Internet Explorer in Metro mode. Therefore, if you try to open an HTML shortcut
from the Start or Apps screen, such as the UFT Help or Readme file, an error will be displayed.

To solve this, you can change the default behavior of Internet Explorer so that it never opens in
Metro mode. In the Internet Properties dialog box > Programs tab, select Always in Internet
Explorer on the desktop for the Choose how you open links option. For more details, see
http://support.microsoft.com/kb/2736601 and
http://blogs.msdn.com/b/ie/archive/2012/03/26/launch-options-for-internet-explorer-10-on-
windows-8.aspx.

Add-ins Guide

HP Unified Functional Testing (12.52) Page 387

http://support.microsoft.com/kb/2736601
http://blogs.msdn.com/b/ie/archive/2012/03/26/launch-options-for-internet-explorer-10-on-windows-8.aspx
http://blogs.msdn.com/b/ie/archive/2012/03/26/launch-options-for-internet-explorer-10-on-windows-8.aspx

Send Us Feedback
Can we make this Add-ins Guide better?

Tell us how: docteam@hpe.com

HP Unified Functional Testing (12.52) Page 388

mailto:docteam@hpe.com?subject=Feedback on Add-ins Guide (Unified Functional Testing 12.52)

	Welcome to the Add-ins Guide
	Part 1: Working with UFT Add-ins
	UFT Add-ins Overview
	UFT Add-in Support - Overview
	Loading UFT Add-ins
	Add-in Licenses
	Considerations for Working with UFT Add-ins

	Record and Run Settings for Add-ins - Overview
	Considerations for Defining Record and Run Settings
	Environment Variables in Record and Run Settings

	UFT Add-in Extensibility
	How to Manage UFT Add-ins
	How to Define Record and Run Settings for UFT Add-ins

	Web-Based Application Support
	Web-Based Application Support - Overview
	Considerations - Web-Based Application Support

	Registering Browser Controls
	Accessing Password-Protected Resources in the Active Screen
	Checkpoints for Web Pages
	Event Recording Configuration for Web-Based Applications
	Web Event Recording Configuration XML File Structure

	Advanced Operations on Web-Based Applications
	Activating methods associated with a Web-based object using the Object property
	Using programmatic descriptions for the WebElement object

	Web Object Identifiers
	Web Object Identifier Types
	CSS Web Object Identification
	User-Defined XPath Web Object Identification
	Automatic X-Path Web Object Identification
	Attribute/* Notation Web Object Identification
	Style/* Notation Web Object Identification

	Considerations - Web Object Identifiers
	How to Use Web Object Identifiers - Exercise

	Web Object Recognition Using the Web Accessibility Toolkit
	How to Modify Event Recording Configuration for Web-Based Applications
	How to Configure UFT to Record Mouse Clicks
	Environment Variables for a Web-Based Environment
	Troubleshooting and Limitations - Web-Based Application Support

	Windows-Based Application Support
	Windows-Based Application Support - Overview
	UFT Configuration for Windows-Based Applications
	Record and Run Settings for Windows-Based Applications
	Environment Variables for Windows-based Applications
	Considerations for Advanced Windows-based Application Testing
	Record and Run Setting Guidelines for Windows-Based Add-ins

	Part 2: .NET Add-in
	.NET Add-in - Overview
	.NET Silverlight Add-in
	.NET Silverlight Add-in - Quick Reference
	Silverlight Add-in Extensibility
	Known Issues - Silverlight Add-in

	.NET Web Forms Add-in
	.NET Web Forms Add-in - Quick Reference
	Considerations for Testing .NET Web Forms
	Accessing Internal Properties and Methods of Run-Time .NET Web Forms Objects
	Known Issues- .NET Web Forms

	.NET Windows Forms Add-in
	.NET Windows Forms Support - Quick Reference
	.NET Windows Forms Support - Testing and Configuration
	Considerations for Testing .NET Windows Forms Applications
	.NET Windows Forms Objects - Checkpoints and Output Values
	.NET Add-in Extensibility
	.NET Windows Forms Spy
	How to Use the .NET Windows Forms Spy
	Known Issues - .NET Windows Forms

	.NET Windows Presentation Foundation (WPF) Add-in
	.NET Windows Presentation Foundation (WPF) Add-in - Quick Reference
	.NET Windows Presentation Foundation (WPF) Add-in - Testing and Configuration
	Considerations for Working with the WPF Add-in
	WPF Objects, Methods, and Properties to Enhance Your Test or Component
	About WPF User Interface Automation
	Automation Elements
	Control Patterns

	WPF Add-in Extensibility
	Known Issues - .NET WPF

	Part 3: ActiveX Add-in
	ActiveX Add-in - Quick Reference
	Considerations for Working with the ActiveX Add-in
	Known Issues - ActiveX Add-in

	Part 4: Delphi Add-in
	Delphi Add-in - Quick Reference
	Delphi Add-in Extensibility
	How to Enable Communications Between UFT and Your Delphi Application
	Known Issues - Delphi Add-in

	Part 5: Flex Add-in
	Flex Add-in - Quick Reference
	Flex Add-in - Testing and Configuration
	Enabling UFT to Identify Objects in your Flex Application
	Considerations for Working with the Flex Add-in
	How to Set Up the Adobe Flash Player Debugger to Enable UFT GUI Testing
	How to Open Flex Applications Using the Runtime Loader
	How to Embed a Flex Application in a Web Page with the Runtime Loader
	How to Compile Flex Applications for UFT Testing
	How to Work With Embedded Objects in Flex Lists, Tables, or Tree-Views
	Known Issues - Flex Add-in

	Part 6: Java Add-in
	Java Add-in - Quick Reference
	Java Add-in - Testing and Configuration
	Java Add-in - Overview
	Java Add-in Environments

	Considerations - Java Add-in
	Java Add-in Extensibility
	How to Disable Dynamic Transformation Support (Advanced)
	Java Environment Variables Settings
	Record and Run Environment Variables for Java Objects

	Known Issues - Java Add-in
	Running Another Java Application or Applet with the Same Settings
	Identifying and Solving Common Problems
	General Notes and Limitations

	Java Add-in - Test Objects
	Recording Steps on Java Objects
	Recording Steps on Jtable Cell Editors
	Text Checkpoint and Text Output Value Steps for Java Objects
	Full Object Hierarchy Views

	Advanced Java Test Object Methods
	CreateObject Method
	GetStatics Method
	FireEvent / FireEventEx Methods

	How to Modify Options for Recording on Java Tables

	Part 7: Mobile Add-in
	Mobile Add-in - Quick Reference

	Part 8: Oracle Add-in
	Oracle Add-in - Quick Reference
	Oracle Add-in - Testing and Configuration
	Considerations for Working with the Oracle Add-in
	Recording Tests on Oracle Applications
	Dynamic Transformation Support
	How to Verify or Enable the Oracle Server Unique Name Attributes
	How to Enable the Oracle Name Attribute
	How to Set Oracle Environment Variables
	How to Disable Dynamic Transformation Support
	Oracle Record and Run Environment Variables
	Known Issues - Oracle Add-in

	Part 9: PeopleSoft Add-in
	PeopleSoft Add-in - Quick Reference
	Considerations for Working with the PeopleSoft Add-in
	Known Issues - PeopleSoft Add-in

	Part 10: PowerBuilder Add-in
	PowerBuilder Add-in - Quick Reference
	Considerations for Working with the PowerBuilder Add-in
	Known Issues - PowerBuilder Add-in

	Part 11: Qt Add-in
	Qt Add-in - Quick Reference
	Considerations - Qt Add-in

	Part 12: Add-in for SAP Solutions
	Add-in for SAP Solutions - Overview
	Web-based SAP Support
	Web-Based SAP Support - Quick Reference
	Considerations for Working with SAP GUI for HTML
	Known Issues - Web-based SAP

	Windows-based SAP Support
	Windows-based SAP Support - Quick Reference
	Windows-based SAP Support - Testing and Configuration
	SAP GUI Scripting API and UFT
	How to Enable Support for SAP GUI for Windows
	How to Enable Scripting on the SAP Application (Server-Side)

	Considerations - Windows-based SAP Add-in for SAP Solutions
	Environment Variables for Windows-based SAP Applications
	Package and Patch Versions Requirements - SAP Application Server and SAP GUI ...
	Known Issues - Windows-based SAP

	Windows-Based SAP Support - Test Objects
	Checkpoints and Output Values in SAP GUI for Windows
	Using the Auto-Parameterize Option to Parameterize Table and Grid Cell Values
	How UFT Records in Auto-Parameterize Mode
	Parameterized Cell Values in the Input Data Sheet
	Considerations for Auto-Parameterization
	Data in Rows that Require Scrolling

	Low-Level or Analog Mode Recording on SAP GUI for Windows
	Spooling Data from a Table
	How to Record on Standard Windows Controls During an SAP GUI for Windows Reco...

	UFT-SAP Solution Manager Integration
	UFT-SAP Solution Manager Integration - Overview
	Test Management in SAP Solution Manager
	Resource Files in Solution Manager

	Solution Manager Testing Modes: Standalone or Integrated
	Standalone Mode
	Integrated Mode

	SAP Structured Parameters
	How to Configure Solution Manager to Work with UFT
	How to Work with Tests in Solution Manager in Standalone Mode
	How to Run a Test Stored in Solution Manager
	How to Display or Edit a GUI Test from Solution Manager in Integrated Mode
	How to Transfer Data To and From GUI Tests in Integrated Mode Using Test Para...
	How to Work with SAP Structured Parameters

	Part 13: Siebel Add-in
	Siebel Add-in - Quick Reference
	Siebel Add-in - Testing and Configuration
	Siebel Add-in - Overview
	Considerations - Siebel Add-in
	Siebel Test Object Model - Overview
	Recording Steps on Siebel Objects
	Native Operations and Properties in Siebel 7.0.x and 7.5.x Applications

	Siebel Add-in - Checkpoints and Output Values
	Spooling Data from a Siebel Table

	Siebel 7.7.x or Later - Test Automation Module Configuration
	How to Define Environment Variables for Siebel Applications
	Known Issues - Siebel Add-in
	Siebel 7.7.x or Later
	Siebel 7.0.x and 7.5.x

	Siebel Test Express
	Using Siebel Test Express to Generate or Update Shared Object Repositories
	How to Use Siebel Test Express to Generate or Update a Shared Object Repository

	Part 14: Standard Windows Testing Support
	Standard Windows Support -Quick Reference
	Known Issues - Standard Windows

	Part 15: Stingray Add-in
	Stingray Add-in - Quick Reference
	Stingray Add-in - Testing and Configuration
	Setting Up Stingray Object Support
	Considerations for Working with the Stingray Add-in
	Stingray Run-time Agent (Agent DLL)
	Stingray Precompiled Agent Mode
	Record Cell Editing Options - Example
	How to Set Up Your Stingray Project Using the Precompiled Agent Mode
	Known Issues - Stingray Add-in

	Part 16: Terminal Emulator Add-in
	Terminal Emulator Add-in - Quick Reference
	Terminal Emulator Add-in - Testing and Configuration
	Terminal Emulator Add-in - Overview
	Recording Tests and Components on Terminal Emulator Applications
	Considerations for Recording and Running Tests and Components on Terminal Emu...

	Run Session Synchronization
	Terminal Emulator Recovery Scenarios
	How to Configure an Emulator to Work with the Terminal Emulator Add-in
	How to Set Your HLLAPI Terminal Emulator to Work with UFT
	How to Manage Terminal Emulator Configuration Settings
	How to Copy Existing Terminal Emulator Configurations
	How to Check the Validity of a Terminal Emulator Configuration
	Validating a Terminal Emulator - Possible Error Responses
	Invalid HLLAPI DLL
	Cannot detect an open session
	Cannot locate the main window class
	Cannot detect the emulator screen
	Cannot connect to the open session
	Cannot retrieve session text
	Cannot detect open session, or Cannot locate the main window class
	HLLAPI DLL not found
	More than one session open
	Unknown error

	How to Synchronize Steps on Terminal Emulators
	Checkpoints and Output Values - Terminal Emulators
	Known Issues - Terminal Emulator

	Part 17: VisualAge Smalltalk Add-in
	VisualAge Smalltalk Add-in - Quick Reference
	How to Configure the VisualAge Smalltalk Add-in

	Part 18: Visual Basic Add-in
	Visual Basic Add-in - Quick Reference
	Known Issues - Visual Basic Add-in

	Part 19: Web Add-in
	Web Add-in - Quick Reference
	Web Add-in - Testing and Configuration
	Event Recording Configuration for Web Objects - Overview
	Event Listening and Recording for Web Objects
	Considerations - Event Listening and Recording
	Event Listening and Recording - Use-case Scenario

	Web Add-in Extensibility
	Extensibility Accelerator for HP Functional Testing

	How to Manage Custom Web Event Recording Configurations
	How to Manage Listening and Recording Events for Web Objects
	Troubleshooting and Limitations - Web Add-in

	Web Add-in - Multiple Browser Support
	Testing Applications on Multiple Browsers
	Working with Multiple Browsers - Object Identification Issues
	Testing Applications on Multiple Browsers - Creating a Single Test for All Br...
	Testing Applications on Multiple Browsers - Running the Test on Multiple Brow...
	Using Descriptive Programming for Multiple Browser Testing - Use-case Scenario

	Working With Mozilla Firefox
	Working With Apple Safari on a Remote Mac Computer
	The UFT Connection Agent for Mac Computers
	Securing the Communication With the Remote Mac Computer

	How to Set Up Multiple Browser Testing
	How to Enable the HP Functional Testing Agent Chrome Extension
	How to Enable UFT to Test Local HTML Pages in Google Chrome
	How to Connect to a Remote Mac Computer
	How to Install and Configure UFT Connection Agent on Your Mac
	Known Issues - Internet Explorer and Microsoft Edge
	Known Issues - Mozilla Firefox
	Known Issues - Google Chrome and Apple Safari

	Part 20: Web 2.0 Add-ins
	Web 2.0 Add-ins - Quick Reference
	Web 2.0 Toolkit Support
	Known Issues - Web 2.0 Add-ins

	Part 21: Windows Runtime Add-in
	Chapter 35: Windows Runtime Add-in - Quick Reference
	Using the Windows Runtime Add-in in UFT - Overview
	How to Use UFT in a Windows Runtime Environment
	Known Issues - Windows Runtime

	Part 22: Appendix
	Appendix A: GUI Checkpoints and Output Values Per Add-in
	Supported Checkpoints
	Supported Output Values

	Send Us Feedback

