
HPE Codar
Software Version: 1.60

Concepts Guide

Document Release Date: January 2016
Software Release Date: January 2016



Legal Notices

Warranty
The only warranties for Hewlett Packard Enterprise Development LP products and services are set forth in
the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HPE shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HPE required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Copyright Notice
© Copyright 2015 Hewlett Packard Enterprise Development LP

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

This product includes an interface of the 'zlib' general purpose compression library, which is Copyright ©
1995-2002 Jean-loup Gailly and Mark Adler.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to:
https://softwaresupport.hp.com

This site requires that you register for an HPE Passport and sign in. To register for an HPE Passport ID, go
to: https://hpp12.passport.hp.com/hppcf/createuser.do

Or click the the Register link at the top of the HPE Software Support page.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your HPE sales representative for details.

Support
Visit the HPE Software Support Online web site at: https://softwaresupport.hp.com

This web site provides contact information and details about the products, services, and support offered by
HPE Software.

HPE Software online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer,
you can benefit by using the support web site to:

Concepts Guide

HPE Codar (1.60) Page 2 of 34



l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as a Passport user and sign in. Many also require a
support contract. To register for a Passport ID, go to:

https://hpp12.passport.hp.com/hppcf/createuser.do

To find more information about access levels, go to:

https://softwaresupport.hp.com/web/softwaresupport/access-levels

HPE Software Solutions Now accesses the HPSW Solution and Integration Portal web site. This site enables
you to explore HPE product solutions to meet your business needs, includes a full list of integrations
between HPE products, as well as a listing of ITIL processes. The URL for this web site is
http://h20230.www2.hp.com/sc/solutions/index.jsp

Concepts Guide

HPE Codar (1.60) Page 3 of 34



Concepts Guide

HPE Codar (1.60) Page 4 of 34



Contents

Codar 6

Codar overview 7
Declarative basedmodeling 7
Topology composition 8
Microservices 9
Application pipelinemanagement 10

Managing packages 11
Package operations 12
Deploy and redeploy 13
Scale out 13
Roles and user access 15
Lifecycle stages and actions 17

Package states 18
Grouping infrastructure designs by lifecycle stage 18

Release gate actions 19
Pipeline statistics 20
Environments 21

External integrations 22
Jenkins integration 22
ALM integration 22
Infrastructure as code (IaaC) 23

Use case: Continuous integration, deployment, and delivery 25
Applicationmodeling 25
Continuous integration and deployment 25
Importing an application design 26
Deploying on an environment 26
Publishing a design 26

Use case: Customizable release pipeline 27

Use case: Deploy and redeploy packages 29

Use case: Deployment and scale out 31

Next steps 33

Concepts Guide

HPE Codar (1.60) Page 5 of 34



Codar
Organizations are facing new challenges when extending continuous integration into continuous
delivery. Challenges include consistently deploying applications through development to production
environments while considering the differences in those environments.

DevOps provides a framework to bridge the gaps between the development (Dev) and operations (Ops)
environments by using a set of principles, methods, and practices around collaboration, automation,
and governance. The goal is to extend continuous build or assembly integration to repeatable and
consistent application deployment across heterogeneous environments.

The following diagram illustrates the continuous integration and continuous delivery cycle in a DevOps
environment.

HPE Codar (1.60) Page 6 of 34



Codar overview
Hewlett Packard Enterprise Codar facilitates continuous delivery in which every change to the system is
releasable and that every code change can be deployed in production. It enables automation of continuous
delivery where every code change triggers a build, which is deployed, automated unit tests are executed, and
the application is automatically deployed to an environment based on policies that are defined in a runbook
automation flow. Continuous delivery aims to deliver frequently and get fast feedback from users. 

Declarative based modeling
Automating the deployment of applications using declarative basedmodeling allows the user to declare the
end state of the application deployment (the application components and the dependencies between them)
while the process to get to that state is triggered in the background. This allows the user to focus on what is
deployed rather than how it gets deployed, which results in a shorter time to automate the deployment of
multi-tier applications and greater simplicity in managing them over time.

Codar supports declarative-basedmodel development that involves creation, integration, andmaintenance of
complex designs through a user interface. A model consists of a topology design and its properties. Codar
provides flexibility for the user to modify the properties during the time of realization (similar to late binding).

Concepts Guide

HPE Codar (1.60) Page 7 of 34



Topology composition
An application design, also called a topology design, specifies components and their relationships to define
the application lifecycle. An application design delegates lifecycle sequencing to cloud providers.

An application design can be of two types:

l Complete design: all components in this design exist for fulfillment
l Partial design: this design requires another design for fulfillment
Topology composition is used to compose the application design with the infrastructure design at run time.
During application deployment, the infrastructure need varies for each deployment; topology composition
helps in defining these variable infrastructure needs in the application design and allows to compose with
different infrastructure designs at deploy time.

The capabilities and characteristics are used to describe the components. The application design will define
the requirements using the capability components and characteristics in the design. The application design
cannot be provisioned on its own and requires the selection of a compatible service design. The service
design components arematched for their capability and characteristics to check the compatibility and the
matching designs are chosen as compatible service design during the deployment.

The following illustration shows the topology composition for an HR insurance app. The app requires a
database component and web server component, which are defined in the application design APP. This is
fulfilled by PLATFORM1 as it has the ApacheWeb Server which has the web server capabilities and its
characteristics andMySQL database, which has the database capability and its characteristics. Similarly the
PLATFORM2 alsomatches the APP requirements.

Concepts Guide

HPE Codar (1.60) Page 8 of 34



Microservices
A partial application design can be deployed usingmultiple infrastructure designs that provide the platform or
infrastructure services rather than a single service. A partial design with multiple open requirements
(capabilities) can compose with multiple infrastructure designs to satisfy all its open requirements and build a
complete application design. You can choose either a single design that matches all capabilities, or you can
choose components from different designs.

A partial design with multiple open requirements (capabilities) could compose with multiple (micro) service
designs to satisfy all its open requirements and build a complete application design.

For example, if the application requires database and application services, it should be possible to select a
design which has database and application in a single design or you can choose a database from one service
design and an application from another service design.

Concepts Guide

HPE Codar (1.60) Page 9 of 34



A combined topology is created at run time based onmicroservice selection. Themicroservice can be
associated with lifecycle stages.

Application pipelinemanagement
Automating the deployment of applications is a complicated and lengthy process and requires significant
investment. Applications are deployed differently in development and in production, causingmany errors.
Application pipelinemanagement allows you to deploy applications across different environments using the
same topology model. You can choose different microservices in different stages; however, the application

Concepts Guide

HPE Codar (1.60) Page 10 of 34



design remains the same. This means that the same design is deployed and tested across different lifecycle
stages.

You can also customize your release pipeline and have each application team use a separate lifecycle stage.
This enables a fully automated and continuous deployment. Codar increases the agility of application release
cycles while increasing the quality and reducing the cost of application deployments by eliminatingmanual
steps.

Pipelinemanagement in Codar includes:

l Creating your own roles thus enabling you to create your own user access structure
l Creating your own lifecycle stages in addition to the out-of-the box stages
l Selecting resource environments that already exist and associating them with only certain lifecycle stages
thus creating a lifecycle stage superset comprising a subset of pre-defined lifecycle stages

l Viewing pipeline statistics and getting a visual representation of your deployments
l Filtering your view based on packages, actions, and environments

Managing packages
Packages represent a snapshot of an application design and allow properties to be parameterized within the
design. We can also say that the package represents a particular build of an application.

Concepts Guide

HPE Codar (1.60) Page 11 of 34



A package is the smallest unit that can be deployed for an application. It represents both the implementation
artifacts (themanner in which an application should be deployed) and deployment artifacts(the location of
libraries like war, ear, etc., that should be deployed).

Packages are associated with a lifecycle stage. A package can belong to Development, Testing, Staging, or
Production stages.

Packages are associated with pipelinemanagement. They can bemanaged across lifecycle stages, such as
promotion or rejection in a given stage. For example, a user with the QA role can reject a package.

Tasks

l Create a package from a specific application version. An application version can consist of multiple
packages.

l Deploy or redeploy a package. In this case the corresponding state of an application design along with
the properties of the design specified in the package will be fulfilled.

l Delete a package. Go to the Release Pipeline tab, hold Ctrl to select multiple packages, and click Delete.
You cannot delete a package that has an instance associated with it.

Package operations
Codar is a centralized structure for implementing a DevOps environment. Different roles can deploy,
redeploy, promote, or reject the packages. Packages are promoted from one stage to another in a consistent
and repeatable manner. This ensures visibility to teammembers when their applications are pushed into
production.

When packages are created and deployed, new virtual machines will be created and packages will be
deployed. You can execute tests on a deployed instance, and the package can be either promoted or rejected

Codar facilitates application pipelinemanagement capabilities, as show in the following screenshot.

Concepts Guide

HPE Codar (1.60) Page 12 of 34



Deploy and redeploy
A package can be redeployed on an instance that has an older package. You can view instance details and
pick an existing insistence. Redeploy can also be used to upgrade or patch a component. Because redeploy
invokes amodify action for all components, all components in a design can be upgraded to new versions.

Scale out
During Topology design creation you can create a scaling group. A scaling group represents a scalable stack.
There can bemultiple scalable groups in an application design.

You can scale out after the deployment is complete. When you scale out, the full stack is replicated.

For example, the image below shows the web tier as a logical group namedwebServerGroup.

Concepts Guide

HPE Codar (1.60) Page 13 of 34



This group was scaled in the Development stage to one group and in Testing it is scaled to two groups in the
image below.

Development stage Testing stage

Concepts Guide

HPE Codar (1.60) Page 14 of 34



Roles and user access
User access can be configured for topology designs. Both users and LDAP groups can be added to the
designs. An application architect can create a design and either make the design public or restrict it to certain
users.

In Codar, user access comprises roles and permissions. Every user in Codar is assigned one or multiple
roles. Every role is assigned one or more permissions. Therefore, users belonging to a particular role have all
the permissions defined for that role. Codar contains some out-of-the-box roles; however, users can also
create their own roles and then assign permissions to the roles they create. For information about how to
create custom roles, see theCodar Online Help.

The administrator and the application architect can configure users and groups:

l Users for each role are defined at the application level for a granular level of control.
l Groups should represent application teams to automatically assign roles for the application.
The following image shows a design configured for various users including an application architect,
developers, QA, and releasemanager.

Concepts Guide

HPE Codar (1.60) Page 15 of 34



Concepts Guide

HPE Codar (1.60) Page 16 of 34



Lifecycle stages and actions

Lifecycle actions contribute to the initial deployment of a service, communicating with the service provider
through a process engine such as HP Operations Orchestration. Lifecycle actions also provide other
important functions, such as actions required tomodify the service upon request or actions required to
remove the service from deployment.

Every lifecycle comprises a stage and every stage has roles associated with it. It means that all users who
belong to the roles in a particular lifecycle stage can perform operations defined in the role during that stage.
For example, if the Development lifecycle stage has the Application Architect role associated with it, then
users belonging to the Application Architect role can perform tasks associated with the role in the
Development lifecycle stage.

The following are the out-of-the-box lifecycle stages available in Codar:

l Development: This is usually the first stage in which the code is developed and application artifacts are
created.

l Testing: Stage in which test cases are executed against the code developed in the Development stage.
l Staging: Pre-production stage that replicates the production environment; used to test the code and
artifacts.

l Production: This is usually the final stage in which the application is deployed in a live environment.
Apart from the out-of-the-box lifecycle stages, there are custom stages that you can create. For information
about creating, editing, and deleting custom stages, see the Codar Online Help.

The following table lists the actions pertaining to a package that take place in each lifecycle stage:

Stage Promote Deploy, Redeploy Edit Delete Reject

First stage (usually the Development stage) Yes Yes Yes Yes Yes

Intermediate Yes Yes Yes Yes Yes

Final stage (usually the Production stage) No Yes Yes Yes Yes

You can access lifecycle stages by using theRelease Automation > Pipeline Configurations tile.

Use the following actions to deploy or move a package through the stages. These actions describe the flow
when release gate actions are not defined.

l Promote: Moves the package to the next lifecycle stage. The package state remains Active.
l Deploy, Redeploy: Deploys the package.
l Edit: Change the properties of a package.
l Reject: Stops the package from advancing to another stage. The package will remain in its current stage,
its state will be set to Rejected, and the action buttons will no longer be available.

l Delete: Delete a package. The package will be removed permanently from the system. A package can
only be deleted if all associated deployed instances are canceled and deleted.

l Refresh: Retrieves current package status.

Concepts Guide

HPE Codar (1.60) Page 17 of 34



Package states

Packages have the following states:

l Active: the package is active in the current lifecycle stage
l Rejected: the package has been rejected and will not move to the next lifecycle stage
l Transition: the package is in transition to the next lifecycle stage
l Failed: the promotion of the package has failed
If you reject a package, then it remains in its current stage, its state is set to Rejected, and no further actions
can be applied; however, it can be deleted and is removed from the system.

When a package is promoted, it moves to the next stage and remains in the active state. Packages are
always created in the first lifecycle stage. If the Codar Jenkins plug-in is configured, then after a successful
build the Jenkins plug-in talks to Codar and creates a package.

Grouping infrastructure designs by lifecycle stage

A partial design with an active package requires you to select a infrastructure design to provision in the deploy
package wizard. These infrastructure designs can be grouped for different lifecycle stages. This grouping
enables package deployment in a lifecycle stage to list only those grouped infrastructure designs from that
lifecycle stage.

To group the infrastructure designs for a lifecycle stage, create a tag with the name of the lifecycle stage in
each topology design. When a lifecycle stage is created, a tag with the lifecycle stage is automatically

Concepts Guide

HPE Codar (1.60) Page 18 of 34



created. Hence, only the designs need to associated with the right lifecycle stage tag. For example, you
could create a Development tag and associate it with all required designs in the Development lifecycle state.

Note: The test run wizard in the Test tab lists all designs and does not group by tag.

Release gate actions
Release gate actions are actions that are user-defined and act as a promotion request check between two
lifecycle stages. Only if a package passes through each enabled action and the status of all the actions in a
lifecycle stage is successful, is the package promoted to the next stage.

Release gate actions are of three types:

l Deploy action
This action deploys a partial or complete application design based on pre-definedOperations Orchestration
(OO) content packs. The deploy action can be configured such that an email message is sent to users who
initiated the promotion request notifying them of the promotion success or failure. Users can even choose
to reject the package and clean up the deployment if the deploy action fails to execute and the package
has not been promoted.
For detailed information about creating, editing, and deleting deploy actions, see theCodar Online Help.

l Custom action
This action requires a package deployment that is created using a deploy action. It executes someOO
flows on the previously deployed instance. Deploy actions serve as input to custom actions; therefore, a
deploy actionmust necessarily exist or be created before creating a custom action.
Custom actions can be configured such that an email message is sent to users who initiated the promotion
request notifying them of the promotion success or failure. Users can choose to either reject the package
or proceed with the package promotion if the custom action fails to execute.
For detailed information about creating, editing, and deleting custom actions, see theCodar Online Help.

l Approval action
This action promotes a package only if designated approvers manually approve or reject a package
promotion. An approval action can also be configured to automatically approve or reject a package
promotion.
For detailed information about creating, editing, and deleting approval actions, see theCodar Online Help.

The following figure is a representation of the way in which release gate actions work:

Concepts Guide

HPE Codar (1.60) Page 19 of 34



Pipeline statistics
The Pipeline Statistics tab displays detailed information about packages and includes graphical
representations of package summary, trends, states, deployment status and so on. It provides a holistic view
of all packages and deployments and enables you tomake informed decisions with respect to package
deployment.

It displays information about the number of packages created on any date, the number of successful
transitions, the number of deployments and so on.

For detailed information about the pipeline statistics, see theCodar Online Help.

Concepts Guide

HPE Codar (1.60) Page 20 of 34



Environments
You can select different environments for each lifecycle stage at the application level. For example, you can
configure vCenter for deployment but a public cloud environment for staging.

Concepts Guide

HPE Codar (1.60) Page 21 of 34



External integrations
Codar is open and extensible, and can be integrated with different build systems such as Jenkins, Hudson,
etc. A comprehensive set of REST APIs can be used with other external tools to achieve continuous
integration, deployment, and delivery. The Codar architecture also provides options for you to hook into
customized flows for DevTest and DevOps.

Jenkins integration
Codar includes a Jenkins plug-in for continuous deployment. The following illustration shows how it works.

1. Developers check in changes.
2. Continuous integration triggers build.
3. Jenkins plug-in creates and deploys package.
4. Application is deployed to different environments depending on lifecycle stage.
5. In case of continuous promote, packages aremoved to the final lifecycle stage if all the release gate

actions are executed successfully.

ALM integration
You can integrate Application Lifecycle Management (ALM) with Codar to run tests after successful
deployment. The following illustration shows how Jenkins acts as an orchestrator.

Concepts Guide

HPE Codar (1.60) Page 22 of 34



Infrastructure as code (IaaC)
Managing infrastructure as code (IaaC) allows IT teams to leverage the best practices for developing code,
such as code reviews and unit testing for how infrastructure and applications get provisioned.

Codar canmanage infrastructure as code. Topology designs that can contain server configurations,
networks, volumes, relationships, and application-specific details like the application version and package
information can be exported in JSON format andmanaged with the application in the source control system.
Developers canmake changes to themodel using a text editor and use it for automation. Themodifiedmodel
can also be imported back into Codar.

Concepts Guide

HPE Codar (1.60) Page 23 of 34



Concepts Guide

HPE Codar (1.60) Page 24 of 34



Use case: Continuous integration, deployment,
and delivery
The goal is for an application to be enabled for continuous integration (CI) and continuous deployment. An
application developer codes the application and an application architect models the application in the Codar
interface and then exports the applicationmodel as code (IaaC). When the application developer checks in
the code, a Jenkins build is triggered and the application is deployed using the applicationmodel on a specific
environment. After the application is deployed, the continuous deployment process is extended to continuous
delivery whereas application-specific tests can be automatically run on the deployed instance, with the
application possibly being deployed to a different environment dependent on the outcome of the tests.

The following section describes how Codar achieves this scenario.

Application modeling
Application architects model applications graphically by including the necessary components of the design in
the designer interface and connecting them via relationships. Codar contains a palette of standard
components, and components can be imported (embraced) from various deployment engines such as HPE
Operations Orchestration and Chef. Such designs, called applicationmodels, are representations of the
methods in which applications are to be deployed. An applicationmodel can be exported in JSON format and
managed in an external source repository, achieving infrastructure as code (IaaC).

Continuous integration and deployment
In continuous integration, the code for the sample application and themodel for the deployment of the
application (in JSON format) is available in a source repository.

Concepts Guide

HPE Codar (1.60) Page 25 of 34



When an application developer makes a code change to the application and checks it into the source
repository (1), Jenkins triggers a build (2).

Codar provides a Jenkins plug-in which has details such as the IP address, user name, and password for
Codar. It establishes a connection and invokes an API as part of a post-build step (3). The API then invokes a
workflow that executes various actions for achieving continuous deployment and continuous delivery.

Importing an application design
If the applicationmodel has not already been imported into Codar or if it has changed, the continuous
deployment workflow imports it, in JSON format (IaaC), into Codar (4) as a new version of the application
design. This allows changes that have beenmade by application developers and architects to be taken into
consideration at the time of deployment.

It is important to note that if the applicationmodel has already been imported or if there is no change in the
application design, then this import operation does not take place and the application version within Codar
remains the same. You can view the applicationmodel in the Topology tile in the designer.

Deploying on an environment
After the package is created, the continuous deployment workflow fulfills the application design based on the
environment (6). You can view deployments for the package on the Deployments tab:

A runbook automation engine creates an execution plan based on the design that fulfills the infrastructure
layer, platform layer, and application layer. You canmonitor the status of the deployment of a particular
package and view a graphical representation of the deployed application, which includes component-level
properties and actions.

Publishing a design
Publishing a designmakes it available as an offering to service consumers. Youmust have an Hewlett
Packard Enterprise CSA license installed before you can publish a design.

A complete design with an active package in the Production stage contains package-specific properties as
part of the design and can be published.

A partial design with an active package in the Production stage contains package-specific properties as part
of the design, but it cannot be published until a final composed design is created by deploying the production
package.

Concepts Guide

HPE Codar (1.60) Page 26 of 34



Publishing a partial design is different depending on which licenses you have installed:

l AnCodar application design that has been advanced to the Production stage is deployed on a production
infrastructure, and then the composed production design is made visible on successful production
deployment. The design can then be published to service consumers.

l A design that is not an Codar application designmust be saved as a composed design from the Test tab.
The design can then be published to service consumers.

The following figure illustrates when a design can be published based on the license used:

Use case: Customizable release pipeline
The goal is to allow users to build their own custom release pipeline and have each application team define
and use separate lifecycle stages. The following are the high-level steps for users to define their own release
pipeline. For information about how to perform these steps, see theCodar Online Help.

1. Create roles and add permissions
2. Create lifecycle stages and associate roles with each lifecycle stage
3. Add lifecycle stages to the application design

Concepts Guide

HPE Codar (1.60) Page 27 of 34



4. Add release gate actions to each lifecycle stage
5. Create packages using the continuous promote API
The package is moved to the last lifecycle stage if all the release gates execute successfully.

The following illustration depicts the customizable release pipeline.

Concepts Guide

HPE Codar (1.60) Page 28 of 34



Use case: Deploy and redeploy packages
The goal is to deploy a package and then use the same instance to redeploy a newer version o the package
on an instance that has older versions.

An application architect models the application andmarks it for pipelinemanagement. The developer will then
create a package and deploy it. A new instance is created when the package is deployed. The deployment is
based on the topology design.

After deployment, the same instance can be used to redeploy a newer version of the package. The instance
can be upgraded or patched to newer packages or builds.

The following diagram shows the process:

Concepts Guide

HPE Codar (1.60) Page 29 of 34



Page 30 of 34HPE Codar (1.60)

Concepts Guide



Use case: Deployment and scale out
The goal is to create a scalable stack and scale out the stack on demand after deployment. An application
architect models the application andmarks the application for pipelinemanagement. The architect identifies
the components that should be scaled out in different life cycle stages. The scalable stack can contain a
single component or group of components. During development, the stack can be scaled in by one, and then
during testing the stack can be scaled to two, and so on.

Concepts Guide

HPE Codar (1.60) Page 31 of 34



Page 32 of 34HPE Codar (1.60)

Concepts Guide



Next steps
Codar Installation Guide andCodarConfiguration Guide explain how to download, install, and configure the
software, andCodar API and CLI Reference provides a brief introduction to the REST APIs and explains how
to obtain detailed information for each API. It also explains the command-line interface. You can access
online help from the application for task-oriented assistance.

Concepts Guide

HPE Codar (1.60) Page 33 of 34



Page 34 of 34HPE Codar (1.60)

Concepts Guide


	Codar
	Codar overview
	Declarative based modeling
	Topology composition
	Microservices
	Application pipeline management
	Managing packages
	Package operations
	Deploy and redeploy
	Scale out
	Roles and user access
	Lifecycle stages and actions
	Package states
	Grouping infrastructure designs by lifecycle stage

	Release gate actions
	Pipeline statistics
	Environments

	External integrations
	Jenkins integration
	ALM integration
	Infrastructure as code (IaaC)


	Use case: Continuous integration, deployment, and delivery
	Application modeling
	Continuous integration and deployment
	Importing an application design
	Deploying on an environment
	Publishing a design

	Use case: Customizable release pipeline
	Use case: Deploy and redeploy packages
	Use case: Deployment and scale out
	Next steps

