
1

HP OSS Analytics Foundation

Version 1.1.1

Integration Guide

Edition: 1.0

For Linux, RHEL 6.5

October 2015

2

Legal notices

Warranty

The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for
technical or editorial errors or omissions contained herein.

License requirement and U.S. Government legend

Confidential computer software. Valid license from HP required for possession, use,
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright notices

© Copyright 2015 Hewlett-Packard Development Company, L.P.

Trademark notices

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

Java™ is a trademark of Oracle and/or its affiliates.

Microsoft®, Internet Explorer, Windows®, Windows Server®, and Windows NT® are
either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

HP Vertica™, the HP Vertica Analytics Platform™ are trademarks of Hewlett-
Packard

Firefox® is a registered trademark of the Mozilla Foundation.

Google Chrome® is a trademark of Google Inc.

UNIX® is a registered trademark of The Open Group.

Red Hat® is a registered trademark of the Red Hat Company.

Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

JBoss®, Wildfly and PicketLink are registered trademarks of RedHat Inc.

3

Contents

Preface ... 6

Chapter 1... 8

Product overview ... 8

1.1 HP OSS Analytics Foundation introduction .. 8
1.2 HP OSS Analytics Foundation architecture .. 8

Chapter 2... 9

OSS Analytics batch jobs ... 9

2.1 Batch Engine shell tool .. 9
2.2 Scheduled batch setup ... 10
In this section we will describe how to register a new batch in the system. 10
2.2.1 Batch identifier unicity ... 12
2.2.2 Batch Scheduler .. 13
2.2.3 Default Batch Job Parameters ... 14
2.1 Batch Engine services .. 15
2.1.1 Properties inheritance .. 15
2.1.2 Externalized properties .. 16
2.1.3 Transient and Persistent context ... 17
2.1.4 Properties templating and placeholding ... 17
2.2 OSSA Batchlet Library .. 20
2.2.1 SQL Batchlet ... 21
2.2.2 CopyToVertica .. 24
2.2.3 ConsoleReport .. 27
2.2.4 Summarization ... 30
2.2.5 Mailer .. 34
2.2.6 Http ... 37
2.2.7 Resource ... 39
2.2.8 Java scripting .. 41
2.2.9 Run Batch .. 44
2.2.10 Run System Process ... 45
2.3 Batch Job examples ... 46

4

Figures

Figure 1 - View default job input parameter from OSSA Foundation Administration Console 14
Figure 2 - Batchlet properties inheritance sample .. 15
Figure 3 - Freemarker template engine overview ... 17
Figure 4 - Generate dynamic property value with template ... 19
Figure 5 - HP Analytics Batchlets package .. 20
Figure 6 - ossa.Sql batchlet sample usage .. 23
Figure 7 - Loaded test/demonstration package in repository .. 46

5

Tables

Table 1 - Scheduled Batch configuration details ... 11
Table 2 - Calendar-Based Scheduler Attributes .. 13
Table 3 - Default batch job input parameters details.. 14
Table 4 - Templating context ... 18
Table 5 - ossa.Sql batchlet interace .. 22
Table 6 - ossa.CopyToVertica batchlet interface .. 25
Table 7 - ossa.ConsoleReport batchlet interace ... 28
Table 8 - Summarization batchlet interface .. 32
Table 9 - ossa.Mail bachlet interface ... 35
Table 10 - ossa.http batchlet interface ... 38
Table 11 - ossa.Resource batchlet interface ... 39
Table 12 - ossa.javascript batchlet interface .. 42
Table 13 - ossa.batch batchlet interface ... 44
Table 14 - ossa.run batchlet interface... 45
Table 15 - Test package overview ... 47

6

Preface

This guide describes how to use the OSS Analytics Foundation functionalities for
customizing your OSS Analytics solution.

Software component name: HP OSS Analytics Foundation

Software component version: 1.1.1

Software kit version: V1.1.1

Intended audience

 This integration guide is for anyone who is responsible for customizing an OSS
Analytics solution based on OSS Analytics Foundation:

 Solution Architects

 Integrators

 The readers are assumed to understand Linux shell concepts.

Typographical conventions

Courier font:

 Source code and examples of file contents

 Commands that you enter on the screen

 Path names

 Keyboard key names

Italic text:

 File names, programs, and parameters

 The names of other documents referenced in this manual

Bold text:

 To introduce new terms and to emphasize important words

Associated documents

 HP OSS Analytics Foundation Release Notes

 HP OSS Analytics Foundation Installation Configuration and Administration
Guide

Support

Visit the HP Software Support Online website at https://softwaresupport.hp.com/
for contact information, and for details about HP software products, services, and
support.

The software support area of the website includes the following:

https://softwaresupport.hp.com/

7

 Downloadable documentation

 Troubleshooting information

 Patches and updates

 Problem reporting

 Training information

 Support program information

8

Chapter 1

Product overview

1.1 HP OSS Analytics Foundation introduction
Please refer to the HP OSS Analytics Foundation Installation, Configuration and
Administration guide for an introduction to OSS Analytics Foundation.

1.2 HP OSS Analytics Foundation architecture
Please refer to the HP OSS Analytics Foundation Installation, Configuration and
Administration guide for a description of the architecture of OSS Analytics
Foundation.

9

Chapter 2

OSS Analytics batch jobs

2.1 Batch Engine shell tool

During integration or testing activities, you certainly won’t schedule your batch jobs, and, it will be
more useful to start your batch jobs manually. Two shell scripts allow to start batch execution either
in synchronous mode or in asynchronous mode.

Asynchronous mode:

In this mode, as soon as the batch is started, the shell returns to user the started job execution
instance id.

/opt/ossa/bin/ossa-run-batch.sh [BATCH-NAME] [JSON_ PARAMS]

BATCH-NAME : (required) name of the batch to be run

JSON_PARAM : (optional) JSon object representing the batch job parameters

Synchronous mode:

In this mode, the shell starts the job and waits for its completion before returning the batch job
execution details.

/opt/ossa/bin/ossa-run-sync-batch.sh [BATCH-NAME] [JSON_PARAMS] [TIMEOUT]

BATCH-NAME : (required) name of the batch to be run

JSON_PARAM : (optional) JSon object representing the batch job parameters

TIMEOUT : (optional) Maximum time in milliseconds to wait before returning. It won’t stop the job,
simply give back control to caller process.

10

2.2 Scheduled batch setup

In this section we will describe how to register a new
batch in the system.
A batch job is a valid JSR-352 Xml file which defines its processing.

Moreover, for each batch you want load on the system, you must create a dedicated JSon file
responsible to declare the batch Xml file and its schedule.

The file name should respect the following naming convention in order to be recognized by the
system: file name must start with BATCH_. It will then be considered as a batch job configuration file.

Note

You can find some examples of batch jobs descriptions and configurations files in
the chapter ‘Batch Jobs examples’ of this document.

In case of multiple batch jobs, you can arrange files as you want in a folder structure. The
BATCH_xxx.json file contains the relative path of the batch Xml file. Here is a simple json batch setup
file :

Here are details about each attributes for a batch job configuration defined in a BATCH_xx Json files:

ATTRIBUTE TYPE DESCRIPTION

jobXmlPath String This is the repository parameter entry name that contains
the job xml definition. The batch Xml definition should be
stored in the same package than its json setup file.

jobParameters Map<String,String> A Key-Val Json object defining job input parameters

11

adminState Locked | Unlocked Locked : the batch is not scheduled

Unlocked : the batch is scheduled

batchSchedule java.ejb.Schedule A Json object defining the batch scheduler.
See section 2.2.2 for more details

Table 1 - Scheduled Batch configuration details

By default, the batch job you have defined will not be able to run until the previous
execution of this job is completed; this is to avoid potential concurrent access on data.

If you want a different behaviour, you can set the “concurrentFlag” to “true” within the
“jobParameters".
For example:
 Batch_xxx.json
 {
 “jobXmlPath” : “ …”,
 “jobParameters” : {
 “concurrentFlag” : “true”
 }
 “adminState” : “…”,
 “batchSchedule” : { …}
 }
In that case, several executions of jobs can be run in parallel.

12

2.2.1 Batch identifier unicity

A batch is identified by a unique name in the system.

The name of a batch job is defined according to the Xml file name. If a job is defined in the
MyBatch.xml file, the batch name will be MyBatch.

WARNING: The JobID defined in the ID job attribute in the batch xml definition file should be
the same than the batch.

13

2.2.2 Batch Scheduler

The HP OSS Analytics batch engine scheduler is built on top of standard J2EE Timers.

For more details about J2EE Timers, please refer to official documentation:

https://docs.oracle.com/javaee/6/tutorial/doc/bnboy.html

The following table has been extracted from this pointer. It gives details about schedule calendar
attributes:

ATTRIBUTE DESCRIPTION DEF.

VALUE

ALLOWABLE VALUES AND EXAMPLES

second One or more
seconds within
a minute

0 0 to 59. For example: second="30".

minute One or more
minutes within
an hour

0 0 to 59. For example: minute="15".

hour One or more
hours within a
day

0 0 to 23. For example: hour="13".

dayOfWeek One or more
days within a
week

* 0 to 7 (both 0 and 7 refer to Sunday). For

example: dayOfWeek="3".

Sun, Mon, Tue, Wed, Thu, Fri, Sat. For

example: dayOfWeek="Mon".

dayOfMonth One or more
days within a
month

* 1 to 31. For example: dayOfMonth="15".

–7 to –1 (a negative number means the nth day or days before

the end of the month). For example: dayOfMonth="–3".

Last. For example: dayOfMonth="Last".

[1st, 2nd, 3rd, 4th, 5th, Last]

[Sun, Mon, Tue, Wed, Thu, Fri, Sat]. For

example: dayOfMonth="2nd Fri".

month One or more
months within
a year

* 1 to 12. For example: month="7".

Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, D

ec. For example:month="July".

year A particular
calendar year

* A four–digit calendar year. For example: year="2011".

Table 2 - Calendar-Based Scheduler Attributes

https://docs.oracle.com/javaee/6/tutorial/doc/bnboy.html

14

2.2.3 Default Batch Job Parameters

Before the system starts a new job instance, some technical input job parameters are automatically
added to the execution context :

INPUT PARAMETER NAME TYPE DESCRIPTION

host Text The host name of the batch node runner for the job
execution

port Int The host http port of the batch node runner for the job
execution

runner-uuid Text Unique identifier of the batch node runner. This UUID
is unique for each started HP OSS Analytics
Foundation framework.

node Text When clustered system will be supported, this will be
the name of the cluster node.

packageName Text The repository package name where the job definition
is coming from

Table 3 - Default batch job input parameters details

Once the job is started, you can see these input parameter values directly in the HP OSS Analytics
Foundation Administration console in the Batch Monitor screen by clicking on the ‘Status’ button of
the job execution.

Figure 1 - View default job input parameter from OSSA Foundation Administration Console

15

2.1 Batch Engine services
The OSS Analytics Foundation batch job processing definitions xml files are following the JSL (Job
Specification Language) relying on JSR-352.

For more information on JSL and JSR-352 specification, please refer to
https://jcp.org/aboutJava/communityprocess/final/jsr352/index.html)

2.1.1 Properties inheritance

The JSR-352 standard allows integrators to define properties at different level in a Job XML
definition.
HP OSS Analytics batch engine proposes an inheritance mechanism for properties defined at Job,
Step and Batchlet level.

For all provided HP OSS Analytics Foundation batchlet, if a property is not defined at the batchlet
level, at runtime, the system will try to find the property value at the Step level, the Job level and
finally as input Job parameters level.

Let take a concrete example : the ossa.Sql batchlet need a ‘datasource’ property. If the integration
process has several ossa.Sql steps, it’s not helpful to duplicate this ‘datasource’ property in all steps.
This is a good candidate for property inheritance usage. You can define at the Job level a ‘datasource’
property that will be inherited by all ossa.Sql steps.

Figure 2 - Batchlet properties inheritance sample

In this example, the Job has two ossa.Sql steps. Each step expects to have a ‘datasource’ property
defined but here they are not. The required property value is inherited from the Job property
‘datasource’. The value is shared by the two steps.

16

2.1.2 Externalized properties

HP OSS Analytics Batch Engine comes with the possibility to externalize in a file a property value.

It can be very useful when batchlet property values are quite long or if the integrator want to
preserve indentation.

Keep in mind that jobs are defined in Xml file. The Xml standard defines that the
whitespace characters are not preserved in a node attribute.

Also remember that you cannot use > or < or & or “ characters. If you need it, you have to
use the html character for that like > < & "e;

See the following example where we define a javascript that will be referenced in a job using a
batchlet ossa.javascript:

The script property value attribute is defined on several lines with indentation. When the system
reads the value, it will see and get something like this:

That’s why, when you are writing a java script directly in the Xml value attribute, you cannot use the
comment character // because the carriage return character won’t exist anymore during execution.

Note that the same issue exists with SQL comments ‘--‘ .

If you need to preserve indentation or simply want to separate concerns, all HP OSS Analytics
batchlets support the externalization of the value in a separate file.

Values can be externalized into file by using the following patern within the job xml file:
[[path/file]]

In this example, the java script is externalized to a js file. It use the JSR-352 placeholding to retrieve
the package name of the repository entry. The js file location is relative from the repository base
folder.

In this way, you have no indentation limitation or forbidden characters and the integration flow logic
is separated from the ‘business’ process implementation done here in javascript.

17

2.1.3 Transient and Persistent context

Two different contexts are available for integrators. It allows user data manipulation or sharing
between steps or process.

2.1.3.1 Job transient user data

This context is shared by all steps of a job execution. It’s created at batch startup time and destroyed
when batch is stopped, abandoned or completed.

The job transient user data is a Key-Value bag (Map<String,Object>) where integrators can put or get
any kind of objects with a given name.

This object is directly added to the templating context with the name ‘data’. You can access the
values within your batch job xml with: ${data.myValueName}

2.1.3.2 Step persistent data

The StepContext allow integrator to store some objects in the database, in the STEP_EXECUTION
table.

2.1.4 Properties templating and placeholding

With HP OSS Analytics Batch Engine, most of the batchlet properties can be templated thanks to the
FreeMarker engine.

2.1.4.1 Freemarker overview

FreeMarker is a "template engine"; a generic tool to generate text output (anything from HTML to
autogenerated source code) based on templates. It's a Java package, a class library for Java
programmers. It's not an application for end-users in itself, but something that programmers can
embed into their products.

Figure 3 - Freemarker template engine overview

18

2.1.4.2 Templating context

When processing the freemarker template for a batchlet property, several objects are available as
contextual objects and can be directly used by their names :

VARIABLE DESCRIPTION TYPE
log The Logger for the underlying step batchlet org.jboss.logging.Logger

job The JobContext object
https://docs.oracle.com/javaee/7/api/javax/batch/runtime/conte
xt/JobContext.html

javax.batch.runtime.context.JobContext

jobProps Properties defined at Job level java.util.Properties

step The StepContext object
https://docs.oracle.com/javaee/7/api/javax/batch/runtime/conte
xt/StepContext.html

javax.batch.runtime.context.StepContext

stepProps Properties defined at the Step level java.util.Properties

env System env properties (java.lang.System.getenv()) Map<String,String>

props System properties (
java.lang.System.getProperties())

java.util.Properties

params Job input parameters java.util.Properties

data The Job transient data Map<String,Object>

[step-id] The batchlet itself Extends OssaBatchlet

batch The OssaF Batch restApi proxy com.hp.ossa.batch.restapi.BatchRestApi

Table 4 - Templating context

2.1.4.3 Placeholding

The JSR-352 placeholding for properties is done at the batch creation time. This means that you
cannot use it to play with transient or persistent data to inject values between steps.

The Freemarker templating is done just before the usage of a property. With this, you can inject
loaded values directly between job steps.

In order to understand the situation, considerate the following example:

The first statement insert a row in MyTable

The second statement retrieves the generated identifier and save it as transient user data with the
name ‘generatedId’

In the last statement, we use the freemarker placeholding ${data.generatedId} value to do
something else… here an other insert.

This is only possible because properties are templated at usage time.

https://docs.oracle.com/javaee/7/api/javax/batch/runtime/context/JobContext.html
https://docs.oracle.com/javaee/7/api/javax/batch/runtime/context/JobContext.html
https://docs.oracle.com/javaee/7/api/javax/batch/runtime/context/StepContext.html
https://docs.oracle.com/javaee/7/api/javax/batch/runtime/context/StepContext.html

19

2.1.4.4 Templating

The Freemarker templating can also be used to generate different property values depending of the
context.

Imagine you are in a Sql batchlet, with an externalized Sql file and depending on a property value,
you want to change the Sql statement to run :

Figure 4 - Generate dynamic property value with template

Here, depending of the ‘targetProperty’ value, we need to have different OrderBy part on the
executed sql statement. We can use templating facilities for that like this :

Freemarker comes with a lot of functions to manipulate data. It proposes everything you need for
conditional processing or formatting.

Please refer to the official Freemarker documentation for more details about capacities.

http://freemarker.org/index.html

20

2.2 OSSA Batchlet Library

The OSS Analytics Foundation embeds a OSS Analytics Batch Library which can be used for
transformation purposes. This can serve to customize your OSS Analytics solution.

Several kind of batches are defined in this library; they are presented below.

Figure 5 - HP Analytics Batchlets package

21

2.2.1 SQL Batchlet

2.2.1.1 Overview

The ossa.Sql batchlet allow user to run standard Sql statements on generic datasource.

Sql batchlet helps integrators to execute sequential and transactional DB operations.

With JSR-352, the transaction boundaries is a step. Every statements executed in a Sql batchlet step
is committed at the end of the step.

The ossa.Sql batchlet supports cancel action. If the Stop method is called on the job running a Sql
batchlet, the current statement is cancelled by the Vertica DB engine.

Sql batchlet allow user to mix Sql statement execution and data import in the same transaction. The
CopyToVertica batchlet can be embedded into one of the SQL_XX properties.

The SqlBatchlet provided 99 optional properties named from SQL_01 to SQL_99. These statements
are executed in sequence from 01 to 99. No continuity numbering is required.

SQL_XX usage:

Simple Sql processing. Any statement types are allowed as soon as the database accept it.

A special property named SQL_RETURN helps integrator to define the step Exit Status thanks to a Sql
query. It’s useful to drive the job execution flow.

Only the first object of the first column of the resultSet is used as the step ExitStatus

Ossa Foundation implements on top of SQL several useful services for integration purpose:

 EXECUTE sql to be executed

If the statement is starting by EXECUTE, the end of the command will be considered as an
SQL statement that should be executed.
The provided SQL statement is supposed to produce SQL. The produced SQL statements are
applied in sequence

 VCOPY config-key

If the statement is starting by VCOPY, it will be treated as a ossa.CopyToVertica step.
You simply have to provide the property key to use to find copy settings.
(please refer to the ossa.CopyToVertica batchlet description)

 DATA(key) sql statement

DATA allows user to store the query result in the job data context.
Data is accessible thanks to the name pattern [step-id].[key]
Data are transient. They are not stored to the DB but accessible from all job steps.

If the query returns one row and one column, the resultset object is stored directly

22

If the query returns one or multiple rows, it stores a list of key-value
<columnName,object>

 STORE(key) sql statement

STORE allow user to persist in the database a query result.
The resultset value is attached to the step. It’s stored in the step_execution batch tables.
It also store the query result as a job context data under the name [step-id].[key]

2.2.1.2 ossa.Sql batchlet interace

SUPPORT

 Ref ossa.Sql

 Logger com.hp.ossa.batch.batchlet.jdbc.SqlBatchlet

 Cancellable Yes

 Templated Yes

PROPERTIES

 datasource JNDI url of datasource req String

 SQL_01 Sql to be executed in sequence opt String

 SQL_02 opt String

 … …

 SQL_99 opt String

 SQL_RETURN Sql executed to get the step exit status.

Used by next command in job xml

opt String

EXIT STATUS

 COMPLETED If no problems and no SQL_RETURN defined

 [AnyUserValue] If SQL_RETURN is defined, the first column data of the

first row if return as step output

OUTPUT DATA

 [AnyName] In case of DATA(key) or

STORE(key) usage

Object

List[Map<Col,Val>]

Table 5 - ossa.Sql batchlet interace

eclipse-javadoc:%E2%98%82=batch/src%5C/main%5C/java%3Ccom
eclipse-javadoc:%E2%98%82=batch/src%5C/main%5C/java%3Ccom.hp
eclipse-javadoc:%E2%98%82=batch/src%5C/main%5C/java%3Ccom.hp.ossa
eclipse-javadoc:%E2%98%82=batch/src%5C/main%5C/java%3Ccom.hp.ossa.batch
eclipse-javadoc:%E2%98%82=batch/src%5C/main%5C/java%3Ccom.hp.ossa.batch.jdbc

23

2.2.1.3 Sample usage

This sample has been extracted from:

/opt/ossa/repo-ossa/com.hp.ossa.test.batchlet/testcasesSql

Figure 6 - ossa.Sql batchlet sample usage

24

2.2.2 CopyToVertica

2.2.2.1 Overview

The ossa.CopyToVertica batchlet is a simple encapsulation of the the Vertica COPY sql statement.

This SQL function provided by Vertica allow user to load datafile in the database.

For more details about COPY Vertica statement, please refer to the official Vertica Sql Reference
documentation.

For Vertica 6.1 : http://my.vertica.com/docs/6.1.x/HTML/index.htm#1668.htm

The ossa.CopyToVertica batchlet propose, on top of this sql utility, functions to manage input files.
The integrator can specify the archiving policy for data file import.

OSSAF supports:

REMOVE policy: where loaded files are simply removed.

ARCHIVE policy: where loaded files are archived to defined folder.

NO policy: nothing is done. The file stay in place.

The ossa.CopyToVertica batchlet supports cancel action. If the Stop method is called on the job
running a Sql batchlet, the current statement is cancelled by the Vertica DB engine.

The integrator is responsible to provide the Copy Sql statement. The file location is manage by
placeholding of the :input token.

http://my.vertica.com/docs/6.1.x/HTML/index.htm#1668.htm

25

2.2.2.2 ossa.CopyToVertica batchlet interface

SUPPORT

 Ref ossa.CopyToVertica

 Logger com.hp.ossa.batch.batchlet.jdbc.CopyToVerticaBatchlet

 Cancellable Yes

 Templated Yes

PROPERTIES

 datasource JNDI url of datasource req String

 asBaseDir Relative base directory to find

files from the application server

req String

 dbBaseDir Relative base directory to find

files from the database

req String

 importStatement Vertica copy sql statement

:input will be replaced by the

batchlet with selected file name

req String

 inputFilter This regexp should match the

file name in the input directory

req RegExp

 inputArchingPolicy REMOVE : delete imported file req String

 ARCHIVE : file will be moved to

the archive directory when

loaded

 NO : do nothing

 inputDir Directory where the system

should find files to be imported

Req String

 errorDir Directory where the files are

moved in case of error

req String

 archiveDir Directory where the files are

moved when loaded

req String

 rejectDir Directory where the files are

moved when rejected data

req String

 failOnError Default : true Define if the

batchlet should stop on error in

case of sql exception.

opt boolean

EXIT STATUS

 COMPLETED If no problems

 FAILED If one of the sql statements has failed

OUTPUT DATA

Table 6 - ossa.CopyToVertica batchlet interface

eclipse-javadoc:%E2%98%82=batch/src%5C/main%5C/java%3Ccom
eclipse-javadoc:%E2%98%82=batch/src%5C/main%5C/java%3Ccom.hp
eclipse-javadoc:%E2%98%82=batch/src%5C/main%5C/java%3Ccom.hp.ossa
eclipse-javadoc:%E2%98%82=batch/src%5C/main%5C/java%3Ccom.hp.ossa.batch
eclipse-javadoc:%E2%98%82=batch/src%5C/main%5C/java%3Ccom.hp.ossa.batch.jdbc

26

2.2.2.3 Sample usage with placeholder

Inherited job properties

27

2.2.3 ConsoleReport

2.2.3.1 ossa.ConsoleReport overview

When Oss Foundation is deployed with the OssConsole application, it’s possible to make it generated
reports that can be integrated in other integration steps like a ‘mailing” step for example.

In order to generate a report, integrators need to define:

1. authentication parameters

As the OssConsole is a secured application, the ConsoleReport batchlet supports 2 types of
authentication:

Either you can use a specific user and password, that should be previously authorized to generate
the wanted report. This option is only working if OssConsole has been configured to use internal
authentification provider.

Either you can specific Auth2 Token value. This token should be a valid token recognized and
accepted by the OssConsole application to generate a report.

For more details about how to generate and get a valid OSS Console Token, please refer to
the Security Section - JSon webtoken in the HP Unified OSS Console installation guide.

2. Report specification

The 2 mains parameters to generate an Oss Console report are:

- The report data Uri : is the same uri the user navigates to see its data in OssConsole Application

- The ossConsoleReportUri: is the generator service uri of the OssConsole.

Moreover, you can define several specific report generation options like paper size, orientation, and
margin.

28

2.2.3.2 ossa.ConsoleReport batchlet interace

SUPPORT

 Ref ossa.ConsoleReport

 Logger com.hp.ossa.batch.batchlet.jdbc.ConsoleReportBatchlet

 Cancellable No

 Templated Yes

PROPERTIES

 baseFolder Output base folder where

downloaded report are stored

req String

 url Url of the resource to be

downloaded

req String

 file Name of the file where the

resource will be stored

req String

 ossConsoleUrl Url of Oss Console application req String

 ossUsername Login for the console opt String

 ossPassword Password for the console opt String

 ossToken Security token is no user and

password

opt String

 ossConsoleLoginUri Login uri req String

 ossConsoleReportUri Report generator uri req String

 uri Report uri req String

 orientation portrait or landscape req Enum

 format A4, A3… req Enum

 margin Eg. 10 req Integer

 viewportHeight Eg. 1200 req Integer

 viewportWitdh Eg. 1900 req Integer

EXIT STATUS

 COMPLETED If no problems

 FAILED If download failed

OUTPUT PROPERTIES

 res Downloaded java file

 link http uri link to get the file

 source http link of oss console

report

Table 7 - ossa.ConsoleReport batchlet interace

eclipse-javadoc:%E2%98%82=batch/src%5C/main%5C/java%3Ccom
eclipse-javadoc:%E2%98%82=batch/src%5C/main%5C/java%3Ccom.hp
eclipse-javadoc:%E2%98%82=batch/src%5C/main%5C/java%3Ccom.hp.ossa
eclipse-javadoc:%E2%98%82=batch/src%5C/main%5C/java%3Ccom.hp.ossa.batch
eclipse-javadoc:%E2%98%82=batch/src%5C/main%5C/java%3Ccom.hp.ossa.batch.jdbc

29

2.2.3.3 Sample usage with User / Password

2.2.3.4 Sample usage with Token

30

2.2.4 Summarization

2.2.4.1 Summarization overview

The OSS Analytics Batch Library provides a data summarization functionality.

This transformation is applicable for multidimensional schema, having a star model.

The aim is to aggregate data from a datamart ‘fact’ table.

The transformation produces data in an output table where values from the original table are
aggregated by selected dimensions and selected time granularities (hourly, daily, weekly, monthly).
This is why it is called summarization.

When scheduling summarization batch job, new and updated data from the original table is detected
thanks to the CDC column (Change Data Capture), and the processing occurs in order to update
accordingly the summarized table.

31

2.2.4.2 Summarization batchlet interface

SUPPORT

 Logger com.hp.ossa.batch.batchlet.summ

 Cancellable Yes

 Templated No

PROPERTIES

 datasource JNDI url of datasource req

 src_table the name of the original fact table req

 dest_table the name of the table where the

aggregated data will be put

req

 src_time_column the column of the source table

which determine the timestamp

of the fact values (this column

will be used for applying the time

aggregation)

req

 dest_time_slice time slice on which the

aggregation must be performed.

It can be:

 'XMIN': for bunch of minutes

aggregation. x could be

 1,2,5,10,15,20 or 30

 'HH24': for hourly aggregation

 'DD': for daily aggregation,

 'DAY' or ‘IW’ : for weekly

aggregation starting on Sunday

or Monday

 'MM': for monthly aggregation

req

 dest_timeColumn the timestamp column within the

summarized table which will be

filled with the timestamp of the

time slice (the timestamp of the

start of the timeslice)

req

 src_dimensions the list of columns of the original

fact table defining the dimensions

upon which the aggregation must

be performed

req

 dest_sumAggregations the list of mappings (separated

by ‘//’):

 <column name in the

summarized table> =

 <the aggregation function

done on the fact columns (as a

SQL expression)>

req

 src_maxCalculationPeriod max number of periods of data to

be taken into account when

handling backlog use cases.

If 0, no limit on the number of

periods to be calculated.

If X different than 0, do not take

data older than X <time slice>

periods in the past into

req

32

consideration for the

summarization

 src_CDCcolumn the column which must be used

to detect the new data on the

source table (an update

timestamp generally)

req

 src_CDCtype the type of the CDC column (only

timestamp is supported in V1)

req

 src_CDCdeltaWindow (value in minutes)
If you ensure that your source table
src_CDCcolumn has incremental
timestamp values, set the value to 0.
Potentially, for multithreaded applications
populating the source table, where you
are not sure that src_CDCcolumn values
are incremental, you can define a delta
window of 1 minute for retrieval of data;
incremental summarization will then take
data from source table having
src_CDCcolumn > ‘latest CDC timestamp
took by previous summarization’ – 1 mn

 dest_CDCcolumn column name within the

destination table that will identify

a new or updated row

req

EXIT STATUS

 COMPLETED If no problems

 FAILED If summarization failed

Table 8 - Summarization batchlet interface

33

2.2.4.3 Sample usage

In red, the configuration parameters of the summarization, as described above

34

2.2.5 Mailer

2.2.5.1 ossa.Mail batchlet overview

The ossa.mail batchlet is built on top of java.mail Api.

It allows integrators to send an Html templated mail in their integration flows.

Mail receivers can be defined thanks to the ‘to’, ‘cc’, ‘bcc’ properties. You can add several receivers by
using the coma separator.

The property “from” allow integrators to define how is sending the mail. It should be accepted by
your underlying smtp server.

The smtp server is defined at installation time when you configure the batch engine.

You have to define, in the setup file /opt/ossa/ossa.conf, properties OSSA_MAIL_SERVER and
OSSA_MAIL_PORT. It will be configured automatically in the Wildfly application server configuration
file.

The content of the mail should be Html content. As the batchlet properties are templated, you can
externalize in a FTL script the content and use FreeMarker functions in order to generate dynamic
content.

The “attachment” property can be use. It defines the list of previous step-id supposed to provide a
resource to attach. For instance, a ConsoleReport step can be use before the Mail step. The
downloaded report can be added as attachment to the mail to send.

35

2.2.5.2 ossa.Mail bachlet interface

SUPPORT

 Ref ossa.Mail

 Logger com.hp.ossa.batch.batchlet.resource.MaillerBatchlet

 Cancellable No

 Templated Yes

PROPERTIES

 baseFolder Output base folder req

 from Mail sender address req

 to List of mail receivers (,) req

 cc List of mail cc receivers (,) req

 bcc List of mail bcc receivers (,) req

 attachments List of attachments. Use the step id

of resource step to be attached to

the mail

opt

 subject Mail subject req

 content Mail content req

EXIT STATUS

 COMPLETED If no problems

 FAILED If download failed

Table 9 - ossa.Mail bachlet interface

36

2.2.5.3 Sample usage

The mail content is produced by executing a freemarker template where the user can use
environment data to produce the html mail content.

Mail step (With external template file)

Templated html mail content with dynamic data

37

2.2.6 Http

2.2.6.1 ossa.http batchlet overview

The Http batchlet allow integrator to send every kind of Http request in their integration process.

The Http batchlet is built on to of apache.httpcomponents thanks to the httpclient api.

The ‘method’ property allow integrator to send all Http query type: GET, POST, PATCH, PUT, DELETE,
HEAD, OPTIONS, TRACE.

The ‘headers’ property allow integrator to manage all Http header request parameter. Headers
property is a Key,Val list.

The ‘url’ property defines the request target.

The 'content’ property defines the content of the request to send. It’s template but is not mandatory.

The Http batchlet expect to receive an Http 200 response code. In this case, and if the response
content is not null, it is stored by default as a job transient data with the key [step-id].result.
You can make this result persistent (stored in DB) by using the ‘store’ property. It defines the name of
the persisted step data.

The Http batchlet can be cancelled by stopping the job.

The Http response code is return as the Exit Status for the step

38

2.2.6.2 ossa.http batchlet interface

SUPPORT

 Ref ossa.http

 Logger com.hp.ossa.batch.batchlet.http.HttpBatchlet

 Cancellable Yes

 Templated Yes

PROPERTIES

 method Standard http method.

GET|POST|PATCH|PUT|DELETE|HEAD

OPTIONS|TRACE

req Enum

 url Request target url req Url

 headers Http request headers opt K=V,

 content Request content opt String

 store Id of the data to store in the DB opt String

EXIT STATUS

 [Http Response Status] Http response code. 200, 404, …

OUTPUT PROPERTIES

 [step-id].result Response content if exists String

Table 10 - ossa.http batchlet interface

2.2.6.3 Sample usage

In this example, we will call on of the OSSA RestApi entry point in order to get the server Uuid. We
store in the DB, at the step level, the server response to be used later by another step or integration
process

39

2.2.7 Resource

2.2.7.1 ossa.Resource batchlet overview

The ossa.Resource batchlet is a step abstraction that is supposed to provide a resource to other step.
For example, the attachments of Mail batchlet should be resource step. The ConsoleReport batchlet
extends the Resource batchlet. That’s why, integrators can attach a downloaded report to a mail.

The Resource batchlet need first to be define a base folder where resources will be stored.

The default behaviour of Resource batchlet is to download the content from a given url (property url)
and to store it in the base folder under the ‘file’ property file.

The exit status is COMPLETED if everything gone right.

2.2.7.2 ossa.Resource batchlet interface

SUPPORT

 Ref ossa.Resource

 Logger com.hp.ossa.batch.batchlet.resource.ResourceBatchlet

 Cancellable No

 Templated Yes

PROPERTIES

 baseFolder Directory where downloaded

resource are stored as files.

req String

 url Resource url to be downloaded req Url

 file Output file name

EXIT STATUS

 COMPLETED

OUTPUT PROPERTIES

 source The full url where resource has been

downloaded

 link The link where the downloaded

resource can be retrieved

String

 res The downloaded file File

Table 11 - ossa.Resource batchlet interface

40

2.2.7.3 Sample usage

Here we will see again the Mail batchlet example.

In the first step, we download a file as an ossa.Resource:

Next we can use batchlet output properties. Here, we build a mail content with a link to get the
resource:

41

2.2.8 Java scripting

2.2.8.1 ossa.javascript batchlet overview

The javascript batchlet allow integrator to implement any logic/treatment for a batch step thanks to
a java scripting language.

It’s build on top of Rhino java scripting engine.

For more details about Rhino Java scripting, please refer to the official documentation :
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino

The aim of any batch step is to:
- do something
- provide an exit status that is used to drive the batch process.

This is meaning that the provided java script should return a value that can be used to drive the flow.

Rhino allow integrator to do whatever they want to do as soon as it can be implemented in Java. All
API available in the JDK can be used directly.

Main java scripting usage cases:
- Initialisation step: before starting an integration process, you can setup variable, create files,

load configuration from properties, generate random values ….
- Assertion step : in order to verify that everything gone right
- Call user defined functions

It accepts only one templated property named ‘script’.

Execution context:

The execution context is exactly the same than the freemarker templating context. Please refer to
section 2.4.4 for more details. You can use directly any of these variable available in the context:

VARIABLE DESCRIPTION TYPE
log The Logger for JavaScript batchlet org.jboss.logging.Logger

job The JobContext object
https://docs.oracle.com/javaee/7/api/javax/batch/runtime/context
/JobContext.html

javax.batch.runtime.context.JobContext

jobProps Properties defined at Job level java.util.Properties

step The StepContext object
https://docs.oracle.com/javaee/7/api/javax/batch/runtime/context
/StepContext.html

javax.batch.runtime.context.StepContext

stepProp
s

Properties defined at the Step level java.util.Properties

env System env properties (java.lang.System.getenv()) Map<String,String>

props System properties (java.lang.System.getProperties()
)

java.util.Properties

params Job input parameters java.util.Properties

data The Job transient data Map<String,Object>

[step-id] The batchlet itself JavascriptBatchlet

batch The OssaF Batch restApi proxy com.hp.ossa.batch.restapi.BatchRestApi

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
https://docs.oracle.com/javaee/7/api/javax/batch/runtime/context/JobContext.html
https://docs.oracle.com/javaee/7/api/javax/batch/runtime/context/JobContext.html
https://docs.oracle.com/javaee/7/api/javax/batch/runtime/context/StepContext.html
https://docs.oracle.com/javaee/7/api/javax/batch/runtime/context/StepContext.html

42

2.2.8.2 ossa.javascript batchlet interface

SUPPORT

 Ref ossa.javascript

 Logger com.hp.ossa.batch.batchlet.script.JavascriptBatchlet

 Cancellable No

 Templated Yes

PROPERTIES

 script Java script req String

EXIT STATUS

 [AnyUserValue] Value returned by the script.

Table 12 - ossa.javascript batchlet interface

2.2.8.3 Sample usage

In this first example, we are using java scripting batchlet to generate folders and csv data in order to
import in a later step this csv file thanks to the CopyToVertica batchlet. As you can see, you can
access to the full java standard API (JDK 1.7 in June 2015)

43

In this second example, we are using the javascript batchlet as an assertion step in order to verify
that all steps previously executed finished with an ‘OK’ status. If yes, the step is OK, if not, the step is
KO. This example is extracted from the test_batchlets.xml job that is a testsuite executing several
testcase jobs.
(This is also a usage sample of the Batch restAPI proxy service provided in the context)

44

2.2.9 Run Batch

2.2.9.1 ossa.batch batchlet overview

The batch batchlet allow integrators to run any new batch instance as a batch integration step.

The ExitStatus of the run batch is returned as the current step status.

The batch is executed synchronously. This batchlet is waiting for the run batch to be completed
before continuing.

The batch batchlet accepts 3 parameters:
- the batch name to be run
- the batch input parameters as a Map<String, String> object
- the run batch timeout

2.2.9.2 ossa.batch batchlet interface

SUPPORT

 Ref ossa.batch

 Logger com.hp.ossa.batch.batchlet.utils.RunBatchBatchlet

 Cancellable No

 Templated Yes

PROPERTIES

 batch Batch name to be executed

synchroniously

req String

 params Batch input parameters opt Map<String,String>

 timeout Batch timeout in ms.

-1 means no timeout

opt long

EXIT STATUS

 [BatchExitStatus] Value returned by the batch.

Table 13 - ossa.batch batchlet interface

2.2.9.3 Sample usage

This example is extracted from :

/opt/ossa/repo-ossa/com.hp.ossa.test.batchlet/test_batchlets.xml

45

2.2.10 Run System Process

2.2.10.1 ossa.run batchlet overview

The ossa.run batchlet allow integrator the run a system sh script as a job step.

This batchlet is cancellable. You can interrupt the process execution by stopping the job.

The exit status of the step is the process exit value. Usually an integer.

2.2.10.2 ossa.run batchlet interface

SUPPORT

 Ref ossa.run

 Logger com.hp.ossa.batch.batchlet.system.ProcessBatchlet

 Cancellable Yes

 Templated Yes

PROPERTIES

 command Command to be executed

by the underlying OS

req String

 arguments Command arguments.

(Coma separator)

opt [String]

 environment Environnement variables

for the process execution

opt [String]

 baseDir Base directory for process

execution

opt String

EXIT STATUS

 [ProcessExitStatus] Value returned by the system process.

OUTPUT PROPERTIES

 processOut The process ouput stream java.io.BufferedReader

 processErr The process error stream java.io.BufferedReader

Table 14 - ossa.run batchlet interface

2.2.10.3 Sample usage

46

2.3 Batch Job examples
HP OSS Analytics Foundation embeds some examples of OSSA batchlets. They are available here:

 /opt/ossa/repo-ossa/com.hp.ossa.test.batchlet

There is one batch job (test_batchlets.xml / BATCH_test_batchlets.json) which allows to start all the
other batch jobs defined in subdirectories.

If you want to load them into the OSSA Batch engine, execute:

ossa-repo.sh loadDirectory com.hp.ossa.test.batchlet /opt/ossa/repo-ossa/com.hp.ossa.test.batchlet

Once loaded, you should see the com.hp.ossa.test.batchlet batch available for manual execution
(no job is scheduled by default in this package)

Figure 7 - Loaded test/demonstration package in repository

47

Test / Demonstration package content

DIRECTORY JOB DESCRIPTION

[ROOT] test_batchlets.xml This is the testsuite responsible to run all job

testcase. It use the batch and javascript

batchlets.

testcasesGeneral TestJobParameters.xml Testing job input parameters.

testcasesGeneral TestRepoParam.xml Test the configuration repository rest Api. It

use a javascript test in order to generate

fake data, and use http batchlet in order to

call repository webservice functions.

testcasesHttp TestHttp.xml Testing usage of http batchlet. It use a

javascript assertion step in order to verify

response.

testcasesHttp TestHttpConcurrency.xml Testing multiple http request in parallel

thanks to the Split batch service.

testcasesMail TestMailler.xml Send a simple mail.

testcasesMail TestMaillerAttachments.xml Send a mail with a downloaded resource as

attachment with external content generation

template (freemarker).

testcasesMetadata TestMetadataLoaded.xml Simply verify that metadata service is

accessible to /ossa/packages url.

testcasesScripting TestScripting-01.xml Basic java scripting demonstration with

embedded script.

testcasesScripting TestScripting-02.xml Basic java scripting demonstration with

externalized script.

testcasesSql TestSql-01.xml Basic demonstration of sql batchlet functions

with validation java script.

testcasesSql TestSql-02.xml More complex sql batchlet example

testcasesSystem TestProcessExecute.xml Basic demonstration of system process

execution

testcasesTemplating TestTemplating-01.xml Basic templating usage rather than JSR-352

standard placeholding

testcasesTemplating TestTemplating-02.xml Externalized templating sample

Table 15 - Test package overview

