HP Unified Correlation Analyzer

W

Unified Correlation Analyzer
for
Event Based Correlation

Inference Machine

User Guide

Version 3.3

Edition: 1.0

September 2015

© Copyright 2015 Hewlett-Packard Development Company, L.P.

Legal notices

Warranty

The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for
technical or editorial errors or omissions contained herein.

License requirement and U.S. Government legend

Confidential computer software. Valid license from HP required for possession, use
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright notices

© Copyright 2015 Hewlett-Packard Development Company, L.P.

Trademark notices

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and
64-bit configurations) on all HP 9000 computers are Open Group UNIX 95 branded
products.

Java™ is a trademark of Oracle and/or its affiliates.

Microsoft®, Internet Explorer, Windows®, Windows Server®, and Windows NT® are
either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

Oracle®is a registered U.S. trademark of Oracle Corporation, Redwood City,
California.

UNIX® is a registered trademark of The Open Group.

X/0pen® is a registered trademark, and the X device is a trademark of X/Open
Company Ltd. in the UK and other countries.

Red Hat® is a registered trademark of the Red Hat Company.

Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

Contents

(=] - o P *)

CRaPREr 1. eceeeieeieeceecneceececcecesceseeseessessssscssscsssescessesssssssssssssssssssessassessasses | &

Inference Machine: @ QUICK tOUF.......cc.eeeeeeieeceereneceeceecceecceecneccecceecceccnecceccceccee 12
1.1 {000 1 =) 4 RPN 12
1.2 Naming diSambigUatioNcceeeeiieeieeeeeecee et cee e ree e e e ee s see s e ae e e e e s seeenes 12
T.3 BaSIC CONCEPES.ciiteiceeieeeecee ettt ettt s e st e s se e s st e s see s ae e s et e s saa e s e e essnnassnannnns 13
1.3.1 INFErenCe MACKhINGoceeeeeeee ettt see e e e s s s e e e e ne e 13
1.3.2 Problem DeteCLION......c.ciceeeeeeeeeee et st e e s see s e e e e ae s ae s aesaesnesanens 14
1.3.3 Topology State Propagator...........eceeeeeeceeceeeeeeceee ettt ene s 15
L S I Tl ¢ | T RN 16

(011111 - R I |

General featureS....cccccieeecieeeecieneecieneecienencesneeieneesensssenssssesssssessssssssssscnsasses 17
2.1 Root Cause and Service IMPact ANALYSISeeeeeeereerreerereereecereeeeeeereeseeesreeseees 17
2.2 EVENE GrOUPING ..c..ciiiiieieeeeeeeeeteet ettt et ee et s e s nesne st e st e st ssessneesaensnes 18
2.3 LI QYO ettt ettt eeae e a e e a e st e ene e na e ne e neenaennnen 21
P S AT (o] 1o - | A alt= [ot [0 4 L3 PRSP SSRRSRRRRIN 21
2.5 Automatic Trouble TicKeting.......cocveecieeeeeeeeeeeceee e cae e e e sae e eeeae e 21
2.6 Cross domain COrrelation.......coceeceeeierceeceeceeceee et s e s e s s e e s ae e saesaees 21
2.7 EVENt @NFICHMENT ... ittt ettt sse s e s sse s st s e e saesaesae s 22
P T =T o] 1T ol <O RRRR 22
2.9 RODUSENESS......ootieeiereieerertrtcteetestes e st st et et e aesses e s e s e st essessessessesssssssssessassassessens 22
2.T0 EQSE Of USE ...ceeieieeieneenenesteteeeetesees e st st st et essesaessessssse st essessessessesssssesssenssessassassens 23
P00 I Y114 111 - o] o RS S 23

61 -1 1] (-1 . |

FT ol 1) =T o . |
3.1 INFErence MAChINEooueeuieirietetetectecr ettt sttt e sa e s s s s e s s st st e saessasnas 24
20 1 {1 (=10 o 0 1= =Tt o] o IRt 25
3.3 Topology State Propagatorceeeceeceeeeieeeceecceeecte s ceeeeee s eeesee s eeesaessseasennaas 25
3.4 ACOMMON LDIAIY ettt s e ree e aa e s e e e e e s aa e e s 26
3.4.1 FAYa o] L3 = Tt (o] oV 27
3.4.2 Life cycle class for states and other events..........ccoveeeeceereeereecreeceeeeeceeeeeeeeens 27
343 11T - ol <L 27

Chapterd......... e eeeieeeneceeeneceeccncceeccecseescessenscncssssssssssscssssssssssssssssssnsssssanssens &9

The IM scenarios exXplained........cceeeeeceeeenecenceecenecneceecceececcncccnscssscsccsescsscecss £9
4.1 Problem Detection (PD)cccccueueeeeereeieteeeteseeeeaeseeesesesesesssesesessesessesssessnsesesennens 29
4.1.1 IES FOLE N DIIEF e e e e saesaesanne 29
4.1.2 1S MAIN FEALUIES ..t s e s s e e s e e ne e 29
4.1.3 Alarm state Propagationcecceeeceeeceecreeeceeeceree e e ree e re e ree e e ee e e ae e e e s aeeennean 30
4.2 Topology State Propagator (TSP)........ecceeeeeeeeeeeeereeeree s seeesesenesesesesesenens 30
4.2.1 L3 o] =N o o 1= RS 30
4.2.2 IS MAIN FEALUIES ...eeeeeeeteeeeree ettt se e saesee s e s e s e s e s e et esaaseesanans 31

4.2.3 Alarm state Propagationcecceeeceeeceeeceeeceeeeree e e e ree e ee e see e e ee s e ae e ae s aeeenaean 32
(01T 711 = R X

L0 (1T 1 T X

TRt T V- | [1= o - Tl T 33
5.2 INference Maching ... ettt e e ae s e st e e e se s s e s e r e nen 33
5.2.1 ACLIONS TO NMS ...ttt e ae s sre s e e st e s e e ae s se s sessaesaessnassnssananns 34
5.2.2 Trouble TicKet ACHIONS.....cc.e et e et s e eneeans 37
5.3 Problem DeteCliON ...ceiciieeeceeeerteetee et es e e e s ae s aesae s e e s ae e ae s ne s saessaesnes 39
5.3.1 Filters, tags and MapPPEIS... . ceeceeecceeecee e eree e e e e e e ste e e reeeesaeeeseeeesaseeaaessaens 39
5.3.2 SPeCific CONFIGUIALION....c.ciieeeieeeeee ettt ettt sttt n 40
5.4 Topology State Propagatoreeeceeeeeeeceeeeeeeeeeeeeeeceeeseseeesseesesseesseessssessssessssens 46
5.4.1 Filters, tags and MAPPErS....... e ceeeeeeeeeeeeeete et e e e e e seeeee e e e e s esesseeneenneens 46
5.4.2 SPeCific CONFIGUIAtION....o.eiteieteeeeertetee ettt sttt sa s ae e s 47
LT T 0] ol 1 1= 4 - TSRS 51

(61 1 1] =T RN X

Developing an IMValue PacK......ccccceuceeieeieneieecenecnecencceacenccnecscsssccsscssscsssssess 33

6.1 ECUPSE PLUGINS ..ottt sttt et tesaes e st st s st esessesaes e s e ssnesnesaessasnas 53
6.1.1 Creating @a UCA EBC project in ECLIPS...cccieeeeeeeeereeeeceeeeeee et ee e eeeeeaeees 53
6.1.2 Creating a Problem Detection only Value PackK........c.ccecueeeeevenenverrensennenneecrennennns 54
6.1.3 Creating a Topology State Propagator only Value PacK.........cccceeeeeeeeceveceeeneenen. 56
6.1.4 Creating an Inference Machine Value PackKoocueeeeeeeeeeceeeeeeeceeeeee e 57
6.2 Creating a simple Problem Detection Value Packcoveeeeeeeeeeeeeceeeeeeceecene 57
6.2.1 Analyzing the problems to be detected..........ooeeeeeeeecceeceeeeeeeeee e 57
6.2.2 Identifying the different types of alarms.........cceeveeieeveveereeereceeceeeeeeeeeenens 58
6.2.3 Configuring the Time WINAOWcceeeeeeeeeeeeeeeee ettt 58
6.2.4 Configuring Problem Alarm creation............ceeeeereeereeceeeeeceeceeeeeeeeeseeseeeeeenees 59
6.2.5 Configuring Trouble Ticketing.......cocveeceeeeeeeeceeee e 59
6.2.6 Considering if the default behavior needs to be modified..........cceevveeurrnennn.en. 60
6.2.7 DefiNiNG the FILLEIS ...ooeeeeeeeeeeeeeeeeceeeete et ae e eesesssesaeesseesnens 60
6.2.8 Configuring Value Pack Settingscooeeeeeeeeeeeeee et 62
6.2.9 Configuring SPeCific SELEINGScevveeeeeeeeiereeectee et aeennes 64
6.2.10 Customizing the default behavior for a specific problem.........cccevevveeerrceeneen. 64
6.3 Creating a simple Topology State Propagator Value Pack.........ccceeeevevevncerncenennenn. 65
6.3.1 Analyzing the topology to be used and the propagations to be detected 65
6.3.2 Configuring state cCOMPULAtioNeccveeeeeeereeee ettt 66
6.3.3 Identifying the different types of alarms..........ceecveeeeeeeceereereeceeceeceere e 66
6.3.4 Configuring Trouble TiCKetiNgcceeeceeeeieeeeeeeeeeceee e e e e esaees 67
6.3.5 Considering if the default behavior needs to be modified..........ccceevveeurrvennn.en. 67
6.3.6 DefiNiNG the FIltrS ..ottt tee e e e e ee e aeeeae e e sas e e sne e e seenneenns 67
6.3.7 Configuring Value Pack Settingscceeceeeeeeeeieeeeeeceeeceeeceeeceee e seee e e 71
6.3.8 Configuring SPeCific SEtHINGScccveeeeeieeeeeeee ettt neas 73
6.4 Creating @ Standard IMVP........... ettt teee e e reeeeae e aeeesseseaeeeaesessaeennens 73

[0 1= 7 =T Y | |

Advanced features of Problem DeteCtionccceeeeeeeeeenenereresesesesesesesececncncscsesess 14
7.1 [DL] =101l oY=] o T= 7/ o R 74
7.1.1 [0 1]] L= U SRRN 74

7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7.1.8
7.1.9
7.1.10
7.1.11
7.1.12
7.1.13
7.1.14
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7

7.3.8
7.3.9
7.4

7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7

ALGITMROLECNECK ...ttt et cesreecessseecesne e e sseseessnssesssnnneeas 76

EVENTROLECHECKo ittt sttt see s e e e s saessaesaesnesanans 76
ProblemALarmMCreatioN.......c.ccceeceeeeeceeeeceeete et eeeree e e e e sesese s e e s e eeneens 76
COMMONENEItYCRECK ...ttt eae e eae e 77
LCT o1] 1 o - 1= 79
NetworkStateUpdate.... .ot e e s s e e e ene e 79
OperatorStateUpdate.. ... e 81
ProblemStateUpdate. ..o ettt s s ees 83
At DULEUPAALE. .. et s e e s e e n 84
PeriOICCRECK ...ttt sttt s e e e e s aessnessaesaaesanens 85
AlLArmELgGibilityUPAtec.eeeeeeeeeeeeeee ettt ene e 86
EventEligibilityUpPdate ...ttt ee e ae e aeens 87
LI 1o 3 5 1= T T 1 =T TSR 88
Supported generic events other than alarm types.......ccoeeeceececeeceeeeeceeeeceeeeeee 90
Computing Problem INformation..........cceeeeeeerieereeceeeeeeeeeceeceretee e e e eseenns 90
Problem information computing when Problem Detection is topology-aware..91
Problem information computing in default case (non-topology aware) 91
ProblemXmlConfig schema changesoceeeeeieeieceeceeeeeeeeeeceeee e, 91
PrOBLEMPOLICY oottt eeee e e e se e s e e ae e e e sneesssseessnenns 92
ProblemDefault.computeProblemEntity(Event event)cccceeveevreeeeeruecennnes 92
GeneralBehaviourDefault.computeSourceUniqueld(Event event).............c........ 94
ProblemDefault.computeDbRecords(String dbUniqueldReference, Event
BUENE)..vereeeerereeeeteeteeeseeteteseeseseseesessesssessessesessessesessessesessessesensessasessessesessessesensan 95
ProblemDefault.computeGroupPriority(Event event)..........cccceeeveeereeeeerresenennes 96
ProblemDefault.computeTimeWindow(Event event)cccceceeveeereeeeerresennnnes 97
Customizing default BENAVION.......ccueeeeeeeeeeeeee ettt eae s 97
XML CUSTOMIZATION ..ottt se et st e s sae e s ae e s sne e s sae e sneessnnenns 98
JaVA CUSTOMIZATION......ceiieeeeeeeeeeeeteetee ettt st et et e st se s eessae st e e s sassnaenne 99
My ProblemDefaullceeceeeeeeeeee ettt ae e e e e e aeenns 103
Problems initialization in version 3.2 and latercoceeeeeeecerceeveeeceecceeeenne 104
MyGENEIAIBENAVIONcceeeeeeeeeeee ettt se e aeeae e e eeeaeenns 109
ENFICAMENT ...ttt e e s ae s e e e e e e e aeanne 110
MyGENEralBENAVIONc..eeeeeeeeeeeeeceeeeeee e tee et e e e ree e ae s ee e e e s aeeeneean 113

61 F1 1] (- - JR R i I -

Advanced features of the Topology State Propagator..........cccccceeeueecenncceneee. 116

8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.1.7
8.1.8
8.1.9
8.1.10
8.1.11
8.1.12
8.1.13

The default DERAVION ... sa e s 116
= 0 1]] L= T 116
Propagation INEErfaCeeceeeeeeeeeeeeceeeeeee ettt aeenns 119
EVENE ROLE CRECK ettt s e senenane 119
StatE CratiON ettt e s e nee 119
Service Alarm Creation and Cle@ranCecoeeeerveerreenreenreeereeseesesssesseesseesseens 119
CommMON ENtity CRECKeeeeeeeeeeeeeeeeeceeeeteeetee e ce e e se e e e e s eeesse e s sae e seesennennnes 119
PropagationGroup UPAate......eeceeeceecceeeceeeeeecte et cee s e s e e eaee s 120
Network State Update ...ttt ee e e s eaee s 121
Operator Stat@ UPAAtececueeeeeeeeeeeeeeeeeeee et 122
Alarm AttribULe UPatecoceeeeeeeeeeeeeeceeeteccteecee et e cee s e e ee s ae s ae e s aeeenes 124
Periodic Check and General BEhavior..........coceeeeeeeeceeeeeeeeeeeereee et eeeane 125
Alarm ELigibility Update.......ceeeeeeeeeeeeeeeeeee ettt st s s aeas 126
State ELigibility Update......ccueeeeeeeeeeeeeeeeceee ettt s e enes 127

8.1.14 TroubleTicket UPAAteee ettt e s e s e e s e e e e se e s aesnes 127

8.2 COMPULING STALE ..ottt e e e s e e s e e s e se e e s ae e s e eenes 128

8.3 Customizing the default DENAVIONcocieirirriireiee e 129

8.3.1 Java CUSTOMIZATION...c..coiiiieieceeccete ettt 129

8.3.2 My PropagationDefaultc.eeeeeeeeeeeeeeeeee ettt eans 132

8.3.3 MyGENErAIBENAVION ...ttt neeens 137
01T 711 = RN 139
TroubleShootingceeieeeienieenieeieneieeieneceecneteecceeceenceesesscessesscsssessssssssssnnses 139

9.1 oo [« 1 T SRR 139
ChapPRer 10....c e eeieeieeieeceeceececceccesceseescessessesscssssessessessesssssssssssssssssssessassessass 142
ANNEXES ...cceeeenineeinneiinecnseesnectsnenssecsseesssesssnesssesssessssssssessssessssssssssssssssssssnes 142
ANNEX A ..ceeeeieeiieeeineeiteectneetseessnectseesssectsecsssessseesssesssassssessssssssssssnsssssssnes 143
Migration StEPS....cccceuieeieeiencieucenteetencteacencteesesctssscasssescsssssssssssssssssssssssssnses 143
ANNEX B. cooceeiiireeiineeitneeieneeeseneenseseecseseecsesaecssssecssssesssssesssssesssssesssssasssssnnses 148
Problem Detection Value Pack eXamplecccceeceeceecneneeccneceeccneceecceecenscnencnes 148
ANNEX €. coeeeiirnneiiineneieneeeneseeeseseecneseecseseecssssessassesssssesssssesssssesssssesssssssssssnnses 157
Problem Detection Advanced customizationcccccceeemmeeenicnnnneecicnnnnnnennes 157
ANNEX D...coeerreiiniiineiiineinnesnncisnessncsssessnncsssnsssessssessssessssssssssssssssssssssssssssss 168
Problem Detection Value Pack example with Events only......cccccceeeeeecenncnennee 168
1T G U 169
Topology State Propagator Value Pack examplecccccceeeceeenecneccneceeccnecnenes 169
1T U 170
Topology State Propagator Advanced customization.........cccceeeceeeeeeceencneccaee. 170
ANNEX Q. .c.ooeeeenineeiieeitneeineetnectsecnsnecnseessaesssacssncsssncssassssesssscsssssssassssssssnsssnes 171
Inference Machine Value Pack eXample.......c.cceeeeeneeencenncencncenncececeneccnnncennes 17

Table T - SOFEWArE VEISIONSccceeeecreeeeereccertetesee et s e s e sesstesae s e s e s e s e s e st esaessessessessneseaseessessessnnns 10
Table 2 - Alarm state propagation from Problem Alarm to Sub-Alarmsccceeeevrecrecercereeeeeeee, 30
Table 3 - Alarm state propagation from Sub-Alarms to Problem Alarmcccvemeercireereeeeeeeee 30
Table 4 - IM actions CONFIGUIALIONccueeeuieeeeeeeeeeeeeeeeeeeeteeeteeeeeeeeseeeseeseeaeesaeeaeesseesseeseessesssesssensenns 34
Table 5 - IM action CONFIGUIALIONcecveeeieeeeeeeeeeeeeeeeeete et eeeeee e e seesseeaeesaeesaeeseeesseeseensesnsasssenseens 35
Table 6 — Specific optional IM action configuration for HP TEMIPc.eoeeeeeeceeeeeeceeceeee e 36
Table 7 — Specific optional IM action configuration for DBi...........cocueeieeeeeeereeeeeeeeeeeeeeee e eeeseens 37
Table 8 —IM troubleTicketActions CONfIGQUIAtioN........c.ceceeeeeeeeeeeeeeeeeeceeeeeeee e eeseeeaeeeeeeeeseens 37
Table 9 —IM troubleTicketAction CONFIGUIAtIONccceouieieieirieteee ettt ettt sne e 38
Table 10 — Specific optional IM troubleTicketAction configuration for HP TeMIP...........ccceeerveeneennen. 38
Table 11 —Tags for possible roles of an event Within PD..........c.ooveeieeieeeeeeeeceeeeceeceeee e 39
Table 12 —Tags for possible roles of an alarm Within PDc.oooveieeeeeeeeeeeeeeee e, 39
Table 13 — PD MaiNPOLICY @ttriDULES........cceeeeeeeeeeeeececceeeteceee et teeeste e see e seesesae e sse s sseessesessesnnes 40
Table 14 — problemPolicy @ttriDULES ...ttt e e e e s e e e se e s aeenes 42
Table 15 — PD problemAlarm per-problem configuration............coceeveeeeeeereereeereeeeeeeceeee s 43
Table 16 —PD troubleTicket “per-problem” configurationcceeeeeeeeeeceeceeeeece e, 43
Table 17 — PD computeProblemEntityFromFields “per-problem” configuration........cccccceeeueerenennene. 45
Table 18 — PD timeWindow “per-problem” configuration..........ccccceeveeieeeereereeerieeeeeeeee e eeeeeeeseens 45
Table 19 —PD customized “per-problem” configurationceeceeeeeeeeeeceeceeceeee e 46
Table 20 —Tags for possible roles of an alarm Within TSP........c..ooeeieeeeceeeeeeee e 46
Table 21 — TSP MaiNPOliCy @ttriDULESeeeeeeeeeeeeee ettt et s ee e s e e se e s sneenes 47
Table 22 — TSP serviceAlarm per-propagation configuration..........eceeveeeeeeereeereeereeereeeeeceeeeeeeeeseens 48
Table 23 — TSP troubleTicket “per-propagation” configurationccceeeeeeeeeeceecceecceececeeeee e, 49
Table 24 — TSP customized “per-propagation” configurationc.ceeceeeveveeereeereeereeereeeeeeeeeeeeeeeseens 51
Table 25 — PD: Possible roles for an alarmccceeeeeececeeeeteee ettt e e e s e e saessessenns 62
Table 26 — TSP: Possible roles for an @larm ...ttt s eae e eneens 71
Table 27 - Trigger alarm group priority @XaAMPLEccceceeeeeeeeeeeereeeeeeeeeeeeeeseeeseeeeeeseeesesesesseesanseens 96
Table 28 - Trigger event group priority @XaAMPLecceeeceeeceeeeeeeeeceee e e eeeeee s ee s ee s aeenes 97
Table 29 - Deprecated APISINTM 3.3 ... et teee e s teeeee s ee e ee s e saeeeeesesseeessesessesessesesanennsenn 143
Table 30 - Deprecated APISIN PD 3.2..... . eeieeeeecieeteeeeteeesteeeseeeeseeesssesesseesssesessessssesessessssesssssessses 144
Table 31 -Javaclasses removedinPD 3.3o et s e s e e e s ae e saeenes 145
Table 32 - ProblemDefault method changes iNPD 3.3ooiieeeeeeeeeeceecreecereeeeeeeeeeeee e e esseenns 145
Table 33 - ActionsFactory method changes iNnPD 3.3 ...ttt eae s 146
Table 34 - TroubleTicket method changes inPD 3.3........o ettt ene s 146
Table 35 - Overrides provided for pd-example problems...........ceveeeeeeiecieereeereeeeeeee e eaeenns 150
Table 36 - EXaMPLe Problem KQYS ... e cieeieeeeeeeeeetee e see e e cteeetesteeeesseesseesssesesseesaesssessesssssnsennns 159
Table 37 - Problem key grouping @XamPLe T......eeceeeeeeeeeieeeeeeeeeteeteeeeeeeeeeseeeeseesaeesaeeseeeeessesseanns 159
Table 38 - Problem key grouping @XampPle 2.........ecuieeeieeeieeeieeeeeeeeeeete e seeeeseeseeeseeeseseeseaeeesaeeeseens 160
Table 39 - Problem key grouping @XampPle 3.........oieeeieeeeeeeieeeeeeeeeeeeeseseeeeeeseeeseseesesseeessesesssenssens 160

Figure 1 - Inference Machine Value Pack (RCA-SIA PAttern).......cccceeeeeeeeeeeeereeceeesee e e ceeeseens 13
FIGUre 2 = RCA-SIA PAOIN.....ceeeeeeeeeeeeeeetete ettt et ete st et e teesee e esa e s e ss et essassaesessaessessensensansensansen 17
Figure 3 - Notation CONVENTIONSoo ittt st et e st et e e e e e seneeene 18
Figure 4 - Group (Propagation Group): position of EVENTSc.ccceeeeeeeeceeececeeeeeecee et 19
Figure 5 - Group already created: @XAMPLEeeieeeeieeceeccreeceee et e e e e e ese e s ere e e se e s s s eseseesesaesnnes 19
Figure 6 - Propagation Group already created: @Xample ..o eeceeereerceeeeeceecee et 19
Figure 7 - Group to be created: EXaAMPLE ... ettt e e s e e e ae e s e e e ae e s saeenes 20
Figure 8 - Propagation Group to be created is EMPLYcceecceeeeeeeceeeceeeceee e e aeenes 20
Figure 9 — Inference Maching OVEIVIEW........ccceveeeeeuieieirtrtet ettt ettt et essesae e s s e e e et et esnessasnas 24
Figure 10 — Problem Detection Solution archit@CtUreccocceeeeeueeieieninrerreeeeeeeeeeee et 25
Figure 11 — Topology State Propagator solution archit@CtUre..........eeeeeeeceeeceeeceeeceeeceee e ceeens 26
Figure 12 - Explanation of the candidateVisibilityTimeMode=MaX..........ccceeereerrrrrerrcerrreceeerereeeeeenns 41
Figure 13 - IM Orchestra configuration XamPLecocceirirrirreirenenrentreeeeeeereseee et sse e sesnes 52
Figure 14 - How to create @ UCA EBC project in EClIPSE c.euueeeeieeeeeeeeeeeeeee ettt eeenes 53
Figure 15— Create PD only Valu@ PACKoo ettt ettt e s eee e e e e e saeesss e s saeesseesesnennnes 54
Figure 16 - Files to edit to configure MyFirstProblemDetectionValuePacKcccecevververververceenennennes 55
Figure 17 — Create TSP 0nly Valug PacK.........ccocveeeeeiririnirieteeeeiescese st eseessesses e sses e s e seessessessesnas 56
Figure 18 — Create IMVAlUB PACK ... ettt tee e e cte e sae e s sa e e e e s sae e ss e s sa e e seasesnennnes 57
Figure 19 - Time Window illUSTIatioNcocceviieieeeeieieertrtrt ettt eer s s st e e saesne s snas 59
Figure 20 - Alarm clearance sequence diagram eXamMPLEccceeeeeererrerrerrtrreesreressesesseeseeseessessessesnes 75
Figure 21 —PD Alarm clearance example: PD group updates StepTcceeeeceecieeeceeeceerceeeceeeeeeens 75
Figure 22 - PD Alarm clearance example: PD group updates Step2ecceeeeeeeeeereeeeceerceeeceeeeeeens 76
Figure 23 - computeProblemENntity (EVENT @VENT)........cocveeveeerereeereeeeereceeeereceee s eee s seseeseenesnenenns 78
Figure 24 - computeProblemEntity (Alarm alarm)ccceeeeeeeeeeirieeeeeeceeecte et eseas 79
Figure 25 - Alarm network Stat@ ChangESo.eeeeeieeceeeceeeeeeeeereeee e e e eeeesse e s see e se e s e s e s seesesaennnes 80
Figure 26 - Alarm operator State CANGES..........ovecieeieceeeeeeeeeee et et e e e seesaeesae e e seenanenns 83
FIgure 27 = PeriodiC CRECKSc.veeeeeeeeeeeeeeeeee e tectee e cteeeeeee e e se s seeae s s e s s esse e se e sassensaensaesssansennns 85
Figure 28 - Alarm eligibility UPAAte ..ottt ree e e e e s sa e e se e s sa e s seesesnennnes 86
Figure 29 - Event eligibility UPat@.......e oottt e e e se e s sa e s ne e s sneenes 87
Figure 30 - Tags handling for computeProbleMENIty()c.ceeveeeeeeeereeeeereeerereeeeeceeeenereeeneeeeseenenne 88
Figure 31 - Tags handling for computeGroupPriority(EVENt)........cceeeeeeeeeeeeieeeeceeieeee et 89
Figure 32 - Tags handling for computeTimeWindoW(EVENt).........ccceeveieeeeeeeeeeeeeeieeee e eee e e eeenns 90
Figure 33 - One problem specific CUSTOMIZAtIONcceeeeeeeeeeeeeeeee e 99
Figure 34 - Consolidation of alarm's qUALIfIErS..........cveeeeeeeceeceeeeee e 103
Figure 35 - MyProblemDefault: a customization for a group of problems...........ccccceevveeceecrecerenennee. 104
Figure 36 — PD MyGeneralBehavior name matchingcceceeeeeieeceeeceecceeceececeee e 109
Figure 37 — TSP MyGeneralBehavior name matching...........cceeeeeieeieeereecieeeeeceeceee et 114
Figure 38 - Alarm termination sequence diagram eXample........cecceeeeeeecieeceeecreecee e reeeeaeeans 117
Figure 39 - Topology Of the @XAMPLe........eeeceeeeeeeceeeeeeeeeetee e ctee e rtr e e sae e e saeeesaeeessessseeessnansseenns 117
Figure 40 - TSP: Alarm termination example: TSP group updates StepTccccveeceeeceeeceecceeecneenne 118
Figure 41 - TSP: Alarm termination example: TSP group updates Step2ccccceeeeeeceerceecceeecnennne 118
Figure 42 - Alarm networks state Change flOWcceeeeeeeeieeeeecreeeee et eee e er e e sae e saeeese e 121
Figure 43 - Alarm operator state Change flOWcceeeeeeieceeceeeeeecre et neas 123
Figure 44 - Periodic check and general DENQVION...........oo ittt 125
Figure 45 - Alarm eligibility UPAAteecceeeeeeeeeeeeeeeeeeeeeete et eete e eeeesaeeesaeeesseeessessseeessansnnanns 126
Figure 46 - State eligibility UPAAte ..ottt et e e e e sae e e ae e e saeeeseessaeeesseansneenns 127
Figure 47 — One propagation specific CUStOMIZAtIONcceeeeeeeeeieeeeeeeceeceece e 130
Figure 48 - MyPropagationDefault: a customization for a group of propagations..............cccueun.e.... 133
Figure 49 — TSP MyGeneralBehavior name matching..........occueeeeeeeeeeeeereeeeeeeeee et 137
Figure 50 - Selecting the XSLT transformation fileeceeeeeeeeceeereeereeceeceeceetee e 147
Figure 51 — pd-example src/main/java directory CONLENESouevevereeeeverereerereeerereeereeesereseesenne 149
Figure 52 - pd-example src/test/java directory CONENLScceeeeeeeeeeeceeeeeeeee ettt ne e 151
Figure 53 - pd-example src/main/resources directory CoNtents..........cccceeeeeeeeeeeeeeeereeeeeeereeeeeeeeenenes 153
Figure 54 - pd-example src/test/resources directory CoNtents........cccceeeeeeeeeceeeeeeceerereeceereseeceereneenes 154
Figure 55 - Implementation schema of the main Problem Detection interfaces.......cccceceeeeeeveeneenen. 158

Preface

This guide describes how to use the HP Unified Correlation Analyzer (HP UCA for
EBC Inference Machine solution.

Product name: UCA for EBC Inference Machine embeds two licensed products:
UCA EBC Problem Detection and UCA EBC Topology State Propagator.
Product version: 3.3

Kit version: V3.3

Intended audience

This guide is primarily for developers (HP customers or HP consultants) who want
to understand an HP UCA for EBC Inference Machine Value Pack containing Problem
Detection and Topology State Propagator scenarios.

This document can be also interesting for anyone who want to know more about
Inference Machine features.

Prerequisites

It is highly recommended to have some basic knowledge of HP UCA for EBC before
reading this document.

The reader is advised to consult Chapter 1 and Chapter 2 of “HP UCA for Event
Based Correlation — Reference Guide” and “HP UCA for Event Based Correlation —
Value Pack Development Guide”.

Typographical conventions
Courier font:
e Source code and examples of file contents
¢ Commands that you enter on the screen
e Path names
e Keyboard key names
Italic text:
e File names, programs, and parameters
o The names of other documents referenced in this manual
Bold text:

e Tointroduce new terms and to emphasize important words

Associated documents

The following documents contain useful reference information:

References
[R1] Unified Correlation Analyzer for Event Based Correlation Reference Guide

[R2] Unified Correlation Analyzer for Event Based Correlation Value Pack
Development Guide

[R3] Unified Correlation Analyzer for Event Based Correlation Installation Guide
[R4] Unified Correlation Analyzer for Event Based Correlation User Interface Guide
[R5] Unified Correlation Analyzer — Clustering and HA Guide

[R6] UCA for EBC Inference Machine — JavaDoc
(%UCA_EBC_DEV_HOME%\apidoc\inference-machine\index.html)

[R7] UCA for EBC - JavaDoc
(%UCA_EBC_DEV_HOME%\apidoc\uca-ebc\index.html)

[R8] Unified Correlation Analyzer for Event Based Correlation Inference Machine
Installation Guide

[R9] Unified Correlation Analyzer for Event Based Correlation Topology Extension
Guide

[R10] HP Unified 0SS Console Version 1.2.0 — User Guide
[R11] UCA for EBC Administration, Configuration and Troubleshooting Guide

[R12] Unified Correlation Analyzer for EBC Inference Machine Release Notes

Software versions

Support

The term UNIX is used as a generic reference to the operating system, unless
otherwise specified.

The software versions referred to in this document are as follows:

Product version Supported operating systems

e HP-UX11.31 for Itanium

e Red Hat Enterprise Linux Server,
64 bits, Release 5.9-5.11, 6.4-6.6,
7.0-7.1

UCA for Event Based Correlation
Server, version 3.3

e HP-UX11.31 for Itanium

e Red Hat Enterprise Linux Server,
64 bits, Release 5.9-5.11, 6.4-6.6,
7.0-7.1

UCA for Event Based Correlation
Channel Adapter, version 3.3

e Windows 7 64 bits

e Red Hat Enterprise Linux Server,
64 bits, Release 5.9-5.11, 6.4-6.6,
7.0-7.1

UCA for Event Based Correlation
Software Development Kit, version
3.3

e Windows 7 64 bits

e RedHat Enterprise Linux Server,
64 bits, Release 5.9-5.11, 6.4-6.6,
7.0-7.1

UCA for Event Based Correlation
Inference Machine Kit, version 3.3

Table 1 - Software versions

Visit the HP Software Support Online website at https://softwaresupport.hp.com/
for contact information, and for details about HP software products, services, and
support.

10

https://softwaresupport.hp.com/

The software support area of the website includes the following:

Downloadable documentation
Troubleshooting information
Patches and updates

Problem reporting

Training information

Support program information

11

Chapter1

Inference Machine: a quick tour

1.1 Context

HP UCA for EBC is an expert system, which provides an embedded Inference Engine
that end-users can complement with their own knowledge base of rules to execute.

HP UCA EBC Inference Machine is a framework based on top of HP UCA for EBC to
deliver high-value Value Packs with an embedded knowledge base where end-
users do not need to write rules.

An Inference Machine Value Pack is at a first glance very generic but is highly
configurable to fit most of end-user needs.

The Inference Machine Development Kit is aimed at building an HP UCA for EBC
Value Pack for the Root Cause Analysis or Service Impact Analysis pattern for all
kinds of network elements.

1.2 Naming disambiguation

The term “Inference Machine” has different meanings in different contexts. It can
refer to:

e Inference Machine Development Kit (IM SDK):
The Eclipse environment (including plug-ins) to develop an Inference
Machine Value Pack. The Inference Machine Development Kit is an addition
to the HP UCA EBC Development Kit.

e Inference Machine Value Pack (IM VP):
An HP UCA EBC Value Pack built using the Inference Machine Development
Kit, including its libraries.

The term “Problem Detection” has different meanings in different contexts. It can
refer to:

e Problem Detection framework (PD framework):
The set of libraries, rules, and configuration files used to develop and run a
Problem Detection Value Pack. This framework is delivered as part of the
HP UCA EBC Inference Machine Development Kit and can be packaged into
any Problem Detection Value Pack.

e Problem Detection Value Pack (PD VP):
An Inference Machine Value Pack using only the Problem Detection
framework.

The term “Topology State Propagator” has different meanings in different
contexts. It can refer to:

e Topology State Propagator framework (TSP framework):
The set of libraries, rules, and configuration files used to develop and run a

12

Topology State Propagator Value Pack. This framework is delivered as
part of the HP UCA EBC Inference Machine Development Kit and can be
packaged into any Topology State Propagator Value Pack.

e Topology State Propagator Value Pack (TSP VP):
An Inference Machine Value Pack using only the Topology State
Propagator framework.

1.3 Basic concepts

1.3.1 Inference Machine

Root Cause Analysis (RCA) is employed to determine the network element that
caused the failure as opposed to the network element(s) merely reacting to the
failure.

Service Impact Analysis (SIA) is used to determine the impact of such a failure,
either on the physical components themselves or on logical services, generally in
order to understand the impact on a service contract.

In most cases, a correlation engine is needed to provide root cause and/or service
impact analysis.

Within the HP UCA EBC family:
e RCAis covered by the Problem Detection (PD) product.
e SlAis covered by the Topology State Propagator (TSP) product.

The conjunction of both RCA and SIA is called the Inference Machine (IM). An IM
Value Pack follows the RCA-SIA pattern as shown in

e Figure 1.
/ UCA-EBC Server \
 state
subalarm |
UCA-EBCTSP
Scenario
ProblemAlarm ProblemAlarm
alarm “ “
alarm
A
alarm

\J >

Figure 1 - Inference Machine Value Pack (RCA-SIA pattern)

13

1.3.2 Problem Detection

The goal of Problem Detection (PD) is to analyze a large number of alarms and,
based on a set of conditions, to:

¢ Realize Root Cause Analysis

¢ Identify that a problem has occurred and create a Problem Alarm in order to
summarize the problem

e Group alarms which are correlated into Sub-Alarms of the Problem Alarm

The main concepts to familiarize with when using PD are problem, alarm grouping,
and Root Cause Analysis.

Both PD and TSP are capable of certain automated actions (for example, Trouble
Ticket generation and alarms clearance), as well as cross-domain correlation and
alarms enrichment.

Whereas in TSP, the topology is mandatory, it is optional in PD so it is not discussed
in this section. For details on the topology extension, see the [R9] Unified
Correlation Analyzer for Event Based Correlation Topology Extension Guide.

1.3.2.1 Problem

The primary role of a PD Value Pack is to identify that a failure (problem) has
occurred based on the appearance of a certain alarm set and on the presence of
certain conditions. Then, an operator readable Problem Alarm is generated to
summarize the problem.

1.3.2.2 Problem Alarm

Another base feature of Problem Detection Value Packs is to hide all the Sub-
Alarms under the Problem Alarm in the Network Management System (NMS)
display. This improves the operator’s experience: the most significant alarms stand
out in the foreground, and less important alarms are hidden in the background.
Note that it is assumed that the NMS has the capacity to group alarms.

When a type of failure (problem) occurs in the network on some specific resource
at a specific point in time that is called Tpbin the current context, equipment in the
neighborhood of that resource usually generate several alarms in a time window
around Tpb.

Problem Detection aims at:

e Detecting such a set of symptom alarms, and identifying the problem that
the alarms reveal

e Generating a Problem Alarm that identifies and summarizes the problem,
and is readable by the operator

e Grouping symptom alarms (Sub-Alarms) under the Problem Alarm
Such a Problem Alarm generally aggregates:

e Alarms related to network resources in the neighborhood of the network
resource(s) that is the source of the problem (same Managed Object, entity
hierarchy, or network location)

¢ Alarms which occurred within a specific time window around Tpb

The Problem Alarm is the main alarm handled by operators. Additionally, the
Problem Alarm manages the life cycle of the Sub-Alarms grouped under it, with
regards to:

e State policy (acknowledgement, termination)

14

e (learance policy
e Severity
A PD Group describes a problem and contains important information on:
e The Problem Alarm
e The Sub-Alarms of the Problem Alarms (Sub Service Alarms)
¢ Candidate Alarm, Trigger Alarm, and Orphan Alarms

Since V3.2 the same applies for event, therefore, in a Group, we can have Candidate
Events and Trigger Events.

Trouble Ticket generation can be automated so that each Problem Alarm (including
its Sub-Alarms) is handled by just one Trouble Ticket (TT) on the Trouble Ticketing
system.

1.3.3 Topology State Propagator

The goal of Topology State Propagator (TSP) is to analyze Root Cause Alarms
(usually Problem Alarms grouped by Problem Detection) in order to:

¢ Realize Service Impact Analysis with multi-layer network elements

¢ Identify propagations and mark each of them by creating a State that
represents the propagation and, optionally, by creating a “Service Alarm”
in a NMS, in order to identify the impacted propagation

e Group alarms which are correlated into Sub-Alarms of the Service Alarms

The main concepts to familiarize with when using Topology State Propagator are
propagation, alarm grouping, and Service Impact Analysis.

As PD, TSP is also capable of certain automated actions (for example, Trouble
Ticket generation and Alarms clearance), as well as cross-domain correlation and
alarms enrichment.

Whereas in PD, the topology is optional, it is mandatory in TSP. So the right to use
the HP UCA EBC topology extension has to be checked before implementing a TSP
use-case.

In a standard way, one TSP scenario is associated with a specific domain (which can
be physical or logical).
1.3.3.1 Propagation and state

Propagation in TSP is equivalent to the notion of Problem in PD. Propagation
defines an impact on a specific service. The impact is characterized by a state of
that service.

Propagation can be triggered by either:
e ARoot Cause Event (usually a Problem Alarm coming from PD)

e Another state generated by TSP (for example, a state generated for a sub-
service).

The propagation is responsible for creating the state and optionally storing it into a
DB, which is possible due to the HP UCA EBC V3.1 DB persistence and DB forwarder
features.

Multiple propagations can be defined through the filters file, each top Filter
representing one specific propagation.

15

1.3.3.2 Topology Point of Interest (P0OI)

The Topology POl is an information utility feature introduced in HP UCA EBC V3.1. It
is used in the UCA GUI graph-display tool to track events in the topology tree in
real-time. TSP can create POI on a specific node or on a specific relation and is
responsible for clearing it if necessary.

1.3.3.3 Service Alarm

Whereas in PD the presence of certain events and conditions is necessary for the
creation of a Problem Alarm summarizing the problem, in TSP, the creation of a
Service Alarm summarizing the propagation is optional and is based on the
presence of certain Root Cause Alarms or states.

The Service Alarm is an alarm that can be created by TSP in a Network Management
System (NMS), in order to identify the impacted propagation. It follows the same
concerns as the Problem Alarm used in PD.

As PD manages the Problem Alarm, a similar mechanism is implemented in TSP
when the Service Alarm feature is enabled. TSP can hide all the Sub-Alarms in the
NMS display under the Service Alarm. This improves the operator’s experience: the
most significant alarms stand out in the foreground, and less important alarms are
hidden in the background.

A TSP Propagation Group describes a propagation and contains important
information on:

The state

The impacting State List

The Root Cause Alarms

The whole Sub Tree of Root Cause Alarms (optional)

The Service Alarm (optional)The Sub-Alarms of the Service Alarm (Sub
Service Alarms) (optional)

1.4 Licensing

Inference Machine is a term for two licensed products: UCA EBC Problem Detection
and UCA EBC Topology State Propagator.

16

Chapter 2

General features

2.1 Root Cause and Service Impact Analysis

When a type of failure occurs in the network on some specific resource at a specific
point in time that is called Tpbin the current context, equipment in the
neighborhood of that resource usually generate several alarms in a time window
around Tpb.

Hence, from those alarms emitted, there is a need to:

- Detect what the problem is behind the failure and summarize it to an operator.
This is performed by the Problem Detection (PD) scenario.

- Eventually deduce from the topology of the network what services are impacted
by such a failure and summarize them to an operator. This is performed by the
Topology State Propagator (TSP) scenario.

Both scenarios run within HP UCA EBC Server as an Inference Machine Value Pack.

Topology State Propagator Scenario

Service Alarm

Root Cause Alarm

Objective: Service Impact Analysis

Problem Detection Scenario

Problem
Alarm

Objective: Root Cause Analysis

Figure 2 - RCA-SIA Pattern

When the same Network Management System (NMS) is used to handle Problem
Alarms (generated by PD) and Service Alarms (generated by TSP), the alarms can be
grouped together by the Inference Machine Value Pack, so that the operator is able
to navigate from one to the other using, for instance, the HP Unified 0SS Console.
For more details, see the [R10] HP Unified 0SS Console Version 1.2.0 — User Guide.

17

2.2 Event grouping

Both with Problem Detection (PD) and with Topology State Propagator (TSP), a
base feature of the Inference Machine Value Packs is that event grouping is
possible under a summarized alarm which represents the group Problem Alarm for
PD and Service Alarm for TSP, detailed in 1.3.2.2 and 1.3.3.3. As for TSP, the Service
Alarm is optional because the grouping is internally represented by the state in
TSP.

For PD, problem grouping generates the creation of Groups. The same principle is
valid for TSP, where propagation grouping generates the creation of Propagation
Groups.

Several schemas and diagrams describe the event grouping concepts in this
document. Figure 3 shows the notations that are used

O Alarm
I:I State

A Event (other than Alarm or State)

Group (PropagationGroup) already created

Figure 3 - Notation conventions
Depending on their position in the Group and Propagation Group:

e Astate can be the state representing the Propagation Group or an impacting
state of it.

e Analarm can be the Problem Alarm of a Group, the Service Alarm of a
Propagation Group, or a Sub-Alarm in the case of Group and Propagation
Group, and a Root Cause Alarm in the case of a Propagation Group.

e Anevent can be a Trigger Event or a Sub-Event of a Group.

These concepts are explained in the following figures.

18

77‘ On the upper side are the Events summarizing
— the information contained in it
| Can be :
; + ProblemAlarm (Group)
* State and ServiceAlarm (PropagationGroup)

ST L

3 On the lower side are the Events which contribute

x to the correlation in it

Can be :

+ TriggerAlarm, SubAlarm (Gr)

* RootCauseAlarm, SubAlarm, ImpactingState (PropGr)

On the ‘nghtswle are the Alarms on which Actions
can be executed. They represent the Group (PropagationGroup) externally.

On the left side are the Events which contribute to the correlation in the Group (PropagationGroup) ,
but which are needed only internally and no Actions can be executed on them.

Can be TriggerEvents, SubEvents (Gr), State and ImpactingStates (PropGr).

Figure 4 - Group (Propagation Group): position of Events

__ Problem Alarm

> Sub Alarms

Trigger Alarm

0

Sub Events <=<)A
hpd

| e—p

Figure 5 - Group already created: example

T = ™ % | :
Smte#::ﬁ 1:| \ O = Service Alarm

?El > RootCause Alarms
Impacting States "‘D j

[Sub Alarm

Figure 6 - Propagation Group already created: example
Depending on whether the Group is created or not:
e Analarm can be a Candidate Alarm of a Group
e An event can be a Candidate Event of a Group.

Figure 7 shows an example of a Group to be created and its events and alarms
which will contribute to the correlation in the group, set for the moment as
Candidate.

19

Candidate Alarms

Figure 7 - Group to be created: example

In comparison with the Group, in the Propagation Group, there is no notion of
Candidate Event or Candidate Alarm. Therefore, the Propagation Group to be
created is empty. As soon as the creation of a propagation group is set questioned
by the framework, its state is computed and the Propagation Group is created. So
the notation of the Propagation Group to be created is empty.

Figure 8 - Propagation Group to be created is empty

In brief:

- The PD scenario can hide all the Sub-Alarms in the Network Management
System (NMS) display under the Problem Alarm.
Since V3.2, PD is also able to group events (not necessarily alarms).For more
details, see Annex D.

- The TSP scenario can aggregate state and/or Root Cause Alarms that impact the
same service under the same group.
TSP is able to group Root Cause Alarms in the Network Management System
(NMS) display under a single Service Alarm, if the same NMS is used.

Hence, this improves the operator’s experience: the most significant alarms stand
out in the foreground, and less important alarms are hidden in the background.

Users can navigate from Root Cause view to Service view in their console of choice,
for example, in the HP Universal 0SS Console. For more details, see [R10] HP
Unified 0SS Console Version 1.2.0 — User Guide.

20

2.3 Lifecycle

Both the PD and TSP frameworks packed in the IM come with default alarm and
events life cycle, as well as with a default behavior.

In case the default behavior needs to be enhanced, the Value Pack developer can
write the custom code in overridable methods or through configuration when
available.

The appropriate overridable methods are called depending on the life cycle of the
alarm, state, or other event and depending on the Problem or Propagation
contexts.

Both PD and TSP frameworks automatically invoke the methods
whatToDoWhenXXX(...), at specific times of the life cycle of every alarm, state, or
other event.

2.4 Automatic actions

Besides noticing and reporting problems, and grouping events, Inference Machine
scenarios can execute other automatic actions with respect to the life cycle of
alarms (alarm state propagation from Problem or Service Alarm to Sub-Alarms and
the other way round) and with respect to Trouble Tickets (creation and
propagation).

The automated actions, common to PD and TSP, are done using the Actions Factory
detailed in 2.5 Automatic Trouble Ticketing.

2.5 Automatic Trouble Ticketing

Trouble Ticket generation can be automated so that each Correlation Alarm
(Problem or Service) can be handled by just one Trouble Ticket (TT) on the Trouble
Ticketing system.

This can be done independently or simultaneously on the following two scenarios:

- OnProblem Detection (PD) to associate a Problem Alarm and its Sub-Alarms to
asingle TT

- OnTopology State Propagator (TSP) to associate a Service Alarm and its Root
Cause Alarms (coming from Problem Detection) or Sub Service Alarms to a
single TT

2.6 Cross domain correlation

PD scenarios, as all HP UCA for EBC Value Packs, are able to process alarms coming
from various Network Management Systems (NMS) through the mediation layer.
The same applies to TSP scenarios, which by providing the Service Impact Analysis
(SIA) function complete the RCA-SIA pattern in the IM. Therefore, the standard IM
Value Pack contains one PD scenario which usually sends its grouped Problem
Alarms to the TSP scenario.

Without developers having to write any Java code, both PD and TSP frameworks
are able to send actions to HP TeMIP, and are able to interact with the HP Service
Manager Trouble Ticketing system through HP TeMIP.

21

Because HP UCA EBC has been designed as an independent platform, it is capable of
receiving alarms and sending actions to other third-party Network Management
Systems and Trouble Ticketing or Incident Management Systems. This applies to
the PD and TSP frameworks too because they are layered on top of the HP UCA EBC
framework in the IM package.

PD and TSP in IM offer an open API available to support:
e Any Network Management System (in addition to HP TeMIP)
e Any Trouble Ticketing System (in addition to HP Service Manager)

The support of additional Network Management Systems and Trouble Ticketing
Systems are done through the new Unified Mediation Bus (UMB) introduced in UCA
for UBC version 3.3 or through the HP 0SS Open Mediation.

Following is an example of a PD use case where cross correlation can be useful:

Consider a situation where all the alarms concerning a GSM network of a telecom
company in country 1 are managed with Network Management System A and the
alarms concerning a fixed network of the same telecom company in country 2 are
managed with Network Management System B.

If the call services from country 1 to country 2 are not working anymore, a well
configured Problem Detection Value Pack is able to correlate alarms from Network
Management System A with alarms from Network Management System B.

2.7 Event enrichment

If some of the alarms received from the Network Management System (NMS) do
not contain enough information to be correlated, both the PD and TSP frameworks
offer two pre-formatted ways to get additional data:

¢ A synchronous way to extract data from an XML file

¢ Anasynchronous way to get data, through the execution of an action
(through standard actions that can be customized)

In addition, it is possible to write Java code doing any synchronous or asynchronous
request (database access, file access, HTTP request, and so on).

2.8 Performance

Compared to a standard HP UCA for EBC Value Pack developed to perform
correlation, an Inference Machine Value Pack is likely to perform significantly
better. The reason is that the Inference Machine framework uses optimization
based on several hash maps, which allows processing of subsets of relevant alarms
rather than blindly feeding the rules engine with whole sets of alarms.

The performance of Problem Detection Value Packs in terms of processing time is
close to being a linear function of the number of alarms, whereas in the case of
standard HP UCA for EBC Value Packs (performing the same type of correlation) the
processing times are likely to be a quadratic function of the number of alarms.

2.9 Robustness

One of the greatest advantages of the Inference Machine is its robustness.

ALLPD or TSP Value Packs use the fixed set of rules provided by the PD and TSP
frameworks, respectively. This fixed set of rules has been extensively tested to
ensure good performance and a sound behavior (that is, predictable results).

22

The developer of either an IM (PD + TSP) Value Pack, or of just a PD or TSP Value
Pack neither has to worry about the rules nor the performance of the Value Pack.

However, an important size of memory for the JVM must be foreseen, depending on
the numbers of resident alarms in the Working Memory.

2.10 Ease of use

The steps to create a PD or TSP Value Pack are simple and short.

If you are satisfied with the default behavior of PD or TSP scenarios, the creation of
an IM Value Pack does not require any Java coding or rule writing. It only requires
modifying some XML configuration files.

2.11 Simulation

Through a simple process, it is possible to check the correctness of an Inference
Machine Value Pack before actually building and deploying it.

Developing an Inference Machine Value Pack does not involve writing correlation
rules. Nevertheless, it is highly recommended to unit test your code prior to kit
generation and deployment.

Another advantage of IM is that it is easy to write and run simple test files,
simulating the injection of alarms to validate that the problems are detected
correctly, and that the behavior of the Value Pack is as expected.

23

Chapter 3

Architecture

3.1 Inference Machine

HP UCA EBC provides a correlation engine based on incoming events but this
capability might not be sufficient for end-users who need a more complete events
analysis solution.

Inference Machine is the cornerstone for achieving this extended capability. It
provides an RCA-SIA pattern that is designed to fit any customer needs. Users of
Inference Machine do not need to write correlation rules, but they need to provide
configuration files and/or some customization of Java classes.

Inference Machine is composed of two scenarios running in an HP UCA EBC server
- Problem Detection (PD) for doing Root Cause Analysis

- Topology State Propagator (TSP) for doing Service Impact Analysis

Raw alarms coming from any source (usually NMS) are handled by PD, which
groups them and generates correlated Root Cause Alarms. The RCAs are forwarded
to TSP which groups them to analyze the impacts of the network topology and to
generate Service Alarms.

Topology State Propagator Scenario

Service Alarm

Root Cause Alarm

Objective: Service Impact Analysis

Problem Detection Scenario

Problem
L. . Alarm
Objective: Root Cause Analysis

Figure 9 - Inference Machine overview

24

3.2 Problem Detection

Alarm
Collector

The diagram below shows a Problem Detection Value Pack (PD VP) deployed on an
HP UCA for EBC Server. Several Network Management Systems are connected to
the HP UCA for EBC Server through a mediation layer.

The PD scenario receives its alarms through the Alarm Collection flow coming from
one or several of the Network Management Systems. It can also receive alarms
directly from other scenarios through the HP UCA EBC Orchestra component.

The Actions (to create Problem Alarms, to group Sub-Alarms under the Problem
Alarm, and so on) use Action Service and are routed and processed by the proper
Network Management System.

Contrary to other HP UCA for EBC Value Packs, a PD scenario does not allow its
developer to modify the set of rules as they are embedded in the PD framework.

However, PD provides a set of Java methods that the developer can use to control
the life cycle of events, the Problem Alarm creation, and so on, within the PD VP.
This is called Customization in Figure 10 — Problem Detection solution architecture.

The filters can, as per any other HP UCA EBC VP, be tuned directly by end-user. For
more details, see [R1] Unified Correlation Analyzer for Event Based Correlation
Reference Guide.

Al
(Problem Detection Scenario \

J Q Dispatcher JQ Action web
D Framework
PD Rules @

1

1

1

1

1

%) service dient i

) ¢ — .
i :
1

1

I

Action ’
Request/Respopge 7

.

anagement Network Management
System Y

Figure 10 - Problem Detection solution architecture

3.3 Topology State Propagator

The diagram below shows a Topology State Propagator Value Pack (TSP VP)
deployed on an HP UCA for EBC Server. Several Network Management Systems are
connected to the HP UCA for EBC Server through a mediation layer.

The TSP scenario receives its alarms directly from other scenarios (for example,
from PD) through HP UCA EBC Orchestra. However, it can also receive alarms

25

through HP UCA EBC Alarm Collection flow coming from one or several of the
Network Management Systems through the mediation layer.

In order to find out what the impacted services are, a topology describing the
network elements (that is, links and nodes) must be defined using HP UCA EBC
Topology Extension.

The Actions (to create Service Alarms, to group Sub-Alarms under the Service
Alarm, and so on) use HP UCA EBC Action Service and are routed to the proper
Network Management System where they will be executed.

Similarly to the PD scenario, a TSP scenario does not allow its developer to modify
the set of rules as they are embedded into TSP framework.

However, The TSP framework provides a set of Java methods that the developer
can use to control the life cycle of specific events (that is, alarms or states), the
Service Alarm creation, and so on. This is called Customization in Figure 11 —
Topology State Propagator solution architecture.

The filters for defining the propagations can be tuned directly by end-users. For
more details, see [R1] Unified Correlation Analyzer for Event Based Correlation
Reference Guide.

I Orchestra (Topology State Propagator Scenario \

: St &
|

] ~ - S

: iy ||y (099 o

1 TSP Framework @
: TSPRules @
:
1
| J

Action web

service dient
=

.

Action ’
Request/Respopge 7

Figure 11 - Topology State Propagator solution architecture

3.4 Acommon library

As PD and TSP have several common needs, a common library is provided, which is
delivering its own namespace.

The common library of the IM (uca-evp-im-common.jar) contains the Actions
Factories, a common life cycle class for state events, as well as several interfaces,
described in the following sections.

26

3.4.1 Actions Factory

Both TSP and PD need to execute actions on NMS (for example, to create alarms or
group alarms). Therefore, the Actions Factory is provided as part of the uca-evp-
im-common.jar common library. The same applies to the access to the database
(DbActionsFactory.class is provided).

The Inference Machine developer can configure and use a single Actions Factory for
both PD and TSP scenarios in the same Value Pack.

As the new Actions Factory has a different namespace, the compatibility is broken
in PD V3.2. PD does not provide any automatic migration tool for the Java files.
However, SDK provides an XLST (eXtensible Stylesheet Language Transformation)
file that can be used to migrate PD configuration files. For more details, see Annex
A

The advantages of the new Actions Factory include:
e The logic of Actions is separated from PD and TSP.

e ltis reusable: the same ActionsFactory or DbActionsFactory can be used
across PD and TSP.

e |tis easier to understand.

3.4.2 Life cycleclass for states and other events

The class
com.hp.uca.expert.vp.common.lifecycle.MixEventsAndStateLifeCycleExtended.class
is added in the uca-evp-im-common.jar common library. This class is an enriched
alarm life cycle class, managing the life cycle of states, alarms, and others events.
Alarms passing just the top filter “ReservedForGeneralBehavior’ are not inserted in
the Working Memory.

For the IM Value Pack, there are two new classes extending this common class:

e com.hp.uca.expert.vp.pd.im.lifecycle.InferenceMachineLifeCycleExtended is
used as the life cycle class for the PS scenario in an Inference Machine
Value Pack. This class handles alarms, events, and states life cycle and it
bypasses Service Alarms received from the network.

e com.hp.uca.expert.vp.tp.im.lifecycle.InferenceMachineLifeCycleExtended is
used as the life cycle for the TSP scenario in an Inference Machine Value
Pack. This class handles alarms, events, and states life cycle.

For an IM VP example, see Annex F.

3.4.3 Interfaces

In the common library, several interfaces are included for:
e Actions and Trouble Ticketing
e Common configurations of a problem or a propagation (Booleans, Longs, Strings)
e Problem and Service Alarm creation and History Navigation
e Topology tags definition in filters of Neo4J Cypher Queries

e General Behavior of a problem or a propagation for common methods to all
propagations or problems

27

Full documentation of methods is available in the IM Javadoc part of the SDK [R6].
Most of above interfaces have a default implementation which is used implicitly by
ProblemDefault or PropagationDefault Java classes.

28

Chapter 4

The IM scenarios explained

Two scenarios are included in the Inference Machine:
- Problem Detection (PD)
- Topology State Propagator (TSP)

4.1 Problem Detection (PD)

4.1.1 Itsrolein brief

In short, Problem Detection (PD) is responsible for Root Cause Analysis.

Problem Detection aims at:
e Detecting a set of symptom alarms from a numerous number of raw
alarms, and identifying the problem that the alarms reveal
e Generating a Problem Alarm that identifies and summarizes the problem,
and is readable by the operator
e Grouping symptom alarms (Sub-Alarms) under the Problem Alarm

Such a Problem Alarm generally aggregates:

- Alarms related to network resources in the neighborhood of the network
resource(s) that is the source of the problem (same Managed Object, entity
hierarchy, or network location)

- Alarms which occurred within a specific time window around Tpb

The Problem Alarm is the main alarm handled by operators. Additionally, the
Problem Alarm manages the life cycle of the Sub-Alarms grouped under it, with
regards to:

e State policy (acknowledgement, termination)

e (learance policy

e Severity

The Network Management System (NMS), which initially displays a constellation of
alarms, is instructed by the PD Value Pack to display only a relevant Problem
Alarm, and to group and hide all correlated Sub-Alarms beneath it. Note that it is
assumed that the NMS has the capacity to group Alarms.

4.1.2 Its main features
The primary role of a Problem Detection (PD) scenario is problem Identification:

e |dentifying that a failure (problem) has occurred based on the appearance of
a certain set of alarm, and on the presence of certain conditions

e Generating an operator readable Problem Alarm that summarizes the
problem

29

4.1.3 Alarm state propagation

Problem Detection offers the following default behaviors.

:\Il‘l::‘ng::::blem HETEEELEL Change Sub-Alarms’ state to

ACKNOWLEDGED ACKNOWLEDGED

NOT_ACKNOWLEDGED NOT_ACKNOWLEDGED

CLEARED Sub-Alarms’ state left unchanged

CLOSED Sub-Alarms’ state left unchanged
TERMINATED (If Sub-Alarm was cleared)

TERMINATED :g:agglfgld?WLEDGED (If Sub-Alarm was
+ “sub-alarms” promoted back to “alarms”
TERMINATED (If Sub-Alarm was cleared)

No longer eligible NOT_ACKNOWLEDGED (If Sub-Alarm was
not cleared)

Table 2 - Alarm state propagation from Problem Alarm to Sub-Alarms

The eligibility of an alarm to be inserted in the Working Memory or to remain in the
Working Memory is determined by the alarm eligibility policy.

The alarm eligibility policy is an expression that evaluates to a Boolean. Below is an
example of an alarm eligibility policy:

NetworkState=="NOT CLEARED" &&
OperatorState!="TERMINATED" &&
ProblemState!="CLOSED"

For more details, see the “alarmEligibilityPolicy” chapter in [R1] Unified Correlation
Analyzer for Event Based Correlation Reference Guide.

When the state of all
Sub-Alarms are changed Change the state of the Problem Alarm to
to

CLEARED CLEARED

No longer eligible CLEARED

Table 3 - Alarm state propagation from Sub-Alarms to Problem Alarm

4.2 Topology State Propagator (TSP)

4.2.1 Itsroleinbrief

In short, Topology State Propagator (TSP) is responsible for Service Impact
Analysis.

30

In the context of TSP:

- Propagation refers to an impact on an element defined in the network topology,
which element is part of multiple assets that usually defines a service.
Similarly, propagation is equivalent to problem in Problem Detection.

- State refers to the status of that impact in the topology. For example, a service
is degraded but can have different levels of degradation (low, medium, high,
and so on)

TSP aims at:

e Detecting from one or more Root Cause Alarms a set of propagations, and
identifying the impacts that the propagations reveal

e Generating a state to identify the status of a particular propagation, given
that a new propagation can also have impacts on new propagations.

e Generating optionally a Service Alarm that identifies and summarizes the
concerned propagation, and is readable by the operator

e Grouping Root Cause Alarms and/or other Service Alarms (as Sub-Alarms)
under the Service Alarm

Such a Service Alarm generally aggregates:

- Problem Alarms that have been previously correlated from alarms coming from
network equipment (coming from Problem Detection)

- States that have an impact on a specific propagation

The Service Alarm can be the main alarm handled by operators. Additionally, the
Service Alarm can also manage the life cycle of the Root Cause Alarms associated
with it (and if handled within the same Network Management System), with regards
to:

e State policy (acknowledgement, termination)

e (learance policy

When a hierarchy of propagations is defined, The Network Management System
(NMS) is instructed by the TSP Value Pack to display only the top Service Alarm, and
to group and hide all sub Service Alarms beneath it. Note that it is assumed that the
NMS has the capacity to group alarm.

4.2.2 Its main features

The primary role of a Topology State Propagator (TSP) scenario is to assess the
propagation impact:

= |dentifying what the impacted services (propagation) are, based on the
appearance of certain Root Cause Alarms (previously correlated as Problem
Alarms by PD) and based on the description of the impacted network (though
Topology API)

= Generating a state defining the status of that impacted service at a given time
Optional features include:

- Creating a Point of Interest (POI) in the Topology in Memory Attribute Manager
that is visible through the Graph display application available in HP UCA EBC Ul
or in HP Unified 0SS Console (For more details, see [R10] HP Unified 0SS
Console Version 1.2.0 — User Guide.)

- Generating a copy of that state into a DB for monitoring the historical changes
for a specific service

- Creating the Service Alarm that summarizes the propagation in another DB or in
the Network Management System (NMS)

31

4.2.3 Alarm state propagation

Topology State Propagator (TSP) offers the exact same services in terms of Alarm
State propagation for Service Alarms that Problem Detection (PD) provides for
Problem Alarms.

32

Chapter5

@ o
Configuration
This chapter covers the configuration of Inference Machine.

5.1 Value Pack

An HP UCA EBC VP is delivered with two configuration files:

e “ValuePackConfiguration.xml” defines the configuration used by any HP UCA
EBC Value Pack.

e “context.xml” defines the spring beans to instantiate within the IM VP.
An IM VP provides these files already configured for running correctly.
The “ValuePackConfiguration.xml” file provided by an IM VP has several sections:

<scenarios> This section should not be modified unless upon an HP
Support request, or in some rare conditions, where, for
example, some periods need to be modified for performance
reasons.

<mediationFlows> These sections may be modified to support different NMSs or
<dbFlows> DBs that must be considered as sources for the IM VP,

The “context.xml” file is closely related to the IM VP code itself. Particularly, it can
contain the following beans:

“problemsFactory’ Present if the PD scenario is defined in the
“ValuePackConfiguration.xml!” file. It should not be
modified.

“propagationsFactory” Present if the TSP scenario is defined in the
“ValuePackConfiguration.xml” file. It should not be
modified.

It may also contain the various beans to define the DB connections and the state
forwarders to use for storing states and/or Service Alarms into a DB, which may be
modified to satisfy your DB connection needs.

For more details on the value pack configuration files, see [R1] Unified Correlation
Analyzer for Event Based Correlation Reference Guide.

5.2 Inference Machine

Actions to NMS and Trouble Ticket Actions are defined specifically in PD and TSP
but the way to configure them is common to PD and TSP within the IM framework.

Therefore, this section describes the common configuration parts that can be used
by any scenario within the IM framework.

It applies to both the ProblemXmlConfig.xml and PropagationXmlConfig.xml files.

33

5.2.1 Actions to NMS

By the default, the IM framework supports two Actions Factories, both of which
come with default alarm directives for handling alarms:

- In HP TeMIP: in that case <actionClass> should be set to
com.hp.uca.expert.vp.common.actions.temip.TeMIPActionsFactory

- InaDB:in that case <actionClass> should be set to
com.hp.uca.expert.vp.common.actions.db.DBActionsFactory

The <actions> element contains the following properties:

Type

Value

defaultActionScriptReference

property

The unique reference that is used in the
rule to define the routing information of
a script-based Action

Action

property

The container for attributes defining the
actions for a set of alarms

Table 4 - IM actions configuration

The <action> element contains the following properties:

Type

Value

Name

attribute

Usually the “sourceldentifier” field of
incoming alarms is matched to this name
to know which actionsFactory to use for
agiven alarm

actionReference

property

The unique reference that is used to get
the routing information of an action. This
actionReference has to be defined in the
Action Registry. The Action Registry is a
configuration file used to define routing
information for all actions processed by
the rules.

actionClass

property

The class implementing the
SupportedAction interface which
describes the methods needed to
support any Action on alarms, for
example, the createAlarm,
terminateAlarm,and clearAlarm
methods.

34

attributeUsedForKeyDuringRecog
nition

property

The Custom Field Name of the alarm that
contains the information to identify that
an Alarm is generated by the IM
framework. In other words, this attribute
defines the name of the field of the
Problem Alarm (or Service Alarm) that PD
(or TSP) has to look at when the alarms
come back from the NMS. PD or TSP uses
this field to find the information needed
to attach the alarm to the right group.
The name of the field is defined in HP
UCA EBC format.

attributeUsedForKeyPbAlarmCrea
tion

property

The Custom Field Name of the alarm that
contains information about the problem.
This attribute defines the name of the
field of the Problem Alarm (or Service
Alarm), in which PD (or TSP) adds useful
information about the problem at the
time of the creation of the alarm., for
example, the name of the Trigger Alarm,
the name of the problem/propagation, or
the name of the problem/propagation
entity.

This information is read by PD or TSP
when the alarm comes back from the
NMS.

The name of the field is defined in NMS
format.

Booleans

Property
(optional)

Multiple booleans for a specific use-case.

Strings

Property
(optional)

Multiple strings for a specific use-case.

Longs

Property
(optional)

Multiple longs for a specific use-case.

Table 5 - IM action configuration

The optional booleans/strings/longs elements used by TeMIPActionsFactory

contain the following properties:

Type

Value

maxChildrenLength

long
property

The maximum size in Bytes of the
“children” alarm field. The default size is
15000 (15 Kb).

When the maximum is reached, Problem
Detection stops requesting the NMS to
add potential new children to the parent
alarm.

35

useOnlyGroupingKeys

Boolean
property

If set to true (the default is false), the
GROUPALARM directive is not used. This
implies that the “parent” and “children”
fields of alarms are not filled. Only the
“grouping Keys” field is filled; and the
navigation in the HP TeMIP client is only
possible through the “Alarms grouping”
submenu.

copyReferenceAlarmOnPbAlarmCr
eation

Boolean
property

If set to true (default), the
Reference_Alarm directive is always
used at Problem Alarm creation.

If set to false, the Reference_Alarm
directive might not be used at Problem
Alarm creation, depending on the value
of copyReferenceAlarmWhenNotPbAlarm
(see below).

copyReferenceAlarmWhenNotPbA
larm

Boolean
property

This field is used only if
copyReferenceAlarmOnPbAlarmCreation
is set to true (see above).

If set to true (default), the
Reference_Alarm directive is used at
Problem Alarm creation only when the
trigger of the new Problem Alarm is not a
Problem Alarm created before by PBD.

If set to false, the Reference_Alarm
directive is never used.

ocName

string
property

The value of the OC used.

navigationKey

string
property

The navigationKey used during
setHistoryNavigation() call.

By default, it is set to “Pb”.

Table 6 - Specific optional IM action configuration for HP TeMIP

The optional booleans/strings/longs elements used by DBActionsFactory contain

the following properties:

Name Type Value
If set to true (the default is false), the
“parent” and “children” fields of an alarm
useOnlyGroupingKeys Boolean are n_ot gpdated. Only the “groupingKey”
property field is filled.
) The navigationKey used during
navigationKey string setHistoryNavigation() call.
property

By default, it is set to “Pb”.

36

The name of the groupingKey attribute

; string stored with the alarm.
groupingKey property
By default, it is set to “groupingKey”.
‘dbcAlarmForwarder string The name of the JDBC alarm forwarder
J property bean to use for writing alarms.
) The value with which to fill the
sourceldentifier string sourceldentifier field in createAlarm().
property
By default, it is set to "UCA-EBC".
The value with which to fill the dbFlow
identifier in the targetValuePack field in
dbEL string createAlarm().
ow

property By default, it is null so that first dbFlow
declared in value pack configuration is
used.

The prefix to use for each element of the
) “children” field in the

childPrefix string associateAlarmsForHistoryNavigation()
property | call,

By default, it is set to “C:DB:".

The prefix to use for each element of the

) “parents” field in the

parentPrefix string associateAlarmsForHistoryNavigation()
property call.

By default, it is set to "MASTER:C:DB:".

Table 7 - Specific optional IM action configuration for DB

5.2.2 Trouble Ticket Actions
The IM framework supports the HP Service Manager through HP TeMIP.

To benefit from it, the <actionClass> must be set to
com.hp.uca.expert.vp.common.actions.temip.TeMIPTroubleTicketActionsFactory.

The <troubleTicketActions> element contains the following property:

Name type Value

The container for attributes defining the

troubleTicketAction property trouble ticket actions for a set of alarms

Table 8 - IM troubleTicketActions configuration

The <troubleTicketAction> element contains the following properties:

Name type Value

In the filters file, Alarms corresponding to a tag
matching this name use the trouble ticket
Name attribute system defined in the actionReference property
below.

37

The unique reference that is used to define the
actionReference property routing information of a trouble ticket action.

The class implementing the
SupportedTroubleTicketActions interface, which
describes the methods needed to support any

actionClass property Action on alarms, for example, the
createTroubleTicket and the closeTroubleTicket
method.
booleans propgrty Multiple booleans for a specific use-case.
(optional)

Multiple strings for a specific use-case.
The container for a set of key / value <string>

Strings ?c:ogis:gl) specifying parameters for the interaction with
P the Trouble Ticketing System.
property . .)
Longs (optional) Multiple longs for a specific use-case.
Table 9 - IM troubleTicketAction configuration
To know which Trouble Ticket System to use for an alarm, the value of the tag is
matched to the name attribute of the <troubleTicketAction> element.
Example:
tag="TeMIP TT"
<troubleTicketAction name="TeMIP TT" >
The optional strings elements used by TeMIPTroubleActionsFactory:
Name type Value
TT_SERVER entity string By default, it is set to "TT_SERVER .SM".
- property
. By default, it is set to “Synchronous".
Type string
property
string By default, it is set to “temip".
User
property
) string By default, it is set to
CloseTemplateFile property “closeTroubleTicketByValueRequest.xml".
‘ string By default, it is set to
CreateTemplateFile property “createTroubleTicketByValueRequest.xml".
.) string By default, it is set to
AssociateTemplateFile property “associateTroubleTicketByValueRequest.xml".
o] string By default, it is set to
DissociateTemplateFile property “dissociateTroubleTicketByValueRequest.xml".
string By default, it is set to “input”.
Input
property

Table 10 - Specific optional IM troubleTicketAction configuration for HP TeMIP

38

5.3 Problem Detection

5.3.1 Filters, tags and mappers

A PD scenario contains three standard HP UCA EBC configuration files:

- “ProblemDetection_filters.xml" defines the problems and their tags.
“ProblemDetection_filtersTags.xml” defines the tags associated to the filters.
“ProblemDetection_mappers.xml” defines the different mappers and the neo4;j

Cypher queries to use in PD VP, mainly specified by tags.

The <topFilter> elements defined in the “ProblemDetection_filters.xml” file are
closely related to the PD VP code itself, because it defines the Java classes
corresponding to a specific problem. It must not be modified except in rare
conditions, for example:

- Aproblem priority needs to be re-assessed.
- Anew mapper is used for computing the unique source ID of an incoming event.

- Therole of a specific filtered alarm is updated. The
“ProblemDetection_filtersTags.xml” is only used by the GUI to associate tags
and filters in the filter builder panel.

The PD framework recognizes the following predefined tags:

e For event objects:

Tag Eventrole Description
An event that marks an important problem
tag=“TriggerEvent” Trigger Event symptom and triggers the creation of a

group.

tag=“SubEvent”

An event that marks a problem and is
grouped under a Problem Alarm.

Sub-Event

Table 11 - Tags for possible roles of an event within PD

e For alarm objects:

Tag

Alarmrole Description

tag=“Trigger”

An alarm that marks an important problem
Trigger Alarm symptom and triggers the creation of a
Problem Alarm.

tag=“SubAlarm” Sub-Alarm

An alarm that marks a problem and is
grouped under a problem Alarm.

tag=“ProblemAlarm” Problem Alarm the problem, and is readable by the

An alarm that summarizes the details of

operator.

Table 12 - Tags for possible roles of an alarm within PD
You can also combine these tags, for example:

- tag="SubAlarm,ProblemAlarm" - Defines an alarm which is Problem Alarm of a
problem, and the Sub-alarm of another problem.

- tag="Trigger,ProblemAlarm" - The Trigger Alarm is considered as a Problem
Alarm (no new alarm is created).

39

The <cypherQuery> elements defined in the “ProblemDetection_mappers.xml” file
are closely related to the topology loaded in Neo4j. This file must not be modified
except in some rare conditions.

However, the <mapper> elements can be changed to handle new conditions on
incoming events, but in such a case, the “ProblemDetection_filtersTags.xml” must
be updated accordingly.

5.3.2 Specific configuration

A PD scenario is delivered with a specific “ProblemXmlConfig.xml" file.

5.3.2.1 Main Policy

The <mainPolicy> element is a configuration setting which is common to all
problems defined in a PD scenario, and not linked to any problem.

It has the following attributes:

Name Type Value
. Boolean Enables the group sorting feature.
enablePrioritySort attribute Default value is “false”

Specifies the ability to set the parent
relationship for each group of the Problem

multipleParentSupport Boo}ean Alarm (true) or only with the one of highest
attribute o
priority (false).
Default value is “true”
Specifies whether to access topology
information when computing information for
Problem Alarm during the workflow.
Boolean S L
enableTopoAccess attribute If set to true, computing information is

calculated, computeSourceUniquelD() and
computeDBRecords()) are called.
Default value is “false”

Table 13 - PD mainPolicy attributes

It also contains the following elements:

<candidateVisibility>

Before a problem is detected, an alarm belonging to a set of potential alarms
characterizing a problem can be considered as a “candidate alarm” for this
problem. When the problem is detected (for example when the Problem Alarm is
received), the “candidate alarm” becomes a Sub-Alarm of the problem. A Trigger
Alarm can also be considered a “candidate alarm” for the problem, until the
problem is detected.

The candidateVisibilityTimeValue parameterindicates how longan
alarm should be shown as a “candidate alarm” in the Network Management System
viewer. This parameter is read-only if candidateVisibilityTimeMode is set
to “value”. The value is expressed in milliseconds.

The candidateVisibilityTimeMode parameter is subtle.
It can take three values: “Max" (default value), “Min”, or “value”

“Max" means that the alarm will remain a candidate alarm as long as there is a
chance that this alarm may be associated with a problem instance.

In the diagram below, the alarm (upper left arrow) can belong to three problem
types. So it will remain as a candidate alarm for as long as there is a possibility that
this alarm becomes part of one of the problems (problem A, B, or C).

40

ProblemA

ProblemB

To be part of a problem instance, an alarm must be included in a time window (see
Figure 12) around the time of appearance of a Trigger Alarm for that problem. In
the following diagram if none of the Trigger Alarms for problem A, B, and C appear,
the alarm remains a candidate until the max value of
timeWindowBeforeTrigger of problems A, B, and C. After the time window
has expired, incoming Trigger Alarms are not taken into account.

T alarmis candidate alarmis no longer candidate

i t\meWmdowBeforengng

T

timewindowBeforeTrigger (max) T

:hmeWmdmeefnreTrlg
ProblemC

T

Figure 12 - Explanation of the candidateVisibilityTimeMode=Max

candidateVisibilityTimeMode=Value specifies how long the alarm
remains a candidate alarm (expressed in milliseconds).

candidateVisibilityTimeMode=Min specifies that as soon as there is at
least one potential problem instance an alarm cannot be part of, this alarm will not
be marked as a candidate alarm any longer.

The markCandidate parameter indicates whether an alarm is marked as a
“candidate alarm” in the Network Management System viewer (provided the NMS
viewer has this capacity).

<transientFiltering>

<actions>

The concept of transient filtering derives from the observation that alarms can
disappear automatically after a certain time period; In this case it is useful for a PD
Value Pack to query and verify which alarms are still active.

If transientFilteringEnabled=true,the Transient Filtering feature of
the Problem Detection Value Pack delays processing received alarms for the
duration specified in (transientFilteringDelay). Itis possible the alarm
disappears within this time range.

transientFilteringEnabled=true|false

transientFilteringDelay=<waiting period in milliseconds>

41

The PD framework is able to configure multiple action factories in order to support
multiple NMS. See 5.2.1 Actions to NMS for details.
< troubleTicketActions>

The PD framework is able to configure trouble ticket action factories. See 5.2.2
Actions for details.

This element is optional.

< counterTotalNumberAlarms>

This element specifies what to count for the Problem Alarm field measuring the
total number of alarms: either the current number of alarms in the group, or the
total number of alarms since the group creation.

5.3.2.2 Problem Specific Policies

Problem Specific Policies are configuration settings specific to each problem
defined in a PD Value Pack.

These problem specific configuration settings are defined inside the
<problemPolicy name="."> XMLtag.

The <problemPolicy> element has the following attributes:

Name Type Value

If set to false, the usage of calling mappers in
computeProblemEntity() is disabled.

Default value is “true”

If set to true, the calculation of fields key/value
pairs in computeProblemEntity() is enabled.
Default value is “false”

enableComputeProblemEn | Boolean
tityFromMappers attribute

enableComputeProblemEn | Boolean
tityFromFields attribute

Table 14 - problemPolicy attributes

It also contains the following elements:

<problemAlarm>

The <problemAlarm> element specifies the behavior related to Problem Alarms.

Name Type Value

Delay, expressed in milliseconds, before the
associated Problem Alarm is created.

l Example: A setting of 2000 applies a delay of
delayForProblemAlarm | '0nd 2000 ms (2 seconds) before creating Problem
Creation (optional) Alarms.

Default value is 2000.

Delay, expressed in milliseconds, before the
Problem Alarm is cleared.

L Example: A setting of 0 means there is no delay
delayForProblemAlarm (ong) in the clearance of Problem Alarms after all
Clearance optiona conditions are met for clearing Problem Alarms.
Default value is 10000.

42

Supports the concept of nested problems, for
example. One alarm can have multiple roles for
the same problem. It can be a Problem Alarm for
one group, a Trigger for another group, or
attached to another group of the same problem.
problemAlarmCanTrigg | ggolean
erAnotherGroupForSa | (optional) If set to false, the Problem Alarm cannot create a
meProblem new group for the same problem.

If set to true, the Problem Alarm of a group can
also create new groups for the same problem.

Default setting is false.

If set to true, the PD framework will automatically
) Boolean terminate Problem Alarms that have become
terminateWhenLoneso . lonesome (with no sub-alarms attached) after a
me attribute hronizati

resynchronization.
Default value is “false”

Table 15 - PD problemAlarm per-problem configuration

<troubleTicket>

It is possible for PD Value Packs to automatically create a trouble ticket associated
to a Problem Alarm.

The following configuration parameters control the creation of trouble tickets for
Problem Alarms:

Name Type Value

If set to false, a trouble ticket is not created
automatically when a Problem Alarm is created.
automaticTroubleTicke | goolean If set to true, a trouble ticket is automatically
tCreation created when a Problem Alarm is created.

If set to true all Sub-Alarms (of the Problem
Alarm), are associated to the trouble ticket
propagateTroubleTicke | Boolean linked with the Problem Alarm. _
tToSubAlarms If set to false, Sub-Alarms are not associated to

the trouble ticket linked with the Problem Alarm.

When false, if a Sub-Alarm has a trouble ticket,
the Problem Alarm is not linked to this trouble
propagateTroubleTicke ticket.

tToProblemAlarm Boolean When true, if a Sub-Alarm has a trouble ticket,
the Problem Alarm is linked to this trouble ticket.

Delay, expressed in milliseconds, () before the
delayForTroubleTicket | Long associated trouble ticket is created after the
Creation (optional) creation of a Problem Alarm.

Default is 10000.

Table 16 - PD troubleTicket “per-problem” configuration

<groupTickFlagAware>

When set to true, the PD Value Pack executes user code at regular tick intervals, if
customized for such behavior.

HP recommends not to change this setting unless required by the VP developer.

43

<sameGroupForAllProblemEntities >

This property is optional and applicable only if a Trigger Alarm has multiple
problem entities.

If set to false, multiple groups are created for the same Trigger Alarm.

If set to true, only one group is created for the Trigger Alarm, and this group covers
all problem entities of the Trigger Alarm.

<problemAlarmAbleToCreateGroup>

This property is optional.

By default in Problem Detection, a Problem Alarm is allowed to create a group, if
the trigger that created this Problem Alarm is not present.

This generally does not cause any problem, because the lifecycle of the group is
properly managed.

In some cases, the lifecycle of Problem Alarms is not handled directly (only life
cycle of non-‘Problem Alarms’ is handled). As a consequence, the life cycle of the
group is also not handled.

For such cases, this property helps to prevent Problem Alarms from creating
groups.

If set to ‘true’, it does not change the recommended default behavior of Problem
Detection. If set to ‘false’, Problem Alarms corresponding to triggers that are not
present anymore in the working memory, or present as mere Sub-Alarms, are
discarded.

<enableTriggerConsistencyAfterResync>

This property is optional.

By default in Problem Detection, a created group can change its Trigger Alarm after
aresynchronization. This is useful because alarms that are getting resynchronized
are received in the reverse order compared to the original order: If the Problem
Alarm of a group is received before the original trigger that was used to create the
group.

If the <enableTriggerConsistencyAfterResync> property is set to true, the following
mechanism is used to keep consistency among groups. If Problem Detection
detects a case in which an original Trigger Alarm is received after the group is
created, because of the prior reception of the Problem Alarm of the same group,
then the original trigger takes back its original role of Trigger Alarm, instead of the
Problem Alarm that was assumed as the Trigger Alarm.

To disable this feature, this property must be set to ‘false’.

It can be useful to disable this feature if, for example, your customization of PD
framework already recomputed the Trigger Alarm.

<computeProblemEntityFromFields>

This element is optional.

The “keyValueSeparator” attribute defines the separator string, which is by default

“_n

It holds a sequence of <field> elements that are defined as below:

Property Value

44

Key

Property

The field key of an alarm used as a
key/value pair for
computeProblemEntity(). The field can
be a custom field.

valuelgnored

Property
(optional)

An optional value to be ignored for a field
during computeProblemEntity().

Note that the key pr

operty is a tuple:

Type

Value

tagName

string

The tag defining the field name to be
used as key/value pair for
computeProblemEntity().

fieldName

string

The field name to be used as key/value
pair for computeProblemEntity().

Table 17 — PD computeProblemEntityFromFields “per-problem” configuration

<timeWindow>

This element holds the following properties:

Type

Value

timeWindowMode

string

A TimeWindow is used to decide if an Alarm is
part of a Group of Alarms depending on its
alarmRaisedTime field.

Default value is ‘None’, that is, no time window.
This is the equivalent of an infinite time window.
All alarms regardless of their timestamp can be
associated with a problem.

If set to ‘Trigger’, a time window around the
(first) Trigger Alarm of a problem is used. Only
alarms with timestamps inside this time window
can be associated with a problem.

timeWindowBeforeTrig

ger

long

(optional)

A time window expressed in milliseconds before
the Trigger's alarmRaisedTime to consider an
alarm as part of the Trigger's problem.

Default value is 30000.

timeWindowAfterTrigg

er

long

(optional)

A time window, expressed in milliseconds, after
the Trigger's alarmRaisedTime to consider an
alarm as part of the Trigger's problem.

Default value is 30000.

Table 18 - PD timeWindow “per-problem” configuration

Also, depending on customer Value Pack:

Property

Value

booleans

Property
(optional)

For defining multiple booleans for a
specific use-case.

45

Property For defining multiple strings for a

strings (optional) specific use-case.
Property For defining multiple longs for a specific
Longs (optional) use-case.

Table 19 - PD customized “per-problem” configuration

5.4 Topology State Propagator

5.4.1 Filters, tags and mappers

A TSP scenario contains three standard HP UCA EBC configuration files:
“TopologyPropagation_filters.xml” defines the propagation and their tags.
- “TopologyPropagation_filtersTags.xml” defines the tags associated to the
filters.
“TopologyPropagation_mappers.xml” defines the different mappers and the
neodj Cypher queries to use in PD VP, mainly specified by tags.

The <topFilter> elements defined in the “TopologyPropagation_filters.xml” file are
closely related to the TSP VP code itself, because it defines the Java classes
corresponding to a specific propagation. It must not be modified except in rare
conditions, for example:

- A propagation priority needs to be re-assessed.
- A new mapper is used for computing the unique source id of an incoming event.
- Therole of a specific filtered alarm is updated

The “TopologyPropagation_filtersTags.xml” is only used by the GUI to associate
tags and filters in the filter builder panel.

The TSP framework recognizes the following three predefined tags:

Tag

Alarmrole Description

tag=“RootCauseAlarm” Root Cause Alarm propagation. In the IM Value Pack, such a

A Root Cause Alarm that represents a
problem, and is attached to a specific

Root Cause Alarm is a Problem Alarm
coming from PD.

tag=“SubAlarm” Sub-Service Alarm | but is associated under a higher Service

An alarm that represents a Propagation

Alarm.

tag=“ServiceAlarm” Service Alarm propagation, and is readable by the

An alarm that summarizes the

operator.

Table 20 - Tags for possible roles of an alarm within TSP

Unlike PD, you cannot combine these tags.

i

The <cypherQuery> elements defined in the “TopologyPropagation_mappers.xml
file are closely related to the topology loaded in Neod4j. This file must not be
modified except in some rare conditions.

46

However, the <mapper> elements can be changed to handle new conditions on
incoming events, but in such a case, the “TopologyPropagation_filtersTags.xml” file
must be updated accordingly.

5.4.1.1 The special topFilter named ReservedForGeneralBehavior

When an event is received by the TSP framework, its unique source identifier must
be computed. This is done by calling the computeSourceUniqueld() method of the
GeneralBehavior class defined for all propagations.

The TSP framework provides a default class which by default does the following:

- Looks into the passing ReservedForGeneralBehavior filter for the tag named
“ComputeSourceUniqueldMapper” that will give a name of a mapper to execute

- Executes that mapper which should be present in
“TopologyPropagation_mappers.xml” and returns the computed string

5.4.1.2 The special tag named CypherQuery

After a unique source identifier is computed for an event in the TSP framework, it is
necessary to retrieve the topology records associated to the object represented by
the event, that is, all the nodes impacted by the object.

This is done by calling the computeDbRecords() method of the concerned
propagation class.

The default propagation class of the IM framework does the following:

- Looks into the passing filter for the propagation to check the “CypherQuery” tag
that gives the name of the Neo4j query to execute.

- Executes the query that must be present in
“TopologyPropagation_mappers.xml” and returns the executed query that
contains the resulted records.

Note that the GUI filter builder requires that all the <cypherQuery> elements that
are defined in “TopologyPropagation_mappers.xml” must also be referenced in
“TopologyPropagation_filterTags.xml” under a <paramTag> named “CypherQuery”
and proposing an enum of all those queries.

5.4.2 Specific configuration

A TSP scenario is delivered with a specific “PropagationXmlConfig.xml” file.

5.4.2.1 Main Policy

The <mainPolicy> element is a configuration setting which is common to all
propagations defined in a TSP scenario, and not linked to any propagation.

It has one attribute:

Name Type Value
stateSourceldentifier String It is used to fill the “sourceldentifier” field of a
attribute state event generated by the TSP framework.

<actions>

Table 21 - TSP mainPolicy attributes

It has the following elements:

47

The TSP framework is able to configure multiple actions factories in order to
support multiple NMSs. For more details, see section 5.2.1.

This element is optional.

<troubleTicketActions>

The TSP framework is able to configure trouble ticket actions factories. For more

details, see 5.2.2.

This element is optional.

<counterTotalNumberAlarms>

It specifies what to count for the Service Alarm field representing the Total Number
of Alarms: either the current number of alarms in the group or the total number of

alarms since the group creation.

This element is optional.

5.4.2.2 Propagation Specific Policies

Propagation Specific Policies are configuration settings specific to each of the
propagations defined in a TSP Value Pack.

These propagation specific configuration settings are defined inside the
<propagationPolicy name="."> XMLtag.

It has the following elements:

<serviceAlarm>

The <serviceAlarm> element specifies behavior around ServiceAlarm.

Name Type Value
If set to true, the Service Alarm is automatically
enableServiceAlarmcre | Boolean created for this propagation. . _
_ (optional) If set to false (by default), no Service Alarm is
ation created for the propagation.
Delay, expressed in milliseconds, before the
associated Service Alarm is created.
delayForServiceAlarmC | long Example: A setting of 10000 applies a delay of 10
reation (optional) seconds before creating Service Alarms.
Default value is 2000.
Delay, expressed in milliseconds, before the
Service Alarmis cleared.

] lon Example: A setting of 0 means there is no delay
delayForServiceAlarmC © ?ional) in the clearance of Service Alarms after all
learance P conditions are met for clearing Service Alarms.

Default value is 10000.
If set to true, the whole sub-tree of Root Cause
Alarms are attached to the Service Alarm, that is,
the direct Root Cause Alarms plus the Root Cause
attachWholeSubTreeRo Bool.ean Alarms part of impacting states.
otCauses (optional)

If set to false (by default), only the direct Root
Cause Alarms are attached to the Service Alarm.

Table 22 - TSP serviceAlarm per-propagation configuration

48

<troubleTicket>

It is possible for TSP Value Packs to automatically create a trouble ticket associated
to a Service Alarm.

The following configuration parameters control the creation of trouble tickets for
Service Alarms:

Name Type Value

If set to false, a trouble ticket is not created
automatically when a Service Alarm is created.
automaticTroubleTicke Boolean If set to true, a trouble ticket is automatically
tCreation created when a Service Alarm is created.

If set to true, all Sub-Alarms (of the Service
Alarm), are associated to the trouble ticket
propagateTroubleTicke linked with the Service Alarm.

tToSubAlarms Boolean If set to falsg, Sub ‘-Alarms‘are not asspciated to
the trouble ticket linked with the Service Alarm.

When false, if a Sub-Alarm has a trouble ticket,
the Service Alarm is not linked to this trouble
ticket.

ropagateTroubleTicke
propag Boolean When true, if a Sub-Alarm has a trouble ticket,

tToMasterAlarm
the Service Alarm is linked to this trouble ticket.
Delay, expressed in milliseconds before the
delayForTroubleTicket | long associated trouble ticket is created after the
Creation (optional) creation of a Service Alarm.

Default value is 10000.

Table 23 - TSP troubleTicket “per-propagation” configuration

Note that the <troubleTicket> container element is optional.

<groupTickFlagAware>

This element is optional. When set to true, the TSP scenario executes user code
that regular tick intervals, if customized for such behavior.

HP recommends not to change this setting unless required by VP the developer.

<propagationRule>

This element is optional. When used, it defines a rule element that will be used
during state calculation.

The possible values of that single rule element are:

Value Description

WorstChildPercentage | 1he worstimpacting node is used.

FullPercentage An average of all impacting nodes is used.

Custom The calculation is Java code based.

49

<nodes>

This optional element is a sequence of <dbType> elements used to configure the

topology nodes. A <dbType> element is defined by the following property:

Name Type Value
key Property The type of the node to include
<poiCategories>
This optional element is a sequence of <poiCategory> elements used to configure
the Point Of Interest Categories. A <poiCategory> element is defined by the
following property:
Name Type Value
key Property The POI category to assign
<thresholdValues>
This optional element is a sequence of six elements used to configure the
Threshold values. The elements are in strict order as follows:
Name Type Value
0K Property Threshold for state OK
LOW Property Threshold for state LOW
MEDIUM Property Threshold for state MEDIUM
HIGH Property Threshold for state HIGH
CRITICAL Property Threshold for state CRITICAL
DOWN Property Threshold for state DOWN
Each threshold value property must be defined using the following three elements:
Name Type Value
The perceived severity for the threshold value.
The value can be:
- INDETERMINATE
- WARNING
perceivedSeverity Property - MINOR
- MAJOR
- CRITICAL
- CLEAR
The percentage of availability of the node for the
availabilityPercentage Property threshold value. This property is a double.

50

The importance for the POI for the threshold
value. The value can be:
- None
- Low
poilmportance Property Medium
- High
- Critical

You can have an example in section 8.3.2.Error! Reference source not found.

<propagationObject >

This optional element is a string defining the propagation state name when
creating Node POls and the name is used for creating Service Alarms.

<statusName>

This optional element is a string defining the attribute name for the status
attribute when creating Node POls.

<percentageAvailabilityKey>

This optional element is a string defining the attribute name for the
percentageAvailability attribute when creating Node POls.

Also, depending on customer Value Pack needs:

Name Property Value
Property For defining multiple booleans for a
<booleans> (optional) specific use-case.
. Property For defining multiple strings for a
<strings> (optional) specific use-case.
Property For defining multiple longs for a specific
<longs> (optional) use-case.

Table 24 - TSP customized “per-propagation” configuration

5.5 Orchestra

An IM Value Pack is delivered with its Orchestra configuration that must be added in

the global “OrchestraConfiguration.xml” file.
A typical IM Orchestra configuration is to forward alarms from PD to TSP.

An example is given in Figure 13 - IM Orchestra configuration example.

51

<0rchestraWorkflow xmins="hitp:/Mp.com/uca/expert/orchestra/config” >
<Houtes=

<Route name="P0-> TS5P">
<CORY=

<Sources

«\aluePackNameVersion=<![COATALmMy-im-0.1]]=</ValuePackNameVersion =

<ScenarioNames <I[COATA[com.hp.uca.expert.vp.im.pd.ProblemDetection]] = </ Scenario Name=
=[Source=
=[estinations=

=Destination=

<Targets
=\aluePackNameVersion= <\[COATA[my-im-0.11]=«/ValuePackNameVersion=

=ScenarioName=<![COATA[com.hp.uca.expert.vp.im.tsp. TopologyStatePropagator]]> </ScenarioName>
=fTarget=

=fDestination=

«/Destinations=
<(COPY=
«fRoutes

<(Routes>
<{QrchestraWorkflow>

Figure 13 - IM Orchestra configuration example

For details on how to use the HP UCA EBC V3.1 Orchestration feature, see [R1]
Unified Correlation Analyzer for Event Based Correlation Reference Guide and [R2]

Unified Correlation Analyzer for Event Based Correlation Value Pack Development
Guide

Chapter 6

Developing an IM Value Pack

The UCA for EBC Inference Machine SDK provides several Eclipse plugins to ease the
Value Pack development of IM Value Packs, PD Value Packs, and TSP Value Packs.

6.1 Eclipse Plugins

The pre-requisite of using the Eclipse plugins is the installation of the HP UCA for
EBC Inference Machine Development Kit which is comprised of:

e HP UCA for EBC Development Kit (see [R2] Unified Correlation Analyzer for Event
Based Correlation Value Pack Development Guide)

e HP UCA for EBC Development Kit Inference Machine Extension

Four pre-defined Value Packs can be created:

e Problem Detection only VP

e Problem Detection with topology-enabled VP (requires topology)
e Topology State Propagator only VP (requires topology)

¢ Inference Machine complete VP (requires topology)

6.1.1 Creating a UCA EBC project in Eclipse

FilemEditasSourEm Ritactonm Ny EmSarchmProjectmRurmWirkowimHelp
| & $-0-Q- HOG- &3 5~ LIRS SR AR S 15 [§7Java) Q Drools 35 Debug 42 Java EE
[# Package Explorer £3 Junit| ¥ Type Hierarchy B | a0 m]
New UCA EBC

Project (Ctrl+ 6)

[2. Problems | [&, Declaration | B Console 52 47 Search| @ Javadoc =0

No consoles to display at this time. B

Figure 14 - How to create a UCA EBC project in Eclipse

53

6.1.2 Creating a Problem Detection only Value Pack
1. Create an UCA EBC project in Eclipse.

2. Select only “Problem Detection Scenario”.

O =aii=)

Create a UCA EBC IM Valuepack Project

Create a UCA-EBC valuepack project in the workspace or in an external location

Project name:
myProject

Value pack

Name: myVp Version: 1.0
[V]Problem Detection Scenarioi
[Topology State Propagator Scenario

Location
(@ Create new project in workspace
(©) Create new project in:

C\Work\workspace-uca\myProject Browse...

UCA SDK Location

Directory: CAUCA-EBC-DEV\3.2\

Figure 15 - Create PD only Value Pack

3. Configure the value pack.
The following steps are mandatory:
a. Rename and edit “Problem_Skeleton.java”.
b. Edit the filters file.
¢. Configure the Main Policies and the Problem Specific Policies.

Insrc/test/resources com.hp.uca.expert.vp.pd.core
ProblemDefault.java isavailable as areference (not for modification)
for the default code of the overridable methods.

54

" h
18] Java - Eclipse ‘ o|B8| = \

File Edit Source Refactor Navigate Search Project Run Window Help

4 v G H-O0-Q- HFE~- &S 4~ DQ Drools %5 Debug 7® Java EE
v Sl vt Gv v
a Package Explorer 53 Ju JUnit 1e TypeHievarchy- == . =08
4 =2 MyFirstProblemDetectionValuePack The flle o rename as <pr'0b|em
4 @ sre/main/java == hame>.java and where to
4 3 com.hp.uca.expert.vp.pd.problem .
. [3) Problem_Skeletonjava <= override some methods. (see

4 [src/main/resources ‘
4 {2 valuepack.pd
[) Alarms.xml The filters file. (see 6.2.7)
X ProblemDetection_filters.xm| <«
Q ProblemDetection_Rules.pkg
4 (B src/main/resources/valuepack/conf

) contextxmi e The context file. To be modified
X] ProblemXmlConfig.xml . .
[S] ProblemXmiConfig.xsd if a new GeneralBehavior

X] ValuePackConfiguration.xml

@ src/test/java implementation is needed (see
» (B src/test/resources 7 A =N

> (58 UCAEBCresources . ~ = = = - —
. f Referenced Libraries [£¢ Probl [[&2 Declar | & Conso 2 4’ Searc | @ Javad 8

» =i JRE System Library [jdk1 6.0_29] No consoles to display at this time. B -rg
> = lib
|| r & The place to configure Main
(= target . . e p
) buildxmi Policies and Problem Specific
Policies (see 5.3.2 Error!
1) Alarms.xml - MyFirstProblemDetectionValuePack/src/main/resources/valuepack/pd

Figure 16 - Files to edit to configure MyFirstProblemDetectionValuePack

55

6.1.3 Creating a Topology State Propagator only Value Pack
1. Create an UCA EBC project in Eclipse.

2. Select only “Topology State Propagator Scenario”.

&

-

Create a UCA EBC IM Valuepack Project

Create a UCA-EBC valuepack project in the workspace or in an external location

Project name:

myProject
Value pack
Name: myVp

[Problem Detection Scenario

[¥]Topalogy State Propagator Scenarig:

Location
(@ Create new project in workspace
(C) Create new project in:

Cirectory: | C\Waork\workspace-uca\myProject

UCA SDK Location

Version: 1.0

Browse...

Directory: CAUCA-EBC-DEWV\3.2\

Browse...

@ < Back

I

Next >

Finish

Figure 17 — Create TSP only Value Pack

Cancel

56

6.1.4 Creating an Inference Machine Value Pack
1. Create an UCA EBC project in Eclipse.

2. Select both “Problem Detection Scenario” and “Topology State Propagator
Scenario”.

@ e 5

Create a UCA EBC IM Valuepack Project

Create a UCA-EBC valuepack project in the waorkspace or in an external location

Project name:
myProject
Value pack
Name: myVp Version: 1.0
Problem Detection Scenario
Topology State Propagator Scenario
Location
(@ Create new project in workspace
(") Create new project in:

CA\Work\workspace-uca\myProject Browse...
UCA SDK Location
Directory: CA\UCA-EBC-DEW3.2\ Browse...

[@ | < Back || Next > Einish

Figure 18 - Create IM Value Pack

6.2 Creating a simple Problem Detection Value Pack

The following sections describe how to create a simple Problem Detection Value
Pack (PD VP). For advanced PD VP features, see Chapter 7.

6.2.1 Analyzing the problems to be detected

Before creating a Problem Detection Value Pack, it is essential to identify all the
problems that could arise from an operations perspective, and the corresponding
alarms that can be generated in the context of each problem.

To use a medical analogy:
e Alarms are the symptoms.

e Problemis the disease.

57

¢ Problem Detection Value Pack is the physician. Based on the symptoms
observed (the alarms received), PD VP diagnoses the disease (identifies
the problem).

The main steps of this initial PD analysis can be summarized as follows:

1. List all potential alarms that the Network Management System (NMS) might
receive.

2.Do the RCA analysis: list the problems that might occur in the network and
that the user of an NMS is likely be interested in.

3. For each problem, identify which alarms are associated with the problem
(note that an alarm can be associated with several problems).

6.2.2 ldentifying the different types of alarms

Among all the alarms associated with a problem, “trigger” alarms must be
separated from “sub-alarms”. Trigger Alarms define the problem and trigger the
creation of a Problem Alarm.

To continue with the medical analogy:
e Trigger Alarms are the primary symptoms.

e Sub-Alarms are the secondary symptoms.

At runtime, by default, a Problem Detection Value Pack considers that an instance
of a problem has occurred if the following criteria are met:

e One trigger alarm of the problem is received.
e At least one Sub-Alarm of the problem is received.

This default behavior can be customized (see sections 7.4 and 8.1).

The main steps of alarm categorization can be summarized as follows:

1.dentify all the potential problems and the associated alarms (see section
6.2.1).

2.Separate trigger alarms from sub-alarms.

3. Configure the filters of for the Problem Detection Value Pack.

Filters give logical criteria to distinguish different alarms. They allow distinguishing
which alarm belongs to which problem, and with which potential role (Problem
Alarm, Trigger Alarm, or Sub-Alarm.

Filters are configured in an XML file.

For more details, see section 6.2.7 Defining the Filters and Annex B.

6.2.3 Configuring the Time Window

Consider Tpbto be the time at which the problem occurred. Note that for Problem
Detection it is the time of the first Trigger Alarm.

We must configure a time window around Tpb where:

58

e All alarms outside this time window will not be associated with the problem.

e All alarms inside this time window are potential candidates to be associated
with the problem.

Note that time windows can be infinite.

The following diagram illustrates the time window, defined by the
timeWindowBeforeTrigger and timeWindowAfterTrigger properties
in a configuration file. For more details, see section 5.3.2.2.

trigger alarm
sub-alarm
sub-alarm

sub-

alarm

time
timeyindowBeforeTrigger timeWwindowAfter Trigger
pr

Figure 19 - Time window illustration

Alarms in grey are ignored because they are outside of the time window of the
problem.

Alarms in black are not ignored because they are inside the time window of the
problem. They will be evaluated by the Problem Detection Value Pack. Some of
them will meet the conditions to become Sub-Alarm of the problem, while some
others will not.

6.2.4 Configuring Problem Alarm creation

For each problem, you must decide whether, at runtime, upon occurrence of the
problem, the Problem Detection Value Pack creates a Problem Alarm or re-use
(promote) the Trigger Alarm (or one of the Trigger Alarms) as a Problem Alarm.

The main steps of configuring Problem Alarm creation can be summarized as
follows:

1. Define the filters in the XML configuration file. For more details, see section
6.2.7.

2.1f you want to create a new Problem Alarm for a problem, configure an
action to effectively create this Problem Alarm in the Network Monitoring
System (NMS).

3. Configure when the Problem Alarm is created. A Problem Alarm can be
created as soon as the problem is detected or after a given amount of
time. For more details, see Chapter 7.

6.2.5 Configuring Trouble Ticketing

For each problem, you must decide whether, at runtime, upon occurrence of the
problem, the Problem Detection Value Pack raises a trouble ticket. For more
details, see Chapter 7.

59

6.2.6 Considering if the default behavior needs to be modified

Problem Detection offers a default behavior that allows you to create a Value Pack
without further configuration steps than the ones described in sections 6.2.1 to
6.2.5. Nevertheless, almost any aspect of the default behavior can be customized if
necessary.

For example, by default, the Problem Detection framework sets the severity of the
Problem Alarm based on the properties of the Sub-Alarm with the highest severity
(among all Sub-Alarms of the problem), but the framework allows you to modify
this rule.

Another aspect of the default behavior that frequently need to be modified is the
way the problem entity is calculated.

The problem entity represents information related to the network resource that is
common to all alarms of the problem. By default the problem entity is set to the
originatingManagedEntity of the Trigger Alarm, but it can be location information
(for example, “Paris_south _MKF2") contained in the AdditionalText field.

For more details on the default behavior and how to customize it, see Chapter 7.

6.2.7 Defining the Filters

Defining the filters is the most important step when creating a Problem Detection
Value Pack. Defining filters is not only about specifying which alarms are relevant
to the Value Pack. It is also about specifying which alarm is associated to which
problem, and what the role of each alarm is: Problem Alarm, Trigger Alarm, or Sub-
Alarm.

Because a Problem Detection Value Pack is an HP UCA for EBC Value Pack, defining
filters for Problem Detection Value Packs is done the same way as for any other HP
UCA EBC Value Pack.

The definition of filters is done in the “ProblembDetection filters.xml”
file locatedin src/main/resources/valuepack/pd/

The filter file of a Problem Detection Value Pack can include several “top filter”
sections, one for each problem to detect. The following example shows the “top
filter” section of a “ProblemDetection filters.xml” file for a problem
named “Problem_BitError’.

To see an example of a filter file that contains several “top filter” sections in order
to detect several problems, see the filter file of the Value Pack example in Annex B.

60

<topFilter name="Problem_BitError">
<anyCondition>

<allCondition tag="TeMIP TT">
<allCondition>

<stringFilterStatement>
<fieldName>originatingManagedEntity</fieldName>
<operator>matches</operator>
<fieldValue>motorola_omcr_system .* managedelement .*

bssfunction .* btssitemgr .*</fieldValue>

</stringFilterStatement>

<stringFilterStatement tag="Trigger ">
<fieldName>additionalText</fieldName>
<operator>contains</operator>
<fieldValue>[14] Bit error 00S threshold exceeded</fieldValue>

</stringFilterStatement>

<stringFilterStatement tag="Trigger ">
<fieldName>additionalText</fieldName>
<operator>contains</operator>
<fieldValue>[6] Remote Alarm 00S Threshold Exceeded</fieldValue>

</stringFilterStatement>

<stringFilterStatement tag="SubAlarm">
<fieldName>additionalText</fieldName>
<operator>contains</operator>
<fieldValue>[10] Link Disconnected</fieldValue>

</stringFilterStatement>

<stringFilterStatement tag="SubAlarm">
<fieldName>additionalText</fieldName>
<operator>contains</operator>
<fieldValue>[@] Last RSL Link Failure</fieldValue>

</stringFilterStatement>

</anyCondition>
</allCondition>

<allCondition tag="TeMIP TT">
<stringFilterStatement>
<fieldName>userText</fieldName>
<operator>matches</operator>
<fieldValue>.*<action>UCA EBC .*</fieldValue>
</stringFilterStatement>
<stringFilterStatement tag="ProblemAlarm">
<fieldName>additionalText</fieldName>
<operator>contains</operator>
<fieldValue>site down (BitError)</fieldValue>
</stringFilterStatement>
</allCondition>

</anyCondition>
</topFilter>

The <topFilter name="Problem BitError"> tagsignifies the beginning
of the filters definition for the “Problem_BitError” problem.

The following tags mean that conditions from block A or conditions from block B
must be met, or both:
<anyCondition>
<block A/>
<block B/>

</anyCondition>

The following tags mean that conditions from block A and conditions from block B
must be met.
<allCondition>
<block A/>
<block B/>

</allCondition>

61

The <anyCondition> and<allCondition> tags arerecursive. Arecursive
tagis a tag that can be included in the same tag several times as shown below:
<allCondition>
<allCondition>
<allCondition>

The <allCondition tag="TeMIP TT'">tag means that all alarms passing
all the conditions included in this tag are associated to a specific Trouble Ticket
System, HP TeMIP TT in this case.

The possible values for the tag name are given in the <troubleTicketActions>
section of the ProblemXmlConfig.xml file. For more details on the
ProblemXmlConfig.xml file, see section 5.3.2.

The following tags mean that alarms withthe [6] Remote Alarm 00S
Threshold Exceededtextinthe additionalText field are considered
Trigger Alarms for the “Problem_BitError” problem:
<stringFilterStatement tag="Trigger">
<fieldName>additionalText</fieldName>
<operator>contains</operator>
<fieldValue>[6] Remote Alarm OOS Threshold
Exceeded</fieldValue>
</stringFilterStatement>

When Alarm role Description
An alarm that is an important symptom of
tag="“Trigger” Trigger Alarm aproblem, and triggers the creation of a
Problem Alarm
—u " An alarm that is a symptom of a problem
tag="SubAlarm Sub-Alarm and is grouped under a Problem Alarm
tag="ProblemAlarm” Problem Alarm An a!arm that summarizes the problem,
and is readable by the operator
tag="SubAlarm.Problem An alarm that is a Problem Alarm of a
g R ! Sub Problem Alarm | problem and a Sub-Alarm of another
Alarm
problem

Table 25 - PD: Possible roles for an alarm

If you want a Trigger Alarm to be used as a Problem Alarm (instead of creating a
new one), the tag of the Trigger Alarm must be set as follows: tag="Trigger,
ProblemAlarm".

6.2.8 Configuring Value Pack settings

Inthe “VvaluePackConfiguration.xml” file located in the
src/main/resources/valuepack/conf/ folder, only the sections related
to mediation flow must be configured. Sections to be modified are highlighted in
the following extract. For more details, see the “Value Pack definition file” chapter
in [R1] Unified Correlation Analyzer for Event Based Correlation Reference Guide.

62

Extract of ValuePackConfiguration.xml

KmediationFlows name="temipFlow" actionReference="TeMIP FlowManagement"
flowNameKey="flowName">

IK!-- Comment out the flowCreation and flowDeletion sections to use static flows
instead of dynamic flows -->
KflowCreation>

KactionParameter>
Kkey>operation</key>
IKvalue>CreateFlow</value>
IK/actionParameter>
KactionParameter>
Kkey>flowType</key>
[Kvalue>dynamic</value>
IK/actionParameter>
KactionParameter>
Kkey>operationContext</key>
[<value>uca_network</value>
IK/actionParameter>
IKactionParameter>
Kkey>operationContext</key>
[<value>uca_pbalarm</value>
IK/actionParameter>
IK/flowCreation>

The “context.xml” file located in the
src/main/resources/valuepack/conf/ folder does not needto be
modified, unless you want to customize:

e The enrichment example (the enrichment bean is highlighted in the following
extract)

¢ The value for the generalBehaviorClassName property (for more details, see
section 7.4.5)

For more details on the context.xml file, see the “Value Pack definition” chapter in
[R1] Unified Correlation Analyzer for Event Based Correlation Reference Guide.

context.xml

<K?xml version="1.0" encoding="UTF-8"?>
Kbeans xmlns="http://www.springframework.org/schema/beans"
lns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
1ns:jms="http://www.springframework.org/schema/jms"
xkmlns:p="http://www.springframework.org/schema/p"
xmlns:context="http://www.springframework.org/schema/context"
lns:amg="http://activemq.apache.org/schema/core"
lns:util="http://www.springframework.org/schema/util"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/jms
http://www.springframework.org/schema/jms/spring-jms.xsd
http://activemqg.apache.org/schema/core
http://activemqg.apache.org/schema/core/activemg-core.xsd">

Kcontext:annotation-config />

Kbean id="enrichment" class="com.acme.enrichment.EnrichmentProperties">
Kproperty name="configurationFileName" wvalue="Enrichment.xml" />
Kproperty name="jmxManager" ref="jmxManager" />

I</bean>

Kbean id="problemsFactory" class="com.hp.uca.expert.vp.pd.core.ProblemsFactory">
Kproperty name="problemPackageName" wvalue="com.hp.uca.expert.vp.pd.problem." />

63

Kproperty
<property
Kproperty
Kproperty
K<property
K<property
IK/bean>

IK/beans>

name="problemClassNamePrefix" value="Problem " />
name="problemClassName" value="ProblemDefault" />
name="generalBehaviorClassName" value="MyGeneralBehaviorExample" />
name="xmlProblemClassName" value="XmlProblem" />
name="xmlGenericDefaultPrefix" value="XmlGeneric " />
name="problemContextPackage" value="com.hp.uca.expert.vp.pd.core." />

6.2.9 Configuring specific settings

Main Policy is a configuration settings common to all problems defined ina
Problem Detection Value Pack. These main configuration settings are defined in the
<mainPolicy> XMLtaqg.

Problem Policies are configuration settings which are specific to each problem
defined in a Problem Detection Value Pack. These problem specific configuration
settings are defined inthe <problemPolicy name=".."> XML tag.

Main Policy and Problem Policies are configured in the
“ProblemxXmlConfig.xml” file located in
src/main/resources/valuepack/conf/.

Note that the XML schema of this file is named “ProblemXmlConfig.xsd” and
it is located in the src/main/resources/valuepack/conf/ folder.

You can also configure Transient Filtering, Actions, Trouble Tickets actions,
Problem Alarm handling, and so on.

For more details, see section 5.3.2.

6.2.10 Customizing the default behavior for a specific problem

It is possible to assign basic customization directives for a specific problem, for
example, for XmlGeneric_Synch as shown in the following extract. For more
details, see section 7.4.1.

<problemPolicy name="XmlGeneric_Synch">

[...]

<Stﬁng$><string key="ProblemAlarmAdditionalText">

<value><! [CDATA[site down (XmlGeneric Synch)]]></value>
</string>

</strings>

64

6.3 Creating a simple Topology State Propagator Value
Pack

The following sections describe how to create a simple Topology State Propagator
Value Pack (TSP VP). For advanced TSP VP features, see Annex F.

6.3.1 Analyzing the topology to be used and the propagations to be
detected

Before creating a Topology State Propagator Value Pack, it is essential to know on
which topology the Value Pack will be based on. The topology can defer on the
service model, on geographic criteria, or other criteria.

You must identify all the propagations that can be induced by a state update of the
propagations that are underneath from a topology point of view. The state update
can be triggered by several alarms and conditions, depending on the context of
each of the propagations.

To continue with the medical analogy used in PD where alarms are the symptoms,
problem is the disease, and the PD VP is the physician who diagnoses the disease
(the problem) based on the symptoms (the received alarms):

e The correlated information containing the disease (the Problem Alarm) is
received by TSP.

e TSP analyzes the information. If the disease is extremely contagious, it
propagates it, resulting for example in epidemics (propagation on all
upper level of the topology). If the disease is less contagious, it impacts
only groups with low immunity systems (propagation on part of the upper
level of the topology) or has no impact at all (no propagation in the
topology).

e TSP analyzes secondary symptoms (Sub-Alarms), for example, the fact that
children stopped going to the kindergarten because a lot of people were
impacted before.

e TSP realizes Service Impact Analysis. For example, epidemicsina
kindergarten can result in stopping the lessons activity (service) for a
period.

The main steps of this initial TSP analysis can be summarized as follows:

1.Set the topology to establish the nodes and relationships. For details on the
topology extension, see [R9] Unified Correlation Analyzer for Event Based
Correlation Topology Extension Guide.

2.Do the SIA analysis: detect the services on which the impact must be
computed.

3.1f you use the RCA-SIA pattern of IM, list all potential alarms that can come
from a standard Problem Detection scenario (in the same or in a different
Value Pack). TSP can also be directly used for alarms coming directly from
NMS, but HP recommends using it in conjunction with PD as an IM package.

4. List the propagations that might occur in the topology.

5. For each propagation, identify which alarms are associated with the
propagation (note that an alarm can be associated with several
propagations).

65

6.3.2 Configuring state computation

Default state computation is performed by the TSP framework. It is, however,
possible to change this default computation, for example, to set your specific
thresholds.

If you want to change it in Java, you must override the following method:
Boolean computeState (PropagationGroup group)

Note that the default behavior is to use the following service:

TP _Service StateCalculation.computePercentageAvailability()

This service calculates the percentage of availability of the impacted node and
deduces the state from the thresholdValues defined in configuration. For more
details on this service computation, see section 8.2.

For more details on thresholdValues, see section 5.4.2.2.

6.3.3 ldentifying the different types of alarms

Similarly to PD, the different types of alarms must be identified for TSP. As TSP is
used in the IM on top of PD, a significantly reduced number of alarms is received by
TSP because alarms are already grouped by PD into Problem Alarms.

Among all the alarms associated with a propagation, “Root Cause Alarms” must be
separated from “Sub-Alarms”. Root Cause Alarms are called as such because of
their role in the propagation: they contribute to the trigger of re-computation of a
propagation’s state. Optionally, they can contribute to the creation, clearance, or
update of a Service Alarm.

To continue with the medical analogy:
e Root Cause Alarms are the primary symptoms of the disease.

e Sub-Alarms are the secondary symptoms (for example, that a lot of children
stopped going to the kindergarten).

At runtime, by default, a Topology State Propagator Value Pack considers that an
instance of a propagation occurred if the state of the propagation was received.
The computation of a state is an overridable method: the VP developer can modify
the criteria for the creation of a state (for example, the number of Root Cause
Alarms received with a critical status).

This default behavior can be customized (see section 8.1).

If the topology is set, and the possible impacting states and Root Cause Alarms are
identified, as well as the propagations realizing the service impact analysis, then
the filters of the Topology State Propagator Value Pack can be configured.
Optionally, if the Service Alarm creation option is enabled, the Service Alarm and
the “Sub-Alarms” must be identified and tagged in the filters.

Filters give logical criteria to distinguish different alarms and states. They allow
distinguishing which alarm belongs to which propagation, and with which potential
role (Root Cause Alarm, Sub-Alarm, or Service Alarm).

Filters are configured in an XML file.

For more details, see section 6.3.6 Defining the Filters and Annex E

Configuring Service Alarm creation

66

As opposed to Problem Alarm creation in PD, Service Alarm creation in TSP is
optional. For each propagation, you must decide whether, at runtime, the TSP
Value Pack creates a Service Alarm if the propagation occurs and several conditions
are met. Service Alarms contain particular fields and can only be created by the
framework.

The main steps of configuring Service Alarm creation can be summarized as
follows:

1. Define the filters in the XML configuration file. For more details, see section
6.3.6.

2. Configure when the Service Alarm is created and cleared. For more details, see
section 5.4.2.2.

6.3.4 Configuring Trouble Ticketing

For each propagation, you must decide whether, at runtime, upon occurrence of the
propagation, the TSP Value Pack raises a trouble ticket. For more details, see
section 5.4.2.2.

6.3.5 Considering if the default behavior needs to be modified

Topology State Propagator offers a default behavior that allows you to create a
Value Pack without completing all the configuration phases described in the
preceding sections. Nevertheless, almost any aspect of the default behavior can be
customized if necessary.

For details on the default behavior and how to customize it, see Chapter 8.

6.3.6 Defining the Filters

Defining the filters is the most important step when creating a TSP Value Pack.
Defining filters is not only about specifying which events (states, alarms, or other
events) are relevant to the Value Pack. It is also about specifying which event is
associated to which propagation, and what the role of each event is: state, Root
Cause Alarm, Service Alarm, or Sub-Alarm.

Because a TSP Value Pack is an HP UCA for EBC Value Pack, defining filters for TSP
Value Packs is done the same way as for any other HP UCA EBC Value Pack.

The definition of filters is done in the
“TopologyPropagation filters.xml”file locatedin
src/main/resources/valuepack/tp/

As for PD, the filter file of a TSP Value Pack can include several “top filter” sections,
one for each propagation to detect.

For TSP, a special top filter called ReservedForGeneralBehavior is defined in the
“TopologyPropagation filters.xml” file. This filter uses the extended
mappers feature of HP UCA EBC V3.2. The following example shows the contents of
ReservedForGeneralBehavior .

67

<topFilter name="ReservedForGeneralBehavior">
<anyCondition>
<anyCondition tag="PATTERN_Mappers">
<allCondition tag="ComputeSourceUniqueIdMapper=NodeB_UniqueID 1">
<instanceOfFilterStatement>
<fullClassName>com.hp.uca.expert.alarm.AlarmCommon</fullClassName>
</instanceOfFilterStatement>
<stringFilterStatement>
<fieldName>additionalText</fieldName>
<operator>contains</operator>
<fieldValue>PowerAntenna</fieldValue>
</stringFilterStatement>
</allCondition>
<allCondition tag="ComputeSourceUniqueIdMapper=NodeB_UniqueID_2">
<instanceOfFilterStatement>
<fullClassName>com.hp.uca.expert.alarm.AlarmCommon</fullClassName>
</instanceOfFilterStatement>
<stringFilterStatement>
<fieldName>additionalText</fieldName>
<operator>contains</operator>
<fieldvValue>DIP_Failure</fieldValue>
</stringFilterStatement>
</allCondition>
</anyCondition>
</anyCondition>
</topFilter>

The tags used in the ReservedForGeneralBehavior top filter are defined in the
“TopologyPropagation tags.xml” file shownin the following example.

<?xml version="1.0" encoding="UTF-8"?>
<tags xmlns="http://hp.com/uca/expert/filter/tags"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<groups>
<group name="GeneralBehavior">
<simpleTags>
</simpleTags>
<paramTags>
<paramTag name="ComputeSourceUniqueIdMapper" default="computeSourceUniqueId"/>
</paramTags>
</group>

<group name="TopologyPropagation">
<simpleTags>
<simpleTag name="ServiceAlarm"/>
<simpleTag name="SubAlarm"/>
<simpleTag name="RootCauseAlarm"/>
</simpleTags>

<paramTags>

</paramTags>

</group>

<group name="GraphDB">
<simpleTags>
</simpleTags>
<paramTags>
<paramTag name="CypherQuery"
enum="GetCel LFromNodeBOrBts, GetCustomerFromCell, GetNodeIdFromBtsOrNodeB,GetRelIdFromDigitalP
ath, GetNodeIdFromDigitalPath, GetNodeld, GetSite, GetPortLinkR" />
</paramTags>
</group>
</groups>
</tags>

68

In addition to the definition of the ReservedForGeneralBehavior top filter,

propagations are also defined in the
“TopologyPropagation filters.xml”file. The following example shows

the “top filter” section of a “TopologyPropagation filters.xml” filefora
propagation named “Propagation_BtsOrNodeB”.

To see an example of a filter file that contains several “top filter” sections in order
to detect several propagations, see the filter file of the Value Pack example in
Annex E

69

<topFilter name="Propagation_BtsOrNodeB" tagsGroup="TopologyPropagation">
<anyCondition>
<anyCondition tag="PATTERN_SubAlarm">
<anyCondition tag="SubAlarm">
<allCondition>
<instanceOfFilterStatement>
<fullClassName>com.hp.uca.expert.alarm.AlarmCommon</fullClassName>
</instanceOfFilterStatement>
<stringFilterStatement>
<fieldName>probableCause</fieldName>
<operator>contains</operator>
<fieldValue>houston we have a future sub service alarm!</fieldValue>
</stringFilterStatement>
</allCondition>
</anyCondition>
</anyCondition>
<anyCondition tag="PATTERN_RootCause">
<anyCondition tag="RootCauseAlarm">
<allCondition>
<instanceOfFilterStatement>
<fullClassName>com.hp.uca.expert.alarm.AlarmCommon</fullClassName>
</instanceOfFilterStatement>
<stringFilterStatement>
<fieldName>userText</fieldName>
<operator>matches</operator>
<fieldvalue>
<! [CDATA[.*<action>UCA EBC.*</action><trigger>.*</trigger><group>.*</group>.*]]>
</fieldValue>
</stringFilterStatement>
<stringFilterStatement>
<fieldName>additionalText</fieldName>
<operator>contains</operator>
<fieldValue>PowerAntenna</fieldvalue>
</stringFilterStatement>
</allCondition>
</anyCondition>
</anyCondition>
<anyCondition tag="PATTERN_ServiceAlarm">
<anyCondition tag="ServiceAlarm">
<allCondition>
<allCondition>
<stringFilterStatement>
<fieldName>userText</fieldName>
<operator>matches</operator>
<fieldvalue>
<! [CDATA[. *<action>UCA
EBC.*</action><trigger>.*</trigger><propagationGroup>.*</propagationGroup>.*]]>
</fieldvalue>
</stringFilterStatement>
</allCondition>
<anyCondition>
<stringFilterStatement>
<fieldName>additionalText</fieldName>
<operator>contains</operator>
<fieldValue>houston we have a propagation!</fieldValue>
</stringFilterStatement>
</anyCondition>
</allCondition>
</anyCondition>
</anyCondition>

The <topFilter name="Propagation BtsOrNodeB"> tag signifies the
beginning of the filters definition for the “Propagation_BtsOrNodeB” propagation.

The following tags mean that conditions from block A or conditions from block B
must be met, or both:
<anyCondition>
<block A/>
<block B/>

70

</anyCondition>

The following tags mean that conditions from block A and conditions from block B
must be met:

<al

l1Condition>
<block A/>
<block B/>

</allCondition>

The <anyCondition>and <allCondition>tagsarerecursive. Arecursive
tag is a tag that can be included in the same tag several times as shown below:

<allCondition>
<allCondition>

<allCondition>

For more details on the PropagationxmlConfig.xml file, see section 6.3.8.

When

Alarmrole

Description

tag=“RootCauseAlarm”

Root Cause Alarm

An alarm that is an important root
cause of a propagation, and that
contributes to the creation of the
service alarm

tag="SubAlarm”

Sub-Alarm

An alarm that contributes to the
correlation of the propagation, and is
grouped under the Service Alarm

tag="ServiceAlarm”

Service Alarm

An alarm that summarizes the
propagation, and is readable by the
operator

Table 26 — TSP: Possible roles for an alarm

6.3.7 Configuring Value Pack settings

Inthe “VvaluePackConfiguration.xml” file located in the
src/main/resources/valuepack/conf/ folder, only the sections related

to mediation flow must be configured. Sections to be modified are highlighted in

the following extract. For more details, see the”Value Pack definition file” chapter

in [R1] Unified Correlation Analyzer for Event Based Correlation Reference Guide.

Extract of ValuePackConfiguration.xml

I<KflowCreation>
KactionParameter>
Kkey>operation</key>

IK/actionParameter>
KactionParameter>

Kvalue>CreateFlow</value>

KmediationFlows name="temipFlow" actionReference="TeMIP FlowManagement"
flowNameKey="flowName">
IK!-- Comment out the flowCreation and flowDeletion sections to use static flows
instead of dynamic flows -->

71

I<Kvalue>dyn.
IK/actionPa
IKactionPar
I<key>opera

IK/actionPa
IKactionPar
I<key>opera

IK/actionPa
IK/£flowCrea

Kkey>flowType</key>

amic</value>
rameter>

ameter>
tionContext</key>

[<value>uca_network</value>

rameter>
ameter>
tionContext</key>

[<value>uca_pbalarm</value>

rameter>
tion>

The “context .xml” file located in the
src/main/resources/valuepack/conf/ folder does not need to be
modified, unless you want to customize:

e The propagationsFactory (the propagationsFactory bean is highlighted in the
following extract below)

e The value for the generalBehaviorClassName property (for more details, see
section 7.4.5)

For more details on the context.xml file, see the "Value Pack definition” chapter in
[R1] Unified Correlation Analyzer for Event Based Correlation Reference Guide.

context.xml

<K?xml vers
Kbeans xml
lns:xsi=
1ns:jms=
xmlns:p="h
xmlns:cont
1ns:amg=
lns:util
xsi:schema

http://act
http://act

Kcontext:a

class="com
Kproperty
/>
<property
Kproperty
Kproperty
Kproperty
<property
<property
I<K/bean>

IK/beans>

http://www.
http://www.
http://www.
http://www.
http://www.

jon="1.0" encoding="UTF-8"?>
ns="http://www.springframework.org/schema/beans"
"http://www.w3.0rg/2001/XMLSchema-instance"
"http://www.springframework.org/schema/jms"
ttp://www.springframework.org/schema/p"
ext="http://www.springframework.org/schema/context"
"http://activemq.apache.org/schema/core"
="http://www.springframework.org/schema/util"
Location="http://www.springframework.org/schema/beans
springframework.org/schema/beans/spring-beans.xsd
springframework.org/schema/context
springframework.org/schema/context/spring-context.xsd
springframework.org/schema/jms
springframework.org/schema/jms/spring-jms.xsd
ivemqg.apache.org/schema/core
ivemqg.apache.org/schema/core/activemg-core.xsd">

nnotation-config />

<bean id="propagationsFactory"

.hp.uca.expert.vp.tp.core.PropagationsFactory">
name="propagationPackageName" walue="com.hp.uca.expert.vp.pd.propagation."

name="propagationClassNamePrefix" value="Propagation " />
name="propagationClassName" value="PropagationDefault" />
name="generalBehaviorClassName" value="GeneralBehaviorDefault" />

name="xmlPropagationClassName" value="XmlPropagation" />
name="xmlGenericDefaultPrefix" value="Xml " />
name="propagationContextPackage" value="com.hp.uca.expert.vp.tp.core." />

72

6.3.8 Configuring specific settings

Main Policy is a configuration settings which is common to all propagations defined
in a TSP Value Pack. These main configuration settings are defined in the
<mainPolicy> XMLtaqg.

Propagation Policies are configuration settings which are specific to each
propagation defined in a TSP Value Pack. These propagation specific configuration
settings are defined inthe <propagationPolicy name=".."> XML tag.

Policies are configured in the “PropagationXmlConfig.xml” file located in
src/main/resources/valuepack/conf/.

Note that the XML schema of this file is named
“PropagationXmlConfig.xsd” anditis located in the
src/main/resources/valuepack/conf/ folder.

For more details, see section 5.4.2.

6.4 CreatingaStandardIMVP

The objective of this chapter is to list and briefly explain the steps required to
create a meaningful Inference Machine Value Pack.

Unfortunately, this chapter is not available at the moment.

For a good example of a standard IM VP, refer to the IM example delivered with the
IM SDK.

73

Chapter 7

Advanced features of Problem Detection

1.1

With the basic configuration described in section 5.3, a Problem Detection Value
Pack runs with a default behavior.

This default behavior is rich in the sense that, in many cases, it does not have to be
altered or extended. However, for the use cases where modification or extension is
required, Problem Detection offers the flexibility to change the default behavior.

The default behavior is presented in section 7.1. The ways to customize the default
behavior are described in section 7.4.

Default behavior

The Problem Detection framework is a set of Java libraries, with some Java classes
that can be extended and methods that can be overridden in order to change the
default behavior of Problem Detection Value Packs.

Each of the following methods has a default behavior, which can be customized by
overriding the method.

For the default behavior of all these methods, see the IM Javadoc part of the SDK
[R6]. The implementation code of these methods is available in the example value
pack delivered as part of the Problem Detection Dev Kit (see section vp-
examples\pd-example\src\test\resources) .The code of each of these methods is
executed for every problem for which the method is applicable and can be
overridden by the value pack developer.

Section 7.1.1 presents an example. The subsequent sections present the available
interfaces.

7.1.1 Example

An example workflow of the different methods triggered in the case of a Network
State Update alarm is shown in the sequence diagram in Figure 20. In this example,
an alarm clearance is managed for acontext where alarm 1:

e |Is Problem Alarm in group1 of Problem1 (PB1).
e |Is Sub Alarmin group?2 of Problem2 (PB2).

¢ Has no role for any of the groups of Problem3 (PB3).

74

; ‘ alarm1: Alarm PD FMK
User .

| |
' clear Alarm _ 1

alarmUpdatedManageLifecycle i

analyzeRole:
PbAlarm in PB1 groupl
SubAlarm in PB2 group2
noRole in PB3

whatToDoWhenProblemAlarmisCleared: call PB1 custom ‘_:

User | ziami: Alarm PD FMK

)

] whatToDoWhenSubAlarmlsCleared: no custom in PB2

computeProblemAlarmClearance(PB2 group2) ! H !

Figure 20 - Alarm clearance sequence diagram example

Figure 21 shows the event grouping before the alarm1 clearance is received.

D

Step1 before alarm1 clearanc
o

A o o

A o ©@®

PB1Gr1 PB2Gr2

o

A

@)
®)

PB3Gr1

alarm1: Problem alarm
in PB1Gr1 and
sub alarm in PB2Gr2
O sub alarms
A\ events (other than alarms)
like metrics

Figure 21 - PD Alarm clearance example: PD group updates Step1

The alarm1 clearance is received and, according to the sequence diagram in Figure
20, a number of methods are called by the PD framework. As a result:

e The Problem Alarm in group1 of PB1 is cleared and removed from the

Working Memory.

¢ Concerning group?2 in PB2, alarm1 has a role as Sub-Alarm but its clearance
results in the computation of group2 from PB2 clearance. In the current
example, assume that the clearance has an impact only on the severity
change but the Problem Alarm in PB2 group? is still present.

¢ Concerning group1 in PB3, there is no impact.

Figure 22 shows the event grouping updates after the alarm1 clearance is received.

75

o o

i o g9 o
A o o A o
PB1Gr1 PB2Gr2 PB3Gr1

O sub alarms
events (other than alarms)
like metrics

Figure 22 - PD Alarm clearance example: PD group updates Step2

7.1.2 AlarmRoleCheck

The following methods are used to check the role of alarms.

@ AlarmRoleCheck

hoolean isMatchingTrigger AlarmCriterial Alarm a)

hoolean isMatchingProblemAlarmCriterial Alarm a, Group group)
hoolean isMatchingCandidate AlarmCriterial Alarm a)

hoolean isMatchingSubAlarmCriterial Alarm a, Group group)

7.1.3 EventRoleCheck

The following methods are used to check the role of events.

@ EventRoleCheck

hoolean isMatchingTriggerEventCriterialEvent event)
hoolean isMatchingSubEvertCriterialEvent event, Group group)
hoolean isMatchingCandidateEvertCriterialEvent event)

7.1.4 ProblemAlarmCreation

The following methods are related to Problem Alarm creation.

76

@ FroblemAiarmCreation

hoolean isAllCriteriaF orProblemalarmCreation{Group group)

Alarm calculateReferenceslarm{Group group)

String calculateProblemAlarmidditional Text{Group group)

String calculsteProblemAlarmlser Text{Group group, Action action)
String calculateProblemAlarmOperatorMotel Group group)

String calculateProblemAlarmManagedEntity{ Group group)
AlarmType calculateProblem&larmilarmTypelGroup group)

String calculateProblemAlarmProbableCause{Group group)

void calculateProblemAlarmCther Attribute(Group group, Action action)
Long calculateProblemAlarmEvert Time{Group group)

Long computeDelayF orProblemAlarmCreation Alarm alarm)

Long computeDelayF orProblemalarmCreation{Event event)

Long computeDelayForProblemAlarmClearancel Alarm alarm)

Long computebelayForProblemAlarmClearance(Event event)

The following method is used to check if a Problem Alarm must be created:

isAllCriteriaForProblemAlarmCreation (Group)

The following methods are used during Problem Alarm Creation:
calculateReferenceAlarm(Group)
calculateProblemAlarmManagedEntity (Group)
calculateProblemAlarmAlarmType (Group)
calculateProblemAlarmProbableCause (Group)
calculateProblemAlarmAdditionalText (Group)
calculateProblemAlarmOperatorNote (Group)
calculateProblemAlarmUserText (Group, Action)
calculateProblemAlarmEventTime (Group)

calculateProblemAlarmOtherAttribute (Action)

7.1.5 CommonEntityCheck

The following methods are used to calculate Information for optimizations.

@ CommonEntityCheck

String computeProblemiey{Alarm a, String problemEntity)

String computeProblemiey(Event event, String problemEntity)

Ligt=5tring= computeProblemEntity{ &larm a)

List=5tring> computeProblemEntity(Event event)

boolean compareProblemEntity({&larm a, Group group, String new AlarmProblemEntity)
hoolean compareProblemEntity(Event event, Group group, String newAlarmProblemEntity)
koolean isinformationMeededAvailable! Alarm alarm)

boolean isinformationMeeded Available(Event evert)

TimeWindow compute TimeWindow(Alarm alarm)

TimeWindow compute TimeWindow{Event event)

Long computeGroupPriority(Alarm alarm)

Long computeGroupPriority(Event event)

boolean isAllowingDbAccess(Event event)

77

Understanding the computeProblemEntity(Event event)

‘ Problem Detection Framewark
WM

event is a just inserted
Event (not Alarm)

-
2

ProblemDefault

‘ PD_Service_ProblemEntities

loo [for each problem (i.e. topFilter) passing the filtering, compute the ProblemEntities]
| |

[] Et) [Duerrideahle]
|

computeProblemEntity(event)

L
.

by default it is using the configured policies of the problem Iﬁ

list of String

computeFromPalicy(problem event)

list of

| by default it is using mappers and/or fields Iﬁ
i

T
II:II:IE) [for each problemEntity of the list]
|

['] Et) [ouerrideahle]
l

computeProblembiey (event problemEntity)

F

\ | by default it is using problemEntity as key Iﬁ
]]

Problem Detection Framewark |

ProblemDefault

‘ PD_Service_ProblemEntities

Figure 23 - computeProblemEntity (Event event)

78

Understanding the computeProblemEntity(Alarm alarm)

W ‘ Prablem Detection Framewaork | ‘ PD_Service_ProblemEntities | ProblemDefault

alarm is a just inserted
Alarm (not Event)

L.
=

II:II:IE) [fer each problem (i.e. topFilter) passing the fittering, compute the ProblemEntities]
i i

| First, it is always calling the sernvice to compute from configured policies using tags %

compute(problem,alarm)

|which by default is using well-known mappers and/or fields Iﬁ

! computeFromPolicy(problem alarm)

by default it is using Criginating Managed Entity
as single element of the list

]

computeProblemEntity(alarm)

|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
! if noproblemEntity is found from the policy, call overrideable
! [opt _/ [ifnowp ity policy, t 1
|
|
|
|
|
|
i
|
|
|
|
i
|
|
i

_ list of String
I‘\ T
_ list of String | |
|I:II:IE) [for each problemEntity of the list] | |
oEt) [ouerrideahle] : :
X computePrUbIemKey(aIarm,problem‘Entity) ,_:

| by default it is using problemEntity as key H
[

T
|
|
|
|
i i
|
T
T

W Prablem Detection Framewaork | ‘ PD_Service_ProblemEntities | ProblemDefault

Figure 24 - computeProblemEntity (Alarm alarm)

7.1.6 GroupUpdate

The following methods are used to manage the group life cycle and its associated

alarms.

@ GrouplUpdate

void whatToDoWhenSubAlarmisAttached ToGroupd Alarm alarm, Group grougp)
void what ToDoVWhenSubEventls Attached ToGroup(Event event, Group group)
void what ToDoWhenProblemlarmls Attached ToGroup{ Group group)

boolean whatToDoPeriodicallyFor AGroup{Group group)

7.1.7 NetworkStateUpdate

The following methods are used to manage alarm network state updates.

79

Wi

@ NetworkStateUpaate

hoolean calculatelfProblemAlarmhasToBeCleared{Group

void whatToDovWhenSubalarmlsUncleared Alarm alarm,

void whatToDovWhenProblemAlarmlsClearedi{Group group)

void whatTeDoVWhenSubAlarmlsCleared{ Alarm alarm, Group group)
void whatToDaWhenOrphanAlarmisCleared{ Alarm alarm)

void whatToDoWhenProblemAlarmlsUncleared{ Group grougp)

void whatTeDoWhenOrphandlarmlisUncleared{Alarm alarm)

group)

Group group)

Alarm Network State Changes

FProblem Detection Framewarl

ProblemDefault

I alarm state has changed

W

X

|
alt [networkState = CLEARED]

IDDE) [for all groups where alarm is ProblemAlarm]
]

"whatToDoWhenProblemAlarmlsCleared(group) !

.
=

quE) [for dll groups where alarm is SubAlarm or Trigger or Candidat:e]

| possibly compute ProblemAlarm clearance for the group L\}

whatToDoWhenSubAlarmlsClearedi{alarm, group)

e
-
| [}
loo [for ﬁll problems where alarm has no specific role] :
: whatToDoWhenOrphanAlarmlsCleared{alarm) ,_:
[|
L I
[networkState = NOT_CLEARED] i
| |
loo [for #II groups where alarm is ProblemAlarm] :
, whatToDo\WhenProblemAlarmisUncleared(group)
Il ’I
| I
quE) [for éll groups where alarm is SubAlarm or Trigger or Candidat:e]

possibly compute ProblemAlarm clearance for the group L\}

whatToDoWhenSubAlarmlsUncleared(alarm, group)

o

1

IDDE) [for all problems where alarm has no specific role]
]

"whatToDoWhenOrphanAlarmlsUncleared{alarm) o !

Y

FProblem Detection Framewarlk

FroblemDefault

Figure 25 - Alarm network state changes

80

7.1.8 OperatorStateUpdate

The following methods are used to manage alarm operator state updates.

@ Dperatorstatellpdate

void what ToDoWhenProblemAlarmls Terminated{Group group)

void what ToDowWhenProblemalarmls Acknowledged{ Group grougp)

void what ToDovWhenProblemAlarmlsUnacknowledged{ Group group)

void what ToDoVWhenSubAlarmlsTerminated{ Alarm alarm, Group group)

void what ToDoWhenSubAlarmlsAcknowledged{ Alarm alarm, Group group)
void what ToDowWhenSubAlarmisUnacknowledgedi &larm alarm, Group grougp)
void what ToeDeWhenOrphandlarmlsTerminated{ Alarm alarm)

void what ToDoWhenOrphanAlarmlzsAcknowledgedi Alarm alarm)

void what ToDoWhenOrphanalarmlisUnacknowledged(Alarm alarm)

81

W

Alarm Operator State Changes

Problem Detection Framewaork

ProblemDefault

>0

alarm state has changed !

]
alt / [operato}State = HOT_ACKNOWLEDGED]

InnE) [for all groups where alarm is ProblemAlarm]
1

:‘ possibly compute ProblemAlarm clearance for the group B] |

"whatToDoWhenProblemAlarmlsUnacknowledged(group)

InnE) [for ﬁlll groups where alarm iz SubAlarm or Trigger or Candidate]

‘ possibly compute ProblemAlarm clearance for the group b]

| whatToDoWhenSubAlarmisUnacknowledged(alarm, group)

.
v

|onE) [for ﬁll problems where alarm has no specific role]

| whatToDoWhenOrphanAlarmlsUnacknowledged(alarm)

b
o

1
operatorState = ACKNOWLEDGED]
|

|nl:lE) [for 4II groups where alarm is ProblemAlarm]

:‘ possibly compute ProblemAlarm clearance for the group E]

| whatToDoWhenProblemAlarmisAcknowledged(group)

.
o

InnE) [for éll groups where alarm is SubAlarm or Trigger or Candidate]

:‘ possibly compute ProblemAlarm clearance for the group E]

| whatToDoWhenSubAlarmlsAcknowledged(alarm, group)

Y

InnE) [for all problems where alarm has ne specific role]
! whatToDoWhenCOrphanAlarmlsAcknowledged(alarm)

4

[

operatorState = TERMIHATEI]]

|UUE) [for all groups where alarm is ProblemAlarm]
|

| whatToDoWhenProhlemAlarmlsTerminated({group)

:‘ possibly compute ProblemAlarm clearance for the group Iﬁ |

-
-

IunE) [for all groups where alarm is SubAlarm or Trigger or Candidate]

1| and recompute the ProblemAlarm severity if needed

whatToDoWhenSubAlarmlsTerminated{alarm, group)

possibly compute ProblemAlarm clearance for the group IT :

.
v

InnE) [for dll problems where alarm has no specific role]
+ whatToDoWhenCOrphanAlarmlsTerminated(alarm)

o
o

Problem Detection Framewark

ProblemDefault

82

Figure 26 - Alarm operator state changes

7.1.9 ProblemStateUpdate

The following methods are used to manage the Trouble Ticket life cycle when

related to:

e AProblem Alarm
e A SubAlarm

e An Orphan Alarm

@ FroblemStatellpdate

boolean isAllCriteriaFor Trouble TicketCreation{Group group)

void whiatToDoWhenProblemAlarmlisHandled{ Group group)

void whatToDoWhenProblemAlarmlsReleased{Group group)

void whatToDowhenProblemAlarmlsClosed{Group group)

void whatToDowhenSubAlarmlisHandled{ Alarm alarm, Group group)
void whatToDoWhenSubAlarmisReleased{Alarm alarm, Group group)
void whatToDoWwhenSubAlarmlsClosedi Alarm alarm, Group grougp)
void whatToDowWhenOrphan&larmlsHandled! Alarm alarm)

void whatToDoWhenOrphan&larmisReleasedi Alarm alarm)

void whatTeDoWhenOrphanAlarmlsClosed{ Alarm alarm)

Long computeDelayForTroubleTicketCreation] Alarm alarm)

Long computeDelayForTroubleTicketCreation{Evert event)

83

7.1.10 AttributeUpdate

The following methods are used to manage a Severity or an Attribute Update of:
e AProblem Alarm
e ASubAlarm
e An Orphan Alarm

@ Attributelpdate

voidl what ToDoWhenProblemAlarmSeverityHasChanged{Group group)

voidl whatToDoWhenSubAlarmSeverityHasChanged{ &larm alarm, Group group)

voidl whatToDoWhenOrphanalarmSeverityHasChanged{ Alarm alarm)

PerceivedSeverity calculateProblem&larmSeverity(Group group)

voidl what ToDoWhenProblemaAlarmAttributeHasChanged{Group group, AttributeChange attributeChange)

voidl what ToDoWhenSubAlarmAttributeHasChanged(&larm alarm, Group group, AttributeChange attributeChange)
voic what ToDoWhenOrphanalarmattributeHasChanged{ Alarm alarm, AttributeChange attributeChange)

84

7.1.11PeriodicCheck

The following methods are used to manage periodic checks for alarms and events.

@ PeriodicCheck

void whatToDoPeriodically()

hoolean whatToDoPeriodicallyForAnAlarmi Alarm alarm)
hoolean whatToDoPeriodicallyFor AnEvent(Event event)

Periodic checks

Problem Detection Framewarlk

I TickFlag is present >

[E—

! whatToDoFeriadically()

GeneralBehaviorDefault

-

uEt) [and a‘arm {not Event) with tickFlagAware = true]
| whatToDoPeriodicallyF orAnAlarm(alarm) -

nEt) [and ewent with tickFlagAware = true]

whatToDoFeriodicallyF orAnEvent{event)

-

Problem Detection Framewark

GeneralBehaviorDefault

Figure 27 - Periodic checks

85

7.1.12 AlarmEligibilityUpdate

The following methods are used to manage alarm eligibility updates.

Wi

@ AlarmEligibilit/Update

void what ToeDoWhenProblemAlarmlsMohMoreEligible{ Group group)

void what ToDoWhenSubAlarmlzMoMoreEligibled Alarm alarm, Group group)

void what ToDoWhenOrphanAlarmlshoMoreEligiblel Alarm alarm)

Alarm Eligibility Update

FProblem Detection Framewark

' alarm has been tagged to be retracted 1

v

ProblemDefault

!
II:II:IE / Ifor qll groups where alarm is ProblemAlarm]

:| compute ProblemAlarm clearance for the group B]

i whatToDoWhenProblemAlarmlsMoMoreEligible{group)

1
II:IUE /' [for a'II groups where alarm is SubAlarm or Trigger or Candidate] .
i whatTeDoWhenSubAlarmlsNoMareEligible(alarm, group) _:
1| compute ProblemAlarm clearance for the group :
' recompute the ProblemAlarm severity if needed !
: !
|guE } [for iill problems where alarm has no specific role]
| whatToDeWhenCrphanAlarmlsMaMaoreEligible(alarm) -

loo [for all groups where alarm was present]

retract the group

-

1]
l:lEt) [if group has become useless] :
]
]
L

|
|
L

' retract the alarm

]

WM

Froblem Detection Framework

Figure 28 - Alarm eligibility update

ProblemDefault

86

7.1.13 EventEligibilityUpdate

The following methods are used to manage event eligibility updates.

WiW

@ EventEligibilityUpdate

void what ToDoWhenSubEventisMoMoreEligibleEvent event, Group group)

void what ToDowWhenOrphanEventlsMoMoreEligibleiEvert event)

Event Eligibility Update

Froblem Detection Framewark

' event has been tagged to be retracted 1

v

FroblemDefault

|
loo [for #II groups where event is SubEvent or TriggerEvent]

| whatToDoWhenSubEventlsMaMoreEligible(event, group)

" recompute the ProblemAlarm severity if needed B]

—
F

InuE) [for éll problems where event has no specific role]

| whatToDoWhenOrphanEventlsMoMareEligible(event)

L.
F

loo [for all groups where event was present]
1

__ retract the group

I:IEt) [if group has become useless]

_ retract the event

4

Wi

FPrablem Detection Framewark

Figure 29 - Event eligibility update

FProblemDefault

87

7.1.14TagsHandler
Tags handling features are introduced in HP UCAEBC V3.2.

The following methods are used to control the tag names used by the Problem

Detection filter tags.
@ TagsHandler

String getProblemEntityMappersTag()
String getProblemPriority Tagl)

String getBundlePriority Tag)

int getBundlePriorityFactor()

String getBundleMame)

String getTriggerTimeLimitSecondsTag)
String getProblemEntityFieldsTagl()
String getProblemEntitySeparator()

Tags Handling for computeProblemEntity()

PD_Service_ProblemEntities ProblemDefault | | MapperUtils

User

))
1 computeFromPalicy(problem event) E E

X opt J [problémPolicy.enableComputeProblemEntityFromMappers = true]

\ | getProblemEntityMappersTag() ., \

: loo [forieach mapper] I |

! " doMapping(event, mapper) ! <!

| .mappedString e |

] ! T T

| uEt) [problemPolicy.enableComputeProblemEntityFromFields = true]

! ' getProblemEntityFieldsTag) !

X loo [for,each field] :

| | getProblemEntity Separatar() ‘_:

o thevalue ofthe field

! l I .

5.(. listof strings i E E
User PD_Service_PrablemEntities ProblemDefault | | MapperuUtils

Figure 30 - Tags handling for computeProblemEntity()

88

Tags Handling for computeGroupPriority(Event)

FroblemDefault

Lser
1

tcomputeGroupPriority (event) >

! getBundlePriarity Tag()

getProblemPriorityTag()

net) [if at least one of above tag is presemnt in passing fiters]
' getBundlePriarityFactor)

priarity is computed from values of tags if they are present such as
(BundlePriority * PriontyFactor) + ProblemPriority

]

| computed priority [

FroblemDefault

Figure 31 - Tags handling for computeGroupPriority(Event)

89

User
1

Tags Handling for computeTimeWindow(Event)

FroblemDefault

computeTimeWindow(event) >

! getTriggerTimelimitSecondsTag()

|
nEt) [if tag is presl;en‘t if passing filters]
]

nEt / [if value nfl‘tag i= 0]

time window is set to NONE B]

[value of tagis not 0] |

time window is TRIGGER [-value +valug] b]

[tag is absent] |

time window is taken from problemPolicy b]

time window

et st i

FroblemDefault

Figure 32 - Tags handling for computeTimeWindow(Event)

7.2 Supported generic events other than alarm types

Problem Detection V3.2 is able to correlate and group generic events. The Trigger of a PD

correlation group can be an event.

Most methods are applicable therefore for the event type as parameter and not only on the
alarm type. As a result, some methods are now deprecated.

A Value Pack example using PD with events types other than alarms is provided with the IM
SDK, described in Annex D

7.3 Computing Problem Information

When a new alarm is received by Problem Detection, Problem information is computed in
two different ways, which are described in the following subsections.

90

http://peterv3.gre.hp.com:9010/job/inference-machine-doc/jdk=JDK7,platform=linwin/Documentation_(html)/problem-detection/info3.2.html#deprecated

7.3.1 Problem information computing when Problem Detection is

topology-aware
The following conditions are checked by default:

e MainPolicy.enableTopoAccess attribute is set to true.
e theCypherQuery tagis present in the passing filter tags parameters and
provides the name of the Cypher Query to execute.

If these conditions are met, both the
GeneralBehaviourDefault.computeSourceUniqueId (Event
event) and ProblemDefault.computeDbRecords (String
dbUniqueIdReference, Event event) methods are used to compute the
Problem Alarm information.

Note

The above default conditions can be changed by overriding
the ProblemDefault.isAllowingDbAccess (Event event) method.

If computing is successful,
the ProblemDefault.computeProblemEntity (Event event)methodis
not used.

7.3.2 Problem information computing in default case (non-

7.3.3
7.3.3.1

topology aware)

If the scenario described in 7.3.1 does not apply or fails, the
ProblemDefault.computeProblemEntity(Event event) method is used for computing.

ProblemXmlConfig schema changes

Namespace

Some elements defined in the ProblemXmlConfig.xml configuration file are now
provided by the common schema defined in the IM common library, As a result, the
namespace of some elements is different from others.

To resolve this issue, existing configuration files must be migrated. See the Appendix for

more information on the migration procedure.

7.3.3.2 MainPolicy

The following new attributes are available:

enablePrioritySort: Defines whether the groups are sorted in priority order or not.

Boolean flag, default setting is false.

multipleParentSupport: Defines whether an alarm grouping will send the

parent relationship only for the highest priority parent (false), or for each of the
Problem Alarms where this alarm is grouped (true). Default setting is true.

enableTopoAccess: Defines whether to use topologyAccess when computing
information for Problem Alarms (true) or not (false).

91

7.3.4

7.3.5

Topology license is required to set this attribute to true. (Neo4j database is used). When set
to true, the computeSourceUniquelID (Event event) and

computeDBRecords () methods are called during the workflow) and the
computeProblemEntity (Event event) method is not called.

ProblemPolicy

The following new attributes are available:

enableComputeProblemEntityFromMappers: Enables the use of calling mappers
in computeProblemEntity () when set to true. Default setting is true.

enableComputeProblemEntityFromFields: When true, enables computation of
fields key/value pairs in computeProblemEntity ().Default setting is false.

computeProblemEntityFromFields: Configures of the FieldsChooser element,
which is a sequence of fields to be used as keys. It is called in

computeProblemEntity () when computation of fields key/value pairs is enabled and
whenthe ComputeProblemEntityFields tag is not used.

ProblemDefault.computeProblemEntity(Event event)

This method was introduced in version 3.2 and takes an Event as its parameter. It is called
by the existing computeProblemEntity(Alarm alarm) method.

The default behavior of the new computeProblemEntity(Event) is enhanced to better
satisfy end-user needs.
It executes the procedures described in (7.3.5.1, 0 and 7.3.5.3) in respective order.

7.3.5.1 Using extended mappers

The ProblemDefault.computeProblemEntity (Event event) method uses
the extended mappers feature introduced in HP UCA EBC version 3.2.

When an event is received by the Problem Detection Value Pack, it is checked against the
presence of the filter tag ComputeProblemEntityMappers which is a parameter tag
that contains the name of the mappers to use for computing the problem entity.

If the tag is present in the incoming filtered alarm and the mappers referenced in this tag
are well defined, the mappers are executed against the incoming alarm. The result of each
mapper is used as an element of the problem entity list returned by this function.

The usage of extended mappers is automatically taken into account.

Note

- Mapper usage can be disabled by setting the corresponding
ProblemPolicy.enableComputeProblemEntityFromMappers

attribute to false in ProblemXmlConfig.xml file. By default, this setting
considered as true.

- Mapper names contained in the ComputeProblemEntityMappers tag must
be separated by a dot.

- To change the name of the used filter tag, override the
getProblemEntityMappersTag () method of your problem.

92

Since V3.3, a single mapper can be used to return multiple problem entities. To have this
feature enabled, you will need to declare the attribute separator in the definition of the
mapper.

As per example below:

Suppose you have a custom field "servers" that may contain several servers
separated with commas. If you need each of the server be a separate
problemEntity, then declare the mapper as per example below.

<mapper name="getServers" separator=",">
<extract>
<fieldName>servers</fieldName>
<matcher> (.*)</matcher>
<mappedTo>$1</mappedTo>
</extract>
</mapper>

7.3.5.2 Directly mapping alarm fields as key/value pairs

The ProblemDefault.computeProblemEntity (Event event) can utilize the
fields of the alarm computed as key/value pairs. The operation of this function is described
as follows. Described options are evaluated in the following order:

1. Using a well-known tag

If the ComputeProblemEntityFields filter tagis present in the incoming alarm
filtered tags, it must contain the name of the fields to use for computing the problem
entity. Each field described in this tag is checked against its presence in the alarm and the
resulting problemEntity is computed as Sfield.name$Sseparator$field.value.

Note

e The computation of the key/value pairs is enabled by setting the corresponding
ProblemPolicy.enableComputeProblemEntityFromFields attribute
totruein ProblemxmlConfig.xml file. By default, this setting is considered
false —this feature is not enabled by default.

e Eachfield namein the ComputeProblemEntityFields tag must be
separated by a dot.

e To change the name of the used filter tag, override the
getProblemEntityMappersTag () method of your problem.

e Tochange the value of $separator, override the
getProblemEntitySeparator () method of your problem. By default, it is
an equation sign (=).

2. Using version 3.2 policies

The corresponding ProblemPolicy.computeProblemEntityFromFields element
is defined in the ProblemXmlConfig.xml file and is used to compute the problem
entity. This policy defines a sequence of XML field elements and a keyValueSeparator XML
element which is by default an equation sign (=).

Each field described in this XML element is used as an element of the problem entity list
returned by the computeProblemEntity () method. Each field defines either a
tagName ora fieldName.

93

- If tagName is defined, it must correspond to a tag that is present if the
incoming alarm filtered tags define the field of the alarm to take into account.
It is then checked against its presence in the alarm filtered tags and the
resulted problemEntity is computed as
SalarmFieldSkeyValueSeparatorSalarmField.value, where
SalarmField must be present in the alarm and is equivalent to
$field.key.tagName.value.

- If fieldName is defined, it corresponds directly to the field of the alarm
taken into account. The field name is then checked against its presence in the
alarm and the resulting problemEntity is computed as
SfieldNameSkeyValueSeparator$SfieldName.value.

Note

e The computation of the key/value pairs is enabled by setting the corresponding
ProblemPolicy.enableComputeProblemEntityFromFields attribute
totruein ProblemxmlConfig.xml file. By default, this setting is considered
false —this feature is not enabled by default.

e Ifthefilter tag ComputeProblemEntityFields is presentin the incoming
alarm filtered tags, it supersedes the policy and the policy is not used.

e Youcanignore a specific value for each field using the valueIgnored XML
element associated with it.

7.3.5.3 Default mode

If none of methods described in 7.3.5.1 and 0 are used, the function returns the originating
managed entity of the incoming alarm.

7.3.5.4 Modifying examples

71.3.6

The pd-example value pack contains the updated classes Problem Synch and
Problem BitError. These classes demonstrate the usage of the extended mappers
feature to compute their problem entity based on bsc and bts identifiers. The
computeProblemEntity () function was removed from these classes, and the
getBscBtsFromUserText mapper is used instead.

GeneralBehaviourDefault.computeSourceUniqueld(Event
event)

This method is used to calculate the unique identifier from information source stored in the
event. It is called when Problem Detection is topology-aware, that is if the
MainPolicy.enableTopoAccess attributeis set to true. In this case, a special filter
must be defined with the ReservedForGeneralBehavior as the filter name.

This filter uses the ComputeSourceUniqueIdMapper tags to compute the source
unique Id. When mappers are defined in the topFilter called
ReservedForGeneralBehavior, Problem Detection calls the
computeSourceUniquelId (Event) method.

An example filter and mapper is as follows:

94

KtopFilter name="ReservedForGeneralBehavior">
<anyCondition>
<anyCondition tag="PATTERN Mappers">
<allCondition tag="ComputeSourceUniqueldMapper=NodeB UniqueID 1">
<instanceOfFilterStatement>
<fullClassName>com.hp.uca.expert.alarm.AlarmCommon</fullClassName>
</instanceOfFilterStatement>
<stringFilterStatement>
<fieldName>additionalText</fieldName>
<operator>contains</operator>
<fieldValue>PowerAntenna</fieldValue>
</stringFilterStatement>
</allCondition>
<allCondition tag="ComputeSourceUniqueIdMapper=NodeB UniqueID 2">
<instanceOfFilterStatement>
<fullClassName>com.hp.uca.expert.alarm.AlarmCommon</fullClassName>
</instanceOfFilterStatement>
<stringFilterStatement>
<fieldName>additionalText</fieldName>
<operator>contains</operator>
<fieldValue>DIP_ Failure</fieldValue>
</stringFilterStatement>
</allCondition>
</anyCondition>
</anyCondition>
I</topFilter>

Kmapper name='NodeB UniqueID 1'>

<pattern>
<expression>[btsID]~[location]</expression>
<matcher>(.*)</matcher>
<mappedTo>$1</mappedTo>

</pattern>

I</mapper>

7.3.7 ProblemDefault.computeDbRecords(String
dbUniqueldReference, Event event)

This method calculates the Neo4j query, which is executed to retrieve the database records
for the database id reference of the Event. It is called by the Problem Detection framework
whentheMainPolicy.enableTopoAccess attribute is set to true and the
CypherQuery tagis present.

An example filter and mapper is as follows:

<anyCondition tag="ProblemAlarm,CypherQuery=GetCellFromNodeBOrBts">
<allCondition>
<instanceOfFilterStatement>
<fullClassName>com.hp.uca.expert.alarm.AlarmCommon</fullClassName>
</instanceOfFilterStatement>
<stringFilterStatement>
<fieldName>userText</fieldName>
<operator>matches</operator>
<fieldvalue>
<! [CDATA[. *<action>UCA
[EBC. *</action><trigger>.*</trigger><group>.*</group>.*]]>
</fieldvalue>
</stringFilterStatement>
<stringFilterStatement>
<fieldName>additionalText</fieldName>
<operator>contains</operator>
<fieldValue>PowerAntenna</fieldValue>
</stringFilterStatement>
</allCondition>
</anyCondition>

KcypherQuery name='GetCellFromNodeBOrBts'>

<query>

<! [CDATA[START startNode=node:NodeBsByUniqueId(uniqueld = {nodeUniquelId})
TCH (startNode)-[relation:ServingCell]->(endNode)<-[?:ServingCell]-
KanNodeRelatives)

95

RETURN startNode, relation,endNode, endNode.domain, endNode.type,
endNode .uniqueId, count(endNodeRelatives)]]>

</query>
K/cypherQuery>

7.3.8 ProblemDefault.computeGroupPriority(Event event)

A default implementation was introduced to utilize specific tags that can be set at the filter
level:

- Bundle.Priority defines the priority for a family of Problems.

- Problem.Priority defines the priority of a Problem. The values for these
tags should be numeric.

If one of those tags is present after filtering an alarm, the group priority is computed using
the formula:

Bundle.Priority * S$priority.factor + Problem.Priority

If none of the tags is present, the group priority is set to null.

The group priority is taken into account if the attribute enablePrioritySortissetto
trueintheMainPolicy of the ProblemxXmlConfig. xml file. It means that all calls
to scenario.getGroups () .getAllGroups () or to
scenario.getGroups () .getGroupsWherexXX () will return the groups sorted on
priority.

By default, the attribute enablePrioritySort is considered as false if not defined

and groups are not sorted.
Note

e Lower priority numbers come first. A null priority comes last.

e Tochange thevalue of the Spriority. factor override the
getBundlePriorityFactor () method of your problem.

e Tochange the name of the Bundle.Priority tagoverride the
getBundlePriorityTag () method of your problem.

e Tochange the name of the Problem.Priority tag override the
getProblemPriorityTag () method of your problem.

7.3.8.1 Example with alarms
The following alarms are received:

Table 27 - Trigger alarm group priority example

Trigger alarm | Bundle.priority | Problem.priority | Output group and priority
Al 10 1 G1, 10001

A2 - 2 G2,2

A3 - - G3, NULL

96

7.3.9

1.4

If alarm S is subalarm of each of these trigger alarms, and if
MainPolicy.enablePrioritySort issetto true,

getGroups () .getGroupsWhereAlarmSetAs (S, Qualifier.SubAlarm)
returns [G2, G1, G3]instrictorder.

7.3.8.2 Example with events

The following events are received:

Table 28 - Trigger event group priority example

Trigger event Bundle.priority | Problem.priority | Output group and priority

Al 10 1 G1, 10001
A2 - 2 G2, 2
A3 - - G3, NULL

If alarm S is sub event of each of these trigger events, and if
MainPolicy.enablePrioritySort issetto true,

getGroups () .getGroupsWhereEventSetAs (S, Qualifier.SubEvent)
returns[G2, G1, G3]instrictorder.

ProblemDefault.computeTimeWindow(Event event)
The default behavior of the default computeTimeWindow (Alarm alarm) methodis
tousethe Trigger.TimeLimit.Seconds tag set at filters level and applied on the
generic Event type.

If this tag is present after filtering an alarm, and its value is T, the returned timeWindow
overrides the time window defined at the ProblemPolicy level and is computed as:

If Tis 0: TimeWindowMode . NONE
If Tis not 0: TimeWindowMode . TRIGGER and time windowis [abs (T) * 1000 ,
abs (T) * 1000]

Note

Itis possible to change the name of the Trigger.TimeLimit.Seconds tagby
overriding the getTriggerTimeLimitSecondsTag () method of a problem.

Customizing default behavior

The default behavior of a Problem Detection Value Pack can be customized either
by:

e Qverriding java methods specially defined for this purpose
e Writing customization XML code

The list of java methods that can be overridden is presented in section 7.1 Default
Behavior. Instructions on how to override these java methods is presented in
section 7.4.2.

The way to modify the Problem Detection Value Pack default behavior by writing
XML code is described in section 7.4.1 below.

97

7.4.1 XML customization

One aspect of the default behavior of Problem Detection Value Packs is to use the
originatingManagedEntity property of the trigger alarm as the Problem
Entity. Animportant purpose of Problem Alarm creation is to provide clear and
concise information to the operator. For this reason it is useful to redefine the way
Problem Detection computes the Problem Entity of a problem. This can be done
two ways:

- Without customizing Java code - see the following example.
- Through Java code customization - see the next section.

The following example is an excerpt from the ProblemXmlConfig.xml file
locatedinthe src/main/resources/valuepack/conf/ folder. It shows an
example of overriding two methods: the computeProblemEntity ()and
calculateProblemAlarmAdditionalText ():

KproblemPolicy name="XmlGeneric_ Synch">
<strings>
<string key="computeProblemEntity">
<value><! [CDATA[
if (alarm.getOriginatingManagedEntity () .matches(
"motorola omcr_system .* managedelement .* bssfunction .*

btssitemgr .*")) {

varStrl=alarm.getCustomFieldValue ("userText") ;

if (varStrl '= null) {
varStrl = varStrl.replaceAll(" ", "");
varStrl = varStrl.replaceAll(":", " bts ");
varResult = "bsc " +varStrl;
}
}
if (varResult==null) ({
varResult = alarm.getOriginatingManagedEntity() ;
}
11>
</value>
</string>

<string key="calculateProblemAlarmAdditionalText">
<value><! [CDATA[site down (Synch XML) - Generic XML]]></value></string>
</strings>
IK/problemPolicy>

The following three methods are also available. Note that all other methods listed
in section 7.1 are only overridable by writing Java code.

<string key="isMatchingTriggerAlarmCriteria">
<value><! [CDATA[true]]></value>
</string>

<string key="isMatchingProblemAlarmCriteria">
<value><! [CDATA[true]]></value>
</string>

<string key="isMatchingSubAlarmCriteria">
<value><! [CDATA[true]]></value>
</string>

98

Section 6.2.7 Defining the Filters, Table 12 — Tags for possible roles of an alarm
describes how the role of an alarm is determined by the tag associated to it in the
Filters XML file.

Neither setting the tag=SubAlarm or the method override takes precedence, both
are taken in account.

For example, an alarm to be considered a sub-alarm by the Problem Detection
Value Pack, it needs to be tagged as sub-alarm in the Filters XML file and the
method i sMatchingSubAlarmCriteria () mustreturn true.

7.4.2 Java customization

To customize the default behavior of Problem Detection Value Packs an override
must be provided on Java methods listed in section 7.1. Three customization levels
exist:

e Per problem (described in this section)

e For aset of problems or all problems (see section 7.4.3 “My
ProblemDefault”)

¢ For non-problem specific matters (see section 7.4.5 “MyGeneralBehavior”)

The methods that can be overridden to customize the problem-specific behavior of
a Problem Detection Value Pack are all listed in the ProblemInterface Java
interface.

The methods that can be overridden to customize the “non-problem specific”
behavior of a Problem Detection Value Pack are all listed in the
GeneralBehaviorInterface javainterface.

Probleminterface

Textends

Figure 33 - One problem specific customization

ProblemDefault.java is the class implementing the methods of the
Probleminterface as seen in Figure 33. It defines the default behavior of Problem
Detection Value Packs.

To override a method of the ProblemInterface one customization class must
be created per problem, which extends ProblemDefault.

The following example is the Problem Skeleton.java class created by the
Eclipse plug-in. It is located in
src/main/Jjava/[com.hp.uca.expert.vp.pd.problem]

/**

* This Problem is empty and ready to define methods to

99

* customize this problem
*/
[package com.hp.uca.expert.vp.pd.problem;

import org.apache.log4j.Logger;
import com.hp.uca.expert.vp.pd.core.ProblemDefault;
import com.hp.uca.expert.vp.pd.interfaces.ProblemInterface;

public final class Problem Skeleton extends ProblemDefault implements
ProblemInterface {

public
Problem Skeleton() {
super () ;

setlLog (Logger.getLog
ger (Problem_ Skeleton.class));

}

The name of the class, in this example Problem_Skeleton, must be changed to the
name of the problem for which we want to customize the behavior.

In other words, the name of the customization class for problem X must equal the
name of problem X as defined in the filters file. For example, if the content of
thevProblemDetection filters.xml fileis:

<topFilter name="Problem LOS">

Then the extract of Problem LOS.java must be:

public final class Problem LOS extends ProblemDefault
implements ProblemInterface ({

The following example is the same file renamed as MyFirstProblem. java,
which overrides both the computeProblemEntity () andthe
calculateProblemAlarmAdditionalText () methods:

/**

* This is my first Problem.

* It customizes two methods:

* - computeProblemEntity ()

* - calculateProblemAlarmAdditionalText ()
*/

[package com.hp.uca.expert.vp.pd.problem;

import org.slf4j.LoggerFactory;
import com.hp.uca.expert.vp.pd.core.ProblemDefault;
import com.hp.uca.expert.vp.pd.interfaces.ProblemInterface;

/**

* Me

*

*/

lpublic final class MyFirstProblem extends ProblemDefault implements
ProblemInterface {

lpublic MyFirstProblem () {

super () ;

setLog (LoggerFactory.getlLogger ((MyFirstProblem.class)) ;
}

}
QOverride
lpublic List<String> computeProblemEntity (Alarm a) {

if (getLog() .isTraceEnabled()) {
LogHelper.enter (getLog (), "computeProblemEntity()",a.getIdentifier());

100

}
String problemEntity = null;
List<String> problemEntities = new ArrayList<String>():;

if (a.getOriginatingManagedEntity () .matches (
"motorola omcr_ system .* managedelement .* bssfunction .*
btssitemgr .*")) {

SupportedActions supportedActions = chooseSupportedActions(a, this);

String userText =
a.getCustomFieldValue (supportedActions.getAttributeUsedForKeyDuringReco
gnition());

if (userText != null) {
userText = userText.replaceAll(" ", "");
String[] table = userText.split(":");

if (table.length >= 2) {

[problemEntity = String.format ("bsc %s bts %s", table[0],
table[1]) ;

lproblemEntities.add (problemEntity) ;

}
}

if (getLog() .isTraceEnabled()) {

LogHelper.exit (getLog(), "computeProblemEntity()",
lproblemEntities.toString()) ;

}
return problemEntities;

}

QOverride
lpublic String calculateProblemAlarmAdditionalText (Group group) {
return "site down (BitError)";

}

The called overridable methods is decided depending on the life cycle of the alarm,
the problem and its context.

The Problem Detection framework automatically invokes the methods listed in
section 7.1, at specific times of the life cycle of every alarm.

For instance, when an alarm alm1l is cleared, the Problem Detection framework
invokes the method whatToDoWhenXXXAlarmIsCleared (alml..).

If a1m1 belongs to only one problem, Problem A, then the Problem Detection
framework invokes the method whatToDoWhenXXXAlarmIsCleared (alml
...) present in the customization class of ProblemA. If the method
whatToDoWhenXXXAlarmIsCleared () isnotoverriddenfor Problem A,
the default method is invoked.

If alm1 also belongs to Problem B, the Problem Detection framework invokes in
addition the method whatToDoWhenXXXAlarmIsCleared (alml ..),if
present in the customization class of Problem B, or the default method
otherwise.

Depending of the position of the alarm in its life cycle at a given time, the Problem
Detection framework evaluates exactly which methods to invoke.

In the above example, assuming a1m1 belongs to both Problem A and Problem
B, and that alm1l at the moment it gets cleared, is:

101

- sub-alarm for Problem A.
-orphanalarm for Problem B.

Then the following methods are called:
- whatToDoWhenSubAlarmIsCleared (alml)is called for Problem A.

- whatToDoWhenOrphanAlarmIsCleared (alml)is called for Problem
B.
Note

An Orphan Alarm is an alarm that does not belong to any group of the given
problem.

A Candidate Alarm is an alarm that belongs to a group of the given problem, but
the Problem Alarm of this group was not received yet.

A Sub-Alarmis an alarm that belongs to a group of the given problem, and the
Problem Alarm of this group was received.

Figure 34 below shows a graphical representation of the methods invoked based
on the life cycle of the alarm.

It contains three alarms:
e al belongsto Problem Aand Problem B.
e a2 isaTrigger Alarm and belongs to Problem 2 only.

e a3isaProblemAlarmand belongsto Problem A only.

Each alarm at a given time of its life has a qualifier for each of the problems it
belongs to. It also has a consolidated view of its role across problems.

For example there is a time where a1 is ‘SubAlarm for Problem A andisan
Orphan alarm for Problem B. At this time the consolidated role of a1 across all
problems is Sub-Alarm. This consolidated role is stored in the Pb field of the
alarm.

Context of Problem A

4 alarm having a potential
ole for Problem A

Qualifier for Candidate
ProblemA

whatToDoWhenOrphanAlarmXXXX() | whatToDoWhenSubAlarmXXX () | whatToDoWhenSubAlarmXXXX ()

6 trigger alarm

‘or Problem A

Qualifier for Trigger
ProblemA |

whatToDoWhenSubAlarmXXX () | whatToDoWhenSubAlarmXXXX ()

%problem alarm
for Problem A

Qualifier for ProblemAlarm
ProblemA i

whatToDoWhenProhlemAlarmXXX() @

102

Context of Problem B

role for Problem B

Qualifier for
Problem B

whatToDoWt phanAlarm whatToDoWt phanAlarm whatToDoWhenOrphanAlarm
; XXX() XXX() XXX()

Q T alarm having a potential

Consolidated Navigation field « Pb »

alarm having a potential
role for Problem s A& B

(1 po- [Candidate | Candidate________

°

trigger alarm
for Problem A

22 [Pb= Ccandiaate ————— SSiomam |

A\
problem alarm
for Problem A

PbAlarm

Figure 34 - Consolidation of alarm's qualifiers

7.4.3 My ProblemDefault

The purpose of extending the ProblemDefault class is to modify the default
behavior for all problems or for a set of problems.

103

Probleminterface

*extends AN

MyProblemDefault.java

axtends
T axtends

Figure 35 - MyProblemDefault: a customization for a group of problems

In the previous figure MyProblemDefault. java implements some or all
methods of ProblemInterface. Each problem customization class that
extends MyProblemDefault.java benefits from the implementation of those
methods.

In the figure by default, ProblemAl, ProblemA?2 (hidden behind Problemal),
and ProblemA3 (hidden behind ProblemAl) use the methods implemented in
MyProblemDefault.java. This happens only because the different
propagation Javaclasses in ProblemAl, ProblemA2, and ProblemA3 extend
MyProblemDefault in their Java code.

Problem B uses methods implemented in ProblemDefault. java, unless these
methods are overriddenin ProblemB. java

For a comprehensive diagram showing the advanced possibilities of
Problemdefault.java extensions see Annex C.

7.4.4 Problems initialization in version 3.2 and later

Initialization of problems defined inside the <problemPolicy> taginthe
ProblemXmlConfig.xml file has changed in version 3.2.

In earlier versions a problem defined in the ProblemXmlConfig.xml file
containing a subset of the problem policies as described in section 5.3.2.2 Problem
Specific Policies. Other policies receive default values.

ProblemDefault (can be MyProblemDefault) configuration is used only to initialize a
problem with its policy defined in a top filter ina <topFilter> tag of
ProblemDetection filters.xml fileinstead of the
ProblemXmlConfig.xml.

104

Also, if no ProblemDefault policy tag is defined in the ProblemxmlConfig.xml

file, then the default values are applied as specified in the
ProblemDefault.java class.

Starting with version 3.2, all policies defined in the ProblemDefault problem
policy (canbe MyProblemDefault) are applied to all the other Problems, unless
overwritten by their respective custom problem policy.

For policies listed in Table 19 — PD customized “per-problem” configuration:
Strings, Longs and Booleans (which contain a sequence of String, Long and Boolean
types) defined in the ProblembDefault are now valid for all other Problems and
added to the ones defined in the sequence instead of overwriting them, even if they
are defined in a custom problemPolicy. If specific behavior is preferred for a
Problem, the recommended approach is to empty the ProblemDefault
configuration and add definition in the custom problem policies. It is also
recommended to identify what is common to all problems and define it in the
common ProblemDefault configuration.

What has not changed compared to earlier releases is that ProblemDefault
(can be MyProblembDefault) configuration is also used to completely initialize a
problem the policy of which is not defined in the ProblemXmlConfig.xml, but
asatopfilterina<topFilter> tagof ProblemDetection filters.xml
file. Also, if no ProblemDefault policy tag is defined in the
ProblemXmlConfig.xml file, then the default values are applied as specified in
the ProblemDefault. java class.

In the following configuration example in version 3.1 configuration the Strings for
ProblemDefault, Problem Synch,Problem BitError and

Problem Power areidentical but have to be defined for each. Also, the Booleans
defined in ProblemDefault siteDown arevalidalso for Problem Synch,
Problem BitErrorand Problem Power,and each of these two problems
have and extra Boolean to be defined (synchPb, bitErrorPb and powerPb).

It can be also identified that the delayForProblemAlarmCleareance setting
is the same for all problems but has to be redefined each time, as well as the
timeWindowBeforeTrigger andthe timeWindowAfterTrigger. The
delayForTroubleTicketCreation definedin ProblemDefault is the
same as the one for Problem Synchand Problem BitError andthe
delayForProblemAlarmCleareance definedin ProblemDefault is the
sameas for Problem BitError.

KproblemPolicy name="ProblemDefault">
<problemAlarm>
<delayForProblemAlarmCreation>1212</delayForProblemAlarmCreation>
<delayForProblemAlarmClearance>0</delayForProblemAlarmClearance>
</problemAlarm>
<troubleTicket>
<automaticTroubleTicketCreation>false
</automaticTroubleTicketCreation>
<propagateTroubleTicketToSubAlarms>false
</propagateTroubleTicketToSubAlarms>
<propagateTroubleTicketToProblemAlarm>false
</propagateTroubleTicketToProblemAlarm>
<delayForTroubleTicketCreation>60000</delayForTroubleTicketCreation>
</troubleTicket>
<groupTickFlagAware>false</groupTickFlagAware>
<timeWindow>
<timeWindowMode>None</timeWindowMode>
<timeWindowBeforeTrigger>30000</timeWindowBeforeTrigger>
<timeWindowAfterTrigger>30000</timeWindowAfterTrigger>
</timeWindow>
<booleans>
<Boolean key="siteDown">
<value>true</value>

105

</Boolean>

</booleans>

<strings>
<string key="ocName">
<value>.uca_pbalarm</value>
</string>
</strings>

</problemPolicy>

KproblemPolicy name="Problem Synch">
<problemAlarm>
<delayForProblemAlarmCreation>5000</delayForProblemAlarmCreation>
<delayForProblemAlarmClearance>10</delayForProblemAlarmClearance>
</problemAlarm>
<troubleTicket>
<automaticTroubleTicketCreation>false
</automaticTroubleTicketCreation>
<propagateTroubleTicketToSubAlarms>false
</propagateTroubleTicketToSubAlarms>
<propagateTroubleTicketToProblemAlarm>false
</propagateTroubleTicketToProblemAlarm>
<delayForTroubleTicketCreation>60000</delayForTroubleTicketCreation>
</troubleTicket>
<groupTickFlagAware>false</groupTickFlagAware>
<timeWindow>
<timeWindowMode>Trigger</timeWindowMode>
<timeWindowBeforeTrigger>30000</timeWindowBeforeTrigger>
<timeWindowAfterTrigger>30000</timeWindowAfterTrigger>
</timeWindow>
<booleans>
<Boolean key="siteDown">
<value>true</value>
</Boolean>
<Boolean key="synchPb">
<value>true</value>
</Boolean>
</booleans>
<strings>
<string key="ocName">
<value>.uca_pbalarm</value>
</string>
</strings>
IK/problemPolicy>

<KproblemPolicy name="Problem BitError">
<problemAlarm>
<delayForProblemAlarmCreation>1212</delayForProblemAlarmCreation>
<delayForProblemAlarmClearance>0</delayForProblemAlarmClearance>
</problemAlarm>
<troubleTicket>
<automaticTroubleTicketCreation>false
</automaticTroubleTicketCreation>
<propagateTroubleTicketToSubAlarms>false
</propagateTroubleTicketToSubAlarms>
<propagateTroubleTicketToProblemAlarm>false
</propagateTroubleTicketToProblemAlarm>
<delayForTroubleTicketCreation>60000</delayForTroubleTicketCreation>
IK/troubleTicket>
<groupTickFlagAware>false</groupTickFlagAware>
<timeWindow>
<timeWindowMode>Trigger</timeWindowMode>
<timeWindowBeforeTrigger>2500</timeWindowBeforeTrigger>
<timeWindowAfterTrigger>5000</timeWindowAfterTrigger>
</timeWindow>
<booleans>
<Boolean key="siteDown">
<value>true</value>
</Boolean>
<Boolean key="bitErrorPb">
<value>true</value>
</Boolean>
</booleans>
<strings>
<string key="ocName">
<value>.uca_ pbalarm</value>
</string>

106

</strings>
IK/problemPolicy>
KproblemPolicy name="Problem Power">
<problemAlarm>
<delayForProblemAlarmCreation>2700</delayForProblemAlarmCreation>
<delayForProblemAlarmClearance>0</delayForProblemAlarmClearance>
</problemAlarm>
<troubleTicket>
<automaticTroubleTicketCreation>false
</automaticTroubleTicketCreation>
<propagateTroubleTicketToSubAlarms>false
</propagateTroubleTicketToSubAlarms>
<propagateTroubleTicketToProblemAlarm>false
</propagateTroubleTicketToProblemAlarm>
<delayForTroubleTicketCreation>90000</delayForTroubleTicketCreation>
</troubleTicket>
<groupTickFlagAware>true</groupTickFlagAware>
<timeWindow>
<timeWindowMode>None</timeWindowMode>
</timeWindow>
<booleans>
<Boolean key="powerPb">
<value>true</value>
</Boolean>
</booleans>
<strings>
<string key="ocName">
<value>.uca_ pbalarm</value>
</string>
</strings>
IK/problemPolicy>

If the same configuration file is transformed to version 3.2 considering that all
problems have their top filter defined in the

ProblemDetection filters.xml file (orif there are other problems, they
are handled entirely by the ProblembDefault policy), the following configuration
file is required:

KproblemPolicy name="ProblemDefault">
<problemAlarm>
<delayForProblemAlarmCreation>1212</delayForProblemAlarmCreation>
<delayForProblemAlarmClearance>0</delayForProblemAlarmClearance>
</problemAlarm>
<troubleTicket>
<automaticTroubleTicketCreation>false
</automaticTroubleTicketCreation>
<propagateTroubleTicketToSubAlarms>false
</propagateTroubleTicketToSubAlarms>
<propagateTroubleTicketToProblemAlarm>false
</propagateTroubleTicketToProblemAlarm>
<delayForTroubleTicketCreation>60000</delayForTroubleTicketCreation>
</troubleTicket>
<groupTickFlagAware>false</groupTickFlagAware>
<timeWindow>
<timeWindowMode>None</timeWindowMode>
<timeWindowBeforeTrigger>30000</timeWindowBeforeTrigger>
<timeWindowAfterTrigger>30000</timeWindowAfterTrigger>
</timeWindow>
<booleans xmlns:pl="http://config.im.vp.expert.uca.hp.com/">
<pl:boolean key="siteDown">
<pl:value>true</pl:value>
</pl:boolean>
</booleans>
<strings xmlns:pl="http://config.im.vp.expert.uca.hp.com/">
<pl:string key="ocName">
<pl:value>.uca_pbalarm</pl:value>
</pl:string>
</strings>
IK/problemPolicy>

107

<KproblemPolicy name="Problem Synch">
<problemAlarm>
<delayForProblemAlarmCreation>5000</delayForProblemAlarmCreation>
<delayForProblemAlarmClearance>10</delayForProblemAlarmClearance>
</problemAlarm>
<troubleTicket>
<automaticTroubleTicketCreation>false
</automaticTroubleTicketCreation>
<propagateTroubleTicketToSubAlarms>false
</propagateTroubleTicketToSubAlarms>
<propagateTroubleTicketToProblemAlarm>false
</propagateTroubleTicketToProblemAlarm>
</troubleTicket>
<groupTickFlagAware>false</groupTickFlagAware>
<timeWindow>
<timeWindowMode>Trigger</timeWindowMode>
<timeWindowBeforeTrigger>30000</timeWindowBeforeTrigger>
<timeWindowAfterTrigger>30000</timeWindowAfterTrigger>
</timeWindow>
<booleans xmlns:pl="http://config.im.vp.expert.uca.hp.com/">
<pl:boolean key="synchPb">
<pl:value>true</pl:value>
</pl:boolean>
</booleans>
IK/problemPolicy>
<problemPolicy name="Problem BitError">
<problemAlarm></problemAlarm>
<troubleTicket>
<automaticTroubleTicketCreation>false
</automaticTroubleTicketCreation>
<propagateTroubleTicketToSubAlarms>false
</propagateTroubleTicketToSubAlarms>
<propagateTroubleTicketToProblemAlarm>false
</propagateTroubleTicketToProblemAlarm>
</troubleTicket>
<groupTickFlagAware>false</groupTickFlagAware>
<timeWindow>
<timeWindowMode>Trigger</timeWindowMode>
<timeWindowBeforeTrigger>2500</timeWindowBeforeTrigger>
<timeWindowAfterTrigger>5000</timeWindowAfterTrigger>
</timeWindow>
<booleans xmlns:pl="http://config.im.vp.expert.uca.hp.com/">
<pl:boolean key="bitErrorPb">
<pl:value>true</pl:value>
</pl:boolean>
IK/problemPolicy>
KproblemPolicy name="Problem Power">
<problemAlarm>
<delayForProblemAlarmCreation>2700</delayForProblemAlarmCreation>
</problemAlarm>
<troubleTicket>
<automaticTroubleTicketCreation>false
</automaticTroubleTicketCreation>
<propagateTroubleTicketToSubAlarms>false
</propagateTroubleTicketToSubAlarms>
<propagateTroubleTicketToProblemAlarm>false
</propagateTroubleTicketToProblemAlarm>
<delayForTroubleTicketCreation>90000</delayForTroubleTicketCreation>
</troubleTicket>
<groupTickFlagAware>true</groupTickFlagAware>
<timeWindow>
<timeWindowMode>None</timeWindowMode>
</timeWindow>
<booleans xmlns:pl="http://config.im.vp.expert.uca.hp.com/">
<pl:boolean key="powerPb">
<pl:value>true</pl:value>
</pl:boolean>
</booleans>
IK/problemPolicy>

108

7.4.5 MyGeneralBehavior

The GeneralBehaviorInterface Javainterface contains methods that can

be overridden to customize the “non-problem specific” behavior of a Problem
Detection Value Pack.

Non-problem-specific behavior is a behavior that is not related to any problem in
particular. For example, the actions done when a Problem Detection Value Pack is
initialized is a “non-problem-specific” behavior.

The process to customize such behavior is as follows:

e (Create aMyGeneralBehavior.java (name can be different) Java class
in the following directory:
src/main/java/[com.hp.uca.expert.vp.pd.core].

e Ensure that the value of the property generalBehaviorClassName in
the src/main/resources/valuepack/conf/context.xml file
matches MyGeneralBehavior, as shown in Figure 36 —PD
MyGeneralBehavior name matching

e Override the methods of the GeneralBehaviorInterface for which
the behavior has to be customized.

IContext.xml

bean id="problemsFactory”

property
name="general BehaviorClassName

alue=" e E 2L BT g
=

public class MyGeneralBehavior extends GeneralBehaviorDefault
fimplements GeneralBehaviorInterface {

I3

MyGeneralBehavior EVE!

/**
*
*/
public MyGeneralBehavior() {
super();
setlog(Logger.getlogger(MyGeneralBehavior.class));
}

Figure 36 — PD MyGeneralBehavior name matching

The following example MyGeneralBehavior. java class overrides the
whatToDoWhenNewAlarmIsJustInserted () method of the
GeneralBehaviorinterface interface:

lpublic class MyGeneralBehavior extends GeneralBehaviorDefault implements
GeneralBehaviorInterface ({

/**
*

*/

109

pu
s
s
}
/*
*
*
*
*
*
*

pu
i

}

i

+

}
F

blic MyGeneralBehavior() {
uper () ;
etLog (LoggerFactory.getLogger (MyGeneralBehavior.class)) ;

(non-Javadoc)

@see
com.hp.uca.expert.vp.pd.core.CustomDefaul t§whatToDoWhenNewAlarmIsJustInserted
(com.hp.uca.expert.alarm.Alarm)

/

QOverride

blic void whatToDoWhenNewAlarmIsJustInserted(Alarm alarm) {

f (getLog() .isTraceEnabled()) {

LogHelper.enter (getLog (), "whatToDoWhenNewAlarmIsJustInserted()",
alarm.getIdentifier());

f (getLog() .isDebugEnabled()) {
getLog () .debug (

"I am the method whatToDoWhenNewAlarmIsJustInserted() of ProblemDefault : "
this.getClass () .getSimpleName()) ;

getLog () .debug (

"whatToDoWhenNewAlarmIsJustInserted() : new alarm inserted : "

+ alarm.getIdentifier());

lag flag = new Flag("JustInserted: " + alarm.getIdentifier(),
"Flag checking whatToDoWhenNewAlarmIsJustInserted()", true);

getScenario () .getSession() .insert (flag) ;

if (getLog() .isTraceEnabled()) {

LogHelper.exit (getLog (), "whatToDoWhenNewAlarmIsJustInserted()");

}
}

1.4

.6 Enrichment

Three methods exist to enrich alarms in Problem Detection.

Through the HP UCA EBC life cycle, synchronous enrichment is possible. For more
details, see [R1] Unified Correlation Analyzer for Event Based Correlation Reference
Guide.

A “One time” and “independent of all problems” synchronous enrichment is
possible by overriding the method whatToDoWhenNewAlarmlsJustinserted()
Independent of all problems means that the enrichment applies to all alarms
managed by the value pack regardless of the problem(s) they correspond to.

A “per problem” enrichment is possible by overriding the method
isinformationNeededAvailable() in the problem’s customization class. This
enrichment can be performed in synchronous or asynchronous mode.

The enrichment is synchronous when the Problem Detection value pack waits for
the enrichment of the alarm to be completed before to proceed with the alarm
processing. This enrichment can be synchronous, if the method
isinformationNeededAvailable() is overridden with synchronous code.

The enrichment is asynchronous when the Problem Detection value pack does not
wait for the enrichment of the alarm to be completed. The execution continues and
the value pack is notified later through a callback that the enrichment has been
completed. This enrichment can be asynchronous, if the method
isinformationNeededAvailable() is overridden with asynchronous code.

Example: Problem-independent enrichment

The following example illustrates problem independent one-time enrichment

110

It shows an override to the whatToDoWhenNewAlarmlsJustinserted () method and
new custom fields added to all incoming alarms.

Public class MyGeneralBehavior extends
GeneralBehaviorDefault
implements GeneralBehaviorInterface {

QOverride
Public void whatToDoWhenNewAlarmIsJustInserted(Alarm alarm)
throws Exception {

SupportedActions supportedActions = PD_Service Action
.retrieveSupportedActions (getScenario(), alarm);

if (alarm.getCustomFieldValue (“userText”) == null) {
CustomField cf = new CustomField() ;

cf.setName (“userText”) ;

cf.setValue ("myotherproblemidentifier site#sophia");
alarm.getCustomFields().getCustomField().add(cf);

}
}
}

Example Synchronous enrichment per problem

The following example shows the method isInformationNeededAvailable() being
overridden. The method checks if enough information is present in the alarm. In

particular it checks if the content of the field originatingManagedEntity is having
the right structure. If not, the method decides to enrich the alarm by reading an

XML file.

@Override
Ppublic Boolean isInformationNeededAvailable(Alarm alarm) throws Exception {

Boolean informationAvailable = false;
String site = null;
if (! (alarm.getOriginatingManagedEntity () .matches (
"motorola_omcr_system .* managedelement .* bssfunction .* btssitemgr .*")) {

EnrichmentProperties enrichmentProperties = (EnrichmentProperties)
PD_Service Util.retrieveBeanFromContextXml (getScenario(),
ENRICHMENT BEAN NAME)
if (enrichmentProperties != null) {
synchronized (enrichmentProperties .getHashManagedObjectToSite()) ({
site = enrichmentProperties.getHashManagedObjectToSite () .get(

alarm.getOriginatingManagedEntity|
0);
}
}
}

if (site != null) {
informationAvailable = true;
alarm.getVar () .put (SITE_KEYWORD, site);
} else {
getLog () .warn (String. format ("Unable to retrieve enrichment for alarm
[$s]",alarm.getIdentifier()));
}

return informationAvailable;

}

111

The example above is extracted from Problem_Power.java. This file is available in
the HP UCA EBC Development Kit Problem Detection Extension in the
com.hp.uca.expert.vp.pd.problem package.

Example Asynchronous enrichment per problem

The example below shows the method isInformationNeededAvailable() being
overridden. The method controls if enough information is available, by checking
whether field “grid” is present in the alarm. If not, the method decides to enrich the
alarm by launching an asynchronous action.

Public Boolean isInformationNeededAvailable (Alarm alarm) throws Exception {

Boolean retValue true;
String gridField alarm.getCustomFieldvalue ("grid") ;
if (gridField == null) {
retValue = false;
try {
SupportedActions supportedActions = PD_Service Action
.retrieveSupportedActions (alarm,

this) ;
Action action = new Action (supportedActions.getActionReference()) ;

/ *
* Really fill the command for a real Action
*/
action.addCommand ("< To be customized with the real command to execute to find the
information>", "<To be customized with the entity on which to run the command>") ;

getScenario () .addAction (action) ;

action.setCallback (buildenrichmentCallback (getScenario(),
alarm, action, getlLog())):;

action.executeAsync (null) ;
getScenario () .getSession () .update (action) ;

Code example for an enrichment callback:

public static Callback buildEnrichmentCallback (Scenario scenario,
Alarm alarm, Action action, Logger
log)
throws NoSuchMethodException {

Class<?> partypes[] = new Class[NB CALLBACK ARGUMENTS];
partypes [ARGUMENT 1] Scenario.class;

partypes [ARGUMENT 2] Alarm.class;

pPartypes [ARGUMENT 3] Action.class;

pPartypes [ARGUMENT 4] Logger.class;

Object arglist[] = new Object[NB CALLBACK ARGUMENTS] ;

arglist[ARGUMENT 1] = scenario;
arglist[ARGUMENT 2] = alarm;
arglist[ARGUMENT 3] = action;
arglist[ARGUMENT 4] = log;

Method method = Problem Synch MissingInfoAlarm.class.getMethod (
"enrichmentCallback", partypes) ;

Callback callback = new Callback (method, null, arglist);

return callback;

}

112

Public static void enrichmentCallback (Scenario scenario, Alarm alarm,
Action action, Logger log)

{

// To be customized : BEGIN

if (action.isTestOnly()) {
if (log.isInfoEnabled()) {
log.info ("Enrichment Action Response received, updating Alarm with result of
the Action");
}

alarm.setCustomFieldvalue ("grid", "disabled");

}

// To be customized : END

PD Service Enrichment.setAlarmIsNoMoreMissingInformation (alarm,
Problem Synch MissingInfoAlarm.class.getSimpleName())

PD Service Enrichment.requestAlarmComputation(scenario, alarm);

7.4.7 MyGeneralBehavior

As explained for problems general behavior in 7.4.5, the same reasoning applies
for propagations. The methods that can be overridden to customize the “non-
propagation specific” behavior of a Topology State Propagator Value Pack are all
listed in the GeneralBehaviorinterface Java interface.

A “non-propagation-specific” behavior is a behavior that is not related to any
propagation in particular.

For example, the behavior of the initialization of a Topology State Propagator
Value Pack is a “non-propagation-specific” behavior.

The way to customize a “non-propagation-specific” behavior is presented in the
following steps:

¢ Create a MyGeneralBehavior.java (name can be different) Java class in the
following directory:
src/main/java/[com.hp.uca.expert.vp.tp.core].

e Ensure that the value of the property generalBehaviorClassName in
the file context . xml in
src/main/resources/valuepack/conf/ folder matches

113

MyGeneralBehavior EVE!

MyGeneralBehavior, as shown in Figure 37 — TSP MyGeneralBehavior
name matching

e Override the methods of the GeneralBehaviorinterface for which the
behavior has to be customized.

IContext.xml

bean id="propagationsFactory”

property
name="general BehaviorClassName

A2y MyGeneralBehavior

I3

public class MyGeneralBehavior extends GeneralBehaviorDefault
fimplements GeneralBehaviorInterface {

/**
*
*/
public MyGeneralBehavior() {
super();
setlog(Logger.getlogger(MyGeneralBehavior.class));
}

Figure 37 — TSP MyGeneralBehavior name matching

Below is an example of a MyGeneralBehavior.java class that overrides one method
of the interface GeneralBehaviorinterface: computeSourceUniqueld().

Public class MyGeneralBehavior extends GeneralBehaviorDefault implements
GeneralBehaviorInterface {

/**

* Instantiates a new my general behavior.

*/

public MyGeneralBehavior() {

super (LoggerFactory.getLogger (MyGeneralBehavior.class)) ;

}
/*

(non-Javadoc)

com.hp.uca.expert.vp.tp.core.GeneralBehaviorDefaul t#computeSourceUniqueId
(com.hp.uca.expert.event.Event)

*/

@Override

public String computeSourceUniqueld(Event event) throws Exception {

String ret = super.computeSourceUniqueld(event) ;

return ret == null ? ret : ret.toUpperCase();

*
*
* @see
*
*

1}

114

115

Chapter 8

Advanced features of the Topology
State Propagator

8.1

After configuration (see section 5.4), a TSP Value Pack has a default behavior.

This default behavior is a rich behavior that does not have to be altered or
extended.

For the use cases where modification or extension is required, TSP offers the
flexibility to change the default behavior.

The default behavior is described in section 8.1.

For information on how to change the default behavior see section 8.2

The default behavior

The Topology State Propagator framework is a set of Java libraries. To change the
default behavior of TSP Value Packs, the classes of the Java libraries have to be
extended and methods have to be overridden.

Each of the following methods has a default behavior that can be changed by
overriding the method.

On the default behavior of these methods, consult the Javadoc. The
implementation code of these methods is included in the example value pack
delivered as part of the TSP Dev Kit. The code of each method is executed for every
propagation and can be overridden by the value pack developer.

8.1.1 Example

Figure 26 shows how the workflow of the different methods is triggered by an
Operator State Update alarm. The alarm termination is managed for the following
context: alarm 1 is root cause alarm in propagation group1 of Propagation1 and in
propagation group2 of Propagation2 and has no role in any of Propagation3’s
groups.

116

u: alarm1: Alarm TSP FMIK ‘ Frap1 | | Prup?l | Prup3|
ser
I

I
terminate Alarm _ !

alarmUpdatedManageLifecycle

analyzeRole
RootCauseAlarm

in Prop1 groupl

and in Prop2 group2

whatTeDoWhenRootCauseAlarmlsTerminated: call Propl custom

recomputeState(Propl group1);

[

computeSeniceAlarmClearance(Propl groupl);

|

J

whatToDoWhenRootCauseAlarmlsTerminated: no custom in Prop2

i

recomputeState(Prop2 group2);

i

computeSenviceAlarmClearance(Prop2 groupl);

|

=

. |
User
alarm1: Alarm TSP FMIK Frap1 Prop2 Prop3

Figure 38 - Alarm termination sequence diagram example

In the topology shown in Figure 39 - Topology of the example, only Prop2 and
Prop3 are connected and Prop3 has a finer grain propagation then Prop2.

Prop3

Prop] Prop2

Figure 39 - Topology of the example

117

Step1 before alarm1 termination
] @)
B (@) Prop3Gri
= (@)
@ cdlarm1
O root cause alarms
O [] @ © service alarm in Prop2Gr2
a o and sub service alarm in Prop3Gr1
[m] ® g [®) QO service Alarm in Prop3Gr1
E o =] © [l state with Status=Critical of Prop1Gr1
[state with Status=Medium of Prop3Gr1
Prop2Gr2
FropiLtv] SR [] state with Status=Low in Prop2Gr2 and
impacting state in Prop3Gr1
O impacting states
Figure 40 - TSP: Alarm termination example: TSP group updates Step1
The alarm1 termination is received and a number of methods are called by the TSP
framework. As alarm1 has a role in the computation of all states in all groups, it
will result in the groups’ status change. Alarm1 has no impact on service Alarms
computation. The propagation groups are as shown in Figure 29.
Step?2 atter alarm1 termination
] &
E (@) Prop3Grl
e o
O root cause alarms
D d © service alarm in Prop2Gr2
a o and sub service alarm in Prop3Gr1
o EII o QO service Alarm in Prop3Gr1
8 o O [state with Status=Medium of Prop1Gr1
[state with Status=Low of Prop3Gr1
Prop1Gr1 Prop2Gr2
e RN [state with Status=OK in Prop2Gr2 and
impacting state in Prop3Gr1
O impacting states

Figure 41 - TSP: Alarm termination example: TSP group updates Step2

118

8.1.2 Propagation Interface

@ Fropagationinterface

EventForwarder getStateF orwarder()

String[] getDbTypes()

Double computePercentage Availakility (PropagationGroup group)
void what ToeDoWhenPropagationlsinitializec()

8.1.3 Event Role Check

@ EventRoleCheck

boolean isMatchingRootCauseAlarmCriterial Alarm a, PropagationGroup group)
boolean isMatchingSubRootCauseAlarmCriterial Alarm a, PropagationGroup group)
boolean isMatchingimpactingStateCriterial State state, PropagationGroup group)
boolean isMatchingServiceAlarmCriterial &larm a, PropagationGroup group)
boolean isMatchingSubAlarmCriterial Alarm a, PropagationGroup group)

8.1.4 State Creation

Method used to check whether all criteria are met to create the State:

@ StateCreation

boolean isAlCriteriaF orStateCreation{PropagationGroup group)
hoolean computeState(PropagationGroup group)
State createState(String stateld)

8.1.5 Service Alarm Creation and Clearance

Method used to check if all criteria are met to create the Service alarm:

@ SenvicedlarmCreation

hoolean isAlCriteriaF orServiceAlarmCreation{PropagationGroup grougp)
Event calculateReferenceEvent{PropagationGroup group)

Long computeDelayForServiceAlarmCresation] Alarm alarm)

Long computeDelayForServiceAlarmClearance(Alarm alarm)

8.1.6 Common Entity Check

Methods used to calculate Information for optimizations

119

@ CommonEntityCheclk

String computePropagationkey(Event event, String propagationEntity)
Long computeGroupPriority(Event event)

8.1.7 PropagationGroup update

Methods used to manage the propagation group life cycle, and its associated
alarms and states.

@ FropagationGrouplUipdate

void whatToDoVWhenRootCausellarmls Attached ToGroupl Alarm alarm, PropagationGroup group)
void whatToDoWhenlmpactingStatels AttachedToGroupState state, PropagationGroup group)
void whatToDoWhenStatels AttachedToGroupl State state, PropagationGroup group)

void whatToDovWhenStatelsUpdated(State state, PropagationGroup group)

hoolean whatTeDoPeriodicallyFor AGroup{PropagationGroup group)

void whatToDoWhenService AlarmlzAttached ToGroup{PropagationGroup group)

void whatToDovWhenSubalarmlsAttachedToGroupd Alarm alarm, PropagationGroup grougp)

120

8.1.8 Network State Update

@ NetworkStateUpdate

boolean calculatelfServiceAlarmHasToBeCleared{PropagationGroup group)
void whatToDoWwhenService AlarmlsCleared(PropagationGroup group)

void whatToDovwhenSubAlarmlsClearediAlarm alarm, PropagationGroup group)
void whatTeDoWhenRootCauselAlarmlsCleared({Alarm alarm, PropagationGroup group)
void whatToDoWwhenService AlarmlsUncleared{PropagationGroup group)

void whatToDowhenSubalarmlsUncleared{Alarm alarm, PropagationGroup group)
void whatToDoWhenRootCausellarmlsUncleared{ Alarm alarm, PropagationGroup group)

Alarm Network State Changes

Wi Topology State Propagator Framewark PrapagationDefault
I I I
' alarm state has changed !
v Lalt [networkState = CLEARED] !
: InuE) [for all groups where alarm is ServiceAlarm] |
! " whatToDoWhenSeniceAlarmlsCleared(group) o
: IonE) [for all grtliups where alarm is SubAlarm or SubServiceAlarm] :
X . whatToDoWhenSubAlarmlsClearedialarm, group) -
! ! ‘ possibly compute ServiceAlarm clearance for the group B} !
: | |
: loo [for all grbups where alarm is RootCauseAlarm] :
| | whatToDoWhenRootCauseAlarmlsCleared(alarm group) |
\ X ‘ possibly compute ServiceAlarm clearance for the group B} X
i ! 1
I | [networkState = NOT_CLEARED] |
| II:II:IE / [forall grpups where alarm is ServiceAlarm] |
\ , whatToDoWhenSeniceAlarmlsUncleared(group) o
i i i
: IonE) [for all grﬁups where alarm is SubAlarm or SubServiceAlarm] :
| | whatToDoWhenSubAlarmlsUncleared(alarm, group) |
\ \ ‘ possibly compute ServiceAlarm clearance for the group B} \
i i i
! IonE) [for all groups where alarm is RootCauseAlarm] [
! " whatToDoWhenRootCauseAlarmlsUncleared(alarm group) _ !
| i ‘ possibly compute ServiceAlarm clearance for the group Iﬁ |
I . :

Wi

X

Topology State Propagator Framewark

PrapagationDefault

Figure 42 - Alarm networks state change flow

121

8.1.9 Operator State Update
Methods used to manage the life cycle of a
e ServiceAlarm
e SubAlarm
¢ RootCauseAlarm

And its consequences

@ Cperatorstatel) pdate

void whatToDowhenService AlarmlsTerminated{PropagationGroup group)

void whatToDoWhenServiceAlarmlsAcknowledged{PropagationGroup group)

void whatTeDoWhenServiceAlarmlsUnacknowledged{PropagationGroup group)

void whatToDaWhenSubAlarmlsTerminated{ Alarm alarm, PropagationGroup group)

void whatToDoWwhenSubAlarmls Acknowledged{ Alarm alarm, PropagationGroup group)

void whatToDoWwhenSubAlarmlisUnacknowledgedi Alarm alarm, PropagationGroup group)

void whatToDoWhenRootCauseAlarmlsTerminated(Alarm alarm, PropagationGroup group)

void whatToDoWwhenRootCauseblarmis Acknowledged(Alarm alarm, PropagationGroup group)
void whatToDowhenRootCauseblarmisUnacknowledged Alarm alarm, PropagationGroup group)

122

Wi

Alarm Operator State Changes

Topology State Propagator Framewark

PropagationDefault

! alarm state has changed !

i
alt /J [operatorState = HOT_ACKNOWLEDGED]
loo [for all greups where alarm is ServiceAlarm]

possibly compute ServiceAlarm clearance for the group B}

whatToDoWhenSeniceAlarmisUnacknowledged(group)

Y

[for all grtlhups where alarm is SubAlarm or SubServiceAlarm]

" possibly compute ServiceAlarm clearance for the group b}

whatToDoWhenSubAlarmlsUnacknowledged(alarm, group)

L AN B

[for all gr;'uups where alarm is RootCauseAlarm]

| whatToDoWhenRootCauseAlarmlsUnacknowledged(alarm, group)

[

operatorState =

1.
ACKNOWLEDGED]
|

[for all gn}:ups where alarm is ServiceAlarm]

possibly compute ServiceAlarm clearance for the group b}

whatToDoWhenSericeAlarmlsAcknowledged(group)

Y

[for all grc'iups where alarm is SubAlarm or SubServiceAlarm]
i

" possibly compute SenviceAlarm clearance for the group B}

whatToDoWhenSubAlarmlsAcknowledged(alarm, group)

¥

[for all groups where alarm is RootCauseAlarm]
i

whatToDoWhenRootCauseAlarmlsAcknowledged(alarm, group)

.‘ possibly compute ServiceAlarm clearance for the group B}

Y

[

operatorState =

TERMINATED]

[for all greups where alarm is ServiceAlarm]
|

possibly compute ServiceAlarm clearance for the group B}

whatToDoWhenSewiceAlarmlsTerminated(group)

Y

[for all grtliups where alarm is SubAlarm or SubServiceAlarm]

| possibly compute ServiceAlarm clearance for the group
|| and recompute the SenviceAlarm severity if needed

whatToDoWhenSubAlarmlsTerminated(alarm, group)

Iy

[for all gréups where alarm is RootCauseAlarm]
]

whatToDoWhenRootCauseAlarmlsTerminated(alarm group)

possibly compute ServiceAlarm clearance for the group
and recompute the SericeAlarm seventy if needed

Y

WM

X

Topology State Propagatar Framewarlk

‘ FropagationDefault

Figure 43 - Alarm operator state change flow

123

8.1.10 Alarm Attribute Update

Methods used to manage the Severity or an Attribute Update of
e ServiceAlarm
¢ RootCause Alarm
e SubAlarm

, and its consequences

@ AlarmAtributelipdate

void whatToDoWhenRootCauseAlarmSeverityHasChanged({PropagationGroup group, Alarm alarm)

void whatTeDeWhenService AlarmSeverityHasChanged(PropagationGroup group, Alarm alarm)

void whatToDoWWhenSubblarmSevertyHasChangediPropagationGroup group, Alarm alarm)

void whatToDeWhenService AlarmAttributeHas Changed(PropagationGroup group, AttributeChange attributeChange)

void whatToDoWhenSubAlarmAttributeHasChanged(Alarm alarm, PropagationGroup group, AttributeChange attributeChange)

void whatToDoWhenRootCause AlarmAttributeHasChanged{ Alarm alarm, PropagationGroup group, AttributeChange attributeChange)

124

8.1.11 Periodic Check and General Behavior

@ com. hp. uca. expert vp.common.interfaces. GeneralBehaviorinterface

A

@ FeneralBehaviorinterface

MainPolicy getMainPalicy()

void whatToDoPeriodically()

vaid whatToDovWwhenMNewEvertlsJustinserted(Evert event)
void what ToDoWhenTopologyPropagationlsinitialized()

Periodic checks

Topology State Propagator Framewark GeneralBehaviorDefault

=
=

TickFlag is present

|
I
i
>
I
t whatToDoPeriodically() >
!
nEt) [and prupabatiunGruup with tickFlagAware = true]
: whatToDoPeriodicallyForAGroup(group)
|

-

=
=

Topology State Propagatar Framework GeneralBehaviorDefault

Figure 44 - Periodic check and general behavior

125

8.1.12 Alarm Eligibility Update

@ AlarmEligibilityUpdate

void what ToDoWhenSubAlarmlishoMoreEligible{ Alarm alarm, PropagationGroup PropagationGroup)
vaid whatToDoWhenServiceAlarmlisMoMareEligiblefPropagationGroup group)
void whatToDoVWhenRootCauseblarmisMoMoreEligibled Alarm alarm, PropagationGroup group)

Alarm Eligibility Update

Taopology State Propagator Framework | PropagationDefault

Wi

' alarm has been tagged to be retracted

=

i
loop) [for all pn:Jpagation groups where alarm is ServiceAlarm]

" compute ServiceAlarm clearance for the group

whatToDoWhenSeniceAlarmlsMoMoreEligible(group)

: loo [for all propagation groups where alarm is SubAlarm or SubServiceAlarm]
| | whatToDoVWhenSubAlarmlsMoMareEligible(alarm, group) -
X | | compute ServiceAlarm clearance for the group
! ' recompute the SeniceAlarm severity if needed
: gEt / [ServiceAlarm of the group is cleared] |
! " whatToDoWhenSeniceAlarmlsNoMoreEligible(group) o
| T T
: loo [for all propagation groups where alarm is RootCauseAlarm] |
! ! whatToDoWhenRootCauseAlarmisNoMaoreEligiblefalarm,group) !
| | compute SericeAlarm clearance for the group |
X || recompute the ServiceAlarm severity if neaded X
: DEt) [SeruiceAIdlrm of the group is cleared] :
X 1 whatToDaoWhenSeniceAlarmlsNoMareEligible{group) -
quE) [for all propagation groups where dlarm was present] |
l:lEt) [if group has become useless] j :
:_' retract the group | |
! : |
! retract the alarm ! '
Wi .
Tapology State Propagatar Framewark PropagationDefault

Figure 45 - Alarm eligibility update

126

8.1.13 State Eligibility Update

@ StateEligibiliyUpdate

void what ToDoVWhenlmpactingStatelsMobMoreEligiblel State state, PropagationGroup group)

State Eligibility Update

Topology State Propagatar Framewark PropagationDefault

Wi -
| state has been tagged to be retracted ,__:

F o

|
loo [for all pn’ppagatinn groups where state is present as impacting state]

. whatToDaWhenlmpactingStatelsNoMoreEligihle(state group)

compute SernviceAlarm clearance for the group
recompute the ServiceAlarm severity if needed

1
IouE) [for all propagation groups where:s’ta'te was present]
opt [if group has become useless] |

I
I
I retract the group ! !
-« i

-«

T
., retract the state

Wi

‘ Topology State Propagatar Framewark PropagationDefault

Figure 46 - State eligibility update

8.1.14TroubleTicket update

Methods used to manage the Trouble Ticket life cycle when related to a
ServiceAlarm or a SubAlarm, and its consequences.

@ TroubleTicketinterface

boolean isAllCriteriaF orTroubleTicketCreation{PropagationGroup group)

void what TeDoWhenServiceAlarmlsHandled{ PropagationGroup group)

void what ToDoWhenSubAlarmisHandled! Alarm alarm, PropagationGroup grougp)
void whatToDoWhenService AlarmlsReleased{PropagationGroup group)

void whatToDoWhenSubAlarmisReleased{Alarm alarm, PropagationGroup group)
Long computeDelayForTroubleTicketCreation()

127

8.2 Computing State

The default state computation is based on service provided by
TP Service StateCalculation.computePercentageAvailability

().

Depending on the percentage of availability of the impacted node, a state is
associated to that value, given that the limits are:

e 0K =100% available
e DOWN = 0% availabale

A percentage in between those limits will be associated to a status like LOW, MED,
HIGH, and CRITICAL or a customized status.

How is percentage of availability computed?

Mumber of RCA =0

\

'.
L |

(Cumpute P1 hased on it)

[Cnmpute P2 based onimpacting states)

128

How is P1 computed?

[highest perceived Severiw?)

CRITICAL MAJOR MINDR warnng Hoethin

yes yes Ves ¥es

[Consider Stats DOWN) [Consider State HIGH) [Cnnsider State MED) [Consider State LOW) Consider State OK
[P1 = Considered State equivalent percentage value)

®

How is P2 computed?

propagation rule?

i
< CUSTOM\ "y FULL_PERCENTAGE\ nothing or WORST_CHILD _PERCENTAGE

yES yES

is computad per impacted node is computed perimpacted node

v v

(P2 =the average ofthose percentages) [PE =the lesser ofthose nercentages)

v Y
®

(Pz = propagati0n.computePercentageAvaiIabiIityO) [each percentage availability] [each percentage availability J

8.3 Customizing the default behavior
A TSP VP example is provided with the IM SDK, described in Annex E.

8.3.1 Java customization

The default behavior of Topology State Propagator Value Packs can be changed by
overriding some of the Java methods listed in section 8.1. There are three levels of
customization:

e Per propagation (described in section 8.2.1)
e For aset of or for all propagations (described in section 8.3.2)

¢ For non-propagation specific matters (described in section 8.3.3)

The methods that can be overridden to customize the propagation specific
behavior of a Topology State Propagator Value Pack are listed in the
PropagationInterface Javainterface.

129

The methods that can be overridden to customize the non-propagation specific
behavior of a Topology State Propagator Value Pack are listed in the
GeneralBehaviorInterface Javainterface.

Propagationinterface

Texte nds

Figure 47 - One propagation specific customization

PropagationDefault.java is the class that implements the methods of the
Probleminterface. It defines the default behavior of Topology State Propagator
Value Packs.

To override a method of the Propagationinterface, one customization class per
propagation must be created. The customization class extends
PropagationDefaultError! Reference source not found..

See below the “MyPropagation. java” class created by the Eclipse plug-in. It is
located in src/main/java/[com. hp.uca.expert.vp.tp.core].

/**

* This Propagation is empty and ready to define methods to customize the
PropagationDefault

*/

package com.hp.uca.expert.vp.tp.core;

import org.slf4j.LoggerFactory;

import com.hp.uca.expert.vp.tp.core.PropagationDefault;
import com.hp.uca.expert.vp.tp.interfaces.PropagationInterface;

public class MyPropagation extends PropagationDefault implements
PropagationInterface {

public MyPropagation() {
super(LoggerFactory.getLogger(MyPropagation.class));

Note that the name of the class (MyPropagation in the above example) must be
changed to the name of the propagation for which the behavior is to be
customized.

The following equation must be true:

For example, if the extract of TopologyPropagation filters.xmlis:

130

<topFilter name="Propagation_PhoneService">

Then the class Propagation PhoneService.java mustbe declaredinthe
following way:

public final class Propagation_PhoneService extends
PropagationDefault implements PropagationInterface {

Below, the same file is renamed as MyFirstPropagation.java, and overrides both the
calculateAlarmOperatorNote () and

calculateAlarmOtherAttribute () methods.
/**
* The Class MyFirstPropagation extends PropagationDefault and overrides <1i>
* {@link #calculateAlarmOperatorNote(GroupBase, Event)}
* {@link #calculateAlarmOtherAttribute(GroupBase, Action, Event)}
*/
public class MyFirstPropagation extends PropagationDefault implements
PropagationInterface {

/**
*
*/
public MyPropagation() {

super(LoggerFactory.getLogger(MyPropagation.class));
setPublishAttributeForDebug(true);
}

(non-Javadoc)

com.hp.uca.expert.vp.tp.core.PropagationDefault#calculateAlarmOperatorNote
(com.hp.uca.expert.group.GroupBase, com.hp.uca.expert.event.Event)
*/
[@Override
public String calculateAlarmOperatorNote(GroupBase group,
Event referenceEvent) throws Exception {

*
*
* @see
*
*

if (log.isTraceEnabled()) {

LogHelper.enter(log, "calculateAlarmOperatorNote()",
igroup.getName());

}
StringBuilder buf = new StringBuilder();
Boolean first = true;
Set<Alarm> wholeST = ((PropagationGroup) group).getWholeSubTreeRootCauses();

if (wholeST != null &% !wholeST.isEmpty()) {

for (Alarm s : wholeST) {
if (!first) {
buf.append(” | ");

first = false;
}
buf.append(s.getIdentifier());
}
}
String ret = buf.toString();
if (log.isTraceEnabled()) {
LogHelper.exit(log, "calculateAlarmOperatorNote()", ret);

}

return ret;

}

131

/*
* (non-Javadoc)
*

* @see

*com.hp.uca.expert.vp.tp.core.PropagationDefault#calculateAlarmOtherAttribute
* (com.hp.uca.expert.group.GroupBase,
* com.hp.uca.mediation.action.client.Action, com.hp.uca.expert.event.Event)
*/

[@Override

public void calculateAlarmOtherAttribute(GroupBase group, Action action,
Event referenceEvent) throws Exception {

if (log.isTraceEnabled()) {

LogHelper.method(log, "calculateAlarmOtherAttribute()",
igroup.getName());

}
Map<String, String> otherAttributes = new HashMap<String, String>();
otherAttributes.put("ucaCustomField5",
String.format("dbNodeId:<%s>",

((PropagationGroup) group).getDbId()));
action.getVar().put("otherAttributes", otherAttributes); }

The Topology State Propagator framework will automatically invoke the methods
whatToDoWhenXxX (..) listed in section 8.1, at predefined phases of the life
cycle of alarms (depending on propagation context).

For instance, when the alarm ‘alarm1’, which is a root cause in
‘propagationGroupl’,is cleared, the TopologyStatePropagator
framework will invoke the method
whatToDoWhenRootCauseAlarmIsCleared(alarml,
propagationGroupl).

If‘alarml’ belongs to only one propagation “Propagation A", thenthe
Topology State Propagator framework will invoke the method
whatToDoWhenRootCauseAlarmIsCleared (alarml..) fromthe
customization class of “PropagationAl”. If the method
whatToDoWhenRootCauseAlarmIsCleared () hasnotbeen overridden
for “PropagationAl”, the default method is invoked.

If ‘alarml’ belongsalseto “Propagation B”,andis a root cause alarm for
PropagationB as well, the Problem Detection framework will alse invoke the
method whatToDoWhenRootCauseAlarmIsCleared (alarml ..),ifitis
present in the customization class of “Propagation B”, otherwise the default
method is invoked.

Depending on the life cycle phase the alarm is in, the Topology State Propagator
framework decides which method(s) what ToDoWhenXXX (. .) toinvoke.

8.3.2 My PropagationDefault

PropagationDefault class canalso be extended like the ProblemDefault
class (see section 7.4.3). By extending the PropagationDefault class, the
default behavior for all propagations or for a set of propagations can be modified.

132

Propagationinterface

Aextends AN

MyPropagationDefault.java

T extends extends

Figure 48 - MyPropagationDefault: a customization for a group of propagations

In Figure 48 - MyPropagationDefault: a customization for a group of propagations
MyPropagationDefault.java implements some or all of the methods of the
Propagationinterface. Each propagation customization class that extends
MyPropagationDefault.java will benefit from the implementation of those
methods. In the diagram, by default, PropagationAl, PropagationA2 and
PropagationA3 (the latter two hidden behind PropagationAl) will use the
methods implemented in MyPropagationDefault. java. This happens only
because the different propagation Java classes (PropagationAl to A3)
extended in their java code the MyPropagationDefault. PropagationB will
use the methods implemented in PropagationDefault. java, unless these
methods are overridden in PropagationB. java.

For a comprehensive diagram showing the advanced possibilities and subtleties
gained by extending PropagationDefault.java, see AnnexF.

Propagations initialization

Propagations are initialized from the PropagationXmlConfig.xml definedin
the <propagationPolicy> taginthe following way: all the policies defined in
the PropagationbDefault propagation policy (can be
MyPropagationDefault) are applied to all other Propagations, unless they are
overwritten by their respective custom propagation policy. Furthermore, for the
policies seen in Table 24, Strings, Longs, Booleans (which contain a sequence of
String, Long and Boolean types) defined in the PropagationDefault are valid
for all the other Propagations. Even if defined in a custom propagationPolicy,
they are added to those defined in the sequence, and are not overwritten. This
applies also to topology policies: Nodes, PoiCategories and Threshold values
seenin 5.4.2.2. To customize a specific behavior for each of the Propagations, it is
better to delete the PropagationDefault configuration and redefine it for
each of the custom propagation policies. It is recommended to identify what all

133

propagations have in common and define it only once in the
PropagationDefault configuration.

The PropagationDefault (can be MyPropagationDefault) configuration
is used to initialize a propagation whose policy is not defined in the
PropagationXmlConfig.xml, butis defined as a top filter in a
<topFilter>tagof TopologyPropagation filters.xmnl file.Also,if no
PropagationDefault policy tagis defined in the
PropagationXmlConfig.xml file, the default values are applied from the
PropagationDefault.java class.

In the following example, the PropagationDefault policies will apply for all
other propagations defined. For example, by default, the
enableServicealarmCreationissetto false (for Propagation Switch
and Propagation Server), butis set to true when overwritten (in
Propagation PhoneService). The String “dummy” will apply for all
propagations, but each propagation adds its own strings to this list. The node
dbType location and the poi Location and RC will be found in all propagations, but
for example the node dbType callServer and phonePool are added to this
list for Propagation PhoneService,aswellasthe poiCategory Service.
ThepropagationRuleis WorstChildPercentage for all propagations. The
threshold values are set as in PropagationDefault for all propagations except

for Propagation Switch.

<propagationPolicy name="PropagationDefault">
<serviceAlarm>
<enableServiceAlarmCreation>false</enableServiceAlarmCreation>
<delayForServiceAlarmCreation>@</delayForServiceAlarmCreation>
<attachiWholeSubTreeRootCauses>true</attachWholeSubTreeRootCauses>
</serviceAlarm>
<groupTickFlagAware>false</groupTickFlagAware>
<propagationRule>
<rule>WorstChildPercentage</rule>
</propagationRule>
<nodes>
<dbType>
<key><![CDATA[location]]></key>
</dbType>
</nodes>
<poiCategories>
<poiCategory>
<key><![CDATA[LOCATION]]></key>
</poiCategory>
<poiCategory>
<key><![CDATA[RC]]></key>
</poiCategory>
</poiCategories>
<thresholdValues>
<OK name="0K">
<perceivedSeverity>CLEAR</perceivedSeverity>
<availabilityPercentage>100.0</availabilityPercentage>
<poiImportance>None</poiImportance>
</0K>
<LOW name="LOW">
<perceivedSeverity>WARNING</perceivedSeverity>
<availabilityPercentage>99.99999999</availabilityPercentage>
<poiImportance>Low</poilmportance>
</LOW>
<MEDIUM name="MED">
<perceivedSeverity>MINOR</perceivedSeverity>
<availabilityPercentage>75.0</availabilityPercentage>
<poiImportance>Medium</poiImportance>
</MEDIUM>
<HIGH name="HIGH">
<perceivedSeverity>MAJOR</perceivedSeverity>

<availabilityPercentage>50.0</availabilityPercentage>

134

<poiImportance>High</poiImportance>
</HIGH>
<CRITICAL name="CRITICAL">
<perceivedSeverity>CRITICAL</perceivedSeverity>
<availabilityPercentage>25.0</availabilityPercentage>
<poiImportance>Critical</poiImportance>
</CRITICAL>
<DOWN name="DOWN">
<perceivedSeverity>CRITICAL</perceivedSeverity>
<availabilityPercentage>@.0</availabilityPercentage>
<poiImportance>Critical</poiImportance>
</DOWN>
</thresholdvalues>
<booleans />
<strings>
<pl:string key="dummy">
<pl:value><![CDATA[ffff]]></pl:value>
</pl:string>
</strings>
<longs />
</propagationPolicy>

<propagationPolicy name="Propagation_Server">
<serviceAlarm></serviceAlarm>
<groupTickFlagAware>false</groupTickFlagAware>
<propagationRule>
<rule>WorstChildPercentage</rule>
</propagationRule>
<nodes>
<dbType>
<key><![CDATA[switch]]></key>
</dbType>
</nodes>
<booleans />
<strings>
<pl:string key="propagationObject">
<pl:value><![CDATA[Server]]></pl:value>
</pl:string>
<pl:string key="statusName">
<pl:value><![CDATA[state]]></pl:value>
</pl:string>
<pl:string key="percentageAvailabilityKey">
<pl:value><![CDATA[percAvailability]]></p1l:value>
</pl:string>
</strings>
<longs />
</propagationPolicy>

<propagationPolicy name="Propagation_PhoneService">
<serviceAlarm>

<enableServiceAlarmCreation>true</enableServiceAlarmCreation>
</serviceAlarm>
<groupTickFlagAware>false</groupTickFlagAware>
<propagationRule></propagationRule>
<nodes>

<dbType>

<key><![CDATA[phonePool]]></key>
</dbType>
<dbType>

<key><![CDATA[callServer]]></key>
</dbType>

</nodes>

<poiCategories>

<poiCategory>

<key><![CDATA[SERVICE]]></key>

</poiCategory>

</poiCategories>

<booleans />

<strings>

<pl:string key="propagationObject">

<pl:value><![CDATA[PhoneService]]></pl:value>
</pl:string>
<pl:string key="statusName">
<pl:value><![CDATA[state]]></pl:value>

135

</pl:string>

<pl:string key="percentageAvailabilityKey">
<pl:value><![CDATA[percAvailability]]></pl:value>
</pl:string>

</strings>
<longs />
</propagationPolicy>

<propagationPolicy name="Propagation_Switch">
<serviceAlarm></serviceAlarm>
<groupTickFlagAware>false</groupTickFlagAware>
<propagationRule>
<rule>WorstChildPercentage</rule>
</propagationRule>
<nodes>
<dbType>
<key><![CDATA[switch]]></key>
</dbType>
</nodes>
<poiCategories>
<poiCategory>
<key><![CDATA[SERVICE]]></key>
</poiCategory>
</poiCategories>
<thresholdValues>
<OK name="Normal">
<perceivedSeverity>CLEAR</perceivedSeverity>
<availabilityPercentage>100.0</availabilityPercentage>
<poiImportance>None</poiImportance>
</0K>
<LOW name="LowDegraded" >
<perceivedSeverity>WARNING</perceivedSeverity>
<availabilityPercentage>99.99999999</availabilityPercentage>
<poiImportance>Low</poiImportance>
</LOW>
<MEDIUM name="MedDegraded">
<perceivedSeverity>MINOR</perceivedSeverity>
<availabilityPercentage>75.08</availabilityPercentage>
<poiImportance>Medium</poiImportance>
</MEDIUM>
<HIGH name="HighDegraded">
<perceivedSeverity>MAJOR</perceivedSeverity>
<availabilityPercentage>50.0</availabilityPercentage>
<poiImportance>High</poiImportance>
</HIGH>
<CRITICAL name="CriticallyDegraded">
<perceivedSeverity>CRITICAL</perceivedSeverity>
<availabilityPercentage>25.0</availabilityPercentage>
<poiImportance>Critical</poiImportance>
</CRITICAL>
<DOWN name="Down">
<perceivedSeverity>CRITICAL</perceivedSeverity>
<availabilityPercentage>0.0</availabilityPercentage>
<poiImportance>Critical</poiImportance>
</DOWN>
</thresholdValues>
<booleans />
<strings>
<pl:string key="propagationObject">
<pl:value><![CDATA[Switch]]></pl:value>
</pl:string>
<pl:string key="statusName">
<pl:value><![CDATA[state]]></pl:value>
</pl:string>
<pl:string key="percentageAvailabilityKey">
<pl:value><![CDATA[percAvailability]]></p1l:value>
</pl:string>
</strings>
<longs />
</propagationPolicy>

136

8.3.3 MyGeneralBehavior

The same principles apply for the general behavior of propagations as for the non-
problem specific behavior described in section 7.4.5. The methods that can be
overridden to customize the “non-propagation specific” behavior of a Topology
State Propagator Value Pack are listed in the GeneralBehaviorinterface Java
interface.

A “non-propagation-specific” behavior is a behavior that is not related to any
propagation in particular.

For example, the behavior of the initialization of a Topology State Propagator
Value Pack is a “non-propagation-specific” behavior.

To customize a “non-propagation-specific” behavior do the following steps:

¢ Create a MyGeneralBehavior.java (name can be different) Java class in the
following directory:
src/main/java/[com.hp.uca.expert.vp.tp.core].

e Ensure that the value of the property generalBehaviorClLassName inthe
file context.xml inthe
src/main/resources/valuepack/conf/ folder matches
MyGeneralBehavior, as shown in Figure 32.

¢ Override the methods of the GeneralBehaviorinterface for which the
behavior has to be customized.

IContext.xml

bean id="propagationsFactory”

property
name="general BehaviorClassName

2y MyGeneralBehavior

public class MyGeneralBehavior extends GeneralBehaviorDefault
fimplements GeneralBehaviorInterface {

I3

MyGeneralBehavior EVE!

/**
*
*/
public MyGeneralBehavior() {
super();
setlog(Logger.getlogger(MyGeneralBehavior.class));
}

Figure 49 — TSP MyGeneralBehavior name matching

Below is an example of a MyGeneralBehavior.java class that overrides one method
of the interface GeneralBehaviorinterface: computeSourceUniqueld().

137

public class MyGeneralBehavior extends GeneralBehaviorDefault implements
iGeneralBehaviorInterface {

/**
* Instantiates a new my general behavior.
*/

public MyGeneralBehavior() {
super(LoggerFactory.getLogger(MyGeneralBehavior.class));

/*
* (non-Javadoc)
*
* @see
* com.hp.uca.expert.vp.tp.core.GeneralBehaviorDefault#computeSourceUniqueld
* (com.hp.uca.expert.event.Event)
*/

l@Override

public String computeSourceUniqueId(Event event) throws Exception {
String ret = super.computeSourceUniqueId(event);
return ret == null ? ret : ret.toUpperCase();

13

138

Troubleshooting

9.1 Logging

Chapter9

The logging configuration for an Inference Machine Value Pack (as for any UCA for
EBC Value Pack) has to be done inthe $ {UCA EBC INSTANCE}/conf/uca-

ebc-1log47j.xml file
on the UCA for EBC server.

The list of specific IM loggers is listed below:

Logger

Description

com.hp.uca.expert.vp.common.actions.db

Controls the execution of DB requests

com.hp.uca.expert.vp.common.actions.temip

Controls the execution of HP TeMIP
actions (and TroubleTicket actions)

Controls the execution of grouping keys

com.hp.uca.expert.vp.common.actions.GroupingKeys computation

com.hp.uca.expert.vp.common.lifecycle

Controls Inference Machine Internals

com.hp.uca.expert.vp.common.services

Controls Inference Machine Services

Problem Detection specific loggers:

Logger

Description

com.hp.uca.expert.vp.pd.config.ProblemPropertie
s

Controls the extraction of values from the
XML configuration files

com.hp.uca.expert.vp.pd.core.XmlProblem

Controls the parsing of the XML of the
XmlProblem customization

com.hp.uca.expert.vp.pd.core.ProblemDefault

Controls the execution of the default
implementation of Problem Detection
behavior

com.hp.uca.expert.vp.pd.core.internal.PD_AlarmR
ecognition

Controls the decoding and setting of the
roles of alarms

com.hp.uca.expert.vp.pd.core.
internal.PD_Lifecycle

Controls the states propagation methods

com.hp.uca.expert.vp.pd.core.
internal.PD_TroubleTicket

Controls the emission of Trouble Ticket
requests

com.hp.uca.expert.vp.pd.core.
internal.PD_Navigation

Controls the requests for updates on alarms

com.hp.uca.expert.vp.pd.core.
internal.PD_Process

Controls the execution of operations of PD at
a high level, (attaching a Sub-Alarm to a
group, creating a Trouble Ticket, and so on)

139

Controls the execution of operations of PD at

com.hp.uca.expert.vp.pd.core. the highest level: the methods invoked
internal.ProblemDetection directly from the rules
com.hp.uca.expert.vp.pd.problem Controls the customization of classes
com.hp.uca.expert.vp.pd.im.lifecycle Controls Problem Detection Internals

com.hp.uca.expert.vp.pd.services.PD_Service_Life | Controls Problem Detection Services for Life
cycle cycle

com.hp.uca.expert.vp.pd.services.PD_Service_Pro | Controls Problem Detection Services for
blemAlarm Problem Alarm

Controls Problem Detection Miscellaneous
com.hp.uca.expert.vp.pd.services.PD_Service_Util | garyices

com.hp.uca.expert.vp.pd.services.PD_Service_Nav | Controls Problem Detection Services for
igation Navigation

com.hp.uca.expert.vp.pd.services.PD_Service_Acti | Controls Problem Detection Services for
on Actions

com.hp.uca.expert.vp.pd.services.PD_Service Tro | Controls Problem Detection Services for
ubleTicket Trouble Tickets

Topology State Propagator specific loggers:

Logger Description
com.hp.uca.expert.vp.tp.config.Propa | Controls the extraction of values from the XML
gationProperties configuration files
com.hp.uca.expert.vp.tp.core.Propag | Controls the execution of the default
ationDefault implementation of Propagation behavior
com.hp.uca.expert.vp.tp.core.interna | Controls the decoding and setting of the roles of
|.TP_EventRecognition events
com.hp.uca.expert.vp.tp.core. Controls the states propagation methods

internal.TP_Lifecycle

com.hp.uca.expert.vp.tp.core. Controls the emission of Trouble Ticket requests
internal. TP_TroubleTicket

com.hp.uca.expert.vp.tp.core. Controls the requests for updates on alarms and

internal. TP_Navigation events

Controls the execution of operations of TSP at a

com.hp.uca.expert.vp.tp.core. high level, (attaching a subalarm to a group,
internal.TP_Process creating a Trouble Ticket, ...)

Controls the execution of operations of TSP at the
com.hp.uca.expert.vp.tp.core. highest level: the methods invoked directly from
internal.TopologyPropagation the rules

com.hp.uca.expert.vp.tp.propagation | Controls the customization of classes

com.hp.uca.expert.vp.tp.im.lifecycle | Controls TSP Internals Life cycle

com.hp.uca.expert.vp.tp.services.TP_ Controls TSP Services for Life cycle
Service_Lifecycle

com.hp.uca.expert.vp.tp.services. TP | controls TSP Services for Service Alarm
_Service_ServiceAlarm

140

com.hp.uca.expert.vp.tp.services.TP
_Service_Util

Controls TSP Miscellaneous Services

com.hp.uca.expert.vp.tp.services.TP
_Service_Navigation

Controls TSP Services for Navigation

com.hp.uca.expert.vp.tp.services. TP
_Service_Action

Controls TSP Services for Actions

com.hp.uca.expert.vp.tp.services.TP
_Service_TroubleTicket

Controls TSP Services for Trouble Tickets

com.hp.uca.expert.vp.tp.services. TP
_Service_Group

Controls TSP Services for Grouping

com.hp.uca.expert.vp.tp.services.TP_
Service_PointOfinterest

Controls TSP Services for Point Of Interest

In addition to these Inference Machine (PD, TSP, and common library) loggers, it is
recommended to log with the following HP UCA EBC logger

logger name="com.hp.uca.expert.filter"withlevel

- DEBUG to trace why an alarm does not pass

- TRACE to trace why an alarm passes

141

Chapter 10

Annexes

142

Annex A.
Migration steps

A.1. Migration steps from
Version 3.2 to 3.3

The interface listed below is no more supported.

Type API Replaced by
SupportedTroubleTicketActions.closeTrou
bleTicket(Action action, Scenario scenario,
Method CommonActioninterface
problemOrPropagation, String
troubleTicketldentifer)

closeTroubleTicket(Action action, Scenario
scenario, GroupBase group,
CommonActioninterface problemOrPropagation,
String troubleTicketldentifer)

Table 29 - Deprecated APIsinIM 3.3

Type API Deprecated by
ProblemDefault.computeDelayForTrouble | ProblemDefault.computeDelayForTroubleTicketC

Method . . .
TicketCreation(Event event) reation(Event event, Group group)

Method PropagationDefault.computeDelayForTrou | PropagationDefault.computeDelayForTroubleTic
bleTicketCreation() ketCreation(PropagationGroup group)

See [R12] Unified Correlation Analyzer for EBC Inference Machine Release Notes

A.2. Migration steps from
Version 3.1to0 3.3

Since version 3.2, PB is now part of the Inference Machine, which embeds PD and TSP products. As PB
and TSP have the exact same needs to execute actions on NMS (create alarm, clear alarm, group
alarms, and so on), it has been decided to use a common ActionsFactory for this.

This common ActionsFactory is now part of a common library, which is delivering its own namespace.
As this namespace is different, the compatibility is broken, but, it brings some improvements:

e The logic of actions is separated from PD and TSP

e ltisreusable as it is: the same ActionsFactory can be used across PD and TSP

e |tis easier to understand

Deprecated APIs
The methods, classes, and packages listed in the following table are deprecated with this
version and will be removed in next major update.

This is mainly due to the fact that most of these methods are now contained in the uca-
evp-common . jar that is used also by the Topology State Propagator for Service Impact
toolkit.

143

Table 30 - Deprecated APIs in PD 3.2

Type API Deprecated by

Package com.hp.uca.expert.vp.pd.core.exception com.hp.uca.expert.vp.common.exceptions
ProblemDefault.computeDelayForTrouble | ProblemDefault.computeDelayForTroubleTicketC

Method . . .

TicketCreation(Alarm alarm) reation(Event event)
ProblemDefault.computeDelayForProblem | ProblemDefault.computeDelayForProblemAlarm

Method . .

AlarmCreation(Alarm alarm) Creation(Event event)
ProblemDefault.computeDelayForProblem | ProblemDefault.computeDelayForProblemAlarm

Method
AlarmClearance(Alarm alarm) Clearance(Event event)

Method ProblemDefault.computeTimeWindow(Ala | ProblemDefault.computeTimeWindow(Event
rm alarm) event)

Method PD_Service_Enrichment.setAlarmisMissing | PD_Service_Enrichment.setEventlsMissingInform
Information(Alarm a, String problemName) | ation(Event e, String problemName)
PDTSng|ce_Enr|chment.setAlarmIsNoMor PD_Service_Enrichment.setEventlsNoMoreMissin

Method eMissingInformation(Alarm a, String . .

gInformation(Event e, String problemName)
problemName)

Method PD_Service_Enrichment.isAlarmMissingInf | PD_Service_Enrichment.isEventMissingInformati
ormation(Alarm a, String problemName) on(Event e, String problemName)
PD_Service_Enrichment.requestAlarmCom | PD_Service_Enrichment.requestEventComputatio

Method - - . . -
putation(Scenario scenario, Alarm a) n(Scenario scenario, Event e)
PD_Service_Group.calculateLeadGroup(Col | PD_Service_Group.calculateLeadGroup(Collection

Method :
lectionGroup groups) <Group> groups, Boolean sorted)
PD_Service_Group.isLeadGroup(Group PD_Service_Group.isLeadGroup(Group

Method potentialLeaderGroup, CollectionGroup potentialLeaderGroup, Collection<Group>
groups) groups, Boolean sorted)
PD_Service_Lifecycle.cloneAlarmToBeReE | PD_Service_Lifecycle.cloneEventToBeReEvaluate

Method
valuated(Alarm alarm) d(Event event)

Method PD_Service_Util.extractSubString() com.hp.uca.expe.rt.vp.common.serwces.Ut|lSerV|

ce.extractSubString()
PD_Service_Util.retrieveBeanFromContext | com.hp.uca.expert.vp.common.services.UtilServi
Method .
Xml() ce.retrieveBeanFromContextXml()
Method PD_Service_ Util fileFromResourceName() com_.hp.uca.expert.vp.common.serwces.Ut|lSerV|
ce.fileFromResourceName()
PD_Serwcg_Utﬂ.storeProblemlnfosInAlar PD_Service_Util.storeProbleminfosinEventLocalV
mLocalVariable(ProblemContext .

Method ariable(ProblemContext problemContext, Event
problemContext, Alarm alarm, event, List<ProblemInfo> probleminfos)
ListProblemInfo probleminfos) ’ P
PD_Service_Util.retrieveProbleminfosFro PD_Service_Util.retrieveProbleminfosFromEvent

Method mAlarmLocalVariable(ProblemContext LocalVariable(ProblemContext problemContext,
problemContext, Alarm alarm) Event event)

Class TestUtils com.hp.uca.expert.vp.common.testmaterial.Test

Utils

Migrating PD VP 3.0/3.1 to 3.3

Problem Detection v3.3 does not provide any automatic migration tool for Java files.

144

However, the SDK provides an XLST (eXtensible Stylesheet Language Transformation) file that you

can use to migrate the PD configuration file.
Java code

Removed classes

The following imports generate compilation errors because the classes do not exist anymore. The
listed classes for v3.1 have to be replaced with the corresponding classes listed for v3.3.

Table 31 - Java classes removed in PD 3.3

Classinv3.1

Classinv3.3

import com.hp.uca.expert.vp.pd.config.Action

import com.hp.uca.expert.vp.im.config.Action

import com.hp.uca.expert.vp.pd.config.Actions

import com.hp.uca.expert.vp.im.config.Actions

import com.hp.uca.expert.vp.pd.config.Booleanltem

import
com.hp.uca.expert.vp.im.config.Booleanltem

import com.hp.uca.expert.vp.pd.config.Booleans

import com.hp.uca.expert.vp.im.config.Booleans

import com.hp.uca.expert.vp.pd.config.Longltem

import com.hp.uca.expert.vp.im.config.Longltem

import com.hp.uca.expert.vp.pd.config.Longs;

import com.hp.uca.expert.vp.im.config.Longs

import com.hp.uca.expert.vp.pd.config.Stringltem;

import com.hp.uca.expert.vp.im.config.Stringltem

import com.hp.uca.expert.vp.pd.config.Strings

import com.hp.uca.expert.vp.im.config.Strings

Import
com.hp.uca.expert.vp.pd.config.TroubleTicketAction

import
com.hp.uca.expert.vp.im.config.TroubleTicketActio
n

import
com.hp.uca.expert.vp.pd.config.TroubleTicketActions

import
com.hp.uca.expert.vp.im.config.TroubleTicketActio
ns

import
com.hp.uca.expert.vp.pd.core.exception.InvalidSuppo
rtedActions

import
com.hp.uca.expert.vp.common.exceptions.lnvalidS
upportedActions

import
com.hp.uca.expert.vp.pd.core.exception.InvalidSuppo
rtedTroubleTicketActions

import
com.hp.uca.expert.vp.common.exceptions.lnvalidS
upportedTroubleTicketActions

import
com.hp.uca.expert.vp.pd.interfaces.ActionsFactoriesS
election

import
com.hp.uca.expert.vp.common.interfaces.ActionsF
actoriesSelection

import
com.hp.uca.expert.vp.pd.interfaces.SupportedActions

import
com.hp.uca.expert.vp.common.interfaces.Supporte
dActions

Import
com.hp.uca.expert.vp.pd.interfaces.SupportedTroubl
eTicketActions

import
com.hp.uca.expert.vp.common.interfaces.Supporte
dTroubleTicketActions

Customized ProblemDefault

If you override the listed methods from ProblemDefault, they need to be changed because they do

not exist anymore.

The listed methods for v3.1 have to be replaced with the corresponding methods listed for v3.3.

Table 32 - ProblemDefault method changesin PD 3.3

Method inv3.1

Method inv3.3

chooseSupportedActions(Alarm alarm,
Probleminterface problem)

chooseSupportedActions(Event event,
CommonActioninterface
problemOrPropagation)

chooseSupportedTroubleTicketActions(Alarm
alarm,
Probleminterface problem)

chooseSupportedTroubleTicketActions(Event
event,

CommonActioninterface
problemOrPropagation)

145

Customized ActionsFactory

If you override the following methods from ActionsFactory, they need to be changed because they do

not exist anymore.

The listed methods for v3.1 have to be replaced with the corresponding methods listed for v3.3.

Table 33 - ActionsFactory method changes in PD 3.3

Method inv3.1

Method in v3.2

createProblemAlarm(Action action, Scenario
scenario,

Group group, Probleminterface problem, Alarm
referenceAlarm)

createAlarm(Action action, Scenario scenario,
GroupBase group, CommonActioninterface
problemOrPropagation, Event referenceEvent)

terminateAlarm(Action action, Scenario scenario,
Alarm alarm, Probleminterface problem)

terminateAlarm(Action action, Scenario
scenario, Alarm alarm, CommonActioninterface
problemOrPropagation)

clearAlarm(Action action, Scenario scenario,
Alarm
alarm, Probleminterface problem)

clearAlarm(Action action, Scenario scenario,
Alarm alarm, CommonActioninterface
problemOrPropagation)

acknowledgeAlarm(Action action, Scenario
scenario,
Alarm alarm, Probleminterface problem)

acknowledgeAlarm(Action action, Scenario
scenario, Alarm alarm, CommonActioninterface
problemOrPropagation)

unacknowledgeAlarm(Action action, Scenario
scenario, Alarm alarm, Probleminterface problem)

unacknowledgeAlarm(Action action, Scenario
scenario, Alarm alarm, CommonActioninterface
problemOrPropagation)

associateAlarmsForHistoryNavigation(Action
action,

Scenario scenario, Group group, Collection Alarm
children, Probleminterface problem)

associateAlarmsForHistoryNavigation(Action
action, Scenario scenario, GroupBase group,
Collection Alarm children,
CommonActioninterface
problemOrPropagation)

dissociateAlarmsForHistoryNavigation(Action
action,

Scenario scenario, Group group, Collection Alarm
children, Probleminterface problem)

dissociateAlarmsForHistoryNavigation(Action
action, Scenario scenario, GroupBase group,
Collection Alarm children,
CommonActioninterface
problemOrPropagation)

setHistoryNavigation(Action action, Scenario
scenario,
Alarm alarm, Qualifier qualifier)

setHistoryNavigation(Action action, Scenario
scenario,
Alarm alarm, Qualifierinterface qualifier)

setGenericAttribute(Action action, Scenario
scenario,
Alarm alarm, Command command)

setGenericAttribute(Action action, Scenario
scenario,
Alarm alarm, Command command)

Customized TroubleTicketActionsFactory

If you override the following methods from TroubleTicketActionsFactory, they need to be changed

because they do not exist anymore.

The listed methods for v3.1 have to be replaced with the corresponding methods listed for v3.3.

Table 34 - TroubleTicket method changesin PD 3.3

Method inv3.1

Method inv3.3

createTroubleTicket(Action action, Scenario
scenario,

Group group, Probleminterface problem, Alarm
referenceAlarm, List Alarm alarmsToAssociate)

createTroubleTicket(Action action, Scenario
scenario, GroupBase group,
CommonActioninterface
problemOrPropagation, Alarm referenceAlarm,
List

Alarm alarmsToAssociate)

closeTroubleTicket(Action action, Scenario
scenario, Probleminterface problem, String
troubleTicketldentifer)

closeTroubleTicket(Action action, Scenario
scenario,

CommonActioninterface problemOrPropagation,
String troubleTicketldentifer)

146

associateTroubleTicket(Action action, Scenario
scenario, Group group, ProblemInterface
problem, List Alarm alarmsToAssociate, String
troubleTicketldentifer)

associateTroubleTicket(Action action, Scenario
scenario, GroupBase group,
CommonActioninterface
problemOrPropagation, List Alarm
alarmsToAssociate,

String troubleTicketldentifer)

dissociateTroubleTicket(Action action, Scenario
scenario, Group group, Probleminterface
problem, List Alarm alarmsToDissociate, String
troubleTicketldentifer)

dissociateTroubleTicket(Action action,

Scenario scenario, GroupBase group,
CommonActioninterface problemOrPropagation,
List Alarm alarmsToDissociate, String

troubleTicketldentifer)

XML configuration
The ProblemXMLConfig.xml file, or its equivalent, needs to be modified to make use of the new
http://config.im.vp.expert.uca.hp.com/namespace for certain elements of the file, like:

* Actions

* TroubleTicketActions

* Booleans

* Longs

» Strings
You canuse the ProblemxmlConfig-Migration-to-v32.xslt file, whichis part of the
Inference Machine SDK, to transform your current ProblemXmlConfig.xml version 3.1 to
version 3.3.

Using Eclipse, perform the following steps:

Select the ProblemXmlConfig.xml file.

Right-click and choose Run As > XSL Transformation.

Clicking Add External Files to add the input file.

Select the xslt file provided under ${UCA _EBC_DEV_HOME}/schemas

L X

AN~

E.] Input File

Select an XSLT file for the transformation

Transformation Pipeline

nXmlConfig-Migration-to-V32 xslt - CA\UCA-EBC-DEV\3.2\sch

| Add External Files|

- |

Remove l

OK] l Cancel]

Figure 50 - Selecting the XSLT transformation file

5. Click OK.

If you receive errors like Namespace for prefix 'pl' has not been declared,the
probable cause is that you are not using the right processor to transform your XML. In such a case:

1. Choose Run configurations.

Choose the last run.

Click on Processor tab.

Use specific processor: Xalan or Saxon (depending on your settings).
Click Run.

e whN

147

Annex B.

Problem Detection Value Pack

example

As part of the Inference Machine Development Kit, an example Value Pack project,
called pd-example, is available.

If deployed, the pd-example Value Pack is able to recognize four problems:
e Problem BitError

e Problem Synch

Problem Power
e XmlGeneric Synch
Each of these problems have specific filters.

Problem BitError,Problem Synchand Problem Power are problems
extending the ProblemDefault Java class, by overriding some of its methods.
XmlGeneric Synchis also an extended problem, but customized through XML
(inthe src/main/resources/valuepack/conf/ProblemXmlConfig.xml
file)

Alarm enrichment, Action Factory and Trouble Ticket Action Factory examples are
also provided for each problem. In addition a sample tests file is provided that can
be executed with JUnit. These tests simulate the deployed behavior of the pd-
example Value Pack without having to actually deploy it. Alarms are injected in the
Value Pack as though they came from the network.

This chapter describes the contents and structure of the Value Pack example pack.

148

Contents of the src/main/java directory of pd-example

B.1. The src/main/java directory of the
Problem Detection Value Pack example contains code customization.

4 =% pd-example
4 3 src/main/java
4 H} com.acme.enrichment
. [J] EnrichmentProperties.java
- [J] EnrichmentPropertiesM¥Bean.java
- [J] EnrichmentXml.java
. [J] ManagedObjectToSite.java
4 H com.hp.uca.expert.vp.pd.core
. [J] ActionsFactoryGeneralBehavior.java
- [J] MyGeneralBehavior.java
. [J] MyGeneralBehaviorExample.java
« [4] MyProblemDefault.java
- [J] ProblemDefaultTest java
a B com.hp.uca.expert.vp.pd.problem
. [J] Problem_ActionsFactory java
5 m Problern_BitError_MyProblemDefault.java
- [J] Problem_BitError java
- [4] Problem_Power java
. [J] Problem_Synch.java
- [sroftest/java
B src/main/resources
+ [src/main/resources/valuepack/conf
+ [srcftest/resources

Figure 51 - pd-example src/main/java directory contents

com.acme.enrichment package

This package contains classes used to read the Enrichment . xm1 XML file called
presentin src/main/resources/valuepack/conf.

It contains information to enrich alarms and acts as an association table. Locating
the managedObiject of an alarm its associated site can be identified.

Example code fromEnrichment .xml is as follows:

<managedObjectToSite>
<managedObject>motorola omcr system [..] 5 btssitemgr 0 msi 18 mms
0 </managedObject>
<site>bsc khorfakkan bsc24 bts bridippm 6185</site>
</managedObjectToSite>

- TheMissingInfoAlarmPowerTest.java fileispresentin
src/test/java/ft/enrichment is atest file sending alarms. Sent
alarms belong to the Problem Power problem and need to be enriched
with site information.

- EnrichmentProperties.java is the class that contains methods to read
the Enrichment.xml file.

- EnrichmentPropertiesMXBean.java is theinterface implemented by
EnrichmentProperties.java

- EnrichmentXml.java and ManagedObjectToSite.java Ccreate
data structures to store the enrichment information.

149

com.hp.uca.expert.vp.pd.core package

- ActionsFactoryGeneralBehavior.java contains an example of the
whatToDoWhenAlarmIsJustInserted () method that needs tobe
overrided for enrichment.

- MyGeneralBehavior.java &MyGeneralBehaviorExample.java
also contain example override methods of the GeneralBehaviorinterface. See
7.4.5 MyGeneralBehavior

- MyProblemDefault.java illustrates override methods of the
Probleminterface for a subset of problems. See 7.4.3 My ProblemDefault.

com.hp.uca.expert.vp.pd.problem package

The com.hp.uca.expert.vp.pd.problempackage contains problem
customization classes for the four sample problems supplied by pd-example.

Table 35 - Overrides provided for pd-example problems

File Overrides

calculateProblemAlarmAdditionalText
Problem BitError.java computeProblemEntity

isAllCriteriaForProblemAlarmCreation

calculateProblemAlarmAdditionalText
Problem Sync.java computeProblemEntity
isAllCriteriaForProblemAlarmCreation

calculateProblemAlarmEventTime

calculateProblemAlarmAdditionalText
computeProblemEntity

isAllCriteriaForProblemAlarmCreation
Problem Power.java
calculateProblemAlarmSeverity

isInformationNeededAvailable

isMatchingProblemAlarmCriteria

calculateProblemAlarmAdditionalText

Problem BitError MyPr computeProblemEntity

oblemDefault.java isAllCriteriaForProblemAlarmCreation

calculateProblemAlarmSeverity

calculateProblemAlarmAdditionalText

computeProblemEntity
Problem ActionsFactor) . .)

) - isAllCriteriaForProblemAlarmCreation
y.Jjava

isMatchingSubAlarmCriteria

isMatchingTriggerAlarmCriteria

150

Contents of the of src/test/java directory of pd-example

This directory contains the source code of JUnit tests used to simulate the behavior of the
pd-example value pack. It also contains Actions Factory customization examples.

©2d pd-example
[src/main/java
3 sroftest/java
IR ft.actionsfactory
[I] ActionsFactoryTest.java
[J] MyActionsFactory.java
[J] MyActionsFactoryCallbacks.java
[7] MyTroubleTicketActionsFactory.java
[J] MyTroubleTicketActionsFactoryCallbacks.java
4 ftall
[1] PDFramework_sequencedTestjava
9 POFramework_sequencedTest
H ftenrichment
I MissinglnfoAlarmPowerTest.java
[src/main/resources
[=rc/main/resources/valuepack/conf

2 srcftest/resources

Figure 52 - pd-example src/test/java directory contents

ft.actionsfactory package

A Problem Detection Value Pack receives alarms from a Network Management
System (NMS), performs alarm processing, then requests the NMS to execute
actions.

The list of supported actions is defined in the SupportedActions Java

interface. The SupportedActions interface defines methods such as
createProblemAlarm(), terminateAlarm(), clearAlarm()

- TheActionsFactory.java classis a simple implementation of the
SupportedActions interface.

- If an NMS other than HP TeMIP is used, an implementation of the
SupportedActions interface must be created on the model of
MyActionsFactory.java.

Problem Detection provides TeMIPActionsFactory. java,aworking
implementation of SupportedActions for the scenario when HP TeMIP is
the NMS.

- MyActionsFactoryCallback.java contains the callbacks methods that
the NMS must call after executing some of the actions.

A Problem Detection Value Pack can create and manage trouble tickets. The
possible interactions between the Problem Detection Value Pack and a trouble
ticketing system are listed in the SupportedTroubleTicketActions.java
interface. The SupportedTroubleTicketActions interface defines methods
suchas createTroubleTicket (), closeTroubleTicket ().

- TheTroubleTicketActionsFactory.java classisasimple
implementation of the SupportedTroubleTicketActions interface.

151

If a trouble ticketing system other than HP Service Manager (part of HP TeMIP) is
used, an implementation of the SupportedTroubleTicketActions
interface must be created on the model of
MyTroubleTicketActionsFactory.java.

Problem Detection provides
TeMIPTroubleTicketActionsFactory.java,aworking
implementation of SupportedTroubleTicketActions for the scenario
when HP Service Manager is the ticketing system in use.

MyTroubleTicketActionsFactoryCallback.java containsthe
callbacks methods that the trouble ticketing system must call after executing
some of the requests.

- ActionsFactoryTest.java is atest file that simulates sending alarms and

then checks that the necessary actions are performed.

ft.all package

PDFramework_sequencedTest. java is a test file. It sends alarms
corresponding to the problems provided by pd-example.

It checks the following:

Problems are detected

Problem Alarms are created
Sub-Alarms are tagged

The number of groups created is correct

The number of actions executed is correct

ft.enrichment package

MissingInfoAlarmPowerTest.java isa test file. It sends alarms that need
to be enriched and checks whether the enrichment was successful.

Contents of the src/main/resources directory of pd-example

The src/main/resources directory of the Problem Detection Value Pack example
contains configuration files.

152

‘_;"f- pd-exarnple
[src/main/java
i sro/test/java
[src/main/resources
2 wvaluepack.pd
¥ ProblemDetection_filters.xml
"EI ProblemDetection_Rules.pkg
[src/main/resources/valuepack/conf
¥| contextxml
X Enrichment.aml
®| ProblemXmlConfig.cml
[5] ProblemXmlConfig.usd
%] ValuePackConfiguration.xml
[srcftest/resources

Figure 53 - pd-example src/main/resources directory contents

Filters

Filters are available in:
src/main/resources/valuepack/pd/ProblemDetection filters.xml

The top filters correspond to the four problems delivered by the Value Pack
example:

e Problem_Synch

e Problem_Power

e Problem_BitError

e XmlGeneric_Synch
<topFilter name="Problem_Synch">
<topFilter name="Problem_Power">
<topFilter name="Problem_BitError">

<topFilter name="XmlGeneric_Synch">

Rules
Rules are available in:
src/main/resources/valuepack/pd/ProblemDetection Rules.pkg
Configuration

Configuration files are available in src/main/resources/valuepack/conf

- context.xml declares that the Problem Detection Value Pack relies on a
customization of the GeneralBehavior.

- Enrichment.xml contains data to enrich alarms belonging to
Problem Power

- ProblemXmlConfig.xml contains the main policies, for example which
Actions Factory to use; and the problem specific policies, for example the time
window of each problem.

153

- ProblemXmlConfig.xsd contains the XML schema of
ProblemXmlConfig.xml

ValuePackConfiguration.xml defines the configuration of the Value
Pack and its scenarios, the scenario policies, and the mediation flows.

Contents of the src/test/resources directory of pd-example

The src/test/resources directory of the Problem Detection Value Pack
example contains test configuration files.
‘_;‘J pd-example

[src/main/java
i sro/test/java
[src/main/resources
[src/main/resources/valuepack/conf
[srcftest/resources
f com.hp.uca.expertvp.pd.core
[J] ProblemDefault.java
FE ftactionsfactory
¥| ActionsFactoryTest-context.oml
Alarms.xml

=

ProblemDetection_filters_ActionsFactony.xml
ProblemXmlConfig_ActionsFactory.aml
ValuePackConfiguration_ActionsFactory.ml

F [=] [[=

all

i

Alarrs_all_problerns.xml
Alarms_BitError_T1.xml
Alarms_BitError_T2.xml
Alarms_Power_T1.axml
Alarms_Power_T2.xml
Alarms_Power_T3.xml
Alarms_Synch_T1.zml
Alarrms_Synch_T2.xml

EAREARERE AR R R

Alarms_XmlGeneric_Synch_T1.xml
X PDFramework_sequencedTest-context.xml
fE ftenrichment
K| Alarms_power_only.xml
K| MissingInfollarmPowerT est-context.xml
H| ActionRegistry.xmil
[5] ActionRegistry.sd
i logdjxml
uca-ehc.properties

Figure 54 - pd-example src/test/resources directory contents

com.hp.uca.expert.vp.pd.core package

Contains ProblemDefault implementation located in
src/test/resources/com/hp/uca/expert/vp/pd/core/

154

ft.actionsfactory

ft.all

Each JUnit test must be executed with a specific configuration for the Value Pack.
For example the JUnit test file ActionsFactoryTest. java, must use
ActionsFactoryTest-context.xml asits context file. The naming scheme
for the context fileis <test file name>-context.xml.

This context file points at ProblemXmlConfig ActionsFactory.xml,
which is the policies configuration file, and at the main Value Pack configuration
file: valuePackConfiguration ActionsFactory.xml.

This main configuration file points to the filters file:
ProblemDetection filters ActionsFactory.xml.

Alarms.xml is the file describing the simulated alarms to be sent by the test
ActionsFactoryTest.java.

This package contains the alarms files used by the JUnit test file
PDFramework sequencedTest.java. The JUnit test file sends alarms in
sequence from each alarms file one by one.

It is also possible to send all alarms simultaneously by using the
Alarms_all problems.xmnl file.

e Alarms BitError T1.xml containsalarms belonging to
Problem BitError and grouped ina group different from the group
where alarms coming from Alarms BitError T2.xml are gathered

e Alarms BitError T2.xml contains alarms belonging to
Problem BitError and grouped ina group different from the group
where alarms coming from Alarms BitError T1.xml aregathered

e Alarms_Power T1.xml containsalarms belongingto Problem Power
and grouped in a group different from the groups where alarms coming
fromAlarms Power T2.xmlandAlarms Power T3.xml
are gathered

e Alarms_Power T2.xml contains alarms belongingto Problem
Power and grouped in a group different from the groups where alarms
coming fromAlarms Power Tl.xmlandAlarms Power
_T3.xml are gathered

e Alarms_Power T3.xml containsalarms belongingto Problem
Power and grouped in a group different from the groups where alarms
coming fromAlarms Power Tl.xmlandAlarms Power
_T2.xml are gathered

e Alarms_Synch T1.xml contains alarms belonging to Problem Synch
and grouped in a group different from the group where alarms coming
fromAlarms Synch T2.xml are gathered.

e Alarms_Synch T2.xml contains alarms belonging to Problem Synch
and grouped in a group different from the group where alarms coming
fromAlarms Synch T1.xml are gathered

Alarms_xXmlGeneric Synch T1.xml contains alarms belonging to
problem XmlGeneric_ Synch.

155

e PDFramework sequencedTest-context.xml contains the context
file of the PDFramework sequencedTest.java testfile.

ft.enrichment

e Alarms_power only.xml contains alarms sent by
MissingInfoAlarmPowerTest.java

e MissingInfoAlarmPowerTest-context.xml isthe context file of
theMissingInfoAlarmPowerTest . java test file.

Like any HP UCA for EBC Value Pack, the pd-example Value Pack, if deployed, can
send action requests to be executed by the mediation layer associated with UCA for
EBC Server: HP 0SS Open Mediation V6.0. for example.

The actions are executed by a Channel Adapter (specific to a target application) on
the mediation layer. Action replies are then returned to the pd-example Value Pack.

HP UCA for EBC Value Pack scenarios use web services to communicate with the
Action Service web service of a Channel Adapter, typically the HP UCA for EBC
Channel Adapter.

For these actions to be properly routed to the mediation layer and then to the
correct Channel Adapter and target application, the file ActionRegistry.xml
must be configured correctly.

For details on how to configure the ActionRegistry.xml file see the [R11]
UCA for EBC Administration, Configuration and Troubleshooting Guide, and in
particular the ‘uca-ebc.properties file configuration’chapter.

ActionRegistry.xsd

Contains the XML schema for ActionRegistry.xml.

log4j.xml

Contains the different log levels that can be configured for the entire set of JUnit
tests of the pd-example Value Pack.

uca-ebc.properties

Contains the different properties that can be configured for HP UCA -EBC Server.
This file generally does not need to be modified. For more details, see the [R11]
UCA for EBC Administration, Configuration and Troubleshooting Guide, and in
particular the ‘ActionRegistry.xml file configuration’ chapter.

156

Annex C.

Problem Detection Advanced
customization

Problem Detection behavior customization

As seen in section 7.4 Customizing default behavior it is possible to modify the
default behavior of Problem Detection Value Packs.

The behavior can be modified in the following aspects:
e Per problem
e Per family of problems
e For all problems

e For non problem specific matters

Per problem

To modify the behavior of Problem Detection for a given problem, an override must
be defined on some Probleminterface methods in the customization class of the
problem.

Per family of problems
To modify the default behavior of Problem Detection for a set of problems:

1st step -- Create a customization class (for example MyFamilyOfProblems)that
implements some override methods over the Probleminterface.

2" step — For each problem in the family, create a customization class that extends
the MyFamilyOfProblems customization class for the problem.

For all problems

Modifying the default behavior of Problem Detection for all problems is identical as
doing it for a family of problems. The only difference is that the customization class
of each problem must extend one class (for example MyAllProblemsDefault” (this
name is given as an example) class

For non problem specific matters

The Problem Detection framework offers the possibility to modify system behavior
not linked to problems, through the creation of a customization class (for example
MyGeneralBehavior), and overriding methods of the GeneralBehaviorinterface
interface such as whatToDoWhenProblemDetectionIsInitialized(),
whatToDoWhenNewAlarmIsJustInserted()

The context.xml file in the src/main/resources/valuepack/conf/ folder
needs to be modified to specify Problem Detection that the customized

157

methodA(

methodA({)

f com.hp.uca.expert.vp.pd.core

extends

ProblemDefault.java

implementation of the methods of the GeneralBehaviorinterface methods are
available and only available in the MyGeneralBehavior class.

Therefore it is not required to override any GeneralBehaviorinterface method
anywhere else other than the class specified in the context . xml file.

GeneralBehaviorInterface defines methods such as
“whatToDoWhenProblemDetectionIsInitialized()” which are not specific
to any problem, and are not invoked by the Problem Detection framework on a
problem object. Therefore it is not required to provide an implementation of those
methods in the customization class of the problems.

The figure below shows an example of the following:
e a“per problem” customization in Problem1.java

e a “per family of problems” customization inMyFamilyOfProblems.java for
Problem 2 and Problem 3

e a“non problem specific’ customization in MyGeneralBehavior.java

Problem Interface General Behavior Interface

methodB 0; ! methodC; | methedD0; | methodE(; methodwi); | methodvo;

Context.xml

lsbean ld="problemsFactory”

blemClasshame™

methodB0 methodC() methodd() methodE() TETEETY e General Behavior™

-JIyGeneralBehéviur.java <--}-—=====—= T

[retmawy|
|Dead chde| |Dead e cud4

extends

MyFamilyOfProblems.java

Problem java

g

methodB() | | methodC()

£ com.hp.uca.expert.vp.pd.problem

roblem2.java |
Problem3.java

methodB() | 1

Figure 55 - Implementation schema of the main Problem Detection interfaces

methodA()

bt Qo

Method implemented in ProblemDefault.java and whose implementation is used by some or all problems

Method implemented in ProblemDefault.java and whose implementation is overriden by problems customization classes

Method notimplemented by the Problem’s customization class, ProblemDefault’simplementation is used

Method implemented by MyFamilyOfProblem.java. Allproblems (whose customization class extend this class)use this method

Method notimplemented by the problem’s customization class, MyFamilyOfProblem.java's implementation will be used

Method implemented by the problem’s customization class. Overrides any default implementation

Code notused

158

Problem Entity, Multiple Problem Entities, Problem key

Problem Entity / Problem Entities definition

For each alarm passing the filters, Problem Detection calculates one or multiple
problem entities. These problem entities represent the affected modules, elements
and services.

For example:

1) An Alarm reporting the crash of a processor can be related to processor ID as the
problem entity.

2) An Alarm reporting the fact that a server is unavailable can be related to the
server name as the problem entity.

3) An Alarm reporting a pipe cut between two machines (machine A and B) can be
related to machine A and machine B as the problem entity.

Problem Key definition

Each alarm passing the filters can have one or multiple problem entities. A problem
key is associated with each problem entity.

The problem key defines a perimeter equal or larger than the problem entity. All
alarms that pass the same filter, and share the same problem key, are considered
for potential grouping.

Table 36 - Example Problem Keys

Problem Problem entity Problem key

An alarm reporting the The server in which the
Processor ID .

crash of a processor processor is located

An alarmreporting a

. . Server name Server name
server is unavailable
An alarm reporting a) o]
pipe cut between two Machine A and Machine | Site containing machine A
machines (machine A B Site containing machine B

and B)

Role of Problem Entity / Problem Entities / Problem Key in grouping
When alarms are grouped, the problem entity of the alarms is taken into account.
Example 1: All the alarms have the same problem entity and problem key.

Table 37 - Problem key grouping example 1

Alarm Problem entity Problem key
Destination Host lotus.gre.hp.com lotus.gre.hp.com
Unreachable

Server down lotus.gre.hp.com lotus.gre.hp.com
Fans stopped working lotus.gre.hp.com lotus.gre.hp.com

In this case, all alarms have the same problem key, so they are considered for
grouping. They also have the same problem entity so they will be grouped.
The group receives the same problem entity as the included alarms.

159

Example 2: All alarms have the same problem key and a similar problem entity

Table 38 - Problem key grouping example 2

Alarm Problem entity Problem key
Destination Host lotus.gre.hp.com lotus.gre.hp.com
Unreachable -gre.np. -gre.np.
Network Interface

Controller down lotus.gre.hp.com__NIC_O lotus.gre.hp.com
(Trigger alarm)

35"8viconnector lotus.gre.hp.com__NIC_0__conn1 | lotus.gre.hp.com

Network Interface
Controller : NICO

Connectors

conn0 - conn 2

In this case, all alarms have the same problem key, so they will be considered for
grouping. They also have a similar problem entity: all problem entities are a
superstring or a substring to the problem entity of the trigger alarm.

The method to override compareProblemEntities decides for each alarm
whether to be part of the group.

The group receives the problem entity of the trigger alarm:
lotus.gre.hp.com__NIC_0O

Example 3: Some alarms have multiple problem entities.

Table 39 - Problem key grouping example 3

Alarmno. | Alarm Problem entity | Problem key
1 Remotg site not Site GRE lotus.gre.hp.com
accessible
. Site GRE lotus.gre.hp.com
2 Broken pipe Site VBE nenufar.vbe.hp.com
3 Remotfa site not Site VBE nenufar.vbe.hp.com
accessible

The connection between the two machines lotus and nenufar, and therefore the
connection between the two sites GRE and VBE, is broken.

The sameGroupForAllProblemEntities property controls grouping
behavior:

- Ifthe sameGroupForAllProblemEntities property is set to false
(default value), two groups will be created:

Group 1 contains alarm 1 and alarm 2:

160

</p> <e>lotus.gre.hp.com</e>
e</p> <k>site GRE</k>

(groupname = <p>problem

group keys = <p>problem
Group 2 contains alarm 3 and alarm 3:

</p> <e>nenufar.vbe.hp.com</e>
e</p> <k>site VBE</k>

(groupname = <p>prob

group keys = <p>problem

- Ifthe sameGroupForAllProblemEntities property is set to true, only
one group will be created containing all alarms. The problem name is a random
choice from the two available options.

Group 1 (groupname =
ame</p> <e>lotus.gre.hp.com</e>

<p>problem
OR

<p>problem name</p> <e>nenufar.vbe.hp.com</e>
group keys = <p>problem name</p> <k>site GRE</k>
em name</p> <k>site VBE</k>

<p>probl

ActionsFactory implementation

A Problem Detection Value Pack needs to send actions to the various NMS it takes
alarms from. For example, a Problem Detection Value Pack informs a particular
NMS to clear an Alarm, or to create a Problem Alarm.

The actions allowed to be invoked by the Problem Detection framework is defined
in the SupportedActions interface.

For details, see [R6] UCA for EBC Inference Machine — JavaDoc
(%UCA_EBC_DEV_HOME%\apidoc\inference-machine\index.html)

A Problem Detection Value Pack needs to implement the SupportedActions
interface for each NMS it connects to.

For example, if a Problem Detection Value Pack receives alarms from HP TeMIP,
SCOM and SMARTS, it has to provide one SupportedActions interface for each.

The SupportedActions interface implementation must be done by extending the
com.hp.uca.expert.vp.pd.actions.ActionsFactory abstract class. This
class provides common code to be extended.

HP TeMIP Actions Factory example

HP UCA EBC Problem Detection provides an implementation of the
SupportedActions interface for HP TeMIP in the uca-evp-pd-fwk. jar file.

The following code example from the TeMIPActionsFactory class shows how the
clearAlarm () methodis implemented:

public class TeMIPActionsFactory extends ActionsFactory implements
SupportedActions {

QOverride
Ppublic Action clearAlarm(Action action, Scenario scenario, Alarm alarm,
ProblemInterface problem) throws Exception ({

action.addCommand (“directiveName” , “CLEARALARM”) ;

action.addCommand ("entityName” alarm.getIdentifier());

action.addCommand (”UserId”, UCA EXPERT ACTION ID + action.getActionId());

161

createAndSetCallback (action, scenario, TeMIPActionsFactoryCallbacks.class,
"clearAlarmCallback", scenario, action, alarm);

return action;

Note that the method createAndSetCallback is defined and implemented in
com.hp.uca.expert.vp.pd.actions.ActionsFactory

The following code example from the TeMIPActionsFactoryCallbacks class shows
how the clearAlarmCallback method defined in the TeMIPActionsFactory
class, is implemented

public class TeMIPActionsFactoryCallbacks {

public static void clearAlarmCallback (Scenario scenario, Action action,
Alarm referenceAlarm) {

switch (action.getActionStatus()) ({
case Failed:
String rawText = null;
if (action.getListActionResponselItem() !'= null
&& action.getRawText() != null) ({
rawText = XmlUtils.xmlToString(action.getRawText())
}

if (rawText != null) {
if (rawText.contains(SOURCE OF THE ERROR CLEAR ALARM)) {
if (LOG.isDebugEnabled()) ({

LOG.debug (ALARM_ WAS_ALREADY_ CLEARED_FORCI NG_ACTI ON_S TATUS_ TO_COMPLE TED) ;
}
action.acknowledgeActionFailure () ;
}
else if (rawText.contains(ENTITY NON EXISTENT)) {
if (LOG.isDebugEnabled()) ({
LOG.debug (ALARM_ WAS_DELE TED_FORCI NG_AC TI ON_S TA TUS_ TO_ COMPLETED) ;
}
action.acknowledgeActionFailure () ;
}
}
break;
default:
break;
}
if (LOG.isTraceEnabled()) {
LogHelper.exit(LOG, "clearAlarmCallback()");

}

Non-HP TeMIP Actions Factory example

Any Actions Factory implementation class needs to implement the
SupportedActions interface and extend the ActionsFactory class

Among the methods of the SupportedActions interface the role of some methods is
not obvious and therefore described as follows:

associateAlarmsForHistoryNavigation

162

(Action action, Scenario scenario, Group group, Collection<Alarm> children,
ProblemInterface problem)

This method is used to inform the NMS that all children alarms have to be
grouped together under a problem alarm.

If HP TeMIP is the NMS, associateAlarmsForHistoryNavigation invokes the TeMIP
directive GROUPALARMS.

If the NMS is a different product, possibly one dedicated method exists to group
children alarms with a problem alarm, or possibly this is done through setting
some alarms fields to be grouped.

dissociateAlarmsForHistoryNavigation
This method is the reverse of associateAlarmsForHistoryNavigation.

This method is used when the children alarms are not to be grouped any longer
under the problem alarm of a given group.

setHistoryNavigation
(Action action, Scenario scenario, Alarm alarm, Qualifier qualifier)

This method sets the field of the alarm indicating whether the alarm is a sub-alarm,
problem alarm, candidate alarm, or an orphan alarm.

Even if you your NMS does not require to update alarms with this information, such
information must be stored in the working memory of Problem Detection.

An example Actions Factory for the MyCOoINMS NMS is described as follows:

public class MyCOolNMSActionsFactory extends ActionsFactory implements
SupportedActions {

@QOverride
public Action createProblemAlarm(Action action, Scenario scenario, Group
group, ProblemInterface problem, Alarm alarm) throws Exception ({

String referenceAlarm = group.getTrigger () .getIdentifier();

action.addCommand ("METHOD", "createProblemAlarm") ; // for example only

action.addCommand ("REFERENCE _ALARM", referenceAlarm); // for example
only

return action;

}

The implementation of each method of the SupportedActions interface
(createProblemalarm () method in the above example) must fill the action to be
sent to the NMS

For more details, see the Javadoc of the ActionRequest class:
[R7] Unified Correlation Analyzer for Event Based Correlation — JJavaDoc UCA Actions
(C:\%UCA_EBC_DEV_HOME%\apidoc\uca-mediation-action-client\index.htm!l)

The commands need to pe provided in the form of key/value pairs to the passed
action object. The contents of the action and the specific commands to be provided
depends on what the NMS expects.

163

Referencing and invoking Actions Factory

Assuming HP UCA EBC Problem Detection Value Pack is connected to two NMS
systems: Smarts and SCOM, one Actions Factory is implemented for each NMS.

When an action needs to be sent, for example a Problem Alarm needs to be
created, the Problem Detection framework will need to be informed which actions
factory to use, and which NMS to target.

The ProblemXmlConfig.xml file of the Value Pack associates an action name and an
action class to the action. An example of this file is as follows:

<ProblemPolicies xmlns="http://config.pd.vp.expert.uca.hp.com/">
<mainPolicy>
<actions>
<defaultActionScriptReference>Exec_localhost</defaultActionScriptRefere
nce>
<action name="SMARTS">
<actionReference>Smarts Notif localhost</actionReference>
<actionClass>com.acme.af.SmartsActionsFactory</actionClass>
</action>
<action name="SCOM">
<actionReference>SCOM_Alert_localhost</actionReference>
<actionClass> com.acme.af.SCOMActionsFactory</actionClass>
</action>
</actions>

For a specific action to be performed on a specific alarm, the Actions Factory to
invoke is found due to the method available in the ProblemDefault.java file (see the
following example) or the Problem customization classes if defined there.

public SupportedActions chooseSupportedActions(Alarm alarm, ProblemInterface
problem)
[...1

SupportedActions supportedActions =
getSupportedActions () .get (alarm.getSourceIdentifier()) ;
[...1

In the previous code snippet, the action name is taken from the
“alarm.getSourceldentier()”

In the previous example if value of the sourceldentifier field of the alarm is
SMARTS, the actions Factory containing an action called SMARTS (<action
name="SMARTS" >) is selected in the theProblemXmlConfig.xml file then the action
classis com.acme.af.SmartsActionsFactory and the Action Reference is
Smarts_Notif localhost.

To identify which NMS to target, Problem Detection evaluates the contents of the
ActionRegistry.xml file located at:
${UCA EBC INSTANCE}/conf/ActionRegistry.xml

The example content of this file is as follows:
<?xml version="1.0" encoding="UTF-8" standalone='"yes'"?>
<ActionRegistryXML xmlns="http://registry.action.mediation.uca.hp.com/">

<MediationValuePack MvpName="scom"

164

http://config.pd.vp.expert.uca.hp.com/
http://registry.action.mediation.uca.hp.com/

MvpVersion="1.0"
url=http://localhost:26700/uca/mediation/action/ActionService ?WSDL
brokerURL="failover://tcp://localhost:10000">

<Action actionReference=" SCOM Alert localhost ">
<ServiceName>alertsDirective</ServiceName>
<NmsName>scom_host</NmsName>
</Action>

[...]
</MediationValuePack>

<MediationValuePack MvpName='"smarts"

MvpVersion="1.0"
url=http://localhost:26700/uca/mediation/action/ActionService ?WSDL
brokerURL="failover://tcp://localhost:10000">

<Action actionReference=" Smarts Notif localhost ">
<ServiceName>notificationDirective</ServiceName>
<NmsName>localhost</NmsName>

</Action>

</MediationValuePack>

</ActionRegistryXML>

Trouble Ticket Actions Factory

To configure HP UCA EBC Problem Detection Value Pack sending actions to a
Trouble Ticketing System, the following steps must be performed:

e (onfigure ProblemXmlConfig.xml locatedinthe
src/main/resources/valuepack/conf/ directory in your
development environment.

e Configure ${UCA EBC INSTANCE}/conf/ActionRegistry.xml

e Implement a Trouble Ticket Actions Factory for your Trouble Ticketing
System (if it is not HP TeMIP)

o Develop a Channel Adapter for your Trouble Ticketing System. This
procedure is not covered in this document.

Configuring ProblemXmlConfig.xml

The ProblemXmlConfig.xml file associates a TroubleTicketAction name with
the following:

- AnactionReference that defines which Trouble Ticketing system to address.

- an actionClass that defines which implementation of the
TroubleTicketActionsFactory is used.

The example content of this file is as follows:
<ProblemPolicies xmlns="http://config.pd.vp.expert.uca.hp.com/">
KmainPolicy>

KtroubleTicketActions>

KtroubleTicketAction name="TeMIP TT'>
<actionReference>TeMIP_TT_Directives_localhost</actionReference>
<KactionClass>com.hp.uca.expert.vp.pd.actions.TeMIPTroubleTicketActionsFactor
y</actionClass>

IK/troubleTicketAction>
IK/troubleTicketActions>
</mainPolicy>

165

http://localhost:26700/uca/mediation/action/ActionService?WSDL
http://localhost:26700/uca/mediation/action/ActionService?WSDL

By default, the alarm filters define the name of the TroubleTicketAction to be used
for the alarm. This behavior can be overrided.

An example from the ProblemDefault.java file is found as follows. In this example
the trouble ticket name is t TActionsName.

QOverride

ppublic SupportedTroubleTicketActions chooseSupportedTroubleTicketActions (
Alarm alarm,

ProblemInterface problem) throws Exception {

Set<String> tags =
alarm.getPassingFiltersTags () .get (problem.getProblemContext () .getName()) ;
if (tags !'= null) {
for (String tTActionsName : getSupportedTroubleTicketActions () .keySet())

if (tags.contains (tTActionsName)) {
supportedTroubleTicketActions =
getSupportedTroubleTicketActions () .get (tTActionsName) ;
}
}
}

Configuring the ActionRegistry.xml

The action registry associates an actionReference with a Trouble Ticketing System
name.

In the below example taken from the ActionRegistry.xml file this name is
defined in the NmsName element.

KMediationValuePack MvpName="temip" MvpVersion="1.0"
url="http://localhost:18192/uca/mediation/action/ActionService?WSDL"
brokerURL="failover://tcp://localhost:10000">

<Action actionReference="TeMIP TT Directives localhost'>
KServiceName>ttDirective</ServiceName>
IKNmsName>localTeMIP</NmsName>

IK/Action>

IK/MediationValuePack>

Implementing a Trouble Ticket Actions Factory

If not HP TeMIP is the Trouble Ticketing System used, a Trouble Ticket Actions
Factory needs to be created.

A Trouble Ticket Actions Factory implements the methods of the
SupportedTroubleTicketActions interface.

See the JavaDoc for more details: [R6] UCA for EBC Inference Machine — JavaDoc
(%UCA_EBC_DEV_HOME%\apidoc\inference-machine\index.html)

Example methods handled by this interface: createTroubleTicket,
closeTroubleTicket.

The Trouble Ticket Actions Factory corresponding to the used Trouble Ticketing
System must implement the SupportedTroubleTicketActions interface and extend
the TroubleTicketActionsFactory abstract class containing common code

The following example shows an implementation extract of the
createTroubleTicket() method:

public class MyTroubleTicketActionsFactory extends
TroubleTicketActionsFactory implements SupportedTroubleTicketActions {

@Override

166

public Action createTroubleTicket (Action action, Scenario scenario, Group
group, ProblemInterface problem, Alarm referenceAlarm, List<Alarm>
alarmsToAssociate) throws Exception {

if (LOG.isTraceEnabled()) {
LogHelper.enter(LOG, '"createTroubleTicket()"):

}

action.addCommand (“DIRECTIVE NAME”, “CREATE TICKET) ;
//

action.addCommand (“ENTITY NAME”, getTtServerEntity()):

action.addCommand (“SELECTED ALARM”,
group.getProblemAlarm() .getIdentifier())

The implementation of each method of the SupportedTroubleTicketActions
interface (createTroubleTicket() method in the previous example) must fill the
action to be sent to the Trouble Ticketing System.

For more details see the javadoc of the ActionRequest class:
[R7] Unified Correlation Analyzer for Event Based Correlation — JavaDoc UCA Actions
(C:\%UCA_EBC_DEV_HOME%\apidoc\uca-mediation-action-client\index.htm!l)

The commands must be provided as key/value pairs, to the passed action object.

The content of the commands depends on what the Trouble Ticketing System
Channel Adapter expects and supports.

167

Annex D.

Problem Detection Value Pack
example with Events only

The Problem Detection Value Pack example with Events only is not available in IM
SDK.

168

Annex E.

Topology State Propagator Value Pack
example

The TSP Value Pack is not available in IM SDK.

169

Annex F.

Topology State Propagator Advanced
customization

As described in section 8.2, it is possible to modify the default behavior of Topology
State Propagator Value Packs.

The following aspects of the behavior can be modified, similar to PD Value Packs:
¢ Per propagation
e Per family of propagations
¢ For all propagations
e For non propagation specific matters

The customization process is done similar to Problem Detection customization. See
Annex C for details.

170

Annex G.
Inference Machine Value Pack example

As part of the Inference Machine Development Kit, an example Value Pack project,
named ‘im-example’, is available.

If deployed, the im-example Value Pack is able to recognize two problems with the
Problem Detection scenario:

e Problem_SwitchDown
e Problem_PhoneUnavailable

It can also perform several propagations based on the above problems through the
Topology State Propagator scenario:

e Propagation_Switch (generating Service Alarms)

¢ Propagation_Pool

¢ Propagation_Customer

¢ Propagation_VM

e Propagation_PhoneService (generating Service Alarms)

¢ Propagation_Server

¢ Propagation_Location

e Propagation_Service (generating Service Alarms)

e Propagation_Application

e Propagation_Shelf

¢ Propagation_CallServer
All of above problems and propagations have specific filters.
Problems generate Problem Alarms that are pushed to the TSP scenario.

Propagations are maintained in a hierarchy and only top-level ones create Service
Alarms. The Problem and Service Alarms are stored on disk using
DBActionsFactory.

It also contains sample tests file that can be run with the JUnit tool. These tests
simulate the deployed behavior of the im-example Value Pack without having to
actually deploy it. Alarms are injected into the Value Pack as though they came
from the network.

171

