
HP Unified Mediation Bus

Unified Mediation Bus
Version 1.0

Adapter Development Guide

Edition: 1.0

For Windows© and Linux (RHEL 6.5) Operating Systems

September 2015

© Copyright 2015 Hewlett-Packard Development Company, L.P.

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial Items are licensed
to the U.S. Government under vendor's standard commercial license.

Copyright Notices

© Copyright 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit
configurations) on all HP 9000 computers are Open Group UNIX 95 branded products.

Java™ is trademark of Oracle and/or its affiliates.

Microsoft®, Internet Explorer, Windows®, Windows Server 2012®, Windows XP®, and Windows
7® are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark, and the X device is a trademark of X/Open Company Ltd.
in the UK and other countries.

Red Hat® is a registered trademark of the Red Hat Company.

Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

Eclipse™ is a trade mark of The Eclipse Foundation.

Smarts® is a registered trademark of EMC Corporation.

Netcool® is a registered trademark of Micromuse Ltd.

Hazelcast® is a registered trademark of Hazelcast, Inc

Zookeeper™ is a trademark of The Apache Software Foundation (ASF).

Kafka™ is a trademark of The Apache Software Foundation (ASF).

Apache Camel, Camel, Apache are trademarks of The Apache Software Foundation.

Apache Bigtop™ is a trademark of the Apache Software Foundation.

Contents
Preface .. 9

.. 11

Introduction ... 11

Overview .. 11

1.1 The Mediation Common Registry .. 13
1.1.1 Using Hazelcast® for Actions implementation .. 13
1.2 The Message Broker .. 14

Unified Mediation Bus principles .. 15

1.3 The Unified Mediation Bus Server (broker) ... 15
1.4 The Unified Mediation Bus Adapters ... 15
1.5 The Unified Mediation Bus Adapter Services .. 18
1.5.1 Action Services .. 18
1.5.2 Flow Services ... 20
1.5.3 Defining Flow Service Consumers from Configuration ... 23
1.6 The Unified Mediation Bus Messages ... 26
1.6.1 Logging and testing considerations (UCA-EBC) .. 26

.. 29

Getting started with Unified Mediation Bus Development Kit 29

2.1 Installing the Unified Mediation Bus Adapter Development Kit 29
2.2 Adapter Development Pre-requisites ... 29
2.2.1 Eclipse IDE ... 29
2.2.2 Post-install Environment Setup .. 30
2.2.3 Unified Mediation Bus Eclipse plug-in installation instructions 31

.. 35

Unified Mediation Bus Adapters development ... 35

3.1 Creating a new UMB Adapter .. 35
3.1.1 Creating a UMB Adapter project within Eclipse ... 35
3.1.2 Anatomy of the created project .. 39
3.1.3 Validation of the created project .. 40
3.2 Customizing the created UMB Adapter project ... 41
3.2.1 Customizing the Adapter Name .. 41
3.2.2 Adding producer collection flow services ... 42
3.2.3 Adding action services ... 47
3.2.4 Adding consumer flows ... 52
3.3 Generating the UMB Adapter kit ... 58
3.4 Installing the UMB Adapter kit .. 60
3.5 Starting the UMB Adapter kit .. 60

.. 62

Advance development topics ... 62

4.1 Extending the DefaultEvent class ... 62
4.1.1 Defining the new metric schema ... 62
4.1.2 Generating the new metric java class ... 64
4.1.3 Adding marshaller and unmarshaller for the new metric 66
4.1.4 Generating the new metric jar file ... 67
4.2 Customizing the serialization Class .. 68
4.3 Discovering the solution’s adapter topology and states ... 70
4.3.1 Getting the list of known Adapters ... 70
4.3.2 Getting Adapter’s Notifications ... 70

.. 72

Unified Mediation Bus sample Adapters .. 72

5.1 Camel Adapter ... 72
5.1.1 Configuration ... 73
5.1.2 How does it work? ... 78
5.1.3 JUnit tests .. 81
5.2 File Adapter ... 82
5.2.1 Configuration ... 83
5.2.2 How does it work? ... 86
5.2.3 JUnit tests .. 88
5.3 Log Adapter ... 88
5.3.1 Configuration ... 89
5.3.2 How does it work? ... 91

Appendix A ... 93

A. Ant build.xml targets .. 93

Glossary ... 94

Figures
Figure 1 Unified Mediation Bus architecture overview .. 12
Figure 2: Mediation Common Registry overview ... 13
Figure 3: Unified Mediation Bus Action Mechanism overview ... 14
Figure 4: Unified Mediation Bus flows overview .. 15
Figure 5 - Action execution without load balancing .. 17
Figure 6 - Action execution with load balancing .. 17
Figure 7: Example of an Action Service Definition ... 19
Figure 8 - Example of “auto” consumer flows in the AdapterConfiguration.xml file 25
Figure 9- Example of autoNonUmbConsumer flow definition in the AdapterConfiguration.xml file ... 26
Figure 10 - Unified Mediation Bus plug-in: Installation step 1 .. 31
Figure 11 - Unified Mediation Bus Eclipse plug-in: Installation step 2 .. 32
Figure 12 - Unified Mediation Bus Eclipse plug-in: Installation step 3 .. 33
Figure 13 - UMB Adapter project creation wizard Step1 ... 37
Figure 14 – New UMB Adapter project ... 38
Figure 15 - Folder structure of the new UMB Adapter project .. 39
Figure 16 - Adapter.java Java class of the new UMB Adapter project ... 40
Figure 17 - AdapterTest.java JUnit test class of the new UMB Adapter project 41
Figure 18 - Customizing the Adapter Name ... 42
Figure 19 - Example of a flow in the AdapterConfiguration.xml file ... 43
Figure 20 - Creating a “Collector” Java class – Step 1 ... 44
Figure 21 - Creating a "Collector" Java Class Step 2 .. 44
Figure 22 - Creating a “Collector” Java class – Step 3 ... 45
Figure 23 - Example of an action in the AdapterConfiguration.xml file .. 48
Figure 24 - Creating an “Action” Java class – Step 1 ... 49
Figure 25 - Creating an “Action” Java class – Step 2 ... 49
Figure 26 - Creating an “Action” Java class – Step 3 ... 50
Figure 27 - Java code to send action requests .. 51
Figure 28 - Java code to create consumer flows ... 53
Figure 29 - Creating a “MessageConsumer” Java class – Step 1 ... 54
Figure 30 - Creating a “MessageConsumer” Java class – Step 2 ... 55
Figure 31 - Creating a “MessageConsumer” Java class – Step 3 ... 56
Figure 32 - Consumer Flow status diagram ... 57
Figure 33 - Building the kit of your Adapter .. 58
Figure 34 – Location of the kit of your Adapter ... 59
Figure 35 - Contents of the kit of your Adapter ... 60
Figure 36 - JAXB Diagram... 63
Figure 37 - Camel adapter overview .. 73
Figure 38 - The Camel Adapter’s AdapterConfiguration.xml file .. 74
Figure 39 - The Camel Adapter’s camel-context.xml file .. 75
Figure 40 - “camel-actions” route in the camel-context.xml file ... 76
Figure 41 - “camel-collectionactions” route in the camel-context.xml file ... 77
Figure 42 - “camel-collection” route in the camel-context.xml file ... 78
Figure 43 - Processing Actions in the Camel Adapter .. 79
Figure 44 - Processing Collection Flow Actions in the Camel Adapter .. 80
Figure 45 - Processing Collections in the Camel Adapter .. 81
Figure 46 - File adapter overview .. 83
Figure 47 - The File Adapter’s AdapterConfiguration.xml file ... 84
Figure 48 - File Adapter’s “alarms.xml” data file .. 85
Figure 49 - File Adapter’s “temperatures.csv” data file .. 86
Figure 50 - File Adapter’s alarms collections .. 87
Figure 51 - File Adapter’s temperatures collections ... 87
Figure 52 - Log adapter overview .. 89
Figure 53 - The Log Adapter’s AdapterConfiguration.xml file .. 90
Figure 54 - Log Adapter consuming alarms/events collections .. 92

Tables

Table 1 - Software versions 9
Table 2 - Eclipse IDE Prerequisites for UMB Adapter Development Kit 29

9

Preface

This guide provides an overview of the Unified Correlated Analyzer Mediation product and
describes how to create Mediation Adapters to connect Alarm or Event provider and consumer
applications.

Product Name: Unified Mediation Bus Adapter Development Toolkit
Product Version: V1.0

Intended Audience

Here are some recommendations based on possible reader profiles:
 Solution Developers
 Software Development Engineers

Software Versions

The software versions referred to in this document are as follows:

Product Version Supported Operating systems

Unified Mediation Bus Adapter
Development Toolkit V1.0

 Windows XP / Vista
 Windows Server 2007
 Windows 7
 Red Hat Enterprise Linux Server release

6.5

Table 1 - Software versions

Typographical Conventions

Courier Font:
 Source code and examples of file contents
 Commands that you enter on the screen
 Pathnames
 Keyboard key names

Italic Text:
 Filenames, programs and parameters
 The names of other documents referenced in this manual

Bold Text:
 To introduce new terms and to emphasize important words

Associated Documents

The following documents contain useful reference information:

References

[R1] HP Unified Mediation Bus– Installation and Configuration Guide

10

Support

Please visit our HP Software Support Online Web site at www.hp.com/go/hpsoftwaresupport
for contact information, and details about HP Software products, services, and support.

The Software support area of the Software Web site includes the following:

 Downloadable documentation.
 Troubleshooting information.
 Patches and updates.
 Problem reporting.
 Training information.
 Support program information.

http://www.hp.com/go/hpsoftwaresupport

11

Introduction

This guide gives an overview of the Unified Mediation Bus and explains how to create a new
mediation Adapter project with the provided Unified Mediation Bus Adapter Development
Toolkit.

Overview

Unified Mediation Bus allows several applications to exchange Events (and by extension
Alarms) with each other. It also provides facilities for executing actions remotely: alarm
operations (creation, grouping, deletion etc…), Trouble ticket operations, command executions
(shell scripts, java, etc…)

The Unified Mediation Bus product comes in replacement of the legacy “NGOSS Open
Mediation” product with the aim to provide:

 Better performance

 Better robustness

 Easier deployment

 Easier Adapter Development

Unified Mediation Bus is constructed around two main technologies:

 A common registry, and remote execution service implemented with the
Hazelcast® technology. Hazelcast provides both:

o a common registry feature that centralizes configuration, status and
monitoring information on all UMB Adapters that are part of the
overall UMB solution

o a distributed executor service feature that provides a framework for
executing actions on UMB Adapters across the whole UMB solution

 A message broker based on the Kafka Technology. Apache Kafka / Apache
ZooKeeper provide a high-performance, high-availability, reliable framework
for producing and consuming collections of alarms or events across the whole
UMB solution

A typical UMB solution is composed of (see figure below):

 A UMB Server product installation, usually installed on 1 or more dedicated UMB
Server host(s), that contains Apache Kafka / Apache ZooKeeper

12

 Several UMB Adapter1 product installations (one for each Application connected
to the UMB solution). Each application has its own dedicated UMB Adapter,
usually installed on the same host as the application itself.

Figure 1 Unified Mediation Bus architecture overview

The above figure shows UMB interconnecting 2 separate applications: Application A and
Application B.

In the figure, Hazelcast appears as a centralized component for simplification’s sake: Hazelcast
is in fact distributed across both Application A and Application B UMB Adapters. Each of the
UMB Adapters is a Hazelcast cluster member. Hazelcast cluster members are interconnected
directly, without any centralized component. Any UMB Adapter can act as an action service
provider and/or consumer:

 It provides action services for the Application that it is associated with (in our
case Application A or Application B). UMB Adapters act as proxies to execute
actions on Applications that they are associated with.

 It consumes action services from other UMB Adapters

On the other hand, Apache Kafka / Apache ZooKeeper are indeed a centralized component.
Both Application A and Application B UMB Adapters connect to the same central component.
Apache ZooKeeper provides a high performance coordination service for the “cluster” of
Apache Kafka brokers. Apache ZooKeeper acts as a front-end to the Apache Kafka brokers. The
Apache Kafka brokers provide the messaging service: they store collections of alarms or
events (sent by Kafka producers) as Topics. Kafka consumers then retrieve the collections of
alarms or events. Any UMB Adapter can act as Kafka producer and/or Kafka consumer:

 It provides collection services for the Application that it is associated with (in
our case Application A or Application B). UMB Adapters act as proxies to
collect alarms or events from Applications that they are associated with.

 It consumes collection services from other UMB Adapters

1 UMB Adapters are developed using the UMB Adapter Development Kit. Information on how to
install the UMB Adapter Development Kit is provided in the [R1] HP Unified Mediation Bus–
Installation and Configuration Guide

13

1.1 The Mediation Common Registry
The Mediation Common Registry is a common (shared grid in-memory) storage implemented
using the Hazelcast® Technology that allows all mediations contributors (the Adapters) to
register information.

This information identifies adapters that are part of the mediation solution but also gives a
description of the services they provide. The services are of two types:

 Flow services

 Action services

Using the Common Registry information, any adapter is able to know about all the other
adapters and also get their status or the definition (description) of the services they offer.

At Adapter startup time the local Adapter configuration is automatically made available by the
Adapter Framework to the Common Registry. This prevents any complex configuration on each
side when one adapter wants to communication with another one.

The Common Registry can be schematically represented as follows:

Figure 2: Mediation Common Registry overview

1.1.1 Using Hazelcast® for Actions implementation

Hazelcast® provides an efficient distributed executor service to execute Callable
and Runnable instances on the remote cluster members. The Unified Mediation Bus uses this
facility to implement Actions. Doing this way there is no additional configuration to perform.
Any Mediation member (Adapter) can potentially be an action executor.

Action services are defined in the Adapter Configuration file and made available in the Common
Registry.

http://hazelcast.com/docs/2.1/manual/multi_html/ch09.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Callable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Runnable.html

14

Figure 3: Unified Mediation Bus Action Mechanism overview

1.2 The Message Broker
The Unified Mediation Bus message exchange is based on the Apache Kafka technology.

The Kafka message broker is one of the fastest message brokers. It offers off the shelf
message persistency (persistency duration is configurable). It has a strong ordering guarantee
and offers High Availability (via redundancy and though the use of ZooKeeper).

The Unified Mediation Bus allows defining Event Collection Flows between an Event provider
and an Event Consumer.

The collection flows are of two types:

• Static flows

 One Producer for several possible Consumers. Each of the consumers will receive a
copy of the produced events

 Can produce events even if no Consumer is waiting for them. Events are persisted in
the Kafka log system.

 One Kafka Topic per static flow

• Dynamic flows

 One Producer for One Consumer.

 Production is done only upon Consumer request (create Flow request). The producer
must be up and running for the dynamic flow to be established successfully.

 One Kafka Topic per consumer / producer pair

15

Figure 4: Unified Mediation Bus flows overview

Unified Mediation Bus principles

1.3 The Unified Mediation Bus Server (broker)
The Unified Mediation Bus Server or broker as mentioned above is implemented with Kafka. To
be more precise it is in fact the ZooKeeper / Kafka association that implements the broker.

A simple Unified Mediation Bus Server configuration can be made with one ZooKeeper instance
and one Kafka instance on a single Linux box.

However, for a production environment, a highly available Unified Mediation Bus Server should
be redundant. As such, it must be made of at least two Kafka servers and three Zookeeper
instances.

The Unified Mediation Bus Server kit is delivered for Linux Only. The Zookeeper and Kafka
servers are installed as Linux services.

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details
on ZooKeeper and Kafka configuration and administration.

1.4 The Unified Mediation Bus Adapters
The Unified Mediation Bus Adapters are key components of the mediation.

 On the Provider side, they are defining and implementing the Flows and Action services.

 On the Consumer side, they are implementing the action requests, and flow consumers.

Of course, an Adapter can be both a service provider and a service consumer at the same time
meaning that it can provide services to other adapters while consuming services from another
adapter.

A MEDIATION Adapter can be of two types:

 Embedded

When embedded, the Adapter components (All the Java classes representing the adapter)
are running in the same JVM than the application using the Adapter. This allows for a more
efficient communication between the application and the adapter components (procedure

16

calls) and an easier monitoring because the adapter has the same life time that the
application.

A typical example of an embedded Adapter is the UCA-EBC Adapter which shares the same
process as UCA-EBC.

Applications implementing an embedded Adapter must provide the Adapter configuration
files on their Java class path.

Embedded adapters are preferable to Standalone Adapters and recommended whenever
possible.

 Standalone

A Standalone Adapter runs in its own JVM. It must implement a main() method and

provide its own configuration files.

A standalone Adapter must implement a communication technology to communicate with
the Application it serves. The communication technology choice it usually driven by the
application capabilities (Web services, specific API, sockets etc…)

A standalone Adapter is usually used when there is no way to integrate the Adapter
classes into an existing application (3rd party application, or non-Java application)

A typical example of a Standalone Adapter is the TeMIP Adapter that communicates with
TeMIP for collecting alarms and executing actions using the TeMIP Web Services (TWS)
component.

An Adapter is identified by its name in the AdapterConfiguration.xml file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<adapter name="AdapterName" actionGroup="GroupName" version="1.0"
xmlns="http://hp.com/umb/config">
</adapter>

A <adapter>…</adapter> XML element can have the following optional attributes:

 name

Each Adapter part of the same mediation solution (bound to the same Common Registry)
must have a distinct name. An attempt to start an Adapter with the same name as
another adapter already bound to the Common Registry will result in an error preventing
the start of the Adapter.

 actionGroup

The Adapter’s actionGroup attribute is optional and used for horizontal scaling of actions.
Adapter action group names should be different than adapter names, throughout your
whole UMB solution. Action groups exist so that they can be used as targets (instead of
adapters) for executing actions. For example, if you have several adapters in your UMB
solutions that share the same action group, you can request execution of actions on the
action group itself. This is done by specifying an action group (instead of an adapter) as
the target of the action. The action itself will then be executed on a randomly selected
adapter from the action group. This provides load-balancing among adapters that can
perform identical tasks.

The following figure illustrates action execution when load balancing is not used (i.e. the
target of each action is a specific adapter):

17

Figure 5 - Action execution without load balancing

In the figure above, load balancing of actions is not used and all actions are executed by
the adapter that is specifically targeted.

On the other hand, the following figure illustrates action execution with load balancing
(i.e. the target of each action is an action group instead of a specific adapter):

Figure 6 - Action execution with load balancing

In the figure above, load balancing of actions is used and on average 50% of actions are
executed on each adapter part of the targeted action group.

 flowGroup

The flowGroup labels the adapter as belonging to a consumer group.

The flowGroup has a meaning only for Static flows for which we can have several
consumers for one producer. Each message published to a StaticFlow is delivered to one
instance within each subscribing consumer group.

18

 If all the consumer instances have different consumer groups, then this works like
publish-subscribe and all messages are broadcast to all consumers.

Here the two consumer adapters belonging to different flow groups, they both receive
the same flow of events.

 If all the consumer instances have the same consumer group, then this works just like
a traditional queue balancing load over the consumers balancing the topics partitions
between consumers. As the UMB flows have single one partition, this means that only
one of the flow consumer belonging to the same flow group will get the messages:

In such configuration the second adapter is just on hold. If the adapter receiving the
events stops or lose the connection with the kafka server, then this second adapter
will get the messages that were not previously collected by the first adapter.

1.5 The Unified Mediation Bus Adapter Services
A Unified Mediation Bus Adapter can implement two types of services:

 Action Services

 Flow Services

1.5.1 Action Services

Action services are defined in the <actionServices> section of the

AdapterConfiguration.xml file.

An Action definition specifies an Action that can be executed by the Adapter.

Example of an Action Service Definition:

19

Figure 7: Example of an Action Service Definition

Action services are defined by the <actionServices>…</actionServices> XML

element.

Each individual action service is defined by an <action>…</action> XML element
inside the <actionServices>…</actionServices> XML element. There can be as

many action services defined as needed.

An action service (or action) is identified by a ‘name’ (i.e. the identifier for the action) and
an ‘actionClass’ (i.e. the Java class that will execute the action).

A <action>…</action> XML element can have the following attributes:

 name: The name of the action. This name will be referenced by UMB Adapters
wishing to execute this action. It is mandatory to specify a value for the ‘name’
attribute.

 actionClass: The full name of the Java class that implements the action. It is
mandatory to specify a value for the ‘actionClass’ attribute.

 inherits: The name of the action that the current action inherits from. If a child
action inherits from a parent action, all the parameters defined in the parent action
are implicitly also defined for the child action (See chapter 1.5.1.1 “Action
Parameters” for more information on action parameters.).

For example, it could be useful to use action inheritance if some parameters are
common to several actions.

It is optional to specify a value for the ‘inherits’ attribute.

20

Each Action can define a list of parameters using a <parameters>…</parameters>

XML element inside an <action>…</action> XML element.

1.5.1.1 Action Parameters

The parameters are a list of configuration values (key/value pairs) that can be specified by
the action service requester at the time of execution.

Each parameter is defined by a <parameter>…</parameter> XML element inside the
<parameters>…</parameters> XML element. There can be as many parameters

defined as needed.

A <parameter>…</parameter> XML element can have the following attributes:

 key: The ‘key’ attribute specifies the Parameter name. It is mandatory to specify a
value for the ‘key’ attribute.

 defaultValue: the ‘defaultValue’ attribute gives the Parameter a default value. In
case this parameter is not specified by the requester, the default value is used.

In the example above, the ‘Command’ Parameter of the ‘PingAction’ action is set
with the defaultValue of ‘/bin/ping’ which is the operating system command to
execute.

Doing so the action requester does not have to specify this argument each time the
‘PingAction’ action is called. It is optional to specify a value for the ‘defaultValue’
attribute.

 overridable: the ‘overridable’ attribute is a Boolean attribute. When set to ‘false’,
the Action requester cannot override the parameter. When omitted the Parameter
remains overridable (similar to overridable=’true’).

This is particularly useful when the Action service developer wants to protect the
parameter definition.

Again in the example above, giving the possibility for the requester to override the
‘Command’ parameter would have no sense for an action called ‘PingAction’.

It is optional to specify a value for the ‘overridable’ attribute.

 occurs: the ‘occurs’ attribute can take the value ‘once’ or ‘many’. By default, the
same parameter can only be specified once by the requester. If the occurs=’many’
attribute is not set, specifying the same parameter more than once will lead to an
action failure.

It is optional to specify a value for the ‘occurs’ attribute.

 mandatory: the ‘mandatory’ attribute indicates this parameter must be specified
by the requester. By default, parameters are not mandatory. If a mandatory
parameter is not set for an action it will fail.

With the PingAction example, the ‘Argument’ parameter is mandatory and must be
set by the requester with the IP Address of the host to ping or some other ping
command-line option.

It is optional to specify a value for the ‘mandatory’ attribute.

1.5.2 Flow Services

Flow services are defined in the <flowServices> section of the

AdapterConfiguration.xml file.

21

A Flow definition specifies a collection channel provided by this Adapter.

Example of Flow Service definitions:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<adapter name="FileAdapter" version="1.0" xmlns="http://hp.com/umb/config">
 <flowServices>
 <flow name="AlarmFileStaticFlow" type="Static"
 collectorClass="com.hp.umb.adapter.file.FileCollector">
 <parameters>
 <parameter key="fileName" defaultValue="data/alarms.xml"/>
 </parameters>
 </flow>
 <flow name="AlarmFileDynamicFlow" type="Dynamic"
 collectorClass="com.hp.umb.adapter.file.FileCollector">
 <parameters>
 <parameter key="fileName" defaultValue="data/alarms.xml"/>
 </parameters>
 </flow>
 <flow name="TemperaturesStaticFlow" type="Static"
 collectorClass="com.hp.umb.adapter.file.TemperaturesCollector">
 <parameters>
 <parameter key="fileName" defaultValue="data/temperatures.csv"/>
 </parameters>
 </flow>
 <flow name="TemperaturesDynamicFlow" type="Dynamic"
 collectorClass="com.hp.umb.adapter.file.TemperaturesCollector">
 <parameters>
 <parameter key="fileName" defaultValue="data/temperatures.csv"/>
 </parameters>
 </flow>
 </flowServices>
</adapter>

A Flow is identified by a ‘name’ and must specify a ‘collectorClass’ (i.e. the class that will
implement the production flow).

Flows can be of two different types: ‘Static’ or ‘Dynamic’.

• Static flows

Static flows are automatically started when the Adapter is started (unless the
autoStarted attribute is set to ‘false’). Message production starts even if there is

no requester. The messages are sent to Kafka which stores them for a configurable time
period.

Several consumers can consume the same static production flow. Each of the consumers
will receive all the produced messages. A Static flow can be seen as message broadcasting
between the producer Adapter and multiple consumer Adapters.

The name of the Kafka topic for a static Flow follows a specific pattern (without the
quotes):

“provider Adapter name”-“flow name”

From the example above, the topic name for the flow AlarmFileStaticFlow will be:

FileAdapter-AlarmFileStaticFlow

• Dynamic flows

Dynamic Flows are started upon flow consumer request. A Dynamic can be seen as a peer
to peer connection between a consumer Adapter and the producer Adapter.

The Kafka topic name for a Dynamic Flow is constructed as follow (without the quotes):

“consumer Adapter name"-"requester Identifier"-"provider Adapter name“-“flow name”

22

As an example, if a UCA-EBC value pack named ‘vp1’ requests the creation of a dynamic
flow named AlarmFileDynamicFlow, the Kafka topic name will be:

UCA-EBC-vp1-FileAdapter-AlarmFileDynamicFlow

Flow services are defined by the <flowServices>…</flowServices> XML element.

Each individual flow service is defined by a <flow>…</flow> XML element inside the

<flowServices>…</flowServices> XML element. There can be as many flow

services defined as needed.

A <flow>…</flow> XML element can have the following attributes:

 name: The name of the flow. This name will be referenced by UMB Adapters
wishing to consumer this flow. It is mandatory to specify a value for the ‘name’
attribute.

 type: The type of the flow: either “Static” or “Dynamic” (see the differences
between static and dynamic flows above). There is no default value. It is
mandatory to specify a value for the ‘type’ attribute.

 collectorClass: The full name of Java class that implements the flow producer.
There is no default value. It is mandatory to specify a value for the ‘collectorClass’
attribute.

 monitoringRestartPeriod (optional): The monitoring restart period in
milliseconds. This is the time between two re-start attempts in case of flow
disconnection. Default value is 30000 milliseconds, i.e. 30 seconds.

 autoStarted(optional): This is a Boolean attribute. When set to true (the default)
the producer flow starts automatically at adapter startup.

 lastEventReceivedFirstDuringResynchronization (optional): This is a Boolean
attribute. When set to false (the default) messages are produced by the flow in
chronological order during a resynchronization, i.e. the oldest messages are sent
first. When set to true, the reverse chronological order is used, i.e. the last
messages are sent first.

 serializerClass: The full name of Java class that serializes the flow messages. It is
optional to specify a value for the ‘serializerClass’ attribute. When no value is
specified, a default serializer class is used.

Each Flow can define a list of parameters using a <parameters>…</parameters>
XML element inside a <flow>…</flow> XML element.

1.5.2.1 Flow Parameters

The parameters are a list of configuration values (key/value pairs) that can be specified by
the flow creation requester.

A set of attribute help specifying parameters properties. Such attributes are:

 key: The ‘key’ attribute specifies the Parameter name. It is mandatory to specify a
value for the ‘key’ attribute.

 defaultValue: the ‘defaultValue’ attribute gives the Parameter a default value. In
case this parameter is not specified by the flow creation requester, the flow service
provider will set this parameter with this default Value at flow creation time.

23

 overridable: the ‘overridable’ attribute is a Boolean attribute. When set to ‘false’,
the flow creation requester cannot override the parameter. When omitted the
Parameter remains overridable (similar to overridable=’true’).

This is particularly useful when the flow service developer wants to protect the
parameter definition.

 occurs: the ‘occurs’ attribute can take the value ‘once’ or ‘many’. By default, the
same parameter can only be specified once by the requester. If the occurs=’many’
attribute is not set, specifying the same parameter more than once will lead to a
flow creation failure.

 mandatory: the ‘mandatory’ attribute indicates that this parameter must be
specified by the requester. If not specified, the flow creation execution will return a
failure again.

1.5.3 Defining Flow Service Consumers from Configuration

If the AdapterConfiguration.xml file allows defining flow services (production side), it

also allows defining flow consumers that are automatically created when the adapter is
started.

Consumer flows that start automatically are defined by adding the
<autoConsumers>…</autoConsumers> XML element inside the enclosing

<adapter>…</adapter> root XML element.

Each “auto” consumer flow is defined by adding a <autoConsumer>…</autoConsumer>

XML element inside the enclosing <autoConsumers>…</autoConsumers> XML element.

Each <autoConsumer>…</autoConsumer> XML element must define all of the following

mandatory attributes:

 consumerIdentifier: an identifier of the consumer of the flow

 targetAdapterName: this is the name of the Adapter producing the collection flow to
consume from

 targetFlowName: this is the name of the collection flow to consume from (as per the
definition of the producer collection flow on the target Adapter)

 messageConsumerClass: this is the name of the Java class (including the Java
package name) implementing the flow consumer. For example:
com.example.MyMessageConsumer. This class must extend the

com.hp.umb.adapter.consumer.BaseConsumerMessageHandler class

and has to implement the
com.hp.umb.adapter.consumer.ConsumerMessageHandlerInterface

<K extends Event> Java interface (K being the type of message object to

consume. K has to extend both the com.hp.uca.expert.event.Event and
java.io.Serializable interfaces).

Refere to section “3.2.4.3 Defining the flow message consumer class” for full
description on how to define a Message Consumer object.

The following optional attribute can be defined:

 monitored (Boolean default true): a Boolean flag to indicate whether the consumer
flow is monitored by the UMB Framework (in which case the flag has to be set to true)
or not (flag set to false in this case). By default, if this attribute is not present, the flag
is assumed to be true, which means that the consumer flow is monitored. Monitored
flows are attempted to be restarted automatically by the UMB Framework is they fail.

 monitoringRestartPeriod (in milliseconds default 30000): in case of Consumer Flow
start failure, if the Flow is monitored (the default), this represents restart attempt
period.

24

 messageConsumerTimeout (in milliseconds default 1000): this attribute is
applicable only if the specified messageConsumerClass implements the
com.hp.umb.adapter.consumer.ConsumerMessageSetHandlerInterf

ace<K extends Event>. It indicates the time in milliseconds to wait while no

message arrives before returning the actual message set.

 messageConsumerMaxSetSize: this attribute is applicable only if the specified
messageConsumerClass implements the
com.hp.umb.adapter.consumer.ConsumerMessageSetHandlerInterf

ace<K extends Event>. It indicates the maximum size of the message set to

return.

 serializerClass: this parameter can specify a custom serialization Class. The
serialization class is the class in charge of linearizing (de-linearizing) the Event
message into (and from) a byte array. The default linearization class is the UMB
framework provided
com.hp.umb.adapter.internal.utilities.JavaClassSerializer

class which uses the standard java class linearization mechanism.

A custom linearization class must implement the following interfaces:

kafka.serializer.Encoder.Encoder<Object>

and

kafka.serializer.Decoder.Decoder<Object>

Each <autoConsumer>…</autoConsumer> XML element can also define parameters

associated with the flow by adding the optional
<flowParameters>…</flowParameters> XML element. Inside the

<flowParameters>…</flowParameters> XML element, each parameter is defined by a
<flowParameter>…</flowParameter> XML element. Each parameter must define all

of the following mandatory attributes:

 key: this is the name of the flow parameter

 value: this is the value of the flow parameter

The parameters defined in the <flowParameters>…</flowParameters> XML element

will be used (alongside the properties of the flow defined in the target Adapter’s
AdapterConfiguration.xml file) when the flow is created.

Below is an example of an AdapterConfiguration.xml file that defines two “auto”

consumer flows:

25

Figure 8 - Example of “auto” consumer flows in the AdapterConfiguration.xml file

You can find example of consumer flows that start automatically in the Log Adapter described
in this document:

 For more information on the Log Adapter, please refer to chapter 5.3 “Log Adapter”

1.5.3.1 Defining Non-UMB consumer flows

The UMB framework offers the possibility to consume messages from Kafka topics where
messages are not produced by an UMB adapter, but by any other kafka producers.

In such case there is no Adapter providing the Flow service. The message source is therefore
identified by the Topic name itself.

Such consumers can be defined in the <autoConsumer> section by using the tag
<autoNonUMBConsumer … />

Each < autoNonUMBConsumer >…</ autoNonUMBConsumer > XML element must define all

of the following mandatory attributes:

 consumerIdentifier: an identifier of the consumer of the flow

 topicName: this is the name of the kafka Topic from which the messages are
retrieved.

 messageConsumerClass: this is the name of the Java class (including the Java
package name) implementing the flow consumer. (Same definition as for
autoConsumers).

The optional attributes are the same than for the standard autoConsumers. No parameters can
be defined.

26

Note

When using non UMB flows a specific attention must be paid to the deserialization process.

The format of the message pushed by the Kafka (nonUMB) producer is by definition application
specific.

The nonUMBConsumer must therefore provide a Java Class that will be able to de-serialize the
messages and turn it into a java class.

Such de-serializer is specified by serializerClass attribute.

Below is an example of an AdapterConfiguration.xml file that defines an

“autoNonUMBConsumer” consumer:

Figure 9- Example of autoNonUmbConsumer flow definition in the
AdapterConfiguration.xml file

1.6 The Unified Mediation Bus Messages
Unified Mediation Bus messages can be any Java Objects with the following restrictions:

1. The message class must extend the com.hp.uca.expert.event.DefaultEvent

Class.

2. The message class must implement the java.io.Serializable interface.

The Unified Mediation Bus framework uses the standard Java Serialization for serializing the
message Objects at the time they are pushed to the Kafka server. The same way the Objects
are de-serialized when read from the Kafka server on the consumer side.

1.6.1 Logging and testing considerations (UCA-EBC)

During the UCA-EBC value pack development phase, it may be very useful to collect samples of
collected messages in order to replay them, or use them in the context of JUnit tests. This can
be done by activating the collector logging feature that will dump the collected messages
using XML marshalling.

For this reason, it is recommended that the Unified Mediation Bus message classes offer XML
marshalling/un-marshalling capabilities based on JAXB.

One simple way to achieve that is to start from an XML schema and use the maven-jaxb2-
plugin to produce the Java Class as shown in the example below

27

Example of message schema:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema xmlns:tns="http://hp.com/uca/expert/demo"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 targetNamespace="http://hp.com/uca/expert/demo" elementFormDefault="qualified"
version="1.0"
 xmlns:inheritance="http://jaxb2-commons.dev.java.net/basic/inheritance"
jaxb:version="2.1"
 jaxb:extensionBindingPrefixes="xjc inheritance">

 <!-- FORCE ALL CLASSES IMPLEMENTS SERIALIZABLE -->
 <xs:annotation>
 <xs:appinfo>
 <jaxb:globalBindings generateIsSetMethod="true">
 <xjc:serializable uid="123456" />
 </jaxb:globalBindings>
 </xs:appinfo>
 </xs:annotation>

 <!-- -->
 <!-- ELEMENTS DEFINITION -->
 <!-- -->
 <xs:element name="temperature">
 <xs:complexType>
 <xs:annotation>
 <xs:appinfo>

<inheritance:extends>com.hp.uca.expert.event.DefaultEvent</inheritance:extends>
 </xs:appinfo>
 </xs:annotation>

 <xs:sequence>
 <xs:element name="value" type="xs:double" minOccurs="1" />
 </xs:sequence>

 </xs:complexType>
 </xs:element>
</xs:schema>

Maven plugin configuration:
<plugin>
 <groupId>org.jvnet.jaxb2.maven2</groupId>
 <artifactId>maven-jaxb2-plugin</artifactId>
 <configuration>
 <schemaDirectory>src/main/resources/schemas</schemaDirectory>
 <extension>true</extension>
 <verbose>true</verbose>
 <forceRegenerate>true</forceRegenerate>
 <removeOldOutput>true</removeOldOutput>
 <args>
 <arg>-Xinheritance</arg>
 </args>
 <plugins>
 <plugin>
 <groupId>org.jvnet.jaxb2_commons</groupId>
 <artifactId>jaxb2-basics</artifactId>
 <version>${jaxb2-basics.version}</version>
 </plugin>
 </plugins>
 </configuration>
 <executions>
 <execution>
 <id>Generate XML Marshallers</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>generate</goal>
 </goals>
 </execution>
 </executions>
</plugin>

28

Another approach is to directly insert the JAXB annotation in the Java Class as shown below:
package com.hp.uca.expert.demo;

import java.io.Serializable;
import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;
import com.hp.uca.expert.event.DefaultEvent;

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "", propOrder = {
 "value"
})
@XmlRootElement(name = "temperature")
public class Temperature
 extends DefaultEvent
 implements Serializable
{

 private final static long serialVersionUID = 123456L;
 protected double value;

 /**
 * Gets the value of the value property.
 *
 */
 public double getValue() {
 return value;
 }

 /**
 * Sets the value of the value property.
 *
 */
 public void setValue(double value) {
 this.value = value;
 }

 public boolean isSetValue() {
 return true;
 }

}

29

Getting started with Unified Mediation
Bus Development Kit

2.1 Installing the Unified Mediation Bus Adapter
Development Kit

Detailed information on how to install UMB Adapter Development Kit is provided in the [R1] HP
Unified Mediation Bus– Installation and Configuration Guide

2.2 Adapter Development Pre-requisites

2.2.1 Eclipse IDE

The UMB Adapter Development Kit has been designed for an easy integration with the Eclipse
Integrated Development Environment (IDE) tool.

Before starting the development of any UMB value pack, it is necessary to download and install
the EclipseTM application development environment.

The following table lists the Eclipse IDE pre-requisites for UMB Adapter Development Kit:

Software Version
Eclipse IDE 3.7 (Indigo) or higher

Table 2 - Eclipse IDE Prerequisites for UMB Adapter Development Kit

The minimum version of Eclipse IDE required by the UMB Development Kit is version 3.4 but we
recommended Eclipse IDE version 3.7 (Indigo) or higher.

If you want to install Eclipse IDE, please go to the following URL for downloading Eclipse IDE:
http://www.eclipse.org/downloads/

At the time of writing, the Eclipse IDE version is Luna 4.4.

We recommend you to download either (other choices may also be valid):

Eclipse IDE for Java Developers, or

Eclipse IDE for Java EE Developers

Then you need to choose to install either the 32-bit or 64-bit version of Eclipse IDE depending
on whether you have a 32-bit or 64-bit operating system.

http://www.eclipse.org/downloads/

30

Once Eclipse IDE is installed on your system, and in order to get the full benefit of the Drools
development environment in Eclipse, it is also necessary to download and install the Drools
plug-in for Eclipse.

2.2.2 Post-install Environment Setup

2.2.2.1 The UMB_DEV_HOME Variable

The variable environment variable UMB_DEV_HOME is necessary for various development
phases of a UMB Adapter, especially the build and packaging phases.

On Windows:

The Unified Mediation Bus Development Kit installation procedure adds the
%UMB_DEV_HOME% environment variable to your user environment.

This variable is necessary for various development phases of a UMB Adapter development,
especially the build and packaging phases.

To verify that this variable is correctly set after the UMB Adapter Development Kit has been
installed, open a command-line (Run… -> cmd.exe) and type:

C:\> echo %UMB_DEV_HOME%

You should get an output similar to the following:

C:\UMB-DEV\

On Linux:

This Variable must be manually set in the user’s environment, as specified in the [R1] Unified
Mediation Bus Installation and Configuration Guide.

To verify that this variable is correctly set, perform the following command:

$ echo ${UMB_DEV_HOME}

You should get an output similar to the following:

/opt/UMB-DEV

2.2.2.2 Ant Configuration

The UMB Adapter packaging is based on the use of the Apache Ant tool. This tool requires a
specific version and specific settings. Be sure to use the Apache Ant tool provided with UMB in
the %UMB_DEV_HOME%\3pp\ant directory (${UMB_DEV_HOME}/3pp/ant on Linux).

Be sure that you don’t have the ANT_HOME environment variable set to the path of another
version of Apache Ant, which would create conflicts with the version of Apache Ant in the
3pp\ant\bin folder. If you do, you should either clear the ANT_HOME environment variable:

C:\> set ANT_HOME=

Or set it to the directory of the Apache Ant version that comes with the UMB development kit:
C:\> set ANT_HOME=%UMB_DEV_HOME%\3pp\ant

31

$ANT_HOME/bin/ant -version
Apache Ant(TM) version 1.9.3 compiled on December 23 2013

The delivered Apache Ant version that comes with the UMB development kit is:
$ANT_HOME/bin/ant -version
Apache Ant(TM) version 1.9.3 compiled on December 23 2013

2.2.3 Unified Mediation Bus Eclipse plug-in installation instructions

The UMB Adapter Development Kit delivers an Eclipse plug-in that eases UMB Adapter project
creation under eclipse.

This plugin is delivered in the %UMB_DEV_HOME%\eclipseplugin\ umbEclipsePluginSite-1.0.0-
assembly.zip file.

The installation of this plug-in is made as follows:

From the Eclipse ‘Help’ menu, choose ‘Install new software’ and then click on the Add… button.

Select the Unified Mediation Bus eclipse plug-in ZIP file using the Archive... button and give it

the name “UMB plugin” as shown in the picture below:

Figure 10 - Unified Mediation Bus plug-in: Installation step 1

Then click on the OK button.

32

The screen should then display the archive content as follow:

Figure 11 - Unified Mediation Bus Eclipse plug-in: Installation step 2

Check the “Unified Mediation Bus plugins” checkbox, uncheck the “Contact all update sites…”,
and then click on the Next > button.

33

The following screen is displayed:

Figure 12 - Unified Mediation Bus Eclipse plug-in: Installation step 3

Click on the Next > button for installing the plug-ins after accepting the license terms.

Note

The following message appears during the installation. This is a normal message as the
provided jar files are signed.

Select the listed Certificated and Click OK to continue the installation.

The plug-in installation requires a restart of your Eclipse IDE environment. Please restart
eclipse before any attempt to create a UMB Adapter project.

34

35

Unified Mediation Bus Adapters
development

3.1 Creating a new UMB Adapter
UMB Adapters provide connectivity between a target application and the UMB framework, and
from there to other UMB Adapters and applications.

Each UMB Adapter can provide:

 Flow collection services

 Action services

Each UMB Adapter can also act as a consumer of other UMB Adapters flow or action services.

3.1.1 Creating a UMB Adapter project within Eclipse

The UMB eclipse plug-in brings a project creation wizard that allows the creation of a new UMB
Adapter project in just a few clicks and dialog boxes.

This wizard can be launched from the Eclipse menus by selecting File -> New Project:

36

This launches the UMB Adapter Project wizard:

37

Figure 13 - UMB Adapter project creation wizard Step1

From the UMB Adapter project wizard window you can specify information regarding your UMB
Adapter project:

 Project name: the name of the UMB Adapter Eclipse project to create

 Adapter name and version: the name and version of the UMB Adapter. The name of
the UMB Adapter is used to identify the Adapter on the UMB framework

 Adapter package: the name of the Java package to be used for the Java classes of
your UMB Adapter

 Project location: the location of the UMB Adapter Eclipse project on the file system,
either in the Eclipse workspace or anywhere on the file system

 UMB Adapter Toolkit location: location on the file system of the installation directory
of the UMB Adapter Development Kit2. The default value is the value of the
%UMB_DEV_HOME% environment variable on Windows systems

(${UCA_EBC_DEV_HOME} on Linux): C:\UMB-DEV by default on Windows
systems (/opt/UMB-DEV on Linux)

2 Please refer to [R1] Unified Mediation Bus installation and configuration Guide for more

information on how to install the UMB Adapter Development Kit

38

When you click on the Finish button, your UMB Adapter Eclipse project is created and already
has a minimum set of configuration, Java and JUnit files. It can be successfully compiled and
unit tested.

Figure 14 – New UMB Adapter project

39

3.1.2 Anatomy of the created project

Using Eclipse IDE, you can browse through the different directories that compose the newly
created UMB Adapter project.

Please see below for a look at the folder structure of the project:

Figure 15 - Folder structure of the new UMB Adapter project

The configuration files of the Adapter are located in the src/main/resources/conf

folder:

 The adapter.properties file defines properties for the adapter including

connection information for the UMB Kafka/ZooKeeper instance(s)

 The AdapterConfiguration.xml file defines the flow and action services

provided by the adapter as well as “automatic” consumer flows

 The hazelcast.xml file defines how to connect to the UMB Hazelcast instance(s)

 The log4j.xml file defines the Adapter’s Log4j configuration

The Adapter start scripts for both Windows (adapter-start.bat file) and Linux

(adapter-start file) systems are located in the src/main/resources/bin folder.

40

The Adapter Java classes that define the behavior of the Adapter are located in the
src/main/java folder. As the Adapter has just been created, there’s only one Java class

present: the Adapter.java class. An object of this class represents an instance of the
Adapter. By default, this class also has a main(String[] args) method that creates one

instance of the Adapter and starts it.

Figure 16 - Adapter.java Java class of the new UMB Adapter project

The created UMB Adapter project also comes with an Apache Ant build.xml file that is used

for building and packaging the UMB Adapter outside of the Eclipse IDE.

3.1.3 Validation of the created project

The Adapter’s src/test/java folder contains a Junit test Class AdapterTest.java.

This is a test skeleton that simply starts the Adapter and checks it is in the ‘RUNNING’ state.

This Test Class is a template that can be extended to test the Adapter’s capabilities (flow
services and action services).

41

Figure 17 - AdapterTest.java JUnit test class of the new UMB Adapter project

3.2 Customizing the created UMB Adapter project
The project generated by the UMB Eclipse plug-in provides a simple Adapter that does not
provide any collection flow or action services and that does not consume any collection flows.

This is basically a class that extends the com.hp.umb.adapter.BasicAdapter class. It then

must implement:

 Production flow services (if this is an adapter producing Events)

 Consumer flows (if this is an adapter consuming Events)

 Actions services (if this adapter is an action service provider)

The following chapters will explain how to turn the Adapter into an Adapter that does these
things. For this you have to customize:

 The Adapter configuration files, mostly the AdapterConfiguration.xml file

 The Adapter Java files

 The Adapter JUnit files

3.2.1 Customizing the Adapter Name

Each Adapter that is part of an UMB Mediation solution must have a unique Name. This name is
defined in the AdapterConfiguration.xml file by setting the name attribute of the

<adapter>…</adapter> XML element:

42

Figure 18 - Customizing the Adapter Name

Additionally an actionGroup name (used for load-balancing action execution on a group of
adapters) and version number can be defined for the adapter. The version number does not
play any role in the adapter’s identification however.

3.2.2 Adding producer collection flow services

In order to add producer collection flow services to your Adapter, you first have to define the
collection flows or types of collection flows that you want to provide in the
AdapterConfiguration.xml file.

In this file, producer collection flow services are defined by adding the
<flowServices>…</flowServices> XML element inside the enclosing
<adapter>…</adapter> root XML element.

Each producer collection flow service is defined by adding a <flow>…</flow> XML element
inside the enclosing <flowServices>…</flowServices> XML element.

Each <flow>…</flow> XML element must define all of the following mandatory attributes:

 name: this is the name of the flow used to identify the flow (for CreateFlow

collection flow actions for example)

 type: the type of the flow: either “Static” or “Dynamic”. Static flows are started
automatically when the Adapter starts whereas dynamic flows require a
CreateFlow collection flow action to be started.

 collectorClass: this is the name of the Java class (including the Java package name)
implementing the flow. For example: com.example.MyCollector. This class has

to extend the com.hp.umb.adapter.collector.BaseCollector class and
implement the com.hp.umb.adapter.collector.CollectorInterface

Java interface.

The following optional attribute can be defined:

 lastEventReceivedFirstDuringResynchronization: a Boolean flag to indicate whether
collection events/alarms are received in chronological order (in which case the flag
has to be set to false) or not (flag set to true) during resynchronization. By default, if
this attribute is not present, the flag is assumed to be false, which means that
events/alarms are received in chronological order during resynchronization.

 autoStarted (boolean default true): This attribute is applicable only if the specified
the flow type is “Static”. It indicates that the UMB Framework should start this flow
automatically at adapter startup.

 monitoringRestartPeriod (in milliseconds default 30000): This attribute is applicable
only if the specified flow type is “Static” and autoStarted=’true’. In case of Consumer
Flow start failure, if the Flow is monitored (the default), this represents restart
attempt period.

43

 serializerClass: this parameter can specify a custom serialization Class. The
serialization class is the class in charge of linearizing (de-linearizing) the Event
message into (and from) a byte array. The default linearization class is the UMB
framework provided
com.hp.umb.adapter.internal.utilities.JavaClassSerializer

class which uses the standard java class linearization mechanism.

A custom linearization class must implement the following interfaces:

kafka.serializer.Encoder.Encoder<Object>

and

kafka.serializer.Decoder.Decoder<Object>

Each <flow>…</flow> XML element can also define parameters associated with the flow by
adding the optional <parameters>…</parameters> XML element. Inside the

<parameters>…</parameters> XML element, each parameter is defined by a
<parameter>…</parameter> XML element. Each parameter must define all of the

following mandatory attributes:

 key: this is the name of the action's parameter

The parameters defined in the <parameters>…</parameters> XML element will be used

(alongside the parameters of the CreateFlow action if the flow is dynamic) when the flow is
created.

Below is an example of an AdapterConfiguration.xml file that defines one static flow:

Figure 19 - Example of a flow in the AdapterConfiguration.xml file

Once the producer collection flow services have been defined in the
AdapterConfiguration.xml file, it is necessary to create a “Collector” Java class for

each producer collection flow. The name of the class has to match the value of the
collectorClass attribute of the <flow>…</flow> XML element in the

AdapterConfiguration.xml file. It is mandatory that this class extends the
com.hp.umb.adapter.collector.BaseCollector class.

44

You can create a “Collector” Java class by using the context menus in your Adapter project:

Figure 20 - Creating a “Collector” Java class – Step 1

This opens the New Class window.

Figure 21 - Creating a "Collector" Java Class Step 2

45

Please make sure that the new “Collector” Java class that you’re creating extends the
com.hp.umb.adapter.collector.BaseCollector. Automatically eclipse will

create the methods from the
com.hp.umb.adapter.collector.CollectorInterface Java interface.

Once you click on the Finish button, the new “Collector” Java class is created as shown

below:

Figure 22 - Creating a “Collector” Java class – Step 3

In order to finalize the new “Collector” Java class, several methods need to be implemented:

 Initialization and destruction methods:
o onInitialization(…): This method initializes the creation of the

collector. It is automatically called by the Unified Mediation Bus framework
when the collector is created. If you need to initialize objects or resources
associated with the “Collector” object, this is the place to do it.

o onDestruction(): This method finalizes the destruction of the collector.

It is automatically called by the Unified Mediation Bus framework when the

46

collector is destroyed. If you need to free objects or resources associated
with the “Collector” object, this is the place to do it.

 Collection flow action methods:
o startCollection(): This method starts the Collection flow. It is called

by the Unified Mediation Bus framework when a startCollection() request is
made on the ConsumerFlow side. This method returns an ActionReply
object to indicate whether the start of the collection flow was successful or
not.

o resynchCollection(): This method re-synchronizes the Collection

flow. It is called by the Unified Mediation Bus framework when a
resyncCollection() request is made on the ConsumerFlow side. This method
returns an ActionReply object to indicate whether the re-synchronization
of the collection flow was successful or not.
The re-synchronization mechanism requires that the Event Provider offers
re-synchronization facility. This is the case for TeMIP for example, that stores
alarms and then is capable of re-sending all alarms at a given point in time,
but will be true for any event provider that stores its event and is able to send
it back again on request.
A resynchronized flow of events must be framed with two additional events:
one indicating the beginning of the synchronization flow, and another one
indicating the end of the resynchronization flow.
Such frame events must not vehicle any other information than the start and
end of synchronization flags.
The Begin of Synchronization event is set with the attribute
beginOfSynchronization=true and the End of synchronization event

is set with the endOfSynchronization=true. Any event type extending
the com.hp.uca.expert.event.DefaultEvent will inherit the two

methods : setBeginOfSynchronization() and
setEndOfSynchronization() that allow setting such attributes.
Any Event Type extending the DefaultEvent Class can therefore be used as
Begin and End of synchronization events by setting these attributes.
In the case of an Alarm flow, the resynchronized Event flow starts with the
specific
com.hp.uca.expert.alarm.internal.BeginSynchronization

 event and is terminated by sending the com.hp.uca.expert.alarm.

internal.EndSynchronization event.
o getCollectionAudit(): This method returns a description of the

Collection flow. It is mainly used for troubleshooting purpose. It is called by
the Unified Mediation Bus framework when a request an audit request on the
collection flow is received (AuditFlow request). This method returns a

MAP<String,String> representing a key/value collection describing the
collector information.
Such information is retrieved by the consumer side by calling the
auditCollection() method on the ConsumerFlow object.

o stopCollection(): This method stops the Collection flow. It is called by

the Unified Mediation Bus framework when a stopCollection() request is made
on the ConsumerFlow side. This method returns an ActionReply object to
indicate whether the stop of the collection flow was successful or not.

 Collection flow method:
o pull(): This method pulls a set of messages from a collection source.

Implementations of this method should throw InterruptedException if
the current thread is interrupted. This is the main method of any “Collector”
Java class because it is the one that actually collects alarms/events.

You can find example of implementation of “Collector” Java classes in the Camel Adapter
(CamelCollector.java class) and File Adapter (FileCollector.java and

TemperaturesCollector.java classes) described in this document:

47

 For more information on the Camel Adapter, please refer to chapter 5.1 “Camel
Adapter”

 For more information on the File Adapter, please refer to chapter 5.2 “File Adapter”

Once you have both declared a producer collection flow in the
AdapterConfiguration.xml file and implemented the associated “Collector” class, you

have successfully added a producer collection flow service to your UMB Adapter.

If the producer collection flow that you have created is Static, then it will be automatically
started by the UMB Framework when the Adapter starts. Otherwise (if the producer collection
flow is Dynamic), the Adapter will wait for a CreateFlow collection action request to start

the producer collection flow.

Producer collection flows can be consumed by any UMB Adapter. Setting up consumer flows is
explained in detail in chapter 3.2.4 “Adding consumer flows”.

3.2.2.1 Managing the Collectors state

A state is associated to each Collector instance. This state can be retrieved by the
getStatus() method of the BaseCollector Class. This method returns an object of type

FlowStatus that can take the following values: (UNKNOWN, STARTING, ACTIVE,
FAILOVER, STOPPING, INACTIVE, FAILED)

The different states are managed by the framework itself during the Collector lifecycle. This is
the case for the UNKNOWN->STARTING->ACTIVE transitions and for the ACTIVE->STOPPING-
>INACTIVE transitions.

However, the Collector class can set this state using the setStatus()method mainly to

notify collection errors.

For such purpose there are two states available:

 The FAILED state:

This state is use to notify a fatal collection error. In such case the Collection Flow is considered
as not usable anymore. This state will be propagated to the Consumer side which in turn will be
set in the FAILED state. If the consumer is monitored, the framework will automatically restart
the flow.

 The FAILOVER state:

This state indicates that there is a collection error, but the Collector itself will try to re-
establish the collection. This FAILOVER state is propagated to the Consumer side for
information, but no specific action is taken from the framework. It is the responsibility of the
Collector to re-establish the collection itself. When the collection is successfully re-
established, the Collector state must be set with the ACTIVE state. In case of failure the state
as to be turned to FAILED.

Note: Any attempts to change the flow state to a value other than FAILED or FAILOVER or turn it
back to ACTIVE when it was FAILOVER will lead to an exception.

3.2.3 Adding action services

In order to add action services to your Adapter, you first have to define the actions or types of
actions that you want to provide in the AdapterConfiguration.xml file.

In this file, action services are defined by adding the
<actionServices>…</actionServices> XML element inside the enclosing

<adapter>…</adapter> root XML element.

Each action service is defined by adding a <action>…</action> XML element inside the
enclosing <actionServices>…</actionServices> XML element.

48

Each <action>…</action> XML element must define all of the following mandatory

attributes:

 name: this is the name of the action used to identify the action (for executing actions
for example)

 actionClass: this is the name of the Java class (including the Java package name)
implementing the action. For example: com.example.MyAction. This class has to

extend the com.hp.umb.adapter.BaseAction abstract Java class.

Each <action>…</action> XML element can also define parameters associated with the

action by adding the optional <parameters>…</parameters> XML element. Inside the
<parameters>…</parameters> XML element, each parameter is defined by a

<parameter>…</parameter> XML element. Each parameter must define all of the

following mandatory attributes:

 key: this is the name of the action's parameter. Only the name of the parameter
defined here. The value of the parameter will be send when the action is executed. If
no value is sent when the action is executed, the default value will be used.

Please refer to chapter 1.5.1 “Action Services” for more information on action services.

Below is an example of an AdapterConfiguration.xml file that defines one action:

Figure 23 - Example of an action in the AdapterConfiguration.xml file

Once the action services have been defined in the AdapterConfiguration.xml file, it is

necessary to create an “Action” Java class for each action. The name of the class has to match
the value of the actionClass attribute of the <action>…</action> XML element in the
AdapterConfiguration.xml file. It is mandatory that this class extends the

com.hp.umb.adapter.BaseAction abstract Java class.

You can create an “Action” Java class by using the context menus in your Adapter project:

49

Figure 24 - Creating an “Action” Java class – Step 1

This opens the New Class window.

Figure 25 - Creating an “Action” Java class – Step 2

50

Please make sure that the new “Action” Java class that you’re creating extends the
com.hp.umb.adapter.BaseAction abstract Java class.

Once you click on the Finish button, the new “Action” Java class is created as shown below:

Figure 26 - Creating an “Action” Java class – Step 3

In order to finalize the new “Action” Java class, several methods need to be implemented:

 Initialization method:
o onInitialization(…): This method initializes the creation of an action.

It is automatically called by the Unified Mediation Bus framework when the
action is created. If you need to initialize objects or resources associated with
the “Action” object, this is the place to do it.

 Action method:
o execute(): This method executes an action. It is automatically called by

the Unified Mediation Bus framework when the action is executed. If the
action being executed is cancelled (by the requester), the current thread will
be interrupted. This is the main method of any “Action” Java class because it
is the one that actually executes the action.

You can find example of implementation of “Action” Java classes in the Camel Adapter
(CamelAction.java class) described in this document:

 For more information on the Camel Adapter, please refer to chapter 5.1 “Camel
Adapter”

Once you have both declared an action in the AdapterConfiguration.xml file and

implemented the associated “Action” class, you have successfully added an action service to
your UMB Adapter.

In order for the new action to be executed, the Adapter has to be started and an
ExecuteAction action request has to be sent to the Adapter.

51

Any UMB Adapter can request actions to be executed by any Adapter providing action services
by simply using Java code as show below:

Figure 27 - Java code to send action requests

As seen in the example Java code above, you need to first create an ActionQuery object,

specifying the source Adapter, target Adapter Name (in case you want to load balance action
execution across multiple adapter, you can specify a target Adapter Group name instead: the
action will be executed on a randomly selected adapter that’s part of the group), target Action
Name and parameters.

Then you can execute the action by calling the executeSyncAction() method on the
ActionQuery object. This will execute the action synchronously (i.e. the method call is

blocking until the action is complete). When the action is complete, an ActionReply object is

returned.

Alternatively it is also possible to execute the action asynchronously:

 Synchronous execution methods (from the ActionQuery Java class):

o public ActionReply executeSyncAction() throws

IllegalActionStateException,

AdapterNotFoundException, AdapterNotActiveException

52

o public ActionReply executeSyncAction(long timeout)

throws IllegalActionStateException,

AdapterNotFoundException, AdapterNotActiveException

 Asynchronous execution methods (from the ActionQuery Java class):

o public void executeAsyncAction() throws

IllegalActionStateException,

AdapterNotFoundException, AdapterNotActiveException

o public void executeAsyncAction(ActionCallback

callback) throws IllegalActionStateException,

AdapterNotFoundException, AdapterNotActiveException

 Methods for retrieving the result of an asynchronous action (from the ActionQuery

Java class):

o public ActionReply getAsyncActionReply() throws

IllegalActionStateException

o public ActionReply getAsyncActionReply(long timeout)

throws TimeoutException, IllegalActionStateException

 Cancellation method (from the ActionQuery Java class):

o public ActionReply cancelAction() throws

IllegalActionStateException

For more information, please refer to the UMB Development Toolkit Javadoc available either in
Eclipse IDE or directly from the UMB Development Toolkit installation directory:

 %UMB_DEV_HOME%\apidoc on Windows systems

 ${UMB_DEV_HOME}/apidoc on Linux systems

3.2.4 Adding consumer flows

In order to add consumer flows to your Adapter, you have 2 options:

 Either define consumer flows that start automatically (when the Adapter starts) in the
AdapterConfiguration.xml file

 Or define consumer flows and start them in the Java code of your Adapter

3.2.4.1 Automatically started Consumer flows

Defining consumer flows that start automatically in the AdapterConfiguration.xml file

is straightforward.

Refer to section 1.5.3 “Defining Flow Service Consumers from Configuration” for full
description on how to define automatic consumers.

53

3.2.4.2 Consumer flows started by custom code

Alternatively to defining consumer flows that start automatically, it is also possible to define
consumer flows and start them directly in the Java code of your Adapter:

Figure 28 - Java code to create consumer flows

The flow is created using the ConsumerFlow() constructor (giving all the necessary parameters
which are actually the same as the one described for the automatically started Consumer
Flows.)

The flow collection is started by calling the startCollection() method . And this collection
can be stopped by calling the stopCollection() method.

The Consumer flows created from Adapter’s custom code allows additionally to resynchronize
the flow (in case the Flow Producer side allows this capability). In such case the re-
synchronization can be requested by calling the resyncCollection()

3.2.4.3 Defining the flow message consumer class

Both the “auto” and java code created consumer flows require a “MessageConsumer” Java
class.

A “MessageConsumer” class must:

1. extend the com.hp.umb.adapter.consumer.BaseConsumerMessageHandler class.

2. implement one of the following java interfaces:

 com.hp.umb.adapter.consumer.ConsumerMessageHandlerInterface<K

extends Event>

With this interface the consumed Events are returned one by one by the UMB
framework. The framework is blocked on a read operation on the kafka topic. As soon

54

as an Event is received the OnNewMessage()method is called with this Event

message as parameter.

 com.hp.umb.adapter.consumer.ConsumerMessageSetHandlerInterface< K

extends Event>

With this interface the messages are not returned one by one but by Sets.

The maximum message set size is specified by calling the
setConsumerMaxSetSize() method on the consumer Flow:

Example:

 myFlow.setConsumerMaxSetSize(100);

which sets the maximum set size to 100.

The UMB framework reads the Kafka topic until no message arrives for a given
timeout. This timeout is a configuration of the ConsumerFlow. It is specified by calling
the setConsumerTimeout() method on the consumer Flow:

Example:

 myFlow.setConsumerTimeout (500);

which sets the read timeout to 500 millisecondes.

The UMB framework calls the onNewMessageSet() method of the

“messageConsumer” class when either the number of event in the set reaches the
maximum set size, or when the specified timeout as elapsed.

You can create a “MessageConsumer” Java class by using the context menus in your Adapter
project:

Figure 29 - Creating a “MessageConsumer” Java class – Step 1

55

This opens the New Class window.

Figure 30 - Creating a “MessageConsumer” Java class – Step 2

Please make sure that the new “MyMessageConsumer” Java class that you’re creating extends
the com.hp.umb.adapter.consumer.BaseConsumerMessageHandler class

and implements one of
com.hp.umb.adapter.consumer.ConsumerMessageHandlerInterface<K

extends Event> or
com.hp.umb.adapter.consumer.ConsumerMessageSetHandlerInterface<K

extends Event> Java interface.

Note also that you have to specify the Interface’s formal type K (in the example :
com.hp.uca.alarm.AlarmCommon)

Once you click on the Finish button, the new “MyMessageConsumer” Java class is created as

shown below:

56

Figure 31 - Creating a “MessageConsumer” Java class – Step 3

In order to finalize the new “MessageConsumer” Java class, only one method need to be
implemented:

 onNewMessage(…): This method is called by the UMB framework whenever an

event/alarm is consumed from the flow.

Once you have both declared an “auto” consumer flow in the
AdapterConfiguration.xml file and implemented the associated “MessageConsumer”

class, you have successfully added an “auto” consumer flow service to your UMB Adapter. The
“auto” consumer flow will be started automatically when the Adapter starts.

57

3.2.4.4 Consumer flows state diagram

The Consumer Flow owns a Status that reflects the state of the collection. This status is
returned by calling the Consumer Flow getStatus() method.

The Consumer flow status diagram is as Follow:

Figure 32 - Consumer Flow status diagram

At Consumer Flow creation the Status is set to UNKNOWN. The other states are the results of
the following transitions :

1. ConsumerFlow Creation

2. startCollection requested

3. startCollection completed

4. stopCollection requested

5. Collection successfully stopped

6. Production flow Failed or Production Flow’s Adapter stopped or
Kafka server connection lost

7. ConsumerFlow Restarted by Monitoring

8. Producer collector recovering

9. Producer collector recovered

10. Adapter not started

11. Flow service does not exist

58

12. producer error while stopping flow

The Adapter can react to Consumer flow status changes by positioning a Flow status change
listener. This is done by calling the adapter’s method addFlowStatusChangeListener().

This method requires a flow status listener instance to be passed as parameter.

The flow status listener instance must implement the com.hp.umb.adapter.consumer.
ConsumerFlowStatusListenerInterface class.

3.3 Generating the UMB Adapter kit
Once your Eclipse project has been updated, it is necessary to generate the kit associated with
it so that it can be deployed usually on the same system as the application that the Adapter
targets.

To do this, you just need to execute the following commands:

C:\> cd <Project Base>
C:\> ant all

<Project Base> refers to the root directory of the Adapter Eclipse project.

Figure 33 - Building the kit of your Adapter

The kit of the Adapter is then generated in the target directory of the <Project Base>

directory as a Zip file called <Adapter name>-<Adapter version>.zip (for example
MyAdapter-1.0.zip):

59

Figure 34 – Location of the kit of your Adapter

The ZIP file of your Adapter contains a root folder named <Adapter name> (for example

MyAdapter) that contains the following sub-folders:

 bin/ sub-folder that contains the Adapter start scripts:

o adapter-start: the Adapter’s Linux start shell script

o adapter-start.bat: the Adapter’s Windows start batch script

 conf/ sub-folder which contains the Adapter’s configuration files:

o adapter.properties: defines properties for the Adapter including

connection information for the UMB Kafka/ZooKeeper instance(s)

o AdapterConfiguration.xml: defines the flow and action services

provided by the adapter as well as “automatic” consumer flows

o hazelcast.xml: defines how to connect to the UMB Hazelcast instance(s)

o log4j.xml: defines the Adapter’s Log4j configuration

 lib/ sub-folder that contains the library files (jar files) necessary to run the Adapter

Below is the full list of the contents of the ZIP file of your Adapter:

C:\MyAdapter\target>7z t MyAdapter-1.0.zip

7-Zip [64] 9.20 Copyright (c) 1999-2010 Igor Pavlov 2010-11-18

Processing archive: MyAdapter-1.0.zip

Testing MyAdapter

Testing MyAdapter\lib

Testing MyAdapter\lib\MyAdapter-1.0.jar

Testing MyAdapter\lib\annotations-1.3.2.jar

Testing MyAdapter\lib\aopalliance-1.0.jar

Testing MyAdapter\lib\camel-core-2.14.0.jar

Testing MyAdapter\lib\camel-spring-2.14.0.jar

Testing MyAdapter\lib\commons-configuration-1.10.jar

Testing MyAdapter\lib\commons-io-1.4.jar

Testing MyAdapter\lib\commons-lang-2.4.jar

Testing MyAdapter\lib\commons-logging-1.1.1.jar

Testing MyAdapter\lib\hamcrest-core-1.3.jar

Testing MyAdapter\lib\hazelcast-3.2.3.jar

Testing MyAdapter\lib\jaxb-api-2.2.7.jar

Testing MyAdapter\lib\jaxb-impl-2.2.6.jar

Testing MyAdapter\lib\jaxb-xjc-2.2.6.jar

60

Testing MyAdapter\lib\jline-0.9.94.jar

Testing MyAdapter\lib\jopt-simple-3.2.jar

Testing MyAdapter\lib\junit-4.11.jar

Testing MyAdapter\lib\kafka_2.10-0.8.1.1.jar

Testing MyAdapter\lib\log4j-1.2.17.jar

Testing MyAdapter\lib\metrics-core-2.2.0.jar

Testing MyAdapter\lib\opencsv-2.3.jar

Testing MyAdapter\lib\scala-library-2.10.1.jar

Testing MyAdapter\lib\slf4j-api-1.7.5.jar

Testing MyAdapter\lib\slf4j-log4j12-1.7.5.jar

Testing MyAdapter\lib\snappy-java-1.0.5.jar

Testing MyAdapter\lib\spring-aop-3.2.11.RELEASE.jar

Testing MyAdapter\lib\spring-beans-3.2.11.RELEASE.jar

Testing MyAdapter\lib\spring-context-3.2.11.RELEASE.jar

Testing MyAdapter\lib\spring-core-3.2.11.RELEASE.jar

Testing MyAdapter\lib\spring-expression-3.2.11.RELEASE.jar

Testing MyAdapter\lib\spring-tx-3.2.11.RELEASE.jar

Testing MyAdapter\lib\uca-ant-assembly-3.2-NGMED-SNAPSHOT.zip

Testing MyAdapter\lib\uca-common-3.2-NGMED-SNAPSHOT.jar

Testing MyAdapter\lib\umb-adapter-fmk-1.0-SP1-SNAPSHOT.jar

Testing MyAdapter\lib\umb-demo-classes-1.0-SP1-SNAPSHOT.jar

Testing MyAdapter\lib\umbEclipsePluginSite-1.0.0-SNAPSHOT-

assembly.zip

Testing MyAdapter\lib\zkclient-0.3.jar

Testing MyAdapter\lib\zookeeper-3.3.4.jar

Testing MyAdapter\conf

Testing MyAdapter\conf\AdapterConfiguration.xml

Testing MyAdapter\conf\adapter.properties

Testing MyAdapter\conf\hazelcast.xml

Testing MyAdapter\conf\log4j.xml

Testing MyAdapter\bin

Testing MyAdapter\bin\adapter-start

Testing MyAdapter\bin\adapter-start.bat

Everything is Ok

Folders: 4

Files: 44

Size: 31523046

Compressed: 28414597

Figure 35 - Contents of the kit of your Adapter

3.4 Installing the UMB Adapter kit
Copy the kit of your Adapter (the ZIP file located at: target/<Adapter name>-
<Adapter version>.zip) to any directory on the system where you want to install it and

unzip it.

For example:

C:\> cd <Adapter Install Dir>
<Adapter Install Dir>> unzip <Adapter name>-<Adapter
version>.zip

3.5 Starting the UMB Adapter kit
Once the Adapter is installed, you can start it using either the Windows start script or the Linux
start script:

61

On Windows:

<Adapter Install Dir>> adapter-start.bat

On Linux:

<Adapter Install Dir>$ adapter-start

62

Advance development topics

4.1 Extending the DefaultEvent class

By default, UMB adapters produce or consume events which are java instances of the class
DefaultEvent.java.

However it is possible to create more specific event classes, provided they extend the class
DefaultEvent .java

Suppose you want your adapter to handle temperature metrics.
This paragraph explains the steps to produce or consume temperature metrics

The general idea is to create a Temperature class, and to add this class to the classpath of the
adapter(s) producing temperature metrics and to the classpath of the adapter(s) consuming
the temperature metrics

One way is to define the Temperature java class in a separate java project producing a small jar
file containing the Temperature.class

Alternatively you can define the Temperature.java directly inside your adapter (producer of
temperature metrics) project. But the Temperature. Class will still have to be packaged in a
separated small .jar file to be used at the consumer side

The UMB Adapter Developer Kit ${UMB_DEV_HOME}/adapter-examples/ folder on

Linux, %UMB_DEV_HOME%\adapter-examples folder on Windows

contains the umb-demo-classes project

This project exactly demonstrates the introduction of the temperature metric.
Here are the steps to follow:

4.1.1 Defining the new metric schema

63

Start by defining the Temperature.xsd XML schema.

This will be used by JAXB to automatically generate a TemperatureBase java class.

Temperature.xml events will have to follow the Temperature.xsd schema.

Below is the generic JAXB diagram for reference.

Figure 36 - JAXB Diagram

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema xmlns:tns="http://hp.com/uca/expert/demo"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
targetNamespace="http://hp.com/uca/expert/demo"
elementFormDefault="qualified" version="1.0"

64

 jaxb:extensionBindingPrefixes="xjc"
 jaxb:version="1.0">

 <!-- FORCE ALL CLASSES IMPLEMENTS SERIALIZABLE -->
 <xs:annotation>
 <xs:appinfo>
 <jaxb:globalBindings generateIsSetMethod="true">
 <xjc:serializable uid="123456" />
 <xjc:superClass name="com.hp.uca.expert.event.DefaultEvent" />
 </jaxb:globalBindings>
 </xs:appinfo>
 </xs:annotation>

 <!-- -->
 <!-- ELEMENTS DEFINITION -->
 <!-- -->
 <xs:element name="temperatureBase">
 <xs:complexType>
 <xs:annotation>
 <xs:appinfo>
 <jaxb:class name="TemperatureBase"
implClass="com.hp.uca.expert.demo.Temperature" />
 </xs:appinfo>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="value" type="xs:double" minOccurs="1" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Temperature.xsd

The lines highlighted are essential. The globalBindings tag is used to specify that the
generated TemperatureBase class will be extending DefaultEvent.java

4.1.2 Generating the new metric java class

 The build.xml file contained in the umb-demo-classes contains the steps to automatically generate the
TemperatureBase.java

65

<!-- UMB libraries location -->
<property name="umb.libs" value="${env.UMB_DEV_HOME}/lib"/>

<!-- Environment directory tree -->
<property name="src.dir" value="src/main" />
<property name="src-resources.dir" value="src/main/resources" />
<property name="schemas.dir" value="src/main/resources/schemas" />
<property name="build.dir" value="target" />

<property name="generated-resources.dir" value="${build.dir}/generated-
sources/xjc" />

<taskdef name="xjc" classname="com.sun.tools.xjc.XJCTask">
 <classpath>
 <fileset dir="${umb.libs}" includes="*.jar" />
 </classpath>
 </taskdef>

 <target name="xjc-generate-sources">
 <mkdir dir="${generated-resources.dir}" />
 <xjc destdir="${generated-resources.dir}" extension="true"
removeOldOutput="true">
 <schema dir="${schemas.dir}" includes="**/*.xsd"/>
 </xjc>
 </target>

Extract of the build.xml with highlights of important lines

// This file was generated by the JavaTM Architecture for XML Binding(JAXB)
Reference Implementation, v2.2.6

package com.hp.uca.expert.demo;

import java.io.Serializable;
import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlType;

66

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "", propOrder = {
 "value"
})
public class TemperatureBase
 extends DefaultEvent
 implements Serializable
{

Generated TemperatureBase.java

4.1.3 Adding marshaller and unmarshaller for the new metric

We need the temperature metrics objects to be marshallable when we want to store them in a
file to replay them later.

We also need the temperature metrics stored in a file to be unmarshallable so as to load them
from the file and use them in adapters and other java applications.

Since the TemperatureBase.java is a generated class, there is not much flexibility to add
attributes and marshal() /unmarshal() methods to it.

That is why we create a Temperature.java class extending TemperatureBase.java,

This Temperature.java class initializes the marshaller and unmarshaller only once, the first
time it is used. And it also implements the marshal() and unmarshal() methods.

See below the Temperature.java class

@XmlRootElement
public class Temperature extends TemperatureBase {

 private static final long serialVersionUID = -1380279792464305020L;
 private static JAXBContext jaxbContext;
 private static Marshaller jaxbMarshaller;
 private static Unmarshaller jaxbUnMarshaller;
 private static String jaxbMarshallerError;

 static {
 try {

 /*
 * initializing the marshaller and unmarshaller once and only once
 * since it was defined in a static block
 */
 jaxbContext = JAXBContext.newInstance(Temperature.class);
 jaxbMarshaller = jaxbContext.createMarshaller();
 jaxbMarshaller.setProperty("com.sun.xml.bind.xmlDeclaration",
Boolean.FALSE);
 jaxbUnMarshaller = jaxbContext.createUnmarshaller();

67

 // output pretty printed
 jaxbMarshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
true);
 } catch (Exception e) {
 jaxbMarshallerError = e.getMessage();
 }
 }

 @Override
 public String marshal() {
 ByteArrayOutputStream os = new ByteArrayOutputStream();
 String returnValue = null;

 if (jaxbMarshaller != null) {
 try {
 jaxbMarshaller.marshal((TemperatureBase) this, os);
 returnValue = os.toString("UTF-8");
 } catch (JAXBException e) {
 returnValue = e.getMessage();
 } catch (UnsupportedEncodingException e) {
 returnValue = e.getMessage();
 }
 } else {
 returnValue = jaxbMarshallerError;
 }
 return returnValue;
 }

 public static Temperature unmarshal(StringBuffer in) throws JAXBException {
 return (Temperature) jaxbUnMarshaller.unmarshal(new StreamSource(new
StringReader(in.toString())));
 }

 public static Temperature unmarshal(String in) {
 try {
 return (Temperature) jaxbUnMarshaller.unmarshal(new
StreamSource(new StringReader(in)));
 } catch (JAXBException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 return null;
 }
 }

}

Temperature.java

4.1.4 Generating the new metric jar file

Below is the extract of the build.xml used to generate the .jar file

 <!-- Make the java code a jar file -->

68

 <target name="jar" description="Make the ${project.artifactId}-
${project.version} project code jar file.">
 <jar jarfile="${build.dir}/${lib.name}.jar">
 <!-- ship the code -->
 <fileset dir="${classes.dir}" includes="**/*.class" />
 </jar>
 </target>

Extract of build.xml showing the generation of the .jar file containing the Temperature.class

[hpossadm@tempeature-metric-classes]$ ant all

Run ant all command to produce the .jar file containing the Temperature.class and add it to the

classpath of all your adapters and applications needing to handle temperature metrics

4.2 Customizing the serialization Class
The serialization class is the class in charge of linearizing (de-linearizing) the Event message
into (and from) a byte array. The default linearization class is the UMB framework provided
com.hp.umb.adapter.internal.utilities.JavaClassSerializer class which

uses the standard java class linearization mechanism.

A custom linearization class can be used instead of the default one.

Such class must implement the following interfaces:

kafka.serializer.Encoder.Encoder<Object>

and

kafka.serializer.Decoder.Decoder<Object>

Here is a skeleton of a custom serialization class:

import kafka.utils.VerifiableProperties;
import kafka.serializer.Decoder;
import kafka.serializer.Encoder;

import com.hp.umb.adapter.internal.utilities.JavaClassSerializer;

public class MySerializer implements Encoder<Object>, Decoder<Object> {

 public MySerializer(VerifiableProperties verifiableProperties) {
 // leave this empty
 }

 // linearization method
 public byte[] toBytes(Object message) {
 // put your linearization code here
 return total;
 }

 // de-linearization method
 public Object fromBytes(byte[] bytes) {

69

 // put your de-linearization code here
 return obj;
 }
}

The use of a custom serialization class is configured on both the producer and the consumer
sides:

 On the Producer side:

In the flow service description (AdapterConfiguration.xml file) using the
‘serializerClass’ attribute.

Example:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<adapter name="CollectionTestAdapter" version="1.0"
xmlns="http://hp.com/umb/config">
 <flowServices>
 <flow name="AFlowWithCustomSerializer"
 type="Dynamic"
 collectorClass="com.hp.umb.adapter.collection.MyCollector"
 serializerClass="com.hp.umb.adapter.collection.MySerializer">
 <parameters>
 <parameter key="fileName" defaultValue="data/alarms.xml"/>
 </parameters>
 </flow>
 </flowServices>
</adapter>

 On the Consumer side:

 By setting the serializer class on the consumerFlow object:

myFlow.setSerializerClass("com.hp.umb.adapter.collection.MySerializer")
;

 Or by setting the serializer class on the autoConsumer definition in the
AdapterConfiguration.xml file:

Example:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<adapter name="LogAdapter" version="1.0" xmlns="http://hp.com/umb/config">
 <autoConsumers>
 <autoConsumer
 consumerIdentifier="AlarmLogger"
 targetAdapterName="CollectionTestAdapter"
 targetFlowName="AFlowWithCustomSerializer"
 serializerClass="com.hp.umb.adapter.collection.MySerializer"
 messageConsumerClass="com.hp.umb.adapter.log.LogAlarmConsumer"/>
 </autoConsumers>
</adapter>

70

4.3 Discovering the solution’s adapter topology and states
The UMB Framework offers the possibility for an adapter to be aware of other (remote)
adapters that are part of the solution (i.e. accessible through Hazelcast).

This is done manly through two functionalities:

1. Get the listen of known remote adapters

2. Get notifications on adapter addition, adapter deletion, adapter state change.

4.3.1 Getting the list of known Adapters

The com.hp.umb.adapter.BaseAdapter class (and thus any custom Adapter class)
provides the method getAdapterLimitedProxyMap(). This method returns a map of all

adapters that are currently connected to the distributed UMB solution.

This method can be used as follow:

// Dump all Adapter already present in the Grid
for (Map.Entry<String, ? extends AdapterProxyLimited> entry :
 adapter.getAdapterLimitedProxyMap().entrySet()) {
 AdapterProxyLimited remoteAdapter = entry.getValue();
 log.info("Adapter : " + remoteAdapter.getName()+ " : "
 + remoteAdapter.getState());
}

4.3.2 Getting Adapter’s Notifications

Adapter’s notifications are emitted each any adapter state change:

 A new adapter just started.

 An adapter stopped.

 An adapter’s state has changed (STARTING to ACTIVE), (ACTIVE to STOPPING).

Handling Adapters notifications starts by writing an AdapterProxy Listener as shown below:

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.hp.umb.adapter.configuration.AdapterProxyEvent;
import com.hp.umb.adapter.configuration.AdapterProxyListenerInterface;

public class TestAdapterProxyListener implements
AdapterProxyListenerInterface {

 private static final Logger log = LoggerFactory
 .getLogger(TestAdapterProxyListener.class);

 @Override
 public void entryAdded(AdapterProxyEvent adapterProxyEvent) {
 // TODO write custom code here
 log.info("Proxy Listener: Adapter Proxy Entry added : "
 + adapterProxyEvent.getName() + " : "
 + adapterProxyEvent.getState());
 }

71

 @Override
 public void entryRemoved(AdapterProxyEvent adapterProxyEvent) {
 // TODO write custom code here
 log.info("Proxy Listener: Adapter Proxy Entry removed : "
 + adapterProxyEvent.getName().toString());
 }

 @Override
 public void entryUpdated(AdapterProxyEvent adapterProxyEvent) {
 // TODO write custom code here
 log.info("Proxy Listener: Adapter Proxy Entry updated : "
 + adapterProxyEvent.getName() + " : "
 + adapterProxyEvent.getState());
 }

}

The this AdapterProxy listener must be registered to the UMB framework using the
addAdapterProxyListener() method of the com.hp.umb.adapter.BaseAdapter

class :

// Register an Adapter listener
try {
 adapter.addAdapterProxyListener(new TestAdapterProxyListener());
} catch (AdapterNotActiveException e1) {
 log.error("Failed to add Proxy Listener", e1);
 }

72

Unified Mediation Bus sample Adapters

The UMB Adapter Development Kit provides sample Adapters that can be used as examples to
create your own Adapters. These sample Adapters are located in the
${UMB_DEV_HOME}/adapter-examples folder on Linux,

%UMB_DEV_HOME%\adapter-examples folder on Windows.

5.1 Camel Adapter
The Camel Adapter is an example adapter that demonstrates how a UMB Adapter can be
integrated with Camel3 in order to benefit from the power and versatility of Camel inside an
Adapter. This adapter acts both as a Flow and Action service provider.

As a Flow provider, the adapter will:

 respond to collection flow actions: CreateFlow, DeleteFlow, ResynchFlow,
StatusFlow

 as a consequence of these collection flow actions, the adapter will
create/delete/resynchronize or get the status of collections of alarms/events

As an Action provider, the adapter will:

 respond to action requests

The Camel Adapter is composed of:

 Configuration files:

o The Adapter properties file: adapter.properties that defines properties

for the adapter including connection information for Kafka/ZooKeeper

o The Adapter’s Hazelcast configuration file: hazelcast.xml that defines how

to connect to the UMB Hazelcast Central Repository

o The Adapter’s Log4j configuration file: log4j.xml

o The Adapter configuration file: AdapterConfiguration.xml that defines

the flows and actions provided by the adapter

o A Camel Spring file: camel-context.xml that defines routes to be used for

processing actions, collection flow actions and collections

 Java files that define the Adapter’s behavior

 A JUnit test file that tests the Adapter’s behaviour: CamelAdapterTest.java

3 Please see http://camel.apache.org/ for more information on Camel

http://camel.apache.org/

73

The Adapter uses the Camel Spring API4 instead of the Camel Java API5 because it provides the
ability to modify the Camel routes in the camel-context.xml file without having to

recompile the Adapter. It is possible to use the Camel Java API instead inside a UMB Adapter
however this is not part of this example.

The following figure explains the overall architecture of the Camel Adapter.

Figure 37 - Camel adapter overview

In the above figure, the Camel Adapter is used to connect to a Target Application to the Unified
Mediation Bus. The Camel routes defined in the camel-context.xml file are used to

connect to the Target Application for processing actions, collection flow actions and collections
of alarms/events.

As Camel is used for connection to the Target Application any protocol can be used to interact
with the Target Application: web services (SOAP, REST), JMS, JDBC,6

The following sections will explain in detail how the Camel Adapter works.

5.1.1 Configuration

The configuration files of the Camel Adapter are located in the src/main/resources and
src/test/resources folders. Each of the configuration files is explained in detail below.

5.1.1.1 The adapter.properties file

The Adapter properties file: adapter.properties defines properties for the adapter

including connection information for the UMB Kafka/ZooKeeper instance(s).

The following properties are defined by default in this file:

 producer.metadata.broker.list: a list of Kafka broker <host>:<port> information

 producer.request.required.acks: set to 1 by default, indicating that Kafka is in a

mode where messages are acknowledged

4 Please see: http://camel.apache.org/spring.html for more information on the Camel Spring

DSL
5 Please see http://camel.apache.org/java-dsl.html for more information on the Camel Java

DSL
6 Please see http://camel.apache.org/components.html for a list of available Camel

components

http://camel.apache.org/spring.html
http://camel.apache.org/java-dsl.html
http://camel.apache.org/components.html

74

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details
on how to configure the adapter.properties file.

5.1.1.2 The hazelcast.xml file

The Adapter’s Hazelcast configuration file: hazelcast.xml defines how to connect to the

UMB Hazelcast instance(s).

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details
on how to configure the hazelcast.xml file.

5.1.1.3 The log4j.xml file

The Adapter’s Log4j configuration file: log4j.xml

5.1.1.4 The AdapterConfiguration.xml file

The Adapter configuration file: AdapterConfiguration.xml defines the flows and

actions provided by the adapter.

Figure 38 - The Camel Adapter’s AdapterConfiguration.xml file

By default, one action and one flow are defined.

The action named “CamelAction” defines its implementing class as well as the Camel route

start endpoint URI associated with the action. This URI is a reference to the URI of the start
endpoint of the Camel route named “camel-actions” in the camel-context.xml file.

The flow named “CamelDynamicFlow” defines its implementing class as well as both the

Camel route start endpoint URI for collection flow actions and the Camel route end endpoint
URI for the collection associated with the flow. The “CollectionActionRouteURI” URI is
a reference to the URI of the start endpoint of the Camel route named “camel-

collectionactions” in the camel-context.xml file. The “CollectionRouteURI”
URI is a reference to the URI of the end endpoint of the Camel route named “camel-

collection” in the camel-context.xml file.

75

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details
on how to configure the AdapterConfiguration.xml file.

5.1.1.5 The camel-context.xml file

A Camel Spring file: camel-context.xml defines routes to be used for processing actions,

collection flow actions and collections.

Figure 39 - The Camel Adapter’s camel-context.xml file

Note: In the above screen capture of the camel-context.xml file, the Camel routes are

collapsed, so the detail of these routes is not shown. These routes will be presented and
explained in detail in the remainder of this section.

The camel-context.xml file is a Spring XML file that defines a Camel Context which in turn

defines Camel routes7.

The Camel Adapter defines 3 routes:

 The “camel-actions” route: this route processes action requests for actions

named “CamelAction”

 The “camel-collectionactions” route: this route processes collection flow

action requests, i.e. CreateFlow/DeleteFlow/ResynchFlow/StatusFlow for

the flow named “CamelDynamicFlow”

 The “camel-collection” route: this route processes collection of alarms/events

for the flow named “CamelDynamicFlow”

These routes (or more accurately the start or end endpoint URIs of these routes) are
referenced in the AdapterConfiguration.xml file as shown in the previous section:

5.1.1.4 “The AdapterConfiguration.xml file”.

The “camel-actions” route

7 Please see: http://camel.apache.org/spring.html for more information on Camel Spring

http://camel.apache.org/spring.html

76

As mentioned above, this route processes action requests for actions named “CamelAction”

as per the configuration of the “CamelAction” action in the
AdapterConfiguration.xml file.

Figure 40 - “camel-actions” route in the camel-context.xml file

This route works by requesting an action to be performed on the Target Application and
processing the action response.

This route is explained in detail in the 5.1.2.1 “Actions” chapter.

The “camel-collectionactions” route

This route processes collection flow action requests, i.e.
CreateFlow/DeleteFlow/ResynchFlow/StatusFlow for the flow named

“CamelDynamicFlow” as per the configuration of the “CamelDynamicFlow” flow in the

AdapterConfiguration.xml file.

77

Figure 41 - “camel-collectionactions” route in the camel-context.xml file

This route works by requesting a collection flow action to be performed on the Target
Application and processing the action response.

This route is explained in detail in the 5.1.2.2 “Collections” chapter.

The “camel-collection” route

This route processes collection of alarms/events for the flow named “CamelDynamicFlow”

as per the configuration of the “CamelDynamicFlow” flow in the
AdapterConfiguration.xml file.

78

Figure 42 - “camel-collection” route in the camel-context.xml file

This route works by collecting alarms/events from a Target Application and forwarding them
to the Collection service of the UMB framework, implemented by Kafka/ZooKeeper.

This route is explained in detail in the 5.1.2.2 “Collections” chapter.

5.1.2 How does it work?

5.1.2.1 Actions

When a “CamelAction” is requested to be executed by the Camel Adapter, the request will

be handed over to the “CamelAction” implementing class (the
com.hp.umb.adapter.camel.CamelAction Java class) by the UMB framework. The

CamelAction class will push the request to the “camel-actions” route defined in the
camel-context.xml file. Inside the “camel-actions” route, the request will be

processed by being sent to the Target Application. We use the
com.hp.umb.adapter.camel.ActionBean Java class inside the “camel-actions”

route to simulate the request being sent to the Target Application. The response to the request
is picked up by the com.hp.umb.adapter.camel.CamelAction Java class at the end of

the “camel-actions” route. The response is then forwarded to the original requester by the

UMB framework.

79

Figure 43 - Processing Actions in the Camel Adapter

Executing an action on the Camel Adapter entails the following steps:

1. An action request is forwarded by the Distributed Executor service of the UMB
framework to the Camel Adapter. This action request comes from another Adapter
connected to the UMB. If this action is named “CamelAction” (let’s assume this is

the case), then the action request is to be processed by the
com.hp.umb.adapter.camel.CamelAction class, as per the Camel Adapter’s

AdapterConfiguration.xml configuration file. An action request in the UMB
framework takes the form of a com.hp.umb.adapter.ActionQuery object.

2. The action request is processed by the public ActionReply execute()
method in the CamelAction class. The ActionQuery object that represents the

action request is pushed to the start endpoint of the “camel-actions” route.

3. The ActionQuery object follows the “camel-actions” route step by step. Along

this route, the action request is sent to the “actionBean” for processing8. This step

simulates the action request being sent to a Target Application for processing. Should
you wish to actually connect to a Target Application, you should consider replacing
this step by your own Camel code.

4. The action request is processed by the “actionBean” which returns an action
response in the form of a com.hp.umb.adapter.ActionReply object which is

pushed back along the Camel route.

5. The Camel route ends and the action response is returned to the public
ActionReply execute() method in the CamelAction class.

6. The public ActionReply execute() method returns the action response to

the Distributed Executor service of the UMB framework, which in turn sends it to
whichever Adapter requested the action to be processed initially.

The “camel-actions” route in the Camel Adapter is an example route for processing action

requests using Camel. You can modify this route to do your own processing using the full
extent of the Camel Spring DSL. The only constraint is that the messages processed by the
“camel-actions” route have to be of type com.hp.umb.adapter.ActionQuery as

input of the route and com.hp.umb.adapter.ActionReply as output of the route.

8 the “actionBean” is implemented by the com.hp.umb.adapter.camel.ActionBean

class as the bean declaration for the “actionBean” indicates, at the beginning of the

camel-context.xml file

80

5.1.2.2 Collections

When a collection flow action (CreateFlow/DeleteFlow/ResynchFlow/StatusFlow)
is requested to be executed by the Camel Adapter for the “CamelDynamicFlow” flow, the

request will be handed over to the “CamelDynamicFlow” implementing class (the
com.hp.umb.adapter.camel.CamelCollector Java class) by the UMB framework.

The CamelCollector class will push the request to the “camel-collectionactions”
route defined in the camel-context.xml file. Inside the “camel-

collectionactions” route, the request will be processed by being sent to the Target
Application. We use the com.hp.umb.adapter.camel.CollectionActionBean Java

class inside the “camel-collectionactions” route to simulate the request being sent to

the Target Application. The response to the request is picked up by the
com.hp.umb.adapter.camel.CamelCollector Java class at the end of the “camel-

collectionactions” route. The response is then forwarded to the original requester by

the UMB framework.

Once a collection has been created, the Target Application will push collection alarms/events
to the start of the “camel-collection” route. These alarms/events will be transformed by

the com.hp.umb.adapter.camel.TransformationBean Java class so that they can

be mapped into event (or alarms) compatible with the UMB framework. The alarms/events will
then be picked by the com.hp.umb.adapter.camel.CamelCollector Java class at

the end of the “camel-collection” route. They will then be forwarded to the proper Topic

on the Kafka instance(s) part of the UMB framework.

Figure 44 - Processing Collection Flow Actions in the Camel Adapter

Processing collection flow actions is very similar to processing actions in the Camel Adapter as
described in the 5.1.2.1 “Actions” chapter.

The only differences are that:

 collection flow actions are processed inside the
com.hp.umb.adapter.camel.CamelCollector Java class (instead of the

com.hp.umb.adapter.camel.CamelAction Java class for actions) by either
of the following methods (instead of the public ActionReply execute()

method for actions):

o public ActionReply startCollection()

o public ActionReply stopCollection()

o public ActionReply resynchCollection()

81

o public ActionReply getCollectionStatus()

 collection flow actions are processed by the “camel-collectionactions” route

(instead of the “camel-actions” route for actions)

 to simulation the collection flow actions being processed by a target application the
collectionActionBean bean is used (instead of the actionBean bean for

actions)

Figure 45 - Processing Collections in the Camel Adapter

Collecting alarms/events in the Camel Adapter entails the following steps:

1. Thanks to a previous CreateFlow action, a collection has been created on the
Target Application which pushes alarms/events to the “camel-collection” route

start endpoint: direct:startCollection. As the Camel Adapter is an example
Adapter we use a direct: endpoint (for simplicity’s sake) as the start endpoint of

the route. In a real use case, we could imagine that the Target Application pushes
alarms/events to a JMS queue/topic and we would use this JMS queue/topic as the
start endpoint of the route.

2. Alarms/Events are processed along the “camel-collection” route by the
transformationBean bean. This bean provides a means to transform

Alarm/Event objects initially in the Target Application format into Alarms/Events in
UCA EBC format (objects that implement the
com.hp.uca.expert.event.Event Java interface)

3. Alarms/Event are picked up at the end of the “camel-collection” route by the

public Collection<Event> pull() method of the
com.hp.umb.adapter.camel.CamelCollector Java class.

4. These alarms/events are then pushed to the Collection service component of the UMB
framework implemented by Kafka/Zookeeper on the topic associated with the
collection flow. The alarm/event collection is thus made available for consumption by
the Adapter that requested the collection flow to be created in the first place (since
this is a dynamic flow as per the AdapterConfiguration.xml file).

5.1.3 JUnit tests

A JUnit test is present in the src/test/java folder. The name of the JUnit test class is

com.hp.umb.adapter.camel.CamelAdapterTest. This class contains 2 test

methods:

82

 A method that tests action executions named: testExecuteAction()

 A method that tests collection flows named: testFlowAction()

The testExecuteAction() test works by requesting an action to be executed on the

Camel Adapter and verifying that the action response is correct.

The testFlowAction() test works by creating a collection flow on the Camel Adapter,

resynchronizing it, retrieving its status and then deleting it.

5.2 File Adapter
The File Adapter is a sample adapter that demonstrates how a UMB Adapter can easily provide
flow collection services based on files. This adapter acts as a Flow service provider.

As a Flow provider, the adapter will:

 respond to collection flow actions: CreateFlow, DeleteFlow, ResynchFlow,
StatusFlow

 as a consequence of these collection flow actions, the adapter will
create/delete/resynchronize or get the status of collections of alarms or events

There are 2 distinct parts in the File Adapter:

 One that can produce flows of alarms based on alarms stored in an XML file

 One that can produce flows of events (temperatures in our case) based on data stored
in a comma-separated values (CSV) file

The File Adapter is composed of:

 Configuration files:

o The Adapter properties file: adapter.properties that defines properties

for the adapter including connection information for Kafka/ZooKeeper

o The Adapter’s Hazelcast configuration file: hazelcast.xml that defines how

to connect to the UMB Hazelcast Central Repository

o The Adapter’s Log4j configuration file: log4j.xml

o The Adapter configuration file: AdapterConfiguration.xml that defines

the flows and actions (in our case just flows, no actions) provided by the
adapter

 Data files:

o An XML alarms file: alarms.xml that contains alarms in XML format to be

used to create alarm flows

o An comma-separated values (CSV) file: temperatures.csv that contains

temperature data in CSV format to be used to create temperature flows

 Java files that define the Adapter’s behavior

The following figure explains the overall architecture of the File Adapter.

83

Figure 46 - File adapter overview

In the above figure, the File Adapter is used to provide alarm and event (temperatures)
collection flows to the Unified Mediation Bus based on data files in XML format for alarms and
CSV format for events (temperatures). The flows are defined in the
AdapterConfiguration.xml file. A data file is associated with each flow. Both static and

dynamic flows are supported.

The following sections will explain in detail how the File Adapter works.

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details
on how to configure the AdapterConfiguration.xml file.

5.2.1 Configuration

The configuration files of the File Adapter are located in the src/main/resources and

src/test/resources folders (data files are located in the
src/test/resources/data folder). Each of the configuration files is explained in detail

below.

5.2.1.1 The adapter.properties file

The Adapter properties file: adapter.properties defines properties for the adapter

including connection information for the UMB Kafka/ZooKeeper instance(s).

The following properties are defined by default in this file:

 producer.metadata.broker.list: a list of Kafka broker <host>:<port> information

 producer.request.required.acks: set to 1 by default, indicating that Kafka is in a

mode where messages are acknowledged

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details
on how to configure the adapter.properties file.

84

5.2.1.2 The hazelcast.xml file

The Adapter’s Hazelcast configuration file: hazelcast.xml defines how to connect to the

UMB Hazelcast instance(s).

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details
on how to configure the hazelcast.xml file.

5.2.1.3 The log4j.xml file

The Adapter’s Log4j configuration file: log4j.xml

5.2.1.4 The AdapterConfiguration.xml file

The Adapter configuration file: AdapterConfiguration.xml defines the flows and

actions provided by the adapter.

Figure 47 - The File Adapter’s AdapterConfiguration.xml file

By default, 4 flows are defined:

 2 alarm flows: one static and one dynamic9

 2 temperatures flows: one static and one dynamic

The flow named “AlarmFileStaticFlow” defines its implementing class

(com.hp.umb.adapter.file.FileCollector) as well as the data file to use
(data/alarms.xml). Its type is declared to be static.

The flow named “AlarmFileDynamicFlow” is identical to the
“AlarmFileStaticFlow” except that it is declared to be dynamic.

The flow named “TemperaturesStaticFlow” defines its implementing class
(com.hp.umb.adapter.file.TemperaturesCollector) as well as the data file to

use (data/temperatures.csv). Its type is declared to be static.

9 Static flow are automatically started when the Adapter is started while dynamic flows are

not. For dynamic flows a CreateFlow collection flow action needs to be sent to the adapter

for the flow to be created and started. This is done automatically by the flow consumer when

the startCollection() method is called.

85

The flow named “TemperaturesDynamicFlow” is identical to the

“TemperaturesStaticFlow” except that it is declared to be dynamic.

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details
on how to configure the AdapterConfiguration.xml file.

The “alarms.xml” data file

This file contains alarms in XML format to be used for both the “AlarmFileStaticFlow”
and “AlarmFileDynamicFlow” flows.

This file uses the same format as alarm files in the UCA EBC application (the XML namespace
used is: http://hp.com/uca/expert/x733Alarm).

Figure 48 - File Adapter’s “alarms.xml” data file

The “temperatures.csv” data file

This file contains temperatures in CSV format to be used for both the
“TemperaturesStaticFlow” and “TemperaturesDynamicFlow” flows.

86

Figure 49 - File Adapter’s “temperatures.csv” data file

The first column is the temperature identifier, and the second column is the temperature value.

5.2.2 How does it work?

5.2.2.1 Collections

Alarms collections

Alarm collections are implemented with the
com.hp.umb.adapter.file.FileCollector Java class, as apparent by the

“AlarmFileStaticFlow” and “AlarmFileDynamicFlow” flow definitions in the
AdapterConfiguration.xml file.

The FileCollector Java class will respond to collection flow action requests
(CreateFlow/DeleteFlow/ResynchFlow/StatusFlow) from the UMB framework and

also handle the actual collection of alarms from the alarms file (specified in the
AdapterConfiguration.xml file) to the collections service of the UMB framework

(implemented by Kafka) and from there to potential consumers.

87

Figure 50 - File Adapter’s alarms collections

Temperatures collections

Temperature collections are implemented with the
com.hp.umb.adapter.file.TemperaturesCollector Java class, as apparent by

the “TemperaturesStaticFlow” and “TemperaturesDynamicFlow” flow definitions
in the AdapterConfiguration.xml file.

The TemperaturesCollector Java class will respond to collection flow action requests
(CreateFlow/DeleteFlow/ResynchFlow/StatusFlow) from the UMB framework and

also handle the actual collection of temperatures from the temperatures CSV file (specified in
the AdapterConfiguration.xml file) to the collections service of the UMB framework

(implemented by Kafka) and from there to potential consumers.

Figure 51 - File Adapter’s temperatures collections

88

5.2.3 JUnit tests

A JUnit test is present in the src/test/java folder. The name of the JUnit test class is
com.hp.umb.adapter.file.FileAdapterTest. This class contains 1 test method:

 A method that tests collection flows named: testFlowAction()

The testFlowAction() test works by creating a collection flow on the File Adapter,

resynchronizing it, retrieving its status and then deleting it.

5.3 Log Adapter
The Log Adapter is a sample adapter that demonstrates how a UMB Adapter can be easily set
up as a flow consumer in order to log alarms or events from existing UMB collection flows.

As a Flow consumer, the adapter will:

 send collection flow actions: CreateFlow, DeleteFlow, ResynchFlow to target

UMB Adapters acting as flow producers

 consume (and log) alarms or events from these collection flows

The Log Adapter defines 2 flow consumers by default:

 One that can consume flows of alarms10:
com.hp.umb.adapter.log.LogAlarmConsumer

 One that can consume flows of events11:
com.hp.umb.adapter.log.LogEventConsumer

The Log Adapter is composed of:

 Configuration files:

o The Adapter properties file: adapter.properties that defines properties

for the adapter including connection information for Kafka/ZooKeeper

o The Adapter’s Hazelcast configuration file: hazelcast.xml that defines how

to connect to the UMB Hazelcast Central Repository

o The Adapter’s Log4j configuration file: log4j.xml

o The Adapter configuration file: AdapterConfiguration.xml that defines

the flows and actions (in our case no flows or actions are defined) provided by
the adapter

 Java files that define the Adapter’s behavior

The following figure explains the overall architecture of the Log Adapter.

10 Alarms are objects that implement the com.hp.uca.expert.alarm.AlarmCommon Java interface
11 Events are objects that implement the com.hp.uca.expert.event.Event Java interface

89

Figure 52 - Log adapter overview

In the above figure, the Log Adapter is used to consume alarm and event collection flows from
the Unified Mediation Bus and log these alarms and events as log messages. Both static and
dynamic flows are supported. The Log Adapter can also send collection flow actions to UMB in
order to create/delete/resynchronize collection flows.

The following sections will explain in detail how the Log Adapter works.

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details
on how to configure the AdapterConfiguration.xml file.

5.3.1 Configuration

The configuration files of the Log Adapter are located in the src/main/resources and
src/test/resources folders. Each of the configuration files is explained in detail below.

5.3.1.1 The adapter.properties file

The Adapter properties file: adapter.properties defines properties for the adapter

including connection information for the UMB Kafka/ZooKeeper instance(s).

The following properties are defined by default in this file:

 consumer.zookeeper.connect: a list of ZooKeeper <host>:<port> information

 consumer.zookeeper.session.timeout.ms: set to 6000 by default

 consumer.zookeeper.sync.time.ms: set to 203 by default

 consumer.auto.commit.interval.ms: set to 1000 by default

 consumer.auto.offset.reset: set to smallest by default

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details
on how to configure the adapter.properties file.

90

5.3.1.2 The hazelcast.xml file

The Adapter’s Hazelcast configuration file: hazelcast.xml defines how to connect to the

UMB Hazelcast instance(s).

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details
on how to configure the hazelcast.xml file.

5.3.1.3 The log4j.xml file

The Adapter’s Log4j configuration file: log4j.xml

5.3.1.4 The AdapterConfiguration.xml file

The Adapter configuration file: AdapterConfiguration.xml defines the flows and

actions provided by the adapter.

Figure 53 - The Log Adapter’s AdapterConfiguration.xml file

As the Log adapter is only a flow consumer, it does not define any producer flow services in the
AdapterConfiguration.xml file. However it does declare “autoConsumers” for each

consumer flow that needs to be automatically created and started. Declaring consumer flows
in the AdapterConfiguration.xml file removes the need to add Java code in the

Adapter’s main Java class for the specific purpose of creating and starting consumer flows.

In the provided configuration example, two consumer flows that start automatically are
defined:

 Alarm Logger

 Event Logger

 Each of them is consuming events from the File Adapter flows: the
TemperatureStaticFlow flow for the Even Logger and the
AlarmFileStaticFlow flow for the Alarm Logger.

The Log Adapter can be easily enhanced (even after the Adapter has been installed) by adding
new consumer flows in the “autoConsumer” section of the configuration file and providing the
associated consumer message handler class as a .jar file in the Log Adapter’s lib directory.

91

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details
on how to configure the AdapterConfiguration.xml file.

5.3.2 How does it work?

5.3.2.1 Collections

Alarms/Events collections

The com.hp.umb.adapter.log.LogAdapter Java class is the class that implements
the Log Adapter. It contains a main(String[] args) method that starts the Adapter

based on configuration settings stored in the AdapterConfiguration.xml file.

The AdapterConfiguration.xml file defines 2 consumer flows that are set to

automatically start when the Adapter starts:

 UcaStaticForwarderFlow

 UcaStaticEventForwarderFlow

Each of these consumer flows is associated with a consumer message handler12 class that
defines what to do with each message consumed from the collection flow. Messages take the
form of alarms13 in the case of the UcaStaticForwarderFlow flow and events14 in the
case of the UcaStaticEventForwarderFlow flow.

The following consumer message handler classes are defined in the Log Adapter:

 com.hp.umb.adapter.log.LogAlarmConsumer: this class is associated with
the UcaStaticForwarderFlow flow

 com.hp.umb.adapter.log.LogEventConsumer: this class is associated with

the UcaStaticEventForwarderFlow flow

These classes are implemented in such a way that each message consumed from the collection
flow (alarm or event) is logged in a log file.

However, any other treatment could be implemented by some other customized message
handlers.

12 Consumer message handler classes must implement the

com.hp.umb.adapter.consumer.ConsumerMessageHandlerInterface Java interface
13 Alarms are objects that implement the com.hp.uca.expert.alarm.AlarmCommon Java

interface
14 Events are objects that implement the com.hp.uca.expert.event.Event Java

interface

92

Figure 54 - Log Adapter consuming alarms/events collections

93

Appendix A

A. Ant build.xml targets

The value pack examples provided with UMB come with an Ant build.xml file that can build

and package the project as described in this document.

Following is the full list of Apache Ant targets defined in the build.xml file that can be

executed from the command line using the ant tool:

eclipse

Command:
 # ant eclipse

Creates the .project and .classpath files used by eclipse when importing a project.

clean

Command:
 # ant clean

Removes all files created during the build from the build directory.

compile

Command:
 # ant compile

Compiles all Java files of the project.

test

Command:
 # ant test

Runs the JUnit tests defined in the project.

package

Command:
 # ant package

Build the final, “ready to deploy” value pack ZIP file.

all

Command:
 # ant all

Is equivalent to executing the following targets: “clean”, “compile”, “test” and “package”.

94

Glossary

UCA: Unified Correlation Analyzer

EBC: Event Based Correlation

IDE: Integrated Development Environment

JMS: Java Messaging Service

JMX: Java Management Extension, used to access or process action on the UMB product.

JNDI: Java Naming and Directory Interface

Inference engine: Process that uses a Rete algorithm for expert behavior

DRL: Drools Rule file

XML: Extensible Markup Language

XSD: Schema of an XML file, describing its structure

X.733: Standard describing the structure of an Alarm used in telecommunication environment.

EVP: UMB Value Pack

DSL: Domain Specific Language

API: Application Programming Interface

URI: Uniform Resource Identifier

CSV: comma-separated values

