

hp Unified Correlation Analyzer

Unified Correlation Analyzer
for

Event Based Correlation

Version 3.3

Clustering and High-Availability Guide

Edition: 1.0

For Linux (RHEL 6.x©) x86_64 Operating Systems

September 2015

© Copyright 2015 Hewlett-Packard Development Company, L.P.

2

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical
or editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notices

© Copyright 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and
64-bit configurations) on all HP 9000 computers are Open Group UNIX 95 branded
products.

Java™ is a trademark of Oracle and/or its affiliates.

Microsoft®, Internet Explorer, Windows®, Windows Server®, and Windows NT® are
either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

Firefox® is a registered trademark of the Mozilla Foundation.

Google Chrome® is a trademark of Google Inc.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City,
California.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark, and the X device is a trademark of X/Open
Company Ltd. in the UK and other countries.

Red Hat® is a registered trademark of the Red Hat Company.

Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

Veritas™ Cluster Server is a registered trademark of Symantec Company.

3

Contents
Preface .. 7

Chapter 1.. 9

Introduction ... 9

1.1 Introducing UCA for EBC server ... 9
1.2 Making UCA for EBC Highly Available .. 10

Chapter 2.. 12

Installation of UCA for EBC ... 12

Chapter 3.. 13

The UCA for EBC HA solution based on VCS ... 13

3.3 Introducing Veritas Cluster Server (VCS) .. 13
3.3.1 System requirements .. 13
3.3.2 How VCS detects failures and ensures HA .. 14
3.4 Installing VCS .. 14
3.5 Configuring VCS ... 15
3.5.1 Setting up an VCS cluster .. 15
3.5.2 Creating a service group .. 15
3.5.3 Creating HA resources for UCA-EBC server ... 16
3.6 Monitoring the VCS HA solution .. 20
3.6.1 Managing the HA cluster ... 20
3.6.2 Operating the HA service group and/or resource ... 21
3.6.3 Practical example .. 22
3.6.4 Troubleshooting .. 24

Chapter 4.. 26

The UCA for EBC HA solution based on RHEL cluster .. 26

4.1 Introducing the Red Hat Enterprise Linux High Availability Add-On 26
4.2 Installing the Red Hat Enterprise Linux High Availability Add-On 26
4.3 Configuring the Red Hat Enterprise Linux High Availability Add-On 28
4.3.1 Configuring the iptables Firewall to Allow Cluster Components 28
4.3.2 Considerations about SELinux .. 29
4.3.3 Considerations about ricci .. 29
4.4 Creating a Highly Available UCA-EBC service .. 29
4.4.1 Creating a cluster .. 29
4.4.2 Configuring Fencing ... 31
4.4.3 Configuring a Failover Domain .. 34
4.4.4 Creating the UCA for EBC service ... 34
4.4.5 Adding the resources for the UCA-EBC HA service .. 35
4.5 Managing the cluster .. 39
4.6 Managing the HA UCA for EBC service ... 39
4.7 Troubleshooting .. 40
4.8 Configuration example ... 42

4

Glossary ... 45

5

Figures

Figure 1 - The HA UCA-EBC service on a two-node cluster .. 10
Figure 2 - luci & ricci Conga components in a two-node cluster ... 27
Figure 3 - luci homepage URL .. 30
Figure 4 - luci cluster creation page .. 30
Figure 5 - viewing the created cluster in luci cluster management page ... 31
Figure 6 - Fence devices management page ... 32
Figure 7 - Associating a fence device to a cluster member ... 33
Figure 8 - Creating the UCA-EBC Service Group in the cluster ... 35
Figure 9 - Adding a script resource to the UCA-EBC service .. 36
Figure 10 - Specifying the location of the UCA-EBC control script file .. 36
Figure 11 - Adding the HA LVM resource to the cluster ... 38
Figure 12 - Creating the File System for the shared UCA-EBC data .. 39
Figure 13 - Cluster Management page in luci .. 39
Figure 14 - UCA-EBC HA service control page in luci .. 40
Figure 15 - HA UCA-EBC GUI showing the example Problem Detection VP ... 44

6

Tables

Table 1 - Software versions ... 7
Table 2 - VCS main cluster management commands ... 21
Table 3 - VCS main service group and resource operations .. 22
Table 4 - RHEL cluster IP address resource properties ... 37

7

Preface

This guide describes the clustering procedures for high-availability (HA) setup of
the UCA for EBC product within a cluster.

Product Name: Unified Correlation Analyzer for Event Based Correlation

Product Version: 3.3

Kit Version: V3.3

Intended Audience

Here are some recommendations based on possible reader profiles:

 Solution Developers

 Software Development Engineers

 System Integrators

Software Versions

The term UNIX is used as a generic reference to the operating system, unless
otherwise specified.

The software versions referred to in this document are as follows:

Product Version Supported Operating systems

UCA for Event Based Correlation
Server Version V3.3

 Red Hat Enterprise Linux Server release 6.x
(Santiago)

Table 1 - Software versions

Typographical Conventions

Courier Font:

 Source code and examples of file contents

 Commands that you enter on the screen

 Pathnames

 Keyboard key names

Italic Text:

 Filenames, programs and parameters

 The names of other documents referenced in this manual

Bold Text:

 To introduce new terms and to emphasize important words

8

Associated Documents

The following documents contain useful reference information:

References

[R1] Unified Correlation Analyzer for Event Based Correlation Reference Guide

[R2] Unified Correlation Analyzer for Event Based Correlation Installation Guide

[R3] Symantec Documents

[R4] Symantec VCS Home Page

[R5] RHEL 6 - Cluster Administration

Support

Please visit our HP Software Support Online Web site at
https://softwaresupport.hp.com/ for contact information, and details about HP
Software products, services, and support.

The Software support area of the Software Web site includes the following:

 Downloadable documentation.

 Troubleshooting information.

 Patches and updates.

 Problem reporting.

 Training information.

 Support program information.

http://sort.symantec.com/documents
http://www.symantec.com/cluster-server
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Cluster_Administration/index.html
https://softwaresupport.hp.com/

9

Chapter 1

Introduction

This guide describes the recommended way to make UCA for EBC application Highly
Available.

Basically, this recommended way is to set up a cluster (the term cluster refers to
multiple independent systems connected into a management framework);

to install UCA for EBC application on several nodes of this cluster, and to rely on the
tools provided by the cluster manager to ensure the high availability of the UCA-
EBC application.

Currently, the Veritas Cluster Server (VCS) from Symantec company; and the Red
Hat Enterprise Linux Cluster are the clusters on which the high-availability
solutions described in this document are based on. It does not mean that UCA for
EBC product is supported only on VCS, or RHEL cluster, but solely that other
solutions are not yet fully described.

This guide describes the clustering procedures for high-availability (HA) setup of
the UCA for EBC product within a cluster.

This guide provides instructions on how to configure UCA for EBC server to be
managed for HA within a cluster as an HA resource. UCA for EBC server will be
managed through the specific cluster manager.

However, please refer to the Unified Correlation Analyzer for Event Based
Correlation Installation Guide [R2] for a better understanding on how to install UCA
for EBC server in order to support HA mode.

1.1 Introducing UCA for EBC server
The UCA for EBC product offers generalized event based correlation solution. It is
based on JBoss Drools engine. As such, the server delivered with the product is a
Java process running on the supported platform.

Since V2.0 of the product, you can have multiple Java processes named “instances”
running on a single host, which means one process per instance.

This version V3.3 brings the scripts to handle a proper HA solution based on VCS.

 For more information on the UCA for EBC product, please refer to the Unified
Correlation Analyzer for Event Based Correlation Reference Guide [R1].

10

1.2 Making UCA for EBC Highly Available
The recommended way to make UCA for EBC application Highly Available (HA) is to
rely on a High Availability (HA) cluster software.

The examples of HA cluster software described in this guide are
- the Veritas Cluster Server (VCS)
- the RHEL Cluster High Availability Add-On

The idea is to install UCA for EBC on two or more nodes of a cluster, and to ask the
HA cluster software to check the liveliness of the active UCA for EBC application(s).

If one UCA for EBC application is down, then the HA cluster software immediately
brings up another instance of the UCA for EBC application.

The HA cluster software, through means of Virtual IP address, makes sure that
other applications interacting with the UCA for EBC, such as Open Mediation or the
Unified Mediation Bus (UMB) framework components, always see the same IP
address for the active UCA for EBC application.

The HA cluster software also makes sure that the disk data (configuration, logs,
Value Packs, …) used by the UCA for EBC application which fails, is made available
through mounting, to the UCA for EBC application that takes over.

The figure below illustrates a simple HA cluster configuration. It has only two
nodes. On one node runs the active UCA for EBC application, on the other node, the
UCA for EBC application is ready to be awaken if needed.

The Open Mediation application is configured to interact with the Virtual IP@ of the
active UCA for EBC application.

Figure 1 - The HA UCA-EBC service on a two-node cluster

In this guide, the examples taken are based on this simple two-nodes configuration.

UCA-EBC
active

UCA-EBC
standby

mediation layer

cluster node 1 cluster node 2

UCA-EBC
cluster

VIRTUAL IP @
shared

storage

11

In this simple configuration, there is one active UCA for EBC application, and one
standby.

The description of more complex configurations with m active nodes and n standby
nodes, is not addressed in this guide.

The ways to make the shared storage redundant are out of the scope of this guide.

12

Chapter 2

Installation of UCA for EBC

On Linux, the UCA for EBC Server product is delivered as a tar file named:

uca-ebc-server-kit-3.3-linux.tar

For detailed installations instructions and license setup, refer to the Unified
Correlation Analyzer for Event Based Correlation Installation Guide [R2].

Briefly:

- Make sure that user uca is well defined (same id on all members of your cluster)

- Untar the tar file into a temporary directory

- Launch the installation script making sure you have specified a mounted NFS
directory for the –d option, allowing to have the data directory used by UCA for
EBC server to be accessible from all the nodes of your cluster, e.g.:

./install-uca-ebc.sh –d /var/shared/UCA-EBC

- Update the ~uca/.bashrc file adding following lines (per example):

cat ~uca/.bashrc

.bashrc

Source global definitions

if [-f /etc/bashrc]; then

 . /etc/bashrc

fi

User specific aliases and functions

[-f /opt/UCA-EBC/.environment.sh] && . /opt/UCA-

EBC/.environment.sh

JAVA_HOME=/usr/lib/jvm/jre-1.6.0-openjdk.x86_64

export JAVA_HOME

The environment variables chosen at installation time are defined in
$UCA_EBC_HOME/.environment.sh and this file has to be sourced by uca user in
order to have the various scripts to work correctly.

Also, UCA for EBC server needs as a minimum Java 1.6 JRE (Java Runtime
Environment) and have JAVA_HOME defined accordingly.

13

Chapter 3

The UCA for EBC HA solution based on
VCS

3.3 Introducing Veritas Cluster Server (VCS)

Veritas™ Cluster Server (VCS) by Symantec provides High Availability (HA) and
Disaster Recovery (DR) for mission critical applications running in physical and
virtual environments. VCS ensures continuous application availability despite
application, infrastructure or site failures. When a node or a monitored application
fails, other nodes can take predefined actions to take over and bring up services
elsewhere in the cluster.

An application service is a collection of hardware and software components
required to provide a service where an end-user or application may access by
connecting to a particular network IP address or host name.

Each application service typically requires components of the following three types:

 Application binaries

 Network

 Storage

VCS uses agents to monitor an application and brings bundled agents to manage a
cluster’s key resources.

Resources are VCS objects that correspond to hardware or software components,
such as disk groups, logical volumes, and network interface cards (NIC), IP
addresses, and applications.

The implementation and configuration of bundled agents vary by platform.

For more information about bundled agents, refer to the Veritas Cluster Server
Bundled Agents Reference Guide. [R3]

The present document is based upon VCS 6.0.2 product. Refer to VCS release notes
[R3] for more information on this particular product.
Note that most of commands given within this document should be applicable to
earlier versions of VCS (e.g. 5.x).

3.3.1 System requirements

VCS is supported on Red Hat Enterprise Linux 6 Update 1, 2, 3 and on a 64-bits only
chipset. If your system is running an older version of Red Hat Enterprise Linux,
upgrade it before attempting to install the Veritas software.

VCS is not supported on HP-UX.

14

VCS requires that all nodes in the cluster use the same processor architecture and
run the same operating system version. However, the nodes can have different
update levels for a specific RHEL version.

3.3.2 How VCS detects failures and ensures HA

VCS detects failure of an application by issuing specific commands, tests, or scripts
to monitor the overall health of an application. VCS also determines the health of
underlying resources by supporting the applications such as file systems and
network interfaces.

The scripts to monitor UCA for EBC server are delivered along with UCA for EBC
product.

When VCS detects an application or node failure, VCS brings application services
up on a different node in a cluster.

For more information about failures detection, refer to Veritas Cluster Server
Administrators Guide. [R3]

3.4 Installing VCS
You will need to download the VCS from the Symantec VCS home page [R4].
Typically, you’ll get a tar file named:

VRTS_SF_HA_Solutions_6.0.2_RHEL.tar

VCS can be downloaded as trialware and comes with 60 days of free usage. Refer to
Symantec VCS home page for getting a proper license.

For detailed installation instruction, refer to the Veritas Cluster Server Installation
Guide. [R3]

As an example, this guide will use systems carlton0 and carlton1 as hostnames of
the 2 members of the VCS cluster.

Briefly:

- Untar the rhel6 distribution from the VCS tar file into a temporary directory.

- Make sure all members of your cluster have the same clock and have correctly
set the NTP configuration.

- Run the installer and verify that you cluster is conform to VCS needs, e.g.:

./dvd1-redhatlinux/rhel6_x86_64/cluster_server/installvcs

-precheck carlton0 carlton1

- In case of problems, check the logs in /opt/VRTS/install/logs

15

3.5 Configuring VCS
This chapter describes the configuration to be performed to have UCA for EBC
server well configured within the VCS HA solution.

3.5.1 Setting up an VCS cluster

The VCS installation script allows you to directly configure your cluster once
installation is done.

If not done during installation, run the configuration tool afterwards:

/opt/VRTS/install/installvcs602 –configure

As an example, UCA for EBC has been validated with following configuration:
 I/O fencing disabled
 Cluster name = uca-cluster
 Heartbeat links using LLT over Ethernet

1. Private Heartbeat NIC = eth1 (1000Mb/s)
2. Low-Priority Heartbeat NIC = eth0 (100Mb/s)

 Cluster ID = 5020
 Virtual IP not configured
 Secure mode disabled
 SMTP and SNMP notifications disabled

After successful configuration of VCS, the VCS ha processes are running with an
empty configuration :

cat /etc/VRTSvcs/conf/config/main.cf

include "OracleASMTypes.cf"

include "types.cf"

include "Db2udbTypes.cf"

include "OracleTypes.cf"

include "SybaseTypes.cf"

cluster uca-cluster (

 UserNames = { admin = aPQoPMpMPjPNoWPrPX }

 Administrators = { admin }

)

system carlton0 (

)

system carlton1 (

)

For subsequent command lines throughout this document, make sure the root
$PATH contains the following path:

export PATH=$PATH:/opt/VRTSvcs/bin

3.5.2 Creating a service group

A service group is a virtual container that enables VCS to manage an application as
a unit. It contains all the hardware and software components required to run the

16

service. The service group enables VCS to coordinate failover of the application
service resources in the event of failure or at administrator’s request.

A service group is a logical grouping of resources and resource dependencies. It is a
management unit that controls resource sets. It is made up of resources and their
links which you normally requires to maintain the HA of application.

Here we are going to configure an HA group to handle the UCA for EBC application.

Run the following commands to :

- Switch the configuration in read-write mode

- Create an HA group named “uca-group”

- Populate SystemList attribute so that the group is configured for all hosts of the
cluster

- Enable automatically group on a preferred host

- Validate, apply the configuration and switch it to read-only mode

haconf –makerw

hagrp –add uca-group

hagrp -modify uca-group SystemList carlton0 0 carlton1 1

hagrp -autoenable uca-group –sys carlton0

haconf -dump -makero

3.5.3 Creating HA resources for UCA-EBC server

There are multiple types of HA resources handled by VCS software. Here, we are
going to focus on an HA resource that is going to be handled by the VCS Application
Agent. The VCS Application agent is the only agent capable to monitor UCA for EBC
server process, because it can make use of UCA for EBC specific scripts delivered
with V3.3of UCA-EBC for this VCS usage.

Another mandatory HA resource will be the virtual IP address that is going to be
used externally to access any member of the cluster transparently. This resource is
handled by the VCS IP Agent.

Create the application resource

An application resource needs mandatory attributes to specify what are the scripts
to use to start/stop/monitor a specific program. Here we are using the scripts
delivered by UCA for EBC product.

Here below we are supposing that the configuration is in read-write mode.

Run the following commands to:

- Switch the configuration in read-write mode

- Create an HA resource named “uca-ebc” to handle UCA for EBC server process

- Configure the HA resource to use UCA for EBC provided scripts and make sure
UCA for EBC will be launched by uca user.

- Enable the HA resource

17

- Validate, apply the configuration and switch it to read-only mode

haconf -makerw

hares -add uca-ebc Application uca-group

hares -modify uca-ebc User uca

hares -modify uca-ebc StartProgram "/opt/UCA-EBC/bin/uca-

ebc-vcs start"

hares -modify uca-ebc StopProgram "/opt/UCA-EBC/bin/uca-

ebc-vcs stop"

hares -modify uca-ebc MonitorProgram "/opt/UCA-

EBC/bin/uca-ebc-vcs monitor"

hares -modify uca-ebc CleanProgram "/opt/UCA-EBC/bin/uca-

ebc-vcs clean"

hares -modify uca-ebc Enabled 1

haconf -dump -makero

After successful configuration of VCS HA group and resource, the VCS configuration
has been updated with :

tail -22 /etc/VRTSvcs/conf/config/main.cf

group uca-group (

 SystemList = { carlton0 = 0, carlton1 = 1 }

)

 Application uca-ebc (

 User = uca

 StartProgram = "/opt/UCA-EBC/bin/uca-ebc-vcs start"

 StopProgram = "/opt/UCA-EBC/bin/uca-ebc-vcs stop"

 CleanProgram = "/opt/UCA-EBC/bin/uca-ebc-vcs clean"

 MonitorProgram = "/opt/UCA-EBC/bin/uca-ebc-vcs

monitor"

)

 // resource dependency tree

 //

 // group uca-group

 // {

 // Application uca-ebc

 // }

Above configuration is performed to launch the default instance of the UCA for EBC
server program. If you want VCS to handle multiple instances, you should add as
argument to all programs the name of the instance to launch. You can create as
much resource as UCA for EBC instances that you want to monitor in your cluster.

Here below an example given for an instance called ”bis”.

18

tail -31 /etc/VRTSvcs/conf/config/main.cf

group uca-group (

 SystemList = { carlton0 = 0, carlton1 = 1 }

)

 Application uca-ebc (

 User = uca

 StartProgram = "/opt/UCA-EBC/bin/uca-ebc-vcs start"

 StopProgram = "/opt/UCA-EBC/bin/uca-ebc-vcs stop"

 CleanProgram = "/opt/UCA-EBC/bin/uca-ebc-vcs clean"

 MonitorProgram = "/opt/UCA-EBC/bin/uca-ebc-vcs

monitor"

)

 Application uca-ebc-bis (

 User = uca

 StartProgram = "/opt/UCA-EBC/bin/uca-ebc-vcs start

bis"

 StopProgram = "/opt/UCA-EBC/bin/uca-ebc-vcs stop

bis"

 CleanProgram = "/opt/UCA-EBC/bin/uca-ebc-vcs clean

bis"

 MonitorProgram = "/opt/UCA-EBC/bin/uca-ebc-vcs

monitor bis"

)

 // resource dependency tree

 //

 // group uca-group

 // {

 // Application uca-ebc

 // Application uca-ebc-bis

 // }

Create the virtual IP resource

An IP resource needs mandatory attributes to specify what are the NIC, the IP
address and the netmask to use for defining a virtual IP in your subnet.

Here below we are supposing that the configuration is in read-write mode (due to
previous `haconf -dump –makero` command)

Run the following commands to :

- Switch the configuration in read-write mode

- Create an HA resource named “uca-ip” to handle the virtual IP address

- Configure the HA resource according your network settings.

- Enable the HA resource

- Validate, apply the configuration and switch it to read-only mode

In order to know what IP address to choose, we suggest to use the same range of
addresses as the physical ones. Just choose the right NIC for accessing UCA for EBC
server from either a web UI console or from an UCA for EBC Channel Adapter of the
NOM platform.

19

For example, in our configuration, let choose eth0 as the NIC and let suppose we
have for both carlton0 and carlton1 addresses like:

ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:21:5A:45:32:7E

 inet addr:A.B.C.D(*) Bcast:A.B.C.255

Mask:255.255.255.0

(*) A,B and C define your subnet and D differs for carlon0 and carlton1

The we are going to configure a virtual IP address as : A.B.C.V (here below V=253,
which is an unregistered physical address):

haconf -makerw

hares -add uca-ip IP uca-group

hares -modify uca-ip Device eth0

hares -modify uca-ip Address A.B.C.253

hares -modify uca-ip NetMask 255.255.255.0

hares -modify uca-ip Enabled 1

haconf -dump -makero

Upon successful validation, your VCS configuration will look like:
tail -17 /etc/VRTSvcs/conf/config/main.cf

 IP uca-ip (

 Device = eth0

 Address = "A.B.C.253"

 NetMask = "255.255.255.0"

)

 // resource dependency tree

 //

 // group uca-group

 // {

 // Application uca-ebc

 // IP uca-ip

 // }

Create the logical volume and NFS mount resource

It is advised that you configure other resources such as the NFS mount or disk as
dependencies for your uca-group.

For example, you could create a resource of type LVMLogicalVolume to add a
resource referring to the disk volume and also a resource of type Mount for the
mounted point needed to store UCA for EBC data, as referred by the
$UCA_EBC_DATA variable.

Those resources are specific to your cluster and therefore are not fully described in
this document.

At the end, you are advised to link all resources together so that they are globally
used by the service group.

20

For more in depth configuration of your VCS cluster, refer to Veritas Cluster Server
Administrators Guide. [R3]

3.6 Monitoring the VCS HA solution
This chapter describes how to monitor UCA for EBC server within the VCS HA
solution.

3.6.1 Managing the HA cluster

After installation and configuration the VCS cluster is up and running.

However, here are the main commands to manage it:

Command Meaning and Parameters

hastart [-stale|-force] "-stale" instructs the engine to treat the local config as
stale
"-force" instructs the engine to treat a stale config as a
valid one

hasys –force
<server_name>

bring the cluster into running mode from a stale state
using the configuration file from a particular server

hastop -local stop the cluster on the local server but leave the
application/s running, do not failover the application/s

hastop -local -evacuate stop cluster on local server but evacuate (failover) the
application/s to another node within the cluster

hastop -all -force stop the cluster on all nodes but leave the
application/s running

hastatus -summary display cluster summary

hastatus continually monitor cluster

hasys -display verify the cluster is operating

haclus -display information about a cluster

hasys -add <sys> add a system to the cluster

hasys -delete <sys> delete a system from the cluster

hasys -modify <sys>
<modify options>

Modify a system attributes

hasys -state list a system state

hasys -force Force a system to start

hasys -display [-sys] Display the systems attributes

hasys -list List all the systems in the cluster

hasys -load <system>
<value>

Change the load attribute of a system

hasys -nodeid Display the value of a systems nodeid (/etc/llthosts)

21

hasys -freeze [-
persistent][-evacuate]

Freeze a system (No offlining system, No groups
onlining)

Note: main.cf must be in write mode
hasys -unfreeze [-
persistent]

Unfreeze a system (reenable groups and resource
back online)

Note: main.cf must be in write mode

Table 2 - VCS main cluster management commands

3.6.2 Operating the HA service group and/or resource

Once the cluster is well configured, you can operate service group and/or resource,
in our case the UCA for EBC server, to bring it offline or online on a specific member
of the cluster.

Command Meaning and Parameters

hagrp -online <group> -sys
<sys>

Start a service group and bring its resources online

hagrp -offline <group> -
sys <sys>

Stop a service group and takes its resources offline

hagrp -switch <group> to
<sys>

Switch a service group from system to another

hagrp -enableresources
<group>

Enable all the resources in a group

hagrp -disableresources
<group>

Disable all the resources in a group

hagrp -freeze <group> [-
persistent]

Freeze a service group (disable onlining and offlining)
note: use the following to check "hagrp -display
<group> | grep TFrozen"

hagrp -unfreeze <group>
[-persistent]

Unfreeze a service group (enable onlining and
offlining)
note: use the following to check "hagrp -display
<group> | grep TFrozen"

haconf -makerw
 hagrp -enable <group> [-
sys]
haconf -dump –makero

Enable a service group. Enabled groups can only be
brought online
Note to check run the following command "hagrp -
display | grep Enabled"

haconf -makerw
 hagrp -disable <group> [-
sys]
haconf -dump -makero

Disable a service group. Stop from bringing online
Note to check run the following command "hagrp -
display | grep Enabled"

hagrp -flush <group> -sys
<system>

Flush a service group and enable corrective action.

hares -online <resource> [-
sys]

Online a resource

hares -offline <resource>
[-sys]

Offline a resource

hares -state display the state of a resource(offline, online, etc)
hares -display <resource> display the parameters of a resource
hares -offprop <resource>
-sys <sys>

Offline a resource and propagate the command to its
children

hares -probe <resource> - Cause a resource agent to immediately monitor the

22

sys <sys> resource
hares -clear <resource> [-
sys]

Clearing a resource (automatically initiates the
onlining)

Table 3 - VCS main service group and resource operations

3.6.3 Practical example

Example with configuration done in previous chapter:

Let’s look at states of the service group and resources:

hagrp -state

#Group Attribute System Value

uca-group State carlton0 |OFFLINE|

uca-group State carlton1 |OFFLINE|

hares -state

#Resource Attribute System Value

uca-ebc State carlton0 OFFLINE

uca-ebc State carlton1 OFFLINE

uca-ebc-bis State carlton0 OFFLINE

uca-ebc-bis State carlton1 OFFLINE

Then disable the “bis” instance (because it is not configured yet):

haconf -makerw

hares -modify uca-ebc-bis Enabled 0

haconf -dump –makero

hares -display | grep -w Enabled | grep -v Type

uca-ebc Enabled global 1

uca-ebc-bis Enabled global 0

Then bring online the service group:

hagrp -online uca-group -any

VCS NOTICE V-16-1-50735 Attempting to online group on system

carlton0

hares -state

#Resource Attribute System Value

uca-ebc State carlton0 ONLINE

uca-ebc State carlton1 OFFLINE

uca-ebc-bis State carlton0 OFFLINE

uca-ebc-bis State carlton1 OFFLINE

[root@carlton0 cluster_server]# hagrp -state

#Group Attribute System Value

uca-group State carlton0 |PARTIAL|

uca-group State carlton1 |OFFLINE|

Check that the process is well running on carlton0:

23

ps -ef | grep UCA-EBC

uca 13165 1 7 18:46 ? 00:00:06

/usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0.x86_64/bin/java -

DUCA-EBC -Duca.instance=default -Xms1024m -Xmx1024m -

XX:PermSize=256m -XX:MaxNewSize=650m -XX:NewSize=650m -

XX:SurvivorRatio=32 -classpath /opt/UCA-

EBC/schemas:/var/opt/UCA-

EBC/instances/default/conf:/var/opt/UCA-

EBC/instances/default/deploy:/opt/UCA-EBC/lib/uca-common-

2.0.jar:/opt/UCA-EBC/lib/commons-logging-1.1.1.jar:/opt/UCA-

EBC/lib/jdbcappender-2.1.01.jar:/opt/UCA-EBC/lib/hsqldb-

1.8.0.10.jar:/opt/UCA-EBC/lib/log4j-1.2.16.jar -

Duca.expert.home=/opt/UCA-EBC -

Duca.expert.data=/var/opt/UCA-EBC/instances/default -

Dlog4j.configuration=file:/var/opt/UCA-

EBC/instances/default/conf/uca-ebc-log4j.xml -

Dneo4j.ext.udc.disable=true -

Djava.util.logging.config.file=/var/opt/UCA-

EBC/instances/default/conf/logging.properties

com.hp.uca.common.launch.UcaLauncher

com.hp.uca.expert.engine.Bootstrap start

You can also check that the virtual IP has been well created on carlton0. This is
done by monitoring the new eth0:0 NIC :

ifconfig eth0:0

eth0:0 Link encap:Ethernet HWaddr 00:21:5A:45:A8:BA

 inet addr:A.B.C.253 Bcast:A.B.C.255

Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 Interrupt:16 Memory:f6000000-f6012800

The web GUI of the UCA for EBC server is now accessible through:

http://A.B.C.253:8888/

The above address is defined on carlton0 only by VCS HA solution.

The virtual IP address is also to be used at UCA for EBC Channel Adapter
configuration level in order to have an unique IP address to access UCA for EBC
server, whatever host it is running within the cluster.

For example, this would give for default instance:

<bean id="activemq-uca-ebc"

class="org.apache.activemq.camel.component.ActiveMQComponent

">

 <property name="brokerURL" value="tcp://A.B.C.253:61666"/>

</bean>

Now let’s simulate a failover.

As an example, kill the process on carlton0. Wait a few seconds for the HA
mechanism to trigger the failover on carlton1.

Then check the state of the HA resource:

24

hares -state

#Resource Attribute System Value

uca-ebc State carlton0 FAULTED

uca-ebc State carlton1 ONLINE

uca-ebc-bis State carlton0 OFFLINE

uca-ebc-bis State carlton1 OFFLINE

Listing 1 -checking state of HA resources

You will notice that the resource has passed to FAULTED state on carlton0 and that
has been successfully restarted on carlton1.

You can also notice that the virtual IP has also been switched from carlton0 to
carlton1, and from now on a call to http://A.B.C.253:8888/ will be forwarded to
carlton1 (the new active member).

For sanity of your platform, just declare that carlton0 is no more faulty (let’s
suppose we have fix an hypothetic problem).
To do that, clear the resource:

hares -clear uca-ebc -sys carlton0

3.6.4 Troubleshooting

Look at file /var/VRTSvcs/log/engine_A.log for logs generated by the VCS engine.

For example, with previous commands the log file should have logs like:

When bringing online the service group, the logs of the startup:

2012/12/12 18:46:21 VCS NOTICE V-16-1-10301 Initiating Online of Resource
uca-ebc (Owner: Unspecified, Group: uca-group) on System carlton0
2012/12/12 18:46:21 VCS INFO V-16-10031-504 (carlton0) Application:uca-
ebc:online:Executed /opt/UCA-EBC/bin/uca-ebc-vcs as user uca2012/12/12
18:46:23 VCS INFO V-16-1-10298 Resource uca-ebc (Owner: Unspecified,
Group: uca-group) is online on carlton0 (VCS initiated)

After the killing of the process on carlton0, the logs of the detection:

25

2012/12/12 18:52:24 VCS ERROR V-16-2-13067 (carlton0) Agent is calling
clean for resource(uca-ebc) because the resource became OFFLINE
unexpectedly, on its own.
2012/12/12 18:52:24 VCS INFO V-16-10031-504 (carlton0) Application:uca-
ebc:clean:Executed /opt/UCA-EBC/bin/uca-ebc-vcs as user uca
2012/12/12 18:52:35 VCS INFO V-16-2-13068 (carlton0) Resource(uca-ebc) -
clean completed successfully.
2012/12/12 18:52:36 VCS INFO V-16-1-10307 Resource uca-ebc (Owner:
Unspecified, Group: uca-group) is offline on carlton0 (Not initiated by VCS)
2012/12/12 18:52:36 VCS ERROR V-16-1-10205 Group uca-group is faulted on
system carlton0
2012/12/12 18:52:36 VCS NOTICE V-16-1-10446 Group uca-group is offline on
system carlton0
2012/12/12 18:52:36 VCS INFO V-16-1-10493 Evaluating carlton0 as potential
target node for group uca-group
2012/12/12 18:52:36 VCS INFO V-16-1-50010 Group uca-group is online or
faulted on system carlton0
2012/12/12 18:52:36 VCS INFO V-16-1-10493 Evaluating carlton1 as potential
target node for group uca-group
2012/12/12 18:52:36 VCS NOTICE V-16-1-10301 Initiating Online of Resource
uca-ebc (Owner: Unspecified, Group: uca-group) on System carlton1

When failover has occurred, the logs of the startup on other member:

2012/12/12 18:52:36 VCS INFO V-16-10031-504 (carlton1) Application:uca-
ebc:online:Executed /opt/UCA-EBC/bin/uca-ebc-vcs as user uca
2012/12/12 18:53:38 VCS INFO V-16-1-10298 Resource uca-ebc (Owner:
Unspecified, Group: uca-group) is online on carlton1 (VCS initiated)

26

Chapter 4

The UCA for EBC HA solution based
on RHEL cluster

4.1 Introducing the Red Hat Enterprise Linux
High Availability Add-On

The actual name of the software, in a RHEL cluster, that manages the High
Availability is called the `RHEL High Availability Add-On`.

Red Hat’s High Availability Add-On provides on-demand failover services between
nodes within a cluster, making applications highly available. The High Availability
Add-On supports up to 16 nodes.

When using the High Availability Add-On, a highly available service can fail over
from one node to another with no apparent interruption to cluster clients.

The High Availability Add-On also ensures data integrity when one cluster node
takes over control of a service from another cluster node.

It achieves this by promptly evicting nodes from the cluster that are deemed to be
faulty using a method called “fencing” that prevents data corruption.

The complete High Availability Add-On datasheet is available at :
http://www.redhat.com/rhecm/rest-
rhecm/jcr/repository/collaboration/jcr:system/jcr:versionStorage/704a02ed0a052
601101495b1f5af3e4c/1/jcr:frozenNode/rh:resourceFile

4.2 Installing the Red Hat Enterprise Linux High
Availability Add-On

The RHEL cluster management software is called “Conga”
Conga is made of agent software, called “ricci”, and running on the nodes where
UCA for EBC applications run.
Conga is also made of a centralized cluster configuration & management server,
called “luci”

http://www.redhat.com/rhecm/rest-rhecm/jcr/repository/collaboration/jcr:system/jcr:versionStorage/704a02ed0a052601101495b1f5af3e4c/1/jcr:frozenNode/rh:resourceFile
http://www.redhat.com/rhecm/rest-rhecm/jcr/repository/collaboration/jcr:system/jcr:versionStorage/704a02ed0a052601101495b1f5af3e4c/1/jcr:frozenNode/rh:resourceFile
http://www.redhat.com/rhecm/rest-rhecm/jcr/repository/collaboration/jcr:system/jcr:versionStorage/704a02ed0a052601101495b1f5af3e4c/1/jcr:frozenNode/rh:resourceFile

27

Figure 2 - luci & ricci Conga components in a two-node cluster

Installation procedure

Install RHEL 6.4 or newer on all the nodes of your cluster

Install group packages for necessary cluster and cluster management software on
cluster nodes. The “High Availability” group package is mandatory. The “Resilient
Storage” group package will be needed if you want your UCA-EBC service to be
based on a resilient shared directory.
We advise to install the necessary software one at a time and reboot. Repeat these
commands on each node of the cluster.

[root@nodeN ~]# yum -y groupinstall "High Availability"

"Resilient Storage"

On the node chosen to become the management node of the cluster, install the luci
component. In our example the MgtNode is node1.

[root@MgtNode ~]# yum -y install luci ccs

ccs is the command line set of tools allowing to do most of what can be done with
luci

28

4.3 Configuring the Red Hat Enterprise Linux
High Availability Add-On

4.3.1 Configuring the iptables Firewall to Allow Cluster
Components

To allow the nodes in a cluster to communicate with each other, you must enable
the IP ports assigned to certain Red Hat High Availability Add-On components

Listed below are iptable rules for enabling IP ports needed by RHEL 6 High
Availability Add-on. Please note that these examples use 192.168.1.0/24 as a
subnet, but you will need to replace 192.168.1.0/24 with the appropriate subnet.

For cman (cluster manager)

iptables -I INPUT -m state --state NEW -m multiport -p

udp -s 192.168.1.0/24 -d 192.168.1.0/24 --dports 5404,5405

-j ACCEPT

iptables -I INPUT -m addrtype --dst-type MULTICAST -m

state --state NEW -m multiport -p udp -s 192.168.1.0/24

--dports 5404,5405 -j ACCEPT

For dlm (Distributed Lock Manager):

iptables -I INPUT -m state --state NEW -p tcp

-s 192.168.1.0/24 -d 192.168.1.0/24 --dport 21064 -j ACCEPT

For ricci (part of Conga remote agent):

iptables -I INPUT -m state --state NEW -p tcp

-s 192.168.1.0/24 -d 192.168.1.0/24 --dport 11111 -j ACCEPT

For modclusterd (part of Conga remote agent):

iptables -I INPUT -m state --state NEW -p tcp

-s 192.168.1.0/24 -d 192.168.1.0/24 --dport 16851 -j ACCEPT

For luci (Conga User Interface server):

iptables -I INPUT -m state --state NEW -p tcp

-s 192.168.1.0/24 -d 192.168.1.0/24 --dport 8084 -j ACCEPT

For igmp (Conga User Interface server):

iptables -I INPUT -p igmp -j ACCEPT

29

After executing these commands, run the following command to save the current
configuration for the changes to be persistent during reboot

service iptables save ; service iptables restart

4.3.2 Considerations about SELinux

The High Availability Add-On for Red Hat Enterprise Linux 6 supports SELinux in the
enforcing state with the SELinux policy type set to targeted.

When using SELinux with the High Availability Add-On in a VM environment, you
should ensure that the SELinux boolean fenced_can_network_connect is
persistently set to on. This allows the fence_xvm fencing agent to work properly,
enabling the system to fence virtual machine.

4.3.3 Considerations about ricci

It is necessary that ricci is running in each cluster node to be able to propagate
updated cluster configuration.
You can start ricci by using service ricci start

or by enabling it to start at boot time via chkconfig

4.4 Creating a Highly Available UCA-EBC service

4.4.1 Creating a cluster

Start luci using service luci start (or enable it to start at boot time via chkconfig)

[root@MgtNode ~]# service luci start

Starting luci: generating https SSL certificates... done

[OK]

The URL syntax for the luci server is

https://luci_server_hostname:luci_server_port. The default value of

luci_server_port is 8084.

Point your web browser to https://< MgtNode>:8084 to access luci

30

Figure 3 - luci homepage URL

The root user on a system running luci can control access to the various luci
components by setting permissions for the individual users on a system.

Click Manage Clusters from the menu on the left side of the luci Homebase page

The Clusters screen appears,

Click Create. The Create New Cluster dialog box appears, as shown in Figure 4 below

Figure 4 - luci cluster creation page

31

After adding your nodes and clicking the Create Cluster button, your cluster should
look like the example in the below Figure 5

Figure 5 - viewing the created cluster in luci cluster management page

Your cluster structure is now created.

4.4.2 Configuring Fencing

Fencing consists in putting in quarantine a node of the cluster that is not
functionning properly in order to protect shared resources

Fencing may either disable a failing node, or disallow shared storage access,
therefore ensuring data integrity.

The configuration of fencing in a RHEL cluster can be done in two steps.
First step is about configuring fence devices.
Second step is about configuring fencing for the cluster members.

Configuring fence devices

Configuring fence devices consists of creating, updating, and deleting fence devices
for the cluster. You must configure the fence devices in a cluster before you can
configure fencing for the nodes in the cluster.

Creating a fence device consists of selecting a fence device type and entering
parameters for that fence device (for example, name, IP address, login, and
password).

For information about Updating or Deleting a fence device, refer to [R5] RHEL 6 -
Cluster Administration

From the cluster-specific page, you can configure fence devices for that cluster by
clicking on Fence Devices along the top of the cluster display. This displays the
fence devices for the cluster and displays the menu items for fence device
configuration: Add and Delete.

http://en.wikipedia.org/wiki/Node_(networking)
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Cluster_Administration/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Cluster_Administration/index.html

32

To create a fence device, follow these steps:

1. From the Fence Devices configuration page, click Add. Clicking Add displays the
Add Fence Device (Instance) dialog box. From this dialog box, select the type of
fence device to configure.

2. Specify the information in the Add Fence Device (Instance) dialog box according
to the type of fence device.

Refer to[R5] RHEL 6 - Cluster Administration to see the list of possible fence devices

In our example we have chosen HP ILO Devices (one ILO device per cluster member)

3. Click Submit

The result in our example looks like the Figure 6 below

Figure 6 - Fence devices management page

Configuring fencing for the cluster nodes

Once you have completed the initial steps of creating a cluster and creating fence
devices, you need to configure fencing for the cluster nodes. To configure fencing
for the nodes after creating a new cluster and configuring the fencing devices for
the cluster, follow the steps in this section. Note that you must configure fencing
for each node in the cluster.

Use the following procedure to configure a node with a single fence device.

1. From the cluster-specific page, you can configure fencing for the nodes in the
cluster by clicking on Nodes along the top of the cluster display. This displays the
nodes that constitute the cluster.

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Cluster_Administration/index.html

33

This is also the default page that appears when you click on the cluster name
beneath Manage Clusters from the menu on the left side of the luci Homebase
page.

2. Click on a node name. Clickin g a link for a node causes a page to be displayed for
that link showing how that node is configured.

3. On the node-specific page, under Fence Devices, click Add Fence Method. This
displays the Add Fence Method to Node dialog box.

4. Enter a Method Name for the fencing method that you are configuring for this
node. This is an arbitrary name that will be used by Red Hat High Availability Add-
On; it is not the same as the DNS name for the device.

5. Click Submit. This displays the node-specific screen that now displays the
method you have just added under Fence Devices.

6. Configure a fence instance for this method by clicking the Add Fence Instance
button that appears beneath the fence method. This displays the Add Fence Device
(Instance) drop-down menu from which you can select a fence device you have
previously configured.

7. Select a fence device for this method.

In our example the result looks like what is shown in Figure 7 below.

Figure 7 - Associating a fence device to a cluster member

Note that it is recommended to configure multiple fencing mechanisms for each
node. A fencing device can fail. However configuring multiple fence devices is not

34

described in this guide.
Please refer to [R5] RHEL 6 - Cluster Administration

4.4.3 Configuring a Failover Domain

A failover domain is a named subset of cluster nodes that are eligible to run a
cluster service in the event of a node failure.

In this guide no failover have been configured since the guide is based on a two-
node cluster only.

4.4.4 Creating the UCA for EBC service

We can now declare our UCA for EBC service. It will be created in the cluster as a
service group. And then in next paragraph, we will see how to add resources to this
UCA for EBC service, so that it should become a HA service.

From the cluster-specific page, you can add the UCA-EBC service to that cluster by
clicking on Service Groups along the top of the cluster display.

2. Click Add. This displays the Add Service Group to Cluster dialog box.

3. On the Add Service Group to Cluster dialog box, at the Service Name text box,
type the name of the UCA for EBC service, e.g. UCA-EBC

4. Check the Automatically Start This Service checkbox if you want the UCA-EBC
service to start automatically when the cluster is started.

5. Check the Run Exclusive checkbox to set a policy wherein the service only runs on
nodes that have no other services running on them.

6. If you have configured failover domains for the cluster, you can use the drop-
down menu of the Failover Domain parameter to select a failover domain for this
service.

7. Use the Recovery Policy drop-down box to select a recovery policy for the
service. We recommend to use the option Relocate, and therefore to ignore the
restart options

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Cluster_Administration/index.html

35

Figure 8 - Creating the UCA-EBC Service Group in the cluster

You may press the Submit now and add the resources later as explained in the
following paragraph

4.4.5 Adding the resources for the UCA-EBC HA service

We have the possibility to add resources at the cluster level, where they will be
visible and useable by any service in the cluster; or to add resources at the service
level, where they will exclusively be available for the service in question.

In this guide the UCA-EBC control script and the virtual IP address are defined at
UCA-EBC service level, whereas the HA LVM and File System are defined at cluster
level.

UCA-EBC script

To start, stop and get the status of the UCA-EBC service, we rely on the script uca-
ebc-rhelcluster

In the Service Groups tab, click on the UCA-EBC service, and then on the Add
Resource button.

Then from the dropdown list choose Script

36

Figure 9 - Adding a script resource to the UCA-EBC service

Figure 10 - Specifying the location of the UCA-EBC control script file

In the Full Path to Script File put
 su uca /opt/UCA-EBC/bin/uca-ebc-rhelcluster

It is important to run the script as uca user

IP address

As stated before in the 1.2 paragraph, we need the UCA-EBC HA service to be always
accessed with the same virtual IP address by other components in the solution such
as the Open Mediation.

In the Service Groups tab, click on the UCA-EBC service, and then on the Add
Resource button.

Then from the dropdown list choose IP Address

luci Field Description

IP Address, Netmask Bits The IP address (and, optionally, netmask bits) for the

resource. Netmask bits, or network prefix length, may come

after the address itself with a slash as a separator,

37

complying with CIDR notation (for example, 10.1.1.1/8). This

is a virtual IP address. IPv4 and IPv6 addresses are

supported, as is NIC link monitoring for each IP address.

Monitor Link Enabling this causes the status check to fail if the link on the

NIC to which this IP address is bound is not present.

Disable Updates to Static

Routes

Disable updating of routing using RDISC protocol.

Number of Seconds to Sleep

After Removing an IP Address

Specifies the amount of time (in seconds) to sleep.

Table 4 - RHEL cluster IP address resource properties

HA LVM

The choice retained in this guide for the shared storage of the UCA-EBC HA service is
to use HA LVM.

As stated in the Appendix F of the [R5] RHEL 6 - Cluster Administration

If the applications run optimally in active/passive (failover) configurations where
only a single node that accesses the storage is active at any one time, you should
use High Availability Logical Volume Management agents (HA-LVM).

To set up HA-LVM failover, perform the following steps:

Ensure that your system is configured to support CLVM, which requires the
following:

The High Availability Add-On and Resilient Storage Add-On are installed, including
the the cmirror package if the CLVM logical volumes are to be mirrored.

The locking_type parameter in the global section of the /etc/lvm/lvm.conf file is set
to the value '3'.

The High Availability Add-On and Resilient Storage Add-On software, including
the clvmd daemon, must be running. For CLVM mirroring, the cmirrord service must
be started as well.

Create the logical volume and file system using standard LVM and file system
commands, as in the following example.

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Cluster_Administration/index.html

38

[root@nodeN ~]# pvcreate /dev/sd[cde]1

[root@nodeN ~]# vgcreate -cy shared_vg /dev/sd[cde]1

[root@nodeN ~]# lvcreate -L 10G -n ha_lv shared_vg

[root@nodeN ~]# mkfs.ext4 /dev/shared_vg/ha_lv

[root@nodeN ~]# lvchange -an shared_vg/ha_lv

__

For information on creating LVM logical volumes, refer to Logical Volume Manager
Administration.

_

Use the luci interface to add the newly created lvm as a resource of the cluster, as
shown in Figure 11 below.

Figure 11 - Adding the HA LVM resource to the cluster

And then add this resource to the UCA-EBC service group, in the Service Groups tab

Filesystem

Following the creation of the HA LVM, create a Filesystem resource on top of the
lvm, as shown below.

Note that the mount point chosen (/var/shared/UCA_EBC) corresponds exactly to
the data directory selected when installing UCA for EBC application on each of the
cluster nodes. (see Chapter 2)

39

Figure 12 - Creating the File System for the shared UCA-EBC data

And then add this resource to the UCA-EBC service group, in the Service Groups tab

4.5 Managing the cluster

Refer to[R5] RHEL 6 - Cluster Administration Chapter 4. Managing Red Hat High

Availability Add-On With Conga

Figure 13 - Cluster Management page in luci

4.6 Managing the HA UCA for EBC service

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Cluster_Administration/index.html

40

You can manage your UCA-EBC HA service in the luci interface as shown in the
Figure 14 below

Figure 14 - UCA-EBC HA service control page in luci

4.7 Troubleshooting

View the logs of execution of the service script under the local /var/tmp/

Those logs have not been put on the normal UCA_EBC_DATA log directory for
troubleshooting reasons. Since the UCA_EBC_DATA directory is a shared directory,
and is sometimes mounted on one node, sometimes on the other node, in case of
problem, it can be difficult to find the log file.

The log files corresponding to

Start of the UCA-EBC service : rhelcluster-uca-service-start.out

Stop of the UCA-EBC service : rhelcluster-uca-service-stop.out

Status of the UCA-EBC service : rhelcluster-uca-service-status.out

[root@nodeN ~]# ls –l /var/tmp/

-rw-r--r--. 1 root root 99818 Dec 4 17:32

rhelcluster-uca-service-start.out

-rw-r--r--. 1 root root 236 Dec 4 17:32

rhelcluster-uca-service-status.out

-rw-r--r--. 1 root root 323 Dec 22 15:16

rhelcluster-uca-service-stop.out

41

You can check the normal behavior in the /var/log/messages file

When starting the UCA-EBC service on one node, you should see logs similar to the
ones below

/var/log/messages
[root@nodeWhereUCAWasStarted ~]# tail –f /var/log/messages

11:43:59 clusternode2 rgmanager[2746]: Starting disabled

service service:UCA-EBC

11:44:00 clusternode2 rgmanager[4442]: [fs] mounting /dev/dm-0

on /usr/share/UCA_EBC_DATA

11:44:00 clusternode2 rgmanager[4464]: [fs] mount -t ext4

/dev/dm-0 /usr/share/UCA_EBC_DATA

11:44:00 clusternode2 kernel: EXT4-fs (dm-0): warning: maximal

mount count reached, running e2fsck is recommended

11:44:00 clusternode2 kernel: EXT4-fs (dm-0): recovery complete

11:44:00 clusternode2 kernel: EXT4-fs (dm-0): mounted

filesystem with ordered data mode. Opts:

11:44:00 clusternode2 rgmanager[4549]: [ip] Adding IPv4 address

192.168.56.111/24 to eth0

11:44:02 clusternode2 avahi-daemon[2065]: Registering new

address record for 192.168.56.111 on eth0.IPv4.

11:44:03 clusternode2 rgmanager[4634]: [script] Executing

/opt/UCA-EBC/bin/uca-ebc-rhelcluster start

11:44:04 clusternode2 rgmanager[2746]: Service service:UCA-EBC

started

When the heartbeat of the service on one node works well, you should see the logs
below
[root@nodeWhereUCAWasStarted ~]# tail –f /var/log/messages

11:44:34 clusternode2 rgmanager[4957]: [script] Executing

/opt/UCA-EBC/bin/uca-ebc-rhelcluster status

11:45:14 clusternode2 rgmanager[5552]: [script] Executing

/opt/UCA-EBC/bin/uca-ebc-rhelcluster status

11:45:54 clusternode2 rgmanager[6005]: [script] Executing

/opt/UCA-EBC/bin/uca-ebc-rhelcluster status

11:46:34 clusternode2 rgmanager[6664]: [script] Executing

/opt/UCA-EBC/bin/uca-ebc-rhelcluster status

When the node hosting the service is stopped or failed, logs will be similar to these
ones below

42

[root@nodeWhereUCAWasStopped ~]# tail –f /var/log/messages

11:52:00 clusternode2 rgmanager[2746]: Stopping service

service:UCA-EBC

11:52:01 clusternode2 rgmanager[11417]: [script] Executing

/opt/UCA-EBC/bin/uca-ebc-rhelcluster stop

11:52:03 clusternode2 rgmanager[11521]: [ip] Removing IPv4

address 192.168.56.111/24 from eth0

11:52:03 clusternode2 avahi-daemon[2065]: Withdrawing address

record for 192.168.56.111 on eth0.

11:52:13 clusternode2 rgmanager[11627]: [fs] unmounting

/usr/share/UCA_EBC_DATA

11:52:13 clusternode2 rgmanager[2746]: Service service:UCA-EBC

is stopped

The logs on the node where UCA-EBC service is relocated will look like these ones
below.
[root@nodeWhereUCAWasRelocated ~]# tail –f /var/log/messages

11:52:00 clusternode2 rgmanager[2746]: Stopping service

service:UCA-EBC

11:52:01 clusternode2 rgmanager[11417]: [script] Executing

/opt/UCA-EBC/bin/uca-ebc-rhelcluster stop

11:52:03 clusternode2 rgmanager[11521]: [ip] Removing IPv4

address 192.168.56.111/24 from eth0

11:52:03 clusternode2 avahi-daemon[2065]: Withdrawing address

record for 192.168.56.111 on eth0.

11:52:13 clusternode2 rgmanager[11627]: [fs] unmounting

/usr/share/UCA_EBC_DATA

11:52:13 clusternode2 rgmanager[2746]: Service service:UCA-EBC

is stopped

4.8 Configuration example

The HA UCA-EBC service running on a two-node cluster, that was taken as an
example in this guide has the following configuration /etc/cluster/cluster.conf

43

<?xml version="1.0"?>

<cluster config_version="35" name="sg_cluster">

 <clusternodes>

 <clusternode name="clusternode1" nodeid="1">

 <fence>

 <method name="m_flevel_1">

 <device name="ilonode1"/>

 </method>

 </fence>

 </clusternode>

 <clusternode name="clusternode2" nodeid="2">

 <fence>

 <method name="m_flevel_2">

 <device name="ilonode2"/>

 </method>

 </fence>

 </clusternode>

 </clusternodes>

 <cman expected_votes="1" two_node="1"/>

 <rm>

 <resources>

 <lvm lv_name="ha_lv" name="lvm" self_fence="on"

vg_name="shared_vg"/>

 <fs device="/dev/shared_vg/ha_lv" force_unmount="on"

fsid="64050" fstype="ext4" mountpoint="/usr/share/UCA_EBC_DATA" name="FS"/>

 </resources>

 <service autostart="0" name="UCA-EBC" recovery="relocate">

 <script file="/opt/UCA-EBC/bin/uca-ebc-rhelcluster"

name="uca-ebc"/>

 <ip address="192.168.56.111" sleeptime="10"/>

 <lvm ref="lvm"/>

 <fs ref="FS"/>

 </service>

 </rm>

 <fencedevices>

 <fencedevice agent="fence_ilo" ipaddr="192.168.56.201"

login="root" name="ilonode1" passwd="Plusvite"/>

 <fencedevice agent="fence_ilo" ipaddr="192.168.56.202"

login="root" name="ilonode2" passwd="Plusvite"/>

 </fencedevices>

</cluster>

For testing purposes, the pd-example UCA-EBC Problem Detection Value Pack has
been deployed on the UCA-EBC HA service.

Note that it is only needed to deploy a VP on the node where the active UCA for EBC
application runs.

44

Figure 15 - HA UCA-EBC GUI showing the example Problem Detection VP

45

Glossary

UCA: Unified Correlation Analyzer

EBC: Event Based Correlation

VCS: Veritas Cluster Server

JDK: Java Development Kit

JRE: Java Runtime Environment

HA: High Availability

