

hp Unified Correlation Analyzer

Unified Correlation Analyzer
for

Event Based Correlation

Version 3.3

Topology Extension

Edition: 1.0

For the HP-UX (11.31) and Linux (RHEL 5.9, 6.6 & 7.1) Operating Systems

September 2015

© Copyright 2015 Hewlett-Packard Development Company, L.P.

2

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical
or editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notices

© Copyright 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and
64-bit configurations) on all HP 9000 computers are Open Group UNIX 95 branded
products.

Java™ is a trademark of Oracle and/or its affiliates.

Microsoft®, Internet Explorer, Windows®, Windows Server®, and Windows NT® are
either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

Firefox® is a registered trademark of the Mozilla Foundation.

Google Chrome® is a trademark of Google Inc.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City,
California.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark, and the X device is a trademark of X/Open
Company Ltd. in the UK and other countries.

Red Hat® is a registered trademark of the Red Hat Company.

Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

Neo4j is a trademark of Neo Technology.

3

Contents

Preface .. 9

Chapter 1.. 11

Introduction ... 11

Chapter 2.. 12

UCA for EBC Topology Extension installation ... 12

2.1 Licensing ... 12

2.2 Disk requirements ... 13

2.3 Software prerequisites ... 13

2.3.1 UCA for EBC Server .. 13
2.3.2 Java .. 14

2.4 UCA for EBC Topology Extension package installation 14

2.4.1 Untar the archive in a temporary directory ... 14
2.4.2 Run the installation script ... 14
2.4.3 File organization .. 15

2.5 Un-installation of UCA for EBC Topology Extension 15

Chapter 3.. 17

UCA for EBC Topology Extension Configuration ... 17

3.1 Configuring the topology extension ... 17

3.1.1 Starting an Embedded Topology server ... 17
3.1.2 Using an external Topology server ... 18

3.2 Configuring the topology data load function 19

3.3 Configuring the topology dataload scheduler 19

Chapter 4.. 22

Managing the Topology from the UCA for EBC GUI .. 22

4.1 The graph display Panel.. 22

4.2 The Topology Manager Panel ... 23

4.3 The Data load Panel .. 24

Chapter 5.. 25

Developing a topology aware Value Pack .. 25

5.1 Introduction ... 25

5.2 Topology aware Value Pack principles ... 25

4

5.3 Alarm enrichment with topology information 26

5.3.1 Alarm Object extension ... 26
5.3.2 Activating Alarm Enrichment .. 29
5.3.3 Topology requests implementation ... 30
5.3.4 Writing rules based on topology data ... 31

5.4 Managing In-Memory Topology element attributes 32

5.4.1 Introduction ... 32
5.4.2 In-Memory Attribute Manager API .. 33
5.4.3 In-Memory Attribute Manager API Example. .. 36

5.5 Defining Topology “Points of Interest” .. 36

5.5.1 Introduction ... 36
5.5.2 POI Manager API .. 37

5.6 Topology Value Pack example description .. 38

5.6.1 Objectives .. 39
5.6.2 Topology aware Value Pack validation ... 40
5.6.3 Building and Deploying the topology-example Value Pack 41

Chapter 6.. 43

Creating a new topology aware Value Pack using the UCA eclipse plug-in 43

6.1 Topology aware Value Pack project creation 43

Chapter 7.. 45

Topology Data load ... 45

7.1 Introduction ... 45

7.2 CSV files location ... 45

7.3 CSV files names ... 46

7.4 CSV files format .. 46

7.4.1 Node files: *.node.csv .. 48
7.4.2 Relationship files: *.rel.csv .. 52

7.5 Updates ... 53

7.6 Deletions ... 53

7.7 Neo4j transactions .. 54

7.7.1 Examples ... 54
7.7.2 Rocks bands ... 54
7.7.3 Network entities .. 55

7.8 Run the data load .. 56

7.8.1 From UTM .. 56
7.8.2 From the UCA GUI... 56
7.8.3 From Java or Scala code (in Unit tests) ... 56
7.8.4 Through the Neo4j server plugin and REST API .. 57

7.9 Data Load output .. 58

7.9.1 Load Report ... 58
7.9.2 Discarded entities .. 59

7.10 Configuration .. 59

7.11 Logging .. 60

Chapter 8.. 62

5

Visualizing the topology graph .. 62

8.1 Introduction ... 62

8.2 License policy .. 63

8.3 Defining visualization profiles .. 63

8.4 Using the Graph Visualization tool ... 71

8.4.1 Displaying the graph in the neighborhood of a given Node:................................. 72
8.4.2 Displaying the graph in the neighborhood of a ‘Point of interest’........................ 73
8.4.3 Extending the displayed graph ... 74
8.4.4 The drawing view Toolbar ... 75
8.4.5 The Inspector view .. 75

Glossary ... 77

6

Figures

Figure 1 - Graph display panel ... 22
Figure 2 - the Neo4j Manager panel ... 23
Figure 3 - The topology data load panel .. 24
Figure 4 - Alarm enrichment with topology information .. 26
Figure 5 - Topology aware scenario creation using the Eclipse plugin ... 44
Figure 6 - Graph visualization in Neoclipse .. 56
Figure 7 - Profile selection ... 72
Figure 8 - Root node selection tool .. 72
Figure 9 - POI Tab ... 73
Figure 10 - POI Table .. 73
Figure 11 - Drawing the graph from POI .. 74
Figure 12 - Get Neighbors action ... 74
Figure 13 - Extended graph ... 75
Figure 14 - Inspector view .. 76

7

Tables

Table 1 - Software versions ... 9
Table 2 - Disk Requirements for UCA for EBC Topology Extension ... 13
Table 3 - Software Prerequisites for UCA for EBC Topology Extension (HP-UX) 13
Table 4 - Software Prerequisites for UCA for EBC Topology Extension (Linux) 13
Table 5 - UCA for EBC Topology Extension provided files ... 15

9

Preface

This manual is dedicated to the Unified Correlation Analyzer for Event Based
Correlation Topology Extension. It encompasses both the installation and
configuration guide, and the user’s guide.

Product Name: Unified Correlation Analyzer for Event Based Correlation

Product Version: V3.3

Intended Audience

Here are some recommendations based on possible reader profiles:

 Solution Developers

 Software Development Engineers

Software Versions

The term UNIX is used as a generic reference to the operating system, unless
otherwise specified.

The software versions referred to in this document are as follows:

Product Version Supported Operating systems

UCA for Event Based Correlation
Server Version 3.3

 HP-UX 11.31 for Itanium
 Red Hat Enterprise Linux Server release

5.9, 6.6 & 7.1
UCA for Event Based Correlation
Channel Adapter Version 3.3

 HP-UX 11.31 for Itanium
 Red Hat Enterprise Linux Server release

5.9, 6.6 & 7.1
UCA for Event Based Correlation
Topology Extension Version 3

 HP-UX 11.31 for Itanium
 Red Hat Enterprise Linux Server release

5.9, 6.6 & 7.1
UCA for Event Based Correlation
Software Development Kit
Version 3.3

 Windows XP / Vista 64 bits
 Windows Server 2012
 Windows 7 64 bits
 Red Hat Enterprise Linux Server release

5.9, 6.6 & 7.1

Table 1 - Software versions

Typographical Conventions

Courier Font:

 Source code and examples of file contents.

 Commands that you enter on the screen.

 Pathnames

10

 Keyboard key names

Italic Text:

 Filenames, programs and parameters.

 The names of other documents referenced in this manual.

Bold Text:

 To introduce new terms and to emphasize important words.

Associated Documents

The following documents contain useful reference information:

References

[R1] UCA for EBC Reference Guide

[R2] UCA for EBC Value Pack Development Guide

[R3] OSS Open Mediation Installation and Configuration Guide

[R4] UCA for EBC Installation Guide

[R5] HP Unified OSS Console Version 1.2.0 - User Guide

[R6] UTM V2.0 User Guide

Support

Please visit our HP Software Support Online Web site at
https://softwaresupport.hp.com/ for contact information, and details about HP
Software products, services, and support.

The Software support area of the Software Web site includes the following:

 Downloadable documentation,

 Troubleshooting information,

 Patches and updates,

 Problem reporting,

 Training information,

 Support program information.

https://softwaresupport.hp.com/

11

Chapter 1

Introduction

This guide is a document dedicated to the Topology Extension of the UCA for EBC
product.

The Topology extension allows developing Value packs that require topology
knowledge for implementing the correlation use case.

The following chapters will describe:

 The installation procedure.

 The configuration of the extension.

 The development guide for Value Packs using the Topology.

Throughout this document, we use the ${UCA_EBC_HOME} environment variable to

reference the root directory (“static” part) of UCA for EBC. The default value for the
${UCA_EBC_HOME} environment variable is /opt/UCA-EBC. The

${UCA_EBC_HOME} environment variable thus references the /opt/UCA-EBC

directory unless UCA for EBC “static” part has been installed in an alternate
directory.

We also use ${UCA_EBC_DATA} environment variable to reference the data

directory (“variable” part) of UCA for EBC. The default value for the
${UCA_EBC_DATA} environment variable is /var/opt/UCA-EBC. The
${UCA_EBC_DATA} environment variable thus references the /var/opt/UCA-EBC

directory unless UCA for EBC “variable” part has been installed in an alternate
directory.

Since UCA-EBC V2.0, on Linux and HP-UX systems, the ${UCA_EBC_DATA} directory
may contain multiple instances of UCA-EBC. In this document, we will use the value
${UCA_EBC_INSTANCE} for referring to
${UCA_EBC_DATA}/instances/<instance-name> directory on Linux/HP-UX
systems and to ${UCA_EBC_DATA} on Windows systems.
Note that at installation time on Linux/HP-UX, a single <instance-name> is
configured: default.

 For more information on the UCA for EBC product, please refer to the [R1] UCA for
EBC Reference Guide and [R2] UCA for EBC Value Pack Development Guide.

12

Chapter 2

UCA for EBC Topology Extension
installation

The UCA for EBC Topology Extension product is delivered as a tar file named:

uca-ebc-topo-kit-3.3-<os>.tar

where <os> is linux on Linux and hpux on HP-UX systems.

This chapter describes the software prerequisites, the installation steps, and gives
a brief content description of the UCA for EBC Topology kit.

2.1 Licensing
After you first start UCA for EBC Server, UCA for EBC will activate a trial license for
90 days (Instant-On license) that enables all features of the product (including the
‘UCA for EBC Topology Extension’ feature) for a trial period. After expiration of this
trial period, a commercial license is needed to continue using the product.

A valid license key is required to activate the ‘UCA for EBC Topology Extension’
feature after the trial period.

In case you are using the Topology extension (the ‘uca.ebc.topology’ property set to
‘embedded’, or ‘external’ in the uca-ebc.properties file). If you have no valid license
key for the ‘UCA for EBC Topology Extension’ feature after the trial period, UCA for
EBC Server will not start.

Notes

As soon as a permanent license is installed in the license.txt file, the UCA for EBC
Instant-On feature (that lets you use all features of UCA for EBC for a 90 day period
so that you can evaluate the product) will be disabled.

In this case, you must add all the permanent licenses corresponding to the UCA for
EBC features that you need to the license.txt file. For example, if you need the UCA
for EBC Topology Extension feature, you need to add a UCA for EBC Topology
Extension permanent license to the license.txt file.

Please refer to [R4] UCA for EBC Installation Guide chapter 2.1 “Licensing” for more
information on how to retrieve and install UCA for EBC license keys.

13

2.2 Disk requirements
Here are the disk requirements for UCA for EBC Topology Extension kit:

Type Disk requirements

Temporary disk space
used during installation

280 MB minimum:

 140 MB minimum for the uca-ebc-topo-kit-3.3-
<os>.tar file

 140 MB minimum for the install-uca-ebc-
topology.sh and UCA-EBCTOPO-
V3.3.noarch.rpm file on Linux or
UCAEBCTOPOV3.3.depot file on HP-UX
(expanded from the uca-ebc-topo-kit-3.3-
<os>.tar file)

Permanent disk space 140 MB minimum for UCA for EBC Topology Extension
V3.3 installed on the system

Table 2 - Disk Requirements for UCA for EBC Topology Extension

2.3 Software prerequisites

2.3.1 UCA for EBC Server

The UCA for EBC Topology Extension package must be installed on top of the UCA
for EBC Server product.

Software Package Reference

UCA for Event Based Correlation
Server Version V3.3

UCA-EBC.UCAEBCSERVERV3.3

Table 3 - Software Prerequisites for UCA for EBC Topology Extension (HP-UX)

Software Package Reference

UCA for Event Based Correlation
Server Version V3.3

UCA-EBCSERVER-V3.3

Table 4 - Software Prerequisites for UCA for EBC Topology Extension (Linux)

On HP-UX:

To check if you already have the UCA for EBC Server product installed:

$ swlist UCA-EBC

You should get an output similar to the following:

UCA-EBC V3.3 UCA-EBC
 UCA-EBC.UCAEBCSERVERV3.3 V3.3 HP UCA EBC Server
Version V3.3 Level 00 Rev B

14

On Linux:

To check if you already have UCA for EBC Server product installed (as root):

$ rpm –qa | grep UCA-EBC

You should get an output similar to the following:

UCA-EBCSERVER-V3.3

2.3.2 Java

The UCA for EBC Topology Extension (based on Neo4j 1.9.6 Graph Database) needs
Oracle(R) Java(TM) Runtime Environment 7.

Red Hat Enterprise Linux Server comes with OpenJDK Java VM, and unfortunately
this JVM is not supported by Neo4j 1.9.6 Graph Database.

Therefore it is recommended that you download (for free) the latest Java 1.7
packages (HotSpot Java VM) from Oracle from
http://java.com/en/download/manual.jsp. If this is installed (usually under
/usr/java), you should get an output similar to the followings:

jdk-1.7.0_75-fcs.x86_64
jre-1.7.0_75-fcs.x86_64

Then you will have to set the $JAVA_HOME variable of user uca accordingly.

2.4 UCA for EBC Topology Extension package installation

2.4.1 Untar the archive in a temporary directory

As root user, untar the archive in a temporary local directory (For example: /tmp):

On HP-UX:

$ cd /tmp

$ tar -xvf <kit location>/uca-ebc-topo-kit-3.3-hpux.tar

On Linux:

$ cd /tmp

$ tar -xvf <kit location>/uca-ebc-topo-kit-3.3-linux.tar

2.4.2 Run the installation script

Still as root user, run the package installation script:

On both HP-UX and Linux:

$ install-uca-ebc-topology.sh [–r <UCA-EBC root directory>]

http://java.com/en/download/manual.jsp

15

The <UCA-EBC root Directory> parameter value represents the absolute path of the
Root directory of the UCA for EBC Server product. It corresponds to the value of the
${UCA_EBC_HOME} environment variable.

Note

The default value for the UCA for EBC Server root directory is /opt/UCA-EBC.

However, since UCA for EBC Server may have been installed at an alternate location,
please check with your system administrator to obtain the correct installation
directory.

Note for Linux users

It is possible to install topology extension as non-root. Please refer to [R4] UCA for
EBC Installation Guide for the procedure to use.

2.4.3 File organization

UCA for EBC Topology Extension files are installed under the <UCA-EBC root
Directory> directory (the default is /opt/UCA-EBC).

The UCA for EBC Topology Extension package installation augments the UCA for
EBC package directories as described in the table below.

Table 5 - UCA for EBC Topology Extension provided files

2.5 Un-installation of UCA for EBC Topology Extension
The UCA for EBC Topology Extension product can be easily uninstalled by running
the uninstall-uca-ebc-topology script provided in the ${UCA_EBC_HOME}/bin

directory.

This uninstall utility must be run with root privileges.

When the uninstall-uca-ebc-topology tool is launched, it checks for all UCA for EBC
Topology native packages installed on your system and prompts you for the
number associated with the package to be uninstalled:

On both HP-UX and Linux:

$ /opt/UCA-EBC/bin/uninstall-uca-ebc-topology

You should get an output similar to the following text:

Subdirectories Description

bin Augmented with the uninstall-uca-ebc-
topology script.

lib Augmented with all libraries required for the
implementation of the topology feature

16

Here is the list of installed UCA-EBC TOPOLOGY packages:

 [0] UCA-EBCTOPO-V3.3

Enter the index number of UCA-EBC TOPOLOGY version to un-
install:

By entering ‘0’ (as in the example above), UCA for EBC Topology version V3.3 will

be removed.

17

Chapter 3

UCA for EBC Topology Extension
Configuration

3.1 Configuring the topology extension
After installation of the UCA for EBC Topology extension package, the topology
features are not enabled by default.

To be able to use the topology features, the first requirement is to start a topology
server. This can be done in two ways:

 Start an embedded topology Server

 Use an external topology Server

3.1.1 Starting an Embedded Topology server

This is the easiest way to start the topology server because in this case the
topology server is started in the same process as the UCA for EBC server without
any additional commands.

This is accomplished by setting the following property in the
${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file:

uca.ebc.topology=embedded

When the topology server starts for the first time (or in case the database
repository is not found) it creates the database repository. The default database
repository location is:

${UCA_EBC_INSTANCE}/neo4j

This location can be changed by setting the uca.ebc.topology.location

property to point to another directory. However, it is not recommended to change
this default location (the backup tool will restore Neo4j DB under
${UCA_EBC_INSTANCE}/neo4j)

For example:

uca.ebc.topology.location=/data/uca-ebc-database

The topology server implements a web server in order to serve REST http requests
or GUI http requests. This web server is started on the default port number: 7474. If
this value conflicts with a port used by another application then you can change the
port number by setting the uca.ebc.topology.webPort property.

For example:

uca.ebc.topology.webPort=7475

18

The backup tool delivered with UCA for EBC is using the Neo4j online backup facility
that allows backup of a DB while the server is running without requiring a lock. To
configure this facility, it is compulsory to set the
neo4j.config.online_backup_enabled property as following:

neo4j.config.online_backup_enabled=true

The default port used for the online backup is also configurable. The default
instance uses port 6362 if it is not configured.

If you are running multiple instances of UCA for EBC with Neo4j topology server, it is
mandatory to change this port number by setting the
neo4j.config.online_backup_port property.

For example:
neo4j.config.online_backup_port=6462

Note for UCA-EBC V2.x users

The two above properties online_backup_[enabled|port] are not defined by default.
Make sure you have them well defined in uca-ebc.properties file if you intend to use
the backup utility.

3.1.1.1 Additional Neo4j Server configuration

The embedded Neo4j Server may need additional configurations by the use of some
specific Neo4j properties (cache size, mapped memory size, etc..).

In such case, these Neo4j properties must be set in the uca-ebc.properties file with
the prefix “neo4j.config.”

Example:

To set the neostore.nodestore.db.mapped_memory neo4j property to a value of
25M, the following must be defined in the uca-ebc.properties file :

neo4j.config.neostore.nodestore.db.mapped_memory=25M

3.1.2 Using an external Topology server

The use of an external topology server can be useful in some specific conditions
(High Availability for example).

When using an external server we assume this server is started and monitored
externally.

The UCA for EBC Topology Extension is designed to work with Neo4j 1.9.6 Graph
Database as the topology server.

For the external topology server configuration, the installation and
configuration of this product is a prerequisite.

This topology server can run on the same host as the UCA for EBC server or on a
remote host.

Configuring UCA for EBC to use an external topology server requires the following
properties to be defined in the uca-ebc.properties file:

19

 The uca.ebc.topology property is set to ‘external’

 The uca.ebc.topology.serverhost is set to the hostname of the

system hosting the external topology server.

 The uca.ebc.topology.webPort is set to the web port used by the

external topology server

Configuration example:

uca.ebc.topology=external

uca.ebc.topology.serverhost=poolv1.mydomain.com

uca.ebc.topology.webPort=7474

Additional optional properties may be defined in the uca-ebc.properties file:

 The uca.ebc.topology.https.enabled property is by default set to false. It
configures the HTTP channel of the REST API of the Neo4j server to be
secure if it is set to true. Please note that the certificates should be
previously well configured on client/server sides.

uca.ebc.topology.https.enabled=true

3.2 Configuring the topology data load function
The topology data-load function is performed by a specific topology plug-in that
runs on the server.

The role of this plugin is to parse and load the topology information contained in
CSV files into the Neo4j graph database. This is fully detailed in a subsequent
chapter, “Topology Data load”, further in this document.

With an embedded server configuration, there is no additional configuration to be
performed.

With an external server configuration, the data-load plugin, which is installed as
part of the “UCA for EBC topology Extension”, must be manually copied to the
‘plugins’ directory of the external topology server.

The following files should be copied to the Neo4j topology server 'plugins'
directory:

 ${UCA_EBC_HOME}/lib/opencsv-2.3.jar

 ${UCA_EBC_HOME}/lib/scalalogging-slf4j_2.10-1.0.1.jar

 ${UCA_EBC_HOME}/lib/uca-ebc-topology-dataload-3.3.jar

 ${UCA_EBC_HOME}/lib/config-0.5.2.jar

3.3 Configuring the topology dataload scheduler
The topology data-loading is performed by pushing dataload CSV files to the
‘import/csv’ directory of the Neo4J server.

For embedded topology server this directory is located at:
${UCA_EBC_INSTANCE}/neo4j/import/csv.

Once the CSV files are pushed to the correct location, the dataload operation must
be triggered.

20

This can be done through the UCA for EBC GUI in the following panel:

UCA for EBC > Topology Management > DataLoad

Clicking the “Topology Dataload” button will trigger the dataload.

The Dataload can also be triggered, by the Dataload Scheduler, on a (configurable)
regular basis.

The Dataload Scheduler works regardless of the topology server configuration
(embedded or external).

Two parameters can be configured for the Topology Dataload Scheduler:

 The start time

The start time indicates the time for the first dataload.

 The period

The period indicates the time (in hours) between subsequent data loads

Example1:

Start time = 03:00:00

Period = 6

Data load will occurs at: 03:00:00, 09:00:00, 15:00:00, 21:00:00

Example2:

Start time = 06:00:00

Period = 8

Data load will occurs at: 06:00:00, 14:00:00, 22:00:00

Example3:

Start time = 06:00:00

Period = 5

Data load will occurs at: 06:00:00, 11:00:00, 16:00:00, 21:00:00, 02:00:00

The Topology Dataload Scheduler is configured by setting properties in the uca-

ebc.properties file.

Enabling the Topology Dataload Scheduler:

This is done by setting the uca.ebc.topology.dataload.usescheduler

property to ‘true’

For example:

uca.ebc.topology.dataload.usescheduler=true

Setting the data load scheduler start time:

21

This is done by setting the uca.ebc.topology.dataload.starttime property

to the start time of the data-load in HH:MM:SS format.

The Default value if this property is not specified is: 03:00:00.

Example:

uca.ebc.topology.dataload.starttime=04:00:00

This will schedule a topology dataload at 4:00 AM.

Setting the data load scheduling period

This is done by setting the uca.ebc.topology.dataload.period property to

the number of hours between subsequent data loads.

The default value if this property is not specified is: 4.

Example:

uca.ebc.topology.dataload.starttime=04:00:00

uca.ebc.topology.dataload.period=4

This will schedule a topology dataload at 4 AM and then every 4 hours.

NOTE: These properties are taken in to account at application start-up. Any changes
will require restarting the UCA-EBC server.

22

Chapter 4

Managing the Topology from the UCA for
EBC GUI

The UCA for EBC Web interface provides a new menu when the topology is enabled.
This new “Topology Management” menu can be reached from the main menu under
the “UCA for EBC” entry:

UCA for EBC > Topology Management

This menu gives access to the Topology Management panel that offers three
sections in the horizontal menu:

4.1 The graph display Panel
The graph display panel allows displaying the topology graph in the neighborhood
of Point Of Interest and depending on some view profiles.

This feature is fully described in section 8.4 “Using the Graph ” of this document.

Figure 1 - Graph display panel

23

4.2 The Topology Manager Panel
The Topology Manager Panel displays the legacy Neo4j web manager. It appears as
shown below:

Figure 2 - the Neo4j Manager panel

The Neo4j web manager has several entries. The default one is a dashboard
indicating the number of graph database objects and a graph showing the evolution
of this number over time.

You should refer to the Neo4j documentation for detailed explanations on the
Neo4j Web Manager interface at the following URL:
http://docs.neo4j.org/chunked/stable/tools-webadmin.html.

http://docs.neo4j.org/chunked/stable/tools-webadmin.html

24

4.3 The Data load Panel
This panel is specific to the UCA for EBC Topology extension. From this panel, it is
possible to trigger a data-load on the Neo4j server thanks to the “Topology data
load” button. Note that this button is enabled only for user having a ‘developer’ or
‘administrator’ roles.

Figure 3 - The topology data load panel

On “Topology Data load” button click, the server reloads all CSV files present in the
import/csv directory as detailed in the “Topology Data load” Chapter in this
document.

25

Chapter 5

Developing a topology aware Value Pack

5.1 Introduction
Topology aware Value Packs, like “regular” Value Packs, are developed using the
UCA for EBC Development Toolkit under the Eclipse development environment.

Please refer to the [R2] UCA for EBC Value Pack Development Guide Document if you
are not familiar with the UCA for EBC Value Pack development environment.

The UCA for EBC Development toolkit V3.3 has been enhanced to provide:

 The libraries required for retrieving topology information.

 The topology database framework used by the Junit tests in order to
validate topology aware Value Packs.

 The necessary tools to perform basic data loading.

 An example of a topology Value Pack (named topology-example)

5.2 Topology aware Value Pack principles
Topology aware Value Packs are mainly based on the “Alarm Enrichment” feature
provided by the UCA for EBC product.

Alarm enrichment consists in adding extra data to Alarms. For topology aware
Value Packs, this extra information usually comes from the topology database and
takes the form of extra topology-related Alarm attributes.

These new topology-related Alarm attributes can then be used in Drools Rules just
like any other standard Alarm attributes.

The following picture shows the alarm enrichment process in UCA for EBC, for
topology aware Value Packs:

26

Figure 4 - Alarm enrichment with topology information

5.3 Alarm enrichment with topology information
Alarm enrichment is performed in several steps:

1. Provide one or more new Alarm Object classes that extend the Alarm Object (or
one of the AlarmDeletion, AlarmStateChange or AlarmAttributeChange objects),
which can hold extra topology-related attributes

2. Implement the topology requests that will set the value of the extra topology-
related Alarm attributes.

3. Configure the Value Pack framework to take into account the Alarm Enrichment
process

5.3.1 Alarm Object extension

An extended Alarm must extend one of the Alarm classes provided by the UCA for
EBC Framework. The Alarm classes are:

com.hp.uca.expert.alarm.Alarm

com.hp.uca.expert.alarm.AlarmDeletion

com.hp.uca.expert.alarm.AlarmStateChange

UCA for EBC framework

UCA For EBC

Dispatcher

Value pack

Alarm
s

Scenario

Working
Memory

Drools Engine

Topology Manager

(Neo4J Graph database)

Topology
DB

Alarm Enrichment

In memory
caching

Rules
file

27

com.hp.uca.expert.alarm.AlarmAttributeValueChange

The extended alarm must implement setters and getters for the new attributes
(this will ease the process of writing rules).

Below is an example of such an extended Alarm, as provided in the topology-
example Value Pack:

package com.hp.uca.ebc.topoexample;

import javax.xml.bind.annotation.XmlRootElement;

import org.neo4j.graphdb.Relationship;

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmHelper;

@XmlRootElement

public class LinkdownEnrichedAlarm extends Alarm {

 private static final String F_TOPONODE = "associated Node ";

 private static final String F_LINKNAME = "link Name ";

 /**

 *

 */

 private static final long serialVersionUID = -5235137849600943223L;

 /**

 * Alarm extension attributes

 */

 /**

 * Stores the Unique Identifier of the topology Node (Port) this alarm

 * is mapped to.

 */

 private String associatedNodeUniqueId;

 /**

 * pointer to the 'LINK' relation the {@link associatedNodeUniqueId} is

 * associated to

 */

 private Relationship link;

 /**

 * LinkDownEnrichedAlarm Constructor

 */

 public LinkdownEnrichedAlarm() {

 super();

 }

 /**

 * LinkDownEnrichedAlarm Copy Constructor.

 *

 * This constructor constructs an Extended Alarm and uses the Alarm provided as

 * parameter to set all the standard alarm fields

 */

 public LinkdownEnrichedAlarm(Alarm alarm) {

 super(alarm);

 // initialize the associated Node.

 // use the instance mapping facility

 // check the linkdown/mappers.xml file to see how the mapping is done

 associatedNodeUniqueId =alarm.doMapping("NetworkInstance");

 // set the link information if any

28

 link = LinkdownTopoAccess.getPortLink(associatedNodeUniqueId);

 }

 /**

 * Clones the provided Extended Alarm object

 * @return a copy of the current object

 * @throws CloneNotSupportedException

 */

 @Override

 public LinkdownEnrichedAlarm clone() throws CloneNotSupportedException {

 LinkdownEnrichedAlarm newAlarm = (LinkdownEnrichedAlarm) super.clone();

 newAlarm.link = this.link;

 newAlarm.associatedNodeUniqueId = this.associatedNodeUniqueId;

 return newAlarm;

 }

 /**

 * returns the {@link link} attribute

 * @return the {@link link} attribute

 */

 public Relationship getLink() {

 return link;

 }

 /**

 * sets the {@link link} attribute

 */

 public void setlink(Relationship link) {

 this.link = link;

 }

 /**

 * returns the {@link link} name attribute

 * @return the {@link link} name attribute

 */

 public String getLinkName() {

 return LinkdownTopoAccess.getLinkName(link);

 }

 /**

 * returns the {@link link} state attribute

 * @return the {@link link} state attribute

 */

 public String getLinkState() {

 return LinkdownTopoAccess.getLinkState(link);

 }

 /**

 * sets the {@link link} state attribute

 */

 public void setLinkState(String state) {

 LinkdownTopoAccess.setlinkState(link, state);

 }

 /**

 * returns the {@link associatedNodeUniqueId} attribute

 * @return the {@link associatedNodeUniqueId} attribute

 */

 public String getAssociatedNodeUniqueId() {

 return associatedNodeUniqueId;

 }

29

 /**

 * sets the {@link associatedNodeUniqueId} attribute

 */

 public void setAssociatedNodeUniqueId(String associatedNodeUniqueId) {

 this.associatedNodeUniqueId = associatedNodeUniqueId;

 }

 /*

 * (non-Javadoc)

 *

 * @see com.hp.uca.expert.alarm.AlarmCommon#toFormattedString()

 */

 @Override

 public String toFormattedString() {

 StringBuffer toStringBuffer= AlarmHelper.toFormattedStringBuffer(this);

 AlarmHelper.addFormatedItem(toStringBuffer, F_LINKNAME, getLinkName());

 AlarmHelper.addFormatedItem(toStringBuffer, F_TOPONODE,

 getAssociatedNodeUniqueId());

 return toStringBuffer.toString();

 }

}

5.3.2 Activating Alarm Enrichment

The Alarm Enrichment process is implemented by a Java Class that extends the
com.hp.uca.expert.lifecycle.alarm.AlarmLifeCycle class provided by

the UCA for EBC framework.

Activating Alarm Enrichment is fully detailed in the [R1] UCA for EBC Reference Guide
Chapter 3.4.5 “Alarm Enrichment”.

Below is an example of how to activate the Alarm Enrichment process, as provided
in the topology-example Value Pack:

package com.hp.uca.ebc.topoexample;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

import com.hp.uca.common.trace.LogHelper;

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmCommon;

import com.hp.uca.expert.lifecycle.alarm.AlarmLifeCycle;

import com.hp.uca.expert.scenario.Scenario;

// Just an example of extension of analyzer

public class LinkdownLifeCycle extends AlarmLifeCycle {

 private static Log log = LogFactory.getLog(LinkdownLifeCycle.class);

 public LinkdownLifeCycle(Scenario scenario) {

 super(scenario);

 }

 @Override

 public AlarmCommon onAlarmCreationProcess(Alarm alarm) {

 LogHelper.enter(log, "onAlarmCreationProcess()");

 LinkdownEnrichedAlarm enrichedAlarm = new LinkdownEnrichedAlarm(alarm);

 LogHelper.exit(log, "onAlarmCreationProcess()");

30

 return enrichedAlarm;

 }

}

The use of this new LifeCycle class must be indicated in the
ValuePackConfiguration.xml file, in the corresponding scenario section. This is done
by setting the <customLifeCycleClass> XML element as follows:

<customLifeCycleClass>

 com.hp.uca.ebc.topoexample.LinkdownLifeCycle

</customLifeCycleClass>

5.3.3 Topology requests implementation

The UCA for EBC Topology extension provides a static Java class,
com.hp.uca.expert.topology.TopoAccess, that gives access to the Neo4j
database through the getGraphDB() method.

The getGraphDB() method of the TopoAccess class returns a Neo4j
GraphDatabaseService instance which is the starting point for any Topology

request.

For a full description of the services provided by the GraphDatabaseService

Class, please refer to the Neo4j documentation at the following URL:
http://docs.neo4j.org/

In order to ease the scenario development, the topology queries can be defines in
the ‘mappers’ configuration file. These queries can be retrieved depending on the
alarm context and executed using the com.hp.uca.expert.topology.CypherQuery
utility class.

Here is an example of the cypher query definition in the mappers.xml. in addition to
the usual mapper definition, the cypherQuery tag allows defining some cipher
queries

<mappers xmlns="http://hp.com/uca/expert/instancemapper">

 <mapper name='NetworkInstance'>

 <extract>

 <fieldName>originatingManagedEntity</fieldName>

 <matcher>BOX (.*) CARD .* PORT (.*)$</matcher> <!-- maps the last word of the

originatingmanagedEntity -->

 <mappedTo>topo-example-$1$2</mappedTo>

 </extract>

 </mapper>

 <cypherQuery name='GetPortLink'>

 <query><![CDATA[START n=node:PortsByUniqueId(uniqueId = {portName}) MATCH (n)<-

[link:LINK]->() RETURN link]]></query>

 </cypherQuery>

 <cypherQuery name='GetRemotePort'>

 <query><![CDATA[START n=node:PortsByUniqueId(uniqueId = {portName}) MATCH (n)<-

[link:LINK]->(m) RETURN m]]></query>

 </cypherQuery>

</mappers>

http://docs.neo4j.org/

31

Here is an example of how to retrieve topology information using the configured
Cypher query: in this case, retrieve the ‘LINK’ relation from a node using the node
index:

public static String PORT_UNIQUEID = "uniqueId";

public static String PORT_TAG = "Tag";

public static String PORT_INDEX = "PortsByUniqueId";

/**

 * This method retrieves the link associated to this Port (if any defined)

 * @param portName

 * @return

 */

public static Relationship getPortLink(String portName) {

 Relationship link=null;

 // Get the Scenario associated to the current thread

 Scenario theScenario = ScenarioThreadLocal.getScenario();

 // retrieve the Cypher query from configuration

 String query = theScenario.getMappers().getCypherQuery("GetPortLink");

 Map<String,Object> params = new HashMap<String, Object>();

 params.put("portName", portName);

 ExecutionResult result = CypherQuery.executeAndreturnResult(query, params);

 Iterator<Relationship> links = result.columnAs("link");

 // assume there is a single one link per port.

 // but according to Neo4j documentation we must iterate to the last

 // iterator element.

 while (links.hasNext()) {

 link = links.next();

 }

 return link;

}

Neo4j offers many ways to retrieve topology information. You should especially
focus on:

 The “Neo4j graph database” at URL:
http://docs.neo4j.org/chunked/stable/graphdb-neo4j.html

 The “Neo4j Cypher Query Language” at URL:
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html

 The “Neo4j Execute Cypher queries from Java” at URL:
http://docs.neo4j.org/chunked/stable/tutorials-cypher-java.html

5.3.4 Writing rules based on topology data

In most cases, the topology data is retrieved during the Alarm Enrichment phase.
This means that once the Drools rules are executed there is no need for additional
topology access, thus improving the performance of the Drools rules engine.

Rules are evaluated on alarm fields (or Alarm methods) regardless of whether
these fields (or methods) are returning values coming from topology enrichment or
values coming from standard alarm fields.

Here is an example of a rule based on topology information:

//

// This rule detects when there is an alarm on each port of a connection link.

//

// In such case it sets the Link state to 'Down'.

http://docs.neo4j.org/chunked/stable/graphdb-neo4j.html
http://docs.neo4j.org/chunked/stable/graphdb-neo4j.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/tutorials-cypher-java.html
http://docs.neo4j.org/chunked/stable/tutorials-cypher-java.html

32

rule "Set Link down"

no-loop

when

 $alarm1 : LinkdownEnrichedAlarm(

 linkState == LinkdownTopoAccess.LINK_STATE_UP)

 $alarm2 : LinkdownEnrichedAlarm(

 aboutToBeRetracted == false,

 identifier != $alarm1.identifier ,

 linkName == $alarm1.linkName)

then

 LogHelper.enter(theScenario.getLogger(), drools.getRule().getName());

 if ($alarm1.getLink() != null) {

 try {

 theScenario.getLogger().info("The link : "+$alarm2.getLinkName()+ " was detected

down !");

 $alarm1.setLinkState(LinkdownTopoAccess.LINK_STATE_DOWN);

 $alarm2.setLinkState(LinkdownTopoAccess.LINK_STATE_DOWN);

 }

 catch (Exception e) {

 // catch any topology access exceptions

 theScenario.getLogger().error("Topology Database access failed", e);

 theScenario.setStatusAndLogAndUpdateVPStatus(e.getMessage(),

ScenarioStatus.Degraded);

 }

 theScenario.getSession().update($alarm1);

 theScenario.getSession().update($alarm2);

 } else {

 theScenario.getSession().retract($alarm1);

 }

 LogHelper.exit(theScenario.getLogger(), drools.getRule().getName());

end

In this example, the ‘linkName’ extended alarm attribute is updated during the
Enrichment phase, based on the Originating Entity of the Alarm and extra topology
information retrieved from the topology database.

The rule simply says that if there are two alarms on port nodes connected by the
same ‘link’ (linkname == $alarm1.linkName), then it implies that the link has

failed.

5.4 Managing In-Memory Topology element attributes

5.4.1 Introduction

With standard (i.e. non-Topology aware value packs) the result of the correlation is
usually based on alarms: alarm grouping, alarm reduction, creation of new alarm,
etc…

If this is still true for Topology aware value packs, the correlation result for such
value packs can also be some changes in the Topology itself:

1. Node’s state change indicating for example:

 that a network element is down or malfunctioning

 that a service is impacted

33

2. a relation’s state change indicating:

 that the connection between to node elements is broken or degraded

It is therefore necessary for a value pack to be able to change Nodes and relations
attributes of the topology elements.

However, changing attribute values directly in the Neo4j database and using the
database queries from rules may have a very high performance impact on rule
evaluation.

Moreover, the attribute initial state in database is a problem: When a value pack is
started, the collection flow is resynchronized (all alarm resent from the event
source). The good value for a state attribute is the one resulting from the
correlation at the end of the resynchronization. In the case the states attributes are
stored in the data base, the result will be polluted by the original state stored in the
database.

To prevent such situation UCA for EBC Development toolkit V3.3 provides a Class
allowing managing topology element attributes In-Memory. This class is a Utility
class:
com.hp.uca.expert.topology.attrmgr.InMemoryAttributeManager

It allows storing and retrieving topology elements (nodes and relations) attributes.
As the implementation is done in-memory, the access to attribute value is
extremely efficient and can be used in rule evaluation.

In addition, The In-Memory Attribute Manager manages the attribute values on a
per value pack basis meaning that when a value pack is stopped, all the attributes
set by this value pack are removed from the Manager. This guaranties that at value
packs restart (and after the collection flow resynchronization) the computed in-
memory attributes are always accurate.

Moreover, since the UCA for EBC Development toolkit V3.2 the In-Memory
attributes can be defined in a ‘per-context’ basis. This is the possibility to store,
retrieve and remove topology elements attribute values depending on a topology
context. In other words this means that a single attribute can be set with different
values depending on this topology context.

The context is identified by a String. Internally attribute values are stored in hash
maps where the context is used as the key.

This basically allows taking a topology as a template that is ‘instantiated’ on a per
context basis.

This also guarantees performance and efficiency as a single topology is accessed
for multiple contexts.

This feature has also been extended on Point-of-Interest (POIs). A point of interest
can now be assign to a context. Selecting such POI for displaying the graph will
automatically force the graph viewer to visualize the Node’s and Relation’s
attributes corresponding to the POI’s context

5.4.2 In-Memory Attribute Manager API

The In-Memory Attribute Manager offers API for:

- Adding attributes to the Manager

- Retrieving attributes values from the Manager

- Removing attributes from the Manager

Note: When a value pack is stopped, all the attributes that have been created by
this value pack are removed from the manager for all defined contexts.

34

Refer to the Java documentation provided with the UCA for EBC Development
Toolkit for full details on the InMemoryAttributeManager class methods.

5.4.2.1 Adding attributes to the Manager

public static synchronized void setAttribute(
TopologyNodeAttribute attribute);

This Method adds or overwrites a Node’s attribute for the default topology context.

public static synchronized void setAttribute(
TopologyNodeAttribute attribute, String contextKey);

This Method adds or overwrites a Node’s attribute in the specified context.

public static synchronized void setAttribute(
TopologyRelationAttribute attribute);

This method adds or overwrites a new Relation's attribute for the default topology
context.

public static synchronized void setAttribute(
TopologyRelationAttribute attribute, String contextKey);

This method adds or overwrites a new Relation's attribute in the specified context.

Note: it is not necessary that the attribute exists in the Neo4j database to be added
to the in-Memory state manager. Any new attribute can be created dynamically.
However, remember it will be volatile, having the lifetime of the value pack that
created it.

5.4.2.2 Retrieving attribute values from the Manager

public static synchronized String getNodeAttribute(Long
nodeId, String attributeName);

This method returns the Node’s attribute value given the nodeId and the
attributeName parameters for the default topology context, or null if the attribute
is not found.

public static synchronized String getNodeAttribute(Long
nodeId, String attributeName, String contextKey);

35

This method returns the Node’s attribute value given the nodeId and the
attributeName parameters for the specified context, or null if the attribute is not
found.

public static synchronized Map<String, TopologyNodeAttribute>
getNodeAttributes(Long nodeId);

This method returns all attributes for the Node with the nodeId given as parameter
for the default topology, or null if the attribute is not found.

Note: only the In-Memory Node’s attributes are returned.

public static synchronized Map<String, TopologyNodeAttribute>
getNodeAttributes(Long nodeId, String contextKey);

This method returns all attributes for the Node with the nodeId given as parameter
for the specified context, or null if the attribute is not found.

Note: only the In-Memory Relation’s attributes are returned.

public static synchronized String getRelationAttribute (Long
relationId, String attributeName);

This method returns the Relation’s attribute value given the relationId and the
attributeName parameters for the default topology, or null if the attribute is not
found.

public static synchronized String getRelationAttribute(Long
relationId, String attributeName, String contextKey);

This method returns the Relation’s attribute value given the relationId and the
attributeName for the specified context, or null if the attribute is not found.

public static synchronized Map<String,
TopologyRelationAttribute> getRelationAttributes(Long
relationId);

This method returns all attributes of the Relation identified by the relationId
parameter for the default topology context, or null if the attribute is not found.

Note: only the In-Memory Relation’s attributes are returned.

public static synchronized Map<String,
TopologyRelationAttribute> getRelationAttributes(Long
relationId, String contextKey);

This method returns all relation’s attributes of the Relation identified by the
relationId parameter for the specified context, or null if the attribute is not found.

Note: only the In-Memory Relation’s attributes are returned.

5.4.2.3 Removing attributes from the Manager

static synchronized void clearNodeAttribute(Long nodeId,
String attributeName);

This method removes the Node’s attribute corresponding identified by the nodeId
and the attributeName parameters, for the default topology context.

static synchronized void clearNodeAttribute(Long nodeId,
String attributeName, String contextKey);

This method removes the Node’s attribute corresponding identified by the nodeId
and the attributeName parameters for the specified context.

static synchronized void clearRelationAttribute(String
relationId, String attributeName);

36

This method removes the Relation's attribute corresponding to the provided
arguments: relationId and attributeName for the default topology.

static synchronized void clearRelationAttribute(Long
relationId, String attributeName, String contextKey);

This method removes the relation's attribute corresponding to the provided
arguments: relationId and attributeName for the specified context.

public static synchronized void clearAllContextAttributes
(String contextKey);

This method removes all Attributes (Node and Relation) for the specified context.
To be called by a Value Pack to clean a specific topology context.

5.4.3 In-Memory Attribute Manager API Example.

The topology value pack example provided with the UCA for EBC Development
Toolkit is an example of the use of the In-Memory Attribute manager.

/**

 * sets the associated {@link port} state to Failed

 */

public void setPortFailedState() {

 if (port != null) {

 // set the port state

 TopologyNodeAttribute portState = new TopologyNodeAttribute(port.getId(),

LinkdownTopoAccess.PORT_STATE, LinkdownTopoAccess.PORT_STATE_FAILED);

 InMemoryAttributeManager.setAttribute(portState);

 . . .

 }

}

/**

 * sets the associated {@link port} state to Normal

 */

public void setPortNormalState() {

if (port!=null) {

 // set the port state

 TopologyNodeAttribute portState = new TopologyNodeAttribute(port.getId(),

LinkdownTopoAccess.PORT_STATE, LinkdownTopoAccess.PORT_STATE_NORMAL);

 InMemoryAttributeManager.setAttribute(portState);

 . . .

 }

}

5.5 Defining Topology “Points of Interest”

5.5.1 Introduction

Visualization of the topology is a key point for correlation solution developers and
operators. However, the visualization of graphs with more than few hundreds of
nodes quickly becomes a big dark cloud that is not usable. The zooming functions
don’t help much because the amount of information and the complexity off the
drawing makes the visual analysis difficult.

It is therefore necessary to simplify the graph in several ways:

 Focus only on the neighborhood of some ‘points of interest’ in the graph,

37

 Adapt the visualization to the context of visualization. For example, the
visualization of the same graph may not be the same depending on the
operator interest (Health, Performance, security, service impact, root cause,
etc…)

The point of interest can therefore be seen as a way to quickly focus on points in
the graph that require attention from the operator.

Such Points of interest are positioned by the value packs depending on their
correlation functionalities. Usually the POI will be associated to a Problem (in the
sense of Problem Detection).

POIs are created by the value pack during the correlation process thanks to the
com.hp.uca.expert.topology.poi.POIManager utility class.

5.5.2 POI Manager API

The POIManager class offers API for:

- Adding TopologyPOI object to the Manager

- Retrieving TopologyPOI from the Manager

- Deleting TopologyPOI from the manager

Note that when a value pack is stopped, all the POIs that have been created by this
value pack are removed from the manager.

Refer to the Java documentation provided with the UCA for EBC Development
Toolkit for full details on the POIManager class methods.

A TopologyPOI object is made of:

 A topologyReference : this is usually the (long) identifier of the Neo4j Node
object this POI is related to.

 A type: this is a String representing the POI class. This type is useful for
grouping the POIs of same class in the POI Table at the GUI.

Note: the pair (topologyReference, type) represents the unique Identifier
of a POI.

 A presentationName: String identifier of the POI (usually set to the node’s
Name)

 A description: String describing the reason for this POI

 A set of categories: categories are important as they make the link between
the POIs and the Visualization profiles: For a given visualization profile,
only the POIs having a category present in both the POI’s category list and
the Profile category list will be shown in the GUI POI list.
Refer to Chapter 8 of this document for a full description of the
visualization Profiles.

 eventTime: the time at which this POI was created.

 importance: the level of importance of the POI. Importance can be ‘Low’,
‘Medium’, ‘High’ or ‘Critical’.

 A topology context: As explained for the In-memory attributes, a POI can be
associated to a topology context. From the graph viewer, selecting a POI
that is set with a given context, will make the tool displaying graph
element attributes (node and relations) for this context.

38

5.5.2.1 Adding a TopologyPOI to the Manager

static synchronized public void addPoi(TopologyPOI poi);

This method adds a TopologyPOI to the POI Manager.

static synchronized public void addPoi(TopologyPOI poi, String
context);

This method adds a TopologyPOI to the POI Manager and sets the POI’s context with
the one provided.

5.5.2.2 Removing a TopologyPOI from the Manager

static synchronized public List<TopologyPOI> getPois(String
category);

This method returns all the POIs with the category given as parameter.

static synchronized public List<TopologyPOI> getPois();

This method returns all the defined POIs.

5.5.2.3 Deleting a TopologyPOI from the Manager

static synchronized public void removePoi(long nodeId, String
category);

This method removes a POI from the POIManager for the given category. A POI is
usually removed when the correlation scenario decides the topology node is not
remarkable anymore (Ex node status back to normal).

static synchronized public void removePoi(TopologyPOI poi)

Same behavior as above. The nodeId and categories are taken from de given
TopologyPOI object.

static synchronized public void clearAllContext(String
context)

remove all POIs for the given context.

5.6 Topology Value Pack example description
The UCA for EBC Development toolkit V3.3 comes with an example Value Pack
called “topology-example” located under subdirectory vp-examples in the

%UCA_EBC_DEV_HOME% directory, i.e. the C:\UCA-EBC-DEV\3.2\ directory by

default.

This example is a good starting point for developing new topology aware Value
Packs.

This is also the same example that is created when the UCA for EBC Eclipse plug-in
is used to create a new topology aware Value Pack project.

39

Note

 Please refer to Chapter 6 “Creating a new topology aware Value Pack using the

UCA eclipse plug-in” for full details on the UCA for EBC Eclipse plug-in usage.

5.6.1 Objectives

The objective of this Value Pack example is to demonstrate a “link down” detection
use case.

For this use case the topology model is the following:

In this model, a ‘Box’ node can have several Ports and a Port can be linked to
another Port.

When an alarm is received, the OriginatingManagedEntity alarm attribute is used to
identify the corresponding topology object (Port).

The Alarm is enriched with a field containing a reference to the LINK relation
between the Port this alarm corresponds to and the other Port it is connected to.
Then the alarm is inserted into the working memory.

A simple rule detects if two alarms have the same LINK reference with an ‘Up’ LINK
state (meaning that the two ends of the LINK have just failed because there are
alarms on each Port at both ends of the LINK, but the LINK state is wrongly set to
‘Up’). In such a case, the action part of the rule is executed and state of the LINK is
set to ‘Down’.

In the ‘topology-example’ Value Pack, in addition to the LINK ‘Down’ rule that is
described above, a similar rule deals with the LINK ‘Up’ use case.

An additional rule is executed when the Value Pack is re-synchronized in order to
set all the LINK states to ‘Up’ at initialization time.

Box

Port

hasport

LINK (state = Up/Down)

*

1

40

5.6.2 Topology aware Value Pack validation

The behavior of a topology aware Value Pack (just like for any “regular” value pack)
can be validated by JUnit tests.

Some JUnit tests are provided for the topology-example Value Pack.

The requirement for the topology aware Value Pack tests is that the testing
environment provided by the UCA for EBC Development toolkit must implement a
topology database server ready to be used when the tests are executed.

There are two ways to configure the topology server when running unit tests:

1. As an embedded full server

2. As an impermanent server

Each of these two configurations has pros and cons:

 The ‘embedded’ full server is a real Neo4j server. As such, one can connect
on it with the Neo4j Web interface. This may be useful when tuning tests and
until they are working correctly. On the other hand, starting a full real Neo4j
server is costly in term of performance.

 The ‘impermanent’ server is an in-memory version of the Neo4j server that
should be used only for testing. The main advantage is that it is very fast and
does not need any DB cleanup on disk after running the test. However, there
is no way to connect the Neo4j web interface on such DB.

The approach will be therefore to tune the junit tests using an ‘embedded’
configuration and then, when the test is operational, switch to the ‘impermanent’
configuration.

5.6.2.1 Configuring the Topology JUnit tests with an ‘embedded’ server

This is done by setting the following properties in the uca-ebc.properties

file located in the Value Pack src/test/resources directory:

uca.ebc.topology=embedded

uca.ebc.topology.location=target/neo4jDB

uca.ebc.topology.webPort=7475

The uca.ebc.topology property indicates that a topology server must be

embedded during the test.

The uca.ebc.topology.location indicates where the database should be

created (the target directory is a temporary data directory when building or testing
a Value Pack).

The uca.ebc.topology.webPort indicates the topology server port. This port

should not conflict with the default Neo4j port: 7474, in case a Neo4j server using
the default port number is running on the same system.

5.6.2.2 Configuring the Topology JUnit tests with an ‘impermanent’ server

This is done by setting the following property in the uca-ebc.properties file
located in the Value Pack src/test/resources directory:

uca.ebc.topology=impermanent

All other topology properties are not used.

The uca.ebc.topology property indicates that an impermanent topology

server must be used during the test.

41

5.6.2.3 Preparing the Topology Dataload for tests

The tests themselves must prepare the topology environment before beginning to
process incoming alarms. Especially the topology objects used by the tests must be
present in the Database before the first test is executed.

This is usually done in a @Before section of the Junit test. The utility class ‘Loader’
is used to load object from CSV files. In the example below these CSV files are
located in the valuepack/linkdown/topologyDataload directory of the valuepack.

Note that the CSV files are first copied ion a temporary directory because the loader
does modify it.

Refere to the “Topology Data load” Chapter of this manual for a full description of
the CSV dataload principle.

Below is an example on how to use the topology data loading in a Junit test:

private static TmpDir tmpDir = null;

 @BeforeClass

 public static void init() {

 removeTopologyDB(); // Cleanup existing DB if any

 tmpDir = new TmpDir("valuepack/linkdown/topologyDataload");

 }

 @AfterClass

 public static void cleanup() {

 tmpDir.cleanup();

 }

 /**

 * @throws java.lang.Exception

 */

 @Before

 public void setUp() throws Exception {

 log.info(Constants.TEST_START.val() + linkdownTest.class.getName());

 Loader loader = new Loader(LinkdownTopoAccess.getGraphDB(),

 tmpDir.tmpCsvPath());

 Report report = loader.loadAll();

 log.info(report.toString());

 }

Please refer to the source code of the topology-example Value Pack for the full
implementation of the topology-example Value Pack JUnit tests.

5.6.3 Building and Deploying the topology-example Value Pack

In terms of build and deployment, a topology aware Value Pack is very similar to
any other UCA for EBC Value Pack.

The Value Pack is built and unit tested using Apache Ant, based on the build.xml file
provided with the Value Pack.

The built package can then be deployed on a UCA for EBC server by copying the
Value Pack ZIP file generated by the build procedure to the ‘valuepacks’ directory of
the UCA for EBC server.

From the UCA for EBC GUI, the Value Pack can then be deployed and started as
usual.

42

Before sending alarms to the Value Pack, the topology data must be loaded in the
topology database. This is done using the topology data load CSV files provided
with the Value Pack under the ${UCA_EBC_INSTANCE}/deploy/topology-

example-1.1/linkdown/topologyDataload directory.

The full set of files must be copied to the

${UCA_EBC_INSTANCE}/neo4j/import/csv directory on the UCA for EBC

server and a data load request must be performed from the GUI panel:

UCA for EBC > Topology Management > DataLoad

Clicking on the “Topology Dataload” button will trigger the data load.

When this is done the alarm samples provided with the topology-example Value
Pack can be sent using the UCA for EBC alarm injector command-line tool:
${UCA_EBC_HOME}/bin/uca-ebc-injector.

The two alarm samples are as follows:

 ${UCA_EBC_INSTANCE}/deploy/topology-example-

1.1/Alarms_linkdown.xml

 ${UCA_EBC_INSTANCE}/deploy/topology-example-

1.1/Alarms_linkup.xml

You can send the sample alarm files to UCA for EBC by executing the following
commands:

[uca]$ cd ${UCA_EBC_INSTANCE}/deploy/topology-example-1.1

[uca]$ ${UCA_EBC_HOME}/bin/uca-ebc-injector –file Alarms_linkdown.xml

[uca]$ ${UCA_EBC_HOME}/bin/uca-ebc-injector –file Alarms_linkup.xml

43

Chapter 6

Creating a new topology aware Value
Pack using the UCA eclipse plug-in

6.1 Topology aware Value Pack project creation
The UCA for EBC Value Pack development kit comes with an Eclipse plugin that
helps creating UCA for EBC eclipse projects.

The” UCA for EBC Value Pack development Guide” fully describes how to install the
Eclipse plugin and create a new UCA for EBC project with the help of this plugin.

This plugin can be used to create topology aware Value Packs.

The creation of a topology aware value pack is done by selecting the “topology
aware Scenario” template from the project creation wizard as shown in the
following picture:

44

Figure 5 - Topology aware scenario creation using the Eclipse plugin

Choosing this template, the plugin will create a new project based on the ‘linkdown’
topology aware Value Pack example described earlier in this document.

You will then have to modify some files (topology access java classes, rules, tests)
in order to implement your own scenario.

There is no action needed on your part to reference the proper UCA for EBC and UCA
for EBC Topology libraries from your new project. Your new project automatically
references the necessary libraries from the %UCA_EBC_DEV_HOME%\lib

directory.

A specific uca-ebc.properties file is present and configured in your Value

Pack in order for the JUnit tests to automatically run an embedded instance of the
Neo4j(*) server. The execution of these JUnit tests will allow you to properly unit
test your topology aware Value Pack.

Notes

*Neo4j is the name of the Graph Database used in UCA for EBC to store topology
information. For more information on Neo4j please see the following URL:
http://neo4j.com

**In the current version of the UCA for EBC Eclipse plugin, when the Topology aware
Scenario Template is chosen, the ”use templated rules” option has no effect. The
plugin will generate non-templated rules.

If you want to use templated rules, you must manually configure the
ValuepackConfiguration.xml file of your ValuePack accordingly.

http://neo4j.com/

45

Chapter 7

Topology Data load

7.1 Introduction
UCA for EBC Topology Extension comes with a data loading tool that can help you
populate your UCA for EBC (Neo4j) topology database. This tool reads CSV (Comma-
Separated Values) files as input.

The CSV Neo4j loader can be used to insert, update or delete nodes or relationships
into a local Neo4j database. When developing a UCA value pack, this is particularly
useful for unit or integration testing, to easily upload sample topology data
required in the various correlation use cases.

In production, the preferred UCA/Neo4j loading application is the HP Unified
Topology Manger (UTM). In fact, UTM generates CSV files behind the scene and
invokes the UCA Neo4j CSV loader automatically. In such situations, the CSV loader
is hidden to the UCA administrator or users.

The loader has three different forms:

 A Neo4j server plugin. If the Neo4j server is embedded in UCA, the loader
plugin is installed by default.

 A java API, accessible in the JUnit tests of a Value Pack project. The main
class of the API is: org.neo4j.loader.csv.Loader

 A standalone command line application (made of a unique jar file), useful to
test CSV files or visualize test topology data.

7.2 CSV files location
The loader reads input CSV files from a unique directory on disk. The location of this
directory is given as a parameter of the data load command. If absent, a default
value is used (see below for examples). This input directory is also called the
“import” directory.

The procedure to perform a topology data load is the following:

1. Drop some CSV files in the import directory

2. Invoke the data load command (see below for examples), giving the import
directory as a parameter (or just rely on the default location if omitted).

These steps can be automated (Junit, UTM) or manual (command line, REST call).

46

As soon as the data load command is invoked, the input CSV files are moved
automatically in an archive directory inside the import directory. A new archive
directory is created at each data load attempt. Its name contains a timestamp to
make it unique and to keep a clear history of successive load attempts (for instance
as a scheduled operation). This move prevents subsequent imports of the same
files.

Typical locations of the import directory on disk are:

 ${UCA_EBC_INSTANCE}/neo4j/import/csv for embedded

database configurations or

 ${NEO4J_HOME}/import/csv for external database configurations

The Neo4j server process must have read and write permissions on this folder.
This will be the case by default for embedded Neo4j server configurations. For
external configurations, it’s better to verify that the permissions on the

${NEO4J_HOME}/import/csv folder are properly set.

7.3 CSV files names

There are four types of input CSV files, identified by their extension:

 Insert/update Node files, ending with a ".node.csv" extension

 Insert/update Relationship files, ending with a ".rel.csv" extension

 Delete node files, ending with a “.node.delete.csv” extension

 Delete relationship files, ending with a “.rel.delete.csv” extension

The number of files in the import directory is not limited. All *.node.csv, *.rel.csv,
*.node.delete.csv, *.rel.delete.csv files present in this directory (excluding sub-
directories) are considered by the loader. Files with other extensions are ignored.

As said previously, loaded CSV files are moved to an archive sub-directory (for
example: dataload_2012-06-11_03_29_33/) to prevent them from being

imported again at the next data load request. They keep their original names in the
archive directory.

7.4 CSV files format
The first two rows in the CSV files are reserved for the file header. The remainder
of the file correspond to nodes or relationships to be inserted, deleted or updated
in/from the persistent Neo4j graph database.

Columns in the CSV files are nodes’ or relationship’s properties values.

Each CSV file must have a special two-line header, providing useful formatting
information to the loader through properties' "annotations".

The remaining lines (rows) in the file are properties' values, for nodes (in .nodes.csv
files) or relationships (in .rel.csv files). All properties values must comply with the
format given in the second line of the header.

Columns are separated by the current CSV separator character, which is
traditionally a comma, but which can be customized.

47

Note that traditionally, standard CSV files have a unique header line. For the Neo4j
CSV loader however, the header is always made of two lines. Also, the header
contains important information used during the data load process. It is therefore
parsed by the loader, and its syntax must be valid for the file to be loaded correctly.

If the header syntax is invalid, the entire file can be discarded. If some lines in the
file do not correspond to the header format (for instance some columns are
missing) then only these invalid lines are discarded.

The second line of the header corresponds to a standard CSV header, providing the
description for the various columns. The main information for each column is the
property name. This name can also be annotated to provide extra information to
the loader. Thus, a property can be typed as an integer (instead of a string), if
annotated as follows:

@type(int)MyProperty

Likewise, the loaded node or relationship can be indexed according to a special
property if the latter is prefixed with the @index annotation:

@index(MyIndex)MyProperty

The full syntax of the various headers and annotations, which are specific to each
file, is described in the following sections.

Important note: in the syntax description we assume that the column separation
character is a comma ‘,’.

Square brackets [] indicate optional fields.

Curly brackets {} indicate fields that can be repeated.

In all descriptions, an example is provided, which should be readable and self-
explanatory.

Blank or tab characters are allowed between header elements or after /before the
annotations’ brackets.

48

7.4.1 Node files: *.node.csv

A node file must start with a two-line header of the following format:

@ref([rel_name]) {[,

[@const(value)][@type(data_type)]property_name]}

@index(index_name) [@type(data_type)] property_name

{[,[@index(index_name)] [@type(data_type)]

property_name]}

 For example, for storing rock bands as nodes in the graph, we could define the
following node file header:

 @ref(band), @const(band)type

 @index(bands)name, genre, popularity

In this example, we store rock bands as nodes in the Neo4j server. Each node has a
property name “type” set to a string value “band” (for instance to differentiate
these nodes from the others in the graph). The nodes also have three other
properties (name, genre and popularity) whose values are given in the respective
CSV columns.

7.4.1.1 First line

The @ref(relation_name) annotation

This annotation is mandatory. It tells the loader if newly created nodes should be
automatically attached to the Neo4j Reference Node. Just leave the brackets empty
(i.e. "@ref()") if you don't want to create any relationship.

If a string is provided instead (i.e. "@ref(band)"), each newly created node will be
linked automatically to the Reference Node with a relationship named "band". No
additional property can be attached to this relationship.

The @const(property_value)property_name annotation

49

This annotation tells the loader if a constant value property should be created for
each node (i.e. each row) defined in the file. This is especially useful if you want to
tag nodes with a "class" name for example, according to an inherent data "model" in
your graph. It avoids creating an extra column containing the same value repeated
for all rows. As the property has a constant value (among rows), it cannot be used
to index corresponding nodes or relationships. Therefore, @const annotations
cannot be mixed with @index ones.

Often, a graph stores an object model (as in UML for example) and nodes are
instances of some classes in the model, while properties are attributes of these
classes.

For example, if you load some "Book" nodes in the graph, you probably want to add
a special property to indicate that these nodes are effectively "books". You can do
this easily with the @const annotation as follows:

@ref(),@const(Book)class

Mixing annotations

You can have as many @const annotations as required, for example:

@ref(),@const(Book)class,@const(csv_import)loaded_by,...

7.4.1.2 Second line

The second line in the header is the most important one, as it provides the full
description and format for all properties' values to be found in the files. It can be
seen as the standard "column" description header found in regular CSV files.

The number of entries (i.e. columns) in this header must match exactly the number
of columns in each row of the CSV file. If the number of column entries in each row
does not match the header count, the row is discarded, as it cannot be parsed
correctly according to the given format.

The format of the second line is a simple comma-separated list of property names,
which can be annotated.

Here is the second line grammar:

@index(index_name) [@type(data_type)] property_name

{[,[@index(index_name)] [@type(data_type)]

property_name]}

For example, for describing “book” nodes:

@index(title), author, genre, date_of_publication

Properties can be annotated, for instance to be automatically indexed or stored in
the database with a special data type.

50

The first property in the header line must be indexed (meaning annotated with
@index), with a unique id.

Managing unique indexes is one strong constraint of the CSV loader. This ensures
that we can use readable peer names when creating relationships between nodes.
It also prevents from creating duplicate entries and later updates using the exact
same node file syntax.

The @index(index_name)property_name annotation

An @index(index_name)annotation can be used if you want to index the

corresponding node, with this property as the key.

For instance, consider the following header second line:

@index(Books)title,author,genre,date of publication,...

This will use the "Books" index to hold book nodes based on their "title" property.
All nodes to be connected by a future relationship must be indexed. It’s through an
index look up that relationships ends (“from” or “to” peers) are referenced in
relationship files (*.rel.csv).

The @type(data_type)property_name annotation

The @type(data_type) annotation lets you associate a data type to a property, so
that the property values are stored natively in this data type in the Neo4j store.

If no type is given (i.e. no annotation) the property is stored as a String. It is then
equivalent to @type(String).

 Here is an example of a typed property:

 @type(int)number_of_records

This indicates that the "number_of_records" property values should be stored as an
integer value. Of course, the values to be found in the corresponding column in the
CSV file should be convertible to an int. For instance it should "12" and not "twelve".

If the loader cannot "cast" the property value into the data type specified in the
header, the property value is not set at all, not even in its String format.

The data types currently supported are the following (data type names are not case
sensitive):

 int or int[]

 long or long[]

 boolean or boolean[]

 string (this is the default data type if no @type annotation is specified) or
string[]

 float or float[]

 double or double[]

 char or char[]

51

 short or short[]

If another un-supported data type is given in the annotation (for example

@type(my_unkwown_type), then the "String" data type is used instead.

The square brackets [] refer to “arrays”. In this case, the value is cast to a Java array
of the same type. The provided string value is parsed to retrieve the elements of
the array. The default separator character is “!” but this can be customized. For
example, here is a valid array definition:

@type(int[])days_in_month

31!28!31!30!31!30!31!31!30!31!30!31

Mixing annotations

Properties descriptions in the header second line can support several annotations,
as long as you respect the following order:

@index(my_index) @type(my_data_type) my_property_name

For example, if one wants to index nodes with a special "ID" property, which is a
Long integer, it can be written as follows:

@index(NodesById)@type(long)ID

7.4.1.3 Node definitions

Node definitions are the remaining lines in CSV node files. They should follow the
format provided in the second line of the header.

For example, a short books.node.csv file can look like this (including the two-line
header):

 @ref(),@const(Book)class,@const(csv_import)loaded_by

 @index(Books)title,author,genre

 Les Miserables,Victor Hugo,novel

 The art of computer programming,Donald Knuth,computing

 ...

52

7.4.2 Relationship files: *.rel.csv

A relationship file must start with the following two-line header:

@rel([rel_name]) {[,

[@const(value)][@type(data_type)]property_name]}

@from(index_name) [@type(data_type)] property_name ,

@to(index_name) [@type(data_type)] property_name

{[,[@index(index_name)] [@type(data_type)]

property_name]}

For example:

@rel(knows)

@from(persons)name, @to(persons)name

7.4.2.1 First line

@rel(relationship_name) annotation

This annotation just gives the name of the relationship to be created. Currently, the
name of the relationship has to be a String value. Typical relationship names in a
social graph can be "knows", "follows", "contains" or whatever. In a telecom
network it can be “connected to”, “impacting” or else.

If @rel() is left empty, the file name prefix is used as the relationship name. For
instance, if the file name is: knows.rel.csv, then the relationship name will be
"knows".

@const(value) annotation

This annotation is the same as for node files: Please refer to section 7.4.1.1 “First
line” above.

7.4.2.2 Second line

As for node files, the second line provides the format of the CSV columns. It must
begin with two @from and @to annotations, which are special forms of the @index
one. They represent both ends of the new relationship to create (or delete or
update).

@from(index_name)key_name annotation

The "from" node of the relationship will be retrieved from an index called
"index_name", with the property named "key_name".

For instance, if you want to say that "The Beatles" band has “John Lennon” as a
member, here’s how to do it:

 @rel(member)

 @from(bands)name, @to(musicians)name

 The Beatles, John Lennon

@to(index_name,key_name) annotation

53

The @to annotation has the exact same syntax as the @from one.

@type(data_type) annotation

The indexed properties can be typed. For instance, if we use a Long Id as in a
previous example, we can use it in the @from or @to annotations as follows:

 @from(NodesAsId)@type(int)ID,@to(NodesAsId)@type(int)ID

 12,4

To know the list of supported data types, please refer to the same node file section.

@index(index_name)

Relationship can also be indexed. To do this, use the indexed annotation as for
nodes. For instance, if the “member” relationship has uniqueId property that you
want to add in the “members” index, here is how you can do it:

 @rel(member)

 @from(bands)name, @to(musicians)name, @index(members) @type(int) uniqueId

 The Beatles, John Lennon, 42

7.5 Updates
Since all nodes are indexed, and all relationships are uniquely identified (by their
name and node ends), the CSV loader is always able to detect automatically if a
node or a relationship is already present in the database or not. If a CSV record
(node or relationship) is already there, it is then treated as an update instead of an
insert. Existing properties will be updated and new ones created. Old properties not
present in the new CSV line are kept (not deleted) in the database. This is to allow
“incremental” updates of records. If you wish to delete some properties, the only
solution is first to delete the node or relationship before creating it again with the
desired new set of properties.

Note that deleting a node will delete all relationships from or to this node.

“Insert” or “update” files are fully identical and can’t be differentiated, even with
their names. The loader decides whether to perform an update or an insert based
on the current content of the graph. As a side effect, a same file can therefore
contain “inserts” or “updates” data indifferently.

7.6 Deletions

Delete files have a special “.node.delete.csv” or “.rel.delete.csv” extension. Apart
from that, their syntax is exactly the same than their respective “insert” (.node.csv
or .delete.csv extensions) counterpart. The only difference is just that most
columns are ignored if provided.

For node files, only the first column, containing the unique index value is
considered during a delete operation. This is indeed enough to retrieve the
corresponding node from the graph and to delete it. When deleting a node, all
relationships, incoming or out-coming, from this node are deleted automatically as
well. The corresponding unique entry is also removed from the node index.

54

For relationship files, only the “@to” and “@from” columns are considered. This is
enough to retrieve the corresponding relationship (identified with its name) and
delete it from the graph.

7.7 Neo4j transactions

The loader uses one Neo4j transaction per CSV file. It means that if the file is big,
the memory consumption may increase significantly. In this case, you can split the
file to several ones that will be manage it different sessions.

7.7.1 Examples

Here follow two simple but complete examples of CSV data files that can be loaded
in Neo4j thanks to the UCA for EBC data loading tool.

7.7.2 Rocks bands

This example is made of three files (2 node files and 1 relationship file):

 band.node.csv

 musician.node.csv

 member.rel.csv

It demonstrates a basic database of rock bands and musicians linked by a “member
of” relationship.

 band.node.csv:
 @ref(band),@const(band)type

 @index(bands)name,genre,popularity

 The Beatles,pop,fantastic

 The Rolling Stones,rock,great

 musician.node.csv:
 @ref(),@const(musician)type

 @index(musicians)name,instrument

 Paul McCartney,bass

 John Lennon,guitar

 Georges Harrison,guitar

 Ringo Star,drums

 Mick Jagger,singer

 Keith Richards,guitar

 Brian Jones,guitar

 Charlie Watts,drums

 Bill Wyman,bass

55

 member.rel.csv:
 @rel(member)

 @from(bands)name,@to(musicians)name

 The Beatles,Paul McCartney

 The Beatles,John Lennon

 The Beatles,Georges Harrison

 The Beatles,Ringo Star

 The Rolling Stones,Mick Jagger

 The Rolling Stones,Keith Richards

 The Rolling Stones,Brian Jones

 The Rolling Stones,Charlie Watts

 The Rolling Stones,Bill Wyman

7.7.3 Network entities

In this other example, we simulate a basic IT network with servers and

routers as nodes and wire connections as relationships between nodes.

$ ls *csv

router_connections.rel.csv

routers.node.csv

server_connections.rel.csv

servers.node.csv

$ cat router_connections.rel.csv

@rel(connectedTo)

@from(routers)name,@to(routers)name,bandwidth

Router1, Router2, 10 Gbps

$ cat routers.node.csv

@ref(router)

@index(routers)name, vendor

Router1, Cisco

Router2, 3Com

$ cat server_connections.rel.csv

@rel(connectedTo)

@from(servers)IP,@to(routers)name,bandwidth

1.1.1.1, Router1, 1 Gbps

1.1.1.2, Router1, 1 Gbps

1.1.1.3, Router1, 1 Gbps

1.1.1.4, Router1, 1 Gbps

2.2.2.1, Router2, 1 Gbps

2.2.2.2, Router2, 1 Gbps

2.2.2.3, Router2, 1 Gbps

2.2.2.4, Router2, 1 Gbps

$ cat servers.node.csv

56

@ref(),@const(server)type

@index(servers)IP,vendor,OS

1.1.1.1,HP,Linux

1.1.1.2,HP,Linux

1.1.1.3,HP,Linux

1.1.1.4,HP,Linux

2.2.2.1,HP,Linux

2.2.2.2,HP,Linux

2.2.2.3,HP,Linux

2.2.2.4,HP,Linux

Figure 6 - Graph visualization in Neoclipse

7.8 Run the data load
In a UCA runtime environment, the Neo4j data loader is installed as a Neo4j server
plug-in. In a UCA development, the loader can be invoked from a Junit test case
using a Java API.

7.8.1 From UTM

The UTM populator hides the usage of the CSV loader. Please refer to [R6] UTM V2.0
User Guide for details on how configuring the UCA populator.

7.8.2 From the UCA GUI

Once some CSV files have been placed in the import directory, the UCA GUI can be
used to perform the data load manually. In the “Data load” panel, just push the
“topology data load” button. Please refer to this section for more details: 4.3.

7.8.3 From Java or Scala code (in Unit tests)

The main direct usage of the CSV loader is probably in the Unit Tests of a UCA Value
Pack. This is useful to test correlation rules that make use of topology information
in their decision process. A sample topology is then created for the lifetime of the
tests. This sample topology can be defined as a set of CSV files, which is loaded in
the embedded Noe4j server at the beginning of a test suite. This is more convenient
than creating a graph manually using the Neo4j Java API.

57

In this case, the CSV loader is invoked through the org.neo4j.loader.csv.Loader
class. In particular, this class has a LoadAll() method that will upload all files
present in the import directory.

The procedure to use the CSV loader from Java is the following:

1. Create an instance of the org.neo4j.loader.csv.Loader class using the class
constructor:

Loader loader = new

Loader(ExtendedTopoAccess.getGraphDB(),

tmpDir.tmpCsvPath);

The first argument is the GraphDatabaseService object representing the
access point to the Neo4j server we wish to use. Within a UCA environment
it can be retrieved through the static method:
ExtendedTopoAccess.getGraphDB().

The second argument of the constructor is the import directory where to
find the CSV files to be loaded. It is usually a temporary directory on disk
(like /tmp on Linux). It can be flushed safely at the end of the test.

2. Copy the desired CSV in the temporary import directory. Be careful in this
step to make real copies of the files in a temporary directory. Especially,
do not be tempted to directly use the location of some resource files from
your development Project (e.g. Maven or Eclipse): remember that the CSV
loader will move the CSV files automatically in an archive directory once
the data load is complete!

3. Call the LoadAll() method:

Report report = loader.loadAll();

It returns an org.neo4j.loader.csv.Report instance holding useful statistics
about the performed data load. It can be dumped with the toString() method.

7.8.4 Through the Neo4j server plugin and REST API

The CSV loader Neo4j server plug-in is installed by default when UCA for EBC is set
up to use an embedded Neo4j server (i.e. when the uca.ebc.topology property is
set to “embedded” in the ${UCA_EBC_INSTANCE}/conf/uca-
ebc.properties file).

Alternatively, if an external Neo4j server is used (i.e. when the uca.ebc.topology
property is set to “external” in the ${UCA_EBC_INSTANCE}/conf/uca-

ebc.properties file) then you have to finalize the installation of the data

loading plug-in manually as explained in chapter 3.2 “Configuring the topology

data load function” of this document.

Once the Neo4j server (embedded in UCA or external) is started, should see a
“load_csv” REST service available:

$ curl -v http://localhost:7474/db/data/

 "LoadCsv" : {

58

 "load_csv" :

"http://localhost:7474/db/data/ext/LoadCsv/graphdb/load_c

sv"

 },

 }

To trigger a data load, issue a post request to the corresponding service

(change the URL accordingly).

$ curl -X POST

http://localhost:7474/db/data/ext/LoadCsv/graphdb/load_csv

By default, the CSV loader Neo4j server plugin reads CSV files from a specific
directory on disk: $NEO4J_HOME/import/csv. In this case, $NEO4J_HOME is the root
directory of the Neo4j server on your system. Another location can be given as
argument as follows:

$ curl -X POST

http://localhost:7474/db/data/ext/LoadCsv/graphdb/load_csv \
 -H "Content-Type: application/json" \
 -d '{"csvpath":"your_import_directory"}'

7.9 Data Load output

7.9.1 Load Report

As a result of the data load, a new directory is always created, suffixed by the date
and time of the data load. For example:

 dataload_2015-03-16_03_29_33/

The original CSV files are moved to this directory, to prevent them from being
imported again at the next load request.

The directory also contains a “report.txt” file, summarizing the data load outcome.

For example:
CSV Import from: /opt/UCA-EBC/neo4j/import/csv, at : Mon Mar 16 15:29:33 CEST

2015

musician.node.csv: complete load: 9 loaded sucessfully, 0 discarded, in 387 ms

band.node.csv: complete load: 2 loaded sucessfully, 0 discarded, in 41 ms

member.rel.csv: load complete: 9 loaded sucessfully, 0 discarded, in 187 ms

Total: 20 nodes or relationships inserted (0 discarded), in 616 ms

59

7.9.2 Discarded entities

It may happen that some rows in the CSV files are badly formatted (for instance
some columns are missing). In this case, the row is discarded (resulting in no node
or relationship being created) and pushed to a ".discarded" file: this file has the
same name than the input CSV file, with an additional “.discarded” extension.

The main situation where relationship entries get discarded is when the nodes that
make up a relationship referenced using @from or @to annotations cannot be
found in the indexes. This typically happens when a node has been previously
discarded because a property was missing. As a result all relationships from or to
this node will be discarded as well.

7.10 Configuration

The loader can be configured through the following configuration files:

 csv-loader.conf , located wherever on the application classpath

 reference.conf, located wherever on the classpath. This is the fallback
configuration file (that can be shared with other applications) in case the
csv-loader.conf one is not found.

The file syntax follows the Typesafe config conventions:

csv-loader {

 separator = ","

 arraySeparator = "!"

 dumpReport = true

 bulkCommit = 1000

 trimString = true

}

The following configuration values can be customized:

separator: this is the separator character used to distinguish columns in the CSV
files. This is traditionally the comma character: “,”, as in “Comma” Separated
Values. It can be changed to any other character. The new character value has to be
given between double quotes (as a string).

arraySeparator: this is the character used to separate elements in case a Neo4j
property is set to be an “array” data type, through the @type header annotation.

For example if an header property is defined as follows, with 2 example rows:

@type(string[])an_array_property

Hello%uca%world!

The%meaning%of%life%is%42

The arraySeperator character must be set to “%” so that the values are parsed
correctly and stored as arrays of string in Neo4j.

https://github.com/typesafehub/config

60

dumpReport: this is to tell the loader either to dump or not the report about how
many nodes or relationships have been loaded or discarded in what amount of
time. This could be useful for statistic purpose and to verify that the loading was
fully successful or not.

bulkCommit: this is to support bulk transactions in the graph DB. When not
specified, only one single transaction is opened for an entire CSV file, and the
commit is done at the end.

If the input file contains many lines of data to load, this could lead to a memory
overflow of the JVM because current update is kept in memory for a possible
rollback. To avoid such problem, when specifying this value, the loader will perform
a commit at regular intervals, interval which is specified by the value (by default
1000).

Note that this value can have a big influence on the performance and memory
consumption of the loader (and embedding JVM). The bigger it is, the best the
performance is, but more memory is used.

For information, with default settings during a test, the CSV loader has successfully
performed a load of 7 million nodes and relationships without any problem in
about 1 hour (on a small VM).

trimString: this is to tell the loader whether to trim leading and trailing white
spaces of values to load.

The configuration values take effect for all CSV files to be loaded. A fine, per-fine
tuning is not possible.

7.11 Logging
UCA-EBC embedded Neo4j server:

The traces are activated through the UCA-EBC logging mechanism.

The following logger from the uca-ebc-log4j.xml configuration file controls the
Neo4j CSV data load logging:

 <logger name="org.neo4j.loader.csv" additivity="false">
 <level value="INFO" />
 <appender-ref ref="TOPODATALOAD" />
 <appender-ref ref="CONSOLE" />
 <appender-ref ref="FILE" />
 <appender-ref ref="DB" />
 </logger>

By using this logger, traces are put on the Console, in the uca-ebc.log file, in the
UCA-EBC log database and on a specific file dedicated to the CSV loading though the
TOPODATALOAD appender.
This specific file is uca-ebc-TopologyDataload.log

61

External Neo4j server:

The CSV loader uses logback has a default logging back end.

Logging levels can then be set in the logback.xml file, if found on the application
classpath.

The package name to use is “org.neo4j.loader.csv”. The default log level is “INFO”.

Thus, to activate debug traces, just change the following line the logback.xml file
(replacing “INFO” by “DEBUG”).

 <logger name="org.neo4j.loader.csv" level="DEBUG"/>

http://logback.qos.ch/

62

Chapter 8

Visualizing the topology graph

8.1 Introduction
The UCA for EBC Topology Extension version 3.3 provides a specific User Interface
extension for displaying the topology as a graph.

The intention here is in general not to visualize the full graph but instead, focus
specifically on areas that could be of a specific point of interest.

The point of interest a defined at the Value pack level, in general associated to
‘Problems’ (in the sense of Problem Detection).

This visualization of the graph in the neighborhood of a POI is fully driven by the
selected ‘visualization profile’. In fact, the way the topology drawing is to be
rendered is dependent on the domain of interest on which the user focuses. The
rendering should be therefore different depending on the interest of the user
(service impact, root cause, performance, security violation etc…) this is what is
called a ‘visualization profile’ or simply ‘profile’

A visualization profile is a set of definitions allowing specifying how the graph
should be rendered. This covers:

 The drawing configuration:

• The drawing icons

• The node’s displayed names

• The text color and font

• The relationship line style (line, dotted lines, arrows etc…)

• The relationship’s displayed names

 The overlay icons configuration

• Allows selecting which node’s attributes and values will be used for
displaying overlay icons.

• Specify the overlay icons.

 Graph drawing configuration:

• The policy for retrieving node neighborhood can be defined for each node
Type.

• Automatic retrieval of node neighborhood

• Support of virtual links

 The Point of Interest categories the profile is associated to.

63

8.2 License policy
IMPORTANT NOTE: In order to use this ‘UCA for EBC Graph Display’ feature, you
need to obtain a valid license key for the Unified OSS Console product and install it
in the license.txt file located in the

${UCA_EBC_DATA}/instances/<instance name>/licenses folder.

If you have no valid license key for the ‘UCA for EBC Graph Display’ feature, UCA for
EBC Server will start but the ‘UCA for EBC Graph Display’ feature will not be
activated.

Reference : [R5] HP Unified OSS Console Version 1.2.0 - User Guide

8.3 Defining visualization profiles
The profiles are defined the file ${UCA_EBC_DATA}/conf/GraphDisplayProfiles.xml
using an XML format.

The Profile definition simplified schema is as follow:
<?xml version="1.0" encoding="UTF-8"?>

<Profiles xmlns="http://config.graphdisplay.ebc.uca.hp.com/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <Profile>

 <DefaultNode>

 <Icon>

 <MainIcon>

 <TopRightDecorations>

 <Decoration>

 </TopRightDecorations>

 </Icon>

 <Text>

 <Color>

 <Size>

 <Emphasis>

 <DisplayedName>

 </Text>

 <GetNeighbors>

 <Queries>

 <Query>

 </Queries>

 </GetNeighbor>

 </DefaultNode>

 <DefaultRelationship>

 <LineType>

 <SourceHead>

 <TargetHead>

 <DisplayedName>

 <Colors>

 <Color>

 </Colors>

 </DefaultRelationship>

 <Nodes>

 <Node>

 <Icon>

 <MainIcon>

 <TopRightDecorations>

 <Decoration>

 </TopRightDecorations>

 </Icon>

 <Text>

 <Color>

64

 <Size>

 <Emphasis>

 <DisplayedName>

 </Text>

 <GetNeighbors>

 <Queries>

 <Query>

 </Queries>

 </GetNeighbor>

 </Node>

 </Nodes>

 <Relationships>

 <Relationship

 <LineType>

 <SourceHead>

 <TargetHead>

 <DisplayedName>

 <Colors>

 <Color>

 </Colors>

 </Relationship>

</Relationships>

 </Profile>

</Profiles>

Profiles

 ‘Profiles’ defines a collection of view profiles.

Element Type Description

Profiles List<Profile> Set of Profile definitions.

Profile

‘Profile’ defines a view Profile.

Attributes Type Description

name String The Profile short name.
(mandatory)

displayedName String Profile displayed name.

(mandatory)

POICategories String Coma separated list of POI
categories associated with this
profiles.
If not specified, all POIs will be

available.
(optional)

defaultProfile Boolean If true, indicates this profile is
the default profile (i.e. the one
active by default)
(default=false)

InitialLayout String Specify the Initial Layout for
such profile (the user can then
change it from the toolbar)
Possible values are :

 Hierarchical

 Orthogonal

 Circular

 Symmetric

65

abstract Boolean If true this profile cannot be
used as visualization profile, but
can only be extended by another
profile

extends String Specify a profile Name (usually
an abstract profile) this profile
will extend.

 The POICategories gives a coma separated list of POI Categories associated to
this profile. By selecting this profile, the POI list will be filtered in order to
present only those POIs having a category listed here.

Note

Profiles inheritance:
Profile Definitions can be inherited on the same principle Java classes do.
The ‘extends’ attribute is used to specify which profile to extend. The new is then
set with all the definitions from the extended profile plus the one from this profile
definition.
An ‘abstract’ profile can be extended, but is never shown at the GUI, it cannot be
used to display a topology.

Elements Type Description

DefaultNode DefaultNode Default Node definition.
(optional)

DefaultRelationship DefaultRelationship Default Relationship
definition.

(optional)

Nodes List<Node> Set of Node definitions.

Relationships List<Relationship> Set of Relationship
definitions.

 The DefaultNode definition is the Node rendering definition for nodes that don’t
appear in the Nodes definition list.

 The DefaultRelationship definition is the Relationship rendering definitions for
relations that don’t appear in the Relationships definition list.

DefaultNode

Defines the default Nodes rendering.

Elements Type Description

Icon Icon Default Node Icons definition
(optional)

Text Text Default Node label definition.

(optional)

GetNeighbors GetNeighbors Default Node ‘getNeighbor’
policy: set of cypher queries
for getting Node’s neighbors.
(optional)

DefaultRelationship

Defines the default relationship rendering.

Elements Type Description

66

LineType Enumeration:

Line, dash,

smalldash, dot,

dashdot, dashdotdot

Line rendering.
(optional)

SourceHead Enumeration:

None, arrow,

openarrow, losange,

circle,

doublearrow,

halffilledarrow.

Begin of line rendering.
(optional)

TargetHead Enumeration:

None, arrow,

openarrow, losange,

circle,

doublearrow,

halffilledarrow.

End of line rendering.
(optional)

DisplayedName String Relationship displayed name

Colors Colors Color rendering of the
default relationship

The displayedName is the text string displayed near the relation line. This String
may contain placeholders representing relationship’s attributes. Example: if the
relationship has an attribute named ‘type’ you can use the string ${type} to

display the content of the ‘type’ attribute near the relation line. There is no
restriction on the number of placeholders that can be used in the displayedName
string.

Node

Defines the Node rendering for Nodes having an attribute specified by
‘attributeName’ with value of ‘attributeValue’.

Attributes Type Description

attributeName String Specify a Node’s attribute.
(mandatory)

attributeValue String Specify the value for the
attribute specified above.
(mandatory)

Elements Type Description

Icon Icon Node’s Icons definition
(optional)

Text Text Node’s label definition.
(optional)

GetNeighbors GetNeighbors Node’s ‘getNeighbor’ policy:
set of cypher queries for
getting Node’s neighbors.
(optional)

Relationship

Defines the relationship rendering for Relations having an attribute specified by
‘attributeName’ with value of ‘attributeValue’.

Attributes Type Description

attributeName String Specify a Relationship’s
attribute.

67

(mandatory)

attributeValue String Specify the value for the

attribute specified above.
(mandatory)

Elements Type Description

LineType Enumeration:

Line, dash,

smalldash, dot,

dashdot, dashdotdot

Line rendering.
(optional)

SourceHead Enumeration:

None, arrow,

openarrow, losange,

circle,

doublearrow,

halffilledarrow.

Begin of line rendering.
(optional)

TargetHead Enumeration:

None, arrow,

openarrow, losange,

circle,

doublearrow,

halffilledarrow.

End of line rendering.
(optional)

DisplayedName String Relationship displayed name

Colors Colors Color rendering of this
relationship

The displayedName is the text string displayed near the relation line. This String
may contain placeholders representing relationship’s attributes. Example: if the
relationship has an attribute named ‘type’ you can use the string ${type} to

display the content of the ‘type’ attribute near the relation line. There is no
restriction on the number of placeholders that can be used in the displayedName
string.

Icon

Defines the Node’s Icons.

Elements Type Description

MainIcon String Main icon file name

TopRightDecorations Decorations Top Right Overlay icon
definitions (optional)

BottomRightDecorations Decorations Bottom Right Overlay icon
definitions (optional)

BottomLeftDecorations Decorations Bottom Left Overlay icon
definitions (optional)

TopLeftDecorations Decorations Top Left Overlay icon
definitions (optional)

68

The MainIcon filename represent a relative path of the icon file. This path must be
part of the UCA-EBC server classpath. It is recommended to store customer’s icon
directories under the ${UCA_EBC_DATA}/conf/ as the conf directory is part of

the class path. As an example, if an icon file named ‘myicon.png’ is stored under
${UCA_EBC_DATA}/conf/images the MainIcon definition should be:

 <MainIcon>images/myicon.png</MainIcon>

Text

Defines the Node’s label rendering.

Elements Type Description

Color String String representing the text color
(RGB format)
Ex:
Black: 0 0 0
Red: 255 0 0
Green: 0 255 0
Blue: 0 0 255

Font String The font name
Ex: SansSerif

Size Integer The Font size

Emphasis Enumeration:

Plain, bold,

italic, bold

italic

The text emphasis

DisplayedName String The Node’s displayed name

The displayedName is the text string displayed as the node’s label. This String may
contain placeholders representing node’s attributes. Example: if the node has an
attribute named ‘name’ you can use the string ${name} to display the content of

the ‘name’ attribute near the node’s icon. There is no restriction on the number of
placeholders that can be used in the displayedName string.

Exemple: <DisplayedName>${ID}:${name}</DisplayedName>

GetNeighbor

Defines the graph queries to perform when the ‘getNeighbors’ action is requested
from the UI or when the node is initially displayed.

Attributes Type Description

automatic Boolean If true, as soon as this node is
displayed on the graph, the
defined queries are executed and
the queried neighbors displayed
in turn.

(optional)

level Integer This is to limit the level of
getNeighbors recursions. The
level value indicates the graph
depth (i.e. the number of
automatic getNeighbors from the

displayed root node).
(optional)

Element Type Description

69

Queries List<Query> Set of Cypher Queries

Colors

Defines the Relation’s color rendering

Attributes Type Description

attributeName String Relationship attribute Name of
the attribute used for selecting
the color
(mandatory)

default String String representing the default
line color. (Used for values not
defines in the Color list).
(RGB format)
Ex:
Black: 0 0 0
Red: 255 0 0
Green: 0 255 0
Blue: 0 0 255

(optional)

Element Type Description

Color List<Color> Set of color settings per attribute
value

Color

Defines the color setting for a given relationship attribute value

Attribute Type Description

attributeValue String Relationship attribute value
(optional)

Element Type Description

 String String representing the line color
(RGB format)
Ex:
Black: 0 0 0
Red: 255 0 0
Green: 0 255 0

Blue: 0 0 255

Example of relationship’s colors definition:

<Colors attributeName="state" default="0 0 255">

 <Color attributeValue="Warning">255 128 0</Color>
 <Color attributeValue="Failed">255 0 0</Color>
 <Color attributeValue="Normal">0 0 255</Color>

</Colors>

Decorations

Defines the Node decorations (overlay icons configuration)

Attribute Type Description

attributeName String Node’s attribute Name of the
attribute used for selecting the

70

overlay icon
(mandatory)

default String Default overlay icon file name.

(Used for values not defines in
the Decoration list).
(optional)

Element Type Description

Decoration List<Decoration> Set of Decoration settings per
attribute value

Decoration

Defines overlay icons decoration for a node given node’s attribute value.

Attribute Type Description

attributeValue String Node attribute value

(optional)

Element Type Description

 String Overlay icon file name.

Example of node’s decorations definition for the top right overlay icon:

 <TopRightDecorations attributeName="state"
 default="images/unknown.png">
 <Decoration attributeValue="Degraded">
 images/warningLarge.png
 </Decoration>
 <Decoration attributeValue="Error">
 images/error-icon.png
 </Decoration>
 <Decoration attributeValue="Normal">
 images/check-icon.png
 </Decoration>

</TopRightDecorations>

Query

Defines the cypher query used to retrieve node’s neighbors.

Element Type Description

Query String Cypher Query.

71

To be valid, the Cypher Query must comply with the following restrictions:

 The start node (identifying the node for which the neighbors are queried) is
identified as the ‘startNode. It must be defined as “startNode =
node({nodeID})” in the Query.

 The returned neighbors are identified by ‘endNode’

 The relation between the startNode and endNode is identified as
‘relationship’.

 The returned values MUST be :

 startNode, relationship, endNode;

or

 startNode, endNode;

In the last case (when the ‘relationship’ is not returned) this relationship
between the startNode and the endNode is considered as being ‘virtual’. A
virtual relation may not correspond really to an existing topology relationship
but is the constructed result of the graph query. This allows having graphical
representations of the graph that are not the exact view of what the topology is.
‘Virtual’ relationships are usually used for providing simplified topology views.

Examples of Valid Cypher Queries:

 Get all immediate neighbors:

<Query><![CDATA[START startNode = node({nodeID}) MATCH
(startNode)-[relationship]->(endNode) RETURN startNode,
relationship, endNode;]]></Query>

 Get all immediate neighbors related with a relationship of type ‘LINK’:

<Query><![CDATA[START startNode = node({nodeID}) MATCH
(startNode)-[relationship:LINK]->(endNode) RETURN startNode,
relationship, endNode;]]></Query>

Examples of queries returning a virtual relationship:

<Query><![CDATA[START startNode = node({nodeID}) MATCH
(startNode)-[:hasport]->(b)<-[:LINK]->(c)<-[:hasport]-
(endNode) RETURN startNode, endNode;]]></Query>

<Query><![CDATA[START startNode = node({nodeID}) MATCH
(startNode)-[:hasport|LINK*1..3]-(endNode) RETURN startNode,
endNode;]]></Query>

8.4 Using the Graph Visualization tool
As explained above the graph visualization tool allows viewing the graph in the
neighborhood of some remarkable points (or Points Of Interest) and with specific
rendering.

The association of the rendering definitions (icons, colors, overlay icons etc…) and
the ‘Points Of Interest’ categories is done through the Profiles.

72

The Profile selection is therefore the main thing to consider when trying visualizing
the graph. This selection is made with the profile selection button located on the
right hand side of the drawing panel as shown in the picture below:

Figure 7 - Profile selection

8.4.1 Displaying the graph in the neighborhood of a given Node:

If the user knows in advance the node ID of the root node to visualize, the ‘node
selection’ tool can be used:

Just enter the node Id (integer value) and click on the ‘Display’ button.

Figure 8 - Root node selection tool

At this stage, the part of the graph represented in the drawing view is fully driven
by the definition profile: The graphic rendering as well as the sub-graph itself which
is the result of the Cypher queries defined in the selected profile.

73

8.4.2 Displaying the graph in the neighborhood of a ‘Point of

interest’

When a profile is selected, the view title is changed according to the profile display
name, and the rendering of the current graph is changed to comply with the
rendering definitions in the profile.

Moreover the POI list is changed in order to list only the POIs that have a category
which is part of the Profile’s ‘POIcategories’ list.

To view the POI list the user must click on the left hand side vertical Tab as shown in
the picture below:

Figure 9 - POI Tab

When this tab is clicked the POI tables expends allowing selecting a:

Figure 10 - POI Table

By clicking in one of the POI lines, the POI table closes and the topology node
associated to the POI becomes the root node of the topology view displayed in the
main drawing panel:

74

Figure 11 - Drawing the graph from POI

Again, the part of the graph represented in the drawing view is fully driven by the
definition profile: The graphic rendering as well as the sub-graph itself that is the
result of the Cypher queries defined in the selected profile. The decoration icons
and their association with node attributes and values are also defined in the profile.

8.4.3 Extending the displayed graph

By right clicking on a displayed node a “Get Neighbors” action is available:

Figure 12 - Get Neighbors action

This allows extending the graph from the clicked node. The retrieved neighbors are
the result of the cypher query defined in the profile for this given node type:

75

Figure 13 - Extended graph

8.4.4 The drawing view Toolbar

The drawing view toolbar gives access to a set of tools allowing mainly playing with
the displayed graph layout:

Among them:

 Zoom-in

 Zoom-out

 Overview

 Circular Layout

 Hierarchical Layout

 Orthogonal layout

 Symmetrical Layout

 Global Layout

 Searching Tool

8.4.5 The Inspector view

Left clicking on a node or relationship in the ‘graph view’ makes an update of the
‘Inspector View’ with information from this clicked node or relationship.

The inspector view displays the element’s attributes values as follow as they are
retrieved directly from the Neo4j Database (or from memory for those attributes
that are managed by the In-Memory attribute manager).

76

Figure 14 - Inspector view

77

Glossary

CSV: Comma-Separated Values

DRL: Drools Rule file

EBC: Event Based Correlation

EVP: UCA for EBC Value Pack

Inference Engine: Process that uses a Rete algorithm

JDK: Java Development Kit

JMS: Java Messaging Service

JMX: Java Management eXtension, used to access or process action on the UCA for
EBC product

JNDI: Java Naming and Directory Interface

JRE: Java Runtime Environment

UCA: Unified Correlation Analyzer

X733: Standard describing the structure of an Alarm used in telecommunication
environment

XML: Extensible Markup Language

XSD: Schema of an XML file, describing its structure

