

HP Operations Orchestration

Best Practices for Action Development

Document Release Date: October 2015

Software Release Date: October 2015

 HP Operations Orchestration

2

Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing

herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial

Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's

standard commercial license.

Copyright Notice
© Copyright 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation. UNIX® is a registered trademark of The Open Group.

This product includes an interface of the 'zlib' general purpose compression library, which is Copyright © 1995-2002 Jean-loup Gailly and Mark Adler.

Documentation Updates
The title page of this document contains the following identifying information:

 Software Version number, which indicates the software version.

 Document Release Date, which changes each time the document is updated.

 Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to: http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, go to: http://h20229.www2.hp.com/passport-
registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HP sales representative for details.

Support
Visit the HP Software Support Online web site at: https://softwaresupport.hp.com/

This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools

needed to manage your business. As a valued support customer, you can benefit by using the support web site to:

 Search for knowledge documents of interest

 Submit and track support cases and enhancement requests

 Download software patches

 Manage support contracts

 Look up HP support contacts

 Review information about available services

 Enter into discussions with other software customers

 Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP

Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

HP Software Solutions Now accesses the HPSW Solution and Integration Portal Web site. This site enables you to explore HP Product Solutions to meet

your business needs, includes a full list of Integrations between HP Products, as well as a listing of ITIL Processes. The URL for this Web site is

http://h20230.www2.hp.com/sc/solutions/index.jsp

http://h20230.www2.hp.com/selfsolve/manuals
http://h20229.www2.hp.com/passport-registration.html
http://h20229.www2.hp.com/passport-registration.html
https://softwaresupport.hp.com/
http://h20229.www2.hp.com/passport-registration.html
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20230.www2.hp.com/sc/solutions/index.jsp

HP Operations Orchestration

3

Contents

Introduction .. 4

Prerequisites ... 4

Audience ... 4

Best Practices for structuring Maven Projects and Modules ... 5

Parent Project .. 5

Naming conventions ... 5

Content Pack Maven Module ... 6

Naming conventions ... 6

Plugin Maven Module ... 7

Naming conventions ... 7

Action Name .. 8

3rd party dependency management ... 8

General Best Practices for Actions .. 15

General Best practices for @Action interface fields ... 15

Best practices for @Action parameters ... 15

Best practices for @Action outputs .. 16

Best practices for @Action responses ... 17

Best practices for designing the @Action code .. 17

Context @Actions ... 18

Best Practices for Exception Handling ... 19

Best Practices for Date and Time processing ... 20

Best Practices for Timeouts .. 20

Best Practices for Unit Testing .. 21

Create a consistent package structure between the tests and the classes under test 21

Mock server calls ... 21

Best Practices for working with 3rd party APIs .. 21

References ... 23

 HP Operations Orchestration

4

Introduction

This document provides best practices and guidelines for OO Action Development. OO offers an
SDK with interfaces and classes which help achieve many of the practices described throughout the
document.

Prerequisites

In order to properly comprehend all the topics discussed in this document, it is recommended that
you read the following documents:

 Action Developers Guide

 Concepts Guide

 Best Practices for Content Authoring

 Introduction to Dependency Mechanism

Links to these documents are listed in the References section at the end of this document.

Audience

This document is suitable for OO Action Developers. You can find more information about the
persona of this user in the Concepts Guide. This document is designed to help OO Action Developers
follow a standard methodology of developing, testing, packaging and delivering OO Actions.

This document covers best practices that apply to OO Action Development, including practices for
structuring Maven projects and modules, developing Actions, handling exceptions, unit testing and
working with 3rd party products APIs. These practices are necessary in order to have modular and
maintainable components which transpose in robust and cohesive plugins.

HP Operations Orchestration

5

Best Practices for structuring Maven Projects and

Modules

Each OO 10.x Content Pack is based on one or more Maven projects containing Maven Plugins.
The recommended version of Maven to use is 3.2.1.

The best practice used when building Content Packs is called Maven Bill of Materials (BOM), where
there is a root Maven project (pom.xml) that defines common dependencies, versions, properties,
etc. and the other Maven projects depend on the root Maven Project. A BOM dependency model
keeps track of version numbers and ensures that all dependencies (both direct and transitive) are at
the same version.

Get familiar with the Maven concepts explained in the “Introduction to dependency mechanism”
reference at the end of this document before continuing. Also, it is strongly suggested you follow
the steps in the Action Developers Guide section “Developing Plugins” in order to create a plugin
using the OO archetype and then the Maven project itself. This will help you better understand the
following sections of this document, and you will also have an example of a Maven project as
reference.

The Maven project generated using the OO archetype will contain the following Maven items:

 Parent Maven Project - A Maven module that contains all the necessary Maven sub-
modules and defines properties and dependencies used in the sub-modules.

 Content Pack Maven Module - A Maven module containing resource bundles and XMLs of
flows and operations. All these resources are packaged inside the final Content Pack.

 Plugin Maven Module - A Maven module that contains the Actions. When this project is
built with Maven, the code inside is compiled and the resulting JAR file can be used for
creating operations from the Actions inside.

Parent Project

The parent project pom.xml should list the child modules and should contain the common set of
third party dependencies all the plugins use, common Maven properties, Source Control
Management System configurations and the common Maven plugins definitions used for building
the Maven modules.

Naming conventions
For the naming conventions listed throughout this document, it is recommended to use lowercase
characters (unless otherwise specified). Furthermore, all the ArtifactId values must represent valid
Maven id patterns.

1. GroupId: com.<company>[.department>].oo.content.<project|product>
Example: com.acme.oo.content.f5

2. ArtifactId: oo-<project | product | use case>

Example: oo-f5

 HP Operations Orchestration

6

3. Version: Major.Minor.Micro
Example: 1.0.2-SNAPSHOT - Development version

 1.0.2 - Release version

Try to keep the parent pom.xml as small as possible, with only the common properties used in all
your sub modules of the content pack, as seen in the skeleton below:

Example:

<properties>

<scm_user>${username}</scm_user>

<scm_passwd>${password}</scm_passwd>

<!-- Platform dependencies -->

<oo-sdk.group>com.hp.oo.sdk</oo-sdk.group>

<oo-sdk.version>1.0</oo-sdk.version>

<!-- Content dependencies -->

 <oo-thirdparty.version>1.0.1</oo-thirdparty.version>

<content.groupId>com.hp.oo.content</content.groupId>

<!-- Maven properties -->

<compiler.source.version>1.7</compiler.source.version>

<compiler.target.version>1.7</compiler.target.version>

<project.build.sourceEncoding>UTF-8

</project.build.sourceEncoding>

</properties>

Using the Introduction to Dependency Mechanism reference at the end of this document,
familiarize yourself with the way Maven uses dependency scopes to reduce the transitivity of a
dependency.

Use the compilerVersion property to specify the JDK version of the compiler that the plugin will use.

A complete list of Maven properties which can be added to the pom.xml can be found in the
Apache Maven Site Plugin.

Content Pack Maven Module

Naming conventions
1. GroupId: same as parent project
2. ArtifactId: oo-<projectName>-cp
3. Version: same as parent project

The ArtifactId value represents the name of the jar file that will be created based on the

Maven Module. Because of this, in addition to representing a valid Maven id pattern, the ArtifactId
must also represent a valid name for an OO CP.

Example:

<parent>

 <artifactId>oo-base</artifactId>

 <groupId>com.hp.oo</groupId>

 <version>1.2.0-SNAPSHOT</version>

 </parent>

 <artifactId>oo-base-cp</artifactId>

HP Operations Orchestration

7

This module represents a valid OO project that contains the following items:

 Content folder with 2 subfolders:

- Configuration folder containing all configuration items XMLs
- Library folder containing the operations and flows XMLs.

 resource-bundles - containing the translation properties files: cp.properties,
cp_en_US.properties, etc.

 contentpack.properties - containing the following properties for the content pack :

- name (mandatory)
- uuid (mandatory)
- version (mandatory)
- publisher (recommended to be supplied)
- description
- date of creation

Example:

Plugin Maven Module

Each operation in the plugin module points to a specific groupId, artifactId, version, and @Action
name.

Naming conventions
1. GroupId: same as parent project
2. ArtifactId: oo-<projectName>[-<component|module>]-plugin
3. Version: same as parent project

The best practice is to inherit (in the module) the Version directly from parent, see the example
below.

 HP Operations Orchestration

8

Having sub-modules versions match the parent version is a Maven practice that helps improve the
consistency of the Maven project and increases the ability and easiness to keep track of what
version of each plugin is included in which project.

Example:

 <parent>

 <artifactId>oo-acme</artifactId>

 <groupId>com.acme.oo</groupId>

 <version>1.2.0-SNAPSHOT</version>

 </parent>

 <artifactId>oo-databases-acme-sql-plugin</artifactId>

 <packaging>maven-plugin</packaging>

The plugin oo-action-plugin-maven-plugin (from the OO SDK) needs to be added to the build of each
plugin module in order to generate the actual plugin during the build.

<plugin>

 <groupId>${sdk.group}</groupId>

 <artifactId>oo-action-plugin-maven-plugin</artifactId>

 <version>${oo-sdk.version}</version>

 <executions>

 …

 </executions>

</plugin>

Make sure that all Content Pack Maven projects are independent of each other. For every Content
Pack that is going to be released, each plugin module should not be dependent of another plugin
from a different content pack. If such a scenario is unavoidable and the dependency cannot be
removed, create a new, independent maven module and extract the common code, then reference
it from both plugins (such a plugin is referred to as a Commons Maven module).

Action Name

Should be the same as the name of the operation that will be created based on it.
Use the following naming conventions related to Action names:

 Naming must be consistent between multiple content entities.

 Use the <Verb> <Noun> name format.

 Where possible, use Create, Read, Update, and Delete, Get, or Set verbs for <Verb>.

Examples: Create Snapshot, Get Image Details

3rd party dependency management

Make sure that your build components are stable (all unit and integration tests pass).
Use the dependencyManagement section in the project pom in order to control the dependency
versions.

All the plugin dependencies should be defined in the plugin module pom.xml. The dependencies
listed in the plugin pom.xml together with their own dependencies (transitive dependencies) form
the plugin classpath.

HP Operations Orchestration

9

If a dependency is defined in the parent Content Pack Maven project, it should be defined without a
version in the Maven plugin module, unless it needs to override the version used in the parent.

Example:

Parent pom example:

<dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>com.google.code.gson</groupId>

 <artifactId>gson</artifactId>

 <version>1.7.1</version>

 </dependency>

 <dependency>

 <groupId>com.googlecode.json-simple</groupId>

 <artifactId>json-simple</artifactId>

 <version>1.1</version>

 </dependency>

 </dependencies>

</dependencyManagement>

 Plugin pom example:

<dependency>

 <groupId>com.google.code.gson</groupId>

 <artifactId>gson</artifactId>

</dependency>

<dependency>

 <groupId>com.googlecode.json-simple</groupId>

 <artifactId>json-simple</artifactId>

 <version>1.2</version>

</dependency>

Following is the order of how the Maven modules should be built, and should include inside the
parent project's pom:

 Commons Maven module (in case there is one)

 Plugin Maven modules

 Content Pack Maven module

 HP Operations Orchestration

10

Complete example of parent pom.xml:

 <parent>

 <artifactId>acme-parent</artifactId>

 <groupId>com.acme.oo</groupId>

 <version>1.0.21</version>

 </parent>

 <artifactId>oo-acme</artifactId>

 <version>1.1.0-SNAPSHOT</version>

 <packaging>pom</packaging>

 <modules>

 <module>oo-acme-plugin</module>

 <module>oo-acme-cp</module>

 </modules>

 <scm>

 <connection>

 scm:git:ssh://git@127.0.0.1:7999/project/oo-acme.git

 </connection>

 <developerConnection>

 scm:git:ssh://git@127.0.0.1:7999/project/oo-acme.git

 </developerConnection>

 <url>

 http://127.0.0.1:7990/projects/CSTD/repos/oo-hp-solutions

 </url>

 <tag>master</tag>

 </scm>

 <properties>

 <content.version>1.0.1</content.version>

 <action-plugin.goal>generate-plugin</action-plugin.goal>

 <oo-sdk.group>com.hp.oo.sdk</oo-sdk.group>

 <oo-sdk.version>10.20.6</oo-sdk.version>

 <argLine>

 -XX:-UseSplitVerifier -Xmx2024m -XX:MaxPermSize=512m

 </argLine>

 </properties>

HP Operations Orchestration

11

<dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>${oo-sdk.group}</groupId>

 <artifactId>oo-action-plugin</artifactId>

 <version>${oo-sdk.version}</version>

 </dependency>

 <dependency>

 <groupId>${oo-sdk.group}</groupId>

 <artifactId>oo-sdk</artifactId>

 <version>${oo-sdk.version}</version>

 </dependency>

 <dependency>

 <groupId>com.google.code.gson</groupId>

 <artifactId>gson</artifactId>

 <version>1.7.1</version>

 </dependency>

 <!-- testing dependencies -->

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.10</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

</dependencyManagement>

<build>

 <pluginManagement>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-release-plugin</artifactId>

 <version>2.5.2</version>

 </plugin>

 <plugin>

 <groupId>${oo-sdk.group}</groupId>

 <artifactId>oo-action-plugin-maven-plugin</artifactId>

 <version>${oo-sdk.version}</version>

 HP Operations Orchestration

12

 <executions>

 <execution>

 <id>generate action plugin</id>

 <phase>process-sources</phase>

 <goals>

 <goal>${action-plugin.goal}</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 <plugin>

 <groupId>${oo-sdk.group}</groupId>

 <artifactId>oo-contentpack-maven-plugin</artifactId>

 <version>${oo-sdk.version}</version>

 <executions>

 <execution>

 <id>generate lib folder</id>

 <phase>generate-resources</phase>

 <goals>

 <goal>generate-contentpack</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

 </pluginManagement>

 </build>

HP Operations Orchestration

13

Plugin pom example:

 <parent>

 <artifactId>oo-acme</artifactId>

 <groupId>com.acme.oo</groupId>

 <version>1.1.0-SNAPSHOT</version>

 </parent>

 <artifactId>oo-databases-acme-sql-plugin</artifactId>

 <packaging>maven-plugin</packaging>

 <properties>

 <action-plugin.goal>generate-action-plugin

 </action-plugin.goal>

 <maven.deploy.skip>true</maven.deploy.skip>

 </properties>

 <dependencies>

 <dependency>

 <groupId>com.googlecode.json-simple</groupId>

 <artifactId>json-simple</artifactId>

 </dependency>

 <!-- SDK dependencies -->

 <dependency>

 <groupId>${oo-sdk.group}</groupId>

 <artifactId>oo-sdk</artifactId>

 </dependency>

 <dependency>

 <groupId>${oo-sdk.group}</groupId>

 <artifactId>oo-action-plugin</artifactId>

 </dependency>

 <!-- testing dependencies -->

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <scope>test</scope>

 </dependency>

 HP Operations Orchestration

14

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 </plugin>

 <plugin>

 <groupId>${oo-sdk.group}</groupId>

 <artifactId>oo-action-plugin-maven-plugin</artifactId>

 <version>${oo-sdk.version}</version>

 </plugin>

 </plugins>

 </build>

Content Pack Maven Module Pom example:

 <parent>

 <artifactId>oo-acme</artifactId>

 <groupId>com.acme.oo</groupId>

 <version>1.1.0-SNAPSHOT</version>

 </parent>

 <artifactId>oo10-acme-cp</artifactId>

 <properties>

 <cpname>Acme CP</cpname>

 <transform.xmls.phase>process-sources</transform.xmls.phase>

 <sign.cp.phase>verify</sign.cp.phase>

 <current.release.version>1.1.0</current.release.version>

 </properties>

 <build>

 <!-- build plugins and resources -->

 </build>

HP Operations Orchestration

15

General Best Practices for Actions

HP Operations Orchestration 10.x can be extended programmatically by creating Actions and
introducing them as custom content. This requires using the Operations Orchestration 10.x SDK and
its components and means using the Java programming language to develop new operations in OO.

OO 10.x Actions are packaged in Maven Plugins Modules, described in the previous section. A
Maven Plugin contains one or more Actions and references to all required dependencies. Actions
are defined using the @Action annotation (an interface in the OO 10.x SDK), and this annotation
can only be applied to methods.

The recommended practice is to have at most one @Action annotated method in any Java class.
This enables the single responsibility principle with regards to Java classes and makes the code
more organized and maintainable.

The following best practices apply to Action inputs, outputs and responses and the concepts used
are described in the OO Concepts Guide (“HP OO Entities” section).

General Best practices for @Action interface fields

Every @Action annotation should define the following fields:

 name - represents the actual name of the Action. It should represent the name of the
operation that will be created based on it. Using this field allows defining inputs and
responses fields, and increases code readability

 outputs - represents the outputs (results) of the Action. It is specified through a curly
braced enclosed, comma-separated list of @Output annotations. The @Output annotations
must include at least the value field (described in a section below)

 responses - is specified through a curly braced enclosed, comma-separated list of
@Response annotations that must include at least the text, field and value fields. These
fields represent the name of the response, the name of the result to be checked and the
value of the result for which the particular response will be active (described below).

Best practices for @Action parameters

@Action parameters correspond to operation inputs. The recommendation is that each @Action
parameter and its corresponding input in the operation have the same name.

Every @Action annotated method should define the Action Parameters using the @Param
annotation:

 Use the constants provided in the SDK: com.hp.oo.sdk.content.constants.InputNames as
much as possible.

 The @Param annotation must include at least the value, required and encrypted fields.

 The value field represents the name of the Action input, required is a boolean flag that
represents whether or not the input is required, and encrypted is a boolean flag that
represents whether or not the input should be encrypted.

 HP Operations Orchestration

16

 The required and encrypted fields should be set in the @Action code instead of relying on
editing the operations, because the behavior of the Action should be encapsulated in the
Action itself.

For example, if a certain input is required for an Action to work, then the operation created based
on that Action must already contain this condition after creation, and not need to explicitly specify
it. Also, Action parameters that are specified as encrypted should also be marked as encrypted in
the operation (this happens as a default, but it can be changed) in order to keep the intended
behavior of the Action in the operation.

The signature of an @Action method can become quite long so it is suggested to follow an
indentation scheme where there is one parameter (@Param) on each line (improves code
readability).

 (@Param(value = “volumeId”) String volumeId,

@Param(value = “attribute”) String attribute,

@Param(value = “accessKey”) String accessKey,

@Param(value = “accessKeyId”, encrypted = true) String

accessKeyId,

@Param(value = “proxyHost”) String proxyHost,

@Param(value = “proxyPort”) String proxyPort,

@Param(value = “proxyUsername”) String proxyUsername,

@Param(value = “proxyPassword”, encrypted = true) String

proxyPassword

)

Best practices for @Action outputs

An operation should have at least three outputs (all of them available in the OutputNames class in
the SDK):

 returnResult - should contain the main result of the operation. It contains the output of the
execution for the success scenario or the error message in case of a failure.

 returnCode - used to establish the response of the operation.
 exception - should contain the exception stack trace in case of failure.

Example:

outputs = {

 @Output(OutputNames.RETURN_CODE),

 @Output(OutputNames.RETURN_RESULT),

 @Output(OutputNames.EXCEPTION),

 @Output(“sessionKey”)

}

Use the SDK constant class: com.hp.oo.sdk.content.constants.OutputNames as much as possible.
Use the constants from com.hp.oo.sdk.content.constants.ReturnCodes for returnCode output
values.

The order of the outputs mentioned in the @Action method is inherited when the operation is
created, thus it is recommended to follow an ordering rule, such as an alphabetical order or an
order based on importance of the outputs.

HP Operations Orchestration

17

Best practices for @Action responses

Use the field attribute of the annotation in order to create a rule to determine the response type.
The field value is one of the outputs of the operation and will be matched with the rule defined
by the matchType attribute against the value attribute. If the match succeeds, the responseType
attribute will be the actual response in that particular situation.

The default response should be failure. This way, an incomplete Action execution shows as a failure
during flow debugging and points the author to the problem before the flow goes into production.
Use the isDefault attribute of the @Response annotation to set the default operation response.

In a success scenario, field is returnCode and it is equal to the RETURN_CODE_SUCCESS constant
from the ReturnCodes Class in the SDK. The matchType rule is COMPARE_EQUAL and the
responseType is RESOLVED. In the @Action method, populate the RETURN_CODE Output Name
with the RETURN_CODE_SUCCESS value on the success scenario.

Example:

@Response(isDefault = true, text = ResponseNames.SUCCESS, field =

OutputNames.RETURN_CODE, value = ReturnCodes.RETURN_CODE_SUCCESS,

matchType = MatchType.COMPARE_EQUAL, responseType =

ResponseType.RESOLVED)

In a failure scenario, the returnCode field is equal to RETURN_CODE_ERROR; the response type of
the operation is ERROR. In the @Action, populate the RETURN_CODE Output with
RETURN_CODE_ERROR on the failure scenario.

Example:

@Response(isOnFail = true, text = ResponseNames.FAILURE, field =

OutputNames.RETURN_CODE, value = ReturnCodes.RETURN_CODE_FAILURE,

matchType = MatchType.COMPARE_EQUAL, responseType =

ResponseType.ERROR)

Use the SDK constant class: com.hp.oo.sdk.content.constants.ResponseNames as much as possible.

Best practices for designing the @Action code

Write as little logic as possible in the @Action itself. Typically the logic should be limited to passing
the @Action parameters (inputs of the operation) to a service method (which is responsible for the
business logic) and populating the result map of the @Action with the results of the service method
invocation.

Example:

Map params = createMapParams(input1, input2, <…> inputn);

ResponseWrapper response = service.describeEntityAttribute(params);

resultMap.put(OutputNames.RETURN_RESULT, response.getVolumeId());

Use third party libraries for common generic tasks instead or your own implementations.

Avoid static members because a @Action can be instantiated in two steps in a flow and could be
executed on different workers. This makes static members unreliable for data transfer.

 HP Operations Orchestration

18

One best practice is for the client (which in this case is the Action itself) to not be required to know
how to construct the services, but only to know about the interfaces of the services, which define
how the client may use the services.This enables separating the responsibilities of use and
construction. Also, it is recommended to use as much as possible design patterns when writing the
code. The following example shows how an @Action should appear:

Context @Actions

A dynamic map of parameters can be passed in a @Action instead of passing specific @Param
annotated parameters.
Context Actions are useful in situations when the actual inputs of the operations need to be
customizable for each instance of the operation (dynamically defined inputs at step level).

This can be achieved by replacing the parameters of the @Action method with a Map parameter.

@Action (…)

public Map<String, String> authenticateUser(Map<String,

String> inputs){}

Such a @Action should be placed in a plugin which follows a naming convention of:
oo-<name>-context-plugin
By following this naming convention, the user would immediately gain the information that this
plugin contains context based Actions. This type of plugin is not compatible with the oo-action-
plugin-maven-plugin because it requires the oo-context-action-plugin (from the SDK) to be
generated.

HP Operations Orchestration

19

Example (pom.xml):

<artifactId>oo-base-context-plugin</artifactId>

<packaging>maven-plugin</packaging>

<properties>

<action-plugin.goal>

generate-context-action-plugin

 </action-plugin.goal>

</properties>

<dependencies>

<dependency>

 <groupId>${oo-sdk.group}</groupId>

 <artifactId>oo-context-action-plugin</artifactId>

</dependency>

</dependencies>

<build>

 <plugins>

 <plugin>

 <groupId>${oo-sdk.group}</groupId>

 <artifactId>oo-action-plugin-maven-plugin</artifactId>

 </plugin>

 </plugins>

</build>

Best Practices for Exception Handling

This section describes practices and guidelines with regards to exception handling inside @Actions.

 Only change exception messages if semantic value must be added to the original exception
that the integration product returns.

 Use standard Java exceptions as much as possible.
java.net.SocketException,java.util.concurrent.TimeoutException

 Catch specific exceptions in @Actions and set different return codes for each specific
exception.

 Keep the exception messages returned by the systems OO is integrating with, do not
replace or wrap these messages with your own error messages. This way will allow a certain
level of consistency between error messages returned by operations integrating with the
same system.

 Do not rely on exception messages which are thrown by integrating systems because they
sometimes change from one version to another, breaking backward compatibility.

 Throw exceptions early: an exception should be thrown as soon as possible from the service
classes

 HP Operations Orchestration

20

Exceptions should be caught in the code of the @Action, where it can be handled properly. Usually
handling means setting the specific return code and error message on the operation output results.

Example:

import com.hp.oo.sdk.content.constants.ReturnCodes;

 //…

 try {

 customService = sshLogOff(parameterList);

 }

catch (SSHException) {

 resultMap.put(OutputNames.RETURN_CODE,

ReturnCodes.RETURN_CODE_FAILURE);

 }

When an exception is caught, the exception result should be populated with the stack trace and the
returnResult result should be populated with the exception message.

Example:

catch (SpecificException1 e) {
setReturnCode();

 setException(exception, e.getStackTrace ());
 setFailureMessage(returnResult, e.getMessage());
}

Best Practices for Date and Time processing

The preferred date and time format is the one provided by the API of the integration product.

If there is a need to convert between different date formats, the recommended way is to do that at
authoring time, using Date and Time operations provided in Base Content Pack or recommended
libraries for date and time manipulation such as Java’s API (java.util).

Best Practices for Timeouts

Use the following types of timeout inputs, when there is a need for each type of behavior:

 connectTimeout – represents the timeout to connect to the target server or URL.

 socketTimeout - represents the timeout for waiting for the data. In other words, the
maximum period of inactivity between two consecutive data packets. During the execution
of an operation, there can be multiple packets sent and sockets opened between the
source and the target.

 executionTimeout (or simply timeout) – the time for the actual action to finish the
execution.

Types of timeout outputs:

 TimedOut - OO 10.x exposes the TimedOut output. When a timeout situation occurs, the
TimedOut result should be set to “true”, otherwise it should be “false”.

 exception – In case of a timeout, this output should contain the execution stack trace with
one of the standard Java timeout exceptions: ConnectionTimeoutException,
TimeoutException, SocketTimeoutException.

HP Operations Orchestration

21

Currently, there is no global execution timeout in OO 10.x.

Best Practices for Unit Testing

Apply the following rules when writing unit tests for the @Actions.

Create a consistent package structure between the tests and the classes under test

If you want to develop a unit test for the class ExtractZip located in the com.hp.oo.content.fs folder,
under the test folder it is recommended to create the same package structure like the one the
ExtractZip class is located in.

This is the Apache Software Foundation's standard directory structure, and it enables the user to
transition more easily from a plugin to another, while also be able to leverage modern IDE features
that calculate unit test code coverage.

Mock server calls

In your test methods, don't use real calls to servers. If you want to test a method like
executeHttpRequest(Url url), don't perform a real HTTP request, instead use one of the industry
established mocking frameworks (e.g. Mockito, EasyMock, Powermock) to mock the request and
create isolation unit tests using a framework like JUnit or TestNG.

Best Practices for working with 3rd party APIs

Typically, the most common types of APIs used in the industry are REST and SOAP, with some
product also exposing Java based APIs or SSH APIs. When choosing the right API to use there are
several factors that needs to be considered:

 The API is GA-ed and officially supported (the exposed API used is not in Beta)
 Apache 2, LGPL licenses are preferred over GPL

http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

 HP Operations Orchestration

22

 REST APIs are preferred over SOAP, Java and SSH APIs (in this order).

REST APIs advantages over SOAP are that they rely upon the HTTP standard, they are lightweight,
format-agnostic (can use any one of the XML, JSON, HTML formats) and have better support for API
versioning. All these features tremendously help during the development process of the
integration.

Avoid tightly coupling @Actions classes to integration specific APIs.This enables easier backward
compatibility support in the future, when trying to support a new version of a certain API that by
itself broke backward compatibility. Expect this behavior from APIs you are developing integrations
for and design your operations accordingly.

Consider the following scenarios and possible ways to handle them for operations that need to
support multiple versions of the Integration Product that they integrate with:

 A version input could be added to all of the operations/flows. The default value for the
version input would be the first version supported. In this way, existing users that use the
old operations are not affected by an upgrade of content.

 A new folder containing operations for the new integration version should be created if
there are major changes between the last supported version and the new version.

HP Operations Orchestration

23

References

 Action Developers Guide: document under <INSTALLATION_FOLDER>/docs folder

 Apache Maven Site Plugin: https://maven.apache.org/plugins/maven-compiler-plugin/compile-
mojo.html

 Introduction to Dependency Mechanism:
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

 Best Practices for Content Authoring: https://hpln.hp.com/node/21182/attachment

 Concepts Guide: document under <INSTALLATION_FOLDER>/docs folder

 Maven plugins: https://maven.apache.org/plugins/

 Coding Styles: https://google-styleguide.googlecode.com/svn/trunk/javaguide.html

 Unit Testing Practices: http://www.oracle.com/technetwork/articles/adf/part5-083468.html

If you have any questions or feedback, then please post these on the OO community forum:
http://www.hp.com/go/OOPractitionerForum

https://maven.apache.org/plugins/maven-compiler-plugin/compile-mojo.htm
https://maven.apache.org/plugins/maven-compiler-plugin/compile-mojo.htm
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://hpln.hp.com/node/21182/attachment
https://maven.apache.org/plugins/
https://google-styleguide.googlecode.com/svn/trunk/javaguide.html
http://www.oracle.com/technetwork/articles/adf/part5-083468.html

