

HP Operations Orchestration

Action Developers Guide

Version 10.50

Document Release Date: October 2015 Rev B

Software Release Date: September 2015

Action Developers Guide | HP Operations Orchestration Version 10.50

2

Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services.

Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions

contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212,

Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government

under vendor's standard commercial license.

Copyright Notice
© Copyright 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation. UNIX® is a registered trademark of The Open Group.

This product includes an interface of the 'zlib' general purpose compression library, which is Copyright © 1995-2002 Jean-loup Gailly and Mark

Adler.

Documentation Updates
The title page of this document contains the following identifying information:

 Software Version number, which indicates the software version.

 Document Release Date, which changes each time the document is updated.

 Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to: http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, go to: http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HP sales representative for details.

Support
Visit the HP Software Support Online web site at: https://softwaresupport.hp.com/

This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed to

manage your business. As a valued support customer, you can benefit by using the support web site to:

 Search for knowledge documents of interest

 Submit and track support cases and enhancement requests

 Download software patches

 Manage support contracts

 Look up HP support contacts

 Review information about available services

 Enter into discussions with other software customers

 Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

HP Software Solutions Now accesses the HPSW Solution and Integration Portal Web site. This site enables you to explore HP Product Solutions to meet your business needs,
includes a full list of Integrations between HP Products, as well as a listing of ITIL Processes. The URL for this Web site is http://h20230.www2.hp.com/sc/solutions/index.jsp

http://h20230.www2.hp.com/selfsolve/manuals
http://h20229.www2.hp.com/passport-registration.html
https://softwaresupport.hp.com/
http://h20229.www2.hp.com/passport-registration.html
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20230.www2.hp.com/sc/solutions/index.jsp

Action Developers Guide | HP Operations Orchestration Version 10.50

3

Table of Contents

Creating an @Action ... 5

Developing Plugins ... 5

Developing @Actions .. 9

"Hello World!" Example .. 9

Passing Arguments to @Actions ... 9

Return Values .. 10

Adding @Action Annotations .. 10

Annotations .. 10

@Action Data Definition Example ... 12

Testing Extensions .. 13

Testing Extensions as Part of the Project Build ... 13

.NET Extensions ... 14

Legacy Actions ... 17

Documentation Revision Changes ... 20

Action Developers Guide | HP Operations Orchestration Version 10.50

4

Developing Extensions for HP OO
This document provides Java and .NET developers with guidelines for developing actions for extending HP Operations

Orchestration.

Note: Knowledge of Java or .NET is required.

You can extend HP Operations Orchestration programmatically. This means that third parties can add functionalities to HP Operations

Orchestration and introduce them as content in the flow execution engine.

Introducing new content requires building an extension and deploying it to HP OO Central. You can write actions in Java or .NET.

In HP Operations Orchestration 10.x, extensions are called plugins (in previous versions, extensions were called IActions). A plugin is a piece

of code running within the run engine. This piece of code can define its own isolated classpath. Classpath isolation ensures that different

plugins can use conflicting dependencies. For example, plugin A can use dependency X version 1.0 and plugin B can use the same X

dependency, but in version 2.0. You are now able to use both plugins in the same flow regardless of the conflicting classpath issue.

A plugin contains one or more actions and references to all required dependencies.

In HP Operations Orchestration 10.x, there is a new @Action interface for developing actions. The @Action is a method in a class. See

"Developing @Actions" for more information.

Although all the plugins are run by Java, HP Operation Orchestration also supports .NET actions. The actions written in .NET are referenced

by a wrapping Java plugin. See ".NET Extensions" for more information.

Note: The IAction interface from HP OO 9.x is now deprecated. Users writing new content should refrain from implementing the IAction

interface and instead write @Actions.

Action Developers Guide | HP Operations Orchestration Version 10.50

5

Creating an @Action

The recommended way to build @Actions is as a Maven plugin.

You should use Apache Maven 3.0.3 - 3.0.5 to build your plugins using the SDK of 10.20 and below.

You should use Apache Maven 3.2.1 to build your plugins for SDK 10.50.

Developing Plugins

This section describes how to develop plugins.

Using the Maven archetype com.hp.oo.sdk:oo-plugin-archetype you can create a skeleton for a plugin and a Studio project.

Preparing to Create a Plugin Using a Maven Archetype

Install Maven

Install Maven on a computer with the bin directory in the computer's path. This enables you to run mvn from anywhere in the file system.

SDK 10.5x uses Maven 3.2.1, and there is a defect on their side that causes Maven to resolve dependencies using external repositories even

though we specify our internal Nexus artifact management system in the settings.xm file. The workaround is to force Maven to use a single

repository – the internal repository. For more information, see “Using a Single Maven Repository” on page 8.

Create a local Maven repository

• Expand sdk-dotnet-<version>.zip and sdk-java-<version>.zip to:

Windows: %HOMEPATH%\.m2\repository.

Linux: $HOME/.m2/repository.

Note: These files are located on the HP OO ZIP file in the SDK folder.

Following is an example of a directory structure, if the files were correctly extracted:

Register the plugin archetype

• Open the command prompt and enter the following command:

mvn archetype:crawl

This updates the Maven archetype catalog under $HOME/.m2/repository.

Action Developers Guide | HP Operations Orchestration Version 10.50

6

Creating a Plugin Using a Maven Archetype

Create a sample project

1. Go to the path where you want to create a sample plugin project, and enter the following command in the command line:

 mvn archetype:generate -DarchetypeCatalog=file://$HOME/.m2/repository

Note: For Windows, use %HOMEPATH%.

This initiates the project creation. A list of archetypes found in the catalog appears. Press the number representing the archetype

com.hp.oo.sdk:oo-plugin-archetype and then Enter.

In the example below, press 1.

2. During the archetype creation, enter the following details and press Enter after each one:

• groupId: The group id for the resulting Maven project. acmeGroup is used in the example below.

• artifactId: The artifact id for the resulting Maven project. acmeArtifact is used in the example below.

• package: The package for the files in the project. The default for this option is the same as the groupId.

• uuid: The UUID of the generated project. A randomly generated UUID is used in the example below.

The build finishes and a project is created.

Action Developers Guide | HP Operations Orchestration Version 10.50

7

Open the project in a Java IDE

The previous step created a new Java project with a Maven-based model.

Open this project in a Java IDE application.

The project contains two modules that have the same prefix as the provided artifact ID. One of the projects is a content pack project and the

other is a plugin project.

For example:

Parent project

In the illustrated example, the parent project is called acmeArtifact.

By default it contains two modules—one a content pack and the other a plugin. This project is meant to group @Actions and their relevant

operations and flows into a single content pack.

For example, if you were developing an Office integration, you might create several plugin projects—one for each Office version. But there

would be a single content pack project containing the operations and flows. This is the recommended best practice.

Plugin project

In the example, the plugin project is called acmeArtifact-plugin.

 This module contains the @Actions. When you are building this project (with Maven), the code inside is compiled and the resulting JAR file

can be opened in Studio, and operations can be created from the @Actions inside.

Inside this module, a sample @Action can be found. You can delete it and write your own.

Content pack project

In the example, the content pack project is called acmeArtifact-cp.

This module represents the content pack. It includes any plugin modules upon which it is dependent, for example, acmeArtifact-plugin and

its dependencies), as well as any flows, operations, and configuration items defined within it.

Use Studio to edit the content pack module

The content pack module contains a Studio project that can be opened and edited in Studio. You can import the project

folder (in our example, the acmeArtifact-project folder) into Studio in order to edit the project.

If you create flows, operations, or configuration items inside the project, you will be able to build this project with Maven. The resulting JAR

file will be a content pack that can then be deployed into Central or reopened in Studio by another user.

Action Developers Guide | HP Operations Orchestration Version 10.50

8

Create operations inside the project from the plugin module

If you want to create operations from plugins that are part of the same acmeArtifact project (for example, from acmeArtifact-plugin), follow

the following steps:

1. Import the acmeArtifact-project project into Studio.

2. Using Maven, build the acmeArtifact parent module.

3. Import the plugin and its dependencies into Studio.

4. The path for the OO plugin and its dependencies is the path of the acmeArtifact-cp.jar file under the local Maven repository.

5. In Studio, create a new operation, and select the plugin in the Create Operations dialog box.

Using a Single Maven Repository

You can force Maven to use a single repository by having it mirror all repository requests. The repository must contain all of the desired

artifacts, or be able to proxy the requests to other repositories. This setting is most useful when using an internal company repository with

the Maven Repository Manager to proxy external requests.

To achieve this, set mirrorOf to *.

Note: This feature is only available in Maven 2.0.5+.

<settings>

 ...

 <mirrors>

 <mirror>

 <id>internal-repository</id>

 <name>Maven Repository Manager running on repo.mycompany.com</name>

 <url>http://repo.mycompany.com/proxy</url>

 <mirrorOf>*</mirrorOf>

 </mirror>

 </mirrors>

 ...

</settings>,

(https://maven.apache.org/guides/mini/guide-mirror-settings.html)

https://maven.apache.org/guides/mini/guide-mirror-settings.html

Action Developers Guide | HP Operations Orchestration Version 10.50

9

Developing @Actions

An @Action is a method in a class; it can be any method in any class. This method is also referred to as an extension.

An @Action is invoked during flow execution, when an operation using that @Action is executed.

"Hello World!" Example

To mark a method as @Action, annotate it with @com.hp.oo.sdk.content.annotations.Action. The following is a simple "Hello

World!" @Action example:

public class MyActions {

 @Action

 public void sayHello() {

 System.out.println("Hello World!");

 }

 }

By default, the created @Action is named after the method that defines it. In the "Hello World!" example, the @Action name is sayHello. The

@Action name is used in the operation's definition. The operation is the means to expose an @Action to Studio and to flow authors. Each

operation points to a specific groupId, artifactId, version, and @Action name (GAV+@Action name).

You can customize the @Action name and provide a name that is different from the method name. You can do this using the @Action

annotation value parameter. The following code defines the same "Hello World!" @Action, but names it my-hello-action:

public class MyActions {

 @Action(“my-hello-action”)

 public void sayHello() {

 System.out.println("Hello World!");

 }

 }

Passing Arguments to @Actions

An @Action is exposed to the flow context and can request parameters from it. The flow context holds the state of the flow. For example,

consider the following @Action, which adds two numbers and prints the result to the console:

@Action

 public void sum(int x, int y){

 System.out.println(x+y);

 }

Parameters are taken from the context by name. The sum method requests two integer parameters x and y from the context. When

invoking the @Action, HP Operations Orchestration assigns the value of x and y from the context to the method arguments with the same

name.

Just like with @Action, it is possible to customize parameter names and request that HP Operations Orchestration resolves the value while

using a custom name. In the following example, the sum method requests that the context op1 parameter is assigned to the x argument

and op2 to the y argument:

@Action

 public void sum(@Param("op1") int x, @Param("op2") int y){

 System.out.println(x+y);

 }

The classes ResponseNames, ReturnCodes, InputNames, and OutputNames, under the com.hp.oo.sdk.content.constants

package, include commonly used constants, which you can use in the @Action. For example, input names such as HOST, USERNAME,

PASSWORD, PORT, and so on, or response names such as SUCCESS, FAILURE, NO_MORE, and so on.

Action Developers Guide | HP Operations Orchestration Version 10.50

10

Return Values

An @Action, like any Java method, can also return a single value. The returned value is considered the return result of the @Action and is

used as return result in the operation. It is also possible for an @Action to return multiple results to the operation. This is done by returning

a Map<String, String>, where the Map key is the name of the result, and the associated value is the result value. Returning a Map<String,

String> is a way for an @Action to pass multiple outputs to the operation at runtime.

Adding @Action Annotations

@Action annotations are used tso generate new operations in the Studio. When generating an @Action based operation, the new

operation’s initial attributes (description, inputs, outputs, responses) are taken from the @Action annotations definitions.

When developing plugins, you must correctly annotate the actions that return only a single value. The annotation has to declare an output

with the special name singleResultKey. There is a constant ActionExecutionGoal.SINGLE_RESULT_KEY that assists you, for example:

 @Action(name = "modulo-ten",

 description = "returns the last digit",

 outputs = @Output(ActionExecutionGoal.SINGLE_RESULT_KEY),

 responses = @Response(text = ResponseNames.SUCCESS,

 field = OutputNames.RETURN_RESULT,

 value = "0", matchType = MatchType.ALWAYS_MATCH,

 responseType = ResponseType.RESOLVED)

)

 public int moduloTen(@Param("number") int number) {

 return number % 10;

 }

Note: It is important that you use @Action annotations; otherwise, operations created from these @Actions are harder to use.

Annotations

Adding metadata means adding or setting the relevant annotations and their attributes. The following table describes the @Action,

@Output, @Response and @Param annotations:

Action

Attributes:

• value (optional): the name of the @Action

• description (optional)

• Output[] (optional): array of outputs (see below)

• Response[] (optional): array of responses (see below)

Comments:

You have two options for setting the name of the @Action:

1. The value attribute:

@Action("aflPing")
public void ping(…)

 or

@Action(value="aflPing")
 public void ping(…)

2. The method name:

@Action
public void ping(…)

The names are checked in the above order. The first one checked is the value attribute. If it doesn’t exist, the method name is selected.

Action Developers Guide | HP Operations Orchestration Version 10.50

11

Param

Attributes:

• value: the name of the input

• required (optional): by default is false

• encrypted (optional): by default is false

• description (optional)

Comments:

This is important not only for the @Action data, but also for execution.

Inputs give an operation or flow the data needed to act upon. Each input is mapped to a variable. You can create an input for a flow,

operation, or step.

In Studio, inputs can be:

• Set to a specific value

• Obtained from information gathered by another step

• Entered by the person running the flow, at the start of the flow

See the HP OO 10 Studio Authoring Guide for more information and see "Passing Arguments to @Actions" for details on the execution

functionality.

Output

Attributes:

• value: the name of the output

• description (optional)

Comments:

In order for the operation in Studio to have multiple outputs, the @Action itself has to declare them. Assigning values to

multiple outputs can be achieved by creating an @Action whose return value is a Map<String, String>.

In order for the operation in studio to have only one output, the @Action itself has to declare it in the return value, and use

the SINGLE_RESULT_KEY for binding.

The output is the data produced by an operation or flow. For example, success code, output string, error string, or failure

message.

In Studio, the different kinds of operation outputs include:

• Raw result: the entire returned data (return code, data output, and error string).

• The primary and other outputs, which are portions of the raw result.

Response

Attributes:

• text: the text displayed by each response transition

• field: the field to evaluate

• value: the expected value in the field

• description: (optional)

• isDefault: Indicates whether this is the default response. The default value is false. Only one response in a @Action can

have this set to true.

• mathType : The type of matcher to activate against the value. For example if we defined (field = fieldName, value = 0,

matchType = COMPARE_GREATER) this means that this response will be chosen if the field fieldName will have a value

greater than 0.

Action Developers Guide | HP Operations Orchestration Version 10.50

12

• responseType: The type of the response (Success, Failure, Diagnosed, No_Action or Resolve_By_Name).

• isOnFail: Indicates whether this is the On-Fail response. The default value is false. Only one response in a @Action can

have this set to true.

• ruleDefined: Indicates whether or not this response has a rule defined. Responses that have no rules defined can be

used as the default response. There should be only one response without a rule defined in a single @Action.

• Comments:

• A response is the possible outcome of an operation or flow. The response contains a single rule: field matches

value.

See the HP OO 10 Studio Authoring Guide for more information.

@Action Data Definition Example

@Action(value = "aflPing",
 description = "perform a dummy ping",
 outputs = {@Output(value = RETURN_RESULT, description ="returnResult description"),
 @Output(RETURN_CODE),
 @Output("packetsSent"),
 @Output("packetsReceived"),
 @Output("percentagePacketsLost"),
 @Output("transmissionTimeMin"),
 @Output("transmissionTimeMax"),
 @Output("transmissionTimeAvg")},
 responses = {@Response(text = "success", field = RETURN_CODE, value = PASSED),
 @Response(text = "failure", field = RETURN_CODE, value = FAILED)})

 public Map<String, String> doPing(
 @Param(value = "targetHost",
 required = true,
 encrypted = false,
 description = "the host to ping") String targetHost,
 @Param("packetCount") String packetCount,
 @Param("packetSize") String packetSize) {
 …
 }

Action Developers Guide | HP Operations Orchestration Version 10.50

13

Testing Extensions

Testing Extensions as Part of the Project Build

As an @Action is a simple Java method, it is possible to test it using standard Java test tools such as JUnit, leveraging the

normal lifecycle phases of a Maven project.

As the @Action itself is a regular method, it does not require invoking any HP Operations Orchestration components. The

invocation can be a direct Java method invocation in the test case.

Testing Extensions Independently from the Command Line

Once they are packaged into a plugin, you can invoke extensions from the command line for test purposes. The following is

an @Action example:

public class TestActions {
 @Action
 public int sum(@Param("op1") int x, @Param("op2") int y){
 return x+y;
 }
 }

Suppose the TestActions class is in a plugin with the following groupId, artifactId and version (GAV): com.mycompany:my-
actions:1.0

You can invoke the sum @Action from the command line as follows:

mvn com.mycompany:my-actions:1.0:execute -Daction=sum -Dop1=1 -Dop2=3 -X

The result of this command is a long trace. The -X option is required to see log messages. Towards the end of the trace you

can see:

[DEBUG] Configuring mojo 'com.mycompany:my-actions:1.0::execute' with basic configurator -->
 [DEBUG] (f) actionName = sum
 [DEBUG] (f) session = org.apache.maven.execution.MavenSession@21cfa61c
 [DEBUG] -- end configuration --
 [DEBUG] Action result: action result = 4

Action Developers Guide | HP Operations Orchestration Version 10.50

14

.NET Extensions

In order to create content using .NET actions, you need to:

1. Create a DLL file containing the implementation of the desired actions, just like in version 9.x. The action class should

implement an IAction interface.

2. Deploy the created DLL, including referenced libraries, to the local Maven repository, using mvn install:install-

file. For more information on installing artifacts that were not built by Maven, see

http://maven.apache.org/plugins/maven-install-plugin/usage.html

3. Generate an HP OO Maven plugin, wrapping the .NET action. To do this, you need to:

a. Create a pom.xml file. For POM references, see http://maven.apache.org/pom.html.

b. Under <dependencies>, add a list containing all the required DLLs. Define all DLL artifacts using

<type>dll</type>.

c. Run the mvn install command from the folder containing the pom.xml file. This is considering that the Maven bin

folder is contained in the system path.

The result is the Maven plugin, placed in the target folder and installed to the local Maven repository. The target folder

location is relative to the current folder.

The content of the pom.xml is:

<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-
4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>[my plugin groupId]</groupId>
 <artifactId>[my plugin artifactId]</artifactId>
 <version>[my plugin version]</version>

 <packaging>maven-plugin</packaging>

 <properties>
 <oo-sdk.version>[THE LATEST HP OO_SDK VERSION]</oo-sdk.version>
 <oo-dotnet.version>[THE LATEST HP OO_DOTNET VERSION]</oo-dotnet.version>
 </properties>

 <dependencies>
 <!-- required dependencies -->
 <dependency>
 <groupId>com.hp.oo.sdk</groupId>
 <artifactId>oo-dotnet-action-plugin</artifactId>
 <version>${oo-sdk.version}</version>
 </dependency>

 <dependency>
 <groupId>com.hp.oo.dotnet</groupId>
 <artifactId>oo-dotnet-legacy-plugin</artifactId>
 <version>${oo-dotnet.version}</version>
 <type>dll</type>
 </dependency>

 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>IAction</artifactId>
 <version>9.0</version>
 <type>dll</type>
 </dependency>
 <!-- end of required dependencies -->

 <dependency>
 <groupId>[groupId-1]</groupId>
 <artifactId>[artifactId-1]</artifactId>
 <version>[version-1]</version>
 <type>dll</type>

http://maven.apache.org/plugins/maven-install-plugin/usage.html
http://maven.apache.org/pom.html

Action Developers Guide | HP Operations Orchestration Version 10.50

15

 </dependency>

 <dependency>
 <groupId>[groupId-2]</groupId>
 <artifactId>[artifactId-2]</artifactId>
 <version>[version-2]</version>
 <type>dll</type>
 </dependency>

 ...

 <dependency>
 <groupId>[groupId-n]</groupId>
 <artifactId>[artifactId-n]</artifactId>
 <version>[version-n]</version>
 <type>dll</type>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>com.hp.oo.sdk</groupId>
 <artifactId>oo-action-plugin-maven-plugin</artifactId>
 <version>${oo-sdk.version}</version>
 <executions>
 <execution>
 <id>generate plugin</id>
 <phase>process-sources</phase>
 <goals>
 <goal>generate-dotnet-plugin</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </project>

In the following example:

• The POM file is named example.pom.xml.

• The my-dotnet-actions.dll contains the desired actions.

• The generated Maven plugin is com.example:my-dotnet-plugin:1.0.

<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-
4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.example</groupId>
 <artifactId>my-dotnet-plugin</artifactId>
 <version>1.0</version>
 <packaging>maven-plugin</packaging>

 <properties>
 <oo-sdk.version>[THE LATEST HP OO_SDK VERSION]</oo-sdk.version>
 <oo-dotnet.version>[THE LATEST HP OO_DOTNET VERSION]</oo-dotnet.version>
 </properties>

 <dependencies>
 <!-- required dependencies -->
 <dependency>
 <groupId>com.hp.oo.sdk</groupId>
 <artifactId>oo-dotnet-action-plugin</artifactId>
 <version>${oo-sdk.version}</version>
 </dependency>
 <dependency>
 <groupId>com.hp.oo.dotnet</groupId>
 <artifactId>oo-dotnet-legacy-plugin</artifactId>

Action Developers Guide | HP Operations Orchestration Version 10.50

16

 <version>${oo-dotnet.version}</version>
 <type>dll</type>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>IAction</artifactId>
 <version>9.0</version>
 <type>dll</type>
 </dependency>
 <!-- end of required dependencies -->
 <dependency>
 <groupId>com.example</groupId>
 <artifactId>my-dotnet-actions</artifactId>
 <version>1.0</version>
 <type>dll</type>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>com.hp.oo.sdk</groupId>
 <artifactId>oo-action-plugin-maven-plugin</artifactId>
 <version>${oo-sdk.version}</version>
 <executions>
 <execution>
 <id>generate plugin</id>
 <phase>process-sources</phase>
 <goals>
 <goal>generate-dotnet-plugin</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </project>

Action Developers Guide | HP Operations Orchestration Version 10.50

17

Legacy Actions

In order to create content using legacy actions, you need to:

1. Verify that you have a JAR containing the implementation of the desired actions, just like in version 9.x. The action class

should implement an IAction interface.

2. Deploy the JAR, including referenced libraries, to the local Maven repository, using mvn install:install-file. For more

information on installing artifacts that were not built by Maven, see http://maven.apache.org/plugins/maven-install-

plugin/usage.html

3. Generate an HP OO Maven plugin, wrapping the legacy actions library. To do this, you need to:

a. Create a pom.xml file. For POM references, see http://maven.apache.org/pom.html.

b. Under <dependencies>, add a list containing all the required JARs.

c. Run the mvn install command from the folder containing the pom.xml file. This is considering that the Maven bin

folder is contained in the system path.

The result is the Maven plugin, placed in the target folder and installed to the local Maven repository. The target folder

location is relative to the current folder.

The content of the pom.xml is:

<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-
4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>[my plugin groupId]</groupId>
 <artifactId>[my plugin artifactId]</artifactId>
 <version>[my plugin version]</version>

 <packaging>maven-plugin</packaging>

 <properties>
 <oo-sdk.version>[THE LATEST HP OO_SDK VERSION]</oo-sdk.version>
 <oo-dotnet.version>[THE LATEST HP OO_DOTNET VERSION]</oo-dotnet.version>
 </properties>

 <dependencies>
 <!-- required dependencies -->
 <dependency>
 <groupId>com.hp.oo.sdk</groupId>
 <artifactId>oo-legacy-action-plugin</artifactId>
 <version>${oo-sdk.version}</version>
 </dependency>
 <!-- end of required dependencies -->

 <dependency>
 <groupId>[groupId-1]</groupId>
 <artifactId>[artifactId-1]</artifactId>
 <version>[version-1]</version>
 </dependency>

 <dependency>
 <groupId>[groupId-2]</groupId>
 <artifactId>[artifactId-2]</artifactId>
 <version>[version-2]</version>
 </dependency>

 ...

 <dependency>
 <groupId>[groupId-n]</groupId>
 <artifactId>[artifactId-n]</artifactId>
 <version>[version-n]</version>
 </dependency>

http://maven.apache.org/plugins/maven-install-plugin/usage.html
http://maven.apache.org/plugins/maven-install-plugin/usage.html
http://maven.apache.org/pom.html

Action Developers Guide | HP Operations Orchestration Version 10.50

18

 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>com.hp.oo.sdk</groupId>
 <artifactId>oo-action-plugin-maven-plugin</artifactId>
 <version>${oo-sdk.version}</version>
 <executions>
 <execution>
 <id>generate plugin</id>
 <phase>process-sources</phase>
 <goals>
 <goal>generate-legacy-plugin</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </project>

In the following example:

• The POM file is named example.pom.xml.

• The my-legacy-actions.jar contains the desired actions.

• The generated Maven plugin is com.example:my-legacy-actions:1.0.

<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-
4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example</groupId>
 <artifactId>my-legacy-actions-plugin</artifactId>
 <version>1.0</version>

 <packaging>maven-plugin</packaging>

 <properties>
 <oo-sdk.version>[THE LATEST HP OO_SDK VERSION]</oo-sdk.version>
 <oo-dotnet.version>[THE LATEST HP OO_DOTNET VERSION]</oo-dotnet.version>
 </properties>

 <dependencies>
 <!-- required dependencies -->
 <dependency>
 <groupId>com.hp.oo.sdk</groupId>
 <artifactId>oo-legacy-action-plugin</artifactId>
 <version>${oo-sdk.version}</version>
 </dependency>
 <!-- end of required dependencies -->

 <dependency>
 <groupId>com.example</groupId>
 <artifactId>my-legacy-actions</artifactId>
 <version>1.0</version>
 </dependency>

 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>com.hp.oo.sdk</groupId>
 <artifactId>oo-action-plugin-maven-plugin</artifactId>
 <version>${oo-sdk.version}</version>
 <executions>
 <execution>
 <id>generate plugin</id>
 <phase>process-sources</phase>

Action Developers Guide | HP Operations Orchestration Version 10.50

19

 <goals>
 <goal>generate-legacy-plugin</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </project>

Action Developers Guide | HP Operations Orchestration Version 10.50

20

Documentation Revision Changes

Revision B

 Added new section “Using a Single Maven Repository”

