

HP Operations Orchestration

Best Practices for Content Authoring

Document Release Date: September 2015
Software Release Date: September 2015

 HP Operations Orchestration Version

2

Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's
standard commercial license.

Copyright Notice
© Copyright 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation. UNIX® is a registered trademark of The Open Group.

This product includes an interface of the 'zlib' general purpose compression library, which is Copyright © 1995-2002 Jean-loup Gailly and Mark Adler.

Documentation Updates
The title page of this document contains the following identifying information:

• Software Version number, which indicates the software version.
• Document Release Date, which changes each time the document is updated.
• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to: http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, go to: http://h20229.www2.hp.com/passport-
registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HP sales representative for details.

Support
Visit the HP Software Support Online web site at: https://softwaresupport.hp.com/
This web site provides contact information and details about the products, services, and support that HP Software offers.
HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools
needed to manage your business. As a valued support customer, you can benefit by using the support web site to:

• Search for knowledge documents of interest
• Submit and track support cases and enhancement requests
• Download software patches
• Manage support contracts
• Look up HP support contacts
• Review information about available services
• Enter into discussions with other software customers
• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP
Passport ID, go to:
http://h20229.www2.hp.com/passport-registration.html
To find more information about access levels, go to:
http://h20230.www2.hp.com/new_access_levels.jsp
HP Software Solutions Now accesses the HPSW Solution and Integration Portal Web site. This site enables you to explore HP Product Solutions to meet
your business needs, includes a full list of Integrations between HP Products, as well as a listing of ITIL Processes. The URL for this Web site is
http://h20230.www2.hp.com/sc/solutions/index.jsp

http://h20230.www2.hp.com/selfsolve/manuals
http://h20229.www2.hp.com/passport-registration.html
http://h20229.www2.hp.com/passport-registration.html
https://softwaresupport.hp.com/
http://h20229.www2.hp.com/passport-registration.html
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20230.www2.hp.com/sc/solutions/index.jsp

HP Operations Orchestration

3

Contents
Introduction .. 5
General Guidelines .. 5

Naming ... 5

Casing .. 5

Content Packs/Projects ... 5

Folders ... 5

Flows, Operations, and Steps ... 6

Inputs and Outputs ... 6

Configuration Items .. 7

Acronyms .. 8

Plural versus Singular .. 8

Legal Naming ... 8
Folder Structure .. 9

Content Structuring .. 9

Handling Multiple Integration Product Versions .. 10
Create Operations or Flows? ... 10
Descriptions ... 10

Operations and Flows .. 10

Folders ... 11

Additional Description Recommendations .. 12
Date and Time, Numbers and Units ... 12

Flow Authoring... 13
Flow Design ... 13

Reusing Existing Content .. 13

Create Modular Flows .. 13

Use Step References .. 14

Keep Flows Small .. 14

Start Step .. 15

Transitions .. 15

Callouts.. 16

Layout .. 16

Icons ... 18
Operations .. 20

Avoid Creating Multiple Operations that Run the Same Command ... 20
Soft Copies Instead of Hard Copies .. 21
JavaScript “Do Nothing” Operation ... 21
Inputs .. 23

 HP Operations Orchestration Version

4

Assignment... 23

Handling Multiple Versions of the Same Product .. 23

Handling Versions ... 23

Timeouts ... 24
Outputs... 24
Responses ... 24
Error Messages ... 25

Scriptlets ... 25
Coding Style ... 25

Long Scriptlets ... 25

Validate Scriptlets ... 25

JavaScript Best Practices and Scriptlets .. 26

Exception Handling ... 27
Handling Scriptlets in OO ... 27

OO Special Objects and Methods ... 28

Scriptlet Capabilities ... 28

Reusing Scriptlets ... 29

Handling Variables .. 29
Content Pack Versioning .. 30
Deprecation .. 30

Avoid Using Content from Deprecated Folders ... 30
When to Deprecate Content .. 30
How to Deprecate Content .. 31

References ... 31

HP Operations Orchestration

5

Introduction
This document provides guidelines for OO Content Authoring, as well as aligning Flow Authors to a
common way to develop, document, package, and deliver OO 10.x Content.

The target audience is the Flow Author, a persona who creates and debugs flows in HP OO Studio.

This document starts with general guidelines, and then continues with best practices for flows,
operations, scriptlets, and content pack versioning and deprecation.

General Guidelines

This section contains the recommendations regarding casing, the naming of the content
packs/projects, folders, flows/operations/steps, inputs/outputs, configuration items, acronyms,
when to use plural/singular, and legal naming.

Naming
Casing
The names of different types of objects must be consistent, as follows:

• Use title case for folders, flows, operations, steps, and configuration items. Using title case means
that you capitalize the first letter for all words, except helper words like ‘a’, ‘the’, ‘and’, ‘by’, ‘for’,
'to', 'from', and so on. Examples: Reboot Host, Check the Log Files

• Use camel case for inputs, outputs, results, flow variables. Camel case occurs when the first letter
is in lower-case, and subsequent first letters of words contained in the name are upper-case, with
no spaces within the name. Example: serverName

• Use lower case for responses.
Examples: success, failure, has more, and no more

• Use lower case with dashes for content pack names or project names.
Example: oo-linux-remediation-cp.jar

Content Packs/Projects
Naming of multiple content packs must be consistent as follows:

oo-domain | use case | cp-<version>.jar

Examples: oo-remediation-cp-1.0.121.jar, oo-linux_remediation-cp-4.5.0.jar

In OO 10.x the content packs are independent of the OO 10.x platform (Central, Studio, RAS). Consider
including the version (for example, oo10-remediation-cp) in the artifact name only when it’s required
by use cases, such as content that is delivered/supported on multiple OO major versions (OO 9.x and
OO 10.x). In other cases, it is a best practice not to link the OO platform version with CPs version.

Folders
Naming must be consistent between multiple folders. The names of the folders can be a maximum
of 128 characters long, and are not case-sensitive. Using the OO common folder names as much as
possible. In this way, the folders are aligned to a common naming and as a result, the
operations/flows groups will be more visible.

The OO common folder names are:

• “Community” for content developed by and for Community
• “Deprecated” for content that was deprecated according to the deprecation policies
• “Integrations” for content specific per integration product

 HP Operations Orchestration Version

6

• “Samples” for flows that demonstrate how operations and flows can realize simple use cases
• “Utilities” for reusable flows and operations.
The following directory structure reflects this nomenclature. Flows in the Utilities folder are also used
in other flows, such as “Create Server Profile” and “Update Firmware for Server Profile”. The common
Utility flows also create JSON objects.

Flows, Operations, and Steps
Naming must be consistent between multiple content entities. The names of the flows can be a
maximum of 128 characters long, and are not case-sensitive.

Use <Verb> <Noun> name format for flow and operation names. Also, where possible, use Create,
Read, Update, Delete, or another group as common verbs with Get, and Set for <Verb>. When adding
operations or flows to an existing integration, use the existing naming for <Verb>. This will ensure
consistency with the out-of-the-box flows and operation names. Examples: Create Snapshot, Get
Image Details

It is recommended to rename steps to match the actual action. When using such content in specific
flows, it is a good practice to rename the step with the name of the actual action that is performed.
This can enhance the clarity of the flow.

Example: the following picture shows that a step named “Is Status Code 200?” is more intuitive than
“String Equals”.

Inputs and Outputs
Input and output names must be aligned with common names. For inputs, it is recommended that
you use common prefixes/suffixes such as:

• host
• username
• password
• port
• timeout
• protocol

It is preferable to add a prefix with the integration product name or acronym such as:

<product>Host, <product>Username, <product>Password

HP Operations Orchestration

7

Examples: omiHost, omiUsername, omiPassword

The common outputs are: returnResult, returnCode, exception, and FailureMessage.

The returnResult is the primary result of an operation.
The returnCode is an internal code: 0 for success, -1 for failure. A returnCode is used to determine
the response of a step.
The exception is the exception stack trace, which is mainly used for debugging the root cause in case
of failures.
The FailureMessage is the error message that is used to propagate exception messages between
steps and flows. This output name starts with uppercase ‘F’ because OO Studio automatically makes
it uppercase by default when a flow is created.

Configuration Items
The following format is recommended for configuration item names:

<Configuration item prefix>_<Project name>_<Type>

The Configuration item prefix consists of the category initials. For example, SL for Selection Lists, SA
for System Accounts, and so on.
The Project name is simply the project to which the configuration item belongs.
The Type is the configuration item type, such as: selection lists, system accounts, system properties
and so on.

 Using the recommended format enables you to better differentiate the following:

• A flow variable from a configuration item.
• Configuration items by their categories. The prefix helps to easily distinguish between a selection

list and system account
• Configuration items by the project name. Example: a selection list that belongs to REST Project or to

another project
• Configuration items by their type. Example: the system property that contains the URL from that

containing the proxy host

Starting with OO 10.20, configuration items can be structured in folders. This way, working with too
long names will be avoided.

In the following tree structure, you can see examples of the recommended format for configuration
items names:

 HP Operations Orchestration Version

8

Acronyms
The following recommendations apply for well-known abbreviations such as: ID, URL, HTML, and
HTTP:

• Use uppercase acronyms rather than Camel case for folder, flow, or operation names.

Example: HTTP Client
• Use Camel case for inputs and outputs, such as: httpUrl

Plural versus Singular
Use plurals for folder names.

Examples: Servers, Databases, Operating Systems, Images

Use singular for flows and operations that interact with a single resource, such as getting details on a
device.

Examples: Get Server Details, Run Script on Server

Legal Naming
Following are the valid characters for naming folders, operations, flows, and configuration items:

• Alphanumeric characters
• Spaces
• Curly, round and square brackets and full width brackets
• Underscore, full width underscore
• Hyphen, full width hyphen
• Dot, full width katakana dot, full stop, ideographic half width stop, half-width katakana middle

dot, ideographic full stop, katakana middle dot, middle dot

The following strings are reserved names and should not be included in flow names, configuration
item names, and folder names:

• ., .attic, .section, .section.xml, .xml, .properties
• CON, PRN, AUX, CLOCK, NUL, COM1, …, COM9, LPT1, …, COM9

Additional naming conventions:

• Flow names, configuration item names, and folder names cannot contain the sequence “..”
• Flow names, configuration item names, and folder names cannot end with “.”

HP Operations Orchestration

9

Folder Structure
This section describes how to organize content within folders to create a consistent folder structure.

Content Structuring
Make sure that the folder structure is well-defined and consistent between projects, so that other
authors will be able to locate your flows, operations, and utilities.

It is a best practice to organize the content according to functionality/use case/product:

/Library/<Company | Publisher>/<Domain>/ [Area]/<Use Case | Project>/ [version]

Company | Publisher - Having a common top-level folder is advantageous because it clearly
separates your own developed content from that of OO and also makes it easier to set permissions.

Domain - The domain is typically tied to larger groups within the organization, as well as the logical
separation by technologies.

Examples: Remediation, Incident Management, Cloud, Virtualization

Area (optional) – Depending on the number of flows and size of your organization, this can be
beneficial in that it creates an extra layer based upon either a technical or functional area.

Example: Linux

Use Case | Project - This level offers a variety of uses, much of which depends on the type and pace
of development of OO flows.

Example: Restart Server

Version (optional) - Useful for when you must run several versions of the same flow at the same time.

Examples: Library/MyCompany/Remediation/v1.0/Linux/Restart Server
 Library/MyCompany/Remediation/v1.1/Linux/Restart Server

Note: It is recommended that you use the subversioning capabilities of Studio for multiple versions
of the same flow. For more details, refer to “Working with Source Control in HP OO Studio” in the
Studio Guide.

 HP Operations Orchestration Version

10

Handling Multiple Integration Product Versions
The folder structure of the integrations must be kept small. When you create integrations with many
products for the same vendor, consider organizing the flows and operations in a folder structure
containing the official vendor and official product names (or broadly used acronyms such as ALM,
QC):

../Integrations/Vendor/Product/ [ProductVersion]

Example:

…/Integrations/Hewlett-Packard/OperationManager i/1.0

Create Operations or Flows?
For basic operations, such as CRUD, it is recommended that you create operations rather than flows.
Also, developing operations is a good choice when you need to support multiple product versions, or
hide complex API in atomic operations. Also, programming features such as refactoring provided by
different IDEs (such as Eclipse and IntelliJ) helps you to speed up the development and maintenance
time. For more details regarding the development of operations, please read The OO 10 SDK - Getting
Started tutorial.

In the following example, the “Wait for task” flow has a large number of steps; in such situations, you
don’t want to have busy wait loops in flows as it makes triaging results very difficult. Writing a new
“Wait” operation allows for smaller granularity checking, without creating hundreds of tracked
results in the OO run logs.

On the other hand, creating new operations involves development and test time, while flows can use
out-of-the-box operations that have been already tested. To avoid these additional resource
requirements, it is a best practice to create common and modular code that can be reused.

Descriptions
Operations and Flows
The operations/flows must have clear and consistent descriptions. These descriptions should include
the following sections:

Summary is a short description of the operation/flow functionality. It should contain enough
information to understand the use case.
For Inputs, the following items are required for each input whenever the information is applicable
and available:

• Description

HP Operations Orchestration

11

• Format
• Default Values
• Valid Values
• Examples

For Results, the following items are required for each:

• Description
• Format
• Examples

The Responses section contains the description of each response.
Notes (optional) is a custom note section that contain prerequisites, some limitations, or other
information deemed useful for the user.
Keywords (optional) is a section to help the flow/operation to be found in searches.

It is recommended that all inputs and outputs are documented in the description, and that they are
listed in the same order in which they appear in the Inputs tab.
The following items must be enclosed in double quotation marks when used in a sentence:

• Inputs
• Responses or results
• Examples and values

Example: You must specify a value for the “proxyHost” input.

Following is an example of a long description spread across multiple lines:

The accepted and recommended HTML tags inside the descriptions are:

a, b, blockquote, br, cite, code, dd, dl, dt, em, i, li, ol, p, pre, q,
small, span, strike, strong, sub, sup, u, ul and appropriate attributes.

Folders
Folder descriptions can be added by right-clicking on a folder and then selecting Properties, as shown
in the following image:

 HP Operations Orchestration Version

12

Add general information about the integration such as versions supported, API, deployment
requirements and third party libraries at folder level.

Example:

The content in this folder integrates with VMware vSphere vCenter and ESX(i).

Supported versions: VMware vSphere 5.1, 5.5
Deployment requirements: Windows or Linux RAS
Interfaces / APIs: SOAP
Third party libraries: VI Java API 5.1

Additional Description Recommendations
In Descriptions, use:

• Formulations with second person singular instead of third person neutral.
Example:
If you do not specify a value for this input, the operation uses the default value.
Instead of:
If a value for this input is not specified, the operation uses the default value.

• The same syntax for section headings everywhere in the description.
Example: use “Examples” not “e.g.” or “ex”.

• The values from "Default Values", "Valid Values", "Format ", "Examples" that contain only a
punctuation mark should be between apostrophes.
Example: Default Value: ‘,’

• Often the summary contains all relevant keywords. But if it is not the case, add a line in the end of
the description with keywords. This is particularly helpful for shared and reusable content.
Example: incident management

Date and Time, Numbers and Units
The representation of Date and Time, Numbers and Units must be consistent.

When integrating with a certain product consider using the date and time specific to the integration
product. If you report the details of the events from a system, then the expectation is to have the
date in the same format. In the event that there is a need for conversion, use the Date and Time
content.

It is preferable that you use the most common and specific units. Asking the user to provide a timeout
in milliseconds or a disk size in kilobytes simply creates extra calculations.

Examples: Prefer seconds over milliseconds, base 10 (MegaBytes) over base 2 (Mebibyte).

HP Operations Orchestration

13

Flow Authoring

Flow Design
Reusing Existing Content
Because there are many flows and operations already created, check first if a flow or operation
already exists using OO Studio Search, OO Studio HPLN search capability (introduced in OO10.10) and
product documentation.

Note: The following pictures shows how to use OO Studio HP Live Network Search:
1. Set the HPLN credentials:

2. The HPLN Search pane is located at the bottom of the Studio Workspace. Right-click on

a row to view the full description of the search results, or, to connect directly to the
location of the content in HPLN.

You can find more details on this feature in “Searching Content on HP Live Network from Studio” in
the Studio Guide.

Create Modular Flows
It is a best practice to design modular flows rather than a single flow that performs all tasks, and it
would be even better to have many subflows with very specific roles. Each flow should have a single,
well-focused purpose, executing only single aspect of the desired functionality. Also, the name of flow
must be self-explanatory.

The benefit of creating such modular flows is that they are easier to create, test, maintain, enhance,
and reuse.

Why it is important to separate more responsibilities into separate flows? Because each responsibility
is an axis to change. When the requirements change, that change will be manifest through a change
in responsibility among the flows. If a flow has more than one responsibility, then the responsibilities
become coupled. This kind of coupling leads to fragile designs that break in unexpected ways when
changed.

Modular flows are easier to test. Breaking a large flow into smaller independent flows means that
parts of a complex flow can be tested independently and likely with fewer tests.

Modular flows have greater cohesion. Smaller flows adapt more readily to new requirements and are
more easily stabilized.

Modular flows can be reused. This “economy” eliminates the duplication of knowledge or logic that
has already been implemented.

 HP Operations Orchestration Version

14

Modular flows are easy to understand. Imagine that you have been assigned to fix a bug in the flow
shown in Figure A (this page). Now take a look at the flow shown in Figure B (page 15). Which flow
would you rather work on?

The following example shows a well-focused flow with a clear purpose.

Use Step References
A step reference is flow or operation placed in a wrapper and used in other complex flows. Step
referencing is a common practice when reusing flows and operations. Step references are
advantageous because a wrapper flow can be tailored to specific process and user requirements,
thereby reducing the overall amount of flow authoring work.

Keep Flows Small
A flow should fit on the canvas with Studio maximized, with a 1:1 view magnification. It is
recommended that you employ modular flows. In fact, when you have flows with more than 10 steps,
you should consider splitting them into subflows. While large flows with 10 steps or more are
allowed, it is a best practice to carefully examine such flows to identify where sequences of steps can
be broken down into subflows.

Small flows are recommended because they are easy to test, easy to debug, easy to maintain, easy
to understand for others.

For example, the following flow epitomizes poor design practices (it has more than 40 steps,
spaghetti transitions and the start step is obscure placed).

BAD PRACTICE

Figure A

HP Operations Orchestration

15

In Figure B, the steps have been grouped into subflows; the main flow is much improved:

Figure B

Start Step
The start step should be located in the upper-left corner of the flow, with the following exceptions:

• The Start step has many responses, each of which leads to another step
• Placing the start step in the upper-left corner would cause excessive visual complexity, such as

crossing of transitions

Transitions
Keep Transition Neat and Tidy

As much as possible, transition lines should not cross over each other.

Collapse multiple transitions from one step to another (in same direction) so that a single line
represents all of the transitions.

Place transition labels close to the source/origin step:

Keep Transition Lines Out of Step Names

It is helpful for users if you use a well-chosen, meaningful step name. For example, in the following
pictures, the diagram on the left is quicker to code, but the example on the right is easier to read
and debug.

 HP Operations Orchestration Version

16

Callouts
It is helpful to see a well-chosen step name, but sometimes you want to have more information
displayed in the flow panel. The OO callouts represents a good way to accomplish this.

The following example shows how you can use callouts in a flow:

Layout
When designing a flow layout, it is a best practice to consider well-known process automation
layouts.

Swimlane (cross-functional) diagrams are process flowcharts that can be expanded to show times
(such as when tasks are complete and how long they take) as well as information about who is
responsible for what. Swimlane diagrams enable you to identify time traps - which processes take
the most time - as well as capacity constraints, and which resources are getting bogged down with
work.

HP Operations Orchestration

17

Following is an OO Swimlane flow:

Note: For more details regarding the customization of the transitions, refer to Customizing Flow
Transitions.

“Z” Layout diagrams progress from left to right and from top to bottom, and are best-suited when
transitions (success, failure) to return steps do not cross transitions between regular steps.

“2” Layout diagrams progress from left to right and from top to bottom, and are best-suited when
there are “central” steps - such as notification or exception handler - in the flow, or to avoid
crossing transitions.

 HP Operations Orchestration Version

18

Icons
The saying, “a picture is worth a thousand words” applies to the use of icons, which can quickly
communicate content and structure, as well as improve readability.

To achieve quick and easy communication, select relevant icons. For example, use specific, well-
known icons to represent resources (such as Servers or Databases). When appropriate and helpful,
add annotations to represent different actions (such as Start, Stop, and Check).

HP Operations Orchestration

19

To add annotations:

1. Expand the Icons panel in Studio:

2. Fix it on the screen by clicking on the small pin:

3. Open the Properties of a flow or operation:

 HP Operations Orchestration Version

20

4. Drag the Annotation icon over the original icon:

5. Final icon is ready:

Operations

This section contains recommendations for:

• Designing an operation

• Reusing out-of-the-box operations

• Executing against multiple versions of a integration product

• Using standard outputs across OO Content

• Using proper responses and providing meaningful error messages

Avoid Creating Multiple Operations that Run the Same Command
If at all possible, avoid creating multiple operations that run the same command. For example, you
can get both packet loss and maximum latency from a Ping operation. It is a best practice to capture
both pieces of information in one operation by using multiple outputs of one Ping operation, rather
than create multiple operations that use the ping command.

Following are the available outputs for a Ping operation:

HP Operations Orchestration

21

Exceptions to this principle are operations that are extremely generic, such as an operation that runs
a WMI command. It is better to create WMI command operations that are specific to particular
functions, instead of a single operation that has a very generic input for the WMI command and very
generic outputs.

Example: The “Search Event Log” and “Get Active Users” operations run a WMI command:

Soft Copies Instead of Hard Copies
Using soft copies ensures future updates and fixes in the out-of-the-box content and will be reflected
in your flows. For more details on soft copies vs hard copies, refer to “Complete operation fields” in
Operations: Soft VS Hard Copy.

Each operation belongs to an action plugin jar that is part of a content pack archive. An action plugin
is identified by GAV – GroupId, ArtifactId, and Version.

An operation is uniquely identified by the GAV of the plugin and by the Action Name (the @Action
name), so these fields are mandatory (disabled for editing). For an operation without GAV and Action
Name, the OO engine won’t know which code to execute.

The Group Alias lets you separate between assigning an operation to a RAS during authoring time
and the runtime environment.

When providing an Override Group, the flow author can set the RAS by entering a different group if
needed to override the current one. More details, can be found in “Configuring Group Aliases” in the
Studio Guide.

The following image shows an example with all Operation fields completed:

JavaScript “Do Nothing” Operation
The “Do Nothing” operation is recommended when JavaScript is needed to create content or to
extend the existent functionality. JavaScript provides a powerful engine for manipulating flow
variables and to hide complex logic in one operation.

This operation can be used in following cases:

 HP Operations Orchestration Version

22

• To manipulate a flow variable. For example, if you want to filter a flow variable, define the input
in a “Do Nothing” operation and filter it in Results tab.

• To create new light operations, such as: operations for strings, and date/time manipulation.
• As a step in a flow for input validation.

In the following example, the first step, “Set Default Values” is really a “Do Nothing with Two
Responses”, used for validating flow inputs and setting default values:

HP Operations Orchestration

23

Inputs
Assignment
The assignment controls how values are exchanged between steps and is different for required and
non-required inputs as follows:

Required Inputs:
Assign from Variable: <not
assign>
Otherwise: Prompt User
Assign to Variable: <not assign>

Non-Required Inputs
Assign from Variable: <not
assign>
Otherwise: Use Constant
Assign to Variable: <not assign>
Constant Value: <default value>

Note: In this picture, the omiEventId
variable will be initialized with
“”(empty) because the Constant Value
is “” (empty).

When you create a new input for an operation, flow, or step, the default value for Assign From/Assign
To is automatically set to <not-assigned> when installing Studio10.x.

This functionality can be changed using the properties:

dharma.studio.ui.inputinspector.assignfrom.selected or
dharma.studio.ui.inputinspector.assignto.selected

in the <OO Install Path>/Studio/conf/studio.properties file with the following possible values:

assigned - default when upgrading from an earlier Studio version
not assigned - default when installing Studio 10.x

These properties allow you to set the initial option in the "Assign from Variable"/” Assign to Variable”
combo-box, in the Input Inspector.

Handling Multiple Versions of the Same Product
Sometimes, you must execute operations against multiple versions of a target product.

There are products such as Operations Orchestration or Microsoft Hyper-V that provide APIs for
server version detection. This means that for every execution, the operation should determine the
version of the integration product. Because this may create performance issues you should consider
adding a version input. If specified, its value takes precedence over dynamic version detection.

Handling Versions
Off-premise applications (such as those from different Cloud providers like Amazon and OpenStack)
usually expose the REST API version, while on premise applications expose product version. The
advantage of using an API version is that it may change less often than the actual product version.

 HP Operations Orchestration Version

24

Example: 1.0, 2.0 - for OpenStack, Windows Server 2012 - for Microsoft Windows product

If the target product supports only one version and the user provides a value greater than the
supported one, the code should try to use the single supported version.

Example: If version 6.0 is latest supported for RHEL and the user enters “6.2” for the “version” input,
the code will use the 6.0 version.

In case the target product supports multiple versions, the default value for the “version” input should
be the lowest one.

Example: If a product supported both 5.5 and 6.0 versions, the “5.5” should be the default version.

Timeouts
There are at least 3 types of timeout inputs: connectTimeout, socketTimeout, and executionTimeout.
It is recommended that you to expose these inputs because it is important in high load scenarios.

The connectTimeout represents the time to wait for a connection to be established, in seconds. A
timeout value of '0' represents an infinite timeout.

The socketTimeout represents the timeout for waiting for data (a maximum period of inactivity
between two consecutive data packets), in seconds. A socketTimeout value of '0' represents an
infinite timeout.

The executionTimeout represents the time to wait for an operation to complete.

Outputs
When developing new operations, you should use consistent and common naming for outputs.

Examples: returnResult, returnCode, exception

Responses
You should use common responses such as “success”, “failure”, or “has next” to ensure a common
look-and-feel.
The decision operations should have one success response for True, one success response for False
and one failure response. This is because there should be no difference between and “false” and a
“true” response.

Example: “Is Account Enabled?” should have one success response for True, one success response
for False and one failure response.

HP Operations Orchestration

25

The default response for an operation should be “failure” - use “failure” response as Default and On-
Fail. This way, an incomplete operation shows as a failure during flow debugging and points the
author to the problem before the flow goes into production.

Error Messages
For troubleshooting, it is important to provide meaningful error messages.

Ensure that all error messages contain:

• The invalid value provided
• The input name
• Valid values

Example: “Invalid value “10.10.10.257” for input “targetHost”. Valid values: IPv4, IPv6 numeric
format or fully qualified domain name (FQDN) format.”

Also, for troubleshooting, it is important to provide the exception and the code returned by the server
and not hide the exceptions that are provided by the integration product.

Example: WMI based operations should not hide the Microsoft standard HRESULT Error Constants
such as 2147749891 (0x80041003) - WBEM_E_ACCESS_DENIED which means that current user does
not have permission to perform the action.

Scriptlets

An OO Scriptlet is a JavaScript (Rhino) script used for manipulating flow data.

Coding Style
Long Scriptlets
If possible, avoid long scriptlets. When trying to save a flow that contains scriptlets exceeding 64kb,
an exception will occur. Usually, scriptlets should not contain complex logic. Use scriptlets for parsing
strings as well (the following image shows an example).

Validate Scriptlets
When saving a flow that has a scriptlet, OO Studio automatically performs a scriptlet validation,
checking the script for syntax errors. This validation can also be triggered manually by clicking the
“Check Script” button from the Scriptlet tab.

 HP Operations Orchestration Version

26

JavaScript Best Practices and Scriptlets
It is recommended that you apply JavaScript best practices to OO scriptlets, as follows:

• In JavaScript, function or variable names must begin with a letter, an underscore (_), or a dollar
sign ($). Subsequent characters can be letters, digits, underscores, or dollar signs.
Note: If the inputs of flows or steps are referenced in scriptlets, they should also follow these
guidelines.

Example: If an input name is “input.1”, it can’t be used in a scriptlet because it’s an invalid JavaScript
variable name, even though it is a valid name for an OO input.

• Always use “var” when declaring scriptlet variables – Variables in JavaScript can have global or
function scope, so prefixing the variable declaration with “var” is especially important in the
function scope.

• Always use curly brackets when writing an if/for/while clauses even if the statement’s scope is
composed of only one operation.

• Always use semicolons (;) at the end of each statement. Consider the following example that could
lead to errors:
x
++
y
This example is parsed as x; ++y; not as x++; y.

• Use brackets to ensure that operations are executed in the desired order.

Examples: var a = null;
 var b = "a==null is: " + a == null; // false

 var a = null;

var b = "a==null is: " + (a == null); // a == null is: true

• Use the unary “+ “operator for addition, concatenation and converting a String to Number when
used as a prefix. For more complex conversions, like conversions with radix, use parseInt() or
parseFloat() functions.

Examples: 1 + 2 + "4" + 1 + 2; // 3412
 1 + 2 + (+ "4") + 1 + 2; // 10
 1 + 2 + "4" + (1 + 2); // 343

The functions parseInt() or parseFloat() can also be used to convert a String to Number, but these
functions can sometimes “guess” the result. For parseInt() the “radix” parameter should always be
specified to avoid confusion and to obtain a number in the desired numeric base.

Examples: +””; // 0
 parseInt(“”,10); // NaN
 +”45abc”; // NaN
 +parseInt(“45abc”); // 45
 +”2.3”; // 2.3
 parseInt(“2.3”); // 2
 +”2e3”; // 2000
 parseInt(“2e3”,10); // 2
 parseFloat(“2e3”); // 2000

HP Operations Orchestration

27

• Avoid using “eval” – The eval() function provides a way to run arbitrary code at run time so the
compiler can’t optimize it and might eventually introduce a potential security risk.

• Use {} instead of new Object() and [] of new Array().
• Avoid using the “with” statement because it has been deprecated for security reasons.

Exception Handling
The exception handling is important whenever you aren’t in direct control of the inputs to the scriptlet.
For example, if you are filtering the output of a REST call (that might fail) in a scriptlet you should
protect the initial parsing of such inputs in a try/catch block as the REST call might fail and yield an
odd or unexpected input.

Another important exception usage is for providing meaningful error messages:

“Invalid format for input ”jsonText”. The valid format is JSON.”

The previous example is more intuitive for a non-programmer rather a Java-specific exception.

How to handle exceptions:

• The try/catch/finally statement is the exception handling mechanism of the scriptlet:
- The try statement allows you to test a block of code for errors
- The catch statement allows you to handle the error
- The finally statement enables you to execute code, after try and catch, regardless of the result.

This statement is optional.

Example: try {
 Block of code to try
}

catch(err) {
 Block of code to handle errors
}
finally {
 Block of code to be executed regardless of the try / catch result
}

• The throw statement allows you to create custom errors. This statement shouldn’t be used to
throw errors from a scriptlet and all the errors that are encountered in a scriptlet should be handled
by the scriptlet itself.

• Always use the try/catch statement when writing code that is advanced or that uses Java classes.
• In cases where an error is encountered in the scriptlet, the error message should also be placed in

the scriptletResult. At the step level, this could be defined as a result variable (for example,
errorMsg) that uses this result. The reason is that the Primary Result is easy to see in logs and in
debugging mode, compared to setting a variable in the scriptletContext (e.g.
scriptletContext.put("errorMsg", "Some error text here").

Handling Scriptlets in OO
Scriptlets can be used in following cases:

• On the Scriptlet tab of the operation, flow or step. In this case, the scriptlet runs after the
execution of the operation, flow or step. Its main goal is to filter or run some logic on the
operation/flow/step results. In case the scriptlet is set on an operation and on a step based on
that operation, both scriptlets are executed in the following order: first the scriptlet declared on
the operation and then the scriptlet declared at the flow step level.

 HP Operations Orchestration Version

28

• The scriptlet filter can be applied on flow results and step results. In this case, the scriptlet is used
for filtering or manipulating results. The scriptlet filters should be used only if the task can’t be
accomplished with a simpler (predefined) filter or set of filters.

OO Special Objects and Methods
The following table includes the most typical objects and methods used in OO scriptlets:

OO scriptlets objects and methods Description

scriptletContext.get(“myContextKey”) Gets the value associated with the context key
myContextKey

scriptletContext.put("LocalVariable","LocalVal
ue")

Puts data into the local context, so it will be available
 in the current flow, but not to its parent flow or other
subflows

scriptletContext.putGlobal("GlobalVariable",
"GlobalValue");

Has the same function as scriptletContext.put(), but for
 the global context

scriptletRawResult['resultName] Used for accessing the output from the operation

scriptletResponse = "success" Used for setting the response of the operation (must
match one of the responses from the Responses tab)

scriptletResult = "Your Result Here" Used for setting the result of the operation

Note: More advanced information about this topic can be found in the scriptlet template in OO. You
can add the scriptlet template in a Scriptlet tab by clicking the “Insert Template” button.

Scriptlet Capabilities
Scriptlets have direct access to inputs of the operation/flow/flow step through their name and a
variable that is created for each input. Scriptlets can’t change input values; they can only read them.

Scriptlets allow for the creation of local/global variables and can store values that can be used in
other steps in the flow (through the scriptletContext):

• Local data is available only to the current flow (not subflows or a parent flow).

• Globally add or change system properties (through scriptletContext.putGlobal). The data is
merged to the global parameters only after subflow execution is complete and when two
subflows change the global parameters, the last flow to complete will override the value of
the parameters.

• A scriptlet can be extended with classes from JDK, meaning that Java code can be used inside
a scriptlet. For creating a Java object the fully qualified class name must be used.

Example: var javaStringObject = new java.lang.String();

HP Operations Orchestration

29

Reusing Scriptlets
Scriptlets that are designed to perform a simple and modular task can be reused.

In out-of-the-box content, reusable scriptlets are saved in Configuration/Scriptlets. To use a
scriptlet from Configuration/Scriptlets you can drag and drop it in a step’s scriptlet tab.

More details about scriptlets can be found in Studio Guide, in “Managing Configuration
items/Configuring Scriptlets” section.

Handling Variables
The inputs of the operation/flow/flow step are accessed through their names.

The scriptletInput variable is defined only for a scriptlet filter and represents the data to be filtered.
The scriptletInput and the scriptletResult variables are JavaScript strings, so the method or
properties on these variables should be called accordingly.

Example: input1.length // JavaScript String length property

When using inputs or flow variables they should be accessed through the scriptletContext. These
are Java specific Strings (of type Java.lang.String) so the methods on these variables should be
called accordingly.

Example: var input1 = scriptletContext.get("input1");
input1.length();

It is recommended that all the variables that come from outside of the script should be first
validated. For example, if a non-existing variable is accessed by scriptletContext.get(), then the call
will return a null value and if it’s accessed by its name directly, the scriptlet will fail at runtime.

Example: var input1 = scriptletContext.get("input1");
 if (input1 != null && input1.length() > 0){...
 }

Note: null == undefined; null !== undefined;
 typeof(null) => Object
 typeof(undefined) => undefined

To access these variables in an easy and reusable way, a simple function should be defined:

Example: function getValue(inputName) {
 var inputValue = scriptletContext.get(inputName);
 if (inputValue != null && inputValue.length() > 0) {
 return inputValue;
 }
 return null;

}
Then the function could easily be called for every input:

Example: var a = getValue(“input1”);

 HP Operations Orchestration Version

30

When assigning a value to a flow variable through the scriptletContext or setting the scriptletResult,
the value will be converted to JavaScript string.

It is recommended to always set the scriptletResponse and scriptletResult so that the primary result
always has a defined value.

Content Pack Versioning

The version format used for Content Packs and Projects must be consistent, as follows:

Versioning: X.Y.Z[-SNAPSHOT] - Major.Minor.Micro[-SNAPSHOT]

Major
• Significant improvements with considerable business implication
• Major changes that break backward compatibility
• Move content, remove content, major redesign

Minor
New flows or operations on existing content

Micro
Solely bug fixing to existing content

SNAPSHOT
A content pack with SNAPSHOT version means that is still under development. A version without
SNAPSHOT means that the content pack was released, has been tested and is stable. Uses released
versions in a production environment.

Deprecation

Avoid Using Content from Deprecated Folders
Content from deprecated folders is considered outdated and could be removed in subsequent
versions.

When to Deprecate Content
The operation or flow must be deprecated when changes to it can break the backward compatibility,
such as:

• Changing non-required inputs to required inputs
• Renaming or removing inputs
• Changing results
• Changing responses

HP Operations Orchestration

31

How to Deprecate Content
To deprecate content, the original version of an operation or flow must be moved to a “Deprecated”
folder in the Library tree and then create a new version, usually with the same name, in the original
location (because creating a flow or operation with the same name but different UUID is not
possible).

References

• HP Live Network: https://hpln.hp.com
• Studio Guide: https://hpln.hp.com/node/22004/attachment
• Concepts Guide: https://hpln.hp.com/node/25861/attachment
• Best practices for OO content structuring: https://hpln.hp.com/node/20772/attachment
• Operations: Soft VS Hard Copy: https://hpln.hp.com/node/15963/attachment
• The OO 10 SDK - Getting Started: https://hpln.hp.com/node/15705/attachment
• Customizing Flow Transitions: https://hpln.hp.com/node/26352/attachment

If you have any questions or feedback then please post these on the OO community forum:
http://www.hp.com/go/OOPractitionerForum

https://hpln.hp.com/node/22004/attachment
https://hpln.hp.com/node/22004/attachment
https://hpln.hp.com/node/25861/attachment
https://hpln.hp.com/node/20772/attachment
https://hpln.hp.com/node/15963/attachment
https://hpln.hp.com/node/15705/attachment
https://hpln.hp.com/node/26352/attachment

	Introduction
	General Guidelines
	Naming
	Casing
	Content Packs/Projects
	Folders
	Flows, Operations, and Steps
	Inputs and Outputs
	Configuration Items
	Acronyms
	Plural versus Singular
	Legal Naming

	Folder Structure
	Content Structuring
	Handling Multiple Integration Product Versions

	Create Operations or Flows?
	Descriptions
	Operations and Flows
	Folders
	Additional Description Recommendations

	Date and Time, Numbers and Units

	Flow Authoring
	Flow Design
	Reusing Existing Content
	Create Modular Flows
	Use Step References
	Keep Flows Small
	Start Step
	Transitions
	Callouts
	Layout
	Icons

	Operations
	Avoid Creating Multiple Operations that Run the Same Command
	Soft Copies Instead of Hard Copies
	JavaScript “Do Nothing” Operation
	Inputs
	Assignment
	Handling Multiple Versions of the Same Product
	Handling Versions
	Timeouts

	Outputs
	Responses
	Error Messages

	Scriptlets
	Coding Style
	Long Scriptlets
	Validate Scriptlets
	JavaScript Best Practices and Scriptlets
	Exception Handling

	Handling Scriptlets in OO
	OO Special Objects and Methods
	Scriptlet Capabilities
	Reusing Scriptlets
	Handling Variables

	Content Pack Versioning
	Deprecation
	Avoid Using Content from Deprecated Folders
	When to Deprecate Content
	How to Deprecate Content

	References

