
HP Unified Functional Testing
Software Version: 12.51
Windows ® operating systems

Tutorial

Document Release Date: September 2015
Software Release Date: September 2015



Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable
for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for
Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notice
© Copyright 1992 - 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Google™ and Google Maps™ are trademarks of Google Inc

Intel® and Pentium® are trademarks of Intel Corporation in the U.S. and other countries.

Microsoft®, Windows®, Windows® XP, and Windows Vista ® are U.S. registered trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to:
https://softwaresupport.hp.com.

This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, go to
https://softwaresupport.hp.com and click Register.

Support
Visit the HP Software Support Online web site at: https://softwaresupport.hp.com

This web site provides contact information and details about the products, services, and support that HP Software
offers.

Tutorial

HP Unified Functional Testing (12.51) Page 2

https://softwaresupport.hp.com/
https://softwaresupport.hp.com/
https://softwaresupport.hp.com/


HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can benefit by
using the support web site to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HP support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support
contract. To register for an HP Passport ID, go to: https://softwaresupport.hp.com and click Register.

To find more information about access levels, go to: https://softwaresupport.hp.com/web/softwaresupport/access-
levels.

HP Software Solutions & Integrations and Best Practices
Visit HP Software Solutions Now at https://h20230.www2.hp.com/sc/solutions/index.jsp to explore how the products
in the HP Software catalog work together, exchange information, and solve business needs.

Visit the Cross Portfolio Best Practices Library at https://hpln.hp.com/group/best-practices-hpsw to access a wide
variety of best practice documents and materials.

Tutorial

HP Unified Functional Testing (12.51) Page 3

https://softwaresupport.hp.com/
https://softwaresupport.hp.com/web/softwaresupport/access-levels
https://softwaresupport.hp.com/web/softwaresupport/access-levels
https://h20230.www2.hp.com/sc/solutions/index.jsp
https://hpln.hp.com/group/best-practices-hpsw


Contents

Welcome to the UFT Tutorial 7
UFT Guides and References 8
Additional Online Resources 10

Part 1: Introducing Unified Functional Testing 11
Benefits of Automated Testing 12
UFT's Testing Process 13
UFT Main Window 15

Part 2: Analyzing Your Application and Creating Tests 20
Getting to Know Your Application 21
Explore the Flight Reservation Application 22
Create a Solution for All Your Tests 24

Part 3: Creating and Running Automated GUI Tests 27
Lesson 1: Create a GUI Test and Actions 28
Lesson 2: Creating Object Repositories 32

UFT Test Object Recognition - Overview 33
Exercise 2a: Add Objects from Your Application 34
Exercise 2b: Create Object Repositories using Navigate and Learn 40

Lesson 3: Adding Steps to a Test 44
Adding Test Steps in a GUI Test - Overview 45
Exercise 3a: Add Steps to the Login Action in the Keyword View 45

Analyzing the Login Action in the Keyword View and the Editor 50
Exercise 3b: Add Steps to the FlightFinder Action by Recording 52
Exercise 3c: Add a Step to the Select Flight Action Using the Toolbox Pane 55
Exercise 3d: Add Steps to the Book Flight Action Using the Step Generator 58
Advanced Exercise 3e (Optional) - Add Steps Using the Editor 63

Lesson 4: Running and Analyzing GUI Tests 69
Exercise 4a: Run a Test 70
Exercise 4b: Navigate the Run Results 72
Exercise 4c: Analyze the Run Results 74

Lesson 5: Parameterizing Steps and Objects 75
Parameterizing Tests, Actions, and Objects - Overview 76
Exercise 5a: Create a Test for Parameterization 76
Exercise 5b: Define Data Table Parameters 77
Exercise 5c: Add Parameter Values to a Data Table 81

Tutorial

HP Unified Functional Testing (12.51) Page 4



Exercise 5d: Run a Parameterized Test 83
Lesson 6: Creating Checkpoints and Output Values 90

Understanding Checkpoint and Output Value Types 91
Exercise 6a: Create a Checkpoint Test 93
Exercise 6b: Check Object Values 94
Exercise 6c: Check Table Values 97
Exercise 6d: Check Text Values 102
Exercise 6e: Manage Checkpoints in the Object Repository 108
Exercise 6f: Run and Analyze a Test with Checkpoints 110
Exercise 6g: Create an Output Value Test 113
Exercise 6h: Add an Output Value Step 114

Lesson 7: Creating Functions and Function Libraries 123
Functions and Function Libraries - Overview 124
Exercise 7a: Create a Function 124
Exercise 7b: Associate a Function Library with Your Test 126
Exercise 7c: Perform a Check Using a Functions 127

Lesson 8: Using Insight in your Test 132
Insight Object Identification - Overview 133
Exercise 8a: Create a Test for Insight Objects 133
Exercise 8b: Add an Insight Object to the Object Repository 134
Exercise 8c: Use Insight Objects in a Test 137

Part 4: Creating and Running Automated API Tests 140
Lesson 1: Create an API Test 141
Lesson 2: Create Simple API Test Steps 142
Lesson 3: Creating API Test Steps Using Standard Activities 146

UFT API Testing Standard Activities - Overview 147
Exercise 3a: Creating a Test with Standard Activities 147

Lesson 4: Parameterizing API Test Steps 152
Parameterizing API Test Steps - Overview 153
Exercise 4a: Parameterize a Test Step from a Data Source 153
Exercise 4b: Parameterize a Test Step from the Output of a Previous Step 164
Exercise 4c: Parameterize a Test with Multiple Sources Using a Custom Expression 167

Lesson 5: Running API Tests 175
Exercise 5a: Run a Test 176
Exercise 5b: Navigate the Run Results 177
Exercise 5c: Analyze the Run Results 178

Lesson 6: Creating and Running API Tests of Web Services 179
Exercise 6a: Create a Web Service Test 180
Exercise 6b: Import a Web Service 180
Exercise 6c: Build and Parameterize a Web Service Test 182

Tutorial

HP Unified Functional Testing (12.51) Page 5



Exercise 6d: Run a Web Service Test 188
Lesson 7: Creating and Running API Tests of REST Services 191

Exercise 7a: Create a REST Service Test 192
Exercise 7b: Create a REST Service Structure 192
Exercise 7c: Create a Test Using REST Service Methods 197
Exercise 7d: Run a REST Service Test 200
Exercise 7e: Resolve a REST Service Conflict 202

Lesson 8: Creating and Running API Tests of Web Application Services (WADLs) 206
Exercise 8a: Create a Test for a Web Application Service 207
Exercise 8b: Import a Web Application Service Model 207
Exercise 8c: Edit the Web Application Service Methods 209
Exercise 8d: Build a Test with Web Application Service Methods 212
Exercise 8e: Run a Web Application Service Test 217

Part 5: Creating and Running GUI and API Tests in a Single Test 220
Lesson 1: Create a Test to Run GUI and API Tests Together 221
Lesson 2: Call the API Test from a GUI Test 222
Lesson 3: Run a GUI Test that Calls an API Test 226

Where Do You Go From Here? 228

Send Us Feedback 231

Tutorial

HP Unified Functional Testing (12.51) Page 6



Welcome to the UFT Tutorial
The UFT Tutorial is a self-paced guide that teaches you the basics of testing your application with UFT. It
will familiarize you with the process of creating and running automated GUI and API tests and analyzing
the run results.

After completing the tutorial, you can apply the skills you have learned to testing your own application.

Note: To learn more about creating and running GUI tests of your Web application, see the UFT
Tutorial for GUI Testing of Web applications, available from the <UFT installation
folder>\help folder.

Tutorial Audience and Scope

This tutorial is intended for users who are new to UFT. No prior knowledge of UFT, QuickTest, or Service
Test is required. A general understanding of testing concepts and functional testing processes may be
helpful, but is not mandatory. UFT enables you to create GUI tests, API tests, business process tests, and
composite tests containing GUI and API tests or calls to tests.

Note: This tutorial refers to file system paths that are relevant for Windows 7 operating systems.
The paths in other operating systems may be slightly different.

Using UFT with BPT

In addition to tests, UFT enables you to create keyword-driven, scripted, or API business components for
use in business process tests, if you are connected to an ALM server that supports BPT. The procedures
described in this tutorial are designed for creating GUI and API tests, but you can also apply the majority
of these procedures to creating keyword-driven components, scripted components, or API components.
For more details on business components and BPT, see the HP Unified Functional Testing User Guide and
the HP Business Process Testing User Guide.

Note: Unless otherwise specified, references to Application Lifecycle Management or ALM in this
guide apply to all currently supported versions of ALM and Quality Center. Note that some features
and options may not be supported in the specific edition of ALM or Quality Center that you are
using.

For a list of the supported versions of ALM or Quality Center, see the HP Unified Functional Testing
Product Availability Matrix, available from the HP Support Matrix page (requires an HP passport).

For details on ALM or Quality Center editions, see the HP Application Lifecycle Management User
Guide or the HP Quality Center User Guide.

Tutorial

HP Unified Functional Testing (12.51) Page 7

http://support.openview.hp.com/selfsolve/document/KM438391


UFT Guides and References
The following tables provide a list of the UFT guides, online help and references:

Note: To check for recent updates of any of the guides below, visit the HP Software Product
Manuals Web site (https://softwaresupport.hp.com/group/softwaresupport/search-
result?keyword=).

Getting started

Reference Description

What's New? Describes the newest features in the latest version of Unified
Functional Testing.

You can also access theWhat’s New from theUnified Functional
TestingHelpmenu.

Product Movies Click the link or select Help > Product Feature Movies to view
short movies that demonstrate themain product features.

Readme Provides last-minute news and information about Unified Functional
Testing.

For the latest readme file, go to theHP SoftwareManuals Web site
(requires an HP Passport) at
https://softwaresupport.hp.com/group/softwaresupport/search-
result?keyword=.

UFT PAM TheProduct Availability Matrix (PAM) provides current information
about technologies and integrations supported for this version of
UFT.

UFT Tutorial TheUFT Tutorial is a self-paced printable guide, designed to lead you
through the process of creating GUI, API, and full UFT tests of your
composite applications.

GUI Testing Tutorial for Web
Applications

TheGUI Testing Tutorial for Web Applications is a self-paced
printable guide, designed to lead you through the process of creating
GUI tests of your Web applications and familiarize you with the
testing environment. 

PDF guides

Guide Description

UFT User
Guide

TheHP Unified Functional Testing User Guide describes how to useUFT to test your applications. It provides step-
by-step instructions to help you create, debug, and run tests, and report defects detected during the testing
process.

Run
Results

TheHP Run Results Viewer User Guide explains how to use theRun Results Viewer to interpret and use the test
results from your GUI or API tests.

Tutorial
UFT Guides and References

HP Unified Functional Testing (12.51) Page 8

https://softwaresupport.hp.com/group/softwaresupport/search-result?keyword=
https://softwaresupport.hp.com/group/softwaresupport/search-result?keyword=
https://hpln.hp.com/page/uft-120-videos
https://softwaresupport.hp.com/group/softwaresupport/search-result?keyword=
https://softwaresupport.hp.com/group/softwaresupport/search-result?keyword=


Guide Description

Viewer

UFT
Installation
Guide

TheHP Unified Functional Testing Installation Guide provides complete, step-by-step instructions on how to
install and set up UFT on a standalone computer.

UFT
QuickStart

TheUFT Installation QuickStart Sheet explains the steps to perform abasic installation of UFT.

UFT Add-
ins Guide

TheHP Unified Functional Testing Add-ins Guide explains how to set up support for UFT add-ins and standard
Windows testing support. Add-ins enable you to test any supported environment using GUI tests and business
components.

What's
New

Describes the newest features in the latest version of Unified Functional Testing.

Security
Reference

Contains security relevant information for using UFT and references for further information.

Runtime
Engine
Guide

Contains information on how to run tests using theRuntimeEngine installation (without theUFT IDE).

References

Links to the references are available from the UFT online help home page.

Reference Description

Object Model
Reference

TheObject Model Reference for GUI Testing includes adescription, a list of methods and properties,
syntax, examples, and identification properties for each UFT test object.

VBScript Reference Microsoft's Visual Basic Scripting documentation that describes objects, methods, properties,
functions, and other elements that can beused when writing VBScript scripts.

Automation Object
Model Reference

List the objects, methods, and properties that enable you to control UFT from within another
application.

Object Repository
Automation Reference

Describes the objects that enable you to manipulateUFT shared object repositories and their contents
from outside of UFT.

Run Results Schema
Reference

Provides details about the structure of theRun Results XML schema, and describes the elements and
attributes used in the its XML reports.

Test Object Schema
Reference

A reference describing the elements and attributes available for creating test object configuration XML
content, for usewhen creating UFT extensibility projects.

Object Repository
SchemaReference

Describes the elements and complex types defined for the object repository schema.

For additional online references, see the Welcome section of a PDF guide.

Tutorial
UFT Guides and References

HP Unified Functional Testing (12.51) Page 9



Additional Online Resources
The following additional online resources are available:

Resource Description

HP Software
Support Online

TheHP Software Support Web site (www.hp.com/go/hpsoftwaresupport). To access, chooseHelp > HP
Software Support.

Note: Most of the support areas require that you register as an HP Passport user and sign in. Many
also require a support contract. To register for an HP Passport user ID, go to:
http://h20229.www2.hp.com/passport-registration.html

Testing Forums l GUI Testing: http://h30499.www3.hp.com/t5/Unified-Functional-Testing/bd-p/sws-Fun_TEST_SF

l API Testing: http://h30499.www3.hp.com/t5/Service-Test-Support-and-News/bd-p/sws-Serv_
TEST_SF

l BPT: http://h30499.www3.hp.com/t5/Business-Process-Validation/bd-p/sws-BPT_SF

UFT Product
Page

TheHP Unified Functional Testing product page (http://www8.hp.com/us/en/software-
solutions/unified-functional-testing-automated-testing/index.html), with information and related
links about UFT. To access, select Help > Useful Links > Product Page.

Troubleshooting
& Knowledge
Base

TheTroubleshooting page (http://h20230.www2.hp.com/troubleshooting.jsp) on theHP Software
Support Web sitewhere you can search theHP Software Self-solve knowledgebase. To access, select
Help > Knowledge Base orHelp > Troubleshooting.

HP Software
Community

TheHP IT Experts Community site (http://h10124.www1.hp.com/campaigns/IT_
Experts/pages/home.html), where you can interact with other HP software users, read articles and blogs
on HP software and access downloads of other software products.

HP Manuals Site TheHP SoftwareProduct Manuals Web site (http://support.openview.hp.com/selfsolve/manuals), to
search for themost up-to-date documentation for a selected HP Software product. To access, select
Help > Useful Links > HP Manuals Site.

What's New TheUFT What's New Help, describing the new features and enhancements in this version of UFT.

Product Movies TheUFT HPLN (HP LiveNetworks) page (https://hpln.hp.com/page/uft-120-videos) with a list of all
product movies.

HP Software
Web site

TheHP SoftwareWeb site (www.hp.com/go/software). This site provides you with themost up-to-date
information on HP Software products. This includes new software releases, seminars and trade shows,
customer support, and more.

Tutorial
Additional Online Resources

HP Unified Functional Testing (12.51) Page 10

http://www.hp.com/go/hpsoftwaresupport
http://h20229.www2.hp.com/passport-registration.html
http://h30499.www3.hp.com/t5/Unified-Functional-Testing/bd-p/sws-Fun_TEST_SF
http://h30499.www3.hp.com/t5/Service-Test-Support-and-News/bd-p/sws-Serv_TEST_SF
http://h30499.www3.hp.com/t5/Service-Test-Support-and-News/bd-p/sws-Serv_TEST_SF
http://h30499.www3.hp.com/t5/Business-Process-Validation/bd-p/sws-BPT_SF
http://www8.hp.com/us/en/software-solutions/unified-functional-testing-automated-testing/index.html
http://www8.hp.com/us/en/software-solutions/unified-functional-testing-automated-testing/index.html
http://h20230.www2.hp.com/troubleshooting.jsp
http://h10124.www1.hp.com/campaigns/IT_Experts/pages/home.html
http://h10124.www1.hp.com/campaigns/IT_Experts/pages/home.html
http://support.openview.hp.com/selfsolve/manuals
https://hpln.hp.com/page/uft-120-videos
http://www.hp.com/go/software


HP Unified Functional Testing (12.51) Page 11

Part 1: Introducing Unified Functional
Testing
In this lesson, you will get an overview of automated testing and UFT. You will also get started on
preparing tests.

Note: It is recommended to work with an soft copy of this tutorial because there are sections in
which you will be asked to copy and paste test steps into UFT. However, keep in mind that in
selected parts of this tutorial, UFT will be recording your operations or learning objects that you
point to with the mouse. During such sessions, you should refrain from switching focus to the PDF
or Help window.

This section includes the following:

• Benefits of Automated Testing 12

• UFT's Testing Process 13

• UFT Main Window 15



Benefits of Automated Testing
If you have ever tested applications or Web sites manually, you are aware of the drawbacks of manual
testing of these applications.

Manual testing is time-consuming and tedious, and requires a considerable investment in human
resources. Worst of all, time constraints often make it impossible to manually test every feature
thoroughly before an application is released. This leaves you wondering if serious bugs have gone
undetected.

Automated testing of the GUI and non-GUI (service) layers of your application by UFT addresses the
problems with manual testing by speeding up the testing process. You can create tests that check all
aspects of your application or Web site, and then run these tests each time your application or Web site
changes. As a result, you create the tests once, and run them during each subsequent application
change, without the need to update the test for each application update.

As UFT runs these tests, it emulates the human user actions by moving the cursor in an application or
Web site, clicking objects in the application's GUI, entering keyboard input, or running the application's
API processes. However, unlike manual testing, UFT does this faster than any human user.

The benefits of automated testing are numerous:

Benefits of Automated Testing

Fast Automated tests are significantly faster than manual tests performed by human users.

Reliable Automated tests perform precisely the sameoperations each time they are run, eliminating human error
inherent in manual tests.

Repeatable You can test how your application or Web site reacts after repeated performanceof the sameoperations.

Programmable You can program sophisticated tests that test awide variety of complicated but important scenarios and
find problems or defects not easily identifiable by regular manual testing.

Comprehensive You can build a set of tests that cover all the features in your application or Web site.

Reusable You can reuse automated tests on different versions of an application or Web site, even if the user interface
or internal application APIs change.

HP Unified Functional Testing (12.51) Page 12



UFT's Testing Process
When creating a UFT test, there are a number of steps:

1. Analyzing your application

The first step in planning your test is to analyze your application to determine your testing needs:

What are your
application's
development
environments?

To workwith your application's user interface objects, you will need to load the
appropriateUFT GUI Testing add-ins. For example, your application may bebuilt in aWeb,
.NET, or Java environment. Therefore, you would need theWeb, .NET, or JavaAdd-ins in
UFT to workwith these environments.

What business processes
and functionality do you
want to test?

To do this, you think about the activities a user would perform in your application and the
internal actions your application needs to perform to do these business processes.

You createGUI test steps to mimic the user's actions in the user interface. You create API
test steps to perform theprocesses your application runs in the background.

Does your application
use standard application
activities or custom-
designed services?

Depending on what functions your application's API runs, you use the out-of-the-box
activities provided with aUFT API test or import/create custom activities.

How can you break your
test into small testable
units?

You should break the processes and functionality you want to test into smaller tasks, so
that you can createUFT actions in your GUI tests. These smaller and moremodular actions
make your tests easier to read and follow, and help easemaintenance in the long run.

Even at this stage, you can begin creating test skeletons and adding actions to GUI tests.

2. Preparing the testing infrastructure

Based on your testing needs, you must determine what resources are required and create these
resources accordingly.

l For a GUI test, these resources include shared object repositories, which contain test objects
that represent objects in your application, function libraries, which contain custom functions to
use in a test, recovery scenarios that instruct UFT how to respond when the application has
problems, environmental variable files which contain definitions for common environment
variables, or external data tables to use to parameterize test steps.

l For an API test, these resources include WSDL or WADL files describing the application service's
methods, REST Services that you create to serve as a prototype or your application's
REST process, external data sources, virtualization projects used with service calls,
.NET assembilies referenced by a test step, or Java classes used in a test step. These
resources must be imported or created in UFT.

Tutorial
UFT's Testing Process

HP Unified Functional Testing (12.51) Page 13



You also need to configure UFT settings so that UFT will perform any additional tasks you may
need, such as displaying a results report each time you run a test, enabling or disabling debugging
for the test run, and the like.

3. Building your tests and adding steps to each test

After the testing infrastructure and resources are ready, you can begin building tests:

l For GUI tests, you can create one or more empty tests and add actions to them to create the
testing skeletons. You then associate your object repositories with the relevant actions, so that
you can insert the steps, either by the keyword-drive methodology or by creating scripts.

l For API tests, you can create one or more empty tests, add test steps to these tests by dragging
activities to the test canvas, and define the input, output, and checkpoint properties for these
steps. You can also group steps that run multiple times together in an action that can be run as
an individual test step.

l You can also add all your tests to a single solution. A solution enables you to store, manage, and
edit any related tests together, without having to close one test before opening another.

l You may also want to configure test preferences and settings (for GUI tests) or test-specific
properties (for API tests).

4. Enhancing your tests

You can enhance your tests in a number of ways:

For
GUI
tests...

l Insert checkpointsas test steps to checkwhether your application is functioning correctly. For example,
these checkpoints can check for the specific value of a page, individual test object, or text string.

l You check how your application performs the sameoperations with different values by parameterizing test
step values with mutiple sets of data. You do this by replacing the test step's fixed values with
parameters.

l You can add programming and conditional or loop statementsand other programming logic to your
test using VBscript.

For
API
tests...

l You can validate test step and individual properties of test steps by selecting checkpoint propertiesand
entering expected values for the step properties.

l You can check how your application performs the sameprocesses with different values by parameterizing
test step properties with multiple sets of data. You do this by replacing fixed values with parameters.

l You can add functionality to your test steps with custom code activities, event handlers, or custom
activities created using UFT's ActivityWizard.

5. Debugging, running, and analyzing your test

You can debug your test using UFT's debugging functionality to ensure that it operates smoothly
and without interruption. After the test is working correctly, you run it to check the behavior of

Tutorial
UFT's Testing Process

HP Unified Functional Testing (12.51) Page 14



your application. While running, UFT perfoms each step on the user interface of your application
(while running a GUI test) or runs the application's API processes (while running an API test).

6. Reporting defects

If you have access to an ALM server, you can report defects you discover to your ALM project. If not,
you can manually report defects to your own defect database.

UFT Main Window
Before you begin working with UFT and creating your tests, you should familiarize yourself with the main
UFT window.

The image below shows the UFT window after you create a GUI test, with the test flow shown in the
canvas, and with the toolbar, Solution Explorer, Data Pane, and Properties pane displayed.

The image below shows the UFT window after you create an API test, with the test flow shown in the
canvas, and with the toolbar, Toolbox pane, Data Pane, and Properties panes displayed.

Tutorial
UFT Main Window

HP Unified Functional Testing (12.51) Page 15



The main window displays a number of elements:

Testing Documents

UFT displays open documents in the document pane (center of the UFT window). You can use the
document tabs located just below the toolbar to navigate to open documents and bring them into focus.

The document pane can display the following types of files:

Tests Both GUI and API tests are displayed on their own tabs in the canvas. A GUI test display shows the test flow,
with separate items for each action contained in the test. An API test displays the test flow of the various steps
included in your tests.

BPT tests are displayed in a grid, listing the individual components, groups, or flows contained in the test.

GUI Test
Actions

Each GUI test contains individual actions or calls to other actions. You can view each action in oneof the
following views:

l Keyword View: Each step (and the object hierarchy) is displayed in amodular, icon-based table.

l Editor: Each step is displayed as aVBScript line, displayed in a text/code editor. In object-based steps, the
VBScript line defines the object hierarchy.

Business
Components

Business components enable you to design a single, modular test "unit" for each business process in your
application. These components can then be added to abusiness process test to run together as an application
scenario.

Tutorial
UFT Main Window

HP Unified Functional Testing (12.51) Page 16



You can display oneof the following types of business components:

l Keyword GUI components: These components are displayed in theKeyword View only.

l Scripted GUI components: These components can bedisplayed either in theKeyword View or Editor.
(They open by default in the Editor)

l API components: These components are displayed with the test canvas (in the samemanner as an API
test).

Function
Library

Function libraries enable you to create, edit, and modify functions to use in your tests. These functions can be
written in a single function library, which can then beused in multiple tests by associating the function library
with each test.

The function library is displayed in the Editor.

Application
Areas

Each GUI business component also contains an application area. The application area serves as the container for
the component's object repositories, function libraries, and configuration settings. Each application area can
also be associated with multiple business components.

The application areauser interface is displayed as a series of sidebar tabs.

User code
files

In an API test, you can add special event handler codeor custom code files. This code enables you to
supplement and extend the out-of-the-box functionality of your API test steps. The event handler code is
contained in theTestUserCode.cs file already included with a default API test.

These files are displayed in the Editor.

Start Page This pagewelcomes you to UFT and provides links to recent files, description of new features, product forums,
and other support links. You can use the shortcut buttons to create documents or open existing ones.

Internal
Browser
Pages

You can also view internet pages for forums and other product-related materials, such as those accessible
from theStart PageorHelpmenu.

Toolbars and Menus

In addition to the document pane, the UFT window contains the following elements:

l Title bar. Displays the path of the current test or solution.

l Menu bar.

l UFT toolbar.

Panes

The UFT window contains a number of panes designed to assist the creation and design of your testing
documents.

Some of these panes and toolbar options are described in detail in subsequent lessons. For details on
the other panes and toolbar options, see the HP Unified Functional Testing User Guide.

Name Toolbar
Button

Description Default Location

Tutorial
UFT Main Window

HP Unified Functional Testing (12.51) Page 17



Solution
Explorer

Displays all the tests, components, and application areas currently
open or included in your solution, as well as all the resources
associated with your current tests and components. Using the
Solution Explorer, you can manage these resources.

A tab on the left side of the
UFT window.

Toolbox l For GUI tests and components: Displays all the keywords
available to your test, and enables you to drag and drop objects,
or calls to functions, from theToolbox pane to your test.

l For API tests and components: Displays all the activities available
to use in your test, and enables you to drag and drop these
activities on the canvas.

A tab on the left side of the
UFT window.

Document
pane

N/A Displays all open documents. Each document has a tab that you can
click to bring the document into focus.

An unlabeled pane in the
center of theUFT window.
Each document tab is
labeled with the document
name.

To display: Open a testing
document.

Properties For GUI tests and components: Displays all properties for the
currently selected test, action, component, or application area

For API tests and components: Displays all properties for the
selected test step/test flow or the selected data source (in theData
pane).

A paneon the right side of
theUFT window.

To display:

l Select View
> Properties

l Click theProperties
button in the toolbar.

l Double-click an API test
step in the canvas.

l Right- click an API test
step in the canvas and
select Properties.

Data Assists you in parameterizing your test. A tab at the bottom of the
UFT window.

Output N/A Displays information during the run session. A tab at the bottom of the
UFT window.

To display, select View
> Output.

Errors N/A Displays a list of problems with your tests or components: missing
references from a test (such as missing object repositories or
recovery scenarios from aGUI test, or missing references to external
files or missing property values for an API test).

A tab at the bottom of the
UFT window.

To display, select View
> Errors.

Active
Screen

N/A Provides a snapshot of your application as it appeared when you
performed a certain step during a recording session.

This pane is not used for API tests.

A tab at the bottom of the
UFT window.

To display, select View

Tutorial
UFT Main Window

HP Unified Functional Testing (12.51) Page 18



> Active Screen.

Debug
panes

Assists you in debugging your tests.

There aremultiple debug panes:

l Breakpoints

l Call Stack

l Local Variables

l Console

l Watch

l Threads (for API tests only)

l Loaded Modules (for API tests only)

Tabs at the bottom of the
UFT window.

Tasks N/A Displays and enables you to manage the tasks defined for the
current test. This pane also displays the TODO comment steps of
the test's actions, function libraries, or user code files.

A tab at the bottom of the
UFT window.

To display, select View
> Tasks.

Search
Results

N/A Displays all occurences of the search criteria you define in the Find
dialog box or using other Search menu items.

A tab at the bottom of the
UFT window.

To display:

l Select View > Serch
Results.

l Perform a search.

Bookmarks N/A Displays the list and location of bookmarks contained in your
testing documents.

A tab at the bottom of the
UFT window.

To display, select View
> Bookmarks.

Run Step
Results

N/A Displays the run results of a test run for an individual API test step.

This pane is not used for GUI tests.

A tab at the bottom of the
UFT window.

To display:

l Select View > Run
Results.

l Run a step by right-
clicking an API test step
and selecting Run Step.

Tutorial
UFT Main Window

HP Unified Functional Testing (12.51) Page 19



HP Unified Functional Testing (12.51) Page 20

Part 2: Analyzing Your Application and
Creating Tests
"Introducing Unified Functional Testing" on page 11 gave you an overview of automated testing and UFT.

In this lesson, you will analyze an application to see what needs to be tested.

This section includes the following:

• Getting to Know Your Application 21

• Explore the Flight Reservation Application 22

• Create a Solution for All Your Tests 24



Getting to Know Your Application
Before you begin creating tests of your applications, you need to determine exactly what you want to
test in your application. To do this, you need to analyze your application in terms of its application
processes - the distinct activities that the application performs in order to complete a specific task.

For the purposes of this tutorial, you are testing a flight booking application. This application emulates a
flight information and reservation service.

The application consists of two separate components:

l The Book Flights layer. This layer is the user interface for the application and provides the interface
through which to find and book a flight.

l The Flights API layer. This application provides the service (API) side of the flight booking
application. For details on the service's methods and operations, click the Open Help Page button in
the Flights API window.

Using the Book Flights layer, you will create a GUI test of the application. Using the Flights API layer, you
will create an API test of the application.

As you plan a test of the flight booking application, consider the following:

What business processes
need to be tested?

This is the fundamental question. Consider the following:

l What processes is your application supposed to perform?

l Based on the processes you decide, what actions does auser take to fulfill these processes?

How is the application
organized?

l Are there separate sections/pages/modules of the application for each user activity?

l What are the activities a user can perform?

l Where are these sections/pages/modules in the application?

l What are the expected results of these user activities?

l What behind-the-scenes processes support these user activities?

What user interface
elements need to be
tested in each of the
application's
sections/pages/modules?

l What user interface objects need to be tested in each area?

l What user actions does the test need to simulate?

What activities might be
used in multiple
scenarios?

What specific user actions or application processes are done repeatedly? For example, logging
onto an application could be something auser performs repeatedly, or connecting to the user
credential database is an activity the application performs repeatedly.

What development
environments need to be
supported for testing
purposes?

UFT provides add-ins to support numerous testing environments. In order to load the proper
ones for your application, you must consider the technologies used in the development of the
application in order to ensureUFT supports your technologies. In addition, you must also load
these add-ins when opening UFT and creating tests. This ensures that UFT will properly
recognize the objects in your application when creating and running tests.

HP Unified Functional Testing (12.51) Page 21



Explore the Flight Reservation Application
Before you begin creating tests, you need to explore the sample application and see what user actions it
has and what processes support the application flow.

As you navigate and use the application, consider the questions posed in the previous lesson. Use these
questions to guide your thinking about how you could create a test or tests from the application.

1. Open the flight reservation application.

Open both the Book Flights (GUI) layer and the Flights API (service) layer:

l The Book Flights layer is available at Start > All Programs > HP Software > HP Unified
Functional Testing > Sample Applications > Flight GUI.

l The Flights API layer is available at Start > All Programs > HP Software > HP Unified
Functional Testing > Sample Applications > Flight API.

For details on accessing UFT and UFT tools and files in Windows 8 and Windows Server 2012, see
"Accessing UFT in Windows 8.X or Higher Operating Systems" on page 230.

2. Log in to the Book Flights application.

In the Book Flights application start page, enter John for the user name and hp for the password.

Note: The Flights API layer requires no login information.

Tutorial
Explore the Flight Reservation Application

HP Unified Functional Testing (12.51) Page 22



After logging in successfully, the application layer display should look like this:

Book Flights (GUI layer)

Flights API layer

Tutorial
Explore the Flight Reservation Application

HP Unified Functional Testing (12.51) Page 23



3. Explore the application layers.

For Book
Flights
layer...

Enter the requested information or selections on each page to follow the reservation process.

As you navigate through the application, consider what user actions you might want to test, and which
objects you would need to create to set up your test.

For Flights
API layer...

Click theHelp button to see adescription of themethods included in the application.

As you explore the list of methods included in the application, note the property details provided for each
method. You can use this data later when designing a test to provide property values for thesemethods.

4. Exit your application browsing session.

l For the Book Flights layer: After the flight reservation order details are displayed in the Order
Details window, click New Search to return the application to the start.

l For Flights API layer: Minimize the Flights API window. Do not close this window, as this will stop
the service.

You are now ready to use these applications to create tests for each layer of the application.
Continue with "Create a Solution for All Your Tests" below to create a solution for the tests you will
use in the course of this tutorial.

Create a Solution for All Your Tests
In UFT, you can create a solution to serve as a container for your tests. Once a solution is created, you
can add any tests, business components, or application areas to the solution.

Solutions enable you to group tests together in a convenient way. For example, you can create solutions
containing all the tests of a particular application, or create solutions containing only the GUI or API
tests of your application's parts.

You can add all types of UFT documents to a solution, and tests can be added to multiple solutions.

In this exercise, you will create a new solution to hold the tests you will create in the course of this
tutorial.

Tutorial
Create a Solution for All Your Tests

HP Unified Functional Testing (12.51) Page 24



1. Start UFT.

Do one of the following:

If UFT is
not
currently
open

a. Open UFT.

o Double-click theUFT icon on your desktop or on theStart Screen (in Windows 8.x or Windows
Server 2012).

o In Windows 7 or Windows Server 2008 R2, select Start > All Programs > HP Software > HP
Unified Functional Testing.

b. In theAdd-in Manager, confirm that only theWPF Add-in is selected. Clear all other add-ins.

c. ClickOK to close theAdd-in Manager and open UFT.

TheUFT splash screen is displayed while UFT loads your selected add-ins.

If UFT is
currently
open

a. Select Help > About HP Unified Functional Testing to checkwhich add-ins are loaded. The loaded
add-ins are displayed with a checkbox next to their name in theAbout dialog box.

b. If the, WPF Add-in is not loaded, you must exit and restart UFT. When theAdd-in Manager opens again,
select WPF.

If theAdd-in Manager does not open when starting UFT, after UFT opens select Tools > Options.
Then, in theStartup Optionspane (Tools > Options > General tab > Startup Optionsnode),
select theDisplay Add-in Manager on startup option.

2. Explore the Start Page.

The Start Page provides links to recent files, information about new features in UFT, as well as
links to helpful support and community forums. In the top-right corner of the page, you can define
the options for displaying and closing the Start Page while using UFT.

Note: If the Start Page is not displayed, you can display it by selecting View > Start Page.

3. Create a new solution.

a. In the toolbar, click the New down arrow and select New Solution.

b. Enter the details for the solution:

o Name: Flight Reservation Application

o Location: By default, all solutions and tests are saved at C:\%HOMEPATH%\My
Documents\Unified Functional Testing. For the purposes of this tutorial, you do not need
to modify this path.

c. Click Create.

In the Solution Explorer pane, you can now see that the solution name is displayed at the top of
the pane. Tests you add to this solution will be displayed as sub-nodes of this solution.

Note: If the Solution Explorer is hidden, click the Solution Explorer button in the
toolboar or select View > Solution Explorer to display it.

Tutorial
Create a Solution for All Your Tests

HP Unified Functional Testing (12.51) Page 25



You can now begin creating GUI tests, as described in "Creating and Running Automated GUI Tests" on
page 27 or API tests, as described in "Creating and Running Automated API Tests" on page 140.

Tutorial
Create a Solution for All Your Tests

HP Unified Functional Testing (12.51) Page 26



HP Unified Functional Testing (12.51) Page 27

Part 3: Creating and Running Automated
GUI Tests
After analyzing your application and planning your testing goals, you create the tests of the application.
A major part of this effort is creating tests of the user interface (GUI) of your application. Doing so
ensures that the controls and objects in your application work as designed.

Creating a GUI test involves a number of separate processes:

l Creating object repositories containing test objects for the objects in your application

l Creating supplementary functions to use in your tests inside function libraries

l Adding steps to the test representing user actions in the application

l Creating checkpoints to validate specific objects in the application

l Parameterizing the test object values to see how the application reacts to different input values

l Running the test and analyzing the results of the test run

The following lessons will introduce and teach these processes in detail.

This section includes the following:

• Lesson 1: Create a GUI Test and Actions 28

• Lesson 2: Creating Object Repositories 32

• Lesson 3: Adding Steps to a Test 44

• Lesson 4: Running and Analyzing GUI Tests 69

• Lesson 5: Parameterizing Steps and Objects 75

• Lesson 6: Creating Checkpoints and Output Values 90

• Lesson 7: Creating Functions and Function Libraries 123

• Lesson 8: Using Insight in your Test 132



Lesson 1: Create a GUI Test and Actions
Before creating steps to test your application's GUI, you must first create a test and create the actions
that provide the test structure.

Each UFT GUI test consists of calls to actions. Actions are units (within the test) that divide your test into
logical sections. By dividing your tests into multiple actions, you can design more modular,
understandable, and efficient tests.

Your test can contain a number of different types of actions:

Internal
and
External
Actions

l An internal action is an action that is stored in the local test (also know as a source test).

l An external action is a referenced call to an action that is stored in a different test.

Note: An external action called by a test is shown as a separate nodeunder the test node in the
Solution Explorer.

For example, if you have an action that you want to use in multiple tests, you would store the action as an
internal action in one test and insert calls to that action from other tests. In the other tests which call the
action, the action is available as an external action.

Reusable
actions

When you insert a call to a new action, it is reusable by default, enabling you to call the action from any test.

When you use reusable actions, you only need to update the existing action stored with the original test. When
you modify that original action, all tests containing calls to the action are updated. These reusable actions are
read-only in the tests that call the reusable action.

Reusable actions can beuseful if:

l You have aprocess that you may need to include in several tests, such as logging into your application.

l You may have aprocess that you need to insert several times in the same test, such as entering user
credential dialog boxes that open whenever a user tries to access a secure part of your application.

If you want to prevent an action from being used in other tests, you can make the action non-reusable.

Tip: If you plan to use the sameor similar actions in many tests, you might consider creating a repository
test to store your reusable actions. Then, you can insert calls to these existing actions from other tests.

Copied
actions

You can also insert a copy of an action in a test if you want to modify the action steps. When you copy the
action, it becomes an internal action of the test into which it is copied. These copies are not linked to the source
test, so any changes in the original action are not updated in the copy.

You add actions to a test in the following ways:

l Calls to new actions. This inserts a new, empty action in your test. The action is an internal action of
the test containing it.

l Calls to a copy of an action. This inserts a copy of an existing action in your test.

l Calls to an existing action. This inserts a call to an existing action (an action external to the current
test).

HP Unified Functional Testing (12.51) Page 28



1. Create a new test and add it to the solution.

a. In the UFT toolbar, click the Add button down arrow and select Add New Test.

b. In the Add New Test to Solution dialog box, select GUI Test.

c. Enter the following details for your test:

o Name: Book Flights

o Location: By default, UFT saves documents at C:\%HOMEPATH%\My Documents\Unified
Functional Testing. For this lesson, you do not need to modify this path.

d. Click Add.

A blank test opens in the canvas, with one tab for the test flow (name Book Flights), and a
blank action tab opens in the document pane (name Action 1).

This test is also displayed as a subnode of the Flight Reservation Application solution node in
the Solution Explorer pane.

2. Rename Action 1 so that it has a logical name.

a. In the canvas, right-click the Action1 box and select Action Properties.

b. In the General tab of the Action Properties dialog box, rename Action1 to Login and click OK.

c. In the warning that opens, click Yes.

The action block in the canvas should now be displayed with the name Login.

3. Create a new action named Flight Finder.

a. Right-click anywhere in the canvas and select Call to New Action.

Tutorial
Lesson 1: Create a GUI Test and Actions

HP Unified Functional Testing (12.51) Page 29



The Insert Call to New Action dialog box opens:

b. In the Name box, enter Flight Finder for the action name.

c. Ensure that the Reusable action and At the end of the test options are selected.

d. Click OK.

An additional block is added in the canvas with the name Flight Finder.

4. Add an additional action to your test.

a. In the UFT toolbar, click the Insert Call to New Action button .

b. In the Insert Call to New Action dialog box, in the Name box, enter Select Flight.

c. Ensure that the Reusable action and At the end of the test options are selected.

d. Click OK to add the action to the test.

Another block is added in the canvas with the name Select Flight.

5. Create a final action.

Using either of the methods used above, add another action to your test named Flight
Confirmation.

Your test now contains all the actions necessary to test your application.

6. Save your test.

Tutorial
Lesson 1: Create a GUI Test and Actions

HP Unified Functional Testing (12.51) Page 30



In the UFT toolbar, click the Save button .

You may have noticed that before you clicked Save, an asterisk (*) was displayed in the Book
Flights tab in the document pane and the Book Flights node in the Solution Explorer. These
asterisks are displayed to indicate that a document has unsaved content. When you save a test, all
changes in action tabs are also saved.

7. Explore the test flow in the canvas.

Click on the Book Flights tab in the canvas to view the entire test flow.

l You can zoom in or out on the test flow using the mouse or the zoom bar located above the
canvas.

l Once the test flow is zoomed to the maximum, and no longer fits the canvas, you can also use
the minimap in the bottom left corner of the canvas to navigate through the test flow.

If the minimap is not displayed, click the Minimap button above the canvas to display it.
The minimap can be helpful if you have a test with many actions or nested actions.

Now that you have your test structure, you can begin creating object repositories for the test. Continue
to "Lesson 2: Creating Object Repositories" on the next page to continue.

Tutorial
Lesson 1: Create a GUI Test and Actions

HP Unified Functional Testing (12.51) Page 31



Lesson 2: Creating Object Repositories
The basis of a GUI test is the collection of test objects used to test your application's user interface.
These test objects are learned by UFT and then stored in object repositories that are associated with
your test.

Now that you have created a test and its test structure (by creating actions), you need to create the
test objects to use in your tests. This lesson introduces the basic concepts of test objects, run-time
objects, and object repositories which are used in your tests.

This lesson includes the following:

• UFT Test Object Recognition - Overview 33

• Exercise 2a: Add Objects from Your Application 34

• Exercise 2b: Create Object Repositories using Navigate and Learn 40

Tutorial
Lesson 2: Creating Object Repositories

HP Unified Functional Testing (12.51) Page 32



UFT Test Object Recognition - Overview
When creating and running GUI tests, UFT uses test objects to recognize objects in your application and
then create test steps based on your application's objects. These test objects are based on UFT's test
object model.

The test object model is a large set of object types or classes that UFT uses to represent the objects in
your application. Each test object class has a list of identification properties that UFT can learn about
the object, a sub-set of these properties that can uniquely identify objects of that class, and a set of
relevant operations that UFT can perform on the object.

When designing and running a test, there are two different types of objects:

Test
objects

Test objects are stored representations that UFT creates to represent the actual objects in your application. UFT
creates test objects by learning a select set of the properties and values of the objects in your application. UFT then
stores the information on the object that will help it identify and check the object during the run session, and uses the
data to recognize the application object during the run session.

Each test object is part of a larger test object hierarchy. For example aLinkobject can bepart of aPage object inside a

(Web)Browser object.

Top-level objects, such as Browser objects, are known as container objects, as they can hold lower-level objects,
such as Page or Frame objects.

Run-
time
objects

Run-timeobjects are the actual objects in your application on which UFT performs the actions (methods) during the
run session. UFT learns the properties of run-timeobjects and translates them into test objects.

When UFT learns an object in your application, it adds a corresponding test object to an object
repository. This object repository serves as a storehouse for the test objects. When UFT runs a test, it
looks in the test's object repositories for the objects contained in the test steps.

When you add an object to an object repository, UFT:

l Identifies the UFT test object class that represents the learned object in your application and creates
an appropriate test object.

l Reads the current value of the object's properties in your application and stores the list of
identification properties and values with the test object.

l Chooses a unique name for the test object.

There are two different types of object repositories:

Shared
object
repositories

A shared object repositories is an object repository that exists independently of an individual test. The test
objects in a shared object repository can beused in multiple tests/actions. This makes this type of object
repository the preferred repository type for storing and maintaining your test objects as any updates you make
to a test object are then applied to all tests using that shared object repository.

Local object
repositories

Local object repositories contain the test objects used in the context of a specific action. These typeof object
repositories cannot be used with other actions. By default all actions have a local object repository.

Tutorial
Lesson 2: Creating Object Repositories

HP Unified Functional Testing (12.51) Page 33



When you create an object repository, it is recommended to include only the test objects you need for
your testing purposes. This keeps the object repository relatively small and helps to simplify
maintenance and object selection. Also, make sure that you provide logical names so that others can
easily select the correct objects when creating or modifying tests.

Object repositories can also include checkpoint and output objects. Checkpoint object types are covered
in "Lesson 5: Parameterizing Steps and Objects" on page 75.

Exercise 2a: Add Objects fromYour Application
In "UFT Test Object Recognition - Overview" on the previous page, you learned about UFT's test object
model and how UFT learns and stores objects.

In this exercise, you will use UFT's object recognition capabilities to learn objects and create an object
repository.

1. Start UFT and open the Book Flights test.

a. If UFT is not open, open UFT, as described in "Create a Solution for All Your Tests" on page 24.

b. On the Start Page, in the Recent tests/components area, click Book Flights.

The Book Flights test opens, displaying the Book Flights test (and its actions) you created in
"Lesson 1: Create a GUI Test and Actions" on page 28.

2. Set the learn settings for UFT.

a. Select Record > Record and Run Settings. The Record and Run Settings dialog box opens.

b. In the Record and Run Settings dialog box, select the Windows Applications tab.

c. In the Windows Applications tab, select the Record and run only on option.

Tutorial
Lesson 2: Creating Object Repositories

HP Unified Functional Testing (12.51) Page 34



d. Under the Record and run only on option, select the checkboxes for the Applications opened
by UFT and Applications specified below options:

e. In the Application details area, click the Add button .

f. In the Application details dialog box, enter the paths to the application and the working folder
for the application:

o Application: <UFT installation folder>\samples\Flights
Application\FlightsGUI.exe

o Working folder: <UFT installation folder>\samples\Flights Application

g. Select the Launch application option and click OK.

h. In the main Record and Run Settings dialog box, click OK. Later, when you record steps on the
application or run a test for it, UFT will be able to work with the application.

3. Open the flight reservation application.

Tutorial
Lesson 2: Creating Object Repositories

HP Unified Functional Testing (12.51) Page 35



If it is not already open, open the flight reservation application.

Note: You can open the flight reservation application before or after opening UFT.

4. View the available properties and operations for some of the objects in the
flight reservation application.

a. In the toolbar, click the Object Spy button . The Object Spy dialog box opens:

b. Drag the Object Spy dialog box to the side of the application. This enables you to see the
objects in your application that you want to spy on more clearly.

c. Verify that the Keep Object Spy on top while spying toggle button is pressed.

Tutorial
Lesson 2: Creating Object Repositories

HP Unified Functional Testing (12.51) Page 36



d. Click the pointing hand button .

When you press the pointing hand, UFT is hidden and the Object Spy dialog box is displayed
over the flight reservation application.

Tip: If you need to switch back and forth between the flight reservation application, UFT,
or any other open window, press CTRL to change the pointing hand back to a regular
Windows pointer. Hold down the CTRL button as long as you need the pointer, and then
release it when you are ready to use the pointing hand.

e. Hover over the various objects on the page and watch to see what happens in the Object Spy
dialog box.

Note: If UFT does not recognize your objects in the correct location, check to see that you
are viewing your application or page at 100%, and are not zooming in or out of the current
view.

For example, if you view a page at 90% or 120, you may be required to click or select an
area to the left or right of the actual object in order to recognize it.

f. Click in the Username edit box. The test object hierarchy of that object is displayed. In the
hierarchy box, notice that the name of the object is WpfEdit, which is its object class type.

g. In the application Loginwindow, click inside the Username edit box. This makes the object
active in the application.

h. In UFT, in the Object Spy dialog box, click the pointing hand button again . In the Object
hierarchy box, note the Object Spy displays agentName.

i. Close the Object Spy dialog box.

5. Add the necessary objects for your test to the object repository.

In this step, you take the "spy" process a step further and instruct UFT to learn only the objects
that are needed for your test and add them to the object repository.

a. In the application Loginwindow, click inside the Username edit box.

b. In UFT, select Resources > Object Repository Manager. The Object Repository Manager
window opens.

c. In the Object Repository Manager window, select Object > Add Objects. Both UFT and the
Object Repository Manager are hidden.

Tutorial
Lesson 2: Creating Object Repositories

HP Unified Functional Testing (12.51) Page 37



d. In the Login page, click again in the Username edit box. The Object Selection - Add to
Repository dialog box opens:

e. In the Object Selection dialog box, select the agentName object and click OK. The agentName
object is added to the Object Repository along with its parent object, the Loginwindow object.

f. Repeat the process above to add the objects for the Password edit box and OK button.

After you add all the objects to the object repository, your repository should look like this:

6. See what UFT learned about one of the objects.

Tutorial
Lesson 2: Creating Object Repositories

HP Unified Functional Testing (12.51) Page 38



In the Test Objects tree, select the agentName object, and notice the object properties displayed
in the right pane of the object repository. These are the descriptive properties that UFT uses to
identify the object during a run session:

7. Save the object repository.

a. In the Object Repository Manager window, click Save .

b. Browse to the folder where your solution and tests are saved, in C:\%HOMEPATH%\My
Documents\Unified Functional Testing. In that folder, create a new folder named Tutorial_
Object Repositories, and open it.

c. In the Tutorial_Object Repositories folder, save the object repository with the name Login and
click OK.

Note: This step only saves the object repository. It is not connected with a test when you
save it, even if you have a test open the UFT main window.

8. Associate the object repository with the Login action.

Associating an object repository with an action enables you to then use any object from that
repository in any step in the associated action.

Note: The same object repository can be associated with multiple tests and actions.

a. Open the main UFT window.

b. In the main UFT window, open the Solution Explorer.

Tutorial
Lesson 2: Creating Object Repositories

HP Unified Functional Testing (12.51) Page 39



c. In the Solution Explorer, under the Book Flights node, expand the Login node.

d. Right-click the Login action and select Associate Repository with Action. The Open Shared
Object Repository dialog box opens.

e. In the Open Shared Object Repository dialog box, navigate to the folder where you saved the
object repository in the previous step and select the Login.tsr file. Click Open.

f. In the dialog box that opens, click Yes.

The object repository is now associated with the Login action, and is displayed in the Solutoin
Explorer as a child element of the action.

9. Save your test.

Select File > Save to save your test.

Now that you have taught UFT to recognize your appilcation's objects, created an object repository
containing those objects, and associated the object repository with a test, you can create additional
object repositories for the other areas of the application. Continue to "Exercise 2b: Create Object
Repositories using Navigate and Learn" below to learn more.

Exercise 2b: Create Object Repositories using Navigate
and Learn
In "Exercise 2a: Add Objects from Your Application" on page 34, you learned how to use UFT to add
objects in your application, create a shared object repository for the Login page of the flight reservation
application, and associated this object repository with a test.

In this lesson, you will create a shared object repository for each of the remaining pages in the site. You
will use the Navigate and Learn process, which enables you to learn all the objects in a page or section
of application at once.

Tip: It is recommended to always create a separate shared object repository for each section/page
of your application or Web site. This makes it easier to find the correct object when adding or
modifying test steps or when performing maintenance tasks.

For the purposes of this exercise, you will instruct UFT to learn all of the objects on each page. At this
point, you do not need to associate the object repositories with specific actions.

1. Log in to the flight reservation application's Flight Finder page.

a. If it is not already open, open the flight reservation application.

b. In the Login page, enter the login credentials:

o Username: john

o Password: hp

c. Click OK. The Book Flight page opens.

Tutorial
Lesson 2: Creating Object Repositories

HP Unified Functional Testing (12.51) Page 40



2. Create a new shared object repository.

a. If the Object Repository Manager is closed, open it by selecting Resources > Object Repository
Manager in UFT.

b. In the Object Repository Manager window, click New . A blank shared object repository
opens.

3. Start the Navigate and Learn process by setting up the Define Object Filter.

In addition to adding objects individually as you did in the previous exercise, you can learn and add
all the objects in your application in one process using the Navigate and Learn mechanism.

a. In the Object Repository Manager window, select Object > Navigate and Learn. Both UFT and
the Object Repository Manager are hidden.

b. In the Navigate and Learn toolbar, click the Define Object Filter button . The Define
Object Filter dialog box opens.

c. In the Define Object Filter dialog box, select All object types, and click OK.

4. Learn all of the objects from the Flight Finder page.

In this step, you instruct UFT to learn all of the objects in the Book Flight page that match your
filter, and to add them to a shared object repository.

a. In the flight reservation application's Book Flight page, click the application title bar to bring it
into focus as the page you want UFT to learn.

b. In the Navigate and Learn toolbar, click Learn. The application flickers and the Adding Objects
message box is displayed as UFT begins adding representations of the objects on the page to a
new object repository.

Note: Adding these objects takes a few seconds. Do not interact with the application while
the Navigate and Learn process runs.

c. Close the Navigate and Learn toolbar. UFT and the Object Repository Manager window are
visible again.

Tutorial
Lesson 2: Creating Object Repositories

HP Unified Functional Testing (12.51) Page 41



5. Save the shared object repository.

a. In the Object Repository Manager window, click Save . The Save Shared Object Repository
dialog box opens.

b. Browse to the Tutorial_Object Repositories folder created the previous exercise.

c. Name this object repository Flight Finder and click OK.

6. Create object repositories for the remaining application pages.

a. Using the process described in the previous step, create new shared object repositories for
each of the following pages:

o Select Flight

o Flight Details

IMPORTANT: Make sure before learning the objects in the Flight Details page that you
enter a string in the Passenger Name box. This activates the Order button and enables
UFT to learn it properly. You will need this button in other exercises.

b. Name the object repositories Select Flight and Flight Confirmation, respectively.

7. Associate the Flight Finder object repository with the Flight Finder action.

a. Switch to the UFT window. If the Solution Explorer is not already open, open it by clicking on the
Solution Explorer tab in the bottom left corner of the UFT window.

b. In the Solution Explorer, in the Book Flights node, right-click the Flight Finder node and select
Associate Repository with Action. The Open Shared Object Repository dialog box opens.

c. Browse to the Tutorial_ObjectRepositories folder.

d. In the Tutorial_ObjectRepositories folder, select the Flight Finder.tsr file and click Open.

e. In the dialog box that opens, click Yes.

The object repository is now associated with the Flight Finder action, and is displayed in the
Solution Explorer as a child of that action.

8. Associate the remaining object repositories with the relevant actions.

Associate the object repositories with the actions as follows:

Action Object Repository

Select Flight Select Flight.tsr

Flight Confirmation Flight Confirmation.tsr

Later, when you add steps to each action, all of the required test objects will be available for use.

9. Save your test.

Tutorial
Lesson 2: Creating Object Repositories

HP Unified Functional Testing (12.51) Page 42



Click Save .

Now that you have created object repositories and associated them with your tests, you can create
test steps using these objects. Continue to "Lesson 3: Adding Steps to a Test" on the next page to
begin creating test steps.

Tutorial
Lesson 2: Creating Object Repositories

HP Unified Functional Testing (12.51) Page 43



Lesson 3: Adding Steps to a Test
In "Lesson 1: Create a GUI Test and Actions", you created a test and actions to provide a structure for
the test of the flight reservation application. In "Lesson 2: Creating Object Repositories", you created
object repositories with the test objects for the application.

In this lesson, you will learn the final mandatory step for creating tests of your application. You will learn
how to add test steps to your GUI tests that enable you to run an accurate test of user actions in the
user interface.

This lesson includes the following:

• Adding Test Steps in a GUI Test - Overview 45

• Exercise 3a: Add Steps to the Login Action in the Keyword View 45

• Exercise 3b: Add Steps to the FlightFinder Action by Recording 52

• Exercise 3c: Add a Step to the Select Flight Action Using the Toolbox Pane 55

• Exercise 3d: Add Steps to the Book Flight Action Using the Step Generator 58

• Advanced Exercise 3e (Optional) - Add Steps Using the Editor 63

Tutorial
Lesson 3: Adding Steps to a Test

HP Unified Functional Testing (12.51) Page 44



Adding Test Steps in a GUI Test - Overview
To create test steps in a GUI test, you have to use the objects in test steps and instruct UFT what
actions to perform on the test objects. This enables UFT to replay the actions on your application by
translating the test object methods (actions) into actions on the run-time objects in your application.

To assist with this, UFT has provided a number of different ways to add test steps:

Keyword
View

Using theKeyword View, you can select your test objects in the step grid, and add the necessary actions
(methods) for these test objects. TheKeyword View automatically sorts the object hierarchy as needed.

After you select the appropriate objects and methods, your test steps are displayed in a grid that shows the object
name, object method, any parameters added, and adocumentation summary of the step.

Editor In the Editor, you can type in the objects (including the necessary hierarchy for the objects as needed), along with
the object method and parameters. If you are experienced with writing code for your application, this can be an
easier way to create test steps.

Recording UFT also has abuilt-in recording mechanism that automatically recognizes test objects in your application as well
as the actions you perform on the application's objects. When you record in your application, UFT translates your
actions into test steps, displaying the object nameand the action (method) performed on theobject. This enables
you to perform the test as a user would and in turn haveUFT automatically create the test instead of manually
editing it insideUFT.

Toolbox
pane

When you select aGUI action tab in the document pane, UFT automatically displays the associated objects and
functions for that action in the Toolbox pane. Then, you can drag these test objects (or functions) into the
Keyword View or Editor , and UFT automatically creates a step with the object. (You still need to provide the
method for the object however, after dragging it from theToolbox pane.)

Step
Generator

Using the Step Generator dialog box, you can select and provide all the details for the test step in a single dialog
box. The Step Generator enables you to choose any test object currently associated with the selected action, the
method for that action, and the necessary parameters. After you select this information, UFT inserts a step in the
selected placewith all the details.

In the exercises that follow, you will create test steps using each of these methods.

Exercise 3a: Add Steps to the Login Action in the
Keyword View
In this exercise, you will use the Keyword View to insert steps into the Login action.

1. Start UFT and open the Book Flights test.

a. If UFT is not currently open, open it as described in "Create a Solution for All Your Tests" on
page 24. Make sure that the WPF Add-in is loaded.

b. On the Start Page, in the Recent solutions area, click Flight Reservation Application.

The Flight Reservation Application solution opens, displaying the Book Flights test you created
in "Lesson 1: Create a GUI Test and Actions" on page 28.

HP Unified Functional Testing (12.51) Page 45



2. Open the Login action and display the Keyword View.

a. If the test flow canvas is not currently open, click the Book Flights tab in the document pane
to display it.

b. In the canvas, double-click the Login action.

The Login action opens in a separate tab in the document pane.

c. If the Editor is displayed, in the toolbar, click the Keyword View button to display the
Keyword View.

3. Add the first step to log in to the flight reservation application.

a. In the Keyword View, in the Item column, click the NEW STEP button. An empty edit field in the
grid in the Item column.

b. In the Item column, click in the empty edit field. The Item list dropdown list opens, displaying
the top-level parent object in the associated object repository, and instructing you to select an
item.

In this step, the parent object is the Loginwindow. Do not select this object now because you
do not want to perform an operation on the main window. You only need to insert steps on the
objects on which you want to perform operations.

c. Select Object from repository to open the Select Test Object dialog box.

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 46



d. In the Select Test Object dialog box, expand the test object tree:

e. In the test object tree, select agentName and click OK.

The Select Test Object dialog box closes and one step is added to the action.

Note that three rows are added to the Keyword View. UFT adds a row for each of the parent
test objects, even though it does not perform an operation on these objects. The rows are part
of the path to the object upon which the step is performed

During a run session, UFT uses the parent objects to identify the actual object on which needs
to perform an operation.

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 47



In this step, represented by the last of the three new rows:

o The selected agentName WpfEdit object is added to the Item cell.

o The default method, Set is added to the Operation cell.

o Text is added to the Documentation cell indicating that this step clears the text in the edit
box. This is because the step is missing a required value in the Value cell, and needs to be
updated with the user name.

f. Click in the Value cell and enter john. After entering the string, press ENTER.

Inserting this value completes the step. When you click another area in the Keyword View, the
documentation for this step is updated in the Documentation cell:

Tip: Quotes are automatically added around the value you entered in the Value column,
indicating this is a String value. If the method supported an Index value, and you
entered an Index value, no quotes would be added.

g. Select View > Editor to display the Editor, which displays the syntax of the step in VBScript:

WpfWindow("HP MyFlight Sample Application").WpfEdit("agentName").Set
"john"

Notice that this step is being performed on a WpfEdit (edit box) test object, named
agentName, and that:

o The test object hierarchy for the WpfEdit (edit box) test object is displayed prior to the test
object. In this step the hiearchy includes a WpfWindow object.

o The method to be performed on the object is displayed immediately after the test object.
In this step, the method is Set.

o The text to enter in the agentName edit box is displayed immediately after the Set
method. The text is displayed in quotes, which indicate that this value is a string. In this
step, the text to enter is john.

o Full stops (periods) separate each part of the step.

h. Click the Keyword View button to return to the Keyword View.

4. Add the next step.

a. In the Item column, directly below the agentName row, click the NEW STEP button. An

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 48



additional row with an edit field is added.

b. Click in the blank edit field. The Item list opens, listing the sibling objects of the previous step's
test object.

c. Select password from the Item list. This time, only one new row is added because the object
shares the same parent objects as the previous step.

In this step:

o The passwordWpfEdit test object is added to the Item cell.

o The default method, Set, is added to the Operation cell. You need to change this method
because the password needs to be encoded.

o Text is added to the Documentation cell indicating that this step clears the text in the edit
box. This is because the step is still missing a required value in the Value cell, and needs to
be updated with the password.

d. Click in the Operation cell to display the down arrow, and then click the down arrow to display
the list of available methods for the selected test object.

e. In the list of methods, select SetSecure. This method enables the use of encrypted text.

5. Generate an encoded password using the HP Password Encoder application.

a. Select Start > All Programs> HP Software > HP > HP Unified Functional Testing > Tools
> Password Encoder or <UFT installation folder>\bin\CryptonApp.exe.

b. In the Password Encoder, in the Password box, enter hp.

c. Click Generate. The Password Encoder encrypts the password and displays it in the Encoded
String box.

d. Click Copy.

e. In UFT, in the Login action, paste the encoded value in the Value cell for the password step and
press the ENTER key.

In the Documentation column of this step, the updated documentation is displayed.

f. Close the Password Encoder dialog box.

If you ran your action at this point, UFT would automatically open the flight reservation
application and inser the values you specified in the Username and Password boxes.

6. Insert the last step in the Login action.

a. In the Item column below the last step, click NEW STEP to insert the next step. A blank edit
field opens.

b. Click in the edit field. The Item list opens, listing the sibling objects of the previous step's test
object.

c. Select OK from the Item list.

This step instructs UFT to click OK after entering the Username and password for the
application.

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 49



7. Save your test.

Select File > Save.

To learn more about the Keyword View and Editor, continue to "Analyzing the Login Action in the
Keyword View and the Editor" below.

To continue adding steps to your test, go to "Exercise 3b: Add Steps to the FlightFinder Action by
Recording" on page 52.

Analyzing the Login Action in the Keyword View and the Editor
Now that you have created some test steps, let's look how these steps are displayed, both in the
Keyword View and Editor:

Keyword View

After you have added your steps, the Keyword View should look similar to this:

As you can see, the steps in your test are arranged in an icon-based grid which shows the test step
sequence as well as the object hierarchy. Each line in the Keyword View represents a different piece of
information:

Line Description

TheHP MyFlight Sample Applicationwindow object is
the parent object for the test objects contained in this action.

All test objects contained in the following steps are displayed
as sub-nodes to this object.

agentName is the nameof the edit box on which UFT
performs the action.

TheSetmethod is the action performed on theagentName
object.

UFT enters john as the text in the edit box.

password is the nameof the edit box on which UFT performs
the action.

TheSetSecuremethod is the action performed on the
passwordWatermakr object.

UFT enters the digit string as the text in the password edit

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 50



box.

OK is the nameof the button UFT clicks after the information
is entered in the agentNameand password edit boxes.

TheClickmethod is the action performed on the button.

For each step in the Keyword View, there are a number of different elements:

Keyword View
Element

Description

Item The item for the step (test object, utility object, function call, or statement). This item is displayed in a
hierarchical, icon-based tree.

Operation Theoperation to perform on the Item, such as Click, Set, or Select.

Value The argument values for the selected operation, if required. For example, the text to enter in an edit box, or
themousebutton to usewhen clicking an image.

Documentation The automatically provided statement of what the step does, in an easy-to-understand sentence. For
example, Click the "OK" button.

Assignment The assignment of a value to or from avariable so you can use the value later in the test. This column is not
visible by default.

Comment Any textual information you want to add regarding the step. For example, you could ad add a comment
Return to page used in first step of test.

This column is not visible by default.

Tip: You can hide or display individual columns by right-clicking the column heading in the Keyword
View, and selecting a column name from the list.

For more details about the Keyword View, see the Keyword View section in the HP Unified Functional
Testing User Guide.

Editor

After you have added your steps, the Editor should look similar to this:

Unlike the Keyword View, each step in the Editor is represented by a script line, with the format:

<object hierarchy>.<method> <method parameters>

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 51



Thus, for each step (and each line in the script), you see a number of things:

Test object
hierarchy

For each step in the Editor, you get the full object hierarchy, including:

l The test object type

l Theobject name (as identified by UFT) for each object

In the first line of the example pictured above, you can see both of these elements:

l TheWpfWindow is the test object type

l "Login" is the object name (as identified by UFT)

Object method After the object hierarchy, you also see themethod (action to beperformed on theobject. Each method is
displayed as bolded text.

In the first line of the example pictured above, the object performs theSetmethod.

Method
parameters

For manymethods, there are required or optional parameters that you must provide. These are listed in the
Editor after themethod name.

In the first line of the example pictured above, theSetmethod enters the parameter John.

For details about the Editor, see the section on editing code and text documents in UFT.

Exercise 3b: Add Steps to the FlightFinder Action by
Recording
In "Exercise 3a: Add Steps to the Login Action in the Keyword View", you added steps to your test to run
on the Login page of the flight reservation application by creating the steps using the Keyword View.

In this exercise, you will record steps for the Flight Finder action you created for the Flight Finder page
in the application. This action will use test objects contained in the Flight Finder shared object
repository.

Tip: Before you begin your recording session, you may want to place the application window and
this tutorial window side-by-side on your screen. This allows you to read the tutorial during
recording.

1. Start UFT and open the Book Flights test.

a. If UFT is not currently open, open UFT as described in "Create a Solution for All Your Tests" on
page 24. Make sure that the WPF add-in is loaded.

b. Select File > Open > Solution. The Open Solution dialog box opens.

c. In the Open Solution dialog box, navigate to the Flight Reservation Application.ftsln file,
located in C:\%HOMEPATH%\My Documents\Unified Functional Testing, and click Open.

The Flight Reservation Application solution opens, displaying the Book Flights test you created
in "Lesson 1: Create a GUI Test and Actions" on page 28.

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 52



2. Open the Flight Finder action.

a. If the test flow canvas is not currently open, click the Book Flights tab in the document pane
to display it.

b. In the canvas, double-click the Flight Finder action.

The Flight Finder action opens in a separate tab in the document pane.

3. Open the flight reservation application's

a. If it is not already open, open the flight reservation application, as described in "Explore the
Flight Reservation Application" on page 22.

The Login page of the flight reservation application opens.

b. Log in to the application. Use john for the Username and hp for the password.

The Flight Finder page of the application opens.

c. In UFT, select Record > Record and Run Settings. The Record and Run Settings dialog box
opens.

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 53



d. In the Windows Applications tab of the Record and Run Settings dialog box, select Record and
run test on any open Windows-based application. This enables UFT to run on the open
application.

e. In UFT, click the Record button . The recording toolbar appears near the top of the screen
and UFT begins recording.

The UFT window disappears, and the Flight Finder page of the application is displayed.

f. In the Flight Finder page, change the following selections by selecting from the different items:

o From: Los Angeles

o To: Sydney

o Date: tomorrow's date

IMPORTANT: type the date into the edit box. Use the format M/D/YYYY.

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 54



o Class: Business

o Tickets: 2

Note: If you are performing this tutorial at the end of a month or year, select a different
month or year while recording. UFT records an operation only when you make a change in
the application, so this ensures that the step is recorded. If you accept a default value (or
re-select the default value), UFT does not record an operation

g. After you make the selections, click FIND FLIGHTS to continue. The Select Flight page opens.

h. On the Record Toolbar, click the Stop button to stop recording.

You have now reserved an imaginary ticket from Los Angeles to Sydney. UFT recorded your
actions in the application from the time you clicked the Record button in UFT until the time you
clicked Stop on the record toolbar.

4. Save your test.

Click Save .

Do not close the test, because you will continue to add steps to other actions. Continue with "Exercise
3c: Add a Step to the Select Flight Action Using the Toolbox Pane" below to add additional steps to other
actions.

Exercise 3c: Add a Step to the Select Flight Action
Using the Toolbox Pane
In "Exercise 3b: Add Steps to the FlightFinder Action by Recording" on page 52, you added steps to the
Flight Finder action by using UFT's recording functionality. This created steps based on exactly the
actions you performed in the flight reservation application's user interface.

In this exercise, you drag the relevant test objects into your action from the Toolbox pane.

Note: Toolbox pane items are listed according to the action in focus in the document pane. If a the
test flow tab or a function library tab is in focus, or if you do not have a test open at all, the Toolbox
pane is empty.

1. Start UFT and open the Book Flights test.

a. If UFT is not currently open, open UFT as described in "Create a Solution for All Your Tests" on
page 24.

b. Click the Open button down arrow , and select Open Solution. The Open Solution
dialog box opens

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 55



c. In the Open Solution dialog box, navigate to the Flight Reservation Application.ftsln file,
located in C:\%HOMEPATH%\My Documents\Unified Functional Testing, and click Open.

The Flight Reservation Application solution opens, displaying the Book Flights test you created
in "Lesson 1: Create a GUI Test and Actions" on page 28.

2. Open the Select Flight action.

In the Solution Explorer pane, double-click the Select Flight action.

The Select Flight action opens as a separate tab in the document pane.

3. Display the Toolbox pane.

In the UFT toolbar, click the Toolbox button . The Toolbox pane opens on the right side of the
UFT window.

Note: The Toolbox pane displays the action's test objects and functions regardless of whether
the action is displayed in the Keyword View or Editor.

4. Select the flight to book from the grid.

a. In the Toolbox Pane, expand the Test Objects tree.

b. In the Item column, click the NEW STEP button. A blank edit field opens.

c. In the Toolbox pane, locate and drag the flightsDataGrid object to the edit field in the Keyword
View or Editor (depending on which view is open).

Note: You may notice that this object repository has manymore objects than the Login
repository. This is because you did not delete extraneous objects when creating this
object repository.

The selected Table test object is added to the step, together with its default method,
SelectCell.

o In the Keyword View, the Documentation cell is empty, because you have not provided the
required parameters for the method. Remember that this step is displayed on three rows
in the Keyword View because the parent test objects are part of the step.

o In the Editor, the step is displayed as follows:

WpfWindow("HP MyFlight Sample Application").WpfTable
("flightsDataGrid").SelectCell

d. If the Keyword View is not open, select View > Keyword View to open it.

e. In the middle of the Value column for the flightsDataGrid object, click the Configure the value
icon .

Note: When you click this icon, you will see a tooltip that says row, Column. This tells you

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 56



that you are setting the value for the row parameter. When you configure the value for
method parameters, you will always see a tooltip that informs you which parameter you
are setting.

f. Enter 0 for the row parameter value

g. On the right side of the Value column, click the Configure the value icon .

Note: After you click the icon, you see the tooltip that says row, Column. This tells you
that you are setting the value for the Column parameter.

h. Enter 0 for the column parameter.

By entering this parameter, you have instructed UFT to select the flight in the first row, as
seen in the example below:

After adding the method parameters, the step is updated in the Keyword View and Editor:

o The Value column in the Keyword View now shows "0","0" for the step values.

o The Editor adds "0", "0" after the SelectCellmethod. Your statement in the editor now
looks like this:

WpfWindow("HP MyFlight Sample Application").WpfTable
("flightsDataGrid").SelectCell "0", "0"

o The Documentation column now has a statement explaining the step's action.

5. Add a step to click the Select Flight button.

After you select a cell from the flight list, you must also click the Select Flight button to continue
with the flight reservation process.

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 57



a. In the Toolbox pane, find the SELECT FLIGHT object.

b. In the Item column, click the NEW STEP button. A blank edit field opens.

c. From the Toolbox pane, drag the SELECT FLIGHT object to the to the edit field in the step grid in
the Keyword View, under the flightsDataGrid object.

A new step is added to your test, containing the SELECT FLIGHT object:

In this case, the default method for the SELECT FLIGHT object, Click, is the method you want to
use for the test.

In the Editor, the action steps now look like this:

WpfWindow("HP MyFlight Sample Application").WpfTable
("flightsDataGrid").SelectCell "0", "0"
WpfWindow("HP MyFlight Sample Application").WpfObject("SELECT
FLIGHT").Click

6. Save your test.

Select File > Save.

Do not close the test, becuase you will still need to add steps to other actions. Continue to "Exercise 3d:
Add Steps to the Book Flight Action Using the Step Generator" below to add steps by using the Step
Generator.

Exercise 3d: Add Steps to the Book Flight Action Using
the Step Generator
In "Exercise 3c: Add a Step to the Select Flight Action Using the Toolbox Pane" on page 55, you used the
objects displayed in the Toolbox pane to create test steps.

In this lesson, you will use an additional way of creating test steps - the Step Generator. The Step
Generator enables you to define an entire step in one dialog box, instead of inserting different parts of
a step in the various columns of the Keyword View.

1. Open the Flight Confirmation action.

In the Solution Explorer, under the Book Flights node, double-click the Flight Confirmation action.

The Flight Confirmation action opens as a separate tab in the document pane

2. Add a step using the Step Generator.

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 58



a. If the Editor is not already displayed, display it by selecting View > Editor.

b. In the first line of the Editor, right-click and select Insert Step > Step Generator. The Step
Generator dialog box opens.

c. In the Object drop-down, select "Book Flights".

d. Click the Select Object button . The Select Test Object dialog box opens.

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 59



e. In the Select Test Object dialog box, expand the Book Flights node:

f. Select the passengerName edit box , and click OK.

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 60



The Step Generator displays the default options for the passengerName object:

g. Define the arguments and values in the Step Generator just as you would in the Keyword View:

o In the Operation drop-down list, leave the Operation as Set. Note that when you select a
test object in the Object drop-down list, the default operation is displayed. You can select
other operations for this object as needed. However, in this exercise, the default operation
is the correct one.

o In the Arguments table, click inside the Value column (like you would in the Keyword View),
and enter a name of your choosing. Note that if arguments are mandatory, a red asterisk
is displayed next to the argument name.

o The Step documentation displays the instruction for this step as it will be displayed in the
Documentation cell of the Keyword View.

o Select the Insert another step check box to open the Step Generator dialog box again
after adding this step.

h. Click OK. The Step Generator remains open, but a step is added to the Editor in the background
with the details you entered.

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 61



3. Add a step to wait for the progress bar in the application window to load.

In the Flight Details window, you will notice that there is a progress bar object, called progBar in the
object repository. In order for the application to work correctly when tested, you must add a step
to ensure that this loads before clicking the button to complete the order.

a. In the Step Generator, in the Test Objects drop-down list, select the progBar object. The Step
Generator updates the dialog box fields with the default properties for the progBar object,
including its default method, Value.

b. In the Operation drop-down menu, select WaitProperty. This method instructs UFT to wait
during the test run until a certain property achieves a specified state.

c. In the Arguments table, enter the following information:

Item Value

PropertyName value

PropertyValue 100

d. Select the Insert another step check box and click OK.

Another step is inserted in the Keyword View in the background and the Step Generator box
remains open.

4. Add a step to the test to complete the order using the Step Generator.

Now that you have defined the details for the order, you must provide a step that clicks the ORDER
and NEW SEARCH buttons in the Flight Details window to complete the order. You will use the Step
Generator again to insert this statement.

Note: The step the clicks the ORDER button must be inserted before the step with the
progress bar object created in the previous step.

a. Using the process in the previous steps, enter the following details:

ORDER button step NEW SEARCH button step

Object ORDER (Wpf Button) NEW SEARCH (WpfButton)

Operation Click Click

Arguments Leave blank Leave blank

Insert another step checkbox Select Clear

b. Click OK. The Step Generator closes and the step is added to the Keyword View.

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 62



Now that you have added both steps to the test, the Keyword View should look like this:

In the Editor. the steps are displays as follows:

WpfWindow("HP MyFlight Sample Application").WpfEdit("passengerName").Set
"John Smith"
WpfWindow("HP MyFlight Sample Application").WpfButton("ORDER").Click
WpfWindow("HP MyFlight Sample Application").WpfProgressBar
("progBar").WaitProperty "value", "100"
WpfWindow("HP MyFlight Sample Application").WpfButton("NEW SEARCH").Click

5. Save your test.

Click Save .

Now that you have created your first test, you can run it. Continue with "Lesson 4: Running and
Analyzing GUI Tests" on page 69 to learn more about running tests.

If you would like an advanced lesson, continue to "Advanced Exercise 3e (Optional) - Add Steps
Using the Editor" below to learn how to add steps in the Editor.

Advanced Exercise 3e (Optional) - Add Steps Using the
Editor
In addition to adding steps to your test through the Keyword View, the Toolbox pane, or the Step
Generator, you can also add steps directly into the Editor.

However, when adding steps through the Editor, you must have a greater knowledge of both your
application and your test objects. In the Keyword View, Toolbox pane, and Step Generator, all the
information for your test objects is provided in the dialog boxes by UFT. In the Editor, you must know a
number of things:

l The full test object hierarchy for your objects

l The name of the test objects (as recorded in the Object Repository)

l The type of the test objects, i.e. WpfWindow, WpfButton, etc.

l The method to use

You use this information to create lines in the Editor. In this lesson, you will learn where to find this
information and how to enter it into the Editor to make test steps.

You will create statements in the Editor for an action which already has test steps.

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 63



1. Start UFT and open the Book Flights test.

a. If UFT is not currently open, open UFT as described in "Create a Solution for All Your Tests" on
page 24. Make sure that the WPF add-in is loaded.

b. Select File > Open > Solution. The Open Solution dialog box opens.

c. In the Open Solution dialog box, navigate to the Flight Reservation Application.ftsln file,
located in C:\%HOMEPATH%\My Documents\Unified Functional Testing, and click Open.

The Flight Reservation Application solution opens, displaying the Book Flights test you created
in "Lesson 1: Create a GUI Test and Actions" on page 28.

2. Open the Flight Confirmation action.

In the Solution Explorer pane, double-click the Flight Confirmation action.

The Flight Confirmation action opens as a separate tab in the document pane. Do not delete the
currently existing test steps in the action.

3. Learn the object details for the parent object.

a. If it is not already open, open the Editor by selecting View > Editor.

Note that the already existing steps look like this:

WpfWindow("HP MyFlight Sample Application").WpfEdit("passengerName").Set
"John Smith"
WpfWindow("HP MyFlight Sample Application").WpfButton("ORDER").Click

For a description of each of the elements in these statements, see the Editor section in
"Analyzing the Login Action in the Keyword View and the Editor" on page 50.

b. In the Solution Explorer, under the Book Flights node, expand the Flight Confirmation action
node.

c. Double-click the Flight Confirmation.tsr object repository. The Object Repository Manager
opens with the objects for the Flight Details page of the flight reservation application.

d. In the Object Repository Manager, select the HP MyFlight Sample Application object (top level
node). This is the parent object for all objects in the Flight Details page.

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 64



The object's details and properties are shown in the Object Properties area (right side of the
window):

]

e. Record the following details for the HP MyFlight Sample Application object:

o Name: HP MyFlight Sample Application

o Class: WpfWindow

You will need this when you create a statement in the Editor. This information is the first part
of all statements for steps using test objects on this page.

4. Learn the object details for the child objects.

In "Exercise 3d: Add Steps to the Book Flight Action Using the Step Generator" on page 58 (the
exercise on which this exercise is based), you created two steps: one step that enters the name for
the flight order, and the second step that clicks the ORDER button. In order to create these steps
in the Editor, you must also learn the object details for objects included in these steps.

a. In the Object Repository Manager, select the passengerName object. The test object details
are shown in the Object Properties section of the Object Repository Manager:

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 65



b. Record the following properties for the object:

o Name: passengerName

o Class: WpfEdit

c. Follow the same process for the ORDER object.

5. Create the statements for the steps in the Editor.

After you viewed the object properties for the objects involved in this action's steps, you should
have the following information:

Object Name Class

HP MyFlight Sample Applicationwindow (parent object) HP MyFlight Sample Application WpfWindow

Passenger Name (edit box) passengerName WpfEdit

ORDER button ORDER WpfButton

Using the object details, you must create statements that include the object hierarchy as well as
the method (action) to be performed on the object. (Each object has a number of supported
methods to use for the test object. For full details on all available objects and their methods, see
the HP UFT Object Model Reference for GUI Testing after you finish the tutorial exercises.)

a. On the first new line, enter the parent object hierarchy for the first step (entering the
customer name for the order), using the format

<object class>("<object name>").

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 66



For this step, you should enter the following:

WpfWindow("HP MyFlight Sample Application").

b. Enter the child object (passengerName) for the first step, using the same format.

For this step, you should enter the following:

WpfEdit("passengerName").

c. After the WpfEdit("passengerName") object, enter the Setmethod for the passengerName
object.

Your step should now look like this:

WpfWindow("HP MyFlight Sample Application").WpfEdit("passengerName").Set

d. After the Setmethod, enter "John Smith" as the string to be entered (Set) for the
passengerName object.

Your step should now look like this:

WpfWindow("HP MyFlight Sample Application").WpfEdit("passengerName").Set
"John Smith"

e. Add the object hierarchy for the second step (clicking the ORDER button), using the same
process as described above.

After you add the object hierarchy for the second step, the statement should look like this:

WpfWindow("HP MyFlight Sample Application").WpfButton("ORDER").

f. After the WpfButton("ORDER") object, add the Clickmethod. Your statement should now look
like this:

WpfWindow("HP MyFlight Sample Application").WpfButton("ORDER").Click

Note: The Clickmethod does not require any parameters, so there is no need to add
additional information after the method name.

Once you have completed both statements, the Editor should display the following:

WpfWindow("HP MyFlight Sample Application").WpfEdit("passengerName").Set
"John Smith"
WpfWindow("HP MyFlight Sample Application").WpfButton("ORDER").Click

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 67



6. Remove the extra lines.

After you performed the previous steps, you added two extra lines to the action (for a total of four
statements). Remove the last two statements from the action to ensure that the test runs
successfully.

7. Save the test.

Select File > Save.

Tutorial
Part 3: Creating and Running Automated GUI Tests

HP Unified Functional Testing (12.51) Page 68



Lesson 4: Running and Analyzing GUI Tests
In "Lesson 3: Adding Steps to a Test" on page 44, you created multiple actions and test steps in each
action to test the flight reservation application. Now that the test is complete, you can run the test to
see how the flight application performs.

In this lesson, you will learn how to run a test and view the run results.

This lesson includes the following:

• Exercise 4a: Run a Test 70

• Exercise 4b: Navigate the Run Results 72

• Exercise 4c: Analyze the Run Results 74

HP Unified Functional Testing (12.51) Page 69



Exercise 4a: Run a Test
In "Lesson 3: Adding Steps to a Test" on page 44, you created a basic test that runs through the flight
reservation application to book a flight.

In this exercise, you will learn how to run the test you just finished.

1. Start UFT and open the Book Flights test.

a. If UFT is not currently open, open UFT as described in "Create a Solution for All Your Tests" on
page 24. Make sure the WPF Add-in is loaded.

b. Select File > Open > Solution. The Open Solution dialog box opens.

c. In the Open Solution dialog box, navigate to the Flight Reservation Application.ftsln file,
located in C:\%HOMEPATH%\My Documents\Unified Functional Testing, and click Open.

The Flight Reservation Application solution opens in the Solution Explorer, and the Book Flights
test opens as a separate tab in the document pane.

2. Configure UFT to save all images to the run results.

When you perform a test run, UFT gives you the option to save all images to the test results.

a. Select Tools > Options > GUI Testing tab > Screen capture node. The Screen Capture options
pane opens.

b. In the Screen Capture options pane, select the Save still image captures to results checkbox,
and then select Always from the drop-down menu.

c. Click OK to close the Options dialog box.

3. Configure the Record and Run Settings for your test.

In some cases, you may need UFT to open your application for you at the beginning of the test run.
In these cases, you can set up the Record and Run Setting to enable this.

a. Select Record > Record and Run Settings. The Record and Run Settings dialog box opens.

b. In the Windows Application tab of the Record and Run Settings dialog box, select the Record
and run only on: option.

c. Under the Record and run only on option, select the Applications specified below option.

d. In the Application details area, click the Add button . The Application Details dialog box
opens.

e. In the Application details dialog box, enter the application details:

Application C:\%HOMEPATH%\Unified Functional Testing\samples\Flights
Application\FlightsGUI.exe

Working C:\%HOMEPATH%\Unified Functional Testing\samples\Flights

HP Unified Functional Testing (12.51) Page 70



folder Application\

f. Click OK to close the Application Details dialog box.

g. In the Record and Run Settings dialog box, click Apply and then OK to enable the settings and
close the dialog box.

4. Start running your test.

a. In the Solution Explorer, select the Book Flights test node.

b. In the toolbar, click the Run button . The Run Test dialog box opens.

c. In the Run Test dialog box, click the Options bar to expand the Run Test Options area, Ensure
that the New run results folder option is selected. Accept the default folder name:

d. Click Run to close the Run dialog box and start the test run.

Tutorial
Lesson 4: Running and Analyzing GUI Tests

HP Unified Functional Testing (12.51) Page 71



Watch carefullly as UFT opens the application and starts running the test. In the application,
you can see UFT perform each step you inserted: a yello arrow in the left margin of the
Keyword View or Editor and the highlighted row indicate the step that UFT is running:

If any errors appear, go to the point in the test that is indicated in the error message and
verify that the step is configured as described in the relevant exercise.

When the test run is complete, the run results open as a separate tab in the document pane.
Continue to "Exercise 4b: Navigate the Run Results" below to learn more about the run results.

Exercise 4b: Navigate the Run Results
In "Exercise 4a: Run a Test" on page 70, you ran the Book Flights test you created. After the test run is
finished, the run results automatically display the results for this test run.

Note: By default, the run results are displayed in an HTML-based report. You can also choose to
have the run results displayed in the Run Results Viewer in the Run Sessions pane of the Options
dialog box (Tools > Options > General tab > Run Sessions node). The lessons in this tutorial are
based on the HTML-based report.

Tutorial
Lesson 4: Running and Analyzing GUI Tests

HP Unified Functional Testing (12.51) Page 72



When the run results open, UFT displays the following:

By default, the run results display the following:

Test Flow A graphic representation of the results in a tree, organized according to the actions and the application pages
visited during the test run. The steps performed during the run are represented by icons in the tree, which can
be expanded (arrow) to view each step. You can instruct UFT to run a test or action more than once using
different sets of data in each run. Each run is called an iteration, and each iteration is numbered. (The test you
ran had only one iteration.)

Error list A list of all the errors and warnings, presented in a list.

Step
summary
information

A high-level results overview report, containing general information about the test, which steps passed or
failed, and details about each test step..

Links to
external
resources

Links to external resources used with your test or from the test run, including:

l Data table

l Run-timemovies

l Application logs

In this exercise, the test run succeeded because UFT was able to navigate the flight booking application
according to the steps you added. If an error occurred and your test did not run successfully, the error
will be shown in the run results. In such cases, go back and make sure that the steps are configured
exactly as described in this tutorial.

Now that you know what the run results display, continue to "Exercise 4c: Analyze the Run Results" on
the next page to learn about the details of the run results.

Tutorial
Lesson 4: Running and Analyzing GUI Tests

HP Unified Functional Testing (12.51) Page 73



Exercise 4c: Analyze the Run Results
In this exercise, you will inspect the steps UFT performed when it ran your test in "Exercise 4a: Run a
Test" on page 70. You can view snapshots of the application window for each step.

1. View the run results for a specific step.

In the Test Flow, under the results tree, find the Flight Finder node to see all the steps performed
on the Flight Finder page of the flight reservation application.

In the results tree, select the fromCity.Select step:

The run results now displays the following information:

l The Test Flow, with the step highlighted

l A summary of the test step, displaying details of the highlighted step

2. Close the run results.

In the document pane, close the tab containing the run results.

Now that you have set up and run your first test, you can continue to learn about different ways of
enhancing your tests. Select one of the following to learn more:

l "Lesson 5: Parameterizing Steps and Objects" on the next page

l "Lesson 6: Creating Checkpoints and Output Values" on page 90

l "Lesson 7: Creating Functions and Function Libraries" on page 123

l "Lesson 8: Using Insight in your Test" on page 132

Tutorial
Lesson 4: Running and Analyzing GUI Tests

HP Unified Functional Testing (12.51) Page 74



Lesson 5: Parameterizing Steps and Objects
In "Lesson 3: Adding Steps to a Test" on page 44, you created test steps to check that a series of steps
performed on the flight reservation application ran smoothly. In "Lesson 4: Running and Analyzing GUI
Tests" on page 69, you ran the test, but only with a single set of data. However, when you test your
applications, you may want to see the same operations performed with multiple sets of data.

For example, you may want to run a test on your application using ten different sets of data. You can
create ten separate tests, each with its own set of data, or you can add ten sets of parameters to a
single test. If you add the parameters, your test will run ten times, each time using a different set of
data.

In this lesson, you will add parameters to your test and run the test with multiple sets of data.

This lesson includes the following:

• Parameterizing Tests, Actions, and Objects - Overview 76

• Exercise 5a: Create a Test for Parameterization 76

• Exercise 5b: Define Data Table Parameters 77

• Exercise 5c: Add Parameter Values to a Data Table 81

• Exercise 5d: Run a Parameterized Test 83

Tutorial
Lesson 5: Parameterizing Steps and Objects

HP Unified Functional Testing (12.51) Page 75



Parameterizing Tests, Actions, and Objects - Overview
When you use data to parameterize a test, action or test object value, you can provide the data source
from a number of places:

l Data table: an Excel spreadsheet with parameter names and values

l Environment variable: a variable set in your test with a fixed value

l Random number: a random number generated by UFT in the test run

The most common of these is the Data table parameter. The data table is an Excel spreadsheet,
displayed in the Data pane at the bottom of the UFT window.

Note: If the Data pane is not displayed, select View > Data or click the Data button in the
toolbar.

In the Data table, there are two different types of sheets:

Global
data
sheets

Global data sheets contain data parameters and data that is used for and available to all actions in the test. When a
parameter is inserted in the global sheet, it can beused in any of the actions and the steps in the actions in the test.

The test will run the samenumber of iterations as there are rows in the global data sheet. Thus, for example, if
there are five rows of data, the test will run five iterations.

Action
sheets

For each action in your test, UFT adds an additional sheet with that action (with the samenameas the action). The
data parameters and data is available only to the steps in that action.

If you usemultiple rows of datawithin an action sheet, UFT will run the action the samenumber of times as there
are rows in the data sheet (within one test iteration).

In the course of this lesson, you will be using only data table parameters. For details on the other types
of parameters, see the section on parameterization in the HP Unified Functional Testing User Guide

Exercise 5a: Create a Test for Parameterization
In "Exercise 3b: Add Steps to the FlightFinder Action by Recording" on page 52, you reserved a flight
from Los Angeles to Sydney. In those step, the Los Angeles and Sydney values are constant values. This
means that UFT uses Los Angeles and Sydney as the departure and arrival city each time it runs the
test.

In this exercise, you will create a new test, in which you define the departure and arrival city as a
parameter, so that you can use a different departure and arrival city for each test run.

1. Start UFT and open the Book Flights test.

a. Open UFT as described in "Create a Solution for All Your Tests" on page 24. Make sure that the
WPF Add-in is loaded.

b. On the Start Page, in the Recent Solutions area, click Flight Reservation Application.

Tutorial
Lesson 5: Parameterizing Steps and Objects

HP Unified Functional Testing (12.51) Page 76



The Flight Reservation Application solution opens, containing the Book Flights test you
created in "Lesson 1: Create a GUI Test and Actions" on page 28.

2. Save the Book Flights as Book Flights Parameter.

a. In the Solution Explorer, select the Book Flights node.

b. Select File > Save As. In the Save Test As dialog box, browse to C:\%HOMEPATH%\My
Documents\Unified Functional Testing and save the test as Book Flights Parameter.

In the Solution Explorer, the Book Flights test is replaced by the new Book Flights Parameter
test. The Book Flights test is still saved separately in the file system.

3. Add the Book Flights test back to the solution.

You can have all of your tests open at the same time if they are both referenced from the same
solution. This enables you switch back and forth between them if you want to compare or edit the
tests. You can only run a single test at a time.

a. Select File > Add > Existing Test.

b. In the Add Existing Test Dialog Box, browse to the C:\%HOMEPATH%\My Documents\Unified
Functional Testing, and select the Book Flights test.

c. Click Add to add it to the solution.

The Book Flights test is again displayed in the Solution Explorer. Note that it appears above the
Book Flights Parameter test you just created, as tests are listed in alphabetical order.

Now that you have created the test for parameterization,continue with "Exercise 5b: Define Data
Table Parameters" below to create data table parameters in your test.

Exercise 5b: Define Data Table Parameters
In this lesson, you will define the departure and arrival cities as parameters, so that you can use a
different departure city for each test run.

1. Start UFT and open the Book Flights Parameter test, if necessary.

a. Open UFT as described in "Create a Solution for All Your Tests" on page 24. Make sure that the
WPF Add-in is loaded.

b. Select File >Open > Solution. The Open Solution dialog box opens

c. Navigate to the Flight Reservation Application.ftsln file, located in C:\%HOMEPATH%\My
Documents\Unified Functional Testing, and click Open.

The Flight Reservation solution opens, including the Book Flights Parameter test you created in
"Exercise 5a: Create a Test for Parameterization" on the previous page.

d. In the Solution Explorer, select the Book Flights Parameter node.

2. Make sure that the Data Pane is visible.

Tutorial
Lesson 5: Parameterizing Steps and Objects

HP Unified Functional Testing (12.51) Page 77



If you do not see the Data pane at the bottom of the UFT window, select View > Data.

3. Open the Flight Finder action.

a. In the canvas, double-click the Flight Finder action. The Flight Finder action is displayed as a
separate tab in the document pane.

b. If necessary, select View > Keyword View.

4. Select the text to parameterize.

In the Keyword View, in the fromCity row, click the Value cell and then click the parameterization

button .

The parameter list is displayed:

5. Set the parameterization properties.

a. In the parameter list, select the Data Table tab. This enables you to replace the constant value
(London) with a parameter.

Note that no parameters are displayed, because you have not yet created a Data Table
parameter.

b. In the Data Table tab of the parameter list, click the Add New Parameter button. The Value
Configuration Options dialog box opens:

Tutorial
Lesson 5: Parameterizing Steps and Objects

HP Unified Functional Testing (12.51) Page 78



c. In the Value Configuration Options dialog box, select the Parameter radio button.

Tutorial
Lesson 5: Parameterizing Steps and Objects

HP Unified Functional Testing (12.51) Page 79



d. Confirm that the DataTable option is selected from the Parameter drop-down menu. This
means that the value of the parameter will be taken from the UFT Data pane. The Name box is
enabled and displays p_Item:

e. Delete the p_Item parameter and enter fromCity.

f. Click OK to close the dialog box.

UFT adds the fromCity parameter to the Data pane as a new column and inserts Los Angeles
(the previous constant value) in the first row in the column.

Los Angeles will be the first of several departure cities that UFT will use during test runs of the
application.

Tutorial
Lesson 5: Parameterizing Steps and Objects

HP Unified Functional Testing (12.51) Page 80



Note the change in the step's appearance in the Keyword View. Previously, the step was
displayed as fromCity Select Los Angeles. Now, when you click the Value cell, the
following information is displayed, indicating that the value is parameterized using a Data
pane parameter called fromCity:

6. Add a data table parameter for the toCity step.

Using the process described in the previous step, add a data table parameter for the toCity object
named toCity.

After you are done, your test should look like this:

7. Save your test.

Select File > Save.

Continue with "Exercise 5c: Add Parameter Values to a Data Table" below to learn how to populate the
data table with the values used for a test run.

Exercise 5c: Add Parameter Values to a Data Table
As you learned in "Exercise 5b: Define Data Table Parameters" on page 77, UFT displays parameter
values in the Data pane. In this exercise, you will add another departure city (for the fromCity object) to
the Data pane, so that UFT can test the application with this data.

1. Start UFT and open the Book Flights Parameter test, if necessary.

a. Open UFT as described in "Create a Solution for All Your Tests" on page 24. Make sure that the
WPF Add-in is loaded.

b. Click the Open down arrow , and select Open Solution. The Open Solution dialog
box opens.

c. Navigate to the Flight Reservation Application.ftsln file, located in C:\%HOMEPATH%\My
Documents\Unified Functional Testing, and click Open.

The Flight Reservation solution opens, including the Book Flights Parameter test you created in
"Exercise 5a: Create a Test for Parameterization" on page 76.

d. In the Solution Explorer, select the Book Flights Parameter node.

Tutorial
Lesson 5: Parameterizing Steps and Objects

HP Unified Functional Testing (12.51) Page 81



2. Open the Flight Finder action.

In the Solution Explorer, double-click the Flight Finder action.

The Flight Finder action opens as a separate tab in the document pane.

3. Enter an additional cities in the fromCity column.

In the Data pane, enter the following in the Data pane for the fromCity parameter:

Row Value

2 Denver

3 Frankfurt

4 London

4. Create a data table parameter and values for the toCity object.

a. In the Data pane, double click the header row for the B column. The Change Parameter Name
dialog box opens.

b. In the Change Parameter name dialog box, enter toCity for the parameter name and click OK.

The column header (which was previously B) is updated with the new parameter name:

c. Enter the values for the toCity parameter as follows:

Row Value

Tutorial
Lesson 5: Parameterizing Steps and Objects

HP Unified Functional Testing (12.51) Page 82



1 Sydney

2 Los Angeles

3 London

4 Frankfurt

After you add the second parameter and its values, the Data pane should look like this:

5. Parameterize the toCity step.

a. In the Flight Finder action, in the toCity row, click the Value cell and then click the
parameterization button . The Value Configuration Options dialog box opens.

b. In the Value Configuration Options dialog box, select the Parameter radio button.

c. In the drop-down menu for the Parameter type, select DataTable.

d. In the Location in Data Table area, select Global sheet. The Name drop-down menu changes to
reflect the Global data sheet's parameters.

e. In the Name box, select the toCity parameter and click OK.

In the Keyword View, the Value cell for the toCity object is updated to show the
parameterization:

6. Save the test.

In the toolbar, click Save .

Now that you have added parameters and values, and linked your test steps with these values, you are
ready to run a parameterized test. Continue to "Exercise 5d: Run a Parameterized Test" below

Exercise 5d: Run a Parameterized Test
In "Exercise 5b: Define Data Table Parameters" on page 77 and "Exercise 5c: Add Parameter Values to a
Data Table" on page 81, you created Data Table parameters for the toCity and fromCity objects in the
Flight Finder action. This enables you to substitute the constant object values with changing values from
the test's data table.

Tutorial
Lesson 5: Parameterizing Steps and Objects

HP Unified Functional Testing (12.51) Page 83



However, if you were to run the test at this time, it would only run one time, with the data from the first
row of the Global data sheet. Since the purpose of parameterization is to see how your application runs
with different sets of data, you need to instruct UFT to run the test multiple times.

In this lesson, you will configure UFT and your test to ensure that the entire test runs multiple times and
uses the data in the test's Data table.

1. Start UFT and open the Book Flights Parameter test, if necessary.

a. Open UFT as described in "Create a Solution for All Your Tests" on page 24. Make sure that the
WPF Add-in is loaded.

b. Click the Open down arrow , and select Open Solution. The Open Solution dialog
box opens.

c. Navigate to the Flight Reservation Application.ftsln file, located in C:\%HOMEPATH%\My
Documents\Unified Functional Testing, and click Open.

The Flight Reservation solution opens, including the Book Flights Parameter test you created in
"Exercise 5a: Create a Test for Parameterization" on page 76.

d. In the Solution Explorer, click the node for the Book Flights test. The test flow canvas opens as
a separate tab in the document pane.

2. Change the Record and Run Settings so that the flight reservation application
does not open automatically.

In the Book Flights test (the test from which this test was created), you configured the Run and
Record Settings to automatically open the flight reservation application at the beginning of the
test run. For the purposes of this test run, you want UFT to open the application as part of a test
step.

a. Select Record > Record and Run Settings. The Record and Run Settings dialog box opens.

b. In the Windows Applications tab of the Record and Run Settings dialog box, select the Record
and run test on any open Windows application option and click Apply.

c. Click OK to close the dialog box.

3. Add additional actions for the open and close of the application.

When you run a parameterized test, UFT runs the entire test multiple times, depending on the
number of rows in your data table. However, in order to do this, we must add steps to open and
close the application, in order for UFT to run the actions for each of the four application pages
(Login, Flight Finder, Select Flight, and Flight Details/Confirmation.)

a. In the document pane, select the Book Flights tab (with the test flow canvas).

b. In the toolbar, click the Insert Call to New Action button . The Insert Call to New Action
dialog box opens.

c. In the Insert Call to New Action dialog box, name the new action Open Application. Leave all
other settings and options with the default.

Tutorial
Lesson 5: Parameterizing Steps and Objects

HP Unified Functional Testing (12.51) Page 84



A new action block is added to the end of the test flow with the name Open Application.

d. In the Book Flights tab (with the test flow canvas), right-click the Open Application action and
select Move Up. The Open Application action block moves up above the Flight Confirmation
action.

e. Right-click and select Move Up until the Open Application block is the first action in the test.

Note: You can also drag and drop the action blocks in the test flow as needed.

f. In the toolbar, click the Insert Call to New Action button again.

g. In the Insert Call to New Action dialog box, name the new action Close Application. Leave all
other settings and options with the default.

Tutorial
Lesson 5: Parameterizing Steps and Objects

HP Unified Functional Testing (12.51) Page 85



After you have inserted this two new actions, your test flow should look like this:

4. Add statements to open and close the application.

When you created the Book Flights test, you instructed UFT to open the application automatically
using the Run Settings for the test. In this test, you need to add the opening and closing of the
application as a separate step. To do so, you are going to use a SystemUtil statement.

a. In Solution Explorer, double-click the Open Application action node. The Open Application
action opens as a separate tab in the document pane.

b. Select View > Editor to open the Editor.

Tutorial
Lesson 5: Parameterizing Steps and Objects

HP Unified Functional Testing (12.51) Page 86



c. In the Editor, paste the following line:

SystemUtil.Run "C:\Program Files (x86)\HP\Unified Functional
Testing\samples\Flights Application\FlightsGUI.exe"

Note: If you are pasting this line from the PDF copy of the tutorial, make sure to edit the
pasted text so this method is all on a single line.

d. In the Solution Explorer, double-click the Close Application action node. The Close Application
action also opens as a separate tab in the document pane.

e. In the Editor, paste the following line:

SystemUtil.CloseDescendentProcesses

5. Instruct UFT to run an iteration for each row in the data table.

a. Select File > Settings. The Settings dialog box opens.

b. In the Settings dialog box, select the Run node.

c. In the Data Table iterations section, select the Run on all rows option. This ensures that UFT
runs an iteration of the test for each row in the Global data sheet.

Tutorial
Lesson 5: Parameterizing Steps and Objects

HP Unified Functional Testing (12.51) Page 87



Now, when you run your test, UFT will run multiple iterations of the test, corresponding to the
four rows in the Global data sheet.

6. Run the Book Flights Parameter test.

a. Click the Run button . The Run dialog box opens.

b. In the Run dialog box, in the Results Location tab, select New run results folder and accept
the default folder name.

c. Click OK. When the test run is completed, the run results open.

7. Analyze the run results.

In the Run Results Viewer, right-click the top node in the results tree and select Expand All.

Note that the results display five different nodes for each iteration of the test. This corresponds to
the mulitple rows of the Global data table:

If you search under the Flight Finder Summary nodes until you see the fromCity.Select or
toCity.Select steps, you will notice that the step details for the step is modified to match the
values in the Data table.

8. Close the run results.

In the document pane, close the tab containing the run results..

Tutorial
Lesson 5: Parameterizing Steps and Objects

HP Unified Functional Testing (12.51) Page 88



Now that you have learned how to use data to parameterize your test, continue with "Lesson 6: Creating
Checkpoints and Output Values" on the next page to learn how to enhance your tests with checkpoints
and output values.

Tutorial
Lesson 5: Parameterizing Steps and Objects

HP Unified Functional Testing (12.51) Page 89



Lesson 6: Creating Checkpoints and Output
Values
In "Lesson 4: Running and Analyzing GUI Tests" on page 69, you ran a test that you created in previous
lessons, to check that a series of steps performed on the flight reservation application ran smoothly
and correctly.

After you create basic test steps, one of the enhancements you can make is to add checkpoints and
output values for your tests and test steps. Checkpoints verify that expected information is displayed in
your application while a test is running. Output values export a value to use in other places in the test as
a parameter.

In this lesson, you will insert checkpoints and use a function to check the validity of some of the objects
in the flight reservation application checkpoint.

This lesson includes the following:

• Understanding Checkpoint and Output Value Types 91

• Exercise 6a: Create a Checkpoint Test 93

• Exercise 6b: Check Object Values 94

• Exercise 6c: Check Table Values 97

• Exercise 6d: Check Text Values 102

• Exercise 6e: Manage Checkpoints in the Object Repository 108

• Exercise 6f: Run and Analyze a Test with Checkpoints 110

• Exercise 6g: Create an Output Value Test 113

• Exercise 6h: Add an Output Value Step 114

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 90



Understanding Checkpoint and Output Value Types
In UFT, you can insert checkpoints to check to see that your application is running correctly. These
checkpoints run as a separate test step in the overall test flow. You use output values to take a value
produced by a specific step or object and pass this value to another step.

Checkpoints

You can check a variety of different application objects using checkpoints:

Object Type Description of Checkpoint Example of Use

Standard Checks the values of an object's properties. Check that a radio button is selected.

Image Checks the property value of an image.

You check an imageby selecting the
Standard Checkpoint option and then
selecting an imageobject.

Check that the image source file is correct.

Table Checks information in a table.

You check a table by selecting theStandard
Checkpoint option and then selecting a table
object.

Check that the value in a table cell is correct.

Page Checks the characteristics of aWeb page.

You check a table by selecting theStandard
Checkpoint option and then selecting aWeb
page in a browser.

Check how long aWeb page takes to load or if aWeb page
contains broken links.

Text Checks that a text string is displayed in the
appropriate place in an application.

Checkwhether the expected text string is displayed in the
expected location in a test object.

Text Area Checks that a text string is displayed within a
defined area in aWindows-based application.

Check that an areaof a dialog box includes text that was
entered in another part of the application.

Bitmap Checks an areaof an application after
capturing it as a bitmap.

Check that aWeb page (or any portion of it) is displayed as
expected.

Database Checks the contents of databases accessed
by an application or Web site.

Checks that the value in a database query is correct.

Accessibility Identifies areas of aWeb site to check for
Section 508 compliance.

Check if the images on aWeb page includeALT properties,
required by theW3CWeb Content Accessibility Guidelines.

File Content Checks the text in a document generated or
accessed during a run session.

Checks that the headers in a dynamically-generated PDF display
the regional corporate headquarters contact information
correctly.

XML Checks the data content of XML documents. Check the content of an element to make sure that its tags,
attributes, and values havenot changed.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 91



Note: XML file checkpoints are used to check a specified
XML file; XML application checkpoints are used to check
an XML document within aWeb page.

Output Values

You can use a variety of different types of output values:

Type of Object Description Example

Standard Takes the value frommost objects in your
application and stores it.

Take the string output of an edit field.

File Content Takes the output of a selected file or part of a
selected file.

Take the output of an HTML page.

Table Takes the output of the cells or selected cells of
a table object.

Take the output of the cell in row 1, column 1 in a table
object.

Text/TextArea Takes the text output of an object or an area in
the application.

Take the text output of an error message.

Database Takes the output of database cells or selected
database cells

Take the output of the database accessed by an object in
your application.

XML Takes the output of elements included in an
XML document.

Take the output of the <price> attribute in an XML
defining prices for a product.

You can add most checkpoints and output values either while editing steps in the Keyword View or
Editor or recording. The following exercises explain how to create some of the checkpoints described
above.

When UFT creates a checkpoint or output values, it assigns a name based on information inside the
checkpoint or output value - the checked value, for example. The checkpoint or output value name
remains unchanged, even if you modify the information on which it was based. Keep this in mind when
looking for checkpoints or output values displayed in the Keyword View. Note also, that UFT may shorted
the name displayed in the Keyword View.

For additional details on checkpoints and output values, see the HP Unified Functional Testing User
Guide.

Continue with "Exercise 6a: Create a Checkpoint Test" on the next page to create test in which to use
checkpoints.

If you would like to add output values, continue to "Exercise 6g: Create an Output Value Test" on
page 113.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 92



Exercise 6a: Create a Checkpoint Test
In this exercise, you will save the Book Flights test that you ran in "Lesson 4: Running and Analyzing GUI
Tests" on page 69 as a new test to create your checkpoints.

Note: Checkpoints do not need to be managed in separate tests. You are only creating a new test
now for the sake of this tutorial. During your regular working process, you can add checkpoints to
any test.

1. Start UFT and open the Book Flights test.

a. If UFT is not currently open, open it as described in "Create a Solution for All Your Tests" on
page 24. Make sure that the WPF Add-in is loaded.

b. Click the Open button down arrow , and select Open Solution. The Open Solution
dialog box opens.

c. Navigate to the Flight Reservation Application.ftsln file, located in C:\%HOMEPATH%\My
Documents\Unified Functional Testing, and click Open.

The Flight Reservation Application solution opens, containing the Book Flights test you
created in "Lesson 1: Create a GUI Test and Actions" on page 28.

2. Save the test as Book Flights Checkpoint.

a. In the Solution Explorer, right-click the Book Flights test node and select Save As.

b. In the Save Test As dialog box, browse to the C:\%HOMEPATH%\My Documents\Unified
Functional Testing directory, and save the test as Book Flight Checkpoint.

In the Solution Explorer, the Book Flights test is replaced with the Book Flights Checkpoint
test. The Book Flights test is still saved separately in the file system.

3. Add the Book Flights test back to the solution.

You can have both the Book Flights and Book Flights Checkpoint tests open at the same time if
they are included in the same solution. This enables you to switch back and forth between them if
you want to compare or edit the test.

Note: You can only run a single test at a time.

a. Select File > Add > Existing Test.

b. Navigate to the Book Flights test, located in C:\%HOMEPATH%\My Documents\Unified
Functional Testing, and click Add.

The Book Flights test is added again to the Solution Explorer. Note that tests are listed
alphabetically in the Solution Explorer.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 93



The solution is saved automatically.

Continue with "Exercise 6b: Check Object Values" below to begin inserting checkpoints.

Exercise 6b: Check Object Values
In this exercise, you will add a standard checkpoint to the test you created in "Exercise 6a: Create a
Checkpoint Test" on the previous page. This checkpoint verifies the value entered for the Passenger
Name field in the Flight Details window.

Note: The flight reservation application must be open to the Flight Details page before you can
insert the checkpoint.

1. Start UFT and open the Book Flights Checkpoint test.

a. If necessary, open UFT as described in "Create a Solution for All Your Tests" on page 24. Make
sure that the WPF Add-in is loaded.

b. On the Start Page, in the Recent Solutions area, click Flight Reservation Application.

The Flight Reservation Application solution opens, including the Book Flights Parameter test
you created in "Exercise 6a: Create a Checkpoint Test" on the previous page.

c. In the Solution Explorer, double-click the Book Flights Checkpoint node.

The Book Flights Checkpoint test opens as a separate tab in the document pane.

2. Display the action in which you want to add a checkpoint.

In order to add a checkpoint that checks the property values of the Passenger Name edit box, after
the test automatically enters the passenger's name, you must add it to the appropriate action in
the test.

In the canvas, double-click the Flight Confirmation action to open it.

3. Open the flight reservation application to the Flight Details page.

a. Open the flight reservation application, as described in "Explore the Flight Reservation
Application" on page 22.

b. Enter the login information:

o Username: john

o Password: hp

c. Click OK. The Flight Finder page opens.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 94



d. Enter the flight search details:

o Departure City: Los Angeles

o Arrival City: Sydney

o Date: tomorrow's date

o Class: Business

o Tickets: 2

e. Click the Find Flights button. The Select Flight page opens.

f. In the Select Flight page, select the first row and click Select Flight. The Flight Details page
opens.

4. Create a standard checkpoint.

a. If the Editor is displayed, click the Keyword View button to display the Keyword View.

b. In the Keyword View, select the passengerName row by clicking in the right margin of the grid.

Note: Do not click in the Item column - this selects the object only. You need the entire
step to be selected to add a checkpoint.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 95



c. Select Design > Checkpoint > Standard Checkpoint. The Checkpoint Properties dialog box
opens:

This dialog box displays the passengerName object properties:

o The Name is the name of the object as defined in the application. In this case, the name is
passengerName.

o The Class is the type of object. In this case, the type isWpfEdit, meaning that the type of
object is an edit box.

o The ABC icon in the Type column indicates that the value of the property is a constant.

When you insert a checkpoint, UFT recommends default property checks for each object
class:

Property Value Explanation

enabled True This checks whether the object is currently enabled.

isreadonly False This checks whether you can enter information into the edit box. Currently, the object
is set to allow entry of a text string.

text No
default
specified

This checks the text that is entered in the object. Currently the value is empty. You
need to enter the samevalue that you specified for thepassengerName edit box in
the first step of this action.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 96



d. In the Name box of the Checkpoint Properties dialog box, enter CheckName as the new
checkpoint name.

e. Scroll down in the object properties area and select the row containing the property name
text. The row turns yellow to show that you have selected this row.

f. In the text property row, click in the Value column.

g. In the Configure value area below the object properties grid, click the Constant radio button.

h. In the Constant value edit box, enter John Smith. (This is the name of the value you entered in
the Passenger Name box in the first step of the action.) Note that the object properties grid is
also updated with this value.

i. In the Insert statement area at the bottom of the Checkpoint Properties dialog box, select
After current step. This insert the checkpoint after the passengerName Set step.

j. Accept the rest of the settings as default and click OK.

UFT adds a standard checkpoint step to your test below the selected step:

5. Save the test.

In the toolbar, click Save .

Using this process, you can insert many different types of checkpoints. Continue with "Exercise 6c:
Check Table Values" below to learn how to check table objects in your application.

Exercise 6c: Check Table Values
In "Exercise 6b: Check Object Values" on page 94, you added a checkpoint for an object in your
application. In this exercise, you will add a table checkpoint to your test. The table checkpoint will check
a value in the flights grid on the Select Flights page.

1. Start UFT and open the Book Flights Checkpoint test.

a. If necessary, open UFT as described in "Create a Solution for All Your Tests" on page 24. Make
sure that the WPF Add-in is loaded.

b. Click the Open button down arrow , and select Open Solution. The Open Solution
dialog box opens.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 97



c. In the Open Solution dialog box, navigate to the Flight Reservation Application.ftsln file,
located in C:\%HOMEPATH%\My Documents\Unified Functional Testing and click Open.

The Flight Reservation Application solution opens, including the Book Flights Parameter test
you created in "Exercise 6a: Create a Checkpoint Test" on page 93.

d. In the Solution Explorer, double-click the Book Flights Checkpoint node.

2. Locate the step where you want to add a table checkpoint.

a. If the Select Flight action is not already open, in the Solution Explorer, double-click the Select
Flight action node. The action is displayed as a separate tab in the document pane.

b. If the Editor is displayed, select View > Keyword View to show the Keyword View.

c. In the Keyword View, select the flightsDataGrid step (the step that selects the flight to book).

3. Open the flight reservation application to the Select Flight page.

a. Open the flight reservation application, as described in "Explore the Flight Reservation
Application" on page 22.

b. Enter the login information:

o Username: john

o Password: hp

c. Click OK. The Flight Finder page opens.

d. Enter the flight search details:

o Departure City: Los Angeles

o Arrival City: Sydney

o Date: tomorrow's date

o Class: Business

o Tickets: 2

e. Click the Find Flights button. The Select Flight page opens.

4. Configure UFT to record on the open application page.

a. In UFT, select Record > Record and Run Settings. The Record and Run Settings dialog box
opens:

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 98



b. In the Windows Applications tab, select the Record and run test on any open Windows-based
application option.

c. Click OK to close the dialog box.

5. Create a table checkpoint.

a. In the toolbar, click the Record button . UFT begins a recording session and the main UFT
window is hidden.

b. In the Record Toolbar, click the Insert Checkpoint or Output Value drop-down arrow and
select Standard Checkpoint. The mouse pointer turns into a pointing hand.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 99



c. In the flight reservation application, click the flights table. The Standard Checkpoint object
selection dialog box opens:

d. In the Standard Checkpoint selection dialog box, select the WpfTable: flightsDataGrid object
and click OK. The Define Row Range dialog box opens:

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 100



e. In the Define Row Range dialog box, select the All rows radio button and click OK. The Table
Checkpoint Properties dialog box opens:

Note that by default, check marks appear in all cells. You can double-click a cell to select or
clear the cell selection, or double-click a row or column header to select or clear the selection
for all the cells in that row or column.

f. In the Table Checkpoint Properties dialog box, enter CheckCost as the new checkpoint name in
the Name box.

g. In the grid, double-click each column header to clear the check marks.

Note: You will need to scroll to the right in the grid to view all the table object columns.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 101



h. In the grid, double-click row 1, column 0 to select this cell. (UFT checks only those cells
containing check marks.)

Note: The data displayed in the table is date-sensitive. If you create this checkpoint on
one day, but return to run this test on a different day, you need to update this checkpoint
using the steps above to ensure the checkpoint passes.

i. Scroll through the rows and columns to make sure that only the cell in row 1, column 0 is
checked. If any other cells are checked, double-click them to remove the check.

j. Accept the rest of the settings as default and click OK.

6. Stop the recording session.

In the Record Toolbar, click Stop .

After you defined the table object's checkpoint properties, UFT added a table checkpoint step to
your test. It is displayed in the Keyword View as a new step under the flightsDataGrid object step:

7. Save the test.

In the toolbar, click Save .

Now that you have added a checkpoint for a table object, continue to add checkpoints in "Exercise 6d:
Check Text Values" below.

Exercise 6d: Check Text Values
In the previous exercises, you added checkpoints to a regular test object and a table object. In this
object, you will add a text checkpoint to your test to check the text inside an object that appears at the
end of the order process.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 102



1. Start UFT and open the Book Flights Checkpoint test.

a. If necessary, open UFT as described in "Create a Solution for All Your Tests" on page 24. Make
sure that the WPF Add-in is loaded.

b. On the Start Page, in the Recent Solutions area, click the Flight Reservation Application
solution.

The Flight Reservation Application solution opens, including the Book Flights Parameter test
you created in "Exercise 6a: Create a Checkpoint Test" on page 93.

c. In the Solution Explorer, double-click the Book Flights Checkpoint node.

The Book Flights Checkpoint test opens as a separate tab in the document pane.

2. Locate the step where you want to add a text checkpoint.

a. In the Solution Explorer, double-click the Flight Confirmation action node. The Flight
Confirmation action opens as a separate tab in the document pane.

b. If the Editor is open, click the Keyword View button to display the Keyword View.

c. In the Keyword View, highlight the progBar step (in the next-to-last row, if you have all of the
steps fully expanded).

3. Open the flight reservation application to the Flight Details page.

a. Open the flight reservation application, as described in "Explore the Flight Reservation
Application" on page 22.

b. Enter the login information:

o Username: john

o Password: hp

c. Click OK. The Flight Finder page opens.

d. Enter the flight search details:

o Departure City: Los Angeles

o Arrival City: Sydney

o Date: tomorrow's date

o Class: Business

o Tickets:2

e. Click the Find Flights button. The Select Flight page opens.

f. In the Select Flight page, select the first row and click Select Flight. The Flight Details page
opens.

g. In the Flight Details page, in the Passenger Name box, enter John Smith and click ORDER.

A box is displayed in the middle of the window informing you of the completion of the order.
Leave the application like this.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 103



4. Configure UFT to record on the open application page.

a. In UFT, select Record > Record and Run Settings. The Record and Run Settings dialog box
opens.

b. In the Windows Applications tab, confirm that the Record and run test on any open Windows-
based application is selected:

c. Click OK to close the dialog box.

5. Create a text checkpoint.

a. In the toolbar, click the Record button . The UFT window is hidden, and the Record Toolbar
opens at the top of the window.

b. In the Record Toolbar, click the Insert Checkpoint or Output Value button and select
Text Checkpoint. The mouse pointer changes into a pointing hand.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 104



c. In the Flight Details window in the flight reservation application, click the Order # Completed
graphic in the middle of the Flight Details window:

Note: The order number may differ depending on if you have previously run the flight
reservation application.

The Text Checkpoint object selection dialog box opens:

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 105



d. In the Text Checkpoint object selection dialog box, select the WpfObject: Order # Completed
object and click OK. The Text Checkpoint Properties dialog box opens:

e. In the Name box in the Text Checkpoint Properties dialog box, enter
CheckOrderCompletedText as the new checkpoint name.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 106



f. Under the Checkpoint Summary area, click the Configure button. The Configure Text Selection
dialog box opens:

g. In the Configure Text Selection dialog box, highlight the string completed and click Checked
Text. The Order # text string changes from red to gray:

h. Click OK to close the Configure Text Selection dialog box.

In the Text Checkpoint Properties dialog box, the Checkpoint Summary Area is updated to
reflect your selection:

i. Accept the rest of the settings as the default and click OK.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 107



6. Stop the recording session.

On the Record Toolbar, click Stop to stop recording.

UFT adds the step with the text checkpoint to your test, below the step containing the progBar
object. It is displayed in the Keyword View as a checkpoint operation on the Order # Completed
object:

In the Editor, the statement looks like this:

WpfWindow("Book Flights").WpfObject("Order 89 completed").Check CheckPoint
("CheckOrderCompletedText")

7. Save the test.

Click Save .

Now that you have added a couple of different types of checkpoints, learn more about checkpoint
management in "Exercise 6e: Manage Checkpoints in the Object Repository" below.

Exercise 6e: Manage Checkpoints in the Object
Repository
In the previous exercises, you added a number of different types of checkpoints in your actions. In
addition to working with and viewing checkpoints in the context of a specific action, you can also view
them in the object repository and modify their properties.

By modifying them in an object repository, you can use the same checkpoint in more than one location
in your test. For example, if you want to verify that your organization's logo appears on every page of
your application, you can create a checkpoint and insert it in different actions or places in the test.

For the purposes of this exercise, you will not be reusing checkpoints.

1. Start UFT and open the Book Flights Checkpoint test.

a. If necessary, open UFT as described in "Create a Solution for All Your Tests" on page 24. Make
sure that the WPF Add-in is loaded.

b. Select File > Open > Solution. The Open Solution dialog box opens.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 108



c. In the Open Solution dialog box, navigate to the Flight Reservation Application solution,
located in C:\%HOMEPATH%\My Documents\Unified Functional Testing, and click Open.

The Flight Reservation Application solution opens, including the Book Flights Parameter test
you created in "Exercise 6a: Create a Checkpoint Test" on page 93.

2. Open the Object Repository Window.

a. In the Solution Explorer, double-click the Flight Confirmation action. The Flight Confirmation
action opens as a separate tab in the document pane.

b. In the toolbar, click the Object Repository button . The Object Repository window opens,
displaying a tree of all test objects and all checkpoint and output objects in the current action.

The tree includes all local objects and all objects in any shared object repositories associated
with the action:

3. Select an action to view its checkpoints.

a. In the action drop-down menu directly above the object tree, select an action to display its test
objects, checkpoint objects, and output value objects.

b. Close the Object Repository window when you are done.

Note: For the purposes of this exercise, you do not need to modify any object or
checkpoint properties.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 109



You are now ready to run the test with your checkpoints. Continue with "Exercise 6f: Run and Analyze a
Test with Checkpoints" below to learn about running and viewing run results for a test containing
checkpoints.

Exercise 6f: Run and Analyze a Test with Checkpoints
Now that you have created a test using checkpoints, you should run the test to see how the checkpoints
perform. In this exercise, you will run the test and analyze the checkpoint results.

1. Configure UFT to open the flight reservation application.

a. In UFT, select Record > Record and Run Settings. The Record and Run Settings dialog box
opens.

b. In the Windows Applications tab, select the Record and run only on: option:

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 110



Note: The Application details should still be saved, as you set them in "Lesson 4: Running
and Analyzing GUI Tests" on page 69.

c. Click OK to close the dialog box.

2. Start running your test.

a. In the toolbar, click the Run button . The Run dialog box opens.

b. In the Results Location tab, ensure that the New run results folder is selected. Accept the
default results folder name.

c. Click OK.

UFT opens the flight reservation application and performs the steps. At the end of the test run,
the run results open.

3. View the run results.

When the run results are displayed, the run results should be Passed, indicating that all the
checkpoints passed. If one or more of the checkpoints had failed, the test run is listed as Failed.

4. View the results of the standard checkpoint.

a. In the Test Flow, find the Flight Confirmation node.

b. Under the Flight Confirmation node, under the passengerName.Set node, select the Standard
Checkpoint:  "CheckName" node.

The summary displays the details of the standard checkpoint, including the properties that
were checked and their values. The checkpoint passed because the actual values of the object
properties matched the expected values:

s

5. View the results of the table checkpoint.

a. In the results tree, expand the Select Flight node.

b. Under the Action: Select Flight node, find the Check Cost node.

c. Expand the Check Cost node and select the Standard Checkpoint: CheckCost node.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 111



The summary displays the details of the table, checkpoint:

In some cases, the step summary will also display details about the table checkpoint, including
the captured data from the table object.

6. View the results of the text checkpoint.

a. In the Test Flow, find the Flight Confirmation node.

b. Under the Flight Confirmation node, under the progBar.Wait step, select the TExt Checkpoint:
CheckOrderCompleted node.

The step summary displays the details of the checkpoint. The checkpoint passed because the
actual text matches the expected text:

7. Close the run results.

In the document pane, close the tab containing the run results.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 112



Exercise 6g: Create an Output Value Test
In this exercise, you will create a test in which you will add an output value step. This test is based on the
Book Flights test you created in "Lesson 1: Create a GUI Test and Actions" on page 28.

1. Start UFT and open the Book Flights test.

a. If necessary, open UFT as described in "Create a Solution for All Your Tests" on page 24. Make
sure that the WPF Add-in is loaded.

b. Click the Open button down arrow , and select Open Solution. The Open Solution
dialog box opens.

c. Navigate to the Flight Reservation Application.ftsln file, located in C:\%HOMEPATH%\My
Documents\Unified Functional Testing, and click Open.

The Flight Reservation Application solution opens, containing the Book Flights test you
created in "Lesson 1: Create a GUI Test and Actions" on page 28.

2. Save the test as Book Flights Output Value.

a. In the Solution Explorer, select the Book Flights test node, and then select File > Save As.

b. In the Save Test As dialog box, browse to the C:\%HOMEPATH%\My Documents\Unified
Functional Testing directory, and save the test as Book Flights Output Value.

In the Solution Explorer, the Book Flights test is replaced by the new Book Flights Output Value
test. The original Book Flights test is still saved in the file system.

3. Add the Book Flights test back to the solution.

You can have both the Book Flights and the Book Flights Output Value tests open at the same
time if they are included in the same solution. This enables you to switch back and forth between
them if you want to compare or edit tests.

Note: You can only run a single test at a time.

a. Select File > Add > Existing Test.

b. In the Add Existing Test dialog box, navigate to the Book Flights test, stored in
C:%\HOMEPATH%\My Documents\Unified Functional Testing, and click Add.

The Book Flights test is again displayed as a separate node in the Solution Explorer.

Now that you have created a test in which to add an output value, continue to "Exercise 6h: Add an
Output Value Step" on the next page to add an output value step to a test.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 113



Exercise 6h: Add an Output Value Step
When you created the original Book Flights test, you created an action for the main application flow,
where you logged into the application, entered the departure and arrival details, selected a flight, and
booked the flight for a specific customer.

In the flight reservation application, there is an additional area of the application that enables you to
search for all the previously created flight orders:

In this exercise, you will create an output value step that takes the output of a step in the Flight Details
page (in the Flight Confirmation action of the test, and uses this output as the parameter for an object
in the Search page.

1. Create an action for the test steps on the search page.

a. In the Solution Explorer, click the Book Flights test node. The test flow canvas opens as a
separate tab in the document pane.

b. In the toolbar, click the Insert Call to New Action button . The Insert Call to New Action
dialog box opens.

c. In the Insert Call to New Action dialog box, enter the name of the new action as Flight Order
Search.

d. Leave the other settings as default and click OK.

A new action block called Flight Order Search is added to the canvas at the end of the test
flow, and the Flight Order Search action opens as a separate tab in the document pane.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 114



2. Create object repositories for the other application pages.

When you created the Book Flights test, you created object repositories only for the main
application pages. In order to create test steps for the Search pages, you need to create additional
object repositories for the search pages.

a. Open the flight reservation application, as described in "Explore the Flight Reservation
Application" on page 22.

b. Enter the login credentials for the application:

o Username: john

o Password: hp

c. Click OK to log in. The Flight Finder page opens.

d. In the Flight Finder page, in the upper-left corner of the window, click the Search Order button.
The Search Details page opens.

e. In UFT, select Resources > Object Repository Manager. The Object Repository Manager
window opens.

f. In, the Object Repository Manager, use the Navigate and Learn process as described in
"Exercise 2b: Create Object Repositories using Navigate and Learn" on page 40.

g. After you learn all the objects in this page, click File > Save.

h. Navigate to the C:\%HOMEPATH%\My Documents\Unified Functional Testing\Tutorial_
Object Repositories folder, and save the object repository with the name Search.

i. In the flight reservation application, in the Search Details page, enter John Smith in the Name
box and click Search. A list of flights reserved for John Smith is displayed in a separate page.

j. In UFT, open the Object Repository Manager window again.

k. Use the Navigate and Learn process on the Select Order page to learn the objects for this
page.

l. After you learn all the objects in the Select Order page, click File > Save.

m. In the Save Object Repository dialog box, navigate again to the C:\%HOMEPATH%\My
Documents\Unified Functional Testing\Tutorial_Object Repositories folder, and save the
object repository with the name Search_Results.

n. Close the Object Repository Manager.

3. Associate the new object repositories with the Flight Order Search action.

a. In UFT main window, in the Solution Explorer, under the Book Flights Output Value test node,
right-click the C:\%HOMEPATH%\My Documents\Unified Functional Testing action node and
select Associate Repository with Action.

b. In the Open Shared Object Repository window, navigate to the C:\%HOMEPATH%\My
Documents\Unified Functional Testing\Tutorial_Object Repositories folder and select the
Search.tsr file.

c. Click Open to associate the object repository.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 115



d. Repeat the process to associate the Search Results.tsr object repository (also stored in the
C:\%HOMEPATH%\My Documents\Unified Functional Testing\Tutorial_Object Repositories
folder).

Both the Search.tsr and Search Results.tsr object repository files are displayed as sub-nodes
of the Flight Order Search action.

4. Add steps to use the Search and Flight Orders pages.

a. In the Solution Explorer, double-click the Flight Order Search action node. The Flight Order
Search action is displayed as a separate tab in the document pane.

b. If the Keyword View is displayed, select View > Editor to display the Editor.

c. In the Editor, paste the following lines:

WpfWindow("HP MyFlight Sample Application").WpfTabStrip
("WpfTabStrip").Select "SEARCH ORDER"
WpfWindow("HP MyFlight Sample Application").WpfEdit("byName").Set "John
Smith"
WpfWindow("HP MyFlight Sample Application").WpfButton("SEARCH").Click
WpfWindow("HP MyFlight Sample Application").WpfTable
("ordersDataGrid").SelectCell 1, 1
WpfWindow("HP MyFlight Sample Application").WpfButton("SELECT
ORDER").Click

5. Open the flight reservation application to the Flight Details page.

a. In the Search Results page of the flight reservation application, click the BACK button. The
Search Details page is displayed.

b. In the Search Details page, in the upper left hand corner, click the Book Flight button. The
Flight Finder page opens.

c. In the Flight Finder page, enter the flight details:

o Departure City: Los Angeles

o Arrival City: Sydney

o Date: tomorrow's date

o Class: Business

o Tickets: 2

d. Click the Find Flights button. The Select Flight page opens.

e. In the Select Flight page, select the first row and click Select Flight. The Flight Details page
opens.

6. Add an output value step to the Flight Confirmation action.

a. In UFT, in the Solution Explorer, under the Book Flights test node, double-click the Flight
Confirmation action node. The Flight Confirmation action opens as a separate tab in the

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 116



document pane.

b. If the Editor is displayed, select View > Keyword View to display the Keyword View.

c. In the Keyword View, right-click the byName step and select Insert Output Value. The Output
Value Properties dialog box opens:

The dialog box displays the properties on which you are inserting the output value:

o The Name is the name of the object as defined in the application, in this case byName.

o The Class is the type of object, in this case WpfEdit, indicating that the object is an edit
box.

o The ABC icon in the Type column indicates that the value of the property is a constant.

o The grid lists the object properties you can choose to output, including the Property name
and the Value of the object that can be sent as output.

d. In the Name box, enter OutputPassengerName as the new output value name.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 117



e. In the object properties grid, scroll through the properties and select the text property row.
Note that there is no value provided for this property.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 118



f. Below the properties grid, click the Modify button. The Output Options dialog box opens. (This
dialog enables you to determine where to store the output of this test step.)

When you create an output value, you have the choice of places to store the output value:

o DataTable parameter

o Test/action parameter (if you have created one)

o Environment variable

o Component parameter (if you have created one)

For the purpose of this tutorial, we will save the output value in the Data Table.

g. In the Parameter type drop-down menu, select DataTable. UFT updates the fields of the dialog
box, and suggests a default name for the parameter.

h. In the Name field, enter passengerName_text.

i. In the Location in Data Table area, ensure that the Global sheet is selected. This ensures that
the output is saved in the Global data sheet, which makes the value accessible to other actions
in the test.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 119



j. Click OK to close the dialog box. UFT updates the value in the Output Value Properties dialog
box to reflect the DataTable parameter storage option:

k. In the Insert statement area, select the After current step option, and click OK.

UFT inserts a Output step immediately following the passengerName.Set step:

In the Editor, the steps look like this:

WpfWindow("Book Flights").WpfEdit("passengerName").Set "John Smith"
WpfWindow("Book Flights").WpfEdit("passengerName").Output CheckPoint
("OutputPassengerName")
WpfWindow("Book Flights").WpfButton("ORDER").Click
WpfWindow("Book Flights").WpfProgressBar("progBar").WaitProperty
"value", "100"
WpfWindow("Book Flights").WpfButton("NEW SEARCH").Click

The Global sheet in the Data table is also updated accordingly:

7. Parameterize the Search action with the stored output value.

a. In the Solution Explorer, double-click the Flight Order Search action node. The Flight Order
Search action opens as a separate tab in the document pane.

b. In the Flight Order Search tab, select the byName row.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 120



c. In the Value column of the byName row, click the Configure the value button . The
Value Configuration Options dialog box opens.

d. In the Value Configuration Options dialog box, select the Parameter radio button.

e. In the Parameter drop-down list, select DataTable. The dialog box updates the other fields
accordingly.

f. In the Location in Data Table area, select the Global sheet option.

g. In the Name drop-down list, select the passengerName_text parameter and click OK.

UFT updates the byName row to reflect that the value is now provided by a Data Table
Parameter:

In the Editor, the statement looks like this:

WpfWindow("HP MyFlight Sample Application").WpfEdit("byName").Set
DataTable("passengerName_text", dtGlobalSheet)

8. Save the test.

Click Save .

9. Run the test and view the run results.

a. Select Record > Record and Run Settings. The Record and Run Settings dialog box opens.

b. In the Windows Applications tab of the Record and Run Settings dialog box, select the Record
and Run only on: option. The application details should be saved from previous test runs.

c. Click OK to save the settings and close the dialog box.

d. In the toolbar, click the Run button .

e. In the Results location tab, ensure that the New run results folder option is selected. Accept
the default results folder name.

f. Click OK. When the test run is completed, the run results open

g. In the Test Flow, find the Flight Confirmation action node.

h. Under the Flight Confirmation Summary node, select the Standard
Output:  "OutputPassengerName" node. The run results display a summary of the test step.

The summary shows the details of the output value:

i. In the Test Flow, find the Flight Order Search node.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 121



j. Under the Flight Order Search node, select the byName.Set node. The run results display a
summary of the test step.

The summary shows the result of this step, including the value used for the Set operation. This
value should be the output value.

10. Close the run results.

When you are finished viewing the run results, close the tab displaying the run results.

Tutorial
Lesson 6: Creating Checkpoints and Output Values

HP Unified Functional Testing (12.51) Page 122



Lesson 7: Creating Functions and Function
Libraries
UFT provides many built-in functions and methods that can satisfy many of your testing needs.
However, there may be times when you need to perform a specific task that is not available by default
for a particular test object class. In these cases, you can create a user-defined function for this task.
You then save this function in a function library file which is associated with tests, and then insert the
function call as a step whenever you need to perform the task.

In "Lesson 2: Creating Object Repositories" on page 32, you created shared object repositories and
associated them with the action in your test. In this lesson, you will use a similar process by creating a
function and a function library, and then associating the function library with your test. By associating
this function library with your test, you can call any of the functions in the test.

This lesson includes the following:

• Functions and Function Libraries - Overview 124

• Exercise 7a: Create a Function 124

• Exercise 7b: Associate a Function Library with Your Test 126

• Exercise 7c: Perform a Check Using a Functions 127

Tutorial
Lesson 7: Creating Functions and Function Libraries

HP Unified Functional Testing (12.51) Page 123



Functions and Function Libraries - Overview
In UFT, you can create functions to perform special tasks not supported by UFT's standard classes and
methods. A function is a set of coded steps that perform a particular task for which no suitable method
exists by default. You may want your test to include such a task, and even repeat this task several
times. Therefore, you need the function to be easily accessible.

Once you create functions, you can store the functions in a function library. These function libraries
serve as a repository for your user-defined functions. Each function library can be assigned to a test (or
multiple tests), which enables the test to then call the function as a test step.

In this lesson, you will create a function that checks the date format on a page generated by the flight
reservation application, and then add the function call to your test.

Exercise 7a: Create a Function
In this exercise, you will create a function that will be called from your test. This function checks
whether the date is displayed in the proper format. The function also checks that the date is valid, for
example, that the month does not exceed 12 or the day exceed 31.

1. Start UFT and open the Book Flights test.

a. If UFT is not currently open, open UFT as described in "Create a Solution for All Your Tests" on
page 24. Make sure that the WPF Add-in is loaded.

b. Select File > Open > Solution. The Open Solution dialog box opens.

c. In the Open Solution dialog box, navigate to the Flight Reservation Application.ftsln file,
located in C:\%HOMEPATH%\My Documents\Unified Functional Testing, and click Open.

The solution is displayed in the Solution Explorer, including the Book Flights test.

2. Create a new function library.

a. In the toolbar, click the New button down arrow and select Function Library. The
New Function Library dialog box opens.

b. In the New Function Library dialog box, enter the function library details as follows:

Look in: i. Browse to theC:\%HOMEPATH%\My Documents\Unified Functional Testing folder.

ii. In this folder, create a new folder named Tutorial_Function Libraries.

iii. Open this folder.

File name: CheckDate Function

c. Click Create. UFT opens the blank function library as a separate tab in the document pane.

Tutorial
Lesson 7: Creating Functions and Function Libraries

HP Unified Functional Testing (12.51) Page 124



3. Create a function.

In the CheckDate function library, paste the following code:

'The following function checks whether a date string (dateStr)
'has the characters representing DD-<MMM string>-YYYY

Function check_data_validity( dateStr )
Dim firstDashPos, secondDashPos
Dim mmPart, ddPart, yyyyPart
firstDashPos = inStr( dateStr , "-" )
secondDashPos = inStrRev( dateStr, "-" )
If ( (firstDashPos <> 2 and firstDashPos <> 3) or (secondDashPos <>

6 and secondDashPos <> 7)) Then
reporter.ReportEvent micFail,"Format check", "Date string is"&"

missing at least one dash ( - )."
check_data_validity = False

Exit function
End If

if firstDashPos = 2 Then
ddPart = mid( dateStr, 1, 1)

else
ddPart = mid( dateStr, 1,2 )

End If
mmPart = mid( dateStr, firstDashPos+1, 3 )
yyyyPart = mid( dateStr, secondDashPos +1 , 4 )

If inStr(mmPart, "Jan") and inStr(mmPart, "Feb") and inStr(mmPart,
"Mar") and inStr(mmPart, "Apr") and inStr(mmPart, "May") and inStr(mmPart,
"Jun") and inStr(mmPart, "Jul") and inStr(mmPart, "Aug") and inStr(mmPart,
"Sep") and inStr(mmPart, "Oct") and inStr(mmPart, "Nov") and inStr(mmPart,
"Dec") Then

reporter.ReportEvent micFail, "Format Check", "The month"&"
value is invalid. It is not a valid month string."

check_data_validity = False
Exit function

End If

If ddPart > 31 Then
reporter.ReportEvent micFail, "Format Check", "The date"& "

value is invalid. It exceeds 31."
check_data_validity = False
Exit function

End If

If yyyyPart < 2013 Then
reporter.ReportEvent micFail, "Format Check", "The year"& "

Tutorial
Lesson 7: Creating Functions and Function Libraries

HP Unified Functional Testing (12.51) Page 125



value is invalid. (Prior to this year.)"
check_data_validity = False

Exit function

End If

check_data_validity = True

End Function

4. Save the function library.

Click Save .

5. Close the function library.

Select File > Close. The function library tab is closed and the test remains open.

Now that you have created the function, you need to associate it with your test in order to use these
functions in a test step. Continue with "Exercise 7b: Associate a Function Library with Your Test" below
to see how to associate function libraries with your test.

Exercise 7b: Associate a Function Library with Your
Test
In "Exercise 7a: Create a Function" on page 124, you created a function and a function library to run a
date check on a test object. However, before you can use this function in a test, you must associate the
function library with a test.

In this exercise, you will associate the function library with your test.

1. Start UFT and open the Book Flights test.

a. If UFT is not currently open, open UFT as described in "Create a Solution for All Your Tests" on
page 24. Make sure that the WPF Add-in is loaded.

b. Select File > Open > Solution. The Open Solution dialog box opens.

c. In the Open Solution dialog box, navigate to the Flight Reservation Application.ftsln file,
located in C:\%HOMEPATH%\My Documents\Unified Functional Testing, and click Open.

The solution is displayed in the Solution Explorer, including the Book Flights test.

2. Associate the CheckDate Function.qfl with the Book Flights test.

a. If the Solution Explorer is not already open, in the toolbar, click the Solution Explorer button

.

Tutorial
Lesson 7: Creating Functions and Function Libraries

HP Unified Functional Testing (12.51) Page 126



b. In the Solution Explorer, right-click the Book Flights test node and select Add > Associate
Function Library. The Open Function Library dialog box opens.

c. In the Open Function Library dialog box, navigate to the CheckDate Function.qfl file, located in
C:\%HOMEPATH%\Unified Functional Testing\Tutorial_Function Libraries, and click Open.

d. In the Automatic Relative Path Conversion dialog box, click Yes. (This converts the path to the
function library into a relative path.

The function library is now associated with the Book Flights test, and is displayed in the
Solution Explorer in the Function Libraries folder of the Book Flights test.

Note: Using a relative path keeps the path valid when you move folders containing tests
and other files from one location to another, as long as the folder hierarchy remains the
same.

3. Save the test.

In the document pane, select the Book Flights canvas tab, and click Save .

Now that you have associated the function library with your test, you can use its functions in test steps.
Continue with "Exercise 7c: Perform a Check Using a Functions" below to use the function in a test step.

Exercise 7c: Perform a Check Using a Functions
In "Lesson 6: Creating Checkpoints and Output Values" on page 90, you created a number of checkpoints
to check objects in the flight reservation application.

In this exercise, instead of using the UFT user interface to create checkpoints, you will use the function
you created in "Exercise 7a: Create a Function" on page 124 to check the date format of a calendar
object in the Flight Finder action.

1. Start UFT and open the Book Flights test.

a. If UFT is not currently open, open UFT as described in "Create a Solution for All Your Tests" on
page 24. Make sure that the WPF Add-in is loaded.

b. Select File > Open > Solution. The Open Solution dialog box opens.

c. In the Open Solution dialog box, navigate to the Flight Reservation Application.ftsln file,
located in C:\%HOMEPATH%\My Documents\Unified Functional Testing, and click Open.

The solution is displayed in the Solution Explorer, including the Book Flights test.

2. Save the test as Book Flights Function.

a. In the Solution Explorer, right-click the Book Flights node and select Save As. The Save Test As
dialog box opens.

Tutorial
Lesson 7: Creating Functions and Function Libraries

HP Unified Functional Testing (12.51) Page 127



b. In the Save Test As dialog ox, browse to the C:\%HOMEPATH%\My Documents\Unified
Functional Testing folder.

c. Enter Book Flights Function as the test name.

In the Solution Explorer, the Book Flights test is replaced by the Book Flights Function test.
The Book Flights test is still saved separately in the file system.

3. Add the Book Flights test back into the solution.

You can have the Book Flights and Book Flights Function tests open at the same time, if they are
included in the same solution. This enables you to switch back and forth between them if you want
to compare or edit the test.

Note: You can only run a single test at a time.

a. In the toolbar, click the Add button drop-down arrow , and select Add Existing
Test. The Add Existing Test to Solution dialog box opens.

b. In the Add Existing Test to Solution dialog box, navigate to the C:\%HOMEPATH%\My
Documents\Unified Functional Testing folder.

c. In the folder, select the Book Flights test, and click Open.

The Book Flights test node is again added to the Solution Explorer. Note that tests are
organized alphabetically.

4. Display the Flight Finder page in the flight reservation application.

a. Open the flight reservation application, as described in "Explore the Flight Reservation
Application" on page 22.

b. In the log in screen, enter the login user credentials:

o User name: john

o Password: hp

c. Click OK to sign in. The Flight Finder page opens.

5. Spy on the object properties for the checkpoint object.

In this exercise, you are using a function to check the date format for a calendar object. In order to
do so, you must learn the properties of the object on which you want to set the checkpoint.

a. In the UFT window, in the toolbar, click the Object Spy button . The Object Spy dialog box
opens.

b. Move the Object Spy dialog box to the edge of the window so you can spy on your application
with the Object Spy dialog box still open and visible.

Tutorial
Lesson 7: Creating Functions and Function Libraries

HP Unified Functional Testing (12.51) Page 128



c. In the Object Spy dialog box, click on the pointing hand button . When you press the
pointing hand, UFT is hidden and the Object Spy dialog box is displayed over the flight
reservation application.

d. In the flight reservation application, click on the date entry field object:

The Object Spy dialog displays the object properties:

e. In the properties grid (bottom of the dialog box), scroll through the properties until you find
the property with the value of the date (in the format DD-MMM-YYYY). Note the name of this
property, as you will need it for the function call step inserted in your test later.

f. Click Close to close the Object Spy and return to your test.

6. Open the action for the function call.

Tutorial
Lesson 7: Creating Functions and Function Libraries

HP Unified Functional Testing (12.51) Page 129



In the Solution Explorer, expand the Book Flights Function test node and double-click the Flight
Finder action.

The Flight Finder action opens as a separate tab in the document pane.

7. Add the function call in the Editor.

In this step, you will add the check_data_validity function you added to your function library in
"Exercise 7a: Create a Function" on page 124.

a. If the Keyword View is displayed, select View > Editor to display the Editor.

b. In the Editor, place your cursor after the WpfCalendar.SetDate step and press ENTER.

c. Add a step to the Editor to retrieve the date property for the datePicker object:

departureDate = WpfWindow("HP MyFlight Sample"&_
"Application").WpfCalendar("datePicker").GetROProperty("date")

This step retrieves the value of the date property in order for UFT to run the checkpoint
function on that object when it checks that property.

d. Add another step to the Editor to call the checkpoint function:

If check_data_validity(departureDate) Then
reporter.ReportEvent micPass, "Date is valid", departureDate

End If

After you have added these steps, the action should look like this (although the date you use
will be different):

WpfWindow("HP MyFlight Sample Application").WpfComboBox
("fromCity").Select "Los Angeles"
WpfWindow("HP MyFlight Sample Application").WpfComboBox("toCity").Select
Sydney
WpfWindow("HP MyFlight Sample Application").WpfCalendar
("datePicker").SetDate "17-Jul-2014"
departureDate = WpfWindow("HP MyFlight Sample Application").WpfCalendar
("datePicker").GetROProperty("date")
If check_data_validity(departureDate) Then

reporter.ReportEvent micPass, "Date is valid", departureDate
End If
WpfWindow("HP MyFlight Sample Application").WpfComboBox("Class").Select
"Business"
WpfWindow("HP MyFlight Sample Application").WpfComboBox
("numOfTickets").Select "2"
WpfWindow("HP MyFlight Sample Application").WpfButton("FIND
FLIGHTS").Click

e. After you paste the steps, make sure that the following step - WpfWindow("HP MyFlight

Tutorial
Lesson 7: Creating Functions and Function Libraries

HP Unified Functional Testing (12.51) Page 130



Sample Application").WpfComboBox("Class").Select "Business") - still starts on its
own line after the pasted steps. If it does not, place your cursor before this step and press
ENTER.

You want UFT to run this function before it edits the next field in the application.

f. In your action, make sure to remove the line break in the departureDate line of code so that
the line begins with departureDate and ends with ("date").

8. Look at these steps in the Keyword View.

Select View > Keyword View to switch to the Keyword View.

Note the function call step as a separate step under the GetROProperty step:

9. Save your test.

Select File > Save.

10. Run the test.

a. In the toolbar, click the Run button . The Run dialog box opens.

Note: Before running the test, ensure that the flight reservation application is closed.

b. In the Run dialog box, in the Result locations tab, ensure that the New run results folder
option is selected. Accept the default results folder name.

c. Click Run. UFT runs the steps in sequence.

After the test run is completed, the run results open.

11. Analyze the run results.

a. In the run results, in the Test Flow, under the Flight Finder node, select the Date is valid node.

Note that a green checkmark is displayed next to the step name. This informs you that the
checkpoint passed per the function you added.

Tutorial
Lesson 7: Creating Functions and Function Libraries

HP Unified Functional Testing (12.51) Page 131



Lesson 8: Using Insight in your Test
Sometimes, when you are creating your test and test objects, normal object identification does not help
identify an object in your application for testing purposes.- Standard object identification relies on the
object's properties, such as position in the application or browser window, time of appearance in the
window, or a number of other properties - does not help identify an object in your application for testing
purposes.

For situations where the regular object identification does not work correctly or does not suit your
needs, UFT also has a image-based object recognition mechanism named Insight. This mechanism
enables you to identify objects by capturing a snapshot of the image and using the captured image as
the object during the test run.

In this lesson, you will be learning how to use Insight to identify objects and use these objects in your
test.

This lesson includes the following:

• Insight Object Identification - Overview 133

• Exercise 8a: Create a Test for Insight Objects 133

• Exercise 8b: Add an Insight Object to the Object Repository 134

• Exercise 8c: Use Insight Objects in a Test 137

Tutorial
Lesson 8: Using Insight in your Test

HP Unified Functional Testing (12.51) Page 132



Insight Object Identification - Overview
In UFT, you can use Insight, which is an image-based identification ability, to recognize objects in your
application. Insight identifies objects based on what they look like, instead of using the object
properties which are part of the application/object design. Insight object identification is particularly
useful if your application is designed with a technology that UFT does not suppport or with an
application running on a remote computer.

When you use Insight object identification, UFT stores an image of the object as part of the Insight test
object it creates. Then, when running the test, UFT uses the image as the main object property to
identify the object in the application in run-time.

You can create Insight objects both in the object repository or when recording. In this lesson, you will be
working only with adding Insight objects in the object repository.

Exercise 8a: Create a Test for Insight Objects
In this exercise, you create a test to add test steps using Insight objects. This test will be saved
separately from the solution containing the Book Flights test.

1. Start UFT.

a. If UFT is not open, open it as described in "Create a Solution for All Your Tests" on page 24.
Make sure that the WPF Add-in is open.

b. In the toolbar, click the New button . The New Test dialog box opens.

c. In the New Test dialog box, select GUI Test.

d. Name the test Insight. Accept the default location.

Note: Do not enter a solution name for this test. This test is saved separately from the
solution used in the other lessons in this tutorial.

e. Click Create to create the test.

The test opens in a separate tab in the document pane.

2. Associate the object repositories with your action.

In this test, you will keep all the test steps in one action. However, you will need multiple object
repositories in order to have the appropriate test objects.

In this test, you will log in to the flight reservation application, then click a link in a promotional
image to order a flight. As a result, you will need to include the object repositories for the Login
page and the Flight Finder page of the application.

Tutorial
Lesson 8: Using Insight in your Test

HP Unified Functional Testing (12.51) Page 133



a. In the Solution Explorer, right-click the Action1 node and select Associate Repository with
Action. The Open Shared Object Repository dialog box opens.

b. In the Open Shared Object Repository dialog box, navigate to the Login.tsr object repository
file you created in "Lesson 2: Creating Object Repositories" on page 32, located in
C:\%HOMEPATH%\Unified Functional Testing\Tutorial_Object Repositories and click Open.

The Login.tsr object repository is displayed as a sub-node of the Action1 node.

c. Repeat the process described above to add the Flight Finder.tsr object repository file to
Action1.

3. Save the test.

Click Save .

Now that you have created a test in which to work with Insight objects, continue to "Exercise 8b: Add an
Insight Object to the Object Repository" below to add the Insight objects to your object repositories so
they are available for your test steps.

Exercise 8b: Add an Insight Object to the Object
Repository
In "Exercise 8a: Create a Test for Insight Objects" on the previous page, you created the structure of the
test you will use for your Insight objects. However, before you can add these objects to a test, you must
add them to an object repository. In this lesson, you will learn how to use the Object Repository
functionality to include Insight objects in your tests.

1. Start UFT.

a. If UFT is not open, open it as described in "Create a Solution for All Your Tests" on page 24.
Make sure that the WPF Add-in is open.

b. In the toolbar, click the Open drop-down arrow and select Open Test. The Open
Test dialog box opens.

c. In the New Test dialog box, navigate to the Insight test, saved in C:%HOMEPATH%\Unified
Functional Testing, and click Open.

The test opens in a separate tab in the document pane.

2. Create a new object repository.

a. Select Resources > Object Repository Manager. The Object Repository Manager dialog box
opens.

b. In the Object Repository Manager window, select File > Save. The Save Shared Object
Repository dialog box opens.

Tutorial
Lesson 8: Using Insight in your Test

HP Unified Functional Testing (12.51) Page 134



c. In the Save Shared Object Repository dialog box, navigate to the Tutorial_Object Repositories
folder, located in C:%HOMEPATH%\Unified Functional Testing.

d. Name the object repository Insight and click Save.

3. Open the flight reservation application to the Flight Finder page.

In the flight reservation application, you will notice that on the Flight Finder page, there is a
changing object, displaying advertisement for special flights:

Because this image is changing periodically in the application, it is the type of object that you can
test with Insight object recognition, as traditional object recognition relies on such things as
position on the screen relative to other objects, ordinal identifiers, and the like. Furthermore, the
Order button located inside the image is not identifiable as a separate object. For example, if you
use the Object Spy to identify the Order button, UFT cannot identify it.

a. Open the flight reservation application, as described in "Explore the Flight Reservation
Application" on page 22.

b. In the Login window, enter the user credentials:

o Username: john

o Password: hp

c. Click OK to log in to the application. The Flight Finder page opens.

4. Add the Insight object to the object repository.

a. In the Object Repository Manager, in the toolbar, click the Add Insight Object button . The
Select Learn Mode dialog box opens:

Tutorial
Lesson 8: Using Insight in your Test

HP Unified Functional Testing (12.51) Page 135



b. In the Select Learn Mode dialog box, click the Automatic button. UFT is hidden from view and
your application is displayed.

Note: Selecting the Automaticmode enables UFT to automatically select the
region/object as the Insight object. If you were to select Manual, you can specify the
region/object to use as the Insight object.

c. In the flight reservation application, click on the Order button inside the flight promotion
image. The Add Insight Test Object dialog box opens:

Tutorial
Lesson 8: Using Insight in your Test

HP Unified Functional Testing (12.51) Page 136



d. In the image editor (center of the dialog box), drag the object selection box so that it includes
the entire Order button:

e. In the Specify the location to click in the control option, select Center.

f. Click Save to add the object to the object repository.

The Insight object is added as a top-level object in the object repository:

g. In the Object Repository Manager, in the Object Properties pane (right side), rename the object
from InsightObject to Promotion Order.

h. In the toolbar, click Save to change the object name and save the object repository.

Now that you have created the object repository containing the Insight images, you can use these
objects with your test. Continue to "Exercise 8c: Use Insight Objects in a Test" below to use the Insight
objects in your test and run the test.

Exercise 8c: Use Insight Objects in a Test
In "Exercise 8b: Add an Insight Object to the Object Repository" on page 134, you created Insight objects
for an object (image) in your application. In this exercise, you will use these objects in a test and see how
the test runs when using Insight object identification.

1. Start UFT.

a. If UFT is not open, open it as described in "Create a Solution for All Your Tests" on page 24.
Make sure that the WPF Add-in is open.

b. In the toolbar, click the Open drop-down arrow and select Open Test. The Open
Test dialog box opens.

c. In the New Test dialog box, navigate to the Insight test, saved in C:%HOMEPATH%\Unified
Functional Testing, and click Open.

The test opens in a separate tab in the document pane.

Tutorial
Lesson 8: Using Insight in your Test

HP Unified Functional Testing (12.51) Page 137



2. Associate the Insight object repository with your test.

a. In the Solution Explorer, right-click the Action1 node and select Associate Repository with
Action. The Open Shared Object Repository dialog box opens.

b. In the Open Shared Object Repository dialog box, navigate to the Insight.tsr object repository
file, saved in C:\%HOMEPATH%\Unified Functional Testing\Tutorial_Object Repositories, and
click Open.

The Insight.tsr file is now displayed as a sub-node of the Action1 node in the Solution Explorer
and its objects are available for use in your tests.

c. Click Save to save the changes.

3. Add the login steps to the test.

Add steps to your test to log in to the flight reservation application, as described in "Exercise 3a:
Add Steps to the Login Action in the Keyword View" on page 45.

4. Add the Insight object to your test.

a. In the Keyword View, below the OK button step, click in the Item column and select Object from
Repository from the drop-down list. The Select Test Object dialog box opens.

b. In the Select Test Object dialog box, in the test object tree, select the Promotion Order node:

c. Click OK to add the step to your test.

UFT adds a new step for the Insight object to your test.

5. Run the test and view the run results.

a. Select Record > Record and Run Settings. The Record and Run Settings dialog box opens.

b. In the Windows Applications tab, select the Record and run only on: option.

c. Under the Record and Run only on option, select the Applications specified below option. The
application details should be saved from previous run sessions.

Note: If you need to re-enter the application details, see "Exercise 4a: Run a Test" on
page 70 for the necessary details.

Tutorial
Lesson 8: Using Insight in your Test

HP Unified Functional Testing (12.51) Page 138



d. Click OK to save the changes and apply the settings.

e. In the toolbar, click the Run button . The Run dialog box opens.

f. In the Run dialog box, in the Results Location tab, select the New run results folder. Accept
the default folder name.

g. Click Run to start the test run.

IMPORTANT: Make sure that the flight reservation application is closed before performing
the test run.

UFT opens the flight reservation application and runs the test steps in sequential order. When
UFT runs the steps containing the Insight objects, it uses the Insight object identification
mechanism to find the objects.

When the test run is complete, the run results opens.

h. In the Test Flow, select the Promotion Order.Click node. The run results display a summary of
the step.

i. In the step details, you can see the object that UFT identified using Insight object identification
during the test run:

Tutorial
Lesson 8: Using Insight in your Test

HP Unified Functional Testing (12.51) Page 139



HP Unified Functional Testing (12.51) Page 140

Part 4: Creating and Running Automated
API Tests
In addition to testing your application's user interface, you should also test the non-GUI (service) layers
to ensure that the APIs that run your application are working properly. Using UFT, you can create
automated API tests that do this for you.

When you create an API test, you create an overall test flow consisting of test steps which individually
test the application's API processes. You provide the input and checkpoint properties for these test
steps, and UFT runs the test in your application. When the test run finishes, you can check the results to
see how your application is functioning.

In this part, you will learn how to create API tests for a variety of different types of applications and
services.

This section includes the following:

• Lesson 1: Create an API Test 141

• Lesson 2: Create Simple API Test Steps 142

• Lesson 3: Creating API Test Steps Using Standard Activities 146

• Lesson 4: Parameterizing API Test Steps 152

• Lesson 5: Running API Tests 175

• Lesson 6: Creating and Running API Tests of Web Services 179

• Lesson 7: Creating and Running API Tests of REST Services 191

• Lesson 8: Creating and Running API Tests of Web Application Services (WADLs) 206



Lesson 1: Create an API Test
Before creating the content of a test of your application's service layer, you must first create a test and
create the test structure.

1. In the UFT toolbar, click the New button down arrow and select New Test.

2. In the New Test dialog box, select API Test.

3. Enter the following details for your test:

Name: Basic

Location: By default, UFT saves documents at C:\%HOMEPATH%\My Documents\Unified
Functional Testing. For this lesson, you do not need to modify this path.

4. Click Create.

A blank test opens in the canvas with a tab for the test flow (named Basic). Inside the test flow
canvas is an empty test flow.

This test is also displayed as a subnode of the Untitled Solution node in the Solution Explorer pane.
(This is the general solution name used when a test is created but not a named solution.)

You are now ready to begin designing API tests. Continue to "Lesson 2: Create Simple API Test Steps" on
the next page to learn how to create API test steps.

HP Unified Functional Testing (12.51) Page 141



Lesson 2: Create Simple API Test Steps
In UFT API tests, the process of creating tests is a visual one. Your test steps are displayed on a canvas
which shows the entire master test flow.

Creating the actual test steps consists of two main parts:

1. Creating test steps by dragging the appropriate activities to the test flow in the canvas.

The Toolbox pane contains all the activities you can use in your test. From the list of activities
contained in the canvas, you can drag them to the canvas and add them to the test flow in any
place:

HP Unified Functional Testing (12.51) Page 142



2. Adding step properties (input and checkpoints of the step)

After you drag a test step to the canvas, the properties for the step are displayed in the Properties
pane each time you select the step in the canvas:

Each step has two different kinds of properties:

Input These properties are used by UFT to set the values that the activity needs to run the step.

Checkpoint These values are compared against the actual values after the step is run to ensure that it runs correctly
(or does not run correctly).

Checkpoint properties are optional when running a test.

In this lesson, you will use these basic capabilities to create a basic test.

1. Start UFT and open the Book Flights test.

a. If UFT is not currently open, open it as described in "Create a Solution for All Your Tests" on
page 24.

b. On the Start Page, in the Recent tests/components area, click Basic.

The Basic test opens in the document pane.

Tutorial
Lesson 2: Create Simple API Test Steps

HP Unified Functional Testing (12.51) Page 143



2. Add an activity to the canvas and define its properties.

a. In the toolbar, click the Toolbox button . The Toolbox pane opens and displays different
categories of activities.

b. In the Toolbox pane, expand the String Manipulation node.

c. From the list of String Manipulation activities, drag the Concatenate Strings activity to the
canvas.

A new block is added to the canvas named Concatenate Strings, and the Properties pane
opens to the test step properties.

d. In the Properties pane, select the Input/Checkpoints tab .

e. In the Input/Checkpoints tab, in the Input section (top part), enter the following values for the
step properties:

o A: Hello (with a space after)

o B: World.

o Checkpoint: Hello world.

3. Add another activity to the canvas and define its properties.

In addition to defining input and checkpoint properties, you can define other properties for the test
step.

a. In the Toolbox pane, expand the String Manipulation node.

b. From the list of String Manipulation activities, double-click the Replace String activity to add it
to the canvas. The Input/Checkpoints tab opens in the Properties pane, displaying the input
and checkpoint properties for the step.

c. In the Properties pane, open the General tab .

d. In the Name property row, change Replace String to Change Text and press Enter. The
name of the step in the canvas is changed to Change Text.

e. Open the Input/Checkpoints tab.

f. In the Input Checkpoints tab, enter the following values for the properties:

o Source string: Hello world.

o Search string: Hello

o Replace string: Goodbye

o Case-sensitive: False

4. Add checkpoint properties to the Change Text step.

a. In the Checkpoints section of the Input/Checkpoints tab, in the Result row, select the checkbox
in the Validate column. This enables the checkpoint for this step

b. In the Expected value column, enter the expected result: Goodbye world.

Tutorial
Lesson 2: Create Simple API Test Steps

HP Unified Functional Testing (12.51) Page 144



5. Save the test.

Select File > Save.

6. Run the test and view the results.

a. In the toolbar, click the Run button . The Run dialog box opens.

b. In the Run dialog box, click Options to expand the dialog box.

c. In the Results Location tab, select the Temporary run results folder option.

d. Click Run to compile and run the test.

While UFT runs the test, the Output pane shows the compilation log. In the lines displayed in
the compilation log, you can see the input and checkpoint property values you entered in the
previous steps:

After the test run is complete, the run results open.

e. In the run results, select Test Flow to display the steps in the test..

f. In the test step tree, select the Concatenante Strings step node. The run results display a
summary of the step.

g. In the step summary area, click the Concatenate Strings.xml link. A separate tab opens in the
document pane.

h. In the new tab, look at the Prefix and Suffix rows. You will see that UFT ran the step with the
exact input and output values you provided in the previous steps.

i. In the test step tree, select the Change Text step.

j. In the step summary area, click the Change Text.xml link.

k. In the new tab, look again at the input properties you used for this step.

l. Under the Change Text step, select the Checkpoints step.

m. In the step summary area, click the Checkpoint.xml link.

n. In the new tab, note the details for the test step run. Note that that the results show that the
checkpoint passed (with a green checkmark) and the expected string that you entered in the
previous steps.

o. When you are finished reviewing the results, close the tab with the run results.

Tutorial
Lesson 2: Create Simple API Test Steps

HP Unified Functional Testing (12.51) Page 145



Lesson 3: Creating API Test Steps Using
Standard Activities
When you create an API test, you are testing to see that the non-GUI (service) layer of your application
works properly. The invisible processes that run your application can be any number of things: calls to a
database, calls to a Web service, opening a program, sending messages via the Web, and so forth.

To assist you in creating tests, UFT provides a number of standard API activities to use in designing test
steps. In this lesson, you will use the standard activities to create a basic test.

This lesson includes the following:

• UFT API Testing Standard Activities - Overview 147

• Exercise 3a: Creating a Test with Standard Activities 147

Tutorial
Lesson 3: Creating API Test Steps Using Standard Activities

HP Unified Functional Testing (12.51) Page 146



UFT API Testing Standard Activities - Overview
When you create an API test, there are a number of standard activities provided with all tests. These
test common application processes, including:

l Flow Control activities, such asWait, Break, and Condition step.

l String Manipulation activities, such as Concatenate Strings and Replace String

l File system activities for processes performed using the file system

l Database activities

l FTP activities

l Network activities, such as HTTP Request and SOAP Request

l JSON and XML activities for application processes that involve interacting with XML or JSON
strings/files

l Math and Date/Time activities

l Other Miscellaneous activities, including a Custom Code activity, Run Program and End Program
activities, and a Report activity.

There are a number of technology-specific activities:

l A Call Java Class activity which tests Java processes used in your application

l JMS (Java Message Service) activities

l IBM Websphere MQ activities

l SAP activities to access an SAP iDOC or RFC stored on a SAP server

l Load Testing activities which help your test run (after a conversion to a LoadRunner script) with HP
LoadRunner

l HP Automated Testing Tools activities, which enable you to call a GUI test or action, API test or
action, or Virtual User Generator Script from UFT, QuickTest Professional, Service Test, or
LoadRunner as part of your test

There are a number of custom activities you can also import into your test, but these types of activities
will be discussed in detail in later lessons.

Exercise 3a: Creating a Test with Standard Activities
In "Lesson 2: Create Simple API Test Steps" on page 142, you familiarized yourself with the UFT API
testing user interface and learned how it is used to create and run test steps.

In this lesson, you will use that knowledge to use standard activities to create a basic API test.

1. Create a new test.

a. In the toolbar, click the New button

Tutorial
Lesson 3: Creating API Test Steps Using Standard Activities

HP Unified Functional Testing (12.51) Page 147



. The New Test dialog box opens

b. In the New Test Dialog Box, select API Test.

c. Enter the following details for your test:

o Name: Standard

o Location: C:\%HOMEPATH%\My Documents\Unified Functional Testing

d. Click Create.

A blank test opens in the canvas, with a blank test flow. The test is also displayed as a sub-
node of the Solution Untitled solution in the Solution Explorer pane.

2. Create the steps in the test flow.

In this step, you are going to create a test of an application process which finds a certain string,
replaces it, and then writes the result of the string replacement to a file.

For this test, you will need three activities:

l Replace a string

l Create a file to save the results

l Write the results to the file

These activities are all provided with UFT's standard activities.

a. If it is not already open, open the Toolbox pane by clicking the Toolbox tab at the lower left
corner of the UFT window.

b. In the Toolbox pane, expand the String Manipulation activities node.

c. In the String Manipulation activities, drag the Replace String activity to the canvas. A new
block is added to the test flow in the canvas and the Properties pane displays the

Input/Checkpoints tab for the Replace String step.

d. In the Toolbox again, expand the File activities.

e. In the File activities, drag the following activities to the canvas:

o File Create

o Write to File

Two new blocks are added to the canvas for each activity, and each of the activity's are
displayed with a red alert icon:

Tutorial
Lesson 3: Creating API Test Steps Using Standard Activities

HP Unified Functional Testing (12.51) Page 148



After you add the activities to the canvas, your test flow should look like this:

3. Enter the properties for the Replace String activity.

a. In the canvas, select the Replace String activity. The Input/Checkpoints tab in the
Properties pane opens.

b. In the Input/Checkpoints tab, enter the input properties for the step:

o Source string: Hello world.

o Search string: Hello

o Replace string: Goodbye

Note: You do not need to use the checkpoint properties for this activity.

4. Enter the properties for the File Create step.

This step will enable you to create a file on which to write the results of the Replace string
operation from the previous step. You will create a file in a specified directory to be used in the
next steps.

a. In the canvas, select the File Create step. The Input/Checkpoints tab in the Properties
pane opens.

b. In the file system, open the C:\%HOMEPATH%\My Documents\Unified Functional Testing
folder.

c. Inside the Unified Functional Testing folder mentioned in the previous step, create a folder
named Tutorial_Files. You will use this folder to create the file in the next step.

Tutorial
Lesson 3: Creating API Test Steps Using Standard Activities

HP Unified Functional Testing (12.51) Page 149



d. In the Input/Checkpoints tab, enter the input properties for the step:

o Folder path: C:\%HOMEPATH%\My Documents\Unified Functional
Testing\Tutorial_Files

Note: You can also enter this folder by pressing the Browse button and navigating
directly to the folder.

o File Name: Standard Test Result

o Overwrite: true

e. In the Checkpoints section of the Input/Checkpoints tab, in the Result row, select the checkbox
in the Validate column. Leave the default value as it is.

This enables you to see if the file creation step was completed successfully running the test
and viewing the run results.

5. Enter the properties for the Write to File step.

This step will write the string resulting from the Replace String step to the file you created in the
Create File step.

a. In the canvas, select the Write to File step. The Input/Checkpoints tab in the Properties
pane opens.

b. In the Input section of the Input/Checkpoints tab, enter the input properties for the step:

o Content: Goodbye world.

o File path: You will use the file created in the previous step. You must manually enter the
following: C:\%HOMEPATH%\My Documents\Unified Functional Testing\Tutorial_
Files\Standard Test Result

o Keep all other properties with the default.

c. In the Checkpoints section of the Input/Checkpoints tab, in the Result row, select the checkbox
in the Validate column (Leave the default value as it is.)

This enables you to see if the write to file operation was completed successfully when running
the test and viewing the run results.

6. Save the test.

Select File > Save.

7. Run the test.

a. In the toolbar, click the Run button . The Run dialog box opens.

b. In the Result Locations tab in the Run dialog box, ensure that the Termporary run results
folder is still selected.

c. Click Run to compile and run the test.

After the test run is complete, the run results opens.

Tutorial
Lesson 3: Creating API Test Steps Using Standard Activities

HP Unified Functional Testing (12.51) Page 150



d. In the file system, open the C:\%HOMEPATH%\My Documents\Unified Functional
Testing\Tutorial_Files\Standard Test Result file.

In this file, you should see the string "Goodbye world" in the first line of the document. This
shows that UFT ran the test steps on a real application, just as it would for any application,
using the standard API activities provided with UFT.

Now that you have created a basic test of application processes using standard activities, continue
to "Lesson 4: Parameterizing API Test Steps" on the next page to learn how to use data in your
tests and parameterize test steps.

Tutorial
Lesson 3: Creating API Test Steps Using Standard Activities

HP Unified Functional Testing (12.51) Page 151



Lesson 4: Parameterizing API Test Steps
In "Lesson 2: Create Simple API Test Steps" on page 142 and "Lesson 3: Creating API Test Steps Using
Standard Activities" on page 146, you learned how to provide the values for API test steps by manually
entering the required input and checkpoint values.

However, you can also provide the input and checkpoint values from other sources:

l Data sources included with your test (including Excel files, XML, database data sources, or locally-
created tables

l Output of previous steps

l A combination of all the above: manually entering the required data, data sources, and output of
previous steps

Using these data sources to populate step input and output values enables you to mimic how your
application works, as the input of an application process can come from a data source, the result of a
previous application process and the like.

In this lesson, you will learn how to parameterize API test steps using different methods.

This lesson includes the following:

• Parameterizing API Test Steps - Overview 153

• Exercise 4a: Parameterize a Test Step from a Data Source 153

• Exercise 4b: Parameterize a Test Step from the Output of a Previous Step 164

• Exercise 4c: Parameterize a Test with Multiple Sources Using a Custom Expression 167

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 152



Parameterizing API Test Steps - Overview
When you provide values for the test step properties in an API test, the default way to provide these
values is to manually enter them in the Properties pane.

However, using this method does not necessarily provide a realistic test of your application. In many
applications, internal API processes receive their information - often dynamically- from data sources,
other test step outputs, or a variety of both.

As a result, UFT provides a number of different ways to provide (parameterize) step values:

Manual
entry

When you manually enter the step values, you select each step and typeor select the appropriate values for the
input and checkpoint property values.

This method does not provide for easy test maintenance, as each time that your application's properties change,
you must update each step and each property in the test.

Linking to
a data
source

When you link the step properties to a data source, UFT takes the values from thedata source during a test run
and uses the value provided in the data source. If your data source has multiple sets of data, you can run a test
with multiple iterations to provide different values for the input and checkpoints to see how your application
performs with different data input.

This method provides easier test maintenance, as you only need to update the data source values instead of each
test step.

Linking to
the output
of a
previous
step

When you link the step properties to the output of a previous step, UFT takes the values from theoutput of the
step and uses these values during the test run. This enables you to mimic real application behavior, in which the
output of an application's API process often passes a value to another process as input.

Linking to
multiple
sources

If your application's input and checkpoints are provided frommultiple sources - a static string, data, and output
of other steps/processes, you can create custom expressions to perform this in your test. UFT then provides the
values using the custom expressions and uses the values during the test run.

Exercise 4a: Parameterize a Test Step from a Data
Source
As you saw in "Parameterizing API Test Steps - Overview" above, one of the ways you provide values to
test steps is by linking the step property values to a data source. This enables you to run the test step
with multiple different values, depending on the structure of the data source.

In your API test, you can add multiple different types of data sources:

l Excel sheets

l XML files or schemas

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 153



l Databases

l Locally-stored data tables

Each of these can be added to your test, which makes it available for all steps in the test.

In this lesson, you will link test steps to a data source.

1. Start UFT and open the Standard test.

a. If UFT is not currently open, open it as described in "Create a Solution for All Your Tests" on
page 24.

b. On the Start Page, in the Recent tests/components area, click Standard.

The Standard test you created in "Lesson 3: Creating API Test Steps Using Standard Activities"
on page 146 opens as a separate tab in the document pane. It is also displayed as a sub-node
of the Solution Untitled solution in the Solution Explorer.

2. Add a Concatenate Strings step to your test.

a. Select View > Toolbox to open the Toolbox pane.

b. In the Toolbox pane, expand the String Manipulation node.

c. In the String Manipulation node, drag a Concatenate Strings activity to the canvas, above the
Replace String activity.

3. Add a data source to your test.

a. If necessary, select View > Data to open the Data pane.

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 154



b. In the Data Pane, click the New Data Source button and select Local Table. The New
Local Table Data Source dialog box opens:

c. In the Data Source name field, name the table Concatenated Strings.

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 155



d. Below the Data Source name field, click the Add button . A new row is added to the table
grid.

e. In the grid, in the Name field, enter Prefix. Leave the Data Type as String.

f. Click the Add button again. A second row is added to the table.

g. In the grid, in the Name field for the second row, enter Suffix. Leave the Data Type as String.

h. Click OK to close the dialog box and add the table to your test.

The table is added to your test, and is displayed in the Data pane as a sub-node of the Current
Test data sources:

4. Add values to the data table.

In order for your test steps to use values for test steps, you must also ensure that the data source
has useable data. For a locally-created and stored table, you have to add the data.

a. In the Data pane, under the Current Test node, select the Concatenated Strings node. The
Data pane updates to show the data for the selected data source. (Right now, there is no data

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 156



in the table.)

b. In the data grid, click in the Prefix column.

c. In the Prefix column, enter Hello. Make sure to leave a space after Hello.

d. Click in the Suffix column and enter World.

e. Enter additional rows:

Prefix Suffix

Welcome to UFT.

I am running API tests.

Note: Make sure to enter a space after the string in the A column.

5. Connect the test steps to the data source.

In order to use the data source values when running the test, you need to link the test step
properties to the data source.

a. In the canvas, select the Concatenate Strings step. The Input/Checkpoints tab opens in
the Properties pane.

b. In the Input/Checkpoints tab, in the Input section, click in the Value cell for the Prefix property.

c. In the Value cell, click the Link to data source button . The Select Link Source dialog box
opens.

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 157



d. In the Select Link Source dialog box, select the Data source column radio button. A list of all
the test's data sources is shown in the left side of the dialog box:

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 158



e. In the Select a data source pane (left side), select the Concatenated Strings node. (This is the
data source you created in the previous step.) A list of data source parameters is displayed in
the right pane:

f. In the Select data pane (right side), select the Prefix node and click OK.

The Value column in the Input/Checkpoints tab is updated with an expression to show the link
to the data source. If you hover over the Value column, the expression is displayed:

{DataSource.Concatenated Strings.Prefix}

g. Repeat the process described above to link the Suffix property to the Suffix column in the
data table.

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 159



After you are done, the Input/Checkpoints tab reflects the links to the data table:

6. Set the number of iterations for the test.

If you were to run the entire test after now, it would only run one iteration, using the data from the
first row of the data table.

Since you entered three rows, you should run three iterations of the test to see how UFT handles
the different data.

a. In the canvas, select the Test Flow. The Input tab opens in the Properties pane:

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 160



b. In the Input tab, select the 'For' Loop radio button.

c. In the Number of Iterations, enter 3 for the number of iterations.

Now, when UFT runs the test, it will run three iterations of the test, using a new row in the data
table each time.

Note: You do not have to run the same number of iterations as you have rows in your data
source. However, by default. UFT will start at the first row in the data table and use a new
row on each subsequent iteration until the end of the test.

7. Set the data navigation policies for the data table.

a. In the canvas, select the Test Flow. The Input tab opens in the Properties pane.

b. In the Properties pane, select the Data Sources tab . The Data Navigation grid opens.

c. In the Data Sources tab, in the Data Navigation grid, in the Data Source name column, select
the Concatenated Strings data source and click Edit. The Data Navigation dialog box opens:

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 161



d. In the Data Navigation dialog box, set the following properties:

Start at First row

Row 1

Move by 1 rows Forward

End at Last row

Upon reaching the last row Wrap around

e. Click OK to close the dialog box and update the data navigation policies.

8. Run the test.

a. In the toolbar, click the Run button. The Run dialog box opens.

b. In the Run dialig box, click on the Options bar to expand the dialog box.

c. In the Result Locations tab, select the Temporary run results folder option.

d. Click Run to begin the test run.

UFT runs the steps in sequence, using the values in the data table for the input of the
Concatenante Strings activity. While UFT is running the test, you can see the values UFT takes
from the data table in the Output pane:

After the test run is completed, the run results open.

9. Analyze the run results.

a. In the run results, in the Test Flow, view the test results tree.

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 162



Notice that there are three Summary nodes:

This corresponds to the three iterations you set earlier.

b. Expand the Action Iteration: Row 1 node,and select the Concatenate Strings node. The run
results display a summary of the step..

c. The captured data shows the data used for the input values of the Concatenate Strings
activity:

The values used match the first row in the data table.

d. Repeat this process for the Iteration 2 and Iteration 3 Concatenate Strings activities. You will
see that the values displayed as part of the step's captured data match the second and third
rows of the data table.

10. Save the test.

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 163



Select File > Save.

Now that you have learned how to connect test steps to data sources, continue with "Exercise 4b:
Parameterize a Test Step from the Output of a Previous Step" below to learn how to link step properties
with the output of a previous step.

Exercise 4b: Parameterize a Test Step from the Output
of a Previous Step
In "Exercise 4a: Parameterize a Test Step from a Data Source" on page 153, you learned how to link the
property values of a selected step to a data source.

However, in addition to providing the property values from data, you can also get property values from
the output of previous steps. In this lesson, you will learn how to link step values using previous step
outputs.

1. Start UFT and open the Standard test.

a. If UFT is not currently open, open it as described in "Create a Solution for All Your Tests" on
page 24.

b. On the Start Page, in the Recent tests/components area, click Standard.

The Standard test you created in "Lesson 3: Creating API Test Steps Using Standard Activities"
on page 146 opens as a separate tab in the document pane. It is also displayed as a sub-node
of the Solution Untitled solution in the Solution Explorer.

2. Link the properties of the Replace Strings step to the Concatenate Strings test.

a. In the canvas, select the Replace String step. The Input/Checkpoints tab in the Properties
pane opens.

b. In the Input/Checkpoints tab, in the Input area, select the Source string row.

c. In the Value cell of the Source string row, click the Link to data source button . The Select
Link Source dialog box opens.

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 164



d. In the Select Link Source dialog box, select the Available steps radio button. The dialog box
then displays a list of available steps in the left side of the dialog box:

e. In the Select a step pane (left side), select Concatenate Strings. The list of output properties
for the Concatenate Strings activity is displayed.

f. In the Select a property pane (right side), select the Result row.

g. Click OK to link the properties and close the dialog box.

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 165



The Value column in the Source string row (in the Properties pane) is now updated to reflect
the link to the previous step's output:

If you hover over the Value column, you can see the full link statement:

{Step.OutputProperties.ConcatenateStringsActivity7.Result}

3. Run the test and see the results of the linked steps.

a. In the canvas, select the Test Flow. The Input tab opens in the Properties pane.

b. In the Input tab, ensure that the 'For' Loop option is selected.

c. In the Number of iterations, enter 1.

d. In the toolbar, click the Run button . The Run dialog box opens.

e. In the Run dialog box, in the Results Location tab, ensure that the Temporary run results
folder option is selected.

f. Click Run to start the test run.

UFT runs the test steps, using the output of the Concatenate Strings step for the input of the
Replace string activity.

When the test run is finished, the run results open.

g. In the run results, display the Test Flow.

h. Under the Summary node, find and select the Replace String node is visible. The run results
display the details of the Replace String step.

i. In the step details, note the source string used for this test run:

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 166



The source string is the output of the Concatenate Strings activity, as entered in "Exercise 4a:
Parameterize a Test Step from a Data Source" on page 153.

4. Save the test.

Select File > Save.

Now that you have learned how to link test steps to each other, continue with "Exercise 4c:
Parameterize a Test with Multiple Sources Using a Custom Expression" below to learn how to
parameterize steps by using a combination of manually entering values, linking to a data source, and
linking to the output of a previous step.

Exercise 4c: Parameterize a Test with Multiple Sources
Using a CustomExpression
In the previous exercises, you learned how link test step property values to a data source or the output
of a previous step.

However, there will be times where the step value comes from a variety of places: entering a static
value manually, a data source, and/or the output of a previous step. In these cases, you can create a
custom expression to link to multiple sources.

In this exercise, you will create a custom expression to write to a file the result of the string
replacement operation that uses data from the test's data table, manual entry of a static text string,
and the output of another test step.

1. Start UFT and open the Standard test.

a. If UFT is not currently open, open it as described in "Create a Solution for All Your Tests" on
page 24.

b. On the Start Page, in the Recent tests/components area, click Standard.

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 167



The Standard test you created in "Lesson 3: Creating API Test Steps Using Standard Activities"
on page 146 opens as a separate tab in the document pane. It is also displayed as a sub-node
of the Solution Untitled solution in the Solution Explorer.

2. Link the input property for the Write to File test step.

In "Lesson 3: Creating API Test Steps Using Standard Activities" on page 146, you created a test
with three activities:

l Replace String, where you took a string and replaced a part of it with another string

l File Create, where you created a file to write the replaced string

l Write to File, where you wrote the replaced string

Note: You added the Concatenate Strings step in "Exercise 4a: Parameterize a Test Step from
a Data Source" on page 153.

In this and the following steps, you will work with the Write to File activity.

a. In the canvas, select the Write to File step. The Input/Checkpoints tab opens in the
Properties pane.

b. In the Input/Checkpoints tab, in the Input section, select the Content row.

c. In the Content row, in the Value column, click the Link to data source button. The Select Link
Source dialog box opens.

3. Create the first part of the custom expression for the Content property value
from the data table

a. In the Select Link Source dialog box, select the Data source column option. The Select Link
Source dialog box displays a list of all the test's data sources:

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 168



Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 169



b. In the Select a data source pane (left side), select the Concatenated Strings node. The dialog
box displays a list of data parameters in the Concatenate Strings data table:

c. In the Select data pane (right side), select the Prefix node.

d. At the bottom of the dialog box, click the Custom Expression button. The dialog box expands
to display the Expression area:

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 170



e. Above the Expression area, while the Prefix node is selected, click the Add button. UFT adds
the expression for the Prefix parameter to the expression:

f. In the Select data pane, select the Suffix node.

g. In the Expression area, click the Add button again. UFT adds the expression for the Suffix
parameter to the expression:

4. Add the middle part of the custom expression by manually entering the string

For the middle part of the custom expression, you will manually add a static text string.

a. In the Select Link Dialog box, in the Expression area, type a space after the
{DataSource.Concatenated Strings.Suffix} expression.

b. Enter the text was replaced by, followed by another space.

Note: Do not click add after typing this string. If you click the Add button, UFT adds
whatever element is selected in the panes at the top part of the dialog box.

Your custom expression should now look like this after entering the static text string:

{DataSource.Concatenated Strings.Prefix}{DataSource.Concatenated
Strings.Suffix} was replaced by

5. Add the final part of the custom expression by linking it to a previous step
input.

For the final element of the custom expression, you will link to the output of a previous step.

a. At the top of the Select Link Source dialog box, select the Available steps option. The dialog
box displays a list of all previous steps:

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 171



b. In the Select a step pane (left side), select the Replace String node. A list of available
properties is displayed:

c. In the Select a property pane (right side), select the Result row.

d. In the Expression area, click Add. An additional expression is added to the previous expression
to reflect the link to the Replace String step output:

e. Click OK to close the dialog box and add this expression as the value for the Content property
of the Write to File step.

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 172



The Value column for the Content property now displays the updated expression:

{DataSource.Concatenated Strings.Prefix}{DataSource.Concatenated
Strings.Suffix} was replaced by
{Step.OutputProperties.ReplaceStringActivity4.Result}

6. Set the number of iterations for the test run.

a. In the canvas, select the Test Flow. The Input tab opens in the Properties pane.

b. In the Input tab, ensure that the 'For' Loop option is selected.

c. In the Number of iterations, enter 1.

7. Run the test and view the run results.

a. In the toolbar, click the Run button . The Run dialog box opens.

b. In the Run dialog box, in the Results Location tab, ensure that the Temporary run results
option is selected.

c. Click Run to start the test run.

UFT runs the steps, taking the values for the Content property in the Write to File step from
the links you created in your custom expression.

When the test run is finished, the run results open.

d. In the run results, display the Test Flow.

e. In the Test Flow, find the Write to File node. The run results display a summary of the relevant
information about the step.

f. In the step summary, click on the Write to File.xml link. A separate tab opens with the
captured data for the step.

g. In the separate tab, note the Content property value used for this test run:

8. Save the test.

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 173



Click Save .

Tutorial
Lesson 4: Parameterizing API Test Steps

HP Unified Functional Testing (12.51) Page 174



Lesson 5: Running API Tests
In "Exercise 3a: Creating a Test with Standard Activities" on page 147, you created a basic API test, using
standard activities. Now that you have created this test, you can run the test.

In this lesson, you will learn how to run a test and view the run results.

This lesson includes the following:

• Exercise 5a: Run a Test 176

• Exercise 5b: Navigate the Run Results 177

• Exercise 5c: Analyze the Run Results 178

Tutorial
Lesson 5: Running API Tests

HP Unified Functional Testing (12.51) Page 175



Exercise 5a: Run a Test
In "Exercise 3a: Creating a Test with Standard Activities" on page 147, you created a test using standard
API testing activities. In "Lesson 4: Parameterizing API Test Steps" on page 152, you then parameterized
the test, using a number of different methods.

In this lesson, you will learn how to prepare UFT to run the test and how to run your API tests.

1. Start UFT and open the Book Flights solution.

a. Open UFT as described in "Create a Solution for All Your Tests" on page 24.

b. On the Start Page, in the Recent Tests area, click Flight Reservation Application.

The Flight Reservation Application solution opens, containing the Book Flights test you
created in "Exercise 3a: Creating a Test with Standard Activities" on page 147.

2. Set the run mode for the test.

Before you run your test, you must instruct UFT how you want to run the test. You can run a test in
Release mode, which runs the test quickly, or Debugmode, which runs more slowly as UFT needs to
load the debugging tools before the test run.

a. Select Tools > Options. The Options dialog opens.

b. In the Options dialog box, select the API Testing tab.

c. In the API Testing tab, select the General node.

d. In the General pane, select the Run test in debugging mode option.

3. Start running your test.

a. In the toolbar, click the Run button . The Run dialog box opens.

b. In the Run dialog box, click on the Options bar to expand the dialog box.

c. In the Options area, click the Results location tab. This enables you to specify where the test
results are saved.

d. In the Results location, select the New run results folder option. Accept the default folder
name.

e. Click Run to close the Run dialog box and start running the test.

As UFT runs the test, it provides a log of steps performed in the output pane, including the
input and output parameters,and the result of any checkpoints run:

Tutorial
Lesson 5: Running API Tests

HP Unified Functional Testing (12.51) Page 176



Any errors that occur during the test run are reported as part of the log. You can return to the
relevant step to fix these errors.

When the test run is complete, the run results open as a separate tab in the document pane. Continue
to "Exercise 5b: Navigate the Run Results" below to learn more about the run results.

Exercise 5b: Navigate the Run Results
In "Exercise 5a: Run a Test" on the previous page, you ran the Standard test you created. After the test
run is finished, the run results automatically display the results for this test run.

Note: By default, the run results are displayed in an HTML-based report. You can also choose to
have the run results displayed in the Run Results Viewer in the Run Sessions pane of the Options
dialog box (Tools > Options > General tab > Run Sessions node). The lessons in this tutorial are
based on the HTML-based report.

When the run results open, it displays the following:

Initially, the run results display the following:

Test flow A graphical representation of the results in a tree, organized accordingly to the steps in the test. You can
instruct UFT to run a test more than once using different sets of data in each run. Each run is called an iteration,
and each iteration is numbered.

Error list A list of all the errors and warnings, presented in a list.

Step
summary
information

A high-level results overview report, containing general information about the test, which steps passed or
failed, and details about each test step.

The summary also includes a link to open up the captured data for that test step.

Tutorial
Lesson 5: Running API Tests

HP Unified Functional Testing (12.51) Page 177



Your test run succeeded because UFT was able to perform all the steps correctly according to the steps
you created and the properties you provided. If an error occured and your test did not run successfully,
the error is listed in the log in the Output pane. In such cases, go back and make sure that the steps are
configured exactly as described in this tutorial.

Now that you know what the run results display, continue to "Exercise 5c: Analyze the Run Results"
below to learn about the details of the run results.

Exercise 5c: Analyze the Run Results
In this exercise, you will inspect the steps UFT performed when running your test in "Exercise 5a: Run a
Test" on page 176.

1. View the results for a specific step.

a. In the Test Flow, in the results tree, find the Test Flow > Summary >  Iteration 1 node to see
all of the steps performed in this test.

b. Under the Iteration 1 node, select the Replace String node:

The run results now displays the following information:

o The Test Flow, with the step highlighted

o A summary of the test step, displaying details of the highlighted step

o A link to view the captured data for the selected step.

2. Close the run results.

In the document pane, close the tab containing the run results.

Tutorial
Lesson 5: Running API Tests

HP Unified Functional Testing (12.51) Page 178



Lesson 6: Creating and Running API Tests of
Web Services
In "Lesson 3: Creating API Test Steps Using Standard Activities" on page 146, you learned how to create
a test using standard API activities.

However, there will also be times where standard activities do not match the processes your application
performs. In these cases, you will need to use custom activities that you import into UFT. One of the
more widely used types of service activities are Web services. In UFT, you import the service and its
methods into UFT, which then makes them available for use in your tests.

In this lesson, you will learn how to create a Web service test and run the test.

This lesson includes the following:

• Exercise 6a: Create a Web Service Test 180

• Exercise 6b: Import a Web Service 180

• Exercise 6c: Build and Parameterize a Web Service Test 182

• Exercise 6d: Run a Web Service Test 188

Tutorial
Lesson 6: Creating and Running API Tests of Web Services

HP Unified Functional Testing (12.51) Page 179



Exercise 6a: Create a Web Service Test
In "Create a Solution for All Your Tests" on page 24, you created a solution for the flight reservation
application tests. In "Creating and Running Automated GUI Tests" on page 27, you created a variety of
GUI tests that tested the performance of the flight reservation's user interface.

In this exercise, you will create the first of the API tests necessary to test the service (API) layer of the
flight reservation application.

1. Start UFT and open the flight reservation application solution.

a. Open UFT as described in "Create a Solution for All Your Tests" on page 24.

b. On the Start Page, in the Recent Solutions area, click Flight Reservation Application.

The Flight Reservation Application solution opens, containing the Book Flights test you
created in "Lesson 1: Create a GUI Test and Actions" on page 28.

2. Add a new API test to the solution.

a. In the toolbar, select the Add drop-down arrow and select Add New Test. The Add
New Test dialog box opens.

b. In the Add New Test dialog box, select API Test.

c. In the Name field, name the test Book Flights Web Service.

d. In the Location field, click the Browse button and navigate to the C:\%HOMEPATH%\Unified
Functional Testing folder.

e. Click Add to create the test and add it to the solution.

The Book Flights Web Service test is added as a separate node in the Flight Reservation
Application solution and opens as a separate tab in the document pane.

Note: The solution is saved automatically.

Now that you have created the test, you are ready to begin working with the Web service and its
methods. Continue to "Exercise 6b: Import a Web Service" below to learn how to import the Web service
into your test.

Exercise 6b: Import a Web Service
Before testing your Web service, you must import the service description and its methods into UFT.
Typically, service descriptions are stored in a WSDL (Web Service Description Language) file. This file
defines the metadata for the service as well as the service's operations/methods. UFT then reads this
WSDL file and creates the service's methods as activities in the Toolbox pane.

In this exercise, you will import the flight reservation application's service WSDL file into UFT.

Tutorial
Lesson 6: Creating and Running API Tests of Web Services

HP Unified Functional Testing (12.51) Page 180



1. Start the Flights API application.

Start the HP Flights Service API application, as described in "Explore the Flight Reservation
Application" on page 22.

Note: Make sure that this application remains open when you are working with the tutorial, as
UFT must be able to access it when editing and running the test.

2. Import the WSDL file.

a. In UFT, in the toolbar, press the Import WSDL button and select Import WSDL from URL or
UDDI. The Import WSDL from URL or UDDI dialog box opens.

Note: If you had a copy of your WSDL file saved locally or in an ALM project, you can also
import the file directly into UFT.

b. In the Import WSDL from URL or UDDI dialog box, select the URL option.

c. In the HP Flights Service API application window, locate the URL for the SOAP-based service:

d. In the HP Flights Service API application window, click the Copy WSDL Path button. This saves
the URL of the WSDL file so you can copy it into the Import WSDL from URL or UDDI dialog box.

Tutorial
Lesson 6: Creating and Running API Tests of Web Services

HP Unified Functional Testing (12.51) Page 181



e. In UFT, in the Import WSDL from URL or UDDI dialog box, in the Address field, paste the URL
copied from the application window:

f. Click OK to import the service into UFT.

The service is imported into UFT and its methods are displayed in the Toolbox pane under the
Local Activities section:

Now that you have imported the service and its methods into your test, you are ready to create a
test of your Web service. Continue to "Exercise 6c: Build and Parameterize a Web Service Test"
below to build and parameterize a test of the Web service.

Exercise 6c: Build and Parameterize a Web Service Test
In "Exercise 6b: Import a Web Service" on page 180, you imported a WSDL file containing the details of
your Web service. After you imported the service, UFT displayed the methods in the Toolbox pane. From
the Toolbox pane, you can use any of these methods to create a test.

In this lesson, you will create a Web service test and parameterize it to see howWeb service tests are
created using the UFT API testing interface.

Tutorial
Lesson 6: Creating and Running API Tests of Web Services

HP Unified Functional Testing (12.51) Page 182



In the Book Flights GUI test that you created in "Lesson 3: Adding Steps to a Test" on page 44, the order
of the application windows was as follows:

When you create an API test of the same application, you want to make the steps match the
application's flow as closely as possible. In the list of methods imported from the WSDL file, you have
the following:

l CreateFlightOrder

l GetFlights

l GetFlightOrders

l UpdateFlightOrder

l DeleteFlightOrder

l DeleteAllFlightOrders

In order to match the flow of the user interface, you need to create API test steps that find the flight,
and then create a flight order based on the customer input.

In this exercise, you will create two test steps: GetFlights and CreateFlightOrder.

1. Create the test steps.

a. In the Toolbox pane, in the Local Activities section, expand the Web Services and then the HP_
Flights Services and the FlightsServiceMethods nodes. The Toolbox pane displays the full list
of available methods (six in all).

b. From the list of FlightsServiceMethods, drag the GetFlightsmethod to the canvas.

A new step block is added to the canvas, called GetFlights. The Input/Checkpoints tab opens in
the Properties pane.

Tutorial
Lesson 6: Creating and Running API Tests of Web Services

HP Unified Functional Testing (12.51) Page 183



c. In the Toolbox pane, from the FlightsServiceMethods node again, drag the CreateFlightOrder
method to the canvas.

2. Link the FlightNumber property of the CreateFlightOrder step to the output of
the GetFlights step.

a. In the canvas, select the CreateFlightOrder step. The Input/Checkpoints tab opens in the
Properties pane.

b. In the Input/Checkpoints tab, in the Input section, select the FlightNumber row.

c. In the Value column of the FlightNumber row, click the Link to a data source button . The
Select Link Source dialog box opens.

d. In the Select Link Source dialog box, select the Available steps option. The Select a step: pane
(left side) is updated with a list of available steps.

Tutorial
Lesson 6: Creating and Running API Tests of Web Services

HP Unified Functional Testing (12.51) Page 184



e. In the Select a step: pane, select the GetFlights step. The Select a property: pane (right side)
is updated with the step properties:

f. In the Select a property: pane, in the Input/Checkpoints tab , in the Output section, expand
the GetFlightsResult node.

g. Under the GetFlightsResult node, in the Flight (array) row, click the Add button . A new
output array is added to the output properties.

h. Under the Flight (array) row, expand the Flight[1] array. A list of all the output properties for
the GetFlights step is displayed.

i. In the list of output properties, select the FlightNumber property and click OK. When prompted
if you want to enclose the target step in a loop, select No.

Tutorial
Lesson 6: Creating and Running API Tests of Web Services

HP Unified Functional Testing (12.51) Page 185



UFT updates the Value column for the FlightNumber property to reflect the link:

3. Add a data source to use in your test.

a. If necessary, select View > Data to display the Data pane.

b. In the Data pane, click the New Data source button and select Excel. The New Excel Data
Source dialog box opens.

c. In the New Data Source dialog box, in the Excel file path field, click the Browse button.

d. In the Open dialog box, navigate to the application Excel file, saved in <UFT installation
directory>\samples\Flights Application and click OK.

e. In the New Excel Data Source dialog box, name the file WS_Flights.

f. Select the Link to the Excel file in its original location option.

g. Click OK to save the data source information and add the Excel data to your test.

4. Link the input properties of the test steps to the data source.

a. In the canvas, select the GetFlights step. The Input/Checkpoints tab opens in the
Properties pane.

b. In the Input/Checkpoints tab, in the Input section, expand the GetFlights node.

c. In the GetFlights node, select the DepartureCity row.

d. In the Value column of the DepartureCity row, click the Link to a data source button . The
Select Link Source dialog box opens.

e. In the Select Link Souce dialog box, select the Data source column option. The list of data
sources (in this case just the Excel file) is displayed in the Select a data source pane (left side).

f. In the Select a data source pane, select the WS_Flights!Input node. The list of all available
data parameters (columns) is displayed in the Select data pane (right side).

Tutorial
Lesson 6: Creating and Running API Tests of Web Services

HP Unified Functional Testing (12.51) Page 186



g. In the Select data pane, choose the DepartureCity column:

h. Click OK to link the property to this column in the data table.

UFT updates the Value column with a statement showing the link to the data source.

i. Repeat the process above for the step's other properties:

o ArrivalCity

o FlightDate

Tutorial
Lesson 6: Creating and Running API Tests of Web Services

HP Unified Functional Testing (12.51) Page 187



j. Repeat the same process for the CreateFlightOrder step's properties:

o Class

o CustomerName

Note: In the Value column for this property, there is a blue box with NIL written inside.
You need to click this box and remove the NIL (the box turns white) before linking the
property.

o DepartureDate

o NumberofTickets

5. Set the navigation settings for the data source.

a. In the canvas, select the Test Flow (but not a step in the test flow).

b. In the Properties pane, select the Data Sources tab .

c. In the Data Sources tab, in the list of associated data sources, select the WS_Flights!Input
entry in the table and click Edit. The Data Navigation dialog box opens.

d. In the Data Navigation dialog box, specify the data naviagation details:

Start at: First row

Move by: 3 rows Forward

End at: Last row

Upon reaching the last row: Wrap around

e. Click OK to assign the data navigation properties and close the dialog box.

Now that you have created a test for the flight reservation application's Web service, you can run the
test and see how UFT runs and reports run results for the Web service. Continue with "Exercise 6d: Run
a Web Service Test" below to learn more.

Exercise 6d: Run aWeb Service Test
In "Exercise 6c: Build and Parameterize a Web Service Test" on page 182, you created a Web service test
from the imported methods and then parameterized one of the steps. In this lesson, you will run the
test to see how UFT reports the run results when testing a Web service application.

1. Start UFT and open the Book Flights solution.

a. Open UFT as described in "Create a Solution for All Your Tests" on page 24. Make sure that the
WPF Add-in is loaded.

b. On the Start Page, in the Recent Solutions area, click Flight Reservation Application.

The Flight Reservation Application solution opens, containing the Book Flights test you
created in "Lesson 1: Create a GUI Test and Actions" on page 28.

Tutorial
Lesson 6: Creating and Running API Tests of Web Services

HP Unified Functional Testing (12.51) Page 188



2. Start the Flights API application.

If necessary, start the HP Flights Service API application, as described in "Explore the Flight
Reservation Application" on page 22.

Note: Make sure that this application remains open when you are working with the tutorial, as
UFT must be able to access it when editing and running the test.

3. Set the number of iterations for the test.

a. In the canvas, select the Test Flow (but not a step in the Test Flow). The Input tab opens in
the Properties pane.

b. In the Input tab, select the 'For' Loop option.

c. In the Number of Iterations field, enter 4.

4. Run the test.

a. In the toolbar, click the Run button . The Run dialog box opens.

b. In the Result Locations tab in the Run dialog box, ensure that the Temporary run results
folder is still selected.

c. Click Run to compile and run the test.

After the test run is complete, the run results open.

5. View the run results.

a. In the Test Flow, under any of the nodes for the iterations, select the GetFlights node. The
step summary details are displayed.

b. In the captured, scroll down until the Web Service Call HTTP Snapshot area is visible:

Tutorial
Lesson 6: Creating and Running API Tests of Web Services

HP Unified Functional Testing (12.51) Page 189



Note that in this area, UFT provides the HTTP Request and Response information for the Web
Service call.

In the SOAPwindow for the Request, you can see the input properties sent for the GetFlights
step:

Likewise, in the Response area, you can see the step's output properties:

c. Under the GetFlights node, select the Checkpoints node. The run results display a summary of
the checkpoint.

d. In the step details for the checkpoint, UFT displays the result (whether the checkpoint passed
or failed, the actual and expected values, and the type of checkpoint:

6. Save the test.

Select File > Save.

Tutorial
Lesson 6: Creating and Running API Tests of Web Services

HP Unified Functional Testing (12.51) Page 190



Lesson 7: Creating and Running API Tests of
REST Services
In addition to testing Web services in UFT, you can use API testing to also test your REST-based services
or REST-based service layers of your application. You create a prototype model of the service in UFT,
and then use the created methods to structure your tests.

This lesson will teach you the basic steps in creating REST service prototype models and creating tests
using these method models.

This lesson includes the following:

• Exercise 7a: Create a REST Service Test 192

• Exercise 7b: Create a REST Service Structure 192

• Exercise 7c: Create a Test Using REST Service Methods 197

• Exercise 7d: Run a REST Service Test 200

• Exercise 7e: Resolve a REST Service Conflict 202

Tutorial
Lesson 7: Creating and Running API Tests of REST Services

HP Unified Functional Testing (12.51) Page 191



Exercise 7a: Create a REST Service Test
In "Lesson 6: Creating and Running API Tests of Web Services" on page 179, you created a Web service
test for the API side of the flight reservation application. In this exercise, you will add a test for the
REST service component of the API side of the flight reservation application.

1. Start UFT and open the flight reservation application solution.

a. Open UFT as described in "Create a Solution for All Your Tests" on page 24.

b. On the Start Page, in the Recent Solutions area, click Flight Reservation Application.

The Flight Reservation Application solution opens.

2. Add a new API test to the solution.

a. In the toolbar, select the Add drop-down arrow and select Add New Test. The Add
New Test dialog box opens.

b. In the Add New Test dialog box, select API Test.

c. In the Name field, name the test Book Flights REST Service.

d. In the Location field, click the Browse button and navigate to the C:\%HOMEPATH%\Unified
Functional Testing folder.

e. Click Add to create the test and add it to the solution.

The Book Flights REST Service test is added as a separate node in the Flight Reservation
Application solution and opens as a separate tab in the document pane.

Note: The solution is saved automatically.

Now that you have created the test, you are ready to begin working with the REST service model and its
methods. Continue to "Exercise 7b: Create a REST Service Structure" below to learn how to create the
REST service model in your test.

Exercise 7b: Create a REST Service Structure
Before you can use a REST Service activity in your tests, you must create a model of the necessary
methods and their properties inside of UFT. UFT then takes the information for the service and methods
and uses them as test steps to test the real service's performance.

1. Start UFT and open the Book Flights solution.

a. Open UFT as described in "Create a Solution for All Your Tests" on page 24.

b. On the Start Page, in the Recent Solutions area, click Flight Reservation Application.

Tutorial
Lesson 7: Creating and Running API Tests of REST Services

HP Unified Functional Testing (12.51) Page 192



The Flight Reservation Application solution opens, containing the Book Flights REST Service
test you created in "Exercise 7a: Create a REST Service Test" on the previous page.

2. Start the Flights API application.

Make sure that the HP Flights Service APIs application is running, as described in "Explore the Flight
Reservation Application" on page 22.

3. Open the REST Service method properties help document.

In the HP Flights Service APIs window, click the HELP button. A browser window opens with the
method information.

4. Create a REST service model.

a. In the toolbar, click the Add REST Service button. The Add REST Service dialog box opens.

b. In the Add REST Service dialog box, change the New Service name to Flights REST Service.

5. Add a resource to the REST service model.

a. In the Add REST Service dialog box, in the toolbar, click the Add Resource button . A sub-
node is added to the Flights REST Service node.

b. Change the name of the resource to FlightOrders.

6. Add a method to the REST service model.

a. In the Add REST Service dialog box, in the toolbar, click the Add Method button . A sub-node
is added to the FlightOrders resource.

b. Change the name of the resource to ReserveOrder.

Now that you have added a Service, Resource, and Method, you should have a three level
hierarchy:

7. Configure the REST Service method model URL.

In order for the REST Service model methods to accurately test your application, you must provide
the URL of the application's service. This URL is provided at the Service, Resource, and Method
levels.

Tutorial
Lesson 7: Creating and Running API Tests of REST Services

HP Unified Functional Testing (12.51) Page 193



a. In the Add REST Service dialog box, select the Flights REST Service node. The General tab
opens in the right pane.

b. In the General tab, in the Value column for the URL property, enter http://localhost:8000.

c. In the left pane, select the Flight Orders row. The General pane again opens in the right
pane. Note that the URL you added in the General pane when the Flights REST Service was
selected is displayed.

d. In the General tab, in the Value column for the Relative URL property, enter HPFlights_REST.

After you add this portion of the URL, UFT adds the Relative URL value to the URL value to
make the concatenated URL: http://localhost:8000/HPFlights_REST.

e. In the left pane, select the ReserveOrder node. The General pane opens in the right pane.

f. In the right pane, select the HTTP Input/Checkpoints tab .

g. In the Value column for the Relative URL property, enter /FlightOrders.

UFT concatenates this part of the URL with the URL passed from the Flights REST Service and
Flight Orders levels.

8. Configure the additional HTTP properties for the ReserveOrders method model.

a. In the Add REST Service dialog box, select the ReserveOrder node. The General pane opens
in the right pane.

b. In the right pane, select the HTTP  Input/Checkpoints tab .

c. In the Value column for the HTTP method property, set the HTTP type to POST.

9. Add response information for the ReserveOrder method model.

a. In the Add REST Service dialog box, select the ReserveOrder node. The General tab opens
in the right pane.

b. In the right pane, select the HTTP tab .

Tutorial
Lesson 7: Creating and Running API Tests of REST Services

HP Unified Functional Testing (12.51) Page 194



c. In the Request body section, in the Request drop-down list, select XML. A text editor opens to
enable you to enter your XML:

d. Under the Request body type, ensure that XML is selected.

e. In the text editor area, enter the following XML:

<FlightOrderDetails xmlns="HP.SOAQ.SampleApp">
<Class>Business</Class>
<CustomerName>John Parker</CustomerName>
<DepartureDate>2115-05-27</DepartureDate>
<FlightNumber>1042</FlightNumber>
<NumberOfTickets>1</NumberOfTickets>
</FlightOrderDetails>

Note: You can also save this XML in a file and enter the XML by clicking the Load XML
button.

If you click the Grid button, you can also see the properties you entered in the XML displayed in
grid form:

Tutorial
Lesson 7: Creating and Running API Tests of REST Services

HP Unified Functional Testing (12.51) Page 195



f. In the right pane, select the HTTP Input/Checkpoints tab again.

g. In the Input section of the HTTP Input/Checkpoints tab, expand the Request Headers node, and
then the Request Headers [1] node.

Note the settings for the response:

o Name: Content - Type

o Value: text/xml

10. Create output properties for the ReserveOrder method model.

a. In the Add REST Service dialog box, select the ReserveOrder node. The General tab opens
in the right pane.

b. In the right pane, select the Custom Input/Checkpoints tab .

c. In the Custom Input/Checkpoints tab, click the Add button and select Add Output Property.
The Add Output Property dialog box opens.

d. In the Add Output Property dialog box, in the Name field, enter Total_Price.

e. In the Type drop-down menu, select Int and click OK to add the output property. The new
output property is added in the Output section of the Custom Input/Checkpoints tab.

f. Using the same process, add another output property named Order_Number of type Int.

The Custom Input/Checkpoints tab for the ReserveOrder method now displays all the output
properties you created:

11. Test the ReserveOrder method model.

a. In the Add Rest Service dialog box, select the ReserveOrdermethod node.

b. In the toolbar, click the Run Method button

Tutorial
Lesson 7: Creating and Running API Tests of REST Services

HP Unified Functional Testing (12.51) Page 196



.

UFT runs the method and provides the results in the bottom pane of the Add REST Service
dialog box:

12. Add the service model and its methods to the Toolbox.

In the Add REST Service dialog box, click the OK button.

UFT adds the REST Service model, its resources, and methods under the Local Activites node of the
Toolbox pane:

From the Toolbox pane, you can drag the method to the canvas and edit the step properties.

Now that you have created the prototype model of your REST service, you are ready to create tests
using the methods. Continue with "Exercise 7c: Create a Test Using REST Service Methods" below to use
the methods in a test.

Exercise 7c: Create a Test Using REST Service Methods
In "Exercise 7b: Create a REST Service Structure" on page 192, you created the prototype model of your
REST Service, including methods and their properties, to use in creating test steps.

In this exercise, you will create a test using the REST Service model method in the test flow.

1. Start UFT and open the Book Flights solution.

a. Open UFT as described in "Create a Solution for All Your Tests" on page 24.

b. On the Start Page, in the Recent Solutions area, click Flight Reservation Application.

The Flight Reservation Application solution opens, containing the Book Flights REST Service
test you created in "Exercise 7a: Create a REST Service Test" on page 192.

Tutorial
Lesson 7: Creating and Running API Tests of REST Services

HP Unified Functional Testing (12.51) Page 197



2. Import a data source to use in your test.

a. If necessary, select View > Data to display the Data pane.

b. In the Data pane, click the New Data source button and select Excel. The New Excel Data
Source dialog box opens.

c. In the New Data Source dialog box, in the Excel file path field, click the Browse button.

d. In the Open dialog box, navigate to the application Excel file, saved in <UFT installation
directory>\samples\Flights Application and click OK.

e. In the New Excel Data Source dialog box, name the file Flights_REST.

f. Select the Link to the Excel file in its original location option.

g. Click OK to save the data source information and add the Excel data to your test.

3. Create a step to test the ReserveOrder method.

a. In the toolbar, click the Toolbox button . The Toolbox pane opens.

b. In the Toolbox pane, in the Local Activities section, expand the nodes under the Flights REST
Service node.

c. Under the Local Activities node, drag the ReserveOrder step to the canvas.

UFT adds a new block to the Test Flow, with the method name (ReserveOrder).

4. Link the method's HTTP Request properties to the data source.

a. In the canvas, select the ReserveOrder step.

b. In the Properties pane, select the HTTP tab .

c. In the HTTP tab, in the Request section, click the Grid button.

d. In the Value column of the Class property, click the Link to a data source button . The
Select Link Source dialog box opens.

e. In the Select Link Source dialog box, select the Data source column option. The Select a data
source: pane (left pane) displays a list of all available data sources.

f. In the Select a data source pane, select the Flights_REST!Input node. The Select data: pane
(right pane) displays a list of all data columns/parameters.

g. In the Select data: pane, select the Class node and click OK.

Tutorial
Lesson 7: Creating and Running API Tests of REST Services

HP Unified Functional Testing (12.51) Page 198



UFT updates the value of the Class property to reflect the link to the data source:

h. Repeat the same process for the other HTTP Request properties:

o CustomerName

o DepartureDate

o FlightNumber

o NumberofTickets

5. Set a checkpoint for the ReserveOrder step.

a. In the canvas, select the ReserveOrder step again.

b. In the Properties pane, select the HTTP tab .

c. In a text editor, paste the following XML:

<?xml version="1.0"?>
<CreatedOrderParams xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns="HP.SOAQ.SampleApp">

<OrderNumber>93</OrderNumber>
<TotalPrice>374.400024</TotalPrice>

</CreatedOrderParams>

d. Save the file in the text editor as response.xml in a directory of your choice.

e. In UFT, in the Properties pane, in the Response section of the HTTP tab, from the drop-down
list, choose XML.

f. In the Response Body section, click the Load XML button.

g. In the Open dialog box, navigate to the response.xml file you saved in the previous step and
click Open.

Tutorial
Lesson 7: Creating and Running API Tests of REST Services

HP Unified Functional Testing (12.51) Page 199



UFT loads the XML schema from the response.xml file to the Response body section of the
HTTP tab:

h. In the Value column for the OrderNumber property, click the drop-down arrow and select >.

i. Enter 10 for the value.

j. In the Value column for the TotalPrice property, repeat the same process and enter < and 500
for the value.

Now that you have created the test steps, and provided input and checkpoint properties, you are ready
to run the test and view the run results. Continue with "Exercise 7d: Run a REST Service Test" below to
learn more.

Exercise 7d: Run a REST Service Test
In "Exercise 7c: Create a Test Using REST Service Methods" on page 197, you created a test using the
REST Service model methods. In this lesson, you will learn how to run the test and how to view the run
results.

1. Start UFT and open the Book Flights solution.

a. Open UFT as described in "Create a Solution for All Your Tests" on page 24.

b. On the Start Page, in the Recent Solutions area, click Flight Reservation Application.

The Flight Reservation Application solution opens, containing the Book Flights REST Service
test you created in "Exercise 7a: Create a REST Service Test" on page 192.

2. Set the number of iterations for the test.

Because your test has a data source with multiple rows, you must specify the number of iterations
to run.

a. In the canvas, select the Test Flow. The Input tab opens in the Properties pane.

b. In the Input tab, select the 'For' Loop option.

c. In the Number of Iterations field, enter 8.

3. Set the data navigation properties for the data source.

a. In the canvas, select the Test Flow. The Input/Checkpoints tab opens in the Properties

Tutorial
Lesson 7: Creating and Running API Tests of REST Services

HP Unified Functional Testing (12.51) Page 200



pane.

b. In the Properties pane, select the Data Sources tab . A list of all data sources associated
with the test flow is displayed

c. In the list of data sources, select the Flights_REST!Input data source and click Edit. The Data
Navigation dialog box opens.

d. In the Data Navigation dialog box, configure the following data navigation properties:

Start at: First row

Move by: 1 rows Forward

End at: Last row

Upon reaching the last row Wrap around

4. Run the test.

a. Ensure that the HP Flights Service APIs application is open.

b. In the toolbar, click the Run button .

UFT runs the test steps, providing the property values from the data source. The test run log is
displayed in the Output pane.

After the test run is over, the run results open.

5. Analyze the run results.

a. In the Run Results Tree pane (left pane), expand the Action: Book Flights REST Service node.

b. In the run results tree, select the ReserveOrder node. The step details are displayed.

c. In the captured data, note the Request and Response information. You can click on the links in
the Request Body and Response Body cells to open the XML response and request
information in a browser window:

d. Below the ReserveOrder node, select the Checkpoints node.

In the captured data, note the status of the checkpoints. In this case the checkpoints passed
because the actual values were within the limits of the expected values:

Tutorial
Lesson 7: Creating and Running API Tests of REST Services

HP Unified Functional Testing (12.51) Page 201



Exercise 7e: Resolve a REST Service Conflict
In "Exercise 7b: Create a REST Service Structure" on page 192, you created a prototype REST service
model with the method ReserveOrder. This method had specific properties, such as the URL and
property names. If the service model's properties changed after you created a test, your test would no
longer match the model. As a result, UFT has a Resolve Conflict wizard to enable you to resolve changes
in the method's properties.

In this exercise, you will use the Resolve Conflict wizard to help resolve these differences.

1. Start UFT and open the Book Flights solution.

a. Open UFT as described in "Create a Solution for All Your Tests" on page 24.

b. On the Start Page, in the Recent Solutions area, click Flight Reservation Application.

The Flight Reservation Application solution opens, containing the Book Flights REST Service
test you created in "Exercise 7a: Create a REST Service Test" on page 192.

2. Edit the service model properties.

a. In the toolbar, click the Toolbox button .

b. In the Toolbox, in the Local Activities section, expand the nodes under the REST Services
node.

c. Right-click the Flights REST Service node and select Edit Service. The Edit REST Service
dialog box opens.

d. In the Edit REST Service dialog box, select the ReserveOrder node. The General tab opens
in the right pane.

e. In the right pane, select the Custom Input/Checkpoints tab .

f. In the Custom Input/Checkpoints tab, in the Checkpoints section, select the Total_Price

property and click the Edit Property button . The Edit Property dialog box opens.

g. In the Edit Property dialog box, change the name of the property to TotalPrice and click OK.
The property name is modified in the Checkpoints section.

h. Repeat the same process to change the Order_Number property to OrderNumber.

i. In the Edit REST Service dialog box, click OK to save the changes to your service.

Tutorial
Lesson 7: Creating and Running API Tests of REST Services

HP Unified Functional Testing (12.51) Page 202



UFT saves the changes to the REST Service model. However, in the ReserveOrder step in the
canvas, an alert is displayed:

This indicates that there is a conflict between the service model and the step in the test, that
must be resolved.

3. Resolve the conflicts.

a. In the canvas, click on the Alert icon. UFT displays a message: This step should be
resolved. Resolve step.

Tutorial
Lesson 7: Creating and Running API Tests of REST Services

HP Unified Functional Testing (12.51) Page 203



b. Click on the alert text. The Resolve REST Methods wizard opens:

c. In the Select Steps screen (first screen), select the checkbox for the ReserveOrder step and
click Next. The Resolve Conflicts screen opens.

Note: When using this wizard, the Select Steps screen displays all the steps in which there
are conflicts. As a result, you can resolve multiple step conflicts at once.

d. In the Resolve Conflicts screen, in the Output Properties section (bottom area), in the After
changes box, select the Total_Price property (colored red):

e. Click Remove.

f. Repeat the same process to remove the Order_Number property (also colored red).

g. Click Next to continue. The Finish screen opens.

h. The Finish screen displays the status of the conflicts in your service model. In this case, there
are no existing conflicts.

Tutorial
Lesson 7: Creating and Running API Tests of REST Services

HP Unified Functional Testing (12.51) Page 204



Click Finish to exit the wizard. UFT updates your test with the changes selected in the Resolve
REST Methods wizard. In this exercise, the output properties for the ReserveOrder step are
now updated in the Properties pane:

4. Save the test.

Select File > Save.

Tutorial
Lesson 7: Creating and Running API Tests of REST Services

HP Unified Functional Testing (12.51) Page 205



Lesson 8: Creating and Running API Tests of
Web Application Services (WADLs)
In "Lesson 3: Creating API Test Steps Using Standard Activities" on page 146, you learned how to create
a test using standard API activities.

However, there will also be times where standard activities do not match the processes your application
performs. In these cases, you will need to use custom activities that you import into UFT. One of the
other types of service activities are Web application services. In UFT, you import the service description
and its methods into UFT, which then makes them available for use in your tests.

In this lesson, you will learn how to import and use a Web application service description into UFT.

This lesson includes the following:

• Exercise 8a: Create a Test for a Web Application Service 207

• Exercise 8b: Import a Web Application Service Model 207

• Exercise 8c: Edit the Web Application Service Methods 209

• Exercise 8d: Build a Test with Web Application Service Methods 212

• Exercise 8e: Run a Web Application Service Test 217

Tutorial
Lesson 8: Creating and Running API Tests of Web Application Services (WADLs)

HP Unified Functional Testing (12.51) Page 206



Exercise 8a: Create a Test for a Web Application Service
In "Create a Solution for All Your Tests" on page 24, you created a solution for the flight reservation
application, to which you added GUI tests of the application's user interface, and API tests of the
application's Web services and REST services.

In this exercise, you will create a test for the Web Application service of the flight reservation
application.

1. Start UFT and open the flight reservation application solution.

a. Open UFT as described in "Create a Solution for All Your Tests" on page 24.

b. On the Start Page, in the Recent Solution area, click Flight Reservation Application.

The Flight Reservation Application solution opens in the Solution Explorer.

2. Add a new API test to the solution.

a. In the toolbar, select the Add drop-down arrow and select New Test.

b. In the Add New Test dialog box, select API Test.

c. In the Name field, name the test Flights WADL.

d. In the Location field, click the Browse button and navigate to the C:\%HOMEPATH%\Unified
Functional Testing folder.

e. Click Add to create the test and add it to the solution.

The Book Flights WADL test is added as a separate node in the Flight Reservation Application
solution and opens as a separate tab in the document pane.

Note: The solution is saved automatically.

Now that you have a created a test, you are ready to begin working with the Web Application service
model and its methods. Continue to "Exercise 8b: Import a Web Application Service Model" below to
learn how to import the service description into UFT.

Exercise 8b: Import a Web Application Service Model
Before you test your Web Application service, you must import the service description (including its
structure of the resources and its methods). Web Application service descriptions are stored in a WADL 
(Web Application Description Language) file. UFT reads this file, and then creates a hierarchy of service,
resources, and methods (similar to a REST service hierarchy). Once you have imported the service
description, you can use the methods to create a test.

In this exercise, you will import the flight reservation application's service WADL file into UFT.

Tutorial
Lesson 8: Creating and Running API Tests of Web Application Services (WADLs)

HP Unified Functional Testing (12.51) Page 207



1. Start the Flights API application.

Start the HP Flights Service API application, as described in "Explore the Flight Reservation
Application" on page 22.

Note: Make sure that this application remains open when you are working with the tutorial, as
UFT must be able to access it when editing and running the test.

2. Import the WADL file.

a. In UFT, in the toolbar, click the ADD REST Service drop-down arrow and select Import WADL
from URL. The Import WADL from URL dialog box opens.

Note: If you have a copy of the WADL file saved locally, you can import the WADL file into
UFT.

b. In the HP Flights Service API application window, locate the URL for the WADL service:

c. In the HP Flights Service API application window, click the Copy WADL Path button. This saves
the URL of the WADL file so you can copy it into the Import WADL from URL dialog box.

Tutorial
Lesson 8: Creating and Running API Tests of Web Application Services (WADLs)

HP Unified Functional Testing (12.51) Page 208



d. In UFT, in the Import WADL from URL dialog box, in the Address field, paste the URL copied
from the application window:

e. Click OK to import the service description into UFT.

The service description is imported into UFT and its resources and methods hierarchy is
displayed in the Toolbox pane in the Local Activities section:

Now that you have imported the service description and its methods into UFT, you are ready to create a
test using the methods. Continue to "Exercise 8c: Edit the Web Application Service Methods" below to
learn how to edit the service description methods in UFT.

Exercise 8c: Edit theWeb Application Service Methods
In "Exercise 8b: Import a Web Application Service Model" on page 207, you imported the Web application
service description and methods into UFT to create a hierarchy of services, resources, and methods.

Tutorial
Lesson 8: Creating and Running API Tests of Web Application Services (WADLs)

HP Unified Functional Testing (12.51) Page 209



The WADL that you import contains a detailed description of the service's resources and methods,
including the URL of the service and its methods, and parameters for various methods. Once you import
the WADL file into UFT, you cannot change these properties.

However, you can add additional information to your service description, such as additional parameters
for the methods, and request and response information for the methods. This additional information is
also saved as part of the service model and is used as the prototype information when you drag a
method to the canvas.

In this lesson, you will learn how to edit the service model's properties in UFT. You will be adding
information to the GetFlights method and ReserveOrder methods, which you will use in the next
exercise to create a test.

1. Start UFT and open the flight reservation application solution.

a. If necessary, open UFT as described in "Create a Solution for All Your Tests" on page 24.

b. On the Start Page, in the Recent Solution area, click Flight Reservation Application.

The Flight Reservation Application solution opens in the Solution Explorer, containing the
Flights WADL test you created in "Exercise 8a: Create a Test for a Web Application Service" on
page 207.

2. Open the Web Application service model description.

When you edit a Web Application service description, you use the same dialog box and tools that
you use to create and edit a REST service model description.

In the Toolbox pane, under the Local Activities section, right click the Flight Service node and
select Edit Service. The Edit REST Service dialog box opens.

3. Edit the response information for the GetFlights method.

a. In the Edit REST Service dialog box, under the Flights node, select the GetFlights node. The
right pane is updated with the information for the method.

b. In the right pane, select the HTTP tab .

c. In a text editor, copy the following XML:

<ArrayOfFlight xmlns="HP.SOAQ.SampleApp"
xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
<Flight>
<Airlines>AA</Airlines>
<ArrivalCity>Denver</ArrivalCity>
<ArrivalTime>01:23 PM</ArrivalTime>
<DepartureCity>London</DepartureCity>
<DepartureTime>06:12 AM</DepartureTime>
<FlightNumber>20279</FlightNumber>
<Price>112.2</Price>

</Flight>

Tutorial
Lesson 8: Creating and Running API Tests of Web Application Services (WADLs)

HP Unified Functional Testing (12.51) Page 210



</ArrayOfFlight>

Note: In this case, you must leave values as part of the XML, as this instructs UFT on the
type of value that each parameter must use.

d. Save the file as response.xml in a directory of your choice.

e. In UFT, in the Edit REST Service dialog box, with the GetFlights node selected, in the HTTP tab,
in the Response section, from the drop-down list, select XML

f. In the Response Body section, click the Load XML button. The Open dialog box opens.

g. In the Open dialog box, navigate to the directory in which you saved the response.xml file and
select the response.xml file.

h. Click Open to add the XML schema to the service description.

UFT adds the response properties based on the XML in the Response grid:

4. Add request information for the ReserveOrders method.

a. In the Edit REST Service dialog box, under the FlightOrders node, select the ReserveOrder
node. The right pane is updated with the information for the ReserveOrder method.

b. In the right pane, select the HTTP tab .

c. In the HTTP tab, in the Request section, select XML from the Request Body drop-down list. The
text editor opens with the message Insert XML here.

d. In the text entry area, paste the following XML:

<?xml version="1.0" encoding="utf-8"?>
<FlightOrderDetails xmlns="HP.SOAQ.SampleApp">

<Class>Business</Class>

Tutorial
Lesson 8: Creating and Running API Tests of Web Application Services (WADLs)

HP Unified Functional Testing (12.51) Page 211



<CustomerName>John Doe</CustomerName>
<DepartureDate>2012-12-12</DepartureDate>
<FlightNumber>1304</FlightNumber>
<NumberOfTickets>21</NumberOfTickets>
</FlightOrderDetails>

Note: In this case, you must leave values as part of the XML, as this instructs UFT on the
type of value that each parameter must use.

If you click the Grid button, you can see the parameters for the XML request displayed in the
Properties grid:

e. Click OK to save the changes.

UFT saves the changes to the service model and updates the properties of the methods
already imported in the Toolbox pane.

Now that you have edited your Web Application methods to included additional information, you are
ready to use them in a test. Continue to "Exercise 8d: Build a Test with Web Application Service
Methods" below to build a test using the methods imported from your WADL.

Exercise 8d: Build a Test with Web Application Service
Methods
In "Exercise 8b: Import a Web Application Service Model" on page 207, you imported a WADL file that
contained descriptions of the methods used in your Web Application service. In "Exercise 8c: Edit the
Web Application Service Methods" on page 209, you added additional property information to these
methods which was not defined in the WADL file.

Tutorial
Lesson 8: Creating and Running API Tests of Web Application Services (WADLs)

HP Unified Functional Testing (12.51) Page 212



In the Book Flights GUI test that you created in "Lesson 3: Adding Steps to a Test" on page 44, the order
of the application windows was as follows:

When you create an API test of the same application, you want to make the steps match the
application's flow as closely as possible. In the list of methods imported from the WADL file, you have
the some of the following:

l GetFlights

l GetFlightOrders

l UpdateFlightOrder

l DeleteFlightOrder

l DeleteAllFlightOrders

l ReserveOrder

In order to match the flow of the user interface, you need to create API test steps that find the flight,
and then create a flight order based on the customer input.

In this exercise, you will create two test steps: GetFlights and ReserveOrder.

1. Start UFT and open the flight reservation application solution.

a. If necessary, open UFT as described in "Create a Solution for All Your Tests" on page 24.

b. On the Start Page, in the Recent Solution area, click Flight Reservation Application.

The Flight Reservation Application solution opens in the Solution Explorer, containing the
Flights WADL test you created in "Exercise 8a: Create a Test for a Web Application Service" on
page 207.

Tutorial
Lesson 8: Creating and Running API Tests of Web Application Services (WADLs)

HP Unified Functional Testing (12.51) Page 213



2. Create the test steps.

a. In the Toolbox pane, in the Local Activities section, expand the Flights node (located under
the Flight Service and HPFlights_REST nodes).

b. Under the Flights node, drag a GetFlightsmethod to the canvas. UFT adds a block in the Test
Flow called GetFlights.

c. Under the FlightOrders node, drag a ReserveOrder node to the canvas. UFT adds another block
in the Test Flow (under the GetFlights block) called ReserveOrder.

3. Link the FlightNumber property of the ReserveOrder step to the output of the
GetFlights step.

a. In the canvas, select the ReserveOrder step. The Input/Checkpoints tab opens in the
Properties pane.

b. In the Properties pane, select the HTTP tab .

c. In the Request Body section of the HTTP tab, in the Value cell of the FlightNumber property,
click the Link to data source button . The Select Link Source dialog box opens.

d. In the Select Link Source dialog box, select the Available steps option. The Select a step: pane
(left pane) is updated with the list of available steps.

e. In the Select a step: pane, select the GetFlights step. The Select a property: pane (right pane)
is updated with the list of available properties.

f. In the Select a property: pane, select the HTTP tab . The list of HTTP properties is displayed.

g. In the list of properties, select the FlightNumber property and click OK.

UFT updates the value of the FlightNumber property in the ReserveOrder step to reflect the
link to the output of the GetFlights step:

Tutorial
Lesson 8: Creating and Running API Tests of Web Application Services (WADLs)

HP Unified Functional Testing (12.51) Page 214



4. Add a data source to use in your test.

a. If necessary, select View > Data to display the Data pane.

b. In the Data pane, click the New Data source button and select Excel. The New Excel Data
Source dialog box opens.

c. In the New Data Source dialog box, in the Excel file path field, click the Browse button.

d. In the Open dialog box, navigate to the application Excel file, saved in <UFT installation
directory>\samples\Flights Application and click OK.

e. In the New Excel Data Source dialog box, name the file WADL_Flights.

f. Select the Link to the Excel file in its original location option.

g. Click OK to save the data source information and add the Excel data to your test.

5. Link the input properties of the GetFlights step to the data source.

a. In the canvas, select the GetFlights step. The Input/Checkpoints tab opens in the
Properties pane.

b. In the Input/Checkpoints tab, in the Value cell of the DepartureCity property, click the Link to
data source button . The Select Link Source dialog box opens.

c. In the Select Link Source dialog box, select the Data source column option. The Select a data
source: pane (left pane) displays a list of all the available data sources.

d. In the Select a data source: pane, select the WADL_Flights!Input node. The Select data: pane
(right pane) displays a list of all available data parameters (columns).

e. In the Select data: pane, select the DepartureCity parameter and click OK. UFT updates the
Value column for the DepartureCity property in the Properties pane to reflect the link to the
data source.

f. Repeat the same process to link the ArrivalCity and Date properties to the data source.

Tutorial
Lesson 8: Creating and Running API Tests of Web Application Services (WADLs)

HP Unified Functional Testing (12.51) Page 215



UFT displays the values of the GetFlights properties to display the link to the data source:

6. Link the HTTP request properties for the ReserveOrder step to the data source.

a. In the canvas, select the ReserveOrder step. The Input/Checkpoints tab opens in the
Properties pane.

b. In the Properties pane, select the HTTP tab . The list of HTTP request and response
properties is displayed.

c. In the Value cell for the Class property, click the Link to a data source button. . The Select
Link Source dialog box opens.

d. In the Select Link Source dialog box, select the Data source column option. The Select a data
source: (left pane) displays a list of all available data sources.

e. In the Select a data source: pane, select the WADL_Flights!Input node. The Select data: pane
(right pane) displays a list of all available data parameters (columns).

f. In the Select data: pane, select the Class column and click OK. UFT updates the value of the
Class property to reflect the link to the data source.

g. Repeat the same process for the other HTTP Request properties:

o CustomerName

o DepartureDate

o NumberOfTickets

Tutorial
Lesson 8: Creating and Running API Tests of Web Application Services (WADLs)

HP Unified Functional Testing (12.51) Page 216



After you have linked all the properties (except the FlightNumber property) to the data source,
the Properties pane updates the values to reflect the link:

7. Save the test.

In the toolbar, click Save .

Now that you have created a test using the methods imported from your WADL file, you are ready to run
the test and view the run results. Continue to "Exercise 8e: Run a Web Application Service Test" below to
run the test.

Exercise 8e: Run aWeb Application Service Test
In "Exercise 8d: Build a Test with Web Application Service Methods" on page 212, you created a test
using the methods for your Web Application service model that you imported and edited in previous
exercises.

In this exercise, you will run the test you created to see the results.

1. Start UFT and open the flight reservation application solution.

a. If necessary, open UFT as described in "Create a Solution for All Your Tests" on page 24.

b. On the Start Page, in the Recent Solution area, click Flight Reservation Application.

The Flight Reservation Application solution opens in the Solution Explorer, containing the
Flights WADL test you created in "Exercise 8a: Create a Test for a Web Application Service" on
page 207.

2. Set the number of iterations for the test.

a. In the canvas, select the Test Flow. The Input tab opens in the Properties pane.

Tutorial
Lesson 8: Creating and Running API Tests of Web Application Services (WADLs)

HP Unified Functional Testing (12.51) Page 217



b. In the Input pane, select the 'For' Loop option.

c. In the Number of iterations field, enter 8.

3. Set the data navigation properties for the data source.

a. In the canvas, select the Test Flow. The Input/Checkpoints tab opens in the Properties
pane.

b. In the Properties pane, select the Data Sources tab . A list of all data sources associated
with the test flow is displayed

c. In the list of data sources, select the WADL_Flights!Input data source and click Edit. The Data
Navigation dialog box opens.

d. In the Data Navigation dialog box, configure the following data navigation properties:

Start at: First row

Move by: 1 rows Forward

End at: Last row

Upon reaching the last row Wrap around

4. Run the test.

a. Ensure that the HP Flights Service APIs application is open.

b. In the toolbar, click the Run button .

UFT runs the test steps, providing the property values from the data source. The test run log is
displayed in the Output pane.

After the test run is over, the run results open.

5. Analyze the run results.

a. In the Test Flow, find the ReserveOrder step. The run results display a summary of the step.

Tutorial
Lesson 8: Creating and Running API Tests of Web Application Services (WADLs)

HP Unified Functional Testing (12.51) Page 218



b. In the captured data, note the Request and Response information. You can click on the links in
the Request Body and Response Body cells to open the XML response and request
information in a browser window:

Tutorial
Lesson 8: Creating and Running API Tests of Web Application Services (WADLs)

HP Unified Functional Testing (12.51) Page 219



HP Unified Functional Testing (12.51) Page 220

Part 5: Creating and Running GUI and API
Tests in a Single Test
Note: You must perform the tutorial lessons included in "Creating and Running Automated GUI
Tests" on page 27 and "Creating and Running Automated API Tests" on page 140 before doing this
part of the tutorial.

When you are testing your application, in order to perform a comprehensive test, you must test both
the user interface (the GUI) and the service layer (the API). One of the challenges in doing this is
maintaining and running separate tests for each part of your application.

However, in UFT, although you still must create and maintain both GUI and API tests of your application,
you can run unified tests which test both the GUI and the API of your application in a single unified test
run. You simply call an API test from a GUI test, and UFT runs both layers of the application within a
single test run. Then, after the test run is complete, the run results display a unified view, reporting the
performance of both the GUI and API layers in a single report.

In this part, you will learn how to create and run tests which include both GUI and API tests in a single
test run.

This section includes the following:

• Lesson 1: Create a Test to Run GUI and API Tests Together 221

• Lesson 2: Call the API Test from a GUI Test 222

• Lesson 3: Run a GUI Test that Calls an API Test 226



Lesson 1: Create a Test to Run GUI and API
Tests Together
In this lesson, you will create a separate test in order to run a unified test with GUI and API tests
together.

1. Start UFT and open the Book Flights test.

a. Open UFT as described in "Create a Solution for All Your Tests" on page 24. Make sure that the
WPF Add-in is loaded.

b. On the Start Page, in the Recent Solutions area, click Flight Reservation Application.

The Flight Reservation Application solution opens, containing the Book Flights GUI tests you
created in "Creating and Running Automated GUI Tests" on page 27 and the API tests you
created in "Creating and Running Automated API Tests" on page 140.

2. Save the Book Flights test as Flight Reservation Application.

a. In the Solution Explorer, right-click the Book Flights node and select Save As. The Save As
dialog box opens.

b. In the Save Test As dialog box, browse to C:\%HOMEPATH%\My Documents\Unified Functional
Testing and save the test as Flight Reservation Application.

In the Solution Explorer, the Book Flights test is replaced by the new Flight Reservation
Application test. The Book Flights test is still saved separately in the file system.

3. Add the Book Flights test back into the solution.

a. Select File > Add > Existing Test. The Add Test to Solution dialog box opens.

b. In the Add Test to Solution dialog box, browse to the C:\%HOMEPATH%\My Documents\Unified
Functional Testing directory, and select the Book Flights test.

c. Click Add to return the Book Flights test to the solution.

The Book Flights test is again displayed in the Solution Explorer.

Now that you have a separate test for running GUI and API tests together, you are ready to build the
test to include both types of tests. Continue to "Lesson 2: Call the API Test from a GUI Test" on the next
page to learn how to build the test to include both types of tests.

HP Unified Functional Testing (12.51) Page 221



Lesson 2: Call the API Test from a GUI Test
In order to run an API test from a GUI test, you must first call the API test. In this lesson, you will learn
how to add calls to an API test from a GUI test in order to run both tests in a single, unified test run.

1. Start UFT and open the Book Flights test.

a. If necessary, open UFT as described in "Create a Solution for All Your Tests" on page 24. Make
sure that the WPF Add-in is loaded.

b. On the Start Page, in the Recent Solutions area, click Flight Reservation Application.

The Flight Reservation Application solution opens, containing the Flight Reservation Application
test you created in "Lesson 1: Create a Test to Run GUI and API Tests Together" on the
previous page.

2. Create a new action for the API test call.

When you call an API test, UFT runs the called API test in its entirety. You can put the API test call as
a separate step in an action, or as its own independent action.

a. In the toolbar, click the Call to New Action drop -down arrow and select Call to New
Action. The Insert Call to New Action dialog box opens.

b. In the Insert Call to New Action dialog box, name the action API Test Call.

c. Ensure that the At the end of the test option is selected. Keep the other options as default.

d. Click OK to add the action to the test.

e. In the canvas, right-click the API Test Call action and select Move Up. The API Test Call action
is moved above the Flight Confirmation action in the Test Flow.

3. Add a call to the API test.

a. In the canvas, double-click the API Test Call action block. The action opens as a separate tab
in the document pane.

HP Unified Functional Testing (12.51) Page 222



b. In the toolbar, click the Call to New Action drop-down arrow and select Call to
Existing API Test/Action. The Call to API Test/Action dialog box opens:

c. In the Call to API Test/Action dialog box, in the Test Path field, click the Browse button. The
Open Test dialog box opens.

d. In the Open Test dialog box, navigate to the folder with the Flight Reservation Application
solution tests, stored at C:\%HOMEPATH%\Unified Functional Testing.

Tutorial
Lesson 2: Call the API Test from a GUI Test

HP Unified Functional Testing (12.51) Page 223



e. In this directory, select the Book Flights Web Service test and click Open. UFT adds the name
of the test and its parameters to the Call to API Test/Action dialog box:

Note: If your test had output parameters, you can use this dialog box to specify the place
in which to store the API test output parameter. In this case, the API test has no output
parameters, so you will not perform this step.

f. Click OK to add the call as a step in your test.

UFT adds a step for the API test call in the API Test Call action. In the editor, the step is
displayed as follows:

RunAPITest "Book Flights Web Service"

In the Keyword View, the step looks like this:

Tutorial
Lesson 2: Call the API Test from a GUI Test

HP Unified Functional Testing (12.51) Page 224



UFT also adds a visual indicator of the action call to the API Test Call action in the canvas:

4. Save the test.

Select File > Save.

Now that you have created the test step to call the API test, you are ready to run the test. Continue to
"Lesson 3: Run a GUI Test that Calls an API Test" on the next page to run the test and view the run
results.

Tutorial
Lesson 2: Call the API Test from a GUI Test

HP Unified Functional Testing (12.51) Page 225



Lesson 3: Run a GUI Test that Calls an API Test
In "Lesson 2: Call the API Test from a GUI Test" on page 222, you added a call to an API test to an existing
GUI test, which enables you to run unified tests of the flight reservation application in one test run.

In this lesson, you will run the test and see the results.

1. Start UFT and open the Book Flights test.

a. If necessary, open UFT as described in "Create a Solution for All Your Tests" on page 24. Make
sure that the WPF Add-in is loaded.

b. On the Start Page, in the Recent Solutions area, click Flight Reservation Application.

The Flight Reservation Application solution opens, containing the Flight Reservation Application
test you created in "Lesson 1: Create a Test to Run GUI and API Tests Together" on page 221.

2. Update the number of iterations for the Book Flights Web Service test.

Remember that when you created the Book Flights Web Service test, you ran the test with multiple
iterations. However, in the Flight Reservation Application test (which is calling the Book Flights Web
Service test), there is only one iteration of the test. Therefore, you should modify the API test to
run the same number of iterations.

a. In the Solution Explorer, expand the nodes under the Book Flights Web Service node.

b. Under the Book Flights Web Service node, double-click the Flow node. The Book Flights Web
Service Test Flow opens as a separate tab in the document pane.

c. In the canvas, select the Test Flow. The Input tab opens in the Properties pane.

d. In the Input tab, in the Number of Iterations field, change the number to 1.

e. Select File > Save to save the modified settings.

3. Set the run settings for the Flight Reservation Application test.

a. In the document pane, select the Flight Reservation Application tab.

If the Flight Reservation Application tab is closed, double-click on the Flight Reservation
Application node in the Solution Explorer to open it.

b. Select Record > Record and Run Settings. The Record and Run Settings dialog box opens.

c. In the Windows Applications tab, ensure that the Record and run only on: and Applications
specified below options are selected. The application details should be saved from when you
ran the original Book Flights test in "Lesson 4: Running and Analyzing GUI Tests" on page 69.

d. Click OK to close the dialog box.

4. Run the Flight Reservation Application test.

Tutorial
Lesson 3: Run a GUI Test that Calls an API Test

HP Unified Functional Testing (12.51) Page 226



a. Before running the test, ensure that the HP MyFlight Sample Application (the user interface
for the flight reservation application) window is closed.

b. Ensure that the HP Flights Service APIs window is open.

c. In the toolbar, click the Run button . The Run dialog box opens.

d. In the Run dialog box, in the Results location tab, select the New run results folder option.
Keep the default folder name.

e. Click Run to start the test run.

UFT opens the HP MyFlight Sample Application window and performs the steps on the
application objects as created in the GUI test. When the test comes to the API test call, the GUI
test pauses and the API test comes into focus.

While the API test runs, you can view the progress of the API test run in the Output pane.

Aft er the API test run is finished, the remainder of the GUI test runs.

When the complete test run is complete, the run results open and displays the test results.

5. View the run results.

In the run results, display the Test Flow.

Note that there are separate nodes for each of the actions in the GUI test. However, you can also
see the API test run results as part of the run results:

If you select a node in the API test results, you can view the step details in step summary

6. Close the run results.

After viewing the run results, close the tab containing the run results.

Tutorial
Lesson 3: Run a GUI Test that Calls an API Test

HP Unified Functional Testing (12.51) Page 227



Where Do You Go From Here?
Now that you have learned how to use UFT, including creating automated GUI tests, automated API
tests, and tests running both GUI and API tests, you are ready to use UFT to test your own application.

We suggest that you use the following procedure when testing your own application.

1. Analyze your application.

l Determine the development environment. This enables you to load the relevant UFT add-ins and
provide support for the objects in your application.

l Determine the business processes that users will perform. Plan your tests and actions
accordingly.

l Decide how to organize your test and which operations to include. Consider the goals of the
test, and confirm that your application and UFT are set to match the needs of your test.

At this stage, you can begin creating the skeletal tests and actions to use when testing your
application.

2. Prepare your testing infrastructure.

Decide how to store the objects in your test. You can store the objects for each action in its
corresponding local object repository, or you can store the objects for each action in one or more
common (shared) object repositories. You can also use the same shared object repository for
multiple actions.

l If you are new to testing, you may want to use a local object repository for each action. This is
the default setting, and all objects are automatically added to the local repository of each
action.

l If you are familiar with testing, it is often most efficient to work with shared object
repositories, which can be used for one or more actions. Object information is kept in one
central location, and when the objects in your application change, you can update them in that
one location for multiple actions, in multiple tests.

Although not discussed in this tutorial, you can also export test objects from a local object
repository to a shared object repository, and you can merge object repositories.

You may also want to create function libraries to enhance UFT functionality.

For details, see the HP Unified Functional Testing User Guide.

3. Build your test.

While you create your test steps, follow the steps you expect users to perform as they navigate
within your application.

HP Unified Functional Testing (12.51) Page 228



4. Enhance your test.

l Add checkpoints to search for specific values of a page, object, text string, or table cell.

l Replace fixed values in your test with parameter to check how your application performs the
same operations with multiple sets of data.

You can further enhance your test with programming, conditional, and loop statements, which add
logic to your test. For details, see the HP Unified Functional Testing User Guide.

5. Debug your test.

Debug your test to check that it operates smoothly and without interruption. For details, see the
HP Unified Functional Testing User Guide.

6. Run your test.

Run your test on your application to check that the application functions as expected.

7. Analyze the run results.

Examine the results of your test to pinpoint defects in your application. (Refer to the appropriate
sections of this tutorial to understand what to look for in the run results for checkpoints or
parameters.)

Tutorial

HP Unified Functional Testing (12.51) Page 229



Accessing UFT in Windows 8.X or Higher
Operating Systems
Note: By default, the Start and Apps screens on Windows 8.x or higher are set to open Internet
Explorer in Metro Mode. However, if User Account Control is turned off on your computer, Windows
8 will not open Internet Explorer in Metro mode. Therefore, if you try to open an HTML shortcut
from the Start or Apps screen, such as the UFT Help or Readme file, an error will be displayed.

To solve this, you can change the default behavior of Internet Explorer so that it never opens in
Metro mode. In the Internet Properties dialog box > Programs tab, select Always in Internet
Explorer on the desktop for the Choose how you open links option. For more details, see
http://support.microsoft.com/kb/2736601 and
http://blogs.msdn.com/b/ie/archive/2012/03/26/launch-options-for-internet-explorer-10-on-
windows-8.aspx.

Tutorial

HP Unified Functional Testing (12.51) Page 230

http://support.microsoft.com/kb/2736601
http://blogs.msdn.com/b/ie/archive/2012/03/26/launch-options-for-internet-explorer-10-on-windows-8.aspx
http://blogs.msdn.com/b/ie/archive/2012/03/26/launch-options-for-internet-explorer-10-on-windows-8.aspx


Send Us Feedback
Can we make this Tutorial better?

Tell us how: sw-doc@hp.com

HP Unified Functional Testing (12.51) Page 231

mailto:sw-doc@hp.com?subject=Feedback on Tutorial (Unified Functional Testing 12.51)



	Welcome to the UFT Tutorial
	UFT Guides and References
	Additional Online Resources

	Part 1: Introducing Unified Functional Testing
	Benefits of Automated Testing
	UFT's Testing Process
	UFT Main Window

	Part 2: Analyzing Your Application and Creating Tests
	Getting to Know Your Application
	Explore the Flight Reservation Application
	Create a Solution for All Your Tests

	Part 3: Creating and Running Automated GUI Tests
	Lesson 1: Create a GUI Test and Actions
	Lesson 2: Creating Object Repositories
	UFT Test Object Recognition - Overview
	Exercise 2a: Add Objects from Your Application
	Exercise 2b: Create Object Repositories using Navigate and Learn

	Lesson 3: Adding Steps to a Test
	Adding Test Steps in a GUI Test - Overview
	Exercise 3a: Add Steps to the Login Action in the Keyword View
	Analyzing the Login Action in the Keyword View and the Editor

	Exercise 3b: Add Steps to the FlightFinder Action by Recording
	Exercise 3c: Add a Step to the Select Flight Action Using the Toolbox Pane
	Exercise 3d: Add Steps to the Book Flight Action Using the Step Generator
	Advanced Exercise 3e (Optional) - Add Steps Using the Editor

	Lesson 4: Running and Analyzing GUI Tests
	Exercise 4a: Run a Test
	Exercise 4b: Navigate the Run Results
	Exercise 4c: Analyze the Run Results

	Lesson 5: Parameterizing Steps and Objects
	Parameterizing Tests, Actions, and Objects - Overview
	Exercise 5a: Create a Test for Parameterization
	Exercise 5b: Define Data Table Parameters
	Exercise 5c: Add Parameter Values to a Data Table
	Exercise 5d: Run a Parameterized Test

	Lesson 6: Creating Checkpoints and Output Values
	Understanding Checkpoint and Output Value Types
	Exercise 6a: Create a Checkpoint Test
	Exercise 6b: Check Object Values
	Exercise 6c: Check Table Values
	Exercise 6d: Check Text Values
	Exercise 6e: Manage Checkpoints in the Object Repository
	Exercise 6f: Run and Analyze a Test with Checkpoints
	Exercise 6g: Create an Output Value Test
	Exercise 6h: Add an Output Value Step

	Lesson 7: Creating Functions and Function Libraries
	Functions and Function Libraries - Overview
	Exercise 7a: Create a Function
	Exercise 7b: Associate a Function Library with Your Test
	Exercise 7c: Perform a Check Using a Functions

	Lesson 8: Using Insight in your Test
	Insight Object Identification - Overview
	Exercise 8a: Create a Test for Insight Objects
	Exercise 8b: Add an Insight Object to the Object Repository
	Exercise 8c: Use Insight Objects in a Test


	Part 4: Creating and Running Automated API Tests
	Lesson 1: Create an API Test
	Lesson 2: Create Simple API Test Steps
	Lesson 3: Creating API Test Steps Using Standard Activities
	UFT API Testing Standard Activities - Overview
	Exercise 3a: Creating a Test with Standard Activities

	Lesson 4: Parameterizing API Test Steps
	Parameterizing API Test Steps - Overview
	Exercise 4a: Parameterize a Test Step from a Data Source
	Exercise 4b: Parameterize a Test Step from the Output of a Previous Step
	Exercise 4c: Parameterize a Test with Multiple Sources Using a Custom Expression

	Lesson 5: Running API Tests
	Exercise 5a: Run a Test
	Exercise 5b: Navigate the Run Results
	Exercise 5c: Analyze the Run Results

	Lesson 6: Creating and Running API Tests of Web Services
	Exercise 6a: Create a Web Service Test
	Exercise 6b: Import a Web Service
	Exercise 6c: Build and Parameterize a Web Service Test
	Exercise 6d: Run a Web Service Test

	Lesson 7: Creating and Running API Tests of REST Services
	Exercise 7a: Create a REST Service Test
	Exercise 7b: Create a REST Service Structure
	Exercise 7c: Create a Test Using REST Service Methods
	Exercise 7d: Run a REST Service Test
	Exercise 7e: Resolve a REST Service Conflict

	Lesson 8: Creating and Running API Tests of Web Application Services (WADLs)
	Exercise 8a: Create a Test for a Web Application Service
	Exercise 8b: Import a Web Application Service Model
	Exercise 8c: Edit the Web Application Service Methods
	Exercise 8d: Build a Test with Web Application Service Methods
	Exercise 8e: Run a Web Application Service Test


	Part 5: Creating and Running GUI and API Tests in a Single Test
	Lesson 1: Create a Test to Run GUI and API Tests Together
	Lesson 2: Call the API Test from a GUI Test
	Lesson 3: Run a GUI Test that Calls an API Test

	Where Do You Go From Here?
	Send Us Feedback

