
HP Operations Analytics
Software Version: 2.31

AQL Developer Guide

Document Release Date: September 2015
Software Release Date: September 2015

Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notice
© Copyright 2013 - 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® andWindows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of TheOpenGroup.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using themost recent edition of a document, go to: https://softwaresupport.hp.com/group/softwaresupport/search-
result?keyword=.

This site requires an HP Passport account. If you do not have one, click theCreate an account button on the HP Passport Sign in page.

Support
Visit the HP Software Support web site at: https://softwaresupport.hp.com

This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software Support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed tomanage your
business. As a valued support customer, you can benefit by using the support web site to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HP support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP Passport ID, go to
https://softwaresupport.hp.com and click Register.

To findmore information about access levels, go to: https://softwaresupport.hp.com/web/softwaresupport/access-levels

HP Software Solutions & Integrations and Best Practices
Visit HP Software Solutions Now at https://h20230.www2.hp.com/sc/solutions/index.jsp to explore how the products in the HP Software catalog work together, exchange
information, and solve business needs.

AQLDeveloper Guide

HP Operations Analytics (2.31) Page 2 of 59

Visit the Cross Portfolio Best Practices Library at https://hpln.hp.com/group/best-practices-hpsw to access a wide variety of best practice documents andmaterials.

AQLDeveloper Guide

HP Operations Analytics (2.31) Page 3 of 59

Contents

Chapter 1: What is AQL 6

Chapter 2: Using the Analytics Query Language (AQL) 8

Chapter 3: Analytics Query Language Syntax, Intrinsics, and Examples 9

AQLSyntax 9

Intrinsic Statistical Functions in AQL 11

AQLQuery Examples 13

Chapter 4: Analytics Query Language Functions and Expressions 20

Define Analytic Query Language Functions 20

Creating and Using AQL Functions 21

Importing Analytic Query Language Functions 24

Collection-Specific AQL Functions 25

Generic AQL Functions 26

AQL Expressions 27

Generic AQL Outer Functions 29
Bucket Function 29

Chapter 5: Arithmetic Expressions and Aliases 31

Using Arithmetic Expressions and Aliases in AQL 31

More about Alias Support and Alias Placement Conventions 35

Higher Order Arithmetic Involving Intrinsic Calls 36

Chapter 6: Analytics Query Language for Log Data 39

Chapter 7: Troubleshooting AQL Queries 46

Introduction 46

Syntax Errors 46

Meta Data Errors 47

Semantic Errors 48

AQLDeveloper Guide

HP Operations Analytics (2.31) Page 4 of 59

Chapter 8: Using R with AQL 51

Setting up the R Language Pack from Vertica 51

Creating the R Functions that Integrate with Operations Analytics 51
Identifying the Distinct Time Series Measurements in an Input Frame for an R function 53

Registering an R Function 55
Registering your R function with Vertica 56
Registering your R function with Operations Analytics 56

Using your R Function in anOperations Analytics Dashboard 57

Limitations 58

Send Documentation Feedback 59

AQLDeveloper Guide

HP Operations Analytics (2.31) Page 5 of 59

Chapter 1: What is AQL
Use the Analytics Query Language (AQL) when the PhrasedQuery Language (PQL) syntax is not
specific enough to return the data you need. When using AQL you can bemore specific about the data
collected. You can also filter, group, and order the collected data in a single query.

The primary objective of the Analytics Query Language (AQL) is to simplify your ad hoc query
experience. This applies to the process of building custom dashboards as well as troubleshooting
problems using statistical algorithms.

AQL is a hierarchical language that provides layers of abstraction on analytic queries. The idea here is
that themore abstract, the easier it is for you to write AQL in an ad hoc fashion. The layers of
abstraction in AQL are:

l Built-in analytics are defined as functions that become intrinsic in AQL

l A query language to provide SQL-like access to all collections

l Functions and expressions as abstractions of queries

Note: This manual includes examples that show script usage, command line usage, command
line syntax, and file editing. If you copy and paste any examples from this manual, carefully review
the results of your paste before running a command or saving a file.

As an example of the layers of abstraction, consider the following query:

Note:When using AQL, you will be searching for collectedmetrics, such as cpu_util, which is
shown in the following AQL query. Metrics are collected values over time for measurements such
as system up time and CPU utilization.

from i in (oa_sysperf_global)
let interval=300
let analytic_interval=between($starttime,$endtime)
where (i.host_name like "myhost")
select moving_avg(i.cpu_util)

This query assumes a collection of systemmetrics from a predefinedOperations Analytics collection
(oa_sysperf_global) and will calculate a time series of themoving average of the CPU utilization for
the system called "myhost". The time series data is every 300 seconds (5minutes) and the time range
is specified by the internal macros $starttime and $endtime.

Note: The above example uses moving_avg, which is a built-in analytic that significantly
simplifies this transformation over standard SQL.

AQLDeveloper Guide
Chapter 1: What is AQL

HP Operations Analytics (2.31) Page 6 of 59

It is clear that this query pattern is quite useful for all sorts of metrics. Suppose you have other metrics
and other functions and want to calculate the time series of a particular metric using a particular
function r for a particular host or hosts. You would use a query pattern as shown above.

Operations Analytics AQL supports using query patterns to be abstracted into AQL functions. Using
the above example, suppose you want to generalize the query to generate a time series of any metric in
oa_sysperf_global using any function for any set of hosts. To generate this time series, define an
AQL function as follows:

/* Returns the moving analytic of a specific HP Operations Agent metric by host.
Input parameters are the host filter, metric name, and moving analytic function
name. */
define oaSysperfMovingMetric(hostFilter, metric, function) =
from i in (oa_sysperf_global)
let analytic_interval = between($starttime,$endtime)
let interval = $interval
where i.host_name like hostFilter
group by i.host_name
select function(i.metric)

With this function defined, the following AQL expression:

[oaSysperfMovingMetric("myhost", cpu_util, moving_avg)]

is identical to the above AQL query.

In addition, the following expression:

[oaSysperfMovingMetric("myhost", swap_util, moving_max)]

would give you the time series of themovingmaximum swap utilization on host "myhost".

The ability to define specialized AQL provides a significant 'ease-of-use' factor in using Operations
Analytics to do ad hoc analytics. As further examples, Operations Analytics includes several packages
of useful AQL functions that can be seen by using the Operations Analytics console.

AQLDeveloper Guide
Chapter 1: What is AQL

HP Operations Analytics (2.31) Page 7 of 59

Chapter 2: Using the Analytics Query Language
(AQL)
AQL queries use a syntax similar to the ANSI Standard SQL. When using AQL, it is helpful if you have
minimal knowledge of databases as well as scripting or programming skills. However, it is not
mandatory to have this knowledge to get started using AQL queries.

Before you begin writing AQL queries, view the collection information that is stored in Operations
Analytics to determine the kinds of data available in your environment. You will use this information as
part of your AQL syntax. For details, seeHow to View Collection Information in the Operations
Analytics help.

You can specify an AQL query, an AQL function, or an AQL expression when adding or editing a
dashboard query pane. SeeDashboards andQuery Panes in the Operations Analytics help for more
information.

AQLDeveloper Guide
Chapter 2: Using the Analytics Query Language (AQL)

HP Operations Analytics (2.31) Page 8 of 59

Chapter 3: Analytics Query Language Syntax,
Intrinsics, and Examples

AQL Syntax
The basic structure of an AQL query is very similar to the standard 'Structured Query Language'. An
AQL query is a sequence of clauses. The clauses you include depend on the type, organization, and
order of the information you want Operations Analytics to return. It also depends on the time range and
type of analysis you want Operations Analytics to apply to the data.

The types of clauses supported by AQL are as follows:

l from <row variable> in <collection>

l where <relational expression>

l let <name> = <value>

l group by <list of columns>

l select <select expression>

When positioning the clauses in an AQL query, note the following:

1. The from and select clauses aremandatory. The from clausemust be the first clause and the
select clausemust be the last clause in the query.

2. All other clauses in the query can be in any order between the from and the select clauses. The
following clauses filter and group the identified collection of metrics and attributes.

Note: An attribute is a descriptor for an entity, such as host_name, that is stored in a
collection.

From Clause

The from clause defines the row variable and specifies the collection from which the rows will be
selected. For example:

from i in (oa_sysperf_global)

defines the row variable to be i and the collection (table) to select from as oa_sysperf_global.

Where Clause

AQLDeveloper Guide
Chapter 3: Analytics Query Language Syntax, Intrinsics, and Examples

HP Operations Analytics (2.31) Page 9 of 59

The where clause is any arbitrary relational expression. The where clause specifies the criteria for
which rows are selected from the collection. The following is an example that shows on way to use the
where clause to select rows by specific criteria:

where ((i.hostinfo_dnsname like "myhost")
&& ((i.severity ilike "CRITICAL")||(i.severity ilike "WARNING")))

This where clause restricts the selected rows to be only those events for host "myhost"with severity
of either CRITICAL or WARNING.

Using special characters in a where clause

You can use special characters such as {, }, [,], \, or \\ embedded in a where clause filter condition
strings. You can use the followingmethods:

l Specify a double backslash (\\) to represent an embedded literal backslash (\)

l Specify a backslash followed by double quote to represent an embedded literal double quote. For
example, to represent a literal " use \"

l Specify a double backslash (\\) followed by a curly brace to represent a literal curly brace. For
example, to represent a literal { or }, use \\{ or \\}

The following example demonstrates the use of a double backslash to represent an embedded literal
backslash. The intent of this example is to specify a filter such that host_names starting with ab\c are
returned:

where (i.host_name like "ab\\c*")

The following example demonstrates the use of an escaped double quote (\") to represent an
embedded literal double quote ("). The intent of this example is to specify a filter such that host_names
equaling ab"c are returned.

where (i.host_name == "ab\"c")

The following example demonstrates the use of double backslashes to represent embedded literal curly
braces ({ or }). The intent of this example is to specify a filter such that host_names not equaling ab
{c}d are returned.

where (i.host_name != "ab\\{c\\}d")

Let Clause

The let clause is used to define a value for a specific control variable for the query. For example, to
control the time interval of the query, use the let clause to define a value for the global control variable
analytic interval (for example, analytic_interval=between($starttime, $endtime) is where
$starttime and $endtime are UI parameters.

The let clause can also be used to override dashboard pane parameters. For example it can override
the limit setting that controls the number of results. The default for Limit is 100 and let Limit = 50
would override the Limit dashboard pane parameter that is set to return just 50 results.

Group By

AQLDeveloper Guide
Chapter 3: Analytics Query Language Syntax, Intrinsics, and Examples

HP Operations Analytics (2.31) Page 10 of 59

The group by clause organizes the results in the query based on the column or columns specified in
the group by clause. For example group by i.hostname displays the results of the query in distinct
groups by the host name attribute.

You can specify multiple columns in the group by clause, meaning the results will be organized
primarily by the first column then by the second column, and so forth.

Note: You can specify multiple columns in the group by clause, meaning the results will be
organized primarily by the first column then by the second column, and so forth.

Select Clause

The select clause explicitly specifies the values to be selected for the query results. If you specify just
the row variable, all columns are selected by the query.

Examples:
select i

Selects all columns in the table.

select i.hostname, i.timestamp, i.state, i.category, i.title

Selects only the hostname, timestamp, state, category, and title attributes from the table.

Note: You can specify multiple columns in the group by clause, meaning the results will be
organized primarily by the first column then by the second column, and so forth.

Intrinsic Statistical Functions in AQL
Operations Analytics provides a set of analytic functions to analyze themetrics, topology, inventory,
event, and log file data that it collects.

Overall Aggregate (Summary) Functions Provided by Operations Analytics

The following table shows descriptions of the overall aggregate (summary) analytic functions provided
by Operations Analytics.

Analytic Function
Type Description

aggregate_avg Identifies the average value for themetric or metrics selected.

aggregate_min Identifies theminimum value for themetric or metrics selected.

aggregate_max Identifies themaximum value for themetric or metrics selected.

aggregate_total Identifies the total value or cumulative sum for themetric or metrics
selected.

Descriptions of Overall Aggregate (Summary) Functions Provided by Operations Analytics

AQLDeveloper Guide
Chapter 3: Analytics Query Language Syntax, Intrinsics, and Examples

HP Operations Analytics (2.31) Page 11 of 59

Analytic Function
Type Description

aggregate_count Computes the total count of rows with values of an attribute or total count of
all rows in a collection table.

aggregate_
distinct_count

Computes the total count of distinct values of an attribute.

Descriptions of Overall Aggregate (Summary) Functions Provided by Operations Analytics, con-
tinued

Moving Aggregates (Time Series) Functions Provided by Operations Analytics

The following table shows descriptions of themoving aggregate (time series) functions provided by
Operations Analytics.

Function Description

moving_avg Computes the average values at each time interval within the specified time window
for one or moremetrics.

moving_min Computes theminimum values at each time interval within the specified time window
for one or moremetrics.

moving_max Computes themaximum values at each time interval within the specified time
window for one or moremetrics.

moving_
total

Computes the totals at each time interval within the specified time window for one or
moremetrics.

moving_
count

Computes the total counts of rows with values of an attribute or total count of all rows
within a collection table at each time interval within the specified time window.

moving_
distinct_
count

Computes the total counts of distinct values of an attribute at each time interval within
the specified time window.

Descriptions of Moving Aggregate (Time Series) Functions Provided by Operations Analytics

Analytic Statistical Functions applied to Overall Aggregate and Moving Aggregate Functions

The following table describes the analytic statistical functions provided by Operations Analytics.

Function Description

bottomN Computes the lowest N values in the expressions; returns the bottomN values with their
associated rank.

Descriptions of Analytic Statistical Functions applied to Overall Aggregate and Moving Aggregate
Functions

AQLDeveloper Guide
Chapter 3: Analytics Query Language Syntax, Intrinsics, and Examples

HP Operations Analytics (2.31) Page 12 of 59

Function Description

inverse_
pctile

Calculates the inverse percentile distribution values for the set of values in the
expression.

For example, if you specify 50 as the <pctile> value, inverse_pctile finds the 50th
percentile value (or median value) for the data in the expression.

pctile Calculates the percentile rank value for the values in the expressions.

For example, if you specify 75 as the <pctile> value, pctile returns all values greater
than the 75th percentile value for the data in the expression.

rank Calculates the overall rank for all values in the expression, where the results include an
integer (indicating rank) for each value along with the value itself.

topN Uses the rank (descending order) analytic function to identify the highest N values.

Operations Analytics returns the top N values with their associated rank.

Note:

l If you do not specify an N value in the AQL query, Operations Analytics displays
the top five values.

l The topN analytic function is not permitted in the where clause.

Descriptions of Analytic Statistical Functions applied to Overall Aggregate and Moving Aggregate
Functions, continued

AQL Query Examples
Return the average CPU utilization and CPU run queue size

The following AQL query returns the average CPU utilization and CPU run queue size for each host
matching the filter criteria.

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime)
where (i.host_name like "*.mydomain.com") group by i.host_name
select aggregate_avg(i.cpu_util), aggregate_avg(i.cpu_run_queue)

Return the average for each of the metrics collected by the oa_sysperf_global collection

The following AQL query returns the average for each of themetrics collected by the oa_sysperf_
global collection for each host matching the filter criteria:

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime)
where (i.host_name like "*.mydomain.com") group by i.host_name
select aggregate_avg(i)

AQLDeveloper Guide
Chapter 3: Analytics Query Language Syntax, Intrinsics, and Examples

HP Operations Analytics (2.31) Page 13 of 59

Return the maximum, minimum, and average values for CPU utilization and CPU run queue
size

The following AQL query returns themaximum, minimum, and average for CPU utilization and CPU run
queue size for each host matching the filter criteria:

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime)
where (i.host_name like "*.mydomain.com") group by i.host_name
select aggregate_min(i.cpu_util),
aggregate_max(i.cpu_util),
aggregate_max(i.cpu_util),
aggregate_min(i.cpu_run_queue),
aggregate_max(i.cpu_run_queue),
aggregate_avg(i.cpu_run_queue)

Return the minimum, maximum, and average for each of the metrics collected by the oa_
sysperf_global collection

The following AQL query returns theminimum, maximum and average for each of themetrics collected
by the oa_sysperf_global collection for each host matching the filter criteria:

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime)
where (i.host_name like "*.mydomain.com") group by i.host_name
select aggregate_min(i), aggregate_max(i), aggregate_avg(i)

Return Summary Information on Events (Example AQL Queries)

Note: Each of the examples queries data from the omi_events_omievents collection. This
collection uses HP Operations Manager i (OMi) to collect OMi events. Each example queries data
for only the hosts in themydomain.com domain.

Return the total count of OMi events for a specified host and severity combination

The following AQL query calculates the total count of OMi events for each host and severity
combinations matching the filter criteria: "

from i in (omi_events_omievents)
let analytic_interval= between($starttime, $endtime)
where ((i.hostinfo_dnsname like "*mydomain.com") && ((i.severity
ilike "CRITI*") || (i.severity
ilike "WARN*")))
group by i.hostinfo_dnsname, i.severity select aggregate_count(i)

Return the total count of OMi events for a specified host and severity combination and for
which the event count exceeds 100

The following AQL query does the same as the previous AQL query, except that it returns the counts for
only those host name and severity combinations for which the event count exceeds 100:

from i in (omi_events_omievents)
let analytic_interval= between($starttime, $endtime)
where ((i.hostinfo_dnsname like "*mydomain.com") && ((i.severity ilike "CRITI*"

AQLDeveloper Guide
Chapter 3: Analytics Query Language Syntax, Intrinsics, and Examples

HP Operations Analytics (2.31) Page 14 of 59

) || (i.severity
ilike "WARN*")) && (aggregate_count(i) > 100))
group by i.hostinfo_dnsname, i.severity select aggregate_count(i)

Return the number of distinct applications monitored by HP Business Process Monitor (BPM)
per location

Note: The following AQL query uses the bpm_application_performance collection. This
collection uses HP Business Process Monitor (BPM) to gather application performance
information.

The following AQL query calculates the number of distinct applications monitored by BPM on a location
by location basis:

from i in (bpm_application_performance)
let analytic_interval = between($starttime, $endtime)
group by i.location
select aggregate_distinct_count(i.application)

Return the total count of distinct database instances reporting Oracle metrics

Note: The following AQL query uses the oa_oraperf_graph collection. The oa_oraperf_graph
collection uses HP Operations Smart Plug-in for Oracle to gather Oracle performance information.

The following AQL query returns a distinct count of database instances reporting Oracle metrics:

from i in (oa_oraperf_graph)
let analytic_interval= between($starttime,$endtime)
where (i.host_name like "*mydomain.com")
group by i.host_name select aggregate_distinct_count(i.db_instance_name)

Return the moving average CPU utilization and CPU run queue size

Note: Each of the examples queries data from the oa_sysperf_global collection. This collection
uses HP Performance Agent to collect systemmetrics. Each example queries data for only the
hosts in themydomain.com domain.

The following AQL query returns themoving average CPU utilization and CPU run queue size for each
host matching the filter criteria.

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime) let interval=$interval
where (i.host_name like "*.mydomain.com") group by i.host_name
select moving_avg(i.cpu_util), moving_avg(i.cpu_run_queue)

Return the moving average for each of the metrics collected by the oa_sysperf_global
collection

The following AQL query returns themoving average for each of themetrics collected by the oa_
sysperf_global collection for each host matching the filter criteria:

AQLDeveloper Guide
Chapter 3: Analytics Query Language Syntax, Intrinsics, and Examples

HP Operations Analytics (2.31) Page 15 of 59

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime) let interval=$interval
where (i.host_name like "*.mydomain.com")
group by i.host_name
select moving_avg(i)

Return the moving maximum, minimum, and average values for CPU utilization and CPU run
queue size

The following AQL query returns themovingmaximum, minimum, and average for CPU utilization and
CPU run queue size for each host matching the filter criteria:

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime) let interval=$interval
where (i.host_name like "*.mydomain.com") group by i.host_name
select moving_min(i.cpu_util),
moving_max(i.cpu_util), moving_max(i.cpu_util), moving_min
(i.cpu_run_queue), moving_max(i.cpu_run_queue),
moving_avg(i.cpu_run_queue)

Return the moving minimum, maximum, and average for each of the metrics collected by the
oa_sysperf_global collection

The following AQL query returns themovingminimum, maximum and average for each of themetrics
collected by the oa_sysperf_global collection for each host matching the filter criteria:

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime) let interval=$interval
where (i.host_name like "*.mydomain.com")
group by i.host_name
select moving_min(i), moving_max(i), moving_avg(i)

Note: Each of the following examples queries data from the omi_events_omievents collection.
This collection uses HP Operations Manager i (OMi) to collect OMi events. Each example queries
data for only the hosts in themydomain.com domain.

Return the moving total count of OMi events for a specified host and severity combination

The following AQL query calculates themoving total count of OMi events for each host and severity
combinations matching the filter criteria:

from i in (omi_events_omievents)
let analytic_interval=between($starttime,$endtime) let interval=$interval
where ((i.hostinfo_dnsname like "*mydomain.com") && ((i.severity ilike
"CRITI*") || (i.severity
ilike "WARN*")))
group by i.hostinfo_dnsname, i.severity select moving_count(i)

Return the moving total count of OMi events for a specified host and severity combination and
for which the event count exceeds 100

AQLDeveloper Guide
Chapter 3: Analytics Query Language Syntax, Intrinsics, and Examples

HP Operations Analytics (2.31) Page 16 of 59

The following AQL query does the same as the previous AQL query, the difference being that it returns
themoving counts for only those host name and severity combinations at only those intervals at which
the event count exceeds 100:

from i in (omi_events_omievents)
let analytic_interval=between($starttime,$endtime) let interval=$interval
where ((i.hostinfo_dnsname like "*mydomain.com") && ((i.severity ilike
"CRITI*") || (i.severity
ilike "WARN*")) && (moving_count(i) > 100))
group by i.hostinfo_dnsname, i.severity select moving_count(i)

Return the moving number of distinct applications monitored by HP Business Process
Monitor (BPM) per location.

Note: The following AQL query uses the bpm_application_performance collection. This
collection uses HP Business Process Monitor (BPM) to gather application performance
information.

The following AQL query calculates themoving number of distinct applications monitored by BPM on a
location by location basis.

from i in (bpm_application_performance)
let analytic_interval = between($starttime, $endtime) let interval = $interval
group by i.location
select moving_distinct_count(i.application)

Return the moving total count of distinct database instances reporting Oracle metrics.

Note: The following AQL query uses the oa_oraperf_graph collection. The oa_oraperf_graph
collection uses HP Operations Smart Plug-in for Oracle to gather Oracle performance information.

The following AQL query returns moving total counts of the distinct database instances reporting
Oracle metrics:

from i in (oa_oraperf_graph)
let analytic_interval= between($starttime,$endtime) let interval = $interval where
(i.host_name like"*mydomain.com")
group by i.host_name
select moving_distinct_count(i.db_instance_name)

Return the percentile distribution of overall cpu utilization by host

The following AQL query determines the hosts and their overall aggregate average values of CPU
utilization along with the percentile rank for the value among the overall aggregate average values for all
hosts matching the filter criteria:

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime)
where(i.host_name like "*.mydomain.com")
group by i.host_name select pctile(aggregate_avg(i.cpu_util))

AQLDeveloper Guide
Chapter 3: Analytics Query Language Syntax, Intrinsics, and Examples

HP Operations Analytics (2.31) Page 17 of 59

Note: The following example queries data from the omi_events_omievents collection. This
collection uses HP Operations Manager i (OMi) to collect OMi events. Each example queries data
for only the hosts in themydomain.com domain.

Return the percentile distribution of event count by host

The following AQL query determines the hosts and their overall aggregate count of events along with
percentile ranks of the overall aggregate event count values for all hosts matching the filter criteria:

from i in (omi_events_omievents)
let analytic_interval= between($starttime,$endtime)
where(i.hostinfo_dnsname like "*.mydomain.com")
group by i.hostinfo_dnsname
select pctile(aggregate_count(i))

Note: The following example queries data from the bpm_application_performance collection.
This collection uses HP Business Process Monitor (BPM) to gather application performance
information.

Return the Top N Values (Example AQL Queries)

Tip: Also use these examples to assist you in constructing AQL queries that use the bottomN
analytic function.

The following examples use the topN analytic function to return the top n values for sets of data
returned by the overall aggregate andmoving aggregate analytic functions.

Note: The following examples query data from the oa_sysperf_global collection. This collection
uses HP Operations Agent to collect systemmetrics. Each example queries data for only the
hosts in themydomain.com domain.

Return the top five hosts and their overall aggregate average values of CPU utilization. This
query also returns the associated relative ranks.

The following AQL query determines the top five hosts and their overall aggregate average values of
CPU utilization among the overall aggregate average values and relative ranks for all hosts matching
the filter criteria:

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime)
where (i.host_name like "*.mydomain.com")
group by i.host_name
select topN(aggregate_avg(i.cpu_util),5)

Return the top 10 hosts with the highest overall aggregate count of events

The following AQL query determines the top 10 hosts with the highest overall aggregate count of events
among the overall aggregate event count values for all hosts matching the filter criteria:

from i in (omi_events_omievents)
let analytic_interval= between($starttime,$endtime)

AQLDeveloper Guide
Chapter 3: Analytics Query Language Syntax, Intrinsics, and Examples

HP Operations Analytics (2.31) Page 18 of 59

where (i.hostinfo_dnsname like "*.mydomain.com")
group by i.hostinfo_dnsname
select topN(aggregate_count(i), 10)

AQLDeveloper Guide
Chapter 3: Analytics Query Language Syntax, Intrinsics, and Examples

HP Operations Analytics (2.31) Page 19 of 59

Chapter 4: Analytics Query Language Functions
and Expressions
You have seen in the first section, "Analytics Query Language Syntax, Intrinsics, and Examples" on
page 9, how to define an AQL function. This section explains how AQL functions are used and the style
of AQL functions that are expected to be written.

Define Analytic Query Language Functions
By default, Operations Analytics provides several AQL functions to assist you with creating AQL
queries, AQL functions, and associated dashboards. The concepts in this manual help you write your
own AQL functions using a text editor.

You can write your own AQL functions using a text editor, then import these functions into Operations
Analytics. Each text file you create can contain any number of AQL functions. A set of AQL functions
that reside in a single file are known as an AQLmodule.

Tip: Use the bpm_functions.aqlmodule as an example. This AQLmodule contains several AQL
functions that can be used as a template for creating your own. They reside in the $OPSA_
HOME/inventory/lib/hp/aql directory.

You can also view these AQL functions when you use theAdd A Query Pane option from an
Operations Analytics dashboard. SeeDashboards andQuery Panes in theOperations Analytics Help
for more information.

Note: To view the AQL query associated with each AQL function provided by Operations
Analytics, look at the .aql files in the $OPSA_HOME/inventory/lib/hp/aql directory or use the
opsa-aqlmodule- manager.sh command.

When creating AQL functions to be imported, note the following::

l The comment preceding each AQL function is displayed as the description for the AQL function
selected as shown in the following example:

AQLDeveloper Guide
Chapter 4: Analytics Query Language Functions and Expressions

HP Operations Analytics (2.31) Page 20 of 59

l As a best practice, name your file using an .aql extension.

l As a best practice, use the validate option in the opsa-aql-module-manager.sh script to ensure
your module will import.

l As a best practice, place your file in the $OPSA_HOME/inventory/lib/user/aql directory before it
is imported. This helps to ensure that the file is not overwritten when upgrading to a new Operations
Analytics version.

l Tomake your AQL functions available to your user community, use the opsa-aql-
modulemanager.sh script. This script imports the AQL functions defined in your module into the
Operations Analytics database andmakes them available to your user community by default. See
the opsa-aqlmodule- manager.sh reference page (or the Linux manpage) for more information.

Creating and Using AQL Functions
When building AQL queries, you can also define AQL functions or expressions. AQL functions are
functions that can be used in place of an associated AQL query. AQL functions are a convenient way of
defining and naming frequently used AQL queries for reuse. When you define the AQL function, you
name the AQL function, define its arguments and the associated AQL query as well as the argument
values to pass to that AQL query. You can define your AQL functions using a text editor, then import
them in Operations Analytics.

To select an AQL Function provided by Operations Analytics, use theAdd a Query Pane feature from
anOperations Analytics dashboard. SeeDashboards andQuery Panesin the Operations Analytics help
for more information.

To create an AQL function use the following syntax:

define <AQL function name>(argument_1, argument_2,...argument_n)=<AQL query syntax>

AQLDeveloper Guide
Chapter 4: Analytics Query Language Functions and Expressions

HP Operations Analytics (2.31) Page 21 of 59

Arguments are those values that are passed to the associated AQL function. Any value that is used in
the AQL query is known as a parameter. For example, the name of a host might be a valid parameter for
an AQL query.

To use an AQL function use the following syntax:

[<AQL function name>(value for argument_1, value for argument_2,...value for
argument_n)]

The brackets ([]) aremandatory.

Note the following:

l You create AQL functions using a text editor.

l Tomake the AQL functions available to your user community, import the AQL functions using the
opsa-aql-import.sh script.

l The arguments that can be passed to an AQL function include any parameter included in an AQL
query.

Name of the
AQL Function Description Example

AQL_function_
name

Name of the AQL function.

Tip: Use a name that will help you to remember the
AQL function purpose. Alphanumeric characters and
underscore (_) are permitted. Spaces and other
special characters (~ ! @ # $ % ^ &; * () + -) are not
permitted.

cpu_threshold

argument_n The nth argument to be passed to the associated AQL
query.

You can enter any number of arguments.

Note: In this example, percent is used to identify the
cpu utilization percent threshold.

percent

AQL Function Syntax

AQLDeveloper Guide
Chapter 4: Analytics Query Language Functions and Expressions

HP Operations Analytics (2.31) Page 22 of 59

Name of the
AQL Function Description Example

AQL_query_
syntax

Syntax for the AQL query to which the AQL function is
associated. See the next table for more detail.

Note:When the AQL function is used, each argument
value provided is passed.to the associated AQL
query. See the bold text in the example.

from i in (oa_sysperf_
global)

let analytic_
interval=between
($starttime,$endtime)

where (aggregate_
avg(i.cpu_util >
percent)

group by i.host_name

select i.host_name,
aggregate_avg
(i.cpu_util)

AQL Function Syntax, continued

The following table shows more detail for the AQL_query_syntax example shown in the previous table.

define cpu_threshold(percent) = from i in (oa_sysperf_global)

let analytic_interval=between($starttime,$endtime)

where (aggregate_avg(i.cpu_util) > percent)

group by i.host_name

select i.host_name, aggregate_avg(i.cpu_util)

Syntax for the AQL_query_syntax Example

To use the cpu_threshold AQL function to return a list of all the hosts where the average CPU
utilization exceeds 80 percent, include the following parameter values: [cpu_threshold(0.8)]

The following AQL function selects the host name that matches the value of argument name. The
query returns the following information for themost recent number of OMi events that originated from
the host selected:

l host name (hostinfo_dsname)

l timestamp

l message title

l severity

AQLDeveloper Guide
Chapter 4: Analytics Query Language Functions and Expressions

HP Operations Analytics (2.31) Page 23 of 59

define host_events (name,number) = from i in (omi_events_omievents)

where (i.hostinfo_dnsname like name)

let analytic_interval = between($starttime,$endtime)

let offset = 0

let limit = number

select i.hostinfo_dnsname, i.timestamp, i.title, i.severity

To use the host_events AQL function to return a list of themost recent 50 events for all hosts in the
"enterprise.com" domain, include the following argument values:

[host_events("enterprise.com", 50)]

Importing Analytic Query Language Functions
Use the opsa-aql-module-manager.sh script to manage the AQL functions that you create. When using
the opsa-aql-module-manager.sh script, note the following:

l Youmust specify the tenant name for which the AQL functions should be available.

l Use file names that identify the types of AQL functions contained in each file.

l You define the <module_name> in the first line of each file; for example: module <my_new_module>;

l You validate, list, and delete modules using themodule name.

Use the opsa-aql-module-manager.sh script to perform the following tasks:

Validate the AQL functions included in n module file

Run the following command: opsa-aql-module-manager.sh -t <tenant_name> -v <file_name>

Note: The opsa-aql-module-manager.sh script does not currently detect some syntax errors, such
as unbound variables referenced within the body of an AQL function. Take extra care when
creating and editing your AQL functions.

Import an AQL Module

Enter the following command: opsa-aql-module-manager.sh -t <tenant_name> -i <file_name>

When importing AQL functions, note the following:

l After importing your AQL functions, all functions are available to the user community in the
specified tenant.

l To replace or redefine AQL functions, youmust make the appropriate changes to the .aql module,
then re-import the file.

AQLDeveloper Guide
Chapter 4: Analytics Query Language Functions and Expressions

HP Operations Analytics (2.31) Page 24 of 59

List all AQL modules that have been imported into Operations Analytics

Run the following command: opsa-aql-module-manager.sh -t <tenant_name> -l modules

List the AQL functions contained in a module that has been imported into Operations
Analyticss

Run the following command: opsa-aql-module-manager.sh -t <tenant_name> -l <module_name>

See the opsa-aql-module-manager.sh reference page (or the Linux manpage) for more information.

Collection-Specific AQL Functions
Operations Analytics has a notion of a content pack, which is how additional functionality is added to
the product. Basically, a content pack consists of the following:

l A collection or collections.

l AQL functions to analyze one or more of the new collections.

l Dashboards to present the analytics for the new collection or collections.

AQL functions that are specific to a particular collection are usually specialized to certain types of
metrics and analytics. They provide a very easy way for the user to ad hoc analysis on the data. The
following examples show Oracle-specific AQL functions.

/* Returns the top N of an aggregate analytic on an HP Operations Oracle SPI metric. Input
parameters are the host filter, database instance filter, metric name, aggregate analytic, and N.
*/
define oaOraperfTopNAggregateMetric
(hostFilter,instanceFilter,metric,aggregate_analytic,N) =
from i in (oa_oraperf_graph)
let analytic_interval = between($starttime, $endtime)
let interval=$interval
let aggregate_playback=$aggregate_playback_flag
where ((i.host_name like hostFilter) && (i.db_instance_name like instanceFilter
))
group by i.host_name, i.db_instance_name
select topN(aggregate_analytic(i.metric), N);

/* Returns the aggregate analytic above a specified threshold on an HP Operations Oracle SPI
metric. Input parameters are the host filter, database instance filter, metric name, aggregate
analytic, and threshold percentage. */
define oaOraperfAggregateMetricAbovePctile
(hostFilter,instanceFilter,metric,aggregate_analytic,upper_limit_pctile) =from i in
(oa_oraperf_graph)
let analytic_interval = between($starttime, $endtime)
let interval=$interval let aggregate_playback=$aggregate_playback_flag
where (((i.host_name like hostFilter) && (i.db_instance_name like
instanceFilter)) && (aggregate_analytic(i.metric) > inverse_pctile(aggregate_

AQLDeveloper Guide
Chapter 4: Analytics Query Language Functions and Expressions

HP Operations Analytics (2.31) Page 25 of 59

analytic(i.metric), upper_limit_pctile)))
group by i.host_name, i.db_instance_name
select aggregate_analytic(i.metric);

Generic AQL Functions
Generic functions aremore generalized and can be used on any type of collection. There are two
primary generic functions:

l metricQuery

l attributeQuery

The generic functions aremostly a template or shorthand for composing a complete query. These
functions are used by PQL in the process of generating the AQL for dashboard panes. Because of their
succinctness they are also frequently used in the out-of-box dashboards.

metricQuery takes four parameters using the following syntax:

metricQuery(<table name>, {<where clause>), {<group by>}, {<select>})

metricQuery (as the name suggests) is intended as a generalized approach to formulate a query on
metrics that yields either time series metric data or aggregatedmetric data.

Note: The '{' delimiters are used instead of normal '(' to group the clauses.

An example AQL expression use of metricQuery is:

[metricQuery(oa_sysperf_global, {(i.host_name ilike "*")}, {i.host_name}, {moving_
avg(i.active_processes), moving_avg(i.cpu_util)}]

(that is, select time series data of active_processes and cpu_utilization for all hosts in the oa_
sysperf_global collection).

attributeQuery takes three parameters using the following syntax:

metricQuery(<table name>, {<where clause>), {<select>})

attributeQuery is intended as a generalized approach to formulate a query on attributes that yields
single or aggregated attribute data.

Note: The '{' delimiters are used instead of normal '(' to group the clauses.

An example AQL expression use of attributeQuery is:

[attributeQuery(oneview_rest_inventory, {(i.category_name == "enclosures")},
{i.name}]

(that is, select the name of all enclosures from the oneview_rest_inventory collection).

AQLDeveloper Guide
Chapter 4: Analytics Query Language Functions and Expressions

HP Operations Analytics (2.31) Page 26 of 59

AQL Expressions
AQL expressions includemultiple AQL functions. Use AQL expressions when you want the results of
multiple queries to be combined into a single query pane in a dashboard.

You can use AQL functions in an AQL expression in any of the following ways:

Use a single AQL function

Syntax: [<aql_function_invocation>]

Concatenate multiple AQL functions

Concatenatingmultiple AQL functions enables you to concatenate the results from each AQL function
as if they were run individually.

Syntax: [<aql_function1>,<aql_function2>, ….<aql_functionn>]

The following AQL function returns the concatenation of the results from the following:

l moving averages of CPU utilization

l moving distinct count of host names monitored by the HP Operations Agent

[oaSysperfMovingMetric("*.mydomain.com", cpu_util, moving_avg),
oaSysperfHostsMovingCount("*.mydomain.com")]

/* Returns the moving aggregation analytic function results for the specified metric. Input
parameters are host filter, metric, and analytic function. */
define oaSysperfMovingMetric(hostFilter, metric, moving_analytic) =
from i in (oa_sysperf_global)
let analytic_interval = between($starttime, $endtime) let interval = $interval
where i.host_name like hostFilter
group by i.host_name
select moving_analytic(i.metric);

/* Returns moving distinct count of hosts being monitored by the HP Operations Agent. Input
parameter is the host filter. */
define oaSysperfHostsMovingCount(hostFilter) =
from i in (oa_sysperf_global)
let analytic_interval = between($starttime,$endtime)
let interval = $interval where i.host_name like hostFilter
select moving_distinct_count(i.host_name);

Use multiple AQL functions so that the results from one AQL function is an input filter for
another AQL function

This type of AQL expression is known as an AQL composition.

Syntax: [do <target_function> filter by <filter_function> with <filter_criteria>]

<target_function> is the AQL function to run.
<filter_function> is the AQL function used to filter the results.

AQLDeveloper Guide
Chapter 4: Analytics Query Language Functions and Expressions

HP Operations Analytics (2.31) Page 27 of 59

<filter_criteria> is the criteria to use for filtering the results of target function. The syntax of
<filter_criteria> is:
(<filter_criteria_element1>, <filter_criteria_element2>, ….)

Each <filter_criteria_element> specifies ametric or attribute column namewith its associated
collection. Values for the column name specifiedmust be returned in the target_function and
filter_Function results.

Note: All of the filter criteria elements must bemet to successfully filter the target function results.

The syntax for any filter criteria element is:

<target_function_name>.<target_function_resultcolumn> == <filter_function_
name>.<filter_function_resultcolumn>

The <target_function_resultcolumn> can be any of the expected result columns from the results of
<target_function>.

<target_function_name> is the name of the target function.

Similarly, <filter_function_resultcolumn> can be any of the expected result columns from the
results of <filter_function>. The <filter_function_name> is the name of the filter function.

The following example AQL expression returns the moving_avg, moving_max, and moving min of CPU
utilization for the top five hosts with the highest aggregate_avg cpu_util values.

[do oaSysperfMovingMetricAvgMaxMin("*", cpu_util) filter by oaSysperfTopNAggregateMetric
("*.mydomain.com",cpu_util,aggregate_avg,5) with (oaSysperfMovingMetricAvgMaxMin.host_
name== oaSysperfTopNAggregateMetric.host_name)]

/* Returns the moving average, maximum, and minimum values of a specific metric by host.
Input parameters are the host filter and the metric. */
define oaSysperfMovingMetricAvgMaxMin(hostFilter, metric) =
from i in (oa_sysperf_global)
let analytic_interval = between($starttime,$endtime) let interval = $interval
where i.host_name like hostFilter
group by i.host_name
select moving_avg(i.metric), moving_max(i.metric), moving_min(i.metric);

/* Returns the topN of a moving aggregate analytic function on a metric. Input parameters are
the host filter, metric, moving aggregate analytic function, and N. */
define oaSysperfTopNMovingMetric(hostFilter, metric, moving_analytic, N) =
from i in (oa_sysperf_global)
let analytic_interval = between($starttime, $endtime) let interval = $interval
where i.host_name like hostFilter group by i.host_name
select topN(moving_analytic(i.metric), N);

The following AQL expression returns the aggregate_avg CPU utilization for all server nodes in the
Operations Analytics topology. These servers include the database server nodes. This example uses
topology data to filter and returnmetric analysis for important entities in your topology:

[do oaSysperfAggregateMetric("*",cpu_util,aggregate_avg) filter by opsaNodes()
with (
oaSysperfAggregateMetric.host_name== opsaNodes.opsa_server_name,

AQLDeveloper Guide
Chapter 4: Analytics Query Language Functions and Expressions

HP Operations Analytics (2.31) Page 28 of 59

oaSysperfAggregateMetric.host_name== opsaNodes.collector_server_name,
oaSysperfAggregateMetric.host_name== opsaNodes.logger_server_name,
oaSysperfAggregateMetric.host_name== opsaNodes.vertica_node
)]

/* Returns the results of the overall aggregate analytic function applied to the specified metric.
Input parameters are host filter, metric, and overall aggregate analytic function. */
define oaSysperfAggregateMetric(hostFilter,metric,aggregate_analytic) =
from i in (oa_sysperf_global) let analytic_interval = between($starttime, $endtime)
where i.host_name like hostFilter
group by i.host_name
select aggregate_analytic(i.metric);

/* Returns the host names of Operations Analytics application servers, logger servers,
collector servers, and vertica nodes in an Operations Analytics deployment */
define opsaNodes() = from i in (opsa_topology) select i.opsa_server_name, i.logger_
server_name, i.collector_server_name, i.vertica_node;

/*Compares SiteScope response times with OA performance metrics*/

[do metricQuery({oa_sysperf_global}, {1==1}, {i.host_name,i.cpu_util}, {moving_avg
(i.cpu_util), moving_avg(i.disk_byte_rate)})
filter by topoQuery(custom_topology_nodegroup,{(i.service_name ilike "*")},
{i.service_name,i.group_name,i.host_name})
with (metricQuery.host_name == topoQuery.host_name), do metricQuery({sitescope_
urlmonitor_metrics}, {1==1},{i.target_name},{moving_avg(i.roundtrip_time_
milliseconds)})
filter by topoQuery(custom_topology_nodegroup,{(i.service_name ilike "*")},
{i.service_name,i.group_name,i.host_name})
with (metricQuery.target_name == topoQuery.host_name), do metricQuery({sitescope_
ping_metrics}, {1==1},{i.target_name},{i.target_name,moving_avg(i.round_trip_
time)})
filter by topoQuery(custom_topology_nodegroup,{(i.service_name ilike "*")},
{i.service_name,i.group_name,i.host_name})
with (metricQuery.target_name == topoQuery.host_name)]

Generic AQL Outer Functions

Bucket Function
The bucket function is used to group the counts of items in a data set that fall into partitions. An
example use scenario is that given the overall cpu_utilization of a set of hosts, you would like to see
how many fall into the 0-10 percent, 10-20 percent, and so forth.

The parameters to the bucket function are:

AQLDeveloper Guide
Chapter 4: Analytics Query Language Functions and Expressions

HP Operations Analytics (2.31) Page 29 of 59

l AQL expression – This is the aql query that yields the data set to partition.

l numbuckets (optional) – This is an integer to define the number of partitions.

l min and max (optional) – These two numbers specify the range of values to partition.

l aliasforbucketmemberscount (optional) – This is a label to provide ameaningful name for the
count of items in each partition.

Consider the following example use case of the bucket function:

[bucket[metricQuery(oneview_rabbitmq_metrics,{i.category=="server-hardware"},
{i.resource_uri},{aggregate_avg(i.cpu_utilization)})]
(numbuckets=5,min=0,max=100,aliasforbucketmemberscount="Number Of Servers")]

l numbuckets: Change the value of this parameter to the number of partitions you want to display.
The default value is 5 if you do not assign a value.

l min: Change the value of this optional parameter to theminimum data value you want partitioned.
min is an optional parameter. If you use it, youmust use it along with the max parameter for this
parameter to function correctly.

l max: Change the value of this optional parameter to themaximum data value you want partitioned.
max is an optional parameter. If you use it, youmust use it along with the min parameter for this
parameter to function correctly.

Note: If you do not specify the min and max parameters, the range (min/max) is automatically
calculated and the entire range of values are partitioned into buckets.

l Aliasforbucketmemberscount: Change the value of this optional parameter if you need a
meaningful name for the count of items in each partition. If this parameter is not specified, then the
"bucketmemberscount" string is used as the label.

AQLDeveloper Guide
Chapter 4: Analytics Query Language Functions and Expressions

HP Operations Analytics (2.31) Page 30 of 59

Chapter 5: Arithmetic Expressions and Aliases

Using Arithmetic Expressions and Aliases in AQL
Operations Analytics collections contain multiple attribute andmultiple metric columns. When creating
Operations Analytics dashboards, it is helpful to combinemultiple metric columns using arithmetic
expressions and query the expression instead of the individual metric columns. It is also helpful to
combine columns and another constant in an arithmetic expression, then query the expression instead
of the individual metric columns. It is also helpful to combine columns and another constant in an
arithmetic expression, then query the expression. It is also desirable to invoke statistical intrinsic
functions such as moving_avg. moving_max, moving_min, moving_total, aggregate_avg,
aggregate_max, aggregate_min, aggregate_total, pctile, topN, rank, and others on such
arithmetic expressions.

Finally, a naming or aliasing facility must make it convenient to use arithmetic expressions. You should
be able to specify a custom name or alias for your arbitrary arithmetic expressions.

In this chapter we will discuss how AQL enables you to use arithmetic expressions and aliases.

Arithmetic Expressions and Alias Support in Language Core

AQL supports the following arithmetic operators: unary negative (unary -), addition (+), subtraction (-),
multiplication (*), and division (/). You can construct arbitrarily complex arithmetic expressions using
these operators.

You can also use higher order AQL intrinsic analytic functions such as moving_avg. moving_max,
moving_min, moving_total, aggregate_avg, aggregate_max, aggregate_min, aggregate_total,
pctile, topN, rank, and others on such arithmetic expressions.

AQL permits you to specify aliases using the 'as' keyword. This is useful for providingmeaningful
names to arithmetic expressions. Aliases used in AQLwill influence the resulting Operations Analytics
console labels on dashboards.

You can also use aliases with any measurement or dimension expression in AQL statements
regardless of whether an arithmetic expression is used or not.

Arithmetic expressions and aliases are permitted in select clause selectors and filtering relational
expressions involving predicates in an AQL statement's where clause. You can also use aliases with
dimension expressions used in an AQL statement's group by clause.

The following is an example of a raw AQL statement to query a raw metric arithmetic expression:

from i in (foo_collection) let analytic_interval=between($starttime,$endtime)
select i.host_name, i.cpu_util_fraction*100 as "cpu util in %"

The above example illustrates the use of an arithmetic expression involving a * operator, a constant
(100), and the column cpu_util_fractionmetric to come up with amoremeaningful cpu utilization in
the percentage column at query time.

AQLDeveloper Guide
Chapter 5: Arithmetic Expressions and Aliases

HP Operations Analytics (2.31) Page 31 of 59

The following example demonstrates the use of an arithmetic expression involving twometric columns,
cpu_util and mem_util along with the subsequent invocation of the moving_max intrinsic on the
resulting expression.

from i in (oa_sysperf_global)
let analytic_interval=between($starttime,$endtime) let interval=$interval
group by i.host_name
select moving_max(i.cpu_util*i.mem_util/100 as "foo coeff")

The following example shows the use of an arithmetic expression as a filtering condition in the where
clause predicate.

from i in oa_sysperf_global
let analytic_interval=between($starttime,$endtime) let interval=$interval
where i.host_name == "foo.bar.com" && moving_avg(i.cpu_util*i.mem_util/100 as "foo
coeff") >= 1.0
group by i.host_name
select moving_avg(i.cpu_util*i.mem_util/100 as "foo coeff")

The following example illustrates the use of a higher order intrinsic topN on an aggregate_avg of an
arithmetic expression. Also note the use of the "foo hosts" alias to give a custom name to a group by a
dimension or attribute host_name.

from i in oa_sysperf_global
let analytic_interval=between($starttime,$endtime) let interval=$interval
let aggregate_playback=$aggregate_playback_flag
group by i.host_name as "my hostname column"
select topN(aggregate_avg(i.cpu_util*i.mem_util/100 as "foo coeff"))

The following example demonstrates the use of the ("host count") alias for a non- arithmetic expression
measurement selected in an AQL:

from i in oa_sysperf_global
let analytic_interval=between($starttime,$endtime) let interval=$interval
group by i.source
select moving_distinct_count(i.host_name) as "host count"

Arithmetic Expressions and Aliases in AQL Functions

Arithmetic expressions and aliases are also allowed in parameters to AQL functions. Such AQL
function parameters include those representing parts of select clauses and where clauses.
Additionally, aliases can be specified for group by attributes or dimensions in parameters representing
parts of group by clause.

AQL functions support arithmetic expressions and aliases in the following two ways:

l Aliased arithmetic expressions could be parts of parameters enclosed in {} function parameter start
and endmarkers as shown in the bold text in the following example:

[metricQuery(oneview_rabbitmq_metrics,{i.resource_category=="server-hardware"},
{i.resource_uri},{moving_avg(i.average_power/i.power_capacity as "power
coefficient")}]

AQLDeveloper Guide
Chapter 5: Arithmetic Expressions and Aliases

HP Operations Analytics (2.31) Page 32 of 59

In the above example, you pass the full arithmetic expression and its alias as a function parameter
enclosed within the {} markers for AQL function parameters.

Similarly, you can use arithmetic expressions as operands to influence the where clause filter
conditions or predicates as shown in the bold text in the following example:

[metricQuery(oneview_rabbitmq_metrics,{(i.resource_category=="server-hardware")
&& (aggregate_avg(i.average_power/i.power_capacity as "power coefficient" >
0.5))}, {i.resource_uri},{aggregate_avg(i.average_power/i.power_capacity as
"power coefficient")}]

In the above example, you set up a filter to fetch only those average power coefficients that are
greater than 0.5.

The following is an example of invoking an AQL function to compute the topN of aggregate_avg of
ametric arithmetic expression:

[metricQuery(oa_sysperf_global,{},{i.host_name},{topN(agreggate_avg(i.cpu_
util*i.mem_util/100 as "foo coeff"))})]

The following is an example of using an arithmetic expression as a filtering condition in a where
clause predicate:

[metricQuery(oa_sysperf_global,
{i.host_name == "foo.bar.com" && moving_avg(i.cpu_util*i.mem_util/100 as "foo
coeff") >= 1.0}, {i.host_name}, {moving_avg(i.cpu_util*i.mem_util/100 as "foo
coeff"))})]

Although the above examples are using the generic metricQuery() AQL function, similar approaches
apply to user defined custom AQL functions.

l Parts of aliased arithmetic expressions could be passed as AQL function parameters. For example,
you can create a custom function that takes twometric columns of a collection, then computes an
aggregate_avg of the product of the columns. The definition could look like the following:

define
getProductAverages(metric1,metric2,aliasforhost,aliasforproduct) =
from i in (foo_collection)
let analytic_interval=between($starttime,$endtime) let interval=$interval
let aggregate_playback=$aggregate_playback_flag
group by i.host_name as aliasforhost
select aggregate_avg(i.metric1*i.metric2 as aliasforproduct)

An example invocation for the above custom function could look like the following:

[getProductAverages(cpu_util, mem_util, myhost, myproduct)]

Arithmetic Expressions and Aliases in AQL Concatenations and do filter by expressions

AQLDeveloper Guide
Chapter 5: Arithmetic Expressions and Aliases

HP Operations Analytics (2.31) Page 33 of 59

You can construct AQL concatenation or AQL do filter by expressions by using AQL functions with
parameters having aliased arithmetic expressions or by the simple use of aliases on non-arithmetic
expressions.

The following is an example of AQL concatenation with arithmetic expressions and the simple use of an
alias on non-arithmetic expressions:

[metricQuery(oa_sysperf_global, {i.source like "HP*"}, {i.source}, {moving_
distinct_count(i.host_name) as "HP* host count"}),
metricQuery(oa_sysperf_global, {i.source like "HPACollector*"}, {i.source},
{moving_distinct_count(i.host_name) as "HPACollector* host count"})]

As another example, suppose you create the following AQL and expect to see two lines displayed in
the resulting dashboard, but Operations Analytics displays only one line:

[metricQuery({bpm_application_performance}, {i.transaction_response_time >50 &&
i.application ilike "ART*"}, {i.application}, {i.transaction_response_time}),
metricQuery({bpm_application_performance}, {i.transaction_response_time <50 &&
i.application ilike "ART*"}, {i.application}, {i.transaction_response_time})]

To resolve this issue, use aliases as shown in the following AQL to obtain the two lines you expected:

[metricQuery({bpm_application_performance}, {i.transaction_response_time >50 &&
i.application ilike "ART*"}, {i.application}, {i.transaction_response_time as
"above 50"}),
metricQuery({bpm_application_performance}, {i.transaction_response_time <50 &&
i.application ilike "ART*"}, {i.application}, {i.transaction_response_time as
"below 50"})]

The following is an example of an AQL do filter by expression with arithmetic expressions in a do
function. This example assumes that you have used theOperations Analytics topology manager to
create a node group service topology named service1:

[do metricQuery(oa_sysperf_global,{},{i.host_name },{moving_avg(i.cpu_util*i.mem_
util/100 as "foo coeff")}) filter by topoQuery(custom_topology_nodegroup,
{i.service_name == "service1"},{i.service_name,i.host_name}) with
(metricQuery.host_name==topoQuery.host_name)]

You can create an AQL do filter by expression with aliased dimensions used in a with clause of a do
filter by expressions as shown in the following examples:

Example 1:

[do metricQuery(oa_sysperf_global,{},{i.host_name as "bar host" },{moving_avg
(i.cpu_util)})
filter by
topoQuery(custom_topology_nodegroup,{i.service_name == "mynodegroupservice"},
{i.service_name,i.host_name as "foo host"})
with (metricQuery."bar host" == topoQuery."foo host")]

Note the use of aliases in the do function and the filter function, and the corresponding use of aliases in
the with clause.

Example 2:

AQLDeveloper Guide
Chapter 5: Arithmetic Expressions and Aliases

HP Operations Analytics (2.31) Page 34 of 59

[do metricQuery(oa_sysperf_global,{},{i.host_name},{moving_avg(i.cpu_util)})
filter by
topoQuery(custom_topology_nodegroup,{i.service_name == "mynodegroupservice"},
{i.service_name,i.host_name as "foo host"})
with (metricQuery.host_name==topoQuery."foo host")]

Note the use of the alias in the filter function alone and the corresponding with clause specification in
terms of only the alias in the filter function.

In general, if you specify an alias for an attribute or dimensions in either a do function or a filter function,
then use the same attributes in a with clause, make sure you use the corresponding aliases to develop
the with clause.

More about Alias Support and Alias Placement
Conventions
AQL supports the following character set in aliases:

l Alphanumeric characters.

l Special characters: space, _ (underscore), - (hyphen), %, #, $,!.

l Using surrounding double quotes ("") for aliases containing embedded spaces.

Note: AQL supports amaximum of 128 characters in an alias.

Alias Placement Conventions for Arithmetic Expressions

You could either place the alias at the innermost arithmetic expression, the outermost measurement
expression, or anywhere in between.

Here are a few examples to illustrate these alias placement conventions for arithmetic expressions.

The following AQL example queries the top 20 hosts demonstrating the highest cpu utilization
percentage aggregate averages. Notice the specification of alias at the inner most expression level
shown in bold font.

from i in (foo_collection) let analytic_interval=between($starttime,$endtime) let
interval=$interval
let aggregate_playback=$aggregate_playback_flag
where (i.host_name like "*")
group by i.host_name
select topN(aggregate_avg(i.cpu_util_fraction*100 as "cpu util percent"), 20)

In the above example, the Operations Analytics console displays cpu util percent (Aggregate Avg)
as the label for thesemeasurements.

AQLDeveloper Guide
Chapter 5: Arithmetic Expressions and Aliases

HP Operations Analytics (2.31) Page 35 of 59

You can rewrite this example as follows for the Operations Analytics console to display cpu util
percent agg avg as the label for themeasurement, (note the specification of alias at the inner
aggregate_avg intrinsic invocation level):

from i in (foo_collection) let analytic_interval=between($starttime,$endtime) let
interval=$interval
let aggregate_playback=$aggregate_playback_flag
where (i.host_name like "*")
group by i.host_name
select topN(aggregate_avg(i.cpu_util_fraction*100) as "cpu util percent agg avg",
20)

You can specify the alias at the outermost level as shown in the following example:

from i in (foo_collection) let analytic_interval=between($starttime,$endtime) let
interval=$interval
let aggregate_playback=$aggregate_playback_flag
where (i.host_name like "*")
group by i.host_name
select topN(aggregate_avg(i.cpu_util_fraction*100), 20) as "topn cpu util percent
agg avg"

For consistency with how Operations Analytics treats cases of non-arithmetic expressions without
aliases specified, it is recommended that you use aliases for arithmetic expressions at the innermost
level to identify themetric arithmetic expression.

Higher Order Arithmetic Involving Intrinsic Calls
So far you have seen how you can combinemultiple columns and constants to compose arithmetic
expressions and query either these raw expressions or intrinsic calls on those expressions. This
information included examples of arithmetic expression usage with the following intrinsic
functions: moving_avg, moving_max, moving_min, moving_total, aggregate_avg, aggregate_max,
aggregate_min, aggregate_total, pctile, topN, rank, and others.

In this section, you will look at a capability in AQL that enables you to initiate higher order arithmetic
expressions among intrinsic calls and constants. This capability, when exercised, enables you to fulfill
vector arithmetic use cases if you consider the results of individual intrinsic calls as some kind of result
vectors. This is especially relevant for cases where the intrinsic call is such that a vector of values at
multiple timestamps (time series) is returned as results. For example, youmight first want to calculate
the moving_total of failed calls, then calculate a moving_total of all calls, and finally calculate a
timeseries that represents the fraction of all calls that failed at different times. For these use cases, it is
possible to use the intrinsic calls in higher order arithmetic expressions involving one or more intrinsic
calls, constants, or both.

Just as AQL supports arithmetic operators in the basic collection column, constant arithmetic
expressions,or both, AQL supports the following arithmetic operators in higher order arithmetic
expressions too: unary negative (unary -), addition (+), subtraction (-), multiplication (*), and division (/).
You can construct arbitrarily complex arithmetic expressions using these operators and one or more
intrinsic calls or constants.

AQLDeveloper Guide
Chapter 5: Arithmetic Expressions and Aliases

HP Operations Analytics (2.31) Page 36 of 59

Similarly AQL permits you to specify aliases using the 'as' keyword for such higher order arithmetic
expressions thus providingmeaningful names to these higher order arithmetic expressions.

These higher order arithmetic expressions and their aliases are permitted in select clause selectors
and filtering relational expressions involving predicates in an AQL statement's where clause.

The following example shows a raw AQL statement that queries the higher order arithmetic expression:

from i in (foo_call_collection) let interval = $interval
let analytic_interval=between($starttime,$endtime)
select i.region,
topN((moving_total(i.num_calls) - moving_total(i.num_completed_calls)) / moving_
total(i.num_calls) * 100 as "Failed Call %")

The example shown above illustrates the use of a higher order arithmetic expression that accomplishes
the failed call percentage calculation described in the first few paragraphs of this section. It computes
the following:

l Themoving total intrinsic of all calls (the num_calls column) for each distinct region attribute value
in the foo_call_collection.

l Themoving total of completed calls (the num_completed_calls column) for each distinct region.

l Evaluates a vector coefficient of this difference vector and themoving total of the num_calls vector
for each distinct region.

l Multiplies the resulting coefficient by 100 to obtain the failed call % vector showing a trend of failed
calls % over time for each distinct region attribute value in the foo_call_collection.

l Performs a topN intrinsic for this % vector expression to get the top intervals for each region.

You can visualize the result of the computation done in this example on anOperations Analytics
visualization, such as a bar chart, to understand the top intervals with the highest failed call
percentages.

You can also use basic arithmetic expressions involvingmultiple columns of a collection as arguments
to any intrinsic call that is, in turn, involved in a higher order arithmetic expression involving other
intrinsic calls. The following example illustrates this aspect of these higher order expressions:

from i in (foo_call_collection) let interval = $interval
let analytic_interval=between($starttime,$endtime)
select i.region,
topN((moving_total(i.num_calls-i.num_calls_to_ignore as effective_num_calls) -
moving_total(i.num_completed_calls)) / moving_total(i.num_calls-i.num_calls_to_
ignore as effective_num_calls) * 100 as "Failed Call %")

In the above example, it first deducts a hypothetical column that provides a to-be-ignored call count
from the overall total calls, then evaluates themoving total intrinsic on the difference before feeding that
difference to the rest of the higher order arithmetic expression for the Failed Call %.

Such higher order arithmetic expressions are also permitted in parameters supplied to AQL functions.
Such AQL function parameters include those representing parts of select clauses and where clauses.

The following example illustrates invoking the same failed call % example by using an AQL function:

AQLDeveloper Guide
Chapter 5: Arithmetic Expressions and Aliases

HP Operations Analytics (2.31) Page 37 of 59

[metricQuery(foo_call_collection,{},{},{region, topN((moving_total(i.num_calls) -
moving_total(i.num_completed_calls)) / moving_total(i.num_calls) * 100 as "Failed
Call %")})]

Similarly, you can construct an AQL do filter by using expressions or AQL concatenation expressions
by using AQL functions with parameters having aliased higher order arithmetic expressions.

The following is an example of an AQL do filter by expression with higher order arithmetic expressions
in a do function. This example assumes that you have used theOperations Analytics topology manager
to create a node group service topology named service1:

[do metricQuery(oa_sysperf_global,{},{i.host_name },{moving_avg(i.cpu_util)
/aggregate_distinct_count(i.sourceid) * 100 as "foo coeff")}) filter by topoQuery
(custom_topology_nodegroup,{i.service_name == "service1"},{i.service_name,i.host_
name}) with (metricQuery.host_name==topoQuery.host_name)]

This example attempts to calculate the resultant time series vector that is a result of evaluating the
coefficient of cpu utilizationmoving average time series vector and flat aggregate count (a scalar) of
distinct sources per host for all hosts defined to be part of service service1.

It is also possible to come up with a higher order arithmetic expression involving only flat aggregate
(scalars) to accomplish a complex scalar arithmetic use case. For instance, the following example
permits us to get the coefficient of aggregate total of num_calls for each country divided by the total
count of regions for each country:

[metricQuery(foo_call_collection,{},{},{country, aggregate_total(i.num_calls)
/aggregate_distinct_count(i.region) as "My Distribution Coefficient"})]

Note: Just like in the case of using basic arithmetic expressions described in previous sections,
the columns used in the higher order arithmetic expressions involving intrinsic calls are also
expected to be from same collection.

AQLDeveloper Guide
Chapter 5: Arithmetic Expressions and Aliases

HP Operations Analytics (2.31) Page 38 of 59

Chapter 6: Analytics Query Language for Log
Data
The information in this section explains how to use AQL functions to search log file information.
Examples in this topic use AQL to return the information collected by log files configured using HP
ArcSight Logger.

Note: The queries in this section do not apply to structured log files. Structured log files are
fragments of log file data that are stored as collections in Operations Analytics. Structured logs are
log files that are configured as collections. These collections are created so that users can perform
analytics on the log file contents.

You can use three types of AQL functions to search log file information:

l To search for text strings, use the aqlrawlog function.

l To count the number of log file entries, use the aqlrawlogcount function.

l To enter a query supported by HP ArcSight Logger, use the aqlrawlogarbitrary function.

Using the aqlrawlog Function to Search for Text Strings

Use the aqlrawlog function to search the log file entries stored in HP ArcSight Logger servers.

The aqlrawlog query returns the following attributes for eachmatching log file message entry:
timestamp, message text, host name, and source host name.

Syntax: aqlrawlog(<aqllit><text_to_search></aqllit>, <starttime_as_seconds_since_
epoch>, <end_time_as_seconds_since_epoch>, ""|"<comma_separated_list_of_logger_
host_names>"[,<limit>])

Note:When using Splunk as the log data source, do not use the keyword "host=" in the search
string. For example, using a search string that includes aqlrawlog(<aqllit>host
="10.60.15*"</aqllit>, $starttime, $endtime, "", $limit) results in nomatches.
Instead, use a search string like aqlrawlog(<aqllit>"10.60.15*"</aqllit>, $starttime,
$endtime, "", $limit) to obtain matches.

aqlrawlog arguments

[let timeout=<timeout_in_seconds>]
[let limit=<limit>]
<text_to_search> is the text string that must match in the log file entries.

Note: The <text_to_search> argument must be enclosed by the <aqllit> keyword. For
example <aqllit>severity</aqllit>.

AQLDeveloper Guide
Chapter 6: Analytics Query Language for Log Data

HP Operations Analytics (2.31) Page 39 of 59

<starttime_as_seconds_since_epoch> is the start time of the time window within which to look for
matching log file entries.

Note: To use the value selected in the Operations Analytics console, enter $starttime as the
value for this argument.

<endtime_as_seconds_since_epoch> is the end time of the time window within which to look for log
file entries.

Note: To use the value selected in the Operations Analytics console, enter $endtime as the value
for this argument.

<comma_separated_list_of_logger_host_names> is a comma separated list of host names that
identify the HP ArcSight Logger servers to query.

Tip: To query all of theHP ArcSight Logger servers configured for the current tenant, specify "" as
this parameter value.

<limit> is an optional parameter that overrides the default maximum number of log file entries to
return.

Note: If you do not use this parameter or the optional let limit=<limit> clause, Operations
Analytics returns up to amaximum of 2000 log file messages matching the search text. You can
also specify $limit for this value.

<timeout_in_seconds> is the timeout for the search operation. This parameter is specified when using
the optional let timeout=… clause.

Note: If you do not specify this parameter, Operations Analytics uses the default timeout value.

Examples:

/* Returns a maximum of 500 log file entries that include "error" */
aqlrawlog(<aqllit>error</aqllit>, $starttime, $endtime, "", 500)

/*Returns the default maximum number of log file entries that include "error". This
query searches log file entries only on the following servers:
mylogger1.mydomain.com and mylogger2.mydomain.com logger servers*/
aqlrawlog(<aqllit>error</aqllit>, $starttime, $endtime,
"mylogger1.mydomain.com,mylogger2.mydomain.com")

/* Returns the default maximum number of log file entries that include "error". It
uses the timeout value of 5 minutes */
aqlrawlog(<aqllit>error</aqllit>, $starttime, $endtime, "") let timeout=300

/* Returns a maximum number of 500 log file entries that include "error". It uses
the timeout value of 5 minutes */

AQLDeveloper Guide
Chapter 6: Analytics Query Language for Log Data

HP Operations Analytics (2.31) Page 40 of 59

aqlrawlog(<aqllit>error</aqllit>, $starttime, $endtime, "") let timeout=300 let
limit=500

Use the aqlrawlogcount Function to Count the Number of Log File Entries

Use the aqlrawlogcount function to count the log file entries stored in HP ArcSight Logger servers
that contain the search text string.

Syntax: aqlrawlogcount(<aqllit><text_to_search></aqllit>, <starttime_as_seconds_
since_epoch>, <end_time_as_seconds_since_epoch>, "" | "<comma_separated_list_of_
logger_host_names>","" | "<comma_separated_list_of_group_by_fields>"
[,<granularity_in_seconds>])

Description of each of the aqlrawlogcount arguments

[let timeout=<timeout_in_seconds>]

[let limit=<limit>]

<text_to_search> is the text string that must match in each log file entry returned.

Note: The <text_to_search> argument must be enclosed by the <aqllit> keyword, for example
<aqllit>severity</aqllit>.

<starttime_as_seconds_since_epoch> is the start time of the time window within which to look for
matching log file entries.

Note: To use the value selected in the Operations Analytics console, enter $starttime as the
value for this argument.

<endtime_as_seconds_since_epoch> is the end time of the time window within which to look for
matching log file entries.

Note: To use the value selected in the Operations Analytics console, enter $endtime as the value
for this argument.

<comma_separated_list_of_logger_host_names> is a comma separated list of host names that
identify the HP ArcSight Logger servers to query.

Tip: To query all of the HP ArcSight Logger servers configured for the current tenant, specify "" as
this parameter value.

<limit> is an optional parameter that overrides the default maximum number of log file entries to
return.

Note: If you do not use this parameter or the optional let limit=<limit> clause, Operations
Analytics returns up to amaximum of 2000 log file messages matching the search text. You can
also specify $limit as the value.

AQLDeveloper Guide
Chapter 6: Analytics Query Language for Log Data

HP Operations Analytics (2.31) Page 41 of 59

<timeout_in_seconds> is the timeout for the search operation specified using the optional let
timeout=… clause.

Note: If you do not specify this parameter, Operations Analytics uses the default timeout value.

The aqlrawlog query returns the following attributes for eachmatching log file entry: timestamp,
message text, host name, and source host name.

<comma_separated_list_of_group_by_fields> is a comma separated list of theHP ArcSight Logger
attributes in which to group the results.

Tip: If you do not want Operations Analytics to group the results, specify "" as the parameter
value.

Note: If you specify "" as this parameter and do not specify <granularity_in_seconds>,
Operations Analytics computes themoving counts without any group by criteria.

The window of time between <starttime_as_seconds_since_epoch> and <endtime_as_seconds_
since_epoch> is divided intomultiple intervals. Operations Analytics calculates counts at each of
these intervals. Operations Analytics automatically computes the optimal length of time for each
interval.

<time_interval_in_seconds> specifies the value Operations Analytics should use to subdivide the
window of time between <starttime_as_seconds_since_epoch> and <endtime_as_seconds_
since_epoch>.Operations Analytics computes themoving counts at each of these intervals.

Note: To use the value selected in the Operations Analytics console, enter $interval as the
value for this argument. SeeDashboards andQuery Panes in theOperations Analytics Help for
more information about how to specify the $interval parameter value in the Operations Analytics
console.

<limit> is an optional parameter that overrides the default maximum number of log file entries to
return.

Note: If you do not use this parameter or the optional let limit=<limit> clause, Operations
Analytics returns up to amaximum of 2000 log file messages matching the search text. You can
also specify $limit as the value.

<timeout_in_seconds> is the timeout for the search operation specified using the optional let
timeout=… clause.

Note: If you do not specify this parameter, Operations Analytics uses the default timeout value.

Examples

/* Returns the time series counts of log file entries that contain "error" at 5
minuteintervals*/
aqlrawlogcount(<aqllit>error</aqllit>, $starttime, $endtime, "", "", 300)

AQLDeveloper Guide
Chapter 6: Analytics Query Language for Log Data

HP Operations Analytics (2.31) Page 42 of 59

/*Returns the time series counts of log file entries that contain "error" for each
combination of deviceHostName and agentSeverity at 5 minute intervals. The function
queries only the mylogger1.mydomain.com server*/
aqlrawlogcount(<aqllit>error</aqllit>, $starttime, $endtime,
"mylogger1.mydomain.com", deviceHostName,agentSeverity, 300)

/*Returns overall aggregate counts of log file entries that contain "error" for
each combination of deviceHostName and agentSeverity. This AQL function queries
only themylogger1.mydomain.com server*/
aqlrawlogcount(<aqllit>error</aqllit>, $starttime, $endtime,
"mylogger1.mydomain.com", "deviceHostName,agentSeverity")

/*Returns the time series of counts of log file entries that contain "error" for
each combination of deviceHostName and agentSeverity at 5 minute intervals. This
AQL function queries only mylogger1.mydomain.com, uses the timeout value of 10
minutes, and queries a maximum of 1000 entries */
aqlrawlogcount(<aqllit>error</aqllit>, $starttime, $endtime,
"mylogger1.mydomain.com", "deviceHostName,agentSeverity", 300) let timeout=600 let
limit=1000

Using the aqlrawlogarbitrary Function to Enter a Query Supported by HP ArcSight Logger

Note: A supported query is any query that is configured for use on an HP ArcSight Logger server.

Use the aqlrawlogarbitrary function to run any other query supported by your HP ArcSight Logger
server.

Operations Analytics displays the aqlrawlogarbitrary results table format.

Syntax: aqlrawlogarbitrary(<aqllit><query_string></aqllit>, <starttime_as_seconds_
since_epoch>, <end_time_as_seconds_since_epoch>, ""|"<comma_separated_list_of_
logger_host_names>" [,<limit>])

Description of each of the aqlrawlogarbitrary function arguments.

[let timeout=<timeout_in_seconds>]

[let limit=<limit>]

<query_string> is the query string that is supported by your HP ArcSight Logger server.

Note: The <query_string> argument must be enclosed by the <aqllit> keyword, for example:
<aqllit>severity</aqllit>.

<starttime_as_seconds_since_epoch> is the start time of the time window within which to look for
matching log file entries.

Note: To use the value selected in the Operations Analytics console, enter $starttime as the
value for this argument.

<endtime_as_seconds_since_epoch> is the end time of the time window within which to look for
matching log file entries.

AQLDeveloper Guide
Chapter 6: Analytics Query Language for Log Data

HP Operations Analytics (2.31) Page 43 of 59

Note: To use the value selected in the Operations Analytics console, enter $endtime as the value
for this argument.

<comma_separated_list_of_logger_host_names> is a comma separated list of host names of the
HP ArcSight Logger servers to query.

Tip: To query all of the HP ArcSight Logger servers configured for the current tenant, specify "" as
this parameter value.

<limit> is an optional parameter and, if specified, it overrides the default maximum rows of information
returned by Logger to consider for returning back to the Operations Analytics console.

Note: If you do not use this parameter or the optional let limit=<limit> clause, Operations
Analytics returns up to amaximum of 2000 log file messages matching the search text. You can
also specify $limit for this value.

<timeout_in_seconds> is the timeout for the search operation specified using the optional let
timeout=… clause.

Note: If you do not specify this parameter, Operations Analytics uses the default timeout value.

Examples

/* Returns a maximum of 500 log file entries that contain the text string "error"
*/

aqlrawlogarbitrary(<aqllit>error</aqllit>, $starttime, $endtime, "", 500)

/*Returns up to the default maximum number of log file entries that contain the
text string "error". This AQL function queries only the mylogger1.mydomain.com and
mylogger2.mydomain.com logger servers*/

aqlrawlogarbitrary(<aqllit>error</aqllit>, $starttime, $endtime,
"mylogger1.mydomain.com,mylogger2.mydomain.com")

/* Returns the default maximum number of log file entries that contain "error".
This AQL function uses a timeout value of 5 minutes */

aqlrawlogarbitrary(<aqllit>error</aqllit>, $starttime, $endtime, "") let
timeout=300

/* Returns a maximum of 500 log file entries that contain "error". This AQL
function uses a timeout value of 5 minutes */

aqlrawlogarbitrary(<aqllit>error</aqllit>, $starttime, $endtime, "") let
timeout=300 let limit=500

You can add a let clause to your aqlrawlog, aqlrawlogcount, or aqlrawlogarbitrary query to
define a variable that contains a list of entities returned from an AQL function. The variable can then be
used in the <aqllit><text_to_search></aqllit> string. This feature is useful when you want to

AQLDeveloper Guide
Chapter 6: Analytics Query Language for Log Data

HP Operations Analytics (2.31) Page 44 of 59

search for a set of entities, such as hosts, applications, Business ServiceManagement transactions,
or database instances without needing to enter the entire list of values.

l To add a let clause to your aqlrawlog, aqlrawlogcount or aqlrawlogarbitrary query, use the
following syntax:
let <variable_name>=<AQL_function>

For example, you could define the $myhosts variable to contain the list of servers returned from the
AQL function named oaSysperfHosts. The oaSysperfHosts AQL function uses the following
arguments to return hosts that have performancemetrics collected:
oaSysperfHosts (hostFilter, numHostsLimit)

To define a variable to store the results returned from the oaSysperfHosts AQL function, use the
following syntax:
let <variable_name>=oaSysperfHosts (hostFilter, numHostsLimit)

For example, to pass the first 50 hosts that have performancemetrics collected in the
enterprise.com domain to the myhosts variable, add the following let clause to your aqlrawlog,
aqlrawlogcount, or aqlrawlogarbitrary query:
let myhosts=oaSysperfHosts ("*enterprise.com", 50)

l The variable you define using the let clause can be used in a text search or with a Common Event
Field (CEF) field that was configured using the Operations Analytics Log File Connector for
MadCap Software ArcSight Logger. SeeConfiguring the Operations Analytics Log File Connector
for ArcSight Logger in theHP Operations Analytics Configuration Guide for more information.

l To use the variable in a text search, use the following syntax: <aqllit><$variable></aqllit>
For example:<aqllit><$myhosts></aqllit>

l To use the variable with a CEF, use the following syntax in place of
<aqllit><$variable></aqllit>:
<aqllit><CEF> in [$<variable_name>]</aqllit>
For example: sourcehostName in [$myhosts]

The previous example searches for all log file messages that contain any of the host names stored in
the $myhosts variable. These host names would be the first 50 hosts that have performancemetrics
collected in the enterprise.com domain.

AQLDeveloper Guide
Chapter 6: Analytics Query Language for Log Data

HP Operations Analytics (2.31) Page 45 of 59

Chapter 7: Troubleshooting AQL Queries
Use the information in this section to help you develop and troubleshoot your AQL queries.

Introduction
When composing or trouble-shooting an AQL query, always decompose the query as much as possible
to isolate the problem.

Use the following guidelines to isolate the problem:

l Reduce an AQL list of queries to a single query that is causing the problem.

l Separate the do query from the filter by query if the original query is a composition.

l Simplify the where clause as much as possible to get the query to work.

l Simplify the select clause as much as possible to get the query to work.

After you reduce the query to a query that works and that returns results, begin adding the removed
portions to isolate the problem. Usually the problem will become apparent when you follow this
process.

Syntax Errors
AQL queries report syntax errors as 'line:column' where the syntax error occurs. Suppose you created
an AQL query with a syntax error in the from clause (missing parenthesis) as follows:

After you run this AQL query, it displays the following error pane indicating the location of the syntax
error.

AQLDeveloper Guide
Chapter 7: Troubleshooting AQL Queries

HP Operations Analytics (2.31) Page 46 of 59

Meta Data Errors
AQL queries report meta data errors as a general error. Suppose you have an AQL query with a
reference to data that is not defined (type cpu_utill instead of cpu_util).

After you run this AQL query, it displays the following error pane indicating themeta data error.

AQLDeveloper Guide
Chapter 7: Troubleshooting AQL Queries

HP Operations Analytics (2.31) Page 47 of 59

Below are a few other commonmeta data errors:

l The collection does not exist

l Trying to perform numeric operations on non-metric data types

l Selecting raw metric data with no grouping or operations

Semantic Errors
There aremany potential semantic errors youmight encounter when developing an AQL query. A
semantic error means the resulting data cannot be properly rendered. For example, time-series data
cannot bemixed with attribute value data. Time-series data needs to be rendered as a line chart or heat
map and attribute values are typically rendered as a table (although they can be presented as other
charts, such as pie charts).

AQLDeveloper Guide
Chapter 7: Troubleshooting AQL Queries

HP Operations Analytics (2.31) Page 48 of 59

Suppose you have a query in which the select list is mixing time-series data and attribute value data.
Note that the moving_avg is returning time-series data and aggregate_avg is a value.

AQLDeveloper Guide
Chapter 7: Troubleshooting AQL Queries

HP Operations Analytics (2.31) Page 49 of 59

If you run the above AQL query, then only the time-series (moving_avg) data will be displayed as
shown in the following graphic; the aggregate value will not be displayed.

When working with AQL queries, the AQL queries you develop will often yield unexpected results. The
best troubleshooting technique is to decompose the query as much as possible to make certain that
parts of the query are working. It might be that the query is returning disparate data types that cannot all
be rendered into a single pane. In such cases you can separate the decomposed query into multiple
panes.

AQLDeveloper Guide
Chapter 7: Troubleshooting AQL Queries

HP Operations Analytics (2.31) Page 50 of 59

Chapter 8: Using R with AQL
The purpose of this chapter is to document the steps that custom analytics developers can take to
register custom analytics written using R andmake use of them on data being collected by Operations
Analytics. Using Operations Analytics 2.10 or newer, Operations Analytics users can run R functions
on results from underlying basic AQL functions or expressions that fetch entities and some
measurements done for them based on data collected by Operations Analytics. See "Analytics Query
Language Functions and Expressions" on page 20 for more information.

Setting up the R Language Pack from Vertica
Operations Analytics uses Vertica's R language runtime environment as the runtime environment for
any R function you register with both Operations Analytics and Vertica. It is mandatory that you have
the Vertica R Language Pack set up on each node of the Vertica cluster used by your Operations
Analytics deployment. Youmust install the following packages on each node of the Vertica cluster to
set up the Vertica R language pack:

l The compat-libgfortran package (if required in your version of Vertica).

l The three vertica-R-lang packages.

To install these packages, complete the instructions shown in theApproach 2: Operations Analytics-
Related Extensions section of theOperations Analytics Installation Guide.

Creating the R Functions that Integrate with
Operations Analytics
Operations Analytics expects all R functions to conform to the Vertica R UDX framework (R UDX). In
order to have a valid R UDX, Vertica expects the following:

1. R functions must have a corresponding UDX factory function written in R. This functionmust
capture input, output frame descriptions, and descriptions of optional input parameters to the core
R function.

2. If an R function's output frame does not contain a fixed number of columns with fixed types, then
the factory function needs to specify an output type callback R function that is written by the user.
The output callback function describes the output frame structure to Vertica at runtime.

AQLDeveloper Guide
Chapter 8: Using R with AQL

HP Operations Analytics (2.31) Page 51 of 59

3. It is expected that a single .R file is created that contains all of the following:

a. The UDX factory R function.

b. Any optional output callback R function.

c. Any optional parameter callback R function.

d. The core R function containing the analytics logic or a wrapper function that invokes the
analytic R function. This function is basically themain entry point from AQL into custom
analytics.

All of the abovementioned pieces of codemust be present in a single .R file that is used for registering
the R function as a valid Vertica R UDX.

Operations Analytics provides some example .R files containing core R functions, their UDX factory R
functions, and output callback functions in the following location:
/opt/HP/opsa/inventory/lib/hp/r-udx-examples

See the example named MVCorr.R that attempts to do statistical correlation between pairs of time
series measurements.

The following snippet from the MVCorr.R example demonstrates the boiler plate code that needs to be
written to establish the contract with Vertica for the outgoing result or output frame columns. If you
want the frame columns output by specific names or want to specify specialized types for some of
these columns, youmust code the outtypecallbackR function and register the same in UDX factory
R function.

mvCorrOutType<-function(x){
ret <- data.frame(datatype=rep(NA,5),lenth=rep(NA,5),scale=rep(NA,5),name=rep
(NA,5))
ret[1,4]="entity"
ret[2,4]="measurement"
ret[3,4]="correlatedentity"
ret[4,4]="correlatedmeasure"
ret[5,4]="correlationcoeff"
ret[1,1]="varchar"
ret[2,1]="varchar"
ret[3,1]="varchar"
ret[4,1]="varchar"
ret[5,1]="float"
ret[1,2]=x[2,2]
ret[3,2]=x[2,2]
ret
}

Note: Notice how the input parameters are used by the mvCorrOutType callback function to
describe the output column names and types.

AQLDeveloper Guide
Chapter 8: Using R with AQL

HP Operations Analytics (2.31) Page 52 of 59

The names used above in the outtypecallback function are directly processed by AQL in its result
processing and sent to the dashboard pane in the Operations Analytics console.

The following snippet from the MVCorr.R example, illustrates how to write the UDX factory function:

mvCorrFactory<-function(){
list(name=mvCorr,udxtype=c("transform"),intype=c("any"), outtype=c("any"),
outtypecallback=mvCorrOutType)
}

The following snippet from the MVCorr.R example illustrates how to write themain entry point into the
custom analytics, possibly as a wrapper function:

mvCorr <- function(x){
rvs<-buildRVs(x)
rvObservations<-buildRVObservations(x,rvs)
correlationCoeffs<-buildMVCoefficients(rvObservations)
rvPairsAndCoeffs<-buildRVPairsAndCoeffs(rvs,correlationCoeffs)
rvPairsAndCoeffs
}

Identifying the Distinct Time Series Measurements in an
Input Frame for an R function
AnR function's integration with Operations Analytics currently assumes that the R function is written
so that it first identifies the time series measurements (the observations of ametric or measurement at
various equally spaced time intervals) in the Operations Analytics domain from the input data frame
that is fed to the R function at runtime. The following information helps you better understand the
concept of these time series variables and how to write R code to identify these variables in the input
frames.

As noted earlier, one can useOperations Analytics dashboard panes to invoke R functions on an AQL
function or expression that results in Operations Analytics timeseries data.

At runtime, an AQL function or expression is translated to Vertica SQL statements. When an R function
is invoked using AQL on top of an AQL function or expression, AQL additionally wraps these Vertica
SQL statements inside of another Vertica SQL statement involving the registered R UDX invocation.

The inner Vertica SQL statement translated from the AQL function or expressions represents the query
that Vertica would run internally to supply the results of the same as an input data frame to the R
function.

After an entity, its measurements, and their corresponding time series data are identified, each entity
andmeasurement combination could be considered a valid unique instance of a variable backed by the
time series data being the observations for the variable.

AQLDeveloper Guide
Chapter 8: Using R with AQL

HP Operations Analytics (2.31) Page 53 of 59

The following snippet of code from the MVCorr.R example demonstrates one way to capture the time
series measurement variables before doing either of the following:

l Supplying the pairs of such time series measurements to the core R function.

l Evaluating the correlation coefficient for determining the level of correlation between the pair of
measurement variables in question.

#
MultiVar correlation function R UDX entry point
#
mvCorr <- function(x){
rvs<-buildRVs(x)
rvObservations<-buildRVObservations(x,rvs)
correlationCoeffs<-buildMVCoefficients(rvObservations)
rvPairsAndCoeffs<-buildRVPairsAndCoeffs(rvs,correlationCoeffs)
rvPairsAndCoeffs
}
identify unique combinations of entities and measurements for which to collect
the time series observations
buildRVs<-function(x){
unique(x[,2:3])
}
#accumulate time series measurements for each combination of entity and
#measurements, thus creating the unique variables under consideration
buildRVObservations <- function(x, rvs){
nRVs <- nrow(rvs)
rvmap<-new.env(hash=TRUE,size=nRVs)
for (i in 1:nRVs){
assign(paste(rvs[i,1],rvs[i,2],sep=""),value=i,envir=rvmap)
}
rows <- nrow(x)
tsColumn <- 1
mvSamples <- array(,dim=c(nRVs,0))
ts = x[1,tsColumn]
i = 1
while (i <= rows)
{
ts = x[i,tsColumn]
colSample <- array(NA, dim=c(nRVs,1))
while ((i <= rows) && (x[i,tsColumn] == ts)){
rvkeytolookup<-paste(x[i,2],x[i,3],sep="")
if (! is.null(rvmap[[rvkeytolookup]])){
colSample[rvmap[[rvkeytolookup]]] = x[i,4]
}
i <- i + 1
}
mvSamples <- cbind(mvSamples,colSample)
}
mvSamples
}

AQLDeveloper Guide
Chapter 8: Using R with AQL

HP Operations Analytics (2.31) Page 54 of 59

Iterate through list of variables and invoke R core function cor to calculate
correlation coefficient between #each unique pair of variables
buildMVCoefficients <- function(multiVarSamples) {
nRandomVars <- nrow(multiVarSamples)
multiVarCorCoef <- array(0, dim=c(nRandomVars, nRandomVars))
for (i in 1:(nRandomVars-1)) {
for (j in (i+1):nRandomVars) {
multiVarCorCoef[i,j] <- cor(multiVarSamples[i,], multiVarSamples[j,], use =
"na.or.complete")
}
}
multiVarCorCoef
}
buld final results to be returned to caller of R UDX.
buildRVPairsAndCoeffs <- function(rvs,rvCoeffs) {
entity<-c()
entitymeasure<-c()
correlatedentity<-c()
correlatedentitymeasure<-c()
correlationcoefficient<-c()
for (i in 1:(nrow(rvs)-1)) {
for (j in (i+1): (nrow(rvs))) {
entity<-c(entity, as.character(rvs[i,1]))
entitymeasure<-c(entitymeasure, as.character(rvs[i,2]))
correlatedentity<-c(correlatedentity, as.character(rvs[j,1]))
correlatedentitymeasure<-c(correlatedentitymeasure, as.character(rvs[j,2]))
correlationcoefficient<-c(correlationcoefficient, rvCoeffs[i,j])
}
}
result <- data.frame
(entity,entitymeasure,correlatedentity,correlatedentitymeasure,correlationcoefficie
nt)
result
}

Registering an R Function
Youmust register a newly created R Function with both Vertica andOperations Analytics.

AQLDeveloper Guide
Chapter 8: Using R with AQL

HP Operations Analytics (2.31) Page 55 of 59

Registering your R function with Vertica
1. Prepare the .R file so that it contains the following:

n The core R function implementing your custom analytics logic or wrapper function that actually
calls your core custom analytics.

n The Vertica R UDX factory function.

n Output type callback R function.

n Any other helper R functions used by the core R function.

2. Run the Vertica R UDX load commands to load the R function into Vertica. At this stage the R
function becomes available as a valid UDX that can be invoked from Vertica SQL.

Note: Youmust complete these steps as a valid Vertica database user who has the privileges to
run SQL commands and who can create UDX functions in the Vertica database system.

The following is an example of the pair of Vertica SQL commands required to load the example R UDX
provided in the MVCorr.R example:

create library mvCorrLib as '/home/dbadmin/functions/MVCorr.R' language 'R';
create transform function mvCorr as language 'R' name 'mvCorrFactory' library
mvCorrLib;

You can also review the Vertica documentation about how to load Vertica R UDX functions.

Registering your R function with Operations Analytics
After the R function is loaded and available in Vertica, youmust tell Operations Analytics about it by
registering an R functionmodule into Operations Analytics.

1. Create an R module specification file. The following example shows the contents of one such
module definition file that defines the R module for themulti-variate correlation R UDX function
example from the /opt/HP/opsa/inventory/lib/hp/r-udx-examples/mvCorr.R file.

module MultiVariate;
/* Does multivariate correlation */
define mvCorr input(any, integer, integer) output(any);

Save the content in a text file. For example, see
/opt/HP/opsa/inventory/lib/hp/r/multivariate.rpsec

2. Load the R module specification into OPERATIONS ANALYTICS by running the following
command:
/opt/HP/opsa/bin/opsa-rspec-module-manager.sh -?

AQLDeveloper Guide
Chapter 8: Using R with AQL

HP Operations Analytics (2.31) Page 56 of 59

You should see an output similar to the following:
OPSA_HOME is set to /opt/HP/ops

-t <tenant name> Name of Tenant (mandatory argument except when using –v
option)
-v <file> Validate File
-l modules List Summary of Loaded Modules
-l all List Contents of All Loaded Modules
-l <modulename> List Contents of Module
-i <file> Import File
-a <authorname> Specify Author for Import File
-d <modulename> Delete Module
-? This help message

For example, you could load the R module named MultiVariate previously defined in the
/opt/HP/opsa/inventory/lib/hp/r/multivariate.rpsec file by running the following command:

/opt/HP/opsa/bin/opsa-rspec-module-manager.sh – t opsa_default -i
/opt/HP/opsa/inventory/lib/hp/r/multivariate.rpsec

Using your R Function in an Operations
Analytics Dashboard
You can create a dashboard pane with your AQL function or expression that returns time series data
that you can visualize using anOperations Analytics line chart, heat map chart, or bar chart elements in
the Operations Analytics console.

In a dashboard pane, you can visualize the results of the AQL function by using it in the query edit box
for the pane as shown below:

AQLDeveloper Guide
Chapter 8: Using R with AQL

HP Operations Analytics (2.31) Page 57 of 59

The query used in the query editor for the above dashboard pane is:

[metricQuery(oa_sysperf_global,{i.host_name ilike "*<mylocation>.<mycompany>.com"},
{i.host_name}, {moving_avg(i.mem_util)})]

Now surround the AQL function call with a call to a registered R function as shown below to trigger the
invocation of the registered R function:

The query, after surrounding the AQL function call with the invocation of the registered R function,
looks as follows:
[mvCorr[metricQuery(oa_sysperf_global,{i.host_name ilike
"*<mylocation>.<mycompany>.com"},{i.host_name}, {moving_avg(i.mem_util)})]()]

Limitations
Only a table visualization of the invoked R function is supported in Operations Analytics 2.20 or newer.

AQLDeveloper Guide
Chapter 8: Using R with AQL

HP Operations Analytics (2.31) Page 58 of 59

Send Documentation Feedback
If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the
following information in the subject line:

Feedback on AQL Developer Guide (Operations Analytics 2.31)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a webmail client, and
send your feedback to sw-doc@hpe.com .

We appreciate your feedback!

HP Operations Analytics (2.31) Page 59 of 59

mailto:sw-doc@hpe.com ?subject=Feedback on AQL Developer Guide (Operations Analytics 2.31)

	Chapter 1: What is AQL
	Chapter 2: Using the Analytics Query Language (AQL)
	Chapter 3: Analytics Query Language Syntax, Intrinsics, and Examples
	AQL Syntax
	Intrinsic Statistical Functions in AQL
	AQL Query Examples

	Chapter 4: Analytics Query Language Functions and Expressions
	Define Analytic Query Language Functions
	Creating and Using AQL Functions
	Importing Analytic Query Language Functions
	Collection-Specific AQL Functions
	Generic AQL Functions
	AQL Expressions
	Generic AQL Outer Functions
	Bucket Function

	Chapter 5: Arithmetic Expressions and Aliases
	Using Arithmetic Expressions and Aliases in AQL
	More about Alias Support and Alias Placement Conventions
	Higher Order Arithmetic Involving Intrinsic Calls

	Chapter 6: Analytics Query Language for Log Data
	Chapter 7: Troubleshooting AQL Queries
	Introduction
	Syntax Errors
	Meta Data Errors
	Semantic Errors

	Chapter 8: Using R with AQL
	Setting up the R Language Pack from Vertica
	Creating the R Functions that Integrate with Operations Analytics
	Identifying the Distinct Time Series Measurements in an Input Frame for an R ...

	Registering an R Function
	Registering your R function with Vertica
	Registering your R function with Operations Analytics

	Using your R Function in an Operations Analytics Dashboard
	Limitations

	Send Documentation Feedback

