
HP UFT Web Add-in Extensibility
Software Version: 12.50
Windows ® operating systems

Developer Guide

Document Release Date: June 2015
Software Release Date: June 2015

Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable
for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for
Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notice
© Copyright 1992 - 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Google™ and Google Maps™ are trademarks of Google Inc.

Intel® and Pentium® are trademarks of Intel Corporation in the U.S. and other countries.

Microsoft®, Windows®, Windows® XP, and Windows Vista ® are U.S. registered trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to:
https://softwaresupport.hp.com/group/softwaresupport/search-result.

This site requires an HP Passport account. If you do not have one, click the Create an account button on the
HP Passport Sign in page.

Support
Visit the HP Software Support Online web site at: https://softwaresupport.hp.com

Developer Guide

HP UFT Web Add-in Extensibility (12.50) Page 2

https://softwaresupport.hp.com/group/softwaresupport/search-result
https://softwaresupport.hp.com/

This web site provides contact information and details about the products, services, and support that HP Software
offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can benefit by
using the support web site to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HP support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support
contract. To register for an HP Passport ID, go to: https://softwaresupport.hp.com and click Register.

To find more information about access levels, go to: https://softwaresupport.hp.com/web/softwaresupport/access-
levels.

HP Software Solutions & Integrations and Best
Practices
Visit HP Software Solutions Now at https://h20230.www2.hp.com/sc/solutions/index.jsp to explore how the products
in the HP Software catalog work together, exchange information, and solve business needs.

Visit the Cross Portfolio Best Practices Library at https://hpln.hp.com/group/best-practices-hpsw to access a wide
variety of best practice documents and materials.

Developer Guide

HP UFT Web Add-in Extensibility (12.50) Page 3

https://softwaresupport.hp.com/
https://softwaresupport.hp.com/web/softwaresupport/access-levels
https://softwaresupport.hp.com/web/softwaresupport/access-levels
https://h20230.www2.hp.com/sc/solutions/index.jsp
https://hpln.hp.com/group/best-practices-hpsw

Contents

Welcome to HP UFT Web Add-in Extensibility 7
About the UFT Web Add-in Extensibility SDK 7
About the UFT Web Add-in Extensibility Developer Guide 8
Additional Online Resources 9

Part 1: Working with Web Add-in Extensibility 11
Chapter 1: Introducing UFT Web Add-in Extensibility 12

About UFT Web Add-in Extensibility 13
Extensibility Accelerator 13
Identifying the Building Blocks of Web Add-in Extensibility 14
Deciding When to Use Web Add-in Extensibility 15

Analyzing the Default UFT Support and Extensibility Options for a Sample Custom
Control 16

Understanding How to Implement Web Add-in Extensibility 20
Web Add-in Extensibility Samples 21

Chapter 2: Planning UFT Support for Your Toolkit 23
About Planning UFT Support for Your Toolkit 24
Preparing to Create Support for a Custom Toolkit 24
Determining the Toolkit Related Information 24
Determining the Support Information for Each Custom Control Type 25

Understanding the Web Add-in Extensibility Planning Checklist 25
Web Add-in Extensibility Planning Checklist 27

Where Do You Go from Here? 29
Chapter 3: Developing Support for Your Toolkit 30

About Custom Toolkit Support 31
Developing Browser-Independent Support 31

Creating a Custom Toolkit Support Set 32
Understanding the Test Object Configuration File 33

How UFT Loads the Test Object Configuration XML 37
Understanding How UFT Merges Test Object Configuration Files 37

Extending an Existing Test Object Class 38
Providing a Help File for Customized Test Object Classes 40

Understanding the Toolkit Configuration File 41
Designing JavaScript Functions for Your Toolkit Support Set 42

Global JavaScript Methods and Utility Methods 46
Example: Using Sibling Controls to Identify an Object 48

Teaching UFT to Identify the Test Object Class to Use for a Custom Web Control 49
Using the Conditions Elements 51

Developer Guide

HP UFT Web Add-in Extensibility (12.50) Page 4

Testing the Toolkit Support Set During Development 55
Logging and Debugging the Custom Support 58

Using the Microsoft Windows Event Log 58
Debugging Your JavaScript Files (Internet Explorer Only) 60

Implementing Support for Test Object Methods 61
Supporting Dynamic Lists of Values for Method Arguments 62

Implementing Support for Identification Properties 65
Customizing the Test Object Name 66

Implementing a Filter for Learning Child Controls 67
Implementing Support for Recording 69
Troubleshooting and Limitations - Developing Support 71

Chapter 4: Deploying the Toolkit Support Set 72
About Deploying the Custom Toolkit Support 73
Deploying the Custom Toolkit Support 73

Settings to Use During Design Stages 75
Modifying Deployed Support 75

Modifying Identification Property Attributes in a Test Object Configuration File 75
Removing Deployed Support 76

Part 2: Tutorial: Learning to Create Web Custom Toolkit Support 78
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control 79

Preparing for This Lesson 80
Planning Support for the Web Add-in Extensibility Book Sample Toolkit 80

Web Add-in Extensibility Planning Checklist 85
Developing the Toolkit Support Set 87

Stage 1: Creating the Toolkit Support Set 87
Stage 2: Introducing the WebExtSample Environment to UFT 88

Designing the Toolkit Configuration File 88
Designing the Test Object Configuration File 89

Stage 3: Teaching UFT to Identify, Spy, and Learn the Book Control 90
Deploying and Testing the Toolkit Support Set (for Stage 3) 92

Stage 4: Implementing Support for the WebExtBook's Test Object Methods 95
Deploying and Testing the Toolkit Support Set (for Stage 4) 97

Stage 5: Implementing Support for the WebExtBook's Identification Properties 97
Deploying and Testing the Toolkit Support Set (for Stage 5) 99

Stage 6: Changing the Name of the Test Object 100
Deploying and Testing the Toolkit Support Set (for Stage 6) 101

Stage 7: Implementing a Filter to Prevent Learning Child Objects 101
Deploying and Testing the Toolkit Support Set (for Stage 7) 102

Stage 8: Implementing Support for Recording on the Book Control 102
Deploying and Testing the Toolkit Support Set (for Stage 8) 105

Developer Guide

HP UFT Web Add-in Extensibility (12.50) Page 5

Stage 9: Implementing Support for Dynamic List of Values for AuthorName 106
Deploying and Testing the Toolkit Support Set (for Stage 9) 108

Lesson Summary 108
Where Do You Go from Here? 108

Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control 110
Preparing for This Lesson 111
Planning Support for the Web Add-in Extensibility Sample UsedBooks Control 111

Web Add-in Extensibility Planning Checklist 116
Developing the Toolkit Support Set 117

Stage 1: Expanding the Toolkit Support Set to Support an Additional Control 118
Stage 2: Teaching UFT to Identify, Spy, and Learn the UsedBooks Control 119

Deploying and Testing the Toolkit Support Set (for Stage 2) 121
Stage 3: Implementing Support for the WebExtUsedBooks Test Object Methods 123

Deploying and Testing the Toolkit Support Set (for Stage 3) 125
Stage 4: Implementing Support for the WebExtUsedBooks Identification Properties
and the Test Object Name 126

Deploying and Testing the Toolkit Support Set (for Stage 4) 126
Stage 5: Implementing a Filter to Prevent Learning Child Objects 127

Deploying and Testing the Toolkit Support Set (for Stage 5) 128
Stage 6: Implementing Support for Recording on the UsedBooks Control 128

Deploying and Testing the Toolkit Support Set (for Stage 6) 129
Lesson Summary 130

Where Do You Go from Here? 130

Send Us Feedback 131

Developer Guide

HP UFT Web Add-in Extensibility (12.50) Page 6

HP UFT Web Add-in Extensibility (12.50) Page 7

Welcome to HP UFT Web Add-in
Extensibility
HP UFT Web Add-in Extensibility is an SDK (Software Development Kit) package that enables you to
support testing applications that use third-party and custom Web controls that are not supported out-
of-the-box by the UFT Web Add-in.

Extensibility can also be used to enable HP Sprinter, HP's solution for efficient and effective manual
testing, to learn Web objects that are not supported out-of-the-box. For more information about
Sprinter, see the HP Sprinter User Guide.

This chapter includes:

• About the UFT Web Add-in Extensibility SDK 7

• About the UFT Web Add-in Extensibility Developer Guide 8

• Additional Online Resources 9

About the UFT Web Add-in Extensibility SDK
Installing Extensibility Accelerator for HP Functional Testing also installs the UFT Web Add-in
Extensibility SDK, which provides the following:

l An API that enables you to extend the UFT Web Add-in to support custom Web controls.

l The Web Add-in Extensibility Help, which includes the following:

l A developer guide, including a step-by-step tutorial in which you develop support for a sample
custom control.

l API References.

l A Toolkit Configuration Schema Help.

l The UFT Test Object Schema Help.

The Help is available from Start > All Programs > HP Software > HP Unified Functional Testing >
Extensibility > Documentation

l A printer-friendly Adobe portable document format (PDF) version of the developer guide (available in
the <Extensibility Accelerator installation>\help folder).

l Web Add-in Extensibility toolkit support sets that extend UFT GUI testing support for the following
Web 2.0 environments:

l ASP.NET AJAX control toolkit

l Google Web Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 8

l Yahoo User Interface

l Dojo

l A sample Web toolkit that includes controls named Book and UsedBooksTable (if you install
Extensibility Accelerator).

Accessing UFT Web Add-in Extensibility in Windows 8 Operating Systems

UFT files that were accessible from the Startmenu in previous versions of Windows are accessible in
Windows 8 from the Start screen or the Apps screen.

l Applications (.exe files). You can access UFT applications in Windows 8 directly from the Start
screen. For example, to start UFT, double-click the HP Unified Functional Testing shortcut.

l Non-program files. You can access documentation from the Apps screen.

Note: As in previous versions of Windows, you can access context sensitive help in UFT by
pressing F1, and access complete documentation and external links from the Helpmenu.

About the UFT Web Add-in Extensibility
Developer Guide
This guide explains how to set up UFT Web Add-in Extensibility and use it to extend UFT GUI testing
support for third-party and custom Web controls.

This guide assumes you are familiar with UFT functionality, and should be used together with the
following documents, provided in the Web Add-in Extensibility Help (Start > All Programs > HP Software
> HP Unified Functional Testing > Extensibility > Documentation > Web Add-in Extensibility Help):

l API References

l Toolkit Configuration Schema Help

l Test Object Schema Help

These documents should also be used in conjunction with the following UFT documentation, available
with the UFT installation (Help > HP Unified Functional Testing Help from the UFT main window):

l HP Unified Functional Testing User Guide

l The Web section of the HP Unified Functional Testing Add-ins Guide

l HP UFT Object Model Reference for GUI Testing

HP UFT Web Add-in Extensibility (12.50) Page 9

Note:

The information, examples, and screen captures in this guide focus specifically on working with
UFT GUI tests. However, all toolkit support sets developed using the Web Add-in Extensibility can
also be used to extend Sprinter's capabilities to support Web controls that are not supported out-
of-the-box. All references to UFT in this guide apply to both UFT and Sprinter.

Additionally, much of the information in this guide applies equally to components.

Business components are part of HP Business Process Testing. For more information, see the
HP Unified Functional Testing User Guide and the HP Business Process Testing User Guide.

When working in Windows 8, access UFT documentation and other files from the Apps screen.

To enable you to search this guide more effectively for specific topics or keywords, use the following
options:

l AND, OR, NEAR, and NOT logical operators. Available from the arrow next to the search box.

l Search previous results. Available from the bottom of the Search tab.

l Match similar words. Available from the bottom of the Search tab.

l Search titles only. Available from the bottom of the Search tab.

Tip: When you open a Help page from the search results, the string for which you searched may be
included in a collapsed section. If you cannot find the string on the page, expand all the drop-down
sections and then use Ctrl-F to search for the string.

To check for recent updates, or to verify that you are using the most recent edition of a document, go
to the HP Software Product Manuals Web site (http://h20230.www2.hp.com/selfsolve/manuals).

Additional Online Resources
The following additional online resources are available:

Resource Description

Troubleshooting
& Knowledge
Base

TheTroubleshooting pageon theHP Software Support Web sitewhere you can search the Self-solve
knowledgebase. TheURL for this Web site is http://h20230.www2.hp.com/troubleshooting.jsp.

HP Software
Support

TheHP Software Support Web site. This site enables you to browse the Self-solve knowledgebase. You
can also post to and search user discussion forums, submit support requests, download patches and
updated documentation, and more. TheURL for this Web sitewww.hp.com/go/hpsoftwaresupport.

l Most of the support areas require that you register as an HP Passport user and sign in. Many also
require a support contract.

l To find more information about access levels, go to: http://h20230.www2.hp.com/new_access_
levels.jsp

l To register for an HP Passport user ID, go to: http://h20229.www2.hp.com/passport-
registration.html

http://h20230.www2.hp.com/selfsolve/manuals
http://h20230.www2.hp.com/troubleshooting.jsp
http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html
http://h20229.www2.hp.com/passport-registration.html

HP UFT Web Add-in Extensibility (12.50) Page 10

Resource Description

HP Software
Web site

TheHP SoftwareWeb site. This site provides you with themost up-to-date information on HP Software
products. This includes new software releases, seminars and trade shows, customer support, and more.
TheURL for this Web site iswww.hp.com/go/software

http://www.hp.com/go/software

HP UFT Web Add-in Extensibility (12.50) Page 11

Part 1: Working with Web Add-in
Extensibility

Chapter 1: Introducing UFT Web Add-in
Extensibility
UFT Web Add-in Extensibility enables you to provide high-level support for third-party and custom Web
controls that are not supported out-of-the-box by the UFT Web Add-in.

This chapter includes:

• About UFT Web Add-in Extensibility 13

• Extensibility Accelerator 13

• Identifying the Building Blocks of Web Add-in Extensibility 14

• Deciding When to Use Web Add-in Extensibility 15

• Understanding How to Implement Web Add-in Extensibility 20

• Web Add-in Extensibility Samples 21

HP UFT Web Add-in Extensibility (12.50) Page 12

About UFT Web Add-in Extensibility
The UFT Web Add-in provides built-in support for a number of commonly used Web controls. You use
UFT Web Add-in Extensibility to extend that support and enable UFT to recognize additional Web
controls. You can also use Web Add-in Extensibility to teach UFT to recognize a group of controls or Web
elements as one object. For example, if a search button and an edit box comprise a search box, and you
want UFT to see them as one functional unit.

When UFT learns an object in an application, it recognizes the object as belonging to a specific test
object class. This determines the identification properties and test object operations of the test object
that represents the application's object in UFT.

When UFT learns the controls on a Web page without Extensibility, it ignores certain types of elements
and does not create test objects to represent the controls they define.

For other Web controls that are not supported out-of-the-box by the Web Add-in, UFT creates a generic
WebElement test object. This type of test object might not have certain characteristics that are specific
to the Web control you are testing. Therefore, when you try to create test steps with this test object,
the available identification properties and test object operations might not be sufficient.

For example, consider a custom Web control that is a special type of table that UFT recognizes as a plain
WebElement. WebElement test objects do not support GetCellData operations. To create a test step
that retrieves the data from a cell in the table, you would need to create test objects to represent each
cell in the table, and create a complex test that accesses the relevant cell's test object to retrieve the
data.

Alternatively, consider a table on your Web page that is made up of multiple appended html table
elements. You can define rules that help UFT recognize this aggregate table as one object, and provide
relevant test object methods. For example, methods that receive a row number relative to the
aggregate table and know which html table actually contains that row.

By creating support for a Web control using Web Add-in Extensibility, you can direct UFT to recognize the
control or group of controls as belonging to a specific test object class, and you can specify the behavior
of the test object. You can also extend the list of available test object classes that UFT is able to
recognize. This enables you to create tests that fully support the specific behavior of your custom Web
controls.

Extensibility Accelerator
An increasing number of Web applications are making use of Web 2.0-based toolkits, such as ASP.NET
AJAX, Dojo, YahooUI, GWT, and JQueryUI to add dynamic and interactive content to their sites. The
controls in these toolkits are complex and require sophisticated and flexible testing capabilities.

Developer Guide
Chapter 1: Introducing UFT Web Add-in Extensibility

HP UFT Web Add-in Extensibility (12.50) Page 13

UFT Web Add-in Extensibility enables you to extend the Web Add-in to customize how UFT recognizes
and interacts with different types of controls. Until now, using Web Add-in Extensibility consisted of
manually developing and maintaining toolkit support sets.

Extensibility Accelerator for HP Functional Testing is a Visual Studio-like IDE that facilitates the design,
development, and deployment of these support sets. It makes it faster and easier to create the
required extensibility XML files so that you can invest your main efforts in the development of the
JavaScript functions that will enable UFT to work with your custom Web controls.

The Extensibility Accelerator user interface helps you define new test object classes, operations, and
properties. It also provides a point-and-click mechanism you can use to map the test object classes you
defined to controls in your application. Extensibility Accelerator deployment capabilities enable you to
automatically deploy your new toolkit support set to UFT or to package it so that you can share it with
other UFT users.

The Extensibility Accelerator for HP Functional Testing installation is available from the Add-in
Extensibility and Web 2.0 Toolkits option in the Unified Functional Testing setup program.

Note: As part of this process, an html page opens in your browser. To complete the installation
successfully, this page must be opened in Internet Explorer.

Identifying the Building Blocks ofWeb Add-in
Extensibility
The sections below describe the main elements that comprise UFT object support. These elements are
the building blocks of Web Add-in Extensibility. By extending the existing support of one or more of
these elements, you can develop the support you need to create meaningful and maintainable tests.

Test Object Classes

In UFT, every object in an application is represented by a test object of a specific test object class. The
test object class determines the list of identification properties and test object methods available in
UFT for this test object. The icon used to represent the test object in UFT, for example in the Keyword
View and Object Repository, is also determined by the test object class.

Test Object Names

When UFT learns an object, it creates a unique name for each test object on the page. A descriptive test
object name enables you distinguish between test objects of the same class and makes it easier to
identify them in your object repository and in tests.

By default, a test object is given the name of its test object class (appended with an index if there is
more than one test object of the same class on the page). In many cases, this is not the ideal name for
the custom control.

Developer Guide
Chapter 1: Introducing UFT Web Add-in Extensibility

HP UFT Web Add-in Extensibility (12.50) Page 14

The test object name needs to be meaningful to the UFT user, preferably using terminology that is
relevant to your toolkit. UFT displays this name in the Keyword View, in the Editor, and in the object
repository.

Test Object Identification Properties

The test object class used to represent the Web control determines the list of identification properties
available for the test object. It also determines which of these identification properties are used to
uniquely identify the control, which identification properties are available for checkpoints and output
values (in the Checkpoint Properties and Output Value Properties dialog boxes), and which are selected
by default for checkpoints. However, the actual values of the identification properties are derived from
the Web control. Therefore, several Web controls that are represented by test objects from the same
test object class might have different definitions for the same identification property.

Test Object Methods

The test object class used to represent the Web control determines the list of test object methods for a
test object. However, the same test object method might operate differently for different Web controls
represented by test objects from the same test object class. This happens because depending on the
specific type of Web control, UFT may have to perform the test object method differently.

Recording Events

One way to create UFT GUI tests is by recording user operations on the application. When you start a
recording session, UFT listens for events that occur on objects in the application and writes
corresponding test steps. The test object class used to represent a Web control determines which
events UFT can listen for on the Web control and what test step to record for each event that occurs.

Deciding When to UseWeb Add-in Extensibility
The UFT Web Add-in provides a certain level of support for most Web controls, but ignores controls
defined as DIV or SPAN elements. Before you extend support for a custom Web control, analyze it from a
UFT perspective to view the extent of this support and to decide which elements of support you need to
modify.

When you analyze the custom Web control, use the Object Spy, Keyword View, Editor, and the Record
option. Make sure you examine each of the elements described in " Identifying the Building Blocks of
Web Add-in Extensibility".

If you are not satisfied with the existing object identification or behavior, your Web control is a
candidate for Web Add-in Extensibility, as illustrated in the following situations:

l UFT might recognize the control using a test object class that does not fit your needs. You can use
Web Add-in Extensibility to instruct UFT to identify the custom control as belonging to a new test
object class that you create.

l The test object class that UFT uses for the control might be satisfactory, but you would like to

Developer Guide
Chapter 1: Introducing UFT Web Add-in Extensibility

HP UFT Web Add-in Extensibility (12.50) Page 15

customize the behavior of certain test object methods or identification properties. You can use Web
Add-in Extensibility to create a new test object class that extends the one UFT uses, override the
implementation of these properties and methods with your own custom implementation, and
instruct UFT to use the new test object class.

l You might find that the test object names UFT generates for all objects of a certain control type are
identical (except for a unique counter) or that the name used for the test object does not clearly
indicate the control it represents. You can use Web Add-in Extensibility to create a new test object
class that extends the one UFT uses, modify how UFT names test objects of your new class, and
instruct UFT to use the new test object class.

l UFT might identify individual sub-controls within your custom control, but not properly identify your
main control. For example, if your main custom control is a digital clock with edit boxes containing
the hour and minute digits, you might want changes in the time to be recognized as SetTime
operations on the clock control and not as Set operations on the edit boxes. You can use Web Add-in
Extensibility to modify how events that occur on child controls are treated.

l During a record session, when you perform operations or trigger events on your control, UFT might
not record a step at all, or it might record steps that are not specific to the control's behavior.
Alternatively, UFT might record many steps for an event that should be considered a single operation,
or it might record a step when no step should be recorded.

You can configure the events you want to record for each type of existing Web object by modifying
the Web event configuration. For more information, see the section on configuring Web event
recording in the HP Unified Functional Testing Add-ins Guide.

If Web event configuration does not sufficiently enable you to customize recording, for example, if
you want to modify the steps that UFT records when certain events occur, you can use Web Add-in
Extensibility.

Analyzing the Default UFT Support and Extensibility Options for a
Sample CustomControl
The following example illustrates how you can use Web Add-in Extensibility to improve the UFT support
of a custom control.

The Book control shown below represents a book sold on the Internet. This control is not specifically
supported on UFT.

This control contains information including the title of the book, its authors, the price for a new copy of
the book, and the lowest price for which a used copy can be purchased.

Developer Guide
Chapter 1: Introducing UFT Web Add-in Extensibility

HP UFT Web Add-in Extensibility (12.50) Page 16

Clicking on the title of the book opens a page with more details about the book. Clicking on an author
name opens a page with a list of books by the same author. Clicking on Used opens a UsedBooks page,
listing all of the available used copies of the book, and their prices.

The Book control is implemented as a Web table, as follows:

<table class="Book">
 <tr>
 <td class="BookImageCell" rowspan="4">

 </td>
 <td class="BookCell">
 The History of
QuickTest Professional
 </td>
 </tr>
 <tr>
 <td class="BookCell">
 By: Jane Doe,
John Doe
 </td>
 </tr>
 <tr>
 <td class="BookCell">
 </td>
 </tr>
 <tr>
 <td class="BookCell">
 New: 59.99$ Used: from 29.99$
 </td>
 </tr>
</table>

Developer Guide
Chapter 1: Introducing UFT Web Add-in Extensibility

HP UFT Web Add-in Extensibility (12.50) Page 17

Therefore, if you point to this control using the Object Spy, UFT recognizes it as a WebTable object
named according to the title of the book. The icon used for the test object is the standard WebTable
class icon.

If you record on the Book control without implementing support for it, the Keyword View looks like this:

Developer Guide
Chapter 1: Introducing UFT Web Add-in Extensibility

HP UFT Web Add-in Extensibility (12.50) Page 18

In the Editor, the recorded test looks like this:

Note that only simple Click steps are recorded, each attributed to a different object defined within the
book control. Click operations are recorded independently on Web Link test objects with different
names, or on the Book image test object. These steps are not helpfully meaningful in the context of this
control.

If you use Web Add-in Extensibility to support the Book control, the result is more meaningful. UFT
recognizes the control as a WebExtBook test object (still named according to the book title) and uses a
different icon. The identification properties include relevant information, such as authors andmin_
used_price, which provide the names of all the book's authors and the lowest price for which a used
copy can be purchased.

Developer Guide
Chapter 1: Introducing UFT Web Add-in Extensibility

HP UFT Web Add-in Extensibility (12.50) Page 19

When you are ready to create a test on the control, the Select, GoToAuthorPage, and
GoToUsedBookPage methods are supported. These methods can be recorded or you can select them
manually in the Operation column of the Keyword View. When recording a test, both clicking on the
book's image and clicking its title result in a Select step being recorded.

You can also create a checkpoint to check the value of identification properties, for example, authors
(that provides a string comprised of all the books authors).

In the Keyword View, a test created by recording the same user operations as the test shown above
looks like this:

In the Editor, the test looks like this:

This test is more meaningful and relevant for the Book control's functionality.

Understanding How to Implement Web Add-in
Extensibility
Using Web Add-in Extensibility, you can implement full support for all UFT features for your controls. You
can implement Web Add-in Extensibility support for a set of controls (also referred to as a toolkit or
custom toolkit) by developing a toolkit support set.

Implementing Web Add-in Extensibility consists of the following stages:

1. Planning the Toolkit Support Set.

l Determine the set of Web controls that comprise your custom toolkit.

l Define the test object model by determining which test objects and operations you want to
support based on the controls and business processes supported by your toolkit.

Developer Guide
Chapter 1: Introducing UFT Web Add-in Extensibility

HP UFT Web Add-in Extensibility (12.50) Page 20

2. Developing the Toolkit Support Set.

AWeb Add-in Extensibility toolkit support set is comprised of the following files:

l One test object configuration file, which describes the test object model that you want UFT to
use for your toolkit.

l One toolkit configuration file, which describes which test object class represents each control
in the toolkit and how UFT interacts with each control.

l One or more files containing JavaScript functions that UFT can call to perform operations on the
custom controls.

3. Deploying and Testing the Toolkit Support Set.

To deploy your toolkit support set and enable UFT to support your controls, you need to copy the
files you created to specific locations within the UFT installation folder.

After you deploy the toolkit support set, when UFT opens, it displays your toolkit name as a child
node under the Web Add-in node in the Add-in Manager. If you select the check box for your toolkit,
UFT supports the controls in this toolkit using the toolkit support set that you developed.

4. Enhancing the Toolkit Support Set.

After you have created and tested basic Web Add-in Extensibility support for your controls you can
enhance your toolkit support set by using some of the more complex options to fine tune your
support.

For more information on each of these stages, see:

l "Planning UFT Support for Your Toolkit" on page 23

l "Developing Support for Your Toolkit" on page 30

l "Deploying the Toolkit Support Set" on page 72

When you develop a Web Add-in Extensibility toolkit support set, you can start by creating a simple and
basic support set and deploying it to UFT. This enables UFT to recognize your controls correctly and
enables the UFT user to create and run tests on the controls. You can then enhance your support to
enable more complex capabilities, such as filtering the child objects learned with a control and more
advanced handling of events when recording a test.

You can learn how to develop a toolkit support set hands-on, by performing the lessons in "Tutorial:
Learning to Create Web Custom Toolkit Support" on page 78.

Web Add-in Extensibility Samples
The Web 2.0 Feature Pack for HP Functional Testing provides a number of completed toolkit support
sets from which you can learn more about Web Add-in Extensibility.

l Installing the Web 2.0 Toolkit Support for Unified Functional Testing from this feature pack on a UFT
computer installs child add-ins under the Web Add-in that support some public Web 2.0 toolkits:
ASP.NET AJAX, GWT, YahooUI, and Dojo. These add-ins are toolkit support sets that were developed
using Web Add-in Extensibility. The files that comprise these toolkit support sets are available in

Developer Guide
Chapter 1: Introducing UFT Web Add-in Extensibility

HP UFT Web Add-in Extensibility (12.50) Page 21

<UFT installation folder>\dat\Extensibility\Web folder and in the Toolkits subfolder within this
folder.

l Installing Extensibility Accelerator installs sample Web Add-in Extensibility projects that contain the
Web 2.0 toolkit support sets mentioned above.

The sample projects are installed in the %ALLUSERSPROFILE%\Documents\
ExtAccTool\Samples folder, and are also accessible from the Extensibility Accelerator Start Page.
You can open these projects in Extensibility Accelerator and browse through the files, functions, and
comments to learn more about how these support sets are designed. You can also modify these
sample projects and experiment with them. Backup copies of the sample projects are installed in the
<Extensibility Accelerator installation folder>\Help\Samples folder.

l Installing Extensibility Accelerator also installs a sample Book application, and the Web Add-in
Extensibility project containing the toolkit support set for this application.

l The application is installed in%ALLUSERSPROFILE%\Documents\ExtAccTool\
Samples\WebExtSample\Application\Book.htm

l The Web Add-in Extensibility project containing the toolkit support set for the Book application is
installed in%ALLUSERSPROFILE%\Documents\ExtAccTool\
Samples\WebExtSample.

In "Tutorial: Learning to Create Web Custom Toolkit Support" on page 78, you create a similar
toolkit support set for the Book application and deploy it to UFT (without using Extensibility
Accelerator).

The HP UFT Extensibility Accelerator for HP Functional Testing User Guide includes a tutorial in which
you create support for this control using Extensibility Accelerator.

Developer Guide
Chapter 1: Introducing UFT Web Add-in Extensibility

HP UFT Web Add-in Extensibility (12.50) Page 22

Chapter 2: Planning UFT Support for Your
Toolkit
Before you begin to create support for a custom toolkit, you must carefully plan the support. Detailed
planning of how you want UFT to recognize the custom controls enables you to correctly build the
fundamental elements of the custom toolkit support.

This chapter includes:

• About Planning UFT Support for Your Toolkit 24

• Preparing to Create Support for a Custom Toolkit 24

• Determining the Toolkit Related Information 24

• Determining the Support Information for Each Custom Control Type 25

• Where Do You Go from Here? 29

Note: This chapter assumes familiarity with the concepts presented in "Introducing UFT Web Add-in
Extensibility" on page 12.

HP UFT Web Add-in Extensibility (12.50) Page 23

About Planning UFT Support for Your Toolkit
Extending the UFT Web Add-in's support to recognize custom controls is a process that requires
detailed planning. To assist you with this, the sections in this chapter include sets of questions related
to the implementation of support for your custom toolkit and its controls. When you create your toolkit
support set, you implement it based on the answers you provide to these questions.

The first step is determining general information related to your custom toolkit, after which you will
define the specific information related to each control you want to support.

Preparing to Create Support for a CustomToolkit
Before you begin planning support for custom Web controls, make sure you have full access to the
controls and understand their behavior. You must have an application or Web page in which you can
view the controls in action, and view the source that implements them.

You do not need to modify any of a custom control's sources to support it in UFT, but you do need to be
familiar with them. Make sure you know what elements and attributes the control comprises, what
HTML properties it has, the events for which you can listen, and so on.

Determining the Toolkit Related Information
When you plan your toolkit support set, begin by deciding the general toolkit related information:

l Provide a unique name for the toolkit or environment for which you are creating support.

UFT displays the name of your environment in all of the dialog boxes that display lists of add-ins or
supported environments. For example, when UFT opens, it displays the name of your environment as a
child of the Web Add-in in the Add-in Manager dialog box and the UFT user can specify whether to load
support for that environment.

l Decide which controls this toolkit support set will support.

l Decide what files will contain the JavaScript functions that you write for the toolkit support set.

l You can specify one default file for the JavaScript functions that implement support for the
different UFT functionalities and the different test object classes. In addition, you can define
separate files for your implementation functions for the different functionalities and test object
classes.

l You can specify one file that contains common JavaScript functions that you call from within
others.

l Decide whether to use one JavaScript function for the whole toolkit to match test object classes to
the custom controls. For more information, " Teaching UFT to Identify the Test Object Class to Use for
a Custom Web Control" on page 49.

Developer Guide
Chapter 2: Planning UFT Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 24

When you design the toolkit support set, you specify this information in the toolkit configuration file.
For more information, see "Understanding the Toolkit Configuration File" on page 41.

Determining the Support Information for Each Custom
Control Type
When planning custom support for a specific type of control, carefully consider how you want UFT to
recognize controls of this type—what type of test object you want to represent the controls in UFT GUI
tests, which identification properties and test object methods you want to use, and so on. Make these
decisions based on the business processes that might be tested using this type of control and
operations that users are expected to perform on these controls.

You can run an application containing the custom control and analyze the control from a UFT
perspective using the Object Spy, the Keyword View, and the Record option. This enables you to see how
UFT recognizes the control without custom support, and helps you to determine what you want to
change.

Note: Web Add-in Extensibility can be used to create support for Web controls within Web pages
and frames. You cannot develop custom support for Web pages or frames themselves.

To view an example of analyzing a custom control using UFT, see "Analyzing the Default UFT Support and
Extensibility Options for a Sample Custom Control" on page 16.

This section also includes:

l "Understanding the Web Add-in Extensibility Planning Checklist" below

l "Web Add-in Extensibility Planning Checklist" on page 27

Understanding theWeb Add-in Extensibility Planning Checklist
When you plan the support for a specific type of control, you must ask yourself a series of questions.
These are explained below and are available in an abbreviated, printable checklist on page 27.

1. Make sure you have access to an application that runs the custom control on a computer with UFT
installed.

2. Is there an existing Web test object class which can be extended to represent the custom control?
If so, which one? If not, your new test object class needs to extend the WebElement class.

Developer Guide
Chapter 2: Planning UFT Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 25

3. If the new test object class extends a base test object class other than WebElement, does the
control contain an element of the type normally represented by the base test object class (also
referred to as a base element)?

l If not, you will need to implement test object methods inherited from the base class that not
supported by WebElement. In addition, you will need to design a method that returns values for
all of the test class' identification properties that are not supported by WebElement.

l If the control includes a base element, is it the root Web element of the control?

o If it is the root element, UFT will use its internal implementation for the inherited test object
methods and identification properties that you do not override.

o If the base element is not the root element, you need to implement a JavaScript function
that returns the base element.

4. Define the details for the new test object class that will represent the custom control in UFT GUI
tests.

When you design the toolkit support set, you specify this information in the test object
configuration file. For more information, see "Understanding the Test Object Configuration File" on
page 33.

a. Specify the test object class name.

b. Do you want the new test object class to belong to a different generic type than the one to
which the base class belongs? If so, specify the generic type. (For example, if your new test
object class extends WebElement (whose generic type is object), but you would like UFT to
group this test object class with the edit test object classes.)

c. Do you want UFT to use a different icon for the new test object?

If so, make sure the icon file is available in an uncompressed .ico format. Recommended
location: <UFT installation folder>\dat\Extensibility\<UFT add-in name>\
Toolkits\<Environment name>\Res.

d. Specify one or more identification properties that can be used to uniquely identify the control
(in addition to the test object class).

e. Specify the default test object method to be displayed in the Keyword View and Step
Generator when a step is generated for a test object of this class.

f. Do you want to provide a Help file, which UFT will open when F1 is pressed for test objects of
this class in the Keyword View or Editor?

If so, make sure that the Help file is available in .chm format. Recommended location: <UFT
installation folder>\dat\Extensibility\<UFT add-in name>\
Toolkits\<Environment name>\Help.

Developer Guide
Chapter 2: Planning UFT Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 26

5. Decide how to design the process of identifying the test object class to use for this control.

l Do you want to limit the process to HTML elements with specific HTML tags? If so, which? Make
sure to include all HTML tags that can be relevant for your custom control.

l Which HTML properties will you use to determine what test object class represents controls of
this type?

l Do you need to create different identification rules to use when the control runs on different
browsers?

For more information, see " Teaching UFT to Identify the Test Object Class to Use for a Custom Web
Control" on page 49.

6. Specify the basis for naming the test object that represents the control.

7. What identification properties do you want to support? Which properties should be displayed in the
Checkpoint Properties and Output Value Properties dialog boxes in UFT, and which should be
selected by default in this dialog box? Which identification properties can be used for Smart
Identification?

8. What test object methods do you want to support? Specify the method argument types and
names, and whether the method returns a value in addition to the return code.

Optionally, specify the location of a Help file, which UFT will open when F1 is pressed in the Keyword
View or Editor or the Operation Help button is clicked in the Step Generator for a test object
method.

9. Do you want to dynamically provide a list of possible values for any test object method arguments?
Which?

10. Which types of children should UFT learn with the control?

11. Should the Object Spy display test objects of this class?

12. Do you want to provide support for creating UFT GUI tests by recording?

If so, list the events you want to record on the custom control during a UFT recording session.

13. Determine what parts of the support need to be designed in the toolkit configuration file and what
parts need JavaScript functions.

Web Add-in Extensibility Planning Checklist
Use this checklist to plan the support for your custom control.

Custom Control Support Planning Checklist Specify
in
Toolkit
XML?

Support by
JavaScript
function?

q The sources for this custom control are located in: n/a n/a

q Specify theWeb test object base class that the new test object class extends: (Default— n/a n/a

Developer Guide
Chapter 2: Planning UFT Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 27

Custom Control Support Planning Checklist Specify
in
Toolkit
XML?

Support by
JavaScript
function?

WebElement)

q Is the base test object class WebElement?
Yes/No

If No, is there a base element (an element that matches the base test object class)?
Yes/No

If there is a base element, do you need a JavaScript function to return it? Yes/No

Yes/No Yes/No

q Specify theNew Web test object class details:

l Test object class name:

l Generic type (optional):

l Icon file location (optional):

l Identification properties for description:

l Default test object method:

l Help file location:

n/a n/a

q Specify the basis for identifying the test object class to use for the control (consider different
browsers):

Yes/No Yes/No

q Specify the basis for naming the test object: n/a Yes

q List the identification properties to support. Markwhich should be available for checkpoints
and output values (and which should be selected by default in checkpoints) and which (if any)
should beused for Smart Identification:

Yes/No Yes/No

q List the test object methods to support (if required, include arguments, return values, Help
file location and Help ID):

Yes/No Yes/No

q Provide adynamic list of values for any test object method arguments?
Yes/No (default)

If so, list the arguments:

n/a Yes/No

q Specify the types of children that UFT should learn with the control: Yes/No Yes/No

q Display test objects of this class in theObject Spy?
Yes (default)/No

Yes/No n/a

q Provide support for recording?
Yes/No

Yes/No Yes/No

Developer Guide
Chapter 2: Planning UFT Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 28

Custom Control Support Planning Checklist Specify
in
Toolkit
XML?

Support by
JavaScript
function?

If so, list the events that should trigger recording:

Where Do You Go fromHere?
After you finish planning the custom toolkit support, you create the toolkit support set to support the
custom toolkit as per your plan. "Developing Support for Your Toolkit" on page 30 explains how to
develop the toolkit support set.

Developer Guide
Chapter 2: Planning UFT Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 29

Chapter 3: Developing Support for Your Toolkit
This chapter explains how to create support for a custom Web toolkit. It explains what files you have to
create for the toolkit support set, the structure and content of these files, and how to use them to
support the different UFT capabilities for your environment.

For information on where the toolkit support set files should be stored to activate the support you
design, see "Deploying the Toolkit Support Set" on page 72.

This chapter includes:

• About Custom Toolkit Support 31

• Creating a Custom Toolkit Support Set 32

• Understanding the Test Object Configuration File 33

• Understanding the Toolkit Configuration File 41

• Designing JavaScript Functions for Your Toolkit Support Set 42

• Teaching UFT to Identify the Test Object Class to Use for a Custom Web Control 49

• Testing the Toolkit Support Set During Development 55

• Logging and Debugging the Custom Support 58

• Implementing Support for Test Object Methods 61

• Implementing Support for Identification Properties 65

• Implementing a Filter for Learning Child Controls 67

• Implementing Support for Recording 69

• Troubleshooting and Limitations - Developing Support 71

HP UFT Web Add-in Extensibility (12.50) Page 30

About CustomToolkit Support
You implement Web Add-in Extensibility by creating a toolkit support set for each Web toolkit you want
to support. The toolkit support set is comprised of XML configuration files and JavaScript functions. The
XML configuration files define the test object classes that you create to support the custom Web
controls and map them to the controls. In addition, they define how UFT operates on the custom
controls. The JavaScript functions provide an interface between UFT and the application being tested,
retrieving information about the control and performing operations on it.

This chapter describes the different files, definitions, and functions that you must include in a custom
support set. For more information, see the Toolkit Configuration Schema Help, the API Reference, the
JavaScript Function Reference, and theUFT Test Object Schema Help (available in the UFT Web Add-in
Extensibility Help).

Extensibility Accelerator provides sample projects containing toolkit support sets that extend UFT's
support for some public Web 2.0 toolkits. These are the support sets for ASPAjax, GWT, YahooUI, and
Dojo, which are installed on UFT when you install the Web 2.0 Toolkit Support for Unified Functional
Testing. The samples also include Help files for the test object models that UFT uses to support testing
controls from these toolkits.

The sample projects are installed under %ALLUSERSPROFILE%\Documents\
ExtAccTool\Samples. You can open the projects in Extensibility Accelerator and browse through the
toolkit support set files to see examples of howWeb Add-in Extensibility can be implemented. Some of
the examples in this chapter are taken from these files.

Note: Before you actually begin to create a toolkit support set, you must plan it carefully. For more
information, see "Planning UFT Support for Your Toolkit" on page 23.

Developing Browser-Independent Support
ManyWeb controls are implemented differently and operate differently on different browsers, because
of the way different DOM properties are implemented on the different browsers.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 31

To enable your custom support to work for Microsoft Internet Explorer, Google Chrome, and Mozilla
Firefox, you must address the following:

l If the control's DOM structure is different in different browsers, UFT may need to use different logic
to identify which test object class to use for the control when learning objects or running steps on
different browsers. For information on how to define browser-specific identification conditions, see
"Using the Conditions Elements" on page 51.

l When you write your JavaScript functions, use jQuery function calls to create code that can run
smoothly on different types and versions of browsers. For more information see "Creating Browser-
Independent Support" on page 44.

l Web Add-in Extensibility provides the GetBrowserType and GetBrowserVersion utility methods,
which you can use to determine the type and version of the browser that is currently running a
control. This enables your JavaScript code to treat a control differently, depending on the browser
that is currently running the control.

Creating a CustomToolkit Support Set
AWeb Add-in Extensibility toolkit support set is comprised of the following files:

l One test object configuration file, which describes the test object model for your toolkit: The test
object classes that UFT should use to represent controls in your toolkit, and the identification
properties and test object methods that need to be supported for the test objects. For more
information, see "Understanding the Test Object Configuration File" on the next page.

Note: UFT loads of all the test object class definitions (from all of the test object configuration
files) when it opens, regardless of the custom toolkit for which they were created. This enables
you to use the same test object class definitions when supporting different custom toolkits.

l One toolkit configuration file, which describes which test object class represents each control in the
toolkit and how UFT interacts with each control. For more information, see "Understanding the
Toolkit Configuration File" on page 41.

l One or more files containing JavaScript functions that UFT can call to retrieve information from or
perform operations on the custom controls.

l Optionally, icon files that contain icons used in UFT to represent the test object classes that you
define, and Help files that describe these test object classes and their methods and properties.

"Deploying the Toolkit Support Set" on page 72 describes the names of the different files required for a
toolkit support set, and the folder structure in which they are stored.

To create a custom toolkit support set:

1. Choose a unique name to represent the toolkit or environment for which you are creating support.

You use the custom toolkit name to compose the name of the toolkit folder and the toolkit
configuration file. The name must start with a letter and can contain only alphanumeric characters
and underscores.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 32

Providing unique toolkit names enables a single UFT installation to support numerous custom
toolkit support sets simultaneously. For this reason, a name such as MyToolkit is not
recommended.

2. Create a folder for your toolkit support set.

You can choose any convenient name and location for this folder.

3. Create the following folder structure:

l <toolkit support set folder>\Toolkits\<toolkit environment name>\JavaScript

l <toolkit support set folder>\Toolkits\<toolkit environment name>\Res

l <toolkit support set folder>\Toolkits\<toolkit environment name>\Help

4. In the toolkit support set folder, create a file named <toolkit environment
name>TestObjects.xml. This is the test object configuration file.

5. In the <toolkit support set folder>\Toolkits\<toolkit environment name> folder, create a file
named <toolkit environment name>.xml. This is the toolkit configuration file.

6. In the <toolkit support set folder>\Toolkits\<toolkit environment name>\JavaScript folder,
create one or more files that will contain the JavaScript functions you design.

As a best practice, create one JavaScript file for each test object class. In addition, you can create
one JavaScript file that contains JavaScript functions called from JavaScript functions in the other
files.

7. You can use the <toolkit support set folder>\Toolkits\<toolkit environment name>\Res folder to
store any icons that you provide to represent your test object classes in UFT.

8. You can use the <toolkit support set folder>\Toolkits\<toolkit environment name>\Help folder
to store any Help (.chm) files that describe the test objects in your environment.

Understanding the Test Object Configuration File
The first stage of developing support for a custom toolkit is to introduce the test object model that you
want UFT to use to test your applications and controls. To do this, you define the test object model in
the test object configuration XML file. You need to create a test object class for every type of custom
control for which you want to extend or modify UFT support.

In a test object configuration XML, you define the test object classes (for example, the test object
methods they support, their identification properties, and so on).

You create a ClassInfo element for each test object class that you want to define. In addition, you
define the name of the environment or custom toolkit for which the test object classes are intended (in
the PackageName attribute of the TypeInformation element), and the UFT add-in which these test
object classes extend (in the AddinName attribute of the TypeInformation element).

If the relevant add-in is not loaded when UFT opens, UFT does not load the information in this XML.
Similarly, if the name of the environment or custom toolkit is displayed in the Add-in Manager dialog box
and its check box is not selected, the information in this XML is not loaded.

For more information, see "How UFT Loads the Test Object Configuration XML" on page 37.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 33

The sections below describe the information that you can include in a test object class definition.

Class Name and Base Class

The name of the new test object class and its attributes, including the base class—the test object class
that the new test object class extends. A new test object class extends an existing WebUFT test object
class, directly or indirectly. The base class may be a class delivered with UFT or a class defined using
Web Add-in Extensibility.

By default, the base class is WebElement.

The test object class name must be unique among all of the environments whose support a UFT user
might load simultaneously. For example, when defining a new test object class, do not use names of test
object classes from existing UFT add-ins, such as WebButton, WebEdit, and so on.

Note:

l A test object class inherits the base class' test object operations (methods and properties),
generic type, default operation, and icon. Identification properties are not inherited.

l If you create test object classes that extend test object classes defined in another toolkit
support set, you create a dependency between the two toolkit support sets. Whenever you
select to load the extending toolkit support set in the UFT Add-in Manager, you must also select
to load the toolkit support set that it extends.

Generic Type

The generic type for the new test object class, if you want the new test object class to belong to a
different generic type than the one to which its base class belongs. (For example, if your new test object
class extends WebElement (whose generic type is object), but you would like UFT to group this test
object class with the edit test object classes.)

Generic types are used when filtering objects (for example, in the Step Generator's Select Object for
Step dialog box and when adding multiple test objects to the object repository). Generic types are also
used when creating documentation strings for the Documentation column of the Keyword View (if they
are not specifically defined in the test object configuration file).

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 34

Test Object Operations

A list of operations for the test object class, including the following information for each operation:

l The arguments, including the argument type (for example, String or Integer), direction (In or Out),
whether the argument is mandatory, and, if not, its default value.

l Whether a dynamic list of possible values for this argument can be retrieved from the supported
control and displayed in the Keyword View, Editor, and Step Generator.

l The operation description (shown in the Object Spy and as a tooltip in the Keyword View and Step
Generator).

l The Documentation string (shown in the Documentation column of the Keyword View and in the Step
Generator).

l The return value type.

l A context-sensitive Help topic to open when F1 is pressed for the test object operation in the
Keyword View or Editor, or when the Operation Help button is clicked for the operation in the Step
Generator. The definition includes the Help file path and the relevant Help ID within the file.

Default Operation

The test object operation that is selected by default in the Keyword View and Step Generator when a
step is generated for an object of this class.

Identification Properties

A list of identification properties for the test object class. You can also define:

l The identification properties that are used for the object description.

Tip: Include the html tag property in the object description to facilitate faster object
identification in UFT.

l The identification properties that are used for smart identification. (This information is relevant
only if smart identification is enabled for the test object class. To enable smart identification, use the
Object Identification dialog box in UFT.)

l The identification properties that are available for use in checkpoints and output values.

l The identification properties that are selected by default for checkpoints (in the UFT Checkpoint
Properties dialog box).

Icon File

The path of the icon file to use for this test object class. (Optional. If not defined, the base class' icon is
used.) The file can be a .dll, .exe, or .ico file.

Help File

A context-sensitive Help topic to open when F1 is pressed for the test object in the Keyword View or

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 35

Editor. The definition includes the .chm Help file path and the relevant Help ID within the file.

For information on the structure and syntax of a test object configuration XML, see UFT Test Object
Schema Help (available in the UFT Web Add-in Extensibility Help).

Sample Test Object Configuration XML

The following example shows the definition of the WebExtUsedBooks test object definition, which is
part of the WebExtSample toolkit used for the tutorial section of this guide:

<ClassInfo BaseClassInfoName="WebTable" GenericTypeID="Table"
 DefaultOperationName="SelectBook" Name="WebExtUsedBooks">
 <IconInfo
 IconFile="INSTALLDIR\Dat\Extensibility\Web\Toolkits\

WebExtSample\Res\WebBookList.ico"/>
 <TypeInfo>
 <Operation ExposureLevel="CommonUsed" Name="SelectBook"
PropertyType="Method">
 <Description>
 Selects the radio button for the specified book and clicks
Select.
 </Description>
 <Documentation>
 <![CDATA[Select the radio button for the book with index %a1 and
click Select.]]>
 </Documentation>
 <Argument Name="BookIndex" IsMandatory="true" Direction="In">
 <Type VariantType="Integer"/>
 </Argument>
 </Operation>
 </TypeInfo>
 <IdentificationProperties>
 <IdentificationProperty ForDefaultVerification="true"
ForVerification="true" ForDescription="true" Name="title"/>
 </IdentificationProperties>
</ClassInfo>

This example shows that the WebExtUsedBooks test object class extends the WebTable test object
class. The WebExtUsedBooks test object class uses the WebBookList.ico icon file, its default test object
method is SelectBook (which has one Integer mandatory input parameter: BookIndex), and it has one
additional identification property: title.

One identification property is defined for the WebExtUsedBooks test object class: title. This
identification property is used in the object description, available for checkpoints and output values, and
selected by default in the Checkpoint Properties dialog box in UFT.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 36

See also:

l "How UFT Loads the Test Object Configuration XML" below

l "Extending an Existing Test Object Class" on the next page

l "Providing a Help File for Customized Test Object Classes" on page 40

How UFT Loads the Test Object Configuration XML
Each time you run UFT, it reads all of the test object configuration XMLs and merges the information for
each test object class from the different XMLs into one test object class definition. For more
information, see "Understanding How UFT Merges Test Object Configuration Files" below.

The following attributes of the Identification Property element in the test object configuration file
specify information that can be modified in UFT (using the Object Identification dialog box):
AssistivePropertyValue, ForAssistive, ForBaseSmartID, ForDescription, ForOptionalSmartID, and
OptionalSmartIDPropertyValue. These attributes determine the lists of identification properties used
for different purposes in UFT.

Therefore, by default, UFT reads the values of these attributes from the XML only once, to prevent
overwriting any changes a user makes using the Object Identification dialog box. In this way, UFT
provides persistence for the user defined property lists. For more information, see "Modifying
Identification Property Attributes in a Test Object Configuration File" on page 75.

Understanding How UFT Merges Test Object Configuration Files

Each time you open UFT, it reads all of the test object configuration files located in the <UFT
installation folder>\dat\Extensibility\<UFT add-in name> folders. UFT then merges the information
for each test object class from the different files into a single test object class definition, according to
the priority of each test object configuration file.

UFT ignores the definitions in a test object configuration file in the following situations:

l The Load attribute of the TypeInformation element is set to false.

l The environment relevant to the test object configuration file is displayed in the Add-in Manager
dialog box, and the UFT user selects not to load the environment.

Define the priority of each test object configuration file using the Priority attribute of the
TypeInformation element.

If the priority of a test object configuration file is higher than the existing class definitions, it overrides
any existing test object class definitions, including built-in UFT information. For this reason, be aware of
any built-in functionality that will be overridden before you change the priority of a test object
configuration file.

When multiple test object class definitions exist, UFT must handle any conflicts that arise. The following
sections describe the process UFT follows when ClassInfo, ListOfValues, and Operation elements are
defined in multiple test object configuration files. All of the IdentificationProperty elements for a
specific test object class must be defined in only one test object configuration file.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 37

ClassInfo Elements

l If a ClassInfo element is defined in a test object configuration file with a priority higher than the
existing definition, the information is appended to any existing definition. If a conflict arises between
ClassInfo definitions in different files, the definition in the file with the higher priority overrides
(replaces) the information in the file with the lower priority.

l If a ClassInfo element is defined in a test object configuration file with a priority that is equal to or
lower than the existing definition, the differing information is appended to the existing definition. If a
conflict arises between ClassInfo definitions in different files, the definition in the file with the lower
priority is ignored.

ListOfValues Elements

l If a conflict arises between ListOfValues definitions in different files, the definition in the file with
the higher priority overrides (replaces) the information in the file with the lower priority (the
definitions are not merged).

l If a ListOfValues definition overrides an existing list, the new list is updated for all arguments of type
Enumeration that are defined for operations of classes in the same test object configuration file.

l If a ListOfValues is defined in a configuration file with a lower priority than the existing definition, the
lower priority definition is ignored.

Operation Elements

l Operation element definitions are either added, ignored, or overridden, depending on the priority of
the test object configuration file.

l If an Operation element is defined in a test object configuration file with a priority higher than the
existing definition, the operation is added to the existing definition for the class. If a conflict arises
between Operation definitions in different files, the definition in the file with the higher priority
overrides (replaces) the definition with the lower priority (the definitions are not merged).

For more information, see the HP UFT Test Object Schema Help (available with the Web Add-in
Extensibility SDK Help).

Extending an Existing Test Object Class
If there is an existing test object class that provides partial support for your control, but needs some
modification, for example, a different naming convention for test objects in the class, or additional or
modified test object methods, you create a new test object class to represent the control. When you
create the new test object class, you base this test object class on the existing test object class,
inheriting all of its test object methods.

You can then extend the functionality of this test object class by defining and implementing additional
test object methods and identification properties. In addition, you can override existing test object
methods by providing an alternate implementation for them. You define the new or changed methods

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 38

and properties in the test object configuration file, and design their implementation using JavaScript
functions.

To extend an existing test object class, you define the name of the base test object class in the
ClassInfo\BaseClassInfoName attribute in the ClassInfo element for the new test object class in the
test object configuration file. This declares that the new test object class supports all of the test object
methods of the base test object class in addition to any that you define for the new test object class.

How to Choose a Base Class

When you choose a test object class to extend consider the following:

l Your test object class inherits the operation definitions from the test object class. Choose a test
object class with a set of operations functionally relevant for your control.

l To inherit the implementation for the base class operations, your control must include an element of
the type that matches the base test object class.

How to Make Sure That All Methods and Properties Are Implemented

You must ensure that all of the inherited test object methods are implemented and not only declared.
One way to do this is to write JavaScript functions to support each inherited test object method.
Another, simpler way is to ensure that the control includes an element of the type that matches the
base test object class. This element is referred to as the base element. UFT can then use its internal
implementation for the inherited test object methods that you do not specifically implement for the
custom control, communicating with the base element.

In addition, if the control includes a base element, UFT uses the base test object class implementation
to retrieve the identification property values when the following conditions are met:

l In the test object configuration file, you defined identification properties for the new test object
class with the same names as properties of the base test object class.

l You do not implement a JavaScript function that retrieves the values for those properties.

When You Need to Return a Base Element to UFT

If the base element is the root element of the control that you are supporting, UFT recognizes the base
element and uses the base test class implementation for test object methods and identification
properties that you do not implement.

If the base element is not the root element of the control, you must write a JavaScript function that
returns this base element to UFT, and specify the name and location of the JavaScript function in the
toolkit configuration file. You specify this information in the Control\Settings element in the toolkit
configuration file. For example, if your control is a special kind of table, and is defined as a DIV element
(which UFT normally ignores) that contains a table element (which UFT normally represents with a
WebTable element), you can create a MyWebTable test object class that extends WebTable and map
the DIV element to this the MyWebTable test object class.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 39

To return the base element, you implement a JavaScript function named get_base_table in a file
named HPTable.js. In the toolkit configuration Settings element for the MyWebTable Control element,
you define the func_to_get_base_elem as follows:

<Control TestObjectClass=MyWebTable>
 <Settings>
 <variable name="default_imp_file " value="HPTable.js"/>
 <variable name="func_to_get_base_elem" value="get_base_table"/>
 </Settings>
</Control>

Providing a Help File for Customized Test Object Classes
As part of the UFT online Help, UFT provides an Object Model Reference for the test object classes that
it defines. The reference is intended to help the UFT users use UFT test objects, methods, and
properties in their tests. In addition, when F1 is pressed for a test object or test object method in the
Keyword View or Editor, or when the Operation Help button is clicked for a test object method in the
Step Generator, UFT opens the Object Model Reference to the relevant location.

When you modify test object classes or define new ones, using test object configuration XML definitions,
you can provide similar (.chm) Help files for the test objects, methods, and properties that you define.
Deploy these Help files as part of your toolkit support set and inform the users where they can be
found. You can store the Help files in any convenient location. For example, in a
<UFT installation folder>\dat\Extensibility\<UFT Add-in name>\Toolkits\<Environment name>\help
folder. In the test object configuration XML, you define HelpInfo elements for test object classes and
test object methods, specifying the Help file path and the relevant Help ID within the file.

Caution: The Help file name must be different from the names of the Help files provided in the
<UFT installation folder>\help folder.

When F1 or the Operation Help button is pressed for a test object class or test object method for which
you defined a HelpInfo element, UFT opens the context-sensitive Help topic you specified. For inherited
test object methods that do not have a HelpInfo element, UFT opens the Help provided for the base test
object class.

In the Help that you provide for your test object classes, it is helpful to specify the following information
for each test object class:

l The base test object class that this test object class extends (include a note explaining that the
descriptions for inherited test object methods not covered in this Help can be found in the Help for
the base test object class).

l A list of the available test object methods (including the inherited methods).

l Descriptions of the test object methods that you defined, including the method's purpose, syntax,
arguments, return value, and any other relevant information.

l A list of the available identification properties and descriptions for those properties.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 40

Understanding the Toolkit Configuration File
To begin developing your toolkit support set, you define a basic toolkit configuration file. You can verify
the toolkit configuration file you design against the <Extensibility Accelerator installation
folder>\dat\Toolkit.xsd file. (This file is also located in the <UFT installation
folder>\dat\Extensibility\Web\Toolkits folder.)

In a toolkit configuration XML, you must define a Control element for each test object class that you
plan to use to support controls in your toolkit. Each Control element must include a TestObjectClass
attribute that specifies the name of the test object class to which it applies.

The Control elements are contained within one Controls element, which represents the toolkit as a
whole.

The toolkit configuration file must provide information that enables UFT to identify which test object
class to use for each control in the toolkit. This information can be provided at toolkit level or at control
level, as described in the following sections.

The toolkit configuration XML can also contain additional information. A brief summary of the possible
content of this XML is provided below and more detail on how to design and use the toolkit
configuration XML is provided in the subsequent sections of this guide.

The toolkit specific information can include:

l A toolkit description.

UFT displays the description in the Add-in Manager when a user selects the toolkit support set's
environment name in the list of available add-ins. If you are developing this toolkit support set for
distribution, include a Provided by clause in this description, specifying the relevant person or
company.

l The priority of the toolkit. When UFT attempts to identify the test object class mapped to a custom
control, it searches in the different toolkits in the order of their priority (highest priority first).

l An identification function (and optionally the name of the file that contains the function) used to
identify the test object class to use for each control in the toolkit.

l The name of the default file from which implementation functions are called if no file is specifically
defined for a test object class.

l JavaScript libraries for UFT to inject into the Web page, enabling you to call the library functions from
the support functions that you design.

A test object class element can include:

l HTML tags and identification conditions or an identification function (and optionally the name of the
file that contains the function) used to identify the custom controls that should be represented by
this test object class.

l The name of the default file from which implementation functions are called if no file is specifically
defined for a function.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 41

l A function (and optionally the name of the file that contains that function) that returns the element
whose test object implements the properties and test object methods inherited from the base class
and not implemented for this control.

l The functions (and optionally the name of the file containing those functions) that implement the
test object methods of this test object class. UFT calls these functions to perform test steps on the
control. If no functions are defined, UFT calls implementation functions with the same name as the
test object methods.

l The function (and optionally the name of the file containing the function) that retrieves the
identification properties from the control. If no function is defined, UFT calls a function named get_
property_value.

l Elements that indicate whether to use the default Web Event Configuration for handling events on
the control and its children, and can specify functions that UFT should run to perform customized
event listening and handling.

l Elements that indicate when to learn the control and its children, and optionally, a function that
specifies which children to learn.

l Elements that indicate whether to display test objects of this class in the Object Spy.

l A function (and optionally the name of the file containing the function) that retrieves the list of
possible values for a test object method argument from the control. If no function is defined, UFT
calls a function named get_list_of_values.

l A function (and optionally the name of the file containing the function) that retrieves the state of the
supported toolkit, checking whether it is fully loaded on the current Web page.

Note: When planning the order of the Control elements in this file, consider that UFT follows this
order when searching for a test object class to match a control. The first matching test object
class is used.

For information on the structure and syntax of this XML, see the Toolkit Configuration Schema Help,
available in the UFT Web Add-in Extensibility Help.

Designing JavaScript Functions for Your Toolkit
Support Set
As part of the toolkit support set, you design JavaScript functions that UFT calls. The UFT Web Add-in
Extensibility JavaScript Function Reference (available with the Web Add-in Extensibility Help) describes
the JavaScript functions you implement.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 42

When writing your JavaScript functions, also consider the information in the following sections:

l "Conventions, Utility Objects and Global Functions You Can Use" below

l "Creating Browser-Independent Support" on the next page

l "Global Variable Scope" on page 45

l "Writing Global JavaScript Functions" on page 45

l "Calling Functions from External JavaScript Libraries" on page 45

l "Handling Exceptions" on page 46

Conventions, Utility Objects and Global Functions You Can Use

The Web Add-in Extensibility API provides the following conventions, constants, utility object methods,
and global JavaScript functions for you to use in your JavaScript functions:

l _elem. A token that represents the Web element that UFT is currently handling. In identification
functions, the _elem token represents the HTML element being learned. In all other contexts, it
represents the root element of the custom control. These contexts include:

l Event handlers and event registration functions.

l Functions for returning base elements, property values, and lists of possible values.

l Filter functions.

For example, the following JavaScript function returns the value of the id identification property
of the current Web element:

function get_property_value(prop)
{
 if (prop == "id")

{
 return _elem.id;
 }
}

l _util. The utility object whose methods you can use to instruct UFT to perform different operations.
For more information, see "Global JavaScript Methods and Utility Methods" on page 46.

l Global JavaScript functions and constants defined in the common.js file located in the <Extensibility
Accelerator installation folder>\bin\PackagesToLoad folder. (This file is also located in the <UFT
installation folder>\dat\Extensibility\Web\Toolkits folder.) For more information, see "Global
JavaScript Methods and Utility Methods" on page 46.

l window. Provides access to the Window object that corresponds to the Web browser window you are
testing. You can use this object to access objects and functions that reside in the browser
namespace and manage the controls for which you are creating support.

For example, suppose that the Web page contains a global JavaScript function getTree() that returns
a Tree object that manages a specific tree control. This Tree object would have Collapse, Expand,

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 43

and Selectmethods. You could write the following JavaScript method to support running a Collapse
test object method:

function Collapse (treeBranch)
{
 var tree = window.getTree(_elem);
 tree.Collapse(treeBranch);
}

Creating Browser-Independent Support

To enable the your toolkit support set to work smoothly on different browser types and versions, do one
or both of the following in the extensibility code that you develop:

l If you need to treat a control differently in different browsers, call the GetBrowserType or
GetBrowserVersion utility methods to retrieve the relevant browser information. For more
information, see "Global JavaScript Methods and Utility Methods" on page 46.

l Use functions from external browser-independent JavaScript function libraries, such as jQuery, to
create code that can run smoothly on different types and versions of browsers.

The jQuery (version 1.3.2) and jQuery.simulate libraries are included with the UFT installation and
provide browser-independent functions. You use jQuery function calls to retrieve information and
perform operations, and jQuery.simulate function calls to handle dispatching events.

For example, if you need to perform a click operation on your control, one line of code that uses
jQuery would replace a complex block of code that sends the event differently, depending on the
current browser.

Use:

$(_elem).simulate("click");

Instead of:

if (_util.GetBrowserType()==QtpConstants.FireFox)
{
 var myEvent = window.document.createEvent("MouseEvents")
 myEvent.initEvent("click", true, true)
 _elem.dispatchEvent(myEvent)
}
else
 _elem.click();

For information on the jQuery JavaScript library and on jQuery.simulate.js, see http://jquery.com/
and http://code.google.com/p/jqueryjs/source/browse/trunk/plugins/
simulate/jquery.simulate.js?r=6163

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 44

http://jquery.com/
http://code.google.com/p/jqueryjs/source/browse/trunk/plugins/simulate/jquery.simulate.js?r=6163

For details on using the jQuery libraries and other external JavaScript function libraries, see "Calling
Functions from External JavaScript Libraries" below.

l In JavaScript functions that need to run on Mozilla Firefox, you need to explicitly use the window
object to access any item in the global namespace. For example, window.documentwill correctly
access the document object in both Internet Explorer and Mozilla Firefox, while documentwill only
work on Internet Explorer.

l When developing for Chrome consider the following:

l If you identify a control using the <body> tag, and the <body> is a child of an <iframe> that has a
blank or about:blank SRC value, then UFT can identify the control only in Chrome 37 and later.

l In Chrome, if a custom control is comprised of two or more sibling controls, you must include both
of them in the identification of the object. For example, this may be relevant if your custom
control is comprised of an edit box and its adjacent submit button or a check box and its label. For
a code sample, see "Example: Using Sibling Controls to Identify an Object" on page 48.

l Even if your code is designed to be browser-independent, each browser works using different logic,
so validate your scripts on all browsers.

Global Variable Scope

When you define global variables in your JavaScript function, the variables exist in the scope of the
JavaScript engine running in the browser. UFT can only connect to the JavaScript engine if UFT is opened
before the browser. Therefore, your global JavaScript variables are accessible until either the browser
or UFT is closed.

Writing Global JavaScript Functions

As a best practice, create one JavaScript file for each test object class. However, if you want to call the
same JavaScript function from JavaScript functions of multiple test objects, you can store these global
functions in a separate file, which will be used as the toolkit support set's common JavaScript file.
Specify the path of the common JavaScript file in the Controls\Settings\Variable element in the toolkit
configuration file. For more information, see the Toolkit Configuration Schema Help, available in the UFT
Web Add-in Extensibility Help.

Calling Functions from External JavaScript Libraries

In the JavaScript functions that you design, you can call any JavaScript function included in the Web
page that UFT is testing.

Keep in mind that if your toolkit support set is loaded, UFT might call your code on any Web page that
opens in a browser. For example, when learning objects on a Web page, UFT might call the identification
function that you designed, even if the page does not contain any of your controls, and does not include
your function library.

To enable the use of your own JavaScript libraries on pages that do not include them, you can instruct
UFT to inject the JavaScript library into every page. To do this, specify the file system path to the library

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 45

in the JSLibrariesToInject\JSLibrary element in the toolkit configuration file. For more information, see
the Toolkit Configuration Schema Help, available in the UFT Web Add-in Extensibility Help.

When UFT is open with your toolkit support set loaded, UFT injects the specified JavaScript libraries into
every Web page that opens in a browser.

It is recommended to design your JavaScript library so that it will only be loaded if it is not already
included in the Web page.

When you deploy the toolkit support set to UFT, make sure that the JavaScript libraries you reference
are located in the paths that you specified in the toolkit configuration file.

Using the jQuery Libraries Provided with UFT

The jQuery (version 1.3.2) and jQuery.simulate libraries are included with the UFT installation. They are
located in: <UFT installation folder>\bin\JSFiles

To call the jQuery library functions from your JavaScript functions, specify the library locations in your
toolkit configuration file:

<Controls>
 <JSLibrariesToInject>
 <JSLibrary path="INSTALLDIR\bin\JSFiles\jQuery-1.3.2.js" />
 <JSLibrary path="INSTALLDIR\bin\JSFiles\jQuery.simulate.js" />
 </JSLibrariesToInject>
</Controls>

These jQuery libraries are designed so that they are not loaded into the Web page if the page already
includes some version of the library.

Handling Exceptions

If the JavaScript function that you design throws an exception, UFT displays a run-time error message
and the test step fails. The message that you provide with the exception is added to the test report
details for the failed step.

If you want to add a message to the run results that the step failed, but not cause a run-time error, call
the _util.Reportmethod from your JavaScript function.

Note: If the message you include in the exception is a simple string, the run-time error that UFT
displays includes the line of code that threw the exception. If the message uses formatting to
include a variable in the string, the run-time error does not include the line of code.

Global JavaScript Methods and Utility Methods
As part of the toolkit support set, you design JavaScript functions that UFT calls. Your JavaScript
functions can call global methods and utility methods that UFT provides. The global methods are
provided as JavaScript functions in the common.js file. The utility methods are exposed by the _util
object.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 46

The _util utility object exposes the following methods that you can call in your JavaScript functions:

l Alert (message). Opens a modal message box displaying the specified message.

l GetBrowserType / GetBrowserVersion (). Returns the name or version of the browser that is
currently running the control.

l LogLine (text, severity, Id, category). Adds an entry to the Microsoft Windows event log (which you can
view using the Event Viewer), or for Chrome, adds an entry in the Chrome Console. Use this method to
help you analyze the performance of your support set or debug its functionality.

For more information on using the Event Viewer to debug your toolkit support set, see "Using the
Microsoft Windows Event Log" on page 58.

l Record (method, arrParams, delay). Adds a step to the test and adds a test object to the object
repository if it is not already there. Use this method in a JavaScript function that records a step in a
test after an event occurs on a control. For more information on developing support for recording,
see "Implementing Support for Recording" on page 69.

l RegisterForEvent (element, eventName, handler, [HandlerParam]). Registers to listen for a specific
event on a specific Web element. Use this method in a JavaScript function that controls listening to
events to support recording. You can also invoke it from event handlers. For more information on
developing support for recording, see "Implementing Support for Recording" on page 69.

l Report (status, method, arrParams, details). Adds information about the results of a step to the run
results. Use this method in a JavaScript function that performs a step on a control. For more
information on developing support for running tests, see "Implementing Support for Test Object
Methods" on page 61.

l Wait (milliseconds). Suspends execution for the number of specified milliseconds.

The most commonly used functions from common.js are:

l getFrameElement. Returns the frame element that contains the current element.

l toSafeArray(inArray). Converts a JavaScript Array object to COM SafeArray.

l trim(inString). Returns the string after stripping leading and trailing white spaces.

The common.js file also contains variables with preset values that you can use as constants in your
code.

The common.js file is located in the <Extensibility Accelerator installation
folder>\bin\PackagesToLoad folder and the <UFT installation folder>\dat\Extensibility\Web\Toolkits
folder.

For more information on these methods and constants, see the UFT Web Add-in Extensibility API
Reference (available with the Web Add-in Extensibility Help).

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 47

Example: Using Sibling Controls to Identify an Object
In Chrome, if a custom control is comprised of two or more sibling controls, you must include both of
them in the identification of the object.

This example demonstrates this for a custom control comprised of an input and a label:

<input type="checkbox" role="hidden-checkbox-input" class="ui-helper-
hidden"/><label for="check" class="ui-toggle-button"
role="button">Toggle</label>

In another browser, you could identify your control by specifying only the input tag:

SampleToolkit.xml:

<Control TestObjectClass="SampleToggleButton">
...
<Identification type="javascript" function="isSampleToggleButton">

<Browser name="*">
<HTMLTags>

<Tag name="input" />
</HTMLTags>

</Browser>
</Identification>
...

</Control>

SampleToggleButton.js:

function isSampleToggleButton ()
{

return _elem.getAttribute("role") === "hidden-checkbox-input";
}

In Chrome, you should identify the control with both the input and label tag.

To do this, you add one more tag to the SampleToolkit.xml:

<Control TestObjectClass="SampleToggleButton ">
...
<Identification type="javascript" function=" isSampleToggleButton ">

<Browser name="*">
<HTMLTags>

<Tag name="input" />

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 48

<Tag name="label" />
</HTMLTags>

</Browser>
</Identification>
...

</Control>

Then update the SampleToggleButton.js function accordingly:

function isSampleToggleButton ()
{

if (_elem.getAttribute("role") === "hidden-checkbox-input" && _
elem.tagName.toUpperCase() === "INPUT")

return true;

if (_elem.tagName.toUpperCase() === "LABEL" && _elem.getAttribute("role") ==
"button")

{
var sibling = _elem.previousSibling;
if (sibling && sibling.tagName.toUpperCase() === "INPUT" &&

sibling.getAttribute("role") === "hidden-checkbox-input")
{

return sibling; // use the sibling input element to replace label to
serve as _elem.

}
}

return false;
}

Teaching UFT to Identify the Test Object Class to Use
for a CustomWeb Control
After you define the test object classes that you want UFT to use to represent your controls, you need
to map each type of control to a specific test object class.

This identification can be performed using JavaScript functions or condition elements that check the
control's properties and determine the test object class that should represent it. To improve UFT's
performance of learning custom controls and running steps on them, define the identification elements
in such a way that JavaScript function calls are avoided as much as possible.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 49

You can limit the identification process of custom controls to HTML elements with HTML tags you
specify. This can further improve performance, and is more efficient than defining conditions that
check the tagName property.

You provide information enabling UFT to identify which test object class to use for the different controls
in the Controls\CommonIdentification element in the toolkit configuration file, or in the
Control\Identification element. In these elements you can define the following:

l A set of HTML tags per test object class.When UFT handles each control, it continues the
identification process according to the definitions in the Identification element, only for HTML
elements with the specified HTML tags.

l A set of conditions per test object class.When UFT handles each control, UFT checks the control's
HTML properties against the conditions you define in each Control element, and locates the first one
whose conditions the control meets.

Note: You can define different conditions and HTML tags for UFT to use when running on
different browsers.

l One JavaScript identification function for the whole toolkit.When UFT handles each control, UFT
calls this function, which checks the control's properties and returns the name of the appropriate
test object class.

Note: If you specify an identification function at the toolkit level (in the
Controls\CommonIdentification element) and also conditions at the test object class level (in
the Control\Identification element), UFT checks the conditions before calling the JavaScript
function, to avoid unnecessary calls.

l A JavaScript identification function per test object class.When UFT handles each control, UFT calls
each of these JavaScript functions, in the order in which the test objects are defined in the toolkit
configuration file. Each function checks whether the test object class for which it is defined should
represent the control. UFT uses the first test object class whose function returns true.

This method of identification should be avoided if possible because it significantly affects
performance, as it involves many calls to JavaScript functions for each control.

Note: If you specify an identification function at the toolkit level (in the
Controls\CommonIdentification element), UFT does not call any identification functions
specified at the test object class level (in the Control\Identification element).

l You can also combine the use of conditions and JavaScript functions, defining conditions that limit
the calls to the JavaScript function you define, based on the control's properties. For more
information, see "Using the Conditions Elements" on the next page.

For more information on writing JavaScript functions for Web Add-in Extensibility, see "Designing
JavaScript Functions for Your Toolkit Support Set" on page 42.

For information on the structure and syntax of the identification elements, see the Toolkit
Configuration Schema Help, available in the UFT Web Add-in Extensibility Help.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 50

After you teach UFT to identify the test object class to use for the custom control, you can test the basic
functionality of your toolkit support set. For more information, see "Testing the Toolkit Support Set
During Development" on page 55.

Using the Conditions Elements
You can define Conditions elements in the Control\Identification\Browser element defined for a test
object class. This enables UFT to identify the controls that should be represented by this test object
class, based on the control's properties, without calling an identification function.

Alternatively, you can define an identification function (per test object class or for the whole toolkit) and
use the conditions to limit the times UFT calls the function. You do this by defining that the
identification function be called only in cases when the control's properties meet certain conditions.

You can define different sets of conditions for UFT to use when running on different browsers, or you
can define one set of conditions and specify that it is relevant for all browsers. For more information,
see the Browser element description in the Toolkit Configuration Schema Help, available in the UFT Web
Add-in Extensibility Help.

You compose the Conditions using a set of Condition elements, joined by either and or or logic. Each
Condition element specifies a certain property of the HTML control, and the expected value for that
property. The condition is met if the value in the control's property matches the specified value (you can
specify in the condition whether the value must be equal or not equal to the specified value). You can
nest Conditions elements to create complex logic.

For each set of conditions, that is for each top-level Conditions element, you specify one of the
following types, instructing UFT how to treat the control if its properties match the conditions within it:

l IdentifyIfPropMatch. If the conditions in this element are met, use the current test object class to
represent the control.

l CallIDFuncIfPropMatch. If the conditions in this element are met, call the identification function to
check this control. Otherwise, do not use the current test object class to represent the control.

l SkipIfPropMatch. If the conditions in this element are met, do not use the current test object class to
represent the control.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 51

If an identification function is defined, and checking the conditions does not enable UFT to determine
whether to use the current test object class to represent the control, it calls the identification function.

l If a Conditions element of type IdentifyIfPropMatch is defined, it is checked before the other types.

l If both CallIDFuncIfPropMatch and IdentifyIfPropMatch Conditions elements are defined, the
Conditions of type CallIDFuncIfPropMatch are checked only if the Conditions of type
IdentifyIfPropMatch are not met.

l If both SkipIfPropMatch and IdentifyIfPropMatch Conditions elements are defined, the Condition of
type SkipIfPropMatch are checked only if the Conditions of type IdentifyIfPropMatch are not met.

l A Conditions element of type SkipIfPropMatch is not checked if a Conditions element of type
CallIDFuncIfPropMatch is defined.

l If you nest Conditions elements, the type attribute of the nested elements is ignored.

Understanding How UFT Performs the Identification

For each custom control that it handles, UFT performs the following procedure to determine which test
object class to use for the custom control:

1. If an identification function is defined at the toolkit level (in the CommonIdentification element of
the toolkit configuration file), first check the Identification\Conditions elements in all of the
Control elements, to determine whether calling the function can be avoided.

For each Control element:

a. If an IdentifyIfPropMatch condition is defined and the custom control's properties meet the
condition's requirements, use this Control element's test object class. Otherwise, continue
with the following steps.

b. If a CallIDFuncIfPropMatch condition is defined and the custom control's properties do not
meet the condition's requirements, do not use this Control element's test object class.

If this Control element does not contain a CallIDFuncIfPropMatch condition, continue with the
following step.

c. If a SkipIfPropMatch condition is defined and the custom control's properties meet the
condition's requirements, do not use this Control element's test object class.

After checking all of the conditions, call the toolkit level identification function unless a matching
Control element was found or the conditions in all of the Control elements indicate not to use this
Control element's test object class.

The identification function returns the name of the test object class to use to represent this
custom control.

2. If no identification function is defined at the toolkit level, check the Control elements one by one.
Each Control element is defined for one test object class.

For each Control element, perform the following steps to determine whether to use this element's
test object class for the custom control. Use the first matching Control element:

a. If an IdentifyIfPropMatch condition is defined and the custom control's properties meet the
condition's requirements, use this Control element's test object class. Otherwise, continue

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 52

with the following steps.

b. If a CallIDFuncIfPropMatch condition is defined and the custom control's properties meet the
condition's requirements, continue with step d. If the custom control's properties do not meet
the condition's requirement, do not use this Control element's test object class.

If this Control element does not contain a CallIDFuncIfPropMatch condition, continue with the
following steps.

c. If a SkipIfPropMatch condition is defined and the custom control's properties meet the
condition's requirements, do not use this Control element's test object class. Otherwise,
continue with the following step.

d. If an identification function is defined within this Control element, run it to determine whether
to use this element's test object class for the custom control. The function returns true or
false. If this Control element does not contain an identification function, do not use this
Control element's test object class.

Understanding How HTML Properties are Compared for Conditions

When comparing the value of an HTML property specified in a condition with the specified expected
value, the following rules apply:

l String value comparisons are not case-sensitive.

l You can instruct UFT to treat the string provided in the expected value as a regular expression. In this
case, set the is_reg_exp attribute to true.

l Numeric value comparisons simply compare the numeric values.

l When comparing a Boolean value, the values true, 1, and yes are all considered true. The values
false, 0, and no, are all considered false.

l If the HTML property that you are checking returns an object, use valid and null as the expected
values. The property is considered valid if it successfully returns an object, and null if it fails to
return an object.

l Set the equal attribute in the Condition element to false if you want to check if the property does
not have a certain value.

l Set the trim attribute in the Condition element to true if you want UFT to remove leading and trailing
spaces from the property value and the expected value before evaluating the condition.

The examples below illustrate different ways that you can use the Conditions element.

Example 1: Identification Function and Conditions

If the custom control has a CalendarBehavior or PopupBehavior property defined, UFT calls the
isCalendar JavaScript function to determine whether to use a TSGCalendar test object to represent the
control. Otherwise, it continues to the next Control element in the toolkit configuration file and checks
whether it matches the custom control.

<Control TestObjectClass="TSGCalendar">

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 53

 <Identification type="javascript" function="isCalendar">
 <Browser name="*">
 <Conditions type="CallIDFuncIfPropMatch" logic="or">
 <Condition prop_name="CalendarBehavior" expected_value="valid"/>
 <Condition prop_name="PopupBehavior" expected_value="valid"/>
 </Conditions>
 </Browser>
 </Identification>
</Control>

Example 2: Conditions Only

If the custom control has an AccordionBehavior property defined, UFT uses a TSGAccordion test object
to represent the control. Otherwise, it continues to the next Control element in the toolkit configuration
file and checks whether it matches the custom control.

<Control TestObjectClass="TSGAccordion">
 <Identification>
 <Browser name="*">
 <Conditions type="IdentifyIfPropMatch" logic="and">
 <Condition prop_name="AccordionBehavior" expected_value="valid"/>
 </Conditions>
 </Browser>
 </Identification>
</Control>

Example 3: Nested Conditions Nodes

If the value of the custom control's className property is equal to tsg, and either the value of the
control's id property is equal to tsg_table or the value of the control'smyType property is equal to
table, UFT uses a TSGTable test object to represent the control.

If the value of the custom control's className property is equal to tsg, but the value of the control's id
property is not tsg_table and the value of the myType property is not table, UFT calls the isTable
JavaScript function to determine whether to use a TSGTable test object.

If the value of the custom control's className property is not equal to tsg, UFT continues to the next
Control element in the toolkit configuration file without calling isTable identification function.

<Control TestObjectClass="TSGTable">
 <Identification type="javascript" function="isTable">
 <Browser name="*">
 <Conditions type="IdentifyIfPropMatch" logic="and">
 <Condition prop_name="className" expected_value="tsg"/>
 <Conditions logic="or">

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 54

 <Condition prop_name="id" expected_value="tsg_table"/>
 <Condition prop_name="myType" expected_value="table"/>
 </Conditions>
 </Conditions>
 <Conditions type=" SkipIfPropMatch" logic="and">
 <Condition prop_name="className" expected_value="tsg"
equal="false"/>
 </Conditions>
 </Browser>
 </Identification>
</Control>

For information on the structure and syntax of the Conditions and Condition elements, see the Toolkit
Configuration Schema Help, available in the UFT Web Add-in Extensibility Help.

Testing the Toolkit Support Set During Development
After you define your test object model in the test object configuration file, and define a basic toolkit
configuration file enabling UFT to identify which test object classes to use for the different controls, you
can test the existing functionality of the toolkit support set. To do this, you deploy the toolkit support
set and test how UFT interacts with the controls in your environment.

After you complete additional stages of developing support for your environment, you can deploy the
toolkit support set again and test additional areas of interaction between UFT and your controls
(learning test objects, running tests, and so on).

If you designed your support to operate on different browsers, make sure to test it accordingly.

To test your toolkit support set after defining the test object classes and mapping
them to custom Web elements:

1. In the test object configuration file, set the DevelopmentMode attribute of the TypeInformation
element to true, to ensure that UFT reads all of the test object class information from the file
each time it opens. When you complete the development of the toolkit support set, be sure to set
this attribute to false.

2. Deploy the toolkit support set on a UFT computer by copying the files of the support set to the
correct locations in the UFT installation folder. For more information, see "Deploying the Toolkit
Support Set" on page 72.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 55

3. Open UFT and open a GUI test. Ensure that the environment name that you defined for the toolkit
support set is displayed in the Add-in Manager dialog box as a child of the Web Add-in. (If the Add-in
Manager dialog box does not open when you open UFT, see the HP Unified Functional Testing Add-
ins Guide for instructions.)

Tip: The environment name displayed in the add-in manager is the same as the toolkit
configuration file name. If your environment is not displayed correctly in the add-in manager,
make sure that the toolkit configuration file is correctly named, located in the correct folder,
and that its syntax is correct.

4. Select the check box for your environment (the Web Add-in is then selected automatically) and
click OK to load the support for your toolkit.

5. Use the Define New Test Object dialog box to create a new test object from a test object class that
you defined. The name of your environment is displayed in the Environment list. If you select the
name of your environment from the list, the test object classes that you defined in the test object
configuration file are displayed in the Class list.

For more information, see the section on defining new test objects in the object repository in the
HP Unified Functional Testing User Guide.

6. Open an application with your custom controls.

7. UFT can already recognize and learn your controls, and you can create test steps with your custom
test objects. (For more information on working with the options below in UFT, see the HP Unified
Functional Testing User Guide.)

a. Use the Object Spy to view the identification properties and test object operations that
are supported for your controls.

o For each test object class that you defined, the Object Spy displays all of the identification
properties that you defined in the test object configuration file. New identification
properties are displayed without values because you have not yet implemented methods to
retrieve the values from the controls.

For identification properties that have the same names as base test object class
properties, UFT uses the base class implementation to retrieve the property values if the
root Web element of the control matches the base test object class. For more information,
see "Implementing Support for Identification Properties" on page 65.

Note: UFT uses only lowercase letters in identification property names. If the
identification property name in the test object configuration file contains uppercase
letters, they are converted to lowercase.

o The Object Spy displays all of the test object operations available for each test object class
that you defined to represent your controls. This includes test object methods and
properties inherited from the base test object class, as well as the test object methods
that you defined in the test object configuration file.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 56

b. Use the Add Objects to Local button in the Object Repository dialog box to learn your
controls. Ensure that the correct icon is used to represent the test object in the object
repository.

c. In the Keyword View, create a test step with a test object from a class that you defined.

o If you defined a default operation for this class, it is displayed in the Operation column
after you select the test object in the Item column.

o The list of available operations in the Operation column reflects the definitions in the test
object configuration file, and also includes operations inherited from the base test object
class.

o After you choose an operation, the Value cell is partitioned according to the number of
arguments of the selected operation, and if you defined possible values for the operation
(in the ListOfValues element), they are displayed in a list.

o The descriptions and documentation strings you defined for test object methods in the
test object configuration file are displayed in tooltips and in the Documentation column,
respectively.

d. In the Editor, create a test step with a test object from a class that you defined. The
statement completion feature displays all of the operations available for the test object, and
possible input values for these operations, if relevant, based on the definitions in the test
object configuration file. (Inherited test object methods are also displayed.)

e. In the Step Generator, create a test step with a test object from a class that you defined. The
operations that you defined in the test object configuration file are displayed in the Operation
list, and the descriptions you defined for the operations are displayed as tooltips. (Inherited
test object methods are also displayed.)

To test your toolkit support set after developing support for additional UFT
functionality:

1. Follow the steps in the previous procedure to deploy the toolkit support set, open UFT, load the
support and run an application with controls from your environment.

2. Depending on the UFT functionality for which you are developing support, perform the relevant UFT
operations on the application to test that support. For example, learn controls in the application,
run a test on the application, record test steps on the application and so on.

By default, UFT injects the toolkit support set JavaScript files that you develop into Web pages
when they are opened. To test subsequent changes that you make in the JavaScript files, you need
to close and reopen the Web page that contains the custom controls.

Alternatively, you can define a Controls\Settings\Variable element in the toolkit configuration file,
set its name attribute to cache scripts and its value attribute to false. This instructs UFT to re-
inject the JavaScript file into the Web page every time it is refreshed. Therefore, after you modify
your JavaScript functions and deploy them, if you have not changed anything in the XML files or
reopened UFT, you only need to refresh the Web page to test your changes.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 57

When you complete the development of the toolkit support set, be sure to remove this element or
set the value attribute to true, to avoid performance degradation.

Logging and Debugging the CustomSupport
When you design the JavaScript functions for your toolkit support set, you can use the _util.LogLine
method to add log messages to the Microsoft Windows event log. When UFT runs a test or component
using the support you designed, you can view these messages in the Event Viewer. For more information
see, "Using the Microsoft Windows Event Log" below.

When you test the toolkit support set that you designed, you can debug your JavaScript files like you
would debug any other JavaScript file, using the Microsoft Script Debugger or the Microsoft Visual
Studio debugger. For more information, see " Debugging Your JavaScript Files (Internet Explorer Only)"
on page 60.

Using theMicrosoftWindows Event Log
You can use the _util.LogLine method in your JavaScript functions to add messages to the Microsoft
Windows event log. For more information, see the UFT Web Add-in Extensibility API Reference (available
with the Web Add-in Extensibility Help).

You provide the log message text and the level of severity for the log entry and, optionally, an ID and a
category number. UFT adds the toolkit name and a time and date stamp to the information that you
provide, and adds the entry to the event log.

In addition, while recognizing objects supported by Web Add-in Extensibility and performing tests on
them, UFT also writes log and error messages to the event log.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 58

To view the event log and analyze the performance of your toolkit support set, open the Event Viewer
(in Windows XP and Windows 2000, select Start > Settings > Control Panel > Administrative Tools >
Computer Management, expand the Event Viewer node in the Computer Management tree) and select
the UFT node. Double-click a specific log entry to see its text.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 59

You can filter the log messages displayed in the Event Viewer according to severity and other message
fields. In the Computer Management toolbar, select View > Filter. For more information, see the Event
Viewer Help (select Action > Help in the Event Viewer).

Debugging Your JavaScript Files (Internet Explorer Only)
You can use the Microsoft Script Debugger or the Microsoft Visual Studio debugger to debug the
JavaScript files that you write for your toolkit support set.

To enable debugging you must clear the Disable script debugging (Internet Explorer) and Disable
script debugging (other) options in the Internet Explorer advanced options (Tools > Internet Options >
Advanced). After you change this option, you need to restart Internet Explorer for the change to take
effect.

If you want the Just-In-Time debugger to list the Microsoft Visual Studio debugger as one of the
available debuggers, you need to select the Script option in the Visual Studio Options dialog box (Visual
Studio > Tools > Options > Debugging > Just-In-Time).

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 60

After these debugging options are enabled, you can use all standard methods to debug your JavaScript
functions. For example:

l You can attach to the Internet Explorer process and put breakpoints in your functions.

l You can include a debugger; statement in your JavaScript function, to launch the Just-In-Time
debugger when the function runs.

l You can use the Just-In-Time debugger when an exception occurs that causes it to open.

Implementing Support for Test Object Methods
After enabling UFT to recognize the custom controls, you must provide support for running test object
methods. If you try to run a test with steps that run on custom test objects before providing
implementation for these methods, the test fails and a run-time error occurs.

For each test object method that you defined in the test object configuration file, you must write a
JavaScript function that UFT runs to perform the step on the control. In addition to performing the step,
you can design the JavaScript function to add a line to the run results, add log messages to the event
log, and display messages boxes to the UFT user, as necessary. For more information, see "Designing
JavaScript Functions for Your Toolkit Support Set" on page 42.

In the toolkit configuration file, you need to specify the JavaScript file in which UFT should look for the
JavaScript functions and, optionally, the name of the function to use for each test object method.

You can specify a JavaScript file and function for each test object method in the toolkit configuration
file, or you can define a default JavaScript file per toolkit (Controls element) or per test object class
(Control element). UFT uses the default files for all test objects methods for which you do not specify an
implementation file. By default, UFT searches in the specified file for a JavaScript function with the
same name as the test object method. Therefore, you do not need to specify function names in the
toolkit configuration file, unless you choose to name a function something other than the
corresponding test object method name. For more information, see the Toolkit Configuration Schema
Help, available in the UFT Web Add-in Extensibility Help.

Caution: Do not create JavaScript functions named get_property_value or get_list_of_values.
These names are reserved for the JavaScript functions that UFT calls (by default) to retrieve run-
time values of test object identification properties and lists of possible values for test object
method arguments.

After you create support for running test object methods, you can run UFT GUI tests on your custom
test objects, and verify that your toolkit support set performs correctly. For more information on
testing your toolkit support set, see "Testing the Toolkit Support Set During Development" on page 55.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 61

The following example is taken from the ASPAjax toolkit support set, which includes support for a Select
method on the ASPAjaxTabs test object. In the ASPAjax test object configuration file, this is declared as
follows:

<ClassInfo BaseClassInfoName="WebElement" Name="ASPAjaxTabs"
 DefaultOperationName="Select" >
 <TypeInfo>
 <Operation ExposureLevel="CommonUsed" Name="Select"
 PropertyType="Method">
 <Description>Selects the specified tab.</Description>
 <Documentation>
 <![CDATA[Select the tab with index %a1.]]>
 </Documentation>
 <Argument Name="Index" IsMandatory="true" Direction="In">
 <Type VariantType="Integer"/>
 <Description>
 The index value of the tab to select.
 </Description>
 </Argument>
 </Operation>
 </TypeInfo>
</ClassInfo>

In the toolkit configuration file, the Control\Settings element for the ASPAjaxTabs test object class is
defined as follows:

<Control TestObjectClass="ASPAjaxTabs">
 <Settings>
 <!-- Indicates the location of the JavaScript file that contains the
implementation of the script -->
 <variable name="default_imp_file" value="Tabs.js"/>
 </Settings>
</Control>

No Run element is defined for this test object class. Therefore, when UFT runs a step with the Select
test object method, UFT searches in the Tabs.js file (as defined in the toolkit configuration file) for a
JavaScript function named Select.

In the Tabs.js file, the Select JavaScript function is implemented to accept an index and select the tab
with that index.

Supporting Dynamic Lists of Values for Method Arguments
When a UFT user creates a test step with a test object method, UFT can display a set of predefined
possible values available for the arguments of that method. For example, if an argument is a Boolean
argument, UFT can display true and false as the possible values, or, for a month argument, UFT can

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 62

display a list of names of all the months. However, sometimes, a limited set of possible values for an
argument exists, but depends on the specific object on which the step is performed. For example:

l The values that are actually relevant for the Integer row and column arguments of the function
Table(<table_name>).SetCellData (row, column) are limited to the number of rows and columns in
the specific table.

l The relevant values for the String path argument of the function Tree(<tree_name>).Select (path)
are limited to the paths that exist in the specific tree.

Using extensibility, you can enable UFT to dynamically provide a list of values for arguments of test
object methods. UFT provides this list only in the Editor, when the statement completion feature is used.

To support a dynamic list of values:

1. In the test object configuration file, set the DynamicListOfValues attribute of the Argument
element to true.

2. In the toolkit configuration file, you can specify the file name and function name of the JavaScript
function that UFT must call to retrieve the list of values. By default, UFT requests the list of values
by calling the get_list_of_values JavaScript function from the default implementation file that
you specify for the test object class in the default_imp_file variable in the Control\Settings
element. For more information, see the Toolkit Configuration Schema Help, available in the UFT
Web Add-in Extensibility online Help.

UFT calls the JavaScript function for every argument whose DynamicListOfValues attribute is set
to true in the test object configuration file. The parameters provided to this function indicate the
test object method and argument for which the values are being requested.

3. Write a JavaScript function that accepts the names of the test object method and argument and
returns a list of values relevant for the specified argument on the current element. Return the
string values concatenated to one string, each value enclosed in quotation marks.

Note: The dynamic list of values is retrieved from the control in the application being tested.
Therefore, to display the dynamic list of values, the relevant control must be visible in the
application when the test is edited.

For example, in the toolkit support set for the WebExtSample environment, located in <Web Add-in
Extensibility SDK installation folder>\samples\WebExtSample folder, a dynamic list of values is
supported for the AuthorName argument in the GoToAuthorPage test object method of the test object
class WebExtBook.

l In the WebExtSampleTestObjects.xml test object configuration file, the argument is defined as
follows:

<Operation Name="GoToAuthorPage" PropertyType="Method">
 <Description>
 Opens the Web page for the specified author.
 </Description>
 <Argument Name="AuthorName" IsMandatory="true" Direction="In"

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 63

 DynamicListOfValues="true">
 <Type VariantType="String"/>
 <Description>The author.</Description>
 </Argument>
</Operation>

l In the WebExtBook.js file (defined as the default implementation file for the WebExtBook test object
class in the WebExtSample.xml toolkit configuration file) the following JavaScript functions are
designed to return a list of the book's authors, each enclosed in quotation marks:

// Dynamic list of values implementation
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
function get_list_of_values(method, argIndex)
{
 // When creating a step with the GoToAuthorPage test object
 // method, provide a list of the authors of this book, that
 // can be used for the method's argument.
 if (method == "GoToAuthorPage")

{
 return get_GoToAuthorPage_list_of_values(argIndex);
 }
 return null;
}
function get_GoToAuthorPage_list_of_values(argIndex)
{
 var arr = new Array();
 if(argIndex > 1)
 return toSafeArray(arr);
 // Retrieve all authors
 var AuthorsCount = 0;
 var authors = window.$(_elem.rows[1].cells[0]).children("A");
 for(var i = 0 ; i < authors.length ; ++i)

{
 arr[AuthorsCount] = "\"" + authors.eq(i).text() + "\"";
 AuthorsCount++;
 }
 return toSafeArray(arr);
}

Note: The $ indicates that this code uses the jQuery JavaScript function library to provide
browser-independent support.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 64

Implementing Support for Identification Properties
In the test object configuration file you defined the identification properties for your test object classes.
When UFT runs a test it needs to retrieve the values for these properties. UFT uses identification
property run-time values in different test object methods, such as GetROProperty. Identification
property run-time values are also required for different basic capabilities, such as creating checkpoints
and outputting values.

To support retrieving the run-time values of identification properties, you need to implement a
JavaScript function that accepts a PropertyName parameter and returns the value of any property UFT
requests. (UFT uses only lowercase letters in identification property names. If the identification
property name in the test object configuration file contains uppercase letters, they are converted to
lowercase.)

This function must return the property value in one of the following formats: String, Integer, Boolean,
or array. When returning an array, use the toSafeArray function to convert the array to the format that
UFT expects. When you provide an identification property value in an array format, UFT converts the
array to a semicolon-delimited string.

For more information on writing JavaScript functions for Web Add-in Extensibility, see "Designing
JavaScript Functions for Your Toolkit Support Set" on page 42.

UFT uses the base test object class implementation to retrieve the identification property values when
the following conditions are met:

l The control includes a base element (for more information, see "Extending an Existing Test Object
Class" on page 38).

l The identification property is defined in the test object configuration file with the same name as a
base test object class property.

l You do not provide a function that returns a value for that identification property.

Implement your JavaScript function to return a value for the identification properties defined in the test
object configuration file in the following situations:

l Base test object class implementation for retrieving the value for this identification property value is
not available.

l The base test object class implementation does not meet your needs.

By designing the function that returns identification property values to return a value for the logical_
name property, you can control how UFT names test objects of this test object class. For more
information, see "Customizing the Test Object Name" on the next page.

In the toolkit configuration file, you can specify the JavaScript file in which you implemented the
JavaScript function that retrieves property values. You can also specify the name of the function that
you implemented for this purpose (in the Control\Run\Properties element). However, if you do not
specify a function name, UFT calls get_property_value (PropertyName) and this is the function that you
must implement. If you do not specify a file name, UFT calls the function from the default JavaScript file

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 65

you specified in the Control\Settings element (at the test object class level) or in the Controls\Settings
element (at the toolkit level). For more information, see the Toolkit Configuration Schema Help,
available in the UFT Web Add-in Extensibility Help.

After you create support for retrieving the run-time values of identification properties, you can test
that your toolkit support set correctly enables UFT to run checkpoints on your Web elements, output
property values, display the property values in the Object Spy, and run test steps with the
GetROProperty operation. For more information on testing your toolkit support set, see "Testing the
Toolkit Support Set During Development" on page 55.

Customizing the Test Object Name
When UFT learns an object, it creates a unique name for each test object on the page. A descriptive test
object name enables you distinguish between test objects of the same class and makes it easier to
identify them in your object repository and in tests.

By default, a test object is given the name of its test object class (appended with an index if there is
more than one test object of the same class on the page). In many cases, this is not the ideal name for
the custom control.

The test object name needs to be meaningful to the UFT user, preferably using terminology that is
relevant to your toolkit. UFT displays this name in the Keyword View, in the Editor, and in the object
repository. The test object name is not used for object identification and therefore does not have to
remain constant in the application.

For example, the test object name can be language-dependent. The UFT user can create a test with the
application running in one language, creating test objects with names in that language. The user can
then run the test on the same application in another language. The names of test objects in the test
remain in the original language, but UFT can correctly recognize the test objects and perform
operations on them, based on their description.

To control how UFT names test objects of a test object class, design the function that returns
identification property values to return a value for the logical_name property. UFT uses this value as
the test object name.

For example,WebExtBook test objects in the WebExtSample environment are named based on their
book title. The sample toolkit support set for the WebExtSample environment is located in
%ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\WebExtSample folder. The WebExtBook.js
file is defined as the default implementation file in the WebExtSample.xml toolkit configuration file.
The JavaScript function for returning identification property run-time values is defined in the
WebExtBook.js file as follows:

function get_property_value(prop)
{
 if (prop == "logical_name" || prop == "title")
 // For the "title" identification property, as well as the
 // "logical_name" property, return the inner text of the

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 66

 // second cell in the first row.
{

 return window.$(_elem.rows[0].cells[1]).text();
 }
}

Note: The $ indicates that this code uses the jQuery JavaScript function library to provide browser-
independent support.

Implementing a Filter for Learning Child Controls
When you instruct UFT to learn a Web page, the Define Object Filter dialog box opens, enabling you to
determine which of the Web page's descendants should be learned with it. When you select All object
types, instructing UFT to learn the custom control with its parent Web page, all of the controls
contained within your custom control are also learned as children of that Web page (and siblings of the
control itself).

In some situations, there is no need to create test objects for all of the children of a control. For
example, when there are no significant operations to perform on the children and no properties to
retrieve, or when, for testing purposes, operations performed on the children are viewed as operations
performed on the parent control. For example, on a calculator control that contains button controls,
there is no need to create test objects for the digit buttons. Pressing the digit buttons performs a Set
operation on the calculator object itself, providing a numeric input for a calculator operation.

You can determine which controls UFT learns by defining a Learn Filter for the test object class you
create. You can use the Control\Filter\Learn element in the toolkit configuration file to define basic
filtering, or you can implement complex filters by writing a JavaScript function. If you design a filter
using a JavaScript function, specify the location and name of the function in the toolkit configuration
file.

In the toolkit configuration file, in the Control\Filter\Learn element, you can define:

l Whether to learn controls represented by this test object class. You can also specify that UFT should
learn controls of this type only if they have children.

l Whether to learn the controls contained within the controls represented by this test object class. You
can also specify that your JavaScript function needs to be called to determine which descendants to
learn.

If you write a JavaScript function to implement the filter, the function must return a SafeArray
containing all of the descendant Web elements that you want UFT to learn. For more information, see
"Designing JavaScript Functions for Your Toolkit Support Set" on page 42.

For more information, see the Toolkit Configuration Schema Help, available in the UFT Web Add-in
Extensibility Help.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 67

You can see an example of defining Learn Filters in the sample toolkit support set for the
WebExtSample environment located in
%ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\WebExtSample folder.

l The Filter element for the WebExtBook test object class is defined (in the WebExtSample.xml file)
as follows:

<Filter>
 <Learn learn_control="Yes" learn_children="No"/>
</Filter>

This instructs UFT to learnWebExtBook test objects without their descendants.

l The Filter element for the WebExtUsedBooks test object class is defined as follows:

<Filter>
 <Learn learn_control="Yes" learn_children="CallFilterFunc"
 type="javascript" function="GetChildrenToLearn" />
</Filter>

This instructs UFT to learnWebExtUsedBooks test objects, and to call the CallFilterFunc JavaScript
function to determine which descendants to learn.

The GetChildrenToLearn JavaScript function is located in the WebExtUsedBooks.js file, which is
defined as the default implementation file in the WebExtSample.xml toolkit configuration file. The
GetChildrenToLearn JavaScript function returns all of the radio button descendants of the
UsedBooks table control:

function GetChildrenToLearn()
{
// Return all of the radio buttons in the used books table
return toSafeArray(window.$(_elem).children()[0].getElementsByTagName
("input"));
}

Note: The $ indicates that this code uses the jQuery JavaScript function library to provide
browser-independent support.

After you implement a Learn Filter, you can instruct UFT to learn your custom controls, and verify that
your toolkit support set correctly controls which of the control’s children are learned. For more
information on testing your toolkit support set, see "Testing the Toolkit Support Set During
Development" on page 55.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 68

Implementing Support for Recording
One way to add objects to the object repository and create tests in UFT is by recording. To record a test,
UFT registers to listen to events on the Web elements, and, when an event occurs, UFT adds the
relevant step to the test. By default, UFT uses the standard Web event configuration to determine the
events to which to listen for each Web element, and the steps to record in the test when each event
occurs.

If you want to customize recording on a test object class that you defined, you must specify the events
that you want to record and the steps that you want UFT to add to the test when those events occur.

For each test object class on which you want to customize recording, define a
Control\Record\EventListening element in the toolkit configuration file. In this element you can specify
whether to use standard Web event configuration to handle events on controls represented by this test
object class. In addition, you can specify whether to use standard Web event configuration to handle
events that take place on those control’s children.

In addition to specifying whether UFT should use standard Web event configuration, you can specify a
JavaScript function that provides more specific event registration (and optionally, the name of the file
containing the function). For more information, see the Toolkit Configuration Schema Help, available in
the UFT Web Add-in Extensibility Help.

In addition to the definitions in the toolkit configuration file, you write the following types of JavaScript
functions:

l One JavaScript function (named in the toolkit configuration file) that uses the RegisterForEvent
function in the _util utility object to register for listening to the correct events on the correct
elements. The arguments of this function also determine what JavaScript functions UFT calls when
each event occurs.

UFT calls this function after registering to listen to events according to the standard Web event
configuration. The event registration performed by this function overrides any previous registrations
for the same events. For events not handled by this function the standard registration is used.

l One or more JavaScript functions that handle the events, when they occur, by calling the Record
function in the _util utility object to inform UFT what step to add to the test.

The Record function, and other utility object functions, require a SafeArray type argument. To
convert an array to a SafeArray, you can use the toSafeArray (array) function that Web Add-in
Extensibility provides. This function is defined in <Extensibility Accelerator installation
folder>\bin\PackagesToLoad\common.js. (This file is also located in the
<UFT installation folder>\dat\Extensibility\Web\
Toolkits folder.)

For information on the syntax of the utility object functions, see the _util section in the UFT Web Add-in
Extensibility API Reference (available with the Web Add-in Extensibility Help). For more information on
writing JavaScript functions for Web Add-in Extensibility, see "Designing JavaScript Functions for Your
Toolkit Support Set" on page 42.

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 69

You can see an example of customized recording in the sample toolkit support set for the
WebExtSample environment located in
%ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\WebExtSample folder.

l In the toolkit configuration file, within the Control element for the WebExtBook test object class, the
following Record\EventListening element is defined:

<Record>
 <EventListening
 use_default_event_handling_for_children="false"
 use_default_event_handling="false"
 type="javascript" function="RegisterToEvents"/>
</Record>

This instructs UFT not to use the default Web Event Configuration for handling events on the Book
control and its children, but to call the JavaScript function RegisterToEvents. A JavaScript file is not
defined, therefore UFT looks for the JavaScript function in the WebExtBook.js file that is specified at
the Control level for the WebExtBook test object class.

l In the WebExtBook.js file, the following RegisterToEvents function is defined:

function RegisterToEvents(elem)
{
 // Connect to the "Select" event: When the book name or the
 // book icon is clicked, call OnSelectClicked.
 _util.RegisterForEvent(window.$(_elem.rows[0].cells[0]).

children[0], "onclick", "OnSelectClicked");
 _util.RegisterForEvent(window.$(_elem.rows[0].cells[0]),

"onclick", "OnSelectClicked");
}

Note: The $ indicates that this code uses the jQuery JavaScript function library to provide
browser-independent support.

This function registers UFT to listen to click events on the book's title and image. When registering
for an event, this function specifies what JavaScript function UFT must call when the event occurs.

l In the WebExtBook.js file add the following event handler JavaScript functions:

function OnSelectClicked(handlerParam , eventObj)
{
 // Record the "Select" step
 var arr = new Array();
 _util.Record("Select", toSafeArray(arr) , 0);
 return true;
}

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 70

This function records the Select test object method on the WebExtBook test object when the book
title or image is clicked.

After you implement support for recording, you can record a test on controls in your environment, and
verify that your toolkit support set performs correctly. For more information on testing your toolkit
support set, see "Testing the Toolkit Support Set During Development" on page 55.

Troubleshooting and Limitations - Developing Support
This section describes troubleshooting and limitations for developing Web Add-in Extensibility support.

l Web Add-in Extensibility can be used to create support for Web controls within Web pages and
frames. You cannot develop custom support for Web pages or frames themselves. In other words,
you cannot map a Web page or frame to a test object class you developed using Web Add-in
Extensibility.

l For UFT to successfully use support developed using Web Add-in Extensibility, the browser's security
settings must be set to allow active scripting. (In Internet Explorer 7, for example, you can find these
security settings under: Tools > Internet Options > Security > Custom Level > Scripting > Active
scripting.)

l When designing a JavaScript function, it is not possible to click a link on a Mozilla Firefox page using a
simple Click or FireEventmethod call. The Web Add-in Extensibility _util object provides a special
FireEventmethod that you can use to click links in this situation. (The method is not documented in
the API Reference, as it is meant to be used only for this type of workaround).

This is an example of how you would use this method:

function clickOnLink(link) {
if (_util.GetBrowserType() == QtpConstants.IE) {

link.click();
}
else {

//Firefox.
var evObj = window.document.createEvent("MouseEvents");
evObj.initEvent("click", true, true);
_util.FireEvent(link, "click", evObj);

}
}

Developer Guide
Chapter 3: Developing Support for Your Toolkit

HP UFT Web Add-in Extensibility (12.50) Page 71

Chapter 4: Deploying the Toolkit Support Set
The final stage of extending UFT support for a custom toolkit is deploying the toolkit support set. This
means placing all of the files you created in the correct locations on a computer with UFT installed,
enabling UFT to recognize the controls in the toolkit and run tests on them.

While you are developing the toolkit support set, deploying it to UFT enables you to test and debug the
support that you create. After the toolkit support set is complete, you can deploy it on any computer
with UFT installed, to extend the Web Add-in.

This chapter includes:

• About Deploying the Custom Toolkit Support 73

• Deploying the Custom Toolkit Support 73

• Modifying Deployed Support 75

• Removing Deployed Support 76

HP UFT Web Add-in Extensibility (12.50) Page 72

About Deploying the CustomToolkit Support
From the UFT user's perspective, after you deploy the toolkit support set on a computer on which UFT is
installed, the toolkit support set can be used as a UFT add-in.

When UFT opens, it displays the toolkit support set's environment name in the Add-in Manager, as a
child node under the Web Add-in node. Select the check box for your environment to instruct UFT to load
support for the environment using the toolkit support set that you developed.

If support for your environment is loaded:

l UFT recognizes the controls in your environment and can run tests on them.

l UFT displays the name of your environment in all of the dialog boxes that display lists of add-ins or
supported environments.

l UFT displays the list of test object classes defined by your toolkit support set in dialog boxes that
display the list of test object classes available for each add-in. (For example: Define New Test Object
dialog box, Object Identification dialog box.)

Deploying the CustomToolkit Support
To deploy the toolkit support set that you create, you must place the files in specific locations within the
UFT installation folder.

Note: Before you begin, create a folder with the name of your custom toolkit in the <UFT
Installation folder>\dat\Extensibility\Web folder, if one does not already exist.

The following table describes the appropriate location for each of the toolkit support files:

File Name Location

<Custom Toolkit Name>TestObjects.xml

Note: This is the recommended file name convention.
You can havemore than one test object configuration
XML file, and name them as you wish.

l <UFT Installation folder>\dat\
Extensibility\ Web

l <UFT Add-in for ALM
Installation folder>\dat\Extensibilit
y\ Web

(Optional. Required only if the folder exists, which means
theUFT Add-in for ALM was installed independently from
theALM Add-ins page and not as part of theUFT
installation.)

<Custom Toolkit Name>.xml <UFT Installation folder>\dat\
Extensibility\Web\Toolkits\<custom
toolkit name>

JavaScript files Specify the location in the in <Custom Toolkit Name>.xml

Developer Guide
Chapter 4: Deploying the Toolkit Support Set

HP UFT Web Add-in Extensibility (12.50) Page 73

File Name Location

Icon files for new test object classes (optional) The file can be a .dll, .exe, or .ico file, located on the computer
on which UFT is installed, or in an accessible network location.

Specify the location in <Custom Toolkit
Name>TestObjects.xml

Help files for the test object classes (optional) Must be a .chm file, located on the computer on which UFT is
installed.

Specify the location in <Custom Toolkit
Name>TestObjects.xml

External JavaScript libraries

These are not part of the toolkit support set, but when you
deploy the support set you must make sure that the library
files are located in the location specified in the toolkit
configuration file.

A .js file, located on the computer on which UFT is installed, or
in an accessible network location.

Specify the location in <Custom Toolkit Name>.xml

Recommended File Locations
You specify the locations of the JavaScript, Help, and icon files in the toolkit support set's configuration
files. You can specify these locations using relative paths. For more information, see the Test Object
Schema Help and the Toolkit Configuration Schema HelpToolkit Configuration Schema Help (available
with the Web Add-in Extensibility Help).

Developer Guide
Chapter 4: Deploying the Toolkit Support Set

HP UFT Web Add-in Extensibility (12.50) Page 74

The recommended locations for these files are described in the following table:

File Name Location

JavaScript files <UFT Installation folder>\dat\Extensibility\Web\
Toolkits\<custom toolkit name>\JavaScript

Icon files <UFT Installation folder>\dat\Extensibility\Web\
Toolkits\<custom toolkit name>\Res

Help files <UFT Installation folder>\dat\Extensibility\Web\
Toolkits\<custom toolkit name>\Help

Settings to Use During Design Stages
l If you modify attributes of Identification Property elements in the test object configuration file,

keep the DevelopmentMode attribute of the TypeInformation element set to true during the design
stages of the custom toolkit support. Before you deploy the custom toolkit support set for regular
use, be sure to remove this attribute (or set it to false). For more information, see "Modifying
Identification Property Attributes in a Test Object Configuration File" below.

l To instruct UFT to re-inject the JavaScript file into the Web page every time it is refreshed, define a
Controls\Settings\Variable element in the toolkit configuration file, set its name attribute to cache
scripts and its value attribute to false. If you do this, then after you modify your JavaScript
functions and deploy them, if you have not changed anything in the XML files or reopened UFT, you
only need to refresh the Web page containing your custom controls to test your changes. You do not
have to close and reopen the Web page.

Before you deploy the custom toolkit support set for regular use, be sure to remove this element or
set its value attribute to true to avoid performance degradation.

Modifying Deployed Support
If you modify a deployed toolkit support set, you must reopen UFT and re-run the Web application for
the changes to take effect.

If you change the identification property definitions that specify the functionalities for which the
properties are used in UFT, see "Modifying Identification Property Attributes in a Test Object
Configuration File".

Modifying Identification Property Attributes in a Test Object
Configuration File
The following attributes of the Identification Property element in the test object configuration file
specify information that can be modified in UFT (using the Object Identification dialog box):
AssistivePropertyValue, ForAssistive, ForBaseSmartID, ForDescription, ForOptionalSmartID, and
OptionalSmartIDPropertyValue. These attributes determine the lists of identification properties used

Developer Guide
Chapter 4: Deploying the Toolkit Support Set

HP UFT Web Add-in Extensibility (12.50) Page 75

for different purposes in UFT. For more information, see the UFT Test Object Schema Help, available in
the UFT Web Add-in Extensibility Help.

Therefore, by default, UFT reads the values of these attributes from the XML file only once, to prevent
overwriting any changes a user makes using the Object Identification dialog box. In this way, UFT
provides persistence for the user defined property lists.

If the user clicks the Reset Test Object button in the Object Identification dialog box, the attributes'
values are reloaded from the XML.

If the XML changed since the last time it was loaded (based on the file's modification date in the
system), UFT reads the attributes from the XML. UFT adds identification properties to the relevant lists
(and adjusts their order if necessary) according to the values of these attributes, but does not remove
any existing identification properties from the lists.

To instruct UFT to completely refresh the identification property lists according to the attributes
defined in the XML each time UFT is opened, set the DevelopmentMode attribute of the
TypeInformation element in this test object configuration file to true.

Considerations When Modifying Identification Properties Attributes

l If you modify attributes of Identification Property elements in the test object configuration file,
keep the DevelopmentMode attribute of the TypeInformation element set to true during the design
stages of the custom toolkit support. This ensures that UFT uses all of the changes you make to the
file.

l Before you deploy the toolkit support set for regular use, be sure to remove the DevelopmentMode
attribute of the TypeInformation element (or set it to false). Otherwise, every time UFT opens it will
refresh the property lists based on the definitions in the test object configuration file. If UFT users
change the property lists using the Object Identification dialog box, their changes will be lost when
they reopen UFT.

l Though UFT does not remove existing properties from the property lists when reading a modified
test object configuration file (unless the DevelopmentMode attribute is set to true), it does add
properties and adjust the order of the lists based on the definitions in the file. If UFT users removed
properties from the lists or modified their order using the Object Identification dialog box, those
changes will be lost when a modified file is loaded.

If you provide the custom toolkit support set to a third party, and you deliver an upgrade that
includes a modified test object configuration file, consider informing the UFT users about such
potential changes to their identification property lists.

Removing Deployed Support
When opening UFT, the UFT user can use the Add-in Manager to instruct UFT whether to load the
support provided for any particular environment or toolkit.

If you want to remove support for a custom toolkit from UFT after it is deployed, you must delete its
toolkit configuration file from: UFT Installation folder>\dat\Extensibility\Web\Toolkits\<custom
toolkit name>

Developer Guide
Chapter 4: Deploying the Toolkit Support Set

HP UFT Web Add-in Extensibility (12.50) Page 76

If none of the test object class definitions in a test object configuration file are used to represent any
custom controls (meaning they are no longer needed), you can delete the file from: UFT Installation
Folder>\dat\Extensibility\Web and
UFT Add-in for ALM Installation folder>\dat\Extensibility\Web if relevant.

Developer Guide
Chapter 4: Deploying the Toolkit Support Set

HP UFT Web Add-in Extensibility (12.50) Page 77

HP UFT Web Add-in Extensibility (12.50) Page 78

Part 2: Tutorial: Learning to Create Web
Custom Toolkit Support
The lessons in this tutorial are Internet-Explorer oriented. This means that the JavaScript code you
create is written in Internet-Explorer style, and the support that you create for the sample custom
controls will operate correctly only on Microsoft Internet Explorer. When you create your own Web Add-
in Extensibility support, you can design it to run on Mozilla Firefox and Google Chrome as well. For more
information, see " Developing Browser-Independent Support" on page 31.

Chapter 5: Learning to Create UFT Support for a
Simple CustomWeb Control
In this lesson you manually create support for the Book control in the Web Add-in Extensibility Book
Sample toolkit, which is installed with Extensibility Accelerator for HP Functional Testing. Creating
support for the Book control requires only minimal customization, allowing you to learn the basics of
creating a toolkit support set.

When you create support for your own controls, use Extensibility Accelerator to design your support.
Extensibility Accelerator creates the toolkit support set files and sets up the XML files automatically, so
you can focus on designing your JavaScript functions. Creating the support manually in this lesson
enables you to get a better understanding of the structure and content of a Web Add-in Extensibility
toolkit support set.

The %ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\
WebExtSample folder contains a complete toolkit support set for this sample to which you can refer
while you perform this lesson.

Before you perform this lesson, ensure that you have read "Introducing UFT Web Add-in Extensibility" on
page 12.

This lesson includes:

• Preparing for This Lesson 80

• Planning Support for the Web Add-in Extensibility Book Sample Toolkit 80

• Developing the Toolkit Support Set 87

• Lesson Summary 108

HP UFT Web Add-in Extensibility (12.50) Page 79

Preparing for This Lesson
Before you extend UFT support for a custom control, you must have access to its source file. You do not
need to modify any of the custom control's sources to support it in UFT, but you do need to be familiar
with them. Make sure you know what elements and attributes comprise the control, the events that
might occur on this control, and so on. You use this information when you design the support class.

The source file for the Book control is located in%ALLUSERSPROFILE%\
Documents\ExtAccTool\Samples\WebExtSample\Application\Book.htm.

Open the file to run the control.

Run the control, open the source file for it and study the control's behavior and implementation.

The Book control contains information including the title of the book, its authors, the price for a new
copy of the book, and the lowest price for which a used copy can be purchased.

Clicking on the title or the image of the book opens a page that can display more details about the book
(but is not implemented in this sample). Clicking on an author name opens a page that can provide a list
of books by the same author (but is not implemented in this sample). Clicking on Used opens a
UsedBooks page, listing all of the available used copies of the book, and their prices. The UsedBooks
table is a more complex control that you will learn to support in the lesson, "Learning to Create UFT
Support for a Complex Custom Web Control" on page 110.

Planning Support for theWeb Add-in Extensibility
Book Sample Toolkit
In this section, you analyze how UFT currently recognizes the Book control versus the way it should
recognize it, based on your knowledge of the control. Next, you determine the answers to the questions
in "Understanding the Web Add-in Extensibility Planning Checklist" on page 25, and fill in the "Web Add-
in Extensibility Planning Checklist" on page 27, accordingly.

The best way to do this is to analyze how UFT recognizes the Book control on the one hand, using the
Object Spy, Keyword View, and Record option, and on the other hand, to consider how the control is
implemented and the purposes for which it is used.

1. Open UFT and Run the Book control.

Open UFT and load the Web Add-in.

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 80

Close any open instances of the Book control and open it by opening the
%ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\WebExtSample\
Application\Book.htm file.

2. Use the Object Spy to view the Book properties and operations.

In UFT, open a GUI test and select Tools > Object Spy or click the Object Spy toolbar button to
open the Object Spy dialog box. Click the Properties tab and select Identification Properties.

In the Object Spy dialog box, click the pointing hand , then click the Book control.

The Book control is implemented as a Web table, for which UFT support is built in, therefore it
recognizes the control as a WebTable, named according to the title of the book. The icon used for
the test object is the standard WebTable class icon.

Below, you can see the checklist, completed based on the information above.

Close the Object Spy.

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 81

3. Record operations on the Book control.

In UFT, select Record > Record and Run Settings to open the Record and Run Settings dialog box.
In the Web tab, select Record and run test on any open browser. Click OK.

Click the Record button or select Record > Record. Click on different links in the Book control (you
must return to the previous page after each click, to return to the Book control): the book title, the
image in the control, an author name, and the Used link.

With each click, a new step is added to the test:

Click the Stop button or select Record > Stop to end the recording session.

Only simple Click steps are recorded, each attributed to a different object defined within the book
control. Click operations are recorded independently on Web Link test objects with different
names, or on the Book image test object. These steps are not helpfully meaningful in the context
of this control.

4. Determine the custom toolkit to which the Book control belongs.

When you extend UFT support for a control you always do so in the context of a toolkit. For the
purpose of this tutorial, two custom Web controls are grouped to form the custom toolkit named
WebExtSample: Book and UsedBooksTable.

In this lesson you create support for the WebExtSample toolkit, initially supporting only the Book
control.

5. Complete the custom class support planning checklist.

The Book control is implemented as a Web table, as follows:

<table class="Book">
 <tr>
 <td class="BookImageCell" rowspan="4">

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 82

 </td>
 <td class="BookCell">
 The History of
QuickTest Professional
 </td>
 </tr>
 <tr>
 <td class="BookCell">
 By: Jane Doe, John Doe
 </td>
 </tr>
 <tr>
 <td class="BookCell">
 </td>
 </tr>
 <tr>
 <td class="BookCell">
 New: 59.99$ Used: from 29.99$
 </td>
 </tr>
</table>

This section describes the decisions you need to make when planning your support for the Book
control, and then summarizes the information in the support planning checklist.

a. Choose a test object class to represent the custom control:

The Book control is implemented as a Web table control to assist in its appearance. For the
purpose of performing tests on this control, there is no need to for UFT to recognize the Book
control as a table. On the other hand, the basic support that UFT provides a generic Web
element, using the WebElement object, is not specific enough for the Book control. Therefore,
you create a new test object class namedWebExtBook, which extendsWebElement, and teach
UFT to identify this test object class as the one that represents the Book control.

b. Define how UFT will identify which test object class to use to represent the control:

If the control's tagName property is table and its className property is Book, use a
WebExtBook test object to represent the control.

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 83

c. Decide the details for the new test object class:

o The new test object class is represented by the icon file:
<UFT installation folder>\Dat\Extensibility\Web\Toolkits\WebExtSample\
Res\WebBook.ico

o No Help file is provided.

o The new identification properties to support are: title, authors, price, andmin_used_price.
They should all be displayed in the UFT Checkpoint Properties and Output Value Properties
dialog boxes, and be selected by default in checkpoints. None are used for Smart
Identification.

The identification properties that uniquely define the object are the book's title and the
names of its authors.

o The name of the test object itself should be the same as its title identification property.

d. Decide which test object methods to support for the custom control:

The WebExtBook test object class provides the following test object methods:

o Select. Simulates clicking the book's title or image. This is the default test object method.

o GoToAuthorPage. Simulates clicking the specified author name (the available author
names should be retrieved from the specific control during run-time).

o GoToUsedBooksPage. Simulates clicking the Used link.

e. Determine whether you need to support a dynamic list of values for any method arguments:

Yes, a dynamic list of values is required for the AuthorName argument in the GoToAuthorPage
method. (This requires modifying the toolkit configuration file to specify the JavaScript
function that provides the values, and designing the relevant JavaScript function).

f. Define which of the control's children UFT should learn when learning the control:

For testing purposes, UFT should relate to all operations as though they are carried out on the
Book control itself, even if they are technically performed on controls within it. Therefore,
none of the control's children need to be learned and represented by test objects.

g. Decide whether the Object Spy should displayWebExtBook test objects: Yes.

h. Define whether to support recording, and what events to record:

Listen to mouse clicks that occur on the following elements in the control: title, image,
authors, and Used. When a click occurs on one of these elements, record the relevant step in
the test.

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 84

i. Decide what parts of the support need to be designed in the toolkit configuration file and what
parts need JavaScript functions:

o For the simple Book control, test object class identification is based simply on html
property values and can therefore be supported using the toolkit configuration file without
JavaScript functions.

o Test object methods and identification properties can be supported by JavaScript functions
using the default naming convention, therefore no changes are required in the toolkit
configuration file.

o Instructing UFT not to learn the control's children can be designed in the toolkit
configuration file and does not require JavaScript functions.

o To support recording, you modify the toolkit configuration file to turn off the default Web
Event Configuration and specify the JavaScript function that registers UFT to listen to the
correct event. In addition, design one JavaScript function that handles event registration,
and additional JavaScript functions that instruct UFT to record the relevant steps when the
events occur.

Below, you can see the checklist, completed based on the information above.

Web Add-in Extensibility Planning Checklist

Custom Control Support Planning Checklist Specify
in
Toolkit
XML?

Support
by
JavaScript
function?

The sources for this custom control are located in:
%ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\
WebExtSample\Application\Book.htm

n/a n/a

Specify theWeb test object base class that the new test object class extends: (Default—
WebElement)
WebElement

n/a n/a

Is the base test object class WebElement? Yes

If No, is there a base element (an element that matches the base test object class)? n/a

If there is a base element, do you need a JavaScript function to return it? n/a

No No

Specify theNew Web test object class details:

l Test object class name: WebExtBook

l Icon file location (optional):
<UFT installation folder>\Dat\Extensibility\Web\
Toolkits\WebExtSample\Res\WebBook.ico

l Identification properties for description: title, authors

l Default test object method: Select

l Help file location: n/a

n/a n/a

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 85

Custom Control Support Planning Checklist Specify
in
Toolkit
XML?

Support
by
JavaScript
function?

Specify the basis for identifying the test object class to use for the control:
tagName = table, className = Book.

Yes No

Specify the basis for naming the test object:
Use the book title

n/a Yes

List the identification properties to support. Markwhich should be available (and which selected
by default) for checkpoints and which (if any) should beused for Smart Identification:
title, authors, price, min_used_price
(all available for checkpoints and selected by default, none
used for Smart Identification)

No Yes

List the test object methods to support (if required, include arguments, return values, Help file
location and Help ID):
Select ()
GoToAuthorPage (AuthorName)
GoToUsedBooksPage ()

No Yes

Provide adynamic list of values for any test object method arguments?
Yes

If so, list the arguments:

AuthorName for GoToAuthorPage method

n/a Yes

Specify the types of children that UFT should learn with the control:
None

Yes No

Display test objects of this class in theObject Spy?
Yes

No n/a

Provide support for recording?
Yes

If so, list the events that should trigger recording:

Clicks on title, image, author names, and Used

Yes Yes

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 86

Developing the Toolkit Support Set
Follow the steps in this section to develop the toolkit support set for the WebExtSample toolkit and
learn the basics of Web Add-in Extensibility. Developing this toolkit support set comprises the following
stages:

l "Stage 1: Creating the Toolkit Support Set", described on page 87

l "Stage 2: Introducing the WebExtSample Environment to UFT", described on page 88

l "Stage 3: Teaching UFT to Identify, Spy, and Learn the Book Control", described on page 90

l "Stage 4: Implementing Support for the WebExtBook's Test Object Methods", described on page 95

l "Stage 5: Implementing Support for the WebExtBook's Identification Properties", described on page
97

l "Stage 6: Changing the Name of the Test Object", described on page 100

l "Stage 7: Implementing a Filter to Prevent Learning Child Objects", described on page 101

l "Stage 8: Implementing Support for Recording on the Book Control", described on page 102

l "Stage 9: Implementing Support for Dynamic List of Values for AuthorName", described on page 106

Stage 1: Creating the Toolkit Support Set
In this section, you create the files and folders that comprise the toolkit support set for the
WebExtSample toolkit.

To create the toolkit support set:

1. Create a folder for your toolkit support set.

You can choose any convenient name and location for this folder.

2. In the toolkit support set folder, create a file namedWebExtSampleTestObjects.xml. This is the
test object configuration file.

3. In the toolkit support set folder, create a folder named Toolkits.

4. In the Toolkits folder, create a folder namedWebExtSample.

5. In the Toolkits\WebExtSample folder, create the following:

l A file namedWebExtSample.xml (This is the toolkit configuration file.)

l A file namedWebExtBook.js (This is the file for all of the JavaScript functions you design to
support the Book control.)

l A folder named Res containing the WebBook.ico icon file (You can copy the icon file from
%ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\WebExtSample\Res.)

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 87

Stage 2: Introducing theWebExtSample Environment to UFT
In this section, you introduce the WebExtSample environment to UFT, using the toolkit configuration file
and the test object configuration file. The first layer of Web Add-in Extensibility is introducing the
environment to UFT. The toolkit configuration file informs UFT of the new environment (and its name)
and the test object configuration file describes the test object model that you designed for the
environment.

Designing the Toolkit Configuration File

The first role of the toolkit configuration file is informing UFT of the new supported environment.

To inform UFT that a new environment is supported, it is sufficient to create a basic toolkit
configuration file, whose name is the same as the environment name. A basic toolkit configuration file
must contain one Controls element with at least one Control element (describing one test object class).
For more information on the elements and attributes in the toolkit configuration file, see the UFT Java
Add-in Extensibility Toolkit Configuration Schema Help (available with the Web Add-in Extensibility Help).

To inform UFT about the WebExtSample environment:

Enter the following text in the WebExtSample.xml file that you created in "Stage 1: Creating the Toolkit
Support Set" on the previous page:

<?xml version="1.0" encoding="UTF-8"?>
<Controls>
 <Control TestObjectClass="WebExtBook"/>
</Controls>

After you deploy this file to the correct location on a UFT computer, when UFT opens, it displays the
WebExtSample environment in the Add-in Manager, as a child node beneath the Web Add-in. If you
select the check box for the WebExtSample, UFT loads the support that you provide for this
environment.

Later in this lesson you will add additional elements within this Control element, providing the location
of the JavaScript functions that complete the toolkit support set and information that provides support
for the following UFT abilities:

l Identifying the test object class used to represent the control (to support the Object Spy and learning
controls)

l Filtering child controls when learning the control

l Listening to events on the control to record test steps

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 88

Designing the Test Object Configuration File

You use the test object configuration file to introduce the WebExtSample environment and its test
object model to UFT.

The PackageName attribute in the TypeInformation element associates this test object configuration
file (and the test objects defined in it) with the WebExtSample environment. If, when UFT opens, you do
not select the WebExtSample environment, UFT ignores the test object class definitions in this file.

For more information on the elements and attributes in the test object configuration file, see the UFT
Test Object Schema Help (available with the Web Add-in Extensibility Help).

To define the WebExtSample test object model in the test object configuration file:

Enter the text below in the WebExtSampleTestObjects.xml file that you created in "Stage 1: Creating
the Toolkit Support Set" on page 87. This defines the WebExtSample environment and the WebExtBook
test object class (including its test object methods and identification properties) according to the
details described in the "Web Add-in Extensibility Planning Checklist" on page 85.

<?xml version="1.0" encoding="UTF-8"?>
<TypeInformation Load="true" AddinName="Web"

PackageName="WebExtSample">
 <ClassInfo BaseClassInfoName="WebElement"
 Name="WebExtBook"

DefaultOperationName="Select" >
 <IconInfo IconFile= "INSTALLDIR\dat\Extensibility\Web\

Toolkits\WebExtSample\Res\WebBook.ico"/>
 <TypeInfo>
 <Operation ExposureLevel="CommonUsed"
 Name="Select"
 PropertyType="Method">
 <Description>Selects the book.</Description>
 <Documentation>
 <![CDATA[Select the %l book.]]>
 </Documentation>
 </Operation>
 <Operation ExposureLevel="CommonUsed"
 Name="GoToAuthorPage"
 PropertyType="Method">
 <Description>
 Opens the Web page for the specified author.
 </Description>
 <Documentation>
 <![CDATA[Open the Web page for %a1.]]>
 </Documentation>
 <Argument Name="AuthorName"
 IsMandatory="true"

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 89

 Direction="In"
 DynamicListOfValues="true">
 <Type VariantType="String"/>
 <Description>The author.</Description>
 </Argument>
 </Operation>
 <Operation ExposureLevel="CommonUsed"
 Name="GoToUsedBooksPage"
 PropertyType="Method">
 <Description>
 Opens the UsedBooks page.
 </Description>
 <Documentation>
 <![CDATA[Open the %l UsedBooks page.]]>
 </Documentation>
 </Operation>
 </TypeInfo>
 <IdentificationProperties>
 <IdentificationProperty ForDefaultVerification="true"
 ForVerification="true"

ForDescription="true"
 Name="title"/>
 <IdentificationProperty ForDefaultVerification="true"
 ForVerification="true"

ForDescription="true"
 Name="authors"/>
 <IdentificationProperty ForDefaultVerification="true"
 ForVerification="true"
 ForDescription="false"
 Name="price"/>
 <IdentificationProperty ForDefaultVerification="true"
 ForVerification="true"

ForDescription="false"
 Name="min_used_price"/>
 </IdentificationProperties>
 </ClassInfo>
</TypeInformation>

Stage 3: Teaching UFT to Identify, Spy, and Learn the Book
Control
To support a custom control, UFT must be able to identify which test object class should represent a
given control. Therefore, the most basic element of Web Add-in Extensibility is the Identification
element, defined within each Control element in the toolkit configuration file. Each Control element

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 90

defines a test object class. The Identification element specifies which controls should be represented
by that test object class.

When UFT needs to recognize a control in the application being tested, it checks the Identification
element defined for each test object class. The first test object class whose Identification definition
matches the control is used to represent the control.

As described in "Planning Support for the Web Add-in Extensibility Book Sample Toolkit" on page 80, any
control whose tagName property is table and whose className property is Book is represented by a
WebExtBook test object. This can be defined simply in the toolkit configuration file and does not require
using JavaScript functions.

To define the identification rules for the WebExtBook test object class:

Replace the text in the WebExtSample.xml file with the following text:

<?xml version="1.0" encoding="UTF-8"?>
<Controls>
 <Control TestObjectClass="WebExtBook">
 <Identification>
 <Browser name="*">
 <Conditions type="IdentifyIfPropMatch" logic="and">
 <Condition prop_name="tagName" expected_value="TABLE"/>
 <Condition prop_name="className" expected_value="Book"/>
 </Conditions>
 </Browser>
 </Identification>
 </Control>
</Controls>

This adds an Identification element to the Control element that defines the WebExtBook test object
class. The Identification element includes one Conditions element that contains two conditions, both of
which must be met for the control to qualify as a WebExtBook. The Condition elements within the
Conditions element specify one condition each. In each condition, the value of the specified HTML
property of the control must match (case-insensitive compare) the specified expected value.

This tutorial uses the definition above to illustrate the use of more than one Condition element within a
Conditions element. However, if you were working with an application that had many controls on a page,
or a large DOM structure, this would be a better way to define the identification rules:

 <Identification>
 <Browser name="*">
 <HTMLTags>
 <Tag name="TABLE"/>
 </HTMLTags>
 <Conditions type="IdentifyIfPropMatch">
 <Condition prop_name="className" expected_value="Book"/>
 </Conditions>

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 91

 </Browser>
 </Identification>

This definition provides improved performance because it instructs UFT to perform the identification
process only on TABLE elements.

For more information on defining the Identification element for a test object class, see " Teaching UFT
to Identify the Test Object Class to Use for a Custom Web Control" on page 49 and the UFT Java Add-in
Extensibility Toolkit Configuration Schema Help (available with the Web Add-in Extensibility Help).

Deploying and Testing the Toolkit Support Set (for Stage 3)

After defining the WebExtBook test object class in the test object configuration file and the
identification rules for this test object class in the toolkit configuration file, you can already test the
effect of using the toolkit support set with UFT.

Note: When you develop your own toolkit support set, if you modify attributes of Identification
Property elements in the test object configuration file, keep the DevelopmentMode attribute of
the TypeInformation element set to true during the design stages of the custom toolkit support.
Before you deploy the custom toolkit support set for regular use, be sure to remove this attribute
(or set it to false). This is not required when performing this tutorial lesson. For more information,
see "Modifying Identification Property Attributes in a Test Object Configuration File" on page 75.

To deploy the toolkit support set

1. Copy the WebExtSampleTestObjects.xml file to <UFT installation folder>\dat\Extensibility\Web.

2. In the <UFT installation folder>\dat\Extensibility\Web\Toolkits folder, create a folder named
WebExtSample.

3. Copy the WebExtSample.xml file to the <UFT installation
folder>\dat\Extensibility\Web\Toolkits\WebExtSample folder.

4. In the <UFT installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample folder, create a
folder named Res.

5. Place the WebBook.ico file in <UFT installation
folder>\dat\Extensibility\Web\Toolkits\WebExtSample\Res folder.

To test the toolkit support set

1. After you deploy the toolkit support set, open UFT.

Note: UFT reads toolkit support files when it opens. Therefore, if UFT is open, you must close
UFT and open it again.

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 92

The Add-in Manager dialog box displays the WebExtSample as a child of the Web environment in
the list of available add-ins. (If the Add-in Manager dialog box does not open, see the HP Unified
Functional Testing Add-ins Guide for instructions.)

2. Select the check box for WebExtSample and click OK. UFT opens and loads the support you
designed.

3. Use the Define New Test Object button in the Object Repository dialog box to open the
Define New Test Object dialog box. The WebExtSample environment is displayed in the
Environment list. When you select the WebExtSample environment from the list, the WebExtBook
test object class that you defined in the test object configuration file is displayed in the Class list,
with the icon that you specified in the WebExtSampleTestObjects.xml file.

4. Run the sample control by opening the
%ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\WebExtSample\
Application\Book.htm file.

Note: UFT establishes its connection with an application when the application opens.
Therefore, if the Book control is open, you must close it and run it again.

In UFT, perform the following activities on the Book control, to see how UFT recognizes the control.
(For more information on working in UFT, see the HP Unified Functional Testing User Guide.)

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 93

l Use the Object Spy to view the identification properties and test object operations that are
supported for the Book control:

o The WebExtBook test object created for the Book control is given the name of its test
object class. Later in this lesson, you customize your toolkit support set to provide a more
specific name.

o The list of test object operations includes all of the operations (methods and properties)
inherited from the WebElement base class, as well as all of the methods that you defined in
the WebExtSampleTestObjects.xml test object configuration file.

o The list of identification properties includes all of the properties that you defined in the
WebExtSampleTestObjects.xml test object configuration file. The property values are not
displayed because you have not yet implemented a method that returns property values
from the application (and the WebElement base class does not support these properties).
You will implement such a method later in this lesson.

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 94

l Use the Add Objects to Local button in the Object Repository dialog box to learn the Book
control. Ensure that the correct icon is used to represent the test object in the object
repository.

l In the Keyword View, create a test step choosing the WebExtBook object from the object
repository in the Item column.

o The list of available operations in the Operation column reflects the definitions in the test
object configuration file.

o After you select an operation, UFT displays the Name attribute of the operation's argument
in a tooltip for the Value cell. If you define an operation with more than one argument, the
Value cell is partitioned according to the number of arguments of the operation, when
selected.

o The descriptions and documentation strings you defined for test object methods in the test
object configuration file are displayed in tooltips and in the Documentation column,
respectively.

l In the Editor, create a test step with a WebExtBook test object. The statement completion
feature displays all of the operations available for the test object, based on the definitions in
the test object configuration file.

If you defined possible values for the operation's arguments (in the ListOfValues element), they
are displayed in a statement completion list as well. Later in this lesson, you learn how to enable
a control to dynamically provide a list of possible argument values. You develop support for
providing a list of the authors that can be used for the AuthorName argument of the
GoToAuthorPage operation.

5. Run a test with a step that performs a new test object method on a WebExtBook test object. UFT
searches for a JavaScript function that will run the test object method on the control. Because you
have not yet implemented support for running test object methods, a run-time error occurs. In the
next section, you implement this support.

Stage 4: Implementing Support for theWebExtBook's Test
Object Methods
After enabling UFT to recognize the custom controls, you must provide support for running test object
methods. For each test object method that you defined in the test object configuration file, you must
write a JavaScript function that UFT runs to perform the step on the control.

In the toolkit configuration file, you need to specify the JavaScript file in which UFT should look for the
JavaScript functions and, optionally, the name of the function to use for each test object method.

In this section, you provide support for the WebExtBook's test object methods: Select, GoToAuthorPage
(AuthorName), and GoToUsedBooksPage.

It is possible to specify a JavaScript file and function for each test object method in the toolkit
configuration file. However, in this lesson, you develop support for running test object methods in the

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 95

simplest way possible. At the Control element level, you define one JavaScript file that UFT uses by
default for all test objects methods defined within this element. As for the JavaScript function names,
by default, searches in the specified file for a JavaScript function with the same name as the test object
method. Therefore, you do not need to specify the function names in the toolkit configuration file, but
only to create the JavaScript functions with the correct names.

To develop support for the WebExtBook test object methods:

1. In the WebExtSample.xml file, within the Control element defined for the WebExtBook test object
class, add UFTthe following Settings element:

<Settings>
 <Variable name="default_imp_file" value="WebExtBook.js"/>
</Settings>

This instructs UFT to search for JavaScript functions in the WebExtBook.js file (in the <UFT
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample folder).

Note: You can modify the WebExtSample.xml file in the toolkit support set folder and then
later deploy it to UFT for testing, or you can modify <UFT installation
folder>\dat\Extensibility\Web\Toolkits\WebExtSample.xml directly.

2. In the WebExtBook.js file that you created in "Stage 1: Creating the Toolkit Support Set" on
page 87, paste the text below to create JavaScript functions for each test object method: Select,
GoToAuthorPage (AuthorName), and GoToUsedBooksPage.

Note: The _elem object is a reserved object that UFT uses to refer to the HTML control
currently being handled.

// Run implementation
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// This section contains the functions that carry out the
// test object methods.
function Select()
{ // Click the link in the second cell of the first row.

_elem.rows[0].cells[1].children[0].click();
}
function GoToAuthorPage(AuthorName)
{ // Look for the specified author name among the children

// of the first cell in the second row and click it.
var bWasFound = false;
for(var i = 0 ; i < _elem.rows[1].cells[0].children.length ; ++i)
{

if(_elem.rows[1].cells[0].children[i].innerText == AuthorName)
{

_elem.rows[1].cells[0].children[i].click();
bWasFound = true;

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 96

break;
}

}
if(bWasFound == false)

throw ("Author name not found !");
}
function GoToUsedBooksPage()
{ // Click the link in the first cell of the third row.

_elem.rows[3].cells[0].children[1].click();
}

Deploying and Testing the Toolkit Support Set (for Stage 4)

After developing support for running the test object methods, you deploy the updated toolkit support
set to UFT and test it.

To test the support for running test object methods:

1. To deploy the updated toolkit support set to UFT, copy the WebExtBook.js file (and
WebExtSample.xml if necessary) to <UFT installation
folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

2. Close and reopen UFT. Select the check box for WebExtSample in the Add-in Manager dialog box
and click OK. UFT opens and loads the support you designed.

3. Close and rerun the sample control.

4. Open a GUI test and use the Add Objects to Local button in the Object Repository dialog box
to learn the Book control.

5. Create a test with the following step and then run the test:

Browser("Book").Page("Book").WebExtBook("WebExtBook"). GoToAuthorPage "Jane
Doe"

Note: If you run the GoToAuthorPage test object method with an author name that does not
exist in the control, the JavaScript function throws an exception, UFT displays a run-time error
message and the test step fails.

Create and run similar tests to test the Select and GoToUsedBooksPage test object methods.

Stage 5: Implementing Support for theWebExtBook's
Identification Properties
In this section you implement support for retrieving the values of identification properties during a test
run. UFT uses identification property run-time values in different standard test object methods, such as

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 97

GetROProperty. Identification property run-time values are also required for different basic capabilities,
such as creating checkpoints and outputting values.

To support retrieving the run-time values of identification properties, you need to implement a
JavaScript function that accepts a PropertyName parameter and returns the value of any property UFT
requests. You must implement this method to return a value for each identification property defined in
the test object configuration file.

In the toolkit configuration file, you can specify the JavaScript file in which you implemented the
JavaScript function that retrieves property values. You can also specify the name of the function that
you implemented for this purpose. However, if you do not specify a function name, UFT calls get_
property_value (PropertyName) and this is the function that you must implement. If you do not specify
a file name, UFT calls the function from the JavaScript file you specified in the Control\Settings
element. Therefore, in this lesson, you create the get_property_value function in the WebExtBook.js
file.

To support retrieving the run-time values of the WebExtBook's identification properties:

Add the following lines to the WebExtBook.js file:

// Property retrieval implementation
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// The function provides values for all of the identification
// properties defined in the test object configuration XML file.
function get_property_value(prop)
{
 if (prop == "title")
 // For the "title" identification property,
 // Return the inner text of the second cell in the first row

{
 return _elem.rows[0].cells[1].innerText;
 }
 if (prop == "authors")
 // To return a list of all the authors, look for all the
 // children of the first cell in the second row.

{
 var BookAuthors = "";
 var AuthorsCount = 0;
 for(var i = 0 ; i < _elem.rows[1].cells[0].children.length ; ++i)

{
 if(_elem.rows[1].cells[0].children[i].tagName == "A")

{
 if(AuthorsCount > 0)
 BookAuthors += ",";
 BookAuthors += _elem.rows[1].cells[0].children[i].innerText;
 AuthorsCount++;
 }
 }

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 98

 return BookAuthors;
 }
 if (prop == "price")
 // To return the price of the book, return the innerText
 // property of the first cell in the fourth row.

{
 return _elem.rows[3].cells[0].children[0].innerText;
 }
 if (prop == "min_used_price")
 // To return the lowest price available for a used copy of the
 // book, return the innerText property of the second child of
 // the first cell in the fourth row.

{
 if(_elem.rows[3].cells[0].children.length > 2)
 return _elem.rows[3].cells[0].children[2].innerText;
 }
}

Note: You can modify the WebExtBook.js file in the toolkit support set folder and then later deploy
it to UFT for testing, or you can modify <UFT installation
folder>\dat\Extensibility\Web\Toolkits\WebExtSample\WebExtBook.js directly.

Deploying and Testing the Toolkit Support Set (for Stage 5)

After developing support for retrieving run-time values of identification properties, you deploy the
updated toolkit support set to UFT and test it.

To test the support for retrieving run-time values of identification properties:

1. Make sure that your most updated files are located in <UFT
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

2. Close and reopen UFT. Select the check box for WebExtSample in the Add-in Manager dialog box
and click OK. UFT opens and loads the support you designed.

3. Close and rerun the sample control.

4. Create a new GUI test, add a WebExtBook test object to your object repository, and create a test
step with this test object. Right-click the object and select Insert Standard Checkpoint. The
Checkpoint Properties dialog box opens. Make sure that the identification properties you defined in
the test object configuration file (title, authors, price, andmin_used_price) are included in the list
of properties and are selected.

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 99

5. Create and run a test that retrieves each identification property and checks its value, or displays it
in a message box. For example, you can run the following test:

The first step checks the value of the authors property, the checkpoint in the second step checks
the properties selected in the checkpoint (in this case price and min_used_price) and the third step
displays the book's title in a message box.

6. Click OK to close the message box. The test run is completed and the run results are displayed.
Expand the run results tree to view the step details.

Stage 6: Changing the Name of the Test Object
In this section, you modify the toolkit support set to instruct UFT to name the WebExtBook test object
according to its title, as per your plan ("Planning Support for the Web Add-in Extensibility Book Sample
Toolkit" on page 80).

When UFT creates the test object that represents a control, it calls the get_property_value function
(used for retrieving test object identification property values) with the argument logical_name to
determine the name for the test object. You can implement the get_property_value function
accordingly, to customize the name UFT gives the test object. If the get_property_value function does
not support the logical_name property, the test object is given the name of the test object class
(followed by an index, if there is more than one object of the same test object class on the same page).

To customize the name of the test object:

In the get_property_value function in the WebExtBook.js file, replace the lines:

if (prop == "title")
// For the "title" identification property,

with the lines:

if (prop == "logical_name" || prop == "title")
// For the "title" identification property, as well as
// the "logical_name" property

Note: You can modify the WebExtBook.js file in the toolkit support set folder and then later deploy
it to UFT for testing, or you can modify <UFT installation
folder>\dat\Extensibility\Web\Toolkits\WebExtSample\WebExtBook.js directly.

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 100

The get_property_value function now returns the same text for the logical_name property that UFT
uses to name the test object, as it does for the title identification property. (Modify the comment that
explains this function accordingly. At the end of the comment, add the following: as well as the
hard coded "logical_name" property that UFT uses to name the test object.)

Deploying and Testing the Toolkit Support Set (for Stage 6)

After developing support for naming the test object that represents the control, you deploy the updated
toolkit support set to UFT and test it.

To test the support for naming the WebExtBook test object:

1. Make sure that your most updated files are located in <UFT installation folder>\
dat\Extensibility\Web\Toolkits\WebExtSample.

2. Close and reopen UFT. Select the check box for WebExtSample in the Add-in Manager dialog box
and click OK. UFT opens and loads the support you designed.

3. Close and rerun the sample control.

4. Open a GUI test, open the Object Repository, and use the Add Object to Local button to learn the
Book control. Make sure that the test object that UFT creates is named The History of QuickTest
Professional.

Stage 7: Implementing a Filter to Prevent Learning Child Objects
When you instruct UFT to learn a Web page, the Define Object Filter dialog box opens, enabling you to
determine which of the Web page's descendants should be learned with it. When you select All object
types, instructing UFT to learn the WebExtBook control with its parent Web page, all of the controls that
the WebExtBook control contains are also learned as children of that Web page (and siblings of the
WebExtBook control).

In the case of the Book control, there is no need to create test objects for all of its children, as
described in "Planning Support for the Web Add-in Extensibility Book Sample Toolkit" on page 80.

To prevent UFT from learning all of the descendants of a control supported by Web Add-in Extensibility,
you can define a Learn Filter. Complex filters can be implemented using a JavaScript function, in which
case you specify the location and name of the function in the toolkit configuration file. Simple filters
can be implemented directly in the toolkit configuration file, without using JavaScript functions.

To prevent learning the controls contained in the Book control, a simple filter is sufficient. Before you
implement this filter, learn the Web page that contains the Book control with all of its descendants to
see that all of the Book's children are learned as well. To do this, you can follow the procedure described
in "Deploying and Testing the Toolkit Support Set (for Stage 7)" on the next page.

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 101

To prevent learning the controls contained in the Book control:

In the WebExtSample.xml file, within the Control element defined for the WebExtBook test object
class, add the following Filter element:

<Filter>
 <Learn learn_control="Yes" learn_children="No"/>
</Filter>

This instructs UFT to learn WebExtBook test objects when learning their parent Web pages, but not to
learn the child controls they contain.

Note: You can modify the WebExtSample.xml file in the toolkit support set folder and then later
deploy it to UFT for testing, or you can modify <UFT installation
folder>\dat\Extensibility\Web\Toolkits\WebExtSample\.xml directly.

Deploying and Testing the Toolkit Support Set (for Stage 7)

After defining the filter to prevent learning children, you deploy the updated toolkit support set to UFT
and test it.

To test the support for learning the WebExtBook test object without its children:

1. Make sure that your most updated files are located in <UFT
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

2. Close and reopen UFT. Select the check box for WebExtSample in the Add-in Manager dialog box
and click OK. UFT opens and loads the support you designed.

3. Close and rerun the sample control.

4. Open a GUI test and open the Object Repository. Use the Add Objects to Local button in the
Object Repository dialog box to learn the Web page that contains the Book control. The Define
Object Filter dialog box opens.

5. Select All object types and click OK. The WebExtBook object named The History of QuickTest
Professional is added to the object repository, but the controls it contains are not.

Stage 8: Implementing Support for Recording on the Book
Control
By this point in the tutorial, your toolkit support set already enables full UFT functionality. UFT
recognizes the Book control, can learn it and can run tests on it.

An additional, optional way to create tests in UFT is by recording operations that a user performs on the
application. As you can see in "Planning Support for the Web Add-in Extensibility Book Sample Toolkit"
on page 80, by default UFT records plain Click operations on the various Web link and image objects

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 102

within the Book control. It would be more helpful to record Select, GoToAuthorPage, and
GoToUsedBooksPage operations on the Book control itself, in response to those same clicks.

To support customized recording on your control, you must instruct UFT to listen to the relevant events
and inform UFT what test steps to record in response to each event.

To do this you write two types of JavaScript functions:

l One JavaScript function that uses the RegisterForEvent function in the _util utility object that UFT
exposes in the Web Add-in Extensibility SDK to register for listening to the correct events on the
correct elements. The arguments of this function also determine what JavaScript functions UFT calls
when each event occurs.

In the toolkit configuration file, you specify the name and, optionally, the location of this JavaScript
function.

l One or more JavaScript functions that handle the events by calling the Record function in the _util
utility object to inform UFT what step to add to the test.

Note: The Record function, and other utility object functions, require a SafeArray type
argument. To convert an array to a SafeArray, you can use the toSafeArray (array) function
that Web Add-in Extensibility provides. This function is defined in <Extensibility Accelerator
installation folder>\bin\PackagesToLoad\common.js. (This file is also located in the
<UFT installation folder>\dat\Extensibility\Web\Toolkits folder.)

For information on the syntax of the utility object functions, see the _util section in the UFT Java Add-in
Extensibility API Reference (available with the Web Add-in Extensibility Help).

To develop support for recording on the Book control:

Note: You can modify the WebExtSample.xml andWebExtBook.js files in the toolkit support set
folder and then later deploy them to UFT for testing, or you can modify these files in <UFT
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample directly.

1. In the toolkit configuration file, within the Control element add the following
Record\EventListening element:

<Record>
 <EventListening use_default_event_handling_for_children="false"
 use_default_event_handling="false"
 type="javascript"
 function="ListenToEvents"/>
</Record>

This instructs UFT not to use the default Web Event Configuration for handling events on the Book
control and its children, but to call the JavaScript function ListenToEvents. Because you did not
specify a JavaScript file, UFT looks for the JavaScript function in the WebExtBook.js file that you
specified at the Control level for the WebExtBook test object class.

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 103

2. In the WebExtBook.js file, add the following ListenToEvents function:

function ListenToEvents(elem)
{
 // Connect to the "Select" event: When the book name or the
 // book icon is clicked, call OnSelectClicked.
 _util.RegisterForEvent(_elem.rows[0].cells[0].children[0], "onclick",
"OnSelectClicked");
 _util.RegisterForEvent(_elem.rows[0].cells[1].children[0], "onclick",
"OnSelectClicked");
 // Connect to the "Author" event: When an author name is
 // clicked, call OnAuthorClicked.
 for(var i = 0 ; i < _elem.rows[1].cells[0].children.length ; ++i)

{
 if(_elem.rows[1].cells[0].children[i].tagName == "A")

{
 _util.RegisterForEvent(_elem.rows[1].cells[0].children[i],
"onclick", "OnAuthorClicked");
 }
 }
 // Connect to the "UsedBooks" event: When "Used" is
 // clicked, call OnUsedBooksClicked.
 if(_elem.rows[3].cells[0].children.length > 1)
 _util.RegisterForEvent(_elem.rows[3].cells[0].children[1],
"onclick", "OnUsedBooksClicked");
 return true;
}

This function registers UFT to listen to click events on the book's title, image, and authors, and on
the Used link. When registering for an event, this function specifies what JavaScript function UFT
must call when the event occurs.

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 104

3. In the WebExtBook.js file add the following event handler JavaScript functions:

function OnSelectClicked(handlerParam , eventObj)
{
 // Record the "Select" step
 var arr = new Array();
 _util.Record("Select", toSafeArray(arr) , 0);
 return true;
}

function OnAuthorClicked(handlerParam , eventObj)
{
 // Record the "GoToAuthorPage" step
 var arr = new Array();
 arr[0] = eventObj.srcElement.innerText;
 _util.Record("GoToAuthorPage", toSafeArray(arr) , 0);
 return true;
}

function OnUsedBooksClicked(handlerParam , eventObj)
{
 // Record the "GoToUsedBooksPage" step
 var arr = new Array();
 _util.Record("GoToUsedBooksPage", toSafeArray(arr) , 0);
 return true;
}

These functions record Select, GoToAuthorPage, and GoToUsedBooksPage on the WebExtBook
test object, as planned in "Planning Support for the Web Add-in Extensibility Book Sample Toolkit"
on page 80.

Deploying and Testing the Toolkit Support Set (for Stage 8)

After developing the support for recording on the Book control, you deploy the updated toolkit support
set to UFT and test it.

To test the support for recording operations performed on the Book control:

1. Make sure that your most updated files are located in <UFT
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

2. Close and reopen UFT. Select the check box for WebExtSample in the Add-in Manager dialog box
and click OK. UFT opens and loads the support you designed.

3. Close and rerun the sample control.

4. Open a GUI test and click the Record button or select Record > Record. Click on different links in
the Book control (you must return to the previous page after each click, to return to the Book

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 105

control): the book title, the image in the control, an author name, and the Used link.

With each click, a new step is added to the test:

Click the Stop button or select Record > Stop to end the recording session.

Stage 9: Implementing Support for Dynamic List of Values for
AuthorName
Using Web Add-in Extensibility, you can provide the UFT user a list of possible values to use for a test
object method argument, based on the run-time values of the specific control. For example, the
GoToAuthorPage test object method of the WebExtBook test object class receives an AuthorName
argument. It is easier for the UFT users if they can select an author name from a list of possibilities
instead of typing the name. However, this list is different for eachWebExtBook control.

In the test object configuration file, you defined the DynamicListOfValues attribute for the
AuthorName argument as true, instructing UFT to request the list of possible values from the control
when creating a test step.

In the toolkit configuration file, you can specify the file name and function name of the JavaScript
function that UFT must call to retrieve the list of values. By default, UFT requests the list of values by
calling the get_list_of_values JavaScript function from the WebExtBook.js file that you specified at the
Control level for the WebExtBook test object class. UFT calls the JavaScript function for every argument
whose DynamicListOfValues attribute is set to true in the test object configuration file. The
parameters provided to this function indicate the test object method and argument for which the
values are being requested.

In this section, you implement the get_list_of_values JavaScript function, to return the author names
from the Book control.

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 106

To provide a dynamic list of values for the AuthorName argument in the GoToAuthorPage test
object method:

In the WebExtBook.js file add the JavaScript functions:

// Dynamic list of values implementation
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
function get_list_of_values(method, argIndex)
{
 // When creating a step with the GoToAuthorPage test
 // object method, provide a list of the authors of this book
 // that can be used for the method's argument.
 if (method == "GoToAuthorPage")

{
 return get_GoToAuthorPage_list_of_values(argIndex);
 }
 return null;
}
function get_GoToAuthorPage_list_of_values(argIndex)
{
 var arr = new Array();
 if(argIndex > 1)
 return toSafeArray(arr);
 // Retrieve all authors
 var AuthorsCount = 0;
 for(var i = 0 ; i < _elem.rows[1].cells[0].children.length ; ++i)

{
 if(_elem.rows[1].cells[0].children[i].tagName == "A")

{
 arr[AuthorsCount]="\""+_elem.rows[1].cells[0].children
[i].innerText+"\"";
 AuthorsCount++;
 }
 }
 return toSafeArray(arr);
}

This returns a list of the book's authors, each enclosed in quotation marks.

The Book custom control is now fully supported, according to the specifications you decided on when
planning your custom support.

Note: You can modify the WebExtSample.xml file in the toolkit support set folder and then later
deploy it to UFT for testing, or you can modify <UFT installation
folder>\dat\Extensibility\Web\Toolkits\WebExtSample\.xml directly.

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 107

Deploying and Testing the Toolkit Support Set (for Stage 9)

After implementing the get_list_of_values JavaScript function, you deploy the updated toolkit support
set to UFT and test that the dynamic list of author names is properly provided.

To test the support for recording operations performed on the Book control:

1. Make sure that your most updated files are located in <UFT
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

2. Close and reopen UFT. Select the check box for WebExtSample in the Add-in Manager dialog box
and click OK. UFT opens and loads the support you designed.

3. Close and rerun the sample control.

4. Open a GUI test in the Editor and create a step with a WebExtBook test object and the
GoToAuthorPage test object method. When you type a space after the method name, the names
of the authors listed on the Book control are displayed in a drop-down list to be used for the
method argument.

Lesson Summary
In this lesson you created a new test object class, WebExtBook, defining its identification properties and
test object methods. You created support for the Book control, enabling UFT to recognize it as an
WebExtBook test object.

l You learned to understand the test object configuration file.

l You learned to understand the toolkit configuration file.

l You learned to support new identification properties and test object methods.

l You learned to create a filter for preventing child controls from being learned.

l You learned to support recording and you made use of the Record and RegisterForEvent utility
methods.

l You learned how to provide a dynamic list of values for a test object argument.

Where Do You Go fromHere?
For more information on the structure and content of a toolkit support set, see "Developing Support for
Your Toolkit" on page 30.

For more information on the structure and content of the test object configuration file, see the UFTUFT
Test Object Schema Help (available with the Web Add-in Extensibility Help).

For more information on the structure and content of the toolkit configuration file, see the UFT Java
Add-in Extensibility Toolkit Configuration Schema Help (available with the Web Add-in Extensibility Help).

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 108

For more information on the _util utility object and global JavaScript methods, see the UFT Java Add-in
Extensibility API Reference (available with the Web Add-in Extensibility Help).

In the next lesson you learn how to create support for the UsedBooks custom control. The test object
class that represents the UsedBooks control extends the existing WebTable test object class. In
developing UFT support for this control you will learn to use some of the more advanced options that
Web Add-in Extensibility has to offer.

Developer Guide
Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 109

Chapter 6: Learning to Create UFT Support for a
Complex CustomWeb Control
In this lesson you create support for the UsedBooks control in the Web Add-in Extensibility Book Sample
toolkit, which is installed with Extensibility Accelerator for HP Functional Testing. The test object class
that represents the UsedBooks control extends the existing WebTable test object class. Creating
support for the UsedBooks control teaches you how to use some of the more advanced options of Web
Add-in Extensibility.

In the lesson "Learning to Create UFT Support for a Simple Custom Web Control" on page 79, you
learned to create support for a simple custom control. You are now familiar with the basics of Web Add-
in Extensibility, therefore this lesson explains only the more advanced information.

The %ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\WebExtSample folder contains a
complete toolkit support set for this sample to which you can refer while you perform this lesson. The
JavaScript code is not identical to the code you will create, because the sample support set is designed
to work on Firefox as well as Internet Explorer, and uses the jQuery JavaScript library.

This lesson includes:

• Preparing for This Lesson 111

• Planning Support for the Web Add-in Extensibility Sample UsedBooks Control 111

• Developing the Toolkit Support Set 117

• Lesson Summary 130

HP UFT Web Add-in Extensibility (12.50) Page 110

Preparing for This Lesson
Before you extend UFT support for a custom control, you must have access to its source file. You do not
need to modify any of the custom control's sources to support it in UFT, but you do need to be familiar
with them. Make sure you know what elements and attributes comprise the control, the events that
may occur on this control, and so on. You use this information when you design the support.

The source file for the UsedBooks control is located in%ALLUSERSPROFILE%\Documents\
ExtAccTool\Samples\WebExtSample\Application\UsedBooks.htm.

To run the sample application, open the %ALLUSERSPROFILE%\Documents\ExtAccTool\
Samples\WebExtSample\Application\Book.htm file. The Book control opens. In the Book control, click
Used to run the UsedBooks control.

Run the control, open its source file, and study the control's behavior and implementation.

The UsedBooks control is implemented as a div element that comprises a Web table containing
information about the available used copies of this book and radio buttons, and a Select link (outside
the table element) used to select a book from the list. Selecting a book and opening the page about the
selected book (which is not implemented in this sample) requires selecting the radio button in the
relevant row in the table and then clicking Select.

Planning Support for theWeb Add-in Extensibility
Sample UsedBooks Control
In this section, you analyze how UFT currently recognizes the UsedBooks control versus the way it should
recognize it, based on your knowledge of the control. Next, you determine the answers to the questions

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 111

in "Understanding the Web Add-in Extensibility Planning Checklist" on page 25, and fill in the "Web Add-
in Extensibility Planning Checklist" on page 27, accordingly.

The best way to do this is to analyze the UsedBooks control from a UFT perspective on the one hand
using the Object Spy, Keyword View, and Record option, and on the other hand, to consider how the
control is implemented and the purposes for which it is used.

1. Open UFT and Run the UsedBooks control.

Open UFT and load the Web Add-in.

Close any open instances of the UsedBooks control and open it by opening the
%ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\WebExtSample\
Application\Book.htm file and then clicking Used in the Book control that opens.

2. Use the Object Spy to view the UsedBooks test object operations.

In UFT, open a GUI test and select Tools > Object Spy or click the Object Spy toolbar button to
open the Object Spy dialog box. Click the Operations tab and select Test Object Operations.

In the Object Spy dialog box, click the pointing hand , then click the UsedBooks table.

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 112

The UsedBooks control contains a Web table, for which UFT support is built in, therefore it
recognizes the control as a WebTable, named according to the title of the table. The icon used for
the test object is the standard WebTable class icon. UFT ignores the div element, which is actually
the root of the UsedBooks control.

Close the Object Spy.

3. Record operations on the UsedBooks control.

In UFT, select Run > Run Settings or Record > Record Settings to open the Record and Run
Settings dialog box. In the Web tab, select Record and run test on any open browser. Click OK.

Click the Record button or select Record > Record. In the UsedBooks table, select one of the radio
buttons and then click Select.

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 113

With each click, a new step is added to the test:

Click the Stop button or select Record > Stop to end the recording session.

The recorded steps reflect the selection of the radio button and the clicking of the link separately,
and do not recognize these operations as related to the UsedBooks control.

4. Determine the custom toolkit to which the UsedBooks control belongs.

When you extend UFT support for a control you always do so in the context of a toolkit. For the
purpose of this tutorial, two custom Web controls are grouped to form the custom toolkit named
WebExtSample: Book and UsedBooks.

You created the toolkit support set for this toolkit in the previous lesson. In this lesson you add
support for the UsedBooks control in the WebExtSample toolkit support set.

5. Complete the custom control support planning checklist.

This section describes the decisions you need to make when planning your support for the
UsedBooks control, and then summarizes the information in the support planning checklist.

a. Choose the test object class to represent the custom control:

The internal content of the UsedBooks control is implemented as a Web table control because
of the type of information it contains. For the purpose of performing tests on the UsedBooks
control and checking the information it contains, it is appropriate that UFT recognize this
control as a table. However, to optimally support the UsedBooks control, the test object that
represents the control must support a SelectBook test object method that selects a book
from the table by selecting the radio button in the correct row in the table, and clicking Select.

In addition, because the first row in the UsedBooks table contains the column names, it would
be helpful to replace (or override) the RowCount test object method supported for WebTable
objects to reduce the row count and return the number of used copies available for this book.
To support the SelectBook test object method and override the implementation of RowCount,
you create a new test object class namedWebExtUsedBooks, which extendsWebTable. You
then teach UFT to identify this test object class as the one that represents the UsedBooks
control.

b. Define how UFT will identify which test object class to use to represent the control:

If the following conditions are met, use a WebExtUsedBooks test object to represent the
control:

o The control's tagName property is div.

o The tagName property of the control's first child is table.

o The className property of the control's first child is UsedBooks.

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 114

c. Decide the details for the new test object class:

o The new test object class is represented by the icon file:
<UFT installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample\
Res\WebBookList.ico

o No Help file is provided.

o The WebExtUsedBooks test object class needs to support a title identification property
(used to uniquely identify the control, and selected by default in the checkpoint properties
dialog box, not used for Smart Identification).

o The name of the test object itself should be the same as its title identification property.

d. Decide which test object methods to support for the custom control:

The WebExtUsedBooks test object class needs to support all of the test object operations
supported by the WebTable test object class. In addition, it needs to support the SelectBook
test object method.

o All of the operations inherited from the base class, WebTable, can be supported by the
table element contained in the UsedBooks control. However, because the table element is
a not the root element of the UsedBooks control, UFT does not recognize this element as
the base element. You must implement a JavaScript function that returns the table
element as the base element for the UsedBooks control. This instructs UFT to use the table
element to support the operations inherited from the base WebTable test object class.

o The SelectBook test object method simulates selecting the radio button for the specified
book and clicking Select.

o The WebTable test object method RowCount needs to be overridden, to return the actual
number of books in the table instead of the number of rows.

e. Define which of the control's children UFT should learn when learning the control:

For the purpose of this tutorial, when a WebExtUsedBooks test object is learned as part of a
Web page, the radio buttons within in should be learned as well.

f. Decide whether the Object Spy should displayWebExtUsedBooks test objects: Yes.

g. Decide whether to support recording, and what events to record:

Listen to mouse clicks that occur on the Select link. When a radio button is selected and this
link is clicked, record a test step that selects the book whose radio button is selected.

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 115

h. Decide what parts of the support need to be designed in the toolkit configuration file and what
parts need JavaScript functions:

o For the UsedBooks control, test object class identification is performed by a JavaScript
function, specified in the toolkit configuration file. To avoid unnecessary calls to the
JavaScript function, a condition element is defined in the toolkit configuration file,
instructing UFT to call the JavaScript function only if the control is defined as a div
element.

o The table base element must be returned by a JavaScript function specified in the toolkit
configuration file.

o Test object identification properties can be supported by JavaScript functions using the
default naming convention, therefore no changes are required in the toolkit configuration
file.

o The WebTable's RowCount test object method is overridden by a new implementation,
provided by a JavaScript function named BookCount. Therefore, the name of the function
needs to be specified in the toolkit configuration file.

o Filtering the children that are learned with the UsedBooks control is done by calling a
JavaScript function that needs to be specified in the toolkit configuration file.

o To support recording, you modify the toolkit configuration file to turn off the default Web
Event Configuration and specify the JavaScript function that registers UFT to listen to the
correct event. In addition, you design one JavaScript function that handles event
registration, and additional JavaScript functions that instruct UFT to record the relevant
steps when the events occur.

Below, you can see the checklist, completed based on the information above.

Web Add-in Extensibility Planning Checklist

Custom Control Support Planning Checklist Specify in
Toolkit
XML?

Support by
JavaScript
function?

The sources for this custom control are located in:
%ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\
WebExtSample\Application\UsedBooks.htm

n/a n/a

Specify theWeb test object base class that the new test object class extends: (Default—
WebElement)
WebTable

n/a n/a

Is the base test object class WebElement? No

If No, is there a base element (an element that matches the base test object class)? Yes

If there is a base element, do you need a JavaScript function to return it? Yes

Yes Yes

Specify theNew Web test object class details: n/a n/a

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 116

Custom Control Support Planning Checklist Specify in
Toolkit
XML?

Support by
JavaScript
function?

l Test object class name: WebExtUsedBooks

l Icon file location (optional):
<UFT installation folder>\dat\Extensibility\

Web\Toolkits\WebExtSample\Res\WebBookList.ico

l Identification properties for description: title

l Default test object method: SelectBook

l Help file location: n/a

Specify the basis for identifying the test object class to use for the control:
tagName = div
tagName of 1st child = table
className of 1st child = UsedBooks.

Yes Yes

Specify the basis for naming the test object:
Use the UsedBooks table title

n/a Yes

List the identification properties to support, and markwhich should be available (and
which selected by default) for checkpoints and which (if any) should beused for Smart
Identification:
title (available for checkpoints and selected by default,
not used for Smart Identification)

No Yes

List the test object methods to support (if required, include arguments, return values,
Help file location and Help ID):
SelectBook (BookIndex)

RowCount

Yes Yes

Provide adynamic list of values for any test object method arguments?
No

If so, list the arguments.

n/a No

Specify the types of children that UFT should learn with the control:
Radio buttons

Yes Yes

Display test objects of this class in theObject Spy?
Yes

No n/a

Provide support for recording?
Yes

If so, list the events that should trigger recording:

Click on Select

Yes Yes

Developing the Toolkit Support Set
Follow the steps in this section to develop the toolkit support set for the WebExtSample toolkit and
learn more about Web Add-in Extensibility. Developing this toolkit support set comprises the following

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 117

stages:

l "Stage 1: Expanding the Toolkit Support Set to Support an Additional Control", described on page 118

l "Stage 2: Teaching UFT to Identify, Spy, and Learn the UsedBooks Control", described on page 119

l "Stage 3: Implementing Support for the WebExtUsedBooks Test Object Methods", described on page
123

l "Stage 4: Implementing Support for the WebExtUsedBooks Identification Properties and the Test
Object Name", described on page 126

l "Stage 5: Implementing a Filter to Prevent Learning Child Objects", described on page 127

l "Stage 6: Implementing Support for Recording on the UsedBooks Control", described on page 128

Stage 1: Expanding the Toolkit Support Set to Support an
Additional Control
To add support for the UsedBooks control, you first add the definition for the WebExtUsedBooks test
object class to the WebExtSampleTestObjects.xml file.

To expand the toolkit support set to support the UsedBooks control:

1. Copy the icon file for the UsedBooks control,WebBookList.ico, from
%ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\WebExtSample\Res to the <toolkit
support set folder>\Toolkits\WebExtSample\Res folder.

2. Add the following definition for the WebExtUsedBooks test object class to the
WebExtSampleTestObjects.xml file (within the TypeInformation element, after the ClassInfo
element for the WebExtBook test object class):

<ClassInfo BaseClassInfoName="WebTable"
 GenericTypeID="Table"
 Name="WebExtUsedBooks"
 DefaultOperationName="SelectBook">
 <IconInfo IconFile="INSTALLDIR\dat\Extensibility\Web\Toolkits\

WebExtSample\Res\WebBookList.ico"/>
 <TypeInfo>
 <Operation ExposureLevel="CommonUsed"
 Name="SelectBook"
 PropertyType="Method">
 <Description>
 Selects the radio button for the specified book and clicks
Select.
 </Description>
 <Documentation>
 <![CDATA[Select the radio button for the book with index %a1 and
click Select.]]>
 </Documentation>

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 118

 <Argument Name="BookIndex"
 IsMandatory="true"
 Direction="In">
 <Type VariantType="Integer"/>
 </Argument>
 </Operation>
 </TypeInfo>
 <IdentificationProperties>
 <IdentificationProperty ForDefaultVerification="true"
 ForVerification="true"
 ForDescription="true"
 Name="title"/>
 </IdentificationProperties>
</ClassInfo>

This defines the WebExtUsedBooks test object class according to the details described in the "Web
Add-in Extensibility Planning Checklist" on page 116.

For more information on the elements and attributes in the test object configuration file, see the UFT
Test Object Schema Help (available with the Web Add-in Extensibility Help).

Stage 2: Teaching UFT to Identify, Spy, and Learn the UsedBooks
Control
After you define the new test object class you must enable UFT to identify the Web controls for which to
use this test object class.

As described in "Planning Support for the Web Add-in Extensibility Sample UsedBooks Control" on
page 111, a WebExtUsedBooks test object is used to represent a control whose tagName property is
div, if the tagName and className properties of the control's first child are table and UsedBooks
respectively.

For the WebExtUsedBooks test object class, identification is carried out by a combination of Condition
elements in the toolkit configuration file and a JavaScript function.

To define the identification rules for the WebExtUsedBooks test object class:

1. In the WebExtSample.xml file, within the Controls element, add the following Control element for
this test object type:

<Control TestObjectClass="WebExtUsedBooks">
 <Settings>
 <variable name="default_imp_file" value="WebExtUsedBooks.js"/>
 </Settings>
 <Identification type="javascript"

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 119

function="IsWebExtUsedBooks">
 <Browser name="*">
 <Conditions type="CallIDFuncIfPropMatch" logic="and">
 <Condition prop_name="tagName" expected_value="div"/>
 </Conditions>
 </Browser">
 </Identification>
</Control>

This defines that UFT will look for JavaScript functions in the file WebExtUsedBooks.js unless
another file is specified. The Identification element includes one Conditions element that specifies
that if the tagName property of the control being handled is div (case-insensitive compare), the
JavaScript function IsWebExtUsedBooks is called to identify whether to use this test object class
to represent the control.

This tutorial uses the definition above to illustrate the use of the CallIDFuncIfPropMatch value
for the Conditions element's Type attribute. However, if you were working with an application that
had many controls on a page, or a large DOM structure, a better way to define these identification
rules would be to use the following text:

 <Identification type="javascript"
function="IsWebExtUsedBooks">

 <HTMLTags>
 <Tag name="div"/>
 </HTMLTags>
 </Identification>

This provides the same functionality, instructing UFT to call the IsWebExtUsedBooks identification
function only for div elements, but it provides better performance when learning custom controls
and running steps on them.

2. In the toolkit support set folder, in the Toolkits\WebExtSample folder, create a file named
WebExtUsedBooks.js (This is the file for all of the JavaScript functions you design to support the
UsedBooks control).

3. InWebExtUsedBooks.js, add the following JavaScript function:

function IsWebExtUsedBooks()
{
 // Verify that the tagName property is "div" and the
 // className property of the first child (a TABLE element)
 // is "UsedBooks".
 var firstChild = _elem.children[0];
 if (_elem.tagName == "DIV" &&
 firstChild.tagName == "TABLE" &&
 firstChild.className == "UsedBooks")

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 120

 return true;
 return false;
}

This JavaScript function checks whether the control meets the conditions that determine that a
control should be represented by a WebExtUsedBooks test object.

Deploying and Testing the Toolkit Support Set (for Stage 2)

After defining the WebExtUsedBooks test object class in the test object configuration file and the
identification rules for this test object class in the toolkit configuration file and JavaScript functions,
you can test the effect of using the toolkit support set with UFT.

To test the toolkit support set:

1. Deploy the test object configuration file, toolkit configuration file, icon file, and JavaScript file to
their correct locations within the UFT installation folder.

2. Open UFT and load the WebExtSample support (select it in the Add-in Manager dialog box).

3. Open a GUI test and use the Define New Test Object button in the Object Repository dialog
box to open the Define New Test Object dialog box. Select the WebExtSample environment from
the Environment list to see that the WebExtUsedBooks test object class you defined in the test
object configuration file is displayed in the Class list.

4. Run the sample control by opening the %ALLUSERSPROFILE%\Documents\
ExtAccTool\Samples\WebExtSample\Application\Book.htm file and clicking Used.

Note: UFT establishes its connection with an application when the application opens.
Therefore, if the UsedBooks control is open, you must close it and run it again.

5. In UFT, perform the following activities on the UsedBooks control to see how UFT recognizes the
control. (For more information on working in UFT, see the HP Unified Functional Testing User Guide.)

l Use the Object Spy to view the identification properties and test object operations that are
supported for the UsedBooks control. No value is displayed for the title property because you
have not yet implemented a JavaScript function that returns its value.

The test object created for the UsedBooks control is given the name of its test object class, and
uses the custom icon you defined. Later in this lesson, you customize your toolkit support set to
provide a more specific name.

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 121

The WebExtUsedBooks test object includes all of the test object operations of a WebTable test
object, as well as the SelectBook method that you defined in the test object configuration file.

l Use the Add Objects to Local button in the Object Repository dialog box to learn the
UsedBooks control. The custom icon is used to represent the test object in the object
repository.

l In the Keyword View, create a test step choosing the WebExtUsedBooks object from the object
repository in the Item column.

o The list of available operations in the Operation column reflects the definitions in the test
object configuration file. All of the test object operations supported by WebTable test
objects are available, because in the test object configuration file, you defined that the
WebExtUsedBooks test object extends (and therefore inherits from) the WebTable test
object class.

o After you choose an operation, the Value cell is partitioned according to the number of

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 122

arguments of the selected operation. For example, when you create a step with the
operation SelectBook, the value cell requires one argument and displays the argument's
Name attribute in a tooltip.

o The descriptions and documentation strings you defined for test object methods in the test
object configuration file are displayed in tooltips and in the Documentation column,
respectively.

l In the Editor, create a test step with a WebExtBook test object. The statement completion
feature displays all of the operations available for the test object, including the ones inherited
from WebTable.

6. Run a test with a step that performs the SelectBook test object method on a WebExtUsedBooks
test object. UFT searches for a JavaScript function that will run the test object method on the
control. Because you have not yet implemented support for running test object methods, a run-
time error occurs. In the next section, you implement this support.

Stage 3: Implementing Support for theWebExtUsedBooks Test
Object Methods
In the test object configuration file you defined the test object methods available for WebExtUsedBooks
test objects. For UFT to run these test object methods, the methods must actually be implemented.

You must provide implementation for different types of test object methods:

l Test object methods inherited from the WebTable base test object class

l Test object methods added for the new test object class

l Test object methods inherited from the base class that need to be implemented differently

Implementing Test Object Methods Inherited from WebTable

In the test object configuration file, you defined that the WebExtUsedBooks test object class extends
the base class WebTable. For the inherited WebTable test object methods that you do not override, UFT
can use its internal implementation by interacting with the table base element defined within the
UsedBooks control. Because the table element is not the root level of the UsedBooks control, you must
inform UFT that the table element is the base element. To do this you must write a JavaScript function
that returns the base element, and specify its name in the toolkit configuration file.

To instruct UFT to use the table Web element as the base element:

1. In the WebExtSample.xml file, within the Settings element that you defined in the Control element
for the WebExtUsedBooks test object class, add the following Variable element:

<Control TestObjectClass="WebExtUsedBooks">
 <Settings>
 <variable name="func_to_get_base_elem"

value="GetTableElem"/>

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 123

 </Settings>
</Control>

This instructs UFT to call a JavaScript named GetTableElem (in the file WebExtUsedBooks.js) to
return the base element that supports the inherited WebTable test object methods.

2. In the WebExtUsedBooks.js file, add the following JavaScript function:

function GetTableElem()
{
 // Get the <table> element (the first child of the <div>
 // element which is the root of the UsedBooks control)
 return _elem.children[0];
}

This JavaScript function returns the table element, which is the first element within the div
element that defines the UsedBooks control. This element supports the test object methods
inherited from WebTable that are not implemented by WebExtUsedBooks.

Other JavaScript functions that you write in this file can also use the GetTableElem() function to
access the table element in the UsedBooks control.

Implementing the New Test Object Method SelectBook

To support the SelectBook test object method for the WebExtUsedBooks test object class, write the
SelectBook JavaScript function inWebExtUsedBooks.js. This is the function that UFT calls to run the
SelectBook test object method. It simulates selecting the radio button for the specified book, and
clicking Select.

Add the following JavaScript function to the WebExtUsedBooks.js file:

function SelectBook(BookIndex)
// Select the radio button for the specified index
// and clicks the "Select" link.
{
 if(BookIndex > BookCount())
 throw "Book index is out of range !"
 //Select the radio button corresponding to the specified index
 GetTableElem().rows[1+BookIndex].cells[0].children[0].click();
 //Click the "Select" link (the 3rd child of the <div> element)
 _elem.children[2].click();
 //Add a log message to the event log to assist in debugging
 _util.LogLine("Book Selected",1);
}

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 124

Overriding the Implementation of the Inherited Test Object Method RowCount

1. In the WebExtSample.xml file, add the following Run element within the Control element that
defines the WebExtUsedBooks support.

<Run>
 <Methods>
 <Method name="RowCount" type="javascript"

function="BookCount" />
 </Methods>
</Run>

This defines that the RowCount test object method is implemented by the JavaScript function
BookCount.

2. In the WebExtUsedBooks.js file, add the BookCount JavaScript function, which decreases the row
count of the UsedBooks control, to return the number of books in the table:

function BookCount()
// This function overrides the RowCount test object method
// inherited from WebTable, so that it counts only book rows.
{
 var table = GetTableElem();
 if(table.rows.length < 2)
 return 0;
 return table.rows.length - 2;
}

Deploying and Testing the Toolkit Support Set (for Stage 3)

After you develop support for running the test object methods, you deploy the updated toolkit support
set to UFT and test it.

To test the support for running test object methods:

1. To deploy the updated toolkit support set to UFT, copy the WebExtUsedBooks.js file (and
WebExtSample.xml if necessary) to <UFT installation
folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

2. Close and reopen UFT. Select the check box for WebExtSample in the Add-in Manager dialog box
and click OK. UFT opens and loads the support you designed.

3. Close and rerun the UsedBooks sample control.

4. Open a GUI test and use the Add Objects to Local button in the Object Repository dialog box
to learn the UsedBooks control.

5. Create a test that runs the SelectBook and RowCountmethods and make sure they perform
correctly. You can also open the Microsoft Windows Event Viewer and view the log message added

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 125

by the SelectBookmethod (for more information, see "Using the Microsoft Windows Event Log" on
page 58).

Stage 4: Implementing Support for theWebExtUsedBooks
Identification Properties and the Test Object Name
In the WebExtUsedBooks.js file, implement the get_property_value as follows:

function get_property_value(prop)
// The function provides values for all of the identification
// properties defined in the test object configuration XML file, as
// well as the hard coded "logical_name" property that UFT
// uses to name the test object.
{
 if (prop == "logical_name" || prop == "title")
 // For the "title" identification property, as well as the
 // "logical_name" property, return the inner text of the
 // first cell in the first row

{
 return GetTableElem().rows[0].cells[0].innerText;
 }
}

This function returns the title of the object for the title property, as well as for the test object name.

Note: You can modify the WebExtUsedBooks.js file in the toolkit support set folder and then later
deploy it to UFT for testing, or you can modify <UFT installation
folder>\dat\Extensibility\Web\Toolkits\WebExtSample\WebExtUsedBooks.js directly.

Deploying and Testing the Toolkit Support Set (for Stage 4)

After you develop support for retrieving run-time values of identification properties, you deploy the
updated toolkit support set to UFT and test it.

To test the support for retrieving run-time values of identification properties:

1. Make sure that your most updated files are located in <UFT
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

2. Close and reopen UFT. Select the check box for WebExtSample in the Add-in Manager dialog box
and click OK. UFT opens and loads the support you designed.

3. Close and rerun the UsedBooks sample control.

4. Create a new GUI test, add a WebExtUsedBooks test object to your object repository, and create a
test step with this test object. Make sure that the test object name is based on the table's title.
Right-click the object and select Insert Standard Checkpoint. The Checkpoint Properties dialog box

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 126

opens. Make sure that the title identification property you defined in the test object configuration
file is included in the list of properties and selected.

5. Create and run a test that retrieves each identification property and checks its value, or displays it
in a message box.

Stage 5: Implementing a Filter to Prevent Learning Child Objects
In this section, you create a filter to prevent UFT from learning all of the UsedBooks control's children
along with the control.

You implement this in the toolkit configuration file and in the JavaScript file.

To filter the children learned with the UsedBooks control:

1. In the WebExtSample.xml file, within the Control element defined for the WebExtBook test object
class, add the following Filter element:

<Filter>
 <Learn learn_control="Yes" learn_children="CallFilterFunc"

type="javascript" function="GetChildrenToLearn" />
</Filter>

This instructs UFT to learnWebExtUsedBooks test objects when learning their parent Web pages,
and to call the JavaScript function GetChildrenToLearn to determine which children to learn. The
JavaScript function returns a SafeArray of the controls descendants that should be learned with
the control.

Note: You can modify the WebExtSample.xml file in the toolkit support set folder and then
later deploy it to UFT for testing, or you can modify <UFT installation
folder>\dat\Extensibility\Web\Toolkits\WebExtSample\.xml directly.

2. In the WebExtUsedBooks.js file, add the following functions:

// Learn filtering
// This function instructs UFT which child objects of a
// UsedBooksTable should be learned with the object is learned.
function GetChildrenToLearn()
{
 // Return all of the radio buttons in the UsedBooks table
 return toSafeArray(GetTableElem().getElementsByTagName("input"));
}

This ensures that only the radio buttons are learned, as planned in the outset of this lesson.

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 127

Deploying and Testing the Toolkit Support Set (for Stage 5)

After defining the filter to customize learning children, you deploy the updated toolkit support set to
UFT and test it.

To test the support for learning the WebExtUsedBooks test object without its children:

1. Make sure that your most updated files are located in <UFT
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

2. Close and reopen UFT. Select the check box for WebExtSample in the Add-in Manager dialog box
and click OK. UFT opens and loads the support you designed.

3. Close and rerun the UsedBooks sample control.

4. Open a GUI test and open the Object Repository. Use the Add Objects to Local button in the
Object Repository dialog box to learn the Web page that contains the UsedBooks control. The
Define Object Filter dialog box opens.

5. Select All object types and click OK. The WebExtUsedBooks object named The History of
QuickTest Professional is added to the object repository, as is the SelUsedBook radio button
group. However, none of the other elements contained in the control are learned.

Stage 6: Implementing Support for Recording on the UsedBooks
Control
In this section, you implement support for recording on the UsedBooks control.

1. In the WebExtSample.xml file, and the following Record element within the Control element that
defines the WebExtUsedBooks class:

<Record>
 <EventListening use_default_event_handling_for_children="false"
 use_default_event_handling="false"
 type="javascript" function="ListenToEvents"/>
</Record>

This instructs UFT not to use the default Web Event Configuration to record events on the
UsedBooks control, but to call the ListenToEvents JavaScript function instead.

In the WebExtUsedBooks.js file add the ListenToEvents JavaScript function:

function ListenToEvents(elem)
{
 // Connect to the "Select" event:
 //When "Select" is clicked, call OnSelectUsedBooksClicked.

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 128

 _util.RegisterForEvent(_elem.children[2], "onclick",
"OnSelectUsedBooksClicked");

 return true;
}

This function registers UFT to listen to clicks on the Select link, and call the appropriate event
handler when the event occurs.

2. In the WebExtUsedBooks.js file add the OnSelectUsedBooksClicked event handling JavaScript
function:

function OnSelectUsedBooksClicked(handlerParam , eventObj)
{
 var arr = new Array();
 var booksCount = BookCount();
 // Find the index of the selected radio button and record
 // a step that runs the SelectBook test object method
 // with that index.
 var BookIndex = -1;
 for(var i = 0 ; i < booksCount ; i++)

{
 if(_elem.rows[2+i].cells[0].children[0].status == true)

{
 // This is the selected item
 arr[0] = i+1;
 _util.Record("SelectBook", toSafeArray(arr) , 0);
 _util.LogLine("SelectBook Recorded",1);
 break;
 }
 }
 return true;
}

This function checks which book's radio button is selected, and instructs UFT to record a step
selecting that book (and add the relevant log message to the event log).

Deploying and Testing the Toolkit Support Set (for Stage 6)

After developing the support for recording on the UsedBooks control, you deploy the updated toolkit
support set to UFT and test it.

To test the support for recording operations performed on the UsedBooks control:

1. Make sure that your most updated files are located in <UFT
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

2. Close and reopen UFT. Select the check box for WebExtSample in the Add-in Manager dialog box
and click OK. UFT opens and loads the support you designed.

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 129

3. Close and rerun the UsedBooks sample control.

4. Open a GUI test and click the Record button or select Record > Record. In the UsedBooks table,
select one of the radio buttons and then click Select.

A new step is added to the test only after you click Select:

Click the Stop button or select Record > Stop to end the recording session.

The Book custom control is now fully supported, according to the specifications you decided on when
planning your custom support.

Lesson Summary
In this lesson you:

l created a test object class, WebExtUsedBooks, that extends the WebTable test object class.

l created support for the UsedBooks control, enabling UFT to recognize it as a WebExtUsedBooks test
object.

l learned to understand more options in the toolkit configuration file.

l learned to implement the support using more complex JavaScript functions and specifying their
location in the toolkit configuration file.

Where Do You Go fromHere?
Now that you have performed the lessons in this tutorial, you are ready to apply the Web Add-in
Extensibility concepts and the skills you learned to creating your own custom toolkit support.

For more information on the structure and content of a toolkit support set, see "Developing Support for
Your Toolkit" on page 30.

For more information on the structure and content of the test object configuration file, see the UFTUFT
Test Object Schema Help (available with the Web Add-in Extensibility Help).

For more information on the structure and content of the toolkit configuration file, see the UFT Java
Add-in Extensibility Toolkit Configuration Schema Help (available with the Web Add-in Extensibility Help).

For more information on the _util utility object and global JavaScript methods, see the UFT Java Add-in
Extensibility API Reference (available with the Web Add-in Extensibility Help).

Developer Guide
Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control

HP UFT Web Add-in Extensibility (12.50) Page 130

Send Us Feedback
Can we make this Developer Guide better?

Tell us how: sw-doc@hp.com

HP UFT Web Add-in Extensibility (12.50) Page 131

mailto:sw-doc@hp.com?subject=Feedback on Developer Guide (UFT Web Add-in Extensibility 12.50)

	Welcome to HP UFT Web Add-in Extensibility
	About the UFT Web Add-in Extensibility SDK
	About the UFT Web Add-in Extensibility Developer Guide
	Additional Online Resources

	Part 1: Working with Web Add-in Extensibility
	Chapter 1: Introducing UFT Web Add-in Extensibility
	About UFT Web Add-in Extensibility
	Extensibility Accelerator
	Identifying the Building Blocks of Web Add-in Extensibility
	Deciding When to Use Web Add-in Extensibility
	Analyzing the Default UFT Support and Extensibility Options for a Sample Cust...

	Understanding How to Implement Web Add-in Extensibility
	Web Add-in Extensibility Samples

	Chapter 2: Planning UFT Support for Your Toolkit
	About Planning UFT Support for Your Toolkit
	Preparing to Create Support for a Custom Toolkit
	Determining the Toolkit Related Information
	Determining the Support Information for Each Custom Control Type
	Understanding the Web Add-in Extensibility Planning Checklist
	Web Add-in Extensibility Planning Checklist

	Where Do You Go from Here?

	Chapter 3: Developing Support for Your Toolkit
	About Custom Toolkit Support
	Developing Browser-Independent Support

	Creating a Custom Toolkit Support Set
	Understanding the Test Object Configuration File
	How UFT Loads the Test Object Configuration XML
	Understanding How UFT Merges Test Object Configuration Files

	Extending an Existing Test Object Class
	Providing a Help File for Customized Test Object Classes

	Understanding the Toolkit Configuration File
	Designing JavaScript Functions for Your Toolkit Support Set
	Global JavaScript Methods and Utility Methods
	Example: Using Sibling Controls to Identify an Object

	Teaching UFT to Identify the Test Object Class to Use for a Custom Web Control
	Using the Conditions Elements

	Testing the Toolkit Support Set During Development
	Logging and Debugging the Custom Support
	Using the Microsoft Windows Event Log
	Debugging Your JavaScript Files (Internet Explorer Only)

	Implementing Support for Test Object Methods
	Supporting Dynamic Lists of Values for Method Arguments

	Implementing Support for Identification Properties
	Customizing the Test Object Name

	Implementing a Filter for Learning Child Controls
	Implementing Support for Recording
	Troubleshooting and Limitations - Developing Support

	Chapter 4: Deploying the Toolkit Support Set
	About Deploying the Custom Toolkit Support
	Deploying the Custom Toolkit Support
	Settings to Use During Design Stages

	Modifying Deployed Support
	Modifying Identification Property Attributes in a Test Object Configuration File

	Removing Deployed Support

	Part 2: Tutorial: Learning to Create Web Custom Toolkit Support
	Chapter 5: Learning to Create UFT Support for a Simple Custom Web Control
	Preparing for This Lesson
	Planning Support for the Web Add-in Extensibility Book Sample Toolkit
	Web Add-in Extensibility Planning Checklist

	Developing the Toolkit Support Set
	Stage 1: Creating the Toolkit Support Set
	Stage 2: Introducing the WebExtSample Environment to UFT
	Designing the Toolkit Configuration File
	Designing the Test Object Configuration File

	Stage 3: Teaching UFT to Identify, Spy, and Learn the Book Control
	Deploying and Testing the Toolkit Support Set (for Stage 3)

	Stage 4: Implementing Support for the WebExtBook's Test Object Methods
	Deploying and Testing the Toolkit Support Set (for Stage 4)

	Stage 5: Implementing Support for the WebExtBook's Identification Properties
	Deploying and Testing the Toolkit Support Set (for Stage 5)

	Stage 6: Changing the Name of the Test Object
	Deploying and Testing the Toolkit Support Set (for Stage 6)

	Stage 7: Implementing a Filter to Prevent Learning Child Objects
	Deploying and Testing the Toolkit Support Set (for Stage 7)

	Stage 8: Implementing Support for Recording on the Book Control
	Deploying and Testing the Toolkit Support Set (for Stage 8)

	Stage 9: Implementing Support for Dynamic List of Values for AuthorName
	Deploying and Testing the Toolkit Support Set (for Stage 9)

	Lesson Summary
	Where Do You Go from Here?

	Chapter 6: Learning to Create UFT Support for a Complex Custom Web Control
	Preparing for This Lesson
	Planning Support for the Web Add-in Extensibility Sample UsedBooks Control
	Web Add-in Extensibility Planning Checklist

	Developing the Toolkit Support Set
	Stage 1: Expanding the Toolkit Support Set to Support an Additional Control
	Stage 2: Teaching UFT to Identify, Spy, and Learn the UsedBooks Control
	Deploying and Testing the Toolkit Support Set (for Stage 2)

	Stage 3: Implementing Support for the WebExtUsedBooks Test Object Methods
	Deploying and Testing the Toolkit Support Set (for Stage 3)

	Stage 4: Implementing Support for the WebExtUsedBooks Identification Properti...
	Deploying and Testing the Toolkit Support Set (for Stage 4)

	Stage 5: Implementing a Filter to Prevent Learning Child Objects
	Deploying and Testing the Toolkit Support Set (for Stage 5)

	Stage 6: Implementing Support for Recording on the UsedBooks Control
	Deploying and Testing the Toolkit Support Set (for Stage 6)

	Lesson Summary
	Where Do You Go from Here?

	Send Us Feedback

