
HP UFT .NET Add-in Extensibility
Software Version: 12.50
Windows ® operating systems

Developer Guide

Document Release Date: June 2015
Software Release Date: June 2015

Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable
for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for
Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notice
© Copyright 1992 - 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Google™ and Google Maps™ are trademarks of Google Inc.

Intel® and Pentium® are trademarks of Intel Corporation in the U.S. and other countries.

Microsoft®, Windows®, Windows® XP, and Windows Vista ® are U.S. registered trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to:
https://softwaresupport.hp.com/group/softwaresupport/search-result.

This site requires an HP Passport account. If you do not have one, click the Create an account button on the
HP Passport Sign in page.

Support
Visit the HP Software Support Online web site at: https://softwaresupport.hp.com

Developer Guide

HP UFT .NET Add-in Extensibility (12.50) Page 2

https://softwaresupport.hp.com/group/softwaresupport/search-result
https://softwaresupport.hp.com/

This web site provides contact information and details about the products, services, and support that HP Software
offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can benefit by
using the support web site to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HP support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support
contract. To register for an HP Passport ID, go to: https://softwaresupport.hp.com and click Register.

To find more information about access levels, go to: https://softwaresupport.hp.com/web/softwaresupport/access-
levels.

HP Software Solutions & Integrations and Best
Practices
Visit HP Software Solutions Now at https://h20230.www2.hp.com/sc/solutions/index.jsp to explore how the products
in the HP Software catalog work together, exchange information, and solve business needs.

Visit the Cross Portfolio Best Practices Library at https://hpln.hp.com/group/best-practices-hpsw to access a wide
variety of best practice documents and materials.

Developer Guide

HP UFT .NET Add-in Extensibility (12.50) Page 3

https://softwaresupport.hp.com/
https://softwaresupport.hp.com/web/softwaresupport/access-levels
https://softwaresupport.hp.com/web/softwaresupport/access-levels
https://h20230.www2.hp.com/sc/solutions/index.jsp
https://hpln.hp.com/group/best-practices-hpsw

Contents

Welcome to HP UFT .NET Add-in Extensibility 7
About the UFT .NET Add-in Extensibility SDK 7
About the UFT .NET Add-in Extensibility Developer Guide 8
Who Should Read This Guide 9
Additional Online Resources 10

Chapter 1: Introducing UFT .NET Add-in Extensibility 11
About UFT .NET Add-in Extensibility 12
Deciding When to Use .NET Add-in Extensibility 12
Recognizing Which Elements of UFT Support Can Be Customized 13
Example: Customizing Recording of an Event's Meaningful Behaviors 14
Understanding How to Implement .NET Add-in Extensibility 16

Planning the .NET Add-in Extensibility Support Set 16
Developing the .NET Add-in Extensibility Support Set 17
Deploying the .NET Add-in Extensibility Support Set 21
Testing the .NET Add-in Extensibility Support Set 21

Chapter 2: Installing the HP UFT .NET Add-in Extensibility SDK 22
Before You Install 23
Installing the HP UFT .NET Add-in Extensibility SDK 23
Repairing the HP UFT .NET Add-in Extensibility SDK Installation 25
Uninstalling the HP UFT .NET Add-in Extensibility SDK 26

Chapter 3: Planning Your Support Set 28
About Planning UFT GUI Testing Support for Your .NET Add-in Extensibility Controls 29
Determining Information Related to Your Custom Controls 29

Analyzing the Custom Controls 29
Selecting the Coding Option for Implementing the Custom Servers 30

.NET DLL: Full Program Development Environment 31
XML Implementation 31

Selecting the Custom Server Run-Time Context Depending on the Test Function 32
Analyzing Custom Controls and Mapping Them to Test Objects 33
Using the .NET Add-in Extensibility Planning Checklist 34

.NET Add-in Extensibility Planning Checklist 35
Where Do You Go from Here? 35

Developer Guide

HP UFT .NET Add-in Extensibility (12.50) Page 4

Chapter 4: Developing Your Support Set 36
Understanding the Development Workflow 37
Describing the Test Object Model 37

Benefits of Describing Test Object Models 38
Creating Test Object Configuration Files 38
Understanding the Contents of the Test Object Configuration File 39
Modifying an Existing Test Object Class 40
Make Sure that Test Object Configuration File Information Matches Custom Server
Information 40
Implementing More Than One Test Object Configuration File 41

Understanding How UFT Merges Test Object Configuration Files 41
Example of a Test Object Configuration File 42

Mapping Custom Controls to Test Object Classes 43
Defining How UFT Operates on the Custom Controls 43

Using a .NET DLL to Extend Support for a Custom Control 44
Setting up the .NET Project 45
Implementing Test Record for a Custom Control Using a .NET DLL 51
Implementing Test Run for a Custom Control Using the .NET DLL 54
Implementing Support for Table Checkpoints and Output Values in the .NET DLL Custom
Server 55
Running Code under Application Under Test from the UFT Context 59
Reviewing Commonly-used API Calls 60

Using XML Files to Extend Support for a Custom Control 61
Understanding Control Definition Files 62
An Example of a Control Definition File 62

Using the .NET Add-in Extensibility Samples 63
Troubleshooting and Limitations - Running the Support You Designed 64

Chapter 5: Configuring and Deploying the Support Set 66
Understanding the Deployment Workflow 67
Configuring UFT to Use the Custom Server 67

Understanding How to Configure UFT Windows Forms Extensibility 67
Copying Configuration Information Generated by the UFT Custom Server Settings Wizard 69

Deploying the Custom Support Set 71
Placing Files in the Correct Locations 71
Modifying Deployed Support 72
Removing Deployed Support 72

Testing the Custom Support Set 72
Testing Basic Functionality of the Support Set 73
Testing Implementation 74

Developer Guide

HP UFT .NET Add-in Extensibility (12.50) Page 5

Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms
Control 75

Developing a New Support Set 76
Implementing Test Record Logic 79
Implementing Test Run Logic 80
Checking the TrackBarSrv.cs File 81

Configuring and Deploying the Support Set 82
Testing the Support Set 84

Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms
Control 85

SandBar Toolbar Example 86
Understanding the ToolBarSrv.cs File 91

Send Us Feedback 94

Developer Guide

HP UFT .NET Add-in Extensibility (12.50) Page 6

Welcome to HP UFT .NET Add-in
Extensibility
HP UFT .NET Add-in Extensibility is an SDK (Software Development Kit) package that enables you to
support testing applications that use third-party and custom .NET Windows Forms controls that are not
supported out-of-the-box by the UFT .NET Add-in.

This chapter includes:

• About the UFT .NET Add-in Extensibility SDK 7

• About the UFT .NET Add-in Extensibility Developer Guide 8

• Who Should Read This Guide 9

• Additional Online Resources 10

About the UFT .NET Add-in Extensibility SDK
The UFT .NET Add-in Extensibility SDK installation provides the following:

l An API that enables you to extend the UFT .NET Add-in to support custom .NET Windows Forms
controls.

l Custom Server C# and Visual Basic project templates for Microsoft Visual Studio.

Each Custom Server template provides a framework of blank code, some sample code, and the UFT
project references required to build a custom server.

Note: For a list of supported Microsoft Visual Studio versions, see the HP Unified Functional
Testing Product Availability Matrix, available from the UFT help folder or the HP Support Matrix
page (requires an HP passport).

l The wizard that runs when the Custom Server template is selected to create a new project. The
wizard simplifies setting up a Microsoft Visual Studio project to create a Custom Server .NET DLL
using .NET Add-in Extensibility. For more information, see Using a .NET DLL to Extend Support for a
Custom Control.

l The .NET Add-in Windows Forms Extensibility Help, which includes the following:

l A developer guide, including a step-by-step tutorial in which you develop support for a sample
custom control.

l An API Reference.

l The .NET Add-in Extensibility Configuration Schema Help.

HP UFT .NET Add-in Extensibility (12.50) Page 7

http://support.openview.hp.com/selfsolve/document/KM438391
http://support.openview.hp.com/selfsolve/document/KM438391

l The .NET Add-in Extensibility Control Definition Schema Help.

l The UFT Test Object Schema Help.

The Help is available from Start > All Programs > HP Software > HP Unified Functional Testing >
Extensibility > Documentation

l A printer-friendly Adobe portable document format (PDF) version of the developer guide (available
from Start > All Programs > HP Software > HP Unified Functional Testing > Extensibility >
Documentation and in the <Unified Functional Testing installation>\help\Extensibility folder).

l A sample .NET Add-in Extensibility support set that extends UFT GUI testing support for the SandBar
toolbar custom control.

Accessing UFT .NET Add-in Extensibility in Windows 8 Operating Systems

UFT files that were accessible from the Startmenu in previous versions of Windows are accessible in
Windows 8 from the Start screen or the Apps screen.

l Applications (.exe files). You can access UFT applications in Windows 8 directly from the Start
screen. For example, to start UFT, double-click the HP Unified Functional Testing shortcut.

l Non-program files. You can access documentation from the Apps screen.

Note: As in previous versions of Windows, you can access context sensitive help in UFT by
pressing F1, and access complete documentation and external links from the Helpmenu.

About the UFT .NET Add-in Extensibility
Developer Guide
This guide explains how to set up UFT .NET Add-in Extensibility and use it to extend UFT GUI testing
support for third-party and custom .NET Windows Forms controls.

This guide assumes you are familiar with UFT functionality and should be used together with the
following sections of the .NET Add-in Extensibility online Help (Start > All Programs > HP Software >
HP Unified Functional Testing > Extensibility > Documentation > .NET Add-in Windows Forms
Extensibility Help):

l UFT .NET Add-in Extensibility API Reference

l UFT .NET Add-in Extensibility Systems Forms Configuration Schema Help

l UFT .NET Add-in Extensibility Control Definition Schema Help

l HP UFT Test Object Schema Help

Developer Guide
Welcome to HP UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.50) Page 8

These documents should also be used in conjunction with the following UFT documentation, available
with the UFT installation (Help > HP Unified Functional Testing Help from the UFT main window):

l HP Unified Functional Testing User Guide

l The .NET section of the HP Unified Functional Testing Add-ins Guide

l HP UFT Object Model Reference for GUI Testing

Note:

The information, examples, and screen captures in this guide focus specifically on working with
UFT GUI tests. However, much of the information in this guide applies equally to business
components.

Business components are part of HP Business Process Testing. For more information, see the
HP Unified Functional Testing User Guide and the HP Business Process Testing User Guide.

When working in Windows 8, access UFT documentation and other files from the Apps screen.

To enable you to search this guide more effectively for specific topics or keywords, use the following
options:

l AND, OR, NEAR, and NOT logical operators. Available from the arrow next to the search box.

l Search previous results. Available from the bottom of the Search tab.

l Match similar words. Available from the bottom of the Search tab.

l Search titles only. Available from the bottom of the Search tab.

Tip: When you open a Help page from the search results, the string for which you searched may be
included in a collapsed section. If you cannot find the string on the page, expand all the drop-down
sections and then use Ctrl-F to search for the string.

To check for recent updates, or to verify that you are using the most recent edition of a document, go
to the HP Software Product Manuals Web site (http://h20230.www2.hp.com/selfsolve/manuals).

Who Should Read This Guide
This guide is intended for programmers, QA engineers, systems analysts, system designers, and
technical managers who want to extend UFT GUI testing support for .NET Windows Forms custom
controls.

To use this guide, you should be familiar with:

l Major UFT features and functionality

l The UFT Object Model

l UFT .NET Add-in

l .NET programming in C# or Visual Basic

l XML (basic knowledge)

Developer Guide
Welcome to HP UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.50) Page 9

http://h20230.www2.hp.com/selfsolve/manuals

Additional Online Resources
The following additional online resources are available:

Resource Description

Troubleshooting
& Knowledge
Base

TheTroubleshooting pageon theHP Software Support Web sitewhere you can search the Self-solve
knowledgebase. TheURL for this Web site is http://h20230.www2.hp.com/troubleshooting.jsp.

HP Software
Support

TheHP Software Support Web site. This site enables you to browse the Self-solve knowledgebase. You
can also post to and search user discussion forums, submit support requests, download patches and
updated documentation, and more. TheURL for this Web sitewww.hp.com/go/hpsoftwaresupport.

l Most of the support areas require that you register as an HP Passport user and sign in. Many also
require a support contract.

l To find more information about access levels, go to: http://h20230.www2.hp.com/new_access_
levels.jsp

l To register for an HP Passport user ID, go to: http://h20229.www2.hp.com/passport-
registration.html

HP Software
Web site

TheHP SoftwareWeb site. This site provides you with themost up-to-date information on HP Software
products. This includes new software releases, seminars and trade shows, customer support, and more.
TheURL for this Web site iswww.hp.com/go/software

Developer Guide
Welcome to HP UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.50) Page 10

http://h20230.www2.hp.com/troubleshooting.jsp
http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html
http://h20229.www2.hp.com/passport-registration.html
http://www.hp.com/go/software

Chapter 1: Introducing UFT .NET Add-in
Extensibility
UFT .NET Add-in Extensibility enables you to provide high-level support for third-party and custom .NET
Windows Forms controls that are not supported out-of-the-box by the UFT .NET Add-in.

This chapter includes:

• About UFT .NET Add-in Extensibility 12

• Deciding When to Use .NET Add-in Extensibility 12

• Recognizing Which Elements of UFT Support Can Be Customized 13

• Example: Customizing Recording of an Event's Meaningful Behaviors 14

• Understanding How to Implement .NET Add-in Extensibility 16

• Planning the .NET Add-in Extensibility Support Set 16

• Developing the .NET Add-in Extensibility Support Set 17

• Deploying the .NET Add-in Extensibility Support Set 21

• Testing the .NET Add-in Extensibility Support Set 21

HP UFT .NET Add-in Extensibility (12.50) Page 11

About UFT .NET Add-in Extensibility
The UFT .NET Add-in provides support for a number of commonly used .NET Windows Forms controls.
UFT .NET Add-in Extensibility enables you to support third-party and custom .NET Windows Forms
controls that are not supported out-of-the-box by the .NET Add-in.

When UFT learns an object in an application, it recognizes the object as belonging to a specific test
object class. This determines the identification properties and test object methods of the test object
that represents the application's object in UFT.

Without extensibility, .NET Windows Forms controls that are not supported out-of-the-box are
represented in UFT GUI tests by a generic SwfObject test object. This generic test object might be
missing characteristics that are specific to the .NET Windows Forms control you are testing. Therefore,
when you try to create test steps with this test object, the available test object methods might not be
sufficient. In addition, when you record a test on controls that are not supported, the recorded steps
reflect the low-level activities passed as Windows messages, rather than the meaningful behavior of
the controls.

Using UFT .NET Add-in Extensibility, you can teach UFT to recognize custom .NET Windows Forms
controls more specifically. When a custom control is mapped to an existing UFT test object, you have the
full functionality of a UFT test object, including visibility when using the UFT statement completion
feature and the ability to create more meaningful steps in the test.

Note: If UFT recognizes a .NET control out-of-the-box, and uses a .NET
add-in test object other than SwfObject to represent it, then you cannot map this control to any
other test object type.

The behavior of the existing test object methods might not be appropriate for the custom control. You
can modify the behavior of existing test object methods, or extend UFT test objects with newmethods
that represent the meaningful behaviors of the control.

You develop a Custom Server that extends the .NET Add-in interfaces that run methods on the controls
in the application. The Custom Server can override existing methods or define new ones.

Deciding When to Use .NET Add-in Extensibility
The UFT .NET Add-in provides a certain level of support for most .NET Windows Forms controls. Before
you extend support for a custom .NET Windows Forms control, analyze it from a UFT perspective to view
the extent of this support and to decide which elements of support you need to modify.

When you analyze the custom .NET Windows Forms control, use the .NET Windows Forms Spy, Keyword
View, Editor, and the Record option. Make sure you examine each of the elements described in
"Recognizing Which Elements of UFT Support Can Be Customized" on the next page.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.50) Page 12

If you are not satisfied with the existing object identification or behavior, your .NET Windows Forms
control is a candidate for .NET Add-in Extensibility, as illustrated in the following situations:

l UFT recognizes your control as a generic SwfObject, but a different test object class exists with more
appropriate behavior for your control. You can use .NET Add-in Extensibility to map the control to this
test object class.

l UFT might recognize the control using a test object that does not fit your needs. You can use .NET
Add-in Extensibility to instruct UFT to change the functionality of the test object by modifying its
methods.

l UFT might identify individual sub-controls within your custom control, but not properly identify your
main control. For example, if your main custom control is a digital clock with edit boxes containing
the hour and minute digits, you might want changes in the time to be recognized as SetTime
operations on the clock control and not as Set operations on the edit boxes. You can use .NET Add-in
Extensibility to set a message filter to process messages from child controls, and record operations
on the main control in response to events that occur on the controls it contains.

Recognizing Which Elements of UFT Support
Can Be Customized
The following elements comprise UFT GUI testing support. By extending the existing support of one or
more of these elements, you can develop the support you need to create meaningful and maintainable
tests.

Test Object Classes
In UFT, every object in an application is represented by a test object of a specific test object class. The
test object class determines the list of identification properties and test object methods available in
UFT for this test object. You might want to instruct UFT to use a different test object class to represent
your control.

Test Object Methods
The test object class used to represent the .NET Windows Forms control determines the list of test
object methods for a test object. However, the same test object method might operate differently for
different .NET Windows Forms controls represented by test objects from the same test object class.
This happens because depending on the specific type of .NET Windows Forms control, UFT may have to
perform the test object method differently.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.50) Page 13

Recording Events
One way to create UFT GUI tests is by recording user operations on the application. When you start a
recording session, UFT listens for events that occur on objects in the application and registers
corresponding test steps. The test object class and Custom Server used to represent a .NET Windows
Forms control determines which events UFT can listen for on the .NET Windows Forms control and what
test step to record for each event that occurs.

Example: Customizing Recording of an Event's
Meaningful Behaviors
A control's meaningful behavior is the behavior that you want to test. For example, when you click a
button in a radio button group in your application, you are interested in the value of the selection, not in
the Click event and the coordinates of the click. The meaningful behavior of the radio button group is
the change in the selection.

If you record a test or business component on a custom control without extending support for the
control, you record the low-level behaviors of the control. For example, the TrackBar control in the
sample .NET application shown below is a control that does not have a corresponding UFT test object.

If you record on the TrackBar without implementing support for the control, the Keyword View looks like
this:

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.50) Page 14

In the Editor, the recorded test looks like this:

SwfWindow("Sample Application").SwfObject("trackBar1").Drag 50,10
SwfWindow("Sample Application").SwfObject("trackBar1").Drop 32,11
SwfWindow("Sample Application").SwfObject("trackBar1").Drag 34,11
SwfWindow("Sample Application").SwfObject("trackBar1").Drop 51,12
SwfWindow("Sample Application").SwfObject("trackBar1").Drag 50,4
SwfWindow("Sample Application").SwfObject("trackBar1").Drop 23,7
SwfWindow("Sample Application").SwfObject("trackBar1").Click 83,10
SwfWindow("Sample Application").SwfObject("trackBar1").Click 91,11
SwfWindow("Sample Application").SwfButton("Close").Click

Note that the Drag, Drop, and Clickmethods—the low-level actions of the TrackBar control—are
recorded at specific coordinates in the control display. These steps are difficult to understand and
modify.

If you use .NET Add-in Extensibility to support the TrackBar control, the result is more meaningful. Below
is the Keyword View of a test recorded on the TrackBar with a Custom Server that implements a
customized SetValue method.

In the Editor, the recorded test looks like this:

SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 5
SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 0
SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 10
SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 6
SwfWindow("Sample Application").Close

UFT is now recording a SetValue operation reflecting the new slider position, instead of the low-level
Drag, Drop, and Click operations recorded without the customized test object. You can understand and
modify this test more easily.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.50) Page 15

Understanding How to Implement .NET Add-in
Extensibility
You implement .NET Add-in Extensibility support for a set of custom controls by developing a .NET Add-
in Extensibility support set. Developing a .NET Add-in Extensibility support set consists of the following
stages, each of which is described below.

Planning the .NET Add-in Extensibility Support Set
Detailed planning of how you want UFT to recognize the custom controls enables you to correctly build
the fundamental elements of the .NET Add-in Extensibility support set. Generally, to plan the support
set, you:

l Determine the .NET Windows Forms controls for which you need to customize support.

l Plan the test object model by determining which test objects and operations you want to support
based on the controls and business processes you need to test.

l Plan the most appropriate way for implementing the support.

For more information, see "Planning Your Support Set" on page 28.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.50) Page 16

Developing the .NET Add-in Extensibility Support Set
To develop a .NET Add-in Extensibility support set, you must:

l Define the test object model.

l Create Custom Servers.

l Map the custom controls to the relevant test object classes.

These activities are described in detail in the following sections:

Define The Test Object Model

Introduce the test object model that you want UFT to use to test your applications and controls. The
test object model is a list of the test object classes that represent custom controls in your environment,
and their test object methods.

You define the test object model in a test object configuration XML file. For more information, see
"Describing the Test Object Model " on page 37.

Create Custom Servers

Create a Custom Server (DLLs or control definition XML file) to handle each custom control. In the
Custom Server, you can modify:

l What steps are recorded during a recording session.

l The implementation of test object methods.

l Support for table checkpoints and output values.

The Custom Server mediates between UFT and the .NET application. During a recording session, the
Custom Server listens to events and maps the user activities to meaningful test object methods. During
a test run, the Custom Server performs the test object methods on the .NET Windows Forms control.

Custom Server Coding Options

The Custom Server can be implemented in one of the following coding options:

l .NET DLL

l XML, based on a schema (which UFT then uses to create a .NET DLL Custom Server behind the scenes)

For more information, see:

l "Using a .NET DLL to Extend Support for a Custom Control" on page 44

l "Using XML Files to Extend Support for a Custom Control" on page 61

Custom Server Run-time Contexts

Classes supplied by a Custom Server may be instantiated in the following software processes (run-time
contexts):

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.50) Page 17

l Application under test context: An object created in the context of the application you are testing
has direct access to the .NET Windows Forms control's events, methods, and properties. However, it
cannot listen to Windows messages.

l UFT context: An object created in the UFT context can listen to Windows messages. However, it does
not have direct access to the .NET Windows Forms control's events, methods, and properties.

If the Custom Server is implemented as a .NET DLL, an object created under UFT can create assistant
classes that run under the application you are testing.

For more details on run-time contexts, see "Selecting the Custom Server Run-Time Context Depending
on the Test Function" on page 32.

For more information on assistant classes, see "Using a .NET DLL to Extend Support for a Custom
Control" on page 44 and see the UFT .NET Add-in Extensibility API Reference.

Map the Custom Controls to the Relevant Test Objects

Map test objects using the .NET Add-in Extensibility configuration file (SwfConfig.xml). This file is
located in the <UFT installation path>\dat\ folder and contains:

l The mapping of the custom controls to their corresponding test objects.

l The mapping to corresponding Custom Servers. This mapping provides the full functionality to UFT
test objects.

For more information, see "Mapping Custom Controls to Test Object Classes" on page 43.

The illustrations below demonstrate how .NET Add-in Extensibility maps custom controls to their test
objects and Custom Servers during recording sessions and run sessions.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.50) Page 18

How UFT Maps Custom Controls to Test Object Classes During Recording

The following illustration and table explain how UFT maps custom controls to their test objects, locates
the corresponding extended implementation for the custom control, and records an appropriate test
step when recording.

Step Description

1 An event occurs on a typeof control that UFT does not recognize, or for which recording implementation is customized.

2 UFT checks theType attribute of theControl elements in theSwfConfig.xml file to locate information for this type of
custom control. UFT then checks theMappedToattribute, to find the test object class mapped to this type of control.
If no specific test object class is specified, SwfObject is used.

3 UFT checks theDLLName element in theSwfConfig.xml file to locate the Custom Server containing implementation
for this type of custom control, and communicates with the Custom Server.

4 The Custom Server instructs UFT what step to add to the test in response to the event that occurred.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.50) Page 19

How UFT Maps Custom Controls to Custom Servers When Running a Test

The following illustration and table explain how UFT maps custom controls to their test objects, locates
the corresponding extended implementation for the custom control, and performs the appropriate
operations on a custom control when running a test.

Step Description

1 A test runs. This test includes a test object representing a custom control whose implementation has been customized.

2 UFT locates theControl element in theSwfConfig.xml file that contains information for the custom control mapped
to this test object.

3 UFT checks theDLLName element in theSwfConfig.xml file to locate the Custom Server containing implementation
for the custom control.

4 UFT runs the test using the correct implementation for the test object operation as defined by the implementation of
the custom control.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.50) Page 20

Deploying the .NET Add-in Extensibility Support Set
To deploy your .NET Add-in Extensibility support set and enable UFT to support your controls, copy the
files you created to specific locations within the UFT installation folder.

For more information, see "Configuring and Deploying the Support Set" on page 66.

Testing the .NET Add-in Extensibility Support Set
After you have created the .NET Add-in Extensibility support for your controls, test your .NET Add-in
Extensibility support set.

You can learn how to develop a .NET Add-in Extensibility support set hands-on, by performing the
lessons in "Learning to Create Support for a Simple Custom .NET Windows Forms Control" on page 75
and "Learning to Create Support for a Complex Custom .NET Windows Forms Control" on page 85.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.50) Page 21

Chapter 2: Installing the HP UFT .NET Add-
in Extensibility SDK
This chapter describes the installation process for the HP UFT .NET Add-in Extensibility SDK.

For a list of items that the HP UFT .NET Add-in Extensibility SDK installation provides, see "About the UFT
.NET Add-in Extensibility SDK " on page 7.

This chapter includes:

• Before You Install 23

• Installing the HP UFT .NET Add-in Extensibility SDK 23

• Repairing the HP UFT .NET Add-in Extensibility SDK Installation 25

• Uninstalling the HP UFT .NET Add-in Extensibility SDK 26

HP UFT .NET Add-in Extensibility (12.50) Page 22

Before You Install
Before you install the HP UFT .NET Add-in Extensibility SDK, review the following requirements:

l You must have access to the Unified Functional Testing installation DVD.

l A supported version of Microsoft Visual Studio must be installed on your computer.

Note: For a list of supported Microsoft Visual Studio versions, see the HP Unified Functional
Testing Product Availability Matrix, available from the UFT help folder or the HP Support Matrix
page (requires an HP passport).

Installing the HP UFT .NET Add-in Extensibility
SDK
Use the HP Unified Functional Testing Setup program to install the HP UFT .NET Add-in Extensibility SDK
on your computer.

Note: You must be logged on with Administrator privileges to install the UFT .NET Add-in
Extensibility SDK.

To install the HP UFT .NET Add-in Extensibility SDK:

1. Close all instances of Microsoft Visual Studio.

2. Insert the Unified Functional Testing DVD into the CD-ROM/DVD drive. The Unified Functional
Testing Setup window opens. (If the window does not open, browse to the DVD and double-click
setup.exe from the root folder.)

3. Click Add-in Extensibility and Web 2.0 Toolkits. The Unified Functional Testing Add-in Extensibility
and Web 2.0 Toolkit Support screen opens.

4. Click UFT .NET Add-in Extensibility SDK Setup. The UFT .NET Add-in Extensibility SDK Setup wizard
opens.

Note: If the wizard screen that enables you to select whether to repair or remove the SDK
installation opens, the UFT .NET Add-in Extensibility SDK is already installed on your computer.
Before you can install a new version, you must first uninstall the existing one, as described in
"Uninstalling the HP UFT .NET Add-in Extensibility SDK" on page 26.

5. Follow the instructions in the wizard to complete the installation.

Developer Guide
Chapter 2: Installing the HP UFT .NET Add-in Extensibility SDK

HP UFT .NET Add-in Extensibility (12.50) Page 23

http://support.openview.hp.com/selfsolve/document/KM438391
http://support.openview.hp.com/selfsolve/document/KM438391

6. In the final screen of the Setup wizard, if you select the Show Readme check box, the UFT .NET
Add-in Extensibility Readme file opens after you click Close. The Readme file contains the latest
technical and troubleshooting information. To open the Readme file at another time, select Start >
All Programs > HP Software > HP Unified Functional Testing > Extensibility > Documentation >
.NET Add-in Extensibility Readme.

Note: When working in Windows 8, access UFT documentation and other files from the Apps
screen.

7. Click Close to exit the Setup wizard.

8. If you use a non-English edition of Visual Studio, do the following to apply the installed UFT
CustomServer project templates to your Visual Studio edition:

Note: The following instructions apply to Visual Studio 2008 installed on a 32-bit operating
system. The folder and file names are slightly different if you are working with Visual Studio
2010, or on a 64-bit operating system.

a. Copy the QuickTestCustomServerVB.zip file from:%ProgramFiles%\
Microsoft Visual Studio 9.0\Common7\IDE\ProjectTemplates\VisualBasic\
Windows\1033 (English language setting folder) to the folder relevant to the language you use
(for example, use 1036 for French).

b. Run the PostCustomVizard.exe program from the %ProgramFiles%\Microsoft Visual Studio
9.0\Common7\IDE folder.

c. Repeat this process for the C# template, copying the QuickTestCustomServer.zip file from:
%ProgramFiles%\Microsoft Visual Studio 9.0\Common7\IDE\
ProjectTemplates\CSharp\Windows\1033

To confirm that the installation was successful:

Note: The Microsoft Visual Studio dialog box illustration and the instructions in this procedure refer
to Microsoft Visual Studio 2008. If you use a different Microsoft Visual Studio version, the dialog box
may differ slightly in appearance and the UFT CustomServer template may be located in a slightly
different node in the tree.

1. Open a supported version of Microsoft Visual Studio.

For a list of supported Microsoft Visual Studio versions, see the HP Unified Functional Testing
Product Availability Matrix, available from the UFT help folder or the HP Support Matrix page
(requires an HP passport).

2. Select File > New > Project to open the New Project dialog box.

3. Select the Visual Basic > Windows node in the Project types tree.

Developer Guide
Chapter 2: Installing the HP UFT .NET Add-in Extensibility SDK

HP UFT .NET Add-in Extensibility (12.50) Page 24

http://support.openview.hp.com/selfsolve/document/KM438391

4. Confirm that the UFT CustomServer template icon is displayed in the Templates pane:

5. Select the Visual C# > Windows node in the Project types tree.

6. Confirm that the UFT CustomServer template icon is displayed in the Templates pane.

Note: If you upgrade to a new version of Microsoft Visual Studio, you must uninstall and
reinstall the .NET Add-in Extensibility SDK to be able to access the UFTCustomServer template.

Repairing the HP UFT .NET Add-in Extensibility
SDK Installation
You can use the Unified Functional Testing Setup program to repair an existing HP UFT .NET Add-in SDK
installation by replacing any missing or damaged files from your previous installation.

Note:

Developer Guide
Chapter 2: Installing the HP UFT .NET Add-in Extensibility SDK

HP UFT .NET Add-in Extensibility (12.50) Page 25

l You must use the same version of the setup program as you used for the original installation.

l You must be logged on with Administrator privileges to repair the installation.

l If User Account Control (UAC) is available for your operating system, UAC must be turned off
while you repair the installation.

To repair the HP UFT .NET Add-in Extensibility SDK installation:

1. Insert the Unified Functional Testing DVD into the CD-ROM/DVD drive. The Unified Functional
Testing Setup window opens. (If the window does not open, browse to the DVD and double-click
setup.exe from the root folder.)

2. Click Add-in Extensibility and Web 2.0 Toolkits. The Unified Functional Testing Add-in Extensibility
and Web 2.0 Toolkit Support screen opens.

3. Click UFT .NET Add-in Extensibility SDK Setup. The .NET Add-in Extensibility SDK Setup wizard
opens, enabling you to select whether to repair or remove the SDK installation.

4. Select Repair and click Finish. The setup program replaces the UFT .NET Add-in Extensibility SDK
files and opens the Installation Complete screen.

5. In the Installation Complete screen, click Close to exit the Setup wizard.

Uninstalling the HP UFT .NET Add-in
Extensibility SDK
You can uninstall the HP UFT .NET Add-in SDK by using Add/Remove Programs as you would for other
installed programs. Alternatively, you can use the Unified Functional Testing Setup program.

Note:

l You must use the same version of the setup program as you used for the original installation.

l You must be logged on with Administrator privileges to uninstall the UFT .NET Add-in Extensibility
SDK.

To uninstall the HP UFT .NET Add-in Extensibility SDK:

1. Insert the Unified Functional Testing DVD into the CD-ROM/DVD drive. The Unified Functional
Testing Setup window opens. (If the window does not open, browse to the DVD and double-click
setup.exe from the root folder.)

2. Click Add-in Extensibility and Web 2.0 Toolkits. The Unified Functional Testing Add-in Extensibility
and Web 2.0 Toolkit Support screen opens.

3. Click UFT .NET Add-in Extensibility SDK Setup. The .NET Add-in Extensibility SDK Setup wizard
opens, enabling you to select whether to repair or remove the SDK.

4. Select Remove and click Finish. The setup program removes the UFT .NET Add-in Extensibility SDK

Developer Guide
Chapter 2: Installing the HP UFT .NET Add-in Extensibility SDK

HP UFT .NET Add-in Extensibility (12.50) Page 26

and opens the Installation Complete screen.

5. In the Installation Complete screen, click Close to exit the Setup wizard.

Developer Guide
Chapter 2: Installing the HP UFT .NET Add-in Extensibility SDK

HP UFT .NET Add-in Extensibility (12.50) Page 27

Chapter 3: Planning Your Support Set
Before you begin to create support for custom controls, you must carefully plan the support. Detailed
planning of how you want UFT to recognize the custom controls enables you to correctly build the
fundamental elements of the .NET Add-in Extensibility support set.

This chapter includes:

• About Planning UFT GUI Testing Support for Your .NET Add-in Extensibility Controls 29

• Determining Information Related to Your Custom Controls 29

• Analyzing the Custom Controls 29

• Selecting the Coding Option for Implementing the Custom Servers 30

• .NET DLL: Full Program Development Environment 31

• XML Implementation 31

• Selecting the Custom Server Run-Time Context Depending on the Test Function 32

• Analyzing Custom Controls and Mapping Them to Test Objects 33

• Using the .NET Add-in Extensibility Planning Checklist 34

• .NET Add-in Extensibility Planning Checklist 35

• Where Do You Go from Here? 35

HP UFT .NET Add-in Extensibility (12.50) Page 28

About Planning UFT GUI Testing Support for
Your .NET Add-in Extensibility Controls
Extending the UFT .NET Add-in's support to recognize custom .NET Windows Forms controls is a process
that requires detailed planning. To assist you with this, the sections in this chapter include sets of
questions related to the implementation of support for your custom controls. When you create your
.NET Add-in Extensibility support set, you implement it based on the answers you provide to these
questions.

Determining Information Related to Your
Custom Controls
Decide which controls this support set will support.

Before you begin planning support for custom .NET Windows Forms controls, make sure you have full
access to the controls and understand their behavior.

You must have an application in which you can view the controls in action.

You must also be able to view the source that implements them. You do not need to modify any of a
custom control's sources to support it in UFT, but you do need to be familiar with them.

When planning custom support for a specific type of control, carefully consider how you want UFT to
recognize controls of this type—what type of test object you want to represent the controls in UFT GUI
tests, which test object methods you want to use, and so on. Make these decisions based on the
business processes that might be tested using this type of control and operations that users are
expected to perform on these controls:

l Make sure you know the methods the control supports, what properties it has, the events for which
you can listen, and so on.

l Identify existing test object classes whose functionality is similar to that of the custom .NET Windows
Forms controls.

l Decide what methods need to be written or modified for supporting the controls.

Analyzing the CustomControls
You can run an application containing the custom control and analyze the control from a UFT
perspective using the .NET Windows Forms Spy, the Keyword View, and the Record option. This enables
you to see how UFT recognizes the control without custom support, and helps you to determine what
you want to change.

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 29

Using the .NET Windows Forms Spy
You can use the .NET Windows Forms Spy to help you develop extensibility for .NET Windows Forms
controls. The .NET Windows Forms Spy enables you to:

l View details about selected .NET Windows Forms controls and their run-time object properties.

l See which events cause your application to change (to facilitate record and run extensibility
implementation) and how the changes manifest themselves in the control's state.

You access the .NET Windows Forms Spy by choosing Tools > .NET Windows Forms Spy in the main UFT
window.

Note: To spy on a .NET Windows Forms application, make sure that the application is running with
Full Trust. If the application is not defined to run with Full Trust, you cannot spy on the application's
.NET Windows Forms controls with the .NET Windows Forms Spy. For information on defining trust
levels for .NET applications, see the relevant Microsoft documentation.

For more information on the .NET Windows Forms Spy, see the HP Unified Functional Testing Add-ins
Guide.

When you plan the support for a specific control, you must ask yourself a series of questions. You can
find a list of these questions in "Using the .NET Add-in Extensibility Planning Checklist" on page 34. When
you are familiar with the questions and you are designing your own custom support classes, you can use
the abbreviated, printable checklist on page 35.

Selecting the Coding Option for Implementing
the Custom Servers
You can implement custom support for custom .NET Windows Forms controls in the following ways:

l .NET DLL. Extends support for the control using a .NET Assembly.

l XML. Extends support for the control using an XML file, based on a schema.

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 30

.NET DLL: Full ProgramDevelopment Environment
Most Custom Servers are implemented as a .NET DLL. This option is generally preferred because:

l Development is supported by all the services of the program development environment, such as
syntax checking, debugging, and Microsoft IntelliSense.

l If table checkpoint and output value support is needed, this support is available only when
implementing the Custom Server as a .NET DLL.

l A Custom Server implemented as a .NET DLL can perform part of its Test Record functions in the UFT
context and part in the context of the application being tested. For more information, see "Using a
.NET DLL to Extend Support for a Custom Control" on page 44, and the UFT .NET Add-in Extensibility
API Reference (available in the UFT .NET Add-in Extensibility online Help.)

For information on run-time contexts, see "Selecting the Custom Server Run-Time Context Depending
on the Test Function" on the next page.

XML Implementation
There are circumstances when it is most practical to implement Custom Servers using the XML coding
method. These circumstances include:

l When the controls are relatively simple and well documented.

l When the controls map well to an existing object, but you need to replace the implementation during
a recording session (Test Record), or replace or add a small number of test object methods during a
run session (Test Run).

l When a full programming environment is not available–implementation using XML Custom Servers
requires only a text editor.

However, when implementing a custom control with XML:

l You have none of the support provided by a program development environment.

l The XML implementation includes C# programming commands, and runs only in the Application
under test context.

For more information, see "Using XML Files to Extend Support for a Custom Control" on page 61.

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 31

Selecting the Custom Server Run-Time Context
Depending on the Test Function
Each Custom Server may implement the following test functions for each control:

l Test Record

l Test Run

l Table Verification (to support checkpoints and output values)

l A combination of these test functions

Run-time contexts include:

l Application under test: The context of the application which is being tested.

l UFT: The UFT context.

The following table provides guidelines for determining which test function you can implement for each
run-time context.

Need / Task Test
Record

Test
Run

Table
Verification

Run-Time
Context

Explanation

Create tasks
using
keyword-
driven testing
(and not by
recording
steps on an
application)

Not
applicable

Yes Only for
.NET DLL
Custom
Servers

Either
Application
under test
or UFT

TheTest Record test function records the actions
performed on the application being tested and the
application's resulting behaviors. The recording is
then converted to a test. If you plan to createGUI
tests using keyword-driven testing, and not by
recording steps on an application, you do not need to
implement the Test Record function.

Implement the
Custom Server
in the
Application
under test
context

Optional Optional
(usually)

Only for
.NET DLL
Custom
Servers

Application
under test

TheTest Run function tests if the application is
performing as required by running the test and
tracking the results. Test Run is nearly always
implemented in theApplication under test context.

Listen to
Microsoft
Windows
messages

Yes Only
with
assistant
classes

Only for
.NET DLL
Custom
Servers

UFT If the .NET DLL Custom Server must both listen to
Windows messages and access control events and
properties, use assistant classes. The Custom Server
running in theUFT context can listen to events in the
Application under test context with assistant class
objects that run in theApplication under test
context. These objects also provide direct access to
control properties.

Implement
table

Optional Optional Only for
.NET DLL

Either
Application

You can implement support for table checkpoints and
output values on custom grid controls, regardless of

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 32

Need / Task Test
Record

Test
Run

Table
Verification

Run-Time
Context

Explanation

checkpoints
and output
values on
custom grid
controls

Custom
Servers

under test
or UFT

the context in which your .NET DLL runs.

Your
application
uses UFT
services more
than it uses
services of the
custom
control

Yes, but
possibly
less
efficient

Possibly
more
efficient

Possibly
more
efficient

UFT is
preferred

There is no need to listen to Windows messages
during aTest Run session, so theUFT context is not
required. However, if your application uses UFT
services more than it uses services of the custom
control, it may bemore efficient to implement Test
Run in theUFT context.

Analyzing Custom Controls and Mapping Them
to Test Objects
When you develop .NET Add-in Extensibility, you map custom .NET Windows Forms controls to existing
UFT .NET Add-in test object classes and to Custom Servers that you develop.

The first mapping determines the test object class that UFT uses to represent the custom control. The
second specifies the Custom Server to use. The Custom Server extends the functionality of the test
object that is used for the control to match the control's functionality.

If UFT recognizes a .NET control out-of-the-box, and uses a .NET add-in test object other than SwfObject
to represent it (for example SwfEdit or SwfList), then you cannot map this control to any other test
object type. However, you can still map it to a Custom Server and extend the test object functionality.

Mapping Custom Controls to Test Objects

Map the custom controls to test objects by using the MappedTo attribute in the UFT .NET Add-in
Extensibility's System Windows Forms configuration file (SwfConfig.xml). Map each custom control to a
UFT test object class containing behaviors that are similar to those required to support your control.

If you do not specify a mapping, UFT maps the custom control to the default generic test object,
SwfObject. For more information on SwfConfig.xml, see "Understanding How to Configure UFT Windows
Forms Extensibility" on page 67.

Note: Mapping is sometimes sufficient without any programming. If the existing UFT test object
adequately covers a control, it is sufficient to map the control to the UFT test object.

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 33

Mapping Custom Controls to Custom Servers

When you map your control to a functionally similar UFT test object, then, in your Custom Server, you do
not need to override test object methods that apply without change to your custom control. For
example, most controls contain a Clickmethod. If the Clickmethod of the existing test object
implements the Clickmethod of the custom control adequately, you do not need to override the
existing object's method.

To cover the Test Run functionality of the custom object that does not exist in the existing object, add
newmethods in your Custom Server. To cover functionality that has the same method name, but a
different implementation, override the existing object's methods.

If the UFT test object adequately covers Test Record, but you need to customize Test Run, do not
implement Test Record. If you do implement Test Record, the implementation replaces that of the
existing object. You must implement all required Test Record functionality.

In UFT, when you edit a step with the test object that you customized to support the custom control, the
statement completion feature displays the custom properties and methods that you defined for the
test object, in addition to those that exist in UFT. UFT uses test object configuration files to provide the
list of custom test object methods and properties.

Using the .NET Add-in Extensibility Planning
Checklist
When you plan the support for a specific type of control, you must ask yourself a series of questions.
These are explained below and are available in an abbreviated, printable checklist on page 35.

1. Make sure you have access to an application that runs the custom control on a computer with UFT
installed.

2. Choose a .NET Windows Forms test object class to represent the custom control. (UFT uses
SwfObject by default)

3. Does the test object class you selected have to be customized?

a. Specify any test object methods that you want to add to the test object definition. Specify the
method argument types and names, and whether the method returns a value in addition to
the return code.

When you design the .NET Add-in Extensibility support set, you specify this information in the
test object configuration file.

b. Specify any test object methods whose behavior you want to modify or override.

When you design the .NET Add-in Extensibility Custom Server, you will need to implement any
new test object methods that you add, or any test object methods whose existing behavior you
want to override.

4. Should test objects of this class be displayed in the .NET Windows Forms Spy? (By default they are.)

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 34

5. Are you going to provide support for recording? If so, list the events that should trigger recording.

6. If you are creating support for a table control, decide whether you want to provide support for
table checkpoints and output values on this control.

.NET Add-in Extensibility Planning Checklist
Use this checklist to plan the support for your custom control:

Custom Control Support Planning Checklist Specify in Test
Object Config.
file?

Specify in .NET Add-in
Extensibility
configuration file?

Specify in
Custom
Server?

q The sources for this custom control are located in:

q Specify the .NET test object class to map to the
control: (Default— SwfObject)

q Specify the test object methods you want to add or
modify (if required, include arguments, and return
values):

q Display test objects of this class in the .NET Windows
Forms Spy?
Yes (default)/No

q Provide support for recording?
Yes/No

If so, list the events that should trigger recording:

q Provide support for table checkpoints and output
values?
Yes/No

Where Do You Go from Here?
After you finish planning the custom control support, you create the .NET Add-in Extensibility support
set."Developing Your Support Set" on page 36 explains how to develop the .NET Add-in Extensibility
support set.

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 35

Chapter 4: Developing Your Support Set
This chapter explains how to develop extended support for custom .NET Windows Forms controls. It
explains which files you have to create for a .NET Add-in Extensibility support set, the structure and
content of these files, and how to develop them to support the different UFT capabilities for your
environment.

Note: Before you actually begin to create a support set, you must plan it carefully. For more
information, see "Planning Your Support Set" on page 28.

For information on where the .NET Add-in Extensibility support set files should be stored to activate the
support you design, see "Configuring and Deploying the Support Set" on page 66.

This chapter includes:

• Understanding the Development Workflow 37

• Describing the Test Object Model 37

• Benefits of Describing Test Object Models 38

• Creating Test Object Configuration Files 38

• Understanding the Contents of the Test Object Configuration File 39

• Modifying an Existing Test Object Class 40

• Make Sure that Test Object Configuration File Information Matches Custom Server Information 40

• Implementing More Than One Test Object Configuration File 41

• Example of a Test Object Configuration File 42

• Mapping Custom Controls to Test Object Classes 43

• Defining How UFT Operates on the Custom Controls 43

• Using a .NET DLL to Extend Support for a Custom Control 44

• Using XML Files to Extend Support for a Custom Control 61

• Using the .NET Add-in Extensibility Samples 63

• Troubleshooting and Limitations - Running the Support You Designed 64

HP UFT .NET Add-in Extensibility (12.50) Page 36

Understanding the Development Workflow
Implementing the .NET Add-in Extensibility support set consists of the following stages. The workflow
for developing the support set is described in the following sections.

Describing the Test Object Model
The first stage of developing support for custom controls is to introduce the test object model that you
want UFT to use to test your applications and controls. The test object model is a list of the test object
classes that represent custom controls in your environment and the syntax of the test object methods
that support the custom controls.

You define the test object model in a test object configuration file according to a specific XML schema.
For details about how to create test object configuration files, see "Creating Test Object Configuration
Files" on the next page.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 37

Benefits of Describing Test Object Models
Implementation of a test object configuration file is optional. If you choose not to implement the test
object configuration file, the test object methods defined in the .NET Custom Server DLL or control
definition files will work as expected, but the functionality listed below will be missing.

Describing your custom test object methods in a test object configuration file enables the following
functionality when editing GUI tests in UFT:

l A list of available custom test object methods in the Operations column in the Keyword view and
when using the statement completion feature in the Editor.

l A test object method selected by default in the Keyword View and Step Generator when a step is
generated for a test object of this class.

l Documentation for the custom test object methods in the Documentation column in the Keyword
view.

l Icons and context-sensitive Help (only for new test object methods added to a test object class).

Creating Test Object Configuration Files
The following steps describe how to create test object configuration files.

To create test object configuration files:

1. Create a copy of the <UFT installation folder>\dat\Extensibility\DotNet\
DotNetCustomServerMethods.xml file to create a new test object configuration file in the same
folder. (Do not modify the original file.)

2. Edit the new test object configuration file, modifying any test object classes whose behavior you
want to modify. Delete any test object classes that you do not modify.

3. Save and close the test object configuration file.

For more information, see:

l "Understanding the Contents of the Test Object Configuration File" on the next page

l "Modifying an Existing Test Object Class" on page 40

l " Make Sure that Test Object Configuration File Information Matches Custom Server Information" on
page 40

l " Implementing More Than One Test Object Configuration File" on page 41

l "Example of a Test Object Configuration File" on page 42

l UFT .NET Add-in Extensibility API Reference

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 38

Understanding the Contents of the Test Object
Configuration File
A test object configuration file can include the following:

l The name of the test object class and its attributes.

l The name of the custom control for which this test object class definition is relevant.

l The methods for the test object class, including the following information for each method:

l The arguments, including the argument type and direction.

l Whether the argument is mandatory, and, if not, its default value.

l The description (shown as a tooltip in the Keyword View, Editor, and Step Generator).

l The documentation string (shown in the Documentation column of the Keyword View and in the
Step Generator).

l A context-sensitive Help topic to open when F1 is pressed for the test object method in the
Keyword View or Editor, or when the Operation Help button is clicked for the method in the Step
Generator. The definition includes the Help file path and the relevant Help ID within the file.
(Relevant only for new test object methods added to the test object class.)

l The return value type.

l The test object method that is selected by default in the Keyword View and Step Generator when a
step is generated for a test object of this class.

The following example shows parts of the SwfObject test object class definition in a test object
configuration file. The example shows that the SwfObject is extended by adding a MyCustomButtonSet
method. The method has one argument (Percent, which defines the percentage to set in the control),
and it also has a documentation string that appears in the Keyword View:

</TypeInformation>
...
 <ClassInfo BaseClassInfoName="SwfObject" Name="MyCompany.MyButton">
...
 <TypeInfo>
 <Operation Name="MyCustomButtonSet"

PropertyType="Method" ExposureLevel="CommonUsed">
 <Description>Set the percentage in the task bar</Description>
 <Documentation><![CDATA[Set the %l %t to <Percent> percent.]]
></Documentation>
 <Argument Name="Percent" IsMandatory="true" Direction="In">
 <Type VariantType="Integer"/>
 <Description>The percentage to set in the task
bar.</Description>
 </Argument>

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 39

 </Operation>
 </TypeInfo>
 </ClassInfo>
</TypeInformation>

For information on the structure and syntax of a test object configuration file, see the HP UFT Test
Object Schema Help (available with the UFT .NET Add-in Extensibility online help).

Modifying an Existing Test Object Class
Identify a test object class that provides partial support for your control, but needs some modification,
for example, additional or modified test object methods.

You can then extend the functionality of this test object by defining and implementing additional test
object methods. In addition, you can override existing test object methods by providing an alternate
implementation for them. You define the new or changed methods in the test object configuration file,
and design their implementation using Custom Servers.

Adding Test Object Methods to an Existing Test Object Class
When you create a test object class definition in the test object configuration file, you specify the
custom control for which this definition is relevant. (In the ClassInfo element, you specify the test object
class in the BaseClassInfoName attribute, and the name of the custom class in the Name attribute.)

If you then add a custom test object method to the definition of this test object class, this method is
available in UFT only for test objects that represent custom controls of the type you specified.

For example, if you added a Setmethod to the SwfEditor test object class when used for
MyCompany.MyButton controls, then the method is displayed in the statement completion list of test
object methods in UFT only for objects that represent such controls. When SwfEditor test objects are
used for other types of controls, this method will not be available.

Make Sure that Test Object Configuration File
Information Matches CustomServer Information
Make sure that the information you define in the test object configuration file exactly matches the
corresponding information defined in the .NET Custom Server DLL or control definition files. For
example, the test object method names must be exactly the same in both locations. Otherwise, the
methods will appear to be available (for example, when using the statement completion feature) but
they will not work, and, if used, the run session will fail. In addition, the custom control name specified in
the test object configuration file must be the same as the name specified in the .NET Add-in
Extensibility configuration file.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 40

Implementing More Than One Test Object
Configuration File
You can choose to implement one or multiple test object configuration files (or none, if not needed). For
example, you can define custom methods for one test object class in one test object configuration file,
and custom methods for another test object in a different test object configuration file. You can also
choose to define a group of custom methods for a test object class in one test object configuration file,
and another group of custom methods for the same test object class in a different test object
configuration file.

Each time you open UFT, it reads all of the test object configuration files and merges the information
for each test object class from the different files into a single test object class definition. This enables
you to use the same test object class definitions when supporting different custom toolkits.

Understanding How UFT Merges Test Object Configuration Files
Each time you open UFT, it reads all of the test object configuration files located in the <UFT
installation folder>\dat\Extensibility\<UFT add-in name> folders. UFT then merges the information
for each test object class from the different files into a single test object class definition, according to
the priority of each test object configuration file.

UFT ignores the definitions in a test object configuration file in the following situations:

l The Load attribute of the TypeInformation element is set to false.

l The environment relevant to the test object configuration file is displayed in the Add-in Manager
dialog box, and the UFT user selects not to load the environment.

Define the priority of each test object configuration file using the Priority attribute of the
TypeInformation element.

If the priority of a test object configuration file is higher than the existing class definitions, it overrides
any existing test object class definitions, including built-in UFT information. For this reason, be aware of
any built-in functionality that will be overridden before you change the priority of a test object
configuration file.

When multiple test object class definitions exist, UFT must handle any conflicts that arise. The following
sections describe the process UFT follows when ClassInfo, ListOfValues, and Operation elements are
defined in multiple test object configuration files. All of the IdentificationProperty elements for a
specific test object class must be defined in only one test object configuration file.

ClassInfo Elements

l If a ClassInfo element is defined in a test object configuration file with a priority higher than the
existing definition, the information is appended to any existing definition. If a conflict arises between

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 41

ClassInfo definitions in different files, the definition in the file with the higher priority overrides
(replaces) the information in the file with the lower priority.

l If a ClassInfo element is defined in a test object configuration file with a priority that is equal to or
lower than the existing definition, the differing information is appended to the existing definition. If a
conflict arises between ClassInfo definitions in different files, the definition in the file with the lower
priority is ignored.

ListOfValues Elements

l If a conflict arises between ListOfValues definitions in different files, the definition in the file with
the higher priority overrides (replaces) the information in the file with the lower priority (the
definitions are not merged).

l If a ListOfValues definition overrides an existing list, the new list is updated for all arguments of type
Enumeration that are defined for operations of classes in the same test object configuration file.

l If a ListOfValues is defined in a configuration file with a lower priority than the existing definition, the
lower priority definition is ignored.

Operation Elements

l Operation element definitions are either added, ignored, or overridden, depending on the priority of
the test object configuration file.

l If an Operation element is defined in a test object configuration file with a priority higher than the
existing definition, the operation is added to the existing definition for the class. If a conflict arises
between Operation definitions in different files, the definition in the file with the higher priority
overrides (replaces) the definition with the lower priority (the definitions are not merged).

For more information, see the HP UFT Test Object Schema Help (available with the .NET Add-in
Extensibility SDK Help).

Example of a Test Object Configuration File
The following example shows the definition of the ToolStrip test object:

<ClassInfo Name="System.Windows.Forms.ToolStrip" aseClassInfoName="SwfToolBar"
FilterLevel="1">
 <TypeInfo>
 <Operation Name="Select" PropertyType="Method ExposureLevel="CommonUsed"
SortLevel="-1">
 <Description>Selects a menu item from a SwfToolBar dropdown menu.
 </Description>
 <Argument Name="Item" Direction="In" IsMandatory="true">
 <Type VariantType="VT_BSTR"/>
 </Argument>
 </Operation>

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 42

 <Operation Name="IsItemEnabled" PropertyType="Method"
ExposureLevel="Expert" SortLevel="-1">
 <Description>Indicates whether the toolbar item is
enabled.</Description>
 <Argument Name="Item" Direction="In" IsMandatory="true">
 <Type VariantType="VT_BSTR"/>
 </Argument>
 <ReturnValueType><Type VariantType="VT_BOOL"/></ReturnValueType>
 </Operation>
 <Operation Name="ItemExists" PropertyType="Method"
ExposureLevel="Expert" SortLevel="-1">
 <Description>Indicates whether the specified toolbar item
exists.</Description>
 <Argument Name="Item" Direction="In" IsMandatory="true">
 <Type VariantType="VT_BSTR"/>
 </Argument>
 <ReturnValueType> <Type VariantType="VT_BOOL"/></ReturnValueType>
 </Operation>
 </TypeInfo>
</ClassInfo>

This example shows that the ToolStrip test object class extends the SwfToolBar test object class. The
default test object method for the ToolStrip test object class is Select (which has one mandatory input
parameter: Item).

Mapping Custom Controls to Test Object
Classes
The mapping of custom controls to test object classes is defined in the .NET Add-in Extensibility
configuration file, SwfConfig.xml, in the <UFT installation path>\dat folder. This XML file describes
which test object class represents each custom control and where UFT can locate the information it
needs to interact with each control. For more information on mapping, see "Configuring UFT to Use the
Custom Server" on page 67.

Defining How UFT Operates on the Custom
Controls
After enabling UFT to recognize the custom controls, you must provide support for running test object
methods. If you try to run a test with steps that run custom test object methods before providing
implementation for these methods, the test fails and a run-time error occurs.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 43

Custom Servers contain the implementation for how UFT interacts with the custom controls. Custom
Servers can be .DLL files or .XML files (which UFT converts to .DLL files "behind the scenes" when
necessary). For instructions on deciding when it is appropriate to use each method, see "Planning Your
Support Set" on page 28.

l Most implementations are developed using DLL files. For more information, see "Using a .NET DLL to
Extend Support for a Custom Control" below.

l Simpler implementations can be developed using the XML files, by creating a Control Definition file
for each custom control. For more information, see "Using XML Files to Extend Support for a Custom
Control" on page 61.

After creating the Custom Server, configure UFT to use it. For more information, see "Configuring UFT to
Use the Custom Server" on page 67.

Using a .NET DLL to Extend Support for a Custom
Control
You can support a .NET Windows Forms control by creating a Custom Server implemented as a .NET DLL.
Set up a .NET project in Microsoft Visual Studio as a .NET DLL class library that implements the
interfaces for a combination of:

l Test Record (IRecord interface)

l Test Run (Replay interface)

l Table verification (supports checkpoints and output values)

Note: The IRecord interface is provided in the UFT .NET Add-in Extensibility SDK. When running the
UFT Custom Server Settings wizard to create a .NET DLL Custom Server, the wizard provides code
that implements the IRecord interface to get you started.

The SDK does not provide interfaces for replay and table verification. You must implement these.

For details, see "Implementing the IRecord Interface" on page 51 and the UFT .NET Add-in
Extensibility API Reference (available in the UFT .NET Add-in Extensibility online Help.)

To create a .NET DLL Custom Server you need to know how to program a .NET Assembly. The
illustrations and instructions in this section assume that you are using Microsoft Visual Studio 2008 as
your development environment and that the Custom Server Project Templates are installed. For more
information, see "Installing the HP UFT .NET Add-in Extensibility SDK" on page 22.

Considerations for Working with Custom Server DLLs

l The Custom Server DLL that you design is loaded into the 32-bit UFT application, and into the
application you are testing. Therefore, to enable your support to work with 64-bit applications, you
must build your custom server DLLs with the Platform target option set to Any CPU.

l Applications running under .NET Framework version 1.1 cannot use DLLs that were created using

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 44

Visual Studio 2005 or above. Therefore you cannot use a Custom Server that you implemented as a
.NET DLL using Visual Studio 2005 or above when you run the application you are testing under .NET
Framework version 1.1.

l UFT loads the Custom Server when you open a test. Therefore, if you implement your Custom Server
as a .NET DLL, any changes you make to the DLL after the Custom Server is loaded take effect only
the next time you open a test.

Designing the Custom Server DLL

Implementing your Custom Server as a .NET DLL involves the following tasks:

l "Setting up the .NET Project" (described on page 45)

l "Implementing Test Record for a Custom Control Using a .NET DLL" (described on page 51)

l " Implementing Test Run for a Custom Control Using the .NET DLL" (described on page 54)

l "Implementing Support for Table Checkpoints and Output Values in the .NET DLL Custom Server"
(described on page 55)

l "Running Code under Application Under Test from the UFT Context" (described on page 59)

Setting up the .NET Project
Set up a .NET project in Microsoft Visual Studio using the Custom Server C# Project Template or the
Custom Server Visual Basic Project Template. (This template is installed automatically during the
installation, as described in "Installing the HP UFT .NET Add-in Extensibility SDK" on page 22).

When you set up the .NET project, the Custom Server Project template does the following:

l Creates the project files necessary for the build of the .DLL file.

l Sets up a C# or Visual Basic file (depending on which template you selected) with commented code
that contains the definitions of methods that you can override when you implement Test Record or
Test Run.

l Provides sample code that demonstrates some Test Record and Test Run implementation
techniques.

l Creates an XML file segment with definitions for the Custom Server that you can copy into the .NET
Add-in Extensibility configuration file (SwfConfig.xml).

To set up a new .NET project:

Caution: To use the Custom Server Project template to create a .NET project, you must have either
administrator privileges or full read and write access to the following folder and all of its sub-
folders: <Microsoft Visual Studio installation folder>\VC#\VC#Wizards

1. Start Microsoft Visual Studio.

2. Select File > New > Project to open the New Project dialog box, or press CTRL + SHIFT + N. The New
Project dialog box opens.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 45

3. Select the Visual C# > Windows or Visual Basic > Windows node in the Project types tree.

Note: In Microsoft Visual Studio versions other than 2008, the dialog box may differ slightly in
appearance and the UFT CustomServer template may be located in a slightly different node in
the tree.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 46

4. Select the UFT CustomServer template in the Templates pane. Enter the name of your new project
and the location in which you want to save the project. Click OK. The UFT Custom Server Settings
wizard opens.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 47

5. Determine whether your Custom Server will extend Test Record support, Test Run support, or both,
by making selections in the Application Settings page of the wizard.

l In the Server class name box, provide a descriptive name for your Custom Server class.

l Select the Customize Record process check box if you intend to implement the Test Record
process in UFT.

If you select the Customize Record process check box, the wizard creates a framework of code
for the implementation of recording steps.

Do not select this check box if you are going to create the test manually in UFT, or if you are
going to use the Test Record functions of the existing test object to which this control will be
mapped. Your Test Record implementation does not inherit from the existing test object to
which the custom control is mapped. It replaces the existing object's Test Record
implementation entirely. Therefore, if you need any of the existing object's functionality, code it
explicitly.

l Select the Customize Run process check box if you intend to implement Test Run functions for
the custom control (meaning, if you are going to override any of the existing test object's
methods, or extend the test object with newmethods). Enter a name for the replay interface
you will create in the Replay interface name box.

If you select the Customize Run process check box, the wizard creates a framework of code to
implement Test Run support.

l Select the Generate comments and sample code check box if you want the wizard to add
comments and samples in the code that it generates.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 48

6. Click Next. The XML Configuration Settings page of the wizard opens:

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 49

7. Using the XML Configuration Settings page of the wizard, you can generate a segment of XML code
that can be copied into the .NET Add-in Extensibility configuration file (SwfConfig.xml). This file
maps the custom control to the test object, and provides UFT with the location of the test object's
Custom Server. (If you choose not to generate the XML configuration segment, you can manually
edit the .NET Add-in Extensibility configuration file later.) For instructions on copying this segment
into the SwfConfig.xml file, see "Copying Configuration Information Generated by the UFT Custom
Server Settings Wizard" on page 69.

l Select the Auto-generate the XML configuration segment check box to instruct the wizard to
create the configuration segment, which is saved in the Configuration.xml file.

l In the Customized Control type box, enter the full type name of the control for which you are
creating the Custom Server, including all wrapping namespaces, for example,
System.Windows.Forms.CustCheckBox.

Note: If you want to specify a control type that is included in more than one assembly you
can include the name of the assembly, or other information that will fully qualify the type.
For example, you could enter values similar to these:
- System.Windows.Forms.CustCheckBox, System2.Windows.Forms.v8.5
- System.Windows.Forms.CustCheckBox, System2.Windows.Forms.v8.5,
Version=8.5.20072.1093, Culture=neutral, PublicKeyToken=8aa4d5436b5ad4cd
This can be useful, for example, if you have different versions of the control in your
application.

l In the Mapped to box, select the test object to which you want to map the Custom Server. If you
select No mapping, the Custom Server is automatically mapped to the SwfObject test object.

For more information, see "Map the Custom Controls to the Relevant Test Objects " on page 18.

l Select the run-time context for Test Record and/or Test Run: the context of the application
that is being tested (Application under test) or the context of UFT (QuickTest).

For more information, see "Create Custom Servers" on page 17.

8. Click Finish. The wizard closes and the new project opens, ready for coding.

When you click Finish in the wizard, the Configuration.xml segment file is created and added to
the project. Update and modify the configuration segment file as required. For more information
about using the segment file, see "Copying Configuration Information Generated by the UFT
Custom Server Settings Wizard" on page 69.)

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 50

Implementing Test Record for a CustomControl Using a .NET
DLL
Recording a business component or test on a control means listening to the activity of that control,
translating that activity into test object method calls, and writing the method calls to the test. Listening
to the activities on the control is done by listening to control events, by hooking Windows messages, or
both.

Note: If you plan to create GUI tests using keyword-driven testing, and not by recording steps on an
application, you do not need to implement Test Record.

Write the code for Test Record by implementing the methods in the code segment created by the
wizard based on the IRecord interface (provided with the UFT .NET Add-in Extensibility SDK). Your Test
Record implementation does not inherit from the existing test object to which the custom control is
mapped. It replaces the existing object's Test Record implementation entirely. Therefore, if you need
any of the existing object's functionality, code it explicitly.

Before reading this section, make sure you are familiar with "Create Custom Servers" on page 17.

This section describes:

l "Implementing the IRecord Interface" below

l "Implementing Test Record for a Custom Control Using a .NET DLL" above

For more information on the interfaces, classes, enumerations, and methods in this section, see the UFT
.NET Add-in Extensibility API Reference (available in the UFT .NET Add-in Extensibility online Help.)

Implementing the IRecord Interface

To implement the IRecord interface, override the callback methods described below and add the details
of your implementation in your event handlers or message handler.

The examples provided below for each callback method are written in C#.

InitEventListener Callback Method

CustomServerBase. InitEventListener is called by UFT when your Custom Server is loaded. Add your
event and message handlers using this method.

To add event and message handlers:

1. Implement handlers for the control's events.

A typical handler captures the event and writes a method to the test. This is an example of a
simple event handler:

public void OnMouseDown(object sender, MouseEventArgs e)

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 51

{
 // If a button other than the left was clicked, do nothing.
 if(e.Button != System.Windows.Forms.MouseButtons.Left)
 return;
 /*
 For more complex events, here you would get any
 other information you need from the control.
 */
 // Write the test object method to the test
 RecordFunction("MouseDown",
 RecordingMode.RECORD_SEND_LINE,
 e.X,e.Y);
}

For more information, see "Implementing Test Record for a Custom Control Using a .NET DLL" on
the previous page.

2. Add your event handlers in InitEventListener:

public override void InitEventListener()
{

 // Adding OnMouseDown handler.
 Delegate e = new MouseEventHandler(this.OnMouseDown);
 AddHandler("MouseDown", e);

}

Note that if the Test Record implementation will run in the context of the application being tested,
you can use the following syntax:

SourceControl.MouseDown += e;

If you use this syntax, you must release the handler in ReleaseEventListener.

3. Add a remote event listener.

If your Custom Server will run in the UFT context, use a remote event listener to handle events.
Implement a remote listener of type EventListenerBase that handles the events, and add a call to
AddRemoteEventListener in method InitEventListener.

public class EventsListenerAssist : EventsListenerBase
{
 // class implementation.
}
public override void InitEventListener()

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 52

{
 ...
 AddRemoteEventListener(typeof(EventsListenerAssist));
 ...
}

When you implement a remote event listener, you must override
EventListenerBase.InitEventListener and EventListenerBase.ReleaseEventListener in addition to
overriding these callback functions in CustomServerBase. The use of these EventListenerBase
callbacks is the same as for the CustomServerBase callbacks. For details, see the
EventsListenerBase class in the UFT .NET Add-in Extensibility API Reference.

When you handle events from the UFT context, the event arguments must be serialized. For
details, see CustomServerBase.AddHandler(String, Delegate, Type) and the IEventArgsHelper
interface in the UFT .NET Add-in Extensibility API Reference.

To avoid the complications of remote event listeners, run your event handlers in the Application
under test context, as described above.

OnMessage Callback Method

OnMessage is called on any windowmessage hooked by UFT. If Test Record will run in the UFT context
and message handling is required, implement the message handling in this method.

If Test Record will run in the Application under test context, do not override this function.

For details, see CustomServerBase.OnMessage in the UFT .NET Add-in Extensibility API Reference.

GetWndMessageFilter Callback Method

If Test Record will run in the UFT context and listen to windows messages, override this method to
inform UFT whether the Custom Server will handle only messages intended for the specific custom
object, or whether it will handle messages from child objects, as well.

For details, see IRecord.GetWndMessageFilter in the UFT .NET Add-in ExtensibilityAPI Reference.

See also:"Troubleshooting and Limitations - Running the Support You Designed" on page 64.

ReleaseEventListener Callback Method

UFT calls this method at the end of the recording session. In ReleaseEventListener, unsubscribe from all
the events to which the Custom Server was listening. For example, if you subscribe to OnClick in
InitEventListener with this syntax,

SourceControl.Click += new EventHandler(this.OnClick);

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 53

you must release it:

public override void ReleaseEventListener()
{

 SourceControl.Click -= new EventHandler(this.OnClick);

}

However, if you subscribe to the event with the AddHandlermethod, UFT unsubscribes automatically.

Writing Test Object Methods to the Test

When information about activities of the control is received, whether in the form of events, Windows
messages, or a combination of both, this information must be processed as appropriate for the
application and a step must be written as a test object method call.

To write a test step, use the RecordFunctionmethod of the CustomServerBase class or the
EventsListenerBase, as appropriate.

Sometimes, it is impossible to know how an activity should be processed until the next activity occurs.
Therefore, there is a mechanism for storing a step and deciding in the subsequent call to
RecordFunction whether to write it to the test. For details, see RecordingMode Enumeration in the UFT
.NET Add-in ExtensibilityAPI Reference.

To determine the argument values for the test object method call, it may be necessary to retrieve
information from the control that is not available in the event arguments or Windows message. If the
Custom Server Test Record implementation is running in the context of the application being tested,
use the SourceControl property of the CustomServerBase class to obtain direct access to the public
members of the control. If the control is not thread-safe, use the ControlGetPropertymethod to
retrieve control state information.

Implementing Test Run for a CustomControl Using the .NET DLL
Defining test object methods for Test Run means specifying the actions to perform on the custom
control when the method is run in a step. Typically, the implementation of a test object method
performs several of the following actions:

l Sets the values of attributes of the custom control

l Calls a method of the custom control

l Makes mouse and keyboard simulation calls

l Reports a step outcome to UFT

l Reports an error to UFT

l Makes calls to another library (to show a message box, write custom log, and so on)

Define custom Test Run methods if you are overriding existing methods of the existing test object, or if
you are extending the existing test object by adding newmethods.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 54

Ensure that all test object methods recorded are implemented in Test Run, either by the existing test
object or by this Custom Server.

To define custom Test Run methods, define an interface and instruct UFT to identify it as the Test Run
interface by applying the ReplayInterface attribute to it. Only one replay interface can be implemented
in a Custom Server. If your interface defines methods with the same names as existing methods of the
existing object, the interface methods override the test object implementation. Any method name that
is different from existing object's method name is added as a newmethod.

Start a test object method implementation with a call to PrepareForReplay, specify the activities to
perform, and end with a call to ReplayReportStep and/or ReplayThrowError.

For more information, see the UFT .NET Add-in Extensibility API Reference (available in the UFT .NET Add-
in Extensibility).

Implementing Support for Table Checkpoints and Output Values
in the .NET DLL CustomServer
By adding table checkpoints to a test, UFT users can check the content and properties of tables
displayed in their application. By adding table output value steps to a test, you can retrieve values from
a table, store them, and then use them as input at a different stage in the run session.

With .NET Add-in Extensibility, you can enable UFT to support table checkpoints and output values for
custom table (grid) controls.

To implement table checkpoint and output value support, add a verification class in your Custom Server
that inherits from the VerificationServerBase class and override the necessary methods (for more
information, see below). In the .NET Add-in Extensibility configuration file, map each custom table
control to an SwfTable test object, and to the verification class in the relevant Custom Server. For
information on the syntax of the verification class methods, see the UFT .NET Add-in Extensibility API
Reference (available with the .NET Add-in Extensibility SDK online Help).

Note: When creating a Custom Server using the UFT Custom Server Settings wizard, the source
code created by the wizard does not include commented code for table checkpoint and output
value support. Add the implementation manually.

To implement support for table checkpoints and output values on custom table objects:

1. Map the custom table control to the SwfTable test object class. This instructs UFT to use an
SwfTable test object to represent the custom table control in GUI tests or components.

In the .NET Add-in Extensibility configuration file, <UFT Installation folder>\dat\SwfConfig.xml,
create a Control element with a Type attribute set to the name of the custom table control, and
the MappedTo attribute set to SwfTable.

For more information on the SwfConfig.xml file, see "Understanding How to Configure UFT
Windows Forms Extensibility" on page 67 and the .NET Add-in Extensibility Configuration Schema
Help (available with the .NET Add-in Extensibility SDK online Help).

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 55

2. Specify table verification configuration information for the Custom Server of this custom table
control.

In the same SwfConfig.xml file, define a CustomVerify element. In this element, specify:

l The run-time context, which for this element must always be AUT.

l The name of the Custom Server (DLL) that contains the implementation of table checkpoint and
output value support for this control.

l The type name for the verification class within the Custom Server (DLL) including wrapping
namespaces.

A sample of the CustomVerify element is provided below:

<Control Type="System.Windows.Forms.DataGridView" MappedTo="SwfTable">
 <CustomRecord>
 ...
 ...
 </CustomRecord>
 <CustomReplay>
 ...
 ...
 </CustomReplay>
 <CustomVerify>

 <Context>AUT</Context>
 <DllName>C:\MyProducts\Bin\\VfySrv.dll</DllName>
 <TypeName>VfySrv.DataGridCPSrv</TypeName>

 </CustomVerify>
 <Settings>
</Control>

3. In the verification class, override the following protected methods so that UFT receives what it
requires when supporting table checkpoints and output values.

l GetTableData

UFT calls this method to retrieve table data from the specified range of rows and returns the
data as an array of objects.

When working with a table checkpoint or output value, UFT calls the GetTableRowRange
method before this method so that the first and last rows in the data range of the table are
known to the GetTableDatamethod.

l GetTableRowRange

UFT calls this method to retrieve the number and range of rows in the table that will be included
in the checkpoint or output value.

When working with a table checkpoint or output value, UFT calls this method before the
GetTableDatamethod. The GetTableRowRange method initializes the values of the first and
last rows in the data range of the table, which the GetTableDatamethod uses as input.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 56

l GetTableColNames

UFT calls this method to retrieve the column names as an array of strings. UFT displays these
column names in the Table Checkpoint Properties and Table Output Value Properties dialog
boxes. If this method is not implemented, numbers appear instead of column names in these
dialog boxes.

The images below shows what the Table Checkpoint Properties dialog box looks like with
and without GetTableColNames implementation:

The following sample (written in C#) demonstrates implementation of the GetTableData,
GetTableColNames, and GetTableRowRange methods.

using System;
using System.Collections.Generic;
using System.Text;
using Mercury.QTP.CustomServer;
using System.Windows.Forms;
namespace VfySrv
{

public class DataGridCPSrv : VerificationServerBase
{
/// GetTableData() is called by UFT to retrieve the data in a table.
/// The following base class properties are used:
/// SourceControl - Reference to the grid (table) object
/// FirstRow - The (zero-based) row number of the start of
/// the checkpoint or output value
/// LastRow - The (zero-based) row number of the end of
/// the checkpoint or output value
/// Returns a two-dimensional array of objects.
protected override object[,] GetTableData()
{
DataGridView GridView = (DataGridView)(base.SourceControl);
int TotalRows = GridView.Rows.Count;

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 57

int TotalColumns = GridView.Columns.Count;
int FirstRowN = base.FirstRow;
int LastRowN = base.LastRow;
TotalRows = LastRowN - FirstRown + 1;
object[,] Data = new object[TotalRows, TotalColumns];
DataGridViewRowCollection Rows = GridView.Rows;
for (int i = FirstRowN; i <= LastRowN; i++)
{
DataGridViewRow Row = Rows[i];
DataGridViewCellCollection Cells = Row.Cells;
for (int k = 0; k < TotalColumns; k++)
{
Data[i - FirstRown, k] = Cells[k].Value;
}

}
return Data;

}

/// GetTableColNames is called by UFT to
/// retrieve the column names of the table.
/// Returns an array of column names.
protected override string[] GetTableColNames()
{
DataGridView GridView = (DataGridView)(this.SourceControl);
int TotalColumns = GridView.Columns.Count;
string[] ColNames = new string[TotalColumns];
for (int i = 0; i < TotalColumns; i++)
{
ColNames[i] = GridView.Columns[i].HeaderText;

}
return ColNames;

}

/// GetTableRowRange is called by UFT to
/// obtain the number of rows in the table.
protected override void GetTableRowRange

(out int FirstVisible, out int LastVisible, out int Total)
{
DataGridView GridView = (DataGridView)(this.SourceControl);
DataGridViewRowCollection Rows = GridView.Rows;
FirstVisible = -1;
LastVisible = Rows.Count -1;
for (int i = 0; i < Rows.Count; i++)
{
if (Rows[i].Visible == false)
continue;

FirstVisible = i;

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 58

break;
}
for (int i = FirstVisible + 1; i < Rows.Count; i++)
{
if (Rows[i].Visible)

continue;
LastVisible = i;
break;

}
FirstVisible++;
LastVisible++;
Total = GridView.Rows.Count;

}
}

}

Running Code under Application Under Test from the UFT
Context
When the Custom Server is running in the UFT context, there is no direct access to the control, which is
in a different run-time process. To access the control directly, run part of the code in the Application
under test context. This is done using assistant classes.

To launch code from the UFT context that will run under the Application under test context, implement
an assistant class that inherits from CustomAssistantBase. To create an instance of an assistant class,
call CreateRemoteObject. Before using the object, attach it to the control with SetTargetControl.

After SetTargetControl is called, you can call methods of the assistant in one of the following ways:

l If the method can run in any thread of the Application under test process, read and set control
values and call control methods with the simple obj.Member syntax:

int i = oMyAssistant.Add(1,2);

l If the method must run in the control's thread, use the InvokeAssistantmethod:

int i = (int)InvokeAssistant(oMyAssistant, "Add", 1, 2);

Tip: You can use the EventListenerBase, which is an assistant class that supports listening to
control events.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 59

Reviewing Commonly-used API Calls
This section provides a quick reference of the most commonly used API calls. Review this information
before starting to implement methods.

These methods are in CustomServerBase except where indicated.

For more information, see the UFT .NET Add-in Extensibility API Reference (available in the UFT .NET Add-
in Extensibility online Help.)

Test Record Methods

AddHandler Adds an event handler as the first handler of the event.

RecordFunction Records a step in the test.

Test Record Callback Methods

GetWndMessageFilter Called by UFT to set theWindows message filter.

InitEventListener Called by UFT to load event handlers and start listening for events.

OnMessage Called when UFT hooks thewindow message.

ReleaseEventListener Stops listening for events.

Test Run Methods

DragAndDrop, KeyDown, KeyUp, MouseClick, MouseDblClick, MouseDown,
MouseMove, MouseUp, PressKey, PressNKeys, SendKeys, SendString

Mouse and keyboard simulation methods.

PrepareForReplay Prepares the control for an action run.

ReplayReportStep Writes an event to the test report.

ReplayThrowError Generates an error message and changes
the reported step status.

ShowError Displays the .NET warning icon.

TestObjectInvokeMethod Invokes oneof themethods exposed by
the test object's IDispatch interface.

Cross-Process Methods

AddRemoteEventListener Creates an EventListener instance in theApplication under test process.

CreateRemoteObject Creates an instance of an assistant object in theApplication under test process.

GetEventArgs (IEventArgsHelper) Retrieves and deserializes theEventArgsobject.

Init (IEventArgsHelper) Initializes theEventArgumentshelper class with an EventArgsobject.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 60

InvokeAssistant Invokes amethod of aCustomAssistantBase class in the control's thread.

InvokeCustomServer
(EventsListenerBase)

Invokes the Custom Server's methods running in theUFT process from theApplication
under test process.

SetTargetControl
(CustomAssistantBase)

Attaches to the source custom control by the control's window handle.

General Methods

ControlGetProperty Retrieves a property of a control that is not thread-safe.

ControlInvokeMethod Invokes amethod of a control that is not thread-safe.

ControlSetProperty Sets a property of a control that is not thread-safe.

GetSettingsValue Gets a parameter value from the settings of this control in the configuration file.

GetSettingsXML Returns the settings of this control as entered in the configuration file.

Table Checkpoint and Output Value Support Methods

GetTableData (VerificationServerBase) Called by UFT to retrieve the data in a table.

GetTableRowRange (VerificationServerBase) Called by UFT to retrieve the first and last rows of the table.

GetTableColNames (VerificationServerBase) Called by UFT to retrieve the names of the table columns.

Using XML Files to Extend Support for a Custom
Control
You can implement custom control support without programming a .NET DLL by entering the
appropriate Test Record and Test Run instructions for that custom control in a control definition file.
(Create a separate control definition file for each control you want to customize.) You can instruct UFT
to load the custom control implementation instructions by specifying each control definition file in the
.NET Add-in Extensibility configuration file, SwfConfig.xml.

Note: When extending support using an XML file, UFT generates an ad hoc .NET DLL for you based
on the XML file. This ad hoc .NET DLL becomes the custom server for the control.

When using this technique, you do not have the support of the .NET development environment—the
object browser and the debugger— or the ability to create table checkpoints or output values. However,
by enabling the implementation of custom control support without the .NET development environment,
this technique enables relatively rapid implementation, even in the field.

This feature is most practical either with relatively simple, well documented controls, or with controls
that map well to an existing object but for which you need to replace the Test Record definitions, or
replace or add a small number of test object Test Run methods.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 61

Understanding Control Definition Files
The control definition file can contain a Record element in which you define the customized recording
for the control and a Replay element in which you define the customized test object methods.

l The Record element specifies the control events for which you want UFT to add steps to the test (or
component) during a recording session. The steps are calls to test object methods of the custom
control's test object.

l The Replay element specifies the operations that UFT should perform on the control for each test
object method during a run session.

You do not always need to enter both a Record and a Replay element:

l If the Test Record implementation for the custom test object should be different than the one
defined for the existing test object, create a Record element in the control definition file for the
custom control.

l Similarly, if the Test Run implementation for the custom test object should be different than the one
defined for the existing test object, create a Replay element in the control definition file for the
custom control.

If you create a Record element, the definitions replace the Test Record implementation of the existing
test object entirely. If you create a Replay element, it inherits the Test Run implementation of the
existing object and extends it. For more information on test object mapping options, see "Map the
Custom Controls to the Relevant Test Objects " on page 18.

For information on the elements in a control definition XML file, see the .NET Add-in Extensibility Control
Definition Schema Help (available with the .NET Add-in Extensibility SDK online Help).

An Example of a Control Definition File
The following example shows the handling of an object whose value changes at each MouseUp event.
The value is in the Value property of the object. The MouseUp event handler has Button, Clicks, Delta,
X, and Y event arguments.

The Record element describes the conversion of the MouseUp event to a SetValue command. The
Replay element defines the SetValue command as setting the value of the object to the recorded
Value and displaying the position of the mouse pointer for debugging purposes:

<?xml version="1.0" encoding="UTF-8"?>
<Customization>
 <Record>
 <Events>
 <Event name="MouseUp" enabled="true">
 <RecordedCommand name="SetValue">
 <Parameter>

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 62

 Sender.Value
 </Parameter>
 <Parameter lang="C#">
 String xy;
 xy = EventArgs.X + ";" + EventArgs.Y;
 Parameter = xy;
 </Parameter>
 </RecordedCommand>
 </Event>
 </Events>
 </Record>
 <Replay>
 <Methods>
 <Method name="SetValue">
 <Parameters>
 <Parameter type="int" name="Value"/>
 <Parameter type="String" name="MousePosition"/>
 </Parameters>
 <MethodBody>
 RtObject.Value = Value;
 System.Windows.Forms.MessageBox.Show(MousePosition, "Mouse
Position at Record Time");
 </MethodBody>
 </Method>
 </Methods>
 </Replay>
</Customization>

Using the .NET Add-in Extensibility Samples
The .NET Add-in Extensibility SDK provides a sample support set to help you learn about .NET Add-in
Extensibility. The toolkit support set files are installed in the <UFT .NET Add-in Extensibility SDK
installation folder>\samples\WinFormsExtSample folder. You can study the content of these files to
gain a better understanding of how to develop your own toolkit support sets.

The sample support set extends UFT support for the SandBar custom .NET Windows Forms control. The
custom server provided in this sample is similar to the one you create in "Learning to Create Support for
a Complex Custom .NET Windows Forms Control" on page 85.

The SandbarSample.sln solution file located in the WinFormsExtSample folder includes a configuration
file and a fully implemented custom server that supports the SandBar control. The
SandBarCustomServer implementation is provided in C# and in Visual Basic, in separate projects within
the solution (SandbarCustomServer and VBSandbarCustomServer). In addition, the SandbarSample
solution includes a sample .NET Windows Forms application that uses the SandBar toolbar control
(SandbarTestApp).

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 63

To learn how extensibility can affect UFT's interaction with custom controls, create and run a UFT GUI
test on the sample application before and after deploying the sample toolkit support set to UFT.

Considerations for Working with the SandBar Support Sample

l To open the SandbarSample solution, use Microsoft Visual Studio 2005 or later.

l Before you build the SandbarSample solution, ensure that the following items are installed on your
computer:

l The UFT .NET Add-in Extensibility SDK

l SandBar for .NET 2.0/3.x (can be downloaded from
http://www.divil.co.uk/net/download.aspx?product=2&license=5)

l After successfully building the SandbarSample solution, deploy the C# or Visual Basic custom server it
creates as described in "Configuring and Deploying the Support Set" on page 66.

l Before you update the SwfConfig.xml file according to the information in Configuration.xml,
consider the following: The Configuration.xml file in the SandbarSample solution is set up to use the
DLL generated by the C# project and located in <UFT .NET Add-in Extensibility installation
folder>\samples\
WinFormsExtSample\Bin.

l To use VBCustomSandBarSrv.dll, replace all appearances of SandbarCustomServer in with
VBCustomSandBarSrv.dll.

l If your DLL file is located in a different location, update the path in the DllName element
accordingly.

Troubleshooting and Limitations - Running the
Support You Designed
This section describes troubleshooting and limitations for developing your support set.

The custom server is not receiving some Windows messages

During a recording session, the custom server mapped to your custom control is only created after
some operation takes place on the custom control itself.

If you design the GetWndMessageFiltermethod to specify that your custom server will handle
messages that occur on other controls, such messages can only be handled after the custom server is
created.

Therefore, for example, you may have to click on the custom control before the custom server can
receive and process messages on other controls in the application.

Depending on how you implement support for recording on your custom control, you might want to
provide instructions regarding this issue to the UFT users who use your support set.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 64

http://www.divil.co.uk/net/download.aspx?product=2& license=5

A General Run Error occurs while running the test in UFT

When using the .NET Add-in Extensibility API with Microsoft .NET Framework 1.1, a General Run Error
may occur while running your test. This is caused by an Execution Engine Exception error in the
application under test (AUT).

Workaround: Install Service Pack 1 (or later) for Microsoft .NET Framework 1.1.

A run-time error occurs while running the test in UFT

When using an XML-based Custom Server, if you have more than one version of Microsoft .NET
Framework installed, a run-time error might occur during the run session. The error message in the log
file indicates that the configuration file contains a compilation error. This is because assemblies
compiled with Microsoft .NET Framework version 2.0 and later are not recognized by earlier versions of
Microsoft .NET Framework.

Workaround: Perform one of the following:

l Solution 1: In the Registry, in the following key HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\.NETFrameworkadd the following DWORD Value
"OnlyUseLatestCLR"=dword:00000001

l Solution 2: If the .NET application you are testing has a configuration file, add the following
information to the file:

<configuration>
<startup>

<supportedRuntime version="v2.0.50727"/>
</startup>

</configuration>

The configuration file must be named <executable_name>.exe.Config and be located in the same
folder as the executable of the .NET application you are testing.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 65

Chapter 5: Configuring and Deploying the
Support Set
After developing the implementation for your Custom Server, the UFT .NET Add-in Extensibility Support
Set is ready for configuration and deployment.

This chapter includes:

• Understanding the Deployment Workflow 67

• Configuring UFT to Use the Custom Server 67

• Understanding How to Configure UFT Windows Forms Extensibility 67

• Copying Configuration Information Generated by the UFT Custom Server Settings Wizard 69

• Deploying the Custom Support Set 71

• Placing Files in the Correct Locations 71

• Modifying Deployed Support 72

• Removing Deployed Support 72

• Testing the Custom Support Set 72

• Testing Basic Functionality of the Support Set 73

• Testing Implementation 74

HP UFT .NET Add-in Extensibility (12.50) Page 66

Understanding the Deployment Workflow
The workflow for deploying a .NET Add-in Extensibility support set consists of the stages shown in the
highlighted area of the image. These stages are described in detail in the sections below.

Configuring UFT to Use the Custom Server
The .NET Add-in Extensibility configuration file (SwfConfig.xml) provides UFT with the configuration
information it needs to load your Custom Servers.

Understanding How to Configure UFT Windows Forms
Extensibility
To instruct UFT to load Custom Servers according to the appropriate configuration, enter the
information in the .NET Add-in Extensibility configuration file. This file, SwfConfig.xml, is located in the
<UFT installation folder>\dat folder.

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 67

Enter configuration information into the SwfConfig.xml file in one of the following ways:

l Manually edit the file using any text editor.

l Copy information from configuration.xml files generated by the UFT Custom Server Settings wizard.

For more information about the wizard, see "Using a .NET DLL to Extend Support for a Custom
Control" on page 44.

For instructions on how to copy information from configuration.xml files, see "Copying Configuration
Information Generated by the UFT Custom Server Settings Wizard" on the next page.

When configuring UFT Windows Forms extensibility, define elements according to the coding option you
selected for implementing your Custom Server:

l "When Using a .NET DLL Custom Server" below

l "When Using an XML Custom Server" below

When Using a .NET DLL Custom Server

In the SwfConfig.xml file, for each custom .NET control that you will implement using a .NET DLL Custom
Server, you can define:

l AMappedTo attribute, if you want the custom control to correspond to a test object other than the
default generic test object SwfObject.

l A CustomRecord element if you want to customize recording on the control.

l A CustomReplay element if you want to customize how test steps are run on a custom control.

l A CustomVerify element if you want to add table checkpoint and output value support for custom
table controls.

l A Settings element, in which you can use the Parameter element to pass values to the Custom Server
at run-time.

When Using an XML Custom Server

In the SwfConfig.xml file, for each custom .NET control that you will implement using an XML Custom
Server, you define:

l AMappedTo attribute, if you want the custom control to correspond to a test object other than the
default test grid object SwfTable.

l The Context attribute of a CustomRecord element if you want to customize recording on the control.

l The Context attribute of a CustomReplay element if you want to customize how test steps are run
on a custom control.

l A Settings element, in which you can use the Parameter element to pass values to the Custom Server
at run-time.

Note: UFT loads the Custom Server when you open a test. Therefore, if you implement your
Custom Server as a .NET DLL, any changes you make to the DLL after the Custom Server is loaded
take effect only the next time you open a test.

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 68

For information on the elements in the .NET Add-in Extensibility configuration file (SwfConfig.xml), see
the .NET Add-in Extensibility Configuration Schema Help (available with the .NET Add-in Extensibility SDK
online Help).

Copying Configuration Information Generated by the
UFT CustomServer Settings Wizard
When running the UFT Custom Server Settings wizard to create a Custom Server, the wizard creates an
XML configuration segment. The wizard outputs this segment to help you enter the configuration
information in the .NET Add-in Extensibility configuration file.

To incorporate the contents of the XML configuration segment before deploying the Custom Server:

1. Edit the Configuration.xml segment file in the project to ensure that the information is correct.
Set the DllName element value to the location to which you will deploy the Custom Server. If Test
Record and/or Test Run are to be loaded in different run-time contexts, edit the Context value
accordingly.

2. Copy the entire <Control>...</Control> node. Do not include the enclosing <Controls> tags.

3. Open the .NET Add-in Extensibility configuration file, <UFT installation folder>\dat\SwfConfig.xml.
Paste the Control node from Configuration.xml at the end of the file, before the closing
</Controls> tag.

4. Save the file. If UFT was open, you must close and reopen it for the SwfConfig.xml changes to take
effect.

Note: You can validate the configuration file you design against the <UFT installation
folder>\dat\SwfConfig.xsd file.

Example of a .NET Add-in Extensibility Configuration File

Following is an example of a file that configures UFT to recognize the following controls:

l Support for the MyCompany.WinControls.MyListView control is implemented in the
CustomMyListView.CustListView .NET DLL Custom Server. The Custom Server is not installed in the
GAC, so the DLL name is specified as a path and file name (and is not passed as a type name
according to GAC standard syntax).

MyListView is mapped to the SwfListView test object, and runs in the context of the application
being tested.

l Support for the mySmileyControls.SmileyControl2 control is implemented in an XML file. Therefore,
the path and file name for the Control Definition file that contains its implementation is passed to
UFT during run-time using the Parameter element.

The SmileyControl2 control is not explicitly mapped to any test object in the SwfConfig.xml file, so
UFT maps it to the default generic test object, SwfObject.

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 69

l Customized record and run support for the System.Windows.Forms.DataGridView control is
implemented in a .NET DLL Custom Server called CustomMyTable.dll. Table checkpoint and output
value support for the System.Windows.Forms.DataGridView control is implemented in a .NET DLL
Custom Server called VfySrv.dll.

DataGridView must be mapped to the SwfTable test object (according to the restrictions imposed by
the TableElement complex type element in the schema), and, because the customized support
includes table checkpoints and output values, must run in the context of the application being tested.

<?xml version="1.0" encoding="UTF-8"?>
<Controls>

<Control Type="MyCompany.WinControls.MyListView" MappedTo="SwfListView" >
<CustomRecord>

<Component>
<Context>AUT</Context>
<DllName>C:\MyProducts\Bin\CustomMyList View.dll</DllName>
<TypeName>CustomMyListView.CustListView</TypeName>

</Component>
</CustomRecord>
<CustomReplay>

<Component>
<Context>AUT</Context>
<DllName>C:\MyProducts\Bin\CustomMyList View.dll</DllName>
<TypeName>CustomMyListView.CustListView</TypeName>

</Component>
</CustomReplay>
<Settings>

<Parameter Name="sample name">sample value</Parameter>
<Parameter Name="ConfigPath">C:\Program Files\HP\Unified Functional

Testing\dat\Extensibility\dotNET\MyContrSIM.xml</Parameter>
</Settings>

</Control>

<Control Type="mySmileyControls.SmileyControl2">
<Settings>

<Parameter Name="ConfigPath">d:\UFT\bin\ConfigSmiley.xml
</Parameter>

</Settings>
<CustomRecord>

<Component>
<Context>AUT-XML</Context>

</Component>
</CustomRecord>
<CustomReplay>

<Component>
<Context>AUT-XML</Context>

</Component>
</CustomReplay>

</Control>

<Control Type="System.Windows.Forms.DataGridView"
MappedTo="SwfTable">

<CustomRecord>
<Component>

<Context>QTP</Context>
<DllName>C:\MyProducts\Bin\CustomMyTable.dll</DllName>

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 70

<TypeName>CustomMyTable.CustTableView</TypeName>
</Component>

</CustomRecord>
<CustomReplay>

<Component>
<Context>AUT-XML</Context>

</Component>
</CustomReplay>
<CustomVerify>

<Context>AUT</Context>
<DllName>C:\MyProducts\Bin\VfySrv.dll</DllName>
<TypeName>VfySrv.DataGridCPSrv</TypeName>

</CustomVerify>
<Settings>

<Parameter Name="sample name">sample value</Parameter>
</Settings>

</Control>

</Controls>

Deploying the Custom Support Set
The next stage of extending UFT GUI testing support for custom controls is deployment. This means
placing all files you created in the correct locations, so that the custom support is available to UFT.

After you deploy the custom support, if you run an application that contains the custom controls and
perform UFT operations on the application, you can see the effects of the support you designed.

Placing Files in the Correct Locations
To deploy the support set that you create, place the files in the locations described in the following
table. Make sure that UFT is closed before placing the files in their appropriate locations.

File Name Location

SwfConfig.xml <UFT installation path>\dat

<Test Object Configuration File Name>.xml

Note: You can havemore than one test object
configuration file (if any), and name them as you wish.

l <UFT installation path>\dat\Extensibility\DotNet

l <UFT Add-in for ALM
Installation Path>\dat\Extensibility\DotNet

(Optional. Required only if the folder exists, which means
theUFT Add-in for ALM was installed independently from
theALM Add-ins page and not as part of theUFT
installation.)

<Control Definition File Name>.xml>

Note: The Control Definition file is used when creating a

l <UFT installation path>\dat\Extensibility\DotNet

l <UFT Add-in for ALM
Installation Path>\dat\Extensibility\DotNet\

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 71

File Name Location

Custom Server using theXML coding option. You can have
more than one control definition file (one for each
custom control).

(Optional. Required only if the folder exists, which means
theUFT Add-in for ALM was installed independently from
theALM Add-ins page and not as part of theUFT
installation.)

<Custom Server File Name>.dll

Note: This type of Custom Server is used when creating a
Custom Server using the .NET DLL coding option. You can
havemore than one custom server for each custom
control.

Specify the location of your compiled Custom Servers (DLLs)
in theSwfConfig.xml file.

Modifying Deployed Support
If you modify a support set that was previously deployed to UFT, the actions you must perform depend
on the type of change you make, as follows:

l If you modify the .NET Add-in Extensibility configuration file or a test object configuration file, you
must deploy the support.

l If you modify a test object configuration file, you must reopen UFT and open a GUI test after
deploying the support.

Removing Deployed Support
To remove support for a custom control from UFT after it is deployed, you must delete the
corresponding section in the SwfConfig.xml file from <UFT installation path>\dat and remove the
corresponding test object configuration file from <UFT installation path>\dat\Extensibility\DotNet.

If you remove support for a new test object method that you added in a test object configuration file,
you should remove the method definition (or the whole file, if appropriate) so that UFT users do not
create test steps that call that method. Modify or remove the test object configuration file in: <UFT
Installation Path>\Dat\Extensibility\DotNet (and <UFT Add-in for ALM
Installation Path>\Dat\Extensibility\DotNet if relevant).

Testing the Custom Support Set
We recommend that you test the custom support using an incremental approach. First, test the basic
functionality of the support set. Then, test its implementation.

l "Testing Basic Functionality of the Support Set" on the next page

l " Testing Implementation" on page 74

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 72

Testing Basic Functionality of the Support Set
After you define a basic .NET Windows Forms configuration file enabling UFT to identify which test
object classes to use for the different controls, and (optionally) define your test object model in the test
object configuration file, you can test the existing functionality of the support set. To do this, you deploy
the support set and test how UFT interacts with the controls in your environment.

To test your support set after defining the test object classes and mapping them to custom .NET
Windows Forms controls:

1. In the test object configuration file, set the TypeInformation\DevelopmentMode attribute to true,
to ensure that UFT reads all of the test object class information from the file each time it opens.
When you complete the development of the support set, make sure to set this attribute to false.

2. Deploy the support set on a UFT computer by copying the files of the support set to the correct
locations in the UFT installation folder, as described in "Placing Files in the Correct Locations" on
page 71.

3. Open UFT, load the .NET Add-in, and open a GUI test. (If the Add-in Manager dialog box does not
open when you open UFT, see the HP Unified Functional Testing Add-ins Guide for instructions.)

4. Open an application with your custom controls.

5. Based on the mapping definitions you created, UFT can already recognize and learn your controls.

Use the Add Objects to Local button in the Object Repository dialog box to learn your
controls.

6. If you created a test object configuration file, you can already see its effect on UFT:

a. If you added a test object method to a test object class, you can view it using the Object Spy

.

b. You can create test steps that use the test object method that you added. (If you have not yet
implemented the custom server that supports this test object method, running a such a test
step will cause a run-time error.)

In the Keyword View:

Create a test step with a test object from a class that you modified.

o If you added a test object method to a test object class, the method appears in the list of
available operations in the Operation column.

o After you choose an operation, the Value cell is partitioned according to the number of
arguments of the selected operation, and if you defined possible values for the operation
(in the ListOfValues element), they are displayed in a list.

o The descriptions and documentation strings you defined for the test object methods are
displayed in tooltips and in the Documentation column, respectively.

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 73

In the Editor:

Create a test step with a test object from a class that you modified. The statement completion
feature displays all of the operations available for the test object, and possible input values for
these operations, if relevant, based on the definitions in the test object configuration file.

In the Step Generator:

Create a test step with a test object from a class that you modified. The operations that you
defined in the test object configuration file are displayed in the Operation list, and the
descriptions you defined for the operations are displayed as tooltips.

Note: For more information on working with these options in UFT, see the HP Unified
Functional Testing User Guide.

Testing Implementation
After you complete additional stages of developing support for your environment, you can deploy the
support set again and test additional areas of interaction between UFT and your controls (for example,
running and recording GUI tests).

To test your support set after developing support for additional UFT functionality:

1. Follow the steps in "Testing Basic Functionality of the Support Set" on the previous page to deploy
the support set, open UFT, load the support and run an application with controls from your
environment.

2. Depending on the UFT functionality for which you are developing support, perform the relevant UFT
operations on the application to test that support. For example, run a test on the application,
record test steps on the application and so on.

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.50) Page 74

Chapter 6: Learning to Create Support for
a Simple Custom .NET Windows Forms
Control
In this tutorial, you will learn how to build a Custom Server for a Microsoft TrackBar control that enables
UFT to record and run a SetValue operation on the control. You will implement the Custom Server in C#.
A Custom Server can be similarly implemented in Visual Basic.

This tutorial refers to Microsoft Visual Studio 2008. However, you can use other supported versions of
Visual Studio to build the Custom Server as described in this tutorial.

Note: The Microsoft Visual Studio dialog box images and the instructions in this chapter refer to
Microsoft Visual Studio 2008. If you use a different Microsoft Visual Studio version, the dialog boxes
may differ slightly in appearance and the UFT CustomServer template may be located in a slightly
different node in the tree.

This chapter includes:

• Developing a New Support Set 76

• Implementing Test Record Logic 79

• Implementing Test Run Logic 80

• Checking the TrackBarSrv.cs File 81

• Configuring and Deploying the Support Set 82

• Testing the Support Set 84

HP UFT .NET Add-in Extensibility (12.50) Page 75

Developing a New Support Set
The first step in creating support for a custom control is to create a new Custom Server project. This
project will create support for the TrackBar control.

To create a new Custom Server project:

1. Open Microsoft Visual Studio.

2. Select File > New > Project. The New Project dialog box opens.

HP UFT .NET Add-in Extensibility (12.50) Page 76

3. Specify the following settings:

l Select the Visual C# > Windows node in the Project types tree. (In Microsoft Visual Studio
versions other than 2008, the UFT CustomServer template may be located in a slightly different
node in the tree.)

l Select UFT CustomServer in the Templates pane.

l In the Name box, specify the project name UFTCustServer.

l Accept the rest of the default settings.

4. Click OK. The UFT Custom Server Settings wizard opens.

5. In the Application Settings page, specify the following settings:

l In the Server class name box, enter TrackBarSrv.

l Select the Customize Record process check box.

l Select the Customize Run process check box.

l Accept the rest of the default settings.

Developer Guide
Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.50) Page 77

6. Click Next. The XML Configuration Settings page opens.

7. In the XML Configuration Settings page, specify the following settings:

l Make sure the Auto-generate the XML configuration segment check box is selected.

l In the Customized Control type box, enter System.Windows.Forms.TrackBar.

l Accept the rest of the default settings.

Developer Guide
Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.50) Page 78

8. Click Finish. In the Class View window, you can see that the wizard created a TrackBarSrv class
derived from the CustomServerBase class and ITrackBarSrvReplay interface.

Implementing Test Record Logic
You will now implement the logic that records a SetValue(X) command when a ValueChanged event
occurs, using an event handler function.

To implement the Test Record logic:

1. In the TrackBarSrv class, locate an appropriate place to add a newmethod, OnValueChanged. For
example, you might want to add it after other event handler methods, such as OnMessage, in the
IRecord override Methods region.

2. Add the newmethod with the following signature to the TrackBarSrv class:

public void OnValueChanged(object sender, EventArgs e) { }

Note: You can add the newmethod manually or use the wizard that Visual Studio provides for
adding methods and functions to a class.

3. Add the following implementation to the function you just added (if copying and pasting, remove
the redundant line breaks):

public void OnValueChanged(object sender, EventArgs e)
{
System.Windows.Forms.TrackBar trackBar = (System.Windows.Forms.TrackBar)
sender;
// get the new value

Developer Guide
Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.50) Page 79

int newValue = trackBar.Value;
// Record SetValue command to the test
RecordFunction("SetValue", RecordingMode.RECORD_SEND_LINE, newValue);
}

4. Register the OnValueChanged event handler for the ValueChanged event, by adding the following
code to the InitEventListener method:

public override void InitEventListener()
{
Delegate e = new System.EventHandler(this.OnValueChanged);
AddHandler("ValueChanged", e);

}

Implementing Test Run Logic
You will now implement a SetValue method for the test Test Run.

To implement the Test Run logic:

1. Add the following method definition to the ITrackBarSrvReplay interface:

[ReplayInterface]
public interface ITrackBarSrvReplay
{

void SetValue(int newValue);
}

2. Add the following method implementation to the TrackBarSrv class in the Replay interface
implementation region (if copying and pasting, remove the redundant line breaks):

public void SetValue(int newValue)
{
System.Windows.Forms.TrackBar trackBar = (System.Windows.Forms.TrackBar)
SourceControl;
trackBar.Value = newValue;
}

3. Build your project.

Developer Guide
Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.50) Page 80

Checking the TrackBarSrv.cs File
Following is the full source code for the TrackBarSrv class. Check that the contents of your
TrackBarSrv.cs file is similar to the one illustrated below.

using System;
using Mercury.QTP.CustomServer;
namespace UFTCustServer
{

[ReplayInterface]
 public interface ITrackBarSrvReplay

{
 void SetValue(int newValue);
 }
 public class TrackBarSrv:
 CustomServerBase,
 ITrackBarSrvReplay

{
 public TrackBarSrv()

{
 }
 public override void InitEventListener()

{
 Delegate e = new System.EventHandler(this.OnValueChanged);
 AddHandler("ValueChanged", e);
 }
 public override void ReleaseEventListener()

{
 }
 public void OnValueChanged(object sender, EventArgs e)

{
 System.Windows.Forms.TrackBar trackBar =

(System.Windows.Forms.TrackBar)sender;
 int newValue = trackBar.Value;
 RecordFunction("SetValue",
 RecordingMode.RECORD_SEND_LINE,
 newValue);
 }
 public void SetValue(int newValue)

{
 System.Windows.Forms.TrackBar trackBar =

(System.Windows.Forms.TrackBar)SourceControl;
 trackBar.Value = newValue;
 }
 }

Developer Guide
Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.50) Page 81

}

Configuring and Deploying the Support Set
Now that you created the UFT Custom Server, you need to configure UFT to use this Custom Server
when recording and running GUI tests on the TrackBar control.

To configure UFT to use the Custom Server:

1. In the Solution Explorer window, double-click the Configuration.XML file.

The following content should be displayed:

<!-- Merge this XML content into file "<UFT installation
folder>\dat\SwfConfig.xml". -->
<Control Type="System.Windows.Forms.TrackBar">
 <CustomRecord>
 <Component>
 <Context>AUT</Context>

 <DllName>D:\Projects\UFTCustServer\Bin\UFTCustServer.dll</DllNam
e>
 <TypeName>UFTCustServer.TrackBarSrv</TypeName>
 </Component>
 </CustomRecord>
 <CustomReplay>
 <Component>

Developer Guide
Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.50) Page 82

 <Context>AUT</Context>

 <DllName>D:\Projects\UFTCustServer\Bin\UFTCustServer.dll</DllNam
e>
 <TypeName>UFTCustServer.TrackBarSrv</TypeName>
 </Component>
 </CustomReplay>
 <!--<Settings>

<Parameter Name="sample name">sample value</Parameter>
 </Settings> -->
</Control>

2. Select the <Control>...</Control> segment and select Edit > Copy from the menu.

3. Open the SwfConfig.xml file located in <UFT installation folder>\dat.

4. Paste the <Control>...</Control> segment you copied from Configuration.xml into SwfConfig.xml,
under the <Controls> tag in SwfConfig.xml. After you paste the segment, the SwfConfig.xml file
should look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Controls>
 <Control Type="System.Windows.Forms.TrackBar">
 <CustomRecord>
 <Component>
 <Context>AUT</Context>

 <DllName>D:\Projects\UFTCustServer\Bin\UFTCustServer.dll</Dl
lName>
 <TypeName>UFTCustServer.TrackBarSrv</TypeName>
 </Component>
 </CustomRecord>
 <CustomReplay>
 <Component>
 <Context>AUT</Context>

 <DllName>D:\Projects\UFTCustServer\Bin\UFTCustServer.dll</Dl
lName>
 <TypeName>UFTCustServer.TrackBarSrv</TypeName>
 </Component>
 </CustomReplay>
 </Control>
</Controls>

5. Make sure that the <DllName> elements contain the correct path to your Custom Server DLL.

6. Save the SwfConfig.xml file.

Developer Guide
Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.50) Page 83

Testing the Support Set
You can now verify that UFT records and runs GUI tests as expected on the custom TrackBar control by
testing the Custom Server.

To test the Custom Server:

1. Open UFT with the .NET Add-in loaded, and open a GUI test.

2. Start recording on a .NET application with a System.Windows.Forms.TrackBar control.

3. Click the TrackBar control. UFT should record commands such as:

SwfWindow("Form1").SwfObject("trackBar1").SetValue 2

4. Run the test. The TrackBar control should receive the correct values.

Developer Guide
Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.50) Page 84

Chapter 7: Learning to Create Support for
a Complex Custom .NET Windows Forms
Control
In this tutorial, you will learn how to build a Custom Server for controls that require more complex
implementation solutions, so that UFT can record and run operations on these controls. You will
implement the Custom Server in C#. A Custom Server can be similarly implemented in Visual Basic.

The explanations in this chapter assume that you are familiar with .NET Add-in Extensibility concepts
and already know how to implement a Custom Server.

This chapter includes:

• SandBar Toolbar Example 86

• Understanding the ToolBarSrv.cs File 91

HP UFT .NET Add-in Extensibility (12.50) Page 85

SandBar Toolbar Example
This example demonstrates how to implement .NET Add-in Extensibility for the Divelements Limited
TD.SandBar.Toolbar control.

You can view the full source code of the final ToolBarSrv.cs class implementation in "Understanding the
ToolBarSrv.cs File" on page 91.

A complete support set for the SandBar control, implemented both in C# and in Visual Basic, is located in
<UFT .NET Add-in Extensibility SDK installation folder>\samples\WinFormsExtSample. You can use
the files in this sample as an additional reference when performing this tutorial. For more information,
see "Using the .NET Add-in Extensibility Samples" on page 63.

Tip: You can download an evaluation copy of the TD.SandBar.Toolbar control from:
http://www.divil.co.uk/net/download.aspx?product=2&license=5.

The Toolbar control appears as follows:

The Toolbar control is comprised of a variety of objects, such as:

l ButtonItem objects, which represent buttons in the toolbar. ButtonItem objects contain images and
no text. Each ButtonItem object has a unique tooltip.

l DropDownMenuItem objects, which represent drop-down menus in the toolbar.

Both the ButtonItem object and the DropDownMenuItem object are derived from the ToolbarItemBase
object.

When you implement a Custom Server for a custom control, you want UFT to support recording and
running the user's actions on the custom controls. When recording the test, your Custom Server listens
to the control's events and handles the events to perform certain actions to add steps to the UFT GUI
test. When running the test, you simulate (replay) the same actions the user performed on that control.

For example, suppose you want to implement a user pressing a button on a custom toolbar. Before
doing so, you must understand the toolbar control, its properties and methods, and understand how you
can use them to implement the Custom Server.

Developer Guide
Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.50) Page 86

http://www.divil.co.uk/net/download.aspx?product=2& license=5

Following are some of the SandBar ToolBar object's properties and events (methods are not visible in
this image) as displayed in the Object Browser in Visual Studio:

As you can see in the image above, the ToolBar object has a property called Items that retrieves the
collection of ToolbarItemBase objects assigned to the ToolBar control. You can also see that the
ToolBar control has an event called ButtonClick. Your Custom Server can listen to the ButtonClick
event to know when a button in the toolbar is clicked. However, this event does not indicate which
specific button in the toolbar is clicked.

Developer Guide
Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.50) Page 87

Now expand the ButtonItem object and review its properties, methods, and events:

As shown in the image above, the ButtonItem object is derived from the ToolbarItemBase object. You
can see that the ToolbarItemBase object contains a ToolTipText property, but does not contain a Click
event or method.

When you look at the custom toolbar object, the following possible implementation issues arise:

1. When handling a ButtonClick event during recording, how can you tell which
button in the toolbar was clicked?

Developer Guide
Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.50) Page 88

Solution: All of the ToolBar object's events are ToolBarItemEventArgs events that are derived
from the EventArgs object:

The Item property indicates which toolbar item (button) raised the event. You can use that toolbar
item's unique ToolTipText property to recognize which button was clicked and add that to the UFT
GUI test.

To do this, enter the following code in the Record events handlers section of the ToolBarSrv.cs
file:

#region Record events handlers
private void oControl_ButtonClick(object sender,
TD.SandBar.ToolBarItemEventArgs e)
{
 TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;
 // Add a step in the test for the test object with the
 // ClickButton method and the tooltip text as an argument
 base.RecordFunction("ClickButton", RecordingMode.RECORD_SEND_LINE,
e.Item.ToolTipText);
}
#endregion

Now, each time you record a click on a button in the toolbar, a step is added to the test for the
toolbar test object with the ClickButtonmethod and the tooltip text of the button as its argument.
For example:

SwfToolbar("MySandBar").ClickButton "Spelling and Grammar"

Developer Guide
Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.50) Page 89

2. When running a test, how do you perform a ClickButton method, when the
ButtonItem object does not contain a Click method or event, and you know only
the ButtonItem object's tooltip text?

Solution: The ToolbarItemBase object has a property called ButtonBounds:

You can loop through all of the ToolbarItemBase objects until you find a ToolbarItemBase objects
that has the same tooltip text as the ButtonItem object, find that ToolbarItemBase object's
rectangle boundaries, calculate the middle of its boundaries, and click that point.

To do this, enter the following code in the Replay interface implementation section of the
ToolBarSrv.cs file:

#region Replay interface implementation
public void ClickButton(string text)
{
TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;
 //Find the correct item in the toolbar according to
 // its tooltip text.
 for(int i=0; i<oControl.Items.Count; i++)

{
 //Found the correct ButtonItem
 if(oControl.Items[i].ToolTipText == text)

{
 //Retrieve the rectangle of the button's boundaries
 // and locate its center
 System.Drawing.Rectangle oRect = oControl.Items[i].ButtonBounds;
 int x = oRect.X + oRect.Width/2;

Developer Guide
Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.50) Page 90

 int y = oRect.Y + oRect.Height/2;
 //Click the middle of the button item
 base.MouseClick(x, y, MOUSE_BUTTON.LEFT_MOUSE_BUTTON);
 break;
 }
 }
 //Add the step to the report
 base.ReplayReportStep("ClickButton", EventStatus.EVENTSTATUS_GENERAL,
text);
}
#endregion

Understanding the ToolBarSrv.cs File
Following is the full source code for the ToolBarSrv.cs class, used to implement UFT record and run
support for the TD.SandBar.Toolbar control:

using System;
using Mercury.QTP.CustomServer;
//using TD.SandBar;

namespace ToolBar
{

[ReplayInterface]
public interface IToolBarSrvReplay
{

void ClickButton(string text);
}
/// <summary>
/// Summary description for ToolBarSrv.
/// </summary>
public class ToolBarSrv:

CustomServerBase,
IToolBarSrvReplay

{
// You shouldn't call Base class methods/properties at the constructor
// since its services are not initialized yet.
public ToolBarSrv()
{

//
// TODO: Add constructor logic here
//

}
#region IRecord override Methods
#region Wizard generated sample code (commented)
/// <summary>
/// To change Window messages filter, implement this method.
/// The default implementation is to get only the control's
/// Windows messages.
/// </summary>

Developer Guide
Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.50) Page 91

public override WND_MsgFilter GetWndMessageFilter()
{

return(WND_MsgFilter.WND_MSGS);
}

/*
/// <summary>
/// To catch Windows messages, you should implement this method.
/// Note that this method is called only if the CustomServer is running
/// under UFT process.
/// </summary>
public override RecordStatus OnMessage(ref Message tMsg)
{

// TODO: Add OnMessage implementation.
return RecordStatus.RECORD_HANDLED;

}
*/
#endregion

/// <summary>
/// If you are extending the Record process, you should add your event
/// handlers to listen to the control's events.
/// </summary>
public override void InitEventListener()
{

TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;
oControl.ButtonClick += new
TD.SandBar.ToolBar.ButtonClickEventHandler(oControl_ButtonClick);
//AddHandler("ButtonClick", new
//TD.SandBar.ToolBar.ButtonClickEventHandler(oControl_ButtonClick));

}

/// <summary>
/// At the end of the Record process, this method is called by UFT to
/// release all the handlers the user added in the InitEventListener method.
/// Note that handlers added via UFT methods are released by
/// the UFT infrastructure.
/// </summary>
public override void ReleaseEventListener()
{

TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;
oControl.ButtonClick -= new
TD.SandBar.ToolBar.ButtonClickEventHandler(oControl_ButtonClick);

}
#endregion

#region Record events handlers
private void oControl_ButtonClick(object sender,

TD.SandBar.ToolBarItemEventArgs e)
{

TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;
// Add a step in the test for the test object with the ClickButton method
// and the tooltip text as an argument
base.RecordFunction("ClickButton",

RecordingMode.RECORD_SEND_LINE, e.Item.ToolTipText);
}
#endregion
#region Replay interface implementation

Developer Guide
Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.50) Page 92

public void ClickButton(string text)
{
TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;
//Find the correct item in the toolbar according to its tooltip text.
for(int i=0; i<oControl.Items.Count; i++)
{

//Found the correct ButtonItem
if(oControl.Items[i].ToolTipText == text)
{
// Retrieve the rectangle of the button's boundaries and
// locate its center
System.Drawing.Rectangle oRect=oControl.Items[i].ButtonBounds;
int x = oRect.X + oRect.Width/2;
int y = oRect.Y + oRect.Height/2;
//Click the middle of the button item
base.MouseClick(x, y, MOUSE_BUTTON.LEFT_MOUSE_BUTTON);
break;
}

}
//Add the step to the report
base.ReplayReportStep("ClickButton",

EventStatus.EVENTSTATUS_GENERAL, text);
}
#endregion

}
}

Developer Guide
Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.50) Page 93

Send Us Feedback
Can we make this Developer Guide better?

Tell us how: sw-doc@hp.com

HP UFT .NET Add-in Extensibility (12.50) Page 94

mailto:sw-doc@hp.com?subject=Feedback on Developer Guide (UFT .NET Add-in Extensibility 12.50)

	Welcome to HP UFT .NET Add-in Extensibility
	About the UFT .NET Add-in Extensibility SDK
	About the UFT .NET Add-in Extensibility Developer Guide
	Who Should Read This Guide
	Additional Online Resources

	Chapter 1: Introducing UFT .NET Add-in Extensibility
	About UFT .NET Add-in Extensibility
	Deciding When to Use .NET Add-in Extensibility
	Recognizing Which Elements of UFT Support Can Be Customized
	Example: Customizing Recording of an Event's Meaningful Behaviors
	Understanding How to Implement .NET Add-in Extensibility
	Planning the .NET Add-in Extensibility Support Set
	Developing the .NET Add-in Extensibility Support Set
	Deploying the .NET Add-in Extensibility Support Set
	Testing the .NET Add-in Extensibility Support Set

	Chapter 2: Installing the HP UFT .NET Add-in Extensibility SDK
	Before You Install
	Installing the HP UFT .NET Add-in Extensibility SDK
	Repairing the HP UFT .NET Add-in Extensibility SDK Installation
	Uninstalling the HP UFT .NET Add-in Extensibility SDK

	Chapter 3: Planning Your Support Set
	About Planning UFT GUI Testing Support for Your .NET Add-in Extensibility Con...
	Determining Information Related to Your Custom Controls
	Analyzing the Custom Controls

	Selecting the Coding Option for Implementing the Custom Servers
	.NET DLL: Full Program Development Environment
	XML Implementation

	Selecting the Custom Server Run-Time Context Depending on the Test Function
	Analyzing Custom Controls and Mapping Them to Test Objects
	Using the .NET Add-in Extensibility Planning Checklist
	.NET Add-in Extensibility Planning Checklist

	Where Do You Go from Here?

	Chapter 4: Developing Your Support Set
	Understanding the Development Workflow
	Describing the Test Object Model
	Benefits of Describing Test Object Models
	Creating Test Object Configuration Files
	Understanding the Contents of the Test Object Configuration File
	Modifying an Existing Test Object Class
	Make Sure that Test Object Configuration File Information Matches Custom Serv...
	Implementing More Than One Test Object Configuration File
	Understanding How UFT Merges Test Object Configuration Files

	Example of a Test Object Configuration File

	Mapping Custom Controls to Test Object Classes
	Defining How UFT Operates on the Custom Controls
	Using a .NET DLL to Extend Support for a Custom Control
	Setting up the .NET Project
	Implementing Test Record for a Custom Control Using a .NET DLL
	Implementing Test Run for a Custom Control Using the .NET DLL
	Implementing Support for Table Checkpoints and Output Values in the .NET DLL ...
	Running Code under Application Under Test from the UFT Context
	Reviewing Commonly-used API Calls

	Using XML Files to Extend Support for a Custom Control
	Understanding Control Definition Files
	An Example of a Control Definition File

	Using the .NET Add-in Extensibility Samples
	Troubleshooting and Limitations - Running the Support You Designed

	Chapter 5: Configuring and Deploying the Support Set
	Understanding the Deployment Workflow
	Configuring UFT to Use the Custom Server
	Understanding How to Configure UFT Windows Forms Extensibility
	Copying Configuration Information Generated by the UFT Custom Server Settings...

	Deploying the Custom Support Set
	Placing Files in the Correct Locations
	Modifying Deployed Support
	Removing Deployed Support

	Testing the Custom Support Set
	Testing Basic Functionality of the Support Set
	Testing Implementation

	Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control
	Developing a New Support Set
	Implementing Test Record Logic
	Implementing Test Run Logic
	Checking the TrackBarSrv.cs File

	Configuring and Deploying the Support Set
	Testing the Support Set

	Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms Control
	SandBar Toolbar Example
	Understanding the ToolBarSrv.cs File

	Send Us Feedback

