/

HPE Diagnostics

Software Version: 9.26

Java Agent Guide

Document Release Date: January 2016
Software Release Date: January 2016

Java Agent Guide

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial ltems are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notice

© Copyright 2005 - 2016 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.
UNIX® is aregistered trademark of The Open Group.

Java s aregistered trademark of Oracle and/or its affiliates.

Oracle® is aregistered trademark of Oracle and/or its affiliates.

Acknowledgements

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
This product includes software developed by the Spice Group (http://spice.codehaus.org).

For information about open source and third-party license agreements, see the Open Source and Third-Party Software License Agreements document in the Documentation
directory on the product installation media.

Documentation Updates

The title page of this document contains the following identifying information:

« Software Version number, which indicates the software version.
« Document Release Date, which changes each time the document is updated.
« Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to: https://softwaresupport.hp.com/group/softwaresupport/search-
result?keyword=.

This site requires an HP Passport account. If you do not have one, click the Create an account button on the HP Passport Sign in page.

Support

Visit the HP Software Support web site at: https://softwaresupport.hp.com
This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software Support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed to manage your
business. As a valued support customer, you can benefit by using the support web site to:

« Search for knowledge documents of interest

« Submit and track support cases and enhancement requests
« Download software patches

« Manage support contracts

« Look up HP support contacts

HPE Diagnostics (9.26) Page 2 of 305

Java Agent Guide

« Review information about available services
« Enter into discussions with other software customers
« Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP Passport ID, go to
https://softwaresupport.hp.com and click Register.

To find more information about access levels, go to: https://softwaresupport.hp.com/web/softwaresupport/access-levels

HP Software Integrations, Solutions and Best Practices

Visit the Integrations and Solutions Catalog at https:/softwaresupport.hp.com/group/softwaresupport/search-result/-facetsearch/document/KM01702710 to explore how the
products in the HP Software catalog work together, exchange information, and solve business needs.

Visit the Cross Portfolio Best Practices Library at https://hpin.hp.com/group/best-practices-hpsw to access a wide variety of best practice documents and materials.

HPE Diagnostics (9.26) Page 3 of 305

Contents

Welcome to This Guide 9
How This Guide Is Organized L 9
Diagnostics Documentation 10

Part 1: Introduction .. . 11
Chapter 1: Diagnostics Java Agent Overview 12

About the Diagnostics Java Agent ... 12
Introducing the Diagnostics Profilerfordava 12
Features and Benefits of the Diagnostics Profilerfordava 13

Part 2: Installation and Configuration ofthe Java Agent 14

Chapter 2: Preparing to Install the Diagnostics Java Agent 15
Java Agent Installation Overview 16
System Requirements for the Diagnostics JavaAgent 17

Chapter 3: Installing Java Agents . 18
Pre-installation Checklist forthe Java Agent 18
Installing and Configuring Java Agents 19
Installing the Java Agent onaz/OS Mainframeo, 33
Silent Installation of the Java Agent 34
Setting File Permissions 35
Determining the Versionof the Java Agent il 35
Configuring for Firewalls, HTTPS, and Proxies 35
Uninstalling the Java Agent 36

Chapter 4: Preparing Application Servers for Monitoring withthe JavaAgent 37
About Preparing Application Servers for Monitoring 37
Examples for Configuring Application Servers 41

Example 1: Configuring GlassFish Application Server for Monitoring ._.................... 42
Example 2: Configuring JBoss Application Server for Monitoring __....................._. 44
Example 3: Configuring Oracle Application Server for Monitoring_................ 46
Using the Diagnostics JRE Instrumenterin ManualMode 50
Example 4: Configuring SAP NetWeaver Application Server for Monitoring ._........... 51
Example 5: Configuring TIBCO ActiveMatrix BusinessWorks and Service Bus for
MO ONING . 53
Example 6: Configuring Tomcat Application Sever for Monitoring 56
Example 7: Configuring WebLogic Application Server for Monitoring ..__................. 58

HPE Diagnostics (9.26) Page 4 of 305

Java Agent Guide

Example 8: Configuring webMethods Server for Monitoring 60
Example 9: Configuring WebSphere Application Server for Monitoring .._..........._.._. 64

Verify the Application Serveris Runningthe JavaAgent 68
About the JRE Instrumenter and Different Options toInvoke 69
Other Configuration Options 78
Probe Registration Auto-Assigment 78
Configure Monitoring of Multiple Java Processes on an Application Server ___........__. 79
Adjusting the Heap Size for the Java Agent in the Application Server _................... 82
Configuring the SOAP Message Handler i, 83
Configuring the Discovery of a New J2EE Server for Cl Population ____.................. 85
Special Considerations for Applications Based on the OSGi Framework 86
Chapter 5: Configuring for Azul or Cloud Environments 87
Java Agents ON AZUL . . 87
Java Agents in Cloud Environments 88
Chapter 6: Preparing Application Servers for Client Monitoring with the JavaAgent 92
About Client MONItONNG 92
Enabling Client MoNItoring 93
Configuring and Disabling Client Monitoring 95
Manually Instrumenting HTML/JSP Pages for Client Monitoring_....................... 95
Chapter 7: Upgrading the Diagnostics JavaAgent 97
Upgrade Java Agents . 97
Upgrade Notes and Limitations ... il 99
Part 3: Advanced Java Agent Configuration and Instrumentation 101
Chapter 8: Monitoring Profiles L 102
About Monitoring Profiles 103
Understanding Types of Diagnostics Deployments 103
The Predefined Monitoring Profiles 105
Custom Monitoring Profiles 105
Applying a Specific Monitoring Profiletoa Probe 107
Overriding Settings in the Monitoring Profiles 108
Mapping Instrumentation Points to a Monitoring Profile 108
Mapping Metrics to a Monitoring Profile 109
Mapping Property Values to a Monitoring Profile 109
Chapter 9: Automatically Assigning a Probe to an Application 111
About Automatic Probe Assignment il 111
Configuring a Probe to Automatically Assign Applications _.......... 111
Configuring an Agent to Automatically Assign Applications 112
General ConfiguIration ... L 112

HPE Diagnostics (9.26) Page 5 of 305

Java Agent Guide

Chapter 10: Custom Instrumentation for Java Applications 113
About Instrumentation and Capture Points Files 113
Using Regular Expressions in Points Files 115
Coding Points in the Capture Points File 115
Defining Points With Code Snippets 122
Controlling Class Map Capture 135
Instrumentation Examples 135
Understanding the Overhead of Custom Instrumentation 148
Instrumentation Control on a PerLayerBasis 148
Instrumented Location Throughput Throttling 149
Advanced Instrumentation Examples L 150

Capturing HTTP Server Requests Based on Query Parameters _.__..................._. 152
Configuring Cross VM Correlations for New or CustomTechnologies 160
Tutorial for Configuring Cross VM Correlation for Custom Technologies 164
Maintaining Instrumentation from the Java Profiler Ul 170
Default Layers Defined for Typical Java Classes and Methods _............................. 181

Chapter 11: Advanced Java Agent and Application Server Configuration 183
Advanced Configuration OVervIeW 184
About Dynamic Configuration 184
Disabling the Java Diagnostics Profiler 185
Controlling Probe Logging oo 185
Setting the Probe’s Host Machine Name 186
Specifying a Different Probe IP AdAress oo . 187
Setting the Active Products Mode il 188
Controlling Automatic Method Trimmingonthe Agent 190
Configuring URI and Parameter Capture 191
Configuring an Agent for a Proxy Server ... 194
Time Synchronization for Probes RunningonVMware 194
Limiting Exception Tree Data 195
Diagnostics Probe Administration Page 196
Authentication and Authorization for Diagnostics Java Profilers ___._........................ 199
Configuring Collection of CPU Time Metricso, 201
Configuring Consumer IDs ... 203

AValueinthe SOAP Body 208
Configuring SOAP Fault Payload Data 211
Configuring REST SeIVICES 212
Customizing Grouping JMS Temporary Queue/TOPICS i i, 212
Configuring SQL Query Parsing 212
Capturing SQL Parametersl 213

HPE Diagnostics (9.26) Page 6 of 305

Java Agent Guide

Configuring Display of Application Name for ServerRequests_._..................... 214
Maintaining Probe Settings from the Java Profiler Ul 215
Generating Performance Reports for JUnit Tests 219
Chapter 12: Java Agent Metrics Collectors i, 222
About Metrics Capture 222
What Metrics are Being Collected by the JavaAgent 223
Understanding Metric Collector Entries 223
About Collecting Additional Probe Metrics 225
Modifying Probe Metrics Already Being Captured 225
Stopping Capture of a MetriC 225
Using Customized metrics.config Files for Multiple JVM Applications on a System ____._. 226
Chapter 13: Java Agent - System Metrics Capture 227
About System Metrics ... 227
System Metrics Captured by Default 227
Configuring the System Metrics Collector 228
Capturing Additional Custom System Metrics 229
Capturing Custom System Metrics on Windows Hosts 229
Capturing Custom System Metrics on Solaris Hosts 232
Capturing Custom System Metrics on Linux Hosts 232
Enabling z/OS System Metrics Capture 234
Chapter 14: Java Agent - JIMX Metrics Capture 236
About JMX MetriCs il 236
About Configuring JMX Metric Collectors 237
Additional Custom JMX Metrics 237
Getting a List of Available JMX or WebSphere PMI Metrics_........................... 237
Creating New JMX or WebSphere PMI Metrics Entries _.............. 239
Part 4: Using the Diagnostics ProfilerforJava 244
Chapter 15: Diagnostics ProfilerforJava 245
About the Java Diagnostics Profiler L 246
How the Java Agent Provides Data for the Java Profiler 246
Java Diagnostics Profiler Ul Navigation and Display Controls 248
Analyzing Performance Using the Call Profile Window 250
Thread Call Stack Trace Samplingl 254
Comparison of Collection Leak Pinpointingand LWMD 257
Object Lifecycle Monitoring 258
Heap Walker Memory Analysis EXecution Stepso i i, 260
Heap Walker Performance Characteristics o . 264
How to Access the Java Diagnostics Profiler 264

HPE Diagnostics (9.26) Page 7 of 305

Java Agent Guide

How to Enable LWMD for Collections Displays 265
How to Enable Allocation Capture L 266
How to Enable Object Lifecycle Monitoring L 267
How to Analyze Object Allocation 267
How to Enable Memory Analysis o oo e 268
Summary Tab DesCription .. L 270
Hotspots Tab Descriplion L 272
Metrics Tab DesCriptioN ... 274
Threads Tab DescCription 276
All Methods Tab DescCription 282
All SQL Tab DesCription 285
Collection Leaks Tab DescCription L 286
Collections Tab DesCriptioN e 288
Exceptions Tab DescCription 291
Server Requests Tab Description 293
Web Services Tab DescCription 295
Allocation/LifeCycle Analysis Tab Description 297
Memory Analysis Tab Description 299
Configuration Tab Description 301
Send Documentation Feedback 305

HPE Diagnostics (9.26) Page 8 of 305

Welcome to This Guide

Welcome to the HP Diagnostics Java Agent Guide. This guide describes how to install, configure and
use the Diagnostics Java Agent and the Diagnostics Profiler for Java.

The Diagnostics Java Agent captures events such as method invocations, collection sites, and the
beginning and end of business and server transactions.

The Diagnostics Java Agent works with other HP Software products such as LoadRunner, Business
Service Management, and Performance Center, and is an integrated part of HP Software's application
lifecycle solution which includes load testing, production monitoring, and trouble diagnosis.

The Diagnostics Profiler for Java is installed as part of the Diagnostics Java Agent. The Diagnostics
Profiler for Java provides a way for Java development teams to monitor the performance and diagnose
issues with applications in the development environment. HP Software makes this tool available at no
cost, through an easy-to-install trial software download.

How This Guide Is Organized
This guide contains the following parts:
o Part 1: "Introduction" on page 11

Provides a high level overview of the features, components, architecture, and outputs of the
Diagnostics Java Agent and the Diagnostics Profiler for Java.

« Part 2: "Installation and Configuration of the Java Agent" on page 14

Describes how to install and configure the Diagnostics Java Agent.
« Part 3: "Advanced Java Agent Configuration and Instrumentation " on page 101

Describes advanced configuration and instrumentation of the Java Agent and application server.
« Part 4: "Using the Diagnostics Profiler for Java" on page 244

Describes the Ul of the Diagnostics Java Profiler, and how to use it.

HPE Diagnostics (9.26) Page 9 of 305

Java Agent Guide
Diagnostics Documentation

Diagnostics Documentation

HP Diagnostics includes the following documentation. Unless specified otherwise, the guides are in
PDF format only and are available as downloads from the HP Software Support site (at
https://softwaresupport.hp.com).

Diagnostics User Guide and Online Help. Explains how to choose and interpret the Diagnostics
views in the Diagnostics Enterprise Ul to analyze your monitored applications. To access the online
help for Diagnostics, choose Help > Help in the Diagnostics Enterprise Ul. If Diagnostics is integrated
with another HP Software product the online help is also available through that product's Help menu.
The User Guide is a PDF version of the online help and their content is identical. The User Guide is
available from the Diagnostics online help Home page, from the Windows Start menu (Start >
Programs > HP Diagnostics Server > User Guide), or from the Diagnostics Server installation
directory.

Diagnostics Server Installation and Administration Guide. Explains how to plan a Diagnostics
deployment, and how to install and maintain a Diagnostics Server.

The following Agent guides contain content that supports agent installation, setup and configuration.

« Diagnostics Java Agent Guide. Describes how to install, configure, and use the Diagnostics
Java Agent and the Diagnostics Profiler for Java.

» Diagnostics .NET Agent Guide. Describes how to install, configure, and use the Diagnostics
.NET Agent and Diagnostics Profiler for .NET.

» Diagnostics Python Agent Guide. Describes how to install, configure, and use the Diagnostics
Python Agent. The Guide (in PDF format) is also available from the Profiler Ul help.

Diagnostics Collector Guide. Explains how to install and configure a Diagnostics Collector.

Diagnostics System Requirements and Support Matrixes Guide. Describes the system
requirements for the various Diagnostics components.

Release Notes. Provides last-minute new information and known issues about each version of
Diagnostics. The PDF file is also located in the Diagnostics installation disk root directory.

Diagnostics Data Model and Query API. Describes the Diagnostics data model and the query API
you can use to access the data. The guide is also available from the Diagnostics online help Home

page.

Diagnostics Frequently Asked Questions (FAQ). Gives answers to frequently asked questions.
The FAQ is also available from the Diagnostics online help Home page.

HPE Diagnostics (9.26) Page 10 of 305

https://softwaresupport.hp.com/

Part 1: Introduction

HPE Diagnostics (9.26) Page 11 of 305

Chapter 1: Diagnostics Java Agent Overview

This chapter introduces the Diagnostics Java Agent and the Diagnostics Java Profiler by providing a
high- level overview of features and components.

This chapter includes:
« "About the Diagnostics Java Agent" below
« "Introducing the Diagnostics Profiler for Java" below

« "Features and Benefits of the Diagnostics Profiler for Java" on the next page

About the Diagnostics Java Agent

The Diagnostics Java Agent is installed on the machine that hosts the application that you want to
monitor.

The agent captures events such as method invocations, collection sites, and the beginning and end of
business and server transactions.

The Java Agent works with many of HP Software’s Diagnostics products such as BSM, LoadRunner,
and Performance Center.

The Java Agent and the application environment must be configured to enable monitoring of your
application. Instructions for configuring the Java Agent and the application environment can be found
in:

« "Preparing Application Servers for Monitoring with the Java Agent" on page 37
« "Preparing Application Servers for Client Monitoring with the Java Agent" on page 92
o "Custom Instrumentation for Java Applications" on page 113

« "Advanced Java Agent and Application Server Configuration" on page 183

Introducing the Diagnostics Profiler for Java

The Diagnostics Java Profiler is installed as part of the Java Agent.

The Diagnostics Profiler for Java provides a way for JAVA and SAP development teams to monitor and
diagnose issues with the performance of applications in the development environment. HP Software
makes this tool available at no cost, through an easy-to-install trial software download.

The Diagnostics Profiler for Java provides a strong foundation for collaborative diagnostics because it
has been built using the same Diagnostics probe technology that is used in HP Software’s load testing
and production monitoring products. When you use the Diagnostics Java Profiler in the development

HPE Diagnostics (9.26) Page 12 of 305

Java Agent Guide
Chapter 1: Diagnostics Java Agent Overview

environment to profile applications and solve problems, you get a glimpse of the features that are
included in the Diagnostics Lifecycle Solution that enable you to solve the toughest performance
problems throughout the application’s lifecycle.

Features and Benefits of the Diagnostics Profiler for Java

The following table describes some of the features and benefits of the Diagnostics Java Agent and the

Diagnostics Profiler for Java:

Feature Description
Summary and Hotspots
Server Request Breakdown
Layer Breakdown

Slowest Roots

Top 3 Slowest Instances
VM Heap Usage

Collection Memory Leak
Diagnostics

Heap Breakdown including
Class and Size Information

SQL Diagnostics
(Slowest SQL)

Synchronization Diagnostics

Exception Diagnostics
(including exception traces
and counts)

Layered view of Portal
Transaction data

Transaction breakdown of
portal server requests and
methods

Cross Tier Transaction
Breakdown

HPE Diagnostics (9.26)

Enables you to

Identify the top performance hotspots in your applications.
Identify where time is spent in an application.

Identify the slowest J2EE layer.

Identify the slowest server request or application entry points for non-
Web-fronted applications.

Identify outliers to help diagnose intermittent problems.
Identify memory problems and garbage collection issues.

Identify the fastest growing and largest size JAVA collections,
including the caller, and the exact line number where collection was
allocated.

Identify leaking objects, object growth trends, object instance
counts, and the byte size for objects.

Identify the slowest SQL query and report query information.

Identify locks including hold times.

Identify exception counts and trace information (which often go
undetected)

Identify the layer in the J2EE stack that consumes the most time for
Portal transactions, along with the business context for the
transaction, so that end-user impact can be assessed. The
monitored layers include iVews, portal server requests, WebDynPro
and JSP DynPro applications.

Identify the worst performing server requests or methods, and the
applications and services that are being impacted

Detect problems originating from NetWeaver or ABAP platforms.

Page 13 of 305

Part 2: Installation and Configuration of the Java
Agent

HPE Diagnostics (9.26) Page 14 of 305

Chapter 2: Preparing to Install the Diagnostics Java
Agent

This chapter presents the information that you need as you prepare for the installation and configuration
of the Diagnostics Java Agent.

Note: The procedures in this chapter do not apply when installing the Java Agent in an HP
AppPulse environment. For information about HP AppPulse agent installation, see the Java Agent
Quick Start guides. These guides are available on the Diagnostics Agent Download and Setup
page in HP AppPulse.

This chapter includes:
« "Java Agent Installation Overview" on the next page

« "System Requirements for the Diagnostics Java Agent" on page 17

HPE Diagnostics (9.26) Page 15 of 305

Java Agent Guide
Chapter 2: Preparing to Install the Diagnostics Java Agent

Java Agent Installation Overview

The following is an overview of the steps involved in installing and configuring the Java Agent.
Understanding this workflow will help you plan your Java Agent installation.

Agents can optionally be auto-deployed. In that case some steps are performed automatically for you
as described below.

1. Prepare the host where the Java Agent is to be installed.

The host must contain the application server installation for the application to be monitored. The
host also must meet the system requirements listed in the next section.

2. Obtain the Java Agent installation package and install (unpack) the Java Agent.
3. Run the Java Agent Setup program.

When running the setup, you can choose to auto-deploy an agent.

For more information, see "Installing and Configuring Java Agents" on page 19.
4. Instrument the JRE used by the application server.

Diagnostics’ JRE instrumentation does not modify the installed JRE, but rather places copies of
instrumented classes under the Java Agent installation directory. Then with the proper JVM
parameters these instrumented classes will be loaded into the JVM that runs the application
server.

If you chose to auto-deploy an agent, this step is performed automatically.

This procedure varies for each type of application server. For more information, see "Preparing
Application Servers for Monitoring with the Java Agent" on page 37.

5. Configure the application server startup script.

Configure your application server JVM parameters to invoke the agent and use the instrumented
JRE when the application starts.

If you chose to auto-deploy an agent, this step is performed automatically.

This procedure varies for each type of application server. For more information, see "Preparing
Application Servers for Monitoring with the Java Agent" on page 37.

6. Restart the application server to pick up the changes to the startup script.
7. Validate the agent installation and configuration.

For more information, see "Verify the Application Server is Running the Java Agent" on page 68.

HPE Diagnostics (9.26) Page 16 of 305

Java Agent Guide
Chapter 2: Preparing to Install the Diagnostics Java Agent

System Requirements for the Diagnostics Java Agent

For details on the system configurations that are recommended for hosting the Diagnostics Java
Agent, refer to the Diagnostics System Requirements and Support Matrixes Guide located on the HP
Software Support site. Access requires an HP Passport login (register for an HP Passport).

HPE Diagnostics (9.26) Page 17 of 305

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM01715961
http://h20229.www2.hp.com/passport-registration.html

Chapter 3: Installing Java Agents

This chapter describes how to install a Java Agent and give you information about the setup and
configuration of the Java Agent

Note: The procedures in this chapter do not apply when installing the Java Agent in an HP
AppPulse environment. For information about HP AppPulse agent installation, see the Java Agent
Quick Start guides on the Diagnostics Agent Download and Setup page in HP AppPulse.

This chapter includes:
« "Pre-installation Checklist for the Java Agent" below
« "Installing and Configuring Java Agents" on the next page
« "Installing the Java Agent on a z/OS Mainframe" on page 33
« "Silent Installation of the Java Agent" on page 34
« "Setting File Permissions" on page 35
« "Determining the Version of the Java Agent" on page 35
« "Configuring for Firewalls, HTTPS, and Proxies" on page 35

« "Uninstalling the Java Agent" on page 36

Pre-installation Checklist for the Java Agent

The following list is provided to help you gather the information that you will need during the installation
of the Java Agent.

« Determine which mode the agent needs to operate in—it can only operate in one mode at a time. The
deployment scenario of your Diagnostics installation determines the mode that you specify. The
mode affects the licensing impact of the agent as well as the default configuration of the agent. The
modes are as follows:

m Diagnostics Profiler mode. Provides access to raw metric data on the agent host directly,
without it being processed. The agent instance does not connect to a Diagnostics Server.

m Diagnostics Mode for LoadRunner/Performance Center. The agent is used with a

Diagnostics Server in aload testing (or pre-production) environment where probes are used only
in LoadRunner or Performance Center runs.

HPE Diagnostics (9.26) Page 18 of 305

Java Agent Guide
Chapter 3: Installing Java Agents

m Enterprise Mode. Agent sends collected metrics to an on-premise Diagnostics Server, an HP
Software-as-a-Service (SaaS) Diagnostics Server, and/or a TransactionVision Processing
Server.

You can rerun the Agent setup to change the mode of an existing agent installation.

« Forall modes, the agent must be installed on the machine hosting the application that you want to
monitor. The Agent cannot monitor an application remotely.

« Forall modes, determine the location of the application server startup script.

« Forall modes, make sure the host meets the recommended system requirements. For details, refer
to the Diagnostics System Requirements and Support Matrixes Guide located on the HP Software
Support site. Access requires an HP Passport login (register for an HP Passport).

« Foragents installed in Enterprise Mode, you need the server connection details. For Diagnostics
Servers, this is the fully-qualified host name (FQDN) or IP address of the host of the mediator
server to which the probe sends the collected data. Your deployment may require that multiple
probes send data to the same mediator. Your deployment may have no mediator servers in which
case the collected data is sent to the commander server. If the server is configured to use a port
other than the default port, you need the port number.

You can obtain the server host FQDN and port from the Diagnostics System Administrator.

For HP Software-as-a-Service (SaaS)-hosted servers, obtain the server connection details from
your SaaS administrator.

For TransactionVision Processing Servers, you need the connection information as described in the
HP TransactionVision Deployment Guide .

« Foragents installed in Enterprise Mode or Diagnostics Mode for Load Runner/Performance Center,
you need an agent naming strategy. Each agent instance in the deployment environment is
represented in the same, shared Diagnostics Enterprise Ul. Agent names must be unique and clear
so that users can distinguish between the different applications and types of probes among all in the
deployment environment.

« Foragents installed in Enterprise Mode or Diagnostics Mode for Load Runner/Performance Center,
determine which agents belong in which agent groups. Probe groups are optional, logical groupings
of probes.

« Forall modes, if there is a pre-existing installation of the Java Agent on the host machine and you
want to retain its configuration, follow the procedure in "Upgrading the Diagnostics Java Agent" on
page 97.

Installing and Configuring Java Agents

The installation and configuration of the Java Agent includes the following steps:

"Step 1: Obtain the Installation Package" on the next page

HPE Diagnostics (9.26) Page 19 of 305

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM01715961
http://h20229.www2.hp.com/passport-registration.html

Java Agent Guide
Chapter 3: Installing Java Agents

"Step 2: Start the Agent Setup" on the next page

"Step 3: Specify the Agent Mode" on page 22

"Step 4: Specify Agent Name, Group, and Auto-deployment" on page 24
"Step 5: Specify Diagnostics Server Information” on page 26

"Step 6: Specify RUM Integration Settings" on page 29

"Step 7: Specify TransactionVision Information" on page 30

"Step 8: Review Post Setup Summary" on page 31

"Step 9: Verify Connectivity from the Agent to the Diagnostics Server" on page 32

Step 1: Obtain the Installation Package

1. Copy the Java Agent installation package to the target host. You typically obtain the package from
one of the following locations:

m The HP Diagnostics release media.
m The HP Software Support site.

m The Downloads page in BSM; select Admin > Platform Administration > Setup and
Maintenance > Category > Diagnostics.

The package name indicates the platform on which it can be run:

On this platform: Use this package:
Windows HPDiagTVJavaAgt_<release number>.zip
z/0S HPDiagTVJavaAgt_<release number>_zos.tgz

All other platforms, including AIX, HPDiagTVJavaAgt_<release number>.zip
HP-UX, Linux, or Solaris or
HPDiagTVJavaAgt_<release number>.tgz

2. Extract all contents of the installation package to a directory on the target host.

If you are extracting the .tgz package for Linux/Unix systems, use the following command to
extract the files with their permissions: tar -pxvzf HPDiagTVJavaAgt <release number>.tgz.

Note: On AlX or HP-UX systems, you must use the GNU version of tar, or install from the zip
version of the package.

Caution: Do not extract the zip contents to a temp directory.

HPE Diagnostics (9.26) Page 20 of 305

Java Agent Guide
Chapter 3: Installing Java Agents

Within the extracted files you see the JavaAgent/DiagnosticsAgent/ directory. This location is
hereafter referred to as <agent_install_directory>.

Step 2: Start the Agent Setup

Running the Agent Setup does not require root or administrative privileges.

If you plan to auto-deploy the agent, the user running the Agent Setup must have permission to modify
the application server startup script and permission to write files in the application server bin directory.

On AlX, HP-UX, Linux, or Solaris, the user that installs the Java Agent ideally is the same user that
installed the application server. The reason is that write access to the <agent_install_directory>/log
directory is required by application server. See "Setting File Permissions" on page 35.

Run the setup command appropriate for your platform. You can run the Agent Setup in graphical or
console mode.

Graphical mode on Windows:

<agent_install_directory>\setup.cmd
Graphical mode on AlX, HP-UX, Linux, or Solaris:

export DISPLAY=<hostname>:0.0

<agent_install directory>/setup.sh

The "xhost +" command must have been executed on the host where the installation is to be displayed
(the <hostname> used in the export command).

Console mode on Windows:

<agent_install directory>\setup.cmd -console

Console mode on AIX, HP-UX, Linux, or Solaris:

<agent_install directory>/setup.sh -console

For running the setup on z/OS, see "Installing the Java Agent on a z/OS Mainframe" on page 33.

HPE Diagnostics (9.26) Page 21 of 305

Java Agent Guide
Chapter 3: Installing Java Agents

Step 3: Specify the Agent Mode

& HP Diagnostics{Transaction¥is o] A
D |

Select the Agent Configuration Options

) Diagnostics Profiler Mode

_ Diagnostics Mode for Load Runner/Performance Center {AD License)

@ Enterprise Mode (AM License)

Diagnostics

[] Diagnostics with SaaS-hosted mediator {installed on HP premise)
Diagnostics with RUM Client Monitor

[] TransactionVision

Hotes:

The Agent configured as the Diagnostics profiler works as a standalone diagnostics tool. The Agent configured to
waork with a server can work along with other agents and other HP Soflware products to provide performance
diagnostics and transaction tracing throughout your application environment. TransactionVision cannot be

selected when Diagnostics is setup with a Saas hosted mediator.

Select the mode appropriate for the agent:

» Diagnostics Profiler Mode. Configure the agent as a Diagnostics Java Profiler. The Diagnostics
Java Profiler does not connect to a Diagnostics server and is accessed through its own user
interface. Diagnostics Profiler mode is typically used when installing the Diagnostics Java Profiler
trial software prior to purchasing the HP Diagnostics product.

When you select Diagnostics Profiler Mode there are no other configuration options. Select Finish
to complete the configuration and skip to "Step 8: Review Post Setup Summary" on page 31.

HPE Diagnostics (9.26) Page 22 of 305

Java Agent Guide
Chapter 3: Installing Java Agents

« Diagnostics Mode for LoadRunner/Performance Center (AD License). Configure the agent for
use with a Diagnostics Server in a load testing (or pre-production) environment where probes are
used only in LoadRunner or Performance Center runs.

The agent will be configured in AD license mode which means the agent will only be counted
against your HP Diagnostics AD license capacity when the agent is in a LoadRunner or
Performance Center testing run. See "Licensing HP Diagnostics" in HP Diagnostics Server
Installation and Administration Guide for more information on AD license capacity.

« Enterprise Mode (AM License). Configure the agent to send collected data to one of the following:

Diagnostics. The agent will connect to a Diagnostics Server that is installed locally, in your
deployment environment.

Diagnostics with SaaS-hosted mediator. The agent will connect to a Diagnostics Server that
is hosted on an HP SaaS system on-premise at HP.

Diagnostics with RUM Client Monitor. The agent will connect to a Diagnostics Server
according to the selected mode (Diagnostics or Diagnostics with SaaS-hosted mediator)
and enables the integration between Diagnostics and Real User Monitor (RUM). For details on
the integration, refer to the RUM Client Monitor-Diagnostics Integration Guide located on the HP
Software Support site. Access requires an HP Passport login (register for an HP Passport).

Note: This option is only available when installing the Java Agent on Windows, using
setup.cmd in the graphical mode.

TransactionVision. The agent will connect to a TransactionVision Processing Server that is
installed in your deployment environment.

Both Diagnostics and TransactionVision. The agent will connect both to a TransactionVision
Processing Server and a Diagnostics Server in your deployment environment.

For those agents with Enterprise mode set, the agent will be counted against your HP Diagnostics
AM license capacity.

In AD mode the agent will ONLY capture data during a LoadRunner or Performance Center run and the
results will be stored in a specific Diagnostics database for that run, for example, Default Client:21.
When the agent is in AD mode it will NOT send any data to the server unless the probe is part of a
LoadRunner/Performance Center run.

The advantage of running a probe in AD mode is that probes in AD mode are only counted against
license capacity if they are in a LoadRunner or Performance Center test run. For example if 20 probes
are installed in LoadRunner/Performance Center AD mode but only have 5 are in a run at any one time
then you would only need an AD license capacity of 5 probes.

In console mode enter an X to select the mode for installation.

Click Next (in console mode Enter) to continue to the next step.

HPE Diagnostics (9.26) Page 23 of 305

http://h20229.www2.hp.com/passport-registration.html

Java Agent Guide
Chapter 3: Installing Java Agents

Step 4: Specify Agent Name, Group, and Auto-deployment

This step is skipped if the agent configuration specified in the previous step is Diagnostics Profiler
Mode.

Assign a name to the Java Agent and specify the group to which it belongs. For agents that will monitor
Tomcat, JBoss, or WebSphere application servers, you can optionally choose to auto-deploy the
agent.

—
]
2

HP Diagnostics/Transaction¥ision Agent

0]

Identify the Agent
Identify the Agent
Agent Name: IWL10_MedRec_ovrserver130] |
Agent Group: |Defau|t |

Identify the Application Server to Monitor

Application Server Home Directory (Tomcat, JBoss and WebSphere only)

| -]

HNotes:

The Agent Mame is used to uniquely identify each Agent. The Agent Group is a logical collection of agents
reporting to a Diagnostics Server. The Agent Group name is case sensitive.

Ifthe Application Server Home Directory is specified, the Setup program will modify the application server startup
script to enable the Diagnostics Java Agent. This feature is supported on Tomecat, JBoss and WebSphere servers
only.

o |

|Tue Nov 25 15:40:32 I5T 2014: You are at dialog 2 of 3

Agent Name. Enter a name that uniquely identifies the agent within the Diagnostics Enterprise
User Interface. You can use -, _and all alphanumeric characters in the name. The agent name is
assigned as the default probe entity name. When assigning a name to an agent, choose a name that
will help you recognize the application being monitored and the system the agent is installed on (for
example if installing on the system ovrserver130 with a WebLogic application server you could use
the agent name WL10_MedRec_ovrserver130).

Diagnostics does not support localization of agent names.

HPE Diagnostics (9.26) Page 24 of 305

Java Agent Guide
Chapter 3: Installing Java Agents

If you have a single agent installed on a system and plan to monitor multiple application servers you
specify unique probe names and parameters in the application server startup script. See "Configure
Monitoring of Multiple Java Processes on an Application Server" on page 79.

« Agent Group. Enter a name for an existing group or a new group to be created. The agent group
name is case-sensitive. The agent group name is used as the probe group name.

Probe groups are logical groupings of probes. The performance metrics for a probe group are
aggregated and can be displayed on many of the Diagnostics views. For example, you can assign
all of the probes for a particular enterprise application to a probe group so that you can monitor both
the performance at the group level and the performance based on individual probe entities.

« Application Server Home Directory. Enter or browse to select the home directory for the Tomcat,
JBoss, or WebSphere application server to be monitored. For example, C:\JBossAll\jboss-as-web-
7.0.2.Final for JBoss, or <C:\Program Files\IBM\WebSphere\AppServer> for WebSphere.

Note:

m For application servers that are not Tomcat, JBoss, or WebSphere, leave this field empty
and refer to "Examples for Configuring Application Servers " on page 41.

= You can auto-deploy the agent for Tomcat application servers that have a startup script (that
is, applications that run as a process) as well as for Tomcat applications that run as a
Windows service. For Tomcat applications that run as a Windows service, note:

o The startup script is also changed.

o Only those services whose catalina.home property points to the location of the relevant
startup script are changed.

o Auto-deploying Tomcat as a Windows service causes the JRE Instrumenter to runin
Automatic Explicit Mode. For details, see "Using the JRE Instrumenter in Automatic
Explicit Mode" on page 71.

o For details on how to manually configure a Tomcat application as a Windows service,
refer to "To configure a Tomcat server without a startup script" in "Example
6: Configuring Tomcat Application Sever for Monitoring" on page 56.

The Setup program modifies the startup script (for Tomcat and JBoss), or the xml file (for
WebSphere), for the application server so that the application server runs enabled for monitoring by
the Java agent the next time it is started. The original, initial version of the modified file is saved as
a backup in the same location. The file is named as follows: HPbackup_year_month_day__
originalFileName. For example, HPbackup_2013_10_15_domain.bat.

HPE Diagnostics (9.26) Page 25 of 305

Java Agent Guide
Chapter 3: Installing Java Agents

File Modified by the Setup Backup File

For Tomcat: <TOMCAT_HOME>/bin//HPbackup_
<date>_catalinacatalina.[bat|sh]
<TOMCAT_HOME>/bin/catalina.[bat|sh]

For JBoss Version 7.x, Wildfly 8: <JBOSS HOME>\bin\HPbackup_<date>

domain.[bat|sh]
<JBOSS_HOME>/bin/domain.[bat|sh]

For JBoss Version 7.x, Wildfly 8: <JBOSS_HOME>\bin\HPbackup_<date>
standalone.[bat|sh]
<JBOSS_HOME>/bin/standalone.[bat|sh]

For JBoss Version 6.x: <JBOSS HOME>/bin/HPbackup_<date>

run.bat
<JBOSS_HOME>/bin/run.[bat|sh]

For WebSphere: <WAS_HOME>/profiles/<profile_
name>/config/cells/<cell_
<WAS_HOME>/profiles/<profile_ name>/nodes/<node_
name>/config/cells/<cell_name>/nodes/<node _ name>/servers/<server_
name>/servers/<server_name>/server.xml name>/HPbackup_<date> server.xml

The Post Setup Summary dialog indicates whether the startup script has been modified
successfully.

Select Next (in console mode Enter) to continue with the next step.

Step 5: Specify Diagnostics Server Information

This step is skipped if the agent configuration selected in "Step 3: Specify the Agent Mode" on page 22
is Enterprise Mode (AM License) > TransactionVision only (that is, if no Diagnostics option is
selected).

Enter the configuration information for the Diagnostics Server and additional options.

HPE Diagnostics (9.26) Page 26 of 305

Java Agent Guide
Chapter 3: Installing Java Agents

HP Diagnostics{Transaction

Configure the Diagnostics Agent

Diagnostics Server Connectivity

Diagnostics Server: |mymachine.mycumpanv.cum |

Diagnostics Server Port: [2008 |

Additional Options

[] Tune Diagnostics Java &gent for use in an SAP NetWeaver Application Server
[| Enable yzip compression (Recommended for HP SaaS deployments)
[| Enable SSL

[]Use Proxy Server to connect to Diaghostics Server

Proxy Server Options

Proxy Server Hame:
Proxy Server Port:
Proxy Server Username {(optional):

Proxy Server Password (optional):

Local Profiler Password

Password: FrofilerFassword

Hotes:
The default server portis 2006, When S50 is enabled, the default server port or 8443, When S5L s enahled AND

the mediatoris Saas hosted, the default server portis 443,
| Finish ‘ | Cancel |

Fri 0ct 25 10:26:15 PDT 2013: This is the last dialog...please click the Finish button to save and exit

» Diagnostics Server. Enterthe host name or IP address of the host of the Diagnostics Server to
which this agent will connect. Specify the fully qualified host name rather than just the simple
host name. In a mixed OS environment, where UNIX is one of the systems, this is essential for
proper network routing.

Typically this is the Diagnostics mediator server. In environments with no Diagnostics mediator
servers, specify the Diagnostics Commander Server details here.

If this agent is being deployed for HP Software-as-a-Service (SaaS) then an HP SaaS
administrator will provide you with the information on the host name and port to use. Also note that
foran HP SaaS environment the Enable gzip option will be checked automatically for you and you
will not see the Enable SSL option because it is configured on the Diagnostics
Commander/Mediator on HP premises.

HPE Diagnostics (9.26) Page 27 of 305

Java Agent Guide
Chapter 3: Installing Java Agents

« Diagnostics Server Port. Enter the port number of the Diagnostics Server.

The default port for the Diagnostics Serveris 2006. For SSL communications with the server the
port is typically set to 8443 for a locally installed server. If the port was changed since the
Diagnostics Server was installed, specify the new port number here instead of the default.

The default port if you are installing the agent for a SaaS environment is 443 (the SaaS administrator
will provide you with details).

« Tune Diagnostics Java Agent for use in an SAP NetWeaver Application Server. Set to allow
this agent to support a SAP NetWeaver Application Server.

« Enable gzip compression. Set to compress the data between the Java Agent and the mediator.
This is a tradeoff between bandwidth and probe performance overhead.

If you are using HP Software-as-a-Service (SaaS) you typically enable gzip compression. See
your SaaS administrator for more information.

« Enable SSL. Check to instruct the agent to connect to the Diagnostics Serverin SSL mode and to
attempt to download the required certificate chain from the server. As aresult the server.properties
trusted certificate will then include the certificate. For more information on secure communications
see “Enabling HTTPS Between Components” in the HP Diagnostics Server Installation and
Administration Guide.

If you are using HP Software-as-a-Service (SaaS) this option is required.

« Use Proxy Server to connect to Diagnostics Server. Set if a proxy serveris used to
communicate with the Diagnostics Mediator Server. Enter the appropriate options.

If you are using HP Software-as-a-Service (SaaS), specify this option if your company requires a
proxy to communicate to outside servers.

Proxy Server Options:

Proxy Server Name. Host name of the proxy server.

Proxy Server Port. Port of the proxy server.

Proxy Server Username (optional). The user used to authenticate the proxy server.

Proxy Server Password (optional). The password used to authenticate the proxy server.

These options can be set or modified after the setup is run by modifying the dispatcher.properties
file on the agent system. For more information on proxy configuration see "Configuring Diagnostics

Servers and Agents for HTTP Proxy" in the HP Diagnostics Server Installation and Administration
Guide.

« Local Profiler Password. This password is used to authenticate logins (username: admin) to the

local Diagnostics Profiler, which is installed along with the agent. Enter a password and provide it to
the users that will run the Diagnostics Profiler.

HPE Diagnostics (9.26) Page 28 of 305

Java Agent Guide
Chapter 3: Installing Java Agents

In console mode interface for each option enter an X for Yes and O for No.

Select Next (in console mode Enter) to continue with the next step.

Step 6: Specify RUM Integration Settings

This step is skipped if the Diagnostics with RUM Client Monitor check box is not selected in "Step
3: Specify the Agent Mode" on page 22

Enter the configuration information for the RUM Client Monitor (Browser Probe) JavaScript snippet.

% HP Diagnostics/Transact] S

Configure RUM Client Monitor JS Snippet

RUM Client Monitor Snippet Parameters

RUM Client Monitor JavaScript file URL: | |

RUM Client Monitor Probe HTTP URL: |h1‘[p:ﬁ[RUM CM probe URL]8080/hpclientmon/data |

RUM Client Monitor Probe HTTPs URL: |h1tp5:h'[RUI'-p1 CM probe URL]:2021/hpclientmon/data |

« RUM Client Monitor JavaScript file URL. Enter the full URL path to the source file containing
the RUM Client Monitor JavaScript. The default file name is clientmon.js.

Note: Copy the RUM JavaScript (clientmon.js) from the RUM installation package. Save it on
the Web server, in the webApps directory and in the same domain as the application server.
The following is an example of the path for an application called cyclos:

HPE Diagnostics (9.26) Page 29 of 305

Java Agent Guide
Chapter 3: Installing Java Agents

C:\tomcat7\webapps\cyclos\clientmon.js

« RUM Client Monitor Probe HTTP URL. Enterthe URL of the RUM Browser Probe to which the
monitored client data is sent. The format for the URL is:
<protocol>://<host>:<port>/hpclientmon/data

RUM Client Monitor Probe HTTPS URL. Enterthe URL of the RUM Browser Probe to which
the monitored client data is sent, if using https. The format for the URL is:
<protocol>://<host>:<port>/hpclientmon/data

Select Next or Finish. Only one of these options is enabled, depending on the selections made in "Step
3: Specify the Agent Mode" on page 22

Note: For details on the RUM Client Monitor-Diagnostics integration, including how to configure
these settings manually, refer to the RUM Client Monitor-Diagnostics Integration Guide located on
the HP Software Support site. Access requires an HP Passport login (register foran HP
Passport).

Step 7: Specify TransactionVision Information

This step is skipped for all modes except EnterpriseMode (AM License)/TransactionVision.

Enter the event transport provider and specify the credentials. The event transport specifies where the
Java Agent reads configuration messages sent by the Analyzers.

See "Installing the Java Agent" in the HP TransactionVision Deployment Guide for details on these
installation options.

Setup Process Begins
The Java Agent Setup process begins. In graphical mode a progress bar indicates how the
configuration is proceeding.

If applicable, the connectivity to the Diagnostics Server is tested. If any connectivity problems are
encountered, the Set Up Program displays the results of the connectivity check.

Continue with the next step.

HPE Diagnostics (9.26) Page 30 of 305

http://h20229.www2.hp.com/passport-registration.html

Java Agent Guide
Chapter 3: Installing Java Agents

Step 8: Review Post Setup Summary

Review the Post Setup Summary.

% HP Diagnostics Post Setup Summary
Setup Validation Aissessment

=10l %]

Enterprize Mode (AN License) selected. .

Success (hitp://mymachine mycompany.com:2006/) Diagnestics Server connectivity validation

What to Do Next?

The application server startup script must be modified to run the JRE instrumenter and imvoke the agent.

These steps are application-server dependent. See the Diagnostics Java Agent Guide for guidelines and examples for your application server.
Client Monitoring

Remember to deploy HPDiagCM.war to your application server to activate Client Monitoring.

See the Diagnostics Java Agent Guide for more details.

If you chose to auto-deploy the agent, the summary includes the name of the modified application
server startup script:

% HP Diagnostics Post Setup Summary ISI=] E3
Setup Validation Assessment

Erterprize Mode (AN License) selected. .

The following script has been modified to enable Diagnostics Java Probe
D2 JBossAlljboss-as-web-7.0.2 Final'bin'domain bat

Success (hitp//mymachme mycompany.com 2000/) Diagnostcs server connectivity validation

What to Do Next?

The application server startup script must be modified to run the JRE instrumenter and invoke the agent.

These steps are application-server dependent. See the Diagnostics Java Agent Guide for guidelines and examples for your application server.
Client Monitoring

Remember to deploy HPDiagCM.war to your application server to activate Client Monitoring.
See the Diagnostics Java Agent Guide for more details.

HPE Diagnostics (9.26) Page 31 of 305

Java Agent Guide
Chapter 3: Installing Java Agents

If no errors are reported, the agent has been configured successfully. If errors are reported, check the
following:

« Whether the specified Diagnostics Server host name and port are correct. If a proxy server was
specified, verify that the proxy host name and port are correct

« Whether the Diagnostics Server is started. See "Starting and Stopping Diagnostics Servers" in the
HP Diagnostics Server Installation and Administration Guide.

« Whether network problems are affecting the general connectivity between the server host and the
agent host, or between the proxy host and the agent host. For example, use the ping utility.

« If errors are related to the auto-deployment of the agent on JBoss, Tomcat, or WebSphere, make
sure the user running the Agent Setup has permission to modify the application startup script or xml
file and write files in that directory. Also check the following log file: <agent_install_
directory>/bin/setupModule.log.

« If errors are related to monitoring profiles, check the relevant file or property and correct as
necessary.

Note: You can run the monitoring profile checking tool manually at any time from a command
line, using the command : <agent_install directory>\bin\validator.cmd all for
Windows, or <agent_install directory>/bin/validator.sh all for Linux and Unix.

Click OK.

Step 9: Verify Connectivity from the Agent to the Diagnostics Server

Optionally, to verify the Java Agent configuration and connectivity with the Diagnostics Server, you
can run the following test scrip at any time:

« <agent_install_dir>\bin\runTestProbe.cmd on Windows
« <agent_install_dir>/bin/runTestProbe.sh on UNIX and Linux

This script runs a test probe that attempts to connect to the Diagnostics Server. The script displays log
messages that indicate success or why the test probe is failing to connect. The failure messages can
help you identify why the probe for your monitored application is not connecting to the Diagnostics
Server.

Press CTRL-C to stop the test script.

The next step is to instrument the JRE and configure the application startup script to run the agent with
the application server to be monitored. The way that you do this depends on whether the agent is being
auto-deployed, as follows:

« If you specified the auto-deployment of the agent on JBoss, Tomcat, or WebSphere, the startup
scripts or xml file have been modified as described in "Step 4: Specify Agent Name, Group, and

HPE Diagnostics (9.26) Page 32 of 305

Java Agent Guide
Chapter 3: Installing Java Agents

Auto-deployment" on page 24. Simply restart the application server to pick up the changes.

« Otherwise, you need to instrument the JRE and modify the application server startup scripts to
configure the application server to run with the agent. Follow the instructions in "Preparing
Application Servers for Monitoring with the Java Agent" on page 37.

For more information on client monitoring see "Preparing Application Servers for Client Monitoring with
the Java Agent" on page 92.

Installing the Java Agent on a z/0S Mainframe

This section provides instructions for installing the Java Agent from the .tgz file that is included on the
Diagnostics installation disk.

Consider the following before you install a Java Agent and configure it to be a Java Agent in a z/OS
environment:

« The Diagnostics Java Agent is installed in and makes extensive use of the Unix System Services
environment (USS) on z/OS.

« Wheninstalled in a z/OS environment, the Java Agent expects the Diagnostics property files to be
in EBCDIC format rather than in ASCII. Use an EBCDIC editor to update the property files and
store the updates in that same format.

« System metrics are not captured for z/OS. The Diagnostics Java Agent can be configured to
capture a limited number of system level metrics.

For more information on capturing system metrics in z/OS, see "Enabling z/OS System Metrics
Capture" on page 234.

Installing the Java Agent on z/0S from the Diagnostics Installation
Disk

A .tgz file containing the Java Agent files is included on the Diagnostics installation disk and is used to
install the Java Agent on a z/OS mainframe.

To install the Java Agent on a z/OS mainframe:

1. Upload HPDiagTVJavaAgt_<release number>_zos.tgz from the Diagnostics_Installers folder
on the Diagnostics Enterprise User Interface installation disk to the directory on the z/OS system
where you wish to unzip the installer.

2. Unzip HPDiagTVJavaAgt_<release nhumber>_zos.tgz using gzip as shown in the following
example:

gzip -d HPDiagTVJavaAgt <release>_zos.tgz

HPE Diagnostics (9.26) Page 33 of 305

Java Agent Guide
Chapter 3: Installing Java Agents

This command creates the unzipped file, HPDiagTVJavaAgt_<release number>_zos.tar.
3. Tounpack the .tarfile, run the tar command as shown in the following example:

tar -xfp HPDiagTVJavaAgt_ <release>_ zos.tar

This command creates the unpacked directory, JavaAgent.

4. Ensure that you have a Java executable on your path, and then run the Java Agent Setup to
configure the Java Agent as a Profiler only or as a Java Agent to work with a Diagnostics Server
and/or a TransactionVision Processing Server. Refer to "Installing and Configuring Java Agents”
on page 19 for details. For example (or as appropriate for your shell):

setenv PATH /u/Java6_31/36.0/bin:/bin
And then:
<agent_install dir>/setup.sh

5. Afteryouinstall the agent and run the Setup you must then instrument the JRE used by the
application server and configure your application server JVM parameters to invoke the Java Agent
see "Preparing Application Servers for Monitoring with the Java Agent" on page 37

6. Verify the agent installation as described in "Verify the Application Server is Running the Java
Agent" on page 68.

7. Complete post installation configuration as required. See "Advanced Java Agent Configuration
and Instrumentation " on page 101.

Installing Java Agents on Multiple z/0S Machines

If you plan to install Java Agents on more than one z/OS machine, you might want to create a pax
archive of the agent implementation on the first machine and then use the pax archive to install the
agent onto the other machines. Contact your system administrator for more information.

Silent Installation of the Java Agent

This section describes how to install the Java Agent in multiple locations using the same configuration
files.

To install multiple Java Agents using a single set of configuration files:

1. Install the Java Agent temporarily, as described in "Installing and Configuring Java Agents" on
page 19.

2. Foreach location in which you want to install the Java Agent:

HPE Diagnostics (9.26) Page 34 of 305

Java Agent Guide
Chapter 3: Installing Java Agents

a. Extract all contents of the Java Agent installation package to a directory on the target host.
For details, see "Step 1: Obtain the Installation Package" on page 20.

b. Overwrite the contents of the Java Agent etc folder with the contents of the etc folder of the
temporary installation created in step 1 above.

c. Update the id property in the etc\probe.properties file with the id of Java probe you are
configuring.

d. Instrument the JRE and configure the application startup script to run the agent with the
application server to be monitored as described in "Step 9: Verify Connectivity from the Agent
to the Diagnostics Server" on page 32.

Setting File Permissions

This procedure is relevant for AIX, HP-UX, Linux, or Solaris installations only.

After installing the Java Agent, make the agent’s 'group’ the same as the application server’s ‘group’.
Then assign the following permissions to files in the <probe install directory> for the group:

« Read access to the <agent_install_directory> directory and files.
« Execute access to the <agent_install_directory>/bin directory.

« Read/Write access to the <agent_install_directory>/log directory.

Determining the Version of the Java Agent

When you request support, it is useful to know the version of the Diagnostics component you have a
question about.

You can find the version of the Java Agent in one of the following ways:

« Inthe file <agent_install_directory>\version.txt. The file contains the version number, as well as
the build number.

« Inthe probe log file <agent_install_directory>/log/<probe_id>/probe.log.

« Foragents in Enterprise mode, in the System Health view of the Diagnostics Ul.

Configuring for Firewalls, HTTPS, and Proxies

The Java Agent requires additional configuration if it is being deployed into an Enterprise Diagnostics
environment that includes firewalls, SSL-enabled communications, and proxies. This configuration is
described in the HP Diagnostics Server Installation and Administration Guide. See the following
sections in that guide:

HPE Diagnostics (9.26) Page 35 of 305

Java Agent Guide
Chapter 3: Installing Java Agents

« “Configuring Diagnostics Servers and Agents for HTTP Proxy”
« "Configuring Diagnostics to Work in a Firewall Environment"

» "Enabling HTTPS Between Components"

Uninstalling the Java Agent

To uninstall the Java Agent:
1. Stop the application server that is being monitored by the Java probe.

2. Restore the original application server startup script or remove any modifications that were made
to the script to enable monitoring, for example on JBoss you would remove the following:

Configuring HP Diagnostics Java Agent
AGENT_HOME=<agent_install dir>
PROBE_ID=<probe_id>

PROBE_OPTS="$PROBE_OPTS -
Djboss.modules.system.pkgs=org.jboss.byteman,com.mercury.opal”
JAVA_OPTS="$JAVA_OPTS $PROBE_OPTS"

If the agent was auto-deployed, restore the backup copy of the script. See "Step 4: Specify Agent
Name, Group, and Auto-deployment" on page 24.

3. Delete the entire <agent_install_directory> directory.

HPE Diagnostics (9.26) Page 36 of 305

Chapter 4: Preparing Application Servers for
Monitoring with the Java Agent

This chapter describes how to prepare your application servers to allow the HP Diagnostics Java Agent
to monitor your applications.

This chapter includes:
« "About Preparing Application Servers for Monitoring" below
« "Examples for Configuring Application Servers " on page 41
« "Verify the Application Server is Running the Java Agent" on page 68
« "About the JRE Instrumenter and Different Options to Invoke" on page 69

« "Other Configuration Options" on page 78

About Preparing Application Servers for Monitoring

After the Diagnostics Java Agent is installed and configured, the application server must be prepared
(instrumented) to allow the Java Agent to monitor the applications. This preparation usually involves
instrumenting the JRE used by the application servers and configuring the application server
JVM parameters to invoke the Java Agent.

Diagnostics’ JRE instrumentation does not modify the installed JRE, but rather places copies of
instrumented classes under the Java Agent installation directory. Then with the proper JVM parameters
these instrumented classes will be loaded into the JVM that runs your application server. The
instrumentation is done using the Diagnostics JRE Instrumenter utility which can be invoked
automatically using various options or manually.

There are two-levels of instrumentation:
« Basic instrumentation.

By adding the Java Agent to your application server start up, your application server will be
instrumented and monitored. This is done by adding the -javaagent option to your application server
JVM parameters.

« Recommended instrumentation.

In addition to the basic instrumentation, we recommend that you also instrument the JRE (Java
Runtime Environment) used by your application server using the JRE Instrumenter utility provided
by the Java Agent. This extra instrumentation will enable the Java Agent to provide advanced
features such as the patent-pending Collection Leak Pinpointing (CLP). CLP automatically detects
leaking collections and provides a stack trace of where the leak occurs. This helps identify issues

HPE Diagnostics (9.26) Page 37 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

early, while there is time to mitigate the issue (such as an eventual out of memory error/server
crash), as well as saves developers time by avoiding the tedious task of analyzing heap dumps
(see "Configuring Collection Leak Pinpointing" on page 145). And this extra instrumentation also
has performance benefits on certain application servers such as WebSphere 6.1.

Note: If you chose to auto-deploy the application server during agent setup, you do not need to
perform this procedure. Restart the application server to pick up the changes.

For general instructions on using the different JRE instrumentation modes see "About the JRE
Instrumenter and Different Options to Invoke" on page 69.

To continue, find your application server in the next section and follow the instructions for instrumenting
and configuring.

Specifying Probe Properties as Java System Properties

The configuration of the Java Agent is managed by property settings in several property and
configuration files. You can view and modify these files in <agent_install_directory>/etc/. Property
settings can also be specified as Java system properties on the startup command line for the
application server, where they configure only that instance of the probe. These system properties can
be specified in the following ways:

« "Specified individually on the command line" below
« "Grouped in afile that is specified on the command line" on page 40
« "Macros for probe and host naming" on page 40

Specified individually on the command line

Except for those defined in the dynamic.properties property file, all probe properties can be specified
as Java System properties on the startup command line for the application server.

When the application starts, properties specified in the startup command line override properties with
the same name in the corresponding property file. If you make a change to the dynamic property
settings while an application is running, these changes will override the command-line specification.

Specifying probe properties on the application startup command line is useful when there is more than
one JVM being monitored by a single agent installation. Each probe can specify its own configuration
as a delta to the shared agent configuration and property files.

To specify a property as a Java System property, add -D to the first part of the module name or
properties file name, for example -Dprobe or -Ddispatcher. See the following examples.

« Forthe property webserver.jetty.port, from the startup command, add -D before the module name
(probewebserver) as follows:

HPE Diagnostics (9.26) Page 38 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

-Dprobewebserver. jetty.port=SomePortNumber

Note: The webserver property is different from other properties as you need to use the module
name (probewebserver), not the property file name.

« Toset theid property in probe.properties from the startup command, add -D before probe in the
property file name, and add the name of the property you are specifying (id) as follows:

-Dprobe.id=SomeId

« Toset the active.products property in probe.properties from the startup command, add -D before
probe in the property file name, and add the name of the property you are specifying
(active.products), as follows:

-Dprobe.active.products=Enterprise, TV

« Toset the registrar.url property in dispatcher.properties from the startup command, add -D
before dispatcher in the property file name, and add the name of the property you are specifying
(registrar.url), as follows:

-Ddispatcher.registrar.url=http:/host.company.com:2006/registrar

« To set the minimum.sql.latency property in dispatcher.properties from the startup command,
specify a value as follows:

-Ddispatcher.minimum.sql.latency=3s

Because this property is dynamic, you can override the above specification by modify the setting in
the following file:
<agent_install_directory>/etc/dispatcher.properties

Example

If an SQL statement takes less than this amount of time, it will
not be trended, until it does exceed this time.

(This property can be dynamically changed)

minimum.sql.latency = 1s

In this case, the setting is restored to its default value of 1 second.

HPE Diagnostics (9.26) Page 39 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Grouped in a file that is specified on the command line

As an alternative to specifying individual probe properties on the startup command line for the
application server, you can group several property settings together in a file and specify the file as a
Java System property on the startup command line for the application server.

Just as with the command-line specification, any properties specified in the file override those of the
same names in the corresponding property files when the application starts. However when using the
file method, you can include properties from the dynamic.properties property file. However, unlike
when specifying individual probe properties on the command line, all properties are overridden
unconditionally. Any changes to dynamic settings that occur once the application is running do not
override their specification in the file.

Using a file to specify a number of probe properties is helpful when you have many properties to
specify, or the property settings require unusual syntax which is easier to maintain in afile.

To specify afile that contains property settings on the application server startup command line, specify
- Ddiag.config.override=<my_prop_settings>

where <my_property_settings> specifies the file with your settings that you have created and placed in
<agent_install_ directory>/etc/overrides. The file must contain the .settings suffix.

For example:

-Ddiag.config.override=WebSphereProbe24

This directs the probe to read the file: <agent_install_directory>/etc/overrides/
WebSphereProbe24.settings file. This file contains any settings that you want to override at startup,
for example:

probe.id=SomeId

probe.active.products=Enterprise, TV
dispatcher.registrar.url=http:/host.company.com:2006/registrar
dispatcher.minimum.sql.latency=3s

dynamic.stack.trace.sampling.rate=30ms
Macros for probe and host naming

Probe name, host name and IP address can be specified by using macros. The macros pull values from
system properties or environment variables and use the values to build the name or IP address at
runtime.

Macros for probe and host naming are useful in cloud environments.
Where macros Macros can be specified for any of the following properties:
can be specified
 probe.id

« dispatcher.probe.host.ip_address.override

« dispatcher.probe.host.name.override

HPE Diagnostics (9.26) Page 40 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Macro format You specify a macro in either of the following formats:
${key}
or
${key:subkey}
where:

key is a system property or environment variable. The value of the system
property or the environment variable is used as the macro value.

subkey is specific field of the key value. The key value must be ina JSON
map form.

Examples For example, assume <agent_install_directorydir>etc/probe.properties
contains the following entry:
id = ${PARAMETERS:username}-${PARAMETERS:port} foo
If the PARAMETERS environment variable has a value of:
{"username":"joe","user_id":1003,"port":3003}

Then the id property a evaluates to:

id = joe-3003_foo

Examples for Configuring Application Servers

This section provides examples of how to configure various commonly used application servers for
monitoring. See the section "About the JRE Instrumenter and Different Options to Invoke" on page 69
for a description of the different ways you can invoke the JRE Instrumenter.

Note:

« Make sure that you understand the structure of the startup scripts, how the property values are
set, and the use of environment variables before you make any application server configuration
changes. Always create a backup copy of any file that you plan to update before making the
changes.

« ForJBoss, Tomcat, and WebSphere application servers, we recommend that you use the
auto-deploy option. For details, see "Step 4: Specify Agent Name, Group, and Auto-
deployment" on page 24.

"Example 1: Configuring GlassFish Application Server for Monitoring" on the next page
"Example 2: Configuring JBoss Application Server for Monitoring" on page 44

"Example 3: Configuring Oracle Application Server for Monitoring" on page 46

HPE Diagnostics (9.26) Page 41 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

"Example 4: Configuring SAP NetWeaver Application Server for Monitoring" on page 51

"Example 5: Configuring TIBCO ActiveMatrix BusinessWorks and Service Bus for Monitoring" on page

53

"Example 6: Configuring Tomcat Application Sever for Monitoring" on page 56

"Example 7: Configuring WebLogic Application Server for Monitoring" on page 58

"Example 8: Configuring webMethods Server for Monitoring" on page 60

"Example 9: Configuring WebSphere Application Server for Monitoring" on page 64

The long lines in the script examples shown in this chapter do not have line breaks, which makes them
hard to read. However this allows you to copy and paste the text directly from the manual (when
viewing online) and into your editor without extraneous formatting characters.

Use quotes if there are spaces in the files paths that you specify.

Example 1: Configuring GlassFish Application Server for Monitoring

The following are the instructions for a generic GlassFish 3.x or 4.x application server implementation.
Your site administrator should be able to use these instructions to guide you in making the changes that
are appropriate to your specific environment.

Note: GlassFish requires additional, special settings to work properly with the agent.

Locate the property org.osgi.framework.bootdelegation in the GlassFish configuration files and
append the text ",com.mercury.opal.capture.proxy" to the end of the property value (do not
include the quotes).

In GlassFish 3.1.2 and later, this property is located in <GlassFish_install_
dir>/glassfish/config/osgi.properties.

In an earlier version of GlassFish, this property may reside in the following two files:

< GlassFish_install_dir >/osgi/equinox/configuration/config.ini

< GlassFish_install_dir >/osgi/felix/conf/config.properties

You may also need to disable the Monitoring Service on GlassFish to avoid a conflict with the
Diagnostics monitoring. Go to Configurations > {config_name} > Monitoring and uncheck the
Enabled checkbox of the Monitoring Service option.

1.

Locate the GlassFish JVM configuration settings by logging in to the GlassFish Administration
Console and navigating to the JVM Options page.

For GlassFish 3.1.2 and later, in the left-hand tree go to Configurations > {config_name} > JVM
Settings, where {config_name} is the name of your server configuration (such as, server-config).

HPE Diagnostics (9.26) Page 42 of 305

Java Agent Guide

Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

If you are working with an earlier version of GlassFish, click Application Server in the left-hand
tree and then select the JVM Settings tab at the top.

Then select the JVM Options tab. See the screenshot below as a reference.

User: admin

Cornmon Tasks

@ Comain
@ server (Admin Server)
g8 Clustars
E Standalone Instances
I[: HTTP Load Balancers
* B Modes
[] Applications
% Lifecycle Modules
[Monitoring Data
* @ Resources
/@] Performance Tuner
¥ [@ Configurations
* B default-config

¥ [g:| serer-config

goer settings

M Web Container -
| | &

Domain: domain

Server: localhost

General | Path Settings |@ Upﬂ®
JVM Options

Manage JWM options for the server. “alues containing one or more spaces must
be enclosed in double quotes (Mvalve sting™)

Profiler |

Configuration Hame: server-config

S (G -

Value

-javaagent:C:/lavadgent/lib/probeagent. jar

-#bootclasspath/p: C:A)avadgent/classes/auto/MyServerfinstr jre
-Dprobe.id=MyServer

-Djava. awt headless=trus

-Djava. securty. policy=%com.sun. aas.instanceRoot config/sener. palicy

-Difelix.filein stall disableConfigSave=false

a 0000 nn

-Dosgi.shell telnet. maxconn=1

4] |

- |

HPE Diagnostics (9.26)

2. Using the Add JVM Option button, add the following JVM parameters, one at a time. For <agent_
install_dir> use the full path to where you installed the agent. On Windows, use forward slashes (/)

instead of backward slashes (\). For <probe_id> use a name you’'ve chosen for the probe, such as
MyServer.

-javaagent:<agent_install_dir>/1ib/probeagent.jar
-Xbootclasspath/p:<agent_install_dir>/classes/auto/<probe_id>/instr.jre
-Dprobe.id=<probe_id>

Note: In case of cluster setup, suffix the <probe_id> with a %0. For example: -
Dprobe.id=MyServer_ %0

The "%0" string will be replaced with a unique ID so that you can differentiate different probe
instances.

Restart the GlassFish application server.

Page 43 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

If the GlassFish application server does not start, you can check and change the JVM parameters
in the <GlassFish_install_dir>/glassfish/domains/<domain_name>/config/domain.xml file
to resolve the issue, where <domain_name> is the name of your domain (such as, domain1).

See "Verify the Application Server is Running the Java Agent" on page 68 for more information.
Note: If you update the JRE used by your application server in the future, you must delete the
<agent_install_dir>/classes/auto/<probe_id> directory so that the new JRE will be
instrumented. Otherwise, your application server may not start. . For general information on the

instrumentation mode used see "Using the JRE Instrumenter in Automatic Implicit Mode" on page
73.

Example 2: Configuring JBoss Application Server for Monitoring

The following sections provide instructions with specific examples for the JBoss application server for
a generic implementation. Your site administrator should be able to use these instructions to guide you
to make these changes in your customized environment.

If you chose to auto-deploy the application server during agent setup, you do not need to perform this
procedure. Restart the application server to pick up the changes.

Note: JBoss requires additional, special setting to work properly with the agent.

o ForJBoss 6.x, add the following JVM parameter: -
Djava.util.logging.manager=org.jboss.logmanager.LogManager

« ForJBoss 6.x EAP, 7.x, 8.x (Wildfly), add the following JVM parameter: -
Djboss.modules.system.pkgs=org.jboss.byteman,com.mercury.opal

To configure a JBoss application server:

1. Locate the startup script that is used to start JBoss for the application and locate a convenient
point in the file after all options are set but before the java command line (or code block) that starts
the application server is executed.

m On JBoss versions earlier than 7.0:
The startup script file is typically located in a path similar to the following:
<JBOSS_HOME>\bin\run.[bat|sh]

where <JBOSS_HOME?> is the path to your JBoss installation directory, such as C:\ jboss-
4.2.3.GA or C:\jboss-6.0.0.Final.

m OnJBoss 7.0 or higher:

HPE Diagnostics (9.26) Page 44 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

The startup script file is typically located in a path similar to one of the following:
<JBOSS_HOME>\bin\domain.[bat|sh]
<JBOSS_HOME>\bin\standalone.[bat|sh]

where <JBOSS_HOME?> is the path to your JBoss installation directory, such as C:\jboss-as-
7.1.0.Final.

2. Insert additional configuration lines as illustrated by the examples. In the example you should
replace <agent_install_dir> and <probe_id> with values for your environment.

Below is an example showing the modified .bat file for JBoss 6.x:

rem Setup JBoss specific properties
rem Setup the java endorsed dirs
set JBOSS_ENDORSED_DIRS=%JBOSS_HOME%\lib\endorsed

rem Configuring HP Diagnostics Java Agent

set AGENT_HOME=<agent_install dir>

set PROBE_ID=<probe_id>

"%JAVA%" -jar %AGENT_HOME%\lib\jreinstrumenter.jar -f %PROBE_ID%

set PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\%PROBE_ID%\instr.jre
set PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\lib\probeagent.jar
set PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%

rem Use the line below ONLY for JBoss 6

set PROBE_OPTS=%PROBE_OPTS% -
Djava.util.logging.manager=org.jboss.logmanager.LogManager

rem Use the line below ONLY for JBoss 7

rem set PROBE_OPTS=%PROBE_OPTS% -
Djboss.modules.system.pkgs=org.jboss.byteman,com.mercury.opal

set JAVA_OPTS=%JAVA_OPTS% %PROBE_OPTS%

Below is an example showing the modified .sh file for JBoss 7.x, 8.x (Wildfly):

if $cygwin; then
JBOSS_HOME="cygpath --path --windows "$JBOSS_HOME""
JAVA LOC="cygpath --path --windows "$JAVA LOC""
JBOSS_CLASSPATH="cygpath --path --windows "$JBOSS_CLASSPATH""
JBOSS_ENDORSED_DIRS="cygpath --path --windows "$JBOSS_ENDORSED_DIRS""
fi

Configuring HP Diagnostics Java Agent
AGENT_HOME=<agent_install dir>

PROBE_ID=<probe_id>

"$JAVA" -jar $AGENT_HOME/lib/jreinstrumenter.jar -f $PROBE_ID

HPE Diagnostics (9.26) Page 45 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

PROBE_OPTS="-Xbootclasspath/p:$AGENT_HOME/classes/$PROBE_ID/instr.jre"
PROBE_OPTS="$PROBE_OPTS -javaagent:$AGENT_HOME/lib/probeagent.jar"
PROBE_OPTS="$PROBE_OPTS -Dprobe.id=$PROBE_ID"

Use the line below ONLY for JBoss 6

PROBE_OPTS="$PROBE_OPTS -
Djava.util.logging.manager=org.jboss.logmanager.LogManager"

Use the line below ONLY for JBoss 7

PROBE_OPTS="$PROBE_OPTS -
Djboss.modules.system.pkgs=org.jboss.byteman, com.mercury.opal®

JAVA OPTS="$JAVA OPTS $PROBE_OPTS"

Display our environment
echo

JBoss Bootstrap Environment™

echo " JBOSS_HOME: $JBOSS_HOME"

Note: If your java command line does not use the JAVA_OPTS variable to define the JVM
parameters, you need to change the variable name JAVA_OPTS shown in these examples to
the correct name.

3. Save the changes to the startup script and restart the application server using the modified script.

See "Verify the Application Server is Running the Java Agent" on page 68 for more information.

Example 3: Configuring Oracle Application Server for Monitoring

This section provides instructions for configuring an Oracle 10g application server.

Note: Some of the Web Services deployed on Oracle OC4J application server, due to their non-
compliance to the JAX-WS standard, may not be recognized by Diagnostics agent. To work
around this issue you can try setting annotation.inheritance.allow=true in etc/inst.properties
on the agent system.

To configure an Oracle 10g application server:

1. Locate the Oracle Application Server JVM configuration settings by opening Oracle's Application
Server Control Console, select home (or MyOC4J) System Component, and then
Administration.

HPE Diagnostics (9.26) Page 46 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Enterprise Manager 10y

Application Server Control

Application Server: 102_w2k3.ros59631tst.ovrtest adapps.hp.com

Ganaral CPU Usage
:@ (_SjopAll | | Bestan Al
Status Up
| Host poeSS631 16t oitest sdapps hp com
Werzion 10,1202
IPEAIOT JIEE and Web Cache
Dr::pln B Application Seever (%)
Home l::".DﬂHnme_i D Il (G
@ omer (1%)
System Components

Page Refreshed Aug 7, 2007 9:37:42 AHEE;.

|_EnableDigable Compenents | | Configure Component | | Creats OCA) Indtante |

LGt Jopokoqy fraferences Help

Mamory Usage

B Appiication Serees (1 3% 26208
D Free (58% 1,18168)
[Other (20% GOIME)

IS) | Stop | Restart | | Delate 0C4J Inslance

sbect Al | Select Morg N)

Select Name Status Start Time

C £ Aug 2, 2007 10:41:38 AM
T HITP Sisrver £ Aug 2, 2007 80755 AM
I Managemand £ Aug 2, 2007 B08:17 AM

startiéd or $lopped

Related Links
* Fu Lkl * Al Metrics

| Wome [JJEE Applicatons Pods lofastmctes Backup@ecowmry

Logs | Topology | Preferences | Help

Cognright @ 1998, 2005, Ceacly. AL Fighls Federed,

& TIP This table contans only the enabled components of the application senver. Only components that have the checkbox enabled can be

CPU Usage (%) Memory Usage (M0)

016 51.13
oo 5096
il] 158 95

HPE Diagnostics (9.26)

Page 47 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

On the Administration page, select Server Properties. You'll input in JVM parameters under
Command Line Options.

Entirp risi f.immljl:l 10g
Application Server Contral Ly Topolomy Prefesnces Help

lii atign Sener 102 wiIkd T 1kt ki FRil i >
0C4J: home
Home Applications | MAdminkstration |

Fage Refreshed Aug 7, 2007 9:4238 AM |F'-j
OC4) Inheritance

0C4) applications have a hierarchical parent-child relationship to
facilitate administration ihrowgh inhertance. A child application
inhernts cefain attributes fror As parent application such as
principals and JMDI objects including dala sources, JMS provders
and EJBz, When an OC4) application is deployed, you specify the
parend application. The Default Application is the top of the parent
hierarchy.

Instance Properties
e Froge

JSP Confa ||Q.r Propgriiis
Raplication Proparties
Budvanced Propenies

Application Defaults
ata Sour
e

IS Proadirs
leibail Wik Madul

Related Links
DF SineEs Componen
Home Applications Adminkstration
Logs | Topology | Prifeences | Halp

Copyright & 1596, 2005, Oracks. Al rights réserved.

o i i i

2. Runthe Diagnostics JRE Instrumenter to instrument the JRE used by your Oracle application
server. See "Using the JRE Instrumenter in Manual Mode" below.

Copy the JVM parameters provided by this tool and paste them in the Command Line Options
"Java Options" text field found in the previous step and shown in the following figure.

Note: It is required to add a (*) prior to the /p switch or Oracle will change the (/) switch option

toa(\).

HPE Diagnostics (9.26) Page 48 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Enterprise Manager 10g
Application Server Control Loge Topolooy Fraferences Halp

gpplication Sener 103 wikd roso2631 st ovdesiadapps hpcom > QC4) home >

Server Properties
Fage Refreshed Auwg 7, 2007 §:22:45 ﬂ.h‘l@

General
Mame home
Server Root Ch0raHome_1'jZee'homeconlig
Configuration File C:\DraHome_1Y2ee‘home\config'server.xml
Dafault Application Name default
Defaull Application Path application.xml

Default Web Module Properties |gluhal-weh-appllc ation, xml

Apphcation Directory |..|fap|:|I||: ations

Deployment Diractory |..Iapplncation—daplnymants

Multiple Vi Configuration

@ TIP If OC4J is running, newly added OC4) Clusters and associated processes will be automatically staned
Clusters{QC4.J)
Cluster{0C4.)) Name Humber of Processes Related Witual Maching

[default_island " Links Metrics
B Aot Row)

Ports
@ TIP Be sure that the port ranges specified below are large enough to accommodate the total number of processes in the Clusters
(D40 table
BMI Ports [12401-12500

JMS Ports [12601-12700
AJP Ports [12501-12600
RMI-I0OP Pornts

0P Ports |
NOP S5L (Server only) |
IOP SSL (Server and Client) |

Command Line Options
Java Executable [
QC4J Options | Related Links Tracing Properies

l Java Options Ihrue -Kbaotclasspativyp: CoMercuryDiagnosticsJAVAPobe/classe

3. Apply the changes and restart the Oracle server.

See "Verify the Application Server is Running the Java Agent" on page 68 for more information.

Note: If you update the JRE used by your application server in the future (such as applying an
application server patch), you must run the JRE Instrumenter again to instrument the new JRE and
change the JVM parameters accordingly. Otherwise, your application server may not start.

HPE Diagnostics (9.26) Page 49 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Using the Diagnostics JRE Instrumenter in Manual Mode

Manually invoke the JRE Instrumenter and copy the provided JVM parameters into your application
server startup settings.

Note: If you update the JRE used by your application server in the future (such as applying an
application server patch), you must run the JRE Instrumenter again to instrument the new JRE and
change the JVM parameters accordingly. Otherwise, your application server may not start.

By default, the JRE Instrumenter uses a graphical user interface (Ul Mode). Directions to run the JRE
Instrumenter from a console window (Console Mode) follow below.

Running the JRE Instrumenter Utility in Ul Mode
1. Start the JRE Instumenter utility.
On Windows run the <agent_install_dir>\bin\jreinstrumenter.cmd command.
On UNIX or Linux run the <agent_install_dir>/bin/jreinstrumenter.sh command.

2. Click the Add JRE(s) button, navigate to a parent directory where the JRE used by your
application is stored and click Search from here. The JRE Instrumenter lists the JREs found in
the Available JREs list.

3. Select the JRE that is used by your application and then click Instrument. The JRE Instrumenter
instruments some of the classes for the selected JRE and places the instrumented classes in a
folder under the <agent_install_dir>/classes directory.

4. Click Copy Parameter to copy the JVM parameters in the box below the Available JREs list, to
the clipboard.

HPE Diagnostics (9.26) Page 50 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

| £/ HP Diagnostics JRE Instrumenter (9.25.44,1399) el 5

Available JREs

M Sun 1.5.0_22 {C:\Program Files\Java'jdk1.5.0_22Yre)
M Sun 1.6.0_35 {C:\Program Files\Java'jdk1.6.0_35Yre)

Sun 1.6.0_37 (C:'\Program Files\avaljdk 1.6.0_37\jre)
Crade 1.7.0_07 (C:\Program Files\Java'jdk1.7.0_07Yre)
QOracle 1.7.0_09 (C:\Program Files\Javatjdk1.7.0_03%re)
Sun 1.6.0_37 (C:\Program Files\Java\jrea)

QOracle 1.7.0_09 (C:\Program Files\Java'jre7)

Lize the following WM parameler(s) fo activete the Diagnostics Agent:

-Xbootclasspath/p:C:\HP\JavaAgent\classes\5un\ 1.6.0_37 \instr.jre
-javaagent:C:\HP\JavaAgent\lib\probeagent.jar

Add JRE(s) Instrument ¢ Copy Parameter |’ Uninstrument

5. Click Exit to close the JRE Instrumenter window and continue with configuring your application
server JVM parameters.

Example 4: Configuring SAP NetWeaver Application Server for
Monitoring

The following are the instructions for a generic NetWeaver application server implementation. Your site
administrator should be able to use these instructions to guide you in making the changes that are
appropriate to your specific environment.

Note: SAP NetWeaver requires additional, special settings to work properly with the agent.

Edit the <agent_install_dir>\etc\capture.properties file and assign the following values to these
properties:

event_buffer.size = 10000

event_buffer.flush.level = 1000

HPE Diagnostics (9.26) Page 51 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

To configure a SAP NetWeaver application server:

1.

Locate the NetWeaver JVM configuration settings by running the NetWeaver J2EE Engine
configuration tool. The script to run this tool is called configtool.bat and is located in the
usr\sap\CR2\JC00\j2ee\configtool directory, where CR2 is an example of the name of your SAP
system.

In the configuration tool Ul, in the left-hand tree, select the server that you want to monitor. For
example in the screenshot below, select cluster-data > instance_ID39260 > server_1D3926050.
Then, at the right-hand side select the General tab where you'll find the Java parameters text
window.

Add the following JVM options to the Java parameters text window. In the example you should
replace <agent_install_dir> and <probe_id> with values for your environment.

-javaagent:<agent_install_dir>\1lib\probeagent.jar
-Xbootclasspath/p:<agent_install_dir>\classes\auto\<probe_id>\instr.jre
-Dprobe.id=<probe_id>

Note: In a clustered environment where a single startup script is used to start multiple probed
application server instances you need to add a suffix (%0) to the parameter -
Dprobe.id=<probeName>%0. This will generate a custom probe identifier for each probe. On
Windows, use %%0 (the first % is used to escape the second %).

The following is an example screen for SAP NetWeaver versions 7.1 or earlier with the JVM
parameters highlighted.

47 SAP JZEE Engine - Config Tool

File Serer
ECCEACYEE]
= & cjuzter-data o fienera Log Configuration |
= B Global dispaicher configuration| | Eootitrt r_m I Dt l
5 gae managers : Startup Framework sattings
o 4 senvices ! : [Execute [+ Show Console
= Glohal server configuralion
B managers | Java settings
g senices : .
= g Instance_|DE3E2EN : Java Homes | _I
+ B* dizpalcher ID3926000
¥ cener IDRIEIATT> | || Maxheap size im MB): | 1024/7]
« 5§ managars :
¥ sanices ; {Java parameters:) Tavsagent CarcunOia gnosticslayaspentiDiagno shesAgenilibiproba apan iar =
Bl secine store : o tElas spathlp G ercunDiaan oSl s eniDia gnosticshgen i 2 s e autiserer_ID3IBIE0SMinsr imJ &
@& UME LDWP data : Diprobe.id=8AF _MetWeavarbd EntemrisaFonal_Cover g

Dprobe group=SaR_Growp

Diava security polic= fava.policy

Djava e Uiy egd=fle dedurandom

Doy om g CORBA OREClass=com.sap. engine syste m OREProwy
Dora.omo. CORBA ORESngletontiass=com sap. enging.system, DR ESingletonF roxy -

Clagspalh: |Jt nitipnbboot jar, hiuboobians jar, hintgeperitbdecode jar,

Paraimelers:

N
Edit alement properties

HPE Diagnostics (9.26) Page 52 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

The following is an example screen for SAP NetWeaver verison 7.3. You enter the JVM
parameters in the Custom parameters box and you must enter each parameter separately (-
javaagent, -Xbootclasspath and -Dprobe.id).

4 A5 Java - Condig Tool

File ‘Wiew Tools Help

em @z (¥

3 @ cluster-dats ‘| servers | wMEmvdronmend | WM Parameters | Instance Profile el
= a‘ termplate - Usage_Tyas All_ ¢ N

H B log configuralins Wi Paramelers

4 & applicabions Ierited Value 1

B managers :

sl senices | cusiom Value Sui

B o instance - ID55040 (calis!

B senure store [Memory | System | Aditional |
Calcudated Paramefers
Faratnater Name | Valug | Enabled |
-Diprobed=HN_7F_x_callsto_mufi_jwm_ W2 kE% %0 | ¥l
=00+ DisableEspliciEC | I I
=¥+ DumpDetailedlas s StadisticonduOfMamory]
-5+ Heag Dump OnOulCmiernoryErmor | | ||
S PANGCDetall s [
-G PHnGCTimeSiamps | | [¥]
- UgaConcMarkSwasp il [#]
Se-ShinglnlamTablalnPermiGar]
HC-TraceClassUnloading vl
-HCHeapOumpP ath QOM nprof ¥l
-ChaErrorQuauelength 00 | ¥l
=isofARef RURPalicyMSFPariB " | o]
HCSUnirR Ao ¥l -
- TarelsurikorRatio [ED [l |
-¥bootclas s pathip:CAMercuDizgnostic sl avasganiDizgnosticsApertclass e sSaF. | | ¥
-imvaagant.CakercunyDisgnosticsavatnenfiDiagnostics A gentllibiprabeagent jar]
werbosege 4]
' i [T x|

3. Save your changes and exit the configuration tool and restart the application server.

See "Verify the Application Server is Running the Java Agent" on page 68 for more information.

Note: If you update the JRE used by your application server in the future (such as applying an
application server patch), you must delete the <agent_install_dir>/classes/auto/<probe_id>
directory so that the new JRE will be instrumented. Otherwise, your application server may not
start For general information on the instrumentation mode used see "Using the JRE Instrumenter
in Automatic Implicit Mode" on page 73.

Example 5: Configuring TIBCO ActiveMatrix BusinessWorks and
Service Bus for Monitoring

The following sections describe the steps to configure TIBCO ActiveMatrix BusinessWorks and
Service Bus so that the applications can be monitored.
To configure TIBCO ActiveMatrix BusinessWorks:

Configuring a TIBCO BusinessWorks application server involves modifying its configuration files to
add JVM parameters. Below are the instructions for a generic server implementation. Your site

HPE Diagnostics (9.26) Page 53 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

administrator should be able to use these instructions to guide you in making the changes that are
appropritate to your specific environment.

1. Locate the TIBCO BusinessWorks .tra configuration files. These files are typically located in:

<tibco_home>\tra\domain\<Domain_Name>\application\<Application_
Name>\<Application_Name>.tra

2. Insert additional configuration lines as illustrated by this example. In the example you should
replace <agent_install_dir> and <probe_id> with values for your environment.

#

Other arguments to application, JVM etc.
#

tibco.env.APP_ARGS=
tibco.env.HEAP_SIZE=256M

Configuring HP Diagnostics Java Agent
tibco.env.AGENT_HOME=<agent_install_dir>

tibco.env.PROBE_ID=<probe_id>

ImxEnabled=true
tibco.env.PROBE_OPTIONS=-Xbootclasspath/p:%AGENT_HOME%/classes/auto/%PROBE_
ID%/instr.jre

tibco.env.PROBE_OPTIONS=%PROBE_OPTIONS% -javaagent:%AGENT_
HOME%/1ib/probeagent.jar

tibco.env.PROBE_OPTIONS=%PROBE_OPTIONS% -Dprobe.id=%PROBE_ID%
java.extended.properties=%PROBE_OPTIONS%

Note: If java.extended.properties already exists in the file, be sure to append the
%PROBE_OPTIONS% to the existing definition. Also do not use backslashes (\) for any
values. Instead replace them with forward slashes (/).

3. Save the changes to the startup script and restart the application using the modified script.
See "Verify the Application Server is Running the Java Agent" on page 68 for more information.

To configure TIBCO ActiveMatrix Service Bus:
Note: TIBCO ActiveMatrix Service Bus (AMSB) 3.1.2 requires additional, special settings to work
properly with the agent.

Locate the TIBCO ActiveMatrix Service Bus 3.1.2 machine.xmi file. This file is typically located in
apath such as:

<tibco_amx_configuration_dir>\data\tibcohost\<EnterpriseName_
ServerName>\tools\machinemodel\machine.xmi

Update the runtimes section of the file for each node you want to monitor. For example:

HPE Diagnostics (9.26) Page 54 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

<runtimes xsi:type="machinemodel:0SGiRuntime" name="Node1"

In the runtimes section for each node locate the frameworkProperties key
org.osgi.framework.bootdelegation and append com.mercury.* to the value of the property.

For example:

<frameworkProperties key="org.osgi.framework.bootdelegation" value="com.ibm.*,
..,sun.*,com.mercury.*"/>

1. Locate the TIBCO ActiveMatrix Service Bus .tra configuration files.
On TIBCO ActiveMatrix Service Bus (AMSB) 2.0 and 2.3 these files are typically located in:
<tibco_home>\amx\data\<Node>\<Application\bin
On TIBCO ActiveMatrix Service Bus 3.1.2 these files are typically located in:

<tibco_amx_configuration_dir>\tibcohost\<EnterpriseName_
ServerName>\nodes\<NodeName>\bin\tibamx_<NodeName>.tra

2. Insert additional configuration lines as illustrated by this example. In the example you should
replace <agent_install_dir> and <probe_id> with values for your environment.

NOTE:

There must be only one java.extended.properties in the .tra file. Append
remote

debugging extended properties here to use remote debugging for this
process.

#

Configuring HP Diagnostics Java Agent
tibco.env.AGENT_HOME=<agent_install_dir>

tibco.env.PROBE_ID=<probe_id>
tibco.env.PROBE_OPTIONS=-Xbootclasspath/p:%AGENT_HOME%/classes/auto/%PROBE_
ID%/instr.jre

tibco.env.PROBE_OPTIONS=%PROBE_OPTIONS% -javaagent:%AGENT_
HOME%/1ib/probeagent.jar

tibco.env.PROBE_OPTIONS=%PROBE_OPTIONS% -Dprobe.id=%PROBE_ID%
java.extended.properties=%PROBE_OPTIONS%

Note: If java.extended.properties already exists in the file, be sure to append the
%PROBE_OPTIONS% to the existing definition. Also do not use backslashes (\) for any
values. Instead replace them with forward slashes (/).

3. Save the changes to the startup script and restart the application using the modified script.

See "Verify the Application Server is Running the Java Agent" on page 68 for more information.

HPE Diagnostics (9.26) Page 55 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Note: If you update the JRE used by your application server in the future (such as applying an
application server patch), you must delete the <agent_install_dir>/classes/auto/<probe_id>
directory so that the new JRE will be instrumented. Otherwise, your application server may not
start. For general information on the instrumentation mode used see "Using the JRE Instrumenter
in Automatic Implicit Mode" on page 73.

Example 6: Configuring Tomcat Application Sever for Monitoring

Apache Tomcat is frequently embedded into other applications or servers. As aresult, the way to
instrument it may vary. The following sections provide instructions on how to configure a Tomcat
server in simple scenarios, but it is generic enough to guide you in your particular situation.

If you chose to auto-deploy the application server during agent setup, you do not need to perform this
procedure. Restart the application server to pick up the changes.

If your Tomcat server is started by script, follow the instructions in "To configure a Tomcat server with
a startup script:" below.

If Tomcat is installed as a Windows service or has no scripts, follow the instructions in "To configure a
Tomcat server without a startup script:" on the next page.

To configure a Tomcat server with a startup script:

1. Locate the startup script that is used to start Tomcat for the application and locate a convenient
point in the file after all options are set but before the java command line (or code block) that starts
the application server is executed.

In some scenarios, the startup script will end up calling the following script to start Tomcat:
<Tomcat_install_dir>/bin/catalina.[bat|sh]

where <Tomcat_install_dir> is the path to your Tomcat installation directory, such as
C:\apache-tomcat-7.0.8.

2. Insert additional configuration lines as illustrated by the examples below In both examples you
should replace <agent_install_dir> and <probe_id> with values for your environment.

The following is an example showing a modified catalina.bat file:

:doStart

rem Configuring HP Diagnostics Java Agent

set AGENT_HOME=<agent_install dir>

set PROBE_ID=<probe_id>

%_RUNJAVA% -jar %AGENT_HOME%\lib\jreinstrumenter.jar -f %PROBE_ID%

set PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\%PROBE_ID%\instr.jre
set PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\lib\probeagent.jar

HPE Diagnostics (9.26) Page 56 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

set PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%
set CATALINA_OPTS=%CATALINA_OPTS% %PROBE_OPTS%

The following is an example showing a modified catalina.sh file:

Configuring HP Diagnostics Java Agent

AGENT_HOME=<agent_install dir>

PROBE_ID=<probe_id>

"$ RUNJAVA" -jar $AGENT_HOME/lib/jreinstrumenter.jar -f $PROBE_ID
PROBE_OPTS="-Xbootclasspath/p:$AGENT_HOME/classes/$PROBE_ID/instr.jre"
PROBE_OPTS="$PROBE_OPTS -javaagent:$AGENT_HOME/lib/probeagent.jar"
PROBE_OPTS="$PROBE_OPTS -Dprobe.id=$PROBE_ID"

CATALINA OPTS="$CATALINA OPTS $PROBE_OPTS"

3. Save the changes to the startup script and restart the application server using the modified script.
See "Verify the Application Server is Running the Java Agent" on page 68 for more information.

To configure a Tomcat server without a startup script:

Locate the Tomcat JVM configuration settings by right-clicking on the Apache Tomcat service icon
from the Windows Task bar and then selecting Configure. Alternatively, you can navigate from the
Start menu. For example, Programs > Apache Tomcat 7.0 > Configure Tomcat.

1. Inthe Apache Tomcat Properties dialog box, select the Java tab and find the Java Options box.

2. Inthe Java Options box, add the following JVM parameters, each on its own line, replacing
<agent_install_dir> and <probe_id> with the actual values.

-javaagent:<agent_install _dir>\1lib\probeagent.jar
-Xbootclasspath/p:<agent_install_dir>\classes\auto\<probe_id>\instr.jre
-Dprobe.id=<probe_id>

3. Restart the Tomcat service.

See "Verify the Application Server is Running the Java Agent" on page 68 for more information.

Note:

« If you update the JRE used by your application server in the future (such as applying an
application server patch), you must delete the <agent_install_dir>/classes/auto/<probe_id>
directory so that the new JRE will be instrumented. Otherwise, your application server may not
start. For general information on the instrumentation mode used see "Using the JRE
Instrumenter in Automatic Implicit Mode" on page 73.

HPE Diagnostics (9.26) Page 57 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

« If you have TV enabled, and Tomcat does not start after instrumentation with next trace, check
the log files for the following error or warning:

PM org.apache.tomcat.util.digester.Digester startElement

SEVERE: Begin event threw error

java.lang.ClassFormatError: Invalid length 65517 in LocalVariableTable in
class file org/apache/catalina/connector/Response

If this error appears, modify the <JavaAgent_Home>\DiagnosticsAgent\etc\TV.properties
file as follows:
tvagent.sysprop.switch.bcel=true

Example 7: Configuring WebLogic Application Server for Monitoring

The following section provides general instructions with specific examples for the WebLogic
application server for a generic implementation. Your site administrator should be able to use these
instructions to show you how to make these changes in your customized environment.

To configure a WebLogic application server:

1. Locate the startup script used to start WebLogic for your domain and locate a convenient point in
the file after all options are set but before the java command line (or code block) that starts the
application server is executed.

The startup script file is typically located in a path similar to the following:
<DOMAIN_HOME>\bin\startWebLogic.[cmd|sh]

where <DOMAIN_HOME?> is the path to your domain directory, such as C:\bea\user_
projects\domains\<Domain_Name>; or C:\bea\wlserver_10.0\samples\domains\<Domain_
Name> where <Domain_Name> is the name of your domain.

For example, if your domain name is MedRec, the path would look like the following:

C:\bea\wlserver_10.0\samples\domains\medrec\bin\startWebLogic.cmd

2. Insert additional configuration lines as illustrated by the examples. In both examples you should
replace <agent_install_dir> and <probe_id> with values for your environment.

Below is an example showing the added lines in a .cmd file:

echo starting weblogic with Java version:

%JAVA_HOME%\bin\java %JAVA_VM% -version

HPE Diagnostics (9.26) Page 58 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

set AGENT_HOME=<agent_install_dir>

set PROBE_ID=<probe_id>

%JAVA_HOME%\bin\java -jar %AGENT_HOME%\1lib\jreinstrumenter.jar -f %PROBE_ID%
set PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\%PROBE_ID%\instr.jre
set PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\1lib\probeagent.jar

set PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%

set JAVA_OPTIONS=%JAVA_OPTIONS% %PROBE_OPTS%

if "%WLS_REDIRECT_LOG%"=="" (

echo Starting WLS with line:

echo %JAVA_HOME%\bin\java %JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS?% ..%JAVA_
HOME%\bin\java %JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS% ..

) else (

echo Redirecting output from WLS window to %WLS_REDIRECT_LOG%
%JAVA_HOME%\bin\java %JAVA VM% %MEM_ARGS% %JAVA OPTIONS% ..

)

Below is an example showing the added lines in a .sh file:

echo "starting weblogic with Java version:"
${JAVA_HOME}/bin/java ${JAVA_VM} -version

Configuring HP Diagnostics Java Agent

AGENT_HOME=<agent_install dir>

PROBE_ID=<probe_id>

${JAVA _HOME}/bin/java -jar $AGENT_HOME/lib/jreinstrumenter.jar -f $PROBE_ID
PROBE_OPTS="-Xbootclasspath/p:$AGENT_HOME/classes/$PROBE_ID/instr.jre"
PROBE_OPTS="$PROBE_OPTS -javaagent:$AGENT_HOME/lib/probeagent.jar"
PROBE_OPTS="$PROBE_OPTS -Dprobe.id=$PROBE_ID"

JAVA OPTIONS="$JAVA OPTIONS $PROBE_OPTS"

if ["${WLS_REDIRECT_LOG}" = ""] ; then

echo "Starting WLS with line:"

echo "${JAVA HOME}/bin/java ${JAVA_VM} ${MEM_ARGS} ${JAVA OPTIONS} ..
${JAVA_HOME}/bin/java ${JAVA VM} ${MEM_ARGS} ${JAVA OPTIONS} ..

else

echo "Redirecting output from WLS window to ${WLS_REDIRECT_LOG}"
${JAVA_HOME}/bin/java ${JAVA VM} ${MEM_ARGS} ${JAVA OPTIONS} ..

fi

Note: If your java command line does not use the JAVA_OPTIONS variable to define the
JVM parameters, you need to change the variable name JAVA_OPTIONS shown in these
examples to the correct name.

3. Save the changes to the startup script and restart the application server using the modified script.

HPE Diagnostics (9.26) Page 59 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

See "Verify the Application Server is Running the Java Agent" on page 68 for more information.

Example 8: Configuring webMethods Server for Monitoring

There are two types of webMethods servers discussed in this example:

« webMethods Integration Server

My webMethods Server

The following sections provide general instructions with specific examples for webMethods Integration
Server and My webMethods Server. Your site administrator should be able to use these instructions to
show you how to make these changes in your customized environment.

"To configure a webMethods Integration Server started without the configuration wrapper:" below

"To configure a webMethods Integration Server started with the configuration wrapper:" on the next
page

"To configure the My webMethods Server started without the configuration wrapper:" on page 62

"To configure the My webMethods Server started with the configuration wrapper:" on page 63

To configure a webMethods Integration Server started without the configuration wrapper:

1.

Locate the startup script used to start the webMethods Integration Server and locate a convenient
point in the file after all options are set but before the java command line (or code block) that starts
the application server is executed. There are two possible scripts based on how the serveris
started:

<software_ag_home>\IntegrationServer\bin\server.bat
<software_ag_home>\profiles\IS\bin\runtime.bat

Insert additional configuration lines as illustrated by these examples. In both examples you should
replace <agent_install_dir> and <probe_id> with values for your environment.

Below is an example showing the modified server.bat file:

if exist "%JAVA DIR%\bin\jre.exe" (

set JAVA EXEC="%JAVA DIR%\bin\jre.exe"

set JAVA_CP="%JAVA_DIR%\1lib\classes.zip;%JAVA DIR%\1ib\il8n.jar"
) else (

set JAVA_EXEC="%JAVA_DIR%\bin\java.exe"

set JAVA CP="%JAVA DIR%\1lib\rt.jar;%JAVA DIR%\1ib\i18n.jar"

)

HPE Diagnostics (9.26) Page 60 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

rem Configuring HP Diagnostics Java Agent

set AGENT_HOME=<agent_install dir>

set PROBE_ID=<probe_id>

"%JAVA _EXEC%" -jar %AGENT_HOME%\1lib\jreinstrumenter.jar -f %PROBE_ID%

set PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\%PROBE_ID%\instr.jre
set PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\lib\probeagent.jar

set PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%

set JAVA OPTS=%JAVA_OPTS% %PROBE_OPTS%

Below is an example showing the modified runtime.bat file:

rem Configuring HP Diagnostics Java Agent

set AGENT_HOME=<agent_install dir>

set PROBE_ID=<probe_id>

"%JAVA_RUN%" -jar %AGENT_HOME%\1lib\jreinstrumenter.jar -f %PROBE_ID%

set PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\%PROBE_ID%\instr.jre
set PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\lib\probeagent.jar

set PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%

set JAVA OPTS=%JAVA OPTS% %PROBE_OPTS%

%JAVA _RUN% -Xbootclasspath/a:"%0SGI_CLASSPATH%" %JAVA OPTS% ..
3. Save the changes to the startup script and restart the application server using the modified script.
See "Verify the Application Server is Running the Java Agent" on page 68 for more information.

To configure a webMethods Integration Server started with the configuration wrapper:

Use this method if the application server is started as a service using <software_ag_
home>\profiles\IS\bin\service.bat.

1. Locate the webMethods Integration Server custom_wrapper.conf file. This file is typically
located in:

<software_ag_home>\profiles\IS\configuration\custom_wrapper.conf.

2. Insert additional configuration lines as illustrated by this example. In the example you should
replace <agent_install_dir> and <probe_id> with values for your environment.

Add the wrapper.java.additional entry near the other wrapper.java.additional parameters, changing
number 777 as needed for your configuration.

Below is an example showing the modified custom_wrapper.conffile:

Put here your custom properties.

HPE Diagnostics (9.26) Page 61 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Configuring HP Diagnostics Java Agent
set.AGENT_HOME=<agent_install dir>

set.PROBE_ID=<probe_id>
set.PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\auto\%PROBE_
ID%\instr.jre

set.PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\1lib\probeagent.jar
set.PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%
wrapper.java.additional.777=%PROBE_OPTS%

3. Save the changes to the configuration wrapper and restart the application server using the
modified wrapper.

See "Verify the Application Server is Running the Java Agent" on page 68 for more information.

Note: If you update the JRE used by your application server when started with the configuration
wrapper in the future (such as applying an application server patch), you must delete the <agent_
install_dir>/classes/auto/<probe_id> directory so that the new JRE will be instrumented.
Otherwise, your application server may not start. For general information on the instrumentation
mode used see "Using the JRE Instrumenter in Automatic Implicit Mode" on page 73.

To configure the My webMethods Server started without the configuration wrapper:

Use this method if you start the application server by using the run command.

1. Locate the startup script used to start the My webMethods Server and locate a convenient point in
the file after all options are set but before the java command line (or code block) that starts the
application server is executed.

The script file is: <ag_software_home>\MWS\bin\mws.bat.

2. Insert additional configuration lines as illustrated by this example. In the example you should
replace <agent_install_dir> and <probe_id> with values for your environment.

The following is an example of the modified mws.bat file:

rem Configuring HP Diagnostics Java Agent

set AGENT_HOME=<agent_install dir>

set PROBE_ID=<probe_id>

"%JAVA%" -jar %AGENT_HOME%\lib\jreinstrumenter.jar -f %PROBE_ID%

set PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\%PROBE_ID%\instr.jre
set PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\lib\probeagent.jar

set PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%

set JAVA _OPTIONS=%JAVA OPTIONS% %PROBE_OPTS?%

set JAVA_OPTIONS=%JAVA_OPTIONS% -Dserver.name=%SERVER_NAME% .

HPE Diagnostics (9.26) Page 62 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

set PARAMS=
set MAIN_CLASS=com.webmethods.portal.system.PortalSystem
set RUN_CMD=%JAVA% -cp %CLASSPATH% %JAVA ARGS% %JAVA OPTIONS% ...

3. Save the changes to the startup script and restart the application server using the modified script.
See "Verify the Application Server is Running the Java Agent" on page 68 for more information.
To configure the My webMethods Server started with the configuration wrapper:
Use this method if you start the application server as a service or by using the start command.

Note: This method requires customizations to the wrapper.conf file, which which may be
overridden when the application server is upgraded or patched.

1. Locate the My webMethods Server wrapper.conf file. This file is typically located in:
<ag_software_home>\MWS\server\<server_name>\config\wrapper.conf.

2. Insert additional configuration lines as illustrated by this example. In the example you should
replace <agent_install_dir> and <probe_id> with values for your environment.

Add the wrapper.java.additional entry near the other wrapper.java.additional parameters, changing
number 777 as needed for your configuration.

Below is an example showing the modified wrapper.conf file:

Java Additional Parameters

Configuring HP Diagnostics Java Agent

set.AGENT_HOME= <agent_install dir>

set.PROBE_ID=<probe_id>
set.PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\auto\%PROBE_
ID%\instr.jre

set.PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\1lib\probeagent.jar
set.PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%
wrapper.java.additional.777=%PROBE_OPTS%

#NOTE: wrapper.java.additional.300 to 310 is reserved for debug
configuration !

3. Save the changes to the configuration wrapper and restart the application server using the
modified wrapper.

See "Verify the Application Server is Running the Java Agent" on page 68 for more information.

Note:

HPE Diagnostics (9.26) Page 63 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

« If you update the JRE used by your application server when started with the configuration
wrapper in the future (such as applying an application server patch), you must delete the
<agent_install_dir>/classes/auto/<probe_id> directory so that the new JRE will be
instrumented. Otherwise, your application server may not start. For general information on the
instrumentation mode used see "Using the JRE Instrumenter in Automatic Implicit Mode" on
page 73.

« If youhave TV enabled, edit the <JavaAgent_Home>\DiagnosticsAgent\etc\TV.properties
file as follows:
tvagent.sysprop.switch.bcel=true

And add the following line in to the
<ag_software_home>\profiles\IS\configuration\config.ini file:
org.osgi.framework.bundle.parent=app

Example 9: Configuring WebSphere Application Server for
Monitoring

Note: If you have auto-deployed the application server during the Java agent setup, further
configuration is unnecessary.

The following section provides general instructions with specific examples for the WebSphere
application server for a generic implementation. Your site administrator should be able to use these
instructions to show you how to make these changes in your customized environment.

Procedures are provided for WebSphere 6.1 or higher.

Note: Extra steps are required to enable metric collections in WebSphere. See "Configuring
WebSphere for JMX Metric Collection" on page 67.

To configure WebSphere 6.1 or higher

1. Locate the application JVM configuration settings by logging in to the WebSphere Application
Server Administrative Console. For example:

http://<App_Server Host>:9060/ibm/console

Replace <App_Server_Host> with the machine name for the application server host and 9060
with the correct administrative port number (such as 9060, 9061, and so on).

Navigate to the Java Virtual Machine page. For example:

For WebSphere 6.1, navigate to: Servers > Application servers

HPE Diagnostics (9.26) Page 64 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

For WebSphere 7.0 or higher, navigate to: Servers > Server Types > WebSphere Application
servers

Then click the application server instance name (such as server1).

Integrated Solutions Console Welcome Help | Logout
View: | All tasks = , Profile=AppsrvOl Close page
wacom Applcation servers I [TTE—
Guided Activities Field help

Bl servers

= server Typ es

(webSphere application servers]

WebSphere MQ) servers
Web servers
Applications

Services

Resources

Security

Environment

System administration
Users and Groups
Monitering and Tuning
Troubleshooting
Service integration

uDDI

Application servers
For field help informatic
select a field label or liz
marker when the help
cursor is displayed.

Use this page to view a list of the application servers in your environment and
the status of each of these servers. You can also use this page to change the
status of a specific application server.

Preferences

Page help
haad b= More information about
* this page
Name 2 | Node 3 | Host Name |Versicm o C i Assistance
¥ou can administer the following rescurces: w
scripting command for |
serverl l bsavm57MNodell | bsavm357.ovrtest.adapps.hp.com | Base action
7.0.0.15
Total 1

Then, under Server Infrastructure > Java and Process Management, click Process

Definition.

Integrated Solutions Console

View: | All tasks

Welcome
Guided Activities
B servers
B server Types
WebSphere application servers
WebSphere MG zervers
Web servers
Applications
Services
Resources
Security

Environment

HPE Diagnostics (9.26)

Welcome

Help Logout

inbound tranzports

=

SIB service
Server Infrastructure

B Java and Process
Managernent

Class loader

Process
execution

Adrninistration
Communications

Ports

Meszsaging

Page 65 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Then, under Additional Properties, click Java Virtual Machine.

Integrated Solutions Console ~ Welcome Help | Logout [

View: | All tasks Close page | o

Welcome Application servers W

Guided Activities Application servers > serverl > Process definition

Bl Servers Use this page to configure a process definition, A process definition defines the cormmand line
information necessary to start or initialize a process,

B server Types

WebSphere application servers Configuration

WebSphere MG zervers

Web servers

Applications General Properties

Services Executable name

Additional Properties

Jawa Virtual
Machine
Resources
Executable argurnents Environrment

Security l:‘ Entries

Enviranmment Process execution

System administration l:‘ Process Logs

u da Logging and
sers and Groups -

P Start cornmand tracing
Monitoring and Tuning |

2. Onthe Java Virtual Machine page, in the Generic JVM Arguments box, enter the JVM
parameters.

m For WebSphere running on IBM JRE 1.6 (WebSphere 7.0 or 8.0/ 8.5 default) enter the following
JVM parameters. In the example replace <agent_install_dir> and <probe_id> with values for
your environment.

-Xbootclasspath/p:<agent_install_dir>\classes\auto\<probe_id>\instr.jre
-javaagent:<agent_install dir>\1lib\probeagent.jar

-Xshareclasses:none

-Dprobe.id=<probe_id>

= For WebSphere running on IBM JRE 1.5 (WebSphere 6.1) or IBM JRE 1.7 (configurable on
WebSphere 8.0 or higher), you must run the Diagnostics JRE Instrumenter manually and then
insert the JVM parameters returned by the JRE instrumenter. See "Using the JRE
Instrumenter in Manual Mode " on page 73.

In addition to specifying the JVM parameters returned by JRE Instrumenter, include -
Dprobe.id=<probe_id>.

Caution: Using the wrong JVM parameters for your version of WebSphere can cause
extreme performance degradation of the monitored application. There are two categories of
WebSphere application servers listed above, each with its own method of required
instrumentation.

HPE Diagnostics (9.26) Page 66 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

3. Apply and save your changes, and restart the application server.

Integrated Solutions Console Welcome Help | Logout
Guided Activities [~ [toze | me
Bl servers

O run Hercf

B server Types
HProf Argurmnents

WebSphere application ser
WebSphere MG zervers

Web servers [pebug Made

Applications Debug arguments

Services

FlEsmIiEas Feneric WM argurnents
|-><b00tc|asspath.l"p:C:\Mercurl,lDiagnostics\JauaAgent\DiagnosticsAgent\cIasses\IBM

Security

Executable JAR file name
Environment I

System administration

[pisable)17
Users and Groups

Cperating systern name
|wind0ws

Monitoring and Tuning

Troubleshooting

Service integration Apply I OkK| | Reset Cancel

uoot] |7|

See "Verify the Application Server is Running the Java Agent" on the next page for more information.

Configuring WebSphere for JMX Metric Collection

You might need to configure the Performance Monitoring Infrastructure (PMI) service on the
WebSphere server to start receiving JMX metrics.

Note: If Diagnostics is not able to identify your application server as a WebSphere server, you
must enable PMI and add the Jar files to the server.policy file.

To configure WebSphere server for JMX metrics collection:
1. Open the WebSphere Administrative Console.

2. Inthe Console navigation tree, select Servers > Application Servers. The console displays a
table of the application servers.

3. Click the name of the application server you want to configure from the Application Servers Table.
The console displays the Runtime and the Configuration tabs for the selected application
server.

4. Click the Configuration tab.

HPE Diagnostics (9.26) Page 67 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

In the Configuration tab:
= Under the Performance heading, click Performance Monitoring Infrastructure (PMI).

= Under the General Properties heading, select the Enable Performance Monitoring
Infrastructure (PMI) check box.

= Under the Currently monitored statistic set heading select Extended.
Click Apply or OK.

If Java 2 Security is enabled on the application server, open the server policy file <WebSphere
Installation Directory>/profiles/<your_profile_name>/properties/server.policy) and add the
following security permissions to enable JMX collection. Replace <agent_install_dir> with the
value for your environment.

grant codeBase "file:/<agent_install dir>/lib/probe-jmx.jar"

{ permission java.security.AllPermission; }

grant codeBase "file:/<agent_install dir>/lib/probe-jmx-was6.jar" {
permission java.security.AllPermission;

i

Restart the application server.

Verify the Application Server is Running the Java Agent

You verify the agent is monitoring the application server after you restart the application server to pick
up the changes to the startup script.

For an agent in Diagnostics Profiler Mode:

Start the Profiler Ul and view the probe. See "How to Access the Java Diagnostics Profiler" on page

264.

For an agent reporting to an on-premise Diagnostics Server:

1.

In your browser, navigate to http://<diagnostics_server_host>:2006, or select Start >
Programs > HP Diagnostics Server > Administration.

Port number 2006 is the default port for the Diagnostics Commander Server. If the Diagnostics
Server was installed and configured to use an alternate port, specify that port number in the URL.

Log in. Obtain the login credentials from the Diagnostics Administrator. The default user/password
of admin/admin may work.

In the navigation pane of the Diagnostics Applications window, double-click Entire Enterprise.
The Diagnostics views open.

4. Open the Application Servers view group, and select Java Probes.

HPE Diagnostics (9.26) Page 68 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

You can also check the System Health view to find information about the Java agent deployments and
the machines that host them. See "System Views" in the HP Diagnostics User Guide.

For an agent reporting to a Saas-hosted Diagnostics Server:
Contact your SaaS system administrator.

Troubleshooting:

« You can also check for entries in the <agent_install_directory>\log\<probe_id>\probe.log file. If
there are no entries in the file, you did not instrument the JRE or did not enter the Java parameter
such as Xbootclasspath correctly. In the probe.log file look for errors and look for an entry that
says "Successfully downloaded first command" which indicates that the communication between
the probe and the server has been established.

« Toverify that the Java Agent is connected to the Diagnostics Server, direct your browser to the
host running the application, using port 35000. For example:

http://agentsystem.mycompany.com: 35000

A page showing the probe status at the bottom is displayed:

ﬁ Open Diagnostics Profiler {Open in This Window)

Advanced Options

Diagnostics Probe registration status: OK

HP Diagnostics J2EE Probe "TestProbe-0", version 9.24
Diagnostics Server communication status: Ok

& Copyright 2004-2014 Hewlett-Packard Development Company, L.P.

About the JRE Instrumenter and Different Options to
Invoke

The JRE Instrumenter is a utility to instrument a JRE so that the Java Agent can provide advanced
features such as the patent-pending Collection Leak Pinpointing (CLP). It does not modify the installed
JRE in any way, but rather places copies of instrumented classes somewhere under the <JavaAgent_
install_dir>/DiagnosticsAgent/classes directory. You can use the JRE Instrumenter to instrument
multiple JREs if they are installed on your system.

The JRE Instrumenter instruments some standard Java classes used by the application server JVM
and applications running on it. It also provides you with the JVM parameters that must be used when
the application server is started so that the application server uses the instrumented classes.

HPE Diagnostics (9.26) Page 69 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

With different command-line options, the JRE Instrumenter can be invoked and used in three different
ways, each of which has its own advantages and limitations. You will use one of these methods
according to the characteristics of your application servers (see "Examples for Configuring Application
Servers " on page 41 for examples).

« Automatic Explicit Mode. If your application server is or can be started by a script, it is
recommended that you use this mode. To use this mode, you add a line to your application server
startup script to explicitly and non-interactively run the JRE Instrumenter to instrument the JRE.
Your script will continue to start the application server JVM (with additional parameters) using the
freshly instrumented JRE. See "Using the JRE Instrumenter in Automatic Explicit Mode" on the
next page.

« Automatic Implicit Mode. With this mode, you do not need to explicitly run the JRE Instrumenter
— you only need to modify your application server JVM parameters to invoke the Java Agent and
ask it to run the JRE Instrumenter as needed. When the Java Agent is used for the first time, it
implicitly runs the JRE Instrumenter to instrument the JRE. However, the first time this
instrumented JRE will not be used; your application server will be using an uninstrumented JRE.
The next time your application server is started, it will use the instrumented JRE. Therefore, if you
want to use the full monitoring features of the Java Agent, you need to restart your application
server twice after you enable the Java Agent. See "Using the JRE Instrumenter in Automatic
Implicit Mode" on page 73.

« Manual Mode. With this mode, you need to manually and interactively run the JRE Instrumenter,
either at the end of the Java Agent installation or at a later time, to instrument the JRE. You then
modify your application server JVM parameters according to the parameters provided by the JRE
Instrumenter. This method is how the JRE Instrumenter works in earlier versions of HP
Diagnostics. See "Using the JRE Instrumenter in Manual Mode " on page 73.

If your JRE is updated (such as, applying an application server patch) or if you update the Java Agent,
you may need to instrument the JRE again. This issue will be discussed in each mode.

Below is a table that summarizes the requirements of each of the four different methods of doing
instrumentation:

Recommended Instrumentation (Using
the JRE Instrumenter)

In

Basic In Automatic Automatic

Instrumen- Explicit Implicit In Manual

tation Mode Mode Mode
Minimum required JRE version 1.5 1.5 1.5 1.5
Requires the application server being No Yes No No
started by a script
Requires knowing where the JREis No No No Yes
installed

HPE Diagnostics (9.26) Page 70 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Requires manually running the JRE No No No Yes
Instrumenter
Requires knowing where the JVM Yes* Yes* Yes* Yes*

parameters can be configured

Requires restarting the application Yes, once Yes,onceor | Yes, twice Yes, once
server after enabling Java Agent twice

Requires maintenance after JRE No No Yes Yes
upgrade/patch

* If you cannot find where the JRE invocation parameters can be defined, you may still have the option
of using an environment variable such as JAVA_OPTIONS to do that.

Using the JRE Instrumenter in Automatic Explicit Mode

Using the JRE Instrumenter in the Automatic Explicit Mode is recommended when an application
server is started by a script, such as WeblLogic and JBoss application servers. It is also recommended
for WebSphere application servers if they are, or can be, started by a script - this is the case for most
platforms except z/OS. It is also recommended for Tomcat if it is not installed as a Windows service
(when Tomcat as a Windows service has been auto-deployed, the JRE Instrumenter runs in Automatic
Explicit Mode by default).

To use Automatic Explicit mode, you need to accomplish two tasks:

« Modify your application server startup script to run the JRE Instrumenter using the same JRE used
by your application server. The output from the JRE Instrumenter will give you the JVM parameters
you will need in the next task.

« Configure your application server JVM parameters found in the output from the JRE Instrumenter.

Note: Make sure you understand the structure of the startup script, how the property values are
set, and how to use environment variables before you make any configuration changes. Always
create a backup copy of any file you plan to modify before making the changes.

In modifying the application server startup script, you first need to identify the line (or lines) in which the
JRE is invoked to start the application server JVM. Then, right above this line, you add a line like the
following to invoke the JRE Instrumenter using the same JRE used by your application server:

<java_command> -jar <agent_install_directory>/lib/jreinstrumenter.jar -f
<pathname>

The <java_command> must be exactly the same java command that is used to start your application
server JVM, since it is the JRE that is instrumented by the JRE Instrumenter. You can usually get this
java command by copying the beginning portion of the line that starts your application server JVM.

Below is a table showing the java command used by the original startup script of some commonly used
application servers. (Note that this table is provided as helpful tips only; your application server startup
script may use a different java command.)

HPE Diagnostics (9.26) Page 71 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Windows Command Scripts (.bat

Application Server Shell Scripts (.sh) or .cmd)

JBoss "$JAVA" "%JAVA%"

Tomcat ${ RUNJAVA} %_RUNJAVA%.
WebLogic ${JAVA_HOME}/bin/java %JAVA_HOME%\bin\java
WebSphere ${UAVA_EXE} %JAVA_EXE%

The <agent_install_directory> indicates the directory where the Java Agent is installed.

The <pathname> must be relative. The JRE Instrumenter will put the instrumented classes in the
<agent_install_directory>/classes/<pathname>/instr.jre directory. If you run multiple application
servers with Diagnostics, you should give each application server a unique <pathname> (such as the
probe name) so that the multiple instances of the JRE Instrumenter do not interfere each other. See
also "Configure Monitoring of Multiple Java Processes on an Application Server" on page 79 for details.

After you add the line as described above to the startup script, every time you start your application
server using the startup script, the JRE Instrumenter is invoked and instruments the current JRE. It
also prints out the JVM parameters that you should use in the next task. You can usually find the output
of the JRE Instrumenter among the output from running the startup script.

Below is an example output from the JRE Instrumenter that instruments a typical JRE:

-Xbootclasspath/p:<agent_install directory>/classes/<pathname>/instr.jre
-javaagent:<agent_install directory>/lib/probeagent.jar

The second task for using the Automatic Explicit JRE instrumentation is to modify your application
server JVM parameters according to the output of the JRE Instrumenter. In many cases, you just need
to modify the java command-line options in the startup script to include the JVM parameters provided
by the JRE Instrumenter. However, in some scenarios (such as for WebSphere application servers),
you may need to modify a configuration file or use an administration console to add these JVM
parameters.

Note: To get the output from the JRE Instrumenter, you need to modify the startup script as described
in the first task and restart the application server. Then, after you make changes to the application
server JVM parameters, you need to restart the application server again (causing you to restart the
application server twice). However, for most of the JREs, the actual JVM parameters provided by the
JRE Instrumenter will be the same as or will include what is provided in the examples above.
Therefore, you can safely add these "default" JVM parameters even before you run the modified script.
This approach is used in the instructions for specific application servers. Refer to the example for your
application server (JBoss, WebLogic, WebSphere, Tomcat) to see detailed instructions for how to
configure using automatic explicit mode.

Alternatively, you can redirect (or pipe) the output from the JRE Instrumenter to the java command-line
options, or get the JVM parameters from a difference source to avoid restarting twice.

HPE Diagnostics (9.26) Page 72 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Using the JRE Instrumenter in Automatic Implicit Mode

Using the JRE Instrumenter in the Automatic Implicit Mode is recommended when an application
server cannot be started by a script, such as GlassFish, NetWeaver, Tomcat installed as a Windows
service (and not auto-deployed during setup), WebSphere installed on z/OS, and TIBCO ActiveMatrix
and BusinessWorks.

To use this mode, you do not need to explicitly invoke the JRE Instrumenter; it is implicitly invoked by
the Java Agent. You just configure your application server JVM parameters to invoke the Java Agent
and, when the Java Agent sees that the JVM boot class path contains a path pointing to a location
matching the following pattern, it enters the automatic instrumentation mode to create the instrumented
classes and populates the specified directories with copies of the instrumented classes:

<agent_install directory>/classes/auto/<name>/instr.jre

For example if you add the following JVM parameters

-Xbootclasspath/p:<JavaAgent_install_
dir>/DiagnosticsAgent/classes/auto/ServerOne/instr.jre
-javaagent: <agent_install directory>/lib/probeagent.jar

Then during the first execution of the application server, the directory <agent_install_
directory>/classes/auto/ServerOne/instr.jre may not even exist. The Java Agent will create and
populate the specified directory with the instrumented classes. And it will use the exact
(uninstrumented) JRE that it runs on.

The first execution of the application server will not benefit from the instrumented JRE, but all
subsequent executions will use the instrumented classes prepared in the first run.

Note: If you update the JRE used by your application server (such as applying an application
server patch) or if you update the Java Agent, before you start the application server again you
must delete the <agent_install_directory>/classes/auto/ServerOne directory (use your directory
name for ServerOne) so that the new JRE will be instrumented. Otherwise, your application server
may not start. You can also manually delete this directory when you want the Java Agent to
instrument the JRE again.

Using the JRE Instrumenter in Manual Mode

You can manually run the JRE Instrumenter and copy the provided JVM parameters into your
application server startup settings. Using the JRE Instrumenter in the Manual Mode is recommended
for Oracle application servers.

The JRE Instrumenter performs the following functions:
« ldentifies JREs that are available to be instrumented.

« Searches for additional JREs in directories you specify.

HPE Diagnostics (9.26) Page 73 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

« Instruments the JREs you specify and provides the parameter you must add to the startup script for
the JRE to point to the location of the instrumented classes.

o When the Instrumenter is run using the graphical interface or console mode in a Windows or UNIX
environment, the Instrumenter places the instrumented classes in a folder under the <agent_
install_directory>/classes/<JRE_vendor>/<JRE_version> directory.

Note: If you update the JRE used by your application server (such as applying an application
server patch) or if you update the Java Agent, you must run the JRE Instrumenter again to
instrument the new JRE and change the JVM parameters accordingly. Otherwise, your application
server may not start.

Running the JRE Instrumenter Utility in Ul Mode

When the JRE Instrumenter is run without any options the Instrumenter displays the dialogs of its
graphical user interface.

To start the JRE Instrumenter utility on a Windows system run the <agent_install_
directory>\bin\jreinstrumenter.cmd command.

To start the JRE Instrumenter utility on UNIX or Linux run the <agent_install_
directory>\bin\jreinstrumenter.sh command.

The Instrumenter lists the JVMs that were discovered by the Instrumenter and are available for
instrumentation. The JVMs that were instrumented are listed with a green square preceding the name
of the JVM.

B3P Diagnostics JRE Instrumenter {9.20.58.1236) =]
&vailable JREs

Sun 1.5.0_04 {C\bealjdkl150_04ijre)
1BM 1.5.0 {C:\Program Files\IBMYwWebspherelAppServer U jawaljre)

Selzck & JRE From the lisk above, or dick "Add JRE[s)" ko look For more JREs on Hhis mackine,

Add JRE(s) Imstrument: Copy Parameter Remae Exit |

HPE Diagnostics (9.26) Page 74 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

If the JRE Directory is not listed on the dialog, click the Add JRE(s) button to browse to the JRE.
Navigate to the directory location where you want to begin searching for JVMs and then select the file
where you want to begin the search and click Search from here. The Instrumenter searches and then
lists the JVMs found in the Available JREs list.

Select the JRE to be instrumented and then click Instrument.

The JRE Instrumenter instruments some of the classes for the selected JVM and places the
instrumented classes in a folder under the <agent_install_directory>/classes directory. It also
displays the JVM parameter that must be used when the application server is started in the box below
the Available JREs list.

When the JRE Instrumenter instruments a JRE, it also creates the JVM parameters you must include
in the startup script for the application server to cause your application to use the instrumented classes.
When you select an instrumented JRE from the Available JREs list, the JVM parameters are displayed
in the box below the list.

|£] HP Diagnostics JRE Instrumenter (9.25.44.1399) | (Sl e S

Available JREs

B sun 1.5.0_22 (C:\Program Files\Javaljdk 1, 5.0_22\jre)
B sun 1.6.0_35 {C:\Program Files\Javaljdk1.6.0_35\jre)
M Orade 1.7.0_07 {C:\Program Files\Java'jdk1.7.0_07\jre)
M Orade 1.7.0_09 {C:\Program Files\lava'jdk 1. 7.0_09Yre)
M sun 1.6.0_37 (C:\Program Files\Javaljres)

M Orade 1.7.0_09 {C:\Program Files\Javaljre7)

Lise the following VM parameter(s) fo activate the Diagnostics Agent:

-Xbootclasspath/p:C:\HP\JavaAgent\classes\Sun\1.6.0_37\instr.jre
-javaagent=C:\HP\JavaAgent\lib\probeagent.jar

[Uninstrument

: Copy Parameter]

Add JRE(z) Instrument

Click Copy Parameter to place the corresponding parameter on the clipboard. The JVM parameter is
copied to the clipboard so that you can use the JVM parameters in configuring your application server to
activate monitoring by the Java Agent.

Note: You will use the clipboard contents later in configuring you application server, so be careful
to not overwrite the clipboard contents.

Click Exit to close the JRE Instrumenter window and continue with configuring your application server
JVM parameters.

For general instructions for how to insert the JVM parameter into application server startup scripts see
"Specifying Probe Properties as Java System Properties" on page 38. For specific examples of how to

HPE Diagnostics (9.26) Page 75 of 305

Java Agent Guide

Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

insert the JVM parameter into startup scripts for different application servers such as JBoss, WebLogic
and Tomcat see "Examples for Configuring Application Servers " on page 41.

Running the JRE Instrumenter in Console Mode

Open <agent_install_directory>\bin to locate the JRE Instrumenter executable. Run the following

command:

./jreinstrumenter.sh -console

When the Instrumenter runs, it displays a list of the processing options that are available. The following
table directs you to the documentation for each of the processing options:

Instrumenter Function

jreinstrumenter -

jreinstrumenter -i <jre_directory>

jreinstrumenter -a <directory>

Description

Display a list of the JVMs that are known to the JRE
Instrumenter. Displays the JVM vendor, JRE version, and the
location where the JRE is located.

Select a JRE in a specific directory for instrumentation.
Replace <jre_directory> with the path to the folder where the
JRE you selected from the Available JVM list is found.

This command instructs the JRE Instrumenter to instrument
the classes for the selected JVM and to place the
instrumented classes in a folder under the <agent_install_
directory>/classes/<JVM_vendor>/<JRE_version>
directory.

Search for JVMs within a specific directory and add any JVMs
that are found to the list of the JVMs known to the JRE
Instrumenter. Replace <directory> with the path to the
location where you would like the Instrumenter to begin
searching.

The Instrumenter searches the directories from the location
specified including the directories and subdirectories. When it
completes its search, it displays the updated list of Available
JVMs.

Copy the JVM parameter from the output of the JRE Instrumenter so that you can paste it into the
location that allows it to be picked up when your application server starts in order to activate monitoring

by the Java Agent.

Exit the JRE Instrumenter and continue with configuring your application server JVM parameters.

For General instructions for how to insert the JVM parameter into application server startup scripts see

"Specifying Probe Properties as Java System Properties" on page 38. For specific examples of how to

insert the JVM parameter into startup scripts for different application servers such as JBoss, WebLogic
and Tomcat see "Examples for Configuring Application Servers " on page 41.

Including the JVM Parameter in the Application Server’s Startup Script

HPE Diagnostics (9.26)

Page 76 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

When the JRE Instrumenter instruments a JVM, it also creates the JVM parameter you must include in
the startup script for the application server in order to cause your application to use the instrumented
classes. When the Instrumenter finishes instrumenting the JVM, it displays the JVM parameter.

Copy the JVM parameter to the clipboard and paste it into the location that allows it to be picked up
when your application server starts. General instructions are provided below.

See "Examples for Configuring Application Servers " on page 41 for specific examples of how to insert
the JVM parameter for application servers such as WebLogic, WebSphere, JBoss and others.

To update the application server configuration:

1.

2.

3.

4.

Locate the application server startup script or the file where the JVM parameters are set.

Create a backup copy of the application server startup script before you make any changes to the
script.

Use an editor or the application server console to open the startup script.

Add the Java parameter from the JRE Instrumenter to the java command line that starts the
application server, for example:

-Xbootclasspath/p:<agent_install dir>\classes\Sun\1.5.0\instr.jre;
<agent_install directory>\classes\boot

In this instance, <agent_install_directory> is the path to the directory where the Java Agent was
installed.

This connects the probe to the application.

The following is an example of a WebLogic java command line in a startup script before adding the
Java parameter:

"%JAVA _HOME%\bin\java" -hotspot -ms64m -mx64m -classpath "%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer -
Dbea.home="C:\\bea"

-Dweblogic.management. password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy="C:\bea\wlserver6.1/1ib/weblogic.policy"
weblogic.Server

The following is an example of a WeblLogic java command line in a startup script after adding the
Java parameter:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m
-Xbootclasspath/p:<agent_install_directory>\classes\Sun\1.5.0_17\instr.jre;
-javaagent:<agent_install_directory>\lib\probeagent.jar

-classpath "%CLASSPATH%"

-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer

HPE Diagnostics (9.26) Page 77 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

-Dbea.home="C:\\bea" -Dweblogic.management.password=%WLS_ PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE?%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy="C:\bea\wlserver6.1/1ib/weblogic.policy"
weblogic.Server

5. Save the changes to the startup script.

6. Restart the application server under test.

7. Toverify that the probe was configured correctly, check for entries in the <agent_install_
directory>\log\<probe_id>\probe.log file. If there are no entries in the file, you did not
instrument the JRE used by the application server or did not configure your application server JVM
parameters to invoke the Java Agent (see the instructions in this chapter for your application
server).

Other Configuration Options

The following sections give you other configuration options:
« "Probe Registration Auto-Assigment" below
« "Configure Monitoring of Multiple Java Processes on an Application Server" on the next page
« "Adjusting the Heap Size for the Java Agent in the Application Server" on page 82
« "Configuring the SOAP Message Handler" on page 83
« "Configuring the Discovery of a New J2EE Server for Cl Population" on page 85

« "Special Considerations for Applications Based on the OSGi Framework" on page 86

Probe Registration Auto-Assigment

A typical use of probe registration auto-assignment is when you have multiple agents sharing a single
installation. Probe auto-assignment is configured using the following properties in the <Agent host
machine>/etc/dispatcher.properties file:

« commander.registrar.url - The Commander Registrar URL for Probe to Mediator Auto-
Assignment.

« registrar.url - This property should be set to blank initially, and should not be manually modified if
you want to use auto-assignment.

. always.use.commander.registrar.url - By default, the auto-assigned mediator will be recorded
within this file by overwriting the registrar.url property.

HPE Diagnostics (9.26) Page 78 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

For further details on these properties and how they relate to auto-assignment, see "Probe Registration
Auto-Assigment for Large Deployments" in the HP Diagnostics Server Installation and Administration
Guide.

For details on how to configure a single Java Agent to be shared by multiple JVMs, see "Configure
Monitoring of Multiple Java Processes on an Application Server" below.

Configure Monitoring of Multiple Java Processes on an Application
Server

When you want to collect performance data for multiple Java processes on a host, you have two
options:

« You can configure a separate Java Agent installation for each process (JVM) on a host.
« You can configure a single Java Agent to be shared by all of the processes (JVMs).

This section describes how to configure a single Java Agent installation to be shared by multiple JVMs.

To configure a separate Java Agent installation for each process, simply ensure that each <agent_
install_directory> is uniquely named.

Configure a Single Java Agent to be Shared by Multiple JVMs

To allow multiple JVMs to share a single Java Agent installation, you must configure a separate probe
for each JVM as described below. This ensures a unique name and port for each probe. Optionally
each probe can have its own points file and mediator assignment.

To configure a single Java Agent installation to be shared by multiple JVMs:

1. Determine how the JRE will be instrumented for all the Java applications that you plan to monitor.
See "Preparing Application Servers for Monitoring with the Java Agent" on page 37.

Multiple JREs may exist. Each can have their own instrumentation method.

2. Specify the range of ports from which the probe can automatically select. The Java Agent
communicates using the Java Agent listening port. A separate port is assigned for
communications for each JVM that a probe is monitoring. By default, the port number range
(Min/Max) is set to 35000—-35100. You must increase the port number range when the probe is
working with more than 100 JVMs.

If a firewall separates the probe from the other Diagnostics components, configure the firewall to
allow communications using the ports in the range you specify. For more information, see the
chapter “Configuring Diagnostics to Work in a Firewall Environment" in the HP Diagnostics Server
Installation and Administration Guide.

HPE Diagnostics (9.26) Page 79 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

If you configure the firewall to allow probe communications on a range of ports that is different than
the default, update the port range values as follows.

a. Locate the webserver.properties file in the folder <agent_install_directory>/etc.
b. Set the following properties to adjust the range of ports available for probe communications.

The minimum port in the port number range uses the following property:

jetty.port=35000

The maximum port in the port number range uses the following property:

jetty.max.port.offset=100
3. Assign a unique probe name using one of the following methods.

By default, the probe id is set to the value specified during the Java Agent Setup. This is set in
probe.properties as the id property. The probe id needs to be unique for each probe on the same
host instead of sharing the id set in probe.properties.

The command line properties must be entered on one line, without any line breaks. The probe ids
defined on the Java command line override the probe names defined in the probe.properties file
using the probe’s id property.

a. Assign a probe Id to the probe for each JVM, using the Java command line or by editing the
application startup script.

-Dprobe.id=<Unique_Probe_Name>

The following example shows a WebLogic startup script before reconfigured to run with
Diagnostics:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -classpath "%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer -
Dbea.home="C:\\bea"

-Dweblogic.management.password=%WLS PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE?%
-Dcloudscape.system.home=. /samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/1lib/weblogic.policy"
weblogic.Server

The following example shows a WebLogic startup script after adding the probe.id parameter:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m"
-Xbootclasspath/p:C:\MercuryDiagnostics\JAVAProbe\classes\Sun\1.6.0

HPE Diagnostics (9.26) Page 80 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

24\instr.jre;C:\MercuryDiagnostics\JAVAProbe\classes\boot"
-classpath "%CLASSPATH%"

-Dprobe.id=<Unique_Probe_Name> -Dweblogic.Domain=petstore
-Dweblogic.Name=petstoreServer

-Dbea.home="C:\\bea" -Dweblogic.management.password=%WLS_ PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE?%
-Dcloudscape.system.home=. /samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/1lib/weblogic.policy"
weblogic.Server

b. When a single Java parameter is specified but multiple probes are started using the same
script, use the %0 string to generate a custom probe identifier for each probe—for example, in a
clustered environment where a single startup script is used to start multiple probed application
serverinstances.

On Linux:

-Dprobe.id=<probeName>%0

On Windows:

-Dprobe.id=<probeName>%%0

Use the first % to escape the second %.

The %0 is replaced dynamically with a number to create a unique probe name for each probe;
for example, <probeName>0, <probeName>1, and so on.

4. (Optional) Specify the points file each probe will use. By default, the points file name is auto_
detect.points. You can specify that a custom points file be used when you must use more than
one custom instrumentation plan, or where you have several JRE versions on the same machine
using a single agent installation, and one or more of the JREs needs specific methods and classes
included in a layer to support custom instrumentation.

-Dprobe.points.file.name="<Custom_AutoDetect Points File>"

where <Custom_AutoDetect_Points_File> is the name of your custom points file such as
MyProbe1_private.points.

5. (Optional). Specify the mediator to which each probe will send its collected data. You can
designate a specific mediator or enable auto-assignment to mediators. By default, the mediator

that was specified at installation time is used. You can override that setting for any probe.

m To designate a specific mediator assignment for the probe, add the following to the application
server startup script or command line:

-Ddispatcher.registrar.url=http://<mediator_host>:2006/registrar/

HPE Diagnostics (9.26) Page 81 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

where <mediator_host> is the host name or IP of the mediator server host to which the probe
sends its metrics.

= To designate that a mediator be automatically assigned to the probe, perform the following:

Enable auto-registration on each mediator server that you want to make available to the
probe as an assignment option. Set the commander.max.load.count.5s,
commander.max.load.count.20s, mediator.max.load.count.5s, and
mediator.max.load.count.20s properties in server.properties file. For example:

commander.max.load.count.5s = @
commander.max.load.count.20s = @

mediator.max.load.count.5s = 450000
mediator.max.load.count.20s = 450000

In this case, the mediator can hold up to 450000 active nodes.

When commander.max.load.count.5sand commander.max.load.count.20s are set to
zero, the server will not participate in auto-assignment. That is, the Commander Server
will not get auto-assigned to act as a mediator. This is recommended in a multi-server
environment--only use the mediators to process incoming agent data.

On the agent host, set the following properties in etc/dispatcher.properties to allow the
commander to auto-assign mediators to the probes:disable start page

commander.registrar.url = http://<commander_host>:2006/registrar/

always.use.commander.registrar.url = true

The commander.registrar.url property specifies the Commander Server in the
deployment. This is the Commander Server to which the mediators available for auto-
assignment report.

The always.use.commander.registrar.url property set to "true" enables auto-
registration for this probe. Note that when auto-registration is enabled, the registrar.url
setting in dispatcher.properties is ignored.

For details, see the comments for these properties in the etc/dispatcher.properties file.

Adjusting the Heap Size for the Java Agent in the Application Server

The size of the heap can impact the performance of the Java Agent and the application server. The
default value for the heap size is 64 MB, but an application server usually increases it to a larger
amount. When you add the Java Agent to an application server, you may need to increase the heap
size to accommodate the memory used by the Java Agent. For details, see "Requirements for the
Diagnostics Java Agent Host in the Diagnostics System Requirements and Support Matrixes Guide
located on the HP Software Support site. Access requires an HP Passport login (register foran HP

Passport).

HPE Diagnostics (9.26) Page 82 of 305

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM01715961
http://h20229.www2.hp.com/passport-registration.html

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

The heap size is set in the application server JVM configuration using the following JVM argument:

-Xmx<size>

You can increase the heap size by updating the value specified in the -Xmx<size> option. See your
JVM documentation for help on setting this parameter.

Configuring the SOAP Message Handler

The Diagnostics SOAP message handler is required for Java probes to support the following features:
« Collect payload for SOAP faults.
« Determine SOA consumer ID from SOAP header, body, or envelope.

For most application servers, the instrumentation points and code snippets are written to automatically
configure the Diagnostics handlers for web services being monitored.

Note: For some application servers, special instrumentation is provided in Diagnostics to
automatically load the Diagnostics SOAP message handler.

However, some manual configuration is required for WebSphere 5.1 JAX-RPC and Oracle 10g
JAX-RPC. See "Loading the Diagnostics SOAP Message Handler " below.

In addition, the Diagnostics SOAP message handler is not available for all application servers, nor
is custom instrumentation available to capture SOAP faults or consumer IDs from SOAP
payloads. Therefore, this feature is not available on all versions of all application servers. For the
most recent information on Diagnostics SOAP message handler support, see the Diagnostics
Support Matrix at

http://support.openview.hp.com/sc/support_matrices.jsp.

This section includes the following:
« "Disabling the SOAP Message Handler" below
« "Loading the Diagnostics SOAP Message Handler " below

Disabling the SOAP Message Handler
By default, the SOAP message handler is enabled. You can disable the handler as follows:

In the <agent_install_dir>/etc/inst.properties file edit the details.conditional.properties property to
include mercury.enable.autoLoadSOAPHandler = false.

If the SOAP message handler is disabled, you must manually configure where in the chain the handler
gets installed.

Loading the Diagnostics SOAP Message Handler

The SOAP message handler is loaded automatically on most application servers but requires manual
configuration on these application servers:

HPE Diagnostics (9.26) Page 83 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

WebSphere 5.1 JAX-RPC
To configure the SOAP message handler on WebSphere 5.1 JAX-RPC, follow these steps:

Note: For WebSphere 6.1 JAX-WS web services, Diagnostics handlers are not supported. You
must recompile the application with the Diagnostics SOAP handler classes.

1. Locate the Web service deployment descriptor (webservices.xml) for the application. The
directory path should look similar to the following:

<install
root>\config\cell\<Server>\applications\<WebServiceEAR>\deployments\<WebServ
iceName>\<WebServiceJAR|WARName>\WEB-INF

Here is an example:

C:\Program
Files\WebSphere\AppServer\config\cells\MyServerl\application\WebServicesSamples
.ear\deployments\WebServicesSamplea\AddressBookJ2WB.war\WEB-INF

2. Edit the webservices.xml and add the Diagnostics handler for each <port-component>:

<port-component>

<handler>

<handler-name>Diagnostics RPC Handler</handler-name>
<handler-class>
com.mercury.opal.javaprobe.handler.soap.ProbeRPCHandler
</handler-class>

</handler>

</port-component>

3. Copy the Diagnostics handler jar (<agent_install_dir>\lib\probeSOAPHandler.jar) to the
WebSphere lib directory.

Here is an example:

cp C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\
lib\probeSOAPHandler.jar C:\Program Files\WebSphere\AppServer\lib

These steps were developed with IBM WebSphere 5.1.0 Application Server on Windows.

Oracle 10g JAX-RPC
To configure the SOAP message handler on Oracle 10g JAX-RPC, follow these steps.

HPE Diagnostics (9.26) Page 84 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

1. Locate the Web service deployment descriptor (webservices.xml) for the application. The
directory path should look similar to the following:

<0C4J_install_root>\j2ee\home\applications\<app name>\ <deployment
name>\WEB-INF\webservices.xml

2. Edit the webservices.xml and add the Diagnostics handler for each <port-component>:

<port-component>

<handler>

<handler-name>Diagnostics RPC Handler</handler-name>
<handler-class>
com.mercury.opal.javaprobe.handler.soap.ProbeRPCHandler

</handler-class>
</handler>

</port-component>

3. Copy the Diagnostics handler jar (<agent_install_dir>\lib\probeSOAPHandler.jar) to the
<0C4J_install_root>\j2ee\home\applib directory.

These steps were developed with Oracle Containers for J2EE (OC4J) 10g Release 3 (10.1.3.3) on
Windows.

Configuring the Discovery of a New J2EE Server for Cl Population
The agent provides data to populate the J2EE Application Server and J2EE Application Domain Cls in
BSM.

The probe automatically populates Cls for well known J2EE servers such as JBoss and WebLogic.

You can also configure application server discovery to populate Cls for other J2EE servers. Application
server name can be directly specified or configured to be discovered by JMX or be discovered by a
point/code snippet.

You configure application server discovery in the probe etc/metrics.config file as described below.

The class AppServerDiscoveryCollector is located in the <agent_install_dir>/lib/probejmx.jar file
and you can write you own collector class to do both application server discovery and metrics
collection.

The following is the configuration for application server discovery for a generic application server. Note
the collector name is case sensitive and should be different from any collector name in the
metrics.config file.

<user-defined-collector-name>.class.name =
com.mercury.diagnostics.capture.metrics.jmx.AppServerDiscoveryCollector

HPE Diagnostics (9.26) Page 85 of 305

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

<user-defined-collector-name>.class.path = probe-jmx.jar
<user-defined-collector-name>.app_server.configure.discovery = true
<user-defined-collector-name>.app_server.type = <user-defined-type>
<user-defined-collector-name>.app_server.server_name =
<user-defined-server-name>
<user-defined-collector-name>.app_server.domain_name =
<user-defined-domain-name>

And then you should add the following Java system property definition in the app-server/javaprobe
startup script or java command line.

-Dapp_server.discovery.collector=<user-defined-collector-name>

Every 15 minutes the probe refreshes the collectors (including the AppServerDiscoveryCollector) and
makes the discovery based on any new configuration.

For the advanced user who knows how to use JMX to discover the new application server name and
J2EE domain name, you may add the following configuration in the probe etc/metrics.config file.

<user-defined-jmx-collector-name>.class.name =
com.mercury.diagnostics.capture.metrics.jmx.JMXCollector
<user-defined-jmx-collector-name>.class.path = probe-jmx.jar
<user-defined-jmx-collector-name>.depends.on.class =
javax.management.MBeanServer
<user-defined-jmx-collector-name>.app_server.configure.discovery = true
<user-defined-jmx-collector-name>.app_server.type = <user-defined-type>
<user-defined-jmx-collector-name>.app_server.server_name =
<user-defined-server-name>
<user-defined-jmx-collector-name>.app_server.server_name.discovery.by.jmx
<jmx-ObjectName>.<jmx-AttributeName>
<user-defined-jmx-collector-name>.app_server.domain_name =
<user-defined-domain-name>
<user-defined-jmx-collector-name>.app_server.domain_name.discovery.by.jmx =
<jmx-ObjectName-1>.<jmx-AttributeName-1>@<jmx-ObjectName-2>.<jmx-AttributeNa
me-2>

Special Considerations for Applications Based on the 0SGi
Framework

If your application is based on the OSGi framework, you may need to set some additional properties. If
not already the default value, set the osgi.java.profile.bootdelegation property to the default value
"ignore". Then append com.mercury.* to the end of the org.osgi.framework.bootdelegation property
in your osgi.java.profile. For example:

org.osgi.framework.bootdelegation= <existing packages>,com.mercury.*

HPE Diagnostics (9.26) Page 86 of 305

Chapter 5: Configuring for Azul or Cloud Environments

This chapter includes:
« "JavaAgents on Azul" below

« "JavaAgents in Cloud Environments" on the next page

Java Agents on Azul

Azul provides two highly scalable and highly performing solutions for enterprise Java users: Vega and
Zing. Vega is a special hardware appliance which connects to the user local network. Zing is a virtual
equivalent of Vega, provided in a form of a guest image for VMware or KVM. A major advantage of the
Azul appliances is its innovative pauseless garbage collector, which runs continuously and can handle
heaps up to tens of gigabytes. Both appliances are supported by Diagnostics equally, although we
tested only Zing in the lab.

The Java SDK or JRE provided by Azul installs on a traditional system, such as Linux or Solaris, but
when it is invoked, it delegates the execution of any Java code to the appliance. Thus, although the
Java application seems to be running where it was invoked, it actually runs on a different system. This
is done seamlessly, so the application interacts with its environment just as if it was running on a local
system. If the application makes a JNI call, it is made across the network to be executed on the
originating host.

This execution model creates a number of issues for Diagnostics users. The JNI calls made by the
probe are costly, but what is more important, they do not provide the results the user might expect.

« The CPU timestamps do not work correctly. They measure the CPU time used on the originating
server, and therefore are useless.

« Process metrics are useless, too, because they measure the front-end process.

« Inmost cases, all system metrics are useless as well. They measure the originating system and
are irrelevant to the application running on the appliance.

« Garbage collection metrics are confusing. Since Azul uses continuous garbage collector, seeing
garbage collection percentages over 100% is normal.

» Heap Breakdown and Heap Walker do not work.
« VMware special timers do not work (even if using virtual appliance on VMware)\

Configuring Diagnostics for Azul VM

Invoking Azul java command requires adding parameters that properly identify the appliance to be used
for running the application. This creates a difficulty for JREinstrumenter (unless run in Automatic

HPE Diagnostics (9.26) Page 87 of 305

Java Agent Guide
Chapter 5: Configuring for Azul or Cloud Environments

Implicit mode), which needs to run the JRE to be instrumented in order to determine its version and
vendor, but is not capable of adding the required parameters.

The solution is to edit the file azul.properties found in the Azul JRE installation and define the required
parameters. The settings are needed while the JREinstrumenter runs and can be removed for running
the application with Diagnostics.

To eliminate possible confusion and pointless overhead, we recommend to use the following settings
while using Diagnostics Agent:

« Inmetrics.config, comment out all metrics for "system" and "ProcessMetrics" collectors, and
Garbage Collection metrics for the "Java Platform" collector.

« In capture.properties set use.cpu.timestamps=false.

Java Agents in Cloud Environments

The Java Agent provides out-of-box support for monitoring Java applications in a cloud environment,
such as ActiveState's Stackato or HP aPaaS. However, monitoring Java applications in these
environments requires a slightly different Java Agent configuration and deployment procedure.

Cloud environments use dynamic application server instances that are scaled in and out as needed.
Agents use a naming strategy in this environment that provide a consistent name for the application
server instance in the Diagnostics Enterprise Ul. A probe deployed on Stackato will have an assigned
name that consists of the application name as defined by Stackato, and a suffix of its instance
identifier. For example, an application named "OnlineBanking" with 3 instances would have the
following probe names:

OnlineBanking_1
OnlineBanking_2
OnlineBanking_3

In general, the steps to configure and deploy the Java Agent in a cloud environment are as follows:

1. Add the Java Agent installed files to the directory structure that contains the application to be
monitored, so that the agent is included when the application is pushed up to the cloud.

Copy the <agent_install_directory>/JavaAgent/Diagnostics directory to your application
workspace, and ensure that it is bundled with your resulting application assembly. Whether this is
a .war file, .ear file, or directory structure, the Java Agent bits need to be included when the
application gets pushed up to Stackato.

2. Configure the Java Agent as needed.
Run the Java Agent Setup program as described in "Installing Java Agents" on page 18.

= When prompted for the Agent Configuration, specify either "Enterprise Mode (AM License)"
with "Diagnostics" or "Diagnostics Mode for Load Runner/Performance Center (AD License)".

HPE Diagnostics (9.26) Page 88 of 305

Java Agent Guide
Chapter 5: Configuring for Azul or Cloud Environments

» When prompted to provide the Agent Name, enter any string. This placeholder value will be

overwritten in the next step.

3. Configure the Stackato stackato.yml to deploy and enable the Java Agent. For details, see one of

the sections below:
m "Deploying a Java Agent on a Stackato-provided Application Server Container" below

= "Deploying a Java Agent on a Stackato Stand-alone Application" on the next page

Deploying a Java Agent on a Stackato-provided Application Server
Container

The steps assume the Stackato system is installed, configured correctly, and accessible to you. The
examples show the steps needed to modify your application and stackato.yml in order to enable the
Java Agent.

The below auto-deployment steps work with either the Tomcat or JBoss containers that Stackato uses.

1.

Edit the stackato.yml configuration file in the Stackato workplace to add the Java Agent
configuration commands to execute upon deployment on Stackato.

The commands that you add depend on whether the application package that you deploy ends up
extracted on deploying, as they refer to the Java Agent files within this directory structure.

m Application package is automatically exploded on deploying:

This is the most common case, for example the Stackato Tomcat application server
automatically explodes the .war file upon deploying.

If your application is pushed up as a directory or as a .war file, add the following to the
stackato.yml:

hooks:
post-staging:

- mv JavaAgent $STACKATO_APP_ROOT/

- java -jar $STACKATO_APP_
ROOT/JavaAgent/DiagnosticsAgent/lib/setupModule.jar

where
$STACKATO_APP_ROOT is defined by Stackato.

The JavaAgent directory (which in this example contains the Java Agent bits) is moved up to
the $STACKATO_APP_ROOT and a command is launched to deploy it to the startup script of
the application server.

HPE Diagnostics (9.26) Page 89 of 305

Java Agent Guide
Chapter 5: Configuring for Azul or Cloud Environments

m Application package is not automatically exploded on deploying:

If the .ear file does not end up extracted when the application is pushed to Stackato, for
example deploying an .ear file on JBoss, additional commands are required to temporarily
extract the Java Agent bits from the .ear file and copy them up so that they can be deployed on
the container.

Add the following to the stackato.yml

hooks:
post-staging:
- mkdir tmpdir
- unzip -q jboss-as-kitchensink-ear.ear -d tmpdir
- mv tmpdir/JavaAgent $STACKATO_APP_ROOT/
- rm -r tmpdir
- java -jar $STACKATO_APP_
ROOT/JavaAgent/DiagnosticsAgent/lib/setupModule.jar

where
$STACKATO_APP_ROOT is defined by Stackato.
The JavaAgent directory is included as part of the .ear file.
2. Deploy the repackaged application to Stackato. For example, run the following command in the

top directory of your workplace:

stackato push -n

After staging the application, Stackato executes the post-staging steps that you specified in the
stackato.yml configuration file. The first step moves the Agent bits to a fixed location, and the second
step invokes the Agent command to automatically deploy itself within the application server (either
Tomcat or JBoss) that Stackato uses as a container for your application.

Note: The automatic deployment tool expects to find the Java Agent at STACKATO_APP_
ROOT/JavaAgent/DiagnosticsAgent. This directory where the agent is moved to cannot be
changed elsewhere in stackato.yml.

Deploying a Java Agent on a Stackato Stand-alone Application

When deploying the Java Agent on a Tomcat or JBoss application server, the agents can auto-deploy
to those application servers. If your application is instantiated by a script that you provide to Stackato,
then you need to manually specify the parameters to enable the Java Agent.

To do this, add the following commands to your application startup script:

HPE Diagnostics (9.26) Page 90 of 305

Java Agent Guide
Chapter 5: Configuring for Azul or Cloud Environments

« -Ddiag.config.override=stackato
« -javaagent:${HOME}/<agent dir in your app>/lib/probeagent.jar

For example, assume a stackato.yml file as follows:

name: onlinebank

mem: 512M

framework:

type: generic

processes:

web: /app/app/myStartupScript.sh

You need to edit the myStartupScript.sh to add the following to the command that is invoking Java:

-Ddiag.config.override=stackato -javaagent:${HOME}/agent/lib/probeagent.jar

The -Ddiag.config.override argument directs the probe to read the file: <agent_install_
directory>/etc/overrides/stackato.settings when the application starts. The stackato.settings file
contains the necessary property settings for probes in Stackato—overriding their specified value (if any)
in the standard property and configuration files for the agent. This file contains the rules for determining
the probe and host names according to the Stackato environment. The out-of-box settings should be
appropriate for most scenarios, but if you want to customize the names created for the probes or their
hosts, you can change the settings in this file.

You can add additional property settings to the stackato.settings file or create a custom version of this
file as needed and rename it. The custom settings file must be located in the <agent_install_
directory>/etc/overrides directory and have the ".settings" suffix.

Note that any overrides in the stackato.settings file to dynamic properties are overridden
unconditionally. Changes to any dynamic properties that occur after the application starts are ignored.

Just like for non-cloud agent deployment, the jreinstrumentor must be run in order to enable collection
leak pinpointing. See "Examples for Configuring Application Servers " on page 41 for details.

HPE Diagnostics (9.26) Page 91 of 305

Chapter 6: Preparing Application Servers for Client
Monitoring with the Java Agent

This chapter includes:
« "About Client Monitoring" below
« "Enabling Client Monitoring" on the next page
« "Configuring and Disabling Client Monitoring" on page 95

o "Manually Instrumenting HTML/JSP Pages for Client Monitoring" on page 95

About Client Monitoring

Client Monitoring measures web page performance as seen by the user's browser and correlates these
measurements with the back end server request.

Three important metrics are measured:

« The back-end time is the amount of time it takes from when a web page request is sent until the first
byte of the response is received.

« The front-end time is the amount of time it takes from when the first byte of the response is received
until the page is loaded.

« The total-time is the sum of the front and back end times.

Client Monitoring aggregates these measures and presents them by URL, Location, and Browser-OS
combination.

By monitoring web page performance, application owners can quickly identify performance issues,
characterizing them by tier (front or back-end), location, and browser.

When the issue is on the back-end, client monitoring correlates the URL to the associated server
request and its call-profile.

Note: Client Monitoring is not supported in Diagnostics Profiler mode.

HPE Diagnostics (9.26) Page 92 of 305

Java Agent Guide
Chapter 6: Preparing Application Servers for Client Monitoring with the Java Agent

An example showing client monitoring is shown below:

gﬁm-mr %\.!-r

Starl Tima URL
"‘\—k_.__k_‘k |

[
[
I - 5 &
HTTP Reques! | . Diagnostics Pein
u\' I _,_.-'-"'""-FFF’F
I T ‘_‘_'_,_a-'-'d-

URL Back-end Time

Time

First Byte ~___ HITPReply#____—— |

-\-H-\-"""--_,_‘_‘_

I
1
I
I
I
: Server Requast
|
I
I
I
I

HTTP Reply fin___——— |

LRL Frontend Tima ‘__,_———/—)

nLoad done \

Enabling Client Monitoring

Enabling client monitoring requires you to deploy a .war file on the application server and in some cases
to configure the web server. Client Monitoring views are available in the Diagnostics Enterprise Ul.

For the list of browsers that can be monitored by the Client Monitoring feature, refer to the Diagnostics
System Requirements and Support Matrixes Guide located on the HP Software Support site. Access
requires an HP Passport login (register for an HP Passport).

To enable Client Monitoring:

When client monitoring is enabled, most JSP pages served via JBoss, Tomcat, WebSphere and
WebLogic will be automatically modified to include additional Java Script calls near the <head> tag.
You can see which pages are instrumented by opening the page in your browser and selecting view
source.

Other application servers may require manual page instrumentation for client monitoring. See "Manually
Instrumenting HTML/JSP Pages for Client Monitoring" on page 95.

Client monitoring, including automatic JSP instrumentation, will remain disabled until this .war file is
deployed.

HPE Diagnostics (9.26) Page 93 of 305

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM01715961
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM01715961
http://h20229.www2.hp.com/passport-registration.html

Java Agent Guide
Chapter 6: Preparing Application Servers for Client Monitoring with the Java Agent

1.

Deploy HPDiagCM.war file.

Use the application server's Administrative Console to deploy the <agent_install_
dir>\contrib\HPDiagCM.war as an application.

Client monitoring will remain disabled until this .war file is deployed.

For WebSphere application servers, be sure to set the context root to /HPDiagCM instead of the
default (/).

If you have configured a web server as the front-end of your application, then you also need to add
the following context root to your Web Server's configuration:
/HPDiagCM/*

Tip: You can verify the web server is correctly configured if your browser can access this link: (it
will return a blank page)
http://hostname:port/HPDiagCM/B/.

Example - Setting up an Apache HTTP Server Reverse Proxy for Client Monitoring

Note: These are very basic instructions. These configuration files are highly customized in each
customer's environment. Please consult the Apache HTTP Server documentation for more details.

In order for client monitoring JavaScript file to be successfully downloaded by browsers and for client-
side metrics to be received by the probe, it is necessary to configure the web server to correctly forward
those requests to the application server. This is typically achieved by setting up a reverse proxy or
gateway.

1.

Update the conf\httpd.conf file by adding the following lines, replacing <HostName> and
<HostPort> with the host name and port of the application server, and restart the web server.

ProxyPass /HPDiagCM http://<HostName>:<HostPort>/HPDiagCM
ProxyPassReverse /HPDiagCM http://<HostName>:<HostPort>/HPDiagCM

Check if your changes are successful by driving traffic to your web application via the web server
and checking the web server's log messages in the log/access.log file. Error messages will have
an http response code in the 400-500 range such as "GET /HPDiagCM/boomerang-min.js
HTTP/1.1" 404. When successful, you should see log messages such as "GET
/HPDiagCM/boomerang-min.js HTTP/1.1" 200.

If you don't see either of these messages, then client monitoring is not correctly set up in your
environment.

HPE Diagnostics (9.26) Page 94 of 305

Java Agent Guide
Chapter 6: Preparing Application Servers for Client Monitoring with the Java Agent

Configuring and Disabling Client Monitoring

If desired, Client Monitoring can be dynamically controlled by updating several properties in <agent_
install_directory>\etc\dynamic.properties.

The client.monitoring.enable property provides a master switch to dynamically enable and disable
the client monitoring feature. When set to false, all client monitoring data events received are dropped,
JSP page auto-instrumentation will be disabled, and client.monitoring.sampling.percent is set to 0.0
(to disable manually instrumented JSP pages’ client monitoring Java Script code).

You can reduce the client monitoring load on your server by adjusting the
client.monitoring.sampling.percent property in dynamic.propertes.

You can also specify that you want a strict check on the referrer by setting
client.monitoring.strict.referrer to true. This will help ensure that only events that originate from a
web page instrumented with client monitoring are used. The default value is false but the recommended
value is true if this setting works in your environment.

You can also stop or uninstall/undeploy the HPDiagM.war using your application server management
console.

Manually Instrumenting HTML/JSP Pages for Client

Monitoring
Add the following code to your HTML/JSP pages immediately after the <head> tag:

<!-- HP Client Monitoring -->
<script>
if (window.t_firstbyte === undefined) {
var t_firstbyte = Number(new Date());
}
</script>
<script type='text/javascript' src='/HPDiagCM/boomerang-min.js'>
</script>
<script>

BOOMR.init({beacon_url:"/HPDiagCM/B",
RT:{cookie:"X-HP-CM-RT", cookie_exp:600,expandFrames:true,hashURLs:true},
HP: {cookie:"X-HP-CM-GUID"}});

</script>

If you prefer to manually instrument HTML/JSP pages you can permanently disable auto-
instrumentation by setting the following properties in inst.properties to false. These changes require a
restart of the application server.

HPE Diagnostics (9.26) Page 95 of 305

Java Agent Guide
Chapter 6: Preparing Application Servers for Client Monitoring with the Java Agent

in <agent_install_dir>\etc\inst.properties:

details.conditional.properties= \
mercury.enable.clientmonitoring.JspWriterImpl.autoinstrumentation=false,\
mercury.enable.clientmonitoring.CoyoteWriter.autoinstrumentation=false,\
mercury.enable.clientmonitoring.BodyContentImpl.autoinstrumentation=false,\

HPE Diagnostics (9.26) Page 96 of 305

Chapter 7: Upgrading the Diagnostics Java Agent

This chapter presents the information that you need to upgrade the Diagnostics Java Agent.

This chapter includes:
« "Upgrade Java Agents" below

« "Upgrade Notes and Limitations" on page 99

Upgrade Java Agents

Note: As of Diagnostics 9.23, the format and process for the Java Agent installation package have
changed. For detailed instructions on installing the Java Agent, see "Installing Java Agents" on
page 18.

Consider the following when planning the Diagnostics Agent upgrade:

« You must upgrade the Diagnostics Server before upgrading the agents that are connected to it
because Diagnostics Servers are not forward compatible.

« With each new release of Diagnostics you should re-record the Java agent silent install response
files prior to performing silent installation on multiple machines.

Note: The new agent installation will not begin monitoring your applications until you have
updated the startup scripts to start the new agent and restarted the applications as described in
these instructions.

To upgrade a Java Agent:

1. Install the Diagnostics Agent for Java into a different directory than the current agent’s
installation directory.

During the installation, be sure to do the following. This ensures that the persisted data for your
application will match up with the metrics captured by the new agent.

m Configure the Java Agent to work with a Diagnostics Server or as a standalone Diagnostics
Profiler. The Java Agent can also be configured to work with a TransactionVision Server if
desired.

m Forthe agent name, use the same probe name as used by the previous agent.

HPE Diagnostics (9.26) Page 97 of 305

Java Agent Guide
Chapter 7: Upgrading the Diagnostics Java Agent

m Forthe agent group name, use the same group name as used by the previous agent.

m For the mediator server name and port, use the same information as used by the previous
agent.

See "Installing Java Agents" on page 18 for additional information you need for installing a Java
Agent.

2. Compare the new agent’s \etc directory and the previous agent’s \etc directory so that you can
determine the differences between the two.

HP recommends that you execute the Property Scanner utility provided with the Java Agent
which will indicate the differences (properties and points) between two different Java Agent
installations. To execute the Property Scanner utility, change the current directory to <agent_
install_dir>/contrib/JASMUtilities/Snapins and execute the runPropertyScanner.cmd —
console (.sh for Unix) command as follows:

runPropertyScanner -console -diffOnly yes -Sourcel ..\..\..\etc -Source2
OtherEtc

Sample Input:

C:\MercuryDiagnostics\JavaAgent8\DiagnosticsAgent\contrib\JASMUtilities\Sna
pins>runPropertyScanner -console -diffOnly yes -Sourcel
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\etc -Source2
C:\MercuryDiagnostics\JavaAgent8\DiagnosticsAgent\etc

Sample Output:

PropertyFile=dispatcher.properties
Property=stack.trace.method.calls.max
Sourcel=

Source2=1000

Apply any differences that were caused by the customizations that you made to the previous
agent’s \etc directory to the new agent’s \etc directory so that they will not be lost. You should look
for the following changes:

Configuration Properties to Be Copied to the New
Property File Diagnostics Server

auto_detect.points Copy custom points that you have created and points that
you have modified from the auto_detect.points file in the old
etc directory to the new etc directory. Be sure to check the
points for RMI, LWMD, args_by_class when looking for
points you may have modified.

HPE Diagnostics (9.26) Page 98 of 305

Java Agent Guide
Chapter 7: Upgrading the Diagnostics Java Agent

Configuration Properties to Be Copied to the New

Property File Diagnostics Server
capture.properties Depth and latency trimming.
dispatcher.properties minimum.sql.latency

sql.parsing.mode
dynamic.properties cpu.timestamp.collection.method

metrics.config Verify that any metric that you uncommented in the previous
version is also uncommented in the new version so that you
can continue to use the metrics that you are used to.

security.properties If the system is set up for SSL mode, set all properties and
copy the certificates from the old property file to the property
file.

3. Prepare your application servers to be monitored using the JRE instrumentation methods
described in the "Examples for Configuring Application Servers " on page 41. In particular you
need to update the application’s startup script or JVM parameters to point to the upgraded agent
installation.

4. At an approved time, shut down the applications that were being monitored by the old agent.

5. Restart the applications to allow the new version of the agent to begin monitoring your
applications.

6. Clearyour browser's cache and the Java plug-in cache. Restart the browser before you attempt to
access the Diagnostics Profiler for Java user interface. Failure to do this may result in a size
mismatch error message.

7. You can verify that the upgraded Diagnostics Agent is running by checking the version in the
System Health view in the Diagnostics Ul. The version should be the latest version if the upgrade
was successful. To access the System Health view you must open the Diagnostics Ul as the
Mercury System customer from
http://<Diagnostics_Commanding_Server_Name>:2006/query/. Then in the Views pane you
can select the System Views view group.

8. When all your applications have been migrated over to be the latest version and everything is
working properly, you can delete the old directory. Don’t try to uninstall the old version because
this will actually uninstall the new version.

Upgrade Notes and Limitations

As of Diagnostics version 9.24, by default HTTP methods (such as PUT, GET, and POST) are used as
an identifying component for each HTTP/S Server Request and a separate HTTP Server Request is
generated for each HTTP method to the same URL. In earlier versions of Diagnostics, the first

HPE Diagnostics (9.26) Page 99 of 305

Java Agent Guide
Chapter 7: Upgrading the Diagnostics Java Agent

instrumented Java method executed by the Server Request is used for identification and one HTTP
Server Request is generated for all HTTP methods to the same URL.

We recommend using the new method of server request identification, even though this is not
backward compatible and breaks trend lines. If you must maintain continuity of trend lines, in the
dispatcher.properties file, change the value of the fragment.use.http.method setting to false.

HPE Diagnostics (9.26) Page 100 of 305

Part 3: Advanced Java Agent Configuration and
Instrumentation

HPE Diagnostics (9.26) Page 101 of 305

Chapter 8: Monitoring Profiles

This chapter describes monitoring profiles.

This chapter includes:
« "About Monitoring Profiles" on the next page
« "Understanding Types of Diagnostics Deployments" on the next page
« "The Predefined Monitoring Profiles" on page 105
o "Custom Monitoring Profiles" on page 105
« "Applying a Specific Monitoring Profile to a Probe" on page 107
« "Overriding Settings in the Monitoring Profiles" on page 108
« "Mapping Instrumentation Points to a Monitoring Profile" on page 108
« "Mapping Metrics to a Monitoring Profile" on page 109

« "Mapping Property Values to a Monitoring Profile" on page 109

HPE Diagnostics (9.26) Page 102 of 305

Java Agent Guide
Chapter 8: Monitoring Profiles

About Monitoring Profiles

A monitoring profile is a collection of predefined settings that control the amount of collected data for a
particular Java Agent instance (a probe).

Java Agents are highly configurable. Monitoring profiles are a safe and easy way to manage the impact
of the probe on the monitored system and still obtain the needed performance data.

Understanding Types of Diagnostics Deployments

Each probe has the ability to capture many events such as method invocations, server requests, and
system usage metrics from the Java application it is monitoring. In general, the more collected data,
then the more information is readily available to identify performance issues. However, the more
collected data, then the more overhead on the monitored system. Overhead can affect the monitored
application's ability to provide its services as well as the probe's ability to report the data in the
Diagnostics Enterprise Ul or Profiler Ul. The type of deployment determines how much overhead is
acceptable.

Diagnostics operates in different environments, ranging from development desktops to systems
deployed in production. The following tables describes the three main categories of Diagnostics
deployments.

HPE Diagnostics (9.26) Page 103 of 305

Java Agent Guide

Chapter 8: Monitoring Profiles

Diagnostics
Deployment

Enterprise—Java
Agent sends data
to a Diagnostics
Server.

Optionally
integrated with
BSM.

Users: Operations

Performance
Center/Load
Runner Integration

Users: QA

Diagnostics Profiler

Users:
Development

HPE Diagnostics (9.26)

Data Persistence

Diagnostics collects
and stores data from
hundreds or thousands
of probes and keeps the
data for up to 5 years.

Configurable, but the
expectation is that
Diagnostics collects
and stores data from
dozens of probes and
keeps the data for as
long as the testing
cycle—typically several
months.

Diagnostics does not
persist any data.

Goals of This
Deployment

Designed for
Production

Alert users to
performance or
availability issues, and
diagnose memory
leaks.

Maximize availability
of business critical
applications

Reduce MTTR of
business critical
problems

Produce actionable
data for development

Designed for load
testing

Diagnose distributed
application issues,
help users tune the
application for better
performance and
scalability.

Reduce MTTR of
performance issues

Provide actionable root
cause data to
development

Designed for
development
environment

Diagnose slow
methods, exceptions,
and coding issues

Ready applications for
load testing

Collected
Data/Overhead

Lower amounts of
collected data

Lower overhead

=~

Higher amounts of
collected data

Higher overhead

Page 104 of 305

Java Agent Guide
Chapter 8: Monitoring Profiles

The Predefined Monitoring Profiles

Diagnostics provides three predefined monitoring profiles—one for each type of Diagnostics deployment
above.

By default, a probe uses one of the predefined monitoring profiles on startup. The Agent Mode of the
probe determines which predefined monitoring profile is used, as follows:

Agent Mode (Specified During Agent Collected

Predefined Monitoring Profile Setup) Data/Overhead

Application monitoring in Enterprise Mode (AM License) and Lower amounts of

production environment Diagnostics collected data
Lower overhead

Application monitoring in pre- « Diagnostics Mode for

production environment, LoadRunner/Performance Center

transaction tracing, or extended (AD License)

monitoring in production

environment « Enterprise Mode (AM License) and

TransactionVision

Application profiling in developer = Diagnostics Profiler Mode Higher amounts of
environment collected data

Higher overhead

Settings specified by the predefined monitoring profiles are overridden if the setting is specified
elsewhere. See "Overriding Settings in the Monitoring Profiles" on page 108.

Custom Monitoring Profiles

You can use a custom monitoring profile instead of the predefined monitoring profiles. To create and
use a custom monitoring profile, follow these steps:

1. Choose a numerical value to represent the profile.

Use a positive integer that is not already in use for a monitoring profile in this installation. The
predefined monitoring profiles use the following numbers:

120 Application monitoring in production environment

140 Application monitoring in pre-production environment, transaction tracing, or
extended monitoring in production environment

170 Application profiling in developer environment

HPE Diagnostics (9.26) Page 105 of 305

Java Agent Guide
Chapter 8: Monitoring Profiles

To help you manage multiple profiles, follow these naming guidelines:

= All data collected by a numerically lower profile is also collected by the numerically higher
profile.

= The higher the number, the more data is collected, with a higher overhead.

For example, if a particular production environment puts unusually strict restrictions on tool
overhead, you could define a new profile named 115 with the modified settings.

2. Customize the settings.

a. Use one of the predefined .settings files in <agent_install_directory>/etc/defaults as a
starting point; copy and rename it to the same location. For example <agent_install_
directory>/etc/defaults/115.settings.

Modify the settings to limit the amount of collected data, for example:

#
Settings for my '115' monitoring profile
#

dispatcher.minimum.fragment.latency = 100ms

For information about the format of the .settings file, see "Mapping Property Values to a
Monitoring Profile" on page 109.

b. Modify the capture points file to map any instrumentation points to the new custom monitoring
profile. See "Mapping Instrumentation Points to a Monitoring Profile" on page 108.

Note: For best practices, ensure that all .settings files in your deployment contain the
exact same set of properties. Because when a property is specified in one .settings file,
it means that the property definition in the original property file is commented out.
Therefore each .settings file must define the property.

c. Modify the metrics.config file to map any metrics to the new custom monitoring profile. See
"Mapping Metrics to a Monitoring Profile" on page 109.

HPE Diagnostics (9.26) Page 106 of 305

Java Agent Guide
Chapter 8: Monitoring Profiles

3. Run the probe with the new custom monitoring profile. For details on how to do this, see "Applying
a Specific Monitoring Profile to a Probe" below.

Applying a Specific Monitoring Profile to a Probe

To apply a monitoring profile to a probe, use one of the following methods:

= By setting the probe property monitoring.profile in <agent_install_
directory>/etc/probe.properties. For example:

monitoring.profile = 115

Changes to this setting are picked up dynamically—they take effect shortly after the changes
are saved to the file.

= As a system property on the application server start up command line. For example:

-Dprobe.monitoring.profile=115

If the specified monitoring profile does not exist (there is no settings file in the <agent_install_
directory>/etc/defaults directory that corresponds to the number), the probe substitutes an
existing .settings file corresponding to the value closest to the specified profile but not over the
value.

= Inthe Profiler Ul, select Configuration tab > Probe Setting pane > General section >
Monitoring Profile and select the required monitoring profile from the list. Click Apply
Changes.

Note: In the General section, you can also choose to disable monitoring data collection
without stopping the Java Agent.

Changes to this setting are picked up dynamically—they take effect shortly after the changes
are saved to thefile.

Settings specified by the custom monitoring profiles are overridden if the setting is specified
elsewhere. See "Overriding Settings in the Monitoring Profiles" on the next page.

HPE Diagnostics (9.26) Page 107 of 305

Java Agent Guide
Chapter 8: Monitoring Profiles

Overriding Settings in the Monitoring Profiles

Settings specified by the predefined or custom monitoring profiles are overridden (ignored) as follows:

« Settings in <agent_install_directory>/etc/*.properties files override the settings in the monitoring
profile.

By default, a setting managed by the predefined monitoring profiles is disabled in the associated
property file. For example, in capture.properties:

Latency trimming

The default value is defined by the current monitoring profile
#
#minimum.method.latency = 5ms

To override the minimum.method.latency setting from the monitoring profile, simple uncomment it
here and set the value.

Latency trimming

The default value is defined by the current monitoring profile
#
minimum.method.latency = 7ms

You can use this capability to easily customize settings that are specific to a deployment
environment without changing the monitoring profile. For example, using specific JMX/PMI metrics
or instrumentation points.

« Property settings specified as Java system properties on the application server startup command
line override the settings in the monitoring profile

For more information about specifying properties in this way, see "Specifying Probe Properties as
Java System Properties" on page 38.

« Dynamic properties, if generally accepted by the probe, override the settings in the monitoring
profile.

For more information about dynamic properties, see "About Dynamic Configuration" on page 184.

Mapping Instrumentation Points to a Monitoring Profile

The profile keyword for the instrumentation point details maps the point to a monitoring profile. The
keyword is specified in the form of profile:<number>. The number indicates that the point is enabled for
all profiles at the value of number or higher. The point is disabled for all monitoring profiles lower than
the specified value.

HPE Diagnostics (9.26) Page 108 of 305

Java Agent Guide
Chapter 8: Monitoring Profiles

For example:

[Servlet-all]
I extends HttpServlet ---------------------
; (See HttpCorrelation point for ignore documentation)
; In addition, ignore class we know we are not interested in

deep_mode = soft

layer = Web Tier/Servlet
detail = diag,tv:servlet,profile:140

The instrumentation point is enabled on the predefined profiles 140 and 170, and all custom profiles 141
or higher. The point is disabled on the predefined profile 120, and on all custom profiles 139 or lower.

By default, the capture points file is located at <agent_install_dir>\etc\auto_detect.points. Your
agent installation may be using a custom capture points file in a different location.

Instrumentation points can still be enabled and disabled dynamically, regardless of the selected
monitoring profile. See "Adding a Disabled Point and Enabling it at Runtime" on page 146.

Mapping Metrics to a Monitoring Profile

The P<number>? notation in the metrics.config file maps the metric to a monitoring profile. Just as for
instrumentation points, the number indicates that the metric is enabled for all profiles at the value of
number or higher. The metric is disabled for all monitoring profiles smaller than the specified value.

For example, in <agent_install_dir>\etc\metrics.config:

P135?system/PageOutsPerSec = PageOutsPerSec|count|System

The metric is collected for a custom profile 135 and for any higher custom profiles. The metric is also
collected for the predefined profiles 140 and 170 since they are higher than 135. The metric is not
collected for any custom or predefined profiles less than 135.

Mapping Property Values to a Monitoring Profile

The monitoring profile property settings files map property settings to a monitoring profile.

The monitoring profile property settings files are in <agent_install_dir>\etc\defaults. Each predefined
monitoring profile has its own property settings file, for example 120.settings. Custom monitoring
profiles will also each have a settings file here—you need to create those files.

Each property files contains the property definitions for the respective monitoring profile. For example,
the 120.settings contains:

#
Default settings for the '120' monitoring profile

HPE Diagnostics (9.26) Page 109 of 305

Java Agent Guide
Chapter 8: Monitoring Profiles

#
title = Application monitoring in production environment

capture.minimum.method.latency = 51ms
capture.maximum.method.calls = 1000

dispatcher.minimum.fragment.latency = 51ms
dispatcher.minimum.sql.latency = 1s

In the file, property names are constructed by using the module name (which is generally the same as
the property file root name) as the prefix for the property, and separating it from the property name with
adot.

For example, the capture.maximum.method.calls property above is for maximum.method.calls
property from capture.properties. The maximum.method.calls property definition in capture.properties
is commented out as follows.

Never capture more than this number of methods per instance tree.
This is regardless of latency and depth trimming.

Note that this applies all methods, including outbound calls.

The default value depends on the monitoring profile.
#maximum.method.calls=

All monitoring profile property files should contain the same property definitions—with potentially
different values, of course. At the same time, the property definition in the original property file should
be commented out.

When the probe resolves the properties, it checks <agent_install_dir>/etc/defaults last. That is, the
probe only uses the property definition from the monitoring profile properties file when there is no
definition found in the primary properties file.

This allows you to override some of the properties for all profiles with a single line change, simply by
uncommenting the property in the primary property file and providing the universal, monitoring profile
independent value. Also, for those properties that can be dynamically changed, this allows you to
change the property by modifying the module specific property file, without even knowing which
monitoring profile is or will be selected.

HPE Diagnostics (9.26) Page 110 of 305

Chapter 9: Automatically Assigning a Probe to an
Application

This chapter describes how to automatically assign a probe to an application.
This chapter includes:

o "About Automatic Probe Assignment" below

« "Configuring a Probe to Automatically Assign Applications" below

« "Configuring an Agent to Automatically Assign Applications" on the next page

« "General Configuration" on the next page

About Automatic Probe Assignment

You can assign a probe to an application so that in the Diagnostics Commander Ul, you can view the
probe data within the context of that application. You can assign a probe to an application by the
following methods:

« Configure the Java Probe or Agent to automatically create applications in the Diagnostics
Commander and associate monitored data with the application. For details, see below.

« Manually create an application in the Diagnostics Commander and select the entities associated
with it. For details, see "Working with Applications" in the HP Diagnostics User Guide.

« Use scripts with Composite Application Discovery (CAM). For details, see "Automating Composite
Application Discovery in HP Diagnostics" in the HP Diagnostics Server Installation and
Administration Guide.

Configuring a Probe to Automatically Assign Applications

To automatically create an application (if it does not already exist) and assign an individual probe toit,
you set the probe property setting -Dprobe.belongsto.application as a Java system variable. For
example, setting -Dprobe.belongsto.application=MyGroupName/MyAppName creates a group called
MyGroupName and within it, an application called MyAppName, to which the probe is assigned. For
details on setting a probe property as a Java system variable, see "Specifying Probe Properties as
Java System Properties" on page 38.

Note: Use a single slash (/) as a separator. For example, MyGroupName/MyAppName.

HPE Diagnostics (9.26) Page 111 of 305

Java Agent Guide
Chapter 9: Automatically Assigning a Probe to an Application

Configuring an Agent to Automatically Assign Applications

To automatically create an application (if it does not already exist) and assign an agent to it, you
configure the belongsto.application parameter in the <agent_install_
directorydir>etc/probe.properties file. For example:

Setting belongsto.application=MyGroupName/MyAppName creates a group called MyGroupName
and within it, an application called MyAppName, to which all probes on the agent are assigned.

Setting belongsto.application=${MyAppGroup}/MyString/${PROBE_ID}, creates a group with the
name of the value in the MyAppGroup variable, within it a sub-group called MyString, and within that,
an application with the name of the value in the PROBE_ID variable. Since the application name is
specific to one probe, only that probe is assigned to it as each probe on the agent creates and
application with a different name.

Note:
« Useaslash (/) as a separator. For example, MyGroupName/MyAppName.

« All the probes of an agent are assigned to the configured group, unless you use variables that
create different groups or applications to which specific probes can be assigned.

« Changing the belongsto.application parameter in the <agent_install_
directorydir>etc/probe.properties file requires you to restart the application the probe is
monitoring.

« The Belongs to Application field in the Diagnostics Commander Ul is only populated when
there is at least one reported server request.

General Configuration

By default, automatically assigning a probe to an application is enabled and a task is run every 5
minutes to check for new group and application names to be created. You can disable this feature and
change the frequency of the task, by editing the following parameters in the <diag_server_install_
dir>/etc/server.properties file on the Diagnostics server:

belongsto.application.rules.disable. By default, this feature is enabled (that is, it is set to false).

belongsto.application.frequency. By default, this is set to 5 minutes, which is the minimum you can
set.

Note: These parameters are dynamic and changing them does not require a system restart.

HPE Diagnostics (9.26) Page 112 of 305

Chapter 10: Custom Instrumentation for Java
Applications

This chapter explains how to control the instrumentation that Diagnostics applies to the classes and
methods of the applications to enable the Java Agent to gather the performance metrics.

This chapter includes:
o "About Instrumentation and Capture Points Files" below
» "Using Regular Expressions in Points Files" on page 115
« "Coding Points in the Capture Points File" on page 115
« "Defining Points With Code Snippets" on page 122
o "Controlling Class Map Capture" on page 135
« "Instrumentation Examples" on page 135
« "Understanding the Overhead of Custom Instrumentation" on page 148
« "Instrumentation Control on a Per Layer Basis" on page 148
« "Instrumented Location Throughput Throttling" on page 149
« "Advanced Instrumentation Examples" on page 150
» "Configuring Cross VM Correlations for New or CustomTechnologies" on page 160
o "Tutorial for Configuring Cross VM Correlation for Custom Technologies" on page 164
« "Maintaining Instrumentation from the Java Profiler UI" on page 170

» "Default Layers Defined for Typical Java Classes and Methods" on page 181

About Instrumentation and Capture Points Files

Instrumentation refers to bytecode that the probe inserts into the class files of the application as they
are loaded by the class loader of your virtual machine. Instrumentation enables a probe to measure
execution time, count invocations, retrieve arguments, catch exceptions, and correlate method calls
and threads.

Instrumentation is controlled by instrumentation points. The points define which methods to instrument,
how they should be instrumented, and which instrumentation should be installed. Instrumentation
points for each probe instance are specified in a capture points file.

HPE Diagnostics (9.26) Page 113 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

The points in the capture points file are grouped into layers. Layers organize the performance metrics
into meaningful tiers of information that can be compared as part of a triage process. They control the
collection behavior of the instrumentation. You can customize the default layers and create new layers.
For description of the default layers see "Default Layers Defined for Typical Java Classes and
Methods" on page 181.

When you install the Java Agent, a predefined capture points file is installed with a set of points for the
platform you are using. This default capture points file is located at <agent_install_
directory>\etc\auto_detect.points.

You can customize the points in the capture points files to include methods, classes, packages, and
namespaces for areas of the application that do not fall within the default points. A common situation
that might require custom points is when a J2EE application contains business logic that is not derived
from the javax.ejb.SessionBean interface. Another situation for custom points is when you want to
override a default point to alter its layer or to track it from a specific caller method.

To add custom instrumentation, you can do one of the following:

« Modify the <agent_install_directory>\etc\auto_detect.points file with your instrumentation
customizations. All probes on the same host use this instrumentation. You will need to back up this
file and merge back your changes when upgrading the Java agent.

« Copy and rename the <agent_install_directory>\etc\auto_detect.points file and then add your
instrumentation customizations. Specify the name and location of the new points file in the <agent_
install_directory>\etc\probe.properties file. For example:

Name of the instrumentation points file to be used when reporting
to AM/BAC or AD/LoadRunner/PC. The default value is "auto_detect"
which points to probelInstall/etc/auto_detect.points file.

#

points.file.name=auto_detect
points.file.name=my_custom_points

The file name must have the ".points" suffix although the file name that you specify in <agent_
install_directory>\etc\probe.properties does not have the suffix. The file location that you
specify is relative to the <agent_install_directory>\etc directory.

All probes on the same host use this instrumentation. Using a copy of the file prevents you from
needing to back up and restore it when upgrading the Java agent.

« Copy and rename the <agent_install_directory>\etc\auto_detect.points file following the naming
guideline note below. Then add the instrumentation customizations that are needed for an individual
probe.

Note: A custom capture points file name must be different than the probe name. Custom
capture points file names that match the probe name are reserved for internal use. To help you
recognize the probe associated with a custom capture points file, use the probe name with a
suffix of prefix. For example, for a probe named “MyProbe” you can specify a custom capture

HPE Diagnostics (9.26) Page 114 of 305

Java Agent Guide

Chapter 10: Custom Instrumentation for Java Applications

points file name of “MyProbe_custom”.

Specify the name and location of the new points file as the "-
Dprobe.points.file.name"JVM parameter when you start the application server. How you start the
application server depends on the type of application server. For example on GlassFish the

JVM parameters would be:

-javaagent:<agent_install_directory>/1lib/probeagent.jar

-Xbootclasspath/p:<agent_install directory>/classes/auto/<probe_id>/instr.jre
-Dprobe.id=<probe_id>
-Dprobe.points.file.name=WL10_MedRec_ovrserverl30_custom

Only this application server instance (JVM) uses the custom points file. The instrumentation in the
auto_detect.points or other custom instrumentation file on the host is ignored.

Using Regular Expressions in Points Files

Points can include regular expressions that "wildcard" the instructions so that they apply to more than
one method, class, and package or namespace specification. For more information about using regular
expressions, see “Using Regular Expressions” in the HP Diagnostics Server Installation and

Administration Guide.

Coding Points in the Capture Points File

The following arguments can be used to define a point in the capture points file:

[Point-Name]

class

method
signature
ignore_cl
ignore_method
ignore_tree

method_access_filter

deep_mode
scope
ignoreScope
detail

layer
layerType
rootRenameTo
keyword
priority
active

HPE Diagnostics (9.26)

<unique name for the point>

<class name or regular expression>
<method name or regular expression>
<method signature or regular expressions>

<list
<list
<list
<list
<soft
<list
<list
<list

of
of
of
of
or
of
of
of

class names or regular expressions>
method names or regular expressions>
class names or regular expressions>
class names or regular expressions>
hard mode>

methods or regular expressions>
methods or regular expressions>
specifiers>

<layer name>
<layer type>
<string>

<keyword>

<integer number>
<true, false>

Page 115 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

The following sections describe the arguments.
« "Mandatory Point Arguments" below

« "Optional Point Entries" on the next page

Mandatory Point Arguments

Every point, except for the points for CLP, LWMD, RMI and SAP RFC, HttpCorrelation, and JDBC

SQL, must contain the following arguments:

Argument Description
Point-Name A unique name for the point.
class Specifies the name of the class or interface to be instrumented. The

name should include the full package/namespace name using periods
between the package levels. Any valid regular expression can be used.

method Specifies the name of the method to be instrumented. To be successful,
the method name must match a method defined in the class or interface
specified by the class argument. Any valid regular expression can be

used.

signature Specifies the signature (parameter and result types) of the method using
javap symbolic encoding for method signatures (<jdk_install>/bin.javap
-S).

layer Specifies a layer, sublayer, or tier under which the data from this point is

grouped. Layers are a part of the instrumentation collection control.

Layers in a point can be specified with nested layers or sublayers by
separating the layer names with a/ (slash). The layer specified following
the slash is a sublayer of the layer specified before the slash. A sublayer
can have its own sublayers by coding another slash and layer name
following a sublayer name.

In the Ul, the sublayers for a layer are displayed under their parent layer.
For example, the sublayers JSP and Struts would be displayed under
the web layer and a drilldown would exist from Web to JSP and Struts.

The following is an example of a custom point that contains the mandatory arguments:

[MyCustomEntry_1]

; comments here...

class = myPackage.myClass.MyFoo
method = myMethod

signature = I.*

layer = myCustomStuff[MyCustomEntry 1]

HPE Diagnostics (9.26) Page 116 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Note: Regular expressions can be used for most of the arguments in a point. They must be
prefaced with an exclamation point. For more information about using regular expressions, see
“Using Regular Expressions” in the HP Diagnostics Server Installation and Administration Guide.

Optional Point Entries

Point definitions can contain one or more of the following arguments:

Argument Description

keyword The keyword indicates an instrumentation point handled by a special
instrumentation class. The value of the keyword is looked up as a
property in inst.properties, and the value of the found property is the
instrumentation class name. The special instrumentation points can
use implementation-specific arguments not documented here, refer to
the comments in the inst.properties file.

ignore_cl Specifies a comma-separated list of class names or regular
expressions to ignore. Any class matching one of the classes
specified with ignore_cl is not instrumented.

ignore_method Specifies a comma-separated list of methods to ignore. Any method
matching one of the methods specified with ignore_method is not
instrumented.

Ignore_tree A list of classes or regular expressions. Any subclass of a class

matching one of the list items is excluded from the instrumentation.

method_access_filter A list of method specifiers, separated by commas. The available
specifiers are static, private, protected, package, and public. Any
method matching this point is not instrumented if its access specifier
matches any of the listed values.

HPE Diagnostics (9.26) Page 117 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Argument Description
deep_mode Specifies how subclasses are handled. This argument accepts three
values:

none — A value of “none” is similar to not specifying a deep_mode
argument. The instrumentation point applies only to the specified
class and has no effect on how subclasses are handled.

soft — A value of “soft” requests that for every class or interface
matching the class, method, and signature entries, any subclasses or
subinterfaces at any depth that also implement the matching method
and signature should also be instrumented.

hard — A value of "hard" means that the instrumentation point applies
(in addition to the specified class) to all methods from all classes
extending (or implementing) the specified class, wherever the method
matches the instrumentation point specification (both method name
and signature). Hard mode is typically used for points for interfaces.
Caution: Hard mode can lead to extensive instrumentation and very
high probe overhead.

Note: Since deep_mode looks at the class hierarchy, it cannot be
used for instrumentation points based on annotations.

scope Constrains the context in which instrumentation is performed. If
specified, the inserted bytecode will be caller side. Any valid regular
expression can be used for the value of this argument. Scope values
are a comma-separated list of package, class, and method names in
standard Java notation.

ignoreScope Lists method names or regular expressions and excludes certain
packages, classes, and methods from those included in the scope
specified in the scope argument.

HPE Diagnostics (9.26) Page 118 of 305

Java Agent Guide

Chapter 10: Custom Instrumentation for Java Applications

Argument

detail

HPE Diagnostics (9.26)

Description

Specifies more specific capture instructions. It is a comma-separated
list of the following:

« caller —causes caller side instrumentation to be performed. If this

keyword is not specified, the default instrumentation, callee side
instrumentation, is performed.

args:n —calls the toString() method of the n-th argument. The
string that is returned is displayed in the method's argument field in
the Diagnostics console. The captured string can be used as the
aggregation parameter in the layer argument. The value for n can
be 1 through 256.

args:0 —calls the toString() on the current class instance or callee
object. Static methods return the class name of the callee object.

before:code:<code-key> — inserts the code-snippet specified in
the key at the start for the bytecode for methods that comply with
the point. The final string value on the stack when the code-snippet
runs is displayed in the method's argument field in the Diagnostics
console and can also be used as the aggregation parameter in the
layer argument. The code-key argument specifies the secure code
key you generated for the code snippet you created for the point.
See "Defining Points With Code Snippets" on page 122 for
information about code snippets and "Securing Code Snippets" on
page 133 for information on code keys.

after:code:<code-key> — inserts the code-snippet specified by the
key at every exit point from the bytecode of methods that comply
with the point. The after code-snippets should not leave any values
on the stack after they run.

Page 119 of 305

Java Agent Guide

Chapter 10: Custom Instrumentation for Java Applications

Argument

HPE Diagnostics (9.26)

Description

« disabled — prevents the instrumentation inserted into the bytecode

from reporting data. A disabled point can be dynamically enabled
using the Instrumentation control web page so that it will begin
reporting data. This web page can be accessed using the Profiler
URL

http://<agent_install_directory>:<probe_port>/inst/layer.

outbound —flags the method so it is listed on the Outbound Calls
screen. Also causes the Diagnostics argument for this
instrumentation entry to be parsed to determine if additional
information about the outbound request can be displayed in the
Diagnostics dashboards.

no-correlation — used with those “outbound” points that do not use
correlation supporting technologies.

method-no-trim —indicates that no latency-based trimming
should take place when a method instrumented by this point is
executed.

method-trim — indicates that every invocation of the method
instrumented by this point should be “trimmed”, that is, not
reported. However, side-effects of the corresponding code-
snippets, if any, take place normally.

lifecycle —identifies the instrumentation point as relevant for
object lifecycle monitoring.

no-layer-recurse — prohibits recording of any methods called from
the method instrumented by this point, unless the callee belongs to
a different layer.

is-statement — marks calls into the java.sql.Statement class.

is-prepare-statement — marks calls returning java.sql.Statement
objects to capture.

method-cpu-time — causes the CPU inclusive time to be
collected for this method in addition to latency, unless CPU
collection is completely turned off
(cpu.timestamp.collection.method = 0).

Page 120 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Argument Description

« condition — prohibits instrumentation by this point unless the
specified condition is met. The conditions are static and are
defined by the details.conditional.properties property in
inst.properties (or on the command line).

« when-root-rename — instructs the probe to rename the server
request whenever the method instrumented by this point is the first
one executed.

« diag — marks the point as relevant for HP Diagnostics (default).
« tvi<key>—marks the point as relevant for HP Transaction Vision.

« no-tv—marks the point as conflicting with HP Transaction Vision.
If Transaction Vision is configured to be active, such points are
prohibited from instrumenting the Java code at all.

« add-field:<access>:<type>:<name> — causes adding the
specified field to the instrumented class.

« gen-instrument-trace — causes printing of the thread stack trace
onto stdout whenever this point is used for instrumentation.

« gen-runtime-trace — causes printing of the thread stack trace onto
stdout whenever the methods instrumented by this point are
executed.

« trace — causes printing of verbose instrumentation information into
probe.log on each enter or exit from each method instrumented by
this point.

« sub-point:<key> — specifies additional processing during
instrumentation; the key must be present in inst.properties and
must identify a class name used for the processing.

« store-thread — causes all special fields used in the corresponding
code-snippet to be stored in a thread-local data structure.

« store-fragment — causes all special fields used in the

corresponding code-snippet to be stored as attributes of the
current server request.

HPE Diagnostics (9.26) Page 121 of 305

Java Agent Guide

Chapter 10: Custom Instrumentation for Java Applications

Argument

rootRenameTo

layerType

priority

active

Description

« store-method — causes all special fields used in the

corresponding code-snippet to be stored as attributes of the
invocation of the method instrumented by this point.

ws-operation — specifies that the instrumentation entry is for an
inbound web services call. Also causes the Diagnostics argument
for this instrumentation entry to be parsed to determine if additional
information about the web service request can be displayed in the
Diagnostics dashboards.

Identifies server requests whenever the when-root-rename detail is
in effect.

Specifies special handling for some instrumented methods and
accepts the following values:

method - no special handling (default).

trended_method — identifies methods to be displayed in the
Trended Methods view.

Portlet — identifies portlet lifecycle methods that are used for the
Portal Components views. These are set by HP Diagnostics and
should not be modified.

sql —identifies methods that are used to capture SQL for the SQL
views. These are set by HP Diagnostics and should not be
modified.

Whenever there is more than one instrumentation point that can be
applied to a given method, and the Diagnostics Agent cannot resolve
the conflict on its own, the point’s priority determines which point to
use. Higher priority wins. The default is zero.

Activates or deactivates a point. When set to true, the point is
activated. When set to false, the point is inactive and is ignored by the
probe.

Defining Points With Code Snippets

Custom code arguments specify a snippet of code that is to be inserted into the bytecode for a point.
Code snippets in a point are used when the value retumned by calling an object’s toString() method, as
specified in the args:n argument, is not going to provide useful information for the Diagnostics console
or when there is a requirement to display more than one argument for an instrumented method.

A code snippet in a point is declared using the keyword before:code:<code-key> or after:code:<code-
key> in the detail argument of the point. The before and after is used to execute the code snippet before
or after the instrumented method. The code snippet is typically secured using a code-key argument to

HPE Diagnostics (9.26)

Page 122 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

prevent unauthorized modifications of the code snippet. The values for the code-key arguments can be
generated using any running probe's code-key generator page and are valid on any Java Agent
installation. For more information on the code-key see "Securing Code Snippets" on page 133.

The actual code snippets for a point are entered into the <agent_install_
directory>/etc/code/custom_code.properties file. These snippets are then associated with the point
in the capture points file using the value of the code-key. Code snippets are created using pseudo Java
code that uses syntax similar to OGNL. Using code snippets, calls can be made from the instrumented
bytecode to methods that can be accessed by the instrumented method. Objects returned by code
snippets can be cast and can have their methods executed as well. Code snippets must end with a
string or an object where toString() can be left on the stack of statements being parsed into bytecode.
This final string of the code snippet is used for the returned argument value displayed in the Diagnostics
console.

Code snippets can also be used to store values for a particular fragment directly or that could be used in
a later code snippet. These features can be used through special fields and key word details like store-
fragment and store-thread.

Note: Code snippets are a very powerful tool that should be used carefully because of the potential
impact to the overhead incurred by the probe. For this reason, Diagnostics requires that a code-key
be specified along with the code snippet before the probe will use the code snippet during
instrumentation.

This section includes:
« "Using Code Snippets" below
« "Code Snippet Grammar" on the next page
« "Code Snippet Helper" on page 127

« "Securing Code Snippets" on page 133

Using Code Snippets

To use code snippets when specifying a point in <agent_install_directory>/etc/auto_detect.points,
the following detail:

class = javax.jms.TopicPublisher

method = publish

signature = !\(Ljavax/jms/Topic.*

deep_mode = soft

layer = Messaging/JMS/Producer

detail = outbound,no-correlation,before:code:6d0f3088

The before:code entry in the detail argument indicates that a code snippet was entered for the point.
The code-key value secures the code in the code snippet and ties the point with the actual code
snippet.

HPE Diagnostics (9.26) Page 123 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

The code snippet associated with the point must be entered in <agent_install_
directory>/etc/code/custom_code.properties as shown in the following example:

Used by [IMS-TopicPublisher2]

6d0f3088 = #topic =

@ProbeCodeSnippetHelper@.checkForTempName (#argl.getTopicName()); \
"DIAG_ARG:type=jms&name=topic:"+ #topic + "&target=topic://" + #topic;

The code snippet is associated with the point in the capture points file using the value of the code-key.

Code Snippet Grammar

The following describes the syntax that must be used to create the code snippets.
Literals

Only the following literal types are supported in code snippets.

Literal Type Syntax Example
string "a string"

boolean true, false
integer 42

null constant null

a no-type, no-value constant void

String concatenation

Basic string concatenation is supported in code snippets.

Concatenation Type Syntax Example
Two strings "a string" + "another string"
A string and a literal "astring" + 42

Local members

Default local members provide a way for code snippets to reference the current instance or objects that
were passed to the instrumented method. These local members call methods or retrieve values from
those references.

Variable Use

#callee References the callee object for an instance method. Equivalent
to the java “this” reference. Must not be used when referencing a
static method.

#arg1, #arg2, ..., #argN References the arguments for the callee method call.

HPE Diagnostics (9.26) Page 124 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Variable Use

#return References the return value of the method end for after code
snippets.

#classloader Reserved for HP Software internal use.

Note: Some instrumentation points support special variable references. For example, the
CLApplicationDiscoveryPoint supports a #classloader variable.

DIAG_ARG strings

Code snippets allow concatenation of a series of values building up a single DIAG_ARG value. This
value allows for instrumentation of some common types of support data like Web Services and JMS by
returning all the data for a particular type in one DIAG_ ARG formatted string.

Type Field (Required) Definition
ws &ws_name Web Service name
&ws_op Web Service Operation name
&ws _ns Web Service namespace
&ws_port (inbound only) Web Service Port Name
&target (outbound only) Outbound Web Service Target
jms &name Queue or Topic name
&target Target Queue or Topic name

The format of the DIAG_ARG string includes the type fields and values (local variables) concatenated
into one string as follows:

"DIAG_ARG:type=ws&ws_name="+ #servicename +"&ws_op="+ #operation +\ "&ws_ns="+ #ns
+"&wWs_port="+ #port;

The DIAG_ARG string must not be used in combination with the store-fragment special fields for web
service inbound data (special fields starting with #WS _inbound_*). Use ONLY one for collecting web
service inbound data.

Special fields (store-fragment)

Default special fields provide an easy way for code snippets to pass fragment-related data for common
events. This mechanism supplements the existing events, but is not expected to replace them.
Fragment Local Storage has higher overhead cost than custom events. The following variables must be
used with the store-fragment detail setting.

Variable Use
#WS_consumer id Stores the consumer Id for a particular fragment.
##WS_SOAP_fault_code Stores the SOAP fault code.

HPE Diagnostics (9.26) Page 125 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Variable Use

##WS_SOAP_fault_reason Stores the SOAP fault reason.

#WS_ SOAP_fault_detail Stores the SOAP fault detail.

#WS _inbound_service name Stores the inbound web service name.

##WS _inbound_operation_name Stores the inbound web service operation name.

##WS_inbound_target_namespace Stores the inbound web service target namespace.

##WS_inbound_port_name Stores the inbound web service port name.

Special fields (store-thread)

Additionally special fields provide an easy way for code snippets to store related data for the life of the
thread. Use these thread local storage variables with caution because they have overhead associated
with them. Use them only with the store-thread detail setting.

These variables can be retrieved in later code snippets by making a call to the probe’s
ThreadContextProxy class reference with either the getThreadContextValue(“string value”) or
getAndRemoveThreadContextValue(“string value”) methods, with “string value” being the name of the
variable without the leading ## signs. The last retrieval of the value should always call
getAndRemoveThreadContextValue(“string value”) to clear the value from memory and to remove the
value for the next thread.

Variable Use

#SOAPHandler wsname Stores the web service name for later use by the SOAP
Handler.

##t<any_string> Stores any value for later retrieval in a following code snippet.

Class references and static members

Static members/methods can be accessed by pre-pending the class withan @ symbol to identify it as a

Static, and marking the method being accessed with an @ symbol as in the examples below:
@java.lang.System@.out ("Hello World");
@com.mercury.diagnostics.capture.metrics.countingCollector@.incrementCounter();

The arguments in the code snippets support Java class syntax when the Java class is surrounded with
a marker that the parser can get hold of. The following examples show how to use the @ symbol as a
marker:

@java.lang.System@

@java.lang.System@out (Static field)

HPE Diagnostics (9.26) Page 126 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Code Snippet Helper

Some functionality is very hard, or even impossible, to get coded using the limited syntax available
within the code-snippets.

Therefore, the code-snippet environment offers two helper classes, ProbeCodeSnippetHelper and
ProbeCodeSnippetHelperV5. The CodeSnippetHelperV5 uses some APIs available only with Java 5 or
later.

The following shows ProbeCodeSnippetHelper functionality.

/*

* (c) Copyright 2008 Hewlett-Packard Development Company, L.P.
*/

package com.mercury.opal.capture.proxy;

/**

* Used to help out Code Snippets

*/

public class ProbeCodeSnippetHelper {

/x*

* When a Special Field holds a reference to the string below,
* it will not be stored in the Fragment Local Storage,

* or Invocation Local Storage

*/

public static final String DO_NOT_STORE = ...

/**

* Helper to convert an int to an Integer

* @param i

* @return a new Integer object having the value of i

*/

public static Object intToInteger(int i) {

}

/*

* Mark the current thread, if not marked yet

* @return true, if and only if the thread had been already marked
*/

public static boolean testAndSetRecursiveFlag() {

}
/*
* Unmark the current thread
*/

public static void clearRecursiveFlag() {

}
/**
* Helper method to call ResourceBundle.getString() and catch any exceptions that

HPE Diagnostics (9.26) Page 127 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

* might be thrown

* @param theBundle the ResourceBundle on which to call getString

* @param key the key to pass getString

* @return the value returned from getString, or null if an exception occurred
*/

public static String getStringFromResourceBundle(ResourceBundle theBundle,
String key) {

/*

* Helper methods to allow our cross-vm coloring to piggyback ride across

* the custom outbound calls in which the application passes [only] a String.
* The actual transport technology is irrelevant.

* Instead of sending the original message, a composite message ("envelope")
* will be passed. The composite message includes both the original message
* and Diagnostics Probe ENCODED cross-vm coloring.

* On the receiving end, the composite message will be received, but only

* the original message will be passed to the application, and the coloring
* will be retained by the probe.

*/

/**

* Create a composite message, given the coloring and the original message.

* @param coloring - the correlation String obtained via the ENCODED coloring,

* may be null

* @param originalMessage - the original messsage sent by the application

* @return - the composite message, null if and only if the originalMessage is
null

*/

public static String createDiagEnvelope(String coloring, String originalMessage)

{

}

/**

* Extract the coloring from the composite message (envelope).

* @param envelope - the composite message or the original message

* @return the coloring as created on the sender side, or null if not present
*/

public static String extractColoringFromDiagEnvelope(String envelope) {

*
*

Extract the original message from the composite message (envelope).
Works properly, even if the sender side has not been instrumented, and
there's no envelope.

@param envelope - the composite message or the original message
@return the original message (before coloring)

* ¥ ¥ ¥ ¥ DN P e
.

*/
public static String extractOriginalMessageFromDiagEnvelope(String envelope) {

HPE Diagnostics (9.26) Page 128 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

}
}
}

The following shows ProbeCodeSnippetHelperV5 functionality.

/*

* (c) Copyright 2008 Hewlett-Packard Development Company, L.P.
*/

package com.mercury.opal.capture.jdkl5.agent;

/**

* Used to help out Code Snippets using Java 5 or later

*/

public class ProbeCodeSnippetHelperV5 {

/**

* Get the annotation of the specified type from the class or its superclass,
or its implemented interfaces

@param theClass The class to get the annotation for

@param annClass The annotation class to look for

@return

* ¥ ¥ ¥

*/
public static Object getEndpointClassAnnotation(Class theClass, Class annClass)
{

}

/**

* Get the method annotation of the specified type from the class
* or its superclass, or its implemented interfaces

* @param theClass the class

* @param methodName the method name

* @param argCount the argument count

* @param annClass the class annotation type

* @param methodAnnClass the method annotation type

* @return

*/

public static Object getEndpointMethodAnnotation(Class theClass, String
methodName,

String argCount, Class annClass, Class methodAnnClass) {

*
*

Helper method to get an annotation element value. If the annotation
does not have the element, return null.

@param annClass The class of the annotation

@param instance The annotation instance object

@param elementName The element name

@return The element value for the annotation instance, or null

¥ ¥ ¥ ¥ ¥ ¥ DN Y e

*/

HPE Diagnostics (9.26) Page 129 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

public static String getAnnotationElementValue(Class annClass, Object instance,
String elementName) {

*
*

This helper method is used to serialize a DOM document.

This method uses APIs available in DOM Level 3 or newer, which are
available with a 1.5 or later JVM.

@param document

@return The serialized form (XML) of the input DOM document

I R R]

*/

public static String serializeDOMToString(Document document) {
}
}

Spanning multiple lines with the stack of method calls

The stack of method calls in a code snippet can span multiple lines. The parser that builds the bytecode
requires a “\” (backslash) before each carriage return when it must continue parsing the stack of
statements. The final line of the Code Snippet stack of statements should not contain a backslash and
should simply end with carriage return.

@java.lang.System@.out ("Hello World");\
"Callee Name="+#fcallee.getName().toString();
Casting

When calling a method that returns an object, casting is typically required to call members on the
returned object. Casting is supported on object references. To cast an object to another type, place the
casting reference between the symbols “<“ and “>” following the reference to that object. The following
are examples of casting.

#targl<com.myCompany.myFoo>.myMethod();
This is equivalent to the Java statement:

((com.myCompany.myFoo)argl).myMethod();

@some.class.Foo@foo<com.myCompany.myFoo>.myMethod();
Would be equivalent to the java statement:

((com.MyCompany.myFoo)some.class.Foo.foo).doSomething();
#foo = #argl<bar>.b(); #foo.toString();

Creates the following java equivalent:

String foo = ((Bar)argl).b(); ((Object)foo).toString();

HPE Diagnostics (9.26) Page 130 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Note: Casting is not supported for special types such as #classloader.

Method calls

Method calls can be included in snippet arguments. The support of method calls includes calls with or
without arguments and method chaining. The following are examples of method calls that are included
in code snippet arguments:

#targl.toString()
#targ2.getSomething().getSomethingElse()
#tcallee.getSomething("foo", #argl).somethingElse()
@some.Class@.staticMethod()

The dot still needs to appear after the static reference for the method call to be parsed properly.

@java.lang.System@out.println("Here I am!")

To speed up the generation of bytecode at runtime (by avoiding reflection), you can specify the type
that is returned from a method as shown in the following example:

#targl.getSomething()<some.class.Here>
This will not help if the method takes arguments, or if a static field is used.
Multiple statements

Code snippets can include multiple statements in a single code snippet. This is necessary for
instrumentation, such as CLApplicationDiscoveryPoint, that expect multiple objects to be left on the
stack. It can be handy in other situations as well.

@java.lang.System@out.println("Look out!");
ttarg2.getSomething();
Local Member assignment

In addition to the default local member variables, you can create your own local members to hold object
references returned by called methods.

To create a new local member, enter the "#" symbol before the name of the local member. The parser
will create the local member. Once a local member is assigned a value it cannot be overwritten; simply
create a new variable if you need to re-assign to a local member.

#myBar = #arg2.getName();\
#tmyUpperBar = #myBar.toUpper();\
"Target Name=http://"+myUpperBar+"/services";

Special Field assignment (store-fragment)

HPE Diagnostics (9.26) Page 131 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

You can use a pre-defined special field to store the object references retumned by called methods. Enter
the "##" symbols before the name of the special field along with the store-fragment detail keyword on
the instrumentation point.

##WS_SOAP_fault_code = #arg2;\
##WS_SOAP_fault_reason = #arg3;\
##WS_SOAP_fault_detail = (#argd == null ? null : #arg4.toString());"";

Special Field assignment (store-thread)

You can use a special field to store the object references returned by called methods. Enter the "##"
symbols before the name of the special field along with the store-thread detail keyword on the
instrumentation point.

Used by [SOA_Broker_Payload_Handler]
##SOA_Manager_Inbound_Payload=#callee.getRequestDocument();"";

In a later code snippet you can retrieve the value stored by calling getThreadContextValue with the
special field value above without the leading ## symbols.

#temp_soam_
payload=@com.mercury.opal.capture.proxy.ThreadContextProxy@.getThreadContextValue
("SOA_Manager_Inbound_Payload");

In a later code snippet you can retrieve and remove the special field value stored by calling
getAndRemoveThreadContextValue method with the value same above without the leading ##
symbols. It is very important that you call getAndRemoveThreadContextValue to free memory and
clear the way for the next occurrence.

#temp_soam_payload=@com.mercury.opal.capture.proxy.ThreadContextProxy@.
getAndRemoveThreadContextValue(("SOA_Manager_Inbound_Payload");
Conditional Logic

Code snippet syntax allows for limited conditional logic that is equivalent to the Java if-else statement.
This syntax enables you to compare object references of the same type or integer or boolean primitives
using both the == and ! = operators. Literal value and other primitive comparisons are not valid using this
syntax.

The following is an example of how to compare references:

(valuel == value2 ? <if_True_codeSnippet>:<if_False_codeSnippet>)

The following is an example of how to verify that an object is not null before calling a method:

(#argl == null ? "Unknown" : #argl.getSomething())

This would be equivalent to the following Java statement:

if (argl==null) return "Unknown" else return argl.getSomething();
Exception Handling

A limited form of exception handling is provided by the following syntax:

HPE Diagnostics (9.26) Page 132 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

1{<code-snippet-code>}!

The specified code is executed and the value of the above expression is the thrown exception, or null if
no exception was thrown during the execution of the code.

Securing Code Snippets

By default, you must specify a valid code-key along with the code snippet before the probe will use the
code snippet during instrumentation. Requiring the code-key prevents accidently introducing
instrumentation that could significantly increase the overhead of the probe.

When you generate the code-key, Diagnostics checks the syntax of the code snippet to make sureiit is
valid before it generates the key. When Diagnostics instruments an application, it checks the value
entered for the code-key argument to make sure it matches the code-key it calculates for the code
snippet for the point. If the code-keys do not match, Diagnostics ignores the code snippet and does not
create the instrumentation point.

Generating the Code Snippet Code-Key
The Java Agent is installed with a tool that generates the code-key from the code snippet you input.

To generate a code-key:
1. Open the page at the following URL in your browser:

http://<probe-host>:<probe-port>/inst/code-key

HPE Diagnostics (9.26) Page 133 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Diagnostics displays the page where you can validate the code snippet syntax and generate the
code-key as shown in the following example:

[Diagnostics f=|

This page provides you with the ability to validate a snippet of code for use in the probe's
points file, as well as generate the required secure code-key.

If a point's code does not match its key, the probe will refuse to use that code during
instrumentation.

Input your code snippet:

Submit I

Resulting point section:

HE Diagnostics J2EE Probe "WASE_Plants"

2. Enter the code snippet you specified in the code argument in the auto_detect.points file into the
Input your code snippet text box and click Submit.

The code snippet must include all of the text following the code =argument name.

3. Diagnostics presents the results of the code snippet validation and the code-key generation in the
Resulting point section text box.

If the code snippet is valid, Diagnostics displays the value of both the code-key and code
arguments. Enter these values into the capture points file.

If the code snippet is not valid, Diagnostics displays an error message that indicates the problem
that was detected. Correct the problem and click Submit again to validate the corrected code.

Disabling the Code-Key Security Check

By default, Diagnostics verifies that the value of the code-key argument matches the value it generates
when it is instrumenting the application. It is possible to disable this security check by inserting the
require.code.security.key property into the <agent_install_directory>/etc/code/custom_
code.properties file, under the [Default] section, with a value of false.

Note: Be very careful when using this property. If you disable this check, you could experience
unexpected processing overhead and unpredictable performance monitoring results.

HPE Diagnostics (9.26) Page 134 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Controlling Class Map Capture

The class map allows Diagnostics to provide more details about the classes and methods that are
invoked by a server request. This information can help you to narrow your search for the source of a
performance issue and help you instrument the application code properly. The cost for using class map
comes from the additional overhead that creating the map places upon the agent’s host system.

By default the property use.class.map=false is set in the probe.properties file. Changing this to true
provides a class map.

Instrumentation Examples

The examples in this section illustrate how you can customize the instrumentation of an application by
creating and modifying the points in the capture points file.

This section includes the following examples:
« "Custom Layer and Sublayer" on the next page
o "Wildcard Method" on the next page
« "lIgnore Specified Methods" on page 137
« "Capture Methods for the Trended Methods View" on page 137
« "Capture Only a Specific Method In a Class" on page 137
« "Capture a Specific Method That Returns a String" on page 138
« "Capture with a Controlled Scope" on page 138
« "Hard and Soft deep_mode" on page 139
« "Argument Capture" on page 140
« "Inbound and Outbound Web Services" on page 141
« "Renaming Root Methods" on page 142
« "Adding a Field to a Class" on page 142
« "Passing Attributes to Instance Trees" on page 142
« "Filtering Out Methods by Their Access Flag" on page 143

« "Not Recording Direct Recursion" on page 143

HPE Diagnostics (9.26) Page 135 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

« "Performing Caller Side Instrumentation" on page 143

« "Configuring Allocation Analysis" on page 144

« "Configuring Lightweight Memory Diagnostics (LWMD)" on page 144

« "Configuring Collection Leak Pinpointing" on page 145

« "Enabling Object Lifecycle Monitoring for JDBC Result Set" on page 145

« "Adding a Disabled Point and Enabling it at Runtime" on page 146

» "Specifying that a Method Should Never be Trimmed" on page 146

« "Specifying that a Method Should Always be Trimmed" on page 147

« "Enabling Collection of CPU Time for a Method" on page 147

o "Changing SAP RFC Instrumentation Based on SAP JCO Library Version" on page 147

o "Printing Instrumentation and Runtime Information for a Point (Debugging Only)" on page 147

Custom Layer and Sublayer

The following point creates a custom sublayer called “BAR” within the layer called “FOO” for the
method myMethod in myCompany.myFoo class:

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod

signature = 1.*

layer = FOO/BAR

Wildcard Method

The following point captures all methods in the MyCompany.MyFoo class:

[myCompany.myFoo_AllMethods]
class = myCompany.myFoo
method = !.*

signature = I.*

layer = FOO/BAR

HPE Diagnostics (9.26) Page 136 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Ignore Specified Methods

The following point captures all methods in the MyCompany.MyFoo class except for the methods
setHomelnterface and getHomelnterface:

[myCompany.myFoo_AllMethodsExcept]
class = myCompany.myFoo

method = !.*
ignoreMethod = !setHomeInterface.*, !getHomeInterface.*
signature = !.*

layer = FOO/BAR

The following point captures all methods in the MyCompany package/namespace except for those
contained in the MyCompany.logging class:

[myCompany_All Methods_except_from_MyCompany_ Logging]

class = !myCompany\..*

method = !.*

ignore_cl = MyCompany.logging
signature = !.*

layer = FOO/BAR

Capture Methods for the Trended Methods View

The following point captures the required data to populate the Trended Methods View for the myMethod
method:

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod

signature = I.*

layer = FOO/BAR

layertype = trended_method

Capture Only a Specific Method In a Class

The following point captures all methods in the constructor for the MyCompany.MyFoo class:

[myCompany.myFoo_Constructor]
class = myCompany.myFoo
method = <init>

signature = !.*

layer = FOO/BAR

The following point captures all methods in the singleton constructor for the MyCompany.MyFoo class:

HPE Diagnostics (9.26) Page 137 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

[myCompany.myFoo_Singleton]
class = myCompany.myFoo
method = <clinit>

signature = I.*

layer = FOO/BAR

The following point captures the setFoo method in the MyCompany.MyFoo class:

[myCompany.myFoo_setFoo]
class = myCompany.myFoo
method = setFoo
signature = 1.*
layer = FOO/BAR

The following point captures all "set" methods in the MyCompany.MyFoo class:

[myCompany.myFoo_AllSets]
class = myCompany.myFoo
method = !set.*

signature = I.*

layer = FOO/BAR

The following point captures all methods in the MyCompany package/namespace:

[myCompany_All Methods]

class = !myCompany\..*
method = !.*
signature = !.*

layer = FOO/BAR

Capture a Specific Method That Returns a String

The following point captures the getFoo method with no arguments that returns a java.lang.String in the

MyCompany.MyFoo class:

[myCompany.myFoo_GetFoo_String]
class = myCompany.myFoo

method = getFoo

signature = ()Ljava\lang\String
layer = FOO/BAR

Capture with a Controlled Scope

HPE Diagnostics (9.26)

The following point captures all methods in the MyCompany package/namespace that are called from
the MyCompany.logging class. For more details see "Using Caller Side Instrumentation” on page 150.

Page 138 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

[myCompany_All Methods_from_MyCompany_ Logging]

class = !myCompany\..*
method = !.*
signature = I.*

scope = MyCompany.logging
layer = FOO/BAR

The ignoreScope argument is used to exclude certain packages, classes, and methods from those
included in the scope specified in scope argument. The following point captures all methods in the
MyCompany package/namespace that are called from the MyCompany.logging class except for those
called from the myMethod method. For more details see "Using Caller Side Instrumentation" on page

150.

[myCompany All Methods_except_from_MyCompany_Logging]

class = !myCompany\..*
method = !.*
signature = !.*

scope = MyCompany.logging
ignoreScope = MyCompany.logging\myMethod
layer = FOO/BAR

Hard and Soft deep_mode

The following interface definition is used for both soft and hard deep_mode examples:

public interface Interfacel {

public void callerMethod();
}

The following class is used for both soft and hard deep_mode examples:

public class Classl implements Interfacel {
public void callerMethod(){
calleeMethod();
calleeMethod2();
¥
public void calleeMethod(){
System.out.println("hello world");
//more code lines here..
}
public void calleeMethod2(){
System.out.println("hello world 2");

}
}

HPE Diagnostics (9.26) Page 139 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

The following point captures the "callerMethod" in the Class1 class:

[Training-1]

class = Interfacel
method = !.*
signature = 1.*
deep_mode = soft
layer = Training

The following point captures all methods in Class 1 (for example, "callerMethod", "calleeMethod1" and
"calleeMethod2):

[Training-1]

class = Interfacel
method = !.*
signature = !.*
deep_mode = hard
layer = Training

Argument Capture

The argument displayed in Diagnostics is the final string left on the stack by the code snippet. Code
snippets must end with a string or an object where toString() can be left on the stack of statements to
be parsed to the bytecode.

Caution: Extreme caution has to be exercised when using argument capture. Unless the set of all
possible values of the captured argument is finite, the agent will run out of Java heap space.

Suppose that you instrument a method called myCompany.myFoo.myMethod(), and myFoo has
another method called getComponentName() that returns a String. The following example shows the
result of getComponentName() as the argument in Diagnostics (#callee refers to the callee object for an
instance method, in this case).

[myCompany_componentName_as_argument]
class = myCompany.myFoo

method = myMethod

signature = 1.*

detail = before:code: 8d2509eb

layer = FOO/BAR

The code snippet in the custom_code.properties file is entered as follows:

8d2509eb = #callee.getComponentName()

HPE Diagnostics (9.26) Page 140 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

The following point captures the first argument to myMethod and shows it as the captured argument in
Diagnostics. It also uses it as the sublayer name. This is achieved by including ${ARG} in the layer. In
this example, if the captured argument—in this case, the first argument of myMethod—has the value
myArg, the layer is FOO/myArg.

[myCompany_capture_firstArg_and_also_show_as_layer]
class = myCompany.myFoo

method = myMethod

signature = !.*

detail = before:code: 358f05d6

layer = FOO/${ARG}

The code snippet in the custom_code.properties file is entered as follows. If you use #arg2, you
would capture the second argument instead.

358f05d6 = #argl.toString()

Inbound and Outbound Web Services

When the detail argument in a point contains the "outbound" or "ws-operation" keyword, Diagnostics
attempts to parse the final string on the Code Snippet stack for additional information to display about
the method call.

For inbound Web Services (“ws-operation” detail must be used), the string looks like the following:

"DIAG_ARG:type=ws&ws_name="+<WebServiceName>+"&ws_op=""+
<OperationName>+”&ws_ns="+<TargetNameSpace>+”&wsOport="+<wsPort>

For outbound Web Services (“outbound” detail must be used), the string looks like the following:

"DIAG_ARG:type=ws&ws_name="+<WebServiceName>+"&ws_op=""+
<OperationName>+”&target="+<TargetName>

Here is an example:

class = weblogic.wsee.ws.WsStub

method = invoke

signature = (Ljava/lang/String;Ljava/lang/String;Ljava/util/Map;Ljava/util/Map;)
Ljava/

lang/Object;

layer = Web Services

detail = outbound,before:code:edd75e36

The code snippet in the custom_code.properties file is entered as follows:

edd75e36 = #service = #callee.getService().getWsdlService();\
#tgname = #service.getName();\
"DIAG_ARG:type=ws&ws_name="+ #qgname.getlLocalPart() +"&ws_op="+ \

HPE Diagnostics (9.26) Page 141 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

#tcallee.getMethod(#argl).getOperationName().getLocalPart() +"&target="+ \
#tcallee.getProperty("javax.xml.rpc.service.endpoint.address");

Renaming Root Methods

Consider the following point:

class = Statement

method = execute

layer = Database/JDBC/Execute
detail = when-root-rename
rootRenameTo = mySuffix

If such a method ends up being the root method, the name of such a server request is Background-
mySuffix, and the type of the server request is RootRename.

Consider the following point instead:
class = Statement
method = execute

layer = Database/JDBC/Execute
detail = when-root-rename

Notice that the rootRenameTo property is skipped. The name of such a server request is Background—
Database (because Database is the first sublayer) and the server request type is RootRename again.

Adding a Field to a Class

Consider the following point:

class = com.corp.Foo
method = bar
detail = add-field:protected:0Object:serviceName

The detail causes the following one field and two public setter/getter methods to be added to the class
com.corp.Foo:

protected transient Object serviceName
public void _diag set_serviceName(Object arg)
public Object _diag get serviceName()

Passing Attributes to Instance Trees

The following example attaches my_attribute name to every captured instance of com.corp.Foo.bar().

HPE Diagnostics (9.26) Page 142 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

The name prefixed with display_ and its corresponding value is shown in the call profile.

class = com.corp.Foo
method = bar
detail = add-field:protected:0Object:serviceName

Code snippet:

f59f0c5c = ##my_ attribute="value-of-my-attribute”;"";

Filtering Out Methods by Their Access Flag

The following example instruments all methods in class com.corp.Foo (but not static methods).

class = com.corp.Foo

method = !.*

signature = !.*

method _access_filter = static

Not Recording Direct Recursion

In the following example, if method com.corp.Foo.bar calls itself (or anything in the same layer), the
second call is not recorded. This is caused by the detail = no-layer-recurse.

This, however, is only for direct recursion. If com.corp.Foo.bar calls an instrumented method from
another layer that calls this method again, all methods are recorded.

class = com.corp.Foo
method = bar

layer = Example/MyBar
detail = no-layer-recurse

Performing Caller Side Instrumentation

The following point causes caller side instrumentation to be performed (as opposed to the default callee
instrumentation). This is caused by the detail = caller.

Another way to do caller side instrumentation is to use the “scope” property as described in "Using
Caller Side Instrumentation" on page 150.

class = com.corp.Foo
method bar
detail = caller

HPE Diagnostics (9.26) Page 143 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Configuring Allocation Analysis

Both of the following examples track allocations of java.lang.Integer in the package
com.mycompany.mycomponent. There are, however, two differences:

« Inthe first example (detail = leak), tracking is managed. It starts when the user clicks start in the
profiler and stops when the user clicks stop. In the second example (detail = deallocation),
tracking starts with application startup.

« Inthe first example, the point is disabled when it comes to regular instrumentation. This means you
will not see “new Integer” show up on an instance tree. In the second example, you will.

Example 1 — Managed. Tracking starts when the user clicks start and stops when the user clicks
stop in the profiler:

[Leak]

scope = !com\.mycompany\.mycomponent\..*
class = java.lang.Integer

keyword = allocation

detail = leak

active = true

Example 2 — Unmanaged. Tracking starts with application startup:

[Leak]

scope = !com\.mycompany\.mycomponent\..*
class = java.lang.Integer

keyword = allocation

detail = deallocation

active = true

Neither of these points captures reflected allocation. To enable reflected allocation capture, simply
append the detail “reflection” to the point (detail = leak,reflection).

Configuring Lightweight Memory Diagnostics (LWMD)

The following example turns on collection diagnostics for collections that happened inside of the
com.mercury.mycomponent package. You can find this example in the auto_detect.points file. It is
set to active = false by default.

[Light-Weight Memory Diagnostics]

scope = !com\.mycompany\.mycomponent\..*
class = java.lang.Integer

keyword = lwmd

active = true

HPE Diagnostics (9.26) Page 144 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

You also need to set the property lwm.diagnostics.capture=true in the dynamic.properties file. For
more information, see the HP Diagnostics User Guide chapter on the "Collections and Resources
View."

Configuring Collection Leak Pinpointing

Regardless of JRE version, you must run the JRE Instrumenter using the appropriate mode for your
application server if you want to use the collection leak pinpointing (CLP) feature in the Java Agent.
"Preparing Application Servers for Monitoring with the Java Agent" on page 37 for details on
instrumenting the JRE.

In the dynamic.properties file you can set the following properties to configure collection leak
reporting. These same values can also be set in the Java Profiler Configuration tab Ul (see "Enabling
and Configuring Collection Leak Reporting" on page 219).

clp.diagnostics.reporting=true

Enable reporting in the Diagnostics Ul. You can disable reporting in the Ul for this feature by
unchecking the checkbox.

clp.diagnostics.growth.time.threshold.flag = 60m

The threshold of time duration in which the collection has size growth. If a collection's size growth
period exceeds this threshold, it will be flagged as a memory leak by the probe. To avoid false
positives, this value should be larger than the time required by your application to fully initialize all its
caches.

clp.diagnostics.nongrowth.time.threshold.unflag = 60m

For an already flagged leaking collection, if its size stops growing continually for this threshold time
period, the probe will unflag it as a leak.

Enabling Object Lifecycle Monitoring for JDBC Result Set

A few preconfigured instrumentation points allow object lifecycle monitoring but are disabled by default.
Two of them are shown in the following example.

The example shows how to enable object lifecycle monitoring for JDBC Result Sets. For a more
detailed discussion on object lifecycle monitoring, see "Object Lifecycle Monitoring" in the HP
Diagnostics User Guide.

For this example, two actions are required:

1. Gotoinst.properties and find details.conditional.properties. Set
mercury.enable.resourcemonitor.jdbcResultSet=true

2. Specify the scope in the corresponding open instrumentation points (shown below).

In the following, the probe performs object lifecycle monitoring for JDBC Result Sets inside
package com.mycompany.mycomponent.

HPE Diagnostics (9.26) Page 145 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

[Lifecycle-JDBC-ResultSet-Open]

scope = !com\.mycompany\.mycomponent\..*

class = java.sql.Statement

method = !(getResultSet.*)|(executeQuery.*)

signature = !.*\)Ljava/sql/.*ResultSet;

detail =
condition:mercury.enable.resourcemonitor.jdbcResultSet,lifecycle,caller

[Lifecycle-IDBC-ResultSet-Close]

class =

I (java\.sql\.ResultSet) | (weblogic\.jdbc\.wrapper\.ResultSet) |
(com\.ibm\.ws\.rsadapter\.jd

bc\.WSJdbcResultSet)

method = !(close)|(closeWrapper)

signature = |.*

deep_mode = soft

detail =

condition:mercury.enable.resourcemonitor.jdbcResultSet,before:code:513a2b36,
metho
d-trim

Adding a Disabled Point and Enabling it at Runtime

In the following example, the point is disabled. This does not mean that instrumentation does not
happen. Instrumentation happened but did collect any data. This significantly lowers the runtime
overhead of such a point.

To enable data collection while the application is running, go to the Layer page in the (http://<probe-
host>:<probe-port>/inst/layer or from the Profiler select the Configuration tab and then select View
instrumentation), look for layer myLayer, and click Enable.

[My Example]
class = Example
method = !.*
layer = myLayer
detail = disabled

If you do not want instrumentation to happen at all, use active=false. However, such a point cannot be
enabled at runtime.

Specifying that a Method Should Never be Trimmed

In the following example, latency trimming does not apply to Example.myMethod().

My Example]

HPE Diagnostics (9.26) Page 146 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

class = Example
method = myMethod
detail = method-no-trim

Specifying that a Method Should Always be Trimmed

In the following example, the method Example.myMethod() is not reported. However, any code
snippets associated with the point will always be executed.

[My Example]

class = Example

method = myMethod

detail = method-trim, before:code:...

Enabling Collection of CPU Time for a Method

In the following example, the detail “method-cpu-time” causes the CPU time to be collected for method
Example.myMethod().

[My Example]

class = Example

method = myMethod

detail = method-cpu-time

Changing SAP RFC Instrumentation Based on SAP JCO Library
Version

In the <agent_install_directory>/etc/inst.properties file there are two points defined depending on
the version of SAP JCO used. Comment out the version you are not using. Starting with version 2.1.10
or later use com.mercury.opal.capture.inst.SapRfcinstrumentationPoint2_1_10. Otherwise the default
setting will work for version 2.1.9 and earlier.

Printing Instrumentation and Runtime Information for a Point
(Debugging Only)
The following example prints several pieces of debug information in standard out and probe.log.

« The gen-instrument-trace detail causes printing to stdout the thread stack trace whenever this
point is used to instrument a method.

« The gen-runtime-trace causes printing to stdout the thread stack trace whenever
Example.myMethod() is run.

HPE Diagnostics (9.26) Page 147 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

« The trace detail causes printing in the probe.log verbose instrumentation information whenever
Example.myMethod() is run.

[My Example]

class = Example

method = myMethod

detail = gen-instrument-trace, gen-runtime-trace, trace

Understanding the Overhead of Custom Instrumentation

When you are creating custom instrumentation, beware of over-instrumenting the application because
it can introduce excessive latency into the probed application. Excessive latency arises from an
increase in the classloader latency as more and more classes are instrumented. The custom
instrumentation does not have the same impact on the method latency or the CPU overhead because
the overhead of instrumentation is nearly fixed for every method because the amount of bytecode is
almost always the same. This means that the physical percentages of the CPU and latency overhead
will vary in direct proportion to the length of time the method takes to run.

For example, if a method takes 100ms, and instrumentation makes it run in 101ms, overhead is 1%. If a
method takes 10ms and instrumentation changes its response to 11ms, overhead is 10%. If this
method is not called very often, its overall latency effect on the application is minimal. However, the
overall latency effect of an instrumented method that is called more frequently can affect the latency of
the application’s response even though its overhead percentage is much smaller.

Unlike a traditional profiler, HP Diagnostics uses bytecode instrumentation. This allows the default
instrumentation to be selective to minimize the overhead caused by instrumentation to an average of 3-
5%. Methods with higher latency overhead introduced by instrumentation are only instrumented when
they are called infrequently in relation to other components in the application and when the
instrumentation provides specific information needed for triage activities (for example, JNDI lookups).

You should also consider Diagnostics data overhead when you are customizing the instrumentation for
an application. The more methods you instrument, the more data the probe must serialize and pass
over the network to the Diagnostics Server. You can tune the Java probe’s default configuration so that
it can adjust the volume of Diagnostics data to avoid any unnecessary effect on the performance of the
system being monitored. Improper tuning of a probe can cause CPU, Memory and Network overhead
on the physical machine where the Java Agent is installed. For more information about managing
Latency, CPU, Memory and Network overhead, see "Advanced Java Agent and Application Server
Configuration" on page 183

Instrumentation Control on a Per Layer Basis

By default, the layers defined in the capture points file are enabled. If you include the
details=disabled argument in a point, the layer is disabled when the probe is started.

The classmap provides the capability to dynamically instrument methods and classes using the JVMTI
interface without restarting the JVM instance. All other virtual machines require that the JVM instance
be restarted to apply changes you make to the capture points files.

HPE Diagnostics (9.26) Page 148 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Once instrumentation is placed within a method, its data collection and running CPU and method
latency overhead can be controlled on a per layer basis (see the Instrumented Layers page below).

You can access the Instrumented Layers page from the URL:

http://<probe-host>:<probe-port>/inst/layer.

[Diagnostics mat f{?ﬁ=|
Instrumented layers (no particular sorting)
Layer Hits Active Points Actions
(Other] u] 2/ 2 [Disable] [Clear # Hits]
(keyword) hit] 129707 6/ 6 [Disable] [Clear £ Hits]
31377106 4159 f 4217 [Enable] [Disable] [Clear £ Hits]
u| 15 f 15 [Disable] [Clear # Hits]
u} 206 / 206 [Disable] [Clear # Hits]
0 2z [Disable] [Clear # Hits]
Business Tier/EJB/Entity Bean 589945 63 [/ 63 [Disable] [Clear # Hits]
Business Tier/EIB/Session Bean 110926 35/ 35 [Disable] [Clear # Hits]
Database/IDBC/ Connection 107755 49 [49 [Disable] [Clear # Hits]
Database/1DEC Execute 105821 79 /79 [Disable] [Clear £ Hits]
Directory Service/ INDI 175 4 /4 [Disable] [Clear # Hits]
Legacy/1CA/Connection 52877 171 [Disable] [Clear # Hits]
Legacy/ICA/ECIConnectionFactory 51936 2z [Disable] [Clear # Hits]
Legacy/ICA/ManagedConnectionFactory 2 2/ 2 [Disable] [Clear # Hits]
Web Tier/Serviat 55198 11/ 11 [Disable] [Clear # Hits]
HP Diagnostics J2EE Probe "WAS6E_Plants_T155_Wzk2", version 7.0.9.214

To disable a layer from the Instrumented Layers page, click the Disable link associated with the layer
on the page. The layer is disabled and the link toggles to Enabled so that you can enable the layer
again when necessary.

Instrumented Location Throughput Throttling

In some cases, an instrumentation point instruments a method which is executed very frequently. This
may significantly increase the probe overhead for the application thread and can also overload the
probe by generating large amounts of data to process.

You can limit the number of events (instrumented method calls) per second that the probe monitors.
The threshold, in events per second, is configurable, but when set applies to all instrumented points.
The event counters are shared by all threads.

For instrumented points that reach the configured threshold, the probe attempts to provide the real
throughput, in events/second, by recording this number in the probe.log. In the Diagnostics Enterprise
or Profiler Ul, the displayed metrics are for the number of method calls up to, but no higher than, the
configured threshold.

To set the threshold:

HPE Diagnostics (9.26) Page 149 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

1. Configure the required number (which must be a non-negative value) in the
location.maximum.throughput parameter in the <agent_install_
directory>/etc/capture.properties file.

2. Ensure that the settings.override.authorization parameter in the <agent_install_
directory>/etc/probe.properties file is set to true.

For example, if the location.maximum.throughput parameter is set at 1000, when an instrumented
method has been called 1000 times in a second, the probe stops collecting metrics for this method,
although it does keep counting the number of method calls in that second. The Ul displays metrics for
the first 1000 calls only and an entry may be written to the probe.log with the actual number of the
method calls for that second.

Advanced Instrumentation Examples

This section includes:
« "Using Caller Side Instrumentation" below
« "Capturing HTTP Server Requests Based on Query Parameters" on page 152
« "CORBA Cross VM Instrumentation" on page 153
« "Using RMI Instrumentation" on page 153
« "Using Thread Local Storage to Store the SOAP Payload" on page 154
« "Performing Correlation Across Multiple Threads" on page 154
« "Using Fragment Local Storage to Store Web Service Field" on page 156

« "Using Annotations for Custom Instrumentation" on page 159

Using Caller Side Instrumentation

By default, all instrumentation in Diagnostics is called side instrumentation where the bytecode is
placed within the method call. Caller side instrumentation refers to the process of placing the bytecode
for measurement around the call to the method to be instrumented instead of within.

Caller side instrumentation allows finer control of instrumentation placement, but can increase
application classloader time because each class specified in the scope must be checked for references
to the class/method specified in the points.

A common use for caller side instrumentation is to instrument calls to methods in rt.jar. Classes loaded
into the virtual machine using the bootclassloader and not from a conventional class loader cannot be
directly instrumented. To instrument calls to these methods, you must use caller side instrumentation.

In the following example, the parse methods for the javax.xml.parsers.SAXParser and
javax.xml.parsers.DocumentBuilder are instrumented by placing bytecode around the calls to parse

HPE Diagnostics (9.26) Page 150 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

in any (1.*) method from any class. Caller side instrumentation is required because both the
javax.xml.parsers.SAXParser and javax.xml.parsers.DocumentBuilder classes are contained in
the rt.jar and loaded into the virtual machine by the bootclassloader.

[XML-DOM-JDK14]

jmmmmmmm - Interface --------------

Class = !javax\.xml\.parsers\.(SAXParser|DocumentBuilder)
method = parse

signature = !.*

scope = !.*

layer = XML

In the following example, instruments calls to javax.naming.Context's "lookup™ method that are called
from the com.myCompany.myFoo classes and places them in the JNDI sublayer in the FOO layer.

[INDI-lookup-FOO]

e Server side JINDI hook --------------
class = javax.naming.Context

method = lookup

signature = (Ljava/lang/String;)Ljava/lang/Object;
scope = !com\.myCompany\.myFoo\..*

deep_mode = soft

layer = FOO/JNDI

Note: To verify that the point has caused the bytecode to be properly placed, check the <agent_
Install_dir>/log/<probeName>/detailReport.txt file for the entries Unique Header Name (that is,
[JNDI-lookup-FOQ]).

During final triage steps for a performance issue, it can be impractical to use the classmap and
individual build points for every method called by a suspect area of the application. It is very
common to use one or more levels of caller side instrumentation to identify the time spent within an
individual method or methods that have a suspected bottleneck. This is a useful way to fill in the
next level to a Call Profile in Diagnostics.

The following example instruments any call to a method that is performed within the
com.myCompany.myFoo class by the "myMethod" method:

[MethodsCalledByFoo.myMethod]

class = I.*

method = !.*

scope = !com\.myCompany\.myFoo\.myMethod.*
layer = FOO/other

The following example also captures the arguments to any "set" method called in
com.myCompany.myFoo class by the "myMethod" method:

[SetMethodsCalledByFoo.myMethod]
class = |.*

HPE Diagnostics (9.26) Page 151 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

method = !set.*

scope = !com\.myCompany\.myFoo\.myMethod.*
detail = args:1

layer = FOO/other

Capturing HTTP Server Requests Based on Query Parameters

Applications typically use the same URL to access different workflow. If the application uses a URI
argument (for example, http://<myserver>/myApplication/Browse?Genre=metal) to differentiate
between the workflow, Diagnostics can be configured to parse and treat the different URIs as different
server requests.

URI aggregation is controlled from the [HttpCorrelation] point. A valid regular expression entry for
args_by_class should be created for each URI pattern.

For example, setting args_by_class as follows:

[HttpCorrelation]
args_by class=!.*&Genre

results in the following ServerRequests appearing uniquely in the Diagnostics console:

http://<myserver>/myApplication/Browse?Genre=Metal
http://<myserver>/myApplication/Browse?Genre=Pop
http://<myserver>/myApplication/Browse?Genre=Reggae
http://<myserver>/myApplication/Browse?Genre=Rock

Table [& O [=
al Laten...
Status | Chart Serner Request Frobe Over Latency | CPU (A... Throu... | Excep... Infa
@ (W wvC3music Storel 2RO0.. 107.2ms 10892ms 12 /hr 0 <
@ |:| WMV Music StorefAccount/Log On? BeturnUrl=/MY C3fMusic StoreldS.. 2RO 0. 3089 ms 3M120ms 12/7hr 4]
@ |:| IV C 3/ Music Store/Shopping Cart/Add To Carti2 41 2R0O0... 13s 13 12/hr 4]
@ [imvC3miusic Store/Store/Browse 2ZR0O0... gdboms 507 ms 192 /hr 0
@ [} imMvC3musicStore/Store/Browse? Genre=Metal 2R0O0... 624ms 624ms 12/hr 0
@ [iMvC3Music Store/Store/Browse? Genre=Pop 2R0O0... 525ms 468ms 24 [hr 4]
@ O IMVC3/Music Store/Store/Browse? Genre=Reggae 2RO0.. B6Ams 416ms 36 /hr 0
@ [] |mvcamusic Store/Store/Browse? Genre=Rock 2RO0.. 722ms 468ms 24 /hr il
@] iMvC3iMusic Store/Store/Details/i241 2R00... 4265ms 4056ms 12 /hr 0 =

You can configure more than one URI parameter to be used for URI parsing in the args_by_class
setting. For example:

args by class=!.*&Genre&Category

Note: Avoid using a session parameter or highly unique URI value because of the impact to
overhead and data storage.

HPE Diagnostics (9.26) Page 152 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

In a WebLogic environment, set the use.weblogic.get.parameter=true in <agent_install_
directory>/etc/inst.properties when using URI aggregation to prevent URI aggregation from
consuming the ServletRequest's inputstream.

CORBA Cross VM Instrumentation

The Common Object Requesting Broker Architecture (CORBA) standard enables components written
in different computer languages and running on different systems to work together.

Instrumentation for correlating CORBA cross VM instance trees is provided in the <agent_install_
directory>\etc\auto_detect.points file.

Follow these steps in to enable cross-VM instance trees for CORBA:
1. Uncomment the Corba cross-VM points in the auto_detect.points file.

2. Specify the following JVM argument at Application Server startup:

Dorg.omg.PortableInterceptor.ORBInitializerClass=com.mercury.opal.javaprobe.
handler.corba.CorbaORBInitializer

3. Put the following jar file in the classpath:

<java-agent-install-dir>/1ib/probeCorbaInterceptors.jar

Using RMI Instrumentation

The RMI (Cross-VM) point in the capture points file is inactive by default. You must activate this point
to capture the cross-vm processing in the application. If you have Java probes with this point activated
on both sides of an RMI call, Diagnostics can correlate the call tree data from both virtual machines.

[RMI]

keyword = rmi
layer = CrossVM
active = false

RMI Instrumentation In a Clustered Environment

The weblogic.t3.rmi property in the <agent_install_directory>/etc/inst.properties file controls how
the RMI instrumentation captures Cross-VM RMI performance metrics. By default, weblogic.t3.rmi is
set to false, which causes the performance metrics to be gathered using the generic RMI
instrumentation. In a clustered environment, all servers in a cluster must have RMI instrumentation
turned on to avoid application failure when weblogic.t3.rmi is set to false.

When weblogic.t3.rmi is set to true, the generic RMI instrumentation is disabled, and the RMI Cross
VM is captured using only WebLogic’s T3 protocol. This allows the Java probe to function with only
some of the servers in a cluster probed with RMI instrumentation enabled.

HPE Diagnostics (9.26) Page 153 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Using Thread Local Storage to Store the SOAP Payload

The following example demonstrates usage of thread local storage. In particular, it shows how to store
(and clean) the SOAP payload from thread local storage. SOAP payload is captured by default only for
certain application servers. For more information on the support matrix, see "Configuring SOAP Fault
Payload Data" on page 211.

The following example is applicable only for application servers where Diagnostics does not capture
payload out of the box.

First, it is necessary to identify where to access the payload from. Assume that the payload is the
second argument of a method called DispatchController.dispatch().

The keyword store-thread causes the Java probe to store the special fields in the corresponding code
snippet (in this case, My _Inbound_Payload) into thread local storage. This can be referenced from a
different code snippet provided both points are hit on the same thread. Looking up the payload is
demonstrated in the next example ("Using Fragment Local Storage to Store Web Service Field" on
page 156).

[MyAppServer-SoapPayload-Capture]

class = com.myCompany.DispatchController

method = dispatch

signature = !\(Ljava/lang/Object;Ljava/lang/Object;\).*
layer = Web Services

detail = before:code: ae7f0a58,store-thread

Used by [MyAppServer-SoapPayload-Capture]
ae7f0a58 = ##My_ Inbound_Payload=#arg2;"";

Performing Correlation Across Multiple Threads

Asynchronous Server Requests are server requests that switch threads between server request start
and end events. In the most simple case, one thread receives the request, partially processes it, and
then hands it off to another thread to complete processing and to send the response back to the
requesting party.

Diagnostics offers two operations, available through code snippets, to allow the Java agent to perform
correlation across multiple threads:

« parkFragment(Object anchor)

This operation is executed to indicate that the current thread will no longer run the current server
request. All method invocations, as recorded by the Java Agent, are artificially terminated at this
point. This is to indicate that even though some of these methods will continue execution, their
activity will have nothing to do with the current server request. Furthermore, even if the current
thread will invoke some instrumented methods after calling parkFragment, these calls will not be
reported. The server request is no longer considered running, and the specified object (anchor) is

HPE Diagnostics (9.26) Page 154 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

used by the application as a unique identification of the server request to be resumed later
(presumably, by another thread).

« resumeFragment(Object anchor)

This operation is executed to indicate that the current thread resumes execution of previously
parked server request. The argument (anchor) is used to identify the server request. All active
method invocations will have their start time artificially reset to the current time. This is to indicate
that even though some time may have elapsed while these method were executing, their execution
had nothing to do with the server request being resumed. If the current thread was already running a
server request, it will be ignored (dropped).

When using these operations, it is essential that the correct anchor object, as well as the correct thread
switching points are identified by the application specialist.

Beware of race conditions: if the fragment is reported "parked" too late, after the corresponding resume
operation is performed, the fragment will get lost (and a warning will appear in probe.log). Two useful
techniques to avoid the race condition are: first, calling parkFragment slightly before the current thread
really abandons the server request, and second, try to piggyback the application built-in
synchronization which is often used to hand off an object from one thread to another.

A "parked" fragment can be seen using the pending-fragment servlet, as "PARKED SERVER
REQUEST" displayed in place of the currently running method.

The feature usually requires you to identify the thread switching points in the monitored application, and
to provide the corresponding instrumentation points with code snippets. Out of the box support is
provided for BEA Aqualogic.

Examples of two instrumentation points with the corresponding code snippets are presented below.
They are a part of the AqualLogic support.

The first point presented below is executed whenever Aqualogic sends a sub-request to another
server. The instrumented method, PipelineContextimpl.dispatch(...) returns true if the sub-request was
successfully sent. The thread sending the sub-request does not wait for a response, but proceeds to
pick up the next server request from a pipeline.

Therefore, the code snippet examines the return value, and if it is true, signals to the probe that the
current server request will be suspended. The server request is identified by a MessageContext object,
which Aqualogic creates for every incoming server request.

[BEA_ALSB_AsyncDispatch]

; instrumentation point for Aqualogic Service Bus asynchronous dispatch
class = com.bea.wli.sb.pipeline.PipelineContextImpl

method = dispatch

signature = !\(Lcom/bea/wli/sb/context/MessageContext;.*

detail = after:code:549b1b59

layer = Service Bus/Aqualogic

Used by [BEA_ALSB_AsyncDispatch]
Asynchronously dispatches a subrequest for a service, the response will be
processed on another thread

HPE Diagnostics (9.26) Page 155 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

549b1b59 = (#return == true ?
@ThreadContextProxy@.parkFragment (#location,#argl) : void);

Upon receiving a response from the sub-request, Aqualogic executes
RouterCallback.onReceiveResponse(...), possibly on another thread. The processing of the original
server request resumes, and this is signaled to the probe by the code snippet.

In this case, the MessageContext object representing the server request is not available as an
argument of the instrumented method and needs to be extracted from the RouterCallback object.

[BEA_ALSB_ProxyService_Callback_Response]

; instrumentation point for Aqualogic Service Bus callback function
class = com.bea.wli.sb.pipeline.RouterCallback

method = !(onError)|(onReceiveResponse)

signature = !.*

layer = Service Bus/Aqualogic

detail = before:code:dba72078

Used by [BEA_ALSB_ProxyService_Callback_Response]
Resume processing of a server request when the reply for a subservice comes

back

(or when the server request was moved to the response pipeline internally)
dba72078 =

@ThreadContextProxy@.resumeFragment (#location,#callee._ context.getMessageCon
text());"";

Using Fragment Local Storage to Store Web Service Field

The following example demonstrates several features of points and code snippets:

« How to use fragment local storage to store web service-specific fields (ws_name, ws_op, and so
on). This is an alternative to specifying the “DIAG_ARG” string.

« How to retrieve (and remove) the stored payload from thread local storage (which was stored in the
previous example).

» How to extract the consumer ID out of the SOAP payload.
« How to use fragment local storage to store the consumer ID.

Because web services are treated in a special way, several fields must be captured. These fields are
described in "Code Snippet Grammar" on page 124.

The first step is to find the instrumentation points that will give access to the required fields (Web
Service name, operation, namespace, port name). Suppose that there is a single class in the
instrumented application that has access to all these fields. Assume that this class is called
com.myCompany.MyWSContext. We need to access an instance of this class when all the above
fields are set. There can be many options. Suppose that one such option is when MyWSContext is

HPE Diagnostics (9.26) Page 156 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

passed as the first argument of a method MyW SFactory.create(). This is the method we want to
instrument.

Here is our instrumentation point (each line is explained below):

class = com.myCompany.MyWSFactory

method = create

signature = !\(Lcom/myCompany/MyWSContext; .*

layer = Web Services

detail = ws-operation, before:code: f334f0@b4,store-fragment

The first three lines of the point shown above cause the probe to instrument anything that matches
com.myCompany.MyWSFactory.create(MyWSContext, *).

The fourth line specifies the layer for this point.

The fifth line provides the probe with additional information about this point (details):

« Thefirst detail (ws-operation) is important because it causes the probe to treat this as an inbound
Web Service.

« The second detail (before:code: f334f0b4) causes the probe to insert the corresponding code
snippet at the start of the methods that comply with this point. The actual code snippet is shown
below. The number f334f0b4 was generated by going to

http://<probe-host>:<probe-port>/inst/code-key and pasting the code snippet in the text
box.

« The third detail (store-fragment) causes the probe to store all special fields (##) found in the
corresponding code snippet as attributes of the server request.

Here is the corresponding code snippet (each line of the below code snippet is explained below).

f334f0b4 = #wsContext=#argl;\
##WS_inbound_service_name=#wsContext.getServiceName();\
##WS_inbound_operation_name=#wsContext.getOperationName();\
##WS_inbound_target_namespace=#wsContext.getNamespaceURI();\
##WS_inbound_port_name=#wsContext.getEndpoint();\

#soap_payload =
@com.mercury.opal.capture.proxy.ThreadContextProxy@.getThreadContextValue("My
_Inbound_Payload");\

#tconsumer_id = (#soap_payload == null ? null :
@com.mercury.opal.capture.proxy.ProbeCodeSnippetHelper@.getConsumerIdFromDo
cument (##WS_inbound_service_name<java.lang.String>,#soap_payload<org.w3c.do
m.Document>));\

##WS_consumer_id = (#consumer_id == null ?
@ProbeCodeSnippetHelper@DO_NOT_STORE : #consumer_id);"";

First line: £334f0b4 = #wsContext=#argl;\

As mentioned previously, the number £334f0b4 was generated by going to http://<probe-host>:<probe-
port>/inst/code-key and pasting the code snippet in the text box. The actual code snippet starts after

HPE Diagnostics (9.26) Page 157 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

334f0b4 =. The first expression is #wsContext=#argl. It simply assigns the first argument of the
method—in this case, a MyWSContext object—to a local variable (wsContext).

Second line: ##WS_inbound_service_name=#wsContext.getServiceName();\

This expression uses fragment local storage to store the service name. It is important to use the exact
variable name (WS_inbound_service_name). These variable names are documented in the “Special
Fields” section of "Code Snippet Grammar" on page 124.

Third line: ##WS_inbound_operation_name=#wsContext.getOperationName();/

This expression uses fragment local storage to store the ws operation. It is important to use the exact
variable name (WS_inbound_operation_name). These variable names are documented in the “Special
Fields” section of "Code Snippet Grammar" on page 124.

Fourth line: ##WS_inbound_target_namespace=#wsContext.getNamespaceURI();\

This expression uses fragment local storage to store the ws namespace. It is important to use the
exact variable name (WS_inbound_target_namespace). These variable names are documented in the
“Special Fields” section of "Code Snippet Grammar" on page 124.

Fifth line: ##WS_inbound_port_name=#wsContext.getEndpoint();\

This expression uses fragment local storage to store the ws port name. It is important to use the exact
variable name (WS_inbound_port_name). These variable names are documented in the “Special Fields”
section of "Code Snippet Grammar" on page 124.

The above first five lines are sufficient to successfully capture the inbound Web Service. The remaining
of the code snippet deals with capturing the consumer ID out of the SOAP payload. This is optional and
only if the instrumented application server is not one of the application servers supported for capturing
SOAP payload out of the box. See the previous example for details. In the followings example, we refer
to the SOAP payload that was captured in the previous example.

Sixth line: #soap_payload =
@com.mercury.opal.capture.proxy.ThreadContextProxy@.getAndRemoveThreadContextValue
("My_Inbound_Payload");\

This expression retrieves and removes the stored payload from thread local storage (see the previous
example on how this was stored) and stores it on a local variable (soap_payload).

Seventh line: #consumer_id = (#soap_payload == null ? null :
@com.mercury.opal.capture.proxy.ProbeCodeSnippetHelper@.getConsumerIdFromDocument
(##WS_inbound_service _name<java.lang.String>,#soap_
payload<org.w3c.dom.Document>));\

This expression sets a consumer_id local variable. If the payload is null, the consumer _id is set to null.
Otherwise, we use the service name to perform consumer ID matching based on the
consumer.properties entries. For more information on consumer ID matching, see "Configuring
Consumer IDs" on page 203.

Eighth line: ##WS_consumer_id = (#consumer_id == null ? @ProbeCodeSnippetHelper@DO_
NOT_STORE : #consumer_id);"";

In this final line, this consumer ID local variable becomes the consumer id for this server request. It is
important to use the exact variable name (WS_consumer _id). These variable names are documented in
the “Special Fields” section of "Code Snippet Grammar" on page 124.

HPE Diagnostics (9.26) Page 158 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Using Annotations for Custom Instrumentation

Applications can “force” the instrumentation of methods by simply using a custom annotation
(InstrumentationPoint) that is contained in the annotation.jar file in the Diagnostics Java Agent lib
directory. Put a copy of this file in your classpath when compiling your classes using the
InstrumentationPoint annotation. The annotation is defined as follows (InstrumentationPoint.java):

/*
* (c) Copyright 2008 Hewlett-Packard Development Company, L.P.

*/

@Retention(value = RetentionPolicy.RUNTIME)
@Target(value = ElementType.METHOD)

public @interface InstrumentationPoint {
String layer();

String keyword() default “”’;

String layerType() default “method”;

String detail() default “*;

String code() default “”;

Boolean active() default true;

¥
This feature requires that the look.for.annotations property in inst.properties is set to true (default).

Development

1. Add the path to the annotation.jar (or copy the jar into your application) file found in the
Diagnostics Java Agent lib directory to your application build classpath.

2. Import the classes for any methods that need to be monitored:

import com.mercury.diagnostics.common.api.InstrumentationPoint;

3. Identify methods to be monitored and add the annotation:

@InstrumentationPoint (ARGS)

public void launchTest4()

In this instance, ARGS includes the following (refer to points file documentation for more information
about what these arguments mean):

« layer="layer name"
« keyword="keyword"

« layerType="type"

HPE Diagnostics (9.26) Page 159 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

o detail="details"
« active="true/false"

Example

The following example shows code that uses the InstrumentationPoint annotation.

/*
* (c) Copyright 2008 Hewlett-Packard Development Company, L.P.
*/

import com.mercury.diagnostics.common.api.InstrumentationPoint;

@InstrumentationPoint(layer="my_app”,detail="diag,method-no-trim,method-cpu-tim
e)))
public void myMethodl(Object x, String y) {
}
In the example, myMethod1 will get instrumented and be visible as a node in all instance trees. It will
not get trimmed, even if its latency goes below the minimum method latency threshold (51 ms by

default). The inclusive (including children) CPU consumption by this method will be measured and
reported.

Configuring Cross VM Correlations for New or Custom
Technologies

Diagnostics can show call profiles that span multiple Java virtual machines (JVM). These Cross VM
call profiles and topologies are very useful when a performance issue involves a client and a server.
You want to know which application is the source of the problem but looking at the call profile for the
client or server individually may not help with intermittent issues since they would not be correlated.
The Cross VM call profile will show the client and the server correlated together in a single call tree.

Out-of-the-box the Java Agent provides support for this feature for many different technologies: for
example, JMS, HTTP/S (Web Services only), RMI, SAP, TIBCO and Corba. With the latest version of
Diagnostics, additional support was added to help you configure cross VM correlation for new or
custom technologies.

The Cross VM correlation technique is exposed in code snippets, allowing you to prepare
instrumentation points and code snippets to correlate almost any inter-process communication,
including home-grown and legacy communication techniques. The only requirement for the
communication technique is that its messages be able to carry an additional string, which is referred to
as coloring.

The coloring string is created on the client side by the Java Agent, and attached to the outgoing
message by a user-written code snippet. After the message is received, a user-written code snippet on

HPE Diagnostics (9.26) Page 160 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

the server side extracts the coloring from the message and passes it to the server side agent for
parsing and processing.

Thus, your responsibility related to the cross-vm communication technique is primarily limited to
embedding the coloring into the outgoing messages, and extracting the coloring from the received
messages. This, of course, includes identifying the code locations (instrumentation points) for the
client side (the outbound point), and for the server side (the inbound point). Refer to "Tutorial for
Configuring Cross VM Correlation for Custom Technologies" on page 164 for a detailed example. And
refer to "APIs Used to Facilitate Custom Transport Cross-VM Correlations" on page 163 for information
on the three APIs provided to help you configure custom cross-vm correlation.

Client Side

For the outbound calls (the client side), use the new outbound:<coloring-type> detail.

The available coloring types are:
o default

e Ssap

e none

o Snippet

For all coloring types except none, there should be an associated code snippet, which will provide a
special argument containing the technology type, the call target name and identification.

The argument has the following form;
DIAG_ARG:type=<type>&name=<name>&target=<target>

where <type> is the technology type used for the remote call, and <name> and <target> are technology
dependent values. The technology type should be the same as the one used for the inbound
instrumentation point (see "Server Side" on the next page).

For all coloring types except snippet, the probe will generate the appropriate coloring and it will report
the coloring to the Diagnostics Server for future correlation. However, the outgoing message remains
unmarked at this time.

For all coloring types except none, a code snippet for another instrumentation point (which is hit after
the outbound point, preferably during the outbound method execution) must attach the generated
coloring to the outgoing message.

The most recently generated coloring can be obtained by calling ICorrelationColor
RemoteCaptureProxy.getCurrentColor(# ocation).

In developing support for your own cross-vm communication, you may use snippet, which means that
the coloring will be explicitly created by a direct call from a code snippet. For the snippet coloring the
above order is reversed, which means the coloring is generated (and, most often, immediately attached
to the message) before the outbound point is hit. Please note that this includes a case where the before
code snippet for the outbound point creates the coloring, because the code snippet will be executed
before the agent is called.

HPE Diagnostics (9.26) Page 161 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

To create the coloring from code snippets:

1. Makeacallto
ICorrelationColor RemoteCaptureProxy.createColoring(#location, <type>, <diag-arg>)

Fortype, use

» RemoteCaptureProxy. ENCODED_COLORING for default
m RemoteCaptureProxy.SAP_R3 COLORING for sap

If in doubt which type to use, use the default.

2. Make a call to grabCorrelationString() on the object returned in step 1, and insert the returned
string into the outgoing message (using a technology-dependent technique). This is where you can
use your creativity.

Tip: If using String messages, use the following helper API to accomplish this step:

ProbeCodeSnippetHelper.createDiagEnvelope(String coloring, String
originalMessage)

3. Hit aninstrumented point with the outbound:snippet detail. This will automatically use the most
recently created coloring instead of creating a new one. Executing the outbound point informs the
probe that the coloring was actually used, and identifies the method which will be considered the
connection point for cross-vm call profiles. For synchronous cross-vm communication it is
recommended to use outbound detail for a method that is used to both send the message and
receive an acknowledgment, so the latency of the outbound call can be properly captured.

Server Side

For the inbound calls (the server side), use the inbound:<technology-type> detail. Use your own
technology type names when supporting new cross-vm technologies. Check to avoid conflicts with
existing technology names (server request types). Examples of server request types include: ADO,
CICS, Corba, HTTP, JDBC, JMS, MSMQ, RMI, Remoting (.NET), SAP ABAP types, Web Services.
In addition, you may see server request types named Pseudo and RootRename.

The before code snippet has to perform the following steps:

1. Extract the correlation string from the incoming message, using the technology-dependent
technique, corresponding to the one used for the outbound calls.

Tip: If the ProbeCodeSnippetHelper.createDiagEnvelope() was used previously, use
ProbeCodeSnippetHelper.extractColoringFromDiagEnvelope(String envelope) to get the

correlation string.

And use ProbeCodeSnippetHelper.extractOriginalMessageFromDiagEnvelope(String envelope)
to get the original message.

HPE Diagnostics (9.26) Page 162 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

2. Leave TWO Strings on the stack: the capture argument (as any before code snippet should), and
the extracted correlation string.

APIs Used to Facilitate Custom Transport Cross-VM Correlations

Three helper APIs were added to facilitate custom transport cross-VM correlations (see the tips in the
sections above and see "Code Snippet Helper" on page 127 for information on their use. There is also a
"Tutorial for Configuring Cross VM Correlation for Custom Technologies" on the next page to walk you
through an example.

o ProbeCodeSnippetHelper.createDiagEnvelope(String coloring, String
originalMessage)

o ProbeCodeSnippetHelper.extractColoringFromDiagEnvelope(String envelope)

e ProbeCodeSnippetHelper.extractOriginalMessageFromDiagEnvelope(String envelope)

HTTP/S Support

The support for the server side HTTP/S is built in and is enabled by default. The Java Agent
automatically recognizes standard J2EE implementation of HttpServlet, as well as Jetty and Apache
Catalina implementations. No user action is required on the server side, if one of these technologies is
used.

For the client side, the Java Agent automatically instruments the openConnection method from the
java.net.URL class, to embed the most recently generated coloring (if it exists) into the outgoing HTTP
request. One of the HTTP request headers is used to carry the coloring. The header will be recognized
by the server side agent.

Therefore, HTTP support on the client side is an exception to the above rules. You still have to provide
the outbound point and the corresponding DIAG_ARG, but you do not have to worry about embedding
the coloring into the outgoing messages.

For example, Diagnostics mediators use the following point:

[RemoteHttpComponent-Outbound-1]

class = com.mercury.diagnostics.common.net.registrar.RemoteHttpComponent
method = getConnection

signature = (Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/
String;Ljava/lang/String;)Ljava/net/HttpURLConnection;

priority = 1

detail = method-no-trim,outbound:default,before:code:7b1125e2

layer = Network.RemoteHttpComponent

HPE Diagnostics (9.26) Page 163 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

The first argument for the getConnection method is a String representing the connection URL. The
referred code snippet extracts from it the hostname and port and uses them for the target identification.
A special utility method is provided by RemoteCaptureProxy to facilitate this conversion in a way
consistent with the built-in part of the HTTP/S support.

7b1125e2 = #target=@RemoteCaptureProxy@.getTargetFromUri(#argl); \
"DIAG_ARG:type=http&name="+#target+"&target="+#target;

Tutorial for Configuring Cross VM Correlation for Custom
Technologies

This tutorial takes a simplified client-server application that uses a shared blocking queue as its custom
transport solution. The client sends a "String" message by adding it to the queue. The server receives a
"String" message by removing it from the queue.

Although this example runs in a single JVM (to keep it simple), it uses two threads to simulate an
application running in two JVMs. (If your intention is to correlate threads running in a single JVM, there
is a simpler solution that will help you do this. See"Performing Correlation Across Multiple Threads" on
page 154 for more details).

The sample code is shown below:

public class SimulatedCrossVM {

private static int INTERVAL = 5 * 1000; // 5 seconds
private static BlockingQueue<String> queue = new LinkedBlockingQueue<String>();
private static class ReceiverSide extends Thread {

public ReceiverSide() {
super("Receiver");
}
public void execute(String receivedString) throws InterruptedException {
System.out.println("Executing message: " + receivedString);
sleep(2 * INTERVAL);
}
private void receiveAndHandleMessage() throws InterruptedException {
String message = null;
message = queue.take();
// Handle it
execute(message);

}

public void run() {

try {
while (true) {

receiveAndHandleMessage();

}

HPE Diagnostics (9.26) Page 164 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

}
catch (Throwable t) {
// oops
t.printStackTrace();
}
}
}

private static class SenderSide extends Thread {

// For simulated TCP connection

private String destHost;

private int destPort;

public SenderSide(String host, int port) {

super(host + ":" + port);

destHost = host;

destPort = port;

¥
public void sendMessage(String origMessage) throws InterruptedException {
queue.put(origMessage);

}

private String generateMessage() {
String message = "T" + System.currentTimeMillis();
return message;

}

private void generateAndSendMessage() throws InterruptedException {

sleep(2 * INTERVAL);

// generate message

String message = generateMessage();System.out.println("Sender's original
message: " + message);

// And send it (outbound call)

sendMessage(message);

sleep(INTERVAL);

}

public void run() {
try {
while (true) {
generateAndSendMessage();
}
}
catch (Throwable t) {
// oops
t.printStackTrace();
}
}
}

public static void main(String[] args) {

HPE Diagnostics (9.26) Page 165 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

SenderSide sender = new SenderSide("fake-host", 12345);
ReceiverSide receiver = new ReceiverSide();

sender.start();
receiver.start();
}
}

Executing this code will have the following output:

Sender's original message: T1313785958127

Executing message: T1313785958127

Step 1: Instrument Your Methods

By instrumenting your methods, you let Diagnostics know which methods are important. Since these
methods are custom, the out-of-the-box instrumentation points won't do anything. Edit the
etc/autodetect.points file by adding the following instrumentation points. See "Maintaining
Instrumentation from the Java Profiler UI" on page 170 for guidance on defining instrumentation points.

[SimCrossVM-Sender]

class = SimulatedCrossVM$SenderSide
method = generateAndSendMessage
signature = !.*

layer = Sending

[SimCrossVM-Outbound]

class = SimulatedCrossVM$SenderSide
method = sendMessage

signature = !.*

layer = Sending

[SimCrossVM-Receiver]

class = SimulatedCrossVM$ReceiverSide
method = receiveAndHandleMessage
signature = 1.*

layer = Receiving

[SimCrossVM-Inbound]

class = SimulatedCrossVM$ReceiverSide
method = execute

signature = I.*

layer = Receiving

Result: Running this instrumented test program, you see the following Server Requests:

HPE Diagnostics (9.26) Page 166 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

1505

15.0 5 - T T T T T T T

T T
105930 110000 190030 11:01:.00 110130 110200 11:02:30 11:0300 110330 110400
Fl M@t Fe0sMeMt Fe0argd1 Fa0aMaM1 Frlsiertd Fe0er9mt Fi0argm1 Fa0smeMt Frdsiemt P 0Br9m

2 [Catency (Awg) <showing thiasholds]

Table ol
Status | Color | Chart? | Server Request | Frobe Latenty | Theoughput | CRU jAwg)
o == Simulated CrossVMS Raceiver Side receiv... Simulate CrossVi 1503 228w 00ps
9 mmm v smulstedCrossVMESenderSide generat.. Simulats Crossvi 15058 240 /he 0.0 s

Here are the call profiles shown for the sender and receiver.

0 2s 4s 6s Bs 10s 12s 14s 158

SimulatedCrossVM$SenderSide.generateAndSendMessage()
Thread.sleep()

SimulatedCrossVM$ReceiverSide.receiveAndHandleMessage()

BlockingQueue SimulatedCrossVM$ReceiverSide.execute()

ickSupport.parl

Step 2: Add “Coloring” to the Sender Logic

In this step, we add "coloring" to the messages sent by the client. When the instrumented server
receives this colored message, HP Diagnostics will correlate them. You add code snippets for a point
in the <agent_install_directory>/etc/code/custom_code.properties file, This part is trickier, if you're
not familiar with the code snippet syntax, it is described in "Defining Points With Code Snippets" on
page 122.

First, we mark the method as an outbound point that uses a code snippet (outbound:snippet), and
identify the code snippet to execute before invoking the method (before:code:5ea4753f). Since we're

HPE Diagnostics (9.26) Page 167 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

going to use the first argument, it's a good idea to provide a more specific signature (!\
(Ljavallang/String;.*).

[SimCrossVM-Outbound]

class = SimulatedCrossVM$SenderSide

method = sendMessage

signature = !\(Ljava/lang/String;.*

layer = Sending

detail = outbound:snippet,before:code:eb2d751f

The corresponding code snippet is shown below. Line 1 creates a string (#target) that includes the
hostname and destination port of the server. Line 2 defines a new string (#diagArg) that follows a
special syntax (DIAG_ARG:type=<type>&name=<name>&target=<target>). The "type" is the
technology type and can be any name you choose; it will be used in the next step. The "name" and
"target" are technology dependent values that will be shown in the Ul; they can also be anything you
choose. Line 3 defines a third string (#color) which will be used to identify this specific invocation of the
method call from any other. Line 4 updates the method's 1st argument with the colored String, which
will cause sendMessage to send a modified String. Finally, line 5, places the coloring on the stack for
usage by HP Diagnostics.

1. eb2d751f = #target=t#tcallee.destHost+":"+#tcallee.destPort; \

2. #diagArg = "DIAG_ARG:type=CB-TCP&name=Senders.sendMessage&target="+#target; \
3. #color = (null == #argl ? null : @RemoteCaptureProxy@.createAndGrabColor
(#location, @RemoteCaptureProxy@ENCODED COLORING, #diagArg.toString())); \

4. #argl = @ProbeCodeSnippetHelper@.createDiagEnvelope(#color, #argl);\
5. #diagArg;

Running the example updates the output as follows. Notice the receiving side did not get the same
string message that was sent. This is a result of the code snippet's Line 4. In many cases, the
receiving side may not handle this well. It's a good idea to note the receiver's behavior as this can
happen "accidentally" if the client and server are not both using the same instrumentation, and in
particular, not both instrumented.

Sender's original message: T1313786970403

Executing message: HP_DIAG1_!Dhf/

ABAABKrh3Qfecy7yal sAAAAAAAOMYWt1LWhvc3Q6MTIzZNDUAYTEZMTM30DY5N
JjAzODgmU21tdWxhdGVDcm9zc1ZNI1NpbXVsYXR1ZENyb3NzVkokU2VuzZGVyU21k
Z2S552b21kIGd1bmVyYXR1QW5kU2VuZE11c3NhZ2UoKSZcMCZcMCZcMCY=:T131378
6970403

HPE Diagnostics (9.26) Page 168 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

At this point, the only change you'll see in the Ul is some "Outbound Calls". Notice the values in the
columns "Outbound Call" and "Remote Target", these are the values you provided in the code snippet
"name" and "target".

Hlel=a

0

000 i -

000 e

T T T T T T
135700 134730 134000 134830 134800 139830 13:50:00 V2030 135100 T30
Fri CEARA1 Fi CEUAA ¢ Fis DR Famanne i DgHan e Fri Qe Fil QR FrOgH FEQRMRAY FRORMRAY

= 0|

Labeacy % =1
Cranr Thisheld
& . v Sanders sendbessage Tekieast 1245 SamuistedCross'VWE Sender Side generatedndSandiessage i Smulste CrossV 1456 s Bsih

Siatwr | Caloa | Charl? Dutkoend Call Fieacon Target Driginating Senoe Foegawt Criginating Prehs Latency Thisughpat Ty

Step 3: Remove Coloring from the Receiver Side

The last step is to remove the coloring on the receive side so that the receiver can get the original
"uncolored" message from the sender. First we mark the point as an inbound point with the technology
type used in the code snippet defined in step 2, and assign a code snippet to run before this method is
called. Again, we also specify a more specify signature since that argument will be used in the code
snippet.

[SimCrossVM-Inbound]

class = SimulatedCrossVM$ReceiverSide

method = execute

signature = !\(Ljava/lang/String;.*

detail = before:code:d2c83d3c,inbound:CB-TCP
layer = Receiving

The corresponding code snippet is shown below. Line 1 extracts the coloring from the incoming
message. Line 2 updates the method's 1st argument, restoring it to the original message sent by the
client. Line 3 puts the coloring on the stack (and an empty String) for use by HP Diagnostics.

1. d2¢83d3c = #coloring=@ ProbeCodeSnippetHelper@.extractColoringFromDiagEnvelope(#arg1);
\

2. #arg1=@ProbeCodeSnippetHelper@ .extractOriginalMessageFromDiagEnvelope(#arg1); \
3. "";#coloring;
The program's output is now restored to the original:

Sender's original message: T1313789287234

Executing message: T1313789287234

HPE Diagnostics (9.26) Page 169 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

The Server Request view now shows a Cross-VM call profile is available for the Sender's
"generateAndSendMessage". Open this call profile and observe the client and server call profiles are
now stitched together! They're not doing much in this sample application, but in a real application, you
would be able to see if performance issues occur in the client, server, or both.

12,054

16,05

14008~

1202

0o T T T T T T T T T

T
142500 19:26:30 1492000 1492620 142700 142720 4a2800 2220 14:29:00 14:29:30
Fri G@Mae11 Fri Cewdd Fri DEAGH1 Fri 08740814 Fai DR 4 i Q904 Fri ORAGM1 Fri Colt 4504 4 Fri gaMa11 Fri CMewad

2 [Catarey (e} <hassing thresholds]

Etabus | Caler Chart? Sarcet Regquesi | Frake Iu";::;‘:':_ -1 | Latamcy | Theeughput | CFU (Avg) |
O mmE Y simuistedCrossViagReceiver SklereceiveAndHandieMeszagel Simudate Cro=sVil 1602 &0 04 p=
[+] -_— Simulated CrosshME Sender Side generate 2nd Sendiessage () Simudale CrossVi 150 = Bl i 00 ps
=] M Simulabed CrozeVMERecaiver Skie exaciin) Simulote Cro=pVi 100s Bl ihr 00 pe

L] 28 ds Bs Bs 10s i2s 4s 158

SimulatedCrossVM$SenderSide.generate AndSendMessage()

Thread.sleep() hread.sleep

SimulatedCrossVM$ReceiverSide.execute()

Thread.sleep()

This call profile looks a bit strange but is typical for asynchronous applications. The client does not wait
for a response, but does continue to do some processing (err sleeping for 5 seconds). During that time
the server is processing the request and completes a few seconds afterwards. You will see the time
durations for the methods in the tree as shown below. Notice also the diamonds with the number 2
inside, which represent the JVM depth. If your server made yet another outbound call, you could have 3
or more! In those cases, cross VM correlation because especially useful. Imagine trying to find the
source of a performance issue across that many JVMs!

B Smulsted Croas Vv Sender Side generate SnaSencMesage 153
5% Thread.sleep() 993

Bl 8t 0% Cutbound Cal 1o Senders SendMessans on probe Semulste Crosz Vi of rAsssin] AMENcas NEoorp net 08 me
=2 586% SimulsedCrassVMEReceiver Side axscubal) 0=

2 E5.9% Thread.sieep() 99

32% Theaod skeep() 483

Maintaining Instrumentation from the Java Profiler Ul

You can use the Configuration tab in the Java Diagnostics Profiler to maintain the instrumentation
points and edit the probe configuration without having to manually edit the Java Agent capture points

HPE Diagnostics (9.26) Page 170 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

file or property files. You can access the Configuration tab from the Java Diagnostics Profiler whether
profiling has been started or not.

The Instrumentation section of the Java Diagnostics Profiler gives you access to view and update the
instrumentation for the application the probe is monitoring. The edit dialogs enable you to view and edit
the instrumentation points as defined in the capture points file that Diagnostics uses to instrument your

applications.

Probe Settings Instrumentation

E 1=

View Currenthy Used Instrumentation
=l Trimming |)

Server Reguest Minimum . | 51ms Change Probe Instrumentation Plan
Method Minimum Latency 51ims Shared Instrumentation: W
SQL Statement Minimum L... | 15
URI Replacement Pattern SHE /7). 78 s# .0 (| csslipg. Instance Instrumentation: i . i

[=] Stack Tracing
Thread Stack Trace Samp... Auto
Sampling Interval 150ms
Tardy Method Latency Th... | 100ms
Maximum Stack Trace De... | 60

When you click Edit... for Shared Instrumentation, you are editing and changing the capture points files
shared among all probes on the hosts. By default this is <agent_install_directory>\etc\auto_
detect.points, however the probe may be using a custom capture points file. In that case you are
editing the shared custom capture points file. For more information about custom capture points files,
see "About Instrumentation and Capture Points Files" on page 113.

When you click Edit... for Instance Instrumentation, you are editing and changing the capture points file
for this session of the profiler on this probe only.

HPE Diagnostics (9.26) Page 171 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Reviewing the Current Instrumentation

Toreview the layers, classes, and methods that were instrumented as a result of the points in the
current capture points file, click View Currently Used Instrumentation in the Instrumentation section
of the Configuration tab. The Profiler displays the Instrumented Layers page:

[2 Diagnostics Y : b
Instrumented layers (no particular sorting)
Layer Hits Active Points Actions

[Other] 97539 1/1 [Disable] [Clear # Hits]
{kevword) hitp 78356 13/ 13 [Disable] [Clear # Hits]
{keyword) leemd 1004262 2861 / 2861 [Disable] [Clear # Hits]
{kevweord) remote-http 0 12 f 12 [Disable] [Clear # Hits]
{keyvword) seap fault 0 151 [Disable] [Clear # Hits]
Business Tier/EIE/Entity Bean 4265445 596/ 596 [Disable] [Clear # Hits]
Business Tier/EIBfSassion Bean 48922 110 f 110 [Disabla] [Clear # Hits]
Database/JDEC/ Connection 93203 57 f 57 [Disable] [Clear # Hits]
Database/IDBC/Execute 45958 a4 [/ 64 [Disable] [Clear # Hits]
Directory Service/JNDI 479 5/5 [Disable] [Clear # Hits]
HttpStatus 0 20/ 20 [Disable] [Clear # Hits]
Legacy/ICA/Connection 23075 1/1 [Disable] [Clear # Hits]
Legacy/ICA/ECIConnectionFactory 22918 242 [Disable] [Clear # Hits]
Legacy/1CA/ManagedConnectionFactory 20 202 [Disable] [Clear # Hits]
Messaging/IMS/ Listanar 0 1/1 [Disabla] [Clear # Hits]
SOAPHandler 0 171 [Disable] [Clear # Hits]
Web Services 0 1/1 [Disable] [Clear # Hits]
Web Tier/Servliet 24073 23/ 23 [Disable] [Clear # Hits]
Web Tier/Struts 0 2/ 2 [Disable] [Clear # Hits]
HF Diagnostics J2ZEE Probe "P81_WASS_Plants_ovrntt152_W2k", version 9.00.70.1002

HPE Diagnostics (9.26) Page 172 of 305

Java Agent Guide

Chapter 10: Custom Instrumentation for Java Applications

The Instrumented Layers page lists the layers that were instrumented, the number of times the
instrumentation points in the layer were triggered, and the number of points currently active in the layer.

The following columns are provided:

Column

Layer

Hits

Active Points

Actions

HPE Diagnostics (9.26)

Description

Lists the layers that were instrumented. The layer names in this
column are links to a page that provides details about the
processing in the layer that was monitored by the probe. Note:
Only the layers defined in points that were actually instrumented
are listed.

Contains a count of the number of times that the classes and
methods that are monitored by the points in the listed layer were
invoked. You can reset the count using the Clear # of Hits link
in the Actions column.

Contains the count of the number of points that are currently
active as well as the total number of points that were defined for
the particular layer.

Contains links that enable you to manipulate the information for
the listed layers. The available action are:

Disable: Disables all of the points in the selected layer so that
they no longer capture data. The instrumentation stays in place
and can be enabled again. Enabling or disabling points here is
effective only until the next restart of your application. To change
the default enabled state for a point, see "Coding Points in the
Capture Points File" on page 115.

Clear # Hits: Resets the hit count displayed in the # Hits column
for the selected layer.

Page 173 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Maintaining the Instrumentation Points

To maintain the points that provide the instrumentation instructions that tell the probe what to monitor in
your application, navigate to the Configuration tab in the Java Diagnostics Profiler and click Edit... for
either the Shared Instrumentation or the Instance Instrumentation. The Instrumentation Points dialog
opens:

Fa =1

.. Instrumentation Points: etc/auto_detect. points

Instrumentation Points] Source

Wiew as: | Layers Tree |V|

1 Application -

) Business Tier
T CrossvM

T Database

1{':] Directory Service

7 .
T Logging Select a point from the tree on the left.

) SOA Broker
T SOAPHandler
T Service Bus

T Web Services

T Wb Tier

ch'j WebAppServietContext_Calls

i0# EJB-MessageDriven-all v]
[} 3

—_— “W

You can edit the instrumentation in two ways: visually, using a list or tree of points on the
Instrumentation Points tab; or via the source of the capture points file on the Source tab.

Selecting and Viewing an Existing Point

The navigation bar in the Instrumentation Points dialog helps locate the points in the capture points file
that you would like to maintain. By making a selection from the View as dropdown, you can choose the

HPE Diagnostics (9.26) Page 174 of 305

Java Agent Guide

Chapter 10: Custom Instrumentation for Java Applications

format in which the points are listed.

When you select Layers Tree from the dropdown, you see a list of the points in the capture points file in

a tree structure according to the layers and sublayers you assigned to the point:

Instrumentation Points] Source

Wiew as: | Layers Tree

4

1 Business Tier
T CrossM
1 Database
B8 JoBC
E-1{1 Connection

s LIDE!D-Cnnne::tinn-create |

E-T Execute
EEI—Tq:'j Directory Service
E-T Felix

F-Th Gx

E-T8 Hibernate

F—1 HitpStatus

F-T Legacy

F—1{1 Load Balanced Request
E-18 Logging

E-11 Messaging

E-11 PeopleSoft

E-1 Portal

4 1]

HPE

L wd

Diagnostics (9.26)

—4d JOBC-Connection-prepare
—40d JDBC-Connection-prepare-y—
—40d JDBC-Connection-prepare-\
—4d JDBC-DataSource-getConneg
—4d JDBC-¥ADataSource-getCol
40 JOBC-Driver-connect

—40d JDBC-DriverManager-getCor

4]

Page 175 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

When you select Points List from the dropdown, you see a list of the points in the capture points file in
ascending alphabetical order:

Instrumentation Points | Source |
Viewas: | Points List ||
e]
& wasInput2
&5 waASInput3
{68 WASOutputt =]
&3 WASOutput2
& waAsOutput3
{8 wWASOutputs
@ JavaServerFaces-Sendet

@ JavaServerFaces-Lifecycle-execute

@ JavaServerFaces-Lifecycle-render
@ #Apache-Catalina-\ahe

@ Spring-View

@ Spring-ViewResohwer

@ Spring-Controller

@ Spring-Sernvice

@ Spring-Repository

@ Spring-Component

{8 spring-SenvietMethod

@ Spring-publishEvent

@ Spring-cnEvent

@ Spring-refresh

@ Spring-EndpointAdapter

{68 Spring-MethodEndpaints 7]
-

When you locate the point you want to view or maintain, select the point in the navigation bar. Then you
see the details of the selected point in the view/edit panel where you can maintain the point.

Updating an Existing Point

When you select a layer or sublayer from the navigation bar, the view/edit panel contains only a prompt
to remind you to select a point.

HPE Diagnostics (9.26) Page 176 of 305

Java Agent Guide

Chapter 10: Custom Instrumentation for Java Applications

To update an existing point, select the point from the navigation bar so that the Profiler displays the
details for the point in the Instrumentation Points tab of the view/edit panel:

,;3 Instrumentation Points: etc/auto_detect. points

Instrumentation Points] Source

| JDBC-Connection-create |
| DatabaseiDBC/Connection |
Intially Enabled Mode:

Also match overriding metho... v|

Subclasses of: | |

| Wjaval.sgll . Connection){oracle jdbcl driver\ PhysicalConnection) |

| W createStatemeant)| commit) |

[t |

| oracle.jdbc.OracletonnectinnWrapper,oracle.jdbc.driver.LngiceJ

Wigw as: | Layers Tree |V|
¢ Axis2 {l Mame:
:‘[? BEA Layer:
Business Tier
WE CrossviM BEIRE
0 Database i
BT JDBC S
[13—11'3 Connection Class:
4. JDBC-Connection-create Method;
45 JDBC-Connection-prepare Signature:
4o JDBC-Connection-prepare-V
45 JDBC-Connection-prepare-V, Exclude:
—id JDBC-DataSource-getConne Classes:
—i5d JDBC-¥ADataSource-getCol
45 JDBC-Driver-connect E B
r%.:,;} JDBEC-DriverManager-getCor
a [_]_113 Execu?e Scope:
H— Directory Service
]—Tq:j Felix
o ox Comment

[

[

[

BT Hibernate
[]_11}] HttpStatus 0 |
B0 Legacy

F-'3 Load Balanced Request
F#—111 Logging

[]—11;31 Messaging

4

o

Advanced Attributes

The arguments that are commonly used when defining a point in the capture points file are displayed as
separate data fields to make it easier for you to make any necessary updates. More advanced
arguments are displayed in the Advanced Attributes tab at the bottom of the display. Comments for

the point are displayed in the Comment tab. After

making changes click OK. And remember to apply

all of the changes made using the Configuration tab by clicking Apply Changes.

The arguments that can be used to define a point in the capture points file are documented in "Coding

Points in the Capture Points File" on page 115.

HPE Diagnostics (9.26)

Page 177 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

The following is an example of the Source tab:

2 x

Inetrumentation Peintz || Source

F
[EJE-Ses=sion-all]
T extends SessionBean ----------------—-—--—-
; Twielb tags this as an ejb method for the TV Plugin module
; Bytecode werification fails for instrumented MediationFlowEean (2] =
class = javax.ejb.SessionEean 0
me thod = !,*
signature = !.*
igmore_cl = javax.e]b.SessionBean , !'.*_Impl, com.bea.wlw.runtime.core.bean.Synchispatcher

ignore _method = ejbCreate ()V,ejbdctivate ()V,ejbFassivate ()V,ejbRemove ()V,setSessionCont
igmore_tree = com.ibm.ejs.container.EJ3Home

deep_mode = hard

layer = Business Tier/EJBE/Session Bean
detail = diag,tv:ejb

pricrity = -1

HEE e e Server side JNDI hook ---——-—---——---

class = javax.naming.Context

method = lookup

signature = (Ljava/lang/String;)Ljavaslang/Object;

igmore_cl = org.apache.naming.resources. FileDirContext,org. apache. naming. resources. ProxyDi
deep mode = soft

layer = Directory 3ervice/JNDI

detail = before:code: Saf0ledf, store-nethod, when-root-renams , no-layer-recurse
[JDEC-Connection-create] v]

4] (3

Deleting an Existing Point or Layer
You could delete a point or layer listed in the navigation bar.

To delete a point or layer:

1. Select the point or layer from the Navigation bar on the Instrumentation Points tab.

2. Click Delete Point (lﬁl). The Profiler deletes the selected entity from the list in the navigation bar.

The selected entity is not actually deleted from the capture points file until you apply all of your
instrumentation points updates from the Configuration tab in the Profiler.

3. Close the Instrumentation Points dialog by clicking OK.

4. Apply all of the changes made using the Configuration tab by clicking Apply Changes.

HPE Diagnostics (9.26) Page 178 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Adding a New Point
You could add a point to the instrumentation.

To add a point:

1. Click New Point ("). The Profiler displays the Select New Point Type dialog box:

e

Select instrumentation point type:

Method Instrumentation | - |

2. Select the appropriate point type from the dropdown and click OK.

The Profiler displays the Instrumentation Points tab with the view/edit section initialized for
creating a new point for the selected point type.

3. Enter the arguments and comments for the new point into the appropriate locations on the tab.

When you enter the Layer information, the entry for the new point in the navigation bar is updated
to show the point in the correct existing layer or, if the layer that you specified does not already
exist, with a brand new layer.

The new point is not actually added to the capture points file until you apply all of your
instrumentation points updates from the Configuration tab in the Profiler.

4. Close the Instrumentation Points dialog by clicking OK.
5. Apply all of the changes made using the Configuration tab by clicking Apply Changes.

Activating OVTA-like Points

Points are included in the Java probe instrumentation for Servlet Filters and EJB local home methods.
These instrumentation points provide additional functionality similar to the OVTA (OpenView
Transaction Analyzer) Java Monitor.

The ServletFilter point requires that the HttpCorrelation2 point also be activated for server filters to be
monitored correctly. This is because servlet filters sometimes are the first time Diagnostics sees an
HTTP server request.

The EJBLocalHome, ServletFilter, and related HttpCorrelation2 instrumentation points are not active
by default. Inactive points are indicated by a red symbol on the icon next to the instrumentation point,
as shown below. To use these points, set active=true in the auto_detect.points file through the Ul or
by directly editing the file.

HPE Diagnostics (9.26) Page 179 of 305

Java Agent Guide

Chapter 10: Custom Instrumentation for Java Applications

Locate these points in the Profiler Ul as described in "Selecting and Viewing an Existing Point" on page
174 and navigate to the Business Tier>EJB>LocalHome>EJBLocalHome point or the Web
Tier>Servlet>ServletFilter point and HttpCorrelation2 point.

2 ot Daintes afe

s Instrumentation Foints: etclfaut

Instrumentation Points] Source

Yiew as: | Layers Tree

W Axis2
1{'3 BEA

—17 Business Tier
quj Corba

= EJB
T Entity Bean
1 Local Home

I_“-E-
Tfj MessageDriven Bean
() Session Bean
() Stateful Session Bean
(] Stateless Session Bean
H-T{7 Oracle
F-{1 SAP R3
BT CrossvM
{0 Database
[EI—":EJ Directory Service
[EI—'{%J Felix
B GX
B3 Hibernats
[
[
[
[
[

f—1 HitpStatus

-1 Legacy

A1 Load Balanced Request
A1 Logaing

H—1{) Messaging

To set these points to active:

Mame: | EJBLocalHome

Layer: | Business Tier/EJBLocal Home

[active

Initislly Enabled Mode:

Alzo match over... "l

Class: | javax.ejb EJBLocalHome

Method: 10

Signature: | 1*

Exclude:

Classes: |

Methacs: |

Subclasses of: |

Scope: |

Comment ||Advanced Attributes

EJBE Home
Can be enabled to be similar to OWTA monitoring

VEry noisy

MNote, adding the EJELocalHome combined with minimum latency = 0is

tv:ejh tags this as an ejb method for the TV Plugin module

1. Select the point from the Instrumentation Points navigation bar so that the Profiler displays the
details for the point. Check the active check box.

2. Close the Instrumentation Points dialog by clicking OK.

3. Apply all the changes made using the Configuration tab by clicking Apply Changes. Restart your
application server (which restarts the probe) for the newly activated points to take effect.

Restoring Default Points

When you finish diagnosing a problem using the Profiler or Diagnostics Enterprise User Interface, you
can restore the default instrumentation to avoid incurring the overhead from a more robust

instrumentation.

HPE Diagnostics (9.26)

Page 180 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

To restore the default settings to the instrumentation:
1. Click Restore Defaults.

The instrumentation points are not actually added to the capture points file until you apply all of
your instrumentation points updates from the Configuration tab in the Profiler.

2. Close the Instrumentation Points dialog by clicking OK.

3. Apply all of the changes made using the Configuration tab by clicking Apply Changes.

Default Layers Defined for Typical Java Classes and
Methods

Diagnostics Enterprise User Interface groups the performance metrics for classes and methods into
layers and sublayers according to the instructions provided in the capture points file. The default layers
were defined so that the performance metrics for processing in the application that used similar system
resources could be reported together. The layers make it easier for you to isolate and identify the areas
of the system that could be contributing to performance issues.

The following table lists the default layers and sublayers that are defined for typical Java classes and
methods.

Platform-specific layers are also defined in the capture points file. These layers are, for the most part,
sublayers of the top-level parent layers defined in the following tables. You can see performance data
for layers in the Load View in the Diagnostics Ul.

Java EE Layers

Layer sublayers Parent Layer
Web Tier JSP

Servlets

Struts

Session

Spring

Struts2
Business Tier EJB

Corba

Web Services

HPE Diagnostics (9.26) Page 181 of 305

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Layer sublayers Parent Layer
EJB Entity Bean Business Tier
Session Bean

Local Home
Stateless Session Bean
Stateful Session Bean

MessageDriven Bean

Directory Service JNDI

Database JDBC

JDBC Execute Database
Connection

Messaging JMS
Spring

JMS Producer Messaging
Listener
Consumer

Spring Producer Messaging
Consumer

Hibernate

Portal Layers

Diagnostics groups the performance metrics for the classes and method calls associated with
processing for portals into Portal Component layers. Each Portal Component layer is broken down into
layers for the portal lifecycle methods. For more information about portal layers, see the HP
Diagnostics User Guide.

HPE Diagnostics (9.26) Page 182 of 305

Chapter 11: Advanced Java Agent and Application

Server Configuration

This chapter discusses advanced configuration of the Diagnostics Java Agent and the application
server environment. Advanced configuration is for experienced users with in-depth knowledge of this

product. Use caution when modifying any of the component properties.

This chapter includes:
« "Advanced Configuration Overview" on the next page
« "About Dynamic Configuration" on the next page
« "Disabling the Java Diagnostics Profiler" on page 185
« "Controlling Probe Logging" on page 185
« "Setting the Probe’s Host Machine Name" on page 186
» "Specifying a Different Probe IP Address" on page 187
« "Setting the Active Products Mode" on page 188
o "Controlling Automatic Method Trimming on the Agent" on page 190
« "Configuring URI and Parameter Capture" on page 191
» "Configuring an Agent for a Proxy Server" on page 194
« "Time Synchronization for Probes Running on VMware" on page 194
« "Limiting Exception Tree Data" on page 195
« "Diagnostics Probe Administration Page" on page 196
« "Authentication and Authorization for Diagnostics Java Profilers" on page 199
» "Configuring Collection of CPU Time Metrics" on page 201
» "Configuring Consumer IDs" on page 203
« "Configuring SOAP Fault Payload Data" on page 211
» "Configuring REST Services" on page 212
o "Customizing Grouping JMS Temporary Queue/Topics" on page 212

« "Configuring SQL Query Parsing" on page 212

HPE Diagnostics (9.26)

Page 183 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

« "Configuring Display of Application Name for Server Requests" on page 214
« "Maintaining Probe Settings from the Java Profiler UI" on page 215

« "Generating Performance Reports for JUnit Tests" on page 219

Advanced Configuration Overview

The following bullet points list the probe configuration sources of information to consult to configure
your environment.

« If you have a probe that you want to prevent others from using in Profiler mode, see "Disabling the
Java Diagnostics Profiler" on the next page.

« Tohave log messages posted to the probe logs for lower level messages, adjust the log level as
described in "Controlling Probe Logging" on the next page.

« If you have more than one agent installed on the same host, make sure the log messages for each
agent are stored in a different file, as explained in "Changing the Log Directory for a Probe" on page
186.

« Toexamine the performance of processing that would normally be trimmed from the metrics
reported in Diagnostics, you can reduce the level of trimming or turn off timming completely as
described in "Controlling Automatic Method Trimming on the Agent" on page 190.

« Ifthereis a proxy between the agent and the Diagnostics Server Commander, you must set the
correct property to tell the agent the URL of the Diagnostics Server Commander, see "Configuring
an Agent for a Proxy Server" on page 194.

« Ifyouinstalled a Java Agent in an HP Software as a Service (SaaS) environment, disable the
reverse http (rhttp) communication between the agent and the Diagnostics Server Mediator, see
"Time Synchronization for Probes Running on VMware" on page 194.

« If you are running in a virtual environment, see "Time Synchronization for Probes Running on
VMware" on page 194.

« If you need to limit the amount of exception data, see "Limiting Exception Tree Data" on page 195.

« If you want to use some of the collection options that require property file changes, see the other
topics in this section such as "Configuring Consumer IDs" on page 203.

About Dynamic Configuration

The advanced configuration of the Java Agent is managed by property settings in several property and
configuration files. You can view and modify these files in <agent_install_directory>/etc/.

HPE Diagnostics (9.26) Page 184 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Some property settings are picked up dynamically—they take effect a few minutes after the changes are
saved to the file. The dynamic properties are as follows:

o Any property in the dynamic.properties file.

« Any property (or metric definition) in the metrics.config file.

« Any property in another property or configuration file that has a comment indicating its changes are
picked up dynamically. For example, in <agent_install_directory>/etc/dispatcher.properties:

a0
21
22
23
24
25
26
a7
23

30

#

HeoHs cHE M Hs cHE H:

#

Jerver configuration

The TRL of the serwver

Comratder in 2ingle server envirommnent or distributed server in mualtiq
enviromment. If it ends with "/commander/registrar/™, the mediator wj
registration and kKeepalive requests Lo the commander. If it ends with
"fregistrar/ ™, then the mediator will send keepalive ewvents to the sey
all prokbes at once at a well-defined interval. If this property is en
Zet Lo its defasult wvalue, then the commander.registrar.url property Wil

i i =l afulal =
[Thiz property can hbe dyhamically changed)

L
e]

g g e oy i g e uuuy.HHLuau*mgumuLu;.uvLu:au.numppﬁ.hp.GDm:EDDEfCDmmandEr

Any property that is not in the categories above is non-dynamic. Changes to non-dynamic properties
require an application server restart for the new settings to take effect. For example, all of the settings
in <agent_install_directory>/etc/auto_detect.points are non-dynamic.

Disabling the Java Diagnostics Profiler

You can disable the Diagnostics Profiler for Java on a Java Agent so that it cannot be accessed
accidently. When the Java Diagnostics Profiler is disabled, the user interface cannot be accessed from
the Java Diagnostics Profiler URL: http://<probe_host>:<probeport>/profiler.

To disable the Java Diagnostics Profiler, set the disable.profiler property in <agent_install_
directory>/etc/probe.properties to true.

The default value for disable.profiler is false. To enable the Java Diagnostics Profiler once it is
disabled, change the value of the disable.profiler property from true to false.

Controlling Probe Logging

You can control the level of the messages the probe logs and change the location where the log
messages are posted using the probe properties.

HPE Diagnostics (9.26) Page 185 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Controlling the Log Message Level

The level of messages from the probe that are logged to the standard output is controlled by the
lowest_printing_level property in the property file <agent_install_
directory>/etc/logging.properties. The default setting for this property is OFF. This prevents almost
all agent messages from being logged to the console.

You can adjust the logging level dynamically by changing the value assigned to the lowest_printing_
level property. The level of messages logged changes as soon as you save the property file.

The valid values for the lowest_printing_level property are:

Property Value Description

OFF No messages are logged.

DEBUG All messages are logged.

INFO Info, Severe, and Warning messages are logged.
WARN Warning and Severe messages are logged.
SEVERE Severe messages are logged.

Changing the Log Directory for a Probe

The default location for the log directory for a probe is <agent_install_directory>/log. When you have
more than one probe on the same host, you can change the location of the log directory for each probe
using the log.dir property. This property can be set in two ways:

« The value of the log.dir property can be set in the property file <agent_install_
directory>/etc/probe.property.

« The value of the log.dir property can be specified on the startup command line for the application
server as a JAVA system property as in the following example:
-Dprobe.log.dir=/path/to/log

For more information on specifying the log.dir property on the startup command line, see "Configuring
an Agent for a Proxy Server" on page 194.

Setting the Probe’s Host Machine Name

The probe’s host name registers the probe with the Diagnostics commander server. The Diagnostics
commander server uses the probe’s host name to communicate with the probe and displays it along
with the system metrics for the server that the probe is monitoring in the Diagnostics views.

HPE Diagnostics (9.26) Page 186 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

The probe normally can detect the host name of the machine that is its host. In some situations, the
server configuration is faulty and the probe cannot detect the correct host name. In situations where a
firewall or NAT is in place or where your agent host machine was configured as a multi-homed device, it
might not be possible for the agent to properly detect its host.

If the probe cannot detect its host name, you can instruct the probe to get the host name via a reverse
DNS lookup based on the socket connection, or you can specify the host name using a probe property.

Instructing the Probe to Use Reverse DNS Lookup

If the configuration of the probe’s host prevents the probe from detecting the host name, you can
instruct the probe to detect the host name using a reverse-DNS lookup by setting the
server.host.name.lookup property. This property is located in the <agent_install_
directory>/etc/dispatcher.properties file.

The default value for the server.host.name.lookup property is 'false'. This tells the probe to do the
lookup without using reverse-DNS. Set this property to 'true' instruct the probe to use reverse-DNS
lookup.

Manually Specifying the Probe Host Name

The probe.host.name.override property enables you to manually set a host machine name for the
probe and stop the probe from doing the automatic lookup.

To set a default host machine name for a probe, set the probe.host.name.override property (located
in the property file <agent_install_directory>/etc/dispatcher.properties) to a machine name or IP
address.

When you set the probe.host.name.override property, automatic lookup of the host name is disabled.

Note: Setting the probe.host.name.override property because of a NAT or firewall is only an
issue for a test environment where you are using LoadRunner, Performance Center, or
Diagnostics Standalone.

When you set the probe.host.name.override in a production environment where you are using
BSM or Diagnostics Standalone, the name you specify is shown as the host name in System
Health.

Specifying a Different Probe IP Address

The probe.host.ip.address.override property (located in the property file <agent_install_
directory>/etc/dispatcher.properties) enables you to override the Probe’s IP address. You can use
this property when you want the probe to provide the server with a different IP address, for example, a
Virtual IP that would allow the server to communicate to the probe through a tunnel.

HPE Diagnostics (9.26) Page 187 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Setting the Active Products Mode

The Java Agent mode is typically set for you based on the options you enter in the setup program. But
you can set the mode manually as described in this section.

The Java Agent can be set in different modes to do the following:
« Monitor applications from development through pre-production testing and into production
o Work with other HP Software products

« Beused as a standalone Diagnostics Java Profiler not reporting to a server or to other HP Software
products

The mode the Java Agent works in is determined by the modes value of the active.products property
located in the property file <agent_install_directory>/etc/probe.properties.

The modes value in the active.products property is also used in determining usage against the license
capacity (see the chapteron Licensing in the HP Diagnostics Server Installation and Administration
Guide). For Diagnostics there are two types of LTUs (License to use):

o AM - When using of the product in an enterprise mode, typically in a production environment.

« AD - When using the product in a pre-production load testing environment with probes in
LoadRunner or Performance Center runs.

The value of the active.products property is initially set at the time you install the Java Agent.

« If you select Diagnostics Profiler Mode the value of the active.products property in the
etc/probe.properties file is set to PRO mode at the time you install the Java Agent.

« With the Application Management/Enterprise Mode (AM License) option, the value of the
active.products property in the etc/probe.properties file is set to Enterprise mode if you select
the Diagnostics Server. It is set to TV mode if you select the TransactionVision server at the time
you install the Java Agent.

« If you select this AD License option, the value of the active.products property in the
etc/probe.properties file is set to AD mode at the time you install the Java Agent.

To change the value of the active.products property you can edit the property file and restart the
application server. Or you can re-run the Java Agent Setup and use the Change option to set the mode
to Diagnostics Profiler Mode (PRO), Application Management/Enterprise Mode for Diagnostics
(Enterprise) and/or TransactionVision (TV) or Diagnostics Mode for LoadRunner/Performance Center
(AD).

Note: To use the standalone Diagnostics Profiler for Java trial copy in enterprise mode or
integrated with other HP Software products, contact HP Software Customer Support to purchase
HP Diagnostics.

HPE Diagnostics (9.26) Page 188 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

To see Diagnostics data in the user interface of the interfacing HP Software products, you must
perform additional configuration steps. See the BSM-Diagnostics Integration Guide or
LoadRunner/Peformance Center-Diagnostics Integration Guide for details.

The sections that follow provide instructions for configuring each product mode of the active.products
property.

PRO Product Mode — Diagnostics Profiler for Java
When PRO mode is set, the agent gathers performance metrics and presents them in the standalone
Diagnostics Java Profiler user interface which is made available through a URL on the agent host.

If you are running the Java Agent as part of the Java Diagnostics Profiler trial copy, restrictions are
placed on the agent to limit the load it can handle.

If you are running the Java Agent as part of the full Diagnostics enterprise product, or along with
another HP Software product, the Profiler is enabled without the load restrictions.

PRO mode is not used in determine usage against license capacity.

Enterprise Product Mode

When configured in Enterprise mode, the agent works with HP Software products such as BSM,
LoadRunner, Performance Center, and as the full Diagnostics enterprise product. Although you must
also do additional configure to enable these integrations (see theBSM-Diagnostics Integration Guide or
LoadRunner/Peformance Center-Diagnostics Integration Guide for details).

In Enterprise mode data will also be sent to the Diagnostics Java Profiler.

Enterprise mode is the default for Java Agents (if you don’t specify AD or AM mode). In Enterprise
mode the agents are counted against the AM license capacity.

AM Product Mode

In AM mode the Java agent will capture all instrumentation data. You can set AM mode to protect an
agent in a production BSM deployment from accidentally being included in a LoadRunner or
Performance Center run. In AM mode, the agent is not listed as an available agent in LoadRunner or
Performance Center.

Agents in AM mode will always be counted against the AM license capacity.

AM mode supersedes all other modes except for AD.

AD Product Mode

In AD mode the Java agent will only capture data during a LoadRunner or Performance Center run and
the results will be stored in a specific Diagnostics database for that run, for example, Default Client:21.

When the agent is in AD mode it will not use resources or send any data to the server unless the probe
is part of a LoadRunner/Performance Center run.

HPE Diagnostics (9.26) Page 189 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Use this mode to prevent an agent in a QA environment from using additional resources and continually
report data to the Diagnostics server when a load test is not running.

Another advantage of running a probe in AD mode is that probes in AD mode are only counted against
the AD license capacity when in a LoadRunner or Performance Center run. For example if you have 20
probes installed in LoadRunner/Performance Center AD mode but only 5 are in a run, then only 5 are
counted against AD license capacity.

See the LoadRunner/Peformance Center-Diagnostics Integration Guide for more information.

TV Product Mode

This mode will send events to Transaction Vision. This mode can be combined with other modes. TV
mode is not used to determine usage against HP Diagnostics license capacity.

Controlling Automatic Method Trimming on the Agent

Default configuration for the agent includes settings that control the trimming of methods. Trimming can
be controlled according to how long the method takes to execute, which is known as latency, and by
the stack depth of the method call. The default configuration instructs the probe to trim both by latency
and depth.

You could reduce the level of trimming, or turn off timming completely. You can control timming using
the minimum.method.latency and maximum.stack.depth properties in <agent_install_
directory>/etc/capture.properties.

Controlling Latency Trimming

Methods that complete with latency greater than or equal to the value of the
minimum.method.latency property are captured, and those that complete with latency less than this
limit are trimmed to avoid incurring the overhead for less interesting methods.

Note: In the following situations, latency is not timmed when its latency is less than the trimming
property:

o Methods that are the root for a call tree.

« Methods that threw an exception.

If the information for all methods must be captured, lower the value of the minimum.method.latency
property or set it to zero.

Consider the following when setting the minimum.method.latency property:

« Thelower the value of the minimum.method.latency property, the greater the chance that the
performance of your application will be adversely impacted.

HPE Diagnostics (9.26) Page 190 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

« Depending on your platform, and whether native timestamps are being used
(use.native.timestamps = false), it might not be useful to specify this value in increments of less
than 10 ms.

Controlling Depth Trimming

Methods that are called at a stack depth less than or equal to the value of the maximum.stack.depth
property are captured. Those called at a stack depth greater than this limit are trimmed to avoid
incurring overhead for less interesting methods.

Here is an example:

If maximum.stack.depth is 3 and /login.do calls a() calls b() calls c() then only
/login.do, a, and b are captured.

Note that setting a low maximum.stack.depth can significantly reduce the overhead of capture.

Configuring URI and Parameter Capture

Any HTTP/S server request URI, or HTTP parameter, can be transformed before being reported by the
probe. Some of the transformations are based on regular expression matching and replacement and are
controlled by properties in the <agent_install_directory>\etc\dynamic.properties file. The values of
the properties controlling such replacement must use the s/pattern/replace/ syntax. To perform
multiple operations, use a comma-separated list. The operations are performed in order.

The URI or HTTP parameter transformations can be used when you are seeing too many server
requests and you want to replace many server request URIs with one simplified server request URI
that aggregates them.

For example, the following URIs may be accepted by a particular banking application:

/banking/account/00283117/status
/banking/account/02089003/check_balance

/banking/account/00082453/transfer/amount/250000/to/account/02089003

If the server requests are identified by the URIs as shown above, the number of different server
requests can be very large. This can create storage problems on the Diagnostics server, but more
importantly, it can make reported data very poorly suited for performance analysis. The reported server
requests must be mapped to a manageable set, using the options below.

URI Truncation and Mapping

The regular expression matching and replacement for any HTTP/S server request URI is controlled by
the uri.pattern.replace property in the dynamic.properties file.

HPE Diagnostics (9.26) Page 191 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

In the banking application example shown above, you may want to eliminate the numbers following the
"account/" and "amount/" parts in the URI. To do this, you set the uri.pattern.replace value as follows:

uri.pattern.replace=s'account/\\d*'account/*"',s"amount/\\d*" 'amount/\\$"

This results in the server requests being reported as follows:

/banking/account/*/status
/banking/account/*/check_balance

/banking/account/*/transfer/amount/$/to/account/*

Caution: Overuse of this feature can impact performance.

You can see details and more examples as comments in the dynamic.properties file under URI
Truncation and Mapping.

Automatic Detection and Trimming of REST-ful Server Requests

By default, the probe attempts to automatically detect the URI path elements that demonstrate high
variability, as shown in the banking application example above. This behavior is controlled by the
automatic.uri.collapsing property in the <agent_install_directory>/etc/capture.properties file. The
value of the property is an expression indicating the maximum number of path segments allowed for
each segment position, provided all the preceding path segments are the same. Whenever the number
of the different values for the path segment exceeds the configured threshold, this path segment (in the
given context) is replaced by an asterisk (*). For example, in the banking application example shown
above, after seeing a sufficiently large number of different account numbers and transfer amounts
(equal to or greater than the value configured in the automatic.uri.collapsing property), the probe
reports the server requests as:

/banking/account/*/status
/banking/account/*/check_balance

/banking/account/*/transfer/amount/*/to/account/*

Automatic detection makes manual configuration as described in the previous section unnecessary,
but it may require a relatively large set of different URIs to be seen by the probe before it is activated.

Tip: The probe stores its internal data related to this feature in the log/<probe-id>/<probe-id>_
sr.templates text file. You can "train" the Diagnostics probe in a test environment to determine the
correct set of server requests to report, and then copy this file to a production environment before
starting the production probe.

HPE Diagnostics (9.26) Page 192 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

URI Trimming

If you have too many server requests, you can also use the maximum.uri.pathsegments property in
the capture.properties file to trim server requests to a configured number of path segments.

The default for this setting is -1, which disables the property. For probes reporting in a SaaS
environment (SaaS selected in the Java Agent setup) maximum.uri.pathsegments is automatically
set to 2 to ensure the volume of server request data sent to HP hosted servers is not too large.

For example, a setting of 2 results in no more than two path segments, so the URI
/banking/account/00082453/transfer/amount/250000/to/account/02089003 is trimmed to
/banking/account.

The probe applies the URI transformations in the following order:
1. URI mapping (configured by the uri.pattern.replace property).
2. Static content replacement (configured by the uri.static_content.suffixes property).
3. URI trimming (configured by the maximum.uri.pathsegments property).

4. Automatic URI transformation (configured by the automatic.uri.collapsing property).

Caution: While each of the above transformation steps can be disabled, we do not recommend
disabling all of them.

HTTP Parameter Truncation and Mapping

You can transform any captured HTTP parameter. This can be useful when a parameter value is too
complex to be used in server request classification without causing symbol table explosion.

The regular expression matching and replacement works in the same manner as for URI Truncation
and Mapping explained above, and it is controlled by the parameter.pattern.replace.<property-key>
property in the dynamic.properties file, where <property-key> is the HTTP parameter name (key).

You must enable HTTP parameter capture in the [HtpCorrelation] point in the auto_detect.points file
using the args_by_class keyword. Also, if your HTTP requests use the POST method, you must
specify ignore.post.parameters=false in the inst.properties file.

For example, if you want to capture the HTTP parameter eventSource, which takes values like

FNOLVehicleIncidentPopup:FNOLVehicleIncidentScreen:VIPS:VehicleDamageDescription

and you only want to keep the part up to the first colon (:), you can add the following line to the
[HttpCorrelation] point definition in the auto_detect.points file:

args by class = !.*&eventSource

and add the following line to the dynamic.properties file:

HPE Diagnostics (9.26) Page 193 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

parameter.pattern.replace.eventSource=s':.*
Caution: Overuse of this feature can impact performance.

You can see details and more examples as comments in the dynamic.properties file under HTTP
Parameter Truncation and Mapping.

Configuring an Agent for a Proxy Server

Note: This section only applies if you are using the Java Agent with a Diagnostics Server.

Two properties are used to specify for the Java Agent, the URL of the Diagnostics Commander Server.
The property you set depends on whether or not there is a proxy.

« registrar.url in dispatcher.properties

The registrar.url property in <agent_install_directory>\etc\dispatcher.properties is set when
you install the agent. When there is a direct connection between the agent and the URL of the
Diagnostics Commander Server, the agent uses the value of this property.

« registrar.url in webserver.properties

In the presence of a proxy, you must set the registrar.url property in the <agent_install_
directory>\etc\webserver.properties file to indicate the URL of the Diagnostics Commander
Server.

Time Synchronization for Probes Running on VMware

For probes running in a VMware guest, time must be synchronized between the VMware guest and the
underlying VMware host. If time is not synchronized properly, the Diagnostics Ul could display
inaccurate metrics or no metrics at all from a probe running in a VMware guest.

Time should be synchronized according to the recommendations given in the VMware whitepaper on
timekeeping

(http://www.vmware.com/pdf/vmware_timekeeping.pdf) in a section on "Synchronizing Hosts and
Virtual Machines with Real Time." VMware Tools must be installed in each VMware guest operating
system that hosts a Diagnostics probe. The time synchronization option in VMWare Tools must be
turned on.

This option in VMware Tools works only if the guest operating system time is initially set earlier than
that of the VMware host. For instructions on how to install VMware Tools, see the "Basic System
Administration" document for VMware ESX Server. If any non-VMware time synchronization software
(such as Network Time Protocol) is used, it should be run in the VMware ESX server service console.

HPE Diagnostics (9.26) Page 194 of 305

http://www.vmware.com/pdf/vmware_timekeeping.pdf

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

If you encounter negative latency issues when running the probe on VMware guest with the probe
property attempt.vmware.timestamp.adjustments set to true, you should set the following property in
the probe etc/capture.properties file:

use.vmware.timestamp.workaround=true

When use.vmware.timestamp.workaround is set to true, the probe will use the alternative call to get the
VMware host timestamps, so as to workaround the negative latency issue.

Limiting Exception Tree Data

The agent collects exception information and uses it to build exception instance trees. Exception
instance trees provide the data for the exception information that appears in the Diagnostics Ul such as
a stack trace.

By default, every exception that occurs in the monitored application is a candidate for the exception
instance trees. Collecting all exception information is usually undesirable, however, because
exceptions that are not of interest overload the display as well as the data collection and transfer
operations. You can, therefore, limit the exception types for which data is collected. For example,
filtering application server-based errors such as javax.naming.AuthenticationException allow the
exception trees to contain more application-specific errors.

The exception tree data collected is controlled by limiting specific exception types or limiting the
number of exception types.

Limit Specific Exception Types

You can control which specific exception types are excluded and included from collection by setting the
exception.types.to.exclude and exception.types.to.include properties in the <agent_install_
directory>\etc\dispatcher.properties file as follows:

« exception.types.to.exclude

Set this property to ignore exceptions of one or more specified types. All subtypes of each specified
type are also ignored unless the subtype is specified by the exception.types.to.include property.

« exception.types.to.include

Set this property to specify which, if any, of the specified excluded exceptions (or their subtypes)
are to be included. Subtypes of any exception type specified to be included are also included.

Both properties take lists of fully-qualified exception type names, separated by commas. Changes to
the dispatcher.properties file take effect immediately. It is not necessary to restart the application.

Limit the Number of Exception Types

You can limit the exception tree data collected by specifying the number of different types of
exceptions by setting the exception.instance.tree.count property in server.properties. By default,

HPE Diagnostics (9.26) Page 195 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

this property is set to 4, which indicates that only the first four exceptions types encountered during the
probe’s data collection cycle are used in building the exception trees. You can raise or lower this
setting.

Examples

The following example causes exceptions of type ClassNotFoundException and all its subtypes to be
ignored.

exception.types.to.exclude=javax.naming.AuthenticationException

The following example causes some subtypes of the java.lang.|OException class to be excluded, as
indicated by the diagram that follows:

exception.types.to.exclude=java.io.IOException,java.io.InvalidClassException
exception.types.to.include=java.io.0bjectStreamException

The following diagram shows the excluded and included exception types on the java.io class hierarchy:

o javalang Throwable
> javalang Error
o javaio I0Error
> javalang Exception
o javaio JOException
3 javaio CharConversionException
5 javaio EOFException Excluded
2 javaio FilleNotFoundException
o javaio InterruptedIQException
5 java in ObjectStreamException Included
> javaio InvalidClassException ————Excluded
javaio InvalidObjectException \
javaio NotActiveException
javaio NotSernalizableException
javaio OpfionalDataException
javaio StreamCorruptedException
7 javaio WriteAbortedException)
java.io.SvaclalledEzception

java.io. UnsupportedEncodingException }Excluded
5 javaio UTTDataFormatException

Included by default

' Included

L L L L= L

L L

Diagnostics Probe Administration Page

You can use the Diagnostics Probe Administration page to configure Java Agent and Profiler settings.
Access the Diagnostics Probe Administration page directly from your browser.

HPE Diagnostics (9.26) Page 196 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Accessing the Diagnostics Probe Administration Page
Open the Diagnostics Probe Administration page inside your browser.
To access the Diagnostics Probe Administration page:
1. Inyour browser, navigate to http://<probe_host>:<probeport>.
A probe is assigned to the first available port, beginning at 35000.

The Administration page opens.

[Diagnostics

Diagnostics

Probe

P
Q Open Diagnostics Profiler {Cpen in This Window)

.r~ Advanced Options

,-f‘;?
ﬁ Manage Authorization and Authentication

2. Select the menu option for the activity you want to perform.
m Open Diagnostics Profiler. Opens the Java Diagnostics Profiler.

m Advanced Options. Opens the Components pages. For more information, see "Diagnostics
Probe Components Page" on the next page.

= Manage Authorization and Authentication. Depending on how your probe is configured, you
will access a different pages from this option.

o If your probe is configured to work with a Diagnostics Server, the probe (Profiler)

authorization and authentication settings are managed from the Diagnostics Commander
Server to which this probe is connected. When you click this option, you are redirected to

HPE Diagnostics (9.26) Page 197 of 305

Java Agent Guide

Chapter 11: Advanced Java Agent and Application Server Configuration

that Diagnostics Commander Server. For more information, see “User Authentication and
Authorization.” in the HP Diagnostics Server Installation and Administration Guide.

o If your probe is configured to work as a Profiler only and is not connected to any
Diagnostics Server, this option opens the User Administration page, where you can create,
edit and delete users and change their privileges. For more information, see"Authentication
and Authorization for Diagnostics Java Profilers" on the next page.

Diagnostics Probe Components Page

From the Components page you can open the Java Diagnostics Profiler, and access the User
Administration page.

To access the Components page:

1. Open the Diagnostics Probe Administration page as described in "Accessing the Diagnostics

Probe Administ

ration Page" on the previous page.

2. Click Advanced Options.

3. If prompted, enter your user name and password.

The Componen

ts page opens.

[Diagnostics "
Components

Component Name

Let
inst
security

scheduler

infrequentlogger

files

Component Description

Guery API - allows you to download diagnostics data in HTML, XML or as Java objects
Instrurnentation Control

Built-In User Management

See and control regularly scheduled background tasks

See the current status of entries in the infrequent logging table

Installation directory browser - upload and download property files, log files, atc

HF Diagnostics 12EE Probe "WLS91_MedRec_T155_wW2zk3", version 7.1.100,10

4. Click one of the following options:

= query. Forinternal use by developers.

m inst. Includes various instrumentation options. For more information about probe
instrumentation, see "Custom Instrumentation for Java Applications" on page 113.

= security. Depending on how your probe is configured, you access a different page from this

option.

o If your probe is configured to work with a Diagnostics Server, the probe (Profiler)
authorization and authentication settings are managed from the Diagnostics commander
server to which this probe is connected. When you click this option, you are redirected to
that Diagnostics commander server . For more information, see “User Authentication and

HPE Diagnostics (9.26)

Page 198 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Authorization” in the HP Diagnostics Server Installation and Administration Guide.

o If your probe is configured to work as a Profiler only and is not connected to any
Diagnostics Server, this option opens the User Administration page, where you can create,
edit, and delete users and change their privileges. For more information, see
"Authentication and Authorization for Diagnostics Java Profilers" below.

= scheduler. Enables you to see and control regularly scheduled background tasks. For the
ServerCommunication scheduler or the sharedinfrequentEventScheduler, you can see the
state and the number of tasks inside each. For each task, you can select an action such as
RUN NOW or DELETE.

= infrequentLogger. See the current status of entries in the infrequent logging table.

m files. Installation directory browser — upload and download property files, log files, etc.

Note: By default, the upload button on this page is disabled. To enable it, in the <agent_
install_directory>/etc/common.properties file, change the value of the
enable.file.uploadFromUI parameter to true (enable.file.uploadFromUIl=true).

Caution: Enabling this feature may lead to security issues.

Authentication and Authorization for Diagnostics Java
Profilers

When you install the Java Agent as a Profiler only (not connected to any Diagnostics Server), you can
manage the authentication and authorization of users of the Profiler from the Diagnostics Probe User
Administration page.

Note: If the Java Agent is configured to work with a Diagnostics Server, the probe (Profiler)
authorization and authentication settings are managed from the Diagnostics Commander Server to
which this probe is connected. For more information, see “User Authentication and Authorization”
on page 787 in the HP Diagnostics Server Installation and Administration Guide.

To manage authentication and authorization for users of the standalone Java Diagnostics
Profiler:

1. Access the Diagnostics Probe Administration page

In your browser, navigate to http://<probe _host>:<probeport>. A probe is assigned to the first
available port, beginning at 35000.

The Diagnostics Probe administration page opens.

HPE Diagnostics (9.26) Page 199 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

2. Select Manage Authorization and Authentication to open the User Administration page.

[Diagnostics

Permissions for "Default Client’

Enterprise Diagnostics Permissions

User Administration |
Allows you to create, edit and delete Diagnostics users

Edit Enterprise Permissions | Allows you to grant & user permissions across the entire Diagnostics
deployment.

Control over probes connected to "server-OVRNTT154":

Edit Permissions Template Edits user permissions used on probes in probe-groups not yet listed
below

Edit AIX
Edits user permissions on probes in the 'AIX' probe-group

Edit BAC
Edits user permissions on probes in the 'BAC' probe-group

i

Edit Default
Edits user permissions on probes in the 'Default’ probe-group

On the User Administration page, you can create new users, assign privileges to users, change
passwords of existing users, and delete users.

To create a new user:

1. Click Create User, enter a user name in the New User Name box, and click OK. The new user
appears in the list of user names.

2. Inthe row representing the new user, type a password in the Password box and confirm it by
retyping it in the Confirm Password box.

3. Type the password of the user currently logged on, in the Password for <current user> box and
click Save Changes.

To assign privileges to a user:

1. Goto the row representing the relevant user and select the appropriate check boxes representing
the different privileges.

The following privilege levels can be assigned to Java Diagnostics Profiler users:

HPE Diagnostics (9.26) Page 200 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Privilege Description
View The user can view Profiler data from the Ul.
Execute The user can perform garbage collection and clear the performance data held

by the Profiler.

Change The user can run potentially risky operations, such as taking a heap-dump or
changing instrumentation.

The privilege levels, rhttpout and system are for internal purposes only.

Each privilege level stands alone. There is no inheritance of privileges from one level to the next.
You must grant a user all of the privilege levels that are necessary to perform the functions they
need to perform.

2. Type the password of the user currently logged on, in the Password for <current user> box and
click Save Changes.

To change the password of an existing user:

1. Go to the row representing the relevant user, type a password in the Password box, and confirm it
by retyping it in the Confirm Password box.

2. Type the password of the user currently logged on, in the Password for <current user> box and
click Save Changes.

To delete a user:

1. Type the password of the user currently logged on, in the Password for <current user> box.

2. Click Delete user (u) corresponding to the user you want to delete.
A message box opens asking if you want to delete the selected user.

3. Click OK to delete the user.

Configuring Collection of CPU Time Metrics

The CPU Time metrics appear in the Details pane for the Transaction view, the Probes view, the Call
Profile view, and the Portal Components view. You can enable, disable, and configure the collection of
CPU time metrics. The CPU time metrics are CPU (Avg) and CPU (Total). If collection of CPU time
metrics is disabled or not configured for methods, you will see N/A for these metrics.

The CPU Time metrics rely on CPU timestamping which is generally supported on the following
platforms: Windows, Solaris, AlX, HP-UX and Linux kernels 2.6.10 or later (for example RedHat 5.x,
SUSE 10.x).

HPE Diagnostics (9.26) Page 201 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Note: Support for CPU timestamping can vary, however, not only by operating system, but also
by platform architecture (for example SPARC versus x86).

For the most recent information on support for CPU Time on specific platform versions and
architecture, see the Diagnostics Support Matrix at http://support.openview.hp.com/sc/support_
matrices.jsp.

Note: In VMware, the CPU time metric is from the perspective of the guest operating system and
is affected by the VMware virtual timer. See the VMware whitepaper on timekeeping at
http://www.vmware.com/pdf/vmware_timekeeping.pdf and "Time Synchronization for Probes
Running on VMware" on page 194.

By default, collection of CPU time metrics is enabled for server requests. You can disable CPU time
metric collection and configure collection of CPU time metrics in property files or using the Java
Diagnostics Profiler Ul. You can configure collection of the following CPU Time metrics:

« Server Requests only

« Server Requests and Portlet Methods

« Server Requests and All Methods

For a Java Agent, the collection of CPU Time metrics is controlled by two properties:

« use.cpu.timestamps property in <agent_install_directory>\etc\capture.properties.

This property is set to true by default, which enables collection of CPU time metrics. Collection of
any CPU timestamps is controlled by a second property listed below. If you set the
use.cpu.timestamps property to false, the CPU time metrics are not collected for any server
request or method reported by the probe

« cpu.timestamp.collection.method property in <agent_install_
directory>\etc\dynamic.properties.

Caution: Use caution when configuring the collection of CPU timestamps because of the
increase in Diagnostics overhead. The increased overhead is caused by an additional call for each
method that is needed to collect the timestamp.

Cpu.timestamp.collection.method can be set to one of the following:
« 0 - No CPU timestamping.
« 1-CPU timestamps collected only for server requests.

The default value is 1, which means CPU times can be reported at the server request level but not
the transaction level. However, if the setting is removed or commented out of the properties file, the
default is 0.

HPE Diagnostics (9.26) Page 202 of 305

http://www.vmware.com/pdf/vmware_timekeeping.pdf

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

o 2-CPU timestamps collected for All server requests and ALL methods.

o 3—CPU timestamps collected for ALL server requests and the lifecycle methods instrumented for
Portal Components.

Another way to set the cpu.timestamp.collection.method property is using the Configuration tab in
the Java Diagnostics Profiler as follows:

1. Inthe Profiler Ul, select the Configuration tab. The profiler does not need to be started to make
this probe configuration change.

2. Inthe Configuration screen, select a Collect CPU Timestamps option from the dropdown list.

CPU Timestamp Collection

Method Description
None No CPU Timestamps.
For Server Requests Only CPU timestamps are only collected for server requests.

For Server Requests and Portlet CPU timestamps are collected for ALL server requests and

Methods the lifecycle methods instrumented for portal components.
For Server Requests and All CPU timestamps are collected for ALL server requests and
Methods ALL methods.

3. When you complete your changes, click Apply Changes.

Note: Your changes take effect immediately. You do not need to restart the application (or probe).

Configuring Consumer IDs

Web service metrics can be grouped by particular consumers of the Web service. The metrics are then
aggregated for that consumer and displayed in SOA Services views such Services by Consumer ID or
Operations by Consumer ID. There are several ways of defining the consumer ID:

« "AValue in a SOAP Header"

o "AValueina SOAP Envelope"

« "AValuein the SOAP Body"

« "AValueinan HTTP Header"

o "A JMS Queue Name" (or topic name) for SOAP over JMS web services

« "A JMS Message Property" for SOAP over JMS web services

HPE Diagnostics (9.26) Page 203 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

« "A JMS Message Header" for SOAP over JMS web services
o "A specific IP Address "

« "A Range of IP Addresses"

Note: Defining consumer ID based on SOAP header, envelope, or body requires the Diagnostics
SOAP message handler for Java probes. For some application servers, special instrumentation is
provided in Diagnostics to automatically load the Diagnostics SOAP message handler.

However, some manual configuration is required for WebSphere 5.1 JAX-RPC and Oracle 10g
JAX-RPC, see "Loading the Diagnostics SOAP Message Handler " on page 83 for details.

The Diagnostics SOAP message handler is not available for all application servers. Custom
instrumentation is not available to capture SOAP faults or consumer IDs from SOAP payloads.
Therefore, this feature is not available on all versions of all application servers. For the most recent
information on Diagnostics SOAP message handler support, see the Diagnostics Support Matrix
at

http://support.openview.hp.com/sc/support_matrices.jsp.

Aggregating the data by consumer ID is useful if you want to determine who is using a particular
service and how frequently they are using it. Consumer IDs are also useful for BSM. BSM users can
look at the performance of the same application based on consumers to compare their performance
characteristics.

Configuring Consumer IDs is optional. By default, IP address is used as consumer ID for SOAP over
HTTP/S web services and inbound queue name (or topic name) is used by default as consumer ID for
SOAP over JMS web services.

This section includes:
« "Basic Procedure for Consumer ID Configuration" below
o "About Consumer ID Rules" on page 206

o "Consumer ID Rules Syntax and Examples for Java Agents" on page 206

Basic Procedure for Consumer ID Configuration

The basic procedure to configure consumer IDs is as follows:

1. (Optional). Specify *dump-payload in the consumer.properties file to print the entire SOAP
payload out to the consumer.log file. Use this output to plan how to create the specific rules to
configure consumer IDs for SOAP payload capture.

HPE Diagnostics (9.26) Page 204 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Before you configure consumer IDs, familiarize yourself with the SOAP payload data to determine
how best to create the specific rules Diagnostics will use to find the value for consumer IDs.

The dump-payload option should only be used when help is required to locate the element that
contains the Consumer Id.

This option should be the only value on the right side of the equal(=)sign when used:
DumpTest;HTTP_WS;TraderService = *dump-payload

Note: Do not try to use the same service name to extract a value AND dump the payload at
the same time.

For example, to use this feature, enter:

SoapTestl;HTTP_WS;TraderService = *dump-payload

This results in printing the SOAP Payload for a rule that matches TraderService. The content of
the consumer.log file is:

2009-01-15 14:42:13,653 INFO consumer [[ACTIVE] ExecuteThread: '@' for
queue:
'weblogic.kernel.Default (self-tuning)'] [PAYLOAD:] <?xml version="1.0"
encoding="UTF-8"
standalone="yes"?><soapenv:Envelope xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:trad="http://
www.bea.com/examples/Trader" xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">
<soapenv:Header>
<CallerA>customerA</CallerA>
</soapenv:Header>
<soapenv:Body>
<trad:buy
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<string xsi:type="xsd:string">hpq</string>
<intVal xsi:type="xsd:int">11</intVal>
</trad:buy>
</soapenv:Body>
</soapenv:Envelope>

2. Foreach Java Agent you want metrics grouped by consumer, update the consumer.properties
file as described in "Consumer ID Rules Syntax and Examples for Java Agents" on the next page.

3. Totrack more than five consumer types, update the max.tracked.ids.per.probe setting in the
dispatcher.properties file.

4. Review the <probe_name>_id.properties file located in the probe/files/log directory. The

HPE Diagnostics (9.26) Page 205 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

<probe_name>_id.properties file might need to be completely deleted or modified to match the
consumer.properties changes made in the previous steps. The file goes together with the
max.tracked.ids.per.probe (dispatcher.properties) setting, once the limit is reached, per probe, all
other consumers are classified as "Other".

About Consumer ID Rules

The assignment of consumer IDs is controlled by consumer ID rules in a configuration file,
consumer.properties.

Each category of consumer IDs has its own rules: SOAP rules, HTTP header rules, JMS web service
rules, and IP rules. The rules are not applied according to how the rules are defined. The SOAP header
rules are applied first; the HTTP headers rules are applied next; then the JMS rules are applied; and
lastly the IP rules are applied.

Note: ALL configuration items in the rules are case sensitive. For example, if you enter a <pattern-
name> of TraderService, the Web service name must have a capital T and a capital S for the
pattern to match.

All rule types do not need to be used. There might be SOAP rules, no HTTP rules, and IP rules. If there
is no match on any of these rules, the original IP address or queue name for JMS is used as the
consumer ID.

The SOAP rules allow for the consumer ID to be obtained from an XML element in the SOAP header,
SOAP envelope, or body as well. The rule specifies a regular expression that is used to match against
the web service name being called by the consumer.

If there is a match, the probe attempts to find the text element also specified in the rule. If the text
element is not found in the SOAP header, this rule is skipped and the probe goes on to the next rule that
is defined.

The HTTP header rules allow for the consumer ID to be obtained from a header in the collection of
HTTP headers ina HTTP request.

The JMS web service rules allow for the consumer ID to be JMS queue/topic name, and JMS Message
properties or Message Header (JMSReplyTo only).

The IP rules allow for the consumer ID to be obtained from the mapping of IP addresses to a consumer
ID. The rule is used to define an IP address, or a range of addresses, to be assigned to a consumer ID.

Consumer ID Rules Syntax and Examples for Java Agents
The assignment of consumer IDs is controlled by specifying rules in the consumer.properties file.

Note: ALL configuration items are case sensitive. For example, if you enter a <pattern-name> of
TraderService, the Web service name must have a capital T and a capital S for the pattern to
match.

HPE Diagnostics (9.26) Page 206 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

A Value in a SOAP Header

To assign a consumer ID based on a value in a SOAP header, use the following format:

<rule-name>;HTTP_WS;<pattern-name> = soap-header;<element-value>
Where:

<rule-name> is a String that identifies the rule. The name must be unique to the consumer.properties
file.

<pattern-name> is a regular expression to match on the Web service name or you can use the exact
Web service name.

<element-value> the element in the SOAP envelope whose value you want to use as the Consumer ID.

For example, the following rule matches on a Web service with service name TraderService and uses
the CallerA element’s value as the consumer IDs:

SoapRulel;HTTP_WS;TraderService = soap-header;CallerA

When the callers of the TraderService Web service have a value defined for CallerA, the metrics are
grouped by the different values for CallerA. The following excerpt from the soap header maps to a
consumer ID of "Customer2" for this caller of the TraderService:

SoapTestl;WS<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/
envelope/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<env:Header>
<CallerA>Customer2</CallerA> <---- The consumer id returned would be
"Customer2"
</env:Header>
<env:Body env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<m:sell xmlns:m="http://www.bea.com/examples/Trader">
<string xsi:type="xsd:string">sample string</string>
<intVal xsi:type="xsd:int">100</intVal>
</m:sell>
</env:Body>
</env:Envelope>

By default, Diagnostics looks for CallerA in the first-level element (the element directly under the SOAP
env:Header). You can configure Diagnostics to look into a deeper-level xml element for consumer ID.
The dynamic property max.search.level.depth in the consumer.properties file controls the depth at
which to search for consumer ID (default value is 1 level deep). For example, max.search.level.depth =
2 would find consumer ID:

<env:Header>
<test:id>

HPE Diagnostics (9.26) Page 207 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

<test:CallerA>consumerA</test:CallerA>
</test:id>
</env:Header>

A Value in a SOAP Envelope

To assign a consumer ID based on a value in a SOAP envelope, use the following format:
<rule-name>;HTTP_WS;<pattern-name> = soap-envelope;<element-value>
Where:

<rule-name> is a String that identifies the rule. The name must be unique to the consumer.properties
file.

<pattern-name> is a regular expression to match on the Web service name or you can use the exact
Web service name.

<element-value> the element in the SOAP envelope whose value you want to use as the Consumer ID.

A Value in the SOAP Body

To assign a consumer ID based on a value in the SOAP body, use the following format:

<rule-name>;HTTP_WS;<pattern-name> = soap-body;<element-value>
Where:

<rule-name> is a String that identifies the rule. The name must be unique to the consumer.properties
file.

<pattern-name> is a regular expression to match in the Web service name or you can use the exact
Web service name.

<element-value> the element in the SOAP body whose value you want to use as the Consumer ID.

A Value inan HTTP Header

To assign a consumer ID based on a value in an HTTP header, use the following format:

<rule-name>;HTTP_WS;<pattern-name> = attribute;<header-value>

Where:

<rule-name> is a String that identifies the rule. The name must be unique to the consumer.properties
file.

<pattern-name> is a regular expression to match on, in the URI.

<header-value> is the HTTP header whose value you want to use as the Consumer ID.

HPE Diagnostics (9.26) Page 208 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

For example, the following rule matches on a web service with a URI of "/webservice/.*" and uses the
"User-Agent" header's value as the consumer ID:

WsRulel;HTTP_WS; /webservice/.* = attribute;User-Agent

When the callers of the Web service have a value defined for User-Agent, the metrics are grouped by
the different values for User-Agent. The following excerpt from the HTTP header maps to a consumer
ID in the heading:

GET /service/call HTTP/1.1

Accept: */*

Accept-Language: en-us

User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows 2000)
Host: ovrnttl

Caller: ovrnttl

Connection: Keep-Alive

A JMS Queue Name

To assign a consumer ID based on the matching the JMS queue/topic name, use the following format:
<rule-name>;JIMS_WS;<queue-name>=<consumerID-string>
Where:

<rule-name> is a String that identifies the rule. The name must be unique to the consumer.properties
file.

<queue-name> is a regular expression to match on, in the JMS queue/topic name.

<consumerlD-string> is a literal string to use as the Consumer ID.

For example, the following rule matches on a JMS queue name that starts with queue://sca_soapjms.*

and uses the string "myJMSConsumer" as the consumer ID:
IMSTest3;IMS_WS;queue\://sca_soapjms.*=myJMSConsumer

You must use a backslash "\:" to escape the ":" after queue or topic.

The priority used in matching is determined by the order specified in the consumer.properties file. JMS_
WS queue matching takes priority over IP matching; JMS_WS property matching takes priority over
JMS_WS Header matching; and JMS_WS Header matching takes priority over JMS_WS queue name
matching.

A JMS Message Property

To assign a consumer ID based on matching a JMS queue/topic name and use the value from the JMS
message property as the consumer ID, use the following format:

<rule-name>;IMS_WS;<queue-name>=jms-property;<property-value>

HPE Diagnostics (9.26) Page 209 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Where:

<rule-name> is a String that identifies the rule. The name must be unique to the consumer.properties
file.

<queue-name> is a regular expression to match on in the JMS queue/topic name.

<property-value> is the JMS property whose value you want to use as the Consumer ID.

For example, the following rule matches on a JMS queue name that starts with queue://MedRec.* and

uses the value from the JMSXDeliveryCount property as the consumer ID:
JMSTestl;IMS_WS;queue\://MedRec.*=jms-property;IMSXDeliveryCount

You must use a backslash "\:" to escape the ":" after queue or topic.

A JMS Message Header

To assign a consumer ID based on matching the JMS queue/topic name and JMS message header,
use the following format:

<rule-name>;JIMS_WS;<queue-name>=jms-header;<header-value>
Where:

<rule-name> is a String that identifies the rule. The name must be unique to the consumer.properties
file.

<queue-name> is a regular expression to match in the JMS queue/topic name.

<header-value> must be JMSReplyTo.

For example, the following rule matches on a JMS queue name that starts with queue://MedRec.* and

uses the value from the JMSReplyTo header as the consumer ID:
IMSTest1;IMS_WS;queue\://MedRec.*=jms-header;JMSReplyTo

You must use a backslash "\:" to escape the ":" after queue or topic.

A specific IP Address

To assign a consumer ID based on an IP Address, use the following format:
<rule-name>; IP; <IP-address> = <consumerID-string>

For example, the following rule matches on IP address 123.456.567.8 and uses the name "CustomerA _
IP" as the consumer ID:

IPRulel;IP;123.456.567.8 = CustomerA_IP

HPE Diagnostics (9.26) Page 210 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

A Range of IP Addresses

To assign a consumer ID based on a range of IP addresses, use the following format:
<rule-name>; IP; <IP address range> = <consumerID-string>

where <IP address range> can be defined with integers, wildcards specified with *, integer range
specified with -.

For example, the following rule matches all IP addresses whose first octet is 15 and uses the name
"mySuperCluster" as the consumer ID:

IPRule2;IP;15.*.* ,* = mySuperCluster

The following rule matches all IP addresses whose first octet is 15 and whose second octet is between
200 and 300; it uses the name "Customer_|P" as the consumer ID:

IPRule3;IP;15.200-300.*.* = Customer_IP

Configuring SOAP Fault Payload Data

If a SOAP fault is detected, the SOAP payload can be included with the SOAP fault data. SOAP
payload is only captured when there is a SOAP fault.

In the Diagnostics Ul, you can view the payload information as part of the instance tree. Both JAX-WS
and JAX-RPC web services are supported.

Because payloads can contain sensitive information such as credit card numbers, payload capture on
SOARP faults is disabled by default.

To enable payload capture on SOAP fault set max.soap.payload.bytes to a value greater than zero,
5000 is recommended, in the dispatcher.properties file on the Java agent.This is the number of bytes
captured, so if the payload you see in the Ul indicates it is too small you can increase this number. By
default the value is set to zero to disable payload capture.

Capturing SOAP payload requires the Diagnostics SOAP message handler for Java probes. For some
application servers, special instrumentation is provided in Diagnostics to automatically load the
Diagnostics SOAP message handler. Manual configuration is required for WebSphere 5.1 JAX-RPC
and Oracle 10g JAX-RPC. See "Loading the Diagnostics SOAP Message Handler " on page 83 for
details.

The Diagnostics SOAP message handler is not available for all application servers, noris custom
instrumentation available to capture SOAP faults or consumer IDs from SOAP payloads. Therefore,
this feature is not available on all versions of all application servers. For the most recent information on
Diagnostics SOAP message handler support, see the Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

For a Java Agent, define the limit for the payload size by modifying the <agent_install_
directory>\etc\dispatcher.properties file. Payloads larger than the specified size are truncated.

HPE Diagnostics (9.26) Page 211 of 305

http://support.openview.hp.com/sc/support_matrices.jsp

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

For example, the following entry increases the SOAP payload length to 10000 from its default of 5000:

max.soap.payload.bytes = 10000

Set this property to 0 to disable this feature.

Configuring REST Services

You can configure REST style Web services to show up as regular Web Services in the Diagnostics
Ul. See the comments in the following file for configuration details: <agent_install_
directory>\etc\rest.properties.

Currently, only HTTP is supported (no JMS).

Customizing Grouping JMS Temporary Queue/Topics

For reporting in Diagnostics, SOAP over JMS temporary queues are grouped into a single node.
Diagnostics matches the queue/topic name to a list of regular expressions to find the temporary
queue/topic names. The ones that match are replaced with either queue:<probe-id>\TEMPORARY or
topic:<probe-id>\TEMPORARY according to the type.

The list of regular expressions used for this matching is in the <agent_install_
directory>/etc/capture.properties file. You can customize the list of regular expressions under the
property grouped.temporary.jms.names.

Configuring SQL Query Parsing

If there are a large number of SQL queries using literals it can overwhelm the server symbol table. In
these situations you can configure the sql.parsing.mode property in the dispatcher.properties file on
the Java Agent. The possible mode settings are as follows:

1 - just methods, no SQL queries.
2 - main categories for SQL queries (select/update/insert/delete/...).

3 - (default) a measurement per whole SQL query aggregating similar statements into a single
measurement (ignore literals, keyword case...).

4 - ameasurement per whole SQL query aggregating only identical statements.

sql.parsing.mode = 3

Another property in the dispatcher.properties file can be used to limit the number of different SQL
statements collected in case of temporary database tables, allowing you to fold down the table names
using an SQL statement regular expression substitution. The property is sql.pattern.replace (see the
comments in the dispatcher.properties file for more information).

HPE Diagnostics (9.26) Page 212 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Capturing SQL Parameters

For increased efficiency, applications use prepared statements when repeatedly issuing the same
query to a database. Such prepared statements can contain parameters, the value of which are set by
the application before the query is actually executed. By default, for the predefined monitoring profile
120, these parameter values are not captured and cannot be viewed by Diagnostics.

You can change the default setting so that parameter values in an SQL query are captured and
displayed in the Call Profile view. To change the default setting, edit the /etc/capture.properties file
and set the value of the sql.parameters.capture.enabled property to true. Note that this is a dynamic
property that you can change at any time.

Note:

« By default, this property is set to false for the predefined monitoring profile 120 and true for
other predefined monitoring profiles.

« You can also enable SQL parameter capturing in the Ul. To do this:
a. Click View Probe Configuration in New Window.
b. Select the Enable SQL Parameter Capture check box.

c. Click Apply Changes.

When captured, you can view the parameter values in the Call Profile view. The parameters values are
displayed in the SQL Parameters row (part of the Method Data section in the Details pane). For
example:

HPE Diagnostics (9.26) Page 213 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Call Profile [Maximum Instance on MedRecServer-gquattro of PatientFacadeService findApprovedPatientBySsn ending at 10/28/14 3:50:15 PM for Default]

0 3ims 66 ms 99 ms 132 ms 165 ms 198 ms 231 ms 264 ms 297 ms 3329 ms B

PatientFacadeService:findApprovedPatientBySsn)

JaxWsPatientFacadeBroker.findApprovedPatientBySsn()

InvocationVisitorimp

eMethodInvocation.p

-

cail w |l | E Method Data |«
[=1 100% PatlentFacadeService findApprovedPatientbySsn o Argumernts IM patients t0 WHERE (t0.ssn =7 AND 10, status = 7)
[99.4% JaxWsPatientFacaceBroker findApprovedPatientBy S Class com.pointbase net, net)DBCPreparedStatem ent
[l 0.1% JdbeConnectionHandle. prepareStatement() - Default Mame Javasql.ResultSet com polntbase.net.net)DECPrepare
0.1% netlDBECConnection prepareStatement(™ Layer Database/|DBC/Execute
0.1% neyDBCPreparecstatem ent execute) - Type JoBC =
= 0.1% jdbcCannectionHandle prepareStatement(s Hame net|DECPreparedStatem ent axecuteQuery(
0.1% net)DBECConnection. prepareStatem ent() e Package com.pointbase net
netjDBCPreparecStatem ent executeQuery(Return Type javasql ResultSet
[l 90.5% MethodlnvocationVisitorimpl.visit) r’ﬁ'"’ | 71l=123456789, 72=APPROVED .| I
=l 80.5% ReflectiveMethodinvocation. procesd() - Call Argument SELECT t0.id, tO.version, t0.email, 10 password, t0.us
[E 92058 Delegatinglniroductioninterceptor.invoke(,l [= Latency |v|

Troubleshooting

o Only the first 32 parameters for each prepared statement are captured,

« If setting sql.parameters.capture.enabled to true does not capture or display parameter values,
check that:

m the prepared statement uses parameters.

= SQL parameter capture has not been disabled (by setting the mercury.enable.prepared_
statement.parameter.capture setting in the etc/inst.properties file to false).

= the current monitoring profile for the probe is at least 120.

m the type of the argument has a natural String representation (binary data cannot be captured).

Configuring Display of Application Name for Server
Requests

The Deployed Into value displayed in the Diagnostics Ul in the Server Requests details pane can
show the application name of the server request for most application servers. Prior to Diagnostics 9.0
this information was only available for WebLogic application servers so only a WeblLogic probe could fill
in the application name identifier on a server request.

HPE Diagnostics (9.26) Page 214 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

To ensure backward compatibility with the server request trend lines, by default the application name is
not filled in for the server request, except in WebLogic server requests.

This is configurable using the fragment.use.application.name property in the capture.properties file
and you can set the following values for this property:

« none. The discovered application name is never used for identification purposes.
« default. Only WebLogic application server probes use the discovered application name.

« all. All application server probes use the discovered application name.

Note: Regardless of the value of this property, if a server request's J2EE application name is
discovered, it will be used to populate the non-identifying property Topology Information.

Maintaining Probe Settings from the Java Profiler Ul

You can use the Configuration tab in the Java Diagnostics Profiler to maintain the instrumentation
points and edit the probe configuration without having to manually edit the Java Agent capture points
file or property files. You can access the Configuration tab from the Java Diagnostics Profiler whether
profiling has been started or not. For details, see "Configuration Tab Description" on page 301.

The Probe Settings section of the Java Diagnostics Profiler Configuration tab enables you to configure
probe settings for thread stack trace sampling, collection of CPU time metrics (using timestamping)
and reporting collection leaks.

When you click Apply Changes on the Java Diagnostics Profiler Configuration tab, all the updates
you made in the Probe Settings sections of the Configuration tab are applied to the capture points file
and the property files.

Note: Your changes take effect immediately. There is no need to restart the application (or probe).

The following sections describe each of the Probe Settings sections:
"Configuring Thread Stack Trace Sampling" below

"Controlling CPU Timestamp Collection" on page 218

"Enabling and Configuring Collection Leak Reporting" on page 219

Configuring Thread Stack Trace Sampling

When asynchronous thread sampling is enabled, you can see, in the Call Profile view, which methods
were executed during long running fragments even if no instrumented methods were hit during this time.
See the HP Diagnostics User Guide chapter on Call Profiles for a screen shot showing the additional
nodes added based on thread sampling.

Several properties enable and configure thread stack trace sampling.

HPE Diagnostics (9.26) Page 215 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

The following properties are in dynamic.properties:

- enable.stack.trace.sampling —enables asynchronous thread stack trace sampling; possible
values are false, auto (the default), and true.

When the dynamic property enable.stack.trace.sampling is set to auto, stack trace sampling is
enabled IF the probe is running on selected (certified) platforms and JVMs. For other JVMs, the
setting must be set to true explicitly. Use caution because the JVM could generate errors or abort.
See the Diagnostics Release Notes.

« tardy.method.latency.threshold —the minimum time that an instrumented method must run
without hitting any instrumentation points before stack trace sampling is attempted for this method.
The purpose of this property is mainly to control the overhead of sampling by limiting the stack trace
collection to only the most interesting cases.

« stack.trace.sampling.rate —the time that must elapse before the next consecutive sampling
attempt is made.

Small values for stack.trace.sampling.rate cause frequent sampling and provide rich data but at
the cost of increased overhead.

The overhead caused by frequent sampling affects primarily the latency of server requests. The
overall CPU usage by the probe can go up as well, but this effect is not as profound as the latency
increase. For systems with many CPUs, the process CPU consumption can actually go down (not
a good thing).

« stack.trace.depth.max —the limit for the depth of stack traces obtained from the JVM. You will
most likely not need to adjust this value.

The following properties are in dispatcher.properties:

- enable.stack.trace.aggregation — a boolean property allowing the correlation thread to merge
together nodes observed on more than one consecutive stack trace collected, unless there is proof
that the nodes must not represent a single method invocation. When set to true, it could decrease
the number of additional call tree nodes created, but could create a false impression that the number
of calls to the additional nodes is known and is small. When set to false, it creates a node for each
method and each stack trace it was visible on, creating a false impression that the number of calls
to the nodes is known and is large. In fact, stack trace sampling cannot reveal the number of calls at
all.

« aggregated.stack.trace.validity.threshold —if the enable.stack.trace.aggregation property is set
to true, only the call tree nodes that stem from more than the
aggregated.stack.trace.validity.threshold number of individual stack traces are reported. This
setting controls noise elimination and memory footprint, especially on the server side.

All of the properties can be dynamically changed so no restart of the application is required.

You can change the first four properties (from dynamic.properties) remotely, using the Configuration
tab in the Diagnostics Java Profiler. After making changes remember to apply all of the changes
made using the Configuration tab by clicking Apply Changes. For details, see "Configuration Tab
Description" on page 301.

HPE Diagnostics (9.26) Page 216 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Example Thread Sampling Configurations

Use Case 1: A particular method has average latency of about 170 milliseconds, but from time to time
it takes 1.4 seconds for this method to complete. Most of the methods visible in Call Profiles for any
fragment execute in 550 milliseconds or less. Because the method in question makes multiple calls to
its callees, you do not want to instrument them.

Instead you enable stack trace sampling to find out what the cause for long execution times. To
minimize overhead, set tardy.method.latency.threshold to 600 milliseconds. This ensures that most of
the methods will not get sampled at all because they are likely to complete before this time elapses.
However, any method running longer than this value, including our long running method, will get
sampled, once the method runs for 600 milliseconds (or longer) without making any calls to any of the
instrumented methods.

If you also set the value of stack.trace.sampling.rate to 100 milliseconds, this should theoretically
give up to eight samples for each method invocation that lasts 1.4 seconds ((1400-600)/ 100).
Because you know that the method makes many calls to its callees, you could also set
aggregated.stack.trace.validity.threshold to zero. This ensures that even if each collected stack
trace is completely different, they will all be reported.

If you examine the Call Profile for long running instances of the server request, you would see
additional nodes revealed by stack trace sampling.

Use Case 2: You prepare a custom application for deployment and see that the default instrumentation
provided with the Diagnostics agent does not work very well because many Call Profiles contain very
few methods, which does not give any insight about the application specific behavior. You are reluctant
to add additional instrumentation for all classes and methods belonging to the custom application
because of the performance and memory consumption concerns.

You enable stack trace sampling. Assuming that a typical server request that does not have sufficiently
detailed call tree information runs in about 2 seconds, you select a stack.trace.sampling.rate of 200
milliseconds. This can give up to 10 stack traces per typical server request. However, you do not want
all the stack traces to be reported because some of the methods visible in the stack traces can be very
fast, and they do not substantially contribute to the server request’s overall latency. Therefore, you set
aggregated.stack.trace.validity.threshold to 2. This ensures that only methods visible in three or
more consecutive stack traces, or methods with estimated latency of 600 milliseconds or more, will be
reported.

After viewing the Call Profiles with the additional nodes obtained from sampling, you can make
informed decision about adding additional instrumentation points to the probe configuration in
deployment.

Troubleshooting Stack Trace Thread Sampling
Why do | not see any new nodes in my Call Profile after | enabled stack trace sampling?
See if any of the following applies to your case:

« Was the last method visible in the Call Profile an outbound call? Methods marked as outbound do
not get sampled. (To reliably check if a method is marked as outbound, find this method in
detailReport.txt file and check its corresponding instrumentation point detail for the “outbound”

HPE Diagnostics (9.26) Page 217 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

keyword).

o Was the last method visible in the Call Profile marked as no-layer-recurse Such methods do not get
sampled. (Use the same procedure as in the previous point to check if a method is no-layer-
recurse.)

« Did you try reducing tardy.method.latency.threshold or minimum.method.latency? It is possible that
the last method visible in Call Profile makes calls that get trimmed, but they prohibit the sampling to
kick in because there is never an inactive period of tardy.method.latency.threshold for the caller.

« Did you try reducing aggregated.stack.trace.validity.threshold or check if there are warnings in the
probe.log file about the stack depth being too shallow? Possibly, the observed stack traces
changed too quickly to get reported.

« Didyou try reducing the stack.trace.sampling.rate? Perhaps your methods simply miss the
opportunities to get sampled.

« Did you verify that the latency of the last visible method in Call Profile is not caused by having run
garbage collector? Java code, including the stack trace sampling code, does not run during garbage
collection.

What is the minimum value of stack.trace.sampling.rate that can be used?

You can use any positive value, but remember that each platform will refuse to sample more frequently
that it possibly can. The three determining factors are the minimum granularity of sleep() available, the
timer resolution, and the time it actually takes to collect one set of samples.

What is the maximum value of stack.trace.sampling.rate that can be used?

There is no limit. The usefulness of a high setting depends entirely on the latency of the server requests
for the application. To get any results, plan for at least a few samples for each server request you are
concerned with. Even that could require tuning other sampling parameters as well.

Controlling CPU Timestamp Collection

The CPU timestamps calculate the amount of exclusive CPU time that a method uses. You can view
this information on the Hotspots tab in the Java Diagnostics Profiler.

Note: In VMware, the CPU time metric is from the perspective of the guest operating system and
is affected by the VMware virtual timer. See the VMware whitepaper on timekeeping at
http://www.vmware.com/pdf/vmware_timekeeping.pdf and "Time Synchronization for Probes
Running on VMware" on page 194.

By default, collection of CPU time metrics is enabled for server requests.

HPE Diagnostics (9.26) Page 218 of 305

http://www.vmware.com/pdf/vmware_timekeeping.pdf

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Collection of CPU time metrics can be configured in property files (see "Configuring Collection of CPU
Time Metrics" on page 201) or using the Java Diagnostics Profiler Ul (see "Configuration Tab
Description" on page 301).

Enabling and Configuring Collection Leak Reporting

Note: You must run the JRE Instrumenter using the appropriate mode for your application server if
you want to use the collection leaks pinpointing (CLP) feature in the Java Agent.

You can set the following configuration items for collection leak reporting using the Collection Leaks
section in the Java Profiler Configuration tab (for details, see "Configuration Tab Description" on page
301).

These same values can also be set in the dynamic.properties file for the probe:
clp.diagnostics.reporting, clp.diagnostics.growth.time and clp.diagnostics.nongrowth.time.

Generating Performance Reports for JUnit Tests

When you run JUnit tests, you can enable and configure the Java Agent so that it generates a
performance report for all of your unit tests. This is useful for finding out if the performance
(latency/CPU) of a particular test has changed over time.

When the unit test finishes, the Java Agent creates a CSV file for each test method (represented as a
server request). This CSV file contains a complete listing of all test methods that were executed in
each JVM instance, usually per test class. The CSV file can be opened in a spreadsheet program to
analyze and visualize performance characteristics (the Filter function in Excel is very helpful for
selecting specific methods).

Following is an example of a CSV file:

Date,Server Request,Avg Latency,Count,Min Latency,Max Latency,Cpu

Time, Exceptions

Fri Sep 23 12:55:22 PDT
2011,UT_SiSXmlDataReader.testDataSample(),1068.81,1,1068.81,1068.81,374.403,0
Fri Sep 23 12:55:40 PDT
2011,UT_SiSXmlDataReader.testDataSample(),1064.845,1,1064.845,1064.845,405.60
2,0

Fri Sep 23 12:55:57 PDT
2011,UT_SiSXmlDataReader.testDataSample(),1141.689,1,1141.689,1141.689,358.80
2,0

Fri Sep 23 12:56:27 PDT
2011,UT_SiSXmlDataReader.testDataSample(),1474.81,1,1474.81,1474.81,468.003,0

The latency times are in milliseconds (ms).

By default the data for each test execution is appended to the CSV files. This is especially useful when
tests are run as part of a Continuous Integration cycle which allows you to capture results over time.

HPE Diagnostics (9.26) Page 219 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

To use this functionality, enable the Java Agent in the JUnit test execution by specifying the following
JVM parameters:

JVM Parameter Description

-javaagent:<Java_Agent_ Enables the agent by specifying the path to the
Home>/DiagnosticsAgent/lib/probeagent.jar agent JAR file.

(UNIX)

or

-javaagent:<Java_Agent_
Home>\DiagnosticsAgent\lib\probeagent.jar

(Windows)
-Ddispatcher.ac.autostart=true Tells the agent to start profiling immediately.
-Dcapture.exit_report=dir=perftest:append Instructs the agent to produce a performance

report to the specified directory and to append the
results. (To override the file, replace append with
override.)

-Ddispatcher.minimum.fragment.latency=1ms Collects only server requests (such as execution
of JUnit test methods) that have latency above
1ms.

The following example shows an integration into ANT:

<junit dir="${build}" fork="yes" forkmode="perTest" printsummary="yes"
jvm="$%${env.JAVA_HOME}/bin/java">

<jvmarg value="-javaagent:C:/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/1lib/
probeagent.jar"/>

<jvmarg value="-Ddispatcher.ac.autostart=true"/>

<jvmarg value="-Dcapture.exit_report=dir=<dir_name>:append"/>

<jvmarg value="-Ddispatcher.minimum.fragment.latency=1ms"/>

</junit>

In addition to the above settings, the JUnit point needs to be activated (set active=true) in <Java_
Agent_Home>/DiagnosticsAgent/etc/auto_detect.points:

[JUnit]

class = junit.framework.TestCase
method = !test.*

signature = !.*

deep_mode = hard

layer = JUnit

active = true

Note: If you use JUnit 4.x and your unit test classes are not a subclass of

HPE Diagnostics (9.26) Page 220 of 305

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

junit.framework. TestCase, you need to change the class definition in the above JUnit point to
match your unit test classes.

HPE Diagnostics (9.26) Page 221 of 305

Chapter 12: Java Agent Metrics Collectors

This chapter describes Java Agent metrics capture and how to configure the metric collectors.

This chapter includes:
o "About Metrics Capture" below
« "What Metrics are Being Collected by the Java Agent" on the next page
« "Understanding Metric Collector Entries" on the next page
« "About Collecting Additional Probe Metrics" on page 225
« "Modifying Probe Metrics Already Being Captured" on page 225
« "Stopping Capture of a Metric" on page 225

« "Using Customized metrics.config Files for Multiple JVM Applications on a System" on page 226

About Metrics Capture

With the Java Agent you can configure metrics collectors by modifying the entries in the metrics
configuration file, <agent_install_directory>/etc/metrics.config.

Note: There is a different metrics.config file included with the .NET Agent .

The system and JMX metric collectors for your agent installation are defined in the metrics
configuration file. The properties and entries in the metrics configuration file, <agent_install_
directory>/etc/metrics.config, enable you to control the metric collectors.

Note: If you update the metrics configuration file, the metric collectors automatically restarts so
that your changes can take effect.

HPE Diagnostics (9.26) Page 222 of 305

Java Agent Guide
Chapter 12: Java Agent Metrics Collectors

What Metrics are Being Collected by the Java Agent

In the metrics.config file you can see what metrics are being collected by the Java Agent.

& metrics.config - Notepad
File Edit Format Wiew Help

AARRRRR AR AR RS R AR AR RS R AR AR RN RS
##% Collector configuration ###
RARRRRRARRR RN ARRRRARS

FREFFERFRRERAREHRAREHR AR RS

Basic IwM collector

JwmM,/jwmHeapused = HeapuUsed|bytes|Probe
JijlvaeapFree HeapFree|bytes|Probe

Jvm,/ JwmHeapTotal = HeapTotal |bytes|Probe

M/ Jvmheapusedpct = HeapUsedPct|percent |Probe
RARRRRRARAR R ER AR AR RN RRRARS

AR AR AR AR AR AR AR

Process Metrics Collector
ProcessMetrics,/processCpultil=ProcessCpultil|percent |Frobe
ProcessMetrics,/processCpultilabs = ProcessCpultilabs|percent|Probe

RARRRRRARAR RN AR RRRARS
###% System metric collector

system/CPU = CPU|percent|System

system/MemorylUsage = MemorylUsage|percent|System
system/VirtualMemoryUsage = virtualMemoryUsage|percent|System
system/ContextswitchesPersec = ContextsSwitchesPersSec|count|System
system,/DiskBytesPersec = DiskBytesPerSec|bytes|Disk
system/DiskIOPersec = DiskIOPersec|count|Disk
system/NetworkBytesPersec = NetworkBytesPerSec|bytes |Network
system/Networ kIOPersSec = NetworkIOFerSec|count |Network
system/PageInsPersec = PageInsPersSec|count|sSystem

system/Pageoutspersec = PageQutsPerSec|CoUntISYSTEm . o o\ s s o

Listing Available Metrics

The Java Agent metrics.config file has a feature to write a list of all the available metrics for each JMX
collector into a file. When the default.dump.available.metrics property in the metrics.config file is set
to true, the probe will write this list of available metrics to text files in the probe log directory. The files
are named as follows: <agent_install_directory>/log/<probe-id>/jmx_metrics_<collector-
name>.txt. See "Getting a List of Available JMX or WebSphere PMI Metrics" on page 237 for details
and examples of how to use this information as a template for configuring additional metrics capture.

Understanding Metric Collector Entries

Metric Collector entries instruct the Java Agent metric collectors to gather specific metrics. The
parameters on the left hand side of the entry control how the probe gathers the metric from the host or
the JVM, and the parameters on the right hand side of the entry define how the collected metrics are
processed in Diagnostics and displayed in the user interface.

HPE Diagnostics (9.26) Page 223 of 305

Java Agent Guide
Chapter 12: Java Agent Metrics Collectors

The entries can have one of the following layouts:
<collector_name>/<metric_config>=<metric_id>|<metric_units>|<category id>
or

<collector_name>/<metric_config>=
RATE<rate multiplier>(<metric_id>|<metric_units>|<category id>)

where:

« <collector_name> indicates the name of the Diagnostics metric collector. The collectors are
defined in metrics.config.

For system metrics the value of this parameter is system. For JMX metrics the value of this
parameter is usually defined as the name of the application server type and the version, such as
WebSphere5.

The collector-name along with metric names can also be found on the Advanced Query page in the
Diagnostics Ul (http://<diagnostics_sever>:2006/query).

« <metric_config> identifies the metric that is to be monitored on the host system or on the JVM for
the application server. The format of this parameter varies depending on whether you are creating
an entry for a system metric or a JMX metric. For information on formatting the metric_config
property for the system metric collector, see "Capturing Additional Custom System Metrics" on
page 229. For information on formatting the metric_config property for JMX metrics, see "Creating
New JMX or WebSphere PMI Metrics Entries" on page 239.

« RATE(...)indicates that metric values are converted to a rate (units per second) during sampling.

For example, when the Rate parameter is used with the metric total servlet requests since
startup, the value of the collected metric is converted from a count of servlet requests to the
number of servlet requests per second.

When Rate is not used, omit the parenthesis as shown in the first example above.

Note: This parameter should only be used for metrics with non-decreasing values.

« <rate_multiplier> is an optional parameter that indicates that the rate is to be adjusted by
multiplying it by the <rate_multiplier>.

For example, when the Rate parameter and the rate_multiplier are used with the metric total gc
time (in ms), the value of the metric collected is converted from the total time for gc to the percent
time spent in gc.

o <metric_id> indicates the name that represents the metric in the Ul. The metric_id must be unique
in the metrics.config file. If the value of the metric_id is the same as one of the default metrics,
Diagnostics replaces the metric_id in the entry with a standard name to be used to reference the
metric in the Ul. If the value of the metric_id is not the same as one of the default metrics, the
metric_id is used as the name of the metric in the Ul exactly as shown in the entry.

HPE Diagnostics (9.26) Page 224 of 305

Java Agent Guide
Chapter 12: Java Agent Metrics Collectors

o <metric_units> indicates the units of measure in which the metric is reported. This is a required
parameter and it must contain one of the following units of measure:

m microseconds, milliseconds, seconds, minutes, hours, days
= bytes, kilobytes, megabytes, gigabytes
m percent, fraction_percent
= count
= |oad
« <category_id> groups a set of metrics together under the same heading in the tree in the side bar of

the Metrics tab in the Java Diagnostics Profiler. This parameter has no impact on the data displayed
in the Details pane in the Diagnostics Ul views.

Note: After you create the metric collector entry, add the escape character "\" before each
occurrence of a back-slash'\', space'’, or colon ':". This is a requirement for Java properties
loaded from afile.

About Collecting Additional Probe Metrics

To gather information for an additional metric, add an entry for the metric to the appropriate metric
collector in the metrics.config file using the syntax described in "Understanding Metric Collector
Entries" on page 223.

See "Capturing Additional Custom System Metrics" on page 229 for details on capturing additional
system metrics.

See "Additional Custom JMX Metrics" on page 237 for details on capture addition JMX metrics.

Modifying Probe Metrics Already Being Captured

You can update both the default and the custom metric entries in the metric collectors in the
metrics.config file.

Stopping Capture of a Metric

To stop a metric collector from collecting a metric listed in metrics.config, you can either delete the
metric entry or make the metric entry a comment line by adding a '#' to the beginning.

HPE Diagnostics (9.26) Page 225 of 305

Java Agent Guide
Chapter 12: Java Agent Metrics Collectors

Using Customized metrics.config Files for Multiple JVM
Applications on a System

There may be times when you only need to collect certain metrics, or customize the metric collector
properties for select JVM applications running on a system with multiple JVMs, and such changes
would negatively impact the other instrumented JVMs running on the system. In these cases, you can
create and customize different metrics.config configuration files and configure those JVM
applications to use the customized settings by following these steps:

Note: You only need to configure the JVM applications that need customized metrics.config files.
The other JVM applications can use the out-of-the-box metrics.config configuration.

1. Copy the etc/metrics.config file for each JVM application requiring special customization and
name the file, such as metrics_<app_name>.config. This file must be in the same <agent_
install_directory>/etc folder as the original metrics.config file. Customize this file as needed.

2. Create a copy of the lib/modules.properties file for each metrics_<app_name>.config file
created, and name the file, such as modules_<app_name>.properties. This file must be in the
same <agent_install_directory>/lib folder as the original modules.properties file.

Change the metrics.properties property of this new file to point to the new metrics_<app_
name>.config file as shown in the following example:

S R e R e e e e e e e R e e e e e e e

Metrics capture module

B e L B L e B T B B B e e R R e T I B R RIS R i
metrics.class.name=com.mercury.diagnostics.capture.metrics.MetricsModule
metrics.class.loader=probelLoader
metrics.properties=metrics_<app_name>.config

3. Update each JVM start script that needs customized metrics collection to use the new
corresponding lib/modules_<app_name>.properties file by adding the following to the JVM
property definition:

-Dmodules.properties.file=module_<app_name>.properties

HPE Diagnostics (9.26) Page 226 of 305

Chapter 13: Java Agent - System Metrics Capture

Information is provided on the process for capturing system metrics and how to configure the Java
Agent system metric collector to capture them.

This chapter includes:
o "About System Metrics" below
« "System Metrics Captured by Default" below
« "Configuring the System Metrics Collector" on the next page
« "Capturing Additional Custom System Metrics" on page 229

« "Enabling z/OS System Metrics Capture" on page 234

About System Metrics

The system metric collector is installed with the Java Agent. The system metric collector gathers
system level metrics, such as CPU usage and memory usage, from the agent’s host. The system
metric collector is configurable so you can control which system metrics are collected.

Only one instance of the system metric collector is run on a given host, no matter how many instances
of the probe were started on the host. When an instance of the probe is started, it attempts to connect
to the UDP port specified in the metrics properties. If a connection is established, the system metric
collector instance is started. If a connection cannot be made, a system metric collector instance has
already been started on the host by another instance of the probe and a new instance cannot be started.

Each probe periodically attempts to connect to the port to make sure that a system metric collector is
always running. If the probe that started the systems metric collector is stopped, one of the other
instances of the probe will start a new instance of the systems metric collector when it finds that the
port is available.

System Metrics Captured by Default

The following are the system metrics that the metric collector collects by default for all supported
platforms (excluding z/OS):

« CPU
« MemoryUsage

« VirtualMemoryUsage

HPE Diagnostics (9.26) Page 227 of 305

Java Agent Guide
Chapter 13: Java Agent - System Metrics Capture

» ContextSwitchesPerSec
o DiskBytesPerSec

» DisklOPerSec

o NetworkBytesPerSec

» NetworklOPerSec

« PagelnsPerSec

o PageOutsPerSec

You can control which of the default system metrics the system metric collector gathers and you can
add other platform specific metrics so that the collector gathers the information for them as well. See
"Configuring the System Metrics Collector" below for more information. For certain platforms, such as
Windows, Solaris, and Linux, you can create custom system metrics that can be gathered by the
system metric collector. For details, see "Capturing Additional Custom System Metrics" on the next

page.

For information on z/OS system metrics see "Enabling z/OS System Metrics Capture" on page 234.

Configuring the System Metrics Collector

You can configure the system metrics capture process to run in your environment, and to collect and
report the system metrics that are of interest to you, by modifying the entries in the metrics
configuration file, <agent_install_directory>/etc/metrics.config. See "Java Agent Metrics
Collectors" on page 222 for general information on the metrics collector and see "Understanding Metric
Collector Entries" on page 223 for an explanation of the metrics collector entries and syntax.

Note: If you update the metrics configuration file, the systems metric collector automatically
restarts so that your changes can take effect.

Example System Metrics Collector Entry

The following example shows how to create the metric collector entry for a system metric. To create an
entry for a system metric called CPU on a host platform, you would enter the following:

system/CPU = CPU|percent
where:

« system indicates that the metric is to be collected by the system metric collector

« the first CPU indicates that the metric known as CPU on the platform, is being monitored

HPE Diagnostics (9.26) Page 228 of 305

Java Agent Guide
Chapter 13: Java Agent - System Metrics Capture

« the second CPU is the name that is to be used in the Ul to label the metric

« percentindicates the units in which the metric is measured on the host, and reported in the Ul

Modifying the Default Port
The default port for the metric collector is 35000. This value can be modified using the
system.udp.port property if the configuration for your agent host requires that another port be used.

To modify the default port:
1. Locate the system.udp.port property in metrics.config.

2. Change the value of the system.udp.port property to the number of the port that you want to be
used by the system metric collector. The default port is 35000.

Note: The port assigned to the system metric collector is not related to the port for the agent's
Web server.

Disabling System Metrics Collection

To disable the collection of system metrics so that they will not be collected or displayed in the Ul, set
the value of the system.udp.port property to -1.

Capturing Additional Custom System Metrics

You can capture custom system metrics on Windows, Solaris, and Linux platforms using the Java
Agent system metric collector.

The following sections provide instructions for capturing the metrics and updating the entries in the
system metric collector so that the custom metrics can be monitored.

This section includes:
"Capturing Custom System Metrics on Windows Hosts" below
"Capturing Custom System Metrics on Solaris Hosts" on page 232

"Capturing Custom System Metrics on Linux Hosts" on page 232

Capturing Custom System Metrics on Windows Hosts

Using the features of Windows System Monitor, you can add counters to represent the performance of
specific aspects of a system or service. The counters are tracked and reported in the Windows System
Monitor, and can be monitored by the Java Agent system metric collector.

HPE Diagnostics (9.26) Page 229 of 305

Java Agent Guide
Chapter 13: Java Agent - System Metrics Capture

To add counters using the Windows System Monitor:
1. Start the Windows Performance Monitor:
a. Select Start > Run from the Start menu.
b. Inthe Open box on the Run dialog box type perfmon.

The Performance dialog box opens showing the System Monitor graph with a table of the
current counters beneath the graph.

2. Display the Add Counters dialog box:
Right-click the System Monitor graph and select Add Counters... from the pop-up menu.
Windows displays the Add Counters dialog box:

Add Counters

L
o

WAS5ANUAH |

Processar |_

o
Total

terrupt Time
ivileged Time

3. Make sure that the host computer is selected from Select counters from computer list.

4. Inthe Performance objectlist, select the object that the counter belongs to.

5. Choose Select counters from list, and select a counter from the list of counters that follows.

6. Choose Select instances from list, and select an instance from the list of instances that follows.

7. Click Add.

HPE Diagnostics (9.26) Page 230 of 305

Java Agent Guide
Chapter 13: Java Agent - System Metrics Capture

Once a counter has been added to the Systems Monitor, the system metric collector can be configured
to gather the metrics for the counter. The following instructions will guide you through the steps to
create an entry for the metrics.config based on the following template:

<collector_name>/<metric_config>= <metric_id>|<metric_units>
This template is described in "Understanding Metric Collector Entries" on page 223.

To collect metrics for a Windows System Monitor Counter:
1. Open <agent_install_directory>/etc/metrics.config.

2. Create the <metric_config> part of the entry using the following template, type the entry for the
counter:

\<performance_object>(<instance>)\<counter>

In the example shown in the preceding screen image:
m the selected Performance Object is %Processor
m the selected Instanceis _Total

m the selected Counteris Processor Time

The <metric_config> portion of the entry that would be created for this example would be:

\Processor(_Total)\% Processor Time
3. Fillin the rest of the system metric entry template as shown in the following example:
system/\Processor(_Total)\% Processor Time = ProcessorTime|percent

4. Format the initial entry by prepending a back-slash '\' before each occurrence of back-slash '\,
space'’, or colon':' in the initial entry.

Following this step, the initial entry in the previous step becomes:

system/\\Processor(_Total)\\%\ Processor\ Time = ProcessorTime|percent

This is the correctly formatted entry for metrics.config to enable the system metric collector to
gather the metrics for a Windows System Monitor counter.

system/\\\\RemoteMachine\\Processor(_TOTAL)\\%\ Processor\ Time=
Processor\ Time(Remote Machine) |percent

Note: Assuming perfmon is setup properly on a remote machine, you can use it to get
metrics from remote machines by adding \\MachineName before the Performance object

HPE Diagnostics (9.26) Page 231 of 305

Java Agent Guide
Chapter 13: Java Agent - System Metrics Capture

name as shown in the following example:

system/\\\\RemoteMachine\\Processor(_TOTAL)\\%\ Processor\ Time=Processor\
Time(Remote Machine) |percent

Capturing Custom System Metrics on Solaris Hosts

The Solaris system metrics that can be monitored by the system metric collector are found using the
kstat command. Only a subset of the metrics found using the kstat command can be monitored by the
system metric collector.

To collect metrics for a Solaris system metric:

1.

Execute the kstat command and identify the metric that you want to monitor.
A Solaris system metric has the following format:

module:instance:name:statistic

Here is an example:
vmem:35:ptms_minor:free

To cause the metric collector to gather the metrics for an additional system metric, add an entry for
the metric to the system metric collector in the metrics.config file using the following template:

<collector_name>/<metric_config>= <metric_id>|<metric_units>

This template is described in "Understanding Metric Collector Entries" on page 223.
Using this template, the example from the previous step would initially appear as follows:
system/vmem:35:ptms_minor:free = Virtual Memory (35) Free | count

Format the initial entry by prepending a back-slash '\' before every back-slash'\', space'’, or colon

Following this step the initial entry in the previous step becomes:

system/vmem\:35\:ptms_minor\:free = Virtual\ Memory\ (35)\ Free | count

This is the correctly formatted entry for metrics.config to enable the system metric collector to
gather the metrics for a Solaris systems metric.

Capturing Custom System Metrics on Linux Hosts

The Linux system metrics that can be monitored by the system metric collector are found in the /proc
file system. To configure the system metric collector to gather custom Linux metrics, scan the/proc file

HPE Diagnostics (9.26) Page 232 of 305

Java Agent Guide

Chapter 13: Java Agent - System Metrics Capture

system to locate the desired metric, and then create the system metric collector entry for the metric in

metrics.config according to the location of the metric information.

To collect metrics for a Linux system metric:

1.

Scan the /proc file system to locate the metric that you would like the Diagnostics system metric

collector to monitor.

To create the system metrics configuration entry in metrics.config for the Linux metric, you must
explicitly specify where the value for the system metric is located. The location is specified using

the following values:

= File name. The name of the file where the metric information is located, including the path from

the /proc directory.

= Line offset. A count of the number of lines in the file to the line where the system metric is

located. The first line is counted as line 0.

= Word offset. A count of the number of words that the metric value is offset into the line in the
file. The first word in the line is counted as line 0. The value at the specified offset must be an

unsigned integer.

For example, if you wanted the system metric collector to monitor the SwapFree system metric so
that you can see it displayed in the Diagnostics views, you would scan the /proc directory to
locate the metric, and you would discover that the metric is located in the meminfo file. The layout

of this file is as follows:

MemTotal: 515548 kB
MemFree: 1552 kB
Buffers: 41616 kB
Cached: 152084 kB
SwapCached: 46064 kB
Active: 402720 kB
Inactive: 75328 kB
HighTotal: © kB
HighFree: © kB
LowTotal: 515548 kB
LowFree: 1552 kB
SwapTotal: 1048568 kB
SwapFree: 779192 kB
Dirty: 4544 kB
Writeback: @ kB

Mapped: 300056 kB

Slab: 28764 kB
Committed AS: 801364 kB
PageTables: 3184 kB
VmallocTotal: 499704 kB
VmallocUsed: 2184 kB
VmallocChunk: 497324 kB
HugePages_Total: ©

HPE Diagnostics (9.26)

Page 233 of 305

Java Agent Guide
Chapter 13: Java Agent - System Metrics Capture

HugePages_Free: ©
Hugepagesize: 4096 kB

The location of the SwapFree metric in this file would lead to the following values:
= File name: meminfo

= Line offset: 12

= Word offset: 1

2. To gather the metrics for an additional system metric, add an entry for the metric to the system
metric collector in the metrics.config file using the following template:

<collector_name>/<line>:<word>:<file>= <metric_id>|<metric_units>

This template is a version of the template described in "Understanding Metric Collector Entries" on
page 223. The <metric_config> property has been replaced with the properties
<line>:<word>:<file>.

Using this template, the example from the previous step would initially appear as follows:

system/12:1:meminfo = Swap Free | kilobytes

3. Format the initial entry by prepending a back-slash '\' before every back-slash'\', space'’, or colon

Following this step the initial entry in the previous step becomes:

system/12\:1\:meminfo = Swap\ Free | kilobytes

This is the correctly formatted entry for metrics.config to enable the system metric collector to
gather the metrics for a Solaris systems metric.

Enabling z/0S System Metrics Capture

The following system metrics can be collected for the z/OS platform:

. CPU

» DisklOPerSec

« DiskBytesPerSec

System metrics are not captured by default, because this requires some system configuration

changes. You must perform the following configuration steps to enable capture of z/OS system
metrics.

HPE Diagnostics (9.26) Page 234 of 305

Java Agent Guide
Chapter 13: Java Agent - System Metrics Capture

To enable z/OS system metrics capture:

1. Change the permissions for the directory <agent_install_directory>/bin/ to recursively allow
execution. This can be done using the following command:

chmod -R 770...

2. Change the permissions for the directory <agent_install_directory>/bin/390-
zos/systemmetrics to allow execution. This can be done using the following command:

chmod -R @+x ...
3. Start the RMF Monitor Il and make sure that SMF record 70-79 is collecting.
4. Start the RMF Data Buffer on one or more systems in the sysplex.
5. Check the list of system names passed to the ERBDSQRY service.

6. Make sure that the system is collecting SMF record 92 with subtype 5.

HPE Diagnostics (9.26) Page 235 of 305

Chapter 14: Java Agent - JMX Metrics Capture

Information is provided on the process for capturing JMX metrics and how to configure Java Agent
metric collectors to capture them.

This chapter includes:
« "About JMX Metrics" below
« "About Configuring JMX Metric Collectors" on the next page
« "Additional Custom JMX Metrics" on the next page
o "Getting a List of Available JMX or WebSphere PMI Metrics" on the next page

o "Creating New JMX or WebSphere PMI Metrics Entries" on page 239

About JMX Metrics

The Java Agent comes with pre-defined JMX metric collectors that access the JMX metrics from the
following application servers:

o IBM WebSphere

« BEA WebLogic

o SAP NetWeaver

» Oracle AS

o Apache Tomcat

» JBoss J2EE Server

» TIBCO Business Works

The Java Agent can also collect JMX data from any J2EE server that supports the JMX standard.

The Java Agent runs the JMX metric collectors periodically to collect the metrics from the application
server. The collected metrics are displayed on the user interfaces in both Diagnostics Enterprise User
Interface and the Diagnostics Java Profiler.

Configuring WebSphere for JMX Metric Collection

For WebSphere JMX metric collection, you might need to configure the Performance Monitoring
Infrastructure (PMI) service on the WebSphere server to start receiving JMX metrics.

HPE Diagnostics (9.26) Page 236 of 305

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

See "Configuring WebSphere for JMX Metric Collection" on page 67 for information on how to configure
WebSphere 5.x, 6.x and 7.0 servers for JMX metrics collection.

Configuring TIBCO for JMX Metric Collection

For TIBCO JMX metric collection you need to enable JMX metric collection; see "Example 5:
Configuring TIBCO ActiveMatrix BusinessWorks and Service Bus for Monitoring" on page 53 for
instructions.

About Configuring JMX Metric Collectors

The JMX metric collectors are configurable so that you can control which JMX metrics are collected.
The JMX metric collectors are defined in the <agent_install_directory>/etc/metrics.config file.

Typically a separate collector is defined for each major version of each application server.

See "Java Agent Metrics Collectors" on page 222 for general information on the metrics collector and
see "Understanding Metric Collector Entries" on page 223 for an explanation of the metrics collector
entries and syntax.

Additional Custom JMX Metrics

The Java Agent is installed with a number of predefined JMX metric collectors for the application
servers listed in "About JMX Metrics" on the previous page. You configure these collectors by defining
entries in the metrics.config file, see "Understanding Metric Collector Entries" on page 223. You could
also create entries in the existing metric collectors and even create new collectors if there are additional
JMX metrics that you would like Diagnostics to monitor.

In order to create new entries in the JMX metric collectors you can get a list of the available JMX
metrics and WebSphere Performance Monitoring Infrastructure (PMI) metrics. Then you can create
new metrics entries in the metrics.config file. The following sections provide instructions for creating
new entries in the JMX metric collectors so that additional JMX metrics and PMI metrics can be
monitored.

Getting a List of Available JMX or WebSphere PMI Metrics

The metric collectors installed with the Java Agent include entries for many of the JMX metrics that are
available for each application server. However, there could be other JMX metrics or WebSphere PMI
metrics that you could monitor, or new metrics could be exposed by the application server vendor.

In order to make it easier to configure new/additional JMX/PMI metrics for collection the metrics.config
file has a feature to write a list of all the available metrics for each JMX collector into a file. When the
default.dump.available.metrics property in the metrics.config file is set to true, the probe will write
this list of available metrics to text files in the probe log directory. The files are named as follows:
<agent_install_directory>/log/<probe-id>/jmx_metrics_<collector-name>.txt.

HPE Diagnostics (9.26) Page 237 of 305

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

The default.dump.available.metrics property in the probe metrics.config file can be changed at
runtime. It is recommended that the property is only set to true temporarily to write the list of available
JMX/PMI metrics. After the metrics list is written to the file, the property should be set back to false (or
commented out) to avoid the overhead of the probe periodically writing the metrics list to file.

Some examples of the metrics list file are shown below. You can use this type of information to
configure additional JMX or PMI metrics in the probes’ etc/metrics.config file.

The following example shows the available MBean ObjectNames and their collectable attributes:

======= MBean ObjectNames and Available Attributes =======
MBean ObjectName:

WebSphere:J2EEServer=serverl, JDBCProvider=Derby JDBC
Provider, JDBCResource=Derby IJIDBC

Provider,Server=serverl,cell=yl1i87Node@1Cell,diagnosticProvider=true,j2eeType=3ID
B

CDataSource,mbe
anIdentifier=cells/yli87Node@1Cell/nodes/yli87Node@l/servers/serverl/
resources.xml#DataSource_12442

31364323, name=WST_PriceGen,node=yl1i87Node@1,platform=dynamicproxy,process=
serverl,spec=1.0,

type=DataSource,version=6.1.0.0

Available Attributes:

name: loginTimeout, type: int

name: statementCacheSize, type: int

name: testConnectionInterval, type: java.lang.Integer

The following example shows the available MBean ObjectNames and their collectable attributes and
fields:

======= MBean ObjectNames and Available Attributes and Fields =======
MBean ObjectName:

java.lang:name=PS 0ld Gen,type=MemoryPool

Available Metrics:

Attribute: CollectionUsage type: javax.management.openmbean.CompositeData
Field: committed, type: java.lang.Long

Field: init, type: java.lang.Long

Field: max, type: java.lang.lLong

Field: used, type: java.lang.Long

The following example shows the available MBean ObjectNames and their collectable operations and
fields:

======= MBean ObjectNames and Available Operations and Fields =======
MBean ObjectName:
com.tibco.bw:key=engine,name="MortgageBroker-BrokerService"

Available Metrics:

Operation: java.lang.Integer GetActiveProcessCount()

HPE Diagnostics (9.26) Page 238 of 305

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

Operation: javax.management.openmbean.CompositeData GetExecInfo()
Field: Threads, type: java.lang.Integer

Field: Uptime, type: java.lang.Long

Operation: javax.management.openmbean.CompositeData GetMemoryUsage()
Field: FreeBytes, type: java.lang.Long

Field: PercentUsed, type: java.lang.Long

Field: TotalBytes, type: java.lang.Long

Field: UsedBytes, type: java.lang.Long

For WebSphere JMX collectors, besides the generic MBean JMX metrics, the available WebSphere
specific PMI metrics are also dumped to the WebSphere collector's dump file. This includes the PMI
tree instance paths and their available statistics, and the PMI module configuration information as
shown in the example below:

======= PMI Tree and Available PMI Statistics =======

connectionPoolModule

Available Statistics:

CreateCount, CloseCount, AllocateCount, ReturnCount, PoolSize, FreePoolSize,
WaitingThreadCount, FaultCount, PercentUsed, PercentMaxed, UseTime, WaitTime,
ManagedConnectionCount, ConnectionHandleCount, PrepStmtCacheDiscardCount,
JDBCTime

connectionPoolModule->Derby IDBC Provider

Available Statistics:

CreateCount, CloseCount, AllocateCount, ReturnCount, PoolSize, FreePoolSize,
WaitingThreadCount, FaultCount, PercentUsed, PercentMaxed, UseTime, WaitTime,
ManagedConnectionCount, ConnectionHandleCount, PrepStmtCacheDiscardCount,
JDBCTime

connectionPoolModule->Derby JIDBC Provider->jdbc/ALBUM

Available Statistics:

CreateCount, CloseCount, AllocateCount, ReturnCount, PoolSize, FreePoolSize,
WaitingThreadCount, FaultCount, PercentUsed, PercentMaxed, UseTime, WaitTime,
ManagedConnectionCount, ConnectionHandleCount, PrepStmtCacheDiscardCount,
JDBCTime

Creating New JMX or WebSphere PMI Metrics Entries

The following instructions guide you through the process of creating the JMX or PMI metric entries
according to the following template:

<collector_name>/<metric_config>= <metric_id>|<metric_units>
This template is described in "Understanding Metric Collector Entries" on page 223.

To capture JMX or WebSphere PMI metrics:

1. Open <agent_install_directory>/etc/metrics.config. and locate the JMX metric collector that is
appropriate for the application that is being monitored by the Java Agent.

HPE Diagnostics (9.26) Page 239 of 305

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

2. The <collector_name> parameter is the same as the rest of the entries in the collector. If you
were creating an entry for WebLogic, the value of this parameter would be WebLogic.

3. Create the <metric_config> parameter.

a. For JMX metrics the <metric_config> parameter is a pattern that the collector uses to find a
matching MBean. The pattern consists of two components, separated by the '.' character.
See syntax below.

MBean object and attributes:

<MBean object name pattern>.<attribute name>

MBean Object, attribute and fields:

<MBean object name pattern>.<attribute name>#<field name>

MBean object and operations:

<MBean object name pattern>.(<operationname>())

MBean object, operations and fields:

<MBean object name pattern>.(<operationname>()#<field name>)

Where

<MBean object name pattern> is the string representation of the object name of an MBean.
For an explanation of metric patterns see "Understanding Metric Patterns" on page 242. For
an explanation of how to group JMX metrics see "JMX GROUPBY and EXPAND_ PMI
Modifiers" on page 243.

<attribute name> is the name of the MBean attribute that represents the metric. If <attribute
name> has any '." in it, it should be surrounded by parenthesis: <MBean object name
pattern>. (<attribute name>)

As an example, for a WebLogic application server, the <metric_config> parameter for the
throughput of all Execute Queues is configured as:

*:Type=ExecuteQueueRuntime, *.ServicedRequestTotalCount

See "Getting a List of Available JMX or WebSphere PMI Metrics" on page 237 for an example
of a metrics dump showing available attributes.

<attribute name>#<field name> JMX Attributes that return Composite Data can have their
numeric fields used as metrics. Simply append the symbol # followed by the name of the field
after the MBean name.

HPE Diagnostics (9.26) Page 240 of 305

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

For example:

Java\ Platform/java.lang\:type\=MemoryPool, name\=Perm\ Gen.Usage#used

will track the <used> field of the <Perm Gen> MBean's <Usage> composite data attribute.

(<operationname>()) where the operation name is followed by open and close parentheses.
And the entire operation name is enclosed in parentheses.|f the operation returns a composite
attribute, suffix the composite attribute field after the () as for attributes.

For example:

Tibco/com.tibco.bw\:key\=engine,name\=*. (GetActiveProcessCount()) =
Active Process Count|count|Tibco

Note that only operations that don’t take arguments are supported.

(<operation name>()#<field name>) JMX Operations that return Composite Data can have
their numeric fields used as metrics. Simply append the symbol # followed by the name of the
field after the MBean name.

For example:

Tibco/com.tibco.bw\:key\=engine,name\=*. (getStatus()#Total\ Errors) =
Total Errors|count|Tibco

will track the "Total Errors" field of the Composite data object returned by the getStatus()
operation.

b. For WebSphere PMI metrics, the <metric_config> parameter is a pattern that the collector
uses to find the matching PMI statistics. The pattern consists of two components separated
by the'.' character.

<PMI StatDescriptor>.<statistics name>
Where
<PMI StatDescriptor> is used to locate and access particular Stats in the WebSphere PMI

tree. It can be either a PMI module name (for example, webAppModule), or a PMI module
branch (for example, [webAppModule][AccountManagement#AccountManagementiar.war]

<statistics name> is the name of the PMI statistics that represent the metric. If statistics
name has any '." init, it should be surrounded by parenthesis: [webAppModule]
[AccountManagement#AccountManagementWar.war].
(webAppModule.numLoadedServlets)

HPE Diagnostics (9.26) Page 241 of 305

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

See "Getting a List of Available JMX or WebSphere PMI Metrics" on page 237 for an example of
the PMI module and PMI module branches and their available statistics names.

See "JMX GROUPBY and EXPAND_PMI Modifiers" on the next page for an example of how to
group PMI metrics.

4. Fillin the rest of the JMX metric entry template as shown in the following example:

WebLogic/*:Type=ExecuteQueueRuntime, *.ServicedRequestTotalCount = RATE
(Execute Queues Requests / sec|count|Execute Queues)

5. Format the initial entry by prepending a back-slash '\' before every back-slash'\', space'’, equals
(=), orcolon";".

Following this step the initial entry in the previous step becomes:

WebLogic/*\:Type\=ExecuteQueueRuntime, *.ServicedRequestTotalCount = RATE
(Execute Queues Requests / sec]|count|Execute Queues)

This is the correctly formatted entry for a JMX metric collector to enable the collector to gather
WebLogic JMX metrics.

Understanding Metric Patterns

For JMX metrics the <metric_config> parameter is a pattern that the collector uses to find a matching
MBean; for example:

*:Type=ExecuteQueueRuntime, *.ServicedRequestTotalCount

In the example above, the object name is *:Type=ExecuteQueueRuntime,*, which could actually
resolves to many MBeans whose names have the Type component equal to ExecuteQueueRuntime.
ServicedRequestTotalCount is an attribute name for which metric values will be collected by the JMX
metric collector.

Note: Current implementation of the JMX collector only supports attributes that are numeric in
type (for example, long, integer, etc.).

The JMX metric collector first uses MBeanServer's query mechanism to find the matching MBeans for
each object name provided in the configuration. For JMX metrics the object names are a pattern that
the collector uses to find a matching MBean. For more details around the object names, see
http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html.

Since MBean object names are patterns that can resolve into multiple MBeans, the JMX collector will
validate all of the attribute names in the entry against all MBeans that match the pattern, and will
aggregate the attribute values over the set of those matching MBeans. Of course, it is not always the
case that the object name resolves into multiple MBeans. For example, the following object name
resolves to a single MBean (on a WeblLogic application server):

HPE Diagnostics (9.26) Page 242 of 305

http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

*\ :Name\=weblogic.kernel.Default, Type\=ExecuteQueueRuntime,
*.ServicedRequestTotalCount

JMX GROUPBY and EXPAND_PMI Modifiers

You can use the optional GROUPBY modifier to create a separate metric for each matched group of
MBean ObjectNames with the same value of the key specified by GROUPBY. In the probe's
etc/metrics.config file, for JMX metrics that describe an MBean object name pattern there is an optional
modifier GROUPBY that can be added, which tells a JMX-based collector to treat the metric_config as
multi-instance expression:

collector_name/GROUPBY[oname_key]/metric_config = ...

The collector will find all MBeans matching the metric_config and create a corresponding metric for
each of them using the object name key oname_key to provide unique naming by appending it to
category _id.

WebSphere6/GROUPBY[name]/WebSphere\ :type\=DataSource, *.statementCacheSize = JDBC
Statement Cache Size|bytes|JDBC DataSource

For example:

WebSphere6/connectionPoolModule.CreateCount = JDBC Connection Creates|count|JDBC
ConnectionPools

WebSphere6/[connectionPoolModule][Derby\ JDBC\ Provider]
[jdbc/ALBUM] .AllocateCount = JDBCConnection Allocates|count|JDBC ConnectionPools

Or, you may use the optional EXPAND_PMI modifier to group PMI metrics similar to how you group
JMX metrics.

For PMI, the EXPAND_PMI modifier is specified to expand the PMI tree from the given module or
StatDescriptor branch by the specified level. The expansion level "n" canbe 1, 2, ..., or *, with the
default level of 1 and * means expand all:

collector_name/EXPAND_PMI[n]/metric_config = ...

For example:
WebSphere6/EXPAND_PMI[*]/connectionPoolModule.AllocateCount = JDBC Connection
Allocates|count|JDBC ConnectionPools

creates "JDBC Connection Allocates" metric for each JDBC connection pool provider and for each
DataSource of the provider.

HPE Diagnostics (9.26) Page 243 of 305

Part 4: Using the Diagnostics Profiler for Java

HPE Diagnostics (9.26) Page 244 of 305

Chapter 15: Diagnostics Profiler for Java

This chapter describes how to use the Diagnostics Profiler for Java:
« "About the Java Diagnostics Profiler" on the next page
« "How the Java Agent Provides Data for the Java Profiler" on the next page
« "Java Diagnostics Profiler Ul Navigation and Display Controls" on page 248
« "Analyzing Performance Using the Call Profile Window" on page 250
« "Thread Call Stack Trace Sampling" on page 254
« "Comparison of Collection Leak Pinpointing and LWMD" on page 257
« "Object Lifecycle Monitoring" on page 258
« "Heap Walker Memory Analysis Execution Steps" on page 260
« "Heap Walker Performance Characteristics" on page 264
« "How to Access the Java Diagnostics Profiler" on page 264
« "How to Enable LWMD for Collections Displays" on page 265
« "How to Enable Allocation Capture" on page 266
« "How to Enable Object Lifecycle Monitoring" on page 267
« "How to Analyze Object Allocation" on page 267
« "How to Enable Memory Analysis" on page 268

Diagnostics Profiler for Java Ul Description:

o "Summary Tab Description" on page 270

« "Hotspots Tab Description" on page 272

« "Metrics Tab Description" on page 274

« "Threads Tab Description" on page 276

« "All Methods Tab Description" on page 282

o "All SQL Tab Description" on page 285

HPE Diagnostics (9.26) Page 245 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

o "Collection Leaks Tab Description" on page 286

« "Collections Tab Description" on page 288

« "Exceptions Tab Description" on page 291

« "Server Requests Tab Description" on page 293

o "Web Services Tab Description" on page 295

« "Allocation/LifeCycle Analysis Tab Description" on page 297
« "Memory Analysis Tab Description" on page 299

« "Configuration Tab Description" on page 301

About the Java Diagnostics Profiler

The Diagnostics Profiler for Java is installed with the Java Agent. The Profiler runs in a separate Ul and
provides near real-time data, enabling you to pinpoint application performance bottlenecks.

You can use the different tabs in the Java Profiler to analyze method latency for the selected
application. And you can analyze memory problems for the selected application using the memory
diagnostics metrics displayed in the Java Profiler.

Special Features Available in the Profiler

Some of the information presented in the Java Profiler is also available in the Diagnostics enterprise Ul.
However the following features are only available in the Java Profiler. Many of these features are real
time and so are enabled and viewed only in the Java Profiler.

« Dynamic instrumentation of a sampled method from the Java Profiler Call Profile (accessible from
the Server Requests tab)

« Threads tab
« Allocation/Lifecycle Analysis tab
« Heap Breakdown tab (including the heap walker)

« Probe Configuration tab

How the Java Agent Provides Data for the Java Profiler

This section describes the way in which the Java Agent runs probes to monitor your application and
how this data is displayed in the Java Diagnostics Profiler.

HPE Diagnostics (9.26) Page 246 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Monitoring Method Latency and Call Stacks

The Diagnostics Agent for Java (Java Agent) runs probes to monitor your application and keep track of
the metrics for all of the instrumented methods that your application calls. As probes are monitoring,
they capture the call stack for the three slowest instances of each server request. The probe also
captures a call stack representing all call instances for a type of service request and calculates the
aggregated latency

When a server request instance is encountered that is slower than one of the captured instances for the
server request, the slower instance replaces one of the previously captured instances.

The Java Diagnostics Profiler displays metrics for all of the instrumented methods. You can drill down
to the method instances that are included in the captured call stacks.

While you are analyzing the information displayed on the various tabs of the Java Diagnostics Profiler,
you are working with the methods and call stacks captured from the time that the user interface was
started. In the meantime, to minimize performance impacts, the probe continues to monitor your
application, capture method metrics, and capture call stacks.

Monitoring Application Memory Use

The Java Diagnostics Profiler allows you to monitor your application's memory usage using one of the
following methods:

« Collection Leak Pinpointing
« Lightweight Memory Diagnostics
« Heap Breakdown/Heapwalker

Collection Leak Pinpointing allows you to pinpoint Java collection related memory leak locations in
Java applications. The data collection for this feature has very low overhead and so it can be usedin a
production environment.

Lightweight Memory Diagnostics allows you to monitor the collections that your application has
created, and to identify the largest collections and the fastest growing collections.

With Heap Breakdown you can monitor the heap generation breakdown and the objects that are stored
in heap. This helps you to identify objects that may be leaking. By default, Lightweight Memory
Diagnostics and Heap Breakdown are disabled.

For more information see "Comparison of Collection Leak Pinpointing and LWMD" on page 257. Also
see "How to Enable LWMD for Collections Displays" on page 265.

For more information on Heap Breakdown/Heapwalker, see "How to Enable Memory Analysis" on page
268.

HPE Diagnostics (9.26) Page 247 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Java Diagnostics Profiler Ul Navigation and Display Controls

This section describes the features and controls that are common within the different tabs of the Java
Diagnostics Profiler:

Load

Slowest Reguests

4 HP Diagnostics - Diagnostics Profiler

@1 vosrcl L AP

Profiling Since: Mon Apr 3011:20:13 AM PDT 2012
£3 summary | [Z] Hotspots | Il Metrics | [A Methoas | |8 41 5aL | @ Coection Leaks | (i Collections r_.e 40 B

Memory

This chart shows the amount of
memory in-use and reserved by
your application.

You can also dril into the contents
of the heap

Sample svery | 3 seconds ||

512 MB
448 MB
384 MB
320 MB
258 MB
1892 MB
128 MB P
o]
&4 MB py
o Save as...
11:24:30 11:2 11:24:40 11:24:45
Print... [
A Used memary Total memory
Zoom In k| Both Axes
Zoom Out P Domain Axis
futo Range #| Pange Axis

o

This chart shows a brealkdown of
the load for each layer of your
application.

Howver the mouse aver a layer to
see its name.

11:23:170 11:23:20 11:23:30 11:23:40 11 :23:50 11:24:00 11:24:10 11:24:20

WLConsumerlmpl.receive()
fexamplesWebApp/larghccts
_WebSewice.jsp

fexamplesWebfpphval_JWS_
WebSemice jsp

JexamplesWebBppics_JWS_
WebSemice.jsp

1(:: 5 '15I 5
Mean Latency

Thizs chart shows the requests
{the top level of instrumentation,
often the wek tier) that are taking
the longest time to complete.

Click & bar to examine a call
profile, or view all server requests.

Last refresh: Mon Apr3011:24:.06 POT 2012

@ Probe ID: WLS92_aqualogic_ovintt 27_W2k3

Graph Menu Options (right-click in a graph to access menu)

Right click in a graph to access the graph menu and select an option:

Copy. From a graph, right-click and select Copy to copy the graph and paste it into a document. You
can paste into any type of file that allows you to paste an image, such as a Microsoft Word file.

HPE Diagnostics (9.26)

Page 248 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

« Save as. From a graph, right-click and select Save as... to save the graph as an image (.png file
type). Enter a file name in the dialog box displayed. By default the file is saved in My Documents
but you can browse to the directory where you want to save the file.

« Print. From a graph, right-click and select Print to print the graph.

« Zoom In. From a graph, right-click and select Zoom In to zoom in for a closer look. Each time you
select zoom in, it uses a multiplier of .5 to give you a magnified view of the data. Note that additional
data is not retrieved and the resolution of the data is not changed.

You can also select portion of the graph for zooming in. Using the mouse, click the graph where you
want to begin the zoom and hold the left mouse button. Then drag the mouse to the right to select
the zoom range. When you release the mouse the selected portion of the graph is zoomed.

When zooming in you can select the following:

Domain Axis - Select this option to zoom in and magnify the domain axis. Typically the domain
axis is the time or X-axis.

Range Axis - Select this option to zoom in and magnify the range axis. Typically the range axis is
the axis with the data values or the Y-axis. For horizontal bar charts you only have the Range Axis
selection and this zooms the axis with the data values, which in this case is the X-axis.

Both Areas - Select this option to zoom in on both axes of the graph.

o Zoom Out. From a graph, right-click and select Zoom Out to zoom out for a less magnified view.
Each time you select zoom out, it uses a multiplier of 2 to give you a less magnified view of the
data. Note that the resolution of the data is not changed. The same menu options are available as
for Zoom In (described above).

« Auto Range. From a graph, right-click and select Auto Range to go back to the original display after
zooming in or out. You can select to restore the Domain Axis, Range Axis or Both Axes to the
original magnification.

Refresh Metrics

When you are ready to view more current performance metrics, click Refresh on the top right
corner of the screen to refresh the information displayed. The Profiler is refreshed with the latest
metrics and call stacks. The system does not refresh itself automatically.

Reset Metrics

& You can force the Java Diagnostics Profiler to use new baselines for the calculation of instance
counts, average latency, and slowest latency, and to force-drop all captured call stacks, by clicking
Reset the Count and Time Information.

Note: You may want to reset metrics after your system has warmed up so that the metrics
represent processing that takes place when your application is running in a more steady state.

Garbage Collection

E When you want to deallocate used memory, you can forcibly perform garbage collection inside the
JVM of the probed application by clicking Force Garbage Collection on the top right corner of the
screen.

HPE Diagnostics (9.26) Page 249 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Export to PDF

E When you want to export the page displayed, you can click the Export this view to PDF (Acrobat)
icon on the top right corner of the screen. See "Exporting Data" in the HP Diagnostics Server
Installation and Administration Guide for details.

Diagnostics Home Page

The Diagnostics Home Page link displays the HP Diagnostics web site with information on products,
solutions, demos, webinars and contact information for HP.

Accessing Help

When you click Help, on the top right hand corner of the screen, you access the Diagnostics Java
Agent Guide.

Analyzing Performance Using the Call Profile Window

The Call Profile window (accessed from the Server Requests tab) displays a graphical representation
of the method call stack for a selected server request. The depicted server request can be an
aggregation of all of the calls made to the selected server request or a single instance of the server
request depending on the server request on which you drilled down to open the call profile window. The
metrics depicted in the graphical representation of the call stack are also depicted in the Call Tree Table
on the same tab.

There are two types of call profile windows that are displayed depending on the how you navigated to
the tab:

« The Instance Call Profile window displays the method calls that were made during the
processing of the server request on which you drilled down.

« The Aggregate Profile window displays an aggregation of all of the method calls that were made
during the processing of all of the server requests that were the same as the one on which you
drilled down.

The Call Profile Window is made up of three areas:
« Call Profile Graph
o Call Tree Table

o Details Pane

HPE Diagnostics (9.26) Page 250 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

An example of the Call Profile view showing all three of these areas:

lestorelcontrollproductdetails

MainServiet.doGet()
JspBase.service()
JspBaseservice()

InventoryEJB.ejbFindByP rimaryK ey ()

OracleStatement.executeQuery()

lilililili =4 | = !
100% jestore/controlproduc ! = /estore/control/productdet...

EH00% Maingervlet, doGet) 593.4 1 Application Mame

[599.4% IlspBaseservicel 590.0 1 Arguments
592.4% JspBase.servic 5436 1 TS festorefeo..
EISDA% InventoryE. 149.7 2 ;Eg: 'r:\ﬂu;tehn d
+-30.4% OracleSts 90,3 2 Tvpe
IJRI lestore/co..,
Excentions i

When you click a call box in the Call Profile graph, the corresponding row is selected in the Call Tree
table and the metrics for the selected call are displayed in the Details pane. When you click a row in the
Call Tree table the corresponding call box in the Call Profile graph is selected and the metrics for the
selected call are displayed in the Details pane.

Note: There are differences in the layout and the metrics that are displayed in the Call Profile
Window depending on the type of call profile that Diagnostics is displaying. These differences will
be noted as each of the areas of the window are described.

Call Profile Graph
The horizontal axis of the Call Profile represents elapsed time, where time progresses from left to right.
For aggregated call profiles, the scale across the top of the profile denotes the total time.

For instance call profiles, the calls are distributed across the horizontal axis based upon the actual time
when they occurred and so their positions help to show the sequence of each call relative to each other.
The scale across the top of the instance call profile denotes the elapsed time since the server request
was started.

The vertical axis of the call profile depicts the call stack depth or nesting level. Calls that are made at
the higher levels of the call stack are shown at the top of the call profile and those made at deeper
levels of the call stack are shown at the lower levels of the profile.

HPE Diagnostics (9.26) Page 251 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Each call box or node in the instance call profile represents a method call. The left edge of the box is the
start time of the method call and the right edge is the return time from the call. The duration of the call is
therefore represented by the length of the box. The position of the call box along the horizontal axis
indicates the actual time when the call started and ended. The call boxes that appear directly beneath a
call box are the child calls that are invoked by the parent call above them.

The gaps between the call boxes on a layer of the instance profile indicate one of the following
processing conditions:

« The processing that took place during the gap occurred in code that is local to the parent at the
previous higher level in the call profile and not in child calls in a lower layer.

« The call was waiting to acquire a lock or mutex.

« The processing that took place during the gap occurred in a child call that was not instrumented or
included in a capture plan for the run.

The call boxes are colored to emphasize the different path calls.
« The calls that are part of a path through the profile that has the highest latency are colored red.
« Call path components that are not part of a critical high-latency path are colored grey.

« Foracall profile showing a cross-VM call tree, each "hop" will be colored differently to help visually
distinguish the calls that occurred on each tier.

« When asynchronous thread sampling is enabled you can see additional nodes added into the call
profile view by sampling. These nodes are distinguished by their different (fuzzy) shading to
emphasize lack of data about the represented method start and end times. The sampling nodes are
transparent so you can see the instrumented methods, if any, behind the sampling nodes.

« Yellow dotted lines around a box indicates an exception was thrown.

If the duration of a call is very short or if the call appears further down in the call stack, the size of the
call box can cause the name of the method that the call box represents to become too small to read.
You can view the name of the method along with other details for a selected method by holding your
pointer over the call box to cause the tooltip to be displayed. You can also see the details for a method
selected from the call profile in the Details pane.

The call profile graph may have tabs across the top if data for exception instances and SOAP faults or
payload was captured.

The tooltip contains the following details for the selected call box:

Method Window
Detail Description Type
Method Name of the method represented by the call box. Aggregate
Name

Instance

HPE Diagnostics (9.26) Page 252 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Method Window
Detail Description Type
Layer Name The name of the Diagnostics layer where the call occurred. Aggregate

Instance
Total The percentage contribution to the total latency of the server request that =~ Aggregate
Contribution = the methods processing contributed.

Instance
Call Count | The total number of times that the method was called during the Aggregate

execution of the aggregated server requests instances.

Total The cumulative latency attributed to the processing of the method. Aggregate
Latency

Instance
Average The average latency that can be attributed to each of the method Aggregate
Latency executions for the aggregated server request instances.

Call Tree Table

The Call Tree table appears directly below the Call Profile. This table shows the same information
that is represented in the Call Profile.

The first row in the table contains the root of the call stack, which is the server request you selected
when you requested that the Call Profile view be displayed. The rest of the rows in the tree are the
method calls that were made at successive levels of depth in the call tree. You can use the
expand/collapse controls in front of method calls so that you can display depth levels in the call tree as
required.

In the call tree table the X icon indicates the cross VM outbound call. The number inside the X icon
specifies the depth in the call tree. The diamond icon indicates the next depth level (for example 2 for
second level).

Selecting an outbound call row in the table brings to the front, in the call profile graph, all boxes at the
next VM depth level. Selecting any row in the table brings to the front, in the call profile graph, all boxes
up to root.

When you select a row call in the table, the corresponding box is selected in the Call Profile graph, and
the metrics for the selected call are displayed in the Details pane.

The Call Tree Table contains the following columns:

Column Window
Label Description Type
Call The name of the Server Request or Method Name. The percentage Aggregate

contribution of the method call to the total latency of the service request
precedes the name. The percentage is colored red for those calls which are
on the call tree's critical path.

Instance

HPE Diagnostics (9.26) Page 253 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Column Window
Label Description Type

Average The average latency that can be attributed to each of the method executions = Aggregate
Latency | forthe aggregated server request instances.

Count The total number of times that the method was called during the execution of = Aggregate
the aggregated server requests instances.

Total The cumulative latency attributed to the processing of the method. Instance
Latency
Total The total amount of CPU time used by the processing for the selected Aggregate
CPU method or server request.

Instance
Average The average amount of CPU time used by each of the aggregated method Aggregate
CPU calls included in the selected method or server request.

The Total Latency for a parent call includes not only the sum of the latency of each of its children but
also the latency for the processing that the method did on its own.

Call Profile Details Pane

The Details pane lists the metrics related to the server request or method selected in the Call Profile
Graph orin the Call Tree Table.

To view the details of a particular call in the Details pane, select the call from the Call Tree Table orin
the Call Profile Graph.

The metrics that are included in a metric category can be hidden or displayed by expanding or
collapsing the list of metrics using the plus sign (+) and minus sign (-) next to the category name.
Alternatively, you can double-click the category name to expand or collapse the list of metrics.

Thread Call Stack Trace Sampling

When asynchronous thread sampling is enabled you can see additional boxes added into the call profile
graph by sampling. These boxes are distinguished by their different (fuzzy) shading to emphasize lack
of data about the represented method start and end times. See "Configuration Tab Description" on page
301 for how to configure this sampling using the Java Diagnostics Profiler Configuration Tab.

See "Configuring Thread Stack Trace Sampling" on page 215 for configuration and troubleshooting
information if you don't see any sampling nodes after enabling stack trace sampling.

Instrumenting a Sampled Method Dynamically

Sampling methods displayed in the Call Profile when Thread Stack Trace Sampling is enabled give you
an insight into the call hierarchy and latencies of these methods. But you may want to identify one of
these sampling methods to actually instrument in order to get additional detail information.

Dynamic instrumentation is Java bytecode instrumentation performed during the application execution
after the respective class has been first loaded by the Java Virtual Machine. Instrumentation is

HPE Diagnostics (9.26) Page 254 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

temporary, for the current Java process. If you want to permanently instrument this method you must
add the point you created to the instrumentation points file.

Note: Dynamic instrumentation (the Instrument menu item) is ONLY available when you access
the Call Profile from the Diagnostics Profiler for Java. It is NOT available when accessing the Call
Profile from an instance tree icon in the main Diagnostics Ul.

From the Diagnostics Java Profiler Ul, select the Server Requests tab and open the Call Profile
window. Select the sampling (fuzzy) node in the Call Profile window and right-click to select
Instrument.

HP Diagnostics - Diagnostics Profiler

i) Diagnostics

ofiling Since: Tue Jan 25 03:53:53 PM PST 2011
| Threads || &l Methods || @ ansaL || B collection Leaks || B Collections || & Exceptions | [s Server Requests || =3 wieh Se

iter by Server Request Type

Server Request | Total time(...
radeejb/servietiTradeServist 2 560 646 4
b
;:i't:g HP Diagnostics - firadeejbfserviet/TradeServlet =& |
:-||l'.:all Profile for the Instance of the Server Reguest Aradeejb/serviet/TradeServiet ending at 1/26M1 7:57:08 AM

ig) 0 is Gs 8s 12s 15s 18s s M3 s s
[tradeejb/serviet/TradeServiet

3 TradeServiet.doPost()

TradeSessionBean.processTrade()

r TradeSessionBean.getOrderResult()
i n
. JMSMessageConsumerHandle.receive()
MQMessageConsumer.receive()
ageConsumer.receivel
- . ueue tl'u-lr—"'“ l -
| . | |
: o :
QQueue.getMsg2int
SESSIONClient. MQG
call |Lu|Tew | = Method Data
. CT U JitaUIUeUESeSEI0NHEntE Crearerecevert) - Arguments
1' El 0% MoQueueSession createReceiver() —— v il veaes RAYE

HPE Diagnostics (9.26) Page 255 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

The Dynamic Instrumentation dialog box is displayed with values corresponding to the selected
method.

- Dynamic Instrumentation E]@-\

Define and apply a new instrumentation point

-

Package Mame | weblogic xml jaxp |
Class Mame | RegistryDocumertBuilder |
Methaod MName | parse |

Method Signature

I* |

Layer Name | Discovered |

WARNING: Adding new instrumentation points may affect application performance

[Mew—-FPoint-1]
nstrumented and redefined 1 classies).

class = weblogic. xml. jaxp. Registr . : .
lease inspect detaiiReport bdto see the matching methods, and

tlhod =
m? ne parse robe. log for any possible errors appearing after the class
signature = . * _—
_ edefintion.
deep_mods = n‘?ne o make the changes permanert, copy the instrumentation point
Layer SRR e nthe left into the probe auto_detect points file.
4 [} 3

You can change the package, class, and method name, and provide a method signature, if known, to
narrow down the scope of the instrumentation. Since sampling does not reveal method signatures, by
default all methods with matching names will be instrumented.

Note: The classes belonging to the Diagnostics Java probe or the Java runtime cannot be
instrumented.

Click Apply after making the changes you want and the Java probe automatically creates a new point
definition and tries to apply the instrumentation dynamically. The bottom part of the dialog window
contains the result of this operation: the new instrumentation point definition is placed on the left side,
while the result of instrumentation is located on the right.

Once the instrumentation is successful, you should copy and paste the instrumentation point to save it
because when you refresh the Call Profile, the Dynamic Instrumentation window with the details on the
instrumentation point you created is no longer available.

When you refresh the Call Profile view, the dynamically instrumented method will be displayed as a
solid node because it is now instrumented. Instrumentation is temporary for the current Java process.

If you want to permanently instrument this method you must add the point you created to the
instrumentation points file.

HPE Diagnostics (9.26) Page 256 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Comparison of Collection Leak Pinpointing and LWMD

Collection Leak Pinpointing (CLP) allows you to pinpoint Java collection related memory leak locations
in Java applications. Enabling the feature in the probe is optional. Once enabled, the probe will
automatically detect and report the leaking Java collection objects and their leak locations (stack
traces), without any user interaction. CLP captures the stack trace when a collection is marked as a
leak for the first time. The data collection for this feature has very low overhead and so it can be used in
a production environment. See "Custom Instrumentation for Java Applications" on page 113 for more
information on configuring collection leak pinpointing.

Lightweight Memory Diagnostics (LWMD) can also be used to help you locate memory leaks. Enabling
LWMD in the probe is optional. User interaction is required to enable LWMD. The data collection
overhead for this feature is relatively high and it is not recommended for use in a production
environment.

A comparison of CLP and LWMD is shown in the table below. Both are optional features and are used
to help detect and locate the Java collection related memory leaks.

CLP LWMD
User Does not need user interaction at all. The probe will = Needs user interaction and
interaction automatically detect and report the leaking Java manual steps.

collection objects and their leak locations.

Data collection = Very low overhead, can be used in production Relatively high overhead,

overhead environment. depends on the user
specified scope. Not
recommended to use in
production environment.

Out-of-the-box = Enabled by default Disabled by default.
status

Instrumentation = To use this feature, you need to run the JRE Once the feature is
approach instrumenter to pre-instrument the Java collection enabled, the application

classes in the JRE jar file, and add the instrumented = classes within the specified
JRE classpath to the -Xbootclasspath/p java option = scope will be instrumented

to run the probe. at runtime.
Instrumented The Java collection classes (in java.util package The application classes
classes and subpackages) in the JRE jar file. within the specified scope

that have Java collection
object allocation.

Common data Both collect full classname of the collection and size
collected of the collection.

Differences in | Leak location: stack trace when called to add new The collection object
data collected elements to the leaking collection allocation site: class,
method, line number.

HPE Diagnostics (9.26) Page 257 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Object Lifecycle Monitoring

Every object has a lifespan. The lifespan begins with object construction and ends with its garbage
collection. You can use the Allocation/LifeCycle Analysis tab in the Java Diagnostics Profiler to
monitor and analyze object lifespan (see "How to Analyze Object Allocation" on page 267).

However, some objects follow a lifecycle during their lifespan. For example, the objects representing
database resources (like database connection or cursors) go through such a lifecycle during their

lifespan. See the diagram below:

peLiado

Object lifecycle

Cpen
(active time
beding)

recpened

Closed

Close
(active time
ends)

Freed without close

Dbject
garbage
collected

HPE Diagnostics (9.26)

Page 258 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

These objects are brought into an open state by some resource acquisition operation and then closed
after their usage. They usually acquire their resources before entering an open state and relinquish their
resources after reaching a close state. Some of these objects are designed for re-use (for example,
objects based on connection pool). So these objects might be re-opened and closed multiple times
during their lifespan.

You can enable object lifecycle monitoring in Diagnostics and view lifecycle information for these
objects in the Allocation/Lifecycle Analysis tab.

Two Examples of These Types of Objects

« Database connection: An object of type java.sqgl.Connection represents a database connection.
The connection is opened by invoking javax.sql.DataSource.getConnection() method and it is
closed by invoking java.sql.Connection.close() method.

« Database cursors: An object of type java.sql.ResultSet represents a database cursor. The cursor
is opened by invoking java.sgl.Statement.executeQuery() method and is closed by invoking
java.sql.ResultSet.close() method.

Types of Performance Problems with These Objects

Diagnostics allows you to monitor the object's lifecycle between its open and close states to identify
the following types of performance problems.

« Resources are not released: This problem arises when the object is not brought into a close state.
This causes the resources attached to the object to be wasted for the lifetime of the object.

« Resources are not released in a timely manner: This problem arises when the resources are
released after unnecessarily keeping them around for quite long period of time. This can also
happen if the object is not closed but the garbage collector automatically closes it during object
finalization.

Viewing Object Lifecycle Information

Object lifecycle information is available in the details pane in the Profiler Allocation/Lifecycle Analysis
tab for objects enabled for monitoring.

Tips for performance analysis:

The metric Objects 'Opened’ (Total) shows the number of objects opened during the application's
lifetime.

Please note that, if an object is re-opened at multiple location (a common case for pooling), the 'opened'
metrics shows the number of times the object was opened. However, the location information refers to
the location of the first 'opening' of the object.

Also an object is re-opened without being 'closed' then it is assumed that the object kept itself in the
'open' state. The 'opened' counter is not incremented.

The metric Objects 'Closed' (Total) shows the number of objects closed during the application's
lifetime. If an object is re-closed without being 'opened' again, then it is assumed that the object kept
itself in the 'close’ state. The 'closed' counter is not incremented.

HPE Diagnostics (9.26) Page 259 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

The metric Objects Deallocated without Close will have a value greater than zero if the resources are
not properly released.

The metric Object Active Lifespan will have a higher average latency if the resources are not released
in timely manner. Note that this metric shows the active lifespan for only those objects that have been
closed.

Differences Between Object Lifecycle and Allocation Analysis

Unlike allocation analysis, the object lifecycle feature is not managed. This means that while allocation
analysis can be performed by specifically selecting the Start tracking allocations and Stop tracking
allocations links in the Allocation/Lifecycle Analysis tab. Object lifecycle monitoring, if enabled, will
show data since the application start-up and the data will not be cleared by the Clear allocation
information link.

Also, unlike allocation analysis, the object lifecycle feature does not support sampling. This means that
all the method calls are captured for the object's lifecycle monitoring.

Heap Walker Memory Analysis Execution Steps

Heap Walker is a memory analysis process accessible from the Memory Analysis tab. You can use it
to troubleshoot Java lingering object problems that are difficult to debug or reproduce. Using object
tagging and heap snapshots, Heap Walker enables you to inspect individual objects suspected of
having "leaked," and to determine why they are kept alive in the Java heap. This feature targets testing
(pre-deployment) environments. You can also use it in production environments.

The steps for using the Heap Walker are described below. The Heap Walker also contains a wizard
that guides you through the process of diagnosing a memory leak.

Step 1 - Establishing a Baseline

A typical large Java application allocates many objects during its initialization and warm-up. Classes
are loaded, thread and database connection pools are populated, and numerous caches in all
components are filled. These objects typically stay alive throughout the application execution. To avoid
identifying these objects as potential leaks (that is, to avoid false positives), you should let the
application run under load for some time to arrive at a stable state.

The application can be placed under memory leak test after initialization has completed, and object
allocation has stabilized. Clicking Start Tracking New Objects initiates the test operation. After that,
any objects allocated by the operation will be tracked as potential leaks.

The assumption here is that the deployed Java application, if allowed to fully initialize, allocates only
temporary objects for all of its operations. All temporary objects should eventually be garbage
collected. While most server applications comply with this design principle, there are known
exceptions to this rule. Database connections, or threads in dynamically sized thread pools, can be
created at any time during the application execution without time constraints on when they should be
terminated.

The Heap Walker operations may also leave a footprint on the heap. (For example, some probe classes
are loaded and initialized only when you start using Heap Walker.) Footprints should not be a problem if
you are aware of them. However, if you need a clear picture, it is recommended that you perform the

HPE Diagnostics (9.26) Page 260 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

execution of all Heap Walker steps twice, treating the first pass as a warm-up only. You can ignore
results from the first pass.

Step 2 - Exercising the Operation

The details of this step may differ, depending on whether the application is running in a production
environment or in a test environment. In a test environment, the application owner can carefully stage
the test load to contain only the desired operations. For example, testing can focus on newly developed
code, or objects that are suspected of leaking memory based on the analysis of the logs or feedback
from the IT center where the application is deployed.

It is often useful to use such an operation under test in some kind of a context. For example, if the
application requires a user logon, it might be practical to wrap the tested operation by a logon and
logout. It is typical for the application to hold the active session information in the heap. In this case,
you can dismiss the session information only after a logout. Alternatively, you can perform the logon
before new object tracking is started. In any case, you should arrange the tested operation in such a
way that it leaves no permanent footprint in Java memory (adding records to a database is fine). The
tested operation can be repeated several times. In the case of simple leaks, a single execution is
usually enough. In a production environment, it is impossible to control the load, or to time the new
object tracking by starting and stopping to catch only the desired portion of the load. You need to take
this into account when analyzing the results.

Heap Walker can display the number and size of the currently tracked objects. These numbers are
updated by taking a heap snapshot. You observe the numbers as they change over time.
Measurements increase as the application allocates new objects. They decrease as the objects are
garbage collected. After the tested operation is complete (or, in the case of a production environment,
sufficient time has elapsed), you can click Stop Tracking New Objects. At this point, the set of
tracked objects is closed. It can no longer grow.

It is normal, however, for several tracked objects to still be alive at this point. They can be present in
numerous caches in the application, including the components that you do not own. It is also possible
that some tracked objects require finalization. The finalizers are run periodically by the JVM, typically
asynchronously to the activities controlled by the application. Objects pending finalization are
considered alive, even though the application may hold no references to them.

Step 3 - Flushing Application Caches

Under normal circumstances, if the application remains under load, the caches clear of all the tracked
objects eventually, and the pending finalizers run eventually. The JVM also runs garbage collection
periodically. This garbage collection removes the tracked object from the heap, provided they are not
leaks.

You can sometimes speed up this cleaning process by forcing garbage collection. Clicking Run
Garbage Collection makes the JVM not only run the full GC cycle, but also run the pending
finalizations.

Taking heap snapshots is especially useful at this point. The observed number and the total size of
tracked objects should go down over time, as the cache flushing process progresses. Ideally, these
numbers should eventually reach zero, meaning that all tracked objects have been garbage collected.

However, if there is a Java memory leak in the tested operation, the numbers stabilize at some non-
zero values, and no longer decrease, despite repeated garbage collections and continuous load on the
application. When you decide that the tracked objects remaining on the heap should be considered a

HPE Diagnostics (9.26) Page 261 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

leak, it is time to capture the object reference graph. This action dumps all references present in the
heap to a file, and starts an additional (external) process, which sorts the file. The file is used in the next
steps.

Step 4 - Analyzing Potential Leaks

After you capture the object reference graph, you can retrieve the list of tracked objects. In most cases,
you select just one class of objects to retrieve. This can be accomplished by double-clicking the row
with the selected class. It is also possible to retrieve objects for multiple classes. Simply select
multiple rows (by holding down the Ctrl key), and then right-click to select Inspect Selected Tracked
Objects.

For efficiency of operation, there is a limit on the total number of objects that can be retrieved. You can
change the limit, using the selector located on the left side of the window. Retrieving a large number of
objects rarely makes sense, as it is costly, and it does not necessarily increase your capability to solve
the leak problem.

Step 5 - Walking the Heap

You can determine why any of the retrieved objects is alive by clicking the table row describing the
object. This action displays an Object Reference Diagram. This diagram shows the selected object
with a chain of references that are keeping the object alive, and indicates which object is a heap root.

For any object already displayed, it is possible to show all objects directly referencing it by double-
clicking the object.

As above, to keep a limit on the overhead, there is a limit selector on the left side of the screen
controlling the maximum number of objects to be retrieved and displayed.

HPE Diagnostics (9.26) Page 262 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

An example of the Object Reference Diagram:

[Diagnostics

Profiing Since: Tue Oct 27 10:56:01 AM PDT 2009

oy Coliections & Exceptions || B Server Requests || {3 Wieb Services |[H AmocationtifeCycle Analysis |[(B Memory Analysis 4+
Heap Walker | (B Heap Bresirdown || o0 Heap Walker |

Step 5 - Waking the Heap

e B 2B 3

Thiz table is a list of fracked objects
of the selected class inthe coptured
chject reference graph

Tao view a path from a root to &
specific object, select it in the table.
Any path of references from a root
10 an cbiject wil keép the object
alive, making it impossible for the
Gartage Colector 1o remove i from

e heae ——+ Do ARMCY Seatecam 168, e = o

You can further explare the graph
by double.chicling nodes to view all
referrers bo each nods. |

_L'Inil the number of objects to:] Hodes
L0 = Allocated befare the Operation
Allgcated during the Operation
Initialty queried object

Root marker -
J L »
Available Activne: _ Cats - B Eytes ov) W
o Capture Object Reference Graph mmmwm 24 2803019 -
- S weblogic server channels ServerConnectionRuntimeimpl 24 2TES445
{3, Take another Heap Snapshot weblogic sarver channsls ServerConnectionFuntmelmpl 24 2803183
oY Returnto Step 1 weblogic server channels ServerConnectionRungimelmpl 24 27EEE0S
weblogic server channels ServerConnectionRuntimeimpl 24 2602687
Laest Acticn weliogic Sarver channets ServerConnectionRuntimeimpl 24 TBTTST
Pathto root found in G064ms |wieblogic server channels ServerConnectionRuntimelmpd 24 2TEETIE =i

All displayed references (links between objects) are based on the captured object reference graph.
Additional information, such as object type, size, or reference names are retrieved directly from the
heap. Under some circumstances, the additional information cannot be retrieved because some of the
objects keeping the specific object alive can cycle over time and be garbage collected. A continuously
growing java.util.Vector object is a good illustration of this point, as the underlying array is replaced
over time.

The objects are color-coded according to their age. There are three distinct object ages:
« Baseline. Objects allocated before new object tracking was started.

« Tracked. Objects allocated between new object tracking start and new object tracking stop,
ostensibly by the tested operation.

« Fresh. Objects allocated after new object tracking was stopped.

The toolbar selections in the Object Reference Diagram are similar to the toolbar in topology views, so
for toolbar details see "Working with Topologies" in the HP Diagnostics User Guide.

You may elect to capture a new Object Reference Diagram to obtain a fresh view of the object, and
repeat "Step 4 - Analyzing Potential Leaks" on the previous page.

HPE Diagnostics (9.26) Page 263 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Heap Walker Performance Characteristics

Technically, starting or stopping new object tracking, and capturing the object reference graph, uses
the JVM heap tagging operations. It may require substantial execution time, which can be up to several
minutes for very large heaps. The application is practically paused during this time. Do not use Heap
Walker if the nature of the deployed application cannot tolerate such long pauses. If in doubt, always
test Heap Walker first in a test environment.

The above steps, and in particular starting new object tracking, also make the JVM allocate extra
memory generally proportional to the current heap size. This memory is allocated outside of the Java
heap, but within the JVM process. You need to take special care to ensure that such memory can be
allocated. Keep in mind that the JVM itself, the application code, the JIT-compiled code, and any native
libraries used by the application must fit into this space as well. For 32-bit processes, there is an
operating system-dependent limit on the size of the process address space (for example, 2GB for
Windows on Intel x86). If almost half (or more) of the available address space is already reserved by
the Java heap, the tagging operation can crash the JVM.

Heap Walker gives you the total memory usage estimate when the Start New Object Tracking
operation is activated for the first time. The estimate is for total system memory. It is based on
additional memory needed by the JVM and on memory for the object references sorting program. At this
point, you have a chance to quit Heap Walker without affecting the deployed application negatively (no
additional memory is allocated). Obviously, in a production environment (deployed application), it is
recommended that you use Heap Walker only if the system capacity is large enough to handle the
additional memory pressure. The decision whether to continue with tagging depends not only on the
total amount of memory available on the system running the application, but on the impact of a possible
JVM crash on the business process as well.

When using Heap Walker in a test environment, it is usually possible to scale down the load and the
maximum heap size to match the system capacity. There is no direct CPU overhead on the Java
application, other than actually running a Heap Walker command (indicated by the progress bar). This
also includes the tracking period. That is, even though tracking start and tracking stop consume large
amounts of CPU time, there is no overhead while actually tracking new objects.

However, the increased memory footprint of the JVM may cause serious sluggishness if the JVM no
longer fits into main memory, and makes excessive use of the swap area. If, after having tagged the
heap, you notice severe application performance degradation while none of the Heap Walker operations
are running, you most likely have a swap file thrashing problem.

How to Access the Java Diagnostics Profiler

Once you have installed the Java Agent, configured a probe to collect performance data and started the
application that is being monitored, you can access the Java Diagnostics Profiler from your browser
and view Diagnostics data. You can also access the Java Diagnostics Profiler by drilling down from the
views of the Diagnostics Enterprise user interface.

HPE Diagnostics (9.26) Page 264 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

To open the Java Diagnostics Profiler directly (standalone):

1. Inyour browser, go to the Java Diagnostics Profiler URL: http://<probe
host>:<probeport>/profiler.

The probes are assigned to the first available port beginning at 35000.

Note: You can find the port that a particular probe is using in the probe's probe.log file
located in <agent_install_directory>/log/<probe_id> directory. In the probe.log file, find
the line that begins with the words webserver listening on, for example: webserver
listening on 0.0.0.0:35003

The port is the number after the colon, in this example 35003.

2. Type your username and password.

You are prompted to enter a username and password. The default username is admin. The default
password is admin. You may be prompted again to enter a username and password. Re-enter the
same details.

For more information about authentication and usernames and passwords when you have the full
Diagnostics product, refer to the HP Diagnostics Server Installation and Administration Guide
section on Authentication and Authorization.

To drill down to the Diagnostics Java Profiler from the main Diagnostics Ul:

1. From any view in Diagnostics Enterprise Ul that shows probe entities, right-click the probe in the
table and select View Profiler for <probe name> from the menu.

2. If the Profiler fails to open when performing the drill down from the Diagnostics Ul, ensure that you
have set a default browser within your operating system.

How to Enable LWMD for Collections Displays

This task describes how to enable Lightweight Memory Diagnostics (LWMD) for use in analyzing
memory leaks.

By default, LWMD is disabled, so the Java Agent does not impose the additional overhead on its host
when you are not going to use memory diagnostics metrics. When you detect a memory leak using the
Memory Analysis tab, you can enable LWMD. When you have completed your investigation, you can
disable LWMD once more.

Note: LWMD must be enabled in order for you to see any data in the Collections tab of the Java
Diagnostics Profiler.

HPE Diagnostics (9.26) Page 265 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

To enable LWMD:

1. Turn on the LWMD capture in the dynamic.properties file by setting the
Iwm.diagnostics.capture property equal to true.

lwm.diagnostics.capture=true

2. Activate the LWMD point in the auto_detect.points file by setting active equal to true and
indicate the scope of the LWMD instrumentation:

[Light-Weight Memory Diagnostics]

keyword = lwmd

scope = lonly\.in\.this\.Class\..*,!or\.in\.this\.Class\..*
active=true

It is very important to limit the scope of the LWMD instrumentation to a particular package to reduce
overhead. The syntax for the scope starts with an exclamation point (!) to indicate that a regular
expression follows.

How to Enable Allocation Capture

This task describes how to enable allocation capture for the probe.

The Allocation/Lifecycle Analysis tab cannot display allocation objects or their metrics until allocation
capture has been enabled for the probe. By default, allocation capture is disabled, so the Java Agent
does not impose the additional overhead on its host when you are not going to use memory diagnostics
metrics. If you suspect that you may have a memory issue with the way your application manages its
object allocations, you can enable allocation capture. When you have completed your investigation,
you can disable the allocation capture again.

To enable allocation capture to view data in the Allocation/LifeCycle Analysis Tab:

1. Inthe auto_detect.points file located in <agent_install_directory>\etc, modify the default
settings to match the following:

[Allocation]

keyword = allocation

detail = leak

scope = !com\.mycompany\.mycomponent\..*
active = true

If you want to have reflective allocation tracked, you can add the reflection attribute to the detail

argument in the Allocation point.

[Allocation]

HPE Diagnostics (9.26) Page 266 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

keyword = allocation

detail = leak,reflection

scope = !com\.mycompany\.mycomponent\..*
active = true

This instruments the Class.newlnstance, Constructor.newlnstance, and Object.clone
methods. The reflection instrumentation tracks all classes that are created.

Restart the monitored application, so the probe restarts and can apply the updated
instrumentation.

How to Enable Object Lifecycle Monitoring

This task describes how to enable the monitoring of certain types of objects.

To enable object lifecycle monitoring to monitor object lifecycle data in the
Allocation/LifeCycle Analysis tab:

1.

Object lifecycle monitoring in Diagnostics is not enabled by default. The resource monitoring of
certain types of objects can be individually enabled in the etc/inst.properties file.

For example, to enable the database cursor monitoring set
mercury.enable.resourcemonitor.jdbcResultSet=true for details.conditional.properties property in
the inst.properties file. This enables object lifecycle monitoring for all resources of this type for a
single probe.

You will need to restart the probe after making changes to the etc/inst.properties file.

Due to higher overhead of caller side instrumentation and possibly large number of objects
(resources) to be tracked, it is recommended that this feature is only enabled during development
stage. It should be enabled in production environment with great caution and with a very limited
'scope’.

You specify the scope in the object lifecycle monitoring section in the auto_detect.points file.

How to Analyze Object Allocation

This task describes how to analyze the object allocations your application is performing.

After you have identified a memory problem using the Heap Breakdown tab, you can analyze the object
allocations that your application is performing by examining the allocations while the suspected
application functionality is being executed. The following procedure describes how to run an experiment
and study the resulting application performance.

HPE Diagnostics (9.26) Page 267 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

To analyze object allocations:

1.

If you have not already enabled allocation capture for the probe, do so as instructed in "How to
Enable Allocation Capture" on page 266.

Begin tracking allocations by selecting Start Tracking Allocations from the Common Tasks
menu.

The probe starts collecting the metrics for the objects that are being allocated and de-allocated. No
collection metrics are displayed in the tab until you select the Refresh Allocation Information or
Stop Tracking Allocations menu options.

Execute the application functions that you suspect may be causing a leak, so any objects that are
allocated while performing the function can be tracked.

Select the Stop Tracking Allocations menu option to limit the tracked objects to those that were
captured while the suspect application functions were being performed.

No additional instances are tracked after you stop tracking. The instances of the objects that were
already allocated continue to be tracked as they are de-allocated, so the metrics on the tab can be
refreshed with accurate counts of the objects that are alive or de-allocated, as well as with
accurate object lifespans.

Select the Refresh Allocation Information menu option to update the tab with the current
metrics for the allocated objects.

Each time you select this menu option, the Profiler updates the metrics for the tracked objects in
the allocations analysis table with the current counts and lifespans. The trend lines for the metrics
in the graph are updated to chart the data points for the metrics at the refresh time.

You should repeat this step as your application continues to run, so you can see what happens to
the allocated objects over time.

If you want to run your experiment again, select the Clear Allocation Information menu option to
clear the table and graph of all of the objects and metrics currently displayed, and begin this
process again from the second step.

How to Enable Memory Analysis

This task describes how to enable memory analysis. By default, the Memory Analysis tab is disabled.

To enable advance memory analysis and display the Heap Walker views:

1.

Use the

-agentpath:<agent_install_directory>/lib/<platform_dir>/jvmti.dll parameter in the application
startup script. Replace jvmti.dll with the appropriate library name if you run the probe on a non-
Windows system.

2. Open the Java Diagnostics Profiler for the application, and click the Memory Analysis tab.

HPE Diagnostics (9.26) Page 268 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

3. Click the icon to take a heap snapshot and open the first Heap Walker view.

You hawve not vek taken a heap snapshot.,

lick. ﬁs ko take one now,

Note: You cannot use Heap Walker when running your application with HotSpot 5.0 JVM with
CMS enabled (the -XX:+UseConcMarkSweepGC option). Remove this option from the Java
command if you plan to use Heap Walker.

When both the -server and the -Xgc:parallel options are selected, some versions of JRockit 5.0 JVM
demonstrate instability. In some configurations, both options are selected by default. In such cases,
specify the -client or the -Xgc:gencon option to override the default. This is a known BEA issue
(CR334327) and should be resolved in future of releases of JRockit.

HPE Diagnostics (9.26) Page 269 of 305

Java Agent Guide

Chapter 15: Diagnostics Profiler for Java

Summary Tab Description

The Summary tab consists of graphs that display information about the memory in use and reserved by
your application, the load for each layer of your application and the slowest requests made to your

application server.

The following is an example of the Java Profiler Summary Tab display.

This chart shows the amourt of
memory in-use and reserved by
your application.

You can also dril into the contents
of the heap

Sample every | 3 seconds | ¥ |

This chart shows a breakdown of
the load for each layer of your
application.

Howver the mouse over a layer to
see its name.

This chart shows the requests
(the top level of instrumentation,
often the web tier) that are taking
the longest time to complete.

Click a bar to examine a call
profie, or view all server
regquests.

Profiling Since: Wed Mov 03 10:28:13 AMPDT 2010
[summary || 5 Hotspots | B8 Metrics | Threads | [o methoos | (@ ansol | 8 colection Lesks || & colections * 7
2861 MB
2384 MB
> 1907 MB
g 1431MB
= o54MB
) 47.7 MB
0B
10:29 10:30 103
a Used memory © Total memory
0.3
=
g 02 -
= ! ! !
: 0.1 i i i
= - \ : i
o - - —_—
10:28 10:28 10:30 103
fphysician/medicalrecord.
do
2]
E Iphysician/searchresults.
= do
=
&
b Iphysicianirecord do
L]
=z
i=l MedRecWebServices:
3‘ getRecordsSummary
0ms 50 ms 100 ms
Mean Latency
To access In the Java Diagnostics Profiler, select the Summary tab.
Important If the message 'Profiling not in progress' is displayed, select the Begin Profiling
information link in the upper left corner.

Relevant tasks

HPE Diagnostics (9.26)

"How to Access the Java Diagnostics Profiler" on page 264

Page 270 of 305

Java Agent Guide

Chapter 15: Diagnostics Profiler for Java

The following user interface elements are included:

Ul Element

Memory
Graph

Load
Graph

Slowest
Requests
Graph

Information
Pane

Description

The Memory graph shows the amount of memory allocated in your application and the
amount of memory (JVM heap size) reserved by your application.

You can see more details about the exact amount of allocated memory or reserved
memory in your application, by holding your pointer over various points on the graph to
view the tooltip.

The Load graph shows the breakdown of the load for each layer of your application.

The performance metrics for classes and methods are grouped into layers based upon
the resources that the application invokes to perform the processing. The Java
Diagnostics Profiler displays the layers on one level and does not split them into
sublayers.

You can see the name of each layer by holding your pointer over various points on the
graph to view the tooltip.

To view alegend of the graph that displays the names of all the layers, click Show
Legend.

The Slowest Request graph shows the server requests that are taking the longest
time to complete.

To view the aggregated call profile for a server request in the Slowest Request graph,
click the bar for the server request. For more information about the call profile window,
see "Analyzing Performance Using the Call Profile Window" on page 250.

The information pane at the bottom of the window displays the following information:
« The date and time of the last time you refreshed the Profiler data.

« The probe ID.

HPE Diagnostics (9.26) Page 271 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Hotspots Tab Description

The Hotspots tab displays bar charts of the significant metrics that have been captured during the
monitoring of your application.

The following is an example of the Java Profiler Hotspots Tab display.

Profiing Since: Wed MNov 03 09:14:22 AMPDT 2010

5 summary || 5 Hotspots || B8 Metrics | & Threads || anmethods || a1 5ol || & collection Lesks | 8 colections. * ™
WeStub invoke!) This chart shows the total
@ exclusive latency for the methods
E RecordSessionEJB. whose cummulative latency for all
ﬁ getRecords() of the calls to the method is the
= [st
e RecordSessionEJB. —
toR dWDA
g S S Click the bar in the chart for a
u_?: PhysicianSessionEJE. method to see its call profile.
I getMedRecWebService... Select the All Methods tah to
i 0 rlns ™ '40 < 3m 20s =m review the performance of al
. captured methods.
Total exclusive latency
MedRecW\ebServices:: This chart shows the total
LR e Rl exclusive CPU time for the
2] iphysicianisearchresuits. | methods whose cummulative CPU
E_ do time for all of the calls to the
[.
ethod is the | st
E Iphysicianimedicalrecord. | et R L
d
E ° Click the bar in the chart for a
[¥] N
i Iphysicianiogin do | method to see its call profile.
la Select the All Methods tab to
Oms 20 s 40 s m 1m 20s review the performance of all
A X captured methods.
Total exclusive CPU time
SELECT WLOig WL,
date_prescribed |W...
IEE IR This chart shows the total
5 record date W:.nl ot execution time for the SGL
; - ' s statements that took the most time
@ SELECT COUNT [*) AS to execute.
E rowcount FR...
a .
~ SELECT COUNT { *) FROM Select the All SGL tab to review
SYSTABLES the performance of all SGL
[H statements.
Oms S0ms 100 ms 150 ms 200 ms
Mean Latency
To access In the Java Diagnostics Profiler, select the Hotspots tab.

HPE Diagnostics (9.26) Page 272 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Important

You can view the details for a graphed metric by holding your pointer over the bar

information for the metric and viewing the tooltip.

Relevant tasks = "How to Access the Java Diagnostics Profiler" on page 264

The following user interface elements are included:

Ul
Element

Slowest
Methods
Graph

CPU
Hotspots
Graph

Slowest
SQL
Graph

Description

This chart shows the method calls that are taking the most time exclusively in that
method. To view the call profile for a selected method call in the Slowest Methods graph,
click the bar for the method. For more information about the call profile window, see
"Analyzing Performance Using the Call Profile Window" on page 250.

If the method is part of more than one server request, when you double-click the method,
the following dialog box opens and asks you to select the particular server request for
which you want to see the call profile.

Double-click the appropriate server request row to view the call profile.

This chart shows the methods that are using the most CPU.

To view the call profile for a particular method, click the bar for the method. For more
information about the call profile window, see "Analyzing Performance Using the Call
Profile Window" on page 250

This chart shows the SQL statements that are taking the most time.

To view the SQL statement details for a particular statement in the Slowest SQL graph,
click the bar for the SQL statement to select it. For more information about SQL
statement details, see "Analyzing Performance Using the Call Profile Window" on page
250.

HPE Diagnostics (9.26) Page 273 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Metrics Tab Description

The Metrics tab displays information about the Operating System, the JVM and the application server.

The following is an example of the Java Profiler Metrics Tab display.

Profiing Since: Wed Moy 03 11:06:07 AM PDT 2010

%% Summary || 5 Hotspots | (BB Metries || b Threads |5 40 Methods || &1 5oL || % Collection Leaks || % collections |3 F 7

E-System -

ystem = VM Heap Free
isk 1526
etwork
Eatill 1431
E-Probe
EI—HeapFree 1335
in: 28,117 632
Exax: 168,870,304 124
Average: 98 552,
[FHeapTaotal 114 4
FHHeaplsed
FHHeaplUsedPct = 1049

FJava Platform

lasses as 4
Threads ’
C

858
EFMercury System
nstrumentation
6.3
apture Agert
'grmbolTabIe 66.8
orrelation
—HProcesshetrics
FProbe Ele
bLogic 1
1B 477 e
xecute Dueues
e 381
JTA = 11:08:30 11:07:00 11:07:30

il []

To access Inthe Java Diagnostics Profiler, select the Metrics tab.

Important = When more than one probe is running on the same host, the System metrics only
information appear for the probe for which you opened the profiler.

If you are using the Profiler without the Diagnostics product, then to preserve memory
in the application server, metrics are only measured from the time you access the
graph. However, if the probe is connected to a Diagnostics Server, the metrics are
measured continuously, regardless of whether you have accessed the graph.

Relevant "How to Access the Java Diagnostics Profiler" on page 264
tasks

HPE Diagnostics (9.26) Page 274 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

The following user interface elements are included:

ul

Element Description

Tree Displays the metrics in an expandable tree.
Pane

The top three levels displayed in the tree are:
System. Metrics about the Operating System
JVM. Metrics about the JVM

<application server>. Metrics about the application server. Depending on the
environment, the application servers that will be displayed are WebLogic, WebSphere, or
SAP.

When you expand each of the top levels, the tree displays the associated metrics for
each top level. As you further expand each metric, you arrive at a minimum, a maximum
and an average numerical value for each metric.

Graph Displays a graph of the metrics selected from the tree pane.

Pane
When you click a specific metric in the tree, the graph pane displays a graph representing

the selected metric. You can select more than one metric to display in the graph pane
using the Control or Shift keys.

The x-axis in the graph represents time. The y-axis in the graph represents the numerical
value of the metric. Metrics are displayed for the last five minutes unless the probe is
working with another HP Software product, in which case they are displayed for three
hours.

HPE Diagnostics (9.26) Page 275 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Threads Tab Description

The Threads tab displays thread performance metrics for the Java threads that are captured by the
probe and provides a way for you to capture stack traces for the captured threads. There is also a
thread state analyzer that displays approximate thread state distribution percentage for each thread.

This page can be useful for helping to diagnose the following situations:
« Incorrect thread pooling or attempting to do too much in a single thread.
« Performance problems caused by deadlocks or concurrency-related issues.

« Problems that go deep into the interactions with the OS kernel where you need to see the CPU time
broken into user and kernel times.

HPE Diagnostics (9.26) Page 276 of 305

Java Agent Guide

Chapter 15: Diagnostics Profiler for Java

The following is an example of the Java Profiler Threads Tab display.

2 Diagnostics

Profiling Since: Wed Feb 08 02:32:23 PM PST 2012

8 summary | [£] Hotspots | Bl Metrics” 3 Threads | [41 Methods | [415aL | & Colection Leaks | i Colections | 4 + &

O Automatically, Every: seconds

History Length: m

Stack Trace Depth:

State Analyzer

J Chart Stack Trace:

18 s

14 5}
1254
10 s53-
85
65"
45

Total CPU Time {ms)

257

0_....:

14:34 14:35 1436 1437 1438 1439 1440 14410 1442 1443 1444 1445 1446 1447

@ (UM Periodic Task] =B Metrics Collection

B~ [ACTIVE] ExecuteThread: "' for queue: 'weblogic.kemel.Default (self-tuning}

Chart Difference in:

Total CPU Time (ms) ¥ |

RHTTP downloader (general)
RHTTP downloader (general)
[STANDBY] ExecuteThread: ..

Waitir
Waitir
. 'Waitir

To access

Important
information

Relevant
tasks

HPE Diagnostics (9.26

)

Pool Szavengerd

Rahge SocketListener-1

RHTTP downlosder (general)
RHTTP downlosder (general)
RHTTP downlosder (general)
RHTTP downlosder (general)

server startup @ 2

RHTTP Clienit £ 02_W2k3 25000

Kernel UEEI"T‘imE Lock Cwner Waited Blocked
Thread Name Thread State Lock Name Lock Cwner Id

Time [ms) irms) Mame Time (... | Time ...
(WM Periodic Task) Unlcniown 67,... (57 %) 7@1, [F7%) 0 [2%) 0 0%) A|
Metrics Collection Waitin) | cChart | Stack Traces || State Analyzer |
[ACTIVE] Execute Thread: '1"... | Waitin RPN = | e oo ovoa2]
(Code Optimization Thread 1) Unknc ication Service Dispatcer . 2o ounde er.._ffer javar192
[ACTIVE] ExscuteThread: '0"... Waiting |P=896150:0=0:CT w WrsServerimplm._.Impl_java:48
Main Thread Waitir

PoolScavenger._._nger java:1s

InfreguentEven.__uler java 742

5 hronousCh__}

Sourt

¥

5 hronousCh__}

Sourt

¥

Pooled Executo. khown Source)
Pooled Executo. . khown Source)

BoundedBuffer__._ffer java:192
-

Thread count: 89

- Deadloclked
I siocked

Punning

[Jw

PRG35 PRESE PAE3S PAESE PMEST PM
Sleeping

l:l Waiting

In the Java Diagnostics Profiler, select the Threads tab.

"How to Access the Java Diagnostics Profiler" on page 264

l:l Unknown
l:l Starwing

The Threads tab is automatically disabled by Diagnostics when it detects that the
JRE used to run the application has stability issues.

Page 277 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

The following user interface elements are included:

ul
Element Description

Controls Used to control how often the thread metrics are updated, maximum stack trace depth
for each thread, and what kind of data is displayed for the thread processing in your
application.

When the Threads tab is updated, the information displayed on the tab is refreshed with
the latest thread metrics. You control how often the Profiler updates the thread metrics
on the Threads tab.

Update button. Select the Update button and the Profiler refreshes the information in
the graph and the thread table and captures stack traces.

Automatically, Every (Thread Metric Update Frequency). Check this box to tumn
automatic updates on. Select the update interval from the spinner. The Profiler
immediately begins refreshing the thread metrics displayed in this tab based on the
update interval specified.

Whenever the Profiler updates the Threads tab display, stack traces are captured for
each of the threads listed in the thread table. You can control how many stack traces for
each thread are displayed in the stack trace history.

History Length. Select the number of samples to keep and display.

Stack Trace Depth. Select the maximum stack trace depth collected for each sample
for each thread.

Export to PDF. You can export data in the Threads tab using the PDF icon on the
Profiler toolbar in the right corner near the Help link.

HPE Diagnostics (9.26) Page 278 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Ul
Element

Chart
Tab

Thread
Table

Description

Charts the metric for the selected threads. You may chart the metrics for one or more of
the threads listed in the threads table and you can select the metric that is to be charted
for each thread.

Select a thread in the thread table to have it's metric graphed in the chart. Diagnostics
removes the metrics for any previously charted threads from the graph and charts the
metric for the selected thread. The graph legend is updated to indicate the color with
which the selected thread's metrics were charted.

To chart additional threads in the graph along with any that you have already charted,
select additional threads in the thread table.

To select each additional thread one at a time, select each row in the thread table using
Ctrl-Click. To select arange of threads, select the row in the thread table using Shift-
Click. Diagnostics charts the metrics for the selected thread along with the metrics for
all of the threads in the thread table that are between the selected threads and the newly
selected thread. The graph legend is updated to indicate the colors with which the
selected threads metrics were charted.

To remove the metrics from the chart for selected threads, use Ctrl-Click to select the
row in the thread table that contains the thread whose metrics you'd like to remove from
the chart.

Chart difference in. To select a metric to be charted for each thread, select the metric
from the drop down menu. Diagnostics updates the graph to chart the indicated metric for
each of the threads selected in the thread table.

The table shown below the chart lists the metrics for each thread.

The following columns are displayed:

Thread Name. The name of the captured thread.

Thread State. The state of the thread at the last thread metric update interval.

Kernel Time (ms). The portion of the CPU time during which the thread was executing
in kernel mode.

User Time (ms). The portion of the CPU time during which the thread was executing in
user mode.

The following data comes from the JVM: Lock Name, Lock Owner Name, Lock Owner
Id.

The table can also include columns for Waited Time and Blocked Time metrics if you
enable them. To enable these metrics, set the
threads.contention.monitoring.enabled property to true in the <agent_install_
directory>/etc/probe.properties file. This setting may cause instability for some older
JVMs.

HPE Diagnostics (9.26) Page 279 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Ul

Element Description

Stack Stack traces for the threads selected in the threads table are displayed when you have
Traces indicated that you want thread stack traces captured.

Tab

The Stack Traces tab display is divided into two areas:

Captured Stack Traces. List contains a list of the times when stack trace captures
occurred.

Stack Trace Details. Displays the stack traces that you indicated based on your
selections from the stack trace capture list, the scope selection drop down, and the
thread table.

The Stack Trace Details for drop down allows you to control which thread's stack
traces the Profiler displays in the Stack Trace details area.

When you select All Threads, the stack traces for all threads are displayed in the stack
trace details area. The selections made in the threads table do not impact the stack
traces that are displayed in the stack trace details area when All Threads is selected.

When you select Selected Threads, the stack traces displayed in the stack trace
details area are limited to those for the threads that you select in the threads table in the
Chart tab.

HPE Diagnostics (9.26) Page 280 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

ul
Element Description

State The State Analyzer displays approximate thread state distribution percentage for each
Analyzer thread, over the specified time period. Each thread is represented by a single row.

The left panel provides the thread name. The center panel provides the thread state data.
The total height of the colored bar represents 100%. If a thread has been in more than
one state during the observation period, multiple colors are used to display the
corresponding states, proportional to the time spent in those states. For automatic
updates, the observation period is the same as the configured refresh period.

The right panel displays the current method name, with line number, if available. If the
stack traces collected for the thread over the observation period are all the same, the
method name is displayed using a bold font. If different stack traces were observed, the
displayed method is the topmost common method for the collected stack traces, and its
display uses a regular font. If no such common method could be found, nothing is
displayed.

The following thread states are presented by the Thread State Analyzer:
Deadlocked. The thread participates in a deadlock cycle.

Blocked. The thread is delayed (suspended) when trying to enter a Java monitor. This
can happen when the thread tries to invoke a synchronized method, enter a
synchronized block, or re-enter the Java monitor after being awaken from the waiting
state, while another thread has not left the Java monitor yet.

Running. The thread is actively consuming CPU time.

1/0. The thread is performing an I/O operation. It does not use any CPU time. The notion
of I/0 covers not only the traditional operations on files or sockets, but also covers any
multimedia or graphics operations. In general, the thread is waiting for an external (out-of-
process) event.

Sleeping. The thread is delayed after invoking the Thread.sleep() method.

Waiting. The thread is delayed, usually having executed Object.wait(). However,
threads can get into this state by other means. In general, the thread is waiting for an
internal (in-process) event.

Starving. The thread is runnable, it is not suspended by any 1/0, wait(), sleep() or Java
monitor operation, but is not running. This can be caused by insufficient number of CPUs
available, Garbage Collection pauses, excessive paging, or by a virtual machine guest
OS experiencing a shortage of resources.

Unknown. The Diagnostics Agent was unable to determine the state of the thread. The
threads that do not run Java code at all (GC, JIT) will always be in this state.

If your application uses native (JNI) methods for some of the I/O operations, you should
add them to the known.native.methods.io property in probe.properties so the Thread
State Analyzer can correctly assign the I/O state to them. Otherwise the time spent in
such methods will be identified as starvation.

HPE Diagnostics (9.26) Page 281 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

All Methods Tab Description

The All Methods tab lists the method calls that your application makes according to the instrumentation
in the auto_detect points file.

The following is an example of the Java Profiler All Methods Tab display.

4 HP Diagnostics - Diagnostics Profiler . .. : — E]@
E2 Diagnostics ¥ >
Profiing Since: Mon Feb 13112559 AM PST 2012 | |
3 summary [=] Hotspots rﬁ Metrics” [] All Methods | [a1 5aL | @y Collection Leaks | (Colections | 4 Exceptions | P serve 4 P B
| Q- | Group Method calls by |Package ||
Method Name |Tutal tiil:e(ms) | Ayg time (ms) | Count |Exceptions |Tuta| CPU(ms)| Avg CPU(ms) | Layer
weblogic jms .client 540,613 11,2628 48 0 0.0 0.0 | Messaging/JMS/Cons...
JMSConsumer receive() 540,509 27,0254 20 0 0.0 Messaging/JMSiCons...
WLConsumerlmplreceive() 103 45 23 0 0.0 0.0 | Messaging/JMS/Cons...
WLCaonsumerlmplreceiveMNo. .. 1 02 5 0 0.0 00 Messaging/JMS/Cons...
weblogic wsee ws 214 143 18 0 00 CrossVM
L MarmalLoanApproval Service::.. 214 143 18 1] 0.0 CrossVM
weblogic jndi.irternal 66 03 23 0 0.0 0.0 | CrossVM
com.pointbase.net 44 44 10 0 0.0 0.0 Database/JDBC/Conn...
weblogic serviet 29 02 136 0 00 Web TieriServlet
com.bea.wli.monitoring statistics.... 23 14 12 0 156 1.3 CrossVM
com.bea.wl.reporting jmsprovider... 14 28 5 0 156 31 Messaging/JMS/Listener
weblogic wsee server.serviet 13 0a 15 0 0.0 Web TieriServlet
weblogic jdbe wrapper 12 0.8 15 0 156 1.0 | DatabasefJDBC/Exec...
normal.cliert 1 0.1 15 0 0.0 Cross\VM
weblogic wsee ws dispatch.server 1 0.1 15 0 0.0 | Web Services

Double-click a method to view that method in Aggregate Call Profileis). Alltimes shown are exclusive (not including time spent in profiled children)

Last refresh: Mon Feb 13 11:36:37 PST 2012 '0 Probe 1ID: WLS92_aqualogic_ovimtt 27_W2k3

To access In the Java Diagnostics Profiler, select the All Methods tab.

Important All CPU times shown are exclusive (not including time spent in profiled children).

inf tion
thformati All of the metrics in the All Methods tab are counted from the time you enter the

system or click the Reset button in the toolbar of the profiler.

Relevant "How to Access the Java Diagnostics Profiler" on page 264
tasks

HPE Diagnostics (9.26) Page 282 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

The following user interface elements are included:
Ul
Element Description

Grouping | The Group Method calls by drop down menu allows you to view methods in the table
grouped by their package (as in the example), layer or outbound call type. Or no grouping
at all.

Filtering = The quick filter box has many options for filtering the table contents, for example on
Method Name.

HPE Diagnostics (9.26) Page 283 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

ul
Element Description

Table The table displays information about the methods.

The table is highly customizable. Right-click any column to show or hide columns and
auto-resize the columns. You can also drag and drop columns to display them in a
different order.

The All Methods tab displays a table that contains the following columns, displayed by
default:

Method name. The names of the methods that were called. The Method name has the
following syntax: <package name>.<class name>.<method name>.

Total Time. The aggregate latency for all of the calls to the method. The total latency is
shown in milliseconds.

Avg Time. The average latency for all of the calls to the method. The average latency is
shown in milliseconds.

Count. The number of times that the method was invoked.

Exceptions. The number of times that the method generated an exception.

Total CPU. The total amount of CPU time that all invocations of the listed method used.
Avg CPU. The CPU time that the method used during an average invocation.

If CPU time metrics are not being displayed, CPU Timestamp collection for methods can
be configured. See "Configuring Collection of CPU Time Metrics" on page 201.

Layer. The Layer associated with this method according to the instrumentation in the
auto_detect points file. The layers are displayed on one level and there is no distinction
made between layers and sub-layers.

To view the call profile for a method call, double-click the appropriate row. For more
information about the call profile see "Analyzing Performance Using the Call Profile
Window" on page 250.

If the method is part of more than one server request, when you double-click the method,
a dialog box opens for you to select the relevant server request.

To create call profiles from more than one server requests select the first server request
with a single click and select subsequent server request using control click. When you
have finished making your selections, click OK to instruct the Profiler to create the call
profiles. The call profile for each selected server request is displayed in a separate
window.

HPE Diagnostics (9.26) Page 284 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

All SQL Tab Description

The All SQL tab displays the SQL statements in a table.

The following is an example of the Java Profiler All SQL Tab display.

[Diagnostics

Profiling Since: Mon Apr 12 03:16:26 PM PDT 2010
{2 Summary £ Hotspots BB letrics 3 Threads =l AllMsthods All SGL Colle 1k~
sgL |Teta| tim... | Avg time[... | Court |Exceptior15|
SELECT COUNT { *) AS rowcourt FROM medrec_user WHERE status = 7 1.0 1.0 1 0
Last refresh: Man Apr 12 03:16:32 PRT 2010 0 Frobe ID: WLS9Z2_MedRec_OWRESHZ-WVM3_W2k3
To access In the Java Diagnostics Profiler, select the All SQL tab.
Relevant tasks "How to Access the Java Diagnostics Profiler" on page 264

The following user interface elements are included:

ul
Element Description

Table The All SQL tab displays the SQL Statement table, which contains the following
columns.

SQL. The name of the SQL statement that was invoked by the application server.
Total Time. The total latency of all invocations of the SQL statement.

Avg Time. The average latency of all invocations of the SQL statement.

Count. The number of times the SQL statement was invoked by the application server.
Exceptions. The number of times that the statement generated an exception.

To view the SQL statement details, double-click the relevant statement. The SQL
statement details dialog box opens, displaying all the information shown in the SQL table
for each statement.

The SQL statement details dialog box enables you to view the full string of the SQL
statement and to copy the text.

HPE Diagnostics (9.26) Page 285 of 305

Java Agent Guide

Chapter 15: Diagnostics Profiler for Java

Collection Leaks Tab Description

The Collection Leaks tab displays information on the probe's currently leaking collection objects in a
table and a chart of collection size or collection size growth.

The following is an example of the Java Profiler Collection Leaks Tab display.

Profiling Since: Mon Mov 05 02:00:52 PM PST 2012

B summary | =] Hotspots | Il Metrics | 3 Threads [[71] a Methods | [B a15aL" (il Collection Leaks | (i Cotecton 4 b &

13,284
Show Chart By | Collection Size =]
13,282
& 13280 Auto Update Leaks Data
]
T
8 13,276
8 13274
13,272
15:22 15:23 15:24 15:25
=8= java.util ArrayList
Classes Allocation Maximum Size 3 Size Growth
Collection Stack Trace Maximum 5... Size
Contained Timestamp Timestamp Rate (per ho...
java.utilArre... | comibmows... java.util ArrayLlist add(Arraylist java:379. 11221110 11BM2 32 13,284 13,284 172
java.tilarr... comibm.we... java.util ArrayLlist addifrraylist java:379... 1122111, 11/6M2 3:2... 13,284 13,284 172
java.util.Ha... | com.iby® B —_—
Collection Leak Info

Double-click a row inth

Last refresh: Mon Nowv O

Collection Clazs: java.util. HashMap

Contained Class: com.ibm.ws pmi.zerver modules J2 CModule
Collection Object Alocation Timestamp: Fri Mov 02 11:17:05 PDT 2012
Maximurn Size Timestamp: Mon Nov 05 15:24.05 PST 2012

Collection Maximum Size: 9109

Collection Size: 9109

Collection Size Growth Rate (per hour): 1180942091 6162489

Leaking Stack Trace:

java.Ltil. HashMap put (HashMap java 562)

com.ibm.gjz j2c. Connector Runtime create PmiData(Connector Runtime java:264)

com.ibm.gjz j2¢. ConnectionFactory Builder Serverimpl.create MCFand PM{ConnectionFactory Builder Serverimpl java 568)
com.ibm.gjz j2c. ConnectionFactory Builder Server impl get ConnectionFactory { ConnectionFactory Builder Server impl java:1422)
com.ibm.gjz jms.JMSManaged Connection.get Connection (JMSManaged Connection java:524)

com.ibm.gjz j2c. MCWrapper get Connection (MCWrapper java:1973)

com.ibm.gjz j2c. ConnectionManager allocate Connection(ConnectionManager java.605)

com.ibm gjz jms .JM3SQueue ConnectionFactory Handle create Queue Connection (JMS Queue Connection Factory Handle java84)
com.briztol tvizion.zamples tradeejb. kil zendJms (Lt java:g10)

com briztol tvizion samples tradeejb processor MDERequest Broker onMessage (MO BRequestBroker java: 77)

com.ibm.gjs jms liztensr. MDBWrapperk Priviiedged OnMessage run(MDEWrapper java:302)

com.ibm.ws security util Access Cortroller doPrivileged (Access Controller java:63)

com jbm.eis ims listener MDBWrapper call OnMeszaae (MDBEWrapper java:271)

To access Inthe Java Diagnostics Profiler, select the Collection Leaks tab.

Relevant "How to Access the Java Diagnostics Profiler" on page 264

tasks

HPE Diagnostics (9.26) Page 286 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Important For this feature you need to enable Collection Leak Pinpointing (CLP) instrumentation

Information by running the JRE instrumenter to pre-instrument the Java Collection classes in the
JRE your application/application server will run with; and copy the java parameter to
include them in your java options.

See also See "Custom Instrumentation for Java Applications" on page 113 and "Advanced
Java Agent and Application Server Configuration” on page 183 for more information
on configuring collection leak pinpointing and for how to enable/disable and configure
CLP reporting.

The following user interface elements are included:
Ul
Element Description

Collection When you click the row in the collections table, the graph is updated to show a trend

Leak line for the collection leak. The trend line shows either the Collection Size Growth, or

graph the Collection Size, depending on the selection you make from the Show Chart By
drop down list.

Collection The collection table lists the probe's currently flagged leak collection objects. The
Leaks collections can be sorted by various columns in the table.

Table
Check the Auto Update Leaks Data checkbox to automatically update the data display.
Click the Update Leaks Data button to update the data.

To view the collection leak details, double-click the relevant collection and a dialog box
opens with the collection leak details including stack trace information.

The Collections Table contains the following columns:
Collection. The collection type.

Classes Contained. The type of the objects contained within the collection. If there
are multiple types of objects found within the collections, the value in the table appears
as Unknown.

Stack Trace. Leak location stack trace.
Allocation Timestamp. The time at which the collection was allocated.
Maximum Size Timestamp. The time when the maximum size was captured.

Maximum Size. The maximum size of the collection ever observed by the Java agent
(in number of elements).

Size. The average size of the collection (in number of elements).

Size Growth Rate (per hour). The average growth rate for the collection, measured
over the period of time since the collection creation until now (in number of elements
per hour).

HPE Diagnostics (9.26) Page 287 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Collections Tab Description

The Java Diagnostics Profiler monitors your applications' memory usage with Lightweight Memory
Diagnostics (LWMD). LWMD monitors the memory used by your applications by tracking collection
objects.

The Collections tab shows the metrics for the collections in your application in a graph and
corresponding table. The table lists the collections, information about the allocation of the collections,
and the metrics for their growth rate and size. The graph contains the metrics charted for the collections
that you selected. The growth rate of the collections are calculated from a baseline. The Profiler
updates the baseline periodically. If you want, you can update it manually.

The following is an example of the Java Profiler Collections Tab display.

Profiling Since: Mon Apr 12 04:06:10 PM PDT 2010

ajavatil . TreeMap

& java il ArrayList

16:16:20 151840 16:17:00 161720 161740 161500 161820 161840

3 Threads ||] AlMethods || @ AISQL || & Collection Leaks || % Collections || & Exceptions || g ServerRec 1P 7
=0 This screen shows the Top M collections by size or
by growth since last baseline taken by the probe.

o The chart to the left shows the history of the size or

% 40 growth for the selected collection instances in the

] lower table. History will only ke retained whils the

g o0 profiler is running.

"

d Show Top M | By Growth Since Last Baseline| v|

-

£ 20 q I f] t i

w E E E E E E To dynamically adjust the numkber of top collections

g ; : : ; : ; tracked by probe, change the property

] 10 i : : : : : 'I'wm.diagnostics top.n' in the probes

L] ! i i ! i i etcidynamic properties file.

& . ! ! ! ! ! !

(]] ! : : . : ; Collections which show a continuous size or

growth increase may be a sign of a memary leak.

Collection

java.util. ArrayList

java.util. ArrayList

weblogic work Fai...

weblogic work Fai...

Classes Contained

Allocation Point

wehblogic.work.Th...

wehblogic.work.Th...

Allocation Timestamp

041210 16:17.56.584

041210 16:18:08.624

Last Size Increase Timest...

041210 16818135667

041210 16:18:14.940

Growth Since Last Baseline

java.util.ArrayList | weblogic work Fai... wehlogic. work.Th... 041210 161814719 041210 16:1814.742 45 45 |
java.utilArrayList | weblogic servistin... wehlogic.serviet.... 041210 161800565 041210 161815535 20 20
java.utilLArrayList | weblogic servietin... wehlogic.serviet.... 044210 16:18:03.006 041210 16:18:15.464 20 20
java.tiLArrayList | weblogic servietin... wehlogic.serviet.... 041210 16:18:04.828 041210 16:18:15.385 20 20
java.util.ArrayList | weblogic servistin... weblogic.serviet.... 041210 16:18:05.381 041210 161815315 20 20 ':l
Grawth calculation point last baselined D4/12/10 16:16:14 (automatic baselining every 1 h).

To access In the Java Diagnostics Profiler, select the Collections tab.
Important LWMD must be enabled to view data in the Collections tab and do Memory
information Analysis using the Heap Breakdown.
Relevant tasks = "How to Enable LWMD for Collections Displays" on page 265

HPE Diagnostics (9.26) Page 288 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

The following user interface elements are included:

Ul Element Description

Collections = The collection table lists the collections. The collections are sorted by either the
Table amount of growth since the last baseline, or by the size of the collection, depending
on the selection you make from the Show Top N box to the right of the graph.

Your selection from the Show Top N box controls the metrics that are charted in the
collections graph as well as the sort order of the rows in the collections tables.

When you choose By Size, the collection table is sorted in descending order by
collection size. The size metrics for the selected collections are charted in the
collections graph.

When you chose By Growth in Last Baseline, the collection table is sorted in
descending order by the amount of growth in the collection since the last baseline.
The growth metrics for the selected collections are charted in the collections graph.

The Collections Table contains the following columns:
Collection. The collection type.

Classes Contained. Thetype of the objects contained within the collection. If there
are multiple types of objects found within the collections, the value in the table
appears as Unknown.

Allocation Point. The location where the collection is allocated in the code.
Allocation Timestamp. The time at which the collection was allocated.
Last Size Increase Timestamp. The last time that a size increase was captured.

Growth Since Last Baseline. The increase or decrease in the number of objects
within the collection since the last baseline.

Size. The number of objects in the collection.

Collections = When you click the row for a collection in the collections table, the collections graph is

Graph updated to chart either the size or the growth of the collection since the last baseline,
depending on the selection you make from the Show Top N box to the right of the
graph. You may chart the metrics for more than one of the collections by selecting
subsequent rows with a CTRL-click.

HPE Diagnostics (9.26) Page 289 of 305

Java Agent Guide

Chapter 15: Diagnostics Profiler for Java

Ul Element

Baseline
Information

Description

The baseline determines the time from which the growth in the size of the collections
is measured. You can view the time that the last baseline was set at the bottom of the
Collections display.

The Profiler automatically sets a new baseline at preset periodic intervals. You can
also set a new baseline manually.

To set a new baseline manually, click Manual Baseline. The Profiler resets the
Growth Since Last Baseline metric for each collection, and refreshes the charted
metrics in the graph.

By default, a new baseline is set automatically every hour. You can change the
automatic baselining interval in the dynamic.properties file.

You do not need to stop the application server when you change the automatic
baselining interval.

You can change the automatic baselining interval in the <agent_install_
directory>\etc\dynamic.properties file. Locate the line:
Iwm.diagnostics.auto.baseline.interval=60m.

Change the time interval according to your needs as explained in the comments of the
file.

If you want to stop automatic baselining, enter 0 for the time interval.

HPE Diagnostics (9.26) Page 290 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Exceptions Tab Description

The Exceptions tab displays all the exceptions that were generated in the application server for
methods that have been instrumented.

The following is an example of the Java Profiler Exceptions Tab display.

Profiling Since: Wed Moy 03 11:14:18 AM PDT 2010

Hetspots || BB Metrics || b Threads ||[] Al Methods | (@ a1 soL || % Collection Leaks || % Collections |[& Exceptions 17 7

Doukle click on any exception to see the full stack trace.

Stack | Court |

java lang.ArithmeticException: § by zero
at com.mercury .ga.callchain.ejb CSessionBean ExceptionThrowerE(CSessionBean java: 497)
at com.mercury .ga.callchain.ejb .CSessionBean.e{CSessionBean java 319) 1

X

Exception detailz

Thrown 1 times

at com.mercury .ga.callchain.gjb . CSessionBeanfiCaller callMextMethod{CSessionBean java: 172) -
at com.mercury.ga.calchain.gjb . CSessionBeaniCaller callMethods(CSessionBean java:113)

at com.mercury.ga.callchain.ejh . CSessionBean.callMethods{CSessionBean java: 575)

at com.mercury.ga.callchain.gjb CSessionEJB_pzhedt_ECImpl callMethods(CSessionEJB_pzhedt_EOImpl java: 36
at com.mercury .ga.callchain.web CallChainServiet doGet{CallChainServiet java: 91)

at javax . serviet hitp HitpServiet service(HttpServiet java 743)

at javax. serviet hitp HitpServiet service(HttpServiet java 856)

at weblogic servlet.internal StubSecurityHelper§ServistService Action. runiStubSecurityHelper java: 225)

at weblogic servlet internal StubSecurityHelper invokeServiet{ StubSecurityHelper java: 127)

at weblogic servlet internal ServigtStublmpl executelServietStublmpl java: 272)

at weblogic serviet internal ServigtStublmpl execute ServietStublmpl java: 165)

at weblogic servlet internal WebAppServietContextiServietinvocationAction. runiWebAppServietContext java: 31
at weblogic security aclinternal AuthenticatedSubject doAs{ AuthenticatedSubject java 321)

at weblogic security service SecurityManager runds(SecurityManager java:121)

at weblogic servlet internal WebAppServietContext securedExecuteWebAppServietContext java: 1973)

at weblogic serviet.internal WebAppServietContext execute(WebAppServietContext java: 1880)

at weblogic servlet.internal ServigtRequestimpl.run{ServietRequestimpl java: 1310)

at weblogic work ExecuteThread execute(ExecuteThread java: 207)

at weblogic work ExecuteThread run(ExecuteThread java:179)

4 I} F

Reminder: The exceptions reported are only for those methods which have been instrumented.
If a non-instrumented method throws an exception which was caught and handled, that exception will nat be reported.

To access In the Java Diagnostics Profiler, select the Exceptions tab.
Important If a non-instrumented method throws an exception which was caught and handled,
information that exception will not be reported.

Relevant tasks = "How to Access the Java Diagnostics Profiler" on page 264

HPE Diagnostics (9.26) Page 291 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

The following user interface elements are included:

ul
Element Description

Table The Exceptions tab displays the Exceptions table which contains the following columns:
Stack. Shows the first three lines of the exception stack trace.
Count. The number of times the exception was generated.

To see the full stack trace of the exception, double-click the row containing the exception
to open the Exception dialog box.

HPE Diagnostics (9.26) Page 292 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Server Requests Tab Description

The Server Requests tab displays information about the server requests made to the application
server.

The following is an example of the Java Profiler Server Requests Tab display.

Profiling Since: Mon Apr 12 03:16:26 PM PDT 2010
H All SQL 5 Collection Leaks 5 Collectionz 4, Exceptionz ['Et-. Server Requests] @ web k7
Fiter by Server Reguest Type
Server Reguest | Total time(ms) | Aorg ti me(ms) | Court | Aarg CPUIms)
Iphysician/medicalrecord do 42359285 33,8874 125 208
MedRecWebServices:: getRecordsSummary 42188168 33,7505 125 16,2609
Iphysician/searchresults do 352402 2820 125 o912
Background - Database 14 764 3 ki) 3,989 oo
MedRecWebServices: findPatiertByLastNameWild 53640 G669 125 168
Iphysicianiogin.do 23371 9.4 248 47
fws_medrecMedRec\WebServices 7633 6.1 125 49
Inhysician/search.do 6418 0.2 124 04
Static Content 6212 0.6 992 0.3
fws_phys/PhysicianWebServices 4298 34 125 28
Background - Directary Service 3557 0.5 G684 0.0
RmiDataSource getConnection() 33485 035 God 04
Static Content 2426 0.3 744 0z
BasicMaminghMode lookup() 1930 0.3 EE4 0.0
Select a row to view the worst instances for that Server Request, or Double-click a row to view the Aggregate Call Profile for that Server ...

To access In the Java Diagnostics Profiler, select the Server Requests tab.

Relevant tasks "How to Access the Java Diagnostics Profiler" on page 264

HPE Diagnostics (9.26) Page 293 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

The following user interface elements are included:

ul
Element Description

Table The server request table at the top of the display lists the aggregated performance
(Server information for all instances of the server requests.
Requests)

When you select a server request in this table by clicking the row, a table at the bottom
of the tab is populated with the three server request instances that have the worst total
time.

When you double-click a server request in this table, the Profiler displays the call profile
for the selected aggregated server request in a new window. For more information
about the call profile window, see "Analyzing Performance Using the Call Profile
Window" on page 250.

The aggregated Server Requests table contains the following columns:

Server Request. The URI or the root method for the server request. The URI
parameters are trimmed. To break down server requests according to URI parameters,
contact HP support.

Total Time. The total latency of all invocations of the server request.
Average Time. The Average latency of all invocations of the server request.
Count. The number of times this server request was invoked.

Avg CPU. The CPU time that the method used during an average invocation.

If CPU time metrics are not being displayed, CPU Timestamp collection for methods
can be configured. See "Configuring Collection of CPU Time Metrics" on page 201 for
details.

Layer. Displays thelayer for server requests that were invoked by root methods that
are not part of an HTTP request. HTTP server requests do not have a layer.

Table When you click a server request, the bottom section of the window displays a table
(Slowest = containing the three slowest instances of the server request.
Instances)

The table contains the following columns:

Server Request. The name of the server request.

Start Timestamp. Point in time when the server request instance was invoked.
End Timestamp. Point in time when the server request ended.

Total Time. Total amount of time the server request took to execute.

Threw Exception. Indicates whether or not an exception was thrown during the
processing of this server request instance.

To view the instance call profile for an instance of a server request, double-click a
server request instance. For more information about the call profile see "Analyzing
Performance Using the Call Profile Window" on page 250.

HPE Diagnostics (9.26) Page 294 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Web Services Tab Description

The Web Services tab contains graphs displaying the slowest Web service operations (inbound Web
service calls) received and processed in your monitored environment and the slowest outbound Web
service calls made from within your monitored environment.

The following is an example of the Java Profiler Web Services Tab display.

Profiling Since: Wed Mov 03 10:28:13 AM PDT 2010
ons 'ﬂu Server Requests Web Services Mllocation/LifeCycls Anakysiz || (3 Memory Analysis Configuration 1

Mean Latency

w0
',E MedRec\WehServices::

E getRecordsSummary

ﬁ This chart shows Web Service

E MedﬁecWabSer\rices:: operations that are taking the

E fincPatientByLasthame\ild longest time to complete.

2 _ _

= MedRec\WehServices:: Click a bar to display a call profile,
5 getRecord or view all web service reguests.

3 . :

% 0ms 20 ms 40ms &0 ms
s}

WisStub invoke()

This chart shows the invecations
of outhoundiconsumer Wekb
Service operations that are taking
WsStub invoke() the most time.

Click a bar to display a call profile
from that outboundiconsumer
Web Service call, or view all
outboundiconsumer Web Service
calls.

WaStub invoke()

0ms 20ms 40 ms G0 ms 80 ms 100 ms
Mean Exclusive Latency

Slowest Outbound/Consumer Web Service Calls

To access In the Java Diagnostics Profiler, select the Web Services tab.
Important Web service operations and calls are displayed in the graphs, in the following
information format:

<Web-service-name>::<operation-name>.
For example, MedRecWebServices::getRecordsSummary.

Relevant tasks "How to Access the Java Diagnostics Profiler" on page 264

HPE Diagnostics (9.26) Page 295 of 305

Java Agent Guide

Chapter 15: Diagnostics Profiler for Java

The following user interface elements are included:

Ul Element

Slowest Web Service
Operations Graph

Slowest
Outbound/Consumer
Web Service Calls
Graph

HPE Diagnostics (9.26)

Description

The Slowest Web Service Operations graph displays the slowest Web
service operations (inbound Web service calls) received and processed in
your monitored environment.

The Java Diagnostics Profiler displays Web service operations as a type
of server request.

You can view the call profile for a Web service operation displayed in the
graph, by clicking the bar representing the relevant Web service operation.
For more information about the call profile window, see "Analyzing
Performance Using the Call Profile Window" on page 250.

You can view a list of all the Web service operations in the Server
Requests tab, by clicking the view all web service requests link to the
right of the graph. For more information about the Server Requests tab, see
"Server Requests Tab Description" on page 293.

The Slowest Outbound/Consumer Web Service Calls graph displays the
slowest outbound/consumer Web service calls made from within your
monitored environment.

The Java Diagnostics Profiler displays outbound Web service calls as
remote calls within a server request.

You can view the call profile for the server request containing a particular
outbound Web service call displayed in the graph. To view the call profile,
click the bar representing the relevant Web service call. For more
information about the call profile window, see "Analyzing Performance
Using the Call Profile Window" on page 250.

If the remote call is part of more than one server request, when you double-
click the method, a dialog box opens and asks you to select the relevant
server request. Double-click the appropriate server request row to view the
call profile.

You can view all the outbound Web service calls in the All Methods tab, by
clicking the view all outbound Web service calls link to the right of the
graph. For more information about the All Methods tab, see "All Methods
Tab Description" on page 282.

Page 296 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Allocation/LifeCycle Analysis Tab Description

The Allocation/Lifecycle Analysis tab shows the metrics for the objects that have been allocated by
your application in a graph and a corresponding table. The table lists the allocated objects, along with
the number of allocated instances and their lifespan. The graph contains the charted metrics for the
selected allocated objects.

The Allocation/Lifecycle Analysis tab can be used for:

« Allocation Analysis. Use the information displayed to investigate a memory leak that you have
observed in the Heap Breakdown tab by examining the allocation and de-allocation of objects while
the leak is happening.

« Lifecycle Analysis. Use the information displayed to monitor object lifecycles. This feature can be
used for resource monitoring of certain database resources.

To analyze allocations, you must use the controls in the Common Tasks menu to track allocations and
refresh the displayed metrics as you exercise the application functionality that you believe may be
experiencing leaks.

The following is an example of the Java Profiler Allocation/LifeCycle Analysis Tab display.

on - EE-S i Crsecaorn b Emcmctors % Sevve Someem| 4N W Sevom [T Ascomton seCon At (O Memory sraven || (] Comtiourmen Ll |

G, -
Pra o o " | a8
Cumiom Pl w_perigid 11HIA
4 P
Comrorars Tass:
T T—
D) ot e s et
) P et v mance
Sarvmatona g
[P
2 il v Laten 21
Erd (T [e
2= B R .
[T i AT e re & By Ve Cubours Calt 3
- Dmgct Acties Lisnpen .
P T
] Erctastes Totw T
- tnancy Pabies Tanded 66 4% =
. Ay st vt 184
1#ares e 12 e W 13 0 1 e S
Tos 3QT08 Dea BOTOD Tes AMUTOE Tow 800000 Tep WOOTEOD Tow SMGTES Des WOATDQ Rl WA
L =1 L !
= T
Ohjmid Clare Ohjeiis Crn, =1 | Chjraly Albraud | Ohjuids Craian s P i
ha | Gl gl L
| B e Faind of AlbpreSan | Aiven {Tade] ﬂﬁu Taini] . Polasies Total TR TR 1]
[o poroar el rel DS Prrped 15 - s] [ey Lot tiaee U050, Mg, 1
T — T 1481 ®20 um FIT S wRR1 N
¥ g o AD TR IR a5 N nm T e e ot e e i T
- Y ———— ™ H 3.4 T . 15 Mo [r— s
FRE e — s b iR T iin L i e
L i Pl P I » 1 f - A I Al el :H P ':I
R —— * s e s i <
o 3 -
el OB 1 u
e pribare KBt » b 2an Agits Curreelty M =zoey —
o poirfbae ek ref DB rpared Sl 1914 w
m poiribare. rd rd U8 e Sk T M o LI Vil
gt Cralios st
et e Aigpes PociCormecto 5 C O] LT e) e]
i poarTtsa et ret OB Prrgared i i e sy
SR G et Py gt ST " tan greits LDyl = Aqphosion Gervw Peteee LI _WLIH)_biscRe:_svpid_1
P ——— 3 i 104 w3 Dhects Chteed Ttal #8354 P
e 1 po e e e % 3 1o B0 w| Com polniiuass e et 0 BE R panes el ks ot o
it bt Tos 07 60 PO B0k 1D Pt B L, WA M g T ety Lnsded [Beg) LE &
| Sl e wem ¥ st e W 1,508.5. Ehea e 148 Ty [[= || Ly L1 e _esrhedd 1131

To access Inthe Java Diagnostics Profiler, select the Allocation/LifeCycle Analysis tab.

HPE Diagnostics (9.26) Page 297 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Important

The Allocation/Lifecycle Analysis tab is similar to the views with a detail layout in the

information Diagnostics views. Instead of appearing in the view title, the view filters appear in

Relevant
tasks

view filter menus, along the side of the graph. The Common Tasks menu controls the
tracking of the allocations as well as the refreshing of the information that is displayed
for the entire view.

Allocation capture must be enabled to view allocation data. See "How to Enable
Allocation Capture" on page 266.

Object lifecycle monitoring must be enabled to view object lifecycle data. See "How
to Enable Object Lifecycle Monitoring" on page 267.

The following user interface elements are included:

Ul
Element

Object
Table

Graph

Description

The object table lists the objects that have been allocated since you started tracking
allocations. You can customize this table to adjust the sort order and the columns that
appear in the table, just like the graph-entity tables in other views with the detail layout.
By default, the table is sorted in order by Objects Currently Alive. It displays the following
columns:

Chart. Allows you to indicate if the metrics for the allocated object are to be charted in the
graph. You can select objects to be charted by clicking on the box in this column
manually. Or you can let the Profiler select the objects to chart dynamically, using the
criteria that you specify in the Graph filter.

Color. Indicates the color that the Profiler uses to chart the metrics for the allocated
object. No color is shown for metrics that are not charted.

Objects Currently Alive. A count of the total number of allocated objects that have not
yet been garbage collected.

Objects Allocated. A count of the total number of objects that have been allocated
whether they have been garbage collected or not.

Objects Deallocated. A count of the total number of objects that have been garbage
collected.

Object Lifespan. The average duration of the life of all de-allocated objects. If no objects
have been de-allocated, this column is blank.

In the Details pane, metrics for Objects Lifecycle and Object Active Lifespan are also
available. See "Object Lifecycle Monitoring" on page 258 for more information.

The graph charts the metrics that you selected from the details table for each of the
objects selected in the allocation/lifecycle analysis table.

Using the controls in the views with a detail layout, you control which metrics are charted
and which entities have their metrics charted.

HPE Diagnostics (9.26) Page 298 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Memory Analysis Tab Description

Data displayed in the Memory Analysis Tab helps you to find memory leaks. The Memory Analysis Tab
includes a wizard that guides you through the process of diagnosing a memory leak. See "Heap Walker
Memory Analysis Execution Steps" on page 260 for details about the heap walker process you can use
to diagnose memory leaks.

The following is an example of the Java Profiler Memory Analysis Tab display.

Profiling Since: Wed Mov 03 01:31:37 PM PDT 2010
ionz || '®e Server Reguests "ﬂ Wieh Services ﬁ AllocationiLitecycle Analysiz [{} Memory Anatvsis] Configurstion L
Heap Walker
Step 1 - Establishing a baseline j
The Heap Breakdown summarizes 1 3338 MB
the corterts of the Heap 288.1 ME
Snapshots by class and helps you
detect memary leaks. 238.4 MB
] g 100.7 MB ?
If you observed a reproducible =
= 143.1 MB =
memory leak you are welcome to 5 o
use this wizard to figure out why = 95.4 MB g
the leaking objects are not garbage L 47 7 MB -
collected:
0 0B
14:31:30 143200 14:32:30 143300 143330
First, determine an operation (such
as "login, buy book, logowt") that & Used memory © Total memory
you would like to test for memory
leaks.
To avoid false positives, ensure _ | Dor't auto-sample | ,l
that the application has completely | —
intialized by exercising this | Class Bytes | [y <
i o ¥ X 4 Last | First
operation once or twice. String 141... 588, . 2 74
7 HE
Once you have this good bhaseling F:har[] . it i - 1
to test against, press Start java.util HashMap$Ertry 384, 160,.. 7 7
Tracking New IOb'ects com.mercury .opal capture inst InstrumentationControlfMethodSi... 2,22, 696, G ?
[#] .
com.mercury .opal capture inst MethodData 283 810 7 7
Any chiect that the application wehlogic.store io file FileStorelOfDeleteRecord 1,41..5838.. 7 ¥
allocates after this poirt will be iava.util. TreeMap3Entry 1,86..584.. I i
tracked as a 'potential leak'. weblogic.store io file FileStorelDFHancdle 1,21...80,7... 7 7
Chject(] 444 . 506.. G ?
Available Actions: String(] 151,462 £ v
a Take another Heap Snapshot int{] e L e L L
o . java.util HashtableSEntry 926,...385.. 7 7
b S IS e e com.mercury .opal .capture LAMDC apture Agent3LVAMDData 394379 7 7
ﬁ Run Garbage Collection byte(] 11,2342 ? ?
weblogic store io file StoreHeapFChunk 1,07...335... 7 7
Last Action: com mercury diagnostics . commaon.io Modeldentifier 105328 . 7 7
Heap snapshot taken in 1698ms java util HashiapgEntryl] 3,18..30,7... 7 7 "]
To access In the Java Diagnostics Profiler, select the Memory Analysis tab.

HPE Diagnostics (9.26) Page 299 of 305

Java Agent Guide

Chapter 15: Diagnostics Profiler for Java

Important
information

Relevant
tasks

Heap Walker has JVM and memory requirements as described in this topic.
Also See "Heap Walker Performance Characteristics" on page 264.

By default, the Memory Analysis tab is disabled. You must enable memory analysis
(see "How to Enable Memory Analysis" on page 268).

See "Heap Walker Memory Analysis Execution Steps" on page 260 for a description
of how to use the heap walker wizard.

The following user interface elements are included:

Ul Element

Heap
Metrics
Table

Heap
Breakdown
Graph

Heap
Walker

Description

The Heap Metrics table contains the following columns:
Class. The name of the class.

Bytes. Actual amount of memory, in bytes, that has been allocated by objects of this
class. By design the heap dump does not report classes with less than 1000 bytes of
total footprint but this is configurable in dynamic.properties using the
heapdump.class.bytes.min property.

Count. The number of object instances of this class that are allocated in the JVM.
+/-Last. The count change since the most recent time a heap snapshot was taken.

+/-First. The count change since the initial heap snapshot was taken

When you select a class name in the Heap Breakdown table, the Heap Breakdown
graph shows the count over time of objects belonging to that class. You can select
more than one class to display on the graph by selecting subsequent rows with a
CTRL-click. The graph legend will display up to three rows and then a scroll bar will
be added so you can scroll to see additional items.

The Memory Analysis Tab includes a wizard that guides you through the process of
diagnosing a memory leak.

See also "Heap Walker Memory Analysis Execution Steps" on page 260 for how to
use the heap walker wizard.

Heap Walker requires the following:

JVM Requirements: Heap Walker uses the JVM Tool Interface (JVM TI). As a resullt,
the profiled application must run on a Java VM that implements JVM TI, including the
optional JVM TI capability can_tag_objects.

Sun HotSpot JVM, version 5.0, for Linux and Windows on Intel x86, and HP-UX
HotSpot JVM, version 5.0 are examples of compatible JVMs.

Memory Requirements. Tagging the heap, and processing the object reference
graph, requires large amounts of memory (total physical memory available for the
JVM, not Java heap memory). The amount of memory required depends on the size of
the heap used by the application. You will see an error message if there isn't enough
memory on the system based on the heap size.

HPE Diagnostics (9.26) Page 300 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Configuration Tab Description

The Configuration tab in the Java Diagnostics Profiler provides a way for you to maintain the
instrumentation points and some of the probe configuration without having to manually edit the capture
points file or property files.

The following is an example of the Java Profiler Configuration Tab display.

[Diagnostics

Beqin Profiling
nLeaks | [[[| 13 stocationLifeCycee Anstysis | 5 Memory Anaiysis” [Z] Configuration | 4 » B
Probe Settings Instrumentation
& | () = = |
Wiew Currently Used Instrumertation
El General
Enable Monitoring Data Collection Ehancelicbelinstmeratoniiien
Maritaring Profile 120 Production mode Shared Instrumentation: i—i
Collect CPU Timestamps For Server Reguests Only
El Trimming |
Server Request Minimum Latency 51ms -
Method Minimum Latency Blms nstanee Instrumertation: “
SQL Statement Minimum Latency 1z
URI Replacement Pattern SROV) A s# Mles/ *S#Miles ik s#
=l stack Tracing
Thread Stack Trace Sampling Auto
Sampling Interval 180ms
Tardy Method Latency Thresheold 100ms
Maximum Stack Trace Depth B0
El Collection Leaks |
Report Collection Leaks

Collection Leaks Flag Threshold 60m
Collection Leaks Unflag Threshold 120m
El client Monitoring |
Enable Client Mantoring Instrume... O
Cliert Monitoring Sampling Perce. ..

To access Inthe Java Diagnostics Profiler, select the Configuration tab. You can use this page
whether profiling has been started for the probe or not.

Important See "Custom Instrumentation for Java Applications" on page 113 and "Advanced
information Java Agent and Application Server Configuration™ on page 183 for more information
on the properties configured in this page.

In VMware, the CPU time metric is from the perspective of the guest operating
system and is affected by the VMware virtual timer. See the VMware whitepaper on
timekeeping at http://www.vmware.com/files/pdf/ Timekeeping-In-
VirtualMachines.pdf. and see "Time Synchronization for Probes Running in VMware
in the HP Diagnostics Server Installation and Administration Guide.

Relevant "How to Access the Java Diagnostics Profiler" on page 264
tasks
Probe Settings

The following user interface elements are included:

HPE Diagnostics (9.26) Page 301 of 305

http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf
http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

ul
Element Description

General Enable Monitoring Data Collection. You can enable and disable monitoring data
collection by checking or unchecking this box. By unchecking this box, you can
disable monitoring data collection without stopping the Java Agent.

Monitoring Profile. You can select the monitoring profile by choosing an option from
the drop-down menu. For details on monitoring profiles, see "Monitoring Profiles" on
page 102.

Collect CPU Timestamps. You can enable and disable CPU Timestamp collection
by choosing an option from the drop-down menu.

Trimming | Properties that reduce the amount of data pulled from the probe.

Server Request Minimum Latency. Only server requests that take more than this
amount of time will be captured, unless a threshold has been set on that server
request.

Method Minimum Latency. Only regular methods that execute slower than this
number of milliseconds will be captured.

SQL Statement Minimum Latency. If an SQL statement takes less than this amount
of time, it will not be trended, until it does exceed this time.

URI Replacement Pattern. Specifies the URIs substitutions which will be used by
the agent when reporting the HTTP server requests. Pattern applies after all other URI
adjustments.

HPE Diagnostics (9.26) Page 302 of 305

Java Agent Guide

Chapter 15: Diagnostics Profiler for Java

Ul
Element

Stack
Tracing

Description

When asynchronous thread sampling is enabled, you can see, in the Call Profile view,
which methods were executed during long running fragments even if no instrumented
methods were hit during this time.

You can enable and configure the following properties.

Thread Stack Trace Sampling. Enables or disables asynchronous thread stack
trace sampling; possible values are false, auto (the default), and true.

When set to auto, stack trace sampling is enabled IF the probe is running on selected
(certified) platforms and JVMs. For other JVMs, the setting must be set to Enable
explicitly. Use caution because the JVM could generate errors or abort. See
Diagnostics Release Notes for limitations.

Sampling Interval. The time that must elapse before the next consecutive sampling
attempt is made. Small values cause frequent sampling and provide rich data but at
the cost of increased overhead.

The overhead caused by frequent sampling affects primarily the latency of server
requests. The overall CPU usage by the probe can go up as well, but this effect is not
as profound as the latency increase. For systems with many CPUs, the process CPU
consumption can actually go down (not a good thing).

Tardy Method Latency Threshold. The minimum time an instrumented method must
run without hitting any instrumentation points before stack trace sampling is attempted
for this method. The purpose of this property is to control the overhead of sampling by
limiting the stack trace collection to only the most interesting cases.

Maximum Stack Trace Depth. The limit for the depth of stack traces obtained from
the JVM. You will most likely not need to adjust this value.

These properties can also be set in the dynamic.properties file. And additional
configuration can be done in dispatcher.properties for
enable.stack.trace.aggregation, aggregated.stack.trace.validity.threshold.

HPE Diagnostics (9.26) Page 303 of 305

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

ul
Element Description

Collection = You must run the JRE instrumenter if you want to use the collection leaks pinpointing
Leaks (CLP) feature in the Java Agent.

Report Collection Leaks. You can enable and disable reporting by checking or
unchecking this box.

Collection Leaks Flag Threshold. The threshold of time duration in which the
collection has size growth. If a collection's size growth period exceeds this threshold,
it will be flagged as a memory leak by the probe.

Collection Leaks Unflag Threshold. For an already flagged leaking collection, if its
size stops growing continually for this threshold time period, that probe will unflag it as
aleak.

These same values can also be set in the dynamic.properties file for the probe:
clp.diagnostics.reporting, clp.diagnostics.growth.time and
clp.diagnostics.nongrowth.time.

Client Enable Client Monitoring Instrumentation. You can enable and disable client
Monitoring monitoring by checking or unchecking this box. Client monitoring is set to false by
default.

Client Monitoring Sampling Percentage. The percentage of instances for which
Client Monitoring instrumentation will be in effect, if it is enabled.

Instrumentation

The following user interface elements are included:

Ul Element Description

View Currently = Click the link to view the instrumentation for the application that the probe is
Used monitoring.

Instrumentation
The instrumentation presented is from the capture points file that Diagnostics

uses to instrument your applications. See "Maintaining Instrumentation from the
Java Profiler UI" on page 170 for more information.

Shared Click Edit to modify the currently-used shared instrumentation.

Instrumentation
The instrumentation presented is from the capture points file that Diagnostics

uses to instrument your applications. See "Maintaining Instrumentation from the
Java Profiler UI" on page 170 for more information.

Instance Click Edit to modify the currently-used instance instrumentation.

Instrumentation , : . . , . .
The instrumentation presented is from the capture points file that Diagnostics

uses to instrument your applications. See "Maintaining Instrumentation from the
Java Profiler UI" on page 170 for more information.

HPE Diagnostics (9.26) Page 304 of 305

Send Documentation Feedback

If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the
following information in the subject line:

Feedback on Java Agent Guide (Diagnostics 9.26)
Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a web mail client, and
send your feedback to sw-doc@hpe.com.

We appreciate your feedback!

HPE Diagnostics (9.26) Page 305 of 305

mailto:sw-doc@hpe.com?subject=Feedback on Java Agent Guide (Diagnostics 9.26)

	Welcome to This Guide
	How This Guide Is Organized
	Diagnostics Documentation

	Part 1: Introduction
	Chapter 1: Diagnostics Java Agent Overview
	About the Diagnostics Java Agent
	Introducing the Diagnostics Profiler for Java
	Features and Benefits of the Diagnostics Profiler for Java

	Part 2: Installation and Configuration of the Java Agent
	Chapter 2: Preparing to Install the Diagnostics Java Agent
	Java Agent Installation Overview
	System Requirements for the Diagnostics Java Agent

	Chapter 3: Installing Java Agents
	Pre-installation Checklist for the Java Agent
	Installing and Configuring Java Agents
	Installing the Java Agent on a z/OS Mainframe
	Silent Installation of the Java Agent
	Setting File Permissions
	Determining the Version of the Java Agent
	Configuring for Firewalls, HTTPS, and Proxies
	Uninstalling the Java Agent

	Chapter 4: Preparing Application Servers for Monitoring with the Java Agent
	About Preparing Application Servers for Monitoring
	Examples for Configuring Application Servers
	Example 1: Configuring GlassFish Application Server for Monitoring
	Example 2: Configuring JBoss Application Server for Monitoring
	Example 3: Configuring Oracle Application Server for Monitoring
	Using the Diagnostics JRE Instrumenter in Manual Mode

	Example 4: Configuring SAP NetWeaver Application Server for Monitoring
	Example 5: Configuring TIBCO ActiveMatrix BusinessWorks and Service Bus for M...
	Example 6: Configuring Tomcat Application Sever for Monitoring
	Example 7: Configuring WebLogic Application Server for Monitoring
	Example 8: Configuring webMethods Server for Monitoring
	Example 9: Configuring WebSphere Application Server for Monitoring

	Verify the Application Server is Running the Java Agent
	About the JRE Instrumenter and Different Options to Invoke
	Other Configuration Options
	Probe Registration Auto-Assigment
	Configure Monitoring of Multiple Java Processes on an Application Server
	Adjusting the Heap Size for the Java Agent in the Application Server
	Configuring the SOAP Message Handler
	Configuring the Discovery of a New J2EE Server for CI Population
	Special Considerations for Applications Based on the OSGi Framework

	Chapter 5: Configuring for Azul or Cloud Environments
	Java Agents on Azul
	Java Agents in Cloud Environments

	Chapter 6: Preparing Application Servers for Client Monitoring with the Java Agent
	About Client Monitoring
	Enabling Client Monitoring
	Configuring and Disabling Client Monitoring
	Manually Instrumenting HTML/JSP Pages for Client Monitoring

	Chapter 7: Upgrading the Diagnostics Java Agent
	Upgrade Java Agents
	Upgrade Notes and Limitations

	Part 3: Advanced Java Agent Configuration and Instrumentation
	Chapter 8: Monitoring Profiles
	About Monitoring Profiles
	Understanding Types of Diagnostics Deployments
	The Predefined Monitoring Profiles
	Custom Monitoring Profiles
	Applying a Specific Monitoring Profile to a Probe
	Overriding Settings in the Monitoring Profiles
	Mapping Instrumentation Points to a Monitoring Profile
	Mapping Metrics to a Monitoring Profile
	Mapping Property Values to a Monitoring Profile

	Chapter 9: Automatically Assigning a Probe to an Application
	About Automatic Probe Assignment
	Configuring a Probe to Automatically Assign Applications
	Configuring an Agent to Automatically Assign Applications
	General Configuration

	Chapter 10: Custom Instrumentation for Java Applications
	About Instrumentation and Capture Points Files
	Using Regular Expressions in Points Files
	Coding Points in the Capture Points File
	Defining Points With Code Snippets
	Controlling Class Map Capture
	Instrumentation Examples
	Understanding the Overhead of Custom Instrumentation
	Instrumentation Control on a Per Layer Basis
	Instrumented Location Throughput Throttling
	Advanced Instrumentation Examples
	Capturing HTTP Server Requests Based on Query Parameters

	Configuring Cross VM Correlations for New or CustomTechnologies
	Tutorial for Configuring Cross VM Correlation for Custom Technologies
	Maintaining Instrumentation from the Java Profiler UI
	Default Layers Defined for Typical Java Classes and Methods

	Chapter 11: Advanced Java Agent and Application Server Configuration
	Advanced Configuration Overview
	About Dynamic Configuration
	Disabling the Java Diagnostics Profiler
	Controlling Probe Logging
	Setting the Probe’s Host Machine Name
	Specifying a Different Probe IP Address
	Setting the Active Products Mode
	Controlling Automatic Method Trimming on the Agent
	Configuring URI and Parameter Capture
	Configuring an Agent for a Proxy Server
	Time Synchronization for Probes Running on VMware
	Limiting Exception Tree Data
	Diagnostics Probe Administration Page
	Authentication and Authorization for Diagnostics Java Profilers
	Configuring Collection of CPU Time Metrics
	Configuring Consumer IDs
	A Value in the SOAP Body

	Configuring SOAP Fault Payload Data
	Configuring REST Services
	Customizing Grouping JMS Temporary Queue/Topics
	Configuring SQL Query Parsing
	Capturing SQL Parameters
	Configuring Display of Application Name for Server Requests
	Maintaining Probe Settings from the Java Profiler UI
	Generating Performance Reports for JUnit Tests

	Chapter 12: Java Agent Metrics Collectors
	About Metrics Capture
	What Metrics are Being Collected by the Java Agent
	Understanding Metric Collector Entries
	About Collecting Additional Probe Metrics
	Modifying Probe Metrics Already Being Captured
	Stopping Capture of a Metric
	Using Customized metrics.config Files for Multiple JVM Applications on a System

	Chapter 13: Java Agent - System Metrics Capture
	About System Metrics
	System Metrics Captured by Default
	Configuring the System Metrics Collector
	Capturing Additional Custom System Metrics
	Capturing Custom System Metrics on Windows Hosts
	Capturing Custom System Metrics on Solaris Hosts
	Capturing Custom System Metrics on Linux Hosts

	Enabling z/OS System Metrics Capture

	Chapter 14: Java Agent - JMX Metrics Capture
	About JMX Metrics
	About Configuring JMX Metric Collectors
	Additional Custom JMX Metrics
	Getting a List of Available JMX or WebSphere PMI Metrics
	Creating New JMX or WebSphere PMI Metrics Entries

	Part 4: Using the Diagnostics Profiler for Java
	Chapter 15: Diagnostics Profiler for Java
	About the Java Diagnostics Profiler
	How the Java Agent Provides Data for the Java Profiler
	Java Diagnostics Profiler UI Navigation and Display Controls
	Analyzing Performance Using the Call Profile Window
	Thread Call Stack Trace Sampling
	Comparison of Collection Leak Pinpointing and LWMD
	Object Lifecycle Monitoring
	Heap Walker Memory Analysis Execution Steps
	Heap Walker Performance Characteristics
	How to Access the Java Diagnostics Profiler
	How to Enable LWMD for Collections Displays
	How to Enable Allocation Capture
	How to Enable Object Lifecycle Monitoring
	How to Analyze Object Allocation
	How to Enable Memory Analysis
	Summary Tab Description
	Hotspots Tab Description
	Metrics Tab Description
	Threads Tab Description
	All Methods Tab Description
	All SQL Tab Description
	Collection Leaks Tab Description
	Collections Tab Description
	Exceptions Tab Description
	Server Requests Tab Description
	Web Services Tab Description
	Allocation/LifeCycle Analysis Tab Description
	Memory Analysis Tab Description
	Configuration Tab Description

	Send Documentation Feedback

