
HP Systinet Workbench
Software Version: 10.01
Windows and Linux Operating Systems

Assertion Editor User Guide

Document Release Date: June 2015
Software Release Date: June 2015

Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notice
© Copyright 2003 - 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® andWindows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of TheOpenGroup.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using themost recent edition of a document, go to: http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, go to: http://h20229.www2.hp.com/passport-registration.html

Or click theNew users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HP sales representative for details.

Support
Visit the HP Software Support Online web site at: http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed tomanage your
business. As a valued support customer, you can benefit by using the support web site to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HP support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To findmore information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

HP Software Solutions Now accesses the HPSW Solution and Integration Portal Web site. This site enables you to explore HP Product Solutions tomeet your business
needs, includes a full list of Integrations between HP Products, as well as a listing of ITIL Processes. The URL for this Web site is
http://h20230.www2.hp.com/sc/solutions/index.jsp

Assertion Editor User Guide

HP Systinet Workbench (10.01) Page 2 of 63

About this PDF Version of Online Help
This document is a PDF version of the online help. This PDF file is provided so you can easily print multiple topics from the help information or read the online help in PDF
format. Because this content was originally created to be viewed as online help in a web browser, some topics may not be formatted properly. Some interactive topics may not
be present in this PDF version. Those topics can be successfully printed from within the online help.

Assertion Editor User Guide

HP Systinet Workbench (10.01) Page 3 of 63

Contents

About this Guide 6

Chapter 1: Assertion Editor 7

Workbench Suite 7

Overview 7

User Interface 8
Project Explorer 9
Server Explorer 11
Editor View 12

Chapter 2: Getting Started 14

InstallingWorkbench 14

SSLConfiguration 16

Creating an Assertion Project File 17

Downloading and Importing Assertions 18

Chapter 3: Managing Assertions 20

Creating Assertions 20

Editing Assertions 21
Editing General Properties 21
Adding and Deleting Implementations 21
Writing XPath Definitions 22
Writing XQuery Definitions 23
Editing XQuery Definitions 24
Editing Reference Templates 26

Deleting Assertions 27

Comparing Assertion Versions 27

Chapter 4: Validating and Publishing Assertions 29

Testing Assertions 29

Resolving Conflicts 30

Publishing Assertions 30

Assertion Editor User Guide

HP Systinet Workbench (10.01) Page 4 of 63

Chapter 5: Deploying Assertions 32

Building an Assertion Extension 32

Applying Extensions 32

Redeploying the EAR File 36

Chapter 6: Customizing Assertions 37

Customizing Source Type 37

Adding Policy Extensions 37

Chapter 7: Java Assertion Demo 39

Creating the Assertion Validator 39

Applying the Validator Extension 41

Creating and Deploying the Assertion 41

Testing the Assertion Validator 42

Appendix A: Dialog Box Reference 43

Define New ImplementationWizard 43

RunConfigurations Dialog 45

Appendix B: Assertion Document Details 47

Reference Templates 48

Parameters 49

Implementations 53
Source Type 54
XPath Assertions 56
XQuery Assertions 57

Appendix C: Integrating XQuery Function Libraries 59

Appendix D: Listing Built-In XQuery Function Libraries 61

Assertion Editor User Guide

HP Systinet Workbench (10.01) Page 5 of 63

About this Guide
Welcome to theAssertion Editor User Guide. This guide explains how to use Assertion Editor as part of
HP Systinet Workbench.

This guide contains the following chapters:

l "Assertion Editor" on page 7

Provides an overview of themain features of Assertion Editor.

l "Getting Started" on page 14

Describes the installation of themain features, and shows you how to create an assertion project in
Assertion Editor.

l "Managing Assertions" on page 20

Explains how to create, download, edit, and compare assertions using Assertion Editor.

l "Validating and Publishing Assertions" on page 29

Shows how to test, publish, and resolve conflicts in assertions using Assertion Editor.

l "Deploying Assertions" on page 32

Shows how to build an Assertion extension project using Assertion Editor.

l "Customizing Assertions" on page 37

Explains how to customize the source type and add PM extensions in Assertion Editor.

l "Java Assertion Demo" on page 39

Demonstrates the creation of a custom assertion validator and its use with Assertion Editor and
Systinet.

l "Dialog Box Reference" on page 43

Dialog boxes reference.

l "Assertion Document Details" on page 47

Assertion document reference.

l "Integrating XQuery Function Libraries" on page 59

Integrating custom XQuery libraries with Assertion Editor.

HP Systinet Workbench (10.01) Page 6 of 63

Chapter 1: Assertion Editor
HP Systinet Workbench includes Assertion Editor, a set of features for use with the Policy Manager
component of Systinet. Assertion Editor enables you to create, edit, and delete assertions on any
number of Policy Manager servers. In addition, you can use Assertion Editor to test an assertion,
validating the assertion against a source document.

This chapter introduces Assertion Editor in the following sections:

l "Workbench Suite" below

l "Overview" below

l "User Interface" on the next page

Workbench Suite
HP Systinet Workbench is a suite of editor tools enabling you to customize your deployment of
Systinet.

Workbench consists of the following editor tools, distributed as a single Eclipse development platform:

l Customization Editor

Customizes the underlying SOA DefinitionModel (SDM) within Systinet.

l Taxonomy Editor

Customizes the taxonomies used to categorize artifacts in Systinet.

l Assertion Editor

Customizes the conditions applied by your business policies within Systinet.

l Report Editor

Customizes report definitions for use with Systinet.

Overview
Assertions are the building blocks of policy. Each assertion checks a single condition of a policy,
returning a true or false result. In Policy Manager, one or more assertions are collected together to form
a technical policy. The technical policy is a set of assertions that fulfils amanagement requirement.

Systinet provides tools for testing whether sources comply with the relevant policies.

HP Systinet Workbench (10.01) Page 7 of 63

Tomeet management requirements, a technical policy often needs a new assertion. Changing
requirements can also result in existing assertions becoming out of date. Assertion Editor is a tool, built
on the widely used Eclipse IDE, to simplify assertion creation and editing.

Assertion Editor makes working with assertions easy.

Use Assertion Editor to do the following:

1. Create an assertion project.

For details, see the following sections:

n "Creating an Assertion Project File" on page 17

n "Downloading and Importing Assertions" on page 18

2. Create and manage assertions.

For details, see the following sections:

n "Creating Assertions" on page 20

n "Editing Assertions" on page 21

n "Deleting Assertions" on page 27

n "Comparing Assertion Versions" on page 27

3. Validate assertions before publishing.

For details, see "Testing Assertions" on page 29.

4. Deploy assertions and manage conflicts.

For details, see the following sections:

n "Publishing Assertions" on page 30

n "Resolving Conflicts" on page 30

5. Customize assertions for use with Policy Manager.

For details, see "Customizing Assertions" on page 37.

User Interface
The default perspective is split into a number of sections with menu options across the top, as shown in
the following screenshot.

Assertion Editor User Guide
Chapter 1: Assertion Editor

HP Systinet Workbench (10.01) Page 8 of 63

Screenshot: Assertion Editor UI

The platform perspective consists of the following views:

l Project Explorer

The tree view of your assertion projects. For details, see "Project Explorer" below.

l Server Explorer

The view listing Systinet server connections toWorkbench. For details, see "Server Explorer" on
page 11.

l Editor

The view showing the components of the assertion. For details, see "Editor View" on page 12.

Project Explorer
The Project Explorer contains a hierarchical list of projects, the assertions in each project, and the
validation definitions in each assertion, as shown the following screenshot.

Assertion Editor User Guide
Chapter 1: Assertion Editor

HP Systinet Workbench (10.01) Page 9 of 63

Screenshot: Project Explorer

The Project Explorer contains additional context menu options enabling you to interact with a running
Systinet server. Right-click the project name or a particular assertion, and select HP Systinet to view
the options listed in the following tables:

Option Function

Download
Assertions

Import Assertions from Systinet. For details, see "Downloading and Importing
Assertions" on page 18.

Upload to
Server

Export assertions to the default Systinet server. For details, see "Publishing
Assertions" on page 30.

Update from
Server

Update assertions from Systinet. For details, see "Editing Assertions" on page 21.

Remove
from Server

Delete assertions from Systinet. For details, see "Deleting Assertions" on page 27.

Upload To
Other Server

Export assertions to a specified Systinet server.

Build
Extension

Create an assertion extension for Systinet containing all the assertions in your
project. For details, see "Building an Assertion Extension" on page 32.

Project Context Menu Options

Option Function

Upload to
Server

Export an assertion to the default Systinet server. For details, see "Publishing
Assertions" on page 30.

Assertion Context Menu Options

Assertion Editor User Guide
Chapter 1: Assertion Editor

HP Systinet Workbench (10.01) Page 10 of 63

Option Function

Update from
Server

Update assertions from Systinet. For details, see "Editing Assertions" on page 21.

Remove
from Server

Delete the assertion from Systinet. For details, see "Deleting Assertions" on page 27.

Upload To
Other Server

Export an assertion to a specified Systinet server.

Build
Extension

Create an assertion extension for Systinet containing all the assertions in your
project. For details, see "Building an Assertion Extension" on page 32.

Assertion Context Menu Options, continued

Server Explorer
The Server Explorer displays the Systinet servers connected toWorkbench, as shown the following
screenshot. The functionality is shared by all theWorkbench editors.

Screenshot: Server Explorer View

Right-click a server in the Server Explorer to open the context menu described in the following table.

Option Function

New Server Add a server for downloading assertions and taxonomies (Assertion Editor,
Taxonomy Editor, and Customization Editor).

Remove
Server

Delete a server from the Server Explorer.

Download
Taxonomy

Download a taxonomy from a server (Taxonomy Editor and Customization Editor).

Download
Assertion

Download assertions from a platform server (Assertion Editor).

Server Explorer Context Menu Options

Assertion Editor User Guide
Chapter 1: Assertion Editor

HP Systinet Workbench (10.01) Page 11 of 63

Option Function

Download
Report

Download reports from a reporting server (Report Editor).

Properties View and edit the server name, URL, username, and password.

Server Explorer Context Menu Options, continued

Editor View
The Editor view is themain feature of the Assertion Editor UI.

The pane is split into the following tabs:

l Overview Tab
TheOverview tab shows the components of the assertion.

The tab is divided into the following areas:

n General Information

Name of the assertion and its description.

n Implementation

List of implementations of validation logic and the artifact types to which they apply.

Assertion Editor User Guide
Chapter 1: Assertion Editor

HP Systinet Workbench (10.01) Page 12 of 63

n Reference Template

Element used to reference this assertion from aWS-Policy document.

l Implementation Tab
The Implementation tab includes a list of implementations.

Highlighting an implementation opens the XQuery Definition Editor in the window beneath. For
details, see "Writing XQuery Definitions" on page 23.

l Source Tab
The Source tab is an XML editor for editing the assertion.

Assertion Editor User Guide
Chapter 1: Assertion Editor

HP Systinet Workbench (10.01) Page 13 of 63

Chapter 2: Getting Started
This chapter describes the prerequisites for working with assertions in Assertion Editor. It contains the
following sections:

l "InstallingWorkbench" below

l "SSL Configuration" on page 16

l "Creating an Assertion Project File" on page 17

l "Downloading and Importing Assertions" on page 18

Installing Workbench
Systinet Workbench is an Eclipse development platform distributed as a zip file, hp-systinet-
workbench-10.00-win64.zip .

Note: For supported platforms and known issues, see readme.txt alongside the archive.

Note: Systinet Workbench requires Java SE Development Kit (JDK) 1.7.0 (64-bit version only) or
higher. Youmust include the path to this version of the JDK in the JAVA_HOME environment
variable.

To install Systinet Workbench as a new Eclipse platform:

l Extract the archive to your required location, referred to in this document as WB_HOME.

Note: The pathmust not be longer than 97 characters.

To Start Systinet Workbench:

l ExecuteWB_HOME/workbench/start.exe.

The first time you start Workbench, the welcome screen opens.

HP Systinet Workbench (10.01) Page 14 of 63

Screenshot: Workbench Welcome Screen

Select one of the options to open one of the editor tools, start a new editing project, or view the
documentation set.

You can return to the welcome screen from any of the editor tools by selectingHelp>Welcome from
themenu options.

By default, Workbench runs in 'normal' mode which prevents users from uploading system taxonomies
(IDs start with uddi:systinet.com:soa:model:taxonomies) and the Report Editor .rptlibrary file
to Systinet servers. If you need to work with system taxonomies or want to upload the .rptlibrary
file you can switchWorkbench into 'admin' mode.

Caution: Be extremely careful when working with system taxonomies, Systinet uses some hard-
coded values from system taxonomies, changing or removing themmay cause errors.

To Switch Workbench to Admin Mode

1. Open WB_HOME/configuration/config.iniwith a text editor.

2. Add mode=admin to config.ini.

3. Restart Workbench.

Tip: Systinet Workbench is memory-intensive. If you experience performance issues, HP
recommends increasing thememory allocation.

To increase the memory allocation for Systinet Workbench:

1. Open WB_HOME/workbench/start.ini for editing.

2. Set these new values:

Assertion Editor User Guide
Chapter 2: Getting Started

HP Systinet Workbench (10.01) Page 15 of 63

n -Xms128m

n -Xmx1024m

3. Save your changes.

4. Restart Workbench.

Tip: Systinet Workbench downloads from Systinet may time out. If you experience issues, HP
recommends increasing the time out.

To increase the time out for Systinet Workbench:

1. Open WB_HOME/workbench/start.ini (or eclipse.ini for stand-alone installation) for editing.

2. Set the new value:

-Dorg.systinet.platform.rest.Client.timeout=200000

The value is in milliseconds with a default value of 120000 (2minutes).

3. Save your changes.

4. Restart Workbench.

SSL Configuration
By default, Workbench trusts all Systinet server certificates. Youmay want Workbench to verify
Systinet certificates.

To Verify Systinet Server Certificates:

l Add the following options to WB_HOME/workbench/start.ini:

-Dcom.hp.systinet.security.ssl.verifyCert=true
-Djavax.net.ssl.trustStore=USER_TRUSTSTORE
-Djavax.net.ssl.trustStorePassword=TRUSTSTORE_PASS
-Djavax.net.ssl.trustStoreType=TRUSTSTORE_FORMAT

If Systinet is configured for 2-way SSL, youmust provideWorkbench certificates to Systinet.

To Provide Workbench Client Certificates to Systinet:

l Add the following options to WB_HOME/workbench/start.ini:

-Djavax.net.ssl.keyStore=USER_KEYSTORE

Assertion Editor User Guide
Chapter 2: Getting Started

HP Systinet Workbench (10.01) Page 16 of 63

-Djavax.net.ssl.keyStorePassword=KEYSTORE_PASS
-Djavax.net.ssl.keyStoreType=KEYSTORE_FORMAT

Creating an Assertion Project File
Towork with assertions, you need an Assertion Project. You can create any number of Assertion
Projects to help organize your work.

To Create an Assertion Project:

1. Do one of the following:

n In theWorkbenchWelcome page, click Create Assertion Project.

n Click New to open the Select aWizard window, and select HP Systinet>Assertion
Project.

n From themenu, select File>New>Assertion Project.

n Press Alt+Shift+N, and then press R, to open the Select aWizard window. Then select HP
Systinet>Assertion Project.

The New Assertion Project dialog box opens.

2. In the New Assertion Project dialog box, enter the following parameters:

Parameter Definition

Project Name The name of your assertion project.

Namespace The namespace to apply to all assertions in the project.

Create from
Existing
Extension

Select this option if you want to create a new project from a previous assertion
extension. If selected, input the path or browse for the location of the assertion
extension.

Use Default
Location

If selected, Assertion Editor stores the project in your default workspace. If
unselected, input the path or browse for an alternative workspace.

3. Click Next to select or create a server.

Note: If no servers are currently defined, the dialog box continues to Step 5.

4. Do one of the following:

Assertion Editor User Guide
Chapter 2: Getting Started

HP Systinet Workbench (10.01) Page 17 of 63

n Select Create a New Server, and click Next.

Continue to Step 5.

n Select Use an Existing Server, select the server from the list and input its credentials, and
then click Next.

Continue to Step 6.

5. In the New Server dialog box, add the required parameters, and then click Next.

6. Select the assertions to download from the server.

7. Select Download All Taxonomies to import taxonomies from HP Systinet to make them
available for use as assertion parameters.

8. Click Finish.

Downloading and Importing Assertions
Using Assertion Editor, you can download assertions from an Systinet server to edit or test them.

You can download assertions in one of two ways:

l When you create a project, as described in "Creating an Assertion Project File" on the previous
page.

l From your local file system, at a later date.

Caution: If you import assertions containingmanual validation, Assertion Editor highlights the
manual validation as an error with amessage instructing you to remove it from the assertion.

To Download Assertions:

1. Right-click the server containing the assertions you need in Server Explorer to open its context
menu, and select Download Assertions.

The Download Assertion dialog box opens.

2. Select the assertions to download, and click Next.

The Choose Location dialog box opens.

3. Select the project to add the assertions to, and click Finish.

To Import Assertions from a Local File:

Assertion Editor User Guide
Chapter 2: Getting Started

HP Systinet Workbench (10.01) Page 18 of 63

1. Right-click the server containing the assertions you need in Server Explorer to open its context
menu, and select Import Assertions.

The Import Assertion dialog box opens.

2. Select the assertions to import, and click Next.

The Choose Location dialog box opens.

3. Select the project to add the assertions to, and click Finish.

The assertions are imported to your project.

Assertion Editor User Guide
Chapter 2: Getting Started

HP Systinet Workbench (10.01) Page 19 of 63

Chapter 3: Managing Assertions
This chapter explains how to work with assertions, as detailed in the following sections:

l "Creating Assertions" below

l "Editing Assertions" on the next page

l "Deleting Assertions" on page 27

l "Comparing Assertion Versions" on page 27

Creating Assertions
In "Creating an Assertion Project File" on page 17, you created an Assertion Project and looked at how
to download and import assertions. The following section explains how to create new assertions.

To Create a New Assertion:

1. Do one of the following:

n Click New to open the New: Select aWizard dialog, and expandHP Systinet>Assertion,
and then, click Next.

n Select File>New>Assertion.

n Press Alt+Shift+N to open the context menu, and select Assertion.

The New Assertion wizard opens.

2. In the New Assertion wizard, enter the required parameters.

3. Click Finish to create the assertion.

4. Double-click the assertion in Project Explorer to open it in the Editor, and do the following:

l Add an implementation, as described in "Adding and Deleting Implementations" on the next page.

l Test the assertion, as described in "Testing Assertions" on page 29.

l Publish the assertion, as described in "Publishing Assertions" on page 30.

HP Systinet Workbench (10.01) Page 20 of 63

Editing Assertions
The heart of Assertion Editor's functionality is the ability to edit assertions. To edit an assertion, you
must have a local copy.

Caution: If you are editing an assertion that also exists on a server, youmust update your local copy
before editing it. Editing a local assertion before updating it from the server can result in a revision
conflict. Assertion Editor warns you if this is the case. For details, see "Resolving Conflicts" on
page 30.

To Update an Assertion from the Server:

1. Right-click the assertion in Project Explorer to open its context menu.

2. Select HP Systinet>Update from Server.

Themain functionality of editing assertions is described in the following sections:

l "Editing General Properties" below

l "Adding and Deleting Implementations" below

l "Writing XPath Definitions" on the next page

l "Writing XQuery Definitions" on page 23

l "Editing XQuery Definitions" on page 24

l "Editing Reference Templates" on page 26

Editing General Properties
General properties are the name and text description of the assertion. Changing the name in the editor
does not change the file name or reference template local name. These can only be changed in the
General Properties section of the Overview tab of the Assertion Editor View. For details, see "Editor
View" on page 12.

Adding and Deleting Implementations
An implementation contains a resource type and the code used to validate that resource type. An
assertionmust contain one or more implementations.

To Add an Implementation:

Assertion Editor User Guide
Chapter 3: Managing Assertions

HP Systinet Workbench (10.01) Page 21 of 63

1. In the Implementation field of the Editor view, click New.

The Define New Implementation wizard opens. For details, see "Define New Implementation
Wizard" on page 43.

2. Do one of the following:

n To use a predefined resource type, select Select an Existing Type, select a resource type
from the list, and then click Next. Use filter to find a specific resource type and uncheck Show
common types only to list all available resource types.

Skip to Step 4.

n Tomanually define a new resource type, select Define New Type and then click Next.

3. Input a Namespace and Local Name, or click Load from file to use a document in your assertion
project, and then click Next.

4. Select the implementation type from the list and then click Finish.

To Delete an Implementation:

1. Open the Editor view and select theOverview tab.

Implementations in your project are displayed in the Implementation window.

2. To delete an implementation, select it and click Delete.

After adding the implementation, open the Implementation tab of the Editor and edit the XQuery or
XPath definitions tomeet your needs. For instructions, see "Writing XPath Definitions" below or
"Writing XQuery Definitions" on the next page.

Writing XPath Definitions
After creating an implementation that uses an XPath validation handler, as described in "Adding and
Deleting Implementations" on the previous page, you need to write the XPath definition.

To Write an XPath Definition:

1. Open the Editor view and select the Implementation tab.

2. Import a sample XML document of the type to which the assertion applies.

3. In the XPath Definition Editor, under Load XML Template, select one of the following links:

n Click From Resource to load a sample XML document from your Assertion Editor project.

n Click From File to load a sample XML document from your local file system.

Assertion Editor User Guide
Chapter 3: Managing Assertions

HP Systinet Workbench (10.01) Page 22 of 63

n Click From URL to load a sample XML document from theWeb.

The XML document appears in the XML Template tab.

To Add an XPath Expression:

1. Right-click the relevant line in the sample XML document to open its context menu.

2. Select Generate XPath Expression.

The XPath expression appears in the XPath Definition Editor field.

Note: You can have only one XPath expression for each implementation. An artifact passes
validation if at least one XML nodematches the XPath expression.

3. Modify the XPath expression in the XPath Definition Editor, if necessary.

4. If the XPath contains any unresolved namespace prefixes, an unresolved warning appears.

n If you receive a warning, go to Step 5.

n If you do not receive a warning, go to Step 8.

5. Click the unresolved prefix link.

TheManage prefix and namespace pane opens.

6. Define the namespace of the prefix, as follows:

n To add a namespace, click Add, and then enter the required parameters.

n To delete a namespace, select it and click Remove.

7. Click OK.

8. To test the XPath expression, click Test Expression.

The results of the test appear in the Test Results tab of the XPath Expression Editor.

For more information, see "XPath Assertions" on page 56.

Writing XQuery Definitions
Assertion Editor incorporates syntax highlighting for writing and editing XQueries.

To Write an XQuery Definiton:

Assertion Editor User Guide
Chapter 3: Managing Assertions

HP Systinet Workbench (10.01) Page 23 of 63

1. Open the assertion in the Editor view, open the Implementation tab and click New.

The Define New Implementation dialog box opens, as shown in "Define New Implementation
Wizard" on page 43.

2. To use a predefined source type:

n In the Predefined field, select the source type you need from the drop-down list.

n In the Dialect field, select XQuery from the drop-down list, and click OK.

3. Tomanually define a source type:

n Select theManual Define check-box.

n Enter the required parameters.

n In the Dialect field, select XQuery from the drop-down list, and click OK.

The XQuery Definition opens in the Editor view.

4. Edit the XQuery Definition, as described in "Editing XQuery Definitions" below, and click Test
Assertion.

If the assertion passes validation, you can now publish the assertion. For details, see "Publishing
Assertions" on page 30.

If the assertion does not pass validation, you can resolve any problems. For details, see
"Resolving Conflicts" on page 30.

For more information, see "XQuery Assertions" on page 57.

Editing XQuery Definitions
Assertion Editor also supports external XML editors.

To use an external XQuery editor with Assertion Editor, youmust first add the Saxon extension to the
external editor:

l Folder

WB_HOME/plugins/com.systinet.tools.assertioneditor.lib_version-number/lib/saxon-
extensions/

l Extension

pm-extension-functions.jar

To Edit an XQuery Definition:

Assertion Editor User Guide
Chapter 3: Managing Assertions

HP Systinet Workbench (10.01) Page 24 of 63

1. In Project Explorer, right-click the XQuery to open its context menu, select Open With, and then
select from the following options:

n Text Editor

To edit the XQuery with a plain text editor.

n System Editor

To edit the XQuery with an editor currently used by your system.

n In-place Editor

To edit the XQuery with anOLE editor.

n Default Editor

To edit the XQuery with the default editor provided with Assertion Editor.

n Other

To edit the XQuery with an editor not previously defined.

2. Edit the XQuery as required and save your changes.

Instructions on how to add the Saxon extension to themost popular XML editors are given in the
following procedures:

To Set Up oXygen™ to Edit XQueries:

1. Open or create the XQuery file in oXygen.

2. Click Configure Transformation Scenario to open the Configure Transformation Scenario
wizard.

3. Select Execute XQuery, and click New to open the Edit Scenario pane.

4. In the Transformer field, select Saxon 8B.

5. Click Extensions to open the Extensions dialog box, and click Add to open the Add Extension
dialog box.

6. Type in or browse for the path to pm-extension-functions.jar.

7. Click OK in all wizard panes to save the transformation scenario.

When you open any other XQuery files, youmust always choose this transformation scenario and then
edit the XQuery file to force oXygen to rebuild it.

Note: This procedure was created for oXygen 8.1. Other versions can be used but some details may
differ.

To Set Up Stylus Studio™ to Edit XQueries:

Assertion Editor User Guide
Chapter 3: Managing Assertions

HP Systinet Workbench (10.01) Page 25 of 63

1. Select Tools>Options to open theOptions dialog box.

2. ExpandModule Setting+XQuery>Processor Settings from the treemenu.

3. In theProcessor drop-down list, select Saxon 9.0.0.2, and then, click theUse as default
processor checkbox.

4. Click OK.

5. Select Project>Set Classpath and add the path to pm-extension-functions.jar.

To Open an XQuery in Stylus Studio™ from Assertion Editor:

1. In the Project Explorer of the Assertion Editor UI, right-click the XQuery.

2. Select Open With>System Editor.

Editing Reference Templates
The referencing template defines the element used to reference an assertion from a Technical Policy
document. The template can include parameters which represent requirements whose specific values
might vary.

To Edit an Assertion's Reference Template:

1. Open theOverview tab in the Editor view.

2. In the Reference Template pane, enter the required parameters.

3. Do one of the following:

n To add a parameter, click New.

n To edit an existing assertion, highlight it, and then click Edit.

The Define Parameter wizard opens.

4. Input a name, description, select if the parameter is optional or required.

5. Do one of the following:

n Select Primitive type and the parameter type from the drop-down list.

n Select Taxonomy and input orBrowse for the relevant taxonomy.

Note: The available taxonomies depend on those imported from Systinet when you created the
project.

To Update Taxonomies:

Assertion Editor User Guide
Chapter 3: Managing Assertions

HP Systinet Workbench (10.01) Page 26 of 63

i. Open the context menu for the assertion project and select Properties to open the
Project Properties dialog box.

ii. ExpandHP Systinet>HP Systinet and select Taxonomies to view the list of
downloaded taxonomies from the server.

iii. Click Download to update the taxonomies in the project.

6. Click OK.

To preview the reference template in a technical policy, click Preview assertion reference to open the
dialog box, and then enter example parameter values.

Deleting Assertions
If an assertion is no longer useful, you can delete it in one of the following ways:

To Delete a Local Copy of an Assertion:

l Right-click the assertion in Project Explorer to open its context menu, and select Delete.

Deleting a local copy of an assertion does not affect the version on the server.

To Delete an Assertion on a Server:

l Right-click the assertion in Server Explorer to open its context menu, and select Delete Assertion.

Deleting the version of an assertion that is on a server does not affect any local versions.

Alternatively, you can delete an assertion from the server directly from the Project Explorer. This gives
you the option of deleting the local copy at the same time.

To Delete an Assertion from the Server and the Local Copy:

1. Right-click the assertion in Project Explorer to open its context menu, and select HP
Systinet>Remove from Server.

2. When prompted, select one of the following:

n Also delete resources from local file system.

n Do not delete resources on local file system.

Comparing Assertion Versions
Assertion Editor uses the Eclipse Compare function to track version numbers, enabling you to roll back
an assertion to a previous version.

To Compare Versions of an Assertion:

Assertion Editor User Guide
Chapter 3: Managing Assertions

HP Systinet Workbench (10.01) Page 27 of 63

1. Right-click the assertion in Project Explorer to open its context menu, and select Replace
with>Local History.

The Replace with Local History window opens.

Note: Changes to XQuery implementations do not appear in this window. XQueries are held in
separate, stand-alone files so they can be accessed by external XML editors. Use your editor's
revision control feature for XQueries.

2. Compare the versions.

3. Click Replace, if you want to replace the current version with the one to which you are comparing
it.

Assertion Editor User Guide
Chapter 3: Managing Assertions

HP Systinet Workbench (10.01) Page 28 of 63

Chapter 4: Validating and Publishing Assertions
This chapter explains how to test assertions and deal with validation conflicts before publishing or
exporting them, as detailed in the following sections:

l "Testing Assertions" below

l "Resolving Conflicts" on the next page

l "Publishing Assertions" on the next page

Testing Assertions
Before publishing an assertion, you can test it.

To Test an Assertion:

1. Double-click the assertion in Project Explorer to open it in the Editor.

2. Click Test Assertion.

The Run Configurations dialog box opens. For details, see "Run Configurations Dialog" on
page 45.

3. Enter the required parameters, and click Apply to save the parameters, orRevert to roll back the
changes.

4. Click Run.

The test results appear in the Assertion Console view.

To Test a Different Assertion:

1. Click Browse.

The Select Assertion window opens

2. Browse for the required assertion.

3. Click OK.

4. Enter the required parameters, and click Run.

To Select Source Files for Testing an Assertion:

HP Systinet Workbench (10.01) Page 29 of 63

1. Click Add Documents to locate the source file to add,

2. Enter the required parameter values in the Parameters table, and then do one of the following:

n Click Apply.

n Click Revert to use themost recent parameter value.

For information about assertion reference templates, see "Editing Reference Templates" on
page 26.

3. Click Run.

Resolving Conflicts
Conflicts occur when there are differences between an updated local copy of an assertion and that on
the server. Assertion Editor notifies you of the conflict, and asks if you want to force the update or
publication.

Forcing an assertion to be updated overwrites any local changes that have beenmade. Forcing an
assertion to be published overwrites any changes that weremade to the version on the server.

The safest way to resolve such conflicts is to either cancel publication or update the assertion.

To Update a Conflicting Assertion:

1. Copy your local version of the assertion to a different location in Project Explorer.

2. Right-click the assertion to open its context menu, and select HP Systinet>Update Assertion.

A conflict warning appears.

3. Click OK to update the assertion.

Assertion Editor overwrites the local copy of the assertion with the version on the server.

Publishing Assertions
After writing, editing, and testing an assertion, you can publish it to an Systinet server.

Note: In Project Explorer, assertions that have not been published are indicated by a questionmark (?).
Assertions that have been changed locally since they were last synchronized with the version on the
server are indicated by a right arrow (>).

To Publish an Assertion:

l Right-click the assertion in Project Explorer to open its context menu, and select HP
Systinet>Upload to Server.

Assertion Editor User Guide
Chapter 4: Validating and Publishing Assertions

HP Systinet Workbench (10.01) Page 30 of 63

Assertion Editor connects to the server and attempts to publish the assertion.

To Select a Server that is not in the Project:

1. Right-click the assertion to open its context menu, and select HP Systinet>Upload to Other
Server.

The New Server wizard opens.

2. Follow the steps for adding a server, as described in "Creating an Assertion Project File" on
page 17.

Caution: If changes weremade to the version on the server since you last synchronized, a conflict
warning appears that asks whether you want to force publication. For details on conflict resolution, see
"Resolving Conflicts" on the previous page.

Assertion Editor User Guide
Chapter 4: Validating and Publishing Assertions

HP Systinet Workbench (10.01) Page 31 of 63

Chapter 5: Deploying Assertions
This chapter explains how to deploy a set of assertions as an Extension Project, as detailed in the
following sections:

l "Building an Assertion Extension" below

l "Applying Extensions" below

l "Redeploying the EAR File" on page 36

Building an Assertion Extension
After publishing assertions, you can copy them to an Assertion extension.

Note: In Project Explorer, assertions that have not been published are indicated by a questionmark (?).
Assertions that have been changed locally since they were last synchronized with the version on the
server are indicated by a right arrow (>).

To Build an Assertion Extension:

1. Right-click the assertion project in Project Explorer to open its context menu, and expandHP
Systinet>Build Extension to open the location browser.

2. Enter a name for the extension project and browse for the location you want to save the project to,
and then click Save.

All assertions from the selected assertion project are copied to the Assertion extension.

Applying Extensions
You can extend Systinet by adding libraries or JSPs to the deployed EAR files, by modifying the data
model, by configuring the appearance of the UI, and by importing prepackaged data.

Extensions to Systinet come from the following sources:

l Customization Editor

Typical extensions created by Customization Editor contain modifications to the datamodel, and
possibly data required by the customization (taxonomies). They may also contain new web
components, whichmay include custom JSP and Java code.

HP Systinet Workbench (10.01) Page 32 of 63

Caution: If your extension contains new artifact types, Systinet does not create default ACLs for
them. Set default ACLs for the new artifact types in Systinet using the functionality described in
"How toManage Default Access Rights" in the Systinet Administration Guide.

l Assertion Editor, Report Editor, and Taxonomy Editor

These extensions contain assertion, reporting, and taxonomy data only. They do not involve
changes to the datamodel.

The Setup Tool opens the EAR files, applies the extensions, and then repacks the EAR files.

Apply extensions according to one of the following scenarios:

l Single-Step Scenario

The Setup Tool performs all the processes involved in applying extensions, including any database
alterations, as a single step.

Follow this scenario if you have permission to alter the database used for Systinet.

To Apply Extensions to Systinet in a Single Step:

a. Make sure that all extensions are in the following directory:

SOA_HOME/extensions

The Setup Tool automatically applies all extensions in that directory.

Note: If you are applying extensions to another server, substitute the relevant home directory
for SOA_HOME.

b. Stop the server.

c. Start the Setup Tool by executing the following command:

SOA_HOME/bin/setup.bat(sh)

d. Select theApply Extensions scenario, and click Next.

The Setup Tool automatically validates the step by connecting to the server, copying the
extensions, andmerging the SDM configuration.

e. Click Next for each of the validation steps and the setup execution.

Note: This process takes some time.

f. Click Finish to end the process.

g. Deploy the EAR file:

Assertion Editor User Guide
Chapter 5: Deploying Assertions

HP Systinet Workbench (10.01) Page 33 of 63

o JBoss

The Setup Tool deploys the EAR file automatically.

If you need to deploy the EAR file to JBoss manually, see "Redeploying the EAR File" on
page 36.

o Other Application Servers

Youmust deploy the EAR file manually.

For application server-specific details, see "Deploying the EAR File" in the Installation and
Deployment Guide.

h. Restart the server.

Caution: Applying an extension that modifies the SDMmodel may drop your full text indices. SOA_
HOME/log/setup.log contains the following line in these cases:

Could not apply alteration scripts, application will continue with slower DB
drop/create/restore scenario.

In these cases, reapply full text indices as described in the "Enabling Full Text Search" section of
the Installation and Deployment Guide.

l Decoupled DB Scenario

Database SQL scripts are runmanually. The Setup Tool performs the other processes as individual
steps that are executable on demand. This scenario is useful in organizations where the user
applying extensions does not have the right to alter the database, which is done by a database
administrator.

Follow this scenario if the user who applies extensions does not have permission tomodify the
database.

To Apply Extensions and Modify the Database Separately:

a. Make sure that all extensions are in the following directory:

SOA_HOME/extensions

The Setup Tool automatically applies all extensions in that directory.

b. Stop the server.

c. Start the Setup Tool by executing the following command:

SOA_HOME/bin/setup -a

d. Select theApply Extensions scenario, and click Next.

Assertion Editor User Guide
Chapter 5: Deploying Assertions

HP Systinet Workbench (10.01) Page 34 of 63

e. Click Next, to execute the extension application, and exit the Setup Tool.

f. Provide the scripts from SOA_HOME/sql to the database administrator.

The database administrator can use all.sql to execute the scripts that drop and recreate the
database schema.

g. Execute the Setup Tool in command-linemode to finish the extension application:

SOA_HOME/bin/setup -c

h. Redeploy the EAR file:

o JBoss

The Setup Tool deploys the EAR file automatically.

If you need to deploy the EAR file to JBoss manually, see "Redeploying the EAR File" on
the next page.

o Other Application Servers

Youmust deploy the EAR file manually.

For application server-specific details, see "Deploying the EAR File" in the Installation and
Deployment Guide.

Caution: In some specific circumstances (underscores and numbers in property names), extension
applicationmay fail because Systinet cannot create short enough database table names (31 character
maximum for most databases).

The error in setup.log resembles the following:

[java] --- Nested Exception ---
[java] java.lang.RuntimeException: cannot reduce length of identifier

'ry_c_es_Artifact02s_c_priEspPty01Group_c_priEspPty01',
rename identifier elements or improve the squeezing algorithm

[java] at com.systinet.platform.rdbms.design.decomposition.naming.impl.
BlizzardNameProviderImpl.getUniqueLimitedLengthName(

BlizzardNameProviderImpl.java:432)
[java] at com.systinet.platform.rdbms.design.decomposition.naming.impl.

BlizzardNameProviderImpl.filterTableName(BlizzardNameProviderImpl.java:374)

This is due to Systinet using an older table naming algorithm in order to preserve backward
compatibility with HP SOA Systinet 3.00 and older versions.

If you do not require backwards compatibility with these older versions, you can change the table
naming algorithm.

To Change the Table Naming Algorithm:

Assertion Editor User Guide
Chapter 5: Deploying Assertions

HP Systinet Workbench (10.01) Page 35 of 63

1. Open SOA_HOME/lib/pl-repository-old.jar#META-INF/rdbPlatformContext.xmlwith a text
editor.

2. In the rdb-nameProvider bean element, edit the following property element:

<property name="platform250Compatible" value="false"/>

3. Save rdbPlatformContext.xml

This solution only impacts properties with multiple cardinality. If the problem persists or you need to
preserve backwards compatibility, then review the property naming conventions in your extension.

Redeploying the EAR File
After using the Setup Tool to apply extensions or updates, youmust redeploy the EAR file to the
application server. For JBoss, you can do this using the Setup Tool.

Note: For other application servers, follow the EAR deployment procedures described in the
"Deploying the EAR File" in the Installation and Deployment Guide.

To Redeploy the EAR file to JBoss:

1. Stop the application server.

2. Start the Setup Tool by executing the following command:

SOA_HOME/bin/setup.bat(sh)

3. Select theAdvanced scenario, and click Next.

4. Scroll down, select Deployment, and then click Next.

When the Setup Tool validates the existence of the JBoss Deployment folder, click Next.

5. Click Finish to close the Setup Tool.

6. Restart the application server.

Assertion Editor User Guide
Chapter 5: Deploying Assertions

HP Systinet Workbench (10.01) Page 36 of 63

Chapter 6: Customizing Assertions
Assertion Editor incorporates predefined elements that are suitable for most use cases. However, you
can customize certain elements. Customization of assertions is described in the following sections:

l "Customizing Source Type" below

l "Adding Policy Extensions" below

Customizing Source Type
When you define the implementation of an assertion, you can either select from a list provided by
Assertion Editor, or you can define your own source type.

To Manipulate Source Types:

1. From themenu, selectWindow>Preferences.

The Preferences wizard opens.

2. ExpandHP Systinet Assertion Editor, and select Source Type.

A table opens displaying source type names, local names, and namespaces.

3. Do one of the following:

n To create a new source type, click Add to open the New Source Type window. Enter the
required parameters, and click OK.

n To edit an existing source type, select it and click Edit to open the Edit Source Type window.
Enter the required parameters, and click OK.

n To delete an existing source type, select it and click Delete.

Adding Policy Extensions
You can extend Systinet with custom-written validation handlers, in addition to the XQuery and XPath
handlers that are included in the distribution.

To Add a PM Extension to your Project:

1. Right-click the project in Project Explorer to open its context menu, and select Properties.

The Properties for HP Systinet wizard opens.

HP Systinet Workbench (10.01) Page 37 of 63

2. Select PM Extensions to open a list of PM extensions in the project.

3. Do one of the following:

n Click Add PM Extension to open the Select Extension window. Select the required extension,
and click OK.

n Click Add External PM Extension to open the Select PM Extension window. Browse for the
required extension, and click OK.

After adding a PM extension to your Assertion Editor project, apply it to all relevant Systinet servers
with the Setup Tool. For information about the Setup Tool, see the Systinet Administrator Guide.

Assertion Editor User Guide
Chapter 6: Customizing Assertions

HP Systinet Workbench (10.01) Page 38 of 63

Chapter 7: Java Assertion Demo
This demo shows how to create and use a custom assertion validator. You will learn how to:

l Create a custom assertion validator.

l Apply a custom assertion validator into Systinet as an extension.

l Create an assertion in Assertion Editor based on our validator.

l Publish the assertion to the Platform repository.

You can find the demo sources in SOA_HOME\demos\policymgr\assertionvalidator. It contains:

l An Eclipse project for developing a custom assertion validator (in the validator folder).

l An Assertion Editor project for developing a sample assertion (in the assertion folder).

l Demo data for testing our assertion validator (in the demodata folder).

The demo is divided into separate procedures, described in the following sections:

l "Creating the Assertion Validator" below

l "Applying the Validator Extension" on page 41

l "Creating and Deploying the Assertion" on page 41

l "Testing the Assertion Validator" on page 42

Creating the Assertion Validator
A sample Eclipse project is available in SYSTINET_
HOME\demos\policymgr\assertionvalidator\validator. This project can be imported into Eclipse
as an existing project. It has the following structure:

l src/

A directory containing the Java sources.

l lib/

A directory containing external libraries used by assertion validator.

l resources/extension.xml

HP Systinet Workbench (10.01) Page 39 of 63

A Policy Manager extension definition file.

l build.xml

An Ant build file to build extension containing the validators.

The src folder contains a sample implementation of an assertion validator:
mycompany.validator.demo.ServiceNameValidator. This validator applies toWSDL documents
and checks whether the name of services defined inWSDL starts with the words "dummy," "test,"
"sample," or "example."

The assertion validator class must implement bothmethods of the interface
org.systinet.policy.validation.AssertionValidator:

l QName getDialect()—Must return a QNamewhich will be used in assertions to invoke this
validator. Our example uses the QName {http://mycompany/validation}
ServiceNameValidator.

l void validate(ValidationListener listener, SourceCollection sources, SourceType
sourceType, ValidatedAssertion[] assertions, ValidationContext context)—This is
the validationmethod which is called when a sourcemust be validated against an assertion using
this validator. Our sample validator parses the XML content of theWSDL document and checks
each service name (under XPath /wsdl:definitions/wsdl:service/@name) to see whether it
starts with the unwanted words or not.

Note: For more information about the Policy Manager's interfaces see the Systinet Javadoc.

To build an extension from your assertion implementation, you need an extension definition file, which
is available at resources/extension.xml. It contains a unique identifier (attribute uri) which identifies
the extension, the extension name (element name), and the list of contained assertion validators
(elements assertion-validator):

<?xml version="1.0"?>
<extension version="1.0" uri="mycompany.ext.demo">

<name>Demo Assertion Validators</name>
<assertion-validator class="mycompany.validator.demo.ServiceNameValidator" />

</extension>

To build the extension you can use Eclipse to start an ANT build using build.xml or use the following
procedure:

To Build an Extension for the Assertion Validator:

1. Change your working directory to SYSTINET_HOME\demos\policymgr\assertionvalidator.

2. To get help run run.bat or run.sh.

3. Build the extension with the command run make.

4. Check the created extension in SYSTINET_
HOME\demos\policymgr\assertionvalidator\validator\dist\mycompany.ext.demo.jar.

Assertion Editor User Guide
Chapter 7: Java Assertion Demo

HP Systinet Workbench (10.01) Page 40 of 63

Caution: If you want use an Eclipse project for this demo youmust define the SYSTINET_CLIENT_LIB
classpath variable in the Eclipse IDE. The SYSTINET_CLIENT_LIB variable must point to SYSTINET_
HOME/client/lib.

Applying the Validator Extension
After you create mycompany.ext.demo.jar, apply it to Systinet as an extension.

To Apply the Extension to Systinet:

1. Make sure the HP Systinet server is not running.

2. Copy SYSTINET_
HOME\demos\policymgr\assertionvalidator\validator\dist\mycompany.ext.demo.jar
into SYSTINET_HOME\extensions.

3. Execute SYSTINET_HOME\bin\setup and select theApply Extensions scenario.

4. Start HP Systinet.

For details, see "Applying Extensions" on page 32.

Creating and Deploying the Assertion
There is a sample project for Assertion Editor in SOA_
HOME\demos\policymgr\assertionvalidaton\assertion.

You can use this sample project to create your own assertions. It already contains a demo assertion
named WSDLServiceNameIsNotDummy. Browse this assertion to see that it is applicable toWSDL
Documents and implements the ServiceNameValidator created in "Creating the Assertion Validator"
on page 39 (linked through SYSTINET_
HOME\demos\policymgr\assertionvalidator\validator\dist\mycompany.ext.demo.jar).

The XML definition of the assertion is automatically filled out according to the definition in assertion
validator (in themethod getDialect()):

<my:ServiceNameValidator xmlns:my="http://mycompany/validation"
xmlns:pm="http://systinet.com/2005/10/soa/policy"/>

After creating the assertion, deploy it. Or deploy the existing WSDLServiceNameIsNotDummy assertion.

To Publish the Assertion to Systinet:

1. Open Assertion Editor.

2. Open the File menu and select Import>Existing Projects into Workspace and open the demo
project.

Assertion Editor User Guide
Chapter 7: Java Assertion Demo

HP Systinet Workbench (10.01) Page 41 of 63

3. In the Server Explorer, open the context menu and define aNew Server pointing to your Systinet
server.

4. In the Project Explorer, open the Project context menu and select Properties>HP Systinet
Server, and select the server you just defined.

5. Publish the demo assertion from the Project Explorer.

Open theWSDLServiceNameIsNotDummy.asr context menu and select HP Systinet>Upload
to Server.

For more details, see the "Publishing Assertions" on page 30.

Testing the Assertion Validator
In the previous sections you created and deployed an assertion validator and an assertion. The next
step is to use this new assertion in a validation for a business test case. To do this, you need to do the
following in Systinet:

l Publish aWSDL containing a service element where the name attribute starts with Test. For
details, see "How to Publish Content" in the Systinet User Guide.

l Create a Technical Policy applicable toWSDLs and add the WSDLServiceNameIsNotDummy
assertion to it. For details, see "How toManage Technical Policies" in the Systinet Administration
Guide.

l Create a Policy Report using artifact type, WSDL, and the new technical policy. For details, see
"How to Create Policy Reports" in the Systinet User Guide.

l Execute the policy report and review the result. TheWSDLwith the service name attribute Test
must fail while all others should pass. For details, see "How to Review Policy Reports" in the
Systinet User Guide.

Assertion Editor User Guide
Chapter 7: Java Assertion Demo

HP Systinet Workbench (10.01) Page 42 of 63

Appendix A: Dialog Box Reference
Each Assertion Editor input dialog is described in the following sections:

l "Define New ImplementationWizard" below

l "Run Configurations Dialog" on page 45

Define New Implementation Wizard
The Define New ImplementationWizard enables you to add a new implementation of an assertion
either from an existing resource type or by adding a new one.

The wizard contains the following steps.

1. Enter general parameters to define the new implementation.

Screenshot: Define New Implementation: Select Resource Type

HP Systinet Workbench (10.01) Page 43 of 63

Parameter Definition

Define New Type Select this check-box tomanually define the resource type you want
to use.

Select an Existing Type Select a predefined resource type from the drop-downmenu.

Filter Text Use the input to reduce the list of resource types.

Show Common Types
only

De-select to show the full list of resource types.

2. If you are defining a new implementation resource type, youmust specify the namespace and
local name.

Screenshot: Define New Implementation: New Type

Parameter Definition

Namespace Namespace of the source type.

Local Name The local name of the source type.

Load from File Select to load a source document defining the source type.

3. Define the parameters for a new resource type. Select the implementation type from the available
options.

Assertion Editor User Guide
Appendix A: Dialog Box Reference

HP Systinet Workbench (10.01) Page 44 of 63

Screenshot: Define New Implementation: Implementation Type

Run Configurations Dialog
Define parameters to test the assertion before publishing.

Assertion Editor User Guide
Appendix A: Dialog Box Reference

HP Systinet Workbench (10.01) Page 45 of 63

Screenshot: Run Configurations

Parameter Definition

Name The name you want to use for the test.

Assertion Browse for and select the assertion you want to test.

Source Add or remove a document to test against the assertion.

Parameters Enter the required parameters for the selected source.

Assertion Editor User Guide
Appendix A: Dialog Box Reference

HP Systinet Workbench (10.01) Page 46 of 63

Appendix B: Assertion Document Details
“UDDI BE 01 Assertion XMLDocument” is the raw XML document of the UDDI BE 01 assertion.

UDDI BE 01 Assertion XML Document

<?xml version="1.0" encoding="UTF-8"?>
<pm:Assertion xmlns:pm="http://systinet.com/2005/10/soa/policy"

xmlns:up="http://systinet.com/2005/10/soa/policy/uddi"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<pm:Parameter Name="lang" Type="xs:string" XPointer="xpointer(@RequiredLang)"/>
<!-- template of the instance of the assertion -->

<pm:Template>
<up:UDDI_BE_01 RequiredLang="en"/>

</pm:Template>
<pm:Validation SourceType="xmlns(ns=urn:uddi-org:api_v2)qname(ns:businessEntity)"

xmlns:uddi="urn:uddi-org:api_v2"
xmlns:val="http://systinet.com/2005/10/soa/policy/validation">

<!-- the validation is implemented via xpath expression -->
<val:XPath>

count(/uddi:businessEntity/uddi:name[@xml:lang=$lang])>0
</val:XPath>

</pm:Validation>
</pm:Assertion>

Assertion documents contain the following elements:

l pm:Assertion/pm:TemplateThis required element must contain exactly one child element, which
is a reference template of how this assertion looks as aWS-Policy document. If there are
namespace definitions here, they are included in the reference template. If the assertion has any
parameters, you can define default values for them in the reference template. If there are no
namespaces or parameters, the reference template can be in the form <name/>.

l pm:Assertion/pm:ParameterAn assertion in aWS-Policy document may contain parameters
including timeouts (inWS-ReliableMessaging), type of authentication, required SOAP header
elements, etc. This element gives a definition of such parameters, including the type of the
parameter and where the parameter can be found in an instance of the assertion. This information is
used both by the UI console and by policy validators.

l pm:Assertion/pm:Parameter/@NameThe name of the parameter. This namewill be shown in the
UI.

l pm:Assertion/pm:Parameter/@TypeType of the parameter's value.

l pm:Assertion/pm:Parameter/@TaxonomyA taxonomy with values that the parameter can adopt.
The taxonomy is specified using its tModelKey. This attribute is only required when Type has the
pm:taxonomy value (with pm being the xmlns:pm="http://systinet.com/2005/10/soa/policy

HP Systinet Workbench (10.01) Page 47 of 63

namespace), otherwise it is ignored (and optional).

l pm:Assertion/pm:Parameter/@XPointerIn the absence of a ValueXPointer attribute, this
attribute identifies the place of the parameter in the assertion's template (that is, how the attribute
can be obtained from an instance of the assertion). Only a simplified form of the XPointer can be
used.

The evaluation context for the XPointer is the root of the actual assertion. So, for example, b[1] is
the first "b" child of the assertion's element.

In this release, an XPath starting with "/" is interpreted to point to the root of the policy document.
This behavior will be changed, so do not use absolute XPaths.

l pm:Assertion/pm:Parameter/@ValueXPointer ValueXPointer identifies the place of the
parameter relative to the place identified by the XPointer attribute. When the parameter is not set,
the element referenced by the XPointer attribute is removed from the instance. When the
parameter is defined, its value is set to a place identified by the concatenation of the XPointer and
ValueXPointer values. The rationale for this attribute is that there are assertions whose schema
requires that either an attribute is set or the attribute's parent element is missing.

l pm:Assertion/pm:Parameter/@OptionalThis attribute tells whether the parameter is optional,
that is, if it can be omitted from the assertion instance.

l pm:Assertion/pm:ValidationThe implementation, as described in "Implementations" on page 53.

The key components of the assertion, visible in both the UI and the XML document, are described in
the following sections:

l "Reference Templates" below

l "Parameters" on the next page

l "Implementations" on page 53, which includes the validation handler.

Reference Templates
The reference template defines what the assertion looks like instantiated as aWS-Policy document
(See the generic <pm:Template> element shown in “UDDI BE 01 Assertion XMLDocument”.). If there
is a namespace to be defined it is included in the reference template. If there are parameters, you can
define the default values they point to. If there is no namespace or parameter, the template can be a
simple empty tag, like <assertionName/>.

The UDDI BE 01 assertion reference template defines the up namespace. The assertion has one
parameter, lang, which points to the RequiredLang attribute. The reference template sets the default
value of this parameter, en. The actual XML of the reference template is:

<p:Template>
<up:UDDI_BE_01 RequiredLang="en"

Assertion Editor User Guide
Appendix B: Assertion Document Details

HP Systinet Workbench (10.01) Page 48 of 63

xmlns:up="http://systinet.com/2005/10/soa/policy/uddi"/>
</p:Template>

Reference templates must obey the following rules:

l The template namemust be unique.

l The templatemust be a complete and valid XML element, not a fragment.

l The template can carry a namespace. This is the case with theWS-I BasicProfile assertion
reference templates, such as <wsi:BP1004 xmlns:wsi="http://www.ws-
i.org/testing/2004/07/assertions/"/>

Parameters
Parameters represent requirements whose specific values may vary. They include such things as
timeouts, type of authentication, required SOAP header elements, and so on. The value referenced by
a parameter can differ between technical policies containing the parameter's parent assertion because
each technical policy contains its own instance of the assertion.

Using parameters lets the policy developer reuse assertions. The developer can set a different required
value for an assertion in each policy in which the assertion is used. Without parameters, the developer
would need a separate assertion for each required value.

“AssertionWith Parameter” is an assertion taken from a policy file (namespaces omitted for brevity).
Note the attribute RequiredLangwith the value of "en". This attribute represents the RequiredLang
parameter. Its default value is "en" for English. This default value is specified in the reference template
(see "Reference Templates" on the previous page) but the policy developer can change this value in
individual policy files. If the assertion developer does not specify the parameter's default value in the
reference template and does not set the parameter as optional, the policy developer must set the
parameter value when creating a technical policy with the parameter's parent assertion.

Assertion With Parameter

<wsp:Policy xmlns:wsp="..."/>
<up:UDDI_BE_01 RequiredLang="en" xmlns:up="..."/>

</wsp:Policy>

A parameter definition has the following structure:

l pm:Parameter/@Name

Name of the parameter.

l pm:Parameter/pm:Description

Description of the parameter.

l pm:Parameter/@XPointer

Assertion Editor User Guide
Appendix B: Assertion Document Details

HP Systinet Workbench (10.01) Page 49 of 63

Location of themodified attribute (expressed as an XPointer).

l pm:Parameter/@ValueXPointer

Location of themodified attribute (expressed as an XPointer). See below for details.

l pm:Parameter/@Optional

Optionality of the parameter (if it is optional, it might be left unfilled).

l pm:Parameter/@Type

Type of the parameter's value. Supported values aremost of built-inW3C Schema data types (see
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes):

n xs:string

n xs:boolean

n xs:float

n xs:double

n xs:duration

n xs:dateTime

n xs:time

n xs:date

n xs:gYearMonth

n xs:gYear

n xs:gMonthDay

n xs:gDay

n xs:gMonth

n xs:hexBinary

n xs:base64Binary

n xs:anyURI

n xs:QName

Assertion Editor User Guide
Appendix B: Assertion Document Details

HP Systinet Workbench (10.01) Page 50 of 63

http://www.w3.org/TR/xmlschema-2#built-in-datatypes

n xs:integer

n xs:long

n xs:short

n xs:byte

n xs:unsignedLong

n xs:unsignedInt

n xs:unsignedShort

n xs:unsignedByte

Where xs is the xmlns:xs="http://www.w3.org/2001/XMLSchema" namespace.

Also supported is the value pm:taxonomy (with pm being the
xmlns:pm="http://systinet.com/2005/10/soa/policy namespace), which specifies that the
parameter will take on values from the taxonomy specified by the@Taxonomy attribute.

l pm:Parameter/@Taxonomy

Taxonomy whose values the parameter adopts. Specified with the taxonomy tModelKey. The
attribute is required only when Type has the pm:taxonomy value, otherwise it is be ignored (and
optional). Actual parameter values are specified with keyValues in policy documents.

The following examples demonstrate the use of a taxonomy-based parameter and the corresponding
policy document:

Parameter with Taxonomy Type

<pm:Parameter Name="artifactType" Optional="true" Type="pm:taxonomy"
Taxonomy="uddi:systinet.com:soa:model:taxonomies:artifactTypes"
XPointer="xpointer(@artifactType)"
xmlns:pm="http://systinet.com/2005/10/soa/policy">

<pm:Description>Artifact type to restrict applicability.</pm:Description>
</pm:Parameter>

Policy Document with a Taxonomy-Based Assertion

<wsp:Policy xmlns:ws="...">
<up:MyAssertion

artifactType="urn:com:systinet:soa:model:artifacts:soa:applicationArtifact"
xmlns:up="..."/>

</wsp:Policy>

The following assertion checks whether communication settings contain a connection timeout set to at
least 10 seconds. Additionally, the XMLSchema of this assertion specifies that either the "value" must
be present, or, to use the default value, the whole up:ConnectionTimeout element must bemissing.

<wsp:Policy xmlns:wsp="..."/>

Assertion Editor User Guide
Appendix B: Assertion Document Details

HP Systinet Workbench (10.01) Page 51 of 63

<up:Communication xmlns:up="...">
<up:ConnectionTimeout value="10000"/>
...

</up:Communication>
</wsp:Policy>

In this case, a single XPointer referencing the up:ConnectionTimeout/@value attribute is not enough,
because Policy Manager would not know that the whole element should be removed when the value is
not entered. Therefore the parameter is now described in two XPaths:

l Location of the element that should be removed when the value of the parameter is not set

l Location of the value within the element defined above

The location of the element is set in the XPointer and the location of the value within the element is set
in a ValueXPointer. For example, “Parameter with ValueXPointer Set at 5000”is a parameter with the
ValueXPointer set at 5000. This results in the policy document in “Policy Document with ValueXPointer
in Parameter Set to 5000”. By contrast, if the developer leaves the ValueXPointer blank, the resulting
policy document is “Policy Document with Empty ValueXPointer in Parameter”.

Parameter with ValueXPointer Set at 5000

<p:Parameter Name="ConnectionTimeout" Optional="false" Type="xsd:integer"
XPointer="xmlns(up=...)xpointer(up:ConnectionTimeout)"
ValueXPointer="xpointer(@value)"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<p:Description>Connection timeout in milliseconds.</p:Description>
</p:Parameter>

Policy Document with ValueXPointer in Parameter Set to 5000

<wsp:Policy xmlns:wsp="..."/>
<up:Communication xmlns:up="...">

<up:ConnectionTimeout value="5000"/>
</up:Communication>

</wsp:Policy>

Policy Document with Empty ValueXPointer in Parameter

<wsp:Policy xmlns:wsp="..."/>
<up:Communication xmlns:up="...">
</up:Communication>

</wsp:Policy>

Table “XPointer Combinations and Results” shows the XML representations of various XPointer and
ValueXPointer combinations, for optional and required attributes, and whether the value is defined or
not. “XPointer” is a correctly defined XPointer.

Note:Only a simplified form of XPointer is recognized in the parameter definition. The rationale is that
in this context XPointer is used not only for retrieving data, but also for creating parameters via the UI.
This is not possible with general XPointers. The recognized XPointer must have the following structure:

xmlns(prefix1=ns1)*xpointer({/{<prefix>:}?<localname>[<index>]}*)

Assertion Editor User Guide
Appendix B: Assertion Document Details

HP Systinet Workbench (10.01) Page 52 of 63

XPointer Combinations and Results

Optional Value XPointer ValueXPointer Result in Policy Schema

Yes/No 'ABC' @P — <aP="ABC"/>

Yes — @P — <a/>

No — Prohibited

Yes 'ABC' b[1] @P <a><b P='ABC'/>

Yes — b[1] @P <a/> (XPointer is removed.)

Yes 'ABC' b[1] — <a>ABC

Yes 'ABC' b[1] c[1] <a><c>ABC</c>

Yes — b[1] c[1] <a/> (XPointer is removed.)

XPointer

xmlns(soap=http://schemas.xmlsoap.org/soap/envelope/)
xmlns(myns=http://systinet.com/examples/foo)xpointer(soap:Envelope[1]/soap:Body[1]
/myns:Foo)

Implementations
An assertion has one implementation for each source type to which the assertion applies. Each
implementation is propagated into its own pm:Validation element. An implementation contains the
definition of the validation handler, in p:Validation/##other[1], and the type of artifact which the
assertion can be used to validate, in p:Validation/@SourceType.

Implementations use validation handlers if they do not specify manual validation. Validation handlers
are pluggable pieces of code that show Policy Manager how to validate a source document. Validation
handlers are usually XPath or XQuery expressions, in which case the source code is included inside
the implementation, but they can be custommade. Custommade validation handlers are written in
Java and the implementation references the Java class.

Validation handlers and source types are described in the following sections:

l "Source Type" on the next page

A description of all source types to which an implementationmay apply.

l "XPath Assertions" on page 56

XPath validation handlers.

l "XQuery Assertions" on page 57

XQuery validation handlers.

Assertion Editor User Guide
Appendix B: Assertion Document Details

HP Systinet Workbench (10.01) Page 53 of 63

Source Type
The pm:Validation@SourceType attribute defines the type of artifact validated by the assertion.
SourceTypemust be a simplified XPointer identifying the root element of the resource which the
assertion validates. If this parameter is omitted, the implementation would apply to sources of any
type. However, for performance reasons it is better to map validation to a concrete source type, as
narrowly as possible.

SourceType can be set as one of the following:

l A general artifact type with the namespace usually defined in the pm:Validation element. Please
see Table “Source Types Applying to General Resources” for a list of these SourceTypevalues and
their associated artifacts and namespaces.

l An artifact type. These share the namespace
xmlns:a="http://systinet.com/2005/05/soa/model/artifact". A list of these SourceType
values and their matching artifact types is given in the following table.

Source Types Applying to General Resources

Resource SourceType value

Any resource xmlns(rest=http://systinet.com/2005/05/soa/resource)rest:resource

SOAP message xmlns(soap=http://schemas.xmlsoap.org/soap/envelope/)
soap:Envelope

UDDI v3 Business
Entity

xmlns(uddi=urn:uddi-org:api_v3)uddi:businessEntity

WSDLDefinition xmlns(wsdl=http://schemas.xmlsoap.org/wsdl/)wsdl:definitions

XML Schema xmlns(xsd=http://www.w3.org/2001/XMLSchema)xsd:schema

SourceTypes Applying Artifacts

Artifact Type SourceType Value

Agreement xmlns(a=http://systinet.com/2005/05/soa/model/artifact)
agreementArtifact

Application xmlns(a=http://systinet.com/2005/05/soa/model/artifact)
hpsoaApplicationArtifact

Business Policy xmlns(a=http://systinet.com/2005/05/soa/model/artifact)
businessPolicyArtifact

Business Service xmlns(a=http://systinet.com/2005/05/soa/model/artifact)
businessServiceArtifact

Assertion Editor User Guide
Appendix B: Assertion Document Details

HP Systinet Workbench (10.01) Page 54 of 63

Artifact Type SourceType Value

Consumption Request xmlns(a=http://systinet.com/2005/05/soa/model/artifact)
contractRequestArtifact

Contact xmlns(a=http://systinet.com/2005/05/soa/model/artifact)contactArtifact

Contract xmlns(a=http://systinet.com/2005/05/soa/model/artifact)contractArtifact

Conversation
Document

xmlns(a=http://systinet.com/2005/10/soa/policy/report)Conversation

Documentation xmlns(a=http://systinet.com/2005/05/soa/model/artifact)
documentationArtifact

HTTP Message
Document

xmlns(a=http://systinet.com/2005/10/soa/policy/report)Message

Person xmlns(a=http://systinet.com/2005/05/soa/model/artifact)personArtifact

Policy xmlns(a=http://systinet.com/2005/05/soa/model/artifact)policyArtifact

Registry xmlns(a=http://systinet.com/2005/05/soa/model/artifact)registryArtifact

Report xmlns(a=http://systinet.com/2005/05/soa/model/artifact)reportArtifact

SOAP Service xmlns(a=http://systinet.com/2005/05/soa/model/artifact)
webServiceArtifact

SLO xmlns(a=http://systinet.com/2005/05/soa/model/artifact)sloArtifact

Schema xmlns(a=http://systinet.com/2005/05/soa/model/artifact)schemaArtifact

Taxonomy xmlns(a=http://systinet.com/2005/05/soa/model/artifact)
taxonomyArtifact

UDDI Channel xmlns(a=http://systinet.com/2005/05/soa/model/artifact)
uddiChannelArtifact

UDDI Entity xmlns(a=http://systinet.com/2005/05/soa/model/artifact)
uddiEntityArtifact

UDDI Registry xmlns(a=http://systinet.com/2005/05/soa/model/artifact)
uddiRegistryArtifact

WS-Policy xmlns(a=http://systinet.com/2005/05/soa/model/artifact)wsPolicyArtifact

WSDL xmlns(a=http://systinet.com/2005/05/soa/model/artifact)wsdlArtifact

Web Application xmlns(a=http://systinet.com/2005/05/soa/model/artifact)webArtifact

XML Schema xmlns(a=http://systinet.com/2005/05/soa/model/artifact)
xmlSchemaArtifact

Assertion Editor User Guide
Appendix B: Assertion Document Details

HP Systinet Workbench (10.01) Page 55 of 63

Artifact Type SourceType Value

XMLService xmlns(a=http://systinet.com/2005/05/soa/model/artifact)
xmlServiceArtifact

XSLT xmlns(a=http://systinet.com/2005/05/soa/model/artifact)xsltArtifact

XPath Assertions
Example “XPath Expression” is an XPath that applies to UDDI business entities and returns every
name element whose langattribute is set to the same value as the value of the lang parameter. If the
XPath returns a non-empty list, the source document is considered to be valid against the assertion. If
the returned node list is empty, validation has failed.

XPath Expression

<val:XPath>
count(/uddi:businessEntity/uddi:name[@xml:lang=$lang])>0

</val:XPath>

Youmust take the following points into account when writing XPath assertions:

l Namespace

The element val:XPath is the namespace context for the XPath expression. If you need to define a
prefix-namespacemapping, do it on this element or its ancestors.

l Type system

The XPath engine used in this enforcer is the free version of the Saxon-B 8.5.1
XSLT/XPath/XQuery engine. Although this version does not contain XML Schema parsing, it still
checks for type conformance. For example, if you need to check that the value of attribute "xyz" is
greater than 5, include in your XPath expression:

xs:integer(@xyz) > 5

If you fail to retype to integer, the XPath expression will never be fulfilled and no warning will be
returned.

l Parameter type

In this release, assertion parameters are always passed as strings, regardless of the schema type
written in the parameter definition. For this reason you have to explicitly cast the parameter in
numerical comparisons. For example, the following XPath expression would be used in an assertion
which checks that themessage's body has at most a given number of elements (defined as a
parameter namedMaxElements):

count(soap:Body//*) <=xs:integer($MaxElements)

Assertion Editor User Guide
Appendix B: Assertion Document Details

HP Systinet Workbench (10.01) Page 56 of 63

http://www.saxonica.com/

XQuery Assertions
XQuery expression can be represented as follows:

XQuery Expression

<val:XQuery>
declare namespace rest="http://systinet.com/2005/05/soa/resource";
declare namespace a="http://systinet.com/2005/05/soa/model/artifact";
declare namespace p="http://systinet.com/2005/05/soa/model/property";
declare namespace val="http://systinet.com/2005/10/soa/policy/validation";
declare variable $metadata.source.url external;
if (exists

(rest:resource/rest:descriptor/a:businessServiceArtifact/p:productionStage)) then
val:assertionOK()

else
val:assertionFailed(concat('This service is not assigned a category from a

lifecycle taxonomy. ',
'To fix this problem, go to the

service, ',
'click on "Edit" and assign the category.'))

</val:XQuery>

The XQuery in “XQuery Expression” comes from the Service Supports Lifecycle assertion. The XQuery
applies to business services and checks that each service has a lifecycle stage assigned to it. In the
Systinet 2 use of XQueries, the assertionOK function is called only one time per tested artifact if the
artifact passes validation, whereas if the artifact fails, the assertionFailed function is called for each
individual violation. For the XQuery in “XQuery Expression” there is no logical need to call
assertionFailedmore than once, since the artifact either has one lifecycle stage or none at all. In
“XQuery ReportingMultiple Failures”, the XQuery checks each include and import element and
makes sure they use relative references. The assertionFailed function is called for each element
that does not use relative references.

XQuery Reporting Multiple Failures

declare namespace xs = "http://www.w3.org/2001/XMLSchema";
declare namespace

val="http://systinet.com/2005/10/soa/policy/validation";
let $errors :=
for $el in //xs:*[local-name() = 'include' or local-name() = 'import'] where

($el/@schemaLocation and contains($el/@schemaLocation, ':'))
return
val:assertionFailed(concat('This xs:', local-name($el), ' uses absolute

reference to another schema.'), $el)
return
if (empty($errors)) then

val:assertionOK()
else

()

Assertion Editor User Guide
Appendix B: Assertion Document Details

HP Systinet Workbench (10.01) Page 57 of 63

Note:Namespaces are not propagated from parent elements but defined via standard XQuery
declarations.

Together with the source document, XQuery assertions can be called with additional parameters. For
example, these parameters can be used by the assertion to perform additional checks or output the
location of the problem back to the user. The parameters are added to the XQuery expression of the
assertion. A metadata parameter is shown in “XQuery Expression”.

Parameter name Description

metadata.source.url The URL of the source of validation. In the case of HTTP
request/response, this points to the request/responsemessage.
For one-way messages, WSDL documents etc. it points to the
resource being validated.

metadata.description.url The URL of the associated description document (for example,
WSDL associated to a log of messages).

metadata.source.is.subdocument Detects subdocuments. Returns "false" if document is
standalone, "true" if document is part of a larger document.

If you want to write a new XQuery assertion or modify an existing one, follow these guidelines:

l The XQuery engine used in this enforcer is the free version of the Saxon-B 8.5.1
XSLT/XPath/XQuery engine. Although this version does not contain XML Schema parsing, it still
checks for type conformance. For example, if you need to check that the value of attribute "xyz" is
greater than 5, write:

xs:integer(@xyz) > 5

Failing to do so, the XQuery expressionmight never be fulfilled. If this happens, no warning will be
returned.

l In this release, assertion parameters are always passed as strings, regardless of the schema type
written in the parameter definition. Because of this youmust explicitly cast the parameter in
numerical comparisons. For example, the following expression would be used in an assertion which
checks that themessage's body has at most a given number of elements (defined as a parameter
named MaxElements):

count(soap:Body//*) <= xs:integer($MaxElements)

Assertion Editor User Guide
Appendix B: Assertion Document Details

HP Systinet Workbench (10.01) Page 58 of 63

http://www.saxonica.com/

Appendix C: Integrating XQuery Function
Libraries
You can integrate a user-defined XQuery Library into Assertion Editor.

To Integrate an XQuery Function Library:

1. You JAR file must have the following structure:

n your-lib.jar

o META-INF

l your-XQueryContext.xml

o com

l your-class

your-XQueryContext.xml shouldmatch the following structure:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:jee="http://www.springframework.org/schema/jee"
xmlns:lang="http://www.springframework.org/schema/lang"
xmlns:tx="http://www.springframework.org/schema/tx"
xmlns:util="http://www.springframework.org/schema/util"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop.xsd
http://www.springframework.org/schema/jee
http://www.springframework.org/schema/jee/spring-jee.xsd
http://www.springframework.org/schema/lang
http://www.springframework.org/schema/lang/spring-lang.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">
<context:annotation-config/>

HP Systinet Workbench (10.01) Page 59 of 63

<!--STM Lifecycle Policies: XQuery extension for Policy Manager,
depends on lifecycle API-->

<bean id="your-bean-id" class="your-class-XQueryExtension"
scope="singleton"/>
</beans>

2. Open AE_LIB/META-INF/eclipseBeanRefContext.xml in a text editor.

Note: AE_LIB refers to WB_HOME/plugins/com.systinet.tools.assertioneditor.lib_
4.10.n.xxx for standalone version or WB_
HOME/dropins/sw/eclipse/plugins/com.hp.systinet.tools.ae.lib_
4.10.n.xxx for the plugin version.

3. Add your mapping file to the constructor-arg element:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="com.hp.systinet"
class="com.hp.systinet.spring.ClassPathXmlApplicationContext">

<constructor-arg>
<list>

<value>classpath*:META-INF/${mapping_file.xml}</value>
<value>classpath*:META-INF/pmContext.xml</value>
<value>classpath*:stmContext.xml</value>

</list>
</constructor-arg>

</bean>
</beans>

4. Add the XQuery library to the AE_LIB/lib/ folder.

5. Modify AE_LIB/META-INF/MANIFEST.MF to set the Eclipse classpath. Add the XQuery library to
the Bundle-ClassPath item. For example, lib/lifecycle-xquery.jar.

6. Restart Workbench with command, start.exe -clean.

Assertion Editor User Guide
Appendix C: Integrating XQuery Function Libraries

HP Systinet Workbench (10.01) Page 60 of 63

Appendix D: Listing Built-In XQuery Function
Libraries
Systinet includes the following built-in XQuery function libraries. Users can use these libraries when
writing XQuery definitions. For examples of how to use these libraries, see "Integrating XQuery
Function Libraries" on page 59.

l Namespace: http://hp.com/systinet/2010/07/policy

getArtifactCollection

String getArtifactCollection(String artifact)

Returns an artifact collection of a specific artifact type.

Parameters:

artifact - artifactUri or local part.

(For example: "urn:com:systinet:soa:model:artifacts:soa:businessService" or
"businessServiceArtifact")

Returns an array of artifacts that belongs to an artifact type.

l Namespace: http://hp.com/systinet/2009/05/lifecycle

getGovernanceRecord

Element getGovernanceRecord(String artifactUuid)

Returns an artifact governance record.

Parameters:

artifactUuid - UUID of an artifact.

getGovernanceProcess

Element getGovernanceProcess(String artifactUuid)

Returns an artifact governance process.

Parameters:

HP Systinet Workbench (10.01) Page 61 of 63

http://hp.com/systinet/2010/07/policy

artifactUuid - uuid of an artifact

l Namespace: http://hp.com/2012/11/alm

getAlmServerList

Element getAlmServerList()

Method called to return a list of ALM Servers.

getAlmBeans

Method called to return requirement, test or defect of a soap service.

Element getAlmBeans(Node almServerNode, String type, String systinetId)

Parameters:

almServerNode - alm server node information of the specific ALM server.

type - type of bean such as almService, almReq, almTest and almDefect.

systinetId - UUID of the soap service.

l Namespace: http://systinet.com/2005/10/soa/policy/validation/xquery

downloadS2Resource

void downloadS2Resource(String path, String metadata.source.url)

Method called to get the document node of the document at resolve-uri
(path, metadata.source.url).

Parameters:

path - base URI of the resource

metadata.source.url - the relative URI

l Namespace: http://systinet.com/2005/10/soa/policy/validation

assertionOK

void assertionOK()

Method called to register an assertion which has passed the validation of the specified document.

Assertion Editor User Guide
Appendix D: Listing Built-In XQuery Function Libraries

HP Systinet Workbench (10.01) Page 62 of 63

assertionNotApplicable

void assertionNotApplicable()

Method called to register an assertion which has failed the validation of the specified document

assertionFailed

void assertionFailed(L10n errorMessage);

Method called to register an assertion which has failed the validation of the specified document.

Parameters:

errorMessage - Error message (error description).

assertionImplementationError

void assertionImplementationError(L10n errorMessage)

Method called to register an assertion which has an error in its implementation.

Parameters:

errorMessage - errorMessage - Message describing the error.

Assertion Editor User Guide
Appendix D: Listing Built-In XQuery Function Libraries

HP Systinet Workbench (10.01) Page 63 of 63

	About this Guide
	Chapter 1: Assertion Editor
	Workbench Suite
	Overview
	User Interface
	Project Explorer
	Server Explorer
	Editor View

	Chapter 2: Getting Started
	Installing Workbench
	SSL Configuration
	Creating an Assertion Project File
	Downloading and Importing Assertions

	Chapter 3: Managing Assertions
	Creating Assertions
	Editing Assertions
	Editing General Properties
	Adding and Deleting Implementations
	Writing XPath Definitions
	Writing XQuery Definitions
	Editing XQuery Definitions
	Editing Reference Templates

	Deleting Assertions
	Comparing Assertion Versions

	Chapter 4: Validating and Publishing Assertions
	Testing Assertions
	Resolving Conflicts
	Publishing Assertions

	Chapter 5: Deploying Assertions
	Building an Assertion Extension
	Applying Extensions
	Redeploying the EAR File

	Chapter 6: Customizing Assertions
	Customizing Source Type
	Adding Policy Extensions

	Chapter 7: Java Assertion Demo
	Creating the Assertion Validator
	Applying the Validator Extension
	Creating and Deploying the Assertion
	Testing the Assertion Validator

	Appendix A: Dialog Box Reference
	Define New Implementation Wizard
	Run Configurations Dialog

	Appendix B: Assertion Document Details
	Reference Templates
	Parameters
	Implementations
	Source Type
	XPath Assertions
	XQuery Assertions

	Appendix C: Integrating XQuery Function Libraries
	Appendix D: Listing Built-In XQuery Function Libraries

