
1

hp Unified Correlation Analyzer

Unified Correlation Analyzer
for EBC

Inference Machine

Version 3.2

Release Notes

Edition: 1.0

For Windows© and Linux (RHEL 5.9 & 6.5) Operating Systems

April 2015

© Copyright 2015 Hewlett-Packard Development Company, L.P.

2

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for
technical or editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notices

© Copyright 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and
64-bit configurations) on all HP 9000 computers are Open Group UNIX 95 branded
products.

Java™ is a trademark of Oracle and/or its affiliates.

Microsoft®, Internet Explorer, Windows®, Windows Server®, and Windows NT® are
either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City,
California.

UNIX® is a registered trademark of The Open Group.

Red Hat® is a registered trademark of the Red Hat Company.

Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

3

Contents
Preface .. 5

Chapter 1.. 7

Main changes since last release .. 7

1.1 Java versions ... 7
1.2 IM SDK Eclipse wizard is now available ... 7
1.3 Trouble Ticket feature implementation for TSP service alarms 7
1.4 Problems initialization has changed ... 7
1.5 Topology Generic Queries implementation .. 7
1.6 SDK .. 8
1.6.1 Refactoring of some classes/packages .. 8
1.6.2 Package ... 8
1.6.3 Generic Events (other than Alarm types) are supported .. 8
1.6.4 New ways for computing Problem Information .. 8
1.6.5 ProblemXmlConfig schema changes .. 9
1.6.6 ProblemDefault.computeProblemEntity(Event event) .. 9
1.6.7 GeneralBehaviourDefault.computeSourceUniqueId (Event event) 11
1.6.8 ProblemDefault.computeDbRecords(String dbUniqueIdReference, Event event)12
1.6.9 ProblemDefault.computeGroupPriority(Event event) .. 13
1.6.10 ProblemDefault.computeTimeWindow(Event event) .. 14
1.6.11 Deprecated APIs .. 14
1.7 StateListener added for asserting States in Junits .. 15
1.8 Inference Machine custom Lifecycle classes .. 15

Chapter 2.. 17

Migration steps from V3.1 to V3.2 .. 17

2.1 How do I migrate my PD VP 3.0/3.1 to 3.2? .. 17
2.1.1 In your Java code ... 17
2.1.2 In your XML configuration ... 20

Chapter 3.. 21

Fixed Problems ... 21

Chapter 4.. 22

Known Problems ... 22

Chapter 5.. 23

Known Limitations .. 23

4

Tables
Table 1 - Software versions ... 5
Table 2 - Fixed Problems in UCA EBC Problem Detection V3.2 .. 21
Table 3 - Known Problems ... 22

5

Preface

These Release Notes describe critical information related to the HP UCA for EBC
Problem Detection product.

Product Name: Unified Correlation Analyzer for EBC Problem Detection

Product Version: 3.2

Kit Version: V3.2

Please read this document before installing or using this Software.

Intended Audience

Here are some recommendations based on possible reader profiles:

 Solution Developers

 Software Development Engineers

Software Versions

The term UNIX is used as a generic reference to the operating system, unless
otherwise specified.

The software versions referred to in this document are as follows:

Product Version Supported Operating systems

UCA for Event Based Correlation
Development Kit Problem
Detection Extension Version 3.2

 Windows XP / Vista
 Windows Server 2007
 Windows 7
 Linux Red Hat Enterprise Linux Server

release 5.9 & 6.5
UCA for Event Based Correlation
Development Kit Topology State
Propagator Extension Version 3.2

 Windows XP / Vista
 Windows Server 2007
 Windows 7
 Linux Red Hat Enterprise Linux Server

release 5.9 & 6.5

Table 1 - Software versions

Typographical Conventions

Courier Font:

 Source code and examples of file contents.

 Commands that you enter on the screen.

 Pathnames

 Keyboard key names

6

Italic Text:

 Filenames, programs and parameters.

 The names of other documents referenced in this manual.

Bold Text:

 To introduce new terms and to emphasize important words.

Associated Documents

 HP UCA for EBC IM – Installation Guide

 HP UCA for EBC IM – User Guide

 HP UCA for EBC PBD – TeMIP Client Guide

 HP UCA for EBC - Installation Guide

 HP UCA for EBC - Administration, Configuration, and Troubleshooting Guide

 HP UCA for EBC - Reference Guide

 HP UCA for EBC - Topology Extension Guide

 HP UCA for EBC - Value Pack Development Guide

 HP UCA for EBC - User Interface Guide

Support

Please visit our HP Software Support Online Web site at
https://softwaresupport.hp.com/ for contact information, and details about HP
Software products, services, and support.

The Software support area of the Software Web site includes the following:

 Downloadable documentation.

 Troubleshooting information.

 Patches and updates.

 Problem reporting.

 Training information.

 Support program information.

https://softwaresupport.hp.com/

7

Chapter 1

Main changes since last release

Previous officially released version of this product was UCA for EBC Problem Detection V3.1

UCA for EBC Problem Detection is now part, along with UCA for EBC Topology State
Propagator, of UCA for EBC Inference Machine.

Since delivery of UCA for EBC Problem Detection V3.1 the following features and fixes have
been implemented.

1.1 Java versions
The Problem Detection kit is no more built on the JDK 1.6. Hence, the target binary of the
kit does not support JRE 1.6 anymore.

The only supported Java platform is JDK/JRE 1.7.

1.2 IM SDK Eclipse wizard is now available
The IM SDK Eclipse wizard is now available offering templates for:

 UCA EBC VP with or without topology
 PBD VP with or without topology template
 TSP VP (topology mandatory)
 IM VP (PBD scenario + TSP scenario) (topology mandatory)

1.3 Trouble Ticket feature implementation for TSP
service alarms

1.4 Problems initialization has changed
Problems initialization is done in the following way:

 ProblemDefault values from configuration apply to all other Problems now, only if
they were overwritten in the configuration.

 Certain fields, like Strings, Booleans, and Longs defined in the default problem are
now valid for all the other Problems.

The same mechanism applies also for Propagations initialization in TSP.

1.5 Topology Generic Queries implementation
The SDK brings of UCA-EBC brings generic queries in package
com.hp.uca.expert.topology.query which holds the classes:

- GenericQuery

- NodeQuery

- NodeWithCountQuery

8

- RelationQuery

Particularly the class GenericQuery is intensively used in IM framework as it can

return multiple values from a single Cypher query.

1.6 SDK
The Problem Detection SDK does not exist anymore. It has been replaced by the Inference
Machine SDK.

1.6.1 Refactoring of some classes/packages

A new library uca-evp-im-common.jar has been introduced. It holds common packages for
developers using not only Problem Detection kit, but also the Topology State Propagator
kit.

1.6.2 Package

The package UCA-EBC-DEVPD does not exist anymore. It has been merged into a bigger
package named UCA-EBC-DEVIM, which contains the whole Inference Machine product
elements, i.e.:

 The consolidated javadoc for Problem Detection (PD), Topology State Propagator (TSP)
and uca-evp-im-common library.

 The skeletons for Problem Detection Value Pack, Topology State Propagator Value Pack
and Inference Machine (PD and TSP scenarios) Value Pack

 The schemas used in Inference Machine (1 for PD, 1 for TSP, 1 for common)

 Various examples: pd-example and im-example.

1.6.3 Generic Events (other than Alarm types) are supported

Problem Detection is now able to correlate generic events and group them. Hence:

 The Trigger of a PD correlation group can be now an Event (type introduced in UCA-
EBC V3.1)

 Most methods are applicable therefore for the Event type as parameter and not
only Alarm. That explains why some methods are now deprecated.

1.6.4 New ways for computing Problem Information

When new alarm comes in Problem Detection, Problem information is now computed in 2
ways:

1.6.4.1 Case where Problem Detection is topology-aware

In such a case, the following conditions are checked by default:

 MainPolicy.enableTopoAccess attribute is set to true
 the CypherQuery tag is present in the passing filter tags parameters and should

provide the name of the Cypher Query to execute

If conditions are passed, both methods
GeneralBehaviourDefault.computeSourceUniqueId (Event
event) and ProblemDefault.computeDbRecords(String dbUniqueIdReference, Event
event) are used to compute the Problem Alarm information.

Notes:

http://peterv3.gre.hp.com:9010/job/inference-machine-doc/jdk=JDK7,platform=linwin/Documentation_(html)/problem-detection/info3.2.html#deprecated

9

 The above default conditions can be changed by overriding
the ProblemDefault.isAllowingDbAccess(Event event) method.

 In case of successful computation,
method ProblemDefault.computeProblemEntity(Event event) is therefore not
used.

1.6.4.2 Default case (non-topology aware)

If above case does not apply or fails, the new ProblemDefault.computeProblemEntity(Event
event) is used.

1.6.5 ProblemXmlConfig schema changes

The ProblemXmlConfig.xml configuration file was modified concerning the
following elements:

1.6.5.1 Namespace

Some elements defined in the ProblemXmlConfig.xml configuration file are now coming
from a common schema with a different namespace. Hence, existing configuration file
should be migrated. Refer to “2.1 How do I migrate my PD VP 3.0/3.1 to 3.2?” migration
steps for more information.

1.6.5.2 MainPolicy

 New attribute enablePrioritySort : Boolean flag indicating whether the groups should be
sorted on priority order or not. Default is false,

 New attribute multipleParentSupport : Boolean flag indicating whether an alarm grouping
will send the parent relationship only for the highest priority parent (false), or for each of
the ProblemAlarm where this alarm is grouped (true). Default is true,

 New attribute enableTopoAccess : Boolean flag indicating whether to use topologyAccess
when computing information for Problem Alarm (by calling computeSourceUniqueID(Event
event) and computeDBRecords() methods) during the workflow) (true) or not (false). Default
is false. When true, the computeProblemEntity(Event event) is not called. Attention, this
uses Neo4j database, so requires Topology license.

1.6.5.3 ProblemPolicy

 New attribute enableComputeProblemEntityFromMappers: When true, enables the use of
calling mappers in computeProblemEntity(). Default is true,

 New attribute enableComputeProblemEntityFromFields: When true, enables calculation of
fields key/value pairs in computeProblemEntity(). Default is false,

 New element computeProblemEntityFromFields: Configuration of the FieldsChooser
element, which is a sequence of fields to use as keys. Used in computeProblemEntity() when
calculation of fields key/value pairs is enabled and when ComputeProblemEntityFields tag is
not used.

1.6.6 ProblemDefault.computeProblemEntity(Event event)

This is a new method that takes Event as parameter. It is called by the existing
computeProblemEntity(Alarm alarm) method. The default behavior of the new
computeProblemEntity(Event) method has been completely improved to satisfy most of the
end-user needs. It executes the following procedures (1.6.6.1, 1.6.6.2 and 1.6.6.3) in
respective order.

1.6.6.1 Usage of extended mappers

Firstly, it makes use of the new UCA-EBC V3.2 feature: the extended mappers.

10

When an event comes in the ProblemDetection value pack, it is checked against the
presence of the filter tag named "ComputeProblemEntityMappers" which is a parameter
tag that should contain the name of the mapper(s) to use for computing the problem
entity.

If the tag is present in the incoming filtered alarm, and if the mappers referenced in this
tag are well defined, the mappers are executed against the incoming alarm and the result
of each mapper is used as one element of the problem entity list returned by this function.

The usage of extended mappers is automatically taken into account.

Notes about mappers’ usage:

 The mappers usage can be disabled by setting the corresponding
ProblemPolicy.enableComputeProblemEntityFromMappers attribute to false in
ProblemXmlConfig.xml file. By default, it is considered as true.

 Each mapper name in the "ComputeProblemEntityMappers" tag should be separated by ".".

 You can change the name of the filter tag used by overriding the
getProblemEntityMappersTag() method of your problem.

1.6.6.2 Direct mapping of alarm fields as key/value pairs

Secondly, if requested, it can make use of the fields of the alarm computed as key/value
pairs. This function work as described below, each option being evaluated in following
order:

1. Use of a well-known tag

If the filter tag "ComputeProblemEntityFields" is present in the incoming alarm filtered
tags, that tag should contain the name of the field(s) to use for computing the problem
entity. Each field described in this tag is checked against its presence in the alarm and the
resulted problemEntity is computed as $field.name$separator$field.value.

Notes about ComputeProblemEntityFields filter tag usage:

 The computation of the key/value pairs can be enabled by setting the corresponding
ProblemPolicy.enableComputeProblemEntityFromFields attribute to true in
ProblemXmlConfig.xml file. By default, it is considered as false, hence this feature is
by default not used.

 Each field name in the "ComputeProblemEntityFields" tag should be separated by ".".

 You can change the name of the filter tag used by overriding the
getProblemEntityFieldsTag() method of your problem.

 You can change the value of $separator used by overriding the
getProblemEntitySeparator() method of your problem. By default, it is "=".

2. Use of new policy

The corresponding ProblemPolicy.computeProblemEntityFromFields element can be
defined in ProblemXmlConfig.xml file and is used for computing the problem entity. This
policy defines a sequence of XML fields elements and a keyValueSeparator XML element
which is by default "=".

Each field described in this XML element is used as one element of the problem entity list
returned by the computeProblemEntity() method. Each field is defines either a tagName,
either a fieldName.

 When tagName is defined, it corresponds to a tag that should be present if the
incoming alarm filtered tags which should define the field of the alarm to take into
account.

11

It is then checked against its presence in the alarm filtered tags and the resulted
problemEntity is computed as
$alarmField$keyValueSeparator$alarmField.value, where $alarmField should
be present in the alarm and is equivalent to $field.key.tagName.value

 When tagName is not defined and fieldName is defined, it corresponds directly to
the field of the alarm to take into account.

The field name is then checked against its presence in the alarm and the resulted
problemEntity is computed as $fieldName$keyValueSeparator$fieldName.value

Notes about computeProblemEntityFromFields policy usage:

 The computation of the key/value pairs can be enabled by setting the corresponding
ProblemPolicy.enableComputeProblemEntityFromFields attribute to true in
ProblemXmlConfig.xml file. By default, it is considered as false, hence this feature is
by default not used.

 If the filter tag "ComputeProblemEntityFields" is present in the incoming alarm
filtered tags, it supersedes the policy, hence the policy is not used.

 You can ignore a specific value for each field using the valueIgnored XML element
associated to it.

1.6.6.3 Default mode

When none of above two methods is used, the function returns as previously (up to V3.1)
the originating managed entity of the incoming Alarm.

1.6.6.4 Modification of examples

The classes Problem_Synch and Problem_BitError are now showing the usage of extended
mappers feature to compute their problem entity based on bsc and bts identifiers. The
computeProblemEntity() function has then been removed from those classes, which are
now using the mapper getBscBtsFromUserText instead.

1.6.7 GeneralBehaviourDefault.computeSourceUniqueId (Event
event)

This method is used to calculate the unique identifier from information source stored in the
event. It is called when Problem Detection is topology-aware, i.e. when the
MainPolicy.enableTopoAccess attribute is set to true. In such a case, a special filter should
be defined with the ReservedForGeneralBehavior as the filter name. Inside this filter, the
ComputeSourceUniqueIdMapper tags are used to compute the source unique Id. When
mappers are defined in the topFilter having the name ReservedForGeneralBehavior,
Problem Detection will call the computeSourceUniqueId(Event) method.

Example (extracts of filters and mappers files):
 <topFilter name="ReservedForGeneralBehavior">
 <anyCondition>
 <anyCondition tag="PATTERN_Mappers">
 <allCondition tag="ComputeSourceUniqueIdMapper=NodeB_UniqueID_1">
 <instanceOfFilterStatement>

<fullClassName>com.hp.uca.expert.alarm.AlarmCommon</fullClassName>
 </instanceOfFilterStatement>
 <stringFilterStatement>
 <fieldName>additionalText</fieldName>
 <operator>contains</operator>
 <fieldValue>PowerAntenna</fieldValue>
 </stringFilterStatement>

12

 </allCondition>
 <allCondition tag="ComputeSourceUniqueIdMapper=NodeB_UniqueID_2">
 <instanceOfFilterStatement>

<fullClassName>com.hp.uca.expert.alarm.AlarmCommon</fullClassName>
 </instanceOfFilterStatement>
 <stringFilterStatement>
 <fieldName>additionalText</fieldName>
 <operator>contains</operator>
 <fieldValue>DIP_Failure</fieldValue>
 </stringFilterStatement>
 </allCondition>
 </anyCondition>
 </anyCondition>
 </topFilter>

 <mapper name='NodeB_UniqueID_1'>
 <pattern>
 <expression>[btsID]~[location]</expression>
 <matcher>(.*)</matcher>
 <mappedTo>$1</mappedTo>
 </pattern>
 </mapper>

1.6.8 ProblemDefault.computeDbRecords(String
dbUniqueIdReference, Event event)

This method is used to calculate the Neo4j query, which will be executed to retrieve the
data base records for having the database id reference for the Event. Called by the Problem
Detection Framework when the MainPolicy.enableTopoAccess attribute is set to true and
when CypherQuery tag is present.

Example (extracts of filters and mappers files):
 <anyCondition tag="ProblemAlarm,CypherQuery=GetCellFromNodeBOrBts">
 <allCondition>
 <instanceOfFilterStatement>
 <fullClassName>com.hp.uca.expert.alarm.AlarmCommon</fullClassName>
 </instanceOfFilterStatement>
 <stringFilterStatement>
 <fieldName>userText</fieldName>
 <operator>matches</operator>
 <fieldValue><![CDATA[.*<action>UCA EBC
.*</action><trigger>.*</trigger><group>.*</group>.*]]></fieldValue>
 </stringFilterStatement>
 <stringFilterStatement>
 <fieldName>additionalText</fieldName>
 <operator>contains</operator>
 <fieldValue>PowerAntenna</fieldValue>
 </stringFilterStatement>
 </allCondition>
 </anyCondition>

 <cypherQuery name='GetCellFromNodeBOrBts'>
 <query><![CDATA[START startNode=node:NodeBsByUniqueId(uniqueId =
{nodeUniqueId})
 MATCH (startNode)-[relation:ServingCell]->(endNode)<-[?:ServingCell]-
(endNodeRelatives)

13

 RETURN startNode, relation,endNode, endNode.domain, endNode.type,
endNode.uniqueId, count(endNodeRelatives)]]>
 </query>
 </cypherQuery>

1.6.9 ProblemDefault.computeGroupPriority(Event event)

A default implementation has been introduced to make use of specific tags that can be set
at filters level: "Bundle.Priority" which defines the priority of the family of Problems and
"Problem.Priority" which defines the priority of the Problem. The values for these tags
should be numeric.

If one of those tags are present after filtering an alarm, the group priority is computed
using the formula:

Bundle.Priority * $priority.factor + Problem.Priority

If none of the tags is present, the group priority is left to null.

The group priority is automatically taken into account if the attribute enablePrioritySort is
defined to true in MainPolicy of ProblemXmlConfig.xml file. It means that all calls to
scenario.getGroups().getAllGroups() or to scenario.getGroups().getGroupsWhereXXX() will
return the groups sorted on priority.

By default, the attribute enablePrioritySort is considered as false if not present, hence
groups are not sorted by default.

Notes about the priority computation:

Lower priority numbers come first. A null priority comes last.

You can change the value of the $priority.factor used by overriding the
getBundlePriorityFactor() method of your problem.

You can change the name of the Bundle.Priority tag used by overriding the
getBundlePriorityTag() method of your problem.

You can change the name of the Problem.Priority tag used by overriding the
getProblemPriorityTag() method of your problem.

1.6.9.1 Example with Alarm
Trigger alarm A1 comes in with Bundle.Priority=10,Problem.Priority=1 => group G1 priority
will be set to 10001.
Trigger alarm A2 comes in with Problem.Priority=2 => group G2 priority will be set to 2.
Trigger alarm A3 comes in with no tags => group G3 priority will be set to null.
Now suppose an alarm S is subalarm of all 3 above groups => the
getGroups().getGroupsWhereAlarmSetAs(S, Qualifier.SubAlarm) will return the groups [G2,
G1, G3] in strict order if MainPolicy.enablePrioritySort is set.

1.6.9.2 Example with Event (other than Alarm)
Trigger event E1 comes in with Bundle.Priority=10,Problem.Priority=1 => group G1 priority
will be set to 10001.
Trigger event E2 comes in with Problem.Priority=2 => group G2 priority will be set to 2.
Trigger event E3 comes in with no tags => group G3 priority will be set to null.
Now suppose an event S is subEvent of all 3 above groups => the
getGroups().getGroupsWhereEventSetAs(S, EventQualifier.SubEvent) will return the groups
[G2, G1, G3] in strict order if MainPolicy.enablePrioritySort is set.

14

1.6.10 ProblemDefault.computeTimeWindow(Event event)
The default behavior of the default computeTimeWindow(Alarm alarm) method has been
changed to make use of specific tag "Trigger.TimeLimit.Seconds" that can be set at filters
level and can be applied on the Event generic type.

If this tag is present after filtering an alarm, and given that the value is T, the timeWindow
returned overrides the one defined at ProblemPolicy level and is computed as:

If T is 0 : TimeWindowMode.NONE
If T is not 0 : TimeWindowMode.TRIGGER and Window is [abs(T) * 1000 , abs(T) * 1000]
Note: you can change the name of the Trigger.TimeLimit.Seconds tag used by overriding
the getTriggerTimeLimitSecondsTag() method of your problem.

1.6.11 Deprecated APIs
All methods/classes/packages below are deprecated with this version and will be removed
in next major update.

This is mainly due to the fact that most of the methods are now coming within uca-evp-
common.jar that is used also by another toolkit (aka Topology State Propagator for Service
Impact).

Type API Deprecated by

Package com.hp.uca.expert.vp.pd.core.exce
ption

com.hp.uca.expert.vp.common.exce
ptions

Method ProblemDefault.computeDelayForTro
ubleTicketCreation(Alarm alarm)

ProblemDefault.computeDelayForTro
ubleTicketCreation(Event event)

Method ProblemDefault.computeDelayForPro
blemAlarmCreation(Alarm alarm)

ProblemDefault.computeDelayForPro
blemAlarmCreation(Event event)

Method ProblemDefault.computeDelayForPro
blemAlarmClearance(Alarm alarm)

ProblemDefault.computeDelayForPro
blemAlarmClearance(Event event)

Method ProblemDefault.computeTimeWindow(
Alarm alarm)

ProblemDefault.computeTimeWindow(
Event event)

Method PD_Service_Enrichment.setAlarmIsM
issingInformation(Alarm a, String
problemName)

PD_Service_Enrichment.setEventIsM
issingInformation(Event e, String
problemName)

Method PD_Service_Enrichment.setAlarmIsN
oMoreMissingInformation(Alarm a,
String problemName)

PD_Service_Enrichment.setEventIsN
oMoreMissingInformation(Event e,
String problemName)

Method PD_Service_Enrichment.isAlarmMiss
ingInformation(Alarm a, String
problemName)

PD_Service_Enrichment.isEventMiss
ingInformation(Event e, String
problemName)

Method PD_Service_Enrichment.requestAlar
mComputation(Scenario scenario,
Alarm a)

PD_Service_Enrichment.requestEven
tComputation(Scenario scenario,
Event e)

Method PD_Service_Group.calculateLeadGro
up(CollectionGroup groups)

PD_Service_Group.calculateLeadGro
up(Collection<Group> groups,
boolean sorted)

Method PD_Service_Group.isLeadGroup(Grou
p potentialLeaderGroup,
CollectionGroup groups)

PD_Service_Group.isLeadGroup(Grou
p potentialLeaderGroup,
Collection<Group> groups, boolean
sorted)

Method PD_Service_Lifecycle.cloneAlarmTo
BeReEvaluated(Alarm alarm)

PD_Service_Lifecycle.cloneEventTo
BeReEvaluated(Event event)

15

Type API Deprecated by

Method PD_Service_Util.extractSubString(
)

com.hp.uca.expert.vp.common.servi
ces.UtilService.extractSubString(
)

Method PD_Service_Util.retrieveBeanFromC
ontextXml()

com.hp.uca.expert.vp.common.servi
ces.UtilService.retrieveBeanFromC
ontextXml()

Method PD_Service_Util.fileFromResourceN
ame()

com.hp.uca.expert.vp.common.servi
ces.UtilService.fileFromResourceN
ame()

Method PD_Service_Util.storeProblemInfos
InAlarmLocalVariable(ProblemConte
xt problemContext, Alarm alarm,
ListProblemInfo problemInfos)

PD_Service_Util.storeProblemInfos
InEventLocalVariable(ProblemConte
xt problemContext, Event event,
List<ProblemInfo> problemInfos)

Method PD_Service_Util.retrieveProblemIn
fosFromAlarmLocalVariable(Problem
Context problemContext, Alarm
alarm)

PD_Service_Util.retrieveProblemIn
fosFromEventLocalVariable(Problem
Context problemContext, Event
event)

Class TestUtils com.hp.uca.expert.vp.common.testm
aterial.TestUtils

1.7 StateListener added for asserting States in
Junits

A StateListener has been added to the com.hp.uca.expert.testmaterial package. This class

can be used to assert actions done on States, as AlarmListener is used for asserting actions on

Alarms. The StateListener is to be used in Junits of an Inference Machine Value Pack, for the TSP

scenario’s States. The Junit AbstractJunitIntegrationTest of the

com.hp.uca.expert.testmaterial, which is the tool box that helps the development of Junit

Tests for UCA-EBC, has been enhanced with a StateListener. Therefore, this class provides now the

following extra methods:

 waitingForStateInsertion(StateListener stateListener,
 long period, long maxTimeBeforeTimeout)

 waitingForStateRetract(StateListener stateListener,
 long period, long maxTimeBeforeTimeout)

 waitingForStateUpdate(StateListener stateListener,
 long period, long maxTimeBeforeTimeout)

1.8 Inference Machine custom Lifecycle classes
The class com.hp.uca.expert.vp.common.lifecycle.MixEventsAndStateLifeCycleExtended.class has
been added in the uca-evp-im-common.jar common library. This class is an enriched Alarm Lifecycle
class, managing both States and others Events (Alarms and other events) lifecycle. Alarms passing
just the top filter “ReservedForGeneralBehavior” will not be inserted in the Working Memory.
For the Topology State Propagator scenario, as well as for the PD scenario, in the IM Value Pack,
there are two new classes extending this common class:

 The com.hp.uca.expert.vp.pd.im.lifecycle.InferenceMachineLifeCycleExtended is used as the
Problem Detection scenario extended life cycle in an Inference Machine valuepack. This
class handles alarms, events and states lifecycle and it will bypass service alarms received
from the network.

16

 The com.hp.uca.expert.vp.tp.im.lifecycle.InferenceMachineLifeCycleExtended is used as the
Topology State Propagator scenario extended life cycle in an Inference Machine valuepack.
This class handles alarms, events and states lifecycle.

17

Chapter 2

Migration steps from V3.1 to V3.2

PD 3.2 is now part of the Inference Machine, which embeds PD and TSP products. As PB and TSP have
the exact same needs to execute actions on NMS (create alarm, clear alarm, group alarms, etc.), it
has been decided to use a common ActionsFactory for this.

This common ActionsFactory is now part of a common library, which is delivering its own namespace.

As this namespace is different, the compatibility is broken but in counterpart, it brings some
improvements:

 the logic of actions is separated from PD and TSP

 as such, it is reusable easily (same ActionsFactory can be used across PD and TSP)

 easier to understand at the end

2.1 How do I migrate my PD VP 3.0/3.1 to 3.2?
Problem Detection 3.2 does not provide any automatic migration tool for your Java files.

However, the SDK provides an XLST (eXtensible Stylesheet Language Transformation) file
that you can use to migrate your PD configuration file.

2.1.1 In your Java code

2.1.1.1 Removed classes

Following imports will generate compilation errors because the classes do not exist anymore

Class (in V3.1) Should be replaced in V3.2 by
import

com.hp.uca.expert.vp.pd.config.Action

import

com.hp.uca.expert.vp.im.config.Action

import

com.hp.uca.expert.vp.pd.config.Action

s

import

com.hp.uca.expert.vp.im.config.Action

s

import

com.hp.uca.expert.vp.pd.config.Boolea

nItem

import

com.hp.uca.expert.vp.im.config.Boolea

nItem

import

com.hp.uca.expert.vp.pd.config.Boolea

ns

import

com.hp.uca.expert.vp.im.config.Boolea

ns

import

com.hp.uca.expert.vp.pd.config.LongIt

em

import

com.hp.uca.expert.vp.im.config.LongIt

em

import

com.hp.uca.expert.vp.pd.config.Longs;

import

com.hp.uca.expert.vp.im.config.Longs

import

com.hp.uca.expert.vp.pd.config.String

Item;

import

com.hp.uca.expert.vp.im.config.String

Item

import

com.hp.uca.expert.vp.pd.config.String

s

import

com.hp.uca.expert.vp.im.config.String

s

18

Class (in V3.1) Should be replaced in V3.2 by
import

com.hp.uca.expert.vp.pd.config.Troub

leTicketAction

import

com.hp.uca.expert.vp.im.config.Troub

leTicketAction

import

com.hp.uca.expert.vp.pd.config.Troubl

eTicketActions

import

com.hp.uca.expert.vp.im.config.Troub

leTicketActions

import

com.hp.uca.expert.vp.pd.core.exceptio

n.InvalidSupportedActions

import

com.hp.uca.expert.vp.common.exception

s.InvalidSupportedActions

import

com.hp.uca.expert.vp.pd.core.exceptio

n.InvalidSupportedTroubleTicketAction

s

import

com.hp.uca.expert.vp.common.exception

s.InvalidSupportedTroubleTicketAction

s

import

com.hp.uca.expert.vp.pd.interfaces.Ac

tionsFactoriesSelection

import

com.hp.uca.expert.vp.common.interface

s.ActionsFactoriesSelection

import

com.hp.uca.expert.vp.pd.interfaces.Su

pportedActions

import

com.hp.uca.expert.vp.common.interface

s.SupportedActions

Import

com.hp.uca.expert.vp.pd.interfaces.Su

pportedTroubleTicketActions

import

com.hp.uca.expert.vp.common.interface

s.SupportedTroubleTicketActions

2.1.1.2 What needs to be changed in your customized ProblemDefault

If you are overriding the following methods from ProblemDefault, they need to be changed because
they do not exist anymore:

Method (in V3.1) Should be replaced in V3.2 by
chooseSupportedActions(Alarm alarm,

ProblemInterface problem)

chooseSupportedActions(Event

event,

CommonActionInterface

problemOrPropagation)

chooseSupportedTroubleTicketActions(

Alarm alarm,

ProblemInterface problem)

chooseSupportedTroubleTicketAction

s(Event event,

CommonActionInterface

problemOrPropagation)

2.1.1.3 What needs to be changed in your customized ActionsFactory

If you are overriding the following methods from ActionsFactory, they need to be changed because
they do not exist anymore:

Method (in V3.1) Should be replaced in V3.2 by
createProblemAlarm(Action action,

Scenario scenario,

Group group, ProblemInterface

problem, Alarm

referenceAlarm)

createAlarm(Action action,

Scenario scenario,

GroupBase group,

CommonActionInterface

problemOrPropagation, Event

referenceEvent)

terminateAlarm(Action action,

Scenario scenario,

Alarm alarm, ProblemInterface

problem)

terminateAlarm(Action action,

Scenario

scenario, Alarm alarm,

CommonActionInterface

problemOrPropagation)

19

Method (in V3.1) Should be replaced in V3.2 by
clearAlarm(Action action, Scenario

scenario, Alarm

alarm, ProblemInterface problem)

clearAlarm(Action action, Scenario

scenario,

Alarm alarm, CommonActionInterface

problemOrPropagation)

acknowledgeAlarm(Action action,

Scenario scenario,

Alarm alarm, ProblemInterface

problem)

acknowledgeAlarm(Action action,

Scenario

scenario, Alarm alarm,

CommonActionInterface

problemOrPropagation)

unacknowledgeAlarm(Action action,

Scenario

scenario, Alarm alarm,

ProblemInterface problem)

unacknowledgeAlarm(Action action,

Scenario

scenario, Alarm alarm,

CommonActionInterface

problemOrPropagation)

associateAlarmsForHistoryNavigation(

Action action,

Scenario scenario, Group group,

Collection Alarm

children, ProblemInterface problem)

associateAlarmsForHistoryNavigatio

n(Action

action, Scenario scenario,

GroupBase group,

Collection Alarm children,

CommonActionInterface

problemOrPropagation)

dissociateAlarmsForHistoryNavigation

(Action action,

Scenario scenario, Group group,

Collection Alarm

children, ProblemInterface problem)

dissociateAlarmsForHistoryNavigati

on(Action

action, Scenario scenario,

GroupBase group,

Collection Alarm children,

CommonActionInterface

problemOrPropagation)

setHistoryNavigation(Action action,

Scenario scenario,

Alarm alarm, Qualifier qualifier)

setHistoryNavigation(Action

action, Scenario scenario,

Alarm alarm, QualifierInterface

qualifier)

setGenericAttribute(Action action,

Scenario scenario,

Alarm alarm, Command command)

setGenericAttribute(Action action,

Scenario scenario,

Alarm alarm, Command command)

2.1.1.4 What needs to be changed in your customized
TroubleTicketActionsFactory

If you are overriding the following methods from TroubleTicketActionsFactory, they need to be
changed because they do not exist anymore:

Method (in V3.1) Should be replaced in V3.2 by
createTroubleTicket(Action action,

Scenario scenario,

Group group, ProblemInterface

problem, Alarm

referenceAlarm, List Alarm

alarmsToAssociate)

createTroubleTicket(Action action,

Scenario

scenario, GroupBase group,

CommonActionInterface

problemOrPropagation, Alarm

referenceAlarm, List

Alarm alarmsToAssociate)

closeTroubleTicket(Action action,

Scenario

scenario, ProblemInterface problem,

String

troubleTicketIdentifer)

closeTroubleTicket(Action action,

Scenario scenario,

CommonActionInterface

problemOrPropagation,

String troubleTicketIdentifer)

associateTroubleTicket(Action

action, Scenario

scenario, Group group,

ProblemInterface

problem, List Alarm

alarmsToAssociate, String

troubleTicketIdentifer)

associateTroubleTicket(Action

action, Scenario

scenario, GroupBase group,

CommonActionInterface

problemOrPropagation, List Alarm

alarmsToAssociate,

String troubleTicketIdentifer)

20

Method (in V3.1) Should be replaced in V3.2 by
dissociateTroubleTicket(Action

action, Scenario

scenario, Group group,

ProblemInterface

problem, List Alarm

alarmsToDissociate, String

troubleTicketIdentifer)

dissociateTroubleTicket(Action

action,

Scenario scenario, GroupBase

group,

CommonActionInterface

problemOrPropagation,

List Alarm alarmsToDissociate,

String

troubleTicketIdentifer)

2.1.2 In your XML configuration
Your ProblemXMLConfig.xml file (or equivalent) needs to be modified to make use of the new
namespace "http://config.im.vp.expert.uca.hp.com/" for certain elements of the file like:

• actions
• troubleTicketActions
• booleans
• longs
• strings

You can use the ProblemXmlConfig-Migration-to-V32.xslt file part of the Inference Machine SDK to
transform your current ProblemXmlConfig.xml version 3.1 to version 3.2.

21

Chapter 3

Fixed Problems

The following problems were fixed in this release.

Reference

/

Severity

Component Description Comment

CR#11894
High

Problem
Detection VP

ProblemDefault never retrieves the
delayForProblemAlarmClearance policy Fixed

CR#12107
High

Problem
Detection VP

Problem Detection does not correlate alarm
on timewindow specified Fixed

CR#11676
Medium

Problem
Detection VP

Group_Alarm directive is not working when
lower_Case is not set on TeMIP CA

Fixed

CR#11706
Medium

Problem
Detection VP

User_Identifier of a Problem Alarm cannot be
changed with
calculateProblemAlarmOtherAttribute method

Fixed

CR#11710
Medium

Problem
Detection VP

When an alarm is copied and cascaded, the
local Variables are preserved, leading to
potential serious issues

Fixed

CR#12600
Medium

Problem
Detection VP

computeDelayForProblemAlarmCreation
should be called by Problem Detection
framework

Fixed

CR#12663
Medium

Problem
Detection VP

the log supposed to say there is no
supportedActions, is never sent ; instead a NPE
is thrown

Fixed

CR#12801
Medium

Problem
Detection VP

computeDelayForTroubleTicketCreation
should be called by Problem Detection
framework

Fixed

Table 2 - Fixed Problems in UCA EBC Problem Detection V3.2

22

Chapter 4

Known Problems

This section lists problems discovered during the product test campaign and that still have to
be fixed:

Reference /

Severity

Component Description Solution/Suggested

workaround or comment

CR#11239
Medium

Problem
Detection VP

UCA PbD: groupalarm does not work
when <ToLower> not activated in temip
CA

Possible User Error: On Hold.
Will be addressed in a next
release.

CR#10072
Medium

Problem
Detection VP

Side effect of flag
problemAlarmCanTriggerAnotherGroupF
orSameProblem on the parent field of
cleared alarm

Workaround existed for our
customer, but will need to be
addressed.

CR#11917
Medium

Problem
Detection VP

getTrigger() should not return
ProblemAlarm (PA) when no more
Trigger

On hold. Needs more
investigation. Workaround
exists.

CR#12958
Medium

Problem
Detection VP

Resynchronization in IM is not complete
Will be addressed in a future
release or patch.

CR#11061
Low

Problem
Detection VP

when doing action, the same User name
'uca" should be used without any
reference to the action id

Will be addressed in a future
release.

Table 3 - Known Problems

23

Chapter 5

Known Limitations

No known limitation reported on the product yet.

