
hp Unified Correlation Analyzer 

 

 

Unified Correlation Analyzer 
for 

Event Based Correlation 
 

Version 3.2 
 

Value Pack Development Guide 

 

Edition: 1.0 

 

For Windows© and Linux (RHEL 5.9 & 6.5) Operating Systems 
 

 

 

April 2015 

© Copyright 2015 Hewlett-Packard Development Company, L.P. 

  



Legal Notices 
 
Warranty 

The information contained herein is subject to change without notice. The only warranties 
for HP products and services are set forth in the express warranty statements 
accompanying such products and services. Nothing herein should be construed as 
constituting an additional warranty. HP shall not be liable for technical or editorial errors or 
omissions contained herein. 

 
License Requirement and U.S. Government Legend 

Confidential computer software. Valid license from HP required for possession, use or 
copying.  Consistent with FAR 12.211 and 12.212, Commercial Computer Software, 
Computer Software Documentation, and Technical Data for Commercial Items are licensed 
to the U.S. Government under vendor's standard commercial license. 

 
Copyright Notices 

© Copyright 2015 Hewlett-Packard Development Company, L.P. 

 
Trademark Notices 

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated. 

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit 
configurations) on all HP 9000 computers are Open Group UNIX 95 branded products. 

Java™ is trademark of Oracle and/or its affiliates. 

Microsoft®, Internet Explorer, Windows®, Windows Server 2007®, Windows XP®, and 
Windows 7® are either registered trademarks or trademarks of Microsoft Corporation in the 
United States and/or other countries.  

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.  

UNIX® is a registered trademark of The Open Group.  

X/Open® is a registered trademark, and the X device is a trademark of X/Open Company Ltd. 
in the UK and other countries. 

Red Hat® is a registered trademark of the Red Hat Company.  

Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries. 

Eclipse™ is a trade mark of The Eclipse Foundation. 



Contents 
Preface .......................................................................................................... 7 

Chapter 1  ....................................................................................................... 9 

Introduction ................................................................................................... 9 

Chapter 2...................................................................................................... 10 

Getting started with UCA for EBC .................................................................... 10 

2.1 Software Pre-requisites .............................................................................................. 10 
2.1.1 Operating system .................................................................................................. 10 
2.1.2 Java JRE/JDK .......................................................................................................... 10 
2.1.3 Eclipse IDE ............................................................................................................. 11 
2.1.4 Installing UCA for EBC and UCA for EBC Development Kit ..................................... 14 
2.1.5 Post-install Environment Setup ............................................................................ 14 
2.1.6 UCA for EBC Eclipse plug-in installation instructions ........................................... 15 

Chapter 3...................................................................................................... 20 

Value pack development lifecycle .................................................................. 20 

3.1 Memento on Value packs and Scenario definitions .................................................... 20 
3.1.1 Value Pack Definition ............................................................................................ 20 
3.1.2 Scenario Definition ................................................................................................ 20 
3.2 Life Cycle ..................................................................................................................... 22 
3.3 Creating a new UCA for EBC Value Pack ...................................................................... 23 
3.3.1 Creating a value pack project within Eclipse ......................................................... 23 
3.3.2 Anatomy of the created project ............................................................................ 26 
3.3.3 Validation of the created project .......................................................................... 27 
3.4 Customizing the created ‘skeleton’ Value Pack project ............................................. 30 
3.4.1 Updating the scenario filters ................................................................................. 30 
3.4.2 Updating the correlation rules file ........................................................................ 31 
3.5 Generating the Value Pack kit ..................................................................................... 31 
3.6 Deploying the Value Pack kit on UCA for EBC ............................................................. 34 
3.6.1 Install the Value Pack package (ZIP file) on an HP Itanium or Linux system 

running UCA for EBC Server. .................................................................................. 34 
3.6.2 Deploy the Value Pack ........................................................................................... 34 
3.6.3 Start the Value Pack on UCA for EBC Server: ......................................................... 35 
3.7 Testing the Value Pack in real-time ............................................................................ 35 

Chapter 4...................................................................................................... 37 

Focus on development key points................................................................... 37 

4.1 Implementing Alarm enrichment ................................................................................ 37 
4.2 Developing the scenario rules .................................................................................... 40 
4.2.1 Basics ..................................................................................................................... 41 
4.2.2 Sample rules on Alarm facts in CLOUD mode ....................................................... 42 
4.2.3 Sample rules on Alarm events in STREAM mode .................................................. 43 
4.2.4 Defining and using rule templates ........................................................................ 45 
4.2.5 Introducing Java code in the rules ........................................................................ 46 



4.3 Defining your own beans ............................................................................................ 47 
4.4 Executing external actions from the rules ................................................................. 47 
4.4.1 Standard external actions ..................................................................................... 47 
4.4.2 Calling services defined using Spring .................................................................... 56 
4.4.3 Forwarding alarms to external systems ............................................................... 58 
4.5 Making useful logs ...................................................................................................... 64 
4.6 Creating JUnit Tests .................................................................................................... 65 
4.7 Injecting events to UCA for EBC: Alarm Collector ....................................................... 73 
4.7.1 Normalized input ................................................................................................... 74 
4.7.2 Command-line injector tool .................................................................................. 74 
4.7.3 A sample Java Alarm injector ................................................................................ 75 

Chapter 5...................................................................................................... 77 

Advanced Development features .................................................................... 77 

5.1 Advanced feature: Spring Framework integration ..................................................... 77 
5.1.1 Defining and using Spring Beans inside rule files using global variables............. 78 
5.2 Using the Flag Object .................................................................................................. 80 
5.3 Alarm CustomFields .................................................................................................... 80 
5.4 Alarm Raised Time ...................................................................................................... 80 
5.5 Scenario specific configuration ................................................................................... 81 
5.6 Performing initialization at scenario startup ............................................................. 81 
5.7 WUI extensions for value packs .................................................................................. 81 
5.7.1 Extending the WUI at value pack Level ................................................................. 81 
5.7.2 Extending the WUI at Global Level ........................................................................ 82 
5.7.3 Web application extensions configuration ........................................................... 82 
5.7.4 Inheriting the UCA for EBC logged user and role in the extended web application84 
5.8 Configuring the GUI filter tags editor .......................................................................... 84 
5.9 Editing Filter Files with the UCA for EBC eclipse filter editor ...................................... 85 
5.9.1 Editing a Filter ....................................................................................................... 85 
5.9.2 Associating an Alarm File Sample to the Filter Editor ........................................... 86 
5.9.3 How to read the Filter editor aggregated view? ................................................... 88 
5.9.4 How to read the ‘passed filter’ view? .................................................................... 89 
5.9.5 How to use the filter to create a new top-filter? .................................................. 90 
5.10 Persisting alarms or events using the DB forwarder feature ..................................... 92 
5.10.1 Concepts ................................................................................................................ 92 
5.10.2 Getting started ...................................................................................................... 92 
5.10.3 Example ................................................................................................................. 96 
5.10.4 Advanced settings ................................................................................................. 96 

Appendix A ................................................................................................. 100 

A. Ant build.xml targets .......................................................................................... 100 

Glossary ..................................................................................................... 101 

 
  



Figures 
Figure 1 - Drools plug-in for Eclipse IDE: Installation step 1 ................................................................. 13 
Figure 2 - Drools plug-in for Eclipse IDE: Installation step 2 ................................................................. 13 
Figure 3 - Drools plug-in for Eclipse IDE: Installation step 3 ................................................................. 14 
Figure 4 - UCA for EBC Eclipse plug-in: Installation step 1 .................................................................... 16 
Figure 5 - UCA for EBC Eclipse plug-in: Installation step 2 .................................................................... 17 
Figure 6 - UCA for EBC Eclipse plug-in: Installation step 3 .................................................................... 18 
Figure 7 – The UCA-EBC Scenario Components ..................................................................................... 21 
Figure 8 - The 5 steps to create a UCA for EBC Value Pack .................................................................... 22 
Figure 9 - Value pack project creation wizard Step1 ............................................................................. 24 
Figure 10 - Value pack project creation wizard Step2 ........................................................................... 25 
Figure 11 - Created Value pack .............................................................................................................. 26 
Figure 12 - Folder structure of the created project ............................................................................... 27 
Figure 13- Running JUnit tests on the created project in Eclipse IDE .................................................... 28 
Figure 14 - JUnit tests results on the created project in Eclipse IDE ..................................................... 29 
Figure 15 - Running JUnit tests on the created project at the command-line using Ant ...................... 29 
Figure 16 - JUnit tests results on the created project viewed using a Web browser ............................ 30 
Figure 17 - The default “catch all” project’s filters.xml file ......................................................... 31 
Figure 18 - Building the kit of your customized Value Pack .................................................................. 32 
Figure 19 - The kit of your customized Value Pack ............................................................................... 33 
Figure 20 - Contents of the ZIP file of your customized Value Pack ..................................................... 34 
Figure 21 - Defining AlarmForwarder beans in the context.xml file .............................................. 60 
Figure 22 - Defining AlarmForwarder globals in the ValuePackConfiguration.xml file ........ 61 
Figure 23 - Declaring the use of an AlarmForwarder global variable in a rule file ............................... 61 
Figure 24 - Using an AlarmForwarder global variable to write Alarms to an XML file .......................... 62 
Figure 25 - Scenario logger example ..................................................................................................... 65 
Figure 26 - Ant targets provided by the build.xml file ........................................................................... 73 
Figure 27 - JUnit tests results for your Value Pack ............................................................................... 73 
Figure 28 - UCA for EBC alarm collection ............................................................................................... 74 
Figure 29 - The default project’s empty context.xml file ............................................................... 77 
Figure 30 - The “Low Level Event Filtering” Value Pack’s context.xml file .................................... 78 
Figure 31 - Defining global variables in the ValuePackConfiguration.xml file ...................... 79 
Figure 32 - Defining global variables in rules files ................................................................................ 80 
Figure 33 - Using global variables in rules files ..................................................................................... 80 

 

 



Tables 
 

Table 1 - Software versions 7 
Table 2 - Java JRE/JDK Prerequisites for UCA for EBC Development Kit 10 
Table 3 - Eclipse IDE Prerequisites for UCA for EBC Development Kit 11 
Table 4 - Java helper classes for OSS Open Mediation TeMIP Value Pack 52 
Table 5 - AO directives helper classes 54 
Table 6 - TT directives helper classes 54 
Table 7 - Java helper classes for OSS Open Mediation Exec Value Pack 56 
Table 8 - JMS properties set for alarms being forwarded to OSS Open Mediation 64 

 

  



7 

Preface 

This guide provides an overview of the Unified Correlated Analyzer for Event Based 
Correlation product and describes how to create Value Packs to target customer specific use 
cases. 

 
Product Name: Unified Correlation Analyzer for Event Based Correlation 
Product Version: V3.2 
 

Intended Audience 

Here are some recommendations based on possible reader profiles: 
 Solution Developers 
 Software Development Engineers 

 

Software Versions 

The term UNIX is used as a generic reference to the operating system, unless otherwise 
specified. 

The software versions referred to in this document are as follows: 

 

Product Version Supported Operating systems 

UCA for Event Based Correlation 
Software Development Kit V3.2 

 Windows XP / Vista 
 Windows Server 2007 
 Windows 7 
 Red Hat Enterprise Linux Server release 

5.9 & 6.5 

Table 1 - Software versions 

Typographical Conventions 

Courier Font: 
 Source code and examples of file contents 
 Commands that you enter on the screen 
 Pathnames 
 Keyboard key names 

Italic Text: 
 Filenames, programs and parameters 
 The names of other documents referenced in this manual 

Bold Text: 
 To introduce new terms and to emphasize important words 

 

Associated Documents 

The following documents contain useful reference information: 

References 

[R1] HP UCA for Event Based Correlation – Installation Guide 

[R2] HP UCA for Event Based Correlation – Reference Guide 



8 

[R3] HP UCA for Event Based Correlation – Administration, Configuration and 
Troubleshooting Guide 

[R4] HP UCA for Event Based Correlation – Value Pack Examples 

[R5] Open Mediation V710 Functional Specification 

[R6] Open Mediation Installation and Configuration Guide 

[R7] Unified Correlation Analyzer for Event Based Correlation – User Interface Guide 

[R8] HP UCA for EBC Topology Extension user guide 

[R9] HP UCA for EBC Inference Machine user guide 

 

Support 

Please visit our HP Software Support Online Web site at https://softwaresupport.hp.com/ 
for contact information, and details about HP Software products, services, and support. 

The Software support area of the Software Web site includes the following:  

 Downloadable documentation.  
 Troubleshooting information.  
 Patches and updates.  
 Problem reporting.  
 Training information.  
 Support program information. 

 

 

 
  

https://softwaresupport.hp.com/


9 

Chapter 1 

Introduction 

This guide explains how to create a new correlation project, how to package it and deploy it 
on a Unified Correlated Analyzer for Event Based Correlation (UCA for EBC) Server in just a 
few minutes. 

After validating some pre-requisites and installing both UCA for EBC (runtime) and UCA for 
EBC Development Kit products, the following chapters will dive into the development of UCA 
for EBC Value Packs and explain how to create new scenarios, how to develop alarm/event 
correlation rules based on samples and how to customize UCA for EBC. 

Note 

Throughout this document, we use the ${UCA_EBC_HOME} environment variable to 

reference the root directory (“static” part) of UCA for EBC. The default value for the 
${UCA_EBC_HOME} environment variable is /opt/UCA-EBC. The ${UCA_EBC_HOME} 
environment variable thus references the /opt/UCA-EBC directory unless UCA for EBC 

“static” part has been installed in an alternate directory. 

We also use ${UCA_EBC_DATA} environment variable to reference the data directory 

(“variable” part) of UCA for EBC. The default value for the ${UCA_EBC_DATA} 
environment variable is /var/opt/UCA-EBC. The ${UCA_EBC_DATA} environment 

variable thus references the /var/opt/UCA-EBC directory unless UCA for EBC “variable” 

part has been installed in an alternate directory.  

Since UCA-EBC V2.0, on Linux and HP-UX systems, the ${UCA_EBC_DATA} directory may 

contain multiple instances of UCA-EBC. In this document, we will use the value 
${UCA_EBC_INSTANCE} for referring to 
${UCA_EBC_DATA}/instances/<instance-name> directory on Linux/HP-UX 

systems and to ${UCA_EBC_DATA} on Windows systems. 

Note that at installation time on Linux/HP-UX, a single <instance-name> is configured: 
default. 

 

 
  



10 

Chapter 2 

Getting started with UCA for EBC 

2.1 Software Pre-requisites 

2.1.1 Operating system 

The UCA for EBC Development Kit is provided (and supported) for: 

Windows operating systems. 
 It has been validated on Windows XP, Windows Vista, Windows 7, and Windows Server 
2007. 

Red Hat Enterprise Linux. 
 It has been validated on Server Release 5.9 & 6.5. 

 

2.1.2 Java JRE/JDK 

The following table lists the Java JRE*/JDK pre-requisites for UCA for EBC Development Kit: 

 
Software Version Supported 
Java JDK 1.6.0 or later Yes 
Java JDK 1.7.0 or later Yes and Recommended 
Java JDK 1.8.0 or later No 

Table 2 - Java JRE/JDK Prerequisites for UCA for EBC Development Kit 

 

You can check whether Java is already installed on your system and which version of the 
Java JRE/JDK is installed by issuing the following commands: 

On Windows XP, Windows Vista, Windows 7, and Windows Server 2007: 

To check if you already have Java installed, open a command-line (Run… -> cmd.exe) and 
type: 

 
C:\> java -version 

 

You should get an output similar to the following: 
java version "1.6.0_17" 
Java(TM) SE Runtime Environment (build 1.6.0_17-b04) 
Java HotSpot(TM) Client VM (build 14.3-b01, mixed mode, 
sharing) 

Alternatively to using the command-line, you can check if you already have Java installed by 
going to the Control Panel and selecting the Java icon. In the Java tab, you will find 
information on the Java version installed on your system. 



11 

The latest JDK package for Windows XP, Windows Vista, Windows 7, and Windows Server 
2007 can be downloaded (for free) from www.hp.com/go/java  

 

On Linux: 

To check if you already have Java installed: 
 

$ rpm –qa | grep jdk 

 

Red Hat Enterprise Linux Server comes with OpenJDK Java VM. You should get an output 
similar to the following (here 1.6.0 and 1.7.0 are installed): 

 
java-1.6.0-openjdk-1.6.0.0-1.41.1.10.4.el6.x86_64 
java-1.6.0-openjdk-devel-1.6.0.0-1.41.1.10.4.el6.x86_64 
java-1.7.0-openjdk-1.7.0.9-2.3.4.1.el6_3.x86_64 
java-1.7.0-openjdk-devel-1.7.0.9-2.3.4.1.el6_3.x86_64 

 

You can also download (for free) the latest Java packages (HotSpot Java VM) from Oracle 
from http://java.com/en/download/manual.jsp. If this is installed (usually under /usr/java), 
you should get an output similar to the following: 

 
jdk-1.7.0_75-fcs.x86_64 

 

Note 

* Java 1.6 JRE is enough for using the UCA for EBC Development Kit. However the JDK comes 
with some useful debugging tools (jconsole, jvisualvm, etc…) that may prove helpful for 
troubleshooting. It is therefore recommended to install the JDK. 

 

2.1.3 Eclipse IDE 

The UCA for EBC Development Kit has been designed for an easy integration with the Eclipse 
Integrated Development Environment (IDE) tool. 

Before starting the development of any UCA for EBC value pack, it is necessary to download 
and install the Eclipse TM application development environment. 

The following table lists the Eclipse IDE pre-requisites for UCA for EBC Development Kit: 

 
Software Version 
Eclipse IDE 3.7 (Indigo) or higher 

Table 3 - Eclipse IDE Prerequisites for UCA for EBC Development Kit 

 

The minimum version of Eclipse IDE required by the UCA for EBC Development Kit is version 
3.4 but we recommended Eclipse IDE version 3.7 (Indigo) or higher.  

If you already have Eclipse IDE installed on your system, you can either use this version with 
the UCA for EBC Development Kit (provided this version complies with the version 
requirement: version 3.4 or higher) or you can install a new version of Eclipse IDE. 

If you want to install Eclipse IDE, please go to the following URL for downloading Eclipse IDE: 
http://www.eclipse.org/downloads/ 

http://www.hp.com/go/java
http://java.com/en/download/manual.jsp
http://www.eclipse.org/downloads/


12 

At the time of writing, the Eclipse IDE version is Luna 4.4. 

We recommend you to download either (other choices may also be valid): 

Eclipse IDE for Java Developers, or 

Eclipse IDE for Java EE Developers 

Then you need to choose to install either the 32-bit or 64-bit version of Eclipse IDE 
depending on whether you have a 32-bit or 64-bit operating system. 

 

Once Eclipse IDE is installed on your system, and in order to get the full benefit of the Drools 
development environment in Eclipse, it is also necessary to download and install the Drools 
plug-in for Eclipse. 

Before downloading the Drools plug-in for Eclipse IDE, please make sure that the Drools 
plug-in you plan to download has the same version number as the version of Drools used by 
UCA for EBC. 

UCA for EBC currently uses Drools version 5.5.0.Final. The download URL for this version of 
the plug-in is the following: 

https://repository.jboss.org/nexus/content/repositories/releases/org/drools/org.drools.up
datesite/5.5.0.Final/org.drools.updatesite-5.5.0.Final-assembly.zip 

 

2.1.3.1 Drools plug-in for Eclipse IDE installation instructions 

Download and save the ZIP file of the Drools plug-in for Eclipse IDE in a temporary directory, 
for example: C:\Temp. 

From the Eclipse ‘Help’ menu, choose ‘Install new software’ and then click on the Add… 

button. 

Select the downloaded file using the Archive... button and give it the name “JBoss Drools  

5.5.0.Final” as shown in the picture below: 

 

https://repository.jboss.org/nexus/content/repositories/releases/org/drools/org.drools.updatesite/5.5.0.Final/org.drools.updatesite-5.5.0.Final-assembly.zip
https://repository.jboss.org/nexus/content/repositories/releases/org/drools/org.drools.updatesite/5.5.0.Final/org.drools.updatesite-5.5.0.Final-assembly.zip


13 

Figure 1 - Drools plug-in for Eclipse IDE: Installation step 1 

Then click on the OK button. 

The screen should then display the archive content as follow: 

 

Figure 2 - Drools plug-in for Eclipse IDE: Installation step 2 

Check the “Drools and jBPM” checkbox and then click on the Next > button. 

The following screen is displayed: 

 



14 

Figure 3 - Drools plug-in for Eclipse IDE: Installation step 3 

 

Click on the Next > button for installing the plug-in after accepting the license terms. 

The plug-in installation requires a restart of your Eclipse IDE environment. 

2.1.4 Installing UCA for EBC and UCA for EBC Development Kit 

Detailed information on how to install UCA for EBC and UCA for EBC Development Kit is 
provided in the [R1] HP UCA for Event Based Correlation – Installation Guide 

 

2.1.5 Post-install Environment Setup 

2.1.5.1 The UCA_EBC_DEV_HOME Variable 

The UCA for EBC Development Kit installation procedure adds the ${UCA_EBC_DEV_HOME} 
environment variable to your user environment. 

This variable is necessary for various development phases of a UCA for EBC value pack 
development, especially the build and packaging phases. 

To verify that this variable is correctly set after the UCA for EBC Development Kit has been 
installed, open a command-line (Run… -> cmd.exe) and type: 

On Windows: 
C:\> echo %UCA_EBC_DEV_HOME% 

You should get an output similar to the following: 

 
C:\UCA-EBC-DEV\3.2\ 

Note  

On Windows 7, you should log out and log back in again for the new environment variable to 
be taken into account after installation of the UCA for EBC Development Kit. 
 

 

On Linux: 
$ echo ${UCA_EBC_DEV_HOME} 

 

You should get an output similar to the following:  

 
/opt/UCA-EBC-DEV 

Note  

On Linux this Variable must be manually set in the user’s environment, as specified in the 
UCA for EBC Installation Guide. 
 



15 

2.1.5.2 Ant Configuration 

The UCA for EBC value pack packaging is based on the use of the Apache Ant tool. This tool 
requires a specific version and specific settings. Be sure to use the Apache Ant tool provided 
with UCA for EBC in the %UCA_EBC_DEV_HOME%\3pp\ant directory 
(${UCA_EBC_DEV_HOME}/3pp/ant on Linux). 

Be sure that you don’t have the ANT_HOME environment variable set to the path of another 
version of Apache Ant, which would create conflicts with the version of Apache Ant in the 
3pp\ant\bin folder. If you do, you should either clear the ANT_HOME environment 

variable: 
C:\> set ANT_HOME= 

Or set it to the directory of the Apache Ant version that comes with the UCA for EBC 
development kit: 

C:\> set ANT_HOME=%UCA_EBC_DEV_HOME%\3pp\ant 
 
$ANT_HOME/bin/ant -version 
Apache Ant(TM) version 1.8.2 compiled on December 20 2010 

 

The delivered Apache Ant version that comes with the UCA for EBC development kit is: 
# $ANT_HOME/bin/ant -version 
Apache Ant(TM) version 1.8.2 compiled on December 20 2010 

2.1.6 UCA for EBC Eclipse plug-in installation instructions 

The UCA for EBC Development Kit delivers an Eclipse plug-in that eases UCA for EBC value 
pack project creation under eclipse. 

This plugin is delivered in the 
%UCA_EBC_DEV_HOME%\eclipseplugin\ucaEbcEclipsePluginSite-3.2.1-assembly.zip file. 

The installation of this plug-in is made as follows: 

From the Eclipse ‘Help’ menu, choose ‘Install new software’ and then click on the Add… 

button. 

Select the UCA for EBC eclipse plug-in ZIP file using the Archive... button and give it the 

name “UCA for EBC plug-in” as shown in the picture below: 



16 

 

Figure 4 - UCA for EBC Eclipse plug-in: Installation step 1 

Then click on the OK button. 
  



17 

The screen should then display the archive content as follow: 

 

Figure 5 - UCA for EBC Eclipse plug-in: Installation step 2 

Check the “UCA EBC plugins” checkbox, uncheck the “Contact all update sites…”, and then 
click on the Next > button. 

  



18 

The following screen is displayed: 

 

Figure 6 - UCA for EBC Eclipse plug-in: Installation step 3 

 

Click on the Next > button for installing the plug-ins after accepting the license terms. 



19 

Note 

The following message appears during the installation. This is a normal message as the 
provided jar files are signed.  

 

Select the listed Certificated and Click OK to continue the installation. 

 

The plug-in installation requires a restart of your Eclipse IDE environment. Please restart 
eclipse before any attempt to create a UCA for EBC project. 

  



20 

Chapter 3 

Value pack development lifecycle 

3.1 Memento on Value packs and Scenario definitions 

3.1.1 Value Pack Definition 

Creating a Value Pack can be seen as implementing a “Correlation” bundle for managing a 
special correlation use case. The following are example of such correlation use cases: 

 a Low Level Filtering use case 

 a domain-specific correlation use case like IP MPLS or L2 Metro Ethernet 

 a simple ‘operator’ use case that groups/correlates alarms based on specific rules 

A Value Pack is a “functional container” that contains one or more scenarios, each scenario 
implementing a part of the whole correlation use case targeted by the Value Pack. 

Scenarios can be cascaded so that the output of one scenario can be the input of another 
scenario. 

Note 

 For additional information about Value Pack and Scenario configuration parameters, 

please refer to:  [R2] HP UCA for Event Based Correlation – Reference Guide 
 

3.1.2 Scenario Definition 

A scenario is fully defined by implementing the following steps: 

 Defining the properties of the scenario 

 Defining the filter of the scenario (this will determine what type of alarms will enter 
the scenario) 

 Implementing Alarm enrichment processing (optional) 

 Implementing scenario rules 

Note 

 The first two steps “Scenario definition file” and “Filter definition file” are described in 

the following document:  [R2] HP UCA for Event Based Correlation – Reference Guide 
 

 



21 

 

Figure 7 – The UCA-EBC Scenario Components 

 

Scenario 
 

 
Filters Engine Rules 



22 

3.2 Life Cycle 
The process of creating a UCA for EBC Value Pack is described by the following figure: 

 

Figure 8 - The 5 steps to create a UCA for EBC Value Pack 

 

For step 1 “Create a new UCA for EBC Value Pack project”, use the UCA for EBC project 
builder eclipse plug-in. 

Step 2 “Update the UCA for EBC Value Pack project” is the main step when creating new UCA 
for EBC Value Packs. This part is explained in details in the next paragraphs and sections. 

Step 3 “Develop correlation rules” is also a main step when creating new UCA for EBC Value 
Packs. 

Step 4 is performed automatically using Apache Ant. The build.xml file has all necessary 

targets to compile, test, and generate a ZIP file for your Value Pack. 

Step 5 involves copying your Value Pack zip file to the 
${UCA_EBC_INSTANCE}/valuepacks folder on a UCA for EBC Server, as mentioned in 

Chapter 2 “Getting started with UCA for EBC” of this document. 

Create project 
 

Step 1 
 

Manual update 
(filters, 

scenarios, rules, 
code) 

 

Step 2 
 

Unit Testing 
 

Step 3 
 

Packaging of  
the Value Pack 

Step 4 
 

Deployment of 
the Value Pack 

Step 5 
 



23 

Developing correlation features involves creating one or more correlation scenarios for your 
Value Pack, each scenario using its own filter and implementing its own rules. 

3.3 Creating a new UCA for EBC Value Pack 
UCA for EBC can be seen as an application container in which so called UCA for EBC “Value 
Packs" are deployed. 

A Value Pack represents a set of features (scenarios) that are grouped together to 
implement one or more correlation use cases. 

A UCA for EBC value pack thus includes for example: event filtering, event based rules, 
customized java code and possibly configuration files for each of these scenarios. 

3.3.1 Creating a value pack project within Eclipse 

The UCA for EBC eclipse plug-in provides a project creation wizard allowing the creation of a 
new value pack project in just a few clicks and dialog boxes. 

This wizard can be launched from the eclipse main toolbar by clicking on the UCA/EBC icon: 

 

Or from the Eclipse “New Project” Menu as follow: 

 

 

This launches the UCA EBC value pack wizard: 



24 

 

Figure 9 - Value pack project creation wizard Step1 

From this panel you can set the project and value pack configuration: 

On the first line you must enter the name of the eclipse project to be created. 

On the second line you need to give the value pack name and its version 

Then the ‘location’ panel allows specifying the location of the created project. It can be in 
the current workspace or in an external directory of your choice. 

Finally the UCA SDK Location allows specifying the home directory of the UCA for EBC 
Development kit. The default value is obtained from the %UCA_EBC_DEV_HOME% 
environment variable. 

 

Then Click on the Next > button for getting the next wizard step. 

This is the scenario panel configuration. Note that the project creation wizard allows 
creating a single initial scenario per value pack. The creation of additional scenarios for a 
given value pack must be done manually by editing the various value pack configuration 
files. 



25 

 

Figure 10 - Value pack project creation wizard Step2 

At this step you can set the scenario parameters: 

On the first line you must enter the scenario name. 

On the second line you need to give the scenario package name. This package name will be 
used for all the scenario’s java source code files. 

In the filter panel you have to enter the name of the filter file for this scenario. As this is an 
XML file, the ‘.xml’ suffix is mandatory. 

Then the rule panel allows you specifying the rule file name (and a description) and also 
specify if this scenario will use template rules file or not (this is done by checking the ‘Use 
template rule’ box. 

Then Click on the Finish button for creating the Project. 

 

This project creation wizard execution leads to the creation of an Eclipse project skeleton. It 
exhibits a basic correlation scenario that can compile and unit test successfully. From this 
example, developers can extend it to build their own Value Packs. 



26 

  

Figure 11 - Created Value pack 

 

Notes 

 For creating “topology based” Value Pack project, please refer to [R8] HP UCA for EBC 

Topology Extension user guide  

 For creating “Inference Machine”, “Problem Detection”, “Topology State Propagator” 

Value Pack projects, please refer to [R9] HP UCA for EBC Inference Machine user guide 
 

 

3.3.2 Anatomy of the created project 

Using Eclipse IDE, you can browse through the different directories that compose the 
created “Skeleton” project. 

Please see below for a glimpse at the folder structure of the created project: 



27 

 

Figure 12 - Folder structure of the created project 

 

The created “Skeleton” project also comes with an Apache Ant build.xml file that is used for 
building and packaging the value pack outside of the Eclipse IDE. 

3.3.3 Validation of the created project 

The created project contains predefined test classes that automatically load/compiles the 
value pack resources (scenario definitions, filters and rules files) and validate them (at least 
syntactically). 

JUnit tests can be run either directly from eclipse, by right-clicking on the test package and 
choosing “Run As > JUnit Test” as shown in the following screen shot: 



28 

 

Figure 13- Running JUnit tests on the created project in Eclipse IDE 



29 

In which case the test results can be seen directly in Eclipse IDE: 

 

Figure 14 - JUnit tests results on the created project in Eclipse IDE 

Or from the command line by executing the Apache Ant tool and selecting the “test” Ant 
target (You need to run the “ant test” command from the root directory of your project 
workspace) as shown in the following screen shot: 

 

Figure 15 - Running JUnit tests on the created project at the command-line using 
Ant 

In which case the results can be shown in your preferred Web browser by opening the 
index.html file in the target\vp-build-dir\reports\junitreport directory 

of your project workspace: 



30 

 

Figure 16 - JUnit tests results on the created project viewed using a Web browser 

 

3.4 Customizing the created ‘skeleton’ Value Pack project 
The project generated by the UCA for EBC project builder eclipse plug-in provides a simple 
scenario implementing some basic alarm statistics that is just here for validating the project 
structure. 

Of course you have to turn the created ‘skeleton’ project into your new Correlation-project 
value pack. For this you have to customize 

 The Value pack configuration files 

 The scenario filter file 

 The scenario rule files 

 The Associated Java code files. 

Note 

 For additional information about Value Pack and Scenario configuration parameters, 

please refer to:  [R2] HP UCA for Event Based Correlation – Reference Guide 
 

3.4.1 Updating the scenario filters 

There is a filter file named filters.xml that is associated with the scenario of the 

created value pack. 

The goal of this file is to define the passing filter for Alarms that will be consumed by the 
current scenario. Then, all alarms entering UCA for EBC will be evaluated against the filter 
file of each scenario,  to decide if they should be forwarded to the scenario or not. 

If the properties of an alarm match the passing filter(s) defined in the filters file then the 
alarm is forwarded to the scenario. On the other hand, if the properties of an alarm don’t 
match the passing filter(s) of the filters file then the alarm is not forwarded to the scenario. 



31 

The default generated filter allows any alarm to be forwarded to the scenario. 

 

 

Figure 17 - The default “catch all” project’s filters.xml file 

 

Notes 

 Please refer to:  [R2] HP UCA for Event Based Correlation – Reference Guide for a full 

description of the Filter file syntax.  

 Refer to section 5.9 of this document for a description on how to use the UCA-EBC 

eclipse filter editor. 
 

3.4.2 Updating the correlation rules file 

By default, the generated rules file defines a single rule implementing a basic statistic use 
case. This rule is just for demoing and testing. It is just an example, which must be changed 
to something relevant. 

3.5 Generating the Value Pack kit 
Once your project has been updated, it is necessary to generate the kit associated with it so 
that it can be deployed on UCA for EBC (this is the packaging phase). To do this, you just 
need to execute the following commands: 

 
C:\> cd <Project Base> 
C:\> ant all 

 



32 

 

Figure 18 - Building the kit of your customized Value Pack 

 

The kit of the project is then generated in the target/vp-build-dir/vp directory of 

the <Project Base> directory as a zip file called <my valuepack name>-vp-<my 
valuepack version>.zip: 



33 

 

Figure 19 - The kit of your customized Value Pack 

 

The ZIP file of your customized Value Pack contains the following information: 

 The Configuration (conf/) directory that contains: 

 The Value Pack Spring beans file: context.xml  

 The Value Pack configuration file: ValuePackConfiguration.xml 

 The Library (lib/) directory that contains: 

 The JAR file of the Value Pack containing the compiled Java code that you 
developed for your Value Pack in addition to the rules files 

 Any custom JAR files that you need to run this Value Pack 

 The Scenario  (<your-scenario-name>/) directory that contains: 

 The filters file(s) 

 The external parameters file(s), if your Value Pack contains rules files that are 
template-based 

 The rule file(s) 

 
 

$ unzip -l target/vp-build-dir/vp/myVP1-vp-1.0.zip 

Archive:  target/vp-build-dir/vp/myVP1-vp-1.0.zip 

  Length      Date    Time    Name 

---------  ---------- -----   ---- 

        0  05-30-2013 17:46   myVP1-1.0/ 

        0  05-30-2013 17:46   myVP1-1.0/conf/ 

        0  05-30-2013 17:46   myVP1-1.0/lib/ 

        0  05-30-2013 17:46   myVP1-1.0/myScenario1/ 

     2726  05-30-2013 17:46   myVP1-

1.0/conf/ValuePackConfiguration.xml 

     1100  05-30-2013 17:46   myVP1-1.0/conf/context.xml 

     6423  05-30-2013 17:46   myVP1-1.0/lib/myVP1-lib-1.0.jar 

     2596  05-30-2013 17:46   myVP1-1.0/myScenario1/Alarms.xml 

      626  05-30-2013 17:46   myVP1-1.0/myScenario1/filters.xml 

      420  05-30-2013 17:46   myVP1-

1.0/myScenario1/filtersTags.xml 



34 

     3299  05-30-2013 17:46   myVP1-1.0/myScenario1/rules.drl 

---------                     ------- 

    17190                     11 files 

 

Figure 20 - Contents of the ZIP file of your customized Value Pack 

3.6 Deploying the Value Pack kit on UCA for EBC 
To deploy your value pack in the UCA server, the following three steps are necessary: 

 Install the Value Pack ZIP file on UCA for EBC Server 

 Deploy the Value Pack on UCA for EBC Server 

 Start the Value Pack on UCA for EBC Server 

 

3.6.1 Install the Value Pack package (ZIP file) on an HP Itanium or 
Linux system running UCA for EBC Server.  

Copy your Value Pack package (the ZIP file located at: target/vp/<my value pack 
name>vp-<my value pack version>.zip) to the 

${UCA_EBC_INSTANCE}/valuepacks directory on the UCA for EBC system 

For example: 

$ cp  target/vp-build-dir/vp/myVP1-vp-1.0.zip 
${UCA_EBC_DATA}/instances/default/valuepacks/ 

Note 

 Alternatively, you use UCA-EBC GUI to upload your Value Pack directly on UCA for EBC 

system without the need of logging into it (just need to log in as admin in GUI application). 
Refer to [R7] Unified Correlation Analyzer for Event Based Correlation – User Interface Guide 
 

 

3.6.2 Deploy the Value Pack 

To deploy the Value Pack in the ${UCA_EBC_INSTANCE}/deploy directory, use the “--

deploy” option of the uca-ebc-admin administration tool (executed as uca user):  

 
> cd ${UCA_EBC_HOME}/bin 
> uca-ebc-admin --deploy -vpn <my value pack name> -vpv <my value 
pack version> 

You should get an output similar to the following: 
UCA for EBC Home directory set to: /opt/UCA-EBC 
UCA for EBC Data directory set to: /var/opt/UCA-EBC 
INFO  - Value Pack name: <my value pack name> version: <my value 
pack version> has been successfully deployed 
INFO  - Exiting... 

 

Note 

 Alternatively, you can also deploy the value pack from the UCA for EBC GUI. 

Refer to [R7] Unified Correlation Analyzer for Event Based Correlation – User Interface Guide 
 



35 

 

3.6.3 Start the Value Pack on UCA for EBC Server:  

Two different ways are available to you to start value packs deployed on UCA for EBC 
depending on whether UCA for EBC is started or not.  

You can check whether UCA for EBC is running or not by issuing the following command:  

 
> ${UCA_EBC_HOME}/bin/uca-ebc show 

If UCA for EBC is stopped, restarting UCA for EBC will load all value packs deployed in the 
${UCA_EBC_INSTANCE}/deploy folder including your value pack. 

If UCA for EBC is running, use the “--start” option of the uca-ebc-admin administration tool 
(executed as uca user) to start your value pack: 

 
> cd ${UCA_EBC_HOME}/bin 

> uca-ebc-admin --start -vpn <my value pack name> -vpv <my 

value pack version> 

You should get an output similar to the following: 
UCA for EBC Home directory set to: /opt/UCA-EBC 

UCA for EBC Data directory set to: /var/opt/UCA-EBC 

INFO  - Exiting... 

 

Note 

 Alternatively, you can also start the value pack from the UCA for EBC GUI. 

Refer to [R7] Unified Correlation Analyzer for Event Based Correlation – User Interface Guide 
 

 

You can get the list of running value packs on UCA for EBC using the “--list” option of the 
uca-ebc-admin command-line administration tool: 

 
> cd ${UCA_EBC_HOME}/bin 

> uca-ebc-admin --list 

 

Note 

 For additional information about the uca-ebc-admin command-line administration tool, 

please refer to:  [R3] HP UCA for Event Based Correlation – Administration, Configuration and 
Troubleshooting Guide 

[R4] HP UCA for Event Based Correlation – Value Pack Examples 

 
 

3.7 Testing the Value Pack in real-time 
Now that both UCA for EBC and your value pack are up and running, the UCA for EBC 
application implements the ‘Statistic circuit’ correlation package and is ready to listen to 
incoming alarms. 



36 

In order to provide an easy way to test the global solution, a simple tool is provided that lets 
you inject a set of alarms (defined in a XML file) into UCA for EBC. 

As the action provided in the properties file is to “log” information to a log file (in “append” 
mode), it is easily possible to test the circuit in real-time. 

A sample Alarms.xml input file containing sample alarms to use with your value pack is 

provided in the ${UCA_EBC_INSTANCE}/deploy/<your value pack name>-
<your value pack version>/skeleton folder. The output log file named 

output.xml is located in the ${UCA_EBC_HOME} root folder. 

Following is an example of the uca-ebc-injector command-line tool used to inject Alarms 
into UCA for EBC in order to test your Value Pack in real conditions: 

 
>${UCA_EBC_HOME}/bin/uca-ebc-injector -file 
${UCA_EBC_INSTANCE}/deploy/skeleton-project-
1.0/mypackage/Alarms.xml 
>tail -f ${UCA_EBC_HOME}/output.xml & 

You should get an output similar to the following: 
### STATISTICAL ALARM: 2 Alarms received ### 

 

Note 

 For additional information about the uca-ebc-injector command-line tool, please refer 

to:  [R3] HP UCA for Event Based Correlation – Administration, Configuration and 
Troubleshooting Guide 

[R4] HP UCA for Event Based Correlation – Value Pack Examples 

 
 

 

  



37 

Chapter 4 

Focus on development key points 

4.1 Implementing Alarm enrichment 
Alarm enrichment processing is called by the UCA for EBC framework after the alarm passed 
the scenario filters and before it is inserted in the scenario Working Memory. 

The enrichment is implemented by performing the following steps: 

Step 1:  Extend the UCA Java class com.hp.uca.expert.lifecycle.alarm.AlarmLifeCycle 

 

And override the following methods: 

 onAlarmCreationProcess(Alarm alarm): to extend alarm creation 

objects 

 onAlarmDeletionProcess(AlarmDeletion alarm): to extend alarm 

deletion objects 

 onAlarmStateChangeProcess(AlarmStateChange alarm): to extend 

alarm state change  objects 

 onAlarmAttributeValueChangeProcess(AlarmAttributeValueCha

nge alarm): to extend alarm attribute value change  objects 

 

Example of AlarmLifeCycle Extension: 

 
package com.hp.uca.ebc.enrichmentexample; 

 

import org.slf4j.Logger; 

import org.slf4j.LoggerFactory; 

 

import com.hp.uca.common.trace.LogHelper; 

import com.hp.uca.expert.alarm.Alarm; 

import com.hp.uca.expert.alarm.AlarmCommon; 



38 

import com.hp.uca.expert.lifecycle.alarm.AlarmLifeCycle; 

import 

com.hp.uca.expert.lifecycle.alarm.AlarmLifeCycleExtensionWorkingMemoryA

ccessAllowed; 

import com.hp.uca.expert.lifecycle.common.LifeCycleExtensionInterface; 

import com.hp.uca.expert.scenario.Scenario; 

 

public class ExtendedLifeCycle extends AlarmLifeCycle implements 

  LifeCycleExtensionInterface, 

  AlarmLifeCycleExtensionWorkingMemoryAccessAllowed { 

 

 private static Logger log = LoggerFactory 

   .getLogger(ExtendedLifeCycle.class); 

 

 public ExtendedLifeCycle(Scenario scenario) { 

  super(scenario); 

 

  /* 

   * If needed more configuration, use the context.xml to 

define any beans 

   * that will be available here using 

scenario.getGlobals() 

   */ 

  // scenario.getGlobals() 

 } 

 

 @Override 

 public AlarmCommon onAlarmCreationProcess(Alarm alarm) { 

  LogHelper.enter(log, "onAlarmCreationProcess()"); 

 

  EnrichedAlarm customAlarm = new EnrichedAlarm(alarm); 

  customAlarm.setCustomizedInformation("New Custom 

Information only available from CustomAlarm"); 

 

  LogHelper.exit(log, "onAlarmCreationProcess()"); 

  return customAlarm; 

 } 

 

} 

In this example, the enrichment is performed only in the case of an alarm creation event. 

Step 2: Declare the ExtendedLifeCycle class at the scenario definition Level: 

This is done by using the <customLifeCycleClass> in the Scenario Definition section of the 
ValuepackConfiguration.xml file. 

Example: 

<scenarios> 

 <scenario name="com.hp.uca.ebc.enrichmentexample.myscenario"> 

  <alarmEligibilityPolicy> 

     NetworkState!=&quot;CLEARED&quot; 

  </alarmEligibilityPolicy> 

  <filterFile> 

   src/main/resources/valuepack/myscenario/filters.xml 

  </filterFile> 

  <fireAllRulesPolicy>EACH_ACCESS</fireAllRulesPolicy> 

  <globals></globals> 

  <processingMode>CLOUD</processingMode> 

  <rulesFiles> 

      <rulesFile> 

     <filename> 

          file:./src/main/resources/valuepack/myscenario/rules.drl 



39 

        </filename> 

     <name>my scenario rules</name> 

     <ruleFileType>DRL</ruleFileType> 

      </rulesFile> 

  </rulesFiles> 

  <customLifeCycleClass> 

     com.hp.uca.ebc.enrichmentexample.ExtendedLifeCycle 

  </customLifeCycleClass> 

 </scenario> 

</scenarios> 

 

Step3:  Extend the Alarm object if necessary 

In order to ease the rule writing, it may be easier to store the enrichment information in 
some dedicated alarm object attributes. 

In such case the Alarm objects (Alarm, AlarmDeletion, AlarmAttributeValueChange and 
AlarmStateChange) can be extended. 

Example of Alarm extension: 

package com.hp.uca.ebc.enrichmentexample; 

import javax.xml.bind.annotation.XmlRootElement; 

import org.neo4j.graphdb.Relationship; 

import com.hp.uca.expert.alarm.Alarm; 

import com.hp.uca.expert.alarm.AlarmHelper; 

 

@XmlRootElement 

public class EnrichedAlarm extends Alarm { 

 

 /** 

  * New Alarm field 

  */ 

 private String location; 

 

 public EnrichedAlarm() { 

  super(); 

 } 

  

 public EnrichedAlarm (Alarm alarm) { 

  super(alarm); 

 } 

  

  

 @Override 

 public EnrichedAlarm clone() throws CloneNotSupportedException 

    { 

  EnrichedAlarm newAlarm = (EnrichedAlarm) super.clone(); 

  newAlarm.location = this.location; 

  return newAlarm; 

 } 

 

 public String getLocation() { 

  return location; 

 } 

  

 public void setLocation(String location) { 

  this.location = location; 

 }  

  

 @Override 

 public String toFormattedString() { 



40 

  StringBuffer toStringBuffer= 

AlarmHelper.toFormattedStringBuffer(this); 

   

  AlarmHelper.addFormatedItem(toStringBuffer, “Location:”, 

getLocation()); 

   

  return toStringBuffer.toString(); 

 } 

 

} 

4.2 Developing the scenario rules 
Rules files are files containing correlation rules interpreted by the Drools inference engine 
of the scenario. 

The Drool Expert engine used in UCA for EBC has its own rule language. The rule file content 
must comply with this language. 

 Please refer to Drools Expert guide, Chapter 5 The Rule Language for a description of the 

language: http://www.jboss.org/drools/documentation 

 

Important note 

Drools keywords for inserting, updating, and deleting objects in Working Memory (i.e. 
insert, update, retract) MUST NOT be used directly when developing UCA-EBC rules. This is 
for working memory integrity, and due to the locking mechanism implemented within the 
UCA-EBC framework. 

 Instead of using insert(myObject) directly, you should use 

theScenario.getSession().insert(myObject) from Drools files or 
ScenarioThreadLocal.getScenario().getSession().insert(myO

bject) from Java code 

 Instead of using update(myObject) directly, you should use 

theScenario.getSession().update(myObject) from Drools files or 
ScenarioThreadLocal.getScenario().getSession().update(myO

bject) from Java code 

 Instead of using retract(myObject) directly, you should use 

theScenario.getSession().retract(myObject) from Drools files or 
ScenarioThreadLocal.getScenario().getSession().retract(my

Object) from Java code 

The ScenarioThreadLocal class is located in the 
com.hp.uca.expert.scenario package. 

Also, all timer based keywords should be avoided: duration, timer, calendar. 
 

 

On top of the basic rule language syntax, additional operators are available to deal with 
time constraints: 

Temporal operator: see Drools Fusion guide, Chapter 2.4. Temporal Reasoning  

Sliding Time Window Feature: see Drools Fusion guide, Chapter 2.6. Sliding Time Window  

 See https://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/html_single/ 

for more information on how to create rules that deal with time constraints. 

http://www.jboss.org/drools/documentation
https://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/html_single/


41 

 

Note  

To use the sliding time window feature, objects in working memory must be declared as 
Event (and not as Fact). 

 Please see Drools Fusion guide, Chapter 2.1. Events semantics at URL 

https://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/html_single/ 

for more information on what events are compared to facts and how to declare them. 
 

4.2.1 Basics 

Any rules file contains one or multiple rules, and has a ‘.drl’ extension. 

Here are the different parts composing a rule file: 

 
package package-name 

 

imports 

 

globals 

 

functions 

 

queries 

 

rules 

 

Package 

The package name is optional, but it is recommended to partition your rules in different 
packages for clarity. 

Imports 

The “imports” part, allows you to import Java classes that can be used in the Action or 
Condition parts of a rule. 

Important note 

In UCA for EBC, importing the Alarm Java class (com.hp.uca.expert.alarm.Alarm) is 
necessary in order to be able to use alarm attributes in rule conditions. 
 

Globals 

The ”globals” part is used to define variables that have a global scope (across rules). The 
global variables have to be initialized by the application.  

Functions 

Functions let you define functions that let you avoid repeating the same lines of code over 
the entire rules file. 

Queries 

UCA for EBC does not currently provide support for queries. 

https://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/html_single/


42 

Rules 

The rules define the behavior of the expert system. 

 Please refer to Drools Expert guide, for a full description of rule files: 

https://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html_single/ 

 

4.2.2 Sample rules on Alarm facts in CLOUD mode 

In CLOUD mode, the UCA for EBC system inserts Alarm facts in Working Memory and these 
facts remain infinitely in working memory unless they are specifically removed in the rules 
(using the retract statement). This retract statement is generally done in the right end side 
part of rules. 

UCA for EBC contains an Alarm Java class (com.hp.uca.expert.alarm.Alarm) which represents 
a “generic” Alarm as a fact. Rules can rely on attributes and services of the Alarm object. For 
instance, testing a specific value of an attribute in the condition part or setting a specific 
attribute of the Alarm in the action part. 

To use the CLOUD mode, the scenario processing mode must be set to “CLOUD” in the 
ValuePackConfiguration.xml file:  

 
<?xml version="1.0" encoding="UTF-8"?> 

<valuePackConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" 

 name="myValuepackName" version="myValuepackVersion"> 

 <scenarios> 

     <scenario name="myScenario"> 

  <filterFile>${uca.home}/myValuePack/myScenario/myScenario-

filter.xml</filterFile> 

  <fireAllRulesPolicy>WATCHDOG</fireAllRulesPolicy> 

  <globals> 

  </globals> 

  <processingMode>CLOUD</processingMode> 

  <rulesFiles> 

      <rulesFile> 

 <filename>file:${uca.home}/myValuePack/myScenario/myScenarioRules.drl</

filename> 

   <name>myRules</name> 

   <ruleFileType>DRL</ruleFileType> 

      </rulesFile> 

  </rulesFiles> 

    </scenario> 

 </scenarios> 

</valuePackConfiguration> 

 

Here is a simple example that identifies “Similar alarms” (i.e. Alarms that have the same 
alarm type, managed object and probable cause as another Alarm). This example illustrates 
a case where the UCA for EBC engine is in CLOUD processing mode. 

 

The rule file called myScenarioRules.drl contains a rule, the “Similar Alarm” rule, 

which performs the following processing: 

When an alarm ‘a’ is found in Working Memory (with a severity different from ‘clear’) and if 
there is another not cleared (severity different from ‘clear’) alarm (this !=a) with the same 
attribute values for the originatingManageEntity, alarmType and probableCause properties 
then display a text. 

 
package scenario.sample; 

 

import com.hp.uca.expert.alarm.Alarm; 

https://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html_single/


43 

import com.hp.uca.expert.x733alarm.PerceivedSeverity; 

 

rule "Similar Alarm" 

when 

   a: Alarm(perceivedSeverity != PerceivedSeverity.CLEAR) 

   a1: Alarm( 

      this != a && 

      perceivedSeverity != PerceivedSeverity.CLEAR && 

      originatingManagedEntity == a.originatingManagedEntity && 

      alarmType == a.alarmType && 

      probableCause == a.probableCause) 

        

 then 

  System.out.println("Executing: "+drools.getRule().getName()); 

   System.out.println(a1.getIdentifier() + ‘‘similar to ‘‘+ 

a.getIdentifier());     

end  

 

Important note 

Importing the Alarm Java class (com.hp.uca.expert.alarm.Alarm) is necessary. Declaring the 
Alarm class as a Fact in the “declare” section of the rules file is not mandatory however. By 
default, if they are not declared at all, objects are understood to be Facts in Working 
Memory. 
 

 

Another rule, the “Clear Alarm” rule focuses on cleared alarms: 

 
rule "Clear Alarm" 

when 

   a: Alarm(perceivedSeverity != PerceivedSeverity.CLEAR) 

   a1: Alarm( 

      perceivedSeverity == PerceivedSeverity.CLEAR && 

      originatingManagedEntity == a.originatingManagedEntity && 

      alarmType == a.alarmType && 

      probableCause == a.probableCause &&  

      timeInMilliseconds > a.timeInMilliseconds) 

       

 then 

  System.out.println("Executing: ‘‘+drools.getRule().getName()); 

   System.out.println(a1.getIdentifier() + " clears "+ 

a.getIdentifier()); 

end    

Note 

The drools object in the sample rule code above is a predefined Drools java object that you 
can use in the Action part of a rule to get information on the rule itself among other things. 
In our example, the method drools.getRule().getName(), called from a rule's 

Action part, returns the name of the rule. See 
https://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html_single/ 

for more information on the drools predefined object. 
 

4.2.3 Sample rules on Alarm events in STREAM mode 

In STREAM mode, UCA for EBC inserts Alarm events in Working Memory only for a period of 
time. After that, Alarm events are automatically removed from working memory. 

https://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html_single/


44 

To use the STREAM mode, the scenario processing mode must be set to “STREAM” in the 
ValuePackConfiguration.xml file:  

 
<?xml version="1.0" encoding="UTF-8"?> 

<valuePackConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" 

 name="myValuepackName" version="myValuepackVersion"> 

 <scenarios> 

    <scenario name="myScenario"> 

  <filterFile>${uca.home}/myValuePack/myScenario/myScenario-

filter.xml</filterFile> 

  <fireAllRulesPolicy>EACH_ACCESS</fireAllRulesPolicy> 

  <globals> 

  </globals> 

  <processingMode>STREAM</processingMode> 

  <rulesFiles> 

      <rulesFile> 

  

 <filename>file:${uca.home}/myValuePack/myScenario/myScenarioRules.drl</

filename> 

   <name>myRules</name> 

   <ruleFileType>DRL</ruleFileType> 

      </rulesFile> 

  </rulesFiles> 

     </scenario> 

 </scenarios> 

</valuePackConfiguration> 

 

Important note 

Importing the Alarm Java class (com.hp.uca.expert.alarm.Alarm) is necessary. Declaring the 
Alarm class as an Event in the “declare” section of the rules file is also mandatory. 

By default, if they are not declared at all, objects are understood to be Facts in Working 
Memory. So, declaring Alarms as Events is mandatory. 

 Please see Drools Fusion guide, Chapter 2.1. Events semantics at URL 

http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-
docs/html/ch02.html#d0e184, for more information on what events are compared to facts 
and how to declare them. 
  

 

 

import com.hp.uca.expert.alarm.Alarm; 

import com.hp.uca.expert.x733alarm.PerceivedSeverity; 

 

import java.text.SimpleDateFormat; 

import java.util.Date; 

import java.util.Locale; 

 

 

declare Alarm 

    @role( event ) 

    @timestamp( timeInMilliseconds ) 

    @expires( 30m ) 

end 

 

 

The above “Alarm” declaration specifies that: 

 Alarms should be treated as Events in Working Memory, not Facts 

 The timeInMilliseconds attribute (i.e. the EventTime attribute of the Alarm) is used as 
the timestamp of the Alarm instead of the time when the Alarm Event is actually 

http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/html/ch02.html#d0e184
http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/html/ch02.html#d0e184


45 

inserted into working memory, which is the default timestamp for Events in Working 
Memory. The timestamp of the Alarm Event plays a role when time constraints are used 
in rules. 

 Alarm Events expiration time is 30 minutes: the Alarm Events will be removed from 
working memory automatically after 30 minutes. 

 

Generally, rules in STREAM mode are used to identify patterns of Events (Events that occurs 
in a specific order) during a specific time window. 

 

The “Store not cleared Alarm” rule is an example of such a rule in STREAM mode. It performs 
the following rules: 

When an alarm ‘a’ is in Working Memory (an alarm on a “BOX” item with a severity different 
from ‘clear’) and if there are no other alarms (matching specific criterias) received within 2 
seconds of alarm ‘a’ then the AdditionalInformation attribute of alarm ‘a’ is updated 

 

rule "Store not cleared Alarm" 

 when 

  a: Alarm(originatingManagedEntity matches "BOX .*" && 

   perceivedSeverity != PerceivedSeverity.CLEAR) 

   

  not Alarm(originatingManagedEntity == 

a.originatingManagedEntity && 

   perceivedSeverity == PerceivedSeverity.CLEAR &&  

   this after[ 0s, 2s ] a) 

   

 then 

  System.out.println("Executing rule: 

"+drools.getRule().getName()+" on " + a.getAdditionalText());   

   

  // Add the correlation time and rule name in the Additional 

Information Field of the alarm 

  Date now=new Date(); 

  SimpleDateFormat sdf = new SimpleDateFormat("EEE MMM dd 

HH:mm:ss zzz yyyy",  

         Locale.FRENCH);  

  a.setAdditionalInformation("correlated by rule: 

"+drools.getRule().getName() 

   +" at " +sdf.format(now)); 

    

  // Store the alarm 

  acmeActionManager.doDummyAction(a); 

end 

Note 

The JBoss Drools documentation contains a lot of other examples of rules in both STREAM 
(Drools Fusion) and CLOUD (Drools Expert) modes. As writing the correlations rules is the 
major undertaking of creating a correlation project, it is highly recommended to constantly 
refer to the Drools documentation when writing Rules. 

 Please see http://www.jboss.org/drools/documentation for documentation on how to 

write rules for Drools Expert and Drools Fusion. 
 

4.2.4 Defining and using rule templates 

 For information about rule templates, please refer to:  [R2] HP UCA for Event Based 
Correlation – Reference Guide 

http://www.jboss.org/drools/documentation


46 

4.2.5 Introducing Java code in the rules 

Drools rules files natively support Java code in the consequence part of the rules (after the 
“then” keyword). All you have to do is import the packages/classes that you need in the 
import section of the rules files and then write Java code referencing these classes. 

For example, you declare the java.util.Date class in the rules file: 

 
template header 

timeslot 

 

package com.hp.uca.expert.vp.llef.grouping; 

 

#list any import classes here. 

import com.hp.uca.expert.alarm.Alarm; 

import com.hp.uca.expert.x733alarm.PerceivedSeverity; 

 

import java.util.regex.Matcher; 

import java.util.regex.Pattern; 

import com.hp.uca.expert.example.hibernate.AlarmDao; 

 

import java.text.SimpleDateFormat; 

import java.util.Date; 

import java.util.Locale; 

import java.util.ArrayList; 

import java.util.Iterator; 

 

import com.hp.uca.expert.scenario.ScenarioPublic; 

import com.hp.uca.common.trace.LogHelper; 

import com.hp.uca.expert.flag.Flag; 

import com.hp.uca.expert.testmaterial.AbstractJunitIntegrationTest; 

 

#declare any global variables here 

global AlarmDao alarmDAO; 

global ScenarioPublic theScenario; 

 

Then you can create and use java.util.Date objects in the consequence part (after the “then” 
keyword) of your rules: 

 
// Description: find a root cause and the associated symptoms in a 

given time window 

// Constraints: 

// - the root cause is not cleared during the time window 

template "Update Root Cause with Symptoms no clearance received" 

rule "Update Root Cause with Symptoms no clearance received" 

  

 when 

  […] 

   

 then 

  LogHelper.enter(theScenario.getLogger(), 

drools.getRule().getName(),rootAlarm.getOriginatingManagedEntity()+" - 

"+ rootAlarm.getAdditionalText()); 

   

  // Add the correlation time and rule name in the 

Additional Information Field of the alarm 

  Date now=new Date(); 

  SimpleDateFormat sdf = new SimpleDateFormat("EEE MMM dd 

HH:mm:ss zzz yyyy",  

         Locale.FRENCH);  

        String addInfo="correlated by rule: 

"+drools.getRule().getName() 

   +" at " +sdf.format(now) + "\nAssociated 

sympthoms:\n"; 

The java.util.Date objects that you create are not stored in Working Memory unless you do 
so explicitly using the “insert” statement. 

 



47 

Note 

 For more information, please see the Drools documentation: 

http://www.jboss.org/drools/documentation 
 

4.3 Defining your own beans 
Spring beans (corresponding to the external Java services that you want to use) are defined 
in the context.xml of your Value Pack. 

Here below is an example of a bean named “dbForwarder” that is relevant for forwarding 
alarms into an SQL data store. 

 
<bean id="dbForwarder" 

class="com.hp.uca.expert.alarm.JDBCAlarmForwarder"> 

  <property name="alarmDao" ref="alarmDao" /> 

</bean> 

You can define any bean in this file. 

 

In order to retrieve the Java instance of that bean object, you will need to use following API 
in your value pack: 

Scenario.getValuePack().getApplicationContext() 

In order to retrieve the Spring ApplicationContext that will allow you to retrieve your bean. 

With above example, typical code would have been: 

 
  return (JDBCAlarmForwarder) theScenario.getValuePack() 
    .getApplicationContext().getBean("dbForwarder"); 

 

4.4 Executing external actions from the rules 
External actions in rules are basically any action that either uses OSS Open Mediation V7.1 
framework services or external Java services. 

There are two categories of external actions that we will describe in the following sections: 

 Standard external actions: these actions use the Action class, defined by the UCA 
for EBC framework, to execute actions on the OSS Open Mediation V7.1 framework 
(i.e. execute actions on any application connected to the OSS Open Mediation V7.1 
framework using a Channel Adapter) 

 Calling services defined using Spring: Spring beans are defined in the 
context.xml of your Value Pack and global variables that reference these 

Spring beans are defined in your scenario(s) and used in your rule file(s). 

 Forwarding alarms to external systems: Alarm forwarders are defined using 
Spring beans and used from the rules to forward alarms to files, JMS 
queues/topics, the OSS Open Mediation V7.1 framework, or any database that has a 
JDBC interface 

4.4.1 Standard external actions 

Standard external actions are defined as actions that are to be executed by the OSS Open 
Mediation V7.1 framework. 

http://www.jboss.org/drools/documentation


48 

The UCA for EBC framework defines a Java class named Action that you can use to perform 
standard external actions in rules, like for example executing a shell script or a TeMIP 
directive on a TeMIP director.  

In order to be able to use the methods of the Action class, you have to import the class in 
the “import” part of the rule file: 

 
package com.hp.uca.expert.action; 

 

 

#list any import classes here. 

import com.hp.uca.expert.alarm.Alarm; 

import com.hp.uca.expert.x733alarm.CustomFields; 

import com.hp.uca.expert.x733alarm.CustomField; 

import com.hp.uca.expert.x733alarm.PerceivedSeverity; 

import com.hp.uca.expert.x733alarm.NetworkState;        // NOT_CLEARED, CLEARED  

import com.hp.uca.expert.x733alarm.OperatorState;       // NOT_ACKNOWLEDGED, 

ACKNOWLEDGED, TERMINATED 

import com.hp.uca.expert.x733alarm.ProblemState;        // NOT_HANDLED, 

HANDLED, CLOSED 

import com.hp.uca.mediation.action.client.Action; 

import com.hp.uca.mediation.action.jaxws.ActionResponseItem; 

import java.util.ArrayList; 

 

Then you can create Action objects in the “then” part of a rule as described in the example 
below: 

 
# Display properties of any new alarm 

 

rule "Any Not Acknowledged Alarm (Action)" 

 when 

  a: Alarm(operatorState == OperatorState.NOT_ACKNOWLEDGED) 

 then 

  System.out.println("[RULE " + drools.getRule().getName() + "] Found not 

acknowledged alarm: identifier = " + a.getIdentifier() + ":"); 

 System.out.println(a.toFormattedString()); 

 

  // Acknowledging the Alarm 

  Action action = new Action("TeMIP_AO_Directives_localhost "); 

  action.addCommand("directiveName", "ACKNOWLEDGE"); 

  action.addCommand("entityName", a.getIdentifier()); 

action.addCommand("UserId", "UCA Expert"); 

theScenario.addAction(action); // Associate the action with the scenario 

 System.out.println("Executing synchronous ACKNOWLEDGE directive on 

alarm: " + a.getIdentifier()); 

  action.executeSync(); 

 System.out.println("Done:"); 

 System.out.println("    - ActionId = " + action.getActionId()); 

 System.out.println("    - ActionStatus = " + action.getActionStatus()); 

 System.out.println("    - ActionStatusExplanation = " + 

action.getActionStatusExplanation()); 

 if (!action.getListActionResponseItem().isEmpty()) { 

   System.out.println("    - ActionResponseItems = "); 

   // Loop through all action response items 

    for (ActionResponseItem item : 

action.getListActionResponseItem()) { 

        if (!item.getOutput().getEntry().isEmpty()) { 

            // Loop through all output entries 

          for (ActionResponseItem.Output.Entry entry : 

item.getOutput().getEntry()) { 

              System.out.println("             -> " + 

entry.getKey() + " = " + entry.getValue()); 

          } 

      } 

    } 

 } 

 else { 

  System.out.println("    - ActionResponseItems = none"); 

 } 

 System.out.println("    - RawText = " + action.getRawTextAsString()); 



49 

 end 

 

Basically you need to write the following code in your rule: 

Action action = new Action("TeMIP_AO_Directives_localhost"); 

 

This will create a new Action object. There are 2 ways to create a new Action object: 

Either with the Action class constructor that takes an Action Reference parameter. The value 
of this parameter must match an Action Reference defined in 
${UCA_EBC_INSTANCE}/conf/ActionRegistry.xml file 

Or with the Action class constructor that takes the NMS Name, Service Name, Mvp Name and 
Mvp Version parameters. The Mvp Name and Version must match a Mediation Value Pack 
MvpName and MvpVersion attributes in the 
${UCA_EBC_INSTANCE}/conf/ActionRegistry.xml file 

Here’s the content of a sample ActionRegistry.xml file: 

 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<ActionRegistryXML xmlns="http://registry.action.mediation.uca.hp.com/"> 

 

 <MediationValuePack MvpName="temip"  

                           MvpVersion="1.0" 

 

 url=http://localhost:26700/uca/mediation/action/ActionService?WSDL 

brokerURL=" failover://tcp://localhost:10000"> 
   

  <Action actionReference="TeMIP_AO_Directives_localhost"> 

   <ServiceName>aoDirective</ServiceName> 

   <NmsName>localTeMIP</NmsName> 

  </Action> 

  <Action actionReference="TeMIP_TT_Directives_localhost"> 

   <ServiceName>ttDirective</ServiceName> 

   <NmsName>localTeMIP</NmsName> 

  </Action> 

  <Action actionReference="TeMIP_FlowManagement"> 

   <ServiceName>subscriptionManagement</ServiceName> 

   <NmsName>localTeMIP</NmsName> 

  </Action> 

 </MediationValuePack> 

   

 <MediationValuePack MvpName="exec"  

                           MvpVersion="1.0" 

url="http://localhost:26700/uca/mediation/action/ActionService?WSDL" 

brokerURL=" failover://tcp://localhost:10000"> 
  <Action actionReference="Exec_localhost"> 

   <ServiceName>commandsExecution</ServiceName> 

   <NmsName>localhost</NmsName> 

  </Action> 

 </MediationValuePack> 

   

</ActionRegistryXML> 

 

 Please refer to [R2] HP UCA for Event Based Correlation – Reference Guide for more 

information on how to use the Action class or configure the ActionRegistry.xml 

file. 

Please refer to [R6] Open Mediation Installation and Configuration Guide for more 

information on how to configure OSS Open Mediation V7.1 to support the execution of 
Actions. 

 

http://localhost:26700/uca/mediation/action/ActionService?WSDL


50 

Once you have created an Action object, you can specify the parameters that will define 
what action to perform, in the following example a TeMIP directive: 

 
  action.addCommand("directiveName", "ACKNOWLEDGE"); 

  action.addCommand("entityName", a.getIdentifier()); 

  action.addCommand("UserId", "UCA Expert"); 

 

Using the addCommand() method you can specify the key/value pairs to use as parameters 
to the Action object. These parameters depend on the type of Action to perform. 

For acknowledging a TeMIP Alarm, you need to specify the key/value pairs as shown above: 
specifying the UserId of the user acknowledging the alarm is optional, just like in TeMIP. 

Then, you need to associate the Action to the current Scenario so that the Action can be 
properly processed: 

theScenario.addAction(action); 

 

Then, you need to execute the Action. Both synchronous and asynchronous actions are 
possible. Only one of the following lines of code is necessary, depending on whether you 
want to execute a synchronous or asynchronous action: 

action.executeSync(); 

action.executeAsync(AODirectiveKey.ENTITY_NAME); 

 

Synchronous actions are “blocking”. The action.executeSync() call will block the execution 
of the rule until the action is completed. The whole rule engine for the scenario is blocked 
while the action is being executed. 

 

Asynchronous actions are “non blocking”. This is the reason why they are the recommended 
method for executing actions. The action.executeAsync(…) call doesn’t block the execution 
of the rule. The rules continue to be executed. 

There’s a mandatory parameter to the action.executeAsync(…) method: the 
synchronizationKey. This key indicates the name of the action command key that will be 
used to synchronize asynchronous actions so that the order of asynchronous actions 
referring to the same action command key/value pair is preserved. 

The synchronizationKey parameter enables you to preserve some kind of order among all 
the asynchronous actions triggered by your rules. By default (if you specify  
Action.NO_SYNCHRONIZATION_KEY as the synchronization key) there is no order. All 
asynchronous actions are executed in parallel by a pool of threads. There is no guarantee 
that the asynchronous actions will be executed in the order in which they were requested. 

If you do not need asynchronous actions to be executed in any specific order, then you can 
use Action.NO_SYNCHRONIZATION_KEY as the synchronization key when calling the 
action.executeAsync(…) method. 

On the other hand, if you need all asynchronous actions to be executed in the order they are 
requested, you need to use a command key (specified with the action.addCommand(key, 
value) method) that has the same value for all asynchronous actions as the synchronization 
key.  

If you need only groups of asynchronous actions to be executed in the order they are 
requested, you need to use a command key (specified with the action.addCommand(key, 
value) method) that has the same value for all asynchronous actions of the same group as 
the synchronization key. 



51 

For example, for executing TeMIP AO Directives you can use the 
AODirectiveKey.ENTITY_NAME as synchronization key: 

... 

Action action = new Action(“TeMIP_AO_Directives_localhost”); 

action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET); 

action.addCommand(AODirectiveKey.ENTITY_NAME, “OPERATION_CONTEXT OC1 
ALARM_OBJECT 155”); 

action.addCommand(AODirectiveKey.ADDITIONAL_TEXT, “my text”); 

theScenario.addAction(action) 

... 

action.executeAsync(AODirectiveKey.ENTITY_NAME); 

... 

In the example above, as long as you execute TeMIP AO Directives using the 
action.executeAsync(AODirectiveKey.ENTITY_NAME) syntax, all TeMIP AO 

Directives actions on the same entity will be executed in the order that they are called. 

If you do not want to use the synchronization key feature, you can pass null or 
Action.NO_SYNCHRONIZATION_KEY to the executeAsync(…) method: 

... 

action.executeAsync(Action.NO_SYNCHRONIZATION_KEY); 

... 

Note 

 For more information on synchronous and asynchronous actions (including how to use 

synchronization keys for asynchronous actions), please refer to: [R2] HP UCA for Event 
Based Correlation – Reference Guide. 
 

Once the action has been performed on the Network Management System the result of the 
execution of the action can be retrieved using the following methods: 

action.getActionStatus(); 

action.getActionStatusExplanation(); 

Other methods of the Action class provide even more detailed information on the result of 
the execution of the action. See the Java Documentation for the Action class for more 
information. 

4.4.1.1 Writing Actions for the OSS Open Mediation TeMIP Value Pack 

The delivered value pack examples come with a lib/ directory containing the TeMIP 

mapper jar file: 

lib/uca-mediation-temip-mvp-mapper-keys-3.2.jar 

This will allow you to benefit from java classes that have been designed to help you write 
rules that execute TeMIP Alarm Object (AO) directives or TeMIP Trouble Ticket (TT) directives 
(provided the OSS Open Mediation V7.1 TeMIP Value Pack is deployed). 

To do so, the first step is to add the following import statement in your rules file: 

import com.hp.uca.temip.mvp.mapper.*; 

 



52 

Below is the list of classes that you can use to help you write rules (all AO classes are 
defined in the com.hp.uca.temip.mvp.aodirective.mapper package, while TT classes are 
defined in the com.hp.uca.temip.mvp.ttdirective.mapper package). 

There are 2 sets of classes. The first set contains classes that define constants that should 
be used in the “key” part when using the Action.addCommand(key, value) method: 

 

 

Class name Class description 

AODirectiveKey in 
com.hp.uca.temip.mvp.aodirectiv
e.mapper package 

Contains string constants that list all the possible values 
for keys when using the Action.addCommand(key, value) 
method on AO Directives 

TTDirectiveKey in 
com.hp.uca.temip.mvp.ttdirectiv
e.mapper package 

Contains string constants that list all the possible values 
for keys when using the Action.addCommand(key, value) 
method on TT Directives 

Table 4 - Java helper classes for OSS Open Mediation TeMIP Value Pack 

 

The most important constant in the AODirectiveKey class is the 
AODirectiveKey.DIRECTIVE_NAME (or the TTDirectiveKey.DIRECTIVE_NAME  in the 

TTDirectiveKey class depending on whether you want to execute AO or TT directives). 

Using this constant, you can define the name of the TeMIP Alarm Object (or Trouble Ticket) 
directive that you wish to execute: 

... 

Action action = new Action(“TeMIP_AO_Directives_localhost”); 

action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET); 

... 

theScenario.addAction(action); 

... 

action.executeAsync(AODirectiveKey.ENTITY_NAME); 

... 

The other constants define the names of AO (or TT) Directive parameters or attributes that 
you can use. For example: 

... 

Action action = new Action(“TeMIP_AO_Directives_localhost”); 

action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET); 

action.addCommand(AODirectiveKey.ENTITY_NAME, “OPERATION_CONTEXT OC1 
ALARM_OBJECT 155”); 

action.addCommand(AODirectiveKey.ADDITIONAL_TEXT, “my text”); 

theScenario.addAction(action); 

... 

action.executeSync(); 

... 

 



53 

The second set contains classes that define constants that should be used in the “value” 
part when using the Action.addCommand(key, value) method. 

Below is the list of such classes for Alarm Object directives (besides the AODirectiveKey 
class that is explained above): 

 

Class name Class description 

AlarmClassType Contains string constants that list all the possible values 
for the Alarm_Class attribute (of the SET directive for 
example). These constants should be used in the value 
part when using the Action.addCommand(key, value) 
method 

AlarmObjectProblemStatus Contains string constants that list all the possible values 
for the Problem_Status attribute (of the DUMP or SET 
directives for example) 

AlarmObjectState Contains string constants that list all the possible values 
for the State attribute (of the DUMP or SET directives for 
example) and the Previous_State attribute (of the SET 
directive for example) 

AlarmOriginType Contains string constants that list all the possible values 
for the Alarm_Origin attribute (of the SET directive for 
example) 

AlarmType Contains string constants that list all the possible values 
for the Alarm_Type attribute (of the CREATE, DUMP or 
SET directives for example) 

AODirective Contains string constants that list all the possible values 
for Alarm Object directive names (ACKNOWLEDGE, 
ADDPARENT, ARCHIVE, … for example) 

AutomaticOperationsSeverity Contains string constants that list all the possible values 
for the Automatic_Terminate_On_Close attribute (of the 
SET directive for example) 

DeleteCondition Contains string constants that list all the possible values 
for the State attribute (of the DELETE directive for 
example) 

EntityScope Contains string constants that list all the possible values 
for the entityScope attribute (of any directive) 

EventID Contains string constants that list all the possible values 
for the EventID attribute (of the GETEVENT directive for 
example) 

Partition Contains string constants that list all the possible values 
for the Partition attribute (of any directive) 

ProbableCause Contains string constants that list all the possible values 
for the Probable_Cause attribute (of the CREATE, DUMP 
or SET directives for example) 



54 

SecurityAlarmCause Contains string constants that list all the possible values 
for the Security_Alarm_Cause attribute (of the CREATE, 
DUMP or SET directives for example) 

Severity Contains string constants that list all the possible values 
for the Severity (of the ARCHIVE directive for example), 
Perceived_Severity (of the CREATE, DELETE, DUMP, or 
SET directives for example), or Original_Severity (of the 
SET directive for example) attributes 

SummarizeScope Contains string constants that list all the possible values 
for the Scope attribute (of the DUMP directive for 
example) 

TrendIndication Contains string constants that list all the possible values 
for the Trend_Indication attribute (of the CREATE or SET 
directives for example) 

Table 5 - AO directives helper classes 

 

Below is the list of such classes for Trouble Ticket (TT_SERVER) directives (besides the 
TTDirectiveKey class that is explained above): 

Class name Class description 

AttributeId Contains string constants that list all the possible values for 
the AttributeId attribute (of the SHOW directive). These 
constants should be used in the value part when using the 
Action.addCommand(key, value) method 

AutoResponseType Contains string constants that list all the possible values for 
the Type attribute (of the ASSOCIATETT, CANCELTT, CLOSETT, 
CREATETT or DISSOCIATETT directives) 

Partition Contains string constants that list all the possible values for 
the Partition attribute (of any directive) 

RegisterOperationType Contains string constants that list all the possible values for 
the Operation attribute (of the REGISTER directive) 

TTDirective Contains string constants that list all the possible values for 
Trouble Ticket directive names (ASSOCIATETT, CANCELTT, 
CLEARALL, CLOSETT, CREATE … for example) 

Table 6 - TT directives helper classes 

 

The most important class in this set is the AODirective class (or the TTDirective class of 
Trouble Ticket directives) that lists all possible Alarm Object directive names 
(ACKNOWLEDGE, ADDPARENT, ARCHIVE, … for example): 

... 

Action action = new Action(“TeMIP_AO_Directives_localhost”); 

action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET); 



55 

... 

theScenario.addAction(action); 

... 

action.executeAsync(AODirectiveKey.ENTITY_NAME); 

... 

 

The other classes contain constants that define the list of possible value for AO Directive (or 
TT Directive) parameters or attributes. 

... 

Action action = new Action(“TeMIP_AO_Directives_localhost”); 

action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET); 

action.addCommand(AODirectiveKey.ENTITY_NAME, “OPERATION_CONTEXT OC1 
ALARM_OBJECT 155”); 

action.addCommand(AODirectiveKey.TREND_INDICATION, TrendIndication.LESSSEVERE); 

action.addCommand(AODirectiveKey.PROBABLE_CAUSE, ProbableCause.LOSSOFSIGNAL); 

theScenario.addAction(action); 

... 

action.executeSync(); 

... 

You can use Eclipse IDE’s automatic completion feature (the keyboard shortcut for this 
feature is: CTRL+<Space>) to discover the constants defined in each of the classes 
mentioned above.  

4.4.1.2 Writing Actions for the OSS Open Mediation Exec Value Pack 

The delivered value pack examples come with a lib directory containing the TeMIP mapper 
jar file: 

lib/uca-mediation-exec-mvp-mapper-keys-3.2.jar 

 

To create an Exec Action for the OSS Open Mediation Exec Value Pack you must first add the 
following import statement in your rule file: 

import com.hp.uca.exec.mvp.mapper.*; 

 

This will allow you to benefit from java classes that have been designed to help you write 
rules that execute command/executables/shell scripts (provided the OSS Open Mediation 
V7.1 Exec Value Pack is deployed). 

Below is the list of classes that you can use to help you write rules (all classes are defined in 
the com.hp.uca.exec.mvp.mapper package): 

 

Class name Class description 

ExecActionKey Contains string constants that list all the possible values for keys 
when using the Action.addCommand(key, value) method 



56 

Table 7 - Java helper classes for OSS Open Mediation Exec Value Pack 

 

Here’s an example of the ExecActionKey class use: 

... 

Action action = new Action("Exec_localhost"); 

action.addCommand(ExecActionKey.COMMAND, "ping"); 

action.addCommand(ExecActionKey.ARGUMENT, "127.0.0.1"); 

... 

theScenario.addAction(action); 

... 

action.executeSync(); 

... 

4.4.2 Calling services defined using Spring 

Sometimes the actions performed in the THEN part of rules will be calls to nonstandard Java 
package services such as Hibernate, JMS… These services generally need to be initialized 
and the Spring configuration file of the Value Pack, context.xml, is one way to do it. 

In order to be able to use these services from Drools rules files, Drools global variables need 
to be defined that reference the Spring beans defined in the context.xml file of the value 
pack. 

Any service defined using Spring can be “retrieved” in any rule file using the “global” 
keyword. 

Below is an excerpt from the Drools Expert documentation that explains the concept of 
global variables: 

 

[…] With global you define global variables. They are 

used to make application objects available to the rules. 

Typically, they are used to provide data or services that 

the rules use, especially application services used in 

rule consequences, and to return data from the rules, 

like logs or values added in rule consequences, or for 

the rules to interact with the application, doing 

callbacks. Globals are not inserted into the Working 

Memory, and therefore a global should never be used to 

establish conditions in rules except when it has a 

constant immutable value. The engine cannot be notified 

about value changes of globals and does not track their 

changes. Incorrect use of globals in constraints may 

yield surprising results - surprising in a bad way. 

If multiple packages declare globals with the same 

identifier they must be of the same type and all of them 

will reference the same global value. […] 

 

 Please refer to the [R2] HP UCA for Event Based Correlation – Reference Guide for more 

information about the Spring Framework integration with UCA for EBC. 

 



57 

First, in order to be able to use Spring beans in rules files, the Spring beans must be declared 
in the context.xml file of the Value Pack. Then global variable entries must be defined 

for each Spring bean in the ValuePackConfiguration.xml file as shown below:  

 
<?xml version="1.0" encoding="UTF-8"?> 

<valuePackConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" 

 name="__PROJECT_NAME__" version="__PROJECT_VERSION__"> 

    <scenarios> 

 <scenario name="Grouping-Scenario"> 

 

 <filterFile>src/main/resources/com/hp/uca/expert/vp/llef/groupin

g/grouping-filter.xml</filterFile> 

  <fireAllRulesPolicy>EACH_ACCESS</fireAllRulesPolicy> 

  <globals> 

   <global> 

    <key>alarmDAO</key> 

    <value>alarmDAO</value> 

   </global> 

  </globals> 

  <processingMode>STREAM</processingMode> 

  <rulesFiles> 

      <rulesFile> 

 <filename>file:./src/main/resources/com/hp/uca/expert/vp/llef/gr

ouping/grouping-template.drl</filename> 

   <name>grouping</name> 

  

 <paramsFilename>file:./src/main/resources/com/hp/uca/expert/vp/l

lef/grouping/grouping-params.xml</paramsFilename> 

   <ruleFileType>XDRL</ruleFileType> 

      </rulesFile> 

  </rulesFiles> 

 </scenario> 

    </scenarios> 

</valuePackConfiguration> 

The “globals” XML tag in the ValuePackConfiguration.xml file defines a list (i.e. a 

Java map) of beans that will be available in your rules file(s) as global variables. 

 

The following piece of code illustrates the use of external Java libraries from rule files: 
package com.hp.uca.expert.example.hibernate;  

 

#list any import classes here. 

import com.hp.uca.expert.alarm.Alarm; 

import com.hp.uca.expert.x733alarm.PerceivedSeverity; 

 

… 

import com.hp.uca.expert.example.hibernate.AlarmDao; 

… 

#declare any global variables here 

global AlarmDao alarmDAO; 

… 

 

template "Root Cause without Symptom" 

rule "Root Cause without Symptom" 

 when 

 … 

Then 

… 

 // Store the root cause alarm    

alarmDAO.save(fatherAlarm); 

… 

 

 

Java class 

import Definition of 

global variables 

External action 

using global 

variable 



58 

4.4.3 Forwarding alarms to external systems 

A common use case is when you want to forward alarms being processed by a scenario to 
external systems/applications. 

You might want to create an XML file containing some alarms that you want to export from 
the scenario so that you can import these alarms on an external system/application. 

Alternatively, if the external system/application that you want to export alarms to has a 
JMS queue/topic that can be used to import alarms, then you might want to export alarms 
directly to this JMS queue/topic. 

Finally, if the external system/application is accessible from OSS Open Mediation V7.1 via a 
specific Channel Adapter, then you might want to export the alarms directly to the OSS Open 
Mediation V7.1 bus. 

 

The UCA for EBC framework defines standard classes that enable you forwarding Alarm 
objects (or collections thereof) located in Drools Working Memory or that have been defined 
in the rules of a scenario to either a file, a JMS queue/topic or OSS Open Mediation V7.1. 

The following Java classes are part of the UCA for EBC framework: 

1. To forward alarms to a file:  
com.hp.uca.expert.alarm.FileAlarmForwarder 

2. To forward alarms to a JMS queue/topic: 
com.hp.uca.expert.alarm.JMSAlarmForwarder 

3. To forward alarms to OSS Open Mediation V7.1: 
com.hp.uca.expert.alarm.OpenMediationAlarmForwarder 

4. To persist alarms into a DB store: 
com.hp.uca.expert.alarm.JDBCAlarmForwarder 

 

 Please refer to UCA for EBC Javadoc for complete information on these classes. The 

Javadoc for UCA for EBC is located at ${UCA_EBC_DEV_HOME}/apidoc 

 

One way to forward alarms is to define an AlarmForwarder (either FileAlarmForwarder, 
JMSAlarmForwarder, OpenMediationAlarmForwarder or JDBCAlarmForwarder) bean in the 
Spring configuration file of the scenario (context.xml). 

 



59 

Note 

Please note that the recommended way for defining alarm forwarders is to define them in 
the Spring configuration file of the scenario: context.xml. 

A Thread is associated with each alarm forwarder (either FileAlarmForwarder, 
JMSAlarmForwarder, OpenMediationAlarmForwarder, or JDBCAlarmForwarder). This thread 
is automatically started when the associated AlarmForwarder object is created. If the 
AlarmForwarder has been created using the recommended method (in the Spring 
configuration file of the scenario: context.xml) then the associated thread will be 

automatically stopped when the bean associated with the alarm forwarder is destroyed. 
Otherwise you need to use the requestStop() method to explicitly stop the thread 
associated with the alarm forwarder when you don't need it anymore. 

The thread associated with an alarm forwarder provides compression to improve 
performance. Alarms may not be forwarded right away. They are accumulated in a queue for 
the duration of the compression period (by default 1 second) so that they can be forwarded 
as a batch of alarms at the end of the compression period (by default every second). You can 
change the value of the compression period using the setCompressionPeriod(long) method. 
If you set the compression period to 0 milliseconds, no compression will be performed. 
 

 

Here’s an example of defining such a bean in the context.xml file of a scenario: 

 
<?xml version="1.0" encoding="UTF-8"?> 

<beans xmlns="http://www.springframework.org/schema/beans" 

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:jms="http://www.springframework.org/schema/jms" 

 xmlns:p="http://www.springframework.org/schema/p" 

xmlns:context="http://www.springframework.org/schema/context" 

 xmlns:amq="http://activemq.apache.org/schema/core" 

xmlns:util="http://www.springframework.org/schema/util" 

 xsi:schemaLocation="http://www.springframework.org/schema/beans  

                           

http://www.springframework.org/schema/beans/spring-beans.xsd 

                           

http://www.springframework.org/schema/context  

                           

http://www.springframework.org/schema/context/spring-context.xsd 

                           http://www.springframework.org/schema/jms  

                           

http://www.springframework.org/schema/jms/spring-jms.xsd 

                           http://activemq.apache.org/schema/core  

                           

http://activemq.apache.org/schema/core/activemq-core.xsd"> 

 

 

 <context:annotation-config /> 

 

 <bean name="forwardedAlarmsFile" class="java.io.File"> 

  <constructor-arg index="0"><value>forwarded-

alarms.xml</value></constructor-arg><!-- String pathname --> 

 </bean> 

  

 <bean name="fileAlarmForwarder" 

class="com.hp.uca.expert.alarm.FileAlarmForwarder" depends-

on="forwardedAlarmsFile"> 

  <constructor-arg index="0"><ref 

bean="forwardedAlarmsFile"/></constructor-arg><!-- File file --> 

  <constructor-arg 

index="1"><value>false</value></constructor-arg><!-- boolean overwrite 

--> 

 </bean> 

 

 <bean name="jmsAlarmForwarder" 

class="com.hp.uca.expert.alarm.JMSAlarmForwarder"> 



60 

  <constructor-arg 

index="0"><value>vm://localhost?broker.persistent=false</value></constr

uctor-arg><!-- String brokerURL --> 

  <constructor-arg 

index="1"><value>jms.alarm.forwarder.test.queue</value></constructor-

arg><!-- String destinationName --> 

  <constructor-arg 

index="2"><value>true</value></constructor-arg><!-- boolean isQueue --> 

 </bean> 

 

 <bean name="openMediationAlarmForwarder" 

class="com.hp.uca.expert.alarm.OpenMediationAlarmForwarder"> 

  <constructor-arg index="0"><value>UCA-

EBC_remotesystem</value></constructor-arg><!-- String actionReference -

-> 

  <constructor-arg index="1"><value>Alarm Flow from UCA 

EBC</value></constructor-arg><!-- String alarmFlowName --> 

 </bean> 

</beans> 

Figure 21 - Defining AlarmForwarder beans in the context.xml file 

The highlighted portion of the context.xml file shows the definition of a 

FileAlarmForwarder bean that will be used in the rule files of a scenario to forward alarms to 
an XML file. 

 

Once the context.xml file has been properly set up, you need to define global variable 
entries in the ValuePackConfiguration.xml file for each Spring bean that you want 

to access from the rules as shown below: 

 
<?xml version="1.0" encoding="UTF-8"?> 

<valuePackConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" 

 name="__PROJECT_NAME__" version="__PROJECT_VERSION__"> 

  

   <scenarios> 

       <scenario name="alarmforwarder"> 

        

<filterFile>src/main/resources/valuepack/alarmforwarder/filters.xml</fi

lterFile> 

       <fireAllRulesPolicy>EACH_ACCESS</fireAllRulesPolicy> 

       <globals> 

   <global> 

    <key>fileAlarmForwarder</key> 

    <value>fileAlarmForwarder</value> 

   </global> 

   <global> 

    <key>jmsAlarmForwarder</key> 

    <value>jmsAlarmForwarder</value> 

   </global> 

   <global> 

    <key>openMediationAlarmForwarder</key> 

          <value>openMediationAlarmForwarder</value> 

   </global> 

        </globals> 

        <processingMode>STREAM</processingMode> 

        <rulesFiles> 

            <rulesFile> 

 <filename>file:./src/main/resources/valuepack/alarmforwarder/ala

rmforwarder.drl</filename> 

   <name>alarmforwarder rules</name> 

   <ruleFileType>DRL</ruleFileType> 

     </rulesFile> 

 </rulesFiles> 

       </scenario> 

    … 

   </scenarios> 

</valuePackConfiguration> 



61 

Figure 22 - Defining AlarmForwarder globals in the 
ValuePackConfiguration.xml file 

The highlighted portion of the ValuePackConfiguration.xml file shows the 

definition of a fileAlarmForwarder global variable referencing the fileAlarmForwarder 
Spring bean defined in the context.xml file that will be used in the rule files of a scenario 

to forward alarms to an XML file. 

Once the ValuePackConfiguration.xml file has been properly set up, you need to 

make some modifications to the rule files where you want to use the fileAlarmForwarder 
global variable: 

Import the proper Java class: 

com.hp.uca.expert.alarm.FileAlarmForwarder for a FileAlarmForwarder 

com.hp.uca.expert.alarm.JMSAlarmForwarder for a JMSAlarmForwarder 

com.hp.uca.expert.alarm.OpenMediationAlarmForwarder for an 
OpenMediationAlarmForwarder 

Declare the global variables (defined in the ValuePackConfiguration.xml file) that 

you want to use in the rule file 

Below is an example of how to import the proper Java class, and declare the global variables 
that you want to use: 

 
package com.hp.uca.expert.vp.alarmforwarder; 

 

#list any import classes here. 

import com.hp.uca.expert.alarm.Alarm; 

import com.hp.uca.expert.alarm.AlarmDeletion; 

import com.hp.uca.expert.alarm.AlarmStateChange; 

import com.hp.uca.expert.alarm.AlarmAttributeValueChange; 

import com.hp.uca.expert.x733alarm.PerceivedSeverity; 

import java.util.ArrayList; 

import com.hp.uca.expert.scenario.Scenario; 

import com.hp.uca.common.trace.LogHelper; 

import com.hp.uca.expert.flag.Flag; 

import com.hp.uca.expert.testmaterial.AbstractJunitIntegrationTest; 

import com.hp.uca.expert.alarm.FileAlarmForwarder; 

import com.hp.uca.expert.alarm.JMSAlarmForwarder; 

import com.hp.uca.expert.alarm.OpenMediationAlarmForwarder; 

 

#declare any global variables here 

global Scenario theScenario; 

global FileAlarmForwarder fileAlarmForwarder; 

global JMSAlarmForwarder jmsAlarmForwarder; 

global OpenMediationAlarmForwarder openMediationAlarmForwarder; 

 

declare Alarm 

    @role( event ) 

    @timestamp( timeInMilliseconds ) 

    @expires( 30m ) 

end 

 

Figure 23 - Declaring the use of an AlarmForwarder global variable in a rule file 

Once the proper Java classes have been imported and the global variables declared, you can 
just use global variable to write Alarms (or collections of Alarms) to an XML file (the one 
specified in the context.xml file): 

 
… 

import com.hp.uca.expert.alarm.FileAlarmForwarder; 

import com.hp.uca.expert.alarm.JMSAlarmForwarder; 

import com.hp.uca.expert.alarm.OpenMediationAlarmForwarder; 

 

#declare any global variables here 

global Scenario theScenario; 



62 

global FileAlarmForwarder fileAlarmForwarder; 

global JMSAlarmForwarder jmsAlarmForwarder; 

global OpenMediationAlarmForwarder openMediationAlarmForwarder; 

 

declare Alarm 

    @role( event ) 

    @timestamp( timeInMilliseconds ) 

    @expires( 30m ) 

end 

 

 

# Forward any alarm received 

rule "Forward any alarm received" 

no-loop 

       when 

        $alarm : Alarm() 

       then 

       LogHelper.enter(theScenario.getLogger(), 

drools.getRule().getName()); 

        

       // Forward the alarm to a file, jms queue/topic or OSS Open 

Mediation 

       fileAlarmForwarder.write($alarm); 

       // Forward the alarm to a jms queue or topic 

       jmsAlarmForwarder.write($alarm); 

       // Forward the alarm to OSS Open Mediation 

       openMediationAlarmForwarder.write($alarm); 

          

       // Retract the alarm 

       theScenario.getLogger().info("Retracting: \n"+ 

$alarm.toFormattedString()); 

       theScenario.getSession().retract($alarm); 

         

       LogHelper.exit(theScenario.getLogger(), 

drools.getRule().getName()); 

end 

… 

Figure 24 - Using an AlarmForwarder global variable to write Alarms to an XML 
file 

The XML file generated by the FileAlarmForwarder is fully compatible with the XML schema 
for UCA for EBC Alarms defined at ${UCA_EBC_DEV_HOME}/lib/schemas/uca-

expert-alarm.xsd. For example, the generated XML file containing the alarms can be 
used as input to the ${UCA_EBC_HOME}/bin/uca-ebc-injector command-line 

tool. 

The JMSAlarmForwarder on the other hand can be used to forward alarms directly to a JMS 
queue/topic, for example the Alarm input queue of a UCA for EBC server (which is 
implemented as a JMS Topic). You can use the following values to forward alarms to a UCA 
for EBC alarm input queue: 

brokerURL: JMSAlarmForwarder.DEFAULT_UCA_EBC_BROKER_URL (the value of this 
constant is “tcp://localhost:61666”) 

destinationName: JMSAlarmForwarder.DEFAULT_UCA_EBC_ALARMS_TOPIC_NAME (the 
value of this constant is “com.hp.uca.ebc.alarms”) 

isQueue: false (because the UCA for EBC alarm input queue is in fact a JMS topic, not a JMS 
queue) 

Finally the OpenMediationAlarmForwarder can be used to forward alarms to OSS Open 
Mediation V7.1. In order to use an OpenMediationAlarmForwarder, you must first create an 
action reference in the ${UCA_EBC_INSTANCE}/conf/ActionRegistry.xml file 

that will define how to connect to the UCA for EBC Channel Adapter on OSS Open Mediation 
V7.1, and how to reach the Channel Adapter of the system/application that you target. 

Below is an example of an action reference defined in the ActionRegistry.xml file: 

 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 



63 

<ActionRegistryXML 

xmlns="http://registry.action.mediation.uca.hp.com/"> 

 

 <MediationValuePack MvpName="ApplicationX" MvpVersion="1.1" 

 

 url="http://localhost:26700/uca/mediation/action/ActionService?W

SDL" 

  brokerURL="failover://tcp://localhost:10000"> 

 

  <Action actionReference="ApplicationX_remotesystem"> 

   <ServiceName>applicationX-1.1</ServiceName> 

   <NmsName>remotesystem</NmsName> 

  </Action> 

 </MediationValuePack> 

</ActionRegistryXML> 

In the sample ActionRegistry.xml file above, an action reference has been defined 

for an “ApplicationX” application on a remote system connected to OSS Open Mediation V7.1 
via an ApplicationX Channel Adapter (ApplicationX is a fictitious application). 

The brokerURL attribute must match the URL of the ActiveMQ broker defined for the OSS 
Open Mediation V7.1 that you target. The hostname in the URL must match the hostname of 
the system where OSS Open Mediation V7.1 is installed. By default the port number used for 
the ActiveMQ broker on OSS Open Mediation V7.1 container instance 0 is 10000. 

To verify what port number is used for your OSS Open Mediation V7.1 container instance, 
please check the value of the activemq.port property in the 
/var/opt/openmediation-V71/containers/instance-<instance 

number>/conf/servicemix.properties file. 

The following JMS properties will be set for the alarms being forwarded to OSS Open 
Mediation V7.1. These properties can be used by consumer Channel Adapters to filter the 
alarms that they’re interested in among all alarms pushed by various Channel Adapters to 
the OSS Open Mediation V7.1 alarms JMS topic: 

 

JMS Property Name Value 

NOMOriginalProvider set to the value of ${ca.name} in UCA EBC 
CA 

NOMOriginalProviderEndpoi
nt 

“UCA EBC version on hostname” 

NOMOriginalProviderPort not set 

NOMOriginalProviderHost set to the value of ${nom_hostname} in 
UCA EBC CA 

NOMOriginalProviderContai
nerInstanceNumber 

set to the value of 
${sys.nom_instance_number} in UCA EBC 
CA 

NOMType set to 
"http://hp.com/openmediation/alarms/2
011/08" in UCA EBC CA 

NOMActionMessageType not set (this is not an action message, this 
is an alarm message) 

NOMActionEntityHint not set (this is not an action message, this 
is an alarm message) 

NOMActionNameHint not set (this is not an action message, this 
is an alarm message) 



64 

NOMFinalConsumer the value of the “serviceName” attribute 
of the action reference (in the 
ActionRegistry.xml file) associated with 
the OpenMediationAlarmForwarder object 

NOMFinalConsumerEndpoin
t 

"mvpName mvpVersion on nmsName", 
where the names in italics are XML 
entities/attributes of the action reference 
(in the ActionRegistry.xml file) associated 
with the OpenMediationAlarmForwarder 
object 

NOMFinalConsumerPort "alarmFlowName" associated with the 
OpenMediationAlarmForwarder object or 
"UCA EBC Alarms" by default. You can set 
the FlowName attribute when you create 
the OpenMediationAlarmForwarder object 

NOMFinalConsumerHost the value of the "nmsName" XML entity of 
the action reference (in the 
ActionRegistry.xml file) associated with 
the OpenMediationAlarmForwarder object 

NOMFinalConsumerConstai
nerInstanceNumber 

not set 

Table 8 - JMS properties set for alarms being forwarded to OSS Open Mediation 

4.5 Making useful logs 
The UCA for EBC product provides an advanced logging mechanism that is able to trace 
specific rule processing for each Scenario. 

The UCA for EBC Administration GUI fully supports this logging mechanism. 

 

Note 

For more information on how to troubleshoot scenarios using the UCA for EBC 

Administration GUI, please see: [R7] Unified Correlation Analyzer for Event Based Correlation 
– User Interface Guide, chapter Troubleshooting UCA for event based Correlation 
 

 

To take benefits from this mechanism, the rule developer must use the logger provided by 
the UCA for EBC framework for each scenario by calling the following method: 

 theScenario.getLogger() from Drools files 

 ScenarioThreadLocal.getScenario().getLogger() from Java code 

 

The ScenarioThreadLocal class is located in the 
com.hp.uca.expert.scenario package. 

 

The getLogger() method provides access to a standard 
org.apache.log4j.Logger object. Consequently, all standard log4j Logger methods 

are available to better qualify the level of information needed (for example info(), 
debug(), warn(), etc…). 



65 

 

The following piece of code demonstrates how to use the UCA for EBC scenario logger to log 
messages from a Drools rule file: 

 
package com.hp.uca.expert.vp.sample; 

 

#list any import classes here. 

import com.hp.uca.expert.alarm.Alarm; 

import com.hp.uca.expert.x733alarm.CustomFields; 

import com.hp.uca.expert.x733alarm.CustomField; 

import com.hp.uca.expert.x733alarm.PerceivedSeverity; 

import com.hp.uca.expert.x733alarm.NetworkState;        // NOT_CLEARED, CLEARED  

import com.hp.uca.expert.x733alarm.OperatorState;       // NOT_ACKNOWLEDGED, 

ACKNOWLEDGED, TERMINATED 

import com.hp.uca.expert.x733alarm.ProblemState;        // NOT_HANDLED, HANDLED, CLOSED 

import com.hp.uca.expert.scenario.Scenario; 

import com.hp.uca.common.trace.LogHelper; 

 

#declare any global variables here 

global Scenario theScenario; 

 

 

rule "Any new Acknowledged Alarm" 

  when 

    a: Alarm(operatorState == OperatorState.ACKNOWLEDGED) 

  then 

         LogHelper.enter(theScenario.getLogger(), drools.getRule().getName()); 

 

   theScenario.getLogger().info("[RULE " + drools.getRule().getName() + "] Found 

new acknowledged alarm: identifier = " + a.getIdentifier()+ ":"); 

   theScenario.getLogger().debug(a.toFormattedString()); 

 

   LogHelper.exit(theScenario.getLogger(), drools.getRule().getName()); 

end 

 

rule "Any new Terminated Alarm" 

  when 

   a: Alarm(operatorState == OperatorState.TERMINATED) 

  then 

         LogHelper.enter(theScenario.getLogger(), drools.getRule().getName()); 

 

   theScenario.getLogger().info("[RULE " + drools.getRule().getName() + "] Found 

new terminated alarm: identifier = " + a.getIdentifier() + ":"); 

   theScenario.getLogger().debug(a.toFormattedString()); 

 

   LogHelper.exit(theScenario.getLogger(), drools.getRule().getName()); 

end 

Figure 25 - Scenario logger example 

 

Note 

 Please refer to Chapter “Scenario Loggers” in the [R2] HP UCA for Event Based 

Correlation – Reference Guide for more information on how to use Scenario Loggers. 
 

4.6 Creating JUnit Tests 
Developing Value Packs involves creating correlation rules and writing code. In any case, it is 
highly recommended to unit test your rules and code. 

To help you in that regard, the ‘skeleton’ project (the project created with the UCA Eclipse 
plug-in) provides you with a template of a JUnit test (based on JUnit 4.11) along with the 
complete infrastructure to compile, run and generate reports for unit tests. 

The following JUnit test is a good starting point to create new unit tests: 

It is a JUnit 4.11 test that also supports Java and Spring framework annotations: using 
@RunWith and @Configuration annotations automatically loads the associated Spring 
configuration file (called <test file name>-context.xml) 



66 

The template JUnit test class that we provide extends the AbstractJunitIntegrationTest 
class. This class is part of the UCA for EBC framework. It implements the Spring framework 
ApplicationContextAware interface, and thus provides access to the Spring beans (Java 
objects) defined in the Spring configuration file(called <test file name>-

context.xml). You can easily retrieve any Spring bean defined in the Spring configuration 

file by using the getApplicationContext().getBean(String name) method from any JUnit 
test class that extends the AbstractJunitIntegrationTest class. 

 In JUnit 4.11, any method that represents a unit test needs to have the @Test annotation 
before the definition of the method. 

It is mandatory to define a junit.framework.Test suite) method so that tests can 

be found in the Apache Ant project of your Value Pack. Defining the following method allows 
for automatic retrieval of all tests defined in the unit test class: 

 
 // Way to run tests via ANT Junit 

 public static junit.framework.Test suite() { 

  return new JUnit4TestAdapter(SkeletonTest.class); 

 } 

 

When designing Junits, it is a good practice to test alarms expected lifecycle, using different 
AlarmListener assigned with the different alarms identifier to be tested, for: 

 alarm insertion (waitingForAlarmInsertion) 

 alarm update (waitingForAlarmUpdate) 

 alarm retraction (waitingForAlarmRetract) 

Other good practice is to test different objects values with assertEquals, 

assertNull, assertNotNull and others methods furnished with the Junit library. 

Also, the number of Groups in memory can be tested by comparing it with the result of 
calling the method getGroupsFromWorkingMemory()and the number of Alarms in 

memory by calling the getAlarmsFromWorkingMemory().  

By comparing the historical engine events with a benchmark, you can easily check the whole 
test result with the expected one.  

In the following code you can find a template JUnit test class using some of the methods 
described above: 

  
package com.hp.uca.expert.vp.skeleton; 

 

import static org.junit.Assert.assertEquals; 

import static org.junit.Assert.assertNotNull; 

import junit.framework.JUnit4TestAdapter; 

 

import org.slf4j.Logger; 

import org.slf4j.LoggerFactory; 

import org.junit.AfterClass; 

import org.junit.BeforeClass; 

import org.junit.Test; 

import org.junit.runner.RunWith; 

import org.springframework.test.annotation.DirtiesContext; 

import org.springframework.test.context.ContextConfiguration; 

import org.springframework.test.context.junit4.SpringJUnit4ClassRunner; 

 

import com.hp.uca.common.misc.Constants; 

import com.hp.uca.common.trace.LogHelper; 

import com.hp.uca.expert.alarm.Alarm; 



67 

import com.hp.uca.expert.testmaterial.AbstractJunitIntegrationTest; 

import com.hp.uca.expert.x733alarm.OperatorState; 

 

@RunWith(SpringJUnit4ClassRunner.class) 

@ContextConfiguration 

public class SkeletonTest extends AbstractJunitIntegrationTest { 

 

 private static Logger log = LoggerFactory.getLogger(SkeletonTest.class); 

 private static final String SCENARIO_BEAN_NAME = "skeleton"; 

 private static final String ALARM_FILE = 

"src/main/resources/valuepack/skeleton/Alarms.xml"; 

 

 /** 

  * @throws java.lang.Exception 

  */ 

 @BeforeClass 

 public static void setUpBeforeClass() throws Exception { 

  log.info(Constants.TEST_START.val() + SkeletonTest.class.getName()); 

 } 

 

 /** 

  * @throws java.lang.Exception 

  */ 

 @AfterClass 

 public static void tearDownAfterClass() throws Exception { 

  log.info(Constants.TEST_END.val() + SkeletonTest.class.getName() 

    + Constants.GROUP_ALT1_SEPARATOR.val()); 

 } 

 

 // Way to run tests via ANT Junit 

 public static junit.framework.Test suite() { 

  return new JUnit4TestAdapter(SkeletonTest.class); 

 } 

 

 @Test 

 @DirtiesContext() 

 public void test() throws Exception { 

  LogHelper.enter(log, "test()"); 

 

  /* 

   * Initialize variables and Enable engine internal logs 

   */ 

  initTest(SCENARIO_BEAN_NAME, BMK_PATH); 

 

  /* 

   * Create,Assign and store an Alarm Listener to the current scenario 

   */ 

  setAlarmListener(createAndAssignAlarmListener("1", getScenario())); 

 

  /* 

   * Send alarms defined in Alarms.xml asynchronously with a tempo of 2 

   * seconds between each alarm 

   */ 

  getProducer().sendAlarmsAsync(ALARM_FILE, 2 * SECOND); 

 

  /* 

   * Wait for an alarm insertion in scenario working memory 

   */ 

  waitingForAlarmInsertion(getAlarmListener(), 100 * MS, 10 * SECOND); 

  /* 

   * Retrieve from Working memory the Alarm with identifier '1' 

   */ 

  Alarm alarm = getAlarm("1"); 



68 

 

  /* 

   * Check that alarm with identifier '1' exists 

   */ 

  assertNotNull("The alarm 1 should be present in WM", alarm); 

 

  /* 

   * Wait for an alarm update in scenario working memory 

   */ 

  waitingForAlarmUpdate(getAlarmListener(), 100 * MS, 10 * SECOND); 

  /* 

   * Check the new values of attributes 'problemInformation' & 

   * 'notificationIdentifier' of alarm '1' 

   */ 

  assertEquals( 

    "The problemInformation should be New Problem 

information", 

    "New Problem information", 

alarm.getProblemInformation()); 

  assertEquals("The notificationIdentifier should be equals to 100", 

    "100", alarm.getNotificationIdentifier()); 

 

  /* 

   * Wait for an alarm acknowledgement 

   */ 

  waitingForAlarmAcknowledgement(getAlarmListener(), 100 * MS, 

    10 * SECOND); 

  /* 

   * Check if the OperatorState of alarm has been correctly changed to 

   * ACKNOWLEDGED 

   */ 

  assertEquals("Alarm 1 has been acknowledged", 

    OperatorState.ACKNOWLEDGED, alarm.getOperatorState()); 

 

  /* 

   * Wait for an alarm retraction from scenario working memory 

   */ 

  waitingForAlarmRetract(getAlarmListener(), 100 * MS, 10 * SECOND); 

 

  /* 

   * Disable Rule Logger to close the file used to compare engine 

   * historical events 

   */ 

  closeRuleLogFiles(getScenario()); 

 

  /* 

   * Check test result by comparing the historical engine events with a 

   * benchmark 

   */ 

  checkTestResult(getLogRuleFileName(), getLogRuleFileNameBmk()); 

 

  LogHelper.exit(log, "test()"); 

 } 

} 

 

Since V3.2, when using the topology extension for developing for value packs as well as for 
developing Inference Machine or Topology State Propagator Value Packs, another listener 
was introduced for testing States lifecycle: the StateListener. In the same way as for 
testing alarms, the StateListener can be used in Junits for checking: 

 state insertion (waitingForStateInsertion) 



69 

 state update (waitingForStateUpdate) 

 state retraction (waitingForStateRetract) 

Also, as seen for Groups, the number of PropagationGroups in memory is given by the 
method: 

getPropagationGroupsFromWorkingMemory(); 

In the following code you can find a template JUnit test class using the states checking: 

  
package ft.tsp; 

 

import static org.junit.Assert.assertEquals; 

 

import java.util.Collection; 

import java.util.HashMap; 

import java.util.Map; 

 

import junit.framework.JUnit4TestAdapter; 

 

import org.junit.After; 

import org.junit.AfterClass; 

import org.junit.Before; 

import org.junit.BeforeClass; 

import org.junit.Test; 

import org.junit.runner.RunWith; 

import org.neo4j.loader.csv.Loader; 

import org.neo4j.loader.csv.Report; 

import org.neo4j.loader.csv.utils.TmpDir; 

import org.slf4j.Logger; 

import org.slf4j.LoggerFactory; 

import org.springframework.test.annotation.DirtiesContext; 

import org.springframework.test.context.ContextConfiguration; 

import org.springframework.test.context.junit4.SpringJUnit4ClassRunner; 

 

import com.hp.uca.common.misc.Constants; 

import com.hp.uca.expert.alarm.Alarm; 

import com.hp.uca.expert.group.PropagationGroup; 

import com.hp.uca.expert.scenario.exception.NoSuchScenarioException; 

import com.hp.uca.expert.testmaterial.AbstractJunitIntegrationTest; 

import com.hp.uca.expert.testmaterial.ActionListener; 

import com.hp.uca.expert.testmaterial.AlarmListener; 

import com.hp.uca.expert.testmaterial.StateListener; 

import com.hp.uca.expert.topology.TopoAccess; 

 

/** 

 * The Class PropagationTest. 

 */ 

@RunWith(SpringJUnit4ClassRunner.class) 

@ContextConfiguration 

public class PropagationTest extends AbstractJunitIntegrationTest { 

 

 /** 

  * The log. 

  */ 

 private static Logger log = LoggerFactory.getLogger(PropagationTest.class); 

 

 /** 

  * The Constant ALARM_FILE. 

  */ 

 private static final String ALARM_FILE = 

"src/test/resources/alarms/Alarm_SwitchDown_G_SWITCH_3_TeMIP.xml"; 



70 

 

 /** 

  * The Constant SCENARIO_BEAN_NAME. 

  */ 

 private static final String SCENARIO_BEAN_NAME = 

"com.hp.uca.expert.vp.im.TopologyStatePropagator"; 

 

 /** 

  * The Constant TOPOLOGY_DATALOAD_DIR. 

  */ 

 private static final String TOPOLOGY_DATALOAD_DIR = "valuepack/topology-

dataload"; 

 

 /** 

  * The tmp dir. 

  */ 

 private TmpDir tmpDir = null; 

 

 /** 

  * @throws java.lang.Exception 

  */ 

 @BeforeClass 

 public static void setUpBeforeClass() throws Exception { 

  log.info(Constants.TEST_START.val()); 

 } 

 

 /** 

  * @throws java.lang.Exception 

  */ 

 @AfterClass 

 public static void tearDownAfterClass() throws Exception { 

  log.info(Constants.TEST_END.val()); 

 } 

 

 /** 

  * @throws java.lang.Exception 

  */ 

 @Override 

 @Before 

 public void setUp() throws Exception { 

  log.info(Constants.TEST_START.val() + this.getClass().getName()); 

 

  tmpDir = new TmpDir(TOPOLOGY_DATALOAD_DIR); 

  Loader loader = new Loader(TopoAccess.getGraphDB(), 

tmpDir.tmpCsvPath()); 

  Report report = loader.loadAll(); 

 

  log.info(report.toString()); 

 } 

 

 /** 

  * @throws java.lang.Exception 

  */ 

 @Override 

 @After 

 public void tearDown() throws Exception { 

  log.info(Constants.TEST_END.val() + this.getClass().getName() 

    + Constants.GROUP_ALT1_SEPARATOR.val()); 

  tmpDir.cleanup(); 

 } 

 

 /** 

  * Initialize variables and Enable engine internal logs 



71 

  */ 

 protected void initTest() throws NoSuchScenarioException, 

   InterruptedException { 

  initTest(SCENARIO_BEAN_NAME, BMK_PATH); 

  getScenario().setTestOnly(true); 

 } 

 

 /** 

  * Way to run tests via ANT Junit 

  *  

  * @return the JUnit4TestAdapter 

  */ 

 public static junit.framework.Test suite() { 

  return new JUnit4TestAdapter(PropagationTest.class); 

 } 

 

 /** 

  * @throws Exception 

  */ 

 @Test 

 @DirtiesContext 

 public final void testGeneratedSvcAlarm() throws Exception { 

 

  initTest(); 

 

  Map<String, String> keyValues = new HashMap<String, String>(); 

  keyValues.put("directiveName", "SET"); 

  keyValues 

    .put("entityName", "operation_context oc1 alarm_object 

123456"); 

 

  ActionListener actionListener = new ActionListener(keyValues); 

 

  getScenario().getSession().addEventListener(actionListener); 

 

  AlarmListener alarmSwitchDownListener = createAndAssignAlarmListener( 

    "UCA-1416582585978-61", getScenario()); 

  AlarmListener alarmSAListener = createAndAssignAlarmListener( 

    "operation_context oc1 alarm_object 123456", 

getScenario()); 

  StateListener stateSwitch1 = createAndAssignStateListener( 

    "StateBase#G_SWITCH1", getScenario()); 

  StateListener stateWM1 = createAndAssignStateListener( 

    "StateBase#G_VM1", getScenario()); 

  StateListener statePoolA3 = createAndAssignStateListener( 

    "StateBase#G_poolA3", getScenario()); 

 

  /* 

   * Send alarms 

   */ 

  getProducer().sendAlarms(ALARM_FILE); 

 

  waitingForAlarmInsertion(alarmSwitchDownListener, 1 * SECOND, 

    10 * SECOND); 

  waitingForAlarmInsertion(alarmSAListener, 1 * SECOND, 10 * SECOND); 

  /* 

   * Waiting for the last Alarm that should be updated by the rule itself 

   */ 

  waitingForActionInsertion(actionListener, 1 * SECOND, 15 * SECOND); 

 

  /* 

   * Checking alarm updated 

   */ 



72 

  waitingForAlarmUpdate(alarmSAListener, 1 * SECOND, 10 * SECOND); 

  waitingForAlarmUpdate(alarmSwitchDownListener, 1 * SECOND, 10 * 

SECOND); 

  /* 

   * Checking states insertion 

   */ 

  waitingForStateInsertion(stateSwitch1, 1 * SECOND, 20 * SECOND); 

  waitingForStateInsertion(stateWM1, 1 * SECOND, 20 * SECOND); 

 

  /* 

   * check state update 

   */ 

  waitingForStateUpdate(stateWM1, 1 * SECOND, 20 * SECOND); 

 

  /* 

   * checking last state insertion 

   */ 

  waitingForStateInsertion(statePoolA3, 1 * SECOND, 20 * SECOND); 

 

  /* 

   * Disable Rule Logger to close the file used to compare engine 

   * historical events 

   */ 

  closeRuleLogFiles(getScenario()); 

 

  if (log.isDebugEnabled()) { 

   getScenario().getSession().dump(); 

  } 

 

  /* 

   * Checking Alarm Number: 1 RCA, 2 for service g_payroll + g_hr, 1 for 

   * phone service, 1 for customer gardens 

   */ 

  Collection<Alarm> alarms = getAlarmsFromWorkingMemory(); 

  assertEquals(5, alarms.size()); 

 

  /* 

   * Checking Group Number 

   */ 

  Collection<PropagationGroup> groups = 

getPropagationGroupsFromWorkingMemory(); 

  assertEquals(15, groups.size()); 

 

 } 

 

} 

 

Note 

The AbstractJunitIntegrationTest test utility class has been developed and is 
provided as part of the UCA for EBC Development Kit. A JavaDoc documentation is provided 
for this class. Please refer to the Java Documentation of the 
com.hp.uca.expert.testmaterial package for full explanations. 
 

 

Using the Apache Ant build.xml file provided in the example project (Skeleton) project 

(or projects created with the UCA eclipse plugin) allows you to automatically compile tests 
(using the “test-compile” Ant target), run the tests and generate the test reports (using the 
“test-run” Ant target). 

Following is the list of all Ant targets provided by the build.xml file: 



73 

 

Figure 26 - Ant targets provided by the build.xml file 

Note 

The build.xml Ant file on runs Test Classes that have a name ended by ‘Test’. All other 
classes will not be executed when launching the ‘test’ target. 
It is therefore highly recommended to name all test classes with a name ending with 
‘Test.java’. 
 

 

JUnit test reports in HTML format are available in the target/reports/junitreport 

folder of your Value Pack: 

 

Figure 27 - JUnit tests results for your Value Pack 

4.7 Injecting events to UCA for EBC: Alarm Collector   
The Alarm Collector is the UCA for EBC internal component responsible for collecting events 
from outside UCA for EBC in order to feed them to the scenarios of the Value Packs deployed 
on UCA for EBC. 

The Alarm Collector is implemented as a JMS Topic that is registered using JNDI so that 
other applications can get access to it to post events that will feed UCA for EBC Value Packs, 
as shown in Figure 28. 

 



74 

 

Figure 28 - UCA for EBC alarm collection 

4.7.1 Normalized input 

The UCA for EBC Alarm Collector defines a normalized alarm XML format based on the X.733 
standard alarm format. Only alarms that comply with this format will be processed. 

4.7.1.1 Sample alarms file 

Below is a sample XML file that contains alarms in the X.733 alarm format: 

 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

 

<Alarms xmlns="http://hp.com/uca/expert/x733Alarm"> 

 <AlarmCreationInterface> 

  <sourceIdentifier>src</sourceIdentifier> 

  <identifier>1</identifier> 

  <originatingManagedEntity>BOX B1</originatingManagedEntity> 

  <alarmType>COMMUNICATIONS_ALARM</alarmType> 

  <probableCause>Fire</probableCause> 

  <perceivedSeverity>MINOR</perceivedSeverity> 

  <alarmRaisedTime>2009-09-16T12:00:00.000+02:00</alarmRaisedTime> 

 </AlarmCreationInterface> 

 <AlarmCreationInterface> 

  <sourceIdentifier>src</sourceIdentifier> 

  <identifier>2</identifier> 

  <originatingManagedEntity>BOX B1</originatingManagedEntity> 

  <alarmType>COMMUNICATIONS_ALARM</alarmType> 

  <probableCause>Fire</probableCause> 

  <perceivedSeverity>CLEAR</perceivedSeverity> 

  <alarmRaisedTime>2009-09-16T12:00:00.000+02:00</alarmRaisedTime> 

 </AlarmCreationInterface> 

</Alarms> 

4.7.2 Command-line injector tool 

UCA for EBC provides a tool to send alarms described in a simple XML File containing X.733 
alarms to the UCA for EBC Alarm Collector. 

Alarm 
Collector 

 

JM
S 

JNDI 

Provider 
 

Normalized XML event format 



75 

This tool is located in the ${UCA_EBC_HOME}/bin folder. It is called uca-ebc-injector. 

This tool will inject alarms contained in an XML file into the input alarm queue (implemented 
as a JMS Topic) of a local or remote UCA for EBC Server instance. 

Some samples of such an XML file containing alarms to be fed to UCA for EBC are located in 
the ${UCA_EBC_DEV_HOME}/vp-examples folder. 

Note 

 For more information on the uca-ebc-injector command-line tool, please refer to the 

[R3] HP UCA for Event Based Correlation – Administration, Configuration and 
Troubleshooting Guide 

[R4] HP UCA for Event Based Correlation – Value Pack Examples 
 

4.7.3 A sample Java Alarm injector 

The following chapters describe how you can create your own sample Java Alarm injector 
application that can connect to UCA for EBC Alarm Collector JMS Topic to post Alarms to UCA 
for EBC.  

4.7.3.1 Initializing the JNDI initial context 

In order to create a sample Java Alarm injector, you must first initialize the JNDI context that 
will be used to retrieve the JMS Topic of the UCA for EBC Alarm Collector: 

 
 Context jndiContext = null; 

/* 

* Create a JNDI API InitialContext object 

*/ 

try { 

    jndiContext = new InitialContext(); 

 } catch (NamingException e) { 

    System.out.println("Could not create JNDI API context: " + 

e.toString()); 

     System.exit(1); 

} 

Please note that the jndi.properties file must be provided in the classpath of your 

sample Java Alarm injector. 

4.7.3.2 Configuring the jndi.properties file 

Here is the content of a sample jndi.properties file to be used by your sample Java 

Alarm injector: 
 

java.naming.factory.initial = 

org.apache.activemq.jndi.ActiveMQInitialContextFactory 

topic.uca-ebc-alarms = com.hp.uca.ebc.alarms 

 

 

# use the following property to configure the default connector 

java.naming.provider.url =tcp\://localhost\:61666 

The topic.uca-ebc-alarms property is used to record the name the UCA for EBC Alarm 
Collector JMS topic: com.hp.uca.ebc.alarms 

The java.naming.provider.url property can be configured to match the hostname and port 
number of UCA for EBC JNDI service. 



76 

4.7.3.3 Looking up the UCA for EBC Alarm Collector JMS topic 

Once the JNDI context is initialized, the codes in your sample Java Alarm injector shall first 
lookup for the JNDI connection factory, and then retrieve the UCA for EBC Alarm Collector 
JMS topic by looking up its name: 

   

 ConnectionFactory connectionFactory = null; 

 Destination destination = null; 

 /* 

 * Look up connection factory and destination. 

 */ 

 try { 

   connectionFactory = (ConnectionFactory) jndiContext 

   .lookup("ConnectionFactory"); 

   destination = (Destination) jndiContext.lookup("uca-ebc-alarms"); 

 } catch (NamingException e) { 

   System.out.println("JNDI API lookup failed: " + e); 

  System.exit(1) ; 

} 

4.7.3.4 Connect and send the message 

With the connectionFactory retrieved, you then need to create the connection, then the 
session, and finally the producer: 

 
 Connection connection = null; 

 MessageProducer producer = null; 

 

 try { 

  connection = connectionFactory.createConnection(); 

  session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); 

  producer = session.createProducer(destination); 

  TextMessage message = session.createTextMessage(); 

 

  StringBuffer buf = new StringBuffer(); 

  buf.append("<?xml version=\"1.0\" encoding=\"UTF-8\" 

standalone=\"yes\"?>"); 

  buf.append("<Alarms>"); 

  buf.append("<AlarmCreationInterface>"); 

  buf.append("<sourceIdentifier>src</sourceIdentifier>"); 

  buf.append("<identifier>12301</identifier>"); 

  buf.   

append("<originatingManagedEntityClass>BOX</originatingManagedEntityCla

ss>"); 

  buf.append("<originatingManagedEntity>BOX 

B1</originatingManagedEntity>"); 

  buf.append("<alarmType>COMMUNICATIONS_ALARM</alarmType>"); 

  buf.append("<probableCause>Fire</probableCause>"); 

  buf.append("<perceivedSeverity>MAJOR</perceivedSeverity>"); 

  buf.append("<alarmRaisedTime>2009-09-

16T12:00:00.000+02:00</alarmRaisedTime>"); 

  buf.append("</AlarmCreationInterface>"); 

  buf.append("</Alarms>"); 

  message.setText(buf.toString()); 

  System.out.println("Sending message: " + message.getText()); 

  producer.send(message); 

} catch (JMSException e) { 

  System.out.println("Exception occurred: " + e); 

} finally { 

if (connection != null) { 

  try { 



77 

    connection.close(); 

  } catch (JMSException e) { 

  } 

} 

 

By now you should have a functioning sample Java Alarm injector. 

Chapter 5 

Advanced Development features 

5.1 Advanced feature: Spring Framework integration 
A Spring Framework context.xml file is provided in the 

src/main/resources/valuepack/conf folder. This file is defined for the whole 

“skeleton” value pack, i.e. it is common for all scenarios of the value pack. 

 

All the Spring beans defined in this file will be available to each rule file of each scenario of 
the value pack.  

 

By default the context.xml file is empty:  

 

 

Figure 29 - The default project’s empty context.xml file 

 



78 

You can define any number of Spring beans in the context.xml file. These beans will be 
accessible from within the rules files through global variables defined in your rules files 
provided you follow the instructions explained in the following sections. 

5.1.1 Defining and using Spring Beans inside rule files using global 
variables 

 
The Spring “dependency injection” framework is useful for defining global variables 
(already initialized) in rules files. In a normal Drools environment, this is done through 
some Java code. As UCA hides the Drools session object, global variables are “injected” with 
Spring, from a XML definition (context.xml). 

 

Note 

It is worth noting that there are 2 context.xml files in each value pack: 

 In the src/main/resources/valuepack/conf folder is the 

context.xml that is used when the value pack runs on a UCA EBC Server 
instance 

 In the src/test/resources/<scenario folder name> folder is the 

<scenario name>-context.xml that is used when the value pack runs in 

JUnit test mode.  

Please make sure to define all your Spring beans in both files, otherwise the JUnit tests 
might fail. 
 

 
 
First you need to define your Spring beans in the context.xml file (the following sample 
file comes from the Low Level Event Filtering value pack and is described in the “UCA for 
EBC Value Packs Examples” guide) 

 
The Spring beans that you define in the context.xml file are defined at the Value Pack level, 
and thus are global to all scenarios of the Value Pack: 

 

 

Figure 30 - The “Low Level Event Filtering” Value Pack’s context.xml file 

 

In the above screenshot, we define a Spring bean called acmeActionManager. This is just 
an example; with any other Spring bean, the process explained in the following paragraphs 
would have been the same. 

 



79 

Next we need to associate the Spring beans with global variables defined in your scenario. 
This is done in the ValuePackConfiguration.xml file that defines the configuration 
for all the scenarios of your value pack. 

 

Note 

Although Spring beans are defined at the Value Pack level, global variables are defined at 
the scenario level. If you need a Spring bean to be global to all scenarios of your Value Pack, 
you need to configure the Spring bean as a global variable for each scenario of the Value 
Pack in the ValuePackConfiguration.xml file. 

 

 

 

Figure 31 - Defining global variables in the ValuePackConfiguration.xml 

file 

 

When you define global variables in the ValuePackConfiguration.xml file, the 
“key” has to match the name of the global variable you are defining (the name you choose 
must match the name of the global variable that you declare in your rules file(s)), and the 
“value” has to match the name of the bean defined in the context.xml file. 

 
The last step is to define a global variable for the Spring bean in your rules file: 

 



80 

Figure 32 - Defining global variables in rules files 

 
In the import section of your rules file, you need to add an “import” statement for the Java 
class of your Spring Bean: 

 

import com.hp.uca.expert.vp.llef.action.AcmeActionManager; 

 
Then you need to add a “global” statement creating a global variable for your Spring Bean: 

 

global AcmeActionManager acmeActionManager; 

 

Then you can use the global variable in your rules: 
 

 

Figure 33 - Using global variables in rules files 

 

5.2 Using the Flag Object 
The UCA for EBC product provides a set of Flag Java object. These objects are useful to 
trigger rule execution in complex use cases or to trigger internal processing 
(Synchronization, etc…). 

 Please refer to [R2] HP UCA for Event Based Correlation – Reference Guide Chapter 

Common Objects, Section Flags, for more information on how to use the Flag Object. 

5.3 Alarm CustomFields 
Alarm CustomFields is the standard x733alarm.CustomFields object. CustomFields 
attributes can be used in the rules “condition” part, whereas CustomFields methods can be 
called in the rules “action” part.  

 Please refer to [R2] HP UCA for Event Based Correlation – Reference Guide Chapter 

Common Objects, Section Alarm models used in the rules, for more information on how to 
use the Custom Fields Object.  

5.4 Alarm Raised Time 
 



81 

The AlarmRaisedTime field of an Alarm is using the Java type XMLGregorianCalendar, not 
easy to set. Hence, UCA for EBC provides a helper to set the AlarmRaisedTime field: 

 setTimeInMillisecond()  

That sets all the time related fields. 

 

 Please refer to [R2] HP UCA for Event Based Correlation – Reference Guide, Chapter 

5.1.1.2 General Attributes of Alarm for more information on how to deal with time fields. 

5.5 Scenario specific configuration 
The UCA for EBC provides a way to manage complex configuration based on XML file when 
the Customer Value Pack needs a complex specific configuration. 

 Please refer to [R2] HP UCA for Event Based Correlation – Reference Guide for more 

information on how to use the Specific Configuration, Chapter Advanced UCA for EBC 
features, section Scenario Specific Configuration.  

5.6 Performing initialization at scenario startup 
The UCA for EBC provides a way to initialize your Value Pack if it needs specific objects to be 
created at startup time. This is performed be defining a Java class in your Value Pack and 
setting it correctly in the configuration file. 

 Please refer to [R2] HP UCA for Event Based Correlation – Reference Guide for more 

information on how to perform initialization of customer object needed by a Value Pack. 

5.7 WUI extensions for value packs 
Since version 3.1 the UCA for EBC Web User Interface can be extended to host value pack’s 
specific web applications or global web application 

5.7.1 Extending the WUI at value pack Level 

Any .war file delivered within value pack directory tree (usually in lib subdirectory) will be 
loaded through the UCA for EBC web server and visible through the Web User Interface.  

When the value pack is started, the UCA for EBC Web UI makes this web application available 
from a new tab if the value packs’ monitoring panel. 

Example: the war file MyVWebApp.war dropped in deploy/uca-topo-demo-3.2/lib 

directory will lead to: 

 

 



82 

By default the UCA for EBC server binds the value pack web application at the following 
address: 

http://localhost:8888/fullValuepackName-warFilename 

For the example above this would give: 

http://localhost:8888/uca-topo-demo-3.2-myVpWebApp 

5.7.2 Extending the WUI at Global Level 

In some cases the WUI extension is not directly linked to a specific value pack but may cover 
several value packs or a functionality global to the platform. 

In such case it is useful to access this webapp from the global level (UCA-EBC). This is the 
role of the ‘Extras’ Submenu. 

The ‘Extras’ sub-menu is displayed when you have optionally put some extra .war files 
under the $UCA_EBC_INSTANCE/webapps directory (note the name of the directory with an 
‘s’ at the end). This directory is optional and is not created by default.  

Each .war file stored in this directory will be displayed by UCA for EBC UI under the following 
menu:  

UCA-EBC:instanceName > Extras > <name of .war file>  

As in the picture below: 

 

 

5.7.3 Web application extensions configuration 

Some web application extensions may require some additional configuration in order for the 
UCA for EBC Web User Interface to build the expected URL. 

Two possible configurations are offered: 

 Defining the URL service Path 

http://localhost:8888/fullValuepackName-warFilename
http://localhost:8888/uca-topo-demo-3.2-myVpWebApp


83 

 Defining URL service parameters 

5.7.3.1 Defining the URL service Path for extensions at value pack level 

This is done by adding a property in uca-ebc.properties with the form: 

ValuepackFullname-warFileName-webapp-servicepath=your_path 

Example:  

For the value pack: uca-topo-demo (version3.2)  with a war file named myWebApp.war 
define: 

uca-topo-demo-3.2-myVpWebApp-webapp-servicepath=myService 

 This will lead to building the following URL: 

http://localhost:8888/uca-topo-demo-3.2-myVpWebApp/myService 

5.7.3.2 Defining the URL service Path for extensions at global level 

This is done by adding a property in uca-ebc.properties with the form: 

warFileName-webapp-servicepath=your_path 

Example:  

For the war file named myWebApp-sample.war define: 

myWebApp-sample-webapp-servicepath=myService 

 This will lead to building the following URL: 

http://localhost:8888/myWebApp-sample/myService 

 

5.7.3.3 Defining the URL parameters for extensions at value pack level 

This is done by adding a property in uca-ebc.properties with the form: 

ValuepackFullname-warFileName-webapp-parameters= coma separated list of parameters 

 

Example:  

For the value pack: uca-topo-demo (version3.2)  with a war file named myWebApp.war 
define: 

uca-topo-demo-3.2-myVpWebApp-webapp-parameters=param1=value1,param2=value2 

 This will lead to building the following URL: 

http://localhost:8888/uca-topo-demo-3.2-myVpWebApp/?param1=value1&param2=value2# 

5.7.3.4 Defining the URL parameters for extensions at global level 

This is done by adding a property in uca-ebc.properties with the form: 

warFileName-webapp-parameters= coma separated list of parameters 

 

Example:  

For the war file named myWebApp-sample.war define: 

myWebApp-sample-webapp-parameters=param1=value1,param2=value2 

 This will lead to building the following URL: 

http://localhost:8888/uca-topo-demo-3.2-myVpWebApp/myService
http://localhost:8888/myWebApp-sample/myService
http://localhost:8888/uca-topo-demo-3.2-myVpWebApp/?param1=value1&param2=value2


84 

http://localhost:8888/myWebApp-sample/?param1=value1&param2=value2# 

 

5.7.4 Inheriting the UCA for EBC logged user and role in the extended 
web application 

Some web application may want to know which UCA user is logged (as well as his associated 
role) in order to adapt its processing depending on the user id or the role. 

This is done by using placeholders in URL parameters as follow: 

 ${user} will represent the current logged user 

 ${role} will represent this user’s role. 

A typical definition would be: 

uca-topo-demo-3.2-myVpWebApp-webapp-servicepath= username=${user},userrole=${role} 

5.8 Configuring the GUI filter tags editor 
If your Value Pack is processing specific filters tags, it is possible to list them in a 
configuration so that the WUI will use that file to propose only those tags to be used for 
defining filters. 

 Please refer to [R2] HP UCA for Event Based Correlation – Reference Guide  and [R7] UCA 

for Event Based Correlation – User Interface Guide for more information on how to perform 
configuration to enable the GUI tags editor feature. 

  



85 

5.9 Editing Filter Files with the UCA for EBC eclipse filter 
editor  

The UCA-EBC Development Toolkit provides a specific filter editor intended to ease the 
development of UCA-EBC filters. 

This tool is mainly a checking tool that allows testing the filter against a sample of alarms. 
As a result the tool gives for each alarm, which Top-filter it passes or not, and if it passes a 
Top-filter, gives the associated tags (if any). 

5.9.1 Editing a Filter  

The UCA-EBC filter editor is available by right clicking on the Filter file as follow: 

 

 

This launches the UCA-EBC filter editor.  

At this stage the editor contains a single editor tab which is an XML editor allowing to 
edit/save the Xml Filter file: 



86 

 

5.9.2 Associating an Alarm File Sample to the Filter Editor 

In Order to check the Filter against a set of alarms, the Xml Alarm file must be associated to 
the filter editor. This is done by left clicking on the Alarm File in order to select the file and 
the click on the ‘Associate Alarms’ button as follow: 



87 

 

 

 When the association is done, the editor turns itself into a multi-panel editor offering 
several edition panels: 

 The Filter file editor panel, allowing to edit the Filter file 

 The Aggregated View panel, giving an overview of the passing/blocked alarms 

 The Alarm file editor panel, allowing to edit the Alarm File 

 The Passed filter view, giving information on passed filters and tags.  

As shown in the picture below: 



88 

 

  

5.9.3 How to read the Filter editor aggregated view? 

This view offers a panel per top filter as defined in the filter file.  
You can switch from one top-filter to others by clicking on the top level panel selection: 

 

 

The configuration Panel area allows selecting the alarms attributes to be displayed in the 
Alarm table list. 

 

 

The Alarm table list shows the content of the alarm file as a table. Each table row is 
preceded by a check box indicating if the alarm is passing or not the given top-filter (A 
checked box and a green color indicate the alarm is passing the filter) 



89 

 

 

5.9.4 How to read the ‘passed filter’ view? 

For a selected alarm, the ‘passed filter’ view gives the list of passed top-filters and the 
corresponding filter tags. 

The passed filter view is a 3 parts window: 

 The top part is the alarm picker, it allows selecting the alarm 

 The left part displays the selected alarm content 

 The right part gives the ‘passed’ top-filters and associated Tags. 



90 

 

5.9.5 How to use the filter to create a new top-filter?  

The aggregate view offers the possibility to quickly create a new top-filter. 

A top filter creation is a multi-step operation: 

 

Step 1:  Create a new top-filter tab. This is done by clicking on the ‘New’ tab in the top-
filter selection area: 

 

 

This creates a new Filter panel with a default name. This name can be changed by right 
clicking on the new filter tab: 



91 

 

Note: a Top-filter can also be deleted by clicking on the ‘delete’ option of the same menu. 

 

Step 2:  select the alarm attributes that will play a role in the filtering in the 
“Configuration panel” section.  

Example: 

 

Step 3:  In the Alarm table, select those alarms that will pass the filter by selecting the 
checkbox.  

 

Step 4: generate the new filter by clicking the “Generate Filter” button. 

 

Step 5: Click on the filter editor view and check the generated filter. You can manually 
edit the generated editor in order to make some fine tuning or changes. 

Step 6: Control the result of the new filter in the “passed Filter” view 

Step 7:  save your changes 

Warning 

The “Generate filter” Button can be used on an already existing filter in order to modify it. 
However by re-generating an existing filter, all the Tags defined in it will be lost. It is 
therefore not recommended to use the “Generate filter” button on existing filters. 
 

 

 



92 

5.10 Persisting alarms or events using the DB forwarder 
feature  

This chapter provides technical information about the DB forwarder feature introduced in 
UCA-EBC 3.1. 
It is intended to the UCA-EBC Value Pack developer that needs to set up that functionality 
within his VP. 
Any DB coming with a JDBC driver can be supported by this feature.  
However, UCA-EBC brings 2 DBs with libraries already part of the UCA-EBC default libraries: 
H2 and HyperSQL. 

5.10.1 Concepts 

5.10.1.1 Storing alarms 

To store alarms into a DB, the well-known alarm forwarder mechanism is used. In this 
particular case, a JDBC alarm forwarder is now provided to perform such actions. 

Alarms that are stored into a DB follow also the same scheme of the alarms received 
through classic NOM mediation platform. Once stored in the DB, they are pushed back into 
the dispatcher of the Value Pack using the DB flow mechanism. 

So if you want to recognize them from standard alarms, you will have to define a way to do 
it. This can done using a special identifier for the alarm, or by using a special custom field.  

This is up to the Value Pack owner to decide which method is to be used. 

5.10.1.2 Storing events 

UCA-EBC 3.2 brings new EventForwarder interface to handle Event objects (introduced in 3.1 
as well).  

 com.hp.uca.expert.event.EventForwarder 
 com.hp.uca.expert.event.Event 

To store such Event objects into a DB, end-user can use a JDBC event forwarder based on 
the same concepts as the alarm forwarder described above. 

 com.hp.uca.expert.event.JDBCEventForwarder 

In the contrary of alarms, events stored into a DB do not have DB flow mechanism 
associated into it. 

5.10.2 Getting started 

To make use of the DB feature, this is just a question of configuring correctly your value 
pack. This is done by modifying the VP context.xml file (*). 

Firstly, in this file, you will have to make use of the default JDBC settings by importing the 
provided file from the UCA classpath, as: 

  

<import resource="classpath:jdbc/dependencies.xml" /> 

 



93 

Those default settings bring mainly an AlarmDao bean (called alarmDao) and an 
AlarmNotifier bean (called dbNotifier). 
If you do not want to use default JDBC settings, you can do so by referring to the Advanced 
settings section below. 

Then, still in context.xml, you will have to define at minimum 2 Spring beans: 

 the datasource bean 
 the DB forwarder bean  

and optionally 

 the DB store bean 

Note 

(*) You can also configure JDBC settings globally for all value packs in the 
conf/dependencies.xml file if needed. 

 

 

5.10.2.1 Defining the datasource 

The first thing to configure is the datasource. This is done by defining a new Spring bean. 
Spring offers a number of options for configuring a data sources via data source beans. 

These sources include the following: 

 Data sources that use JNDI 
 Data sources that use JDBC drivers 
 Data sources that pool connections  

Below is an example using pool connections with Apache Commons DBCP (*), and with a H2 
database (**). 

  

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" 

        destroy-method="close"> 

        <property name="driverClassName" value="org.h2.Driver" /> 

        <property name="url" value="jdbc:h2:~/.uca/exampleDB" /> 

        <property name="username" value="sa" /> 

        <property name="password" value="" /> 

</bean> 

 

 

Notes 

(*) You could also use "org.springframework.jdbc.datasource.DriverManagerDataSource" or 
other of your choice 

(**) You could also use HyperSQL DB. For other DBs, make sure to make the requested JDBC 
driver as part of your value pack libraries. 

 



94 

 

5.10.2.2 Defining the DB store 

The second thing to configure is the store used to persist alarms. Currently only a store of 
type SQL is supported. But still, in prevision of managing NOSQL stores, a bean is to be 
defined for specifying what that store is capable of. This setting is optional. The settable 
properties of an SQL store are: 

Property Type Description Default 

name string defines the name of the DB  

supportsCreate boolean 
tells if the DB can be created by the 
UCA-EBC engine if it does not exists 

true except for "voltdb" 

supportsIfNotExist boolean 
tells if the DB supports the SQL 
syntax "IF NOT EXISTS" at creation 

true except for "hsqldb" 

supportsUnlimitedVarChar boolean 
tells if the DB supports definition of 
VARCHAR without a numeric limit 

true except for "vertica" 

bigInt string 
defines the data type to use for big 
integers 

"BIGINT" except for 
"oracle" that is 
"NUMBER" 

useIndex boolean 
tells whether or not to create indexes 
at DB creation 

true 

Here below is a simple example: 

  

<bean id="dbStore" class="com.hp.uca.expert.store.sql.SqlStore"> 

        <property name="name" value="h2" /> 

</bean> 

 

 

5.10.2.3 Defining the DB forwarder 

The next thing to configure is the DB forwarder itself, which is the thread that is going to use 
datasource and store defined previously to persist alarms. The DB forwarder has only 2 
properties: 

Property Type Description 

alarmDao bean the DB Alarm DAO bean 

store bean the DB store bean 

override boolean 
tells what to do when inserting an alarm that already exists in DB store 
(with same identifier). If false (default value): the new alarm is ignored. 
If true : the old alarm is deleted, the new alarm is inserted. 

compress boolean 
tells whether or not to compress enqueued alarms with same identifier, 
for performance reasons. If true (default value): alarms are 
compressed. 

Here below the typical configuration.  
(The init-method is optional as the DB forwarder has an auto-start capability) 



95 

  

<bean id="dbForwarder" class="com.hp.uca.expert.alarm.JDBCAlarmForwarder" 

init-method="start"> 

        <property name="alarmDao" ref="alarmDao" /> 

        <property name="store" ref="dbStore" /> 

</bean> 

 

 

Note: If you use a DB forwarder to forward Events instead of Alarms, you will need to 
configure as per example below (the eventDao bean needs to be configured too, as specified 
in Advanced settings section below) 

 
<bean id="dbForwarder" class="com.hp.uca.expert.event.JDBCEventForwarder" 

init-method="start"> 

        <property name="eventDao" ref="eventDao" /> 

        <property name="store" ref="dbStore" /> 

</bean> 

 

 

 

 

5.10.2.4 Defining the DB flow 

To be able to receive alarms changes coming from the DB as per any other alarm coming 
from a NOM mediation flow, you will have to configure a DB flow in 
ValuePackConfiguration.xml file.  

The dbFlow has only 2 properties: 

Property Type Description 

name string 
the name of the DB flow. should be unique in case of 
multiple flows 

dbNotifierName string 
refers to the name of the DB notifier on which to subscribe 
for notifications. This is explained in Advanced Setting 
section. Its default name is “dbNotifier”. 

automaticStart boolean 
flag indicating whether to automatically start the DB flow 
when the value pack is started or not. Default=true 

lastEventReceivedFirst 
DuringResynchronization 

boolean 
attribute which tells if the DB notifier will notify existing 
alarms in reverse order (if true) upon resynchronization 

eligibilityScope string 

element that specifies a Java evaluated boolean expression 
defining the eligibility of an alarm to pass through at flow 
resynchronization. default is "true" meaning all alarms 
present in DB are sent 

sourceIdentifier string 
when alarm is coming through that flow, the sourceIdentifier 
is replaced by this value. default="DB 

selfFeed boolean 
flag indicating whether to dispatch alarm creation messages 
generated by this value pack in standard mode (non-
resynchronization. Default=false 

 

file:///C:/Users/AnzileC/AppData/Local/Temp/doxia_1814683111.html%23DB_notifier


96 

A default configuration could be: 

  

<dbFlows> 

        <dbFlow name="exampleDbFlow" dbNotifierName="dbNotifier" /> 

</dbFlows> 

 

5.10.3 Example 

You can refer to the example part of the UCA-EBC Development Toolkit. 
You can find it under ${UCA_EBC_DEV_HOME}/vp-examples/persistence-example. 

You can build this example as per usual 

 # ant all 

Specifically, you can have a look at files under src/main/resources/valuepack/conf to see 
how to configure the DB feature elements (context.xml) and the DB flows 
(ValuePackConfiguration.xml) 

5.10.4 Advanced settings 

Advanced settings are optional and are only for those who do not want to use the default 
settings provided by the file jdbc/dependencies.xml. You can replace following line 

  

<import resource="classpath:jdbc/dependencies.xml" /> 

 

by adding each of the following bean directly in the value pack context.xml 

5.10.4.1 Defining the SQL Session factory 

The SQL session factory is the MyBatis(*) session factory bean. It has two properties: 

Property Type Description 

dataSource bean the datasource bean 

configLocation string the location of the MyBatis configuration file 

The default configuration is: 

  

<bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean"> 

        <property name="dataSource" ref="dataSource" /> 

        <property name="configLocation" value="classpath:jdbc/mybatis-

config.xml"/> 

</bean> 

 

 

Note 

(*) MyBatis is an Open Source software delivered as part of UCA-EBC 3.2 libraries. 

 



97 

5.10.4.2 Defining the DB Alarm DAO 

The DB DAO is the mapper interface used to instantiate the Java interface corresponding to 
the SQL commands stored in the file defined within the MyBatis configuration file. By 
default, the alarms mapper interface is defined in file jdbc/sql-alarms-mapper.xml.  
The DB DAO has two properties: 

Property Type Description 

sqlSessionFactory bean the SQL session factory bean 

mapperInterface string 
the Java interface for the DAO, which is defaulted to the one provided by 
UCA-EBC, i.e. com.hp.uca.expert.alarm.store.AlarmDao 

The DB DAO is in turn used to configure the DB forwarder and the DB notifier beans. 

The default configuration is: 

 

<bean id="alarmDao" class="org.mybatis.spring.mapper.MapperFactoryBean"> 

        <property name="sqlSessionFactory" ref="sqlSessionFactory" /> 

        <property name="mapperInterface" 

value="com.hp.uca.expert.alarm.store.AlarmDao" /> 

</bean> 

 

 

5.10.4.3 Defining the DB Notifier 

The DB notifier is the component that will listen to the DB for changes and will notify the 
value pack about those changes. It has two properties: 

Property Type Description 

alarmDao bean the DB Alarm DAO bean 

checkTimer number 
a timer in milliseconds representing the interval between two DB checkings for 
the changes 

The default configuration is: 

 

<bean id="dbNotifier" class="com.hp.uca.expert.alarm.store.AlarmNotifier" 

scope="singleton"> 

        <property name="alarmDao" ref="alarmDao" /> 

        <property name="checkTimer" value="1000" /> 

</bean> 

 

 

5.10.4.4 Defining the DB Event DAO 

The DB Event DAO is the mapper interface used to instantiate the Java interface 
corresponding to the SQL commands stored in the file defined within the MyBatis 
configuration file. By default, the events mapper interface is defined in file jdbc/sql-events-
mapper.xml.  
The DB Event DAO has two properties: 



98 

Property Type Description 

sqlSessionFactory bean the SQL session factory bean 

mapperInterface string 
the Java interface for the DAO, which is defaulted to the one provided by 
UCA-EBC, i.e. com.hp.uca.expert.event.store.EventDao 

The DB Event DAO is in turn used to configure the DB forwarder bean. 

There is no default configuration available but it should be easily configurable as per below: 

 

<bean id="eventDao" class="org.mybatis.spring.mapper.MapperFactoryBean"> 

        <property name="sqlSessionFactory" ref="sqlSessionFactory" /> 

        <property name="mapperInterface" 

value="com.hp.uca.expert.event.store.EventDao" /> 

</bean> 

 

 

 

5.10.4.5 Defining the SQL Mapping interfaces 

Alarms mapper: 

The alarms mapper interface is defined by default in file jdbc/sql-alarms-mapper.xml. This 
file defines the dynamic SQL mapping of the Java interface provided: 

 

This interface is provided by default and can be replaced if necessary, in which case the 
mapping interface should be changed accordingly. 

Events mapper: 

The events mapper interface is defined by default in file jdbc/sql-events-mapper.xml. This 
file defines the dynamic SQL mapping of the Java interface provided: 



99 

 

This interface is provided by default and can be replaced if necessary, in which case the 
mapping interface should be changed accordingly. 

 
 

 

  



100 

 

Appendix A 

A.  Ant build.xml targets 

The value pack examples provided with UCA for EBC come with an Ant build.xml file that 

can build and package the project as described in this document. 

Following is the full list of Apache Ant targets defined in the build.xml file that can be 

executed from the command line using the ant tool: 

 

eclipse 

Command: 
 # ant eclipse 

Creates the .project and .classpath files used by eclipse when importing a project. 

clean 

Command: 
 # ant clean 

Removes all files created during the build from the build directory. 

compile 

Command: 
 # ant compile 

Compiles all Java files of the project. 

test 

Command: 
 # ant test 

Runs the JUnit tests defined in the project. 

package 

Command: 
 # ant package 

Build the final, “ready to deploy” value pack ZIP file. 

all 

Command: 
 # ant all 

Is equivalent to executing the following targets: “clean”, “compile”, “test” and “package”.  



101 

Glossary 

 

UCA: Unified Correlation Analyzer 

EBC: Event Based Correlation 

IDE: Integrated Development Environment 

JMS: Java Messaging Service 

JMX: Java Management Extension, used to access or process action on the UCA for EBC 
product. 

JNDI: Java Naming and Directory Interface 

Inference engine: Process that uses a Rete algorithm for expert behavior 

DRL: Drools Rule file 

XML: Extensible Markup Language 

XSD: Schema of an XML file, describing its structure 

X.733: Standard describing the structure of an Alarm used in telecommunication 
environment. 

EVP: UCA for EBC Value Pack 

WUI: Web User Interface 

 
 


