hp Unified Correlation Analyzer

W

Unified Correlation Analyzer
for
Event Based Correlation
Version 3.2

Value Pack Development Guide

Edition: 1.0

For Windows® and Linux (RHEL 5.9 & 6.5) Operating Systems

April 2015

© Copyright 2015 Hewlett-Packard Development Company, L.P.

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial Items are licensed
to the U.S. Government under vendor's standard commercial license.

Copyright Notices
© Copyright 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit
configurations) on all HP 9000 computers are Open Group UNIX 95 branded products.

Java™ is trademark of Oracle and/or its affiliates.

Microsoft®, Internet Explorer, Windows®, Windows Server 2007®, Windows XP®, and
Windows 7° are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.
UNIX® is a registered trademark of The Open Group.

X/Open®is aregistered trademark, and the X device is a trademark of X/Open Company Ltd.
in the UK and other countries.

Red Hat® is a registered trademark of the Red Hat Company.
Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

Eclipse™ is a trade mark of The Eclipse Foundation.

Contents

[=] - o Y J

L6111 =T RPN - |

[T T LT o 1 Y

L0111 -] R | |

Getting started with UCA for EBC.........ccccceeeeeeenecenccncceecccecenccsscacccssscsscsscsssesses 10

2.1

2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6

SOftWAre Pre-r@QUISIEES.cceeeeeereereerrecereteeeeeteeseeeseeeseesseesseessesssesssesssesseesssessensesses 10
(0] 0T T a1 T 5V (=] 1 SRR 10
JAVA JRE/IDK .ttt ettt te et e et et s s s st et st e st e e e senaanas 10
ECUPSEIDE ... ettt e tee e s te e te s ste s ae s e saseeaesesaseesaesesssesssasnnseesnsnennns 11
Installing UCA for EBC and UCA for EBC Development Kit.......cccceceeeveeeeeercnsennene. 14
Post-install ENVIroNMEeNnt SEtUPccueeceeeeieeeeeeeteeeereeteeeeeeeeeeeereeeseeseeessnennns 14
UCA for EBC Eclipse plug-in installation instructionscccceeeeeeeeeeeeceeecerenene 15

61 - 1] (-] RO | |

Value pack development lIfecyclecceceeeceeeienceeecencceeceeeceecenccnecceccceccecccecceees 20

3.1
3.1.1
3.1.2
3.2
3.3
3.3.1
3.3.2
333
34
3.4.1
34.2
3.5
3.6
3.6.1

3.6.2
3.6.3
3.7

Memento on Value packs and Scenario definitions.........ceoveeevereeeeceeeceeeceeeceeennee. 20
Value Pack Definitioncceeeeeeeeeeeeee ettt e e 20
SCENArio DefiNitioN ...cecieeeeeeeeceeeee ettt sttt seesae s s ene 20

I = Ol - TSR 22

Creating a new UCA for EBCVAlU@ PACKecveeeeeieeeeeeeeeeeeeeeeneeeeeeeee e snenae 23
Creating a value pack project within EClipSe......ceeeveeveeeveecereeeeeeeeeeeee e, 23
Anatomy of the created ProjJECtceveeeeeeeeeeeeceeeeeeeecreereer e nae 26
Validation of the created Projectceeeeeeeeeeceeeeeceeceecrecereeeeee e 27

Customizing the created ‘skeleton’ Value Pack projectcccceeceeeeeceeceeeceeeseecneenne. 30
Updating the SCenario filters.........cveeeeeeeeeereeeeceecrecereceeerteeee et eeseesaeennenns 30
Updating the correlation rules fil@cueeeeeeeeeeeceeeeeeeeeee e 31

Generating the Value Pack Kit........ccceoeeeeeeeeieeeeeeeeceeeeeeeee et 31

Deploying the Value Pack kit on UCA fOr EBCcoeceeeeeeeeeeeceeeeeeeceeeeeeeeeneeseeeenees 34
Install the Value Pack package (ZIP file) on an HP Itanium or Linux system
ruUNNING UCA fOr EBC SEIVET.uiiuiiieeetereeeescsereetesteseessesaeseseseesaesaessesanssesssenes 34
Deploy the Value PacK ...ttt ettt esaessaessaesseessnenne 34
Start the Value Pack on UCA for EBC SEIVEr:........eeeeeveeceeeereereeeseeeeeeeeceeeeeeeeeas 35

Testing the Value Pack in real-time.......ccueeceeeeieecieeceecceecceeeeec s eae e 35

Chapterd.........ceeeieeieeieeienetenieecceeccssteascsssesscsssesscsssessesssssssssssssssssasssssssssansse 3 1

Focus on development key points.......cccceeceeieecnnceeccneteeccnncenccneccnccesscsscescsscees 37

4.1

4.2

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5

Implementing Alarm enrichMEeNt........ooee e ce e ee e e s aeeenes 37
Developing the SCENATIO FULESeeceeeeeeeeeeeee e e e e e e esee e e aeeese e s aeeenes 40
BaASICS ceeuutireieeietereert ettt sttt et s e s e st e st e ae s en e s ae s sn e e e aa e aesstesnesanenas 41
Sample rules on Alarm facts in CLOUD MOdEcoeeeeeeeeeereereereeeeeeee e 42
Sample rules on Alarm events in STREAM MOdEoeeeeeeceerceecceereeeeceeeceeeene 43
Defining and using rule teMPLAtes........c.eeceeeeeeeeeeeeeeeeteetee et e e eeeens 45

Introducing Java code in the FULESoeeeeeeeeeee et 46

4.3
4.4
4.4.1
4.4.2
4.4.3
4.5
4.6
4.7
4.7.1
4.7.2
4.7.3

Defining YOUr OWN DEANSceeeeeeeeeeeeeeteeeeeeeeeeeeecteeeeeee e e seeeseeeseesesssesssenssenseensens 47

Executing external actions from the rULeSeceeeeeeeeeereeeeeeeeeeeceeee e 47
Standard external ACtIONSc.cecveeieeceeeeeceeee e eeas a7
Calling services defined USING SPriNg........ccveeeeeeeereeereeereeeeeeeee e eees 56
Forwarding alarms to external SYStemscoceveeeiererienninrenneneeeeeeeeeee e 58

MaKiNG USEFULLOGS ...coueenteeeeiiieieertet ettt ettt ettt ettt ne s s e 64

Creating JUNIE TESES ...oeieeeeeceeeceee ettt ee et e e rer e ee s e ae e s ae s e ae e e sae e seeeanennns 65

Injecting events to UCA for EBC: Alarm COLeCtorcovveeveeeeinenieneeeeeeeeeeeee e 73
[\ [0 4 1= 1 -4=To T] o101 RN 74
Command-Line iNJECLOr tOOL ..c.uueeeeieeeeeeeeeeeree e e e eae e 74
A sample Java Alarm iNJECEONee et 75

01111 - R i 4

Advanced Development features......cccceeeeeieeeceeceeccneceencenceaccecsecccssscnscscscsscssces 11

5.1
5.1.1
5.2
5.3
54
5.5
5.6
5.7
5.7.1
5.7.2
5.7.3
5.7.4
5.8
5.9
5.9.1
5.9.2
5.9.3
5.9.4
5.9.5
5.10
5.10.1
5.10.2
5.10.3
5.10.4

Advanced feature: Spring Framework integrationcceeeeeeeeveeereeereeceeceeeeeeeenne 77
Defining and using Spring Beans inside rule files using global variables............. 78
UsiNg the FLag ODJECT ...ttt r e s e et s e ae s 80
ALArm CUSEOMFIELAS ...ttt e e s e s e e se e e s saessnesnesnnenns 80
LA T g 13 T =T T =TT SE 80
Scenario Specific CoNfiGUIrAtioN.........coeeeeereeeeeeeeeee et 81
Performing initialization at scenario Startupcoccoceeeeeveereevenenrenrereeceeceeee e 81
WUI extensions for value PAcKSeceeceeeeeceeereeeeecee et nas 81
Extending the WUI at value pack LeVeL ...t 81
Extending the WUI at GLODAL LEVELeeeeeeeeeeeeeeeeeeeeeee ettt 82
Web application extensions configurationcceeeceeeceecceecceecceeeceeecee e 82
Inheriting the UCA for EBC logged user and role in the extended web application84
Configuring the GUI filter tags ditor........oceeeeecieeeeceeeeeceeee et 84
Editing Filter Files with the UCA for EBC eclipse filter editor..........coceeveeeveeveerecnnenee. 85
o 14Ty To T | =T TSR 85
Associating an Alarm File Sample to the Filter Editor........cceocveeveeeeceeeeeeeenee. 86
How to read the Filter editor aggregated VIieW?oocceeeeeeceeeceeeeeeeceeeceeee 88
How to read the ‘passed filter’ VIEW?ceeeeeeeeeieireeeeecereceeecereeeeeesreesanenans 89
How to use the filter to create a new top-filter?ceeeeveeveereeceeeeeeeceeeeenne 90
Persisting alarms or events using the DB forwarder feature.........cccoeceeeveeveerecvneneen. 92
(000 Tal=]] £ TSRS 92
(O a3 T 5 = (=T [P USRS 92
e 0 1] 0] LTRSS 96
JA o (V= g Lol =T BT =] 4 4 g T £ 96

LT T=T [o [1)

A.

ANt buiI1d . XM LArGELS ueeeeeiieeeceteeceeeceter ettt sse e s sae e st e s sae e s sae e s saessaes 100

611 T T PR | |} |

Figures

Figure 1 - Drools plug-in for Eclipse IDE: InStallation STEP T.......ccveeeeeereeceeeeeeeeeeeceeeeeeeeeeee s 13
Figure 2 - Drools plug-in for Eclipse IDE: InStallation STEP 2.......ccveeuveeeeeceeeeeeeeeeeeeeeeeeeeeeee s 13
Figure 3 - Drools plug-in for Eclipse IDE: Installation SteP 3......coceeeeeeeeeeeeeeeeeeeeee e 14
Figure 4 - UCA for EBC Eclipse plug-in: INStallation STEP Tcceeeveeeeceeeeeeeeeeeeeeeeeeeeeee e eeneeens 16
Figure 5 - UCA for EBC Eclipse plug-in: INStallation STEP 2ecveeeeeereeeeeeeeeeeeeeeteeteeeee e eeneenns 17
Figure 6 - UCA for EBC Eclipse plug-in: Installation StEP 3coeeeeeeeeeeeeeeeeeeeee et 18
Figure 7 — The UCA-EBC Scenario COMPONENLSc.coievirirrirntrreeeteeeesesteeesteeessesseesessessessesseessessessesnes 21
Figure 8 - The 5 steps to create @ UCA for EBCVAlU@ PACK......ccveeveeeeeeeeeceeeeeeeeeeeeceeeeeeeee e eeeseeeseenns 22
Figure 9 - Value pack project creation Wizard STEPT ... eeieeceeeeecceee et s e e e s aeenes 24
Figure 10 - Value pack project creation wWizard STEP2.........ooeeeeeeceeeereeeeeeeeeeeee et eneeene 25
Figure 17 - Creat@d Valu@ PACK ...ttt te et ee e e ee e e sas e s sse e s esa e s sa e s esaessseesssaesssnesesansnnen 26
Figure 12 - Folder structure of the created ProjeCt.........ueeeeeeerieeeeeeeeceeeeeceeerecereeee e eeeee e esseenns 27
Figure 13- Running JUnit tests on the created project in Eclipse IDE.........cooueeieeeeeeeceeceeeeeeeeeeeene 28
Figure 14 - JUnit tests results on the created project in ECLipsS@ IDE........cooeeeieeeeeeeeeeeeeeeeeeceeeeeene 29
Figure 15 - Running JUnit tests on the created project at the command-line using Ant...................... 29
Figure 16 - JUnit tests results on the created project viewed using a Web browserccoeuenne.e. 30
Figure 17 - The default “catch all” project’s filters . xml fil@ e 31
Figure 18 - Building the kit of your customized Value PacK.........c.cocceverervernirneenrenenieneneneeeeeeseeenennes 32
Figure 19 - The kit of your customized Value Packcoceirveeeenenienininrereeeereeeesese s seessesaeesesnes 33
Figure 20 - Contents of the ZIP file of your customized Value PacKceoveeeeeeeeerecereneeeeeeeeeeeeneenns 34
Figure 21 - Defining AlarmForwarder beans in the context . xm1 file ..cccvveeerereeverrenienrerreeceereeenes 60
Figure 22 - Defining AlarmForwarder globals in the ValuePackConfiguration.xml file 61
Figure 23 - Declaring the use of an AlarmForwarder global variable in a rule fileccccocvvereveenennenee. 61
Figure 24 - Using an AlarmForwarder global variable to write Alarms to an XML file.........ccccceeuvenenee 62
Figure 25 - SCeNario logger @XAMPLEccceeeeeereeeeeceeceeecteeeee e ree e e eseeeaesees e esssesseesassesssessasessessennns 65
Figure 26 - Ant targets provided by the build. XML File.........coveeeeeeeeeeeeeeee e 73
Figure 27 - JUnit tests results for your Value Packceeeeeeeeeieeeeeeeeeeeeeeceeceeeeeeeeeee e eeeseesseenns 73
Figure 28 - UCA for EBC alarm COLECHIONeeeveeeieeeeeceeeeeeteeteeteeeeeteeeteeteeeeesreesseesseseesseesseessessensennns 74
Figure 29 - The default project’s empty context . xm1 fil@ ceceeeeeecerceecerceeeeceee e 77
Figure 30 - The “Low Level Event Filtering” Value Pack’s context .xml file ..ccccevevververververceenecnnennen 78
Figure 31 - Defining global variables in the ValuePackConfiguration.xml file....ccceeeenen.e. 79
Figure 32 - Defining global variables in rules fil@sueeeeeeeeeeeeeeeeeeeee et eaeeene 80

Figure 33 - Using global variables in FULES fileS.........ceeeeeeeeeeeeeeeeeceeteeeeceeereesresee e esseenne 80

Tables

Table 1 - Software versions 7
Table 2 - Java JRE/JDK Prerequisites for UCA for EBC Development Kit 10
Table 3 - Eclipse IDE Prerequisites for UCA for EBC Development Kit 11
Table 4 - Java helper classes for 0SS Open Mediation TeMIP Value Pack 52
Table 5 - AO directives helper classes 54
Table 6 - TT directives helper classes 54
Table 7 - Java helper classes for 0SS Open Mediation Exec Value Pack 56

Table 8 - JMS properties set for alarms being forwarded to 0SS Open Mediation 64

Preface

This guide provides an overview of the Unified Correlated Analyzer for Event Based
Correlation product and describes how to create Value Packs to target customer specific use
cases.

Product Name: Unified Correlation Analyzer for Event Based Correlation
Product Version: V3.2
Intended Audience

Here are some recommendations based on possible reader profiles:
e Solution Developers
e Software Development Engineers

Software Versions

The term UNIX is used as a generic reference to the operating system, unless otherwise
specified.

The software versions referred to in this document are as follows:

Product Version Supported Operating systems
UCA for Event Based Correlation e Windows XP / Vista
Software Development Kit V3.2 e Windows Server 2007
e Windows 7
e Red Hat Enterprise Linux Server release
5.9&6.5

Table 1 - Software versions

Typographical Conventions

Courier Font:

Source code and examples of file contents
Commands that you enter on the screen
Pathnames

Keyboard key names

Italic Text:
e Filenames, programs and parameters
The names of other documents referenced in this manual

Bold Text:
e Tointroduce new terms and to emphasize important words
Associated Documents

The following documents contain useful reference information:

References
[R1] HP UCA for Event Based Correlation — Installation Guide
[R2] HP UCA for Event Based Correlation — Reference Guide

[R3] HP UCA for Event Based Correlation — Administration, Configuration and
Troubleshooting Guide

[R4] HP UCA for Event Based Correlation — Value Pack Examples

[R5] Open Mediation V710 Functional Specification

[R6] Open Mediation Installation and Configuration Guide

[R7] Unified Correlation Analyzer for Event Based Correlation — User Interface Guide
[R8] HP UCA for EBC Topology Extension user guide

[R9] HP UCA for EBC Inference Machine user guide

Support

Please visit our HP Software Support Online Web site at https://softwaresupport.hp.com/
for contact information, and details about HP Software products, services, and support.

The Software support area of the Software Web site includes the following:

Downloadable documentation.
Troubleshooting information.
Patches and updates.

Problem reporting.

Training information.

Support program information.

https://softwaresupport.hp.com/

Chapter 1

Introduction

This guide explains how to create a new correlation project, how to package it and deploy it
on a Unified Correlated Analyzer for Event Based Correlation (UCA for EBC) Server in just a
few minutes.

After validating some pre-requisites and installing both UCA for EBC (runtime) and UCA for
EBC Development Kit products, the following chapters will dive into the development of UCA
for EBC Value Packs and explain how to create new scenarios, how to develop alarm/event
correlation rules based on samples and how to customize UCA for EBC.

Note

Throughout this document, we use the ${UCA EBC HOME} environment variable to
reference the root directory (“static” part) of UCA for EBC. The default value for the

${UCA EBC_HOME} environment variableis /opt/UCA-EBC.The ${UCA EBC HOME}
environment variable thus references the /opt /uca-EBC directory unless UCA for EBC
“static” part has been installed in an alternate directory.

Wealsouse $ {UCA_EBC DATA} environment variable to reference the data directory
(“variable” part) of UCA for EBC. The default value for the $ {UCA EBC DATA}
environment variable is /var/opt/UCA-EBC. The ${UCA EBC DATA} environment
variable thus references the /var/opt/UCA-EBC directory unless UCA for EBC “variable”
part has been installed in an alternate directory.

Since UCA-EBC V2.0, on Linux and HP-UX systems, the $ {UCA EBC DATA} directory may
contain multiple instances of UCA-EBC. In this document, we will use the value
${UCA_EBC_ INSTANCE} forreferring to

${UCA EBC DATA}/instances/<instance-name> directory on Linux/HP-UX
systems and to $ {UCA_EBC_DATA} on Windows systems.

Note that at installation time on Linux/HP-UX, a single <instance-name> is configured:
default.

Chapter 2

Getting started with UCA for EBC

2.1

2.1.1

2.1.2

Software Pre-requisites

Operating system
The UCA for EBC Development Kit is provided (and supported) for:

Windows operating systems.
It has been validated on Windows XP, Windows Vista, Windows 7, and Windows Server
2007.

Red Hat Enterprise Linux.
It has been validated on Server Release 5.9 & 6.5.

Java JRE/JDK
The following table lists the Java JRE*/JDK pre-requisites for UCA for EBC Development Kit:

Software Version Supported

Java JDK 1.6.0 or later Yes

Java JDK 1.7.0 or later Yes and Recommended
Java JDK 1.8.0 or later No

Table 2 - Java JRE/JDK Prerequisites for UCA for EBC Development Kit

You can check whether Java is already installed on your system and which version of the
Java JRE/JDK is installed by issuing the following commands:

On Windows XP, Windows Vista, Windows 7, and Windows Server 2007:

To check if you already have Java installed, open a command-Lline (Run... -> cmd.exe) and
type:

C:\> java -version |

You should get an output similar to the following:

java version "1.6.0_17"

Java(TM) SE Runtime Environment (build 1.6.0_17-be4)
Java HotSpot(TM) Client VM (build 14.3-b@1, mixed mode,
sharing)

Alternatively to using the command-Lline, you can check if you already have Java installed by
going to the Control Panel and selecting the Javaicon. In the Java tab, you will find
information on the Java version installed on your system.

10

The latest JDK package for Windows XP, Windows Vista, Windows 7, and Windows Server
2007 can be downloaded (for free) from www.hp.com/qo/java

On Linux:

To check if you already have Java installed:

| $ rpm -ga | grep jdk

Red Hat Enterprise Linux Server comes with OpenJDK Java VM. You should get an output
similar to the following (here 1.6.0 and 1.7.0 are installed):

1.1.10.4.e16.x86_64
.0-1.41. 1 10.4.e16.x86_64
.4.1.e16_3.x86_64
.9-2.3.4.1.e16_3.x86_64

java-1.6.0-openjdk-1.6.0.
java-1.6.0-openjdk-devel-
java-1.7.0-openjdk-1.7.0.
java-1.7.0-openjdk-devel-

0-1.
1.6.
9-2.
1.7.

®w®-l>

You can also download (for free) the latest Java packages (HotSpot Java VM) from Oracle
from http://java.com/en/download/manual.jsp. If this is installed (usually under /usr/java),
you should get an output similar to the following:

| jdk-1.7.0_75-fcs.x86_64

Note

* Java 1.6 JRE is enough for using the UCA for EBC Development Kit. However the JDK comes
with some useful debugging tools (jconsole, jvisualvm, etc...) that may prove helpful for
troubleshooting. It is therefore recommended to install the JDK.

2.1.3 Eclipse IDE

The UCA for EBC Development Kit has been designed for an easy integration with the Eclipse
Integrated Development Environment (IDE) tool.

Before starting the development of any UCA for EBC value pack, it is necessary to download
and install the Eclipse ™ application development environment.

The following table lists the Eclipse IDE pre-requisites for UCA for EBC Development Kit:

Software Version

Eclipse IDE 3.7 (Indigo) or higher

Table 3 - Eclipse IDE Prerequisites for UCA for EBC Development Kit

The minimum version of Eclipse IDE required by the UCA for EBC Development Kit is version
3.4 but we recommended Eclipse IDE version 3.7 (Indigo) or higher.

If you already have Eclipse IDE installed on your system, you can either use this version with
the UCA for EBC Development Kit (provided this version complies with the version
requirement: version 3.4 or higher) or you can install a new version of Eclipse IDE.

If you want to install Eclipse IDE, please go to the following URL for downloading Eclipse IDE:
http://www.eclipse.org/downloads/

11

http://www.hp.com/go/java
http://java.com/en/download/manual.jsp
http://www.eclipse.org/downloads/

At the time of writing, the Eclipse IDE version is Luna 4.4.

We recommend you to download either (other choices may also be valid):
Eclipse IDE for Java Developers, or

Eclipse IDE for Java EE Developers

Then you need to choose to install either the 32-bit or 64-bit version of Eclipse IDE
depending on whether you have a 32-bit or 64-bit operating system.

Once Eclipse IDE is installed on your system, and in order to get the full benefit of the Drools
development environment in Eclipse, it is also necessary to download and install the Drools
plug-in for Eclipse.

Before downloading the Drools plug-in for Eclipse IDE, please make sure that the Drools
plug-in you plan to download has the same version number as the version of Drools used by
UCA for EBC.

UCA for EBC currently uses Drools version 5.5.0.Final. The download URL for this version of
the plug-in is the following:

https://repository.jboss.org/nexus/content/repositories/releases/org/drools/org.drools.up
datesite/5.5.0.Final/org.drools.updatesite-5.5.0.Final-assembly.zip

2.1.3.1 Drools plug-in for Eclipse IDE installation instructions

Download and save the ZIP file of the Drools plug-in for Eclipse IDE in a temporary directory,
for example: C:\Temp.

From the Eclipse ‘Help’ menu, choose ‘Install new software’ and then click on the
button.

Select the downloaded file using the button and give it the name “JBoss Drools
5.5.0.Final” as shown in the picture below:

= Install =] X
Available Software
Select a site or enter the location of a site. :J.L_
Work with: type or select a site - Add...

Find mare software by working with the "Available Software Sites” preferences.
I type filter text

Mame Version
[[] @ Thereis no site selected.

= Add Repository

Name: Drools 5.5.0-Final

Location: _file:/C:/Program Files/drolsibpm-tools-distribution-5.5.0 W

Select All Deselect All
@ oo [conee]
L Cancel
Details Y
[Show enly the latest versiens of available software [Hide items that are already installed
Group items by category What is glready installed?

[T Show enly software applicable to target environment

Contact all update sites during install to find required software

@ < Bacl et > Fiich

12

https://repository.jboss.org/nexus/content/repositories/releases/org/drools/org.drools.updatesite/5.5.0.Final/org.drools.updatesite-5.5.0.Final-assembly.zip
https://repository.jboss.org/nexus/content/repositories/releases/org/drools/org.drools.updatesite/5.5.0.Final/org.drools.updatesite-5.5.0.Final-assembly.zip

Figure 1 - Drools plug-in for Eclipse IDE: Installation step 1
button.

Then click on the

The screen should then display the archive content as follow:
= Install T ——— -

Available Software
Check the items that you wish to install.

Work with: Drools 5.5.0-Final - file:/C:/Program Files/droolsjppm-tools-distribution-5.5.0 Final/binaries/org.drools.updatesite/
Find more software by working with the "Available Software Sites” preferences.

type filter text
' | Mame Version
4 [|00 Drools and jBPM
[7] & JBoss Draols Core 5.5.0.Final
[] 4% JBoss Drools Guvner 55.0.Final
[7] &5 JBoss jBPM Core 5.5.0.Final
[4 JBoss JEPM Task 55.0.Final
||| selectan Deselect All
Details
Droals and jBPM plugins for Eclipse. A
More...
|| [Z] Show only the |atest versions of available software [] Hide items that are already installed

| [¥] Group items by category What is already installed?
! [C] Show enly software applicable to target environment.

[¥] Contact all update sites during install to find required software

| @ B | B =

Figure 2 - Drools plug-in for Eclipse IDE: Installation step 2

Check the “Drools and jBPM” checkbox and then click on the button.
The following screen is displayed:
= Install . ._ _—
Install Details
Review the items to be installed. Df
Mame Version Id
Lt JBoss Drools Core 5.5.0.Final org.drools.eclipse feature.feature.group
L+ JBoss Drools Guvner 5.5.0.Final org.guvner.tools.featurefeature.group
Lt JBoss JBPM Core 5.5.0.Final org,jbpm.eclipsefeaturefeature.group
Lf JBoss JBPM Task 5.5.0.Final org,jbpm.eclipsetask.feature.feature.group

Sizes Unknown
Details

@ =

13

Figure 3 - Drools plug-in for Eclipse IDE: Installation step 3

Click on the button for installing the plug-in after accepting the license terms.

The plug-in installation requires a restart of your Eclipse IDE environment.

2.1.4 Installing UCA for EBC and UCA for EBC Development Kit

Detailed information on how to install UCA for EBC and UCA for EBC Development Kit is
provided in the [R1] HP UCA for Event Based Correlation — Installation Guide

2.1.5 Post-install Environment Setup

2.1.5.1 The UCA_EBC_DEV_HOME Variable

The UCA for EBC Development Kit installation procedure adds the ${UCA_EBC_DEV_HOME}
environment variable to your user environment.

This variable is necessary for various development phases of a UCA for EBC value pack
development, especially the build and packaging phases.

To verify that this variable is correctly set after the UCA for EBC Development Kit has been
installed, open a command-Lline (Run... -> cmd.exe) and type:

On Windows:
| C:\> echo %UCA_EBC_DEV_HOME% |

You should get an output similar to the following:

[C:\UCA-EBC-DEV\3.2\ |

Note

On Windows 7, you should log out and log back in again for the new environment variable to
be taken into account after installation of the UCA for EBC Development Kit.

On Linux:
| $ echo ${UCA_EBC_DEV_HOME}

You should get an output similar to the following:

| /opt/UCA-EBC-DEV

Note

On Linux this Variable must be manually set in the user’s environment, as specified in the
UCA for EBC Installation Guide.

14

2.1.5.2 Ant Configuration

The UCA for EBC value pack packaging is based on the use of the Apache Ant tool. This tool
requires a specific version and specific settings. Be sure to use the Apache Ant tool provided
with UCA for EBCiin the $UCA EBC DEV_HOMES$\3pp\ant directory

(${UucA EBC DEV HOME}/3pp/ant onLinux).

Be sure that you don’t have the ANT_HOME environment variable set to the path of another
version of Apache Ant, which would create conflicts with the version of Apache Ant in the
3pp\ant\bin folder. If you do, you should either clear the ANT_HOME environment
variable:

| C:\> set ANT_HOME= |

Or set it to the directory of the Apache Ant version that comes with the UCA for EBC
development kit:
C:\> set ANT_HOME=%UCA_EBC_DEV_HOME%\3pp\ant

$ANT_HOME/bin/ant -version
Apache Ant(TM) version 1.8.2 compiled on December 20 2010

The delivered Apache Ant version that comes with the UCA for EBC development kit is:
$ANT_HOME/bin/ant -version
Apache Ant(TM) version 1.8.2 compiled on December 20 2010

2.1.6 UCA for EBC Eclipse plug-in installation instructions

The UCA for EBC Development Kit delivers an Eclipse plug-in that eases UCA for EBC value
pack project creation under eclipse.

This plugin is delivered in the
%UCA_EBC_DEV_HOME%\eclipseplugin\ucaEbcEclipsePluginSite-3.2.1-assembly.zip file.

The installation of this plug-in is made as follows:

From the Eclipse ‘Help’ menu, choose ‘Install new software’ and then click on the
button.

Select the UCA for EBC eclipse plug-in ZIP file using the button and give it the
name “UCA for EBC plug-in" as shown in the picture below:

15

st W W (=[=] =]

&3

Available Software

Select a site or enter the location of a site.

&)
|

Work with: type or select a site -

Find more software by working with the "Available Software Sites” preferences.
type filter text

MName

Version
s B
[T] (@ There is no site selected. = Add Repository g

MName: UCA for EBC plugin Local..
‘ Location: jarfile:/C/UCA-EBC-DEV/eclipseplugin/ucaEbcEclipsePlu
]

Select Al | [Deselect Al

Details ® [OK] [Cancel]

Show only the latest versions of available software [Hide items that are already installed
Group items by category ‘What is already installed?
[Show only software applicable to target environment

[] Contact all update sites during install to find required software

@ < Back Next > Finish

Figure 4 - UCA for EBC Eclipse plug-in: Installation step 1
Then click on the |OK| button.

The screen should then display the archive content as follow:

= Install -

Available Software

Check the items that you wish to install.

type filter text

Name
4[]0 UCA EBC plugins

@ UCA EBC eclipse project builder plugin
@ UCA EBC Filter File Generator plugin

Select All] [Deselect All 2 items selected

Details

Show only the latest versions of available software
Group items by category
[] Show only software applicable to target environment

[] Contact all update sites during install to find required software

82

Work with: UCA EBC Plugin - jar:file;/C;/UCA-EBC-DEV/eclipseplugin/ucaEbcEclipsePluginSite-3.1.3-assembly.zip!/ - Add...

Find more software by working with the “Available Software Sites” preferences.

Version

313
313

Hide items that are already installed

What is already installed?

3

Figure 5 - UCA for EBC Eclipse plug-in: Installation step 2

Check the “UCA EBC plugins” checkbox, uncheck the “Contact all update sites...”, and then

click on the button.

17

The following screen is displayed:

-

= Install

Install Details

Review the items to be installed.

Name
L+ UCA EBC eclipse project builder plugin
{§* UCA EBC Filter File Generator plugin

Size: Unknown

Details

Version
313
313

Id
ucakbcProjectBuilderFeatur...
ucaEbcFilterGeneratorFeatu...

< Back

Mext = | Finish

Cancel

Figure 6 - UCA for EBC Eclipse plug-in: Installation step 3

Click on the button for installing the plug-ins after accepting the license terms.

18

Note

The following message appears during the installation. This is a normal message as the
provided jar files are signed.

= Selection Needed @

Do you trust these certificates?

Hewlett Packard; OSS; CMS

|
SelectAll | | Deselect Al
Hewlett Packard; OSS; CMS
Hewlett Packard; OSS; CMS
@) I OK l I Cancel]

Select the listed Certificated and Click [OK| to continue the installation.

The plug-in installation requires a restart of your Eclipse IDE environment. Please restart
eclipse before any attempt to create a UCA for EBC project.

19

Chapter 3

Value pack development lifecycle

3.1

3.1.1

3.1.2

Memento on Value packs and Scenario definitions

Value Pack Definition

Creating a Value Pack can be seen as implementing a “Correlation” bundle for managing a
special correlation use case. The following are example of such correlation use cases:

e alow LevelFiltering use case
e adomain-specific correlation use case like IP MPLS or L2 Metro Ethernet
e asimple ‘operator’ use case that groups/correlates alarms based on specific rules

A Value Pack is a “functional container” that contains one or more scenarios, each scenario
implementing a part of the whole correlation use case targeted by the Value Pack.

Scenarios can be cascaded so that the output of one scenario can be the input of another
scenario.

Note

&~ For additional information about Value Pack and Scenario configuration parameters,
please refer to: [R2] HP UCA for Event Based Correlation — Reference Guide

Scenario Definition
A scenario is fully defined by implementing the following steps:
e Defining the properties of the scenario

e Defining the filter of the scenario (this will determine what type of alarms will enter
the scenario)

¢ Implementing Alarm enrichment processing (optional)
e Implementing scenario rules

Note

&~ The first two steps “Scenario definition file” and “Filter definition file” are described in
the following document: [R2] HP UCA for Event Based Correlation — Reference Guide

20

Scenario

W

Figure 7 - The UCA-EBC Scenario Components

21

3.2 LifeCycle

The process of creating a UCA for EBC Value Pack is described by the following figure:

=
=

Manual update
(filters,
scenarios, rules,
code)

N e e o - -
N o e e - -

Co Step3_ N [._ _Steps K
1 1 1
: Unit Testing J .:. - Packaging of :
1 1 the Value Pack 1
1 1 1
1 1 1
\ / /
~ P d

=

Deployment of

a

the Value Pack

N e e e - -

Figure 8 - The 5 steps to create a UCA for EBC Value Pack

For step 1 “Create a new UCA for EBC Value Pack project”, use the UCA for EBC project
builder eclipse plug-in.

Step 2 “Update the UCA for EBC Value Pack project” is the main step when creating new UCA
for EBC Value Packs. This part is explained in details in the next paragraphs and sections.

Step 3 “Develop correlation rules” is also a main step when creating new UCA for EBC Value
Packs.

Step 4 is performed automatically using Apache Ant. The build. xml file has all necessary
targets to compile, test, and generate a ZIP file for your Value Pack.

Step 5 involves copying your Value Pack zip file to the
${UCA EBC_ INSTANCE}/valuepacks folder ona UCA for EBC Server, as mentioned in
Chapter 2 “Getting started with UCA for EBC” of this document.

22

3.3

3.3.1

Developing correlation features involves creating one or more correlation scenarios for your
Value Pack, each scenario using its own filter and implementing its own rules.

Creating a new UCA for EBC Value Pack

UCA for EBC can be seen as an application container in which so called UCA for EBC “Value
Packs" are deployed.

A Value Pack represents a set of features (scenarios) that are grouped together to
implement one or more correlation use cases.

A UCA for EBC value pack thus includes for example: event filtering, event based rules,
customized java code and possibly configuration files for each of these scenarios.

Creating a value pack project within Eclipse

The UCA for EBC eclipse plug-in provides a project creation wizard allowing the creation of a
new value pack project in just a few clicks and dialog boxes.

This wizard can be launched from the eclipse main toolbar by clicking on the UCA/EBC icon:

— "
= Plug-in Devel t - uca- = rt-dev-kit-| xml - Eclipse Platfo
I e uca-expertfuca expert-dev-ki parﬂ.’pom anl _Eclipse Platiorm Sy

- N

File Edit Source Mavigate Search giect Run Window Help

s v Q- Q- HEG E®@E 4

r‘j - ﬁ - [3 .@. -
s} Package Explorer &1 % Plug-ins

Or from the Eclipse “New Project” Menu as follow:
i ki
= New Project —— e

Select a wizard —

Create a new project resource |

Wizards:
type filter text

s = Google -
» [~ Guvnor
4 [lava
@ Java Project
¥ Java Project from Existing Ant Buildfile
> (= JavaScript
s = JBPM
» [Plug-in Development
’}B—ﬂ_ﬂ.
4 [= UCAEBC

Mew UCA EBC Project
& j

m

1

J?"\ .
CJ < Back Mext = Finish

b = = == ——

l--

This launches the UCA EBC value pack wizard:

23

© EI N
Create a UCA EBC Valuepack Project

Create a UCA-EBC valuepack project in the workspace or in an external location

Project name:
myEclipseProject
Value pack

Marme: myValuepack Wersion: 1.0

Location
@) Create new project in workspace

) Create new project in:

m
=]
T

ChUsers\URAGO\workspace\myEclipseProject

UCA SDK Location

Directory: CAUCA-EBC-DEV Browse...

':?:' < Back “ Mext = Finish Cancel

Figure 9 - Value pack project creation wizard Step1
From this panel you can set the project and value pack configuration:
On the first line you must enter the name of the eclipse project to be created.
On the second line you need to give the value pack name and its version

Then the ‘location’ panel allows specifying the location of the created project. It can be in
the current workspace or in an external directory of your choice.

Finally the UCA SDK Location allows specifying the home directory of the UCA for EBC
Development kit. The default value is obtained from the %UCA_EBC_DEV_HOME%
environment variable.

Then Click on the button for getting the next wizard step.

This is the scenario panel configuration. Note that the project creation wizard allows
creating a single initial scenario per value pack. The creation of additional scenarios for a
given value pack must be done manually by editing the various value pack configuration
files.

24

E

Create a UCA EBC Valuepack Project
Create a UCA EBC Scenaric

Scenario name:
zcenariol

Scenario package: (e.g. com.example.myvaluepack)

com.hp.examplemyValuepack
filters

filter file name: filtersxml

Rule file
Rule file name: (e.g. myfile.drl) rules.drl
Rules Description: scenaricl rules

[7] Use templated rules

':?:' < Back Mext = Finish] I Cancel

Figure 10 - Value pack project creation wizard Step2

At this step you can set the scenario parameters:
On the first line you must enter the scenario name.

On the second line you need to give the scenario package name. This package name will be
used for all the scenario’s java source code files.

In the filter panel you have to enter the name of the filter file for this scenario. As this is an
XML file, the ‘.xml’ suffix is mandatory.

Then the rule panel allows you specifying the rule file name (and a description) and also
specify if this scenario will use template rules file or not (this is done by checking the ‘Use
template rule’ box.

Then Click on the [Finish button for creating the Project.

This project creation wizard execution leads to the creation of an Eclipse project skeleton. It
exhibits a basic correlation scenario that can compile and unit test successfully. From this
example, developers can extend it to build their own Value Packs.

25

= Java - Eclipse Platform

File Edit Source Refactor Navigate Search Project Run Window Help

e O @ H-0-Q- WO E@O A~ L wmErD- =) »
[Z Package Explorer % E|<‘:==:>‘ ® ~ O = O|[5= Outline =0
-

4 [myEclipseProject %
4 (# src/main/java An outline is not available.
4 3 myValuepack
> 4] scenariol java
4 [srefmain/resources
- [valuepack.conf
4 {2 valuepack.scenariol
%] Alarms.xml
%] filtersxml
@ rules.drl
4 [sroftest/java
4 myValuepack
» [1] scenariol Testjava
4 [sroftest/resources
- B2 bmk
- {2 myValuepack
(%] legdjaml
uca-ebc.properties
» ([UCAEBCresources [Z Problems 32 @ Javadoc | [Declaration| B Cansole @ - — 0
I > B Referenced Librarias.) 0 items
B J.RE System Library (5] Description = Resource Path Location T
= lib
> = sre
(= target
&) Build.xml

< m b

-:'S\gn into Google.. & % myEclipseProject

Figure 11 - Created Value pack

Notes

&~ For creating “topology based” Value Pack project, please refer to [R8] HP UCA for EBC
Topology Extension user guide

&~ For creating “Inference Machine”, “Problem Detection”, “Topology State Propagator”
Value Pack projects, please refer to [R9] HP UCA for EBC Inference Machine user guide

3.3.2 Anatomy of the created project

Using Eclipse IDE, you can browse through the different directories that compose the
created “Skeleton” project.

Please see below for a glimpse at the folder structure of the created project:

26

3.3.3

-
= Java - Eclipse Platform I

=AREN X

File Edit Source Refactor Mavigate Search Project Run Window Help

Q- €& $~-0-4- HG~

- -

Ch~E~
E®S £ b
[# Package Explorer 3
4 |24 myEclipseProject
4 [src/main/java
4 1 myValuepack
» [1] scenariol java
4 [src/main/resources
4 {2 valuepack.conf
|X] contextxml
|| ValuePackConfiguration.xml
4 £ valuepack.scenariol
\X] Alarms.xml
(%] filtersxml
4 rules.drl
4 [sro/test/java
4 B myValuepack
- [J] scenariolTestjava
4 [src/test/resources
» 2 bmk
4 {2 myValuepack
%] main-context.ml
|| scenariol Test-contextxml
|X] log4jxml
uca-ebc.properties
» [UCAEBCresources
. =, Referenced Libraries
> = JRE System Library [jre6]
= lib
¢ [src
(= target
& Buildaml

| -:' Signin to Google... ~ % myEclipseProject

sl el3

B E}, Resource

@~ ="

S=S

[m

5

- _—

Figure 12 - Folder structure of the created project

The created “Skeleton” project also comes with an Apache Ant build.xml file that is used for
building and packaging the value pack outside of the Eclipse IDE.

Validation of the created project

The created project contains predefined test classes that automatically load/compiles the

value pack resources (scenario definitions, filters and rules files) and validate them (at least

syntactically).

JUnit tests can be run either directly from eclipse, by right-clicking on the test package and
choosing “Run As > JUnit Test” as shown in the following screen shot:

27

File Edit Source Refactor Mavigate Search Project Run Window Help
Or-E2-HREE Q- @& H-0-Q%u- HE- BB - = [ava] (25 Resource
W v o v kD oo o v
%‘._vﬂﬁ = O 5= Outline &2 =8
4 =% myEclipseProject -
» 2 sre/main/java An outline is not available.
[src/main/resources
a [sroftest/java
a |F} myValuenackl
b @ s Mew N
4 # srcftest/] GoInte
I 2 bmk|
PR Open in New Window
x| n Open Type Hierarchy F4
] 5 ShowIn Alts ShiftW »
%] logd
uca-| [[Z] Copy Ctrl+C
I+ i UCAEB(EZ Copy Qualified Name
b Bh Refereng o pg Ctrl+V
1 = JRE Syst
. elete elete
= lib ® Del Del
b & sre Rernove from Context Ctrl+Alt+Shift+ Down
(== target .
Build Path »
;E Build xrm] ufe Fe
Source Alt+Shift+5 »
Refactor Alt+Shift+T »
fxg Import.
iy Export...
References >
Declarations 3
Qéh Refresh F5
Assign Working Sets...
. v =8
Run As v | B 1Java Applet Alt+Shift+X, A L
Debug As v | [T 2Java Application Alt+Shift+X, J
Profile As v | Ju 3 JUnit Test AltShifteX, T fath Jocation
Validate Run Configurations...
Teamn 3
Compare With 3
Restore from Local History... 1 3
3,
4 Sign in to Goo Properties Alt+Enter

Figure 13- Running JUnit tests on the created project in Eclipse IDE

28

In which case the test results can be seen directly in Eclipse IDE:
= Java - Eclipse Platform I l l =l 11

File Edit Mavigate Search Project Run Window Help

O & $-0-Q- HG- BEOS F- oER o
[% Package Explorer |gfiu JUnit 52 =] = B[5 outline 2 =8
Finished after 9.346 seconds = =

g? N i};/ E - An outline is not available.
Runs: 171 B Errorst 0 B Failures: 0
Eit] myValuepack.scenariol Test [Runner: JUnit 4] (4,013 s)
[2(Problems | @ Javadoc | [&}, Declaration | & Consele &3 =0
I <terminated> myValuepack [JUnit] C:\Pregram Files\Java\jre@\bin\javaw.exe (Jun 13, 2012 11:03:39 AM]

e e

n 13, 2812 11:

I Connector
Jun 13, 2812 11
INF ActiveMQ
. Jun 13, 2812 11:8 AM org.sprin
= [l rees INFO: Stopping e management
Jun 13, 2812 11:83:43 AM org.springframework.remoting.
INFO: Unexporting RMI regi

¥
Jun 13, 20812 11:03:49 -hp.uca.expert.scenario.internal.ScenarioImpl run
INFO: Scenario Thread requested

Jun 13, 2812 11:83:49 Ap hp.uca.expert.scenario.internal.ScenarioImpl run
INFO: Scenario Thread : STOPPED

Jun 13, 2812 11:83:49 rg.springframe
I Unregistering
Jun 13, 2012 11:0

k. jmx.export.MBeanExporter destroy

m

;‘Sigmnto Google.. = 0%

Figure 14 - JUnit tests results on the created project in Eclipse IDE

Or from the command line by executing the Apache Ant tool and selecting the “test” Ant
target (You need to run the “ant test” command from the root directory of your project
workspace) as shown in the following screen shot:

E¥ Administrator: Command Prompt [

IC:=\Users\URAGONruntime—EclipsefApplication nyEclipseProject>ant test
[Buildfile: C:\Users“URAGO“runtime-EclipsefApplicationsmyEclipseProject build.xml

jcompile—test:
mkdir] Created dir: C:\Users“URAGO ntime—Eclipsefipplication’myEclipseProjectstarget wp-build-dir\test
[javac] Compiling 1 source file to C:\Users“URAGO“runtime-EclipsefipplicationsmyEclipseProject\target wp-bhuild-dir\test

ntime—Eclipsefipplication’myEclipseProject target wp-build-di; eports
ntime—Eclipsefipplication’myEclipseProject target wp-build-di; eportsijunit
ntime—Eclipsefpplication’myEclipseProjectstarget wp-build-dirsreports junitreport
[junit] Running myUaluepack ﬂl:enax'lni est
[junit] Tests pun: 1. Faili 8. ors: @, Time elapsed: 7.436 sec
[junitreport] Processing C: \U’El‘“\u“ﬂﬁo\l ntime—EclipsefApplication‘myEclipseProjectitarget wp-hbuild-dir\reportssjunitreport~\TESTS-Te|
lstSuites.xml to C:\Users“URAGO~AppDatasLocalsTempsnull261248158
[junitreport] Loading stylesheet jar:file:-C: UCA-EBC-DEU/3pp-antslibhsant—junit.jar? org-/apache- tools/ant-taskdefs- optional-/junit-xs|
1/junit—frames.xsl
[junitrep 1 Transform time: 338m:
[junitreport] Deleting: C: \Uﬂer"\URﬂGO\prData\Lncal\Temp\nL|1126124915l
[copy] Copying 13 files to C:\Users \URAGONruntime—EclipseApplication myEclipseProject reports\junit 201206131187

[BUILD SUCCESSFUL
fTotal time: 14 seconds

l SUsers URAGONruntime—EclipsefApplication myEc 1 i i
e e e o ——

Figure 15 - Running JUnit tests on the created project at the command-line using
Ant

In which case the results can be shown in your preferred Web browser by opening the
index.html filein the target\vp-build-dir\reports\junitreport directory
of your project workspace:

29

r —— — =RRCn X
y Unit Test Results. !! g - ' . ‘
|-

C O filey//C/Users/URAGO/runtime-EclipseApplication/myEclipseProject/target/vp-build-dir/reports/junitreport/index.htm| x™ N
| @ Extending Ec/" se- .. | mbaron.ftp-develop... L EclipseZone - Gettin... u Flexible Project Stru... Help - Eclipse Platfo.. I Jersey - Classloaderl.. (] dev pointers
Eﬂ Cette page est en | anglais ~ | Voulez-vous |a traduire ? ITraduire I Non I Me Jamais traduire les pages redigées en anglais I I Opticms-‘ x
| Home Unit Test Results.
Packages Designed for use with JUnit and Ant.
myValuepack Summary
Tests Failures Errors Success rate Time
1 0 0 100.00% 9.436
Mote: failures are anticipated and checked for with assertions while errors are unanticipated.
Classes
Packages
scenarioliTest
Name Tests Errors Failures Time(s) Time Stamp Host
myValuepack 1 0 0 9.436 2012-06- URAGO2

13T09:07:06

3.4

3.4.1

Figure 16 - JUnit tests results on the created project viewed using a Web browser

Customizing the created ‘skeleton’ Value Pack project

The project generated by the UCA for EBC project builder eclipse plug-in provides a simple
scenario implementing some basic alarm statistics that is just here for validating the project
structure.

Of course you have to turn the created ‘skeleton’ project into your new Correlation-project
value pack. For this you have to customize

e The Value pack configuration files
e The scenario filter file

e The scenario rule files

e The Associated Java code files.

Note

" For additional information about Value Pack and Scenario configuration parameters,
please refer to: [R2] HP UCA for Event Based Correlation — Reference Guide

Updating the scenario filters

There is a filter file named filters.xml thatis associated with the scenario of the
created value pack.

The goal of this file is to define the passing filter for Alarms that will be consumed by the
current scenario. Then, all alarms entering UCA for EBC will be evaluated against the filter
file of each scenario, to decide if they should be forwarded to the scenario or not.

If the properties of an alarm match the passing filter(s) defined in the filters file then the
alarmis forwarded to the scenario. On the other hand, if the properties of an alarm don't
match the passing filter(s) of the filters file then the alarm is not forwarded to the scenario.

30

3.4.2

3.5

The default generated filter allows any alarm to be forwarded to the scenario.

X filters-fileaml 23
<?xml wversion="1.0" encoding="UTF-8" 7>
= <filc 1 "hitp://hp.com/uca/erpert/filter™>

Statement>
e>originatingManagedEntity</fieldName>
matches</ or>

<! of filter (for filtering on the BOX class)
<fieldValue>BCX .*</fieldValue>

Figure 17 - The default “catch all” project’s filters . xml file

Notes

&~ please refer to: [R2] HP UCA for Event Based Correlation — Reference Guide for a full
description of the Filter file syntax.

&~ Refer to section 5.9 of this document for a description on how to use the UCA-EBC
eclipse filter editor.

Updating the correlation rules file

By default, the generated rules file defines a single rule implementing a basic statistic use

case. This rule is just for demoing and testing. It is just an example, which must be changed

to something relevant.

Generating the Value Pack kit

Once your project has been updated, it is necessary to generate the kit associated with it s
that it can be deployed on UCA for EBC (this is the packaging phase). To do this, you just
need to execute the following commands:

C:\> cd <Project Base>
C:\> ant all

(o}

31

B Administrator: Command Prampt =
o

C:\Users\Sordetd\Documents\Eclipse\Helios 3.6 SR2\WorkspaceDefault \My-Correlation-projectrant all
[Buildfile: C:\Users\SordetJd\Documents\EclipseNHelios 3.6 SR2\UWorkspacesDefault\My-Correlation—projectibuild.xml

lean:
[delete] Deleting directory G:\UsersiSordetJ\Documents:\EclipsesHelios 3.6 SR2\Workspace\Default\My-Correlation—projec
jt\target\vp-build-dir

dir.check:

jcompile-including-generated:

) ated dir: C:\Users\SordetJ\Documents“\Eclipse‘\Helios 3.6 SR2\Workspace‘Default“\My-Correlation—project\targ|
et \wp-build-dirsclasses

[javac] Compiling 1 source file to C:\Users“\SordetJ\Documents:\EclipsesHelios 3.6 SR2Z\Workspace’Default\My—Correlatiol
In—pro jectitarget wp-build-dirsclasses

lcompile:

[Jauac] Cnmplllng 2 source files to C:\Users\SordetJ\Documents\Eclipse‘Helios 3.6 SR2\Workspace“Default My-Correlati]
lon—projecti\target\vp-build-dir\test

ftest:

[mkdir] Created dir: C:\Users:\SordetJ\Documents:\Eclipse\Helios 3.6 SR2\Workspace:Default\My-Correlation—project\targ]
et wp-huild-dir\reports

[mkdir] Created dir: C:\Users\SordetJ\Documents\Eclipse\Helios 3.6 SR2\Workspace:Default\My-Correlation—project\targ]
let\wp-huild-dir\reportssjunit

[mkdir] Created d: [\ll.,el-s\Sm‘lletJ\Dncuments\El:lipse\Helins 3.6 SR2\Workspace:Default\My—Correlation—project\targ]
et \wp-huild-dir\reports\junitreport

[junit] Running com.hp.uca.expert.vp.skeleton.SkeletonTemplateTest

[junit] Tests run: 1, Failures: @, Evrors: B, Time elapsed: 11,194 sec

[junit] Running com.hp.uca.expert.up.skeleton.SkeletonTest

[junit] Tests run: 1, Failures: @, Errors: B, Time elapsed: 18,733 sec
[junitreport] Processing C:\Usersi\SordetJ\Documents\Eclipse\Helios 3.6 SR2\Workspace\Default\My—Correlation—projectitarg|
et \wp-huild-dir\reports\junitreport\TESTS-TestSuites.xnl to C:\Users\SordetJd\AppDatanLocal\Tempsnulli4B658A334
Ljun port] Loading stylesheet jar:file:~C:/UCA-EBC-DEV/3pp/antslib/ant-junit.jar!/orgs/apachestools/ant/taskdefs/optio|
nal/junit/xsl/junit—frames.xsl
[junitreport] Transform time: 836ms
[junltrapnrt]])nletmg G:\UsersnSordetd\AppDatasLocalsTempsnull1486588334

pyl Copying 15 files to C:\Users\SordetJ\Documents:EclipsesHelios 3.6 $R2\WorkspacexDefaultMy-Correlation-proje|

ct\repurt \,]un1t\2l1112061638

ljar:
[jar] Building jar: G:sUsers\SordetJDocuments\Eclipse\Helios 3.6 SRZ\Workspace:Default\My-Correlation—project\tar|
lget\up-build-dir\My-Correlation—project—-1lib-1.8_jar

pre—kit:

[copy] Copying 11 files to G:\Users\SordetJ\Documents:Eclipse\Helios 3.6 SR2\Workspace‘\Default:\My-Correlation-proje
ct\tm-get\up—bulld dirSvpsdeploysMy—Correlat ion—-project-1.8

[copy] Copying 1 file to G: \IJ.,el's\Sm‘detJ\Dncument.,\Ecllp.,e\Helm., 3.6 SR2\UorkspacerDefault\My—Correlation—project
\target\up—hulld dirsvpsdeploysMy—Correlation—project-1. il

[copy] Copying 2 files to C:\Users\SordetJ\Documents\EclipsesHelios 3.6 SR2\Workspace\Default\My—Correlation—projec
itstarget \vp-build-dirsvpsdeploysMy—Correlation-project—1.8\1ih

kit :

pl Building zij \U.‘el-s\SurdetJ\Ducumenta\Ecllp.,e\He110.‘ 3.6 SR2\Workspace‘\Default\My—Correlation—projectitar|
get\up—hulld irsups\My-Correlation-project-vp-1.08.zip

package :
all:
[BUILD SUGCESSFUL

Total time: 28 seconds
GC:\Users\Sordetd\Documents\Eclipse\Helios 3.6 SR2\Workspace‘\Default\My—Correlation—project>

Figure 18 - Building the kit of your customized Value Pack

The kit of the project is then generated in the target/vp-build-dir/vp directory of
the <Project Base> directory as a zip file called <my valuepack name>-vp-<my
valuepack version>.zip:

@'_jj" J < target » vp-build-dir » vp » v|"¢| | Ses‘r\;}.‘ |

fews ~ (g Burn

‘ Organize

w | MName Type Size
J deploy File Folder

@ My-Correlation-project-vp-1.0zip ' WinRAR ZIP archive

Folders
. Workspace &
J Default
J .metadata
. My-Correlation-project
J lib
. logs

36 KB

. reports
) srC
. target
| classes
J log
. vp-build-dir
| classes
. reports
. test

i VP - |4 1 +

2 items /& Computer

Figure 19 - The kit of your customized Value Pack

The ZIP file of your customized Value Pack contains the following information:

The Configuration (con£ /) directory that contains:

The Value Pack Spring beans file: context . xml

The Value Pack configuration file: valuePackConfiguration.xml
The Library (1ib/) directory that contains:

The JAR file of the Value Pack containing the compiled Java code that you
developed for your Value Pack in addition to the rules files

Any custom JAR files that you need to run this Value Pack
The Scenario (<your-scenario-name>/) directory that contains:
The filters file(s)

The external parameters file(s), if your Value Pack contains rules files that are
template-based

The rule file(s)

$ unzip -1 target/vp-build-dir/vp/myVPl-vp-1.0.zip

Archive: target/vp-build-dir/vp/myVPl-vp-1.0.zip
Length Date Time Name
0 05-30-2013 17:46 myVP1-1.0/
0 05-30-2013 17:46 myVP1-1.0/conf/
0 05-30-2013 17:46 myVP1-1.0/1ib/
0 05-30-2013 17:46 myVP1-1.0/myScenariol/
2726 05-30-2013 17:46 myVP1-

1.0/conf/ValuePackConfiguration.xml

1100 05-30-2013 17:46 myVP1-1.0/conf/context.xml

6423 05-30-2013 17:46 myVP1-1.0/1ib/myVP1-1ib-1.0.jar

2596 05-30-2013 17:46 myVP1-1.0/myScenariol/Alarms.xml
626 05-30-2013 17:46 myVP1-1.0/myScenariol/filters.xml
420 05-30-2013 17:46 myVP1-

1.0/myScenariol/filtersTags.xml

33

3299 05-30-2013 17:46 myVP1-1.0/myScenariol/rules.drl

Figure 20 - Contents of the ZIP file of your customized Value Pack

3.6 Deploying the Value Pack kit on UCA for EBC

To deploy your value pack in the UCA server, the following three steps are necessary:
e Install the Value Pack ZIP file on UCA for EBC Server
e Deploy the Value Pack on UCA for EBC Server
e Start the Value Pack on UCA for EBC Server

3.6.1 Install the Value Pack package (ZIP file) on an HP Itanium or
Linux system running UCA for EBC Server.

Copy your Value Pack package (the ZIP file located at: target/vp/<my value pack
name>vp-<my value pack version>.zip)tothe
${UCA_EBC_INSTANCE}/valuepacks directory onthe UCA for EBC system

For example:

$ cp target/vp-build-dir/vp/myVP1-vp-1.0.zip
${UCA_EBC_DATA}/instances/default/valuepacks/

Note

&~ Alternatively, you use UCA-EBC GUI to upload your Value Pack directly on UCA for EBC

system without the need of logging into it (just need to log in as admin in GUI application).
Refer to [R7] Unified Correlation Analyzer for Event Based Correlation — User Interface Guide

3.6.2 Deploy the Value Pack

To deploy the Value Pack inthe $ {UCA EBC INSTANCE}/deploy directory, use the “--
deploy” option of the uca-ebc-admin administration tool (executed as uca user):

> cd ${UCA_EBC_HOME}/bin
> uca-ebc-admin --deploy -vpn <my value pack name> -vpv <my value
pack version>

You should get an output similar to the following

UCA for EBC Home directory set to: /opt/UCA-EBC

UCA for EBC Data directory set to: /var/opt/UCA-EBC

INFO - Value Pack name: <my value pack name> version: <my value
pack version> has been successfully deployed

INFO - Exiting...

Note

&~ Alternatively, you can also deploy the value pack from the UCA for EBC GUI.
Refer to [R7] Unified Correlation Analyzer for Event Based Correlation — User Interface Guide

34

3.6.3 Start the Value Pack on UCA for EBC Server:

3.7

Two different ways are available to you to start value packs deployed on UCA for EBC
depending on whether UCA for EBC is started or not.

You can check whether UCA for EBC is running or not by issuing the following command:

| > ${UCA_EBC_HOME}/bin/uca-ebc show

If UCA for EBC is stopped, restarting UCA for EBC will load all value packs deployed in the
${UCA_EBC_INSTANCE}/deploy folderincluding your value pack.

If UCA for EBC is running, use the “--start” option of the uca-ebc-admin administration tool
(executed as uca user) to start your value pack:

> cd ${UCA EBC HOME}/bin
> uca-ebc-admin --start -vpn <my value pack name> -vpv <my
value pack version>

You should get an output similar to the following:

UCA for EBC Home directory set to: /opt/UCA-EBC

UCA for EBC Data directory set to: /var/opt/UCA-EBC
INFO - Exiting...

Note

&~ Alternatively, you can also start the value pack from the UCA for EBC GUI.
Refer to [R7] Unified Correlation Analyzer for Event Based Correlation — User Interface Guide

You can get the list of running value packs on UCA for EBC using the “--list” option of the
uca-ebc-admin command-line administration tool:

> cd ${UCA EBC HOME}/bin
> uca-ebc-admin --1list

Note

&~ For additional information about the uca-ebc-admin command-line administration tool,
please refer to: [R3] HP UCA for Event Based Correlation — Administration, Configuration and
Troubleshooting Guide

[R4] HP UCA for Event Based Correlation — Value Pack Examples

Testing the Value Pack in real-time

Now that both UCA for EBC and your value pack are up and running, the UCA for EBC
application implements the ‘Statistic circuit’ correlation package and is ready to listen to
incoming alarms.

35

In order to provide an easy way to test the global solution, a simple tool is provided that lets
you inject a set of alarms (defined in a XML file) into UCA for EBC.

As the action provided in the properties file is to “log” information to a log file (in “append”
mode), it is easily possible to test the circuit in real-time.

Asample Alarms.xml input file containing sample alarms to use with your value pack is
providedinthe $ {UCA EBC_INSTANCE}/deploy/<your value pack name>-
<your value pack version>/skeleton folder. The output log file named
output.xml islocatedinthe $ {UCA_EBC_HOME} root folder.

Following is an example of the uca-ebc-injector command-line tool used to inject Alarms
into UCA for EBC in order to test your Value Pack in real conditions:

>${UCA_EBC_HOME}/bin/uca-ebc-injector -file
${UCA_EBC_INSTANCE}/deploy/skeleton-project-
1.0/mypackage/Alarms.xml

>tail -f ${UCA_EBC_HOME}/output.xml &

You should get an output similar to the following:

|### STATISTICAL ALARM: 2 Alarms received ###

Note

%~ For additional information about the uca-ebc-injector command-line tool, please refer
to: [R3] HP UCA for Event Based Correlation — Administration, Configuration and
Troubleshooting Guide

[R4] HP UCA for Event Based Correlation — Value Pack Examples

36

Chapter 4

Focus on development key points

4.1

Implementing Alarm enrichment

Alarm enrichment processing is called by the UCA for EBC framework after the alarm passed
the scenario filters and before it is inserted in the scenario Working Memory.

The enrichment is implemented by performing the following steps:

Step 1: Extend the UCA Java class com.hp.uca.expert.lifecycle.alarm.AlarmLifeCycle

@ LifeCycle @ LifeCycleExtensioninterface @A.farmL.ffeCyc.feEx?ension WorkinglMemorydccessAllowed

A\ v

| -

|
© AlarmLifeCycle

@ AlarmLifeCycle{Scenario scenario)

@ Event enrichmertBeforeFiter{Evert event)

@ Event doFitter(Event event)

@ Event enrichmentAfterFiter(Event event)

@ void doLifecycleProcessing(Event inData)

@ Ewvent onAlarmCreationProcess({Alarm alarm)

@ Event onAlarmDeletionProcess(AlarmDeletion alarm)

@ Event onAlarmStateChangeProcess{AlarmStateChange alarm)

@ Event onAlarmAttribute’alueChangeProcess{ AlarmAttribute’/alueChange alarm)

@ boolean onUpdateSpecificFieldsFromAttribute’/alueChange AlarmAttribute’/alueChange alarmAttribute’alueChange, Event alarminWorkingMemory)
@ boolean onUpdateSpecificFieldsFromStateChange({ AlarmStateChange alarmStateChange, Event alarminWorkingMemaory)
@ hoolean onUpdateSpecificFieldsFrom&larm{Alarm newAlarm, Event alarminyVorkingiemory)

And override the following methods:

e onAlarmCreationProcess (Alarm alarm):toextend alarm creation
objects

e onAlarmDeletionProcess (AlarmDeletion alarm):toextendalarm
deletion objects

e onAlarmStateChangeProcess (AlarmStateChange alarm):toextend
alarm state change objects

e onAlarmAttributeValueChangeProcess (AlarmAttributeValueCha
nge alarm):to extend alarm attribute value change objects

Example of AlarmLifeCycle Extension:

package com.hp.uca.ebc.enrichmentexample;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.hp.uca.common.trace.LogHelper;
import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmCommon;

37

import com.hp.uca.expert.lifecycle.alarm.AlarmLifeCycle;

import
com.hp.uca.expert.lifecycle.alarm.AlarmLifeCycleExtensionWorkingMemoryA
ccessAllowed;

import com.hp.uca.expert.lifecycle.common.LifeCycleExtensionInterface;

import com.hp.uca.expert.scenario.Scenario;

public class ExtendedLifeCycle extends AlarmLifeCycle implements
LifeCycleExtensionInterface,
AlarmLifeCycleExtensionWorkingMemoryAccessAllowed {

private static Logger log = LoggerFactory
.getLogger (ExtendedLifeCycle.class);

public ExtendedLifeCycle (Scenario scenario) {

super (scenario) ;

/*
* If needed more configuration, use the context.xml to
define any beans
* that will be available here using
scenario.getGlobals (
=/
// scenario.getGlobals ()

@Override
public AlarmCommon onAlarmCreationProcess (Alarm alarm) ({
LogHelper.enter (log, "onAlarmCreationProcess()");

EnrichedAlarm customAlarm = new EnrichedAlarm(alarm);

customAlarm.setCustomizedInformation ("New Custom
Information only available from CustomAlarm");

LogHelper.exit (log, "onAlarmCreationProcess()"):;

return customAlarm;

}

In this example, the enrichment is performed only in the case of an alarm creation event.

Step 2:

Declare the ExtendedLifeCycle class at the scenario definition Level:

This is done by using the <customLifeCycleClass> in the Scenario Definition section of the
ValuepackConfiguration.xml file.

Example:

<scenarios>
<scenario name="com.hp.uca.ebc.enrichmentexample.myscenario">
<alarmkEligibilityPolicy>
NetworkState!=" CLEARED&quOt;
</alarmEligibilityPolicy>
<filterFile>
src/main/resources/valuepack/myscenario/filters.xml
</filterFile>
<fireAllRulesPolicy>EACH ACCESS</fireAllRulesPolicy>
<globals></globals>
<processingMode>CLOUD</processingMode>
<rulesFiles>
<rulesFile>
<filename>

file:./src/main/resources/valuepack/myscenario/rules.drl

38

</scenario>

</scenarios>

</filename>
<name>my scenario rules</name>
<ruleFileType>DRL</ruleFileType>
</rulesFile>
</rulesFiles>
<customLifeCycleClass>
com.hp.uca.ebc.enrichmentexample.ExtendedLifeCycle
</customLifeCycleClass>

Step3: Extend the Alarm object if necessary

In order to ease the rule writing, it may be easier to store the enrichment information in
some dedicated alarm object attributes.

In such case the Alarm objects (Alarm, AlarmDeletion, AlarmAttributeValueChange and
AlarmStateChange) can be extended.

Example of Alarm extension:

/**

*/

public

public

public

public

package com.hp.uca.ebc.enrichmentexample;

import javax.xml.bind.annotation.XmlRootElement;
import org.neo4j.graphdb.Relationship;

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmHelper;

@XmlRootElement

public class EnrichedAlarm extends Alarm {

* New Alarm field

private String location;

EnrichedAlarm() {
super () ;

EnrichedAlarm (Alarm alarm) {

super (alarm) ;

return newAlarm;

String getLocation () {

return location;

public void setLocation(String location)
this.location = location;

}

@Override

String toFormattedString() {

@Override
public EnrichedAlarm clone () throws CloneNotSupportedException
{
EnrichedAlarm newAlarm = (EnrichedAlarm) super.clone();
newAlarm.location = this.location;

39

StringBuffer toStringBuffer=
AlarmHelper.toFormattedStringBuffer (this);

AlarmHelper.addFormatedItem (toStringBuffer, “Location:”,
getLocation()) ;

return toStringBuffer.toString() ;

4.2 Developing the scenario rules

Rules files are files containing correlation rules interpreted by the Drools inference engine
of the scenario.

The Drool Expert engine used in UCA for EBC has its own rule language. The rule file content
must comply with this language.

&~ please refer to Drools Expert guide, Chapter 5 The Rule Language for a description of the
language: http://www.jboss.org/drools/documentation

Important note

Drools keywords for inserting, updating, and deleting objects in Working Memory (i.e.
insert, update, retract) MUST NOT be used directly when developing UCA-EBC rules. This is
for working memory integrity, and due to the locking mechanism implemented within the
UCA-EBC framework.

e Instead of using insert (myObject) directly, you should use
theScenario.getSession () .insert (myObject) from Drools files or
ScenarioThreadLocal.getScenario().getSession().insert (myO
bject) fromJavacode

e Instead of using update (myObject) directly, youshould use
theScenario.getSession () .update (myObject) from Drools files or
ScenarioThreadLocal.getScenario () .getSession () .update (myO
bject) from Java code

e Instead of using retract (myObject) directly, youshould use
theScenario.getSession () .retract (myObject) from Drools files or
ScenarioThreadLocal.getScenario().getSession () .retract (my
Object) from Java code

The ScenarioThreadLocal classis locatedinthe
com.hp.uca.expert.scenario package.

Also, all timer based keywords should be avoided: duration, timer, calendar.

On top of the basic rule language syntax, additional operators are available to deal with
time constraints:

Temporal operator: see Drools Fusion guide, Chapter 2.4. Temporal Reasoning

Sliding Time Window Feature: see Drools Fusion guide, Chapter 2.6. Sliding Time Window

&~ See https://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/html_single/

for more information on how to create rules that deal with time constraints.

40

http://www.jboss.org/drools/documentation
https://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/html_single/

4.2.1

Note

To use the sliding time window feature, objects in working memory must be declared as
Event (and not as Fact).

& please see Drools Fusion guide, Chapter 2.1. Events semantics at URL
https://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/html_single/

for more information on what events are compared to facts and how to declare them.

Basics
Any rules file contains one or multiple rules, and has a ‘.drl’ extension.

Here are the different parts composing a rule file:

package package-name
imports

globals

functions

queries

rules

Package

The package name is optional, but it is recommended to partition your rules in different
packages for clarity.

Imports

The “imports” part, allows you to import Java classes that can be used in the Action or
Condition parts of a rule.

Important note

In UCA for EBC, importing the Alarm Java class (com.hp.uca.expert.alarm.Alarm) is
necessary in order to be able to use alarm attributes in rule conditions.

Globals

The "globals” part is used to define variables that have a global scope (across rules). The
global variables have to be initialized by the application.

Functions

Functions let you define functions that let you avoid repeating the same lines of code over

the entire rules file.

Queries

UCA for EBC does not currently provide support for queries.

41

https://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/html_single/

4.2.2

Rules

The rules define the behavior of the expert system.

&~ please refer to Drools Expert guide, for a full description of rule files:
https://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html_single/

Sample rules on Alarm facts in CLOUD mode

In CLOUD mode, the UCA for EBC system inserts Alarm facts in Working Memory and these
facts remain infinitely in working memory unless they are specifically removed in the rules
(using the retract statement). This retract statement is generally done in the right end side
part of rules.

UCA for EBC contains an Alarm Java class (com.hp.uca.expert.alarm.Alarm) which represents
a “generic” Alarm as a fact. Rules can rely on attributes and services of the Alarm object. For
instance, testing a specific value of an attribute in the condition part or setting a specific
attribute of the Alarm in the action part.

To use the CLOUD mode, the scenario processing mode must be set to “CLOUD” in the
ValuePackConfiguration.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<valuePackConfiguration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"
name="myValuepackName" version="myValuepackVersion">
<scenarios>
<scenario name="myScenario'">
<filterFile>${uca.home}/myValuePack/myScenario/myScenario-
filter.xml</filterFile>
<fireAllRulesPolicy>WATCHDOG</fireAllRulesPolicy>
<globals>
</globals>
<processingMode>CLOUD</processingMode>
<rulesFiles>
<rulesFile>
<filename>file:${uca.home}/myValuePack/myScenario/myScenarioRules.drl</
filename>
<name>myRules</name>
<ruleFileType>DRL</ruleFileType>
</rulesFile>
</rulesFiles>
</scenario>
</scenarios>
</valuePackConfiguration>

Here is a simple example that identifies “Similar alarms” (i.e. Alarms that have the same
alarm type, managed object and probable cause as another Alarm). This example illustrates
a case where the UCA for EBC engine is in CLOUD processing mode.

Therule file called myScenarioRules.drl contains a rule, the “Similar Alarm” rule,
which performs the following processing:

When an alarm ‘a’ is found in Working Memory (with a severity different from ‘clear’) and if
there is another not cleared (severity different from ‘clear’) alarm (this !=a) with the same
attribute values for the originatingManageEntity, alarmType and probableCause properties
then display a text.

package scenario.sample;

import com.hp.uca.expert.alarm.Alarm;

42

https://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html_single/

4.2.3

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

rule "Similar Alarm"

when
a: Alarm(perceivedSeverity != PerceivedSeverity.CLEAR)
al: Alarm(

this != a &&
perceivedSeverity != PerceivedSeverity.CLEAR &&
originatingManagedEntity == a.originatingManagedEntity &&
alarmType == a.alarmType &&
probableCause == a.probableCause)
then
System.out.println ("Executing: "+drools.getRule () .getName()) ;
System.out.println(al.getIdentifier () + ‘‘'similar to ‘‘+

a.getIdentifier());

end

Important note

Importing the Alarm Java class (com.hp.uca.expert.alarm.Alarm) is necessary. Declaring the
Alarm class as a Fact in the “declare” section of the rules file is not mandatory however. By
default, if they are not declared at all, objects are understood to be Facts in Working
Memory.

Another rule, the “Clear Alarm” rule focuses on cleared alarms:

rule "Clear Alarm"

when
a: Alarm(perceivedSeverity != PerceivedSeverity.CLEAR)
al: Alarm(
perceivedSeverity == PerceivedSeverity.CLEAR &&
originatingManagedEntity == a.originatingManagedEntity &&
alarmType == a.alarmType &&
probableCause == a.probableCause &&

timeInMilliseconds > a.timeInMilliseconds)

then
System.out.println ("Executing: ‘‘+drools.getRule () .getName()):;
System.out.println(al.getIdentifier() + " clears "+

a.getlIdentifier());

end

Note

The drools object in the sample rule code above is a predefined Drools java object that you
can use in the Action part of a rule to get information on the rule itself among other things.
In our example, the method drools.getRule () .getName (), called from arule's
Action part, returns the name of the rule. See
https://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html_single/

for more information on the drools predefined object.

Sample rules on Alarm events in STREAM mode

In STREAM mode, UCA for EBC inserts Alarm events in Working Memory only for a period of
time. After that, Alarm events are automatically removed from working memory.

43

https://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html_single/

To use the STREAM mode, the scenario processing mode must be set to “STREAM” in the
ValuePackConfiguration.xml file:

<?xml version="1.0" encoding="UTF-8"?2>
<valuePackConfiguration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"
name="myValuepackName" version="myValuepackVersion'>
<scenarios>
<scenario name="myScenario'>
<filterFile>${uca.home}/myValuePack/myScenario/myScenario-
filter.xml</filterFile>
<fireAllRulesPolicy>EACH ACCESS</fireAllRulesPolicy>
<globals>
</globals>
<processingMode>STREAM</processingMode>
<rulesFiles>
<rulesFile>

<filename>file:${uca.home}/myValuePack/myScenario/myScenarioRules.drl</
filename>
<name>myRules</name>
<ruleFileType>DRL</ruleFileType>
</rulesFile>
</rulesFiles>
</scenario>
</scenarios>
</valuePackConfiguration>

Important note

Importing the Alarm Java class (com.hp.uca.expert.alarm.Alarm) is necessary. Declaring the
Alarm class as an Event in the “declare” section of the rules file is also mandatory.

By default, if they are not declared at all, objects are understood to be Facts in Working
Memory. So, declaring Alarms as Events is mandatory.

&~ please see Drools Fusion guide, Chapter 2.1. Events semantics at URL
http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-
docs/html/ch02.html#d0e184, for more information on what events are compared to facts
and how to declare them.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Locale;

declare Alarm
@role(event)
@timestamp(timeInMilliseconds)
@expires(30m)

end

The above “Alarm” declaration specifies that:
e Alarms should be treated as Events in Working Memory, not Facts

o The timelnMilliseconds attribute (i.e. the EventTime attribute of the Alarm) is used as
the timestamp of the Alarm instead of the time when the Alarm Event is actually

http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/html/ch02.html#d0e184
http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/html/ch02.html#d0e184

4.2.4

inserted into working memory, which is the default timestamp for Events in Working
Memory. The timestamp of the Alarm Event plays a role when time constraints are used
in rules.

e Alarm Events expiration time is 30 minutes: the Alarm Events will be removed from
working memory automatically after 30 minutes.

Generally, rules in STREAM mode are used to identify patterns of Events (Events that occurs
in a specific order) during a specific time window.

The “Store not cleared Alarm” rule is an example of such a rule in STREAM mode. It performs
the following rules:

When an alarm ‘a’ is in Working Memory (an alarm on a “BOX” item with a severity different
from ‘clear’) and if there are no other alarms (matching specific criterias) received within 2
seconds of alarm ‘a’ then the Additionalinformation attribute of alarm ‘a’ is updated

rule "Store not cleared Alarm"
when
a: Alarm(originatingManagedEntity matches "BOX .*" &&
perceivedSeverity != PerceivedSeverity.CLEAR)

not Alarm(originatingManagedEntity ==
a.originatingManagedEntity &&
perceivedSeverity == PerceivedSeverity.CLEAR &&
this after[Os, 2s] a)

then
System.out.println("Executing rule:
"+drools.getRule () .getName ()+" on " + a.getAdditionalText());

// Add the correlation time and rule name in the Additional
Information Field of the alarm

Date now=new Date () ;

SimpleDateFormat sdf = new SimpleDateFormat ("EEE MMM dd
HH:mm:ss zzz yyyy",

Locale.FRENCH) ;

a.setAdditionalInformation ("correlated by rule:

"+drools.getRule () .getName ()
+" at " +sdf.format (now));

// Store the alarm

acmeActionManager.doDummyAction (a) ;

end

Note

The JBoss Drools documentation contains a lot of other examples of rules in both STREAM
(Drools Fusion) and CLOUD (Drools Expert) modes. As writing the correlations rules is the
major undertaking of creating a correlation project, it is highly recommended to constantly
refer to the Drools documentation when writing Rules.

&~ please see http://www.jboss.org/drools/documentation for documentation on how to
write rules for Drools Expert and Drools Fusion.

Defining and using rule templates

< For information about rule templates, please refer to: [R2] HP UCA for Event Based
Correlation — Reference Guide

45

http://www.jboss.org/drools/documentation

4.2.5 Introducing Java codein the rules

Drools rules files natively support Java code in the consequence part of the rules (after the
“then” keyword). All you have to do is import the packages/classes that you need in the
import section of the rules files and then write Java code referencing these classes.

For example, you declare the java.util.Date class in the rules file:

template header
timeslot

package com.hp.uca.expert.vp.llef.grouping;

#list any import classes here.
import com.hp.uca.expert.alarm.Alarm;
import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import java.util.regex.Matcher;
import java.util.regex.Pattern;
import com.hp.uca.expert.example.hibernate.AlarmDao;

import java.text.SimpleDateFormat;
import java.util.Date;

import java.util.Locale;

import java.util.ArraylList;

import java.util.Iterator;

import com.hp.uca.expert.scenario.ScenarioPublic;

import com.hp.uca.common.trace.LogHelper;

import com.hp.uca.expert.flag.Flag;

import com.hp.uca.expert.testmaterial.AbstractJunitIntegrationTest;

#declare any global variables here
global AlarmDao alarmDAO;
global ScenarioPublic theScenario;

Then you can create and use java.util.Date objects in the consequence part (after the “then”
keyword) of your rules:

// Description: find a root cause and the associated symptoms in a
given time window

// Constraints:

// - the root cause is not cleared during the time window
template "Update Root Cause with Symptoms no clearance received"
rule "Update Root Cause with Symptoms no clearance received"

when

[.]

then
LogHelper.enter (theScenario.getLogger (),
drools.getRule () .getName () ,rootAlarm.getOriginatingManagedEntity () +" -
"+ rootAlarm.getAdditionalText()) ;

// Add the correlation time and rule name in the
Additional Information Field of the alarm
Date now=new Date() ;
SimpleDateFormat sdf = new SimpleDateFormat ("EEE MMM dd
HH:mm:ss zzz yyyy",
Locale.FRENCH) ;
String addInfo="correlated by rule:
"+drools.getRule () .getName ()
+" at " +sdf.format(now) + "\nAssociated

sympthoms:\n";

The java.util.Date objects that you create are not stored in Working Memory unless you do
so explicitly using the “insert” statement.

46

Note

%~ For more information, please see the Drools documentation:
http://www.jboss.org/drools/documentation

4.3 Defining your own beans

Spring beans (corresponding to the external Java services that you want to use) are defined
inthe context .xml of your Value Pack.

Here below is an example of a bean named “dbForwarder” that is relevant for forwarding
alarms into an SQL data store.

<bean id="dbForwarder
class="com.hp.uca.expert.alarm.JDBCAlarmForwarder">
<property name="alarmDao" ref="alarmDao" />

</bean>

You can define any bean in this file.

In order to retrieve the Java instance of that bean object, you will need to use following API
in your value pack:

Scenario.getValuePack().getApplicationContext()
In order to retrieve the Spring ApplicationContext that will allow you to retrieve your bean.

With above example, typical code would have been:

return (JDBCAlarmForwarder) theScenario.getValuePack()
.getApplicationContext().getBean("dbForwarder");

4.4 Executing external actions from the rules

External actions in rules are basically any action that either uses 0SS Open Mediation V7.1
framework services or external Java services.

There are two categories of external actions that we will describe in the following sections:

o Standard external actions: these actions use the Action class, defined by the UCA
for EBC framework, to execute actions on the 0SS Open Mediation V7.1 framework
(i.e. execute actions on any application connected to the 0SS Open Mediation V7.1
framework using a Channel Adapter)

o (alling services defined using Spring: Spring beans are defined in the
context.xml of your Value Pack and global variables that reference these
Spring beans are defined in your scenario(s) and used in your rule file(s).

e Forwarding alarms to external systems: Alarm forwarders are defined using
Spring beans and used from the rules to forward alarms to files, JMS
queues/topics, the 0SS Open Mediation V7.1 framework, or any database that has a
JDBCinterface

4.4.1 Standard external actions

Standard external actions are defined as actions that are to be executed by the 0SS Open
Mediation V7.1 framework.

47

http://www.jboss.org/drools/documentation

The UCA for EBC framework defines a Java class named Action that you can use to perform
standard external actions in rules, like for example executing a shell script or a TeMIP
directive on a TeMIP director.

In order to be able to use the methods of the Action class, you have to import the class in
the “import” part of the rule file:

package com.hp.uca.expert.action;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.CustomFields;
import com.hp.uca.expert.x733alarm.CustomField;
import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import com.hp.uca.expert.x733alarm.NetworkState; // NOT_ CLEARED, CLEARED
import com.hp.uca.expert.x733alarm.OperatorState; // NOT_ACKNOWLEDGED,
ACKNOWLEDGED, TERMINATED

import com.hp.uca.expert.x733alarm.ProblemState; // NOT_ HANDLED,

HANDLED, CLOSED

import com.hp.uca.mediation.action.client.Action;

import com.hp.uca.mediation.action.jaxws.ActionResponseItem;
import java.util.ArrayList;

Then you can create Action objects in the “then” part of a rule as described in the example
below:

Display properties of any new alarm

rule "Any Not Acknowledged Alarm (Action)"

when

a: Alarm(operatorState == OperatorState.NOT ACKNOWLEDGED)
then N

System.out.println (" [RULE " + drools.getRule().getName() + "] Found not
acknowledged alarm: identifier = " + a.getIdentifier() + ":");

System.out.println(a.toFormattedString());

// Acknowledging the Alarm

Action action = new Action ("TeMIP AO Directives localhost ");

action.addCommand ("directiveName", "ACKNOWLEDGE") ;

action.addCommand ("entityName", a.getIdentifier());

action.addCommand ("UserId", "UCA Expert");

theScenario.addAction (action); // Associate the action with the scenario
System.out.println ("Executing synchronous ACKNOWLEDGE directive on

alarm: " + a.getIdentifier()):;
action.executeSync() ;

System.out.println("Done:");
System.out.println (" - ActionId = " + action.getActionId());
System.out.println (" - ActionStatus = " + action.getActionStatus());
System.out.println (" - ActionStatusExplanation = " +
action.getActionStatusExplanation());
if (l!action.getListActionResponseltem() .isEmpty()) {
System.out.println (" - ActionResponseltems = ");

// Loop through all action response items
for (ActionResponseltem item
action.getListActionResponseItem()) {
if (!item.getOutput().getEntry().isEmpty()) {
// Loop through all output entries
for (ActionResponseltem.Output.Entry entry

item.getOutput () .getEntry()) {
System.out.println (" => " +
entry.getKey() + " = " + entry.getValue());
}
}
}
}
else {
System.out.println (" - ActionResponseltems = none");
}
System.out.println (" - RawText = " + action.getRawTextAsString());

48

| end

Basically you need to write the following code in your rule:

Action action = new Action("TeMIP_AO_Directives_localhost");

This will create a new Action object. There are 2 ways to create a new Action object:

Either with the Action class constructor that takes an Action Reference parameter. The value
of this parameter must match an Action Reference defined in
${UCA_EBC_INSTANCE}/conf/ActionRegistry.xmlfﬂe

Or with the Action class constructor that takes the NMS Name, Service Name, Mvp Name and
Mvp Version parameters. The Mvp Name and Version must match a Mediation Value Pack
MvpName and MvpVersion attributes in the

${UCA EBC_INSTANCE}/conf/ActionRegistry.xml file

Here’s the content of a sample ActionRegistry.xml file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ActionRegistryXML xmlns="http://registry.action.mediation.uca.hp.com/">

<MediationValuePack MvpName="temip"
MvpVersion="1.0"

url=http://localhost:26700/uca/mediation/action/ActionService ?WSDL
brokerURL=" failover://tcp://localhost:10000">

<Action actionReference="TeMIP AO Directives localhost">
<ServiceName>aoDirective</ServiceName>
<NmsName>localTeMIP</NmsName>

</Action>

<Action actionReference="TeMIP TT Directives localhost">
<ServiceName>ttDirective</ServiceName>
<NmsName>localTeMIP</NmsName>

</Action>

<Action actionReference="TeMIP FlowManagement">
<ServiceName>subscriptionManagement</ServiceName>
<NmsName>localTeMIP</NmsName>

</Action>

</MediationValuePack>

<MediationValuePack MvpName="exec"

MvpVersion="1.0"
url="http://localhost:26700/uca/mediation/action/ActionService?WSDL"
brokerURL=" failover://tcp://localhost:10000">

<Action actionReference="Exec localhost">
<ServiceName>commandsExecution</ServiceName>
<NmsName>localhost</NmsName>
</Action>
</MediationValuePack>

</ActionRegistryXML>

&~ please refer to [R2] HP UCA for Event Based Correlation — Reference Guide for more

information on how to use the Action class or configure the ActionRegistry.xml
file.

& please refer to [R6] Open Mediation Installation and Configuration Guide for more

information on how to configure 0SS Open Mediation V7.1 to support the execution of
Actions.

49

http://localhost:26700/uca/mediation/action/ActionService?WSDL

Once you have created an Action object, you can specify the parameters that will define
what action to perform, in the following example a TeMIP directive:

action.addCommand ("directiveName", "ACKNOWLEDGE") ;
action.addCommand ("entityName", a.getIdentifier());
action.addCommand ("UserId", "UCA Expert");

Using the addCommand() method you can specify the key/value pairs to use as parameters
to the Action object. These parameters depend on the type of Action to perform.

For acknowledging a TeMIP Alarm, you need to specify the key/value pairs as shown above:
specifying the Userld of the user acknowledging the alarm is optional, just like in TeMIP.

Then, you need to associate the Action to the current Scenario so that the Action can be
properly processed:

theScenario.addAction(action);

Then, you need to execute the Action. Both synchronous and asynchronous actions are
possible. Only one of the following lines of code is necessary, depending on whether you
want to execute a synchronous or asynchronous action:

action.executeSync();

action.executeAsync(AODirectiveKey.ENTITY_NAME);

Synchronous actions are “blocking”. The action.executeSync() call will block the execution
of the rule until the action is completed. The whole rule engine for the scenario is blocked
while the action is being executed.

Asynchronous actions are “non blocking”. This is the reason why they are the recommended
method for executing actions. The action.executeAsync(...) call doesn’t block the execution
of the rule. The rules continue to be executed.

There’s a mandatory parameter to the action.executeAsync(...) method: the
synchronizationKey. This key indicates the name of the action command key that will be
used to synchronize asynchronous actions so that the order of asynchronous actions
referring to the same action command key/value pair is preserved.

The synchronizationKey parameter enables you to preserve some kind of order among all
the asynchronous actions triggered by your rules. By default (if you specify
Action.NO_SYNCHRONIZATION_KEY as the synchronization key) there is no order. All
asynchronous actions are executed in parallel by a pool of threads. There is no guarantee
that the asynchronous actions will be executed in the order in which they were requested.

If you do not need asynchronous actions to be executed in any specific order, then you can
use Action.NO_SYNCHRONIZATION_KEY as the synchronization key when calling the
action.executeAsync(...) method.

On the other hand, if you need all asynchronous actions to be executed in the order they are
requested, you need to use a command key (specified with the action.addCommand(key,
value) method) that has the same value for all asynchronous actions as the synchronization
key.

If you need only groups of asynchronous actions to be executed in the order they are
requested, you need to use a command key (specified with the action.addCommand(key,
value) method) that has the same value for all asynchronous actions of the same group as
the synchronization key.

50

For example, for executing TeMIP AO Directives you can use the
AODirectiveKey.ENTITY NAME assynchronization key:

Action action = new Action(“TeMIP_AO_Directives_localhost”);
action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET);

action.addCommand(AODirectiveKey.ENTITY_NAME, “OPERATION_CONTEXT 0C1
ALARM_OBJECT 155”);

action.addCommand(AODirectiveKey.ADDITIONAL_TEXT, “my text”);

theScenario.addAction(action)

action.executeAsync(AODirectiveKey.ENTITY_NAME);

In the example above, as long as you execute TeMIP AO Directives using the
action.executeAsync (AODirectiveKey.ENTITY NAME) syntax, all TeMIP AO
Directives actions on the same entity will be executed in the order that they are called.

If you do not want to use the synchronization key feature, you can pass null or
Action.NO_SYNCHRONIZATION_KEY to the executeAsync(...) method:

action.executeAsync(Action.NO_SYNCHRONIZATION_KEY);

Note

%~ For more information on synchronous and asynchronous actions (including how to use

synchronization keys for asynchronous actions), please refer to: [R2] HP UCA for Event
Based Correlation — Reference Guide.

Once the action has been performed on the Network Management System the result of the
execution of the action can be retrieved using the following methods:

action.getActionStatus();
action.getActionStatusExplanation();

Other methods of the Action class provide even more detailed information on the result of
the execution of the action. See the Java Documentation for the Action class for more
information.

4.4.1.1 Writing Actions for the 0SS Open Mediation TeMIP Value Pack

The delivered value pack examples come witha 1ib/ directory containing the TeMIP
mapper jar file:

lib/uca-mediation-temip-mvp-mapper-keys-3.2.jar

This will allow you to benefit from java classes that have been designed to help you write
rules that execute TeMIP Alarm Object (AO) directives or TeMIP Trouble Ticket (TT) directives
(provided the 0SS Open Mediation V7.1 TeMIP Value Pack is deployed).

To do so, the first step is to add the following import statement in your rules file:

import com.hp.uca.temip.mvp.mapper.*;

51

Below is the list of classes that you can use to help you write rules (all AO classes are
defined in the com.hp.uca.temip.mvp.aodirective.mapper package, while TT classes are
defined in the com.hp.uca.temip.mvp.ttdirective.mapper package).

There are 2 sets of classes. The first set contains classes that define constants that should
be used in the “key” part when using the Action.addCommand(key, value) method:

Class name Class description

AODirectiveKey in
com.hp.uca.temip.mvp.aodirectiv
e.mapper package

TTDirectiveKey in
com.hp.uca.temip.mvp.ttdirectiv
e.mapper package

Contains string constants that list all the possible values
for keys when using the Action.addCommand(key, value)
method on AO Directives

Contains string constants that list all the possible values
for keys when using the Action.addCommand(key, value)
method on TT Directives

Table 4 - Java helper classes for 0SS Open Mediation TeMIP Value Pack

The most important constant in the AODirectiveKey class is the
AODirectiveKey.DIRECTIVE NAME (or the TTDirectiveKey.DIRECTIVE NAME inthe
TTDirectiveKey class depending on whether you want to execute AO or TT directives).

Using this constant, you can define the name of the TeMIP Alarm Object (or Trouble Ticket)

directive that you wish to execute:

Action action = new Action(“TeMIP_AO_Directives_localhost”);

action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET);

theScenario.addAction(action);

action.executeAsync(AODirectiveKey.ENTITY_NAME);

The other constants define the names of AO (or TT) Directive parameters or attributes that

you can use. For example:

Action action = new Action(“TeMIP_AO_Directives_localhost”);
action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET);
action.addCommand(AODirectiveKey.ENTITY_NAME, “OPERATION_CONTEXT 0C1

ALARM_OBJECT 155");

action.addCommand(AODirectiveKey.ADDITIONAL_TEXT, “my text”);

theScenario.addAction(action);

action.executeSync();

52

The second set contains classes that define constants that should be used in the “value”
part when using the Action.addCommand(key, value) method.

Below is the list of such classes for Alarm Object directives (besides the AODirectiveKey

class that is explained above):

Class name Class description

AlarmClassType

AlarmObjectProblemStatus

AlarmObjectState

AlarmOriginType

AlarmType

AODirective

AutomaticOperationsSeverity

DeleteCondition

EntityScope

EventID

Partition

ProbableCause

Contains string constants that list all the possible values
for the Alarm_Class attribute (of the SET directive for
example). These constants should be used in the value
part when using the Action.addCommand(key, value)
method

Contains string constants that list all the possible values
for the Problem_Status attribute (of the DUMP or SET
directives for example)

Contains string constants that list all the possible values
for the State attribute (of the DUMP or SET directives for
example) and the Previous_State attribute (of the SET
directive for example)

Contains string constants that list all the possible values
for the Alarm_Origin attribute (of the SET directive for
example)

Contains string constants that list all the possible values
for the Alarm_Type attribute (of the CREATE, DUMP or
SET directives for example)

Contains string constants that list all the possible values
for Alarm Object directive names (ACKNOWLEDGE,
ADDPARENT, ARCHIVE, ... for example)

Contains string constants that list all the possible values
for the Automatic_Terminate_On_Close attribute (of the
SET directive for example)

Contains string constants that list all the possible values
for the State attribute (of the DELETE directive for
example)

Contains string constants that list all the possible values
for the entityScope attribute (of any directive)

Contains string constants that list all the possible values
for the EventID attribute (of the GETEVENT directive for
example)

Contains string constants that list all the possible values
for the Partition attribute (of any directive)

Contains string constants that list all the possible values
for the Probable_Cause attribute (of the CREATE, DUMP
or SET directives for example)

53

SecurityAlarmCause

Severity

SummarizeScope

Trendindication

Contains string constants that list all the possible values
for the Security_Alarm_Cause attribute (of the CREATE,
DUMP or SET directives for example)

Contains string constants that list all the possible values
for the Severity (of the ARCHIVE directive for example),
Perceived_Severity (of the CREATE, DELETE, DUMP, or
SET directives for example), or Original_Severity (of the
SET directive for example) attributes

Contains string constants that list all the possible values
for the Scope attribute (of the DUMP directive for
example)

Contains string constants that list all the possible values
for the Trend_Indication attribute (of the CREATE or SET
directives for example)

Table 5 - AO directives helper classes

Below is the list of such classes for Trouble Ticket (TT_SERVER) directives (besides the
TTDirectiveKey class that is explained above):

Class name

Attributeld

AutoResponseType

Partition

RegisterOperationType

TTDirective

Class description

Contains string constants that list all the possible values for
the Attributeld attribute (of the SHOW directive). These
constants should be used in the value part when using the
Action.addCommand(key, value) method

Contains string constants that list all the possible values for
the Type attribute (of the ASSOCIATETT, CANCELTT, CLOSETT,
CREATETT or DISSOCIATETT directives)

Contains string constants that list all the possible values for
the Partition attribute (of any directive)

Contains string constants that list all the possible values for
the Operation attribute (of the REGISTER directive)

Contains string constants that list all the possible values for
Trouble Ticket directive names (ASSOCIATETT, CANCELTT,
CLEARALL, CLOSETT, CREATE ... for example)

Table 6 - TT directives helper classes

The most important class in this set is the AODirective class (or the TTDirective class of
Trouble Ticket directives) that lists all possible Alarm Object directive names
(ACKNOWLEDGE, ADDPARENT, ARCHIVE, ... for example):

Action action = new Action(“TeMIP_AO_Directives_localhost”);
action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET);

54

theScenario.addAction(action);

action.executeAsync(AODirectiveKey.ENTITY_NAME);

The other classes contain constants that define the list of possible value for AO Directive (or
TT Directive) parameters or attributes.

Action action = new Action(“TeMIP_AO_Directives_localhost”);
action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET);

action.addCommand(AODirectiveKey.ENTITY_NAME, “OPERATION_CONTEXT 0C1
ALARM_OBJECT 155”);

action.addCommand(AODirectiveKey. TREND_INDICATION, TrendIndication.LESSSEVERE);
action.addCommand(AODirectiveKey.PROBABLE_CAUSE, ProbableCause.LOSSOFSIGNAL);

theScenario.addAction(action);
action.executeSync();

You can use Eclipse IDE’s automatic completion feature (the keyboard shortcut for this
feature is: CTRL+<Space>) to discover the constants defined in each of the classes
mentioned above.

4.4.1.2 Writing Actions for the 0SS Open Mediation Exec Value Pack

The delivered value pack examples come with a lib directory containing the TeMIP mapper
jar file:

lib/uca-mediation-exec-mvp-mapper-keys-3.2.jar

To create an Exec Action for the 0SS Open Mediation Exec Value Pack you must first add the
following import statement in your rule file:

import com.hp.uca.exec.mvp.mapper.*;

This will allow you to benefit from java classes that have been designed to help you write
rules that execute command/executables/shell scripts (provided the 0SS Open Mediation
V7.1 Exec Value Pack is deployed).

Below is the list of classes that you can use to help you write rules (all classes are defined in
the com.hp.uca.exec.mvp.mapper package):

Class name Class description

ExecActionKey Contains string constants that list all the possible values for keys
when using the Action.addCommand(key, value) method

55

Table 7 - Java helper classes for 0SS Open Mediation Exec Value Pack
Here’s an example of the ExecActionKey class use:

Action action = new Action("Exec_localhost");
action.addCommand(ExecActionKey.COMMAND, "ping");
action.addCommand(ExecActionKey.ARGUMENT, "127.0.0.1");

theScenario.addAction(action);

action.executeSync();

4.4.2 Calling services defined using Spring

Sometimes the actions performed in the THEN part of rules will be calls to nonstandard Java
package services such as Hibernate, JMS... These services generally need to be initialized
and the Spring configuration file of the Value Pack, context . xm1,is one way to do it.

In order to be able to use these services from Drools rules files, Drools global variables need
to be defined that reference the Spring beans defined in the context.xml file of the value
pack.

Any service defined using Spring can be “retrieved” in any rule file using the “global”
keyword.

Below is an excerpt from the Drools Expert documentation that explains the concept of
global variables:

[...] With global you define global variables. They are
used to make application objects available to the rules.
Typically, they are used to provide data or services that
the rules use, especially application services used in
rule consequences, and to return data from the rules,
like logs or values added in rule consequences, or for
the rules to interact with the application, doing
callbacks. Globals are not inserted into the Working
Memory, and therefore a global should never be used to
establish conditions in rules except when it has a
constant immutable value. The engine cannot be notified
about value changes of globals and does not track their
changes. Incorrect use of globals in constraints may
yield surprising results - surprising in a bad way.

If multiple packages declare globals with the same
identifier they must be of the same type and all of them
will reference the same global value. [..]

5~ please refer to the [R2] HP UCA for Event Based Correlation — Reference Guide for more
information about the Spring Framework integration with UCA for EBC.

56

Java class
import

First, in order to be able to use Spring beans in rules files, the Spring beans must be declared
inthe context.xml file of the Value Pack. Then global variable entries must be defined
for each Spring bean inthe ValuePackConfiguration.xml file as shown below:

<?xml version="1.0" encoding="UTF-8"?>
<valuePackConfiguration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"

name="_PROJECT NAME " version="_PROJECT VERSION ">

<scenarios>
<scenario name="Grouping-Scenario'>

<filterFile>src/main/resources/com/hp/uca/expert/vp/llef/groupin
g/grouping-filter.xml</filterFile>
<fireAllRulesPolicy>EACH ACCESS</fireAllRulesPolicy>
<globals>
<global>
<key>alarmDAO</key>
<value>alarmDAO</value>
</global>
</globals>
<processingMode>STREAM</processingMode>
<rulesFiles>
<rulesFile>
<filename>file:./src/main/resources/com/hp/uca/expert/vp/llef/gr
ouping/grouping-template.drl</filename>
<name>grouping</name>

<paramsFilename>file:./src/main/resources/com/hp/uca/expert/vp/1l

lef/grouping/grouping-params.xml</paramsFilename>
<ruleFileType>XDRL</ruleFileType>
</rulesFile>
</rulesFiles>
</scenario>
</scenarios>

</valuePackConfiguration>

The “globals” XML tag in the ValuePackConfiguration. xml file defines a list (i.e. a
Java map) of beans that will be available in your rules file(s) as global variables.

The following piece of code illustrates the use of external Java libraries from rule files:

VAN

package com.hp.uca.expert.example.hibernate;

#list any import classes here.
import com.hp.uca.expert.alarm.Alarm;
import com.hp.uca.expert.x733alarm.PerceivedSeverity;

<;;;2;£:;;é:££:§ca.expert.example.hibernate.AlarmD 2
4

/ cclare any global vard es here
<: obal AlarmDao alarmDAQ:

\ Deflnltlon Of

. global variables
template "Root Cause without Symptom"
rule "Root Cause without Symptom"

when
Then
ore the root cau rm External action
larmDAO. save (fatherAlarm)s using global
variable

57

4.4.3 Forwarding alarms to external systems

A common use case is when you want to forward alarms being processed by a scenario to
external systems/applications.

You might want to create an XML file containing some alarms that you want to export from
the scenario so that you can import these alarms on an external system/application.

Alternatively, if the external system/application that you want to export alarms to has a
JMS queue/topic that can be used to import alarms, then you might want to export alarms
directly to this JMS queue/topic.

Finally, if the external system/application is accessible from 0SS Open Mediation V7.1 via a
specific Channel Adapter, then you might want to export the alarms directly to the 0SS Open
Mediation V7.1 bus.

The UCA for EBC framework defines standard classes that enable you forwarding Alarm
objects (or collections thereof) located in Drools Working Memory or that have been defined
in the rules of a scenario to either a file, a JMS queue/topic or 0SS Open Mediation V7.1.

The following Java classes are part of the UCA for EBC framework:

1. To forward alarms to afile:
com.hp.uca.expert.alarm.FileAlarmForwarder

2. Toforward alarms to a JMS queue/topic:
com.hp.uca.expert.alarm.JMSAlarmForwarder

3. Toforward alarms to 0SS Open Mediation V7.1:
com.hp.uca.expert.alarm.OpenMediationAlarmForwarder

4. To persist alarms into a DB store:
com.hp.uca.expert.alarm.JDBCAlarmForwarder

& please refer to UCA for EBC Javadoc for complete information on these classes. The
Javadoc for UCA for EBCis located at $ {UCA_EBC_DEV_HOME}/apidoc

One way to forward alarms is to define an AlarmForwarder (either FileAlarmForwarder,
JMSAlarmForwarder, OpenMediationAlarmForwarder or JDBCAlarmForwarder) bean in the
Spring configuration file of the scenario (context . xml).

58

Note

Please note that the recommended way for defining alarm forwarders is to define them in
the Spring configuration file of the scenario: context . xml.

A Thread is associated with each alarm forwarder (either FileAlarmForwarder,
JMSAlarmForwarder, OpenMediationAlarmForwarder, or JDBCAlarmForwarder). This thread
is automatically started when the associated AlarmForwarder object is created. If the
AlarmForwarder has been created using the recommended method (in the Spring
configuration file of the scenario: context . xm1) then the associated thread will be
automatically stopped when the bean associated with the alarm forwarder is destroyed.
Otherwise you need to use the requestStop() method to explicitly stop the thread
associated with the alarm forwarder when you don't need it anymore.

The thread associated with an alarm forwarder provides compression to improve
performance. Alarms may not be forwarded right away. They are accumulated in a queue for
the duration of the compression period (by default 1 second) so that they can be forwarded
as a batch of alarms at the end of the compression period (by default every second). You can
change the value of the compression period using the setCompressionPeriod(long) method.
If you set the compression period to 0 milliseconds, no compression will be performed.

Here’s an example of defining such a bean in the context . xm1 file of a scenario:

<?xml version="1.0" encoding="UTF-8"7?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns:jms="http://www.springframework.org/schema/jms"
xmlns:p="http://www.springframework.org/schema/p"

xmlns:context="http://www.springframework.org/schema/context"
xmlns:amg="http://activemqg.apache.org/schema/core"

xmlns:util="http://www.springframework.org/schema/util"
xsi:schemalLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/jms

http://www.springframework.org/schema/jms/spring-jms.xsd
http://activemqg.apache.org/schema/core

http://activemg.apache.org/schema/core/activemg-core.xsd">

<context:annotation-config />

<bean name="forwardedAlarmsFile" class="java.io.File">
<constructor-arg index="0"><value>forwarded-
alarms.xml</value></constructor-arg><!-- String pathname -->
</bean>

<bean name="fileAlarmForwarder"
class="com.hp.uca.expert.alarm.FileAlarmForwarder" depends-
on="forwardedAlarmsFile">
<constructor-arg index="0"><ref

bean="forwardedAlarmsFile"/></constructor-arg><!-- File file -->
<constructor-arg
index="1"><value>false</value></constructor-arg><!-- boolean overwrite
-—>
</bean>

<bean name="jmsAlarmForwarder"
class="com.hp.uca.expert.alarm.JMSAlarmForwarder">

59

<constructor-arg
index="0"><value>vm://localhost?broker.persistent=false</value></constr
uctor-arg><!-- String brokerURL -->

<constructor-arg
index="1"><value>jms.alarm.forwarder.test.queue</value></constructor-

arg><!-- String destinationName -->
<constructor-arg
index="2"><value>true</value></constructor-arg><!-- boolean isQueue -->
</bean>

<bean name="openMediationAlarmForwarder"
class="com.hp.uca.expert.alarm.OpenMediationAlarmForwarder">
<constructor-arg index="0"><value>UCA-
EBC_ remotesystem</value></constructor-arg><!-- String actionReference -
->
<constructor-arg index="1"><value>Alarm Flow from UCA
EBC</value></constructor-arg><!-- String alarmFlowName -->
</bean>
</beans>

Figure 21 - Defining AlarmForwarder beans in the context . xm1 file

The highlighted portion of the context . xm1 file shows the definition of a
FileAlarmForwarder bean that will be used in the rule files of a scenario to forward alarms to
an XML file.

Once the context .xml file has been properly set up, you need to define global variable
entries inthe ValuePackConfiguration.xml file for each Spring bean that you want
to access from the rules as shown below:

<?xml version="1.0" encoding="UTF-8"?>
<valuePackConfiguration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"

name="_ PROJECT NAME " version="_ PROJECT VERSION ">

<scenarios>
<scenario name="alarmforwarder">

<filterFile>src/main/resources/valuepack/alarmforwarder/filters.xml</fi
lterFile>
<fireAllRulesPolicy>EACH ACCESS</fireAllRulesPolicy>
<globals>
<global>
<key>fileAlarmForwarder</key>
<value>fileAlarmForwarder</value>
</global>
<global>
<key>jmsAlarmForwarder</key>
<value>jmsAlarmForwarder</value>
</global>
<global>
<key>openMediationAlarmForwarder</key>
<value>openMediationAlarmForwarder</value>
</global>
</globals>
<processingMode>STREAM</processingMode>
<rulesFiles>
<rulesFile>
<filename>file:./src/main/resources/valuepack/alarmforwarder/ala
rmforwarder.drl</filename>
<name>alarmforwarder rules</name>
<ruleFileType>DRL</ruleFileType>
</rulesFile>
</rulesFiles>
</scenario>

</scenarios>
</valuePackConfiguration>

60

Figure 22 - Defining AlarmForwarder globals in the
ValuePackConfiguration. xml file

The highlighted portion of the valuePackConfiguration. xml file shows the
definition of a fileAlarmForwarder global variable referencing the fileAlarmForwarder
Spring bean defined in the context . xm1 file that will be used in the rule files of a scenario
to forward alarms to an XML file.

Oncethe valuePackConfiguration.xml file has been properly set up, you need to
make some madifications to the rule files where you want to use the fileAlarmForwarder
global variable:

Import the proper Java class:
com.hp.uca.expert.alarm.FileAlarmForwarder for a FileAlarmForwarder
com.hp.uca.expert.alarm.JMSAlarmForwarder for a JMSAlarmForwarder

com.hp.uca.expert.alarm.OpenMediationAlarmForwarder for an
OpenMediationAlarmForwarder

Declare the global variables (defined in the valuePackConfiguration.xml file) that
you want to use in the rule file

Below is an example of how to import the proper Java class, and declare the global variables
that you want to use:

package com.hp.uca.expert.vp.alarmforwarder;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmDeletion;

import com.hp.uca.expert.alarm.AlarmStateChange;

import com.hp.uca.expert.alarm.AlarmAttributeValueChange;
import com.hp.uca.expert.x733alarm.PerceivedSeverity;
import java.util.ArrayList;

import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.common.trace.LogHelper;

import com.hp.uca.expert.flag.Flag;

import com.hp.uca.expert.testmaterial.AbstractJunitIntegrationTest;
import com.hp.uca.expert.alarm.FileAlarmForwarder;

import com.hp.uca.expert.alarm.JMSAlarmForwarder;

import com.hp.uca.expert.alarm.OpenMediationAlarmForwarder;

#declare any global variables here

global Scenario theScenario;

global FileAlarmForwarder fileAlarmForwarder;

global JMSAlarmForwarder jmsAlarmForwarder;

global OpenMediationAlarmForwarder openMediationAlarmForwarder;

declare Alarm
@role(event)
@timestamp (timeInMilliseconds)
@expires(30m)

end

Figure 23 - Declaring the use of an AlarmForwarder global variable in a rule file

Once the proper Java classes have been imported and the global variables declared, you can
just use global variable to write Alarms (or collections of Alarms) to an XML file (the one
specified inthe context . xml file):

import com.hp.uca.expert.alarm.FileAlarmForwarder;
import com.hp.uca.expert.alarm.JMSAlarmForwarder;
import com.hp.uca.expert.alarm.OpenMediationAlarmForwarder;

#declare any global variables here
global Scenario theScenario;

61

global FileAlarmForwarder fileAlarmForwarder;
global JMSAlarmForwarder jmsAlarmForwarder;
global OpenMediationAlarmForwarder openMediationAlarmForwarder;

declare Alarm
@role(event)
@timestamp(timeInMilliseconds)
@expires(30m)

end

Forward any alarm received
rule "Forward any alarm received"
no-loop

when

Salarm : Alarm()

then

LogHelper.enter (theScenario.getLogger (),
drools.getRule () .getName()) ;

// Forward the alarm to a file, Jjms queue/topic or 0SS Open
Mediation

fileAlarmForwarder.write (Salarm) ;

// Forward the alarm to a jms queue or topic

jmsAlarmForwarder.write ($Salarm) ;

// Forward the alarm to OSS Open Mediation

openMediationAlarmForwarder.write ($Salarm) ;

// Retract the alarm

theScenario.getLogger () .info ("Retracting: \n"+
Salarm.toFormattedString());
theScenario.getSession () .retract ($alarm);

LogHelper.exit (theScenario.getLogger (),
drools.getRule () .getName()) ;
end

Figure 24 - Using an AlarmForwarder global variable to write Alarms to an XML
file

The XML file generated by the FileAlarmForwarder is fully compatible with the XML schema
for UCA for EBC Alarms defined at $ {UCA_EBC_DEV_HOME}/lib/schemas/uca-
expert-alarm. xsd. For example, the generated XML file containing the alarms can be
used as input to the $ {UCA EBC HOME}/bin/uca-ebc-injector command-line
tool.

The JMSAlarmForwarder on the other hand can be used to forward alarms directly to a JMS
queue/topic, for example the Alarm input queue of a UCA for EBC server (which is
implemented as a JMS Topic). You can use the following values to forward alarms to a UCA
for EBC alarm input queue:

brokerURL: JMSAlarmForwarder.DEFAULT_UCA_EBC_BROKER_URL (the value of this
constant is “tcp://localhost:61666")

destinationName: JMSAlarmForwarder.DEFAULT_UCA_EBC_ALARMS_TOPIC_NAME (the
value of this constant is “com.hp.uca.ebc.alarms”)

isQueue: false (because the UCA for EBC alarm input queue is in fact a JMS topic, not a JMS
queue)

Finally the OpenMediationAlarmForwarder can be used to forward alarms to 0SS Open
Mediation V7.1. In order to use an OpenMediationAlarmForwarder, you must first create an
actionreferenceinthe $ {UCA EBC_INSTANCE}/conf/ActionRegistry.xml file
that will define how to connect to the UCA for EBC Channel Adapter on 0SS Open Mediation
V7.1, and how to reach the Channel Adapter of the system/application that you target.

Below is an example of an action reference defined in the ActionRegistry.xml file:

| <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

62

<ActionRegistryXML
xmlns="http://registry.action.mediation.uca.hp.com/">

<MediationValuePack MvpName="ApplicationX" MvpVersion="1.1"

url="http://localhost:26700/uca/mediation/action/ActionService?W
SDL"
brokerURL="failover://tcp://localhost:10000">

<Action actionReference="ApplicationX remotesystem">
<ServiceName>applicationX-1.1</ServiceName>
<NmsName>remotesystem</NmsName>
</Action>
</MediationValuePack>
</ActionRegistryXML>

Inthe sample ActionRegistry.xml file above, an action reference has been defined
for an “ApplicationX” application on a remote system connected to 0SS Open Mediation V7.1
via an ApplicationX Channel Adapter (ApplicationX is a fictitious application).

The brokerURL attribute must match the URL of the ActiveMQ broker defined for the 0SS
Open Mediation V7.1 that you target. The hostname in the URL must match the hostname of
the system where 0SS Open Mediation V7.1 is installed. By default the port number used for
the ActiveMQ broker on 0SS Open Mediation V7.1 container instance 0 is 10000.

To verify what port number is used for your 0SS Open Mediation V7.1 container instance,
please check the value of the activemq.port property in the
/var/opt/openmediation-V71/containers/instance-<instance
number>/conf/servicemix.properties file.

The following JMS properties will be set for the alarms being forwarded to 0SS Open
Mediation V7.1. These properties can be used by consumer Channel Adapters to filter the
alarms that they're interested in among all alarms pushed by various Channel Adapters to
the 0SS Open Mediation V7.1 alarms JMS topic:

JMS Property Name Value

NOMOriginalProvider set to the value of ${ca.name} in UCA EBC

CA
NOMOriginalProviderEndpoi “UCA EBC version on hostname”
nt
NOMOriginalProviderPort not set

NOMOriginalProviderHost

NOMOriginalProviderContai
nerinstanceNumber

NOMType

NOMActionMessageType

NOMACctionEntityHint

NOMActionNameHint

set to the value of ${nom_hostname} in
UCAEBC CA

set to the value of
${sys.nom_instance_number} in UCA EBC
CA

set to
"http://hp.com/openmediation/alarms/2
011/08"in UCAEBC CA

not set (this is not an action message, this
is an alarm message)

not set (this is not an action message, this
is an alarm message)

not set (this is not an action message, this
is an alarm message)

63

NOMFinalConsumer the value of the “serviceName” attribute
of the action reference (in the
ActionRegistry.xml file) associated with
the OpenMediationAlarmForwarder object

NOMFinalConsumerEndpoin "mvpName mvpVersion on nmsName",

t where the names in italics are XML
entities/attributes of the action reference
(in the ActionRegistry.xml file) associated
with the OpenMediationAlarmForwarder
object

NOMFinalConsumerPort "alarmFlowName" associated with the
OpenMediationAlarmForwarder object or
"UCA EBC Alarms" by default. You can set
the FlowName attribute when you create
the OpenMediationAlarmForwarder object

NOMFinalConsumerHost the value of the "nmsName" XML entity of
the action reference (in the
ActionRegistry.xml file) associated with
the OpenMediationAlarmForwarder object

NOMFinalConsumerConstai not set
nerinstanceNumber

Table 8 - JMS properties set for alarms being forwarded to 0SS Open Mediation

4.5 Making useful logs

The UCA for EBC product provides an advanced logging mechanism that is able to trace
specific rule processing for each Scenario.

The UCA for EBC Administration GUI fully supports this logging mechanism.

Note

F~ For more information on how to troubleshoot scenarios using the UCA for EBC

Administration GUI, please see: [R7] Unified Correlation Analyzer for Event Based Correlation
— User Interface Guide, chapter Troubleshooting UCA for event based Correlation

To take benefits from this mechanism, the rule developer must use the logger provided by
the UCA for EBC framework for each scenario by calling the following method:

e theScenario.getLogger () fromDrools files

e ScenarioThreadLocal.getScenario () .getLogger () from Javacode

The ScenarioThreadLocal classis locatedinthe
com.hp.uca.expert.scenario package.

The getLogger () method provides access to a standard
org.apache.log4j.Logger object. Consequently, all standard log4j Logger methods
are available to better qualify the level of information needed (for example info (),
debug (), warn (), etc...).

64

4.6

The following piece of code demonstrates how to use the UCA for EBC scenario logger to log
messages from a Drools rule file:

package com.hp.uca.expert.vp.sample;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.CustomFields;
import com.hp.uca.expert.x733alarm.CustomField;
import com.hp.uca.expert.x733alarm.PerceivedSeverity;
import com.hp.uca.expert.x733alarm.NetworkState;
import com.hp.uca.expert.x733alarm.OperatorState;
ACKNOWLEDGED, TERMINATED

import com.hp.uca.expert.x733alarm.ProblemState; // NOT_HANDLED, HANDLED, CLOSED
import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.common.trace.LogHelper;

#declare any global variables here
global Scenario theScenario;

rule "Any new Acknowledged Alarm"

when
a: Alarm(operatorState == OperatorState.ACKNOWLEDGED)
then
LogHelper.enter (theScenario.getLogger (), drools.getRule().getName()):;
theScenario.getLogger () .info (" [RULE " + drools.getRule () .getName() + "] Found
new acknowledged alarm: identifier = " + a.getIdentifier()+ ":");
theScenario.getLogger () .debug (a.toFormattedString()) ;
LogHelper.exit (theScenario.getLogger (), drools.getRule().getName());
end

rule "Any new Terminated Alarm"
when
a: Alarm(operatorState == OperatorState.TERMINATED)
then
LogHelper.enter (theScenario.getLogger (), drools.getRule().getName());

theScenario.getLogger () .info (" [RULE " + drools.getRule () .getName() + "] Found
new terminated alarm: identifier = " + a.getIdentifier() + ":");
theScenario.getLogger () .debug (a.toFormattedString()) ;

LogHelper.exit (theScenario.getLogger (), drools.getRule () .getName()) ;
end

Figure 25 - Scenario logger example

Note

& please refer to Chapter “Scenario Loggers”in the [R2] HP UCA for Event Based
Correlation — Reference Guide for more information on how to use Scenario Loggers.

Creating JUnit Tests

Developing Value Packs involves creating correlation rules and writing code. In any case, it is
highly recommended to unit test your rules and code.

To help you in that regard, the ‘skeleton’ project (the project created with the UCA Eclipse
plug-in) provides you with a template of a JUnit test (based on JUnit 4.11) along with the
complete infrastructure to compile, run and generate reports for unit tests.

The following JUnit test is a good starting point to create new unit tests:

Itis a JUnit 4.11 test that also supports Java and Spring framework annotations: using
@RunWith and @Configuration annotations automatically loads the associated Spring
configuration file (called <test file name>-context.xml)

65

The template JUnit test class that we provide extends the AbstractJunitintegrationTest
class. This class is part of the UCA for EBC framework. It implements the Spring framework
ApplicationContextAware interface, and thus provides access to the Spring beans (Java
objects) defined in the Spring configuration file(called <test file name>-
context.xml). You can easily retrieve any Spring bean defined in the Spring configuration
file by using the getApplicationContext().getBean(String name) method from any JUnit
test class that extends the AbstractJunitintegrationTest class.

In JUnit 4.11, any method that represents a unit test needs to have the @Test annotation
before the definition of the method.

Itis mandatory to definea junit. framework.Test suite) method so that tests can
be found in the Apache Ant project of your Value Pack. Defining the following method allows
for automatic retrieval of all tests defined in the unit test class:

// Way to run tests via ANT Junit
public static junit.framework.Test suite() {
return new JUnit4TestAdapter (SkeletonTest.class);

}

When designing Junits, it is a good practice to test alarms expected lifecycle, using different
AlarmListener assigned with the different alarms identifier to be tested, for:

e alarminsertion (waitingForAlarmInsertion)
e alarmupdate (waitingForAlarmUpdate)
e alarmretraction (waitingForAlarmRetract)

Other good practice is to test different objects values with assertEquals,
assertNull, assertNotNull and others methods furnished with the Junit library.
Also, the number of Groups in memory can be tested by comparing it with the result of
calling the method getGroupsFromWorkingMemory () and the number of Alarms in
memory by calling the getAlarmsFromWorkingMemory ().

By comparing the historical engine events with a benchmark, you can easily check the whole
test result with the expected one.

In the following code you can find a template JUnit test class using some of the methods
described above:

package com.hp.uca.expert.vp.skeleton;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;
import junit.framework.JUnit4d4TestAdapter;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.junit.AfterClass;

import org.junit.BeforeClass;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.test.annotation.DirtiesContext;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import com.hp.uca.common.misc.Constants;
import com.hp.uca.common.trace.LogHelper;
import com.hp.uca.expert.alarm.Alarm;

66

import com.hp.uca.expert.testmaterial.AbstractJunitIntegrationTest;
import com.hp.uca.expert.x733alarm.OperatorState;

@RunWith (SpringJUnit4ClassRunner.class)
@ContextConfiguration
public class SkeletonTest extends AbstractJunitIntegrationTest {

private static Logger log = LoggerFactory.getLogger (SkeletonTest.class) ;

private static final String SCENARIO BEAN NAME = "skeleton";

private static final String ALARM FILE =
"src/main/resources/valuepack/skeleton/Alarms.xml";

/**
* @throws java.lang.Exception
*/
@BeforeClass
public static void setUpBeforeClass() throws Exception {
log.info(Constants.TEST START.val() + SkeletonTest.class.getName())

/**
* @Qthrows java.lang.Exception
*/
QAfterClass
public static void tearDownAfterClass() throws Exception {
log.info(Constants.TEST END.val() + SkeletonTest.class.getName ()
+ Constants.GROUP_ALT1 SEPARATOR.val());

// Way to run tests via ANT Junit
public static junit.framework.Test suite() {
return new JUnitd4TestAdapter (SkeletonTest.class) ;

QTest

@DirtiesContext ()

public void test() throws Exception {
LogHelper.enter (log, "test()");

/*
* Initialize variables and Enable engine internal logs
*/

initTest (SCENARIO BEAN NAME, BMK PATH) ;

/*

* Create,Assign and store an Alarm Listener to the current scenario
*/

setAlarmListener (createAndAssignAlarmListener ("1", getScenario()))

/*

* Send alarms defined in Alarms.xml asynchronously with a tempo of 2
* seconds between each alarm

*/

getProducer () .sendAlarmsAsync (ALARM FILE, 2 * SECOND) ;

/*

* Wait for an alarm insertion in scenario working memory

*/
waitingForAlarmInsertion (getAlarmListener(), 100 * MS, 10 * SECOND) ;
/*

* Retrieve from Working memory the Alarm with identifier '1l'

*/

Alarm alarm = getAlarm("1l");

67

/*
* Check that alarm with identifier 'l' exists
*/

assertNotNull ("The alarm 1 should be present in WM", alarm);

/*
* Wait for an alarm update in scenario working memory
*/
waitingForAlarmUpdate (getAlarmListener(), 100 * MS, 10 * SECOND) ;
/*
* Check the new values of attributes 'problemInformation' &
* 'notificationIdentifier' of alarm '1l'
*/
assertEquals (
"The problemInformation should be New Problem
information",
"New Problem information",
alarm.getProblemInformation()) ;
assertEquals ("The notificationIdentifier should be equals to 100",
"100", alarm.getNotificationIdentifier()):;

/*
* Wait for an alarm acknowledgement
*/
waitingForAlarmAcknowledgement (getAlarmListener (), 100 * MS,
10 * SECOND) ;
/*
* Check if the OperatorState of alarm has been correctly changed to
* ACKNOWLEDGED
*/
assertEquals ("Alarm 1 has been acknowledged",
OperatorState.ACKNOWLEDGED, alarm.getOperatorState());

/*
* Wait for an alarm retraction from scenario working memory
*/
waitingForAlarmRetract (getAlarmListener (), 100 * MS, 10 * SECOND) ;

/*

* Disable Rule Logger to close the file used to compare engine
* historical events

*/

closeRulelogFiles (getScenario()) ;

/*

* Check test result by comparing the historical engine events with a
* benchmark

*/

checkTestResult (getLogRuleFileName () , getLogRuleFileNameBmk ()) ;

LogHelper.exit(log, "test()"):;

Since V3.2, when using the topology extension for developing for value packs as well as for
developing Inference Machine or Topology State Propagator Value Packs, another listener
was introduced for testing States lifecycle: the StateListener. In the same way as for
testing alarms, the StateListener can be used in Junits for checking:

e stateinsertion (waitingForStateInsertion)

state update (waitingForStateUpdate)

state retraction (waitingForStateRetract)

Also, as seen for Groups, the number of PropagationGroups in memory is given by the
method:

getPropagationGroupsFromWorkingMemory () ;

In the following code you can find a template JUnit test class using the states checking:

package ft.tsp;

import static org.junit.Assert.assertEquals;

import
import
import

import

import
import
import
import
import
import
import
import
import
import
import
import
import
import

import
import
import
import
import
import
import
import
import

/**
* The
*/

java.util.Collection;
java.util.HashMap;

java.util.Map;

junit. framework.JUnit4TestAdapter;

org

org.
org.

org

org.
org.
org.
org.
org.
org.
.s1f4j
org.
org.
.springframework. test

org

org

com.
com.
com.
com.
com.

com

com.
com.

com

junit

.junit.After;
.AfterClass;

junit.Before;

.junit.

junit.Test;

BeforeClass;

junit.runner.RunWith;

neo4j.loader.csv.Loader;
neo4j.loader.csv.Report;
neo4j.loader.csv.utils.TmpDir;
slf4j.Logger;

.LoggerFactory;

springframework.test.annotation.DirtiesContext;

springframework. test.context.ContextConfiguration;

hp.
hp.
hp.
hp.
hp.
.hp.
hp.
hp.
.hp.

uca.common.
uca.expert.
uca.expert.
uca.expert.
uca.expert.
uca.expert.
uca.expert.
uca.expert.
uca.expert.

misc.Constants;

alarm.Alarm;

group.PropagationGroup;
scenario.exception.NoSuchScenarioException;
testmaterial .AbstractJunitIntegrationTest;
testmaterial.ActionListener;
testmaterial.AlarmListener;
testmaterial.Statelistener;
topology.TopoAccess;

Class PropagationTest.

QRunWith (SpringJUnit4ClassRunner.class)

@ContextConfiguration

public class PropagationTest extends AbstractJunitIntegrationTest {

/**

* The log.

*/

private static Logger log = LoggerFactory.getlLogger (PropagationTest

/**

* The Constant ALARM FILE.

*/

private static final String ALARM FILE =
"src/test/resources/alarms/Alarm SwitchDown G_SWITCH 3 TeMIP.xml";

.context.junit4.SpringJUnit4ClassRunner;

.class) ;

69

/**
* The Constant SCENARIO BEAN NAME.
*/
private static final String SCENARIO BEAN NAME =
"com.hp.uca.expert.vp.im.TopologyStatePropagator";

/**
* The Constant TOPOLOGY DATALOAD DIR.
*/
private static final String TOPOLOGY DATALOAD DIR = "valuepack/topology-
dataload";

/**
* The tmp dir.
*/
private TmpDir tmpDir = null;

/**
* @Qthrows java.lang.Exception
*/
@BeforeClass
public static void setUpBeforeClass() throws Exception {
log.info(Constants.TEST START.val())

/**
* @Qthrows java.lang.Exception
*/
@AfterClass
public static void tearDownAfterClass() throws Exception {
log.info(Constants.TEST END.val());

/**
* @throws java.lang.Exception
*/
@Override
@Before
public void setUp() throws Exception {
log.info(Constants.TEST START.val() + this.getClass().getName());

tmpDir = new TmpDir (TOPOLOGY DATALOAD DIR) ;

Loader loader = new Loader (TopoAccess.getGraphDB(),
tmpDir. tmpCsvPath()) ;

Report report = loader.loadAll();

log.info(report.toString()) ;

/**
* @throws java.lang.Exception
*/
@Override
QAfter
public void tearDown () throws Exception {
log.info(Constants.TEST END.val() + this.getClass() .getName ()
+ Constants.GROUP_ALT1 SEPARATOR.val());
tmpDir.cleanup() ;

/**
* Initialize variables and Enable engine internal logs

70

*/
protected void initTest() throws NoSuchScenarioException,
InterruptedException {
initTest (SCENARIO BEAN NAME, BMK PATH) ;
getScenario () .setTestOnly (true) ;

/**
* Way to run tests wvia ANT Junit
*
* Qreturn the JUnit4TestAdapter
*/
public static junit.framework.Test suite() {
return new JUnitd4TestAdapter (PropagationTest.class);

/**
* @throws Exception
*/
@Test
@DirtiesContext
public final void testGeneratedSvcAlarm() throws Exception {

initTest () ;

Map<String, String> keyValues = new HashMap<String, String>();
keyValues.put ("directiveName", "SET");
keyValues
.put ("entityName", "operation_context ocl alarm object
123456") ;

ActionlListener actionListener = new ActionListener (keyValues) ;
getScenario () .getSession() .addEventListener (actionListener) ;

AlarmListener alarmSwitchDownListener = createAndAssignAlarmListener (
"UCA-1416582585978-61", getScenario());

AlarmListener alarmSAListener = createAndAssignAlarmListener (
"operation_ context ocl alarm object 123456",

getScenario()) ;

StateListener stateSwitchl = createAndAssignStateListener (
"StateBase#G_SWITCH1", getScenario());

StateListener stateWMl = createAndAssignStateListener (
"StateBase#G VM1", getScenario());

StateListener statePoolA3 = createAndAssignStateListener (
"StateBase#G poolA3", getScenario());

/*

* Send alarms

*/
getProducer () .sendAlarms (ALARM FILE) ;

waitingForAlarmInsertion (alarmSwitchDownListener, 1 * SECOND,
10 * SECOND) ;
waitingForAlarmInsertion (alarmSAListener, 1 * SECOND, 10 * SECOND) ;
/*
* Waiting for the last Alarm that should be updated by the rule itself
*/
waitingForActionInsertion(actionListener, 1 * SECOND, 15 * SECOND) ;

/*
* Checking alarm updated
*/

71

SECOND) ;

waitingForAlarmUpdate (alarmSAListener, 1 * SECOND, 10 * SECOND) ;
waitingForAlarmUpdate (alarmSwitchDownListener, 1 * SECOND, 10 *

/*

* Checking states insertion

*/
waitingForStateInsertion(stateSwitchl, 1 * SECOND, 20 * SECOND) ;
waitingForStateInsertion(stateWMl, 1 * SECOND, 20 * SECOND) ;

/*
* check state update
*/
waitingForStateUpdate (stateWMl, 1 * SECOND, 20 * SECOND) ;

/*
* checking last state insertion
*/
waitingForStateInsertion(statePoolA3, 1 * SECOND, 20 * SECOND) ;

/*

* Disable Rule Logger to close the file used to compare engine
* historical events

*/

closeRulelogFiles (getScenario()) ;

if (log.isDebugEnabled()) {
getScenario () .getSession() .dump () ;

/*
* Checking Alarm Number: 1 RCA, 2 for service g payroll + g hr, 1 for
* phone service, 1 for customer gardens
*/
Collection<Alarm> alarms = getAlarmsFromWorkingMemory () ;
assertEquals (5, alarms.size());

/*
* Checking Group Number
*/

Collection<PropagationGroup> groups =

getPropagationGroupsFromWorkingMemory () ;

assertEquals (15, groups.size())

Note

The AbstractJunitIntegrationTest test utility class has been developed and is
provided as part of the UCA for EBC Development Kit. A JavaDoc documentation is provided
for this class. Please refer to the Java Documentation of the
com.hp.uca.expert.testmaterial package for full explanations.

Using the Apache Ant build.xml file provided in the example project (Skeleton) project
(or projects created with the UCA eclipse plugin) allows you to automatically compile tests
(using the “test-compile” Ant target), run the tests and generate the test reports (using the
“test-run” Ant target).

Following is the list of all Ant targets provided by the build. xm1 file:

72

& lkx 3
kon Project
@ al
& build

® clean

@ clean-4l
@ carpile

& jar

® jar-clean
@ it

@ kit-clean
@ test-clean
i@ kest-compile

(&)

@ test-run
@ usage [default]

AUEE N

Figure 26 - Ant targets provided by the build.xml file

Note

The build.xml Ant file on runs Test Classes that have a name ended by ‘Test’. All other

classes will not be executed when launching the ‘test’ target.

It is therefore highly recommended to name all test classes with a name ending with

‘Test.java'.

JUnit test reports in HTML format are available in the target/reports/junitreport

folder of your Value Pack:

18] Javs - le/C/UCA-EBC-DEV/My
[Fle Edt Naigate Search Project Run Window Help

| r-a@ O-Pdh $-0-Q- HEG- &5 -

% "VahuePackConfigurationxml

Home

Packages

30) TESTSTestSuitesam

$§5gninto Google.. 7 file///C:/UCA-EBC-DEV/My%20C, oge

V| Tests Failures Errors

2 Unit Test Results, &

B Fles/CIUCA-EBC-DEV/My Comelaton Projecttargeteports/junieportindechtml - B

Unit Test Results.

Summary
Success rate Time

2 2 2 100.00% 18589

Note: failures are anticipated and checked for with assertions while errors are unanticipated.

Packages

Name Tests Errors Failures Time(s) Time Stamp Host

18.683 2011-05- PMASSEL
26T12:36:43

som.hp.uca.expert.v.skeieton 2 (]

Figure 27 - JUnit tests results for your Value Pack

4.7

Injecting events to UCA for EBC: Alarm Collector

The Alarm Collector is the UCA for EBC internal component responsible for collecting events
from outside UCA for EBC in order to feed them to the scenarios of the Value Packs deployed

on UCA for EBC.

The Alarm Collector is implemented as a JMS Topic that is registered using JNDI so that

other applications can get access to it to post events that will feed UCA for EBC Value Packs,

as shown in Figure 28.

73

Alarm

Collector

— o o o e
o o o e

/
T

Normalized XML event format

Provider

Figure 28 - UCA for EBC alarm collection

4.7.1 Normalized input
The UCA for EBC Alarm Collector defines a normalized alarm XML format based on the X.733
standard alarm format. Only alarms that comply with this format will be processed.
4.7.1.1 Sample alarms file

Below is a sample XML file that contains alarms in the X.733 alarm format:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Alarms xmlns="http://hp.com/uca/expert/x733Alarm">

<AlarmCreationInterface>
<sourceldentifier>src</sourceldentifier>
<identifier>1</identifier>
<originatingManagedEntity>BOX Bl</originatingManagedEntity>
<alarmType>COMMUNICATIONS ALARM</alarmType>
<probableCause>Fire</probableCause>
<perceivedSeverity>MINOR</perceivedSeverity>
<alarmRaisedTime>2009-09-16T12:00:00.000+02:00</alarmRaisedTime>

</AlarmCreationInterface>

<AlarmCreationInterface>
<sourceldentifier>src</sourceldentifier>
<identifier>2</identifier>
<originatingManagedEntity>BOX Bl</originatingManagedEntity>
<alarmType>COMMUNICATIONS ALARM</alarmType>
<probableCause>Fire</probableCause>
<perceivedSeverity>CLEAR</perceivedSeverity>
<alarmRaisedTime>2009-09-16T12:00:00.000+02:00</alarmRaisedTime>

</AlarmCreationInterface>

</Alarms>

4.7.2 Command-lineinjector tool

UCA for EBC provides a tool to send alarms described in a simple XML File containing X.733
alarms to the UCA for EBC Alarm Collector.

74

4.7.3

This tool is located inthe $ {UCA EBC_HOME} /bin folder. Itis called uca-ebc-injector.

This tool will inject alarms contained in an XML file into the input alarm queue (implemented
as a JMS Topic) of a local or remote UCA for EBC Server instance.

Some samples of such an XML file containing alarms to be fed to UCA for EBC are located in
the ${uCA EBC DEV HOME}/vp-examples folder.

Note

%~ For more information on the uca-ebc-injector command-line tool, please refer to the

[R3] HP UCA for Event Based Correlation — Administration, Configuration and
Troubleshooting Guide

[R4] HP UCA for Event Based Correlation — Value Pack Examples

A sample Java Alarm injector

The following chapters describe how you can create your own sample Java Alarm injector
application that can connect to UCA for EBC Alarm Collector JMS Topic to post Alarms to UCA
for EBC.

4.7.3.1 Initializing the JNDIl initial context

In order to create a sample Java Alarm injector, you must first initialize the JNDI context that
will be used to retrieve the JMS Topic of the UCA for EBC Alarm Collector:

Context jndiContext = null;
/*
* Create a JNDI API InitialContext object
2/
try {
jndiContext = new InitialContext () ;
} catch (NamingException e) {
System.out.println ("Could not create JNDI API context: " +
e.toString());
System.exit (1) ;
}

Please note that the jndi . properties file must be provided in the classpath of your
sample Java Alarm injector.

4.7.3.2 Configuring the jndi.properties file

Here is the content of a sample jndi.properties file to be used by your sample Java
Alarm injector:

java.naming. factory.initial =
org.apache.activemg.jndi.ActiveMQInitialContextFactory

topic.uca-ebc-alarms = com.hp.uca.ebc.alarms

use the following property to configure the default connector

java.naming.provider.url =tcp\://localhost\:61666

The topic.uca-ebc-alarms property is used to record the name the UCA for EBC Alarm
Collector JMS topic: com.hp.uca.ebc.alarms

The java.naming.provider.url property can be configured to match the hostname and port
number of UCA for EBC JNDI service.

75

4.7.3.3 Looking up the UCA for EBC Alarm Collector JMS topic

Once the JNDI context is initialized, the codes in your sample Java Alarm injector shall first
lookup for the JNDI connection factory, and then retrieve the UCA for EBC Alarm Collector
JMS topic by looking up its name:

ConnectionFactory connectionFactory = null;
Destination destination = null;

/*
* Look up connection factory and destination.
*/
try {
connectionFactory = (ConnectionFactory) jndiContext
.lookup ("ConnectionFactory") ;
destination = (Destination) jndiContext.lookup("uca-ebc-alarms");

} catch (NamingException e) {
System.out.println ("JNDI API lookup failed: " + e);
System.exit (1) ;

4.7.3.4 Connect and send the message

With the connectionFactory retrieved, you then need to create the connection, then the
session, and finally the producer:

Connection connection = null;
MessageProducer producer = null;
try {
connection = connectionFactory.createConnection();
session = connection.createSession(false, Session.AUTO ACKNOWLEDGE) ;
producer = session.createProducer (destination);
TextMessage message = session.createTextMessage ()

StringBuffer buf = new StringBuffer();

buf.append ("<?xml version=\"1.0\" encoding=\"UTF-8\"
standalone=\"yes\"?>");

buf.append ("<Alarms>") ;

buf.append ("<AlarmCreationInterface>");

buf.append ("<sourceldentifier>src</sourceldentifier>");

buf.append ("<identifier>12301</identifier>");

buf.
append ("<originatingManagedEntityClass>BOX</originatingManagedEntityCla
ss>");

buf.append ("<originatingManagedEntity>BOX
Bl</originatingManagedEntity>");

buf.append ("<alarmType>COMMUNICATIONS ALARM</alarmType>");

buf.append ("<probableCause>Fire</probableCause>");

buf.append ("<perceivedSeverity>MAJOR</perceivedSeverity>");

buf.append ("<alarmRaisedTime>2009-09-
16T12:00:00.000+02:00</alarmRaisedTime>") ;

buf.append ("</AlarmCreationInterface>");

buf.append ("</Alarms>") ;

message.setText (buf.toString());

System.out.println ("Sending message: " + message.getText()):

producer.send (message) ;
} catch (JMSException e) {

System.out.println ("Exception occurred: " + e);
} finally {
if (connection != null) {

try {

76

connection.close();
} catch (JMSException e) {
}

By now you should have a functioning sample Java Alarm injector.

Chapter 5

Advanced Development features

5.1

Advanced feature: Spring Framework integration

A Spring Framework context . xml file is provided in the
src/main/resources/valuepack/conf folder. This file is defined for the whole
“skeleton” value pack, i.e. it is common for all scenarios of the value pack.

All the Spring beans defined in this file will be available to each rule file of each scenario of
the value pack.

By default the context. xm1 file is empty:

%] contextxml &2 =0
<2xml version="1.0" encoding="UTF-§"3> -
25 3 xmlns—"http://www.springframevork.ora/schema/beans"

xmlns:xsi="http://vev.w3.0rg/2001 /XMLSchema-instance” xmlns:ims="http://wev.springframevork.org/schena/
xmlns:p="http://www.springframevork.org/schema/p" xmlns:context="http://www.springframevork.org/schema/
xmlns:amg="http://activemg.apache.org/schema/core" xmlns:util="http://wwv.springframevork.org/schema/ut
xsi:schemalocation="http://wwv.springframewvork.org/schema/beans
http://www.springframevork.org/schema/beans/spring-beans.xsd
http://www,springframevork.org/schema/context
http: //www,springframevork.org/schema/context/spring-context . xsd
http://www.springframevork.org/schema/jms
http://www.springframevork.org/schema/jms/spring-jms.xsd
http://activemg.apache.org/schema/cors
http://activemq.apache.org/schema/core/activemg-core.xsd">

<context:annotation-config />

</beans>

< . 3

Design | Source

Figure 29 - The default project’s empty context . xml file

77

You can define any number of Spring beans in the context . xm1 file. These beans will be
accessible from within the rules files through global variables defined in your rules files
provided you follow the instructions explained in the following sections.

5.1.1 Defining and using Spring Beans inside rule files using global
variables

The Spring “dependency injection” framework is useful for defining global variables
(already initialized) in rules files. In a normal Drools environment, this is done through
some Java code. As UCA hides the Drools session object, global variables are “injected” with
Spring, from a XML definition (context . xm1l).

Note

It is worth noting that there are 2 context. xm1 files in each value pack:
e Inthe src/main/resources/valuepack/conf folderisthe
context.xml thatis used when the value pack runs on a UCA EBC Server
instance

e Inthe src/test/resources/<scenario folder name>folderisthe
<scenario name>-context.xml thatis used when the value pack runs in
JUnit test mode.

Please make sure to define all your Spring beans in both files, otherwise the JUnit tests
might fail.

First you need to define your Spring beans in the context . xm1 file (the following sample
file comes from the Low Level Event Filtering value pack and is described in the “UCA for
EBC Value Packs Examples” guide)

The Spring beans that you define in the context.xml file are defined at the Value Pack level,
and thus are global to all scenarios of the Value Pack:

¥ contextaml 1 =0

/spring-beans.xsd
ntext

xt/spring-context.xsd

tivemg-core.xsd">
e <bean id="TIENNVIRINNEREPEr" class="com. hp.uca.expert.vp.llef.action. AcneActionManager” />

</beans>

« i v
Design | Source

Figure 30 - The “Low Level Event Filtering” Value Pack’s context . xm1 file

In the above screenshot, we define a Spring bean called acmeActionManager. This is just
an example; with any other Spring bean, the process explained in the following paragraphs
would have been the same.

78

Next we need to associate the Spring beans with global variables defined in your scenario.
Thisis done inthe ValuePackConfiguration.xml file that defines the configuration
for all the scenarios of your value pack.

Note

Although Spring beans are defined at the Value Pack level, global variables are defined at
the scenario level. If you need a Spring bean to be global to all scenarios of your Value Pack,
you need to configure the Spring bean as a global variable for each scenario of the Value
Packinthe valuePackConfiguration.xml file.

[%] ValuePackConfiguration.xmil &3 =0
1 «?xml wversion="1.8" encoding="UTF-8"?> -
2= <valuePackConfiguration xmlns="http://hp.com/uca/expert/config" B
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance”
a name="__PROJECT_NAME__" version="__ PROJECT_VERSION__">
5 E
65 <scenarios>
7€ <scenario name="com.hp.uca.expert.vp. llef.grouping.Grouping™>
8 <filterFile>src/main/resources/valuepack/grouping/grouping-filter.xml</filter

<fireAllRulesPolicy>EACH ACCESS</fireAllRulesPolicy>
<globals>
<globals>
<key>acmeActionManager</key>

<value>acmeActionManager</value>
</global>

<processingMode>STREAM< /processingMode>
179 <rulesFiles>
18 <rulesFile>
19 <filename>file:./src/main/resources/valuepack/grouping/grouping-templ
20 <name>Grouping Rule Set</name>
21 <paramsFilename>file:./src/main/resources/valuepack/grouping/grouping
22 <ruleFileType>XDRL</ruleFileType>
23 </rulesFile>
24 </rulesFiles>
25 </scenario>
269 <scenario name="com.hp.uca.expert.vp.llef.inactivity. Inactivity">
27 <filterFile>src/main/resources/valuepack/inactivity/inactivity-filter xml</fi
28 <fireAllRulesPolicy>EACH_ACCESS</fireAllRulesPolicy>
299 <globals>
309 <global>
31 | <kev>acmeActionManager</kev> T
4 3
Design |Source

Figure 31 - Defining global variables in the ValuePackConfiguration.xml
file

When you define global variables in the ValuePackConfiguration.xml file, the
“key” has to match the name of the global variable you are defining (the name you choose
must match the name of the global variable that you declare in your rules file(s)), and the
“value” has to match the name of the bean defined in the context . xm1 file.

The last step is to define a global variable for the Spring bean in your rules file:

) grouping-template.drl 2
10 import java.util.regex.Matcher; -
11 dimport java.util.regex.Patctern:

12
13 import java.text.SimplsDateFormat;
14 import java.util.Date;

15 import java.util.Locale;

16 import java.util.ArrayList:

17 import java.util.Iterator:;

=

import com.hp.uca.eXpert.scenaric.ScenarioPublic:

20 import com.hp.uca.common.trace.LogHelper;

21 import com.hp.uca.expert.flag.Flag;

22 import com.hp.uca.expert.testmaterial.hbstractJunitlntegrationTest;

24 [import com.hp.uca.expert.vp.llef.action.AcmeActionManager;
26 #declare any global variables here

27 global ScenaricPublic theScenario;
28{ global 1 0nM: T acmeActi T;

ction isCleared

eturn true if a clearance exists for the symptom in the given list of symptoms
unction boolean isCleared(Alarm symptom,Arraylist symproms) {

33 if (symptoms!=null) {

34 Iterator ii=symptoms.iterator();
35

36 while (ii.hasNext()) {

37 Alarm a=(Alarm)ii.next();

Text Editor | Rete Tree|

79

Figure 32 - Defining global variables in rules files

In the import section of your rules file, you need to add an “import” statement for the Java
class of your Spring Bean:

import com.hp.uca.expert.vp.llef.action.AcmeActionManager;

Then you need to add a “global” statement creating a global variable for your Spring Bean:

global AcmeActionManager acmeActionManager;

Then you can use the global variable in your rules:

4] *grouping-template.drl 3 =5

rootAlarm: Alarm(originacingManagedEntity matches "BOX .*",
perceivedSeverity != PerceivedSeverity.CLEAR,
additionalText matches "Rootr Cause .*")

then
LogHelper.enter(theScenario.getlogger (), drools.getRule().getName (), rootRlarm. getAdditionalText(})

SimpleDateFormat sdf = new SimpleDateFormat ("EEE MMM dd HH:mm:

Locale. FRENCH) ;

rootAlarm.setAdditionalInformation ("correlated by rule: "+drools.getRule().getName ()
+" at " +sdf.format (now));

n,

acmelctionManager. doDunmyAetion (roothlarm) ;

theScenario.getSession() .retract (rootAlarm)

a1 i d»
Text Editor | Rete Tree

Figure 33 - Using global variables in rules files

5.2 Using the Flag Object

5.3

5.4

The UCA for EBC product provides a set of Flag Java object. These objects are useful to
trigger rule execution in complex use cases or to trigger internal processing
(Synchronization, etc...).

& please refer to [R2] HP UCA for Event Based Correlation — Reference Guide Chapter
Common Objects, Section Flags, for more information on how to use the Flag Object.

Alarm CustomFields

Alarm CustomFields is the standard x733alarm.CustomFields object. CustomFields
attributes can be used in the rules “condition” part, whereas CustomFields methods can be
called in the rules “action” part.

& please refer to [R2] HP UCA for Event Based Correlation — Reference Guide Chapter

Common Objects, Section Alarm models used in the rules, for more information on how to
use the Custom Fields Object.

Alarm Raised Time

80

5.5

5.6

5.7

5.7.1

The AlarmRaisedTime field of an Alarm is using the Java type XMLGregorianCalendar, not
easy to set. Hence, UCA for EBC provides a helper to set the AlarmRaisedTime field:

setTimeInMillisecond()

That sets all the time related fields.

& please refer to [R2] HP UCA for Event Based Correlation — Reference Guide, Chapter
5.1.1.2 General Attributes of Alarm for more information on how to deal with time fields.

Scenario specific configuration

The UCA for EBC provides a way to manage complex configuration based on XML file when
the Customer Value Pack needs a complex specific configuration.

&~ please refer to [R2] HP UCA for Event Based Correlation — Reference Guide for more

information on how to use the Specific Configuration, Chapter Advanced UCA for EBC
features, section Scenario Specific Configuration.

Performing initialization at scenario startup

The UCA for EBC provides a way to initialize your Value Pack if it needs specific objects to be
created at startup time. This is performed be defining a Java class in your Value Pack and
setting it correctly in the configuration file.

& please refer to [R2] HP UCA for Event Based Correlation — Reference Guide for more
information on how to perform initialization of customer object needed by a Value Pack.

WUI extensions for value packs

Since version 3.1 the UCA for EBC Web User Interface can be extended to host value pack’s
specific web applications or global web application

Extending the WUI at value pack Level

Any .war file delivered within value pack directory tree (usually in lib subdirectory) will be
loaded through the UCA for EBC web server and visible through the Web User Interface.

When the value pack is started, the UCA for EBC Web Ul makes this web application available
from a new tab if the value packs’ monitoring panel.

Example: the war file MyViWebApp .war dropped in deploy/uca-topo-demo-3.2/1ib
directory will lead to:

@; UCA for Event Based Correlation
uca-topo-demo-3.1 > Value Pack > Monitoring
~ 4 UCA-EBC:default Monitoring Configuration Troubleshooting < myVpWebApp)
—
v [uca-topo-demo-3.1 Value Pack : uca-topo-demo-3.1
£ Value Pack aAH Scenarios are running. Flow is disabled.
& linkdown
& performance Scenarios List
Scenario Slatus Status Explanation
ram hn ea ahe fnnndama linkdoen “a Scenarin is runnina

81

By default the UCA for EBC server binds the value pack web application at the following
address:

http://localhost:8888/fullValuepackName-warFilename

For the example above this would give:

http://localhost:8888/uca-topo-demo-3.2-myVpWebApp

5.7.2 Extending the WUI at Global Level

In some cases the WUI extension is not directly linked to a specific value pack but may cover
several value packs or a functionality global to the platform.

In such case it is useful to access this webapp from the global level (UCA-EBCQ). This is the
role of the ‘Extras’ Submenu.

The ‘Extras’ sub-menu is displayed when you have optionally put some extra .war files
under the $UCA_EBC_INSTANCE/webapps directory (note the name of the directory with an
‘s’ at the end). This directory is optional and is not created by default.

Each .war file stored in this directory will be displayed by UCA for EBC Ul under the following
menu:

UCA-EBC:instanceName > Extras > <name of .war file>

As in the picture below:

Welcome: anonymous (Observer; Login Help - =

ﬁ;?) UCA for Event Based Correlation

UCA-EBC:default > Extras = myWebApp-sample

|
|
| v 4% UCA-EBC:default myWebApp-sampl
|

£ Application -

& Users Sample "Hello, World"
@ ctone Application

»

3 Topology Manager

A [uca-topo-demo-3.1 o . . .
This is the home page for a sample application used to illustrate

the source directory organization of a web application within
UCA-EBC.

[webapp-sample-3.1-2

m

Note that this web application will be handled in a Jetty server
which does not support JSP pages.

To prove that they work, you can execute either of the following links:

e To a sample hello world servlet.
® To a sample bean access servlet.
® To a sample bean access through ajax.

Unfortunately the following should not work:

R To

5.7.3 Web application extensions configuration

Some web application extensions may require some additional configuration in order for the
UCA for EBC Web User Interface to build the expected URL.

Two possible configurations are offered:

e Defining the URL service Path

82

http://localhost:8888/fullValuepackName-warFilename
http://localhost:8888/uca-topo-demo-3.2-myVpWebApp

e Defining URL service parameters

5.7.3.1 Defining the URL service Path for extensions at value pack level
This is done by adding a property in uca-ebc.properties with the form:
ValuepackFullname-warFileName-webapp-servicepath=your_path
Example:

For the value pack: uca-topo-demo (version3.2) with a war file named myWebApp.war
define:

uca-topo-demo-3.2-myVpWebApp-webapp-servicepath=myService
= This will lead to building the following URL:
http://localhost:8888/uca-topo-demo-3.2-myVpWebApp/myService

5.7.3.2 Defining the URL service Path for extensions at global level
This is done by adding a property in uca-ebc.properties with the form:
warFileName-webapp-servicepath=your_path
Example:
For the war file named myWebApp-sample.war define:
myWebApp-sample-webapp-servicepath=myService
= This will lead to building the following URL:
http://localhost:8888/myWebApp-sample/myService

5.7.3.3 Defining the URL parameters for extensions at value pack level
This is done by adding a property in uca-ebc.properties with the form:

ValuepackFullname-warFileName-webapp-parameters= coma separated list of parameters

Example:

For the value pack: uca-topo-demo (version3.2) with a war file named myWebApp.war
define:

uca-topo-demo-3.2-myVpWebApp-webapp-parameters=param1=value1,param2=value2
= This will lead to building the following URL:

http://localhost:8888/uca-topo-demo-3.2-myVpWebApp/?param1=value1¶m2=value2i

5.7.3.4 Defining the URL parameters for extensions at global level
This is done by adding a property in uca-ebc.properties with the form:

warFileName-webapp-parameters= coma separated list of parameters

Example:
For the war file named myWebApp-sample.war define:

myWebApp-sample-webapp-parameters=param1=valuel,param2=value2

= This will lead to building the following URL:

83

http://localhost:8888/uca-topo-demo-3.2-myVpWebApp/myService
http://localhost:8888/myWebApp-sample/myService
http://localhost:8888/uca-topo-demo-3.2-myVpWebApp/?param1=value1¶m2=value2

http://localhost:8888/myWebApp-sample/?param1=value1¶m2=value2#

5.7.4 Inheriting the UCA for EBC logged user and role in the extended

5.8

web application

Some web application may want to know which UCA user is logged (as well as his associated
role) in order to adapt its processing depending on the user id or the role.

This is done by using placeholders in URL parameters as follow:
e ${user} will represent the current logged user
e ${role} will represent this user’s role.

A typical definition would be:

uca-topo-demo-3.2-myVpWebApp-webapp-servicepath= username=${user},userrole=${role}

Configuring the GUI filter tags editor

If your Value Pack is processing specific filters tags, it is possible to list themin a
configuration so that the WUI will use that file to propose only those tags to be used for
defining filters.

& please refer to [R2] HP UCA for Event Based Correlation — Reference Guide and [R7] UCA

for Event Based Correlation — User Interface Guide for more information on how to perform
configuration to enable the GUI tags editor feature.

84

5.9 Editing Filter Files with the UCA for EBC eclipse filter
editor

The UCA-EBC Development Toolkit provides a specific filter editor intended to ease the
development of UCA-EBC filters.

This tool is mainly a checking tool that allows testing the filter against a sample of alarms.
As aresult the tool gives for each alarm, which Top-filter it passes or not, and if it passes a
Top-filter, gives the associated tags (if any).

5.9.1 Editing a Filter
The UCA-EBC filter editor is available by right clicking on the Filter file as follow:

3 — - - —)] 3
= lava - ProblemDetection/uca-evp-pd-skeleton/pom.xml - Eclipse SDK “

File Edit Mavigate 5Search Project Run Design Window Help
J| F v i G =3 &)] v 5| -
ke O & $-0-Q- HG- & 4 Biza @i
2 Pa [JuIu [[5Pre 22 T2 Ty\l - Naw = B % pomaml (@ pom.xml (@ pomaml E2
=] <}==~D - 1 <?xml version="1.8" encoding="UTF-8"?>
2= <project wmlns="http://maven.apache.org/POM/4.8.8" wxmln:
Mew y Elen="http://maven.apache.org/POM/4.8.
I 1.0.0</modelVersion>
pd-assembly Open =] . - »
d- |
E d_::'(mp ® Open With , Text Editor
B | copy - € UCAEBC Filter File Edﬁr
. Paste ctisy | ¥ AML Editor
ain
" ¥ Delete Delete | |5 System Editor
L java Remaove from Context Ctrl+Alt+ Shift+ Down = In-Place Editor .
tectior
4 FEsources Mark as Landmark Ctrl+Alt+ Shift+ Up Default Editor
7y bmk Move... Other
ection
Gy com Rename... F2
> Gﬁ |"Ip
ey ft g4y Import..
> [actionsfactory e Export.. n>${project.version}«</evp.version>
» [y alarmeligibility d-skeleton</evp.name>
» [alarmlifecycle Z Refresh F5
a [all
[} Alarms_all_problems, Run As L
¥} Alarms_BitError_T1.x Debug As 3
¥ Alarms_BitError_T2. Profile As » par</ids
17 Alarms_Power_T1.xm Team > .
[¥) Alarms_Power_T2xm) ugins>.
¥ Alarms_Power_T3:xm Compare With | <plugin: .
Replace With > <groupId:org.apache.maven.plugir
¥ Alarms_Synch_Tlaxm <artifactIdsmaven-dependency-ply
[¥ Alarms_Synch_T2.xm Goegle » <executions>
1) Alarms_XmlGeneric_§ SEnnED » <E)\'ECLIJtiCn> N
[¥} PDFramework_seque <id>copy-local</id>
|¥} PDFrameworkTest-co Properties Alt+Enter :PhaiE§gEnEr‘ate—r‘esource
oals
1 ProblemDetection_all_filters.xml 2697 8717 39 B <goalscopy</goals
1%} ProblemXmliConfig_allxml 2712 8/2/12 6:28 48 </goals>
1% ValuePackConfiguration_allaml 3251 1/29/1 a1e <configurations
. (& basic 42 <artifactItems:
. % enrichment 432 <artifactItem>

This launches the UCA-EBC filter editor.

At this stage the editor contains a single editor tab which is an XML editor allowing to
edit/save the Xml Filter file:

85

—— = — - T — " —— ™
= Java - ProblemDetection/uca-evp-pd-fwk/sre/test/reseurces/ft/all/ProblemDetection_all_filters.xml - Eclipse SDK ﬂlglélg
File Edit Mavigate Search Project Run Window Help
i = @ - & Associate Alarms B @) <Drools> %5 Debug
il D N HE- @SS~ B
B~ B v a0 v
|X| pom.xml rlil pom.xml (lﬁl pom.xml (@ UCA EBC Filter Editor: ProblemDetection_all_filters.xml &2 =&
=
I 1<?xml version="1.8" encoeding="UTF-B8" 2> -
f2 2 ¢filters xmlns="http://hp.com/uca/expert/filter"> EI
Ju 3
4 <topFilter name="XmlGeneric_Synch"»
) 5 <anyCondition tag="TeMIP TT">
yC g
T: 6 <allCondition>
- 7 <allCondition>
= 8 <stringFilterStatement>
9 <fieldName>originatingManagedEntity</fieldName>
18 <operator>matches</operator>
I 11 <fieldvalue>motorola_omcr_system .* managedelement .* bssfunction .*
12 </stringFilterStatement>
13 </allCondition:
14 <anyCondition>
15 <stringFilterStatement tag="Trigger":
16 <fieldName>radditionalText</fieldName:>
17 <operatorscontains</operators
13 ¢<fieldvalue>[116] Synchronization Loss 005 Timer Expired</fieldvalue: -
] — —m | [+]
ProblemDetection_all_filters.xml) L}
[y |
u
;-:‘Sign into Google = E.d @ @ } & B =
L L — — -]

Single Tab Editor

5.9.2 Associating an Alarm File Sample to the Filter Editor

In Order to check the Filter against a set of alarms, the Xml Alarm file must be associated to
the filter editor. This is done by left clicking on the Alarm File in order to select the file and
the click on the ‘Associate Alarms’ button as follow:

86

= Java - ProblemDetection/uca-evp-pd-fuwk/src/test/resources/ft/all/ProblemDetection_all_filters.xml - Eclipse SDK ‘ = [B]
File Edit Mavigate Search Project Run
r Q- & ASSDCIE%NEH’HS TR HET (B2E i §) <Drools> %5 Debug
- - (SR e Assicia "larm file to the Filter Ed\tur]
[2 Pa [Juu [Pre B2 T2 Ty |25 Na =N X] pom.ml €8 UCA EBC Filter Editor: ProblemDetection_all_fi 5% =8
== ing="UTF-8" ?> -
= /hp.com/uca/expert/filter"> F
ms| -
seripts jl 4 <topFilter name="XmlGeneric_Synch"» |
uca-evp-pd-assembly 5 <anyCondition tag="TeMIP TT"» 3
uca-evp-pd-example 6 <allCondition»
£ 7 <allCondition>
uca-evp-pd-fuwk
PP 3 <stringFilterStatement>
(= logs |4 9 «fieldName>originatingManagedEntity</fieldName>
[y src 8 <operator>matches</cperators
> [main <fieldValuesmotorola_omcr_system .* managedelement .* bssfi
4 (G test </stringFilterStatement>
& java </allCondition>
! <anyConditions
4 [resources <stringFilterStatement tag="Trigger":
> [bmk <fieldName>additionalText</fieldName>
4 (5 com <operator>contains</operator>
. G hp 13 ¢<fieldvalue>[116] Synchronization Loss 005 Timer Expired</1
.Gt 19 </stringFilterStatement>
X 20 <stringFilterStatement tag="Trigger">
» & actionsfactory 21 <FieldName>additionalText</fieldName>
> [alarmeligibility 22 <operator>contains</operators
- [alarmlifecycle 23 «fieldvalue>[118] Remote Alarm 00S Timer Expired</fieldvalc
4 G all 24 </stringFilterstatement>
Alarms all problemsxml 2825 9 25 <stringfFilterStatement tag="SubAlarm”>
P : 26 «fieldame>additionalText</fieldName>
i) : 27 <operator>contains</ocperator>
¥y Alarms_BitError_T2.xml 28 <fieldValue>[18] Link Disconnected</fieldvalues
¥} Alarms_Power_TLxml 2225 29 </stringFilterStatement>
¥ Alarms_Power_T2xml 2825 3@ <stringFilterStatement tag="SubAlarm">
= N . . 31 <fieldName>additional Text</fieldName>
¥ Alarms_Power_T3xml 2525 2] X
. 32 <operator>contains</operators
¥ Alarms_Synch_TLaml 3 33 <fieldvalue»[@] Last RSL Link Failure</fieldvalue>
¥ Alarms_Synch_T2xml 2825 9/12/1 34 </stringFilterStatement>
¥ Alarms_xXmlGeneric_Synch_TLxml 35 </anyCondition>
¥} PDFramework_sequencedTest-cor 36 </allCondition> 2
¥} PDFrameworkTest-contextxml 274 ' n, v
¥} ProblemDetection_all_filters.xml ProblemDetection_all filters.xml
[# ProblemXmIConfig_all.ml 2712 i . Problems | @ Javadoc | [2, Declaration | 3% Call Hierarchy | 4 Search &1 E] Console| 3 Progress =08
1% ValuePackCenfiguration_allxml 32
> (& basic @Gl*sﬁllﬂl&

> [enrichment

. (& problemdefault
m 3

=6

Alarms_all_problemsxml - ProblemDetection/uca-evp-pd-fwk/src/test/resources/ft/all

12 file names matching 'uca-ebc.properties’ in 'ProblemDetection’

= test

= resources

-:' Sign in to Google...

When the association is done, the editor turns itself into a multi-panel editor offering
several edition panels:

e TheFilter file editor panel, allowing to edit the Filter file

e The Aggregated View panel, giving an overview of the passing/blocked alarms
e The Alarm file editor panel, allowing to edit the Alarm File

e The Passed filter view, giving information on passed filters and tags.

As shown in the picture below:

87

mid @~ & AsocateMlams H OG- FE- BO S0 B © <Drools> 35 Debug
TR TR A = =T -
¥ pomaaml [(4 pomuml |] pomaxml |6 UCA EBC Fifter Editor: ProblemDetection_all fftersaml &3 =2
&g
g | Problem_BitError . Problem_Power| XmiGeneric_Synch | Problem_Synch| New|
I oo Configuration Panel
(] Select the attributes you are interested in 2
E [] identifier [] acknowledgementUserldentifier [| preblemInformation [correlationNetificationldentifiers B userText
- || originalSeverity [originatingManagedEntity |H] additionalText [] networkState || sourceldentifier
f [alarmRaisedTime [] specificProblem [] problemState [] probableCause [7] perceivedSeverity
[] domain [C] pbalarm [alarmType [] operatorState
[selectallAtributes | [Generate filter
identifier userText originatingManagedEntity additionalText =
operation_context .uca_network alarm_object 44... Khorfakkan _BSC24: BridiPPM _6185 0 motorala_omer_system kivusat_test managedel.. TPD_TEST Motorola 26 - Test SITE D)
operation_context .uca_network alarm_object 44... Khorfakkan_BSC24: BridiPPM_6185 0 motorola_omer_system kivusat test managedel.. TPD_TEST Motorola 2G - Test SITE D
f operation_context .uca_network alarm_object 85 Khorfakkan_BSC24: BridiPPM_6185_0 moterola_omer_system kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITE D)
operation_context .uca_network alarm_object81 Khorfakkan _BSC24: BridiPPM _6185 0 test motorola_omer_system kivusat test managedel.. TPD_TEST Motorola 2G - Test SITE D
operation_context .uca_network alarm_object 80 Khorfakkan_BSC24:BridiPPM_6185_0: test motorola_omer_system kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITE D
operation_context .uca_network alarm_object 181 Khorfakkan_BSC24: BridiPPM_6185_1; test moterola_omer_system kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITED
operation_context .uca_network alarm_object 180 Khorfakkan BSC24:BridiPPM 6185 1: test motorola_omecr_system kivusat test managedel.. TPD_TEST Motorola 2G - Test SITE D
operation_context .uca_network alarm_object 186 Khorfakkan_BSC24: BridiPPM_6185_1 moterola_omer_system kivusat_test managedel.. TPD_TEST Motorola 2 - Test SITE D|=
f operation_context .uca_network alarm_object 280 Khorfakkan_BSC24:BridiPPM_6185_2: test moterola_omer_system kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITED
[operation_context .uca_network alarm_object 281 Khorfakkan_BSC24: BridiPPM_6185 2: test motorola_omer_system kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITE D
{ operation_context .uca_network alarm_object 278 Khorfakkan_BSC24: BridiPPM_6185_2 moterola_omer_system kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITED
operation_context .uca_network alarm_object 380 Khorfakkan BSC24:BridiPPM_6185 1: to mix with... motorola_omcr_system kivusat_test managedel... TPD_TEST Motorola 26 - Test SITE D|
operation_context .uca_network alarm_object 381 Khorfakkan BSC24: BridiPPM 6185 1: to mix wit.. motorola omer_system kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITE D|
operation_context .uca_network alarm_object 379 Khorfakkan_BSC24: BridiPPM_6185_1 moterola_omer_system kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITED
operation_context .uca_network alarm_object 480 Khorfakkan BSC24:BridiPPM_6185 4: test motorola_omer_system kivusat_test managedel.. TPD_TEST Motorola 26 - Test SITE D
{ operation_context .uca_network alarm_object 481 Khorfakkan_BSC24: BridiPPM_6185 4: test motorola_omecr_system kivusat test managedel.. TPD_TEST Motorola 26 - Test SITED—
operation_context .uca_network alarm_object 482 Khorfakkan_BSC24: BridiPPM_6185_4 moterola_omer_system kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITED
operation_context .uca_network alarm_object 580 Khorfakkan BSC24:BridiPPM_6185 5: test motorola_omer_system kivusat_test managedel.. TPD_TEST Motorola 26 - Test SITE D
operation_context .uca_network alarm_object 581 Khorfakkan_BSC24: BridiPPM_6185_5: test motorola_omecr_system kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITED
[operation_context .uca_network alarm_object 583 Khorfakkan_BSC24: BridiPPM_6185_5 moterola_omer_system kivusat_test managedel... TPD_TEST Motorola 26 - Test SITED ™
I < i]
——
: T"ProblemDetection_all filters.xm | Filter Generator | Alarms_all_problems.ml \ Pa;sad-ﬁ\ters-v.m\ :
| g ‘ i ! HsignintoGoogle.. | 5 5l @ B S 4 B 5
\ — - —
°

5.9.3 How to read the Filter editor aggregated view?

This view offers a panel per top filter as defined in the filter file.
You can switch from one top-filter to others by clicking on the top level panel selection:

| %] pom.xml (@ pom.xml (@ om.xml @ UCA EBC Filter Editor: ProblemDetection_all_filters.xml £

roblem_BitError (Probl em_Power ﬁ(m IGeneric_Synch | Problem_Synch

Coenfiguration Panel

Select the attributes you are interested in
[identifier [] acknowledgementUserdentifier [| probleminformation [] correlationMotificationldentifiers [H] userText

The configuration Panel area allows selecting the alarms attributes to be displayed in the

Alarm table list.

Problem_BitError [Prob\ em_Power [Xm 1Generic_Synch [P roblem_Synch . N Ew]

Configuration Panel

Select the attributes you are interested in :

[T identifier = acknowledgementUserldentifier = prebleminformation [correlaticnMotificationldentifiers

[JoriginalSeverity [H] originatingManagedEntity [H] zdditionalText [] networkState [sourceldentifier
[]alarmRaisedTime [| specificProblem [] problemState [] probableCause [perceivedSeverity
[] domain [pbAlarm [JalarmType [] operatorState

The Alarm table list shows the content of the alarm file as a table. Each table row is
preceded by a check box indicating if the alarm is passing or not the given top-filter (A
checked box and a green color indicate the alarm is passing the filter)

88

identifier

operation_context .|
operation_context .
operation_context .
operation_context .|
operation_context .|
operation_context .
operation_context .
operation_context .|
operation_context .
operation_context .
operation_context .|
operation_context .
operation_context .
operation_context .|
operation_context .
operation_context .
operation_context .|

operation_context .

uca_network alarm_object 44...
uca_network alarm_object 44...

uca_network alarm_object 85

uca_network alarm_object 81

uca_network alarm_object 80

uca_network alarm_object 181
uca_network alarm_object 180
uca_network alarm_object 186
uca_network alarm_object 280
uca_network alarm_object 281
uca_network alarm_object 278
uca_network alarm_object 380
uca_network alarm_object 381
uca_network alarm_object 379
uca_network alarm_object 450
uca_network alarm_object 481
uca_network alarm_object 482
uca_network alarm_object 580

userText

Khorfakkan_BSC24: BridiPPM_6185_0
Khorfakkan_BSC24: BridiPPM_6185_0
Khorfakkan_BSC24: BridiPPM_6185_0
Khorfakkan_BSC24: BridiPPM_6185_0: test
Khorfakkan_BSC24:BridiPPM_6185_0: test
Khorfakkan_BSC24: BridiPPM_6185_1: test
Khorfakkan_BSC24:BridiPPM_6185 1: test
Khorfakkan_BSC24: BridiPPM_6185_1
Khorfakkan_BSC24:BridiPPM_6185_2: test
Khorfakkan_BSC24: BridiPPM_6185_2: test
Khorfakkan_BSC24: BridiPPM_6185_2

Khorfakkan_BSC24:BridiPPM_6185_1: to mix with...
Khorfakkan_BSC24: BridiPPM_6185_1: to mix wit...

Khorfakkan_BSC24: BridiPPM_6185_1
Khorfakkan_BSC24:BridiPPM_6185_4: test
Khorfakkan_BSC24: BridiPPM_6185_4: test
Khorfakkan_BSC24: BridiPPM_6185_4
Khorfakkan_BSC24:BridiPPM_6185_5: test

originatingManagedEntity

motorola_omer_system
moterola_omcr_system
motorola_omer_system
motorola_omer_system
motorola_omcr_system
moterola_omcr_system
motorola_omer_system
motorola_omer_system
moterola_omcr_system
motorola_omer_system
motorola_omer_system
moterola_omcr_system
motorola_omer_system
motorola_omer_system
moterola_omcr_system
motorola_omer_system
motorola_omer_system

moterola_omcr_system

5.9.4 How to read the ‘passed filter’ view?

kivusat_test managedel...
‘kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
‘kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
‘kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
‘kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
‘kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...

‘kivusat_test managedel...

additionalText

TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te

For a selected alarm, the ‘passed filter’ view gives the list of passed top-filters and the
corresponding filter tags.

The passed filter view is a 3 parts window:

The top part is the alarm picker, it allows selecting the alarm

The left part displays the selected alarm content

The right part gives the ‘passed’ top-filters and associated Tags.

89

Java - ProblemDetection/|

File Edit Mavigate Search Project Run Window Help

i~ @~ & Associate Alarms F-0-Q- FEGC- Fi ¢ <Drools> s Debug
BE H G BB G

Ll %] pom.ml (@ pom.xml (@ pom.xml (@ UCA EBEC Filter Editor: ProblemDetection_all_filtersaml 2 =g
=
12 Alarm-Passed-Filters-View
Ju Please select an Alarm: [operation_contact .uca_network alarm_object 181 -
&
£ <%ml version="1.0" encoding="UTF-8" standalone="yes"?> “ | Passing Filter Name Passing Filter Statermnent Tags
- <AlarmCreationInterface xmins="http://hp.com/uca/expert/x733Alarm"> ; i
<identifier> operation_context .uca_network alarm_object 181 < //identifier> Problem_BitError TeMIP TT, SubAlarm
<spurceldentifier>TeMIP EMS=/sourceldentifier> KmlGeneric_Synch TeMIP TT, SubAlarm
<alarmRaised Time> 2010-09-16T14:36:23.027+02:00 < /alarmRaised Time> Problem_Synch TeMIP TT, SubAlarm
I <originatingManagedEntity> motorola_omer_system .kivusat_test managedel:

<originatingManagedEntityStructure>
<classInstance instance=".kivusat_test" clazz="motorola_omer_system"/>
< classlnstance instanc ssfunction_5" clazz="managedelement’/ >
<classInstance instance="5" clazz="hssfunction"/>
<classInstance instanci clazz="btssitemgr"/>
<classInstance instance="1" clazz="R5L"/>
</originatingManagedEntityStructure>
<alarmType> COMMUNICATIONS_ALARM</alarmType>
<probableCause> CommunicationsSubsystemPFailure< /probableCausex E
< perceivedSeverity> MINOR< /perceivedSeverity> 1
<networkState> NOT_CLEARED< /networkState>
<operatorState> ACKNOWLEDGED < /operatorState>
<problem5tate> NOT_HAMNDLED < /problemStates
<probleminformations Attribute not available</problemInformations
<specificProblem Attribute not available</specificProblem:
<additionalText> TPD_TEST Motorola 26 - Test SITE DOWN - [0] Last RSL Link
<correlationMotificationIdentifiers> Attribute not available</correlationMNotific
<customFields=>
<customField value="UCA Expert" name="acknowledgementUserldentifier
< customField value="Minor" name="originalSeverity"/>
<customField value="Khorfakkan_BSC24: BridiPPM_5185_1: test” name="us
<customField value=".uca_pit_dem" name="domain"/>
</customFields> i
</AlarmCreationInterface>

4| [| C 4| ([} [

ProblemDetection_all_filters.xml |Fi|ter Generator |A|arms_a||_prob\ems.xm| lPassed-FiIters-View]

LI fElel 3y B

. | | | -;:lSignin to Google...

— h—

5.9.5 How to use the filter to create a new top-filter?
The aggregate view offers the possibility to quickly create a new top-filter.

A top filter creation is a multi-step operation:

Step 1: Create a new top-filter tab. This is done by clicking on the ‘New’ tab in the top-
filter selection area:

‘ X pom.xml (@ pom.xml (@ pom.xml (@ UCA EBC Filter Editor: ProblemDetection_all filters.xml 53 =0

Problem_BitError ﬁ’roblem_Power ﬁ(m\Generic_Synch Problem_Synch Neﬂ

Configuration Panel -
Select the attributes you are interested in: 3
[identifier =} acknowledgementUserldentifier =] probleminformation || correlationMotificationldentifiers [l userT,
[l originalSeverity [H] originatingManagedEntity |H additionalText [networkState [soure

This creates a new Filter panel with a default name. This name can be changed by right
clicking on the new filter tab:

90

3

=

m

|X| pom.xml %] pom.xml %] pom.xml & UCA EBC Filter Editor: ProblemDetection_all_filtersxml &3 =8

Problem_BitError | Problem_Power | XmlGeneric_Synch | Problem_Synch | Filter 5. Blew
% Delete Filter 5 and dispose this tab

Cenfiguration Panel
Rename Filter

Select the attributes you are interested in : X
[identifier ["] acknowledgementUserldentifier [| problemInformation [| correlationMotificationldentifiers [| userTe
[] originalSeverity [originatingManagedEntity [] additionalText ["] networkState [] source

Note: a Top-filter can also be deleted by clicking on the ‘delete’ option of the same menu.

Step 2: select the alarm attributes that will play a role in the filtering in the
“Configuration panel” section.

Example:

Configuration Panel

Select the attributes you are interested in: -
[identifier] acknowledgementUserldentifier = probleminformation [correlatienMotificationldentifiers [userText
originalSeverity [originatingManagedEntity additional Text [] networkState [7] sourceldentifier
[] alarmRaisedTime [H specificProblem [] problemState [] probableCause [7] perceivedSeverity
[] domain [T pbAlarm [] alarmType [] operatorState

Step 3: In the Alarm table, select those alarms that will pass the filter by selecting the

checkbox.
identifier originalSev... additionalText specificProblem 'S
operation_context .uca_network alarm_ocbject 44... Critical TPD_TEST Motorola 26G - Test SITE DOWN SYNC... Attribute not available
[7] operation_context .uca_network alarm_chject 44... Minor TPD_TEST Motorola 26 - Test SITE DOWM - [0] L... Attribute not available =
operation_context .uca_network alarm_ochject 85 Critical TPD_TEST Motorola 26G - Test SITE DOWN SYNC... Attribute not available
[] operation_context .uca_network alarm_object 81 Minor TPD_TEST Motorola 26 - Test SITE DOWM - [0] L... Attribute not available
[7] operation_context .uca_network alarm_ohject 80 Minor TPD_TEST Motorola 26G - Test SITE DOWM - [10] ... Attribute not available
[7] operation_context .uca_network alarm_object 181 Minor TPD_TEST Motorola 26 - Test SITE DOWM - [0] L... Attribute not available
Step 4: generate the new filter by clicking the “Generate Filter” button.
[identifier [7] acknowledgementUserdentifier [probleminformation [correlationNotificationldentifiers [~] userText
M| originalSeverity [] originatingManagedEntity [H] additionalText [] networkState [sourceldentifier
[] alarmRaisedTime [B specificProblem [] problemState [] probableCause [perceivedSeverity
[] domain [] pbAlarm [] alarmType [] operatorState
’ Select All Attributes] ’ Generate filter]
identifier originalSev... additionalText specificProblem
operation_context .uca_network alarm_object44... Critical TPD_TEST Motorola 2G - Test SITE DOWRN SYMNC... Attribute not available
[7] operation_context .uca_network alarm_object 44... Minor TPD_TEST Motorola 2G - Test SITE DOWM - [0] L... Attribute not available

Step 5: Click on the filter editor view and check the generated filter. You can manually
edit the generated editor in order to make some fine tuning or changes.

Step 6: Control the result of the new filter in the “passed Filter” view
Step 7: save your changes

Warning

The “Generate filter” Button can be used on an already existing filter in order to modify it.
However by re-generating an existing filter, all the Tags defined in it will be lost. It is
therefore not recommended to use the “Generate filter” button on existing filters.

91

5.10 Persisting alarms or events using the DB forwarder

feature

This chapter provides technical information about the DB forwarder feature introduced in
UCA-EBC3.1.

Itis intended to the UCA-EBC Value Pack developer that needs to set up that functionality
within his VP.

Any DB coming with a JDBC driver can be supported by this feature.

However, UCA-EBC brings 2 DBs with libraries already part of the UCA-EBC default libraries:
H2 and HyperSQL.

5.10.1 Concepts

5.10.1.1 Storing alarms

To store alarms into a DB, the well-known alarm forwarder mechanism is used. In this
particular case, a JDBC alarm forwarder is now provided to perform such actions.

Alarms that are stored into a DB follow also the same scheme of the alarms received
through classic NOM mediation platform. Once stored in the DB, they are pushed back into
the dispatcher of the Value Pack using the DB flow mechanism.

So if you want to recognize them from standard alarms, you will have to define a way to do
it. This can done using a special identifier for the alarm, or by using a special custom field.

This is up to the Value Pack owner to decide which method is to be used.

5.10.1.2 Storing events

UCA-EBC 3.2 brings new EventForwarder interface to handle Event objects (introduced in 3.1
as well).

e com.hp.uca.expert.event.EventForwarder
e com.hp.uca.expert.event.Event

To store such Event objects into a DB, end-user can use a JDBC event forwarder based on
the same concepts as the alarm forwarder described above.

e com.hp.uca.expert.event.JDBCEventForwarder

In the contrary of alarms, events stored into a DB do not have DB flow mechanism
associated into it.

5.10.2 Getting started

To make use of the DB feature, this is just a question of configuring correctly your value
pack. This is done by modifying the VP context.xml file (*).

Firstly, in this file, you will have to make use of the default JDBC settings by importing the
provided file from the UCA classpath, as:

<import resource="classpath:jdbc/dependencies.xml" />

92

Those default settings bring mainly an AlarmDao bean (called alarmDao) and an
AlarmNotifier bean (called dbNotifier).

If you do not want to use default JDBC settings, you can do so by referring to the Advanced
settings section below.

Then, still in context.xml, you will have to define at minimum 2 Spring beans:

e the datasource bean
e the DB forwarder bean

and optionally
e the DB store bean

Note

(*) You can also configure JDBC settings globally for all value packs in the
conf/dependencies.xml file if needed.

5.10.2.1 Defining the datasource

The first thing to configure is the datasource. This is done by defining a new Spring bean.
Spring offers a number of options for configuring a data sources via data source beans.

These sources include the following:
e Datasources that use JNDI
e Datasources that use JDBC drivers

e Datasources that pool connections

Below is an example using pool connections with Apache Commons DBCP (*), and with a H2
database (**).

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">
<property name="driverClassName" value="org.h2.Driver" />
<property name="url" value="jdbc:h2:~/.uca/exampleDB" />
<property name="username" value="sa" />
<property name="password" value="" />

</bean>

Notes

(*) You could also use "org.springframework.jdbc.datasource.DriverManagerDataSource" or
other of your choice

(**) You could also use HyperSQL DB. For other DBs, make sure to make the requested JDBC
driver as part of your value pack libraries.

93

5.10.2.2 Defining the DB store

supportsUnlimitedVarChar |boolean

supportsCreate boolean

supportslfNotExist boolean

The second thing to configure is the store used to persist alarms. Currently only a store of
type SQL is supported. But still, in prevision of managing NOSQL stores, a bean is to be
defined for specifying what that store is capable of. This setting is optional. The settable
properties of an SQL store are:

Property Type |Description Default
name string |defines the name of the DB

tells if the DB can be created by the |true except for "voltdb"”
UCA-EBC engine if it does not exists

tells if the DB supports the SQL true except for "hsqldb”
syntax "IF NOT EXISTS" at creation

tells if the DB supports definition of |true except for "vertica'
VARCHAR without a numeric limit

defines the data type to use for big BIGINT" except for

bigint string integers "oracle" that is
g "NUMBER"
tells whether or not to create indexes |true
uselndex boolean

at DB creation

Here below is a simple example:

<bean id="dbStore" class="com.hp.uca.expert.store.sgl.SglStore">
<property name="name" value="h2" />
</bean>

5.10.2.3 Defining the DB forwarder

The next thing to configure is the DB forwarder itself, which is the thread that is going to use
datasource and store defined previously to persist alarms. The DB forwarder has only 2
properties:

Property | Type |Description
alarmDao | bean |the DB Alarm DAO bean
store bean |the DB store bean

tells what to do when inserting an alarm that already exists in DB store
override boolean |(with same identifier). If false (default value): the new alarm is ignored.
If true : the old alarm is deleted, the new alarm is inserted.

tells whether or not to compress enqueued alarms with same identifier,
compress boolean |for performance reasons. If true (default value): alarms are
compressed.

Here below the typical configuration.
(The init-method is optional as the DB forwarder has an auto-start capability)

94

<bean id="dbForwarder" class="com.hp.uca.expert.alarm.JDBCAlarmForwarder"
init-method="start">

<property name="alarmDao" ref="alarmDao" />

<property name="store" ref="dbStore" />
</bean>

Note: If you use a DB forwarder to forward Events instead of Alarms, you will need to
configure as per example below (the eventDao bean needs to be configured too, as specified
in Advanced settings section below)

<bean id="dbForwarder" class="com.hp.uca.expert.event.JDBCEventForwarder"
init-method="start">

<property name="eventDao" ref="eventDao" />

<property name="store" ref="dbStore" />
</bean>

5.10.2.4 Defining the DB flow

To be able to receive alarms changes coming from the DB as per any other alarm coming
from a NOM mediation flow, you will have to configure a DB flow in
ValuePackConfiguration.xml file.

The dbFlow has only 2 properties:

Property Type Description

the name of the DB flow. should be unique in case of

name Sting | ultiple flows

refers to the name of the DB notifier on which to subscribe
dbNotifierName string [for notifications. This is explained in Advanced Setting
section. Its default name is “dbNotifier”.

flag indicating whether to automatically start the DB flow

automaticStart boolean when the value pack is started or not. Default=true
lastEventReceivedFirst attribute which tells if the DB notifier will notify existing
- o boolean . - N
DuringResynchronization alarms in reverse order (if true) upon resynchronization
element that specifies a Java evaluated boolean expression
- . defining the eligibility of an alarm to pass through at flow
eligibilityScope string resynchronization. default is "true" meaning all alarms
present in DB are sent
- . when alarm is coming through that flow, the sourceldentifier
sourceldentifier string

is replaced by this value. default="DB

flag indicating whether to dispatch alarm creation messages
selfFeed boolean |generated by this value pack in standard mode (non-
resynchronization. Default=false

95

file:///C:/Users/AnzileC/AppData/Local/Temp/doxia_1814683111.html%23DB_notifier

A default configuration could be:

<dbFlows>
<dbFlow name="exampleDbFlow" dbNotifierName="dbNotifier" />
</dbFlows>

5.10.3 Example

You can refer to the example part of the UCA-EBC Development Toolkit.
You can find it under ${UCA_EBC_DEV_HOME}/vp-examples/persistence-example.

You can build this example as per usual
#ant all

Specifically, you can have a look at files under src/main/resources/valuepack/conf to see
how to configure the DB feature elements (context.xml) and the DB flows
(ValuePackConfiguration.xml)

5.10.4 Advanced settings

Advanced settings are optional and are only for those who do not want to use the default
settings provided by the file jdbc/dependencies.xml. You can replace following line

<import resource="classpath:jdbc/dependencies.xml" />

by adding each of the following bean directly in the value pack context.xml

5.10.4.1 Defining the SQL Session factory

The SQL session factory is the MyBatis(*) session factory bean. It has two properties:

Property Type Description
dataSource |bean the datasource bean
configLocation |string |the location of the MyBatis configuration file

The default configuration is:

<bean id="sglSessionFactory" class="org.mybatis.spring.SglSessionFactoryBean">
<property name="dataSource" ref="dataSource" />
<property name="configLocation" value="classpath:jdbc/mybatis-
config.xml"/>
</bean>

Note

(*) MyBatis is an Open Source software delivered as part of UCA-EBC 3.2 libraries.

96

5.10.4.2 Defining the DB Alarm DAO

The DB DAO is the mapper interface used to instantiate the Java interface corresponding to
the SQL commands stored in the file defined within the MyBatis configuration file. By
default, the alarms mapper interface is defined in file jdbc/sql-alarms-mapper.xml.

The DB DAO has two properties:

Property Type Description
sqlSessionFactory | bean |the SQL session factory bean

the Java interface for the DAO, which is defaulted to the one provided by

mapperinterface string UCA-EBC, i.e. com.hp.uca.expert.alarm.store.AlarmDao

The DB DAO is in turn used to configure the DB forwarder and the DB notifier beans.

The default configuration is:

<bean id="alarmDao" class="org.mybatis.spring.mapper.MapperFactoryBean">
<property name="sglSessionFactory" ref="sglSessionFactory" />
<property name="mapperInterface"

value="com.hp.uca.expert.alarm.store.AlarmDao" />

</bean>

5.10.4.3 Defining the DB Notifier

The DB natifier is the component that will listen to the DB for changes and will notify the
value pack about those changes. It has two properties:

Property @ Type |Description
alarmDao | bean |the DB Alarm DAO bean

a timer in milliseconds representing the interval between two DB checkings for

checkTimer [number the changes

The default configuration is:

<bean id="dbNotifier" class="com.hp.uca.expert.alarm.store.AlarmNotifier"
scope="singleton">

<property name="alarmDao" ref="alarmDao" />

<property name="checkTimer" value="1000" />
</bean>

5.10.4.4 Defining the DB Event DAO

The DB Event DAQ is the mapper interface used to instantiate the Java interface
corresponding to the SQL commands stored in the file defined within the MyBatis
configuration file. By default, the events mapper interface is defined in file jdbc/sql-events-
mapper.xml.

The DB Event DAO has two properties:

97

Property Type Description
sqlSessionFactory | bean |the SQL session factory bean

the Java interface for the DAO, which is defaulted to the one provided by

mapperinterface string UCA-EBC, i.e. com.hp.uca.expert.event.store.EventDao

The DB Event DAO is in turn used to configure the DB forwarder bean.

There is no default configuration available but it should be easily configurable as per below:

<pbean id="eventDao" class="org.mybatis.spring.mapper.MapperFactoryBean">
<property name="sglSessionFactory" ref="sglSessionFactory" />
<property name="mapperInterface"

value="com.hp.uca.expert.event.store.EventDao" />

</bean>

5.10.4.5 Defining the SQL Mapping interfaces
Alarms mapper:

The alarms mapper interface is defined by default in file jdbc/sql-alarms-mapper.xml. This
file defines the dynamic SQL mapping of the Java interface provided:

@ StoreDaolnterface
@ AlarmDacinterface

void createStore(Store type)

List=StoredAlarm= getAlarmsilong since) void deleteStorel)
StoredAlarm getilarm(String identifier) void clear AN}
YC? void createlndexes()
1 I
N /
% /

Y ra
@ AlarmDao

void storellarm{AlarmCreationMapper a)

vaid removeAlarmi String idertifisr)

void markForDeletion AlarmDeletionMapper a)
void update Alarmi AttributeChangesMapper a)
List=Stored&larm= getilarmsMarkedAsDeleted!)
vaid removeAlarms()

void purgeslarmsiList=3glCondition= conditions)

This interface is provided by default and can be replaced if necessary, in which case the
mapping interface should be changed accordingly.

Events mapper:

The events mapper interface is defined by default in file jdbc/sql-events-mapper.xml. This
file defines the dynamic SQL mapping of the Java interface provided:

98

® StoreDaolnterface

void createStore(Store type)
void deleteStore()
void clear&ll(

A

I
® EventDao

List=StoredEvent> getEvents{long since)

StoredEvent getEvent(String identifier)

void removeEvent{5tring identifier)

void storeEvent{EventCreationMapper eventCreationMapper)

This interface is provided by default and can be replaced if necessary, in which case the
mapping interface should be changed accordingly.

99

Appendix A

A. Ant build. xml targets

The value pack examples provided with UCA for EBC come with an Ant build.xm1l file that
can build and package the project as described in this document.

Following is the full list of Apache Ant targets defined in the build. xm1 file that can be
executed from the command line using the ant tool:

eclipse

Command:

ant eclipse

Creates the .project and .classpath files used by eclipse when importing a project.
clean

Command:

| # ant clean

Removes all files created during the build from the build directory.
compile

Command:

| # ant compile

Compiles all Java files of the project.
test

Command:

ant test

Runs the JUnit tests defined in the project.
package

Command:

ant package

Build the final, “ready to deploy” value pack ZIP file.
all

Command:

ant all

” o« ” o«

Is equivalent to executing the following targets: “clean”, “compile”, “test” and “package”.

100

Glossary

UCA: Unified Correlation Analyzer

EBC: Event Based Correlation

IDE: Integrated Development Environment
JMS: Java Messaging Service

JMX: Java Management Extension, used to access or process action on the UCA for EBC
product.

JNDI: Java Naming and Directory Interface

Inference engine: Process that uses a Rete algorithm for expert behavior
DRL: Drools Rule file

XML: Extensible Markup Language

XSD: Schema of an XML file, describing its structure

X.733: Standard describing the structure of an Alarm used in telecommunication
environment.

EVP: UCA for EBC Value Pack
WUI: Web User Interface

101

