

hp Unified Correlation Analyzer

Unified Correlation Analyzer
for

Event Based Correlation

Version 3.2

Value Pack Examples

Edition: 1.0

April 2015

© Copyright 2015 Hewlett-Packard Development Company, L.P

2

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for
technical or editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notices

© Copyright 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat® and PostScript®s are trademarks of Adobe Systems
Incorporated.
HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and
64-bit configurations) on all HP 9000 computers are Open Group UNIX 95 branded
products.
Java™ is a trademark of Oracle and/or its affiliates.
Microsoft®, Windows® and Windows NT® are U.S. registered trademarks of
Microsoft Corporation.
Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City,
California.
UNIX® is a registered trademark of The Open Group.
X/Open® is a registered trademark, and the X device is a trademark of X/Open
Company Ltd. in the UK and other countries.

3

Contents
Preface .. 7

Chapter 1.. 9

Introduction ... 9

Chapter 2.. 10

Low Level Event Filter Value Pack .. 10

2.1 Software Prerequisites ... 11
2.2 Deploying the Low Level Event Filtering Value Pack .. 11
2.2.1 Installing the Value Pack ... 11
2.2.2 Deploying the Value Pack .. 12
2.2.3 Starting the Low Level Event Filtering Value Pack ... 12
2.2.4 Stopping the Low Level Event Filtering Value Pack .. 13
2.2.5 Un-deploying the Low Level Event Filtering Value Pack 13
2.3 Low Level Event Filtering Value Pack Scenarios .. 14
2.3.1 The Time Wait scenario ... 14
2.3.2 The Statistical scenario ... 15
2.3.3 The Grouping scenario ... 17
2.3.4 The Inactivity scenario .. 19
2.3.5 The Up/Down scenario .. 21
2.4 Testing the Low Level Event Filtering Value Pack .. 22

Chapter 3.. 24

An “Orchestration of Scenarios Cascading” Value Pack 24

3.1 The “Orchestration of Scenarios Cascading” Value Pack Description 24
3.1.1 The Scenarios taking part in the Orchestration .. 24
3.1.2 The Orchestration Routes ... 25
3.1.3 The Orchestration Event Flow ... 26
3.1.4 The Software Prerequisites ... 26
3.2 Deploy and start the “Orchestration of Scenarios Cascading” Value Pack 27
3.2.1 Install the Value Pack .. 27
3.2.2 Deploy the Value Pack ... 27
3.2.3 Set the Orchestration Routes .. 28
3.2.4 Start the Value Pack .. 29
3.3 Stop and undeploy the “Orchestration of Scenarios Cascading” Value Pack 29
3.3.1 Stop the Value Pack ... 30
3.3.2 Undeploy the Value Pack ... 30
3.4 Test the “Orchestration of Scenarios Cascading” Value Pack 31
3.4.1 Event sample files ... 31
3.4.2 Injecting events with the uca-ebc-injector ... 31
3.4.3 Results ... 32
3.4.4 Checking the results .. 32

Chapter 4.. 36

An “Orchestration of Scenarios Cascading in JOIN routes” Value Pack 36

4

4.1 The “Orchestration of Scenarios Cascading in JOIN Routes” Value Pack Description 36
4.1.1 The Scenarios taking part in the Orchestration .. 37
4.1.2 The Orchestration Routes ... 38
4.1.3 The Orchestration Event Flow ... 39
4.1.4 The Software Prerequisites ... 39
4.2 Deploy and start the “Orchestration of Scenarios Cascading in JOIN routes” Value

Pack ... 39
4.2.1 Install the Value Pack .. 40
4.2.2 Deploy the Value Pack ... 40
4.2.3 Set the Orchestration Routes .. 41
4.2.4 Start the Value Pack .. 42
4.3 Stop and undeploy the “Orchestration of Scenarios Cascading in JOIN routes” Value

Pack ... 42
4.3.1 Stop the Value Pack ... 42
4.3.2 Undeploy the “Orchestration of Scenarios Cascading in JOIN routes” Value Pack43
4.4 Test the “Orchestration of Scenarios Cascading in JOIN routes” Value Pack............. 43
4.4.1 Event sample files ... 43
4.4.2 Injecting events with the uca-ebc-injector ... 44
4.4.3 Results ... 44
4.4.4 Checking the results .. 44

Chapter 5.. 60

The “Persistence Example” explained .. 60

5.1 How does it work? ... 60
5.2 Installing the example .. 60
5.3 Looking at the configuration .. 61
5.4 Testing the value pack .. 61

5

Figures
Figure 1 - Alarm flow in Low Level Event Filtering Value Pack.. 10
Figure 2 - Time Wait – Both Fault and Clearance are discarded .. 14
Figure 3 - Time Wait – Fault or Clearance is kept .. 15
Figure 4 - Statistical – Number of faults is above the threshold ... 16
Figure 5 - Statistical – Number of faults is below the threshold ... 16
Figure 6 - Statistical – Number of faults is several times the threshold... 17
Figure 7 - Grouping – No alarm clearance received during the time window 18
Figure 8 - Grouping – No symptom alarm received during the time window .. 18
Figure 9 - Grouping – Clearance on symptom alarms received during the time window 19
Figure 10 - Grouping – Clearance on root cause and symptom alarms received during the time
window ... 19
Figure 11 - Inactivity– Inactivity detected ... 20
Figure 12 - Inactivity – Inactivity not detected .. 21
Figure 13 - Inactivity – Inactivity detection in mix technology context .. 21
Figure 14 - Up/Down – Independent clearance ... 22
Figure 15 - Up/Down – Independent clearance cascaded with Time Wait scenario 22
Figure 16 - OrchestraConfigurationCascadingExample.xml Routes ... 26
Figure 17 - Event flow in “Orchestration of Scenarios Cascading” Value Pack 26
Figure 18 - Event cascading in “Orchestration of Scenarios Cascading” Value Pack test example 32
Figure 19 - OrchestraConfigurationCascadingJoinExample.xml Routes .. 38
Figure 20 - Event flow in “Orchestration of Scenarios Cascading in JOIN routes” Value Pack 39

6

Tables

Table 1 - Software versions ... 8
Table 2 - File structure of the LLEF value pack .. 12
Table 3 - File structure of the “Orchestration of Scenarios Cascading” Value Pack 28
Table 4 - File Structure of the “Orchestration of Scenarios Cascading in JOIN routes” Value Pack 41

7

Preface

This guide provides some examples of Unified Correlated Analyzer for Event Based
Correlation (EBC) Value Packs.

Such examples should be taken as good practice examples for developing new
Value Packs.

Product Name: Unified Correlation Analyzer for Event Based Correlation (also
referred in this document as UCA for EBC)

Product Version: 3.2

Kit Version: V3.2

Intended Audience

Here are some recommendations based on possible reader profiles:

 Solution Developers and integrators

 Software Development Engineers

Software Versions

The term UNIX is used as a generic reference to the operating system, unless
otherwise specified.

The software versions referred to in this document are as follows:

Product Version Supported Operating systems

UCA for Event Based
Correlation Server Version
V3.2

 HP-UX 11.31 for Itanium
 Red Hat Enterprise Linux Server release

5.9 & 6.5
UCA for Event Based Channel
Adapter V3.2

 HP-UX 11.31 for Itanium
 Red Hat Enterprise Linux Server release

5.9 & 6.5
UCA for Event Based
Correlation Software
Development Kit Version V3.2

 Windows XP / Vista
 Windows Server 2007
 Windows 7

8

Table 1 - Software versions

Typographical Conventions

Courier Font:

 Source code and examples of file contents.

 Commands that you enter on the screen.

 Pathnames

 Keyboard key names

Italic Text:

 Filenames, programs and parameters.

 The names of other documents referenced in this manual.

Bold Text:

 To introduce new terms and to emphasize important words.

Associated Documents

The following documents contain useful reference information:

References

[R1] UCA for EBC Reference Guide

Support

Please visit our HP Software Support Online Web site at
https://softwaresupport.hp.com/ for contact information, and details about HP
Software products, services, and support.

The Software support area of the Software Web site includes the following:

1. Downloadable documentation,

2. Troubleshooting information,

3. Patches and updates,

4. Problem reporting,

5. Training information,

6. Support program information.

https://softwaresupport.hp.com/

9

Chapter 1

Introduction

This guide gives some examples of standard correlation value packs developed for
the UCA for Event Based Correlation product.

Throughout this document, we use the ${UCA_EBC_HOME} environment variable

to reference the root directory (“static” part) of UCA for EBC. The default value for
the ${UCA_EBC_HOME} environment variable is /opt/UCA-EBC. The
${UCA_EBC_HOME} environment variable thus references the /opt/UCA-EBC

directory unless UCA for EBC “static” part has been installed in an alternate
directory.

We also use ${UCA_EBC_DATA} environment variable to reference the data

directory (“variable” part) of UCA for EBC. The default value for the
${UCA_EBC_DATA} environment variable is /var/opt/UCA-EBC. The

${UCA_EBC_DATA} environment variable thus references the /var/opt/UCA-
EBC directory unless UCA for EBC “variable” part has been installed in an alternate

directory.

Since UCA-EBC V2.0, the ${UCA_EBC_DATA} directory may contain multiple

instances of UCA-EBC. In this document, we will use the value
${UCA_EBC_INSTANCE} for referring to
${UCA_EBC_DATA}/instances/<instance-name> directory. At

installation, a single <instance-name> is configured: default.

10

Chapter 2

Low Level Event Filter Value Pack

The Low Level Event Filter Value pack delivers a predefined set of Scenarios that
demonstrate event stream processing and provide standard low-level alarm
filtering capability.

The following correlation scenarios are provided:

1. Time Wait: this low-level filtering scenario discards fault alarms and their
associated alarm clearances if they are received during a configurable time
window.

2. Statistical: this low-level filtering scenario counts all fault alarms received
during the configurable time window. If the total number of faults reaches a
configurable threshold, then a statistic alarm is generated.

3. Grouping: this low-level filtering scenario is similar to the “Time Wait” scenario,
but adds root cause correlation functionality by grouping alarms.

4. Inactivity: this low-level filtering scenario identifies when a specific technology
stops forwarding raw messages.

5. Up/Down: this low-level filtering scenario is a complementary scenario, created
for the “Time Wait” and “Grouping” scenarios. It handles alarms that have a
common clearance alarm.

In the Low Level Event Filter Value Pack, the input Alarms flow is dispatched to the
different scenarios according to the following figure:

Figure 1 - Alarm flow in Low Level Event Filtering Value Pack

11

The following assumptions have been used:

 A cleared alarm is an alarm that has the “Perceived Severity” attribute equal
to “CLEAR”

 Parent (Root Cause) alarms are identified by the “AddText” attribute equal to
“Root Cause …”

 Child alarms are identified by the “AddText” attribute equal to “Symptom …”

 Common clear alarms (that need to ‘clears’ several faults) are identified by
the “AddText” attribute equal to “Common clearance …”

2.1 Software Prerequisites

The Low Level Event Filtering Value Pack is delivered with the UCA for EBC
Development product under the vp-examples directory:

${UCA_EBC_DEV_HOME}/vp-examples/llef-example

2.2 Deploying the Low Level Event Filtering Value Pack

Several steps are needed to deploy an EVP (UCA for EBC Value Pack):

1. Install the EVP package in the ${UCA_EBC_INSTANCE}/valuepacks

directory (${UCA_EBC_INSTANCE} translates to /var/opt/UCA-

EBC/instances/<instance name> by default unless UCA for EBC was

installed at an alternate location)

2. Deploy the Value Pack

3. Start the Value Pack.

2.2.1 Installing the Value Pack

The Low Level Event Filtering EVP package example is installed with the UCA for
EBC Server kit. The Low Level Event Filtering EVP is located in the

${UCA_EBC_HOME}/defaults/valuepacks directory. You will need to copy

the Low Level Event Filtering Value Pack zip file (named llef-example-vp-

3.2.zip) to the ${UCA_EBC_DATA}/valuepacks directory, so that it can be

seen by UCA for EBC.

Alternatively, if you have installed the UCA for EBC Development Toolkit, you can
(modify and) re-build the Low Level Event Filtering EVP from the source code by
executing the following commands:

On Windows:

$ cd %UCA_EBC_DEV_HOME%\vp-examples\llef-example
$ ant all

On Linux:

$ cd ${UCA_EBC_DEV_HOME}/vp-examples/llef-example
$ ant all

When rebuilt, the package is ready to be deployed on UCA for EBC. You just need to
copy the Value Pack package you have just generated to the
${UCA_EBC_INSTANCE}/valuepacks directory.

12

2.2.2 Deploying the Value Pack

To deploy the Low Level Event Filtering Value Pack, please use the “--deploy”
option of the uca-ebc-admin command-line administration tool (executed as ‘uca’
user):

On both HP-UX and Linux:

$ cd ${UCA_EBC_HOME}/bin
$ uca-ebc-admin --deploy -vpn llef-example -vpv 3.2

An output similar to the following will be displayed:
UCA for EBC Home directory set to: /opt/UCA-EBC
UCA for EBC Data directory set to: /var/opt/UCA-EBC
INFO - Value Pack name: llef-example version: 3.2 has been
successfully deployed
INFO - Exiting...

Or simply deploy the Value Pack from the UCA for EBC User Interface.

2.2.2.1 File organization

At the end of the deployment step, the files delivered by the Value Pack are
deployed in ${UCA_EBC_INSTANCE}/deploy/llef-example-3.2

directory, according to the following file structure:

Directories Description

lib/ Some additional jar files are installed for
this package

conf/ Configuration files that defines the Value
Pack, and the scenarios

grouping/ Directory containing all files defining
Grouping scenario

inactivity/ Directory containing all files defining
Inactivity scenario

statistical/ Directory containing all files defining
Statistical scenario

timewait/ Directory containing all files defining Time
Wait scenario

updown/ Directory containing all files defining
Up/Down scenario

Table 2 - File structure of the LLEF value pack

2.2.3 Starting the Low Level Event Filtering Value Pack

Value Packs can be started in two different manners depending on whether UCA for
EBC is already started or not.

If UCA for EBC is stopped, restarting the application will automatically start all
Value Packs deployed in the ${UCA_EBC_INSTANCE}/deploy directory.

If UCA for EBC is already running, use the “--start” option of the uca-ebc-admin
command-line administration tool (executed as ‘uca’ user) to start the Value Pack:

13

On both HP-UX and Linux:

$ cd ${UCA_EBC_HOME}/bin
$ uca-ebc-admin --start -vpn llef-example -vpv 3.2

An output similar to the following will be displayed:

UCA for EBC Home directory set to: /opt/UCA-EBC
UCA for EBC Data directory set to: /var/opt/UCA-EBC
INFO - Exiting...

Or simply start it from the UCA for EBC Web User Interface.

2.2.4 Stopping the Low Level Event Filtering Value Pack

You can stop the Value Pack when UCA for EBC is running using the “--stop” option
of the uca-ebc-admin command-line administration tool (executed as ‘uca’ user):

On both HP-UX and Linux:

$ cd ${UCA_EBC_HOME}/bin
$ uca-ebc-admin --stop -vpn llef-example -vpv 3.2

An output similar to the following will be displayed:
UCA for EBC Home directory set to: /opt/UCA-EBC
UCA for EBC Data directory set to: /var/opt/UCA-EBC
INFO - Exiting...

Or simply stop it from the UCA for EBC Web User Interface.

2.2.5 Un-deploying the Low Level Event Filtering Value Pack

To undeploy the Low Level Event Filtering Value Pack, use the “--undeploy” option
of the uca-ebc-admin command-line administration tool (executed as ‘uca’ user):

On both HP-UX and Linux:

$ cd ${UCA_EBC_HOME}/bin
$ uca-ebc-admin --undeploy -vpn llef-example -vpv 3.2

An output similar to the following will be displayed:
UCA for EBC Home directory set to: /opt/UCA-EBC
UCA for EBC Data directory set to: /var/opt/UCA-EBC
INFO - Value Pack name: llef example version: 3.2
has been successfully undeployed
INFO - Exiting...

Or simply un-deploy it from the UCA for EBC Web User Interface.

14

2.3 Low Level Event Filtering Value Pack Scenarios

2.3.1 The Time Wait scenario

2.3.1.1 Functional description

The Time Wait scenario receives fault alarms and waits during a configurable time
period for a clear alarm to arrive. If a clear alarm is received during the time period
both alarm and alarm clearance are discarded and none of them are forwarded to
the Trouble Ticket (TT) generator external application. The purpose of this scenario
is to avoid unreasonable trouble ticket to be opened due to unusual situations,
such as a temporary system overload or an equipment restart.

The main rules in the Time Wait scenario are:

 Discard both fault alarm and fault alarm clearance when both are received
during the time wait period

 Keep fault alarms (or fault alarm clearance) when no corresponding fault
alarm clearance (or fault alarm) is received during the time wait period

The following sections describe the possible use cases in detail.

Note

The rules are parameterized. You can set the value for the following parameters in
the timewait-params.xml file:

 timewait: duration of the time wait period (the default value is 2 seconds)

2.3.1.2 Both Fault and Clearance are discarded

This use case applies when both the alarm and the associated alarm clearance are
received during the time wait period:

Figure 2 - Time Wait – Both Fault and Clearance are discarded

2.3.1.3 Fault or Clearance is kept

15

This use case applies when an alarm is not cleared during the time wait period or
when a clearance is received without the corresponding alarm during the time wait
period:

Figure 3 - Time Wait – Fault or Clearance is kept

2.3.2 The Statistical scenario

2.3.2.1 Functional description

The Statistical scenario counts all fault alarms received during a configurable
period of time. If the total number of alarms reaches a configurable threshold, then
a statistical alarm is generated. If not, then no statistical alarm is generated. In any
case the original alarms are discarded.

The main rules in the Statistical scenario are:

 Create a Statistical alarm whenever a configurable number of alarms (alarm
clearances excepted) is received during a configurable time window

 Don’t create any Statistical alarm if the number of alarms (alarm clearances
excepted) received during a configurable time window does not reach a
configurable number of alarms (threshold)

 Discard all original alarms

The following sections describe the possible use cases in detail.

Note

The rules are parameterized. You can set the value for the following parameters in
the statistical-params.xml file:

 threshold: number of alarms required before sending a Statistical output
alarm (the default value is 3 alarms)

 timewindow: duration of the time window period during which alarms are
counted (the default value is 5 seconds)

2.3.2.2 Number of faults is above the threshold

16

This use case applies when the number of alarms received during the configurable
timewindow is higher than the threshold parameter:

Figure 4 - Statistical – Number of faults is above the threshold

2.3.2.3 Number of faults is below the threshold

This use case applies when the number of alarms received during the configurable
timewindow is lower than the threshold parameter:

Figure 5 - Statistical – Number of faults is below the threshold

2.3.2.4 Number of faults is several times the threshold

This use case applies when the number of alarms received during the configurable
timewindow is equal to several times the value of the threshold parameter:

17

Figure 6 - Statistical – Number of faults is several times the threshold

2.3.3 The Grouping scenario

2.3.3.1 Functional description

Besides discarding fault alarms that are cleared during a configurable period of
time, the Grouping scenario groups fault alarms that share another alarm as a
common root cause. The root cause alarm is called “parent” and symptom alarms
are called “children”.

The scenario works during a configurable period of time, starting at the receipt of a
root cause alarm. During this period, if a “child” alarms is received, the ‘parent’
alarm is enriched with information from the “child” alarm. The “child” alarm is
discarded and the “parent” alarm is forwarded.

If no “child” alarm is received, the “parent” alarm is forwarded unchanged. If an
alarm clearance is received during the configurable time period, only the cleared
alarm is discarded. If the “parent” alarm is cleared, it is discarded and all not-
cleared “child” alarms are forwarded.

The following sections describe the possible use cases in detail.

Note

The rules are parameterized. You can set the value for the following parameters in
the grouping-params.xml file:

 timeslot: duration of the time window period (the default value is 10
seconds)

2.3.3.2 No alarm clearance received during the time window

18

This use case applies when the root cause alarm is followed by child alarms:

Figure 7 - Grouping – No alarm clearance received during the time window

2.3.3.3 No symptom alarm received during the time window

This use case applies when the root cause alarm is not followed by child alarms:

Figure 8 - Grouping – No symptom alarm received during the time window

2.3.3.4 Clearance on symptom alarms received during the time window

19

This context applies when the root cause alarm is followed by child alarms and child
clearance.

Figure 9 - Grouping – Clearance on symptom alarms received during the time
window

2.3.3.5 Clearance on root cause and symptom alarms received during the time
window

This use case applies when the root cause alarm is followed by the root alarm
clearance as well as child alarms and clearances:

Figure 10 - Grouping – Clearance on root cause and symptom alarms received
during the time window

2.3.4 The Inactivity scenario

2.3.4.1 Functional description

The Inactivity scenario identifies when a specific technology stops forwarding raw
messages. The Inactivity scenario receives all alarms for the specific technology.

20

For each valid alarm received, the scenario resets a counter associated with the
monitored item. If no valid alarm is received during a configurable period of time,
an “Inactivity” alarm is created and injected into the Alarm Management system, so
it can be enriched and moved forward.

The main rules in the Inactivity scenario are:

 Generate an “Inactivity” alarm if no alarm is received during a configurable
time period.

 Normal alarms are discarded

The following sections describe the possible use cases in detail.

Note

The rules are parameterized. You can set the value for the following parameters in
the inactivity-params.xml file:

 inactivityTime: duration of the time window period (the default value is 5
seconds)

2.3.4.2 Inactivity detected

This uses case applies when no recurrent alarm is received during the configurable
time window:

Figure 11 - Inactivity– Inactivity detected

2.3.4.3 Inactivity not detected

21

This use case applies when recurrent alarms are received during the configurable
time window:

Figure 12 - Inactivity – Inactivity not detected

2.3.4.4 Inactivity detection in mix technology context

This use case applies when one technology is active and another one is not:

Figure 13 - Inactivity – Inactivity detection in mix technology context

2.3.5 The Up/Down scenario

2.3.5.1 Functional description

The Up/Down scenario is a base scenario, used by both the Time Wait and Grouping
scenarios. The purpose is to increase performance. It handles alarms that have a
common clearance alarm.

All alarms that share the same clearance enter this scenario. When one of such
alarms is received, the scenario keeps a copy of it. When the common clearance

22

alarm is received, an independent clearance alarm is generated for each alarm
stored by the scenario.

The following sections describe the possible use cases in detail.

2.3.5.2 Independent clearance

In this use case, the Up/Down scenario stores incoming alarms until it receives a
common clearance alarm, in which case an independent clearance alarm is created
for each alarm stored by the scenario:

Figure 14 - Up/Down – Independent clearance

2.3.5.3 Independent clearance cascaded with Time Wait scenario

In this use case the Up/Down scenario feeds (cascades) into the Time Wait scenario:

Figure 15 - Up/Down – Independent clearance cascaded with Time Wait scenario

2.4 Testing the Low Level Event Filtering Value Pack

For all the LLEF example scenarios described earlier, some alarm sets are delivered
in order to test the scenario behavior.

23

These alarm samples are present in the
${UCA_EBC_INSTANCE}/deploy/llef-example-3.2/<scenario

name>/Alarms.xml files after the LLEF Value Pack has been deployed.

The Alarm.xml files can be injected into UCA for EBC by using the uca-ebc-injector
command-line tool as follows:

On both HP-UX and Linux:

$ ${UCA_EBC_HOME}/bin/uca-ebc-injector -file Alarms.xml

Checking the scenario result:

Rules actions of the LLEF example are designed to simulate real alarm actions by
logging the actions into a log file:
${UCA_EBC_INSTANCE}/logs/llef_example.log.

Playing the Up/Down scenario with the Up/Down alarm sample file
(${UCA_EBC_INSTANCE}/deploy/llef-example-
3.2/updown/Alarms.xml) generated the following output in the

${UCA_EBC_INSTANCE}/logs/llef_example.log log file:

2012-01-04 17:22:44.982:
com.hp.uca.expert.vp.llef.timewait.TimeWait: Dummy Action
processed on alarm: 8036aa86-046e-4cbc-9dd4-ba67ff528452
2012-01-04 17:22:46.995:
com.hp.uca.expert.vp.llef.timewait.TimeWait: Dummy Action
processed on alarm: 12303
2012-01-04 17:22:46.995:
com.hp.uca.expert.vp.llef.timewait.TimeWait: Dummy Action
processed on alarm: 12307

You will notice that according to the Up/Down scenario design, alarms have indeed
been forwarded to the Time Wait scenario which performed the actions.

24

Chapter 3

An “Orchestration of Scenarios
Cascading” Value Pack

This chapter provides user documentation about the “Orchestration of Scenarios
Cascading” Value Pack example provided with the UCA-EBC 3.2 Server and with the
UCA-EBC 3.2 Development kit. It uses the Orchestration of events feature
introduced in UCA-EBC 3.1, which is an extension of the alarms cascading between
scenarios provided in UCA-EBC 3.0.

3.1 The “Orchestration of Scenarios Cascading” Value Pack
Description

The “Orchestration of Scenarios Cascading” Value Pack delivers a predefined set of
Scenarios that demonstrate the Orchestration feature of UCA-EBC. The scope of
this Value Pack is to offer an example of event propagation through COPY routes
for scenarios in different modes (CLOUD and STREAM) using basic event
enrichment, grouping and correlation capabilities.

In order to take part in an Orchestration route, each scenario has to call the
applyOrchestration(Event e) method from its rules. This is done after

the event has been processed by the scenario, to send the event to the
Orchestration component.
In the case of the “Orchestration of Scenarios Cascading” Value Pack, each of the
scenarios (except the last scenarios in the workflow: the Correlation and DBLogger
scenarios) has rules defined for sending events to the Orchestration component.

Also, for the events to be routes between Value Packs, Orchestration Routes have
to be defined in the OrchestraConfiguration.xml file of the UCA-EBC

server instance, under in ${UCA_EBC_INSTANCE}/conf . This file is only
loaded at UCA-EBC server instance start (static loading), so if this file is modified,
the server has to be restarted so that the new Orchestration configuration can
be taken into consideration.

For this purpose, an example of routing configuration is provided in the
OrchestraConfigurationCascadingExample.xml file (found in the
/conf folder of the “Orchestration of Scenarios Cascading” Value Pack).

Note

 For more information on how to use the Orchestration methods in a value pack

and on Orchestra Routes configuration, please refer to [R1] UCA for EBC Reference
Guide.

3.1.1 The Scenarios taking part in the Orchestration

The following scenarios take part in the orchestration:

25

1. Communication scenario: this scenario in Stream mode receives
“Communication” events from the Dispatcher. These events are correlated by
grouping them during a configurable time window.

2. Environmental scenario: this scenario in Stream mode receives
“Environmental” events from the Dispatcher. As in the case of the
Communication Scenario, events are correlated by grouping them during a
configurable time window.

3. Enrichment scenario: this scenario in Cloud mode receives all the events
correlated by either the Communication, or the Environmental scenarios. On
the reception of events of type Alarm (AlarmCreation) having justInserted

boolean to true, this scenario enriches them with information in the Additional
Text.

4. Correlation scenario: this scenario in Cloud mode receives a copy of all the
events enriched by the Enrichment scenario (i.e. enriched “Communication” and
“Environmental” grouped events) and will apply correlation by grouping events
based on the extra information added by the Enrichment scenario in the
Additional Text of the event.

5. DBLogger scenario: this scenario in Stream mode simulates logging to a
database but actually logs to the Console. This scenario receives a copy of all
the events enriched by the Enrichment scenario (i.e. enriched “Communication”
and “Environmental” grouped events) and logs them to the Console (using the
Java class
com.hp.uca.expert.vp.cascading.dblogger.AcmeDBLogger).

Some lines of code (corresponding to actions that will group alarms together on
TeMIP) have been commented out in the Communication, Environmental and
Correlation scenarios of the “Orchestration of Scenarios Cascading” Value Pack
because they require access to OSS OpenMediation and TeMIP. If wanting to use
OSS OpenMediation and TeMIP, they have to be uncommented. For example, in the
Communication scenario:

 #Actions.associateAlarms(theScenario,firstAlarm,newAlarms);

3.1.2 The Orchestration Routes

In the “Orchestration of Scenarios Cascading” Value Pack only the Communication
and Environmental scenarios are “eligible for broadcast” (i.e. they receive events
from the Dispatcher).

The Enrichment, Correlation, and DBLogger scenarios are not “eligible for
broadcast” and thus they can only receive events from Orchestra, when they are
the Target scenario in at least one route defined in the OrchestraConfiguration.xml
configuration file. The workflow of events in the “Orchestration of Scenarios
Cascading” Value Pack is the following:

 Events are received by the Communication and Environmental scenarios and
after, they are grouped. The resulting grouped events are sent to the
Orchestration component of UCA EBC

 The Orchestration component of UCA EBC then routes events to the other
scenarios according to its configuration file: the
OrchestraConfigurationCascadingExample.xml file (found in
the /conf folder of the “Orchestration of Scenarios Cascading” Value

Pack), as show in the figure:

26

Figure 16 - OrchestraConfigurationCascadingExample.xml Routes

3.1.3 The Orchestration Event Flow

In the “Orchestration of Scenarios Cascading” Value Pack, the Event flow is
dispatched to the different scenarios according to the following figure:

Figure 17 - Event flow in “Orchestration of Scenarios Cascading” Value Pack

3.1.4 The Software Prerequisites

The “Orchestration of Scenarios Cascading” Value Pack is delivered with the UCA for
EBC Development Toolkit product under the vp-examples/ directory:

${UCA_EBC_DEV_HOME}/vp-examples/cascading-example

The Orchestration routes have to be set in the main
OrchestraConfiguration.xml file of UCA-EBC server (in the
${UCA_EBC_INSTANCE}/conf folder), as described in section 3 Set the

Orchestration Routes on the UCA-EBC server instance.

27

3.2 Deploy and start the “Orchestration of Scenarios Cascading”
Value Pack

Several steps are needed to deploy and start the “Orchestration of Scenarios
Cascading” value pack on the ${UCA_EBC_INSTANCE} server:

1. Install the Value Pack package (ZIP file) in the
${UCA_EBC_INSTANCE}/valuepacks directory (see 3.2.1)

2. Deploy the Value Pack (see 3.2.2)

3. Set the Orchestration Routes on the UCA-EBC server instance (see 3.2.3)

4. Start the Value Pack (see 3.2.4)

These steps are detailed in the following sections.

Note

${UCA_EBC_INSTANCE} translates to /var/opt/UCA-

EBC/instances/<instance name> by default unless UCA for EBC was

installed at an alternate location.

3.2.1 Install the Value Pack

The “Orchestration of Scenarios Cascading” value pack package (ZIP file) is installed
by default with the UCA for EBC Server kit. This value pack is located in the

${UCA_EBC_HOME}/defaults/valuepacks directory. You will need to copy

the zip file of the value pack (named cascading-vp-3.2.zip) to the
${UCA_EBC_INSTANCE}/valuepacks directory, so that it can be seen by UCA

for EBC.

Alternatively, if you have installed the UCA for EBC Development Toolkit, you can
(modify and) re-build the “Orchestration of Scenarios Cascading” value pack from
the source code by executing the following commands:

On Windows:

$ cd %UCA_EBC_DEV_HOME%\vp-examples\cascading-example
$ ant all

On Linux:

$ cd ${UCA_EBC_DEV_HOME}/vp-examples/cascading-example
$ ant all

Once built, the value pack package (ZIP file) is ready to be deployed on UCA for EBC.
You need to copy the Value Pack package you have just generated to the
${UCA_EBC_INSTANCE}/valuepacks directory.

3.2.2 Deploy the Value Pack

To deploy the “Orchestration of Scenarios Cascading” value pack, please use the “--
deploy” option of the uca-ebc-admin command-line administration tool (executed
as ‘uca’ user):

28

On both HP-UX and Linux:

$ cd ${UCA_EBC_HOME}/bin
$ uca-ebc-admin --deploy -vpn cascading -vpv 3.2

An output similar to the following will be displayed:
UCA for EBC Home directory set to: /opt/UCA-EBC
UCA for EBC Data directory set to: /var/opt/UCA-EBC
INFO - Value Pack name: cascading version: 3.2 has been
successfully deployed
INFO - Exiting...

Or simply deploy the Value Pack from the UCA for EBC User Interface.

File organization

At the end of the deployment step, the files delivered by the Value Pack are
deployed in ${UCA_EBC_INSTANCE}/deploy/cascading-3.2 directory,

according to the following file structure:

3.2.3 Set the Orchestration Routes

After deploying the Value Pack, under conf/ directory there is an example of the

Orchestration Routes in the
OrchestraConfigurationCascadingExample.xml.

The OrchestraConfiguration.xml file of any UCA EBC Server instance is

located in the ${UCA_EBC_INSTANCE}/conf folder.

In order to test the Orchestration of the different scenarios of this Value Pack, there
are two possibilities:

Directories Description

lib/ Some additional jar files are installed for this package.

conf/ A configuration file that defines the Value Pack, and the

scenarios (ValuePackConfiguration.xml) and an example of

the Orchestration Routes

(OrchestraConfigurationCascadingExample.x

ml)

common/ Stream mode rules used by the Communication and

Environmental scenarios.

communication/ Specific rule file for the Communication scenario, filter file

and an Alarms.xml sample file.

correlation/ Specific rule file for the Correlation scenario and filter file.

dblogger/ Specific rule file for the DBLogger scenario and filter file.

enrichment/ Specific rule file for the Enrichment scenario, filter file, and

AlarmsCascading1.xml and AlarmsCascading2.xml sample

files.

environmental/ Specific rule file for the Environmental scenario, filter file

and an Alarms.xml sample file.

Table 3 - File structure of the “Orchestration of Scenarios

Cascading” Value Pack

29

1. The OrchestraConfigurationCascadingExample.xml file has
to be copied in the conf/ folder of the UCA-EBC server instance where the

Value Pack is (to be) deployed and renamed to
OrchestraConfiguration.xml. Attention, this will replace the

OrchestraConfiguration.xml file of the server so the only Orchestration
routes will be the ones defined inside. If you had other Orchestra routes
that you would like to keep, please use option 2.

2. Copy all of the routes defined inside the
OrchestraConfigurationCascadingExample.xml (represented

by each of the <Route> Tags) inside the <Routes> tag of the existing
OrchestraConfiguration.xml file of the UCA EBC Server instance

where Value Pack is (to be) deployed.

After any change in the OrchestraConfiguration.xml file of the UCA EBC

server instance, the server has to be restarted, in order for the Routes to be taken
into consideration.

Note

 For more information on how to configure the Orchestration feature of UCA-

EBC, please refer to [R1] UCA for EBC Reference Guide.

3.2.4 Start the Value Pack

Value Packs can be started in two different manners depending on whether UCA for
EBC is already started or not.

If UCA for EBC is stopped, restarting the application will automatically start all
Value Packs deployed in the ${UCA_EBC_INSTANCE}/deploy directory and

load the Orchestration routes.

If UCA for EBC is already running, use the “--start” option of the uca-ebc-admin
command-line administration tool (executed as ‘uca’ user) to start the Value Pack:

On both HP-UX and Linux:

$ cd ${UCA_EBC_HOME}/bin
$ uca-ebc-admin --start -vpn cascading -vpv 3.2

An output similar to the following will be displayed:
UCA for EBC Home directory set to: /opt/UCA-EBC
UCA for EBC Data directory set to: /var/opt/UCA-EBC
INFO - Starting [cascading, 3.2, all scenarios]
INFO - Status: [cascading, 3.2, all scenarios]Value pack
has been successfully started. Status of the value pack:
Running

Or simply start it from the UCA for EBC Web User Interface.

3.3 Stop and undeploy the “Orchestration of Scenarios Cascading”
Value Pack

Several steps are needed to stop (if running) and undeploy the “Orchestration of
Scenarios Cascading” value pack from the ${UCA_EBC_INSTANCE} server:

1. Stop the Value Pack (see 3.3.1)

30

2. Undeploy the Value Pack (see 3.3.2)

These steps are detailed in the following sections.

Note

${UCA_EBC_INSTANCE} translates to /var/opt/UCA-
EBC/instances/<instance name> by default unless UCA for EBC was

installed at an alternate location.

3.3.1 Stop the Value Pack

You can stop the Value Pack when UCA for EBC is running using the “--stop” option
of the uca-ebc-admin command-line administration tool (executed as ‘uca’ user):

On both HP-UX and Linux:

$ cd ${UCA_EBC_HOME}/bin
$ uca-ebc-admin --stop -vpn cascading -vpv 3.2

An output similar to the following will be displayed:
UCA for EBC Home directory set to: /opt/UCA-EBC
UCA for EBC Data directory set to: /var/opt/UCA-EBC
INFO - Stopping [cascading, 3.2, all scenarios]
INFO - Status: Value pack has been successfully stopped.
Status of the value pack: Stopped

Or simply stop it from the UCA for EBC Web User Interface.

Even if the Value Pack is stopped, the Orchestration Routes are kept. If you want
to remove the Orchestration Routes, they have to be removed from the
OrchestraConfiguration.xml file of the UCA-EBC server instance and the

server has to be restarted.

3.3.2 Undeploy the Value Pack

To undeploy the Orchestration Value Pack, use the “--undeploy” option of the uca-
ebc-admin command-line administration tool (executed as ‘uca’ user):

On both HP-UX and Linux:

$ cd ${UCA_EBC_HOME}/bin
$ uca-ebc-admin --undeploy -vpn cascading -vpv 3.2

An output similar to the following will be displayed:
UCA for EBC Home directory set to: /opt/UCA-EBC
UCA for EBC Data directory set to: /var/opt/UCA-EBC
INFO - Undeploying [cascading, 3.2, all scenarios]
INFO - Status: Value pack has been successfully undeployed.
Status of the value pack: NotDeployed

Or simply undeploy it from the UCA for EBC Web User Interface.

Even if the Value Pack is unloaded, the Orchestration Routes are kept. If you
want to also remove the Orchestration Routes, they have to be removed from the

31

OrchestraConfiguration.xml file of the UCA-EBC server instance and the

server has to be restarted.

3.4 Test the “Orchestration of Scenarios Cascading” Value Pack

This section described the steps to follow in order to test the “Orchestration of
Scenarios Cascading” Value Pack.

3.4.1 Event sample files

For the “Orchestration of Scenarios Cascading” Value Pack described, some event
files are delivered in order to test the scenario orchestration behavior.

For the two scenarios that are “eligible for broadcast” (the Communication and
Environment scenarios), event samples are present in the
${UCA_EBC_INSTANCE}/deploy/cascading-3.2/<scenario

name>/Alarms.xml file (where <scenarioname> can be Communication and

Environmental) after the Value Pack has been deployed.

In order to test with different event types for both scenarios, the
AlarmsCascading1.xml and AlarmsCascading2.xml files are present
under ${UCA_EBC_INSTANCE}/deploy/cascading-3.2-

SNAPSHOT/enrichment/ folder.

The AlarmsCascading1.xml file contains AlarmCreation events for the

Communication and Environmental scenarios. When we inject this file into UCA for
EBC, the alarms are grouped by the Communication and Environment scenarios
then sent to the Orchestration component.

The AlarmsCascading2.xml file contains AlarmAttributeValueChange and

AlarmStateChange events. When we inject this file into UCA for EBC, the events are
sent directly to the Orchestration component (without any grouping).

Events can be injected into UCA for EBC using the uca-ebc-injector command-line
tool as follows:

3.4.2 Injecting events with the uca-ebc-injector

On both HP-UX and Linux:

$ ${UCA_EBC_HOME}/bin/uca-ebc-injector -file
${UCA_EBC_INSTANCE}/deploy/cascading-3.2/enrichment/
AlarmsCascading1.xml

After injecting the events from the AlarmsCascading1.xml file, please wait at

least 3 seconds (this is the maximum time it takes for the events to be processed by
the Communication (2 seconds) and Environment (3 seconds) scenarios) and then
insert AVC (Attribute Value Change) and SC (State Change) events from the
AlarmsCascading2.xml file.

$ ${UCA_EBC_HOME}/bin/uca-ebc-injector -file
${UCA_EBC_INSTANCE}/deploy/cascading-3.2/enrichment/
AlarmsCascading2.xml

32

3.4.3 Results

Rules actions of the Orchestration example are designed to simulate real event
actions. Several JUnit tests showing different propagation of events (Alarm
Creation, Attribute Value Change (AVC), Alarm State Change (SC) and Alarm
Deletion) can be found under src/test/java, in the
com.hp.uca.expert.vp.cascading Java package of the Value Pack source

code.

More precisely, the JUnit test describing the Value Pack’s default configuration is
the OrchestraCascadingWithFlagGroupTimeWindowTest.java test.

This test’s log gives us the same log as when we test the deployed Value Pack with
the AlarmsCascading1.xml and AlarmsCascading2.xml event sample files.

As described in [R1] UCA for EBC Reference Guide, when delegating from a CLOUD
scenario to a STREAM scenario, for each AVC or SC an Alarm Creation is done before.

We observe the following event propagation between the scenarios:

Figure 18 - Event cascading in “Orchestration of Scenarios Cascading” Value
Pack test example

3.4.4 Checking the results

The event propagation can be tracked in the
${UCA_EBC_INSTANCE}/logs/uca-ebc.log log file, when the log4j log

level of each scenario is set to INFO (or DEBUG). Key information is highlighted
below:

At start-up:

[2014-04-17 12:39:42,506][INFO][][T-Main
][com.hp.uca.expert.orchestra.WorkflowConfiguration][47]Loading Orchestra
Workflow from OrchestraConfiguration.xml

Deploy and start Orchestra Cascading Value Pack:

[2014-04-17 12:41:36,341][INFO][][206299513@qtp-86386279-
3][com.hp.uca.expert.vp.internal.ValuePackLoader][188]Value pack 'cascading-
3.2' deployed

33

[2014-04-17 12:41:39,920][INFO][cascading-3.2][206299513@qtp-86386279-
3][com.hp.uca.expert.gui.ValuePackServices][165]Starting Value pack 'cascading-
3.2'

[2014-04-17 12:41:45,691][INFO][][206299513@qtp-86386279-
3][com.hp.uca.expert.gui.ValuePackServices][172]Value pack 'cascading-3.2'
started

After insertion of the AlarmsCascading1.xml file and after waiting for at

least 3 seconds:

 [2014-04-17 12:43:29,440][INFO][cascading-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Communication][com.hp.uca.expert.vp.cascading.
Communication][9]Inserting Flag for Context: BOX B1

[2014-04-17 12:43:29,440][INFO][cascading-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Environmental][com.hp.uca.expert.vp.cascading.E
nvironmental][9]Inserting Flag for Context: BOX B1

[2014-04-17 12:43:34,769][INFO][cascading-3.2][T-Watchdog-
com.hp.uca.expert.vp.cascading.Communication][com.hp.uca.expert.vp.cascading.
Communication][11]Grouping Alarm: operation_context .uca_cri_oc alarm_object
10

[2014-04-17 12:43:34,770][INFO][cascading-3.2][T-Watchdog-
com.hp.uca.expert.vp.cascading.Communication][com.hp.uca.expert.vp.cascading.
Communication][24]Send to Orchestra operation_context .uca_cri_oc
alarm_object 10

[2014-04-17 12:43:34,783][INFO][cascading-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Enrichment][com.hp.uca.expert.vp.cascading.Enric
hment][11]Send to Orchestra Just inserted

operation_context .uca_cri_oc alarm_object 10

[2014-04-17 12:43:34,787][INFO][cascading-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.DBLogger][com.hp.uca.expert.vp.cascading.dblog
ger.AcmeDbLogger][34]==> Alarm: id=operation_context .uca_cri_oc
alarm_object 10, t=2013-12-16T12:00:00.000+02:00, e=BOX B1,
type=COMMUNICATIONS_ALARM, s=MINOR, ns=NOT_CLEARED,
os=NOT_ACKNOWLEDGED, ps=NOT_HANDLED, ins=true, avc=false, sc=false,
ret=false

[2014-04-17 12:43:34,793][INFO][cascading-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Correlation][com.hp.uca.expert.vp.cascading.Corr
elation][8]Correlation - Create Group

operation_context .uca_cri_oc alarm_object 10

[2014-04-17 12:43:34,949][INFO][cascading-3.2][T-Watchdog-
com.hp.uca.expert.vp.cascading.Environmental][com.hp.uca.expert.vp.cascading.E
nvironmental][11]Grouping Alarm: operation_context .uca_cri_oc alarm_object 20

[2014-04-17 12:43:34,950][INFO][cascading-3.2][T-Watchdog-
com.hp.uca.expert.vp.cascading.Environmental][com.hp.uca.expert.vp.cascading.E
nvironmental][25]Send to Orchestra operation_context .uca_cri_oc alarm_object
20

34

[2014-04-17 12:43:34,951][INFO][cascading-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Enrichment][com.hp.uca.expert.vp.cascading.Enric
hment][11]Send to Orchestra Just inserted

operation_context .uca_cri_oc alarm_object 20

[2014-04-17 12:43:34,953][INFO][cascading-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.DBLogger][com.hp.uca.expert.vp.cascading.dblog
ger.AcmeDbLogger][34]==> Alarm: id=operation_context .uca_cri_oc
alarm_object 20, t=2013-12-16T12:00:03.000+02:10, e=BOX B1,
type=ENVIRONMENTAL_ALARM, s=MAJOR, ns=NOT_CLEARED,
os=NOT_ACKNOWLEDGED, ps=NOT_HANDLED, ins=true, avc=false, sc=false,
ret=false

[2014-04-17 12:43:34,953][INFO][cascading-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Correlation][com.hp.uca.expert.vp.cascading.Corr
elation][8]Correlation - Create Group

operation_context .uca_cri_oc alarm_object 20

After insertion of the AlarmsCascading2.xml file:

[2014-04-17 12:44:52,642][INFO][cascading-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Communication][com.hp.uca.expert.vp.cascading.
Communication][8]Send to Orchestra AVC

operation_context .uca_cri_oc alarm_object 10

[2014-04-17 12:44:52,642][INFO][cascading-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Environmental][com.hp.uca.expert.vp.cascading.E
nvironmental][8]Send to Orchestra SC

operation_context .uca_cri_oc alarm_object 20

[2014-04-17 12:44:52,646][INFO][cascading-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Enrichment][com.hp.uca.expert.vp.cascading.Enric
hment][8]Send to Orchestra AVC

operation_context .uca_cri_oc alarm_object 10

[2014-04-17 12:44:52,649][INFO][cascading-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.DBLogger][com.hp.uca.expert.vp.cascading.dblog
ger.AcmeDbLogger][34]==> Alarm: id=operation_context .uca_cri_oc
alarm_object 10, t=2013-12-16T12:00:00.000+02:00, e=BOX B1,
type=COMMUNICATIONS_ALARM, s=MINOR, ns=NOT_CLEARED,
os=NOT_ACKNOWLEDGED, ps=NOT_HANDLED, ins=true, avc=true, sc=false,
ret=false

[2014-04-17 12:44:52,649][INFO][cascading-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Enrichment][com.hp.uca.expert.vp.cascading.Enric
hment][8]Send to Orchestra SC

operation_context .uca_cri_oc alarm_object 20

[2014-04-17 12:44:52,650][INFO][cascading-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Correlation][com.hp.uca.expert.vp.cascading.Corr
elation][8]Correlation (AVC Updated)

operation_context .uca_cri_oc alarm_object 10

[2014-04-17 12:44:52,653][INFO][cascading-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Correlation][com.hp.uca.expert.vp.cascading.Corr
elation][8]Correlation (SC Updated)

operation_context .uca_cri_oc alarm_object 20

35

[2014-04-17 12:44:52,658][INFO][cascading-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.DBLogger][com.hp.uca.expert.vp.cascading.dblog
ger.AcmeDbLogger][56]==> AlarmAttributeValueChange: id=operation_context
.uca_cri_oc alarm_object 10, t=2013-12-16T13:00:05.000+01:00, e=BOX B1,
type=COMMUNICATIONS_ALARM, s=MINOR, os=NOT_ACKNOWLEDGED

[2014-04-17 12:44:52,659][INFO][cascading-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.DBLogger][com.hp.uca.expert.vp.cascading.dblog
ger.AcmeDbLogger][34]==> Alarm: id=operation_context .uca_cri_oc
alarm_object 20, t=2013-12-16T12:00:03.000+02:10, e=BOX B1,
type=ENVIRONMENTAL_ALARM, s=MAJOR, ns=CLEARED, os=NOT_ACKNOWLEDGED,
ps=NOT_HANDLED, ins=true, avc=false, sc=true, ret=false

[2014-04-17 12:44:52,661][INFO][cascading-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.DBLogger][com.hp.uca.expert.vp.cascading.dblog
ger.AcmeDbLogger][45]==> AlarmStateChange: id=operation_context .uca_cri_oc
alarm_object 20, t=2013-12-16T10:50:03.000+01:00, e=BOX B1, type=

36

Chapter 4

An “Orchestration of Scenarios
Cascading in JOIN routes” Value Pack

This chapter provides user documentation about the “Orchestration of Scenarios
Cascading in JOIN Routes” Value Pack example provided with the UCA-EBC 3.2
Development kit. It uses the Orchestration of events feature introduced in UCA-EBC
3.1, which is an extension of the alarms cascading between scenarios provided in
UCA-EBC 3.0.

4.1 The “Orchestration of Scenarios Cascading in JOIN Routes”
Value Pack Description

The “Orchestration of Scenarios Cascading in JOIN routes” Value Pack delivers a
predefined set of Scenarios that demonstrate some of the features of the
Orchestration component of UCA-EBC: how to cascade events between scenarios in
STREAM and CLOUD modes for JOIN operations.

As described in [R1] UCA for EBC Reference Guide, a JOIN operation consists in
aggregating the information (orchestraData) added by several scenarios on copies
of the same event, and sending the resulting aggregate event to another scenario.

The scope of this Value Pack is to offer an example of event propagation through
scenarios in different modes (CLOUD and STREAM) using basic event enrichment
capabilities: adding specific information to events and joining these events so that
we end up with merged events containing the combined enrichment information.

As described in the “Orchestration of Scenarios Cascading” Value Pack, in order to
take part into an Orchestration route, each scenario has to trigger the
applyOrchestration(Event e) method in its rule, after applying a specific

treatment (like enrichment or other),. Therefore, each of the scenarios has rules
defined for applying orchestration on the following event types:
AlarmCreation, AlarmAttributeValueChange,

AlarmStateChange and AlarmDeletion.

In the case of the “Orchestration of Scenarios Cascading in JOIN routes” Value Pack,
each of the scenarios (except the last scenarios in the workflow: the Correlation
and DBLogger scenarios) has rules defined for sending events to the Orchestration
component.

Also, for the events to be routed between Value Packs, Orchestration Routes have
to be defined in the OrchestraConfiguration.xml file of the UCA-EBC

server instance, in the ${UCA_EBC_INSTANCE}/conf folder. This file is only

loaded at UCA-EBC server instance start (static loading), so if this file is modified,
the server has to be restarted so that the new Orchestration configuration can
be taken into consideration.

For this purpose, an example of routing configuration is provided in the
OrchestraConfigurationCascadingJoinExample.xml file (found in
the /conf folder of the “Orchestration of Scenarios Cascading in JOIN routes”

Value Pack).

37

Note

 For more information on how to use the Orchestration methods in a value pack

and on Orchestra Routes configuration, please refer to [R1] UCA for EBC Reference
Guide.

4.1.1 The Scenarios taking part in the Orchestration

The following scenarios will be orchestrated:

1. Communication1 and Communication2: these scenarios in Stream mode
receive “Communication” events and add specific information to these events
in the orchestraData object attached to them. These events are to be joined by
the Orchestration component into one event and sent to the EnrichmentC
scenario.

2. Environmental1 and Environmental2: these scenarios in Stream mode receive
“Environmental” events and add specific information to these events in the
orchestraData object attached to them. These events are to be joined by the
Orchestration component into one event and sent to the EnrichmentS scenario.

3. EnrichmentC: this scenario in Cloud mode receives the joined “Communication”
events when:

 both the Communication1 and Communication2 scenarios send
their enriched event to the Orchestration component before the
JOIN timeout expires (the timeout for this JOIN route is set by the
expireTime element in the Orchestration configuration file: it
represents the maximum time to wait for a JOIN route to
complete) : the joined “Communication” events are complete
(they have their convergenceComplete flag set to true)

 either one (or both) of the Communication1 and Communication2
scenarios doesn’t send their enriched event to the Orchestration
component before the timeout expires (the timeout is set to 5
seconds in the Orchestration configuration file): the joined
“Communication” events are incomplete (they have their
convergenceComplete flag set to false)

Once the joined “Communication” events are received, they will be enriched
with additional information in the additional Text.

4. EnrichmentS: this scenario in Cloud mode receives the joined “Environmental”
events when:

 both the Environmental1 and Environmental2 scenarios send
their enriched event to the Orchestration component before the
JOIN timeout expires

 either one (or both) of the Environmental1 and Environmental2
scenarios doesn’t send their enriched event to the Orchestration
component before the timeout for the JOIN route expires (5
seconds)

Once the joined “Environmental” events are received, they will be enriched with
additional information in the additional Text.

5. Correlation: this scenario in Cloud mode receives a copy of all the events
enriched by the EnrichmentC and by the EnrichmentS scenarios (i.e. enriched
Communication and Environmental events) and will apply correlation by
grouping events based on specific information (additional Text) added by the
EnrichmentC or by the EnrichmentS scenario.

38

6. DBLogger: this scenario in Stream mode receives a copy of all the events
enriched by the EnrichmentC and by the EnrichmentS scenarios (i.e. enriched
Communication and Environmental events) and logs them to the console (
using the Java class
com.hp.uca.expert.vp.cascading.dblogger.AcmeDBLogger).

In order to be able to test the Value Pack with the uca-ebc-injector command-line
tool provided with UCA-EBC, event grouping using TeMIP Actions has been
commented out in the rules files of the Correlation scenario (in the
correlation.drl file). Please uncomment these lines if you want to use TeMIP

Actions.

4.1.2 The Orchestration Routes

In the “Orchestration of Scenarios Cascading in JOIN routes” Value Pack only the
Communication1, Communication2, Environmental1 and Environmental2 scenarios
are “eligible for broadcast” (i.e. they receive events from the Dispatcher).

The EnrichmentC, EnrichmentS, Correlation, and DBLogger scenarios are not
“eligible for broadcast” and thus they can only receive events from Orchestra, when
they are the Target scenario of at least one route defined in the
OrchestraConfiguration.xml configuration file.

The Orchestration component of UCA EBC routes events between the scenarios
according to its configuration file: the
OrchestraConfigurationCascadingJoinExample.xml file (found in
the /conf folder of the “Orchestration of Scenarios Cascading in JOIN routes”

Value Pack), as show in the following figure:

Figure 19 - OrchestraConfigurationCascadingJoinExample.xml Routes

39

4.1.3 The Orchestration Event Flow

In the “Orchestration of Scenarios Cascading in JOIN routes” Value Pack, the event
flow is dispatched to the different scenarios according to the following figure:

Figure 20 - Event flow in “Orchestration of Scenarios Cascading in JOIN routes”
Value Pack

The event flow is the following:

1. Events are received by the Communication1/2 (respectively by
Environmental 1/2) scenarios, enriched, merged by the Orchestra
component, then sent to the EnrichmentC (respectively
EnrichmentS) scenario.

2. From EnrichmentC (respectively EnrichmentS) scenario events are
copied to the Correlation and DBLogger scenarios

4.1.4 The Software Prerequisites

The “Orchestration of Scenarios Cascading in JOIN routes” Value Pack is delivered
with the UCA for EBC Development Toolkit product under the vp-examples/

directory:

${UCA_EBC_DEV_HOME}/vp-examples/cascading-example-join

The Orchestration routes have to be set in the main
OrchestraConfiguration.xml file of UCA-EBC server, as described in 4.2.3

“Set the Orchestration Routes”.

4.2 Deploy and start the “Orchestration of Scenarios Cascading in
JOIN routes” Value Pack

Several steps are needed to deploy the “Orchestration of Scenarios Cascading in
JOIN routes” Value Pack:

1. Install the Value Pack package (ZIP file) in the
${UCA_EBC_INSTANCE}/valuepacks directory (see 3.2.1)

2. Deploy the Value Pack (see 3.2.2)

3. Set the Orchestration Routes on the UCA-EBC server instance (see 3.2.3)

4. Start the Value Pack (see 3.2.4)

40

These steps are detailed in the following sections.

Note

${UCA_EBC_INSTANCE} translates to /var/opt/UCA-
EBC/instances/<instance name> by default unless UCA for EBC was

installed at an alternate location.

4.2.1 Install the Value Pack

The “Orchestration of Scenarios Cascading in JOIN routes” value pack package (ZIP
file) is packaged with the UCA for EBC Development Toolkit. If wanting, it can be
(modified and) re-built from the source code by executing the following commands:

On Windows:

$ cd %UCA_EBC_DEV_HOME%\vp-examples\cascading-example-join
$ ant all

On Linux:

$ cd ${UCA_EBC_DEV_HOME}/vp-examples/cascading-example-join
$ ant all

Once built, the value pack package (ZIP file) is ready to be deployed on UCA for EBC.
You need to copy the Value Pack package you have just generated to the
${UCA_EBC_INSTANCE}/valuepacks directory.

4.2.2 Deploy the Value Pack

To deploy the “Orchestration of Scenarios Cascading in JOIN routes” value pack,
please use the “--deploy” option of the uca-ebc-admin command-line
administration tool (executed as ‘uca’ user):

On both HP-UX and Linux:

$ cd ${UCA_EBC_HOME}/bin
$ uca-ebc-admin --deploy -vpn cascading-join -vpv 3.2

An output similar to the following will be displayed:
UCA for EBC Home directory set to: /opt/UCA-EBC
UCA for EBC Data directory set to: /var/opt/UCA-EBC
INFO - Value Pack name: cascading-join version: 3.2 has been
successfully deployed
INFO - Exiting...

Or simply deploy the Value Pack from the UCA for EBC User Interface.

4.2.2.1 File organization

At the end of the deployment step, the files delivered by the Value Pack are
deployed in ${UCA_EBC_INSTANCE}/deploy/cascading-join-3.2

directory, according to the following file structure:

Directories Description

lib/ Some additional jar files are installed for this package.

41

conf/ A configuration file that define the Value Pack and the

scenarios (ValuePackConfiguration.xml) and an

example of the Orchestration Routes (Orchestra

ConfigurationCascadingJoinExample.xml)

communication/ Specific rule files for the Communication1 and

Communication2 scenarios, and the filter file.

correlation/ Specific rule file for the Correlation scenario and filter

file.

dblogger/ Specific rule file for the DBLogger scenario and filter

file.

enrichment/ Specific rule files for the EnrichmentS and EnrichmentC

scenarios filter files, and AlarmsJoinStreams[i].xml,

where i goes from 1 to 4 sample files.

environmental/ Specific rule files for the Environmental1 and

Environmental2 scenarios, and the filter file.

Table 4 - File Structure of the “Orchestration of Scenarios Cascading in JOIN
routes” Value Pack

4.2.3 Set the Orchestration Routes

After deploying the Value Pack, under conf/ directory there is an example of the

Orchestration Routes in the
OrchestraConfigurationCascadingJoinExample.xml.

The OrchestraConfiguration.xml file of any UCA EBC Server instance is
located in the ${UCA_EBC_INSTANCE}/conf folder.

In order to test the Orchestration of the different scenarios of this Value Pack, there
are two possibilities:

 Option 1: The
OrchestraConfigurationCascadingJoinExample.xml file has
to be copied in the conf/ folder of the UCA-EBC server instance where the

Value Pack is (to be) deployed and renamed to
OrchestraConfiguration.xml. Please be aware that this will

replace all previously defined Orchestration routes for the UCA-EBC server
instance. If you have Orchestra routes that you would like to keep, please
use option 2 instead.

 Option 2: Copy all of the routes defined in the
OrchestraConfigurationCascadingJoinExample.xml (each
route is represented by a <Route> XML tag) to the existing

OrchestraConfiguration.xml file of the UCA EBC Server instance

where the Value Pack is to be deployed.

After any change of the OrchestraConfiguration.xml file, the UCA EBC

server instance has to be restarted, in order for the new/updated routes to be
taken into consideration.

Note

 For more information on how to configure the Orchestration feature of UCA-

EBC, please refer to [R1] UCA for EBC Reference Guide.

42

4.2.4 Start the Value Pack

Value Packs can be started in two different manners depending on whether UCA for
EBC is already started or not.

If UCA for EBC is stopped, restarting the application will automatically start all
Value Packs deployed in the ${UCA_EBC_INSTANCE}/deploy directory and

load the Orchestration routes.

If UCA for EBC is already running, use the “--start” option of the uca-ebc-admin
command-line administration tool (executed as ‘uca’ user) to start the Value Pack:

On both HP-UX and Linux:

$ cd ${UCA_EBC_HOME}/bin
$ uca-ebc-admin --start -vpn cascading-join -vpv 3.2

An output similar to the following will be displayed:
UCA for EBC Home directory set to: /opt/UCA-EBC
UCA for EBC Data directory set to: /var/opt/UCA-EBC
INFO - Starting [cascading-join, 3.2, all scenarios]
INFO - Status: [cascading-join, 3.2, all scenarios]Value
pack has been successfully started. Status of the value pack:
Running

Or simply start it from the UCA for EBC Web User Interface.

4.3 Stop and undeploy the “Orchestration of Scenarios Cascading
in JOIN routes” Value Pack

Several steps are needed to stop (if running) and undeploy the “Orchestration of
Scenarios Cascading in JOIN Routes” value pack from the
${UCA_EBC_INSTANCE} server:

3. Stop the Value Pack (see 3.3.1)

4. Undeploy the Value Pack (see 3.3.2)

These steps are detailed in the following sections.

Note

${UCA_EBC_INSTANCE} translates to /var/opt/UCA-

EBC/instances/<instance name> by default unless UCA for EBC was

installed at an alternate location.

4.3.1 Stop the Value Pack

You can stop the Value Pack when UCA for EBC is running using the “--stop” option
of the uca-ebc-admin command-line administration tool (executed as ‘uca’ user):

On both HP-UX and Linux:

$ cd ${UCA_EBC_HOME}/bin
$ uca-ebc-admin --stop -vpn cascading-join -vpv 3.2

43

An output similar to the following will be displayed:
UCA for EBC Home directory set to: /opt/UCA-EBC
UCA for EBC Data directory set to: /var/opt/UCA-EBC
INFO - Stopping [cascading-join, 3.2, all scenarios]
INFO - Status: Value pack has been successfully stopped.
Status of the value pack: Stopped

Or simply stop it from the UCA for EBC Web User Interface.

Even if the Value Pack is stopped, the Orchestration Routes are kept. If you want
to remove the Orchestration Routes, they have to be removed from the
OrchestraConfiguration.xml file of the UCA-EBC server instance and the

instance has to be restarted.

4.3.2 Undeploy the “Orchestration of Scenarios Cascading in JOIN
routes” Value Pack

To undeploy the Orchestration of Scenarios Cascading in JOIN Routes Value Pack,
please use the “--undeploy” option of the uca-ebc-admin command-line
administration tool (executed as ‘uca’ user):

On both HP-UX and Linux:

$ cd ${UCA_EBC_HOME}/bin
$ uca-ebc-admin --undeploy -vpn cascading-join -vpv 3.2

An output similar to the following will be displayed:
UCA for EBC Home directory set to: /opt/UCA-EBC
UCA for EBC Data directory set to: /var/opt/UCA-EBC
INFO - Undeploying [cascading-join, 3.2, all scenarios]
INFO - Status: Value pack has been successfully undeployed.
Status of the value pack: NotDeployed

Or simply undeploy it from the UCA for EBC Web User Interface.

Even if the Value Pack is unloaded, the Orchestration Routes are kept. If you
want to also remove the Orchestration Routes, they have to be removed from the
OrchestraConfiguration.xml file of the UCA-EBC server instance and the

instance has to be restarted.

4.4 Test the “Orchestration of Scenarios Cascading in JOIN routes”
Value Pack

This section described the steps to follow in order to test the “Orchestration of
Scenarios Cascading in JOIN Routes” Value Pack.

4.4.1 Event sample files

For the “Orchestration of Scenarios Cascading in JOIN routes” Value Pack described,
some event files are delivered in order to test the scenario orchestration
behavior.

In order to test with different event types, four sample event files are present in the
${UCA_EBC_INSTANCE}/deploy/cascading-join-3.2

/enrichment/ folder:

44

 The AlarmsJoinStreams1.xml file contains “Communication”

AlarmCreation events

 The AlarmsJoinStreams2.xml file contains an

AlarmAttributeValueChange event for one of the “Communication” alarms
in AlarmsJoinStreams1.xml.

 The AlarmsJoinStreams3.xml file contains “Environmental”

AlarmCreation events

 The AlarmsJoinStreams4.xml file contains an

AlarmAttributeValueChange event and an AlarmStateChange event for one
of the “Environmental” alarms in AlarmsJoinStreams3.xml.

4.4.2 Injecting events with the uca-ebc-injector

Events can be injected into UCA for EBC using the uca-ebc-injector command-line
tool as follows:

On both HP-UX and Linux (for i from 1 to 4):

$ cd ${UCA_EBC_INSTANCE}/deploy/cascading-join-3.2/enrichment/
$ ${UCA_EBC_HOME}/bin/uca-ebc-injector –file
AlarmsJoinStreams$i.xml

4.4.3 Results

Rules actions of the Orchestration example are designed to simulate real event
actions. Several JUnit tests showing different propagation of events (Alarm
Creation, Attribute Value Change (AVC), Alarm State Change (SC) and Alarm
Deletion) can be found under src/test/java, in the

com.hp.uca.expert.vp.cascading Java package of the Value Pack source

code. There are two JUnit tests describing the Value Pack’s default configuration,
with the different JOIN and COPY operations from/to CLOUD/STREAM scenarios.

More precisely, when inserting the AlarmJoinStreams1.xml and
AlarmJoinStreams2.xml files we obtain the same results as running the
OrchestraCascadingJoinStreamsToCloudTest.java JUnit test and

when inserting the other two sample files we obtain the same results as running
the OrchestraCascadingJoinStreamsToStreamTest.java JUnit test.

As described in the [R1] UCA for EBC Reference Guide, when delegating from a
CLOUD scenario to a STREAM scenario, for each AVC or SC an Alarm Creation is done
before.

4.4.4 Checking the results

The event propagation can be tracked in the
${UCA_EBC_INSTANCE}/logs/uca-ebc.log file, when the log4j log level of

each scenario is set to INFO. When the log4j log level of each scenario is set to set to
DEBUG, the orchestraData propagation can be tracked with even more detail. Key
information is highlighted below:

At start-up:

[2014-04-17 14:51:49,260][INFO][][T-Main
][com.hp.uca.expert.orchestra.WorkflowConfiguration][47]Loading Orchestra
Workflow from OrchestraConfiguration.xml

Deploy and start Orchestra Cascading in JOIN routes Value Pack:

45

[2014-04-17 14:52:34,388][INFO][][457048813@qtp-733907953-
2][com.hp.uca.expert.vp.internal.ValuePackLoader][188]Value pack 'cascading-
join-3.2' deployed

[2014-04-17 14:52:41,973][INFO][cascading-join-3.2][618609084@qtp-
733907953-0][com.hp.uca.expert.gui.ValuePackServices][165]Starting Value pack
'cascading-join-3.2'

[2014-04-17 14:52:47,923][INFO][][618609084@qtp-733907953-
0][com.hp.uca.expert.gui.ValuePackServices][172]Value pack 'cascading-join-3.2'
started

After insertion of the AlarmsJoinStreams1.xml file:

INFO

[2014-04-17 14:53:42,347][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Communication1][com.hp.uca.expert.vp.cascading
.Communication1][8]Send to Orchestra alarm

operation_context .uca_cri_oc alarm_object 222

[2014-04-17 14:53:42,347][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Communication2][com.hp.uca.expert.vp.cascading
.Communication2][8]Send to Orchestra alarm

operation_context .uca_cri_oc alarm_object 222

[2014-04-17 14:53:42,352][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Communication2][com.hp.uca.expert.vp.cascading
.Communication2][8]Send to Orchestra alarm

operation_context .uca_cri_oc alarm_object 333

[2014-04-17 14:53:42,352][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Communication1][com.hp.uca.expert.vp.cascading
.Communication1][8]Send to Orchestra alarm

operation_context .uca_cri_oc alarm_object 333

[2014-04-17 14:53:42,364][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.EnrichmentC][com.hp.uca.expert.vp.cascading.Enr
ichmentC][11]Send to Orchestra Just inserted

operation_context .uca_cri_oc alarm_object 222

[2014-04-17 14:53:42,366][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.EnrichmentC][com.hp.uca.expert.vp.cascading.Enr
ichmentC][11]Send to Orchestra Just inserted

operation_context .uca_cri_oc alarm_object 333

[2014-04-17 14:53:42,368][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.DBLogger][com.hp.uca.expert.vp.cascading.dblog
ger.AcmeDbLogger][34]==> Alarm: id=operation_context .uca_cri_oc
alarm_object 222, t=2014-01-16T12:00:00.000+02:00, e=BOX B1,
type=COMMUNICATIONS_ALARM, s=MINOR, ns=NOT_CLEARED,
os=NOT_ACKNOWLEDGED, ps=NOT_HANDLED, ins=true, avc=false, sc=false,
ret=false

[2014-04-17 14:53:42,369][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.DBLogger][com.hp.uca.expert.vp.cascading.dblog
ger.AcmeDbLogger][34]==> Alarm: id=operation_context .uca_cri_oc
alarm_object 333, t=2014-01-16T12:00:00.000+02:00, e=BOX B1,
type=COMMUNICATIONS_ALARM, s=MAJOR, ns=NOT_CLEARED,

46

os=NOT_ACKNOWLEDGED, ps=NOT_HANDLED, ins=true, avc=false, sc=false,
ret=false

[2014-04-17 14:53:42,376][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Correlation][com.hp.uca.expert.vp.cascading.Corr
elation][8]Correlation - Create Group

operation_context .uca_cri_oc alarm_object 222

[2014-04-17 14:53:42,382][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Correlation][com.hp.uca.expert.vp.cascading.Corr
elation][8]Correlation - Create Group

operation_context .uca_cri_oc alarm_object 333

DEBUG

[2014-04-17 15:13:40,286][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Communication1][com.hp.uca.expert.vp.cascading
.Communication1][10] - identifier = operation_context .uca_cri_oc
alarm_object 222

 ….

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Communication1 = check
server

 - var = none

[2014-04-17 15:13:40,286][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Communication2][com.hp.uca.expert.vp.cascading
.Communication2][10] - identifier = operation_context .uca_cri_oc
alarm_object 222

 …

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Communication2 =
{extraInfoComm0=check site Sophia, extraInfoComm1=check server HPslave}

 [2014-04-17 15:13:40,291][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Communication1][com.hp.uca.expert.vp.cascading
.Communication1][10] - identifier = operation_context .uca_cri_oc
alarm_object 333

 …

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Communication1 = check
server

[2014-04-17 15:13:40,291][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Communication2][com.hp.uca.expert.vp.cascading
.Communication2][10] - identifier = operation_context .uca_cri_oc
alarm_object 333

 …

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Communication2 =
{extraInfoComm0=check site Sophia, extraInfoComm1=check server HPslave}

47

[2014-04-17 15:13:40,303][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.EnrichmentC][com.hp.uca.expert.vp.cascading.Enr
ichmentC][12] - identifier = operation_context .uca_cri_oc
alarm_object 222

 …..

 - sourceScenarios = [com.hp.uca.expert.vp.cascading.Communication1,
com.hp.uca.expert.vp.cascading.EnrichmentC]

 - sourceScenariosDescription = [cascading-join-
3.2:com.hp.uca.expert.vp.cascading.Communication1, cascading-join-
3.2:com.hp.uca.expert.vp.cascading.EnrichmentC]

 …..

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Communication2 =
{extraInfoComm0=check site Sophia, extraInfoComm1=check server HPslave}

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Communication1 = check
server

[2014-04-17 15:13:40,307][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.EnrichmentC][com.hp.uca.expert.vp.cascading.Enr
ichmentC][12] - identifier = operation_context .uca_cri_oc
alarm_object 333

 ….

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Communication2 =
{extraInfoComm0=check site Sophia, extraInfoComm1=check server HPslave}

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Communication1 = check
server

 - var =

 -> Site [java.lang.String]

 = Sophia (France)

 [2014-04-17 15:13:40,309][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.DBLogger][com.hp.uca.expert.vp.cascading.dblog
ger.AcmeDbLogger][34]==> Alarm: id=operation_context .uca_cri_oc
alarm_object 333, t=2014-01-16T12:00:00.000+02:00, e=BOX B1,
type=COMMUNICATIONS_ALARM, s=MAJOR, ns=NOT_CLEARED,
os=NOT_ACKNOWLEDGED, ps=NOT_HANDLED, ins=true, avc=false, sc=false,
ret=false

 [2014-04-17 15:13:40,318][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Correlation][com.hp.uca.expert.vp.cascading.Corr
elation][9] - identifier = operation_context .uca_cri_oc alarm_object
222

 -….

 - additionalInformation = Site effected by this problem is Sophia (France)

 - additionalText = Command to do to fix the problem: ps auxw

….

48

 - sourceScenarios = [com.hp.uca.expert.vp.cascading.Communication1,
com.hp.uca.expert.vp.cascading.EnrichmentC,
com.hp.uca.expert.vp.cascading.Correlation]

 - sourceScenariosDescription = [cascading-join-
3.2:com.hp.uca.expert.vp.cascading.Communication1, cascading-join-
3.2:com.hp.uca.expert.vp.cascading.EnrichmentC, cascading-join-
3.2:com.hp.uca.expert.vp.cascading.Correlation]

 - ….

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Communication2 =
{extraInfoComm0=check site Sophia, extraInfoComm1=check server HPslave}

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Communication1 = check
server

 - var =

 -> Site [java.lang.String]

 = Sophia (France)

 [2014-04-17 15:13:40,327][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Correlation][com.hp.uca.expert.vp.cascading.Corr
elation][9] - identifier = operation_context .uca_cri_oc alarm_object
333

 - …

 - additionalInformation = Site effected by this problem is Sophia (France)

 - additionalText = Command to do to fix the problem: ps auxw

 - …

 - sourceScenarios = [com.hp.uca.expert.vp.cascading.Communication1,
com.hp.uca.expert.vp.cascading.EnrichmentC,
com.hp.uca.expert.vp.cascading.Correlation]

 - sourceScenariosDescription = [cascading-join-
3.2:com.hp.uca.expert.vp.cascading.Communication1, cascading-join-
3.2:com.hp.uca.expert.vp.cascading.EnrichmentC, cascading-join-
3.2:com.hp.uca.expert.vp.cascading.Correlation]

 - ….

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Communication2 =
{extraInfoComm0=check site Sophia, extraInfoComm1=check server HPslave}

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Communication1 = check
server

 - var =

 -> Site [java.lang.String]

 = Sophia (France)

After insertion of the AlarmsJoinStreams2.xml file:

49

INFO

[2014-04-17 14:54:50,777][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Communication1][com.hp.uca.expert.vp.cascading
.Communication1][8]Send to Orchestra AVC

operation_context .uca_cri_oc alarm_object 222

[2014-04-17 14:54:50,777][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Communication2][com.hp.uca.expert.vp.cascading
.Communication2][8]Send to Orchestra AVC

operation_context .uca_cri_oc alarm_object 222

[2014-04-17 14:54:50,783][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.EnrichmentC][com.hp.uca.expert.vp.cascading.Enr
ichmentC][8]Send to Orchestra AVC

operation_context .uca_cri_oc alarm_object 222

[2014-04-17 14:54:50,786][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.DBLogger][com.hp.uca.expert.vp.cascading.dblog
ger.AcmeDbLogger][34]==> Alarm: id=operation_context .uca_cri_oc
alarm_object 222, t=2014-01-16T12:00:00.000+02:00, e=BOX B1,
type=COMMUNICATIONS_ALARM, s=MINOR, ns=NOT_CLEARED,
os=NOT_ACKNOWLEDGED, ps=NOT_HANDLED, ins=true, avc=true, sc=false,
ret=false

[2014-04-17 14:54:50,787][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Correlation][com.hp.uca.expert.vp.cascading.Corr
elation][8]Correlation (AVC Updated)

operation_context .uca_cri_oc alarm_object 222

[2014-04-17 14:54:50,793][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.DBLogger][com.hp.uca.expert.vp.cascading.dblog
ger.AcmeDbLogger][56]==> AlarmAttributeValueChange: id=operation_context
.uca_cri_oc alarm_object 222, t=2014-01-16T13:00:05.000+01:00, e=BOX B1,
type=COMMUNICATIONS_ALARM, s=MINOR, os=NOT_ACKNOWLEDGED

DEBUG

 [2014-04-17 15:14:26,080][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Communication1][com.hp.uca.expert.vp.cascading
.Communication1][10] - identifier = operation_context .uca_cri_oc
alarm_object 222

 - …

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Communication1 = check
site Grenoble

[2014-04-17 15:14:26,080][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Communication2][com.hp.uca.expert.vp.cascading
.Communication2][10] - identifier = operation_context .uca_cri_oc
alarm_object 222

 - …

 - orchestraData

50

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Communication2 =
{extraInfoCommBOX2AVC=execute a ping on the IP adress}

 [2014-04-17 15:14:26,087][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.EnrichmentC][com.hp.uca.expert.vp.cascading.Enr
ichmentC][9] - identifier = operation_context .uca_cri_oc alarm_object
222

 - …

 - sourceScenarios = [com.hp.uca.expert.vp.cascading.Communication1,
com.hp.uca.expert.vp.cascading.EnrichmentC]

 - ….

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Communication2 =
{extraInfoComm0=check site Sophia, extraInfoComm1=check server HPslave}

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Communication1 = check
server

 - var =

 -> Site [java.lang.String]

 = Sophia (France)

[2014-04-17 15:14:26,090][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.DBLogger][com.hp.uca.expert.vp.cascading.dblog
ger.AcmeDbLogger][34]==> Alarm: id=operation_context .uca_cri_oc
alarm_object 222, t=2014-01-16T12:00:00.000+02:00, e=BOX B1,
type=COMMUNICATIONS_ALARM, s=MINOR, ns=NOT_CLEARED,
os=NOT_ACKNOWLEDGED, ps=NOT_HANDLED, ins=true, avc=true, sc=false,
ret=false

 [2014-04-17 15:14:26,093][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Correlation][com.hp.uca.expert.vp.cascading.Corr
elation][9] - identifier = operation_context .uca_cri_oc alarm_object
222

 - ….

 - sourceScenarios = [com.hp.uca.expert.vp.cascading.Communication1,
com.hp.uca.expert.vp.cascading.EnrichmentC,
com.hp.uca.expert.vp.cascading.Correlation]

 - ….

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Communication2 =
{extraInfoComm0=check site Sophia, extraInfoComm1=check server HPslave}

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Communication1 = check
server

 - var =

 -> Site [java.lang.String]

 = Sophia (France)

[2014-04-17 15:14:26,099][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.DBLogger][com.hp.uca.expert.vp.cascading.dblog

51

ger.AcmeDbLogger][56]==> AlarmAttributeValueChange: id=operation_context
.uca_cri_oc alarm_object 222, t=2014-01-16T13:00:05.000+01:00, e=BOX B1,
type=COMMUNICATIONS_ALARM, s=MINOR, os=NOT_ACKNOWLEDGED

After insertion of the AlarmsJoinStreams3.xml file:

INFO

[2014-04-17 14:55:52,969][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Environmental1][com.hp.uca.expert.vp.cascading.
Environmental1][8]Send to Orchestra alarm

operation_context .uca_cri_oc alarm_object 44

[2014-04-17 14:55:52,971][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Environmental2][com.hp.uca.expert.vp.cascading.
Environmental2][8]Send to Orchestra alarm

operation_context .uca_cri_oc alarm_object 44

[2014-04-17 14:55:52,971][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Environmental1][com.hp.uca.expert.vp.cascading.
Environmental1][8]Send to Orchestra alarm

operation_context .uca_cri_oc alarm_object 55

[2014-04-17 14:55:52,973][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Environmental2][com.hp.uca.expert.vp.cascading.
Environmental2][8]Send to Orchestra alarm

operation_context .uca_cri_oc alarm_object 55

[2014-04-17 14:55:52,976][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.EnrichmentS][com.hp.uca.expert.vp.cascading.Enr
ichmentS][8]Send to Orchestra alarm

operation_context .uca_cri_oc alarm_object 44

[2014-04-17 14:55:52,978][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.EnrichmentS][com.hp.uca.expert.vp.cascading.Enr
ichmentS][8]Send to Orchestra alarm

operation_context .uca_cri_oc alarm_object 55

[2014-04-17 14:55:52,979][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.EnrichmentS][com.hp.uca.expert.vp.cascading.dbl
ogger.AcmeDbLogger][34]==> Alarm: id=operation_context .uca_cri_oc
alarm_object 44, t=2014-01-21T12:00:00.000+02:00, e=BOX B1,
type=ENVIRONMENTAL_ALARM, s=MAJOR, ns=NOT_CLEARED,
os=NOT_ACKNOWLEDGED, ps=NOT_HANDLED, ins=true, avc=false, sc=false,
ret=false

[2014-04-17 14:55:52,979][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Correlation][com.hp.uca.expert.vp.cascading.Corr
elation][8]Correlation - Create Group

operation_context .uca_cri_oc alarm_object 44

[2014-04-17 14:55:52,981][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.EnrichmentS][com.hp.uca.expert.vp.cascading.dbl
ogger.AcmeDbLogger][34]==> Alarm: id=operation_context .uca_cri_oc
alarm_object 55, t=2014-01-21T12:00:00.000+02:10, e=BOX B1,
type=ENVIRONMENTAL_ALARM, s=MAJOR, ns=NOT_CLEARED,
os=NOT_ACKNOWLEDGED, ps=NOT_HANDLED, ins=true, avc=false, sc=false,
ret=false

52

[2014-04-17 14:55:52,982][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Correlation][com.hp.uca.expert.vp.cascading.Corr
elation][8]Correlation - Create Group

operation_context .uca_cri_oc alarm_object 55

DEBUG

 [2014-04-17 15:15:05,110][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Environmental2][com.hp.uca.expert.vp.cascading.
Environmental2][10] - identifier = operation_context .uca_cri_oc
alarm_object 44

 …

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental2 =
{extraInfoEnv1=check server HPmaster, extraInfoEnv0=callFireman2}

 - var = none

 [2014-04-17 15:15:05,113][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Environmental2][com.hp.uca.expert.vp.cascading.
Environmental2][10] - identifier = operation_context .uca_cri_oc
alarm_object 55

 - ….

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental2 =
{extraInfoEnv1=check server HPmaster, extraInfoEnv0=callFireman2}

 [2014-04-17 15:15:05,115][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Environmental1][com.hp.uca.expert.vp.cascading.
Environmental1][10] - identifier = operation_context .uca_cri_oc
alarm_object 44

 - ….

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental1 =
callFireman1

[2014-04-17 15:15:05,116][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Environmental1][com.hp.uca.expert.vp.cascading.
Environmental1][10] - identifier = operation_context .uca_cri_oc
alarm_object 55

 - …

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental1 =
callFireman1

 [2014-04-17 15:15:05,119][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.EnrichmentS][com.hp.uca.expert.vp.cascading.Enr
ichmentS][10] - identifier = operation_context .uca_cri_oc
alarm_object 44

 - …

53

 - additionalInformation = Site effected by this problem is Sophia (France)

 - additionalText = Command to do to fix the problem: ps auxw

 - …

 - sourceScenarios = [com.hp.uca.expert.vp.cascading.Environmental2,
com.hp.uca.expert.vp.cascading.EnrichmentS]

 - …

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental2 =
{extraInfoEnv1=check server HPmaster, extraInfoEnv0=callFireman2}

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental1 =
callFireman1

 - var =

 -> Site [java.lang.String]

 = Sophia (France)

 [2014-04-17 15:15:05,121][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.DBLogger][com.hp.uca.expert.vp.cascading.dblog
ger.AcmeDbLogger][34]==> Alarm: id=operation_context .uca_cri_oc
alarm_object 44, t=2014-01-21T12:00:00.000+02:00, e=BOX B1,
type=ENVIRONMENTAL_ALARM, s=MAJOR, ns=NOT_CLEARED,
os=NOT_ACKNOWLEDGED, ps=NOT_HANDLED, ins=true, avc=false, sc=false,
ret=false

[2014-04-17 15:15:05,121][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.EnrichmentS][com.hp.uca.expert.vp.cascading.Enr
ichmentS][10] - identifier = operation_context .uca_cri_oc
alarm_object 55

 - …

 - additionalInformation = Site effected by this problem is Sophia (France)

 - additionalText = Command to do to fix the problem: ps auxw

 - …

 - sourceScenarios = [com.hp.uca.expert.vp.cascading.Environmental2,
com.hp.uca.expert.vp.cascading.EnrichmentS]

 - …

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental2 =
{extraInfoEnv1=check server HPmaster, extraInfoEnv0=callFireman2}

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental1 =
callFireman1

 - var =

 -> Site [java.lang.String]

 = Sophia (France)

 [2014-04-17 15:15:05,122][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Correlation][com.hp.uca.expert.vp.cascading.Corr

54

elation][9] - identifier = operation_context .uca_cri_oc alarm_object
44

 - ….

 - additionalInformation = Site effected by this problem is Sophia (France)

 - additionalText = Command to do to fix the problem: ps auxw

 - ….

 - sourceScenarios = [com.hp.uca.expert.vp.cascading.Environmental2,
com.hp.uca.expert.vp.cascading.EnrichmentS,
com.hp.uca.expert.vp.cascading.Correlation]

…

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental2 =
{extraInfoEnv1=check server HPmaster, extraInfoEnv0=callFireman2}

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental1 =
callFireman1

 - var =

 -> Site [java.lang.String]

 = Sophia (France)

[2014-04-17 15:15:05,123][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.DBLogger][com.hp.uca.expert.vp.cascading.dblog
ger.AcmeDbLogger][34]==> Alarm: id=operation_context .uca_cri_oc
alarm_object 55, t=2014-01-21T12:00:00.000+02:10, e=BOX B1,
type=ENVIRONMENTAL_ALARM, s=MAJOR, ns=NOT_CLEARED,
os=NOT_ACKNOWLEDGED, ps=NOT_HANDLED, ins=true, avc=false, sc=false,
ret=false

 [2014-04-17 15:15:05,125][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Correlation][com.hp.uca.expert.vp.cascading.Corr
elation][9] - identifier = operation_context .uca_cri_oc alarm_object
55

 - …

 - additionalInformation = Site effected by this problem is Sophia (France)

 - additionalText = Command to do to fix the problem: ps auxw

 - ….

 - sourceScenarios = [com.hp.uca.expert.vp.cascading.Environmental2,
com.hp.uca.expert.vp.cascading.EnrichmentS,
com.hp.uca.expert.vp.cascading.Correlation]

 ….

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental2 =
{extraInfoEnv1=check server HPmaster, extraInfoEnv0=callFireman2}

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental1 =
callFireman1

 - var =

 -> Site [java.lang.String]

55

 = Sophia (France)

After insertion of the AlarmsJoinStreams4.xml file:

INFO

[2014-04-17 14:56:43,625][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Environmental2][com.hp.uca.expert.vp.cascading.
Environmental2][8]Send to Orchestra AVC

operation_context .uca_cri_oc alarm_object 44

[2014-04-17 14:56:43,625][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Environmental1][com.hp.uca.expert.vp.cascading.
Environmental1][8]Send to Orchestra AVC

operation_context .uca_cri_oc alarm_object 44

[2014-04-17 14:56:43,629][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Environmental1][com.hp.uca.expert.vp.cascading.
Environmental1][8]Send to Orchestra SC

operation_context .uca_cri_oc alarm_object 44

[2014-04-17 14:56:43,629][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Environmental2][com.hp.uca.expert.vp.cascading.
Environmental2][8]Send to Orchestra SC

operation_context .uca_cri_oc alarm_object 44

[2014-04-17 14:56:43,629][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.EnrichmentS][com.hp.uca.expert.vp.cascading.Enr
ichmentS][8]Send to Orchestra AVC

operation_context .uca_cri_oc alarm_object 44

[2014-04-17 14:56:43,634][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.EnrichmentS][com.hp.uca.expert.vp.cascading.dbl
ogger.AcmeDbLogger][56]==> AlarmAttributeValueChange: id=operation_context
.uca_cri_oc alarm_object 44, t=2014-01-21T12:00:00.000+02:05, e=BOX B1,
type=ENVIRONMENTAL_ALARM, s=MAJOR, os=null

[2014-04-17 14:56:43,636][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.EnrichmentS][com.hp.uca.expert.vp.cascading.Enr
ichmentS][8]Send to Orchestra SC

operation_context .uca_cri_oc alarm_object 44

[2014-04-17 14:56:43,638][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Correlation][com.hp.uca.expert.vp.cascading.Corr
elation][8]Correlation (AVC Updated)

operation_context .uca_cri_oc alarm_object 44

[2014-04-17 14:56:43,640][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.EnrichmentS][com.hp.uca.expert.vp.cascading.dbl
ogger.AcmeDbLogger][45]==> AlarmStateChange: id=operation_context
.uca_cri_oc alarm_object 44, t=2014-01-21T12:00:00.000+02:15, e=BOX B1,
type=ENVIRONMENTAL_ALARM, s=MAJOR, os=null

[2014-04-17 14:56:43,642][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Correlation][com.hp.uca.expert.vp.cascading.Corr
elation][8]Correlation (SC Updated)

operation_context .uca_cri_oc alarm_object 44

DEBUG

56

 [2014-04-17 15:15:47,199][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Environmental1][com.hp.uca.expert.vp.cascading.
Environmental1][10] - identifier = operation_context .uca_cri_oc
alarm_object 44

 - ….

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental1 = check
site Sophia

[2014-04-17 15:15:47,199][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Environmental2][com.hp.uca.expert.vp.cascading.
Environmental2][10] - identifier = operation_context .uca_cri_oc
alarm_object 44

 - …

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental2 =
{extraInfoEnvBOX1AVC=check site Grenoble}

 [2014-04-17 15:15:47,202][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Environmental2][com.hp.uca.expert.vp.cascading.
Environmental2][9] - identifier = operation_context .uca_cri_oc
alarm_object 44

 - alarmRaisedTime = 2014-01-21T12:00:00.000+02:15

 - …

 - attributeChanges

 -> Attribute: networkState

 New value: CLEARED

 Old value: NOT_CLEARED

 - orchestraData = none

[2014-04-17 15:15:47,202][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Environmental1][com.hp.uca.expert.vp.cascading.
Environmental1][9] - identifier = operation_context .uca_cri_oc
alarm_object 44

 - …

 - attributeChanges

 -> Attribute: networkState

 New value: CLEARED

 Old value: NOT_CLEARED

 - orchestraData = none

[2014-04-17 15:15:47,203][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.EnrichmentS][com.hp.uca.expert.vp.cascading.Enr
ichmentS][9] - identifier = operation_context .uca_cri_oc alarm_object
44

57

 - …

 - sourceScenarios = [com.hp.uca.expert.vp.cascading.Environmental1,
com.hp.uca.expert.vp.cascading.EnrichmentS]

 …

 - attributeChanges

 -> Attribute: problemInformation

 New value: Another Problem information

 Old value:

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental2 =
{extraInfoEnvBOX1AVC=check site Grenoble}

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental1 = check
site Sophia

 [2014-04-17 15:15:47,206][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.EnrichmentS][com.hp.uca.expert.vp.cascading.Enr
ichmentS][9] - identifier = operation_context .uca_cri_oc alarm_object
44

 - …

 - sourceScenarios = [com.hp.uca.expert.vp.cascading.Environmental1,
com.hp.uca.expert.vp.cascading.EnrichmentS]

 - …

 - attributeChanges

 -> Attribute: networkState

 New value: CLEARED

 Old value: NOT_CLEARED

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental2 =
{extraInfoEnvBOX1SC=execute a ping on the IP adress}

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental1 =
execute a ping on the IP adress

 [2014-04-17 15:15:47,208][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Correlation][com.hp.uca.expert.vp.cascading.Corr
elation][9] - identifier = operation_context .uca_cri_oc alarm_object
44

 - …

 - additionalInformation = Site effected by this problem is Sophia (France)

 - …

 - sourceScenarios = [com.hp.uca.expert.vp.cascading.Environmental2,
com.hp.uca.expert.vp.cascading.EnrichmentS,
com.hp.uca.expert.vp.cascading.Correlation]

 - attributeValueChanges =

 -> Time: 2014/01/21 13:00:00.000 +0100

 Attribute: problemInformation

58

 New value: Another Problem information

 Old value:

 - customFields = none

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental2 =
{extraInfoEnv1=check server HPmaster, extraInfoEnv0=callFireman2}

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental1 =
callFireman1

 - var =

 -> Site [java.lang.String]

 = Sophia (France)

[2014-04-17 15:15:47,208][INFO][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.DBLogger][com.hp.uca.expert.vp.cascading.dblog
ger.AcmeDbLogger][45]==> AlarmStateChange: id=operation_context .uca_cri_oc
alarm_object 44, t=2014-01-21T12:00:00.000+02:15, e=BOX B1,
type=ENVIRONMENTAL_ALARM, s=MAJOR, os=null

 [2014-04-17 15:15:47,212][DEBUG][cascading-join-3.2][T-Scenario-
com.hp.uca.expert.vp.cascading.Correlation][com.hp.uca.expert.vp.cascading.Corr
elation][9] - identifier = operation_context .uca_cri_oc alarm_object
44

 - …

 - additionalInformation = Site effected by this problem is Sophia (France)

 - additionalText = Command to do to fix the problem: ps auxw

 - …

 - sourceScenarios = [com.hp.uca.expert.vp.cascading.Environmental2,
com.hp.uca.expert.vp.cascading.EnrichmentS,
com.hp.uca.expert.vp.cascading.Correlation]

 …

 - stateChanges =

 -> Time: 2014/01/21 10:45:00.000 +0100

 Attribute: networkState

 New value: CLEARED

 Old value: NOT_CLEARED

 - hasAVCChanged = false

 - attributeValueChanges = none

 - customFields = none

 - orchestraData

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental2 =
{extraInfoEnv1=check server HPmaster, extraInfoEnv0=callFireman2}

 -> cascading-join-3.2:com.hp.uca.expert.vp.cascading.Environmental1 =
callFireman1

 - var =

59

 -> Site [java.lang.String]

 = Sophia (France)

60

Chapter 5

The “Persistence Example” explained

This is a new example delivered with the UCA-EBC Development Kit.

This value pack contains a very simple scenario that showcases the use of the DB
persistence and DB alarm forwarder features introduced with UCA-EBC 3.1.

5.1 How does it work?

The “Persistence example” value pack is configured with an H2 database so that
alarms can be stored in the database using a DB forwarder. It is also configured
with a DB flow so that alarms stored in the H2 database are fed into the value pack
at value pack start-up, and every time an alarm is added to the DB.

Each alarm received from the network is going to be put in Working Memory and
stored in a H2 database. Identifiers of alarms stored in the DB will be prefixed with
the “CORRELATED-“ string so that they can be distinguished from alarms coming
from the network whose identifiers don’t have this prefix.

Upon new alarm reception:

 If the alarm comes from the H2 database (the identifier of the alarm has the
“CORRELATED-“ prefix), then this information is logged.

 If the alarm does not come from the H2 database database (the identifier of
the alarm doesn’t have the “CORRELATED-“ prefix), then the identifier of
the alarm is prefix with the “CORRELATED-“ string and the alarm is put in
Working Memory and also stored in the H2 database (this information is
logged)

On alarm Attribute Value Change, alarm State Change or alarm Deletion, the same
thing happens: if it comes from network (the identifier of the alarm doesn’t have
the “CORRELATED-“ prefix), it is forwarded to the DB.

5.2 Installing the example

The “Persistence example” value pack is delivered with the UCA-EBC Development
Toolkit in the following folder:

${UCA_EBC_DEV_HOME}/vp-examples/persistence-example

You’ll need to build the value pack using ant then deploy it to a UCA-EBC Server
instance using the uca-ebc-admin command-line tool (or the UCA-EBC Admin GUI).

Please use the following commands to build the value pack using ant:

61

On Windows:

$ cd %UCA_EBC_DEV_HOME%\vp-examples\persistence-example
$ ant all

On Linux:

$ cd ${UCA_EBC_DEV_HOME}/vp-examples/persistence-example
$ ant all

The you need to copy the value pack .zip file to the
${UCA_EBC_INSTANCE}/valuepacks folder and deploy it using the following

command:

On both HP-UX and Linux:

$ cd ${UCA_EBC_HOME}/bin
$ uca-ebc-admin --deploy -vpn persistence-example -vpv 3.2

5.3 Looking at the configuration

The H2 DB used to showcase the DB flow feature in the “Persistence example”
value pack is configured in the value pack’s Spring application context file at the
following location:

${UCA_EBC_INSTANCE}/deploy/persistence-example-

3.2/conf/context.xml

This database itself is located by default in the following folder:

${UCA_EBC_INSTANCE}/db

The DB flow is named scenarioDBFlow and is configured in the value pack’s

configuration file at the following location:

${UCA_EBC_INSTANCE}/deploy/persistence-example-

3.2/conf/ValuePackConfiguration.xml

5.4 Testing the value pack

It is recommended that you first configure a
“com.hp.uca.ebc.vp.examples.persistence.SimpleScenario”
logger to INFO in the ${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml

file in order to be able to see the log messages from the “Persistence example”
value pack.

Then you need to start your UCA-EBC Server instance with the “Persistence
example” value pack already deployed.

When the “Persistence example” value pack starts, the H2 DB is created
automatically (when the JDBCAlarmForwarder thread is started) if it does not exist.

In order to test the “Persistence example” value pack, please inject the value pack’s
sample alarm file using the uca-ebc-injector command-line tool as shown below:

On Windows:

$ cd %UCA_EBC_INSTANCE%\deploy\persistence-example-3.2\scenario
$ %UCA_EBC_HOME%\bin\uca-ebc-injector –file Alarms.xml

62

On Linux:

$ cd ${UCA_EBC_INSTANCE}/deploy/persistence-example-3.2/scenario
$ ${UCA_EBC_HOME}/bin/uca-ebc-injector –file Alarms.xml

The following messages should be logged:

[2014-04-18 17:01:50,206][INFO][persistence-example-3.2][T-Main
][com.hp.uca.expert.vp.internal.ValuePackLoader][400]Starting Value Pack

: C:\UCA-EBC\deploy\persistence-example-3.2...

[2014-04-18 17:01:52,332][INFO][persistence-example-3.2][T-Main
][com.hp.uca.expert.vp.flow.internal.ValuePackMediationFlowImpl][183]Flow

Status: [persistence-example-3.2##temipFlow][Inactive]

[2014-04-18 17:01:53,985][INFO][persistence-example-3.2][T-Scenario-
com.hp.uca.ebc.vp.examples.persistence.SimpleScenario][com.hp.uca.expert.

rulesession.internal.RuleSession][326]

--

--

------- SCENARIO CONFIGURATION

 Session Name : com.hp.uca.ebc.vp.examples.persistence.SimpleScenario

 Clock Mode : NORMAL

 Event Processing Mode : CLOUD

 FireAllRules policy : EACH_ACCESS

 Alarm eligibility policy: NetworkState!="CLEARED"

 Elligible for Broadcast : true

--

--

------- RULE LIST

 KnowledgePackage Name : com.hp.uca.ebc.vp.examples.persistence

 -- Rule Name : Rule [New Alarm Creation]

 -- Rule Name : Rule [Alarm Attribute Value Change]

 -- Rule Name : Rule [Alarm State Change]

 -- Rule Name : Rule [Alarm no more eligible]

--

[2014-04-18 17:01:53,985][INFO][persistence-example-3.2][T-Scenario-
com.hp.uca.ebc.vp.examples.persistence.SimpleScenario][com.hp.uca.expert.

rulesession.internal.RuleSession][367]

--

--

------- WORKING MEMORY DUMP

[2014-04-18 17:01:54,001][INFO][persistence-example-3.2][T-Main
][com.hp.uca.expert.vp.flow.db.AlarmFlow][32]DB FlowStatus: [persistence

-example-3.2##scenarioDBFlow][Starting]

63

[2014-04-18 17:01:54,001][INFO][persistence-example-3.2][T-Scenario-
com.hp.uca.ebc.vp.examples.persistence.SimpleScenario][com.hp.uca.expert.

scenario.internal.ScenarioImpl][267] Scenario Thread : START

[2014-04-18 17:01:54,017][INFO][persistence-example-3.2][T-Main
][com.hp.uca.expert.vp.flow.db.AlarmFlow][52]DB FlowSynchronization:[per

sistence-example-3.2##scenarioDBFlow][Synchronizing]

[2014-04-18 17:01:54,017][INFO][persistence-example-3.2][T-Main
][com.hp.uca.expert.alarm.store.AlarmNotifier][133]Subscribing AlarmListe

ner com.hp.uca.expert.vp.flow.internal.DBFlow@1b0b85b8

[2014-04-18 17:01:54,032][INFO][persistence-example-3.2][T-Main
][com.hp.uca.expert.alarm.store.AlarmNotifier][138]com.hp.uca.expert.vp.f

low.internal.DBFlow@1b0b85b8 subscribed at 1397833314017

[2014-04-18 17:01:54,032][INFO][persistence-example-3.2][T-Main
][com.hp.uca.expert.vp.flow.db.AlarmFlow][52]DB FlowSynchronization:[per

sistence-example-3.2##scenarioDBFlow][Synchronized]

[2014-04-18 17:01:54,032][INFO][persistence-example-3.2][T-Main
][com.hp.uca.expert.vp.flow.db.AlarmFlow][32]DB FlowStatus: [persistence

-example-3.2##scenarioDBFlow][Active]

[2014-04-18 17:01:54,032][INFO][persistence-example-3.2][T-Main
][com.hp.uca.expert.vp.internal.ValuePackLoader][377]DB Flow scenarioDBFl

ow started

[2014-04-18 17:02:39,346][INFO][persistence-example-3.2][T-Scenario-
com.hp.uca.ebc.vp.examples.persistence.SimpleScenario][com.hp.uca.ebc.vp.

examples.persistence.SimpleScenario][71]Alarm received:

 - identifier = 1000

 - alarmRaisedTime = 2013-05-07T15:00:00.000+02:00

 - sourceIdentifier = TeMIP EMS

 - originatingManagedEntity = BOX B1

 - originatingManagedEntityStructure = null

 - alarmType = COMMUNICATIONS_ALARM

 - probableCause = Fire

 - perceivedSeverity = MINOR

 - networkState = NOT_CLEARED

 - operatorState = NOT_ACKNOWLEDGED

 - problemState = NOT_HANDLED

 - problemInformation = null

 - specificProblem = null

 - additionalInformation = null

 - additionalText = null

 - proposedRepairActions = null

 - notificationIdentifier = null

64

 - correlationNotificationIdentifiers = null

 - timeInMilliseconds = 1367931600000 [2013/05/07 15:00:00.000 +0200]

 - targetValuePack = null

 - sourceScenarios =
[com.hp.uca.ebc.vp.examples.persistence.SimpleScenario]

 - sourceScenariosDescription = [persistence-example-
3.2:com.hp.uca.ebc.vp.examples.persistence.SimpleScenario]

 - passingFilters = [test1, test2]

 - passingFiltersTags = {test1=[Tag1, Tag3, Tag2], test2=[Tag3, Tag2,
DummyNoParam]}

 - passingFiltersParams = {test1={TagX=12}, test2={DummyWithParam=123,
DummyWithEnum=F1}}

 - hasParents = false

 - parentsNumber = 0

 - parents = null

 - hasChildren = false

 - childrenNumber = 0

 - children = null

 - justInserted = true

 - aboutToBeRetracted = false

 - hasStateChanged = false

 - stateChanges = none

 - hasAVCChanged = false

 - attributeValueChanges = none

 - customFields = none

 - orchestraData = none

 - var = none

[2014-04-18 17:02:39,361][INFO][persistence-example-3.2][T-Scenario-
com.hp.uca.ebc.vp.examples.persistence.SimpleScenario][com.hp.uca.ebc.vp.

examples.persistence.SimpleScenario][73]Rule has fired correctly, and new alarm
has been inserted in working memory

[2014-04-18 17:02:39,361][INFO][persistence-example-3.2][T-Scenario-
com.hp.uca.ebc.vp.examples.persistence.SimpleScenario][com.hp.uca.ebc.vp.

examples.persistence.SimpleScenario][105]Alarm forwarded to DB:

 - identifier = CORRELATED-1000

 - alarmRaisedTime = 2013-05-07T15:00:00.000+02:00

 - sourceIdentifier = TeMIP EMS

 - originatingManagedEntity = BOX B1

 - originatingManagedEntityStructure = null

 - alarmType = COMMUNICATIONS_ALARM

65

 - probableCause = Fire

 - perceivedSeverity = MINOR

 - networkState = NOT_CLEARED

 - operatorState = NOT_ACKNOWLEDGED

 - problemState = NOT_HANDLED

 - problemInformation = null

 - specificProblem = null

 - additionalInformation = null

 - additionalText = null

 - proposedRepairActions = null

 - notificationIdentifier = null

 - correlationNotificationIdentifiers = null

 - timeInMilliseconds = 1367931600000 [2013/05/07 15:00:00.000 +0200]

 - targetValuePack = null

 - sourceScenarios =
[com.hp.uca.ebc.vp.examples.persistence.SimpleScenario]

 - sourceScenariosDescription = [persistence-example-
3.2:com.hp.uca.ebc.vp.examples.persistence.SimpleScenario]

 - passingFilters = [test1, test2]

 - passingFiltersTags = {test1=[Tag1, Tag3, Tag2], test2=[DummyNoParam,
Tag3, Tag2]}

 - passingFiltersParams = {test1={TagX=12}, test2={DummyWithParam=123,
DummyWithEnum=F1}}

 - hasParents = false

 - parentsNumber = 0

 - parents = null

 - hasChildren = false

 - childrenNumber = 0

 - children = null

 - justInserted = false

 - aboutToBeRetracted = false

 - hasStateChanged = false

 - stateChanges = none

 - hasAVCChanged = false

 - attributeValueChanges = none

 - customFields

 -> AlarmId = 1000

 - orchestraData = none

 - var = none

66

[2014-04-18 17:02:40,219][INFO][persistence-example-3.2][T-Scenario-
com.hp.uca.ebc.vp.examples.persistence.SimpleScenario][com.hp.uca.ebc.vp.

examples.persistence.SimpleScenario][71]Alarm received:

 - identifier = CORRELATED-1000

 - alarmRaisedTime = 2013-05-07T15:00:00.000+02:00

 - sourceIdentifier = DB

 - originatingManagedEntity = BOX B1

 - originatingManagedEntityStructure = null

 - alarmType = COMMUNICATIONS_ALARM

 - probableCause = Fire

 - perceivedSeverity = MINOR

 - networkState = NOT_CLEARED

 - operatorState = NOT_ACKNOWLEDGED

 - problemState = NOT_HANDLED

 - problemInformation = null

 - specificProblem = null

 - additionalInformation = null

 - additionalText = null

 - proposedRepairActions = null

 - notificationIdentifier = null

 - correlationNotificationIdentifiers = null

 - timeInMilliseconds = 1367931600000 [2013/05/07 15:00:00.000 +0200]

 - targetValuePack = persistence-example-3.2##scenarioDBFlow

 - sourceScenarios =
[com.hp.uca.ebc.vp.examples.persistence.SimpleScenario]

 - sourceScenariosDescription = [persistence-example-
3.2:com.hp.uca.ebc.vp.examples.persistence.SimpleScenario]

 - passingFilters = [test1, test2]

 - passingFiltersTags = {test1=[Tag1, Tag3, Tag2], test2=[Tag3, Tag2,
DummyNoParam]}

 - passingFiltersParams = {test1={TagX=12}, test2={DummyWithParam=123,
DummyWithEnum=F1}}

 - hasParents = false

 - parentsNumber = 0

 - parents = null

 - hasChildren = false

 - childrenNumber = 0

 - children = null

 - justInserted = true

 - aboutToBeRetracted = false

67

 - hasStateChanged = false

 - stateChanges = none

 - hasAVCChanged = false

 - attributeValueChanges = none

 - customFields

 -> AlarmId = 1000

 - orchestraData = none

 - var = none

[2014-04-18 17:02:40,219][INFO][persistence-example-3.2][T-Scenario-
com.hp.uca.ebc.vp.examples.persistence.SimpleScenario][com.hp.uca.ebc.vp.

examples.persistence.SimpleScenario][73]Rule has fired correctly, and new alarm
has been inserted in working memory

[2014-04-18 17:02:40,235][INFO][persistence-example-3.2][T-Scenario-
com.hp.uca.ebc.vp.examples.persistence.SimpleScenario][com.hp.uca.ebc.vp.

examples.persistence.SimpleScenario][88]This alarm was recovered from DB.

68

Glossary

DB: Database

EVP: UCA for EBC Value Pack

GUI: Graphical User Interface

JMS: Java Messaging Service

JMX: Java Management Extension, used to access or process action on the UCA for
EBC product.

JNDI: Java Naming and Directory Interface

Inference engine: Process that uses a Rete algorithm

DRL: Drools Rule file

NMS: Network Management System

SDK: Software Development Kit

TT: Trouble Ticket

XML: Extensible Markup Language

XSD: Schema of an XML file, describing its structure. XSD stands for XML Schema
Definition

X733: Standard describing the structure of an Alarm used in the
telecommunications environment.

