

hp Unified Correlation Analyzer

Unified Correlation Analyzer
for

Event Based Correlation

Version 3.2

Reference Guide

Edition: 1.0

For the HP-UX (11.31) and Linux (5.9 & 6.5) Operating Systems

April 2015

© Copyright 2015 Hewlett-Packard Development Company, L.P.

2

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for
technical or editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notices

© Copyright 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and
64-bit configurations) on all HP 9000 computers are Open Group UNIX 95 branded
products.

Java™ is a trademark of Oracle and/or its affiliates.

Microsoft®, Internet Explorer, Windows®, Windows Server®, and Windows NT® are
either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

Firefox® is a registered trademark of the Mozilla Foundation.

Google Chrome® is a trademark of Google Inc.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City,
California.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark, and the X device is a trademark of X/Open
Company Ltd. in the UK and other countries.

Red Hat® is a registered trademark of the Red Hat Company.

Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

3

Contents
Preface .. 10

Chapter 1.. 13

Introduction ... 13

1.1 Overview ... 14
1.2 Value Pack concept ... 14

Chapter 2.. 16

Solution Architecture .. 16

2.1 Solution Architecture .. 16
2.2 Components .. 17
2.3 Value Pack ... 18
2.4 Scenario ... 19
2.4.1 Filters ... 19
2.4.2 Inference Engine .. 20
2.4.3 Rules .. 20

Chapter 3.. 22

Value Packs and Scenarios ... 22

3.1 Definitions ... 22
3.2 Value packs core features ... 22
3.2.1 Mediation Flow integration ... 22
3.2.2 Alarm collection and validation... 23
3.3 Scenario core features .. 24
3.3.1 Alarm compression.. 24
3.3.2 Alarm or Event filtering ... 25
3.3.3 Alarm or Event enrichment ... 25
3.3.4 Alarm lifecycle ... 26
3.3.5 Automatic rules firing .. 31
3.4 Value Pack Definition .. 32
3.4.1 Files and distribution ... 32
3.4.2 Value pack definition file ... 32
3.5 Scenario ... 37
3.5.1 Files and distribution ... 37
3.5.2 Scenario definition file .. 38
3.5.3 Filter definition file .. 40
3.5.4 Filter tags file .. 47
3.5.5 Mappers definition file .. 51
3.5.6 Alarm Enrichment .. 57
3.5.7 Scenario Initialization class ... 58
3.5.8 Rules files .. 59
3.6 Value Pack Life Cycle ... 66
3.6.1 Installing a Value Pack .. 66
3.6.2 Deploying a Value Pack ... 66
3.6.3 Starting a Value Pack .. 67

4

3.6.4 Stopping a Value Pack ... 67
3.6.5 Un-deploying a Value Pack.. 68
3.6.6 Removing a Value Pack ... 68
3.7 Scenario Life Cycle and Status .. 69

Chapter 4.. 70

Scenario Policies ... 70

4.1.1 Processing policies .. 70
4.1.2 Time-related settings.. 73
4.1.3 Alarm eligibility ... 74
4.1.4 Garbage Collection .. 75
4.1.5 Automatic handling of configuration files modifications 75

Chapter 5.. 77

Common Objects ... 77

5.1 Events .. 77
5.1.1 Identification attributes .. 77
5.1.2 Orchestration attributes ... 77
5.1.3 Interfaces hierarchy .. 78
5.2 Alarms models used in the rules... 80
5.2.1 Alarm ... 80
5.2.2 AlarmStateChange .. 83
5.2.3 AlarmAttributeValueChange ... 84
5.2.4 AlarmDeletion ... 86
5.2.5 Properties of alarms .. 87
5.3 Actions ... 91
5.3.1 Action Class ... 92
5.3.2 Action registry ... 96
5.3.3 Action callbacks ... 99
5.4 Flags .. 102
5.4.1 Flag .. 102
5.4.2 ScenarioInitFlag ... 103
5.4.3 TickFlag ... 104
5.4.4 SynchronizationFlag .. 105
5.4.5 Internal Flags ... 106
5.5 Groups ... 107
5.5.1 Group ... 108
5.5.2 PropagationGroup ... 109
5.6 State .. 110
5.7 LocalVariable ... 111
5.8 Watchdog Item .. 113
5.9 Watchdog Item callbacks .. 115
5.10 Rule Session .. 119
5.11 Collection Flows .. 122
5.12 Scenario Loggers ... 124

Chapter 6.. 126

Advanced UCA for EBC features .. 126

6.1 Orchestration of event cascading between scenarios ... 126

5

6.1.1 Orchestration Principles .. 126
6.1.2 Orchestra Routes Configuration File ... 129
6.1.3 Orchestration definition example ... 132
6.1.4 Orchestration looping option .. 134
6.1.5 Scenario mode (STREAM/CLOUD) impact on event cascading 134
6.1.6 Orchestration API .. 137
6.2 Scenario Specific Configuration .. 141
6.2.1 Setting-up a Value pack specific Configuration file .. 142
6.3 Persisting alarms into a DB ... 146
6.3.1 Configuring the DB persistence feature .. 146
6.3.2 Accessing DB to retrieve persisted alarms ... 146

Appendix A ... 147

A.1 UCA for EBC REST API – DB Access .. 147
Indications for reading this guide .. 147
Getting started ... 147
Knowing which are the AlarmDao objects defined .. 147
Getting stored alarms .. 148
Doing actions on stored alarms ... 148
Storing new alarms .. 148
Deleting alarms .. 148
Registering for DB updates through REST ... 148
Registering for DB updates through NOM adapter .. 148
Advanced Requests .. 149
Optional arguments ... 149
A.2 UCA for EBC XML schemas ... 151

Glossary ... 152

6

Figures
Figure 1 - Simplified Solution architecture ... 16
Figure 2 - Extended Solution architecture ... 17
Figure 3 - Scenario .. 19
Figure 4 - Working Memory in STREAM mode ... 29
Figure 5 - Referencing a filter file inside a ValuePackConfiguration.xml file 41
Figure 6 - Referencing multiple filter files inside a ValuePackConfiguration.xml file 41
Figure 7 - Referencing a filter tags file inside a ValuePackConfiguration.xml file 48
Figure 8 - Editing Filter Tags with UCA for EBC Admin GUI ... 51
Figure 9 - Value Pack Life Cycle ... 66
Figure 10 - Scenario Lifecycle ... 69
Figure 11 - COPY Route example ... 127
Figure 12 - JOIN Rule example ... 129
Figure 13 - Cascading from STREAM to STREAM ... 135
Figure 14 - Cascading from CLOUD to STREAM ... 137

7

XML Configuration
XML Configuration 1 - ValuePackConfiguration.xml example .. 34
XML Configuration 2 - Scenario configuration example .. 40
XML Configuration 3 - Filter definition example .. 47
XML Configuration 4 - Filter definition example that contains tags ... 48
XML Configuration 5 - Template definition in Scenario ... 62
XML Configuration 6 - Rule Parameter file example ... 63
XML Configuration 7 – Enabling the CompressionMode for a Scenario 73
XML Configuration 8 - ActionRegistry.xml example .. 98
XML Configuration 9 - Orchestration configuration example .. 134
XML Configuration 10 - Specific Configuration Schema example .. 142
XML Configuration 11 - Specific Configuration XML file example ... 143
XML Configuration 12 - Binding Java Class example ... 144
XML Configuration 13 – XmlConfiguration Wrapper ... 145
XML Configuration 14 – Scenario Specific Configuration integration example 145

8

Rule Samples
Rule Sample 1 - Using ‘justInserted’, ‘hasAVCChanged’, ‘hasStateChanged’ and
‘aboutToBeRetracted’ alarm flags ... 28
Rule Sample 2 - STREAM mode and Alarms ... 30
Rule Sample 3 - Template rules file main components ... 61
Rule Sample 4 - Template Rules file example .. 63
Rule Sample 5 - Rule generated from Template example .. 65
Rule Sample 6 - Alarm attributes ... 81
Rule Sample 7 - AlarmType example .. 87
Rule Sample 8 - PerceivedSeverity example .. 88
Rule Sample 9 - NetworkState example.. 88
Rule Sample 10 - OperatorState example .. 89
Rule Sample 11 - ProblemState example ... 90
Rule Sample 12 - CustomField example ... 91
Rule Sample 13 - Simple Action example (synchronous) ... 94
Rule Sample 14 - Simple Action example (asynchronous) ... 95
Rule Sample 15 - Action Callback example .. 101
Rule Sample 16 - Flag example .. 103
Rule Sample 17 - TickFlag example .. 105
Rule Sample 18 - SynchronizationFlag example .. 106
Rule Sample 19 - Group example ... 109
Rule Sample 20 - Group example ... 110
Rule Sample 21 - LocalVariable example ... 112
Rule Sample 22 - WatchdogItem example .. 115
Rule Sample 23 - WatchdogItem callback example .. 118
Rule Sample 24 - RuleSession (WorkingMemory) mandatory access 121
Rule Sample 25 – Mediation Flow example .. 124
Rule Sample 26 - Scenario logger example .. 125
Rule Sample 27 - Orchestraion API scenario rule example .. 139
Rule Sample 28 - Orchestraion API scenario rule for source scenario in JOIN example 140
Rule Sample 29 - Orchestraion API scenario rule for target scenario in JOIN example 141

9

Tables

Table 1 - Alarm Collection validation ... 23
Table 2 - Summary CLOUD versus STREAM mode ... 30
Table 3 - Value Pack distribution files ... 32
Table 4 - Value Pack properties .. 33
Table 5 - Mediation Flows properties .. 36
Table 6 - Scenario files distribution ... 38
Table 7 - Scenario properties .. 39
Table 8 - File structure of a deployed Value Pack ... 67
Table 9 - Event identification attributes and methods ... 77
Table 10 - Event orchestration attributes and methods ... 77
Table 11 - Alarm attributes and methods ... 81
Table 12 - Alarm status attributes and methods ... 81
Table 13 - Alarm Correlation attributes and methods ... 81
Table 14 - Alarm Association attributes and methods .. 81
Table 15 - AlarmStateChange identifier attributes and methods .. 83
Table 16 - AlarmStateChange general attributes and methods .. 83
Table 17 - AlarmAttributeValueChange identifier attributes and methods 84
Table 18 - AlarmAttributeValueChange general attributes and methods 85
Table 19 - AlarmDeletion identifier attributes and methods .. 86
Table 20 - AlarmDeletion general attributes and methods .. 86
Table 21 - AlarmType values ... 87
Table 22 - PerceivedSeverity values ... 88
Table 23 - NetworkState values .. 88
Table 24 - OperatorState values ... 89
Table 25 - ProblemState values .. 89
Table 26 - CustomFields attributes and methods .. 90
Table 27 - CustomField attributes and methods ... 90
Table 28 - AttributeChanges attributes and methods .. 91
Table 29 - AttributeChange attributes and methods .. 91
Table 30 - ActionRegistry - MediationValuePack properties ... 97
Table 31 - ActionRegistry – Action properties ... 97
Table 32 - Flags attributes and methods ... 102
Table 33 - Value Pack properties .. 107
Table 34 - Group attributes and methods .. 109
Table 35 - Group attributes and methods .. 110
Table 36 - LocalVariable methods ... 111
Table 37 - WatchdogItem usage ... 113
Table 38 - WatchdogItem Callback usage .. 116
Table 39 - Rule Session usage ... 121
Table 40 - OrchestraWorkflow Tag .. 131
Table 41 - Routes Tag ... 131
Table 42 - Route Tag ... 131
Table 43 - Orchestra COPY route properties .. 131
Table 44 - Orchestra JOIN route properties .. 131
Table 45 - Destinations Tag .. 132
Table 46 - Destination Tag .. 132
Table 47 - Sources Tag ... 132
Table 48 - Orchestra Scenario identification (<Source> or <Target> tags) 132
Table 49 - Orchestration method ... 138
Table 50 - JOIN (Convergence case) methods ... 138

10

Preface

This guide provides an overview of Unified Correlated Analyzer for Event Based
Correlation (EBC) product and describes how to create Value Packs to target
customer specific use cases.

Product Name: Unified Correlation Analyzer for Event Based Correlation (also
referred in this document as UCA for EBC)

Product Version: 3.2

Kit Version: V3.2

Intended Audience
Here are some recommendations based on possible reader profiles:

 Solution Developers and integrators

 Software Development Engineers

Software Versions

The term UNIX is used as a generic reference to the operating system, unless
otherwise specified.

The software versions referred to in this document are as follows:

Product Version Supported Operating systems

UCA for Event Based
Correlation Server Version
V3.2

 HP-UX 11.31 for Itanium

 Red Hat Enterprise Linux Server
release 5.9 & 6.5

UCA for Event Based Channel
Adapter Version V3.2

 HP-UX 11.31 for Itanium

 Red Hat Enterprise Linux Server
release 5.9 & 6.5

UCA for Event Based
Correlation Software
Development Kit Version V3.2

 Windows XP / Vista

 Windows Server 2007

 Windows 7

 Red Hat Enterprise Linux Server
release 5.9 & 6.5

Typographical Conventions

Courier Font:

 Source code and examples of file contents

 Commands that you enter on the screen

11

 Pathnames

 Keyboard key names

Italic Text:

 Filenames, programs and parameters

 The names of other documents referenced in this manual

Bold Text:

 To introduce new terms and to emphasize important words

Associated Documents

The following documents contain useful reference information:

References

[R1] Unified Correlation Analyzer for Event Based Correlation – Installation Guide

[R2] Unified Correlation Analyzer for Event Based Correlation – Administration,
Configuration and Troubleshooting Guide

[R3] Unified Correlation Analyzer for Event Based Correlation – JavaDoc UCA Engine
(C:\%UCA_EBC_DEV_HOME%\apidoc\uca-expert-engine\index.html)

[R4] Unified Correlation Analyzer for Event Based Correlation – JavaDoc UCA Actions
(C:\%UCA_EBC_DEV_HOME%\apidoc\uca-mediation-action-client\index.html)

[R5] JBoss Drools Expert guide –
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-
docs/html_single/index.html

[R6] JBoss Drools Fusion guide –
http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-
docs/html_single/index.html

[R7] Unified Correlation Analyzer for Event Based Correlation – Value Pack
Development Guide

[R8] OSS Open Mediation V7.1 Functional Specification

[R9] OSS Open Mediation V7.1 Installation and Configuration Guide

[R10] Unified Correlation Analyzer for Event Based Correlation – User Interface
Guide

[R11] Unified Correlation Analyzer for Event Based Correlation – Topology
Extension

[R12] Unified Correlation Analyzer for Event Based Correlation – Value Pack
Examples

http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html_single/index.html
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html_single/index.html
http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/html_single/index.html
http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/html_single/index.html

12

Support

Please visit our HP Software Support Online Web site at
https://softwaresupport.hp.com/ for contact information, and details about HP
Software products, services, and support.

The Software support area of the Software Web site includes the following:

 Downloadable documentation.

 Troubleshooting information.

 Patches and updates.

 Problem reporting.

 Training information.

 Support program information.

https://softwaresupport.hp.com/

13

Chapter 1

Introduction

This guide describes the capabilities of the UCA for Event Based Correlation (UCA
for EBC) software product.

This document is organized as follows:

Chapter 1 provides a product overview

Chapter 2 describes the high level architecture of the product and its main
components.

Chapter 3, Chapter 4 and Chapter 5 describe some common notions:

 Value packs

 Scenarios

 Common Objects used in Working Memory

 Actions

Chapter 6 describes advanced features such as Cascading capabilities and Scenario
Specific Configuration.

Note

Throughout this document, we use the ${UCA_EBC_HOME} environment variable

to reference the root directory (“static” part) of UCA for EBC. The default value for
the ${UCA_EBC_HOME} environment variable is /opt/UCA-EBC. The

${UCA_EBC_HOME} environment variable thus references the /opt/UCA-EBC

directory unless UCA for EBC “static” part has been installed in an alternate
directory.

We also use ${UCA_EBC_DATA} environment variable to reference the data

directory (“variable” part) of UCA for EBC. The default value for the
${UCA_EBC_DATA} environment variable is /var/opt/UCA-EBC. The
${UCA_EBC_DATA} environment variable thus references the /var/opt/UCA-

EBC directory unless UCA for EBC “variable” part has been installed in an alternate

directory.

Since UCA-EBC V2.0, on Linux and HP-UX systems, the ${UCA_EBC_DATA}

directory may contain multiple instances of UCA-EBC. In this document, we will use
the value ${UCA_EBC_INSTANCE} for referring to
${UCA_EBC_DATA}/instances/<instance-name> directory on Linux/HP-

UX systems and to ${UCA_EBC_DATA} on Windows systems.

Note that at installation time on Linux/HP-UX, a single <instance-name> is
configured: default.

14

 For more information on how to install the UCA for EBC product, please refer

to: [R1] Unified Correlation Analyzer for Event Based Correlation – Installation
Guide.

1.1 Overview
The Unified Correlation Analyzer for Event Based Correlation product (also known
as ‘UCA Expert’ by analogy with the legacy ‘TeMIP Expert’ Software) offers a new
and generalized event based correlation solution.

Based on the JBoss Drools 5.5.0.Final “rule engine”, UCA for EBC offers the
capability to create comprehensive functional correlation sets called ‘Value packs’
that implement the correlation logic. This correlation is performed by rules
execution (the rules are written in a Java-based language). Any Value Pack can
support/use predefined functionalities such as Alarm collection, filtering, life cycle
as well as Generic Actions.

In terms of functionalities, UCA for EBC is able to:

Collect alarms (the Alarm model is based on a mix of X733 and OSS/J Fault
Management Model) and map them into Operator Alarm model (Alarm)

Run several scenarios (rule engines) in parallel and/or in sequence in order to
implement complex correlation algorithms. Each set of scenarios implementing a
single correlation solution is grouped inside a UCA for EBC Value Pack.

Dispatch ‘Alarm’ objects to the different scenarios

Execute rules based on scenario input stream and generate suitable output (e.g.
actions to external systems).

Control the scenario input stream using an Alarm based filtering layer.

Execute actions such as storing to a database, creating a Trouble Ticket, creating a
new Alarm, group alarms, forward an alarm to another scenario or execute a
Generic Action through the OSS Open Mediation V7.1 (NOM V7.1) layer.

Rules files are actually JBoss Rules files so both JBoss Expert and Fusion rules are
supported in UCA for EBC rule files. JBoss Drools Expert and JBoss Drools Fusion are
JBoss Drools basic modules.

On top of this basic functionality, UCA for EBC also provides a Software
Development Kit (SDK) that allows solution developers to easily build UCA for EBC
Value Packs (Functional Correlation block). Administration tools (both command-
line and a GUI) are also available to manage, monitor and troubleshoot the product.

UCA for EBC can be connected with a mediation bus (OSS Open Mediation V7.1)
providing the capability to collect alarms coming from any number of sources
(NMS) and performing actions in return.

1.2 Value Pack concept
A Value Pack is conceptually a consistent set of correlation capabilities for
managing some use cases such as a Low Level Filtering, a Domain-specific based
correlation like IP MPLS or L2 Metro Ethernet or a simple “operator” use case that
wants to group/correlate alarms based on specific criteria.

In terms of implementation, a Value Pack resides in a “functional container” that is
made of one or more scenarios responsible for implementing the correlation logic
(rules). Please note that the scenarios logic can be cascaded in order to implement
more complex correlation algorithms.

15

Several Value Packs can also be deployed in the same UCA for EBC system.
Additionally several versions of the same Value Pack can also be deployed on a UCA
for EBC system.

The product comes with demonstration examples: the Low Level Event Filtering
Value Pack and the Cascading Value Pack. Both of them can be deployed and used
for demos (as is or customized) or used as templates to create new Value Packs.

HP also delivers out-of-the-box value packs with the Inference Machine Software
Development Kit that bring Problem Detection and Topology State Propagator
scenarios.

16

Chapter 2

Solution Architecture

2.1 Solution Architecture

Figure 1 - Simplified Solution architecture

UCA for EBC provides the capability to:

 Collect alarms through OSS Open Mediation V7.1 (NOM V7.1).

 Dispatch these alarms to Value Packs, then to each scenario.

 Apply filters to each scenario and then run correlations rules on the
inference engine associated with the scenario.

 Execute actions on NMS (Network Management Systems), for example
TeMIP, through OSS Open Mediation V7.1 (NOM V7.1).

Alarm
Collector

Dispatcher

JM
S

VP2

Scenario
B

Scenario
C

VP1

Scenario
A

 Action web
service
client

UCA for EBC

OSS Open Mediation

Network
Management

System X

Network
Management

System Y

Network
Management

System Z

Alarm Collection

Action Request/Response

17

Figure 2 - Extended Solution architecture

2.2 Components
The UCA for EBC solution is made of the following main building blocks:

Alarm Collector:

This component is responsible for collecting incoming alarms. It collects XML
alarms from a JMS Queue (this queue is implemented as a JMS Topic), in a format
similar to the CITT X733 Standard. The Alarm Collector validates incoming alarms
and forwards them to the Dispatcher.

Dispatcher:

This component is responsible for dispatching incoming alarms to Scenarios within
Value Packs. The Dispatcher dispatches alarms only to the Scenarios configured as
‘eligibleForBroadcast’ (See Chapter 4.1.3.1 eligibleForBroadcast).

If the incoming alarms’ “TargetValuePack” (1) property contains a reference to a
valid Value Pack, and that this Value Pack is active (i.e. in a “Running” or
“Degraded” state), it only dispatches alarms to the Scenarios of this specific Value
Pack. Otherwise it broadcasts the alarms to eligible Scenarios of all active (started)
Value Packs.

Scenario:

This key component is responsible for filtering incoming alarms and inserting
“matching” alarms into the working memory of its rule engine. Each scenario runs
its own rule engine and executes its own set of rules. This where alarm correlation
really happens.

18

Action web service client:

Component responsible for forwarding action requests to Network Management
Systems through OSS Open Mediation V7.1 (NOM V7.1) and retrieving the
responses.

Note

(1) The format of the “TargetValuePack” property is the following: <value pack
name>-<value pack version>##<mediation flow name>, for example: pd-example-
2.1##temipFlow.

2.3 Value Pack
A UCA for EBC Value Pack offers a comprehensive set of correlation capabilities. It is
identified with a name and a version.

A Value Pack may contain one or more scenarios.

A Value Pack may be packaged with its own set of external libraries (jar files)
required by the Value Pack (usually the custom code called from rules).

A single XML configuration file (ValuePackConfiguration.xml) describes the Value
Pack and its Scenarios.

19

2.4 Scenario

Figure 3 - Scenario

A Scenario is made of:

 Filters

 Inference engine (including the Working Memory)

 Rules

Each scenario is defined in the Value Pack XML configuration file. Detailed
information on how to define a scenario is provided in section 3.5 “Scenario”.

A scenario is independent building block that can be developed and tested
separately. A complex correlation solution can therefore be built with from simpler
independent pieces. This eases the design, development, testing and maintenance
of the overall correlation solution.

2.4.1 Filters

The filter is the precondition for an alarm to be eligible to a scenario.

The filter can be complex, with nested sub-filters, using any logical operator
combinations, as well as, strings operators, integers, or date filter statements.

Filters are defined in XML configuration files, and described in section 3.5.3 “Filter
definition file”.

20

Each scenario has an internal queue holding alarms to be filtered. The dispatcher
pushes alarms to this queue. The filter discards alarms not meaningful for the
scenario.

2.4.2 Inference Engine

The Drools Inference Engine matches facts (i.e. alarms other objects) against rules
(i.e. knowledge base) to decide what actions to take.

UCA for EBC inference engine is based on JBOSS Drools 5.5.0.Final

JBOSS Drools 5.5.0 implements and extends the Rete algorithm which is an efficient
pattern matching algorithm for implementing production rule systems. It also
provides an enhanced and optimized implementation of the Rete algorithm for
object oriented named ReteOO.

For additional information on Drools Rule engine, you can refer to [R5] JBoss

Drools Expert guide , Chapter 1.1 - What is a Rule Engine?

Depending on the targeted use case, the UCA for EBC rule engine can be configured
in two different modes.

 CLOUD mode

 STREAM mode

With the CLOUD mode, all facts in the working memory are taken into account for
rules evaluation. There is no notion of ordering (flow) or time constraints.

With the STREAM mode, the alarm ordering and the time dimension are keys. When
using the STREAM mode, the engine is able to support sliding windows, and the
concept of “now”.

For details on these modes, please refer to [R6] JBoss Drools Fusion guide ,

Chapter 2.5. Event Processing Modes and Chapter 2.6 Sliding windows.

2.4.3 Rules

A Rule is a two-part structure made of:

 Some <conditions> (called Left Hand Side - LHS)

 Some <actions> (called Right Hand Side - RHS).

when

 <conditions>

then

 <actions>;

A scenario is usually implemented using several rules that can be defined in one or
more rules files.

Rules are evaluated against the contents of the Working Memory. When the
conditions of a rule are true the rule is executed.

More information on rules can be found in [R5] JBoss Drools Expert guide ,

Chapter 4.1.2. “What makes a rule?” and in the [R7] Unified Correlation Analyzer for
Event Based Correlation – Value Pack Development Guide, Chapter “Developing the
scenario rules”.

21

All documentation about JBOSS Drools 5.5.0 can be found at:

http://www.jboss.org/drools/documentation.html

http://www.jboss.org/drools/documentation.html

22

Chapter 3

Value Packs and Scenarios

3.1 Definitions
An UCA for EBC Value Pack is made of a set of scenarios packaged together. These
scenarios are usually assembled in order to implement a specific business case in
terms of correlation.

A Value Pack is identified by a name and a version. It is delivered as a zip file.

Each Value Pack can be deployed / started / stopped / un-deployed independently
of other Value Packs.

Each Value Pack is also independent from a “Java class loading” point of view. Each
Value Pack has its own Java class loader, thus Java class loading conflicts between
scenarios are avoided.

Each scenario is composed of a set of rules that run in the context of the scenario’s
own rule engine and working memory.

3.2 Value packs core features
All UCA for EBC Value Packs are built on top of a set of basic functionalities
provided by the UCA for EBC framework.

These functionalities are:

 Mediation Flow integration

 Alarm collection and validation

3.2.1 Mediation Flow integration

The UCA for EBC mediation (NOM V7.1 and Channel Adapters) is tightly integrated
with UCA for EBC at the Value Pack level.

If the Channel Adapter you’re targeting supports the “dynamic flows” feature, the
Value Pack itself can create and delete specific Alarm Flows directly on the
mediation layer.

The creation of dynamic flows is automatically requested at Value Pack start-up
(unless the automaticStart property of the mediation flow is set to false in the
ValuePackConfiguration.xml file.

See Chapter 3.4.2.2 “Defining Collection flows” for more information). Re-

creation of the mediation flow is also automatically requested after the value pack
has started if the value pack detects that this flow does not exist anymore.

Each mediation flow can be started, stopped or resynchronized separately from the
others, either from the GUI, the Java JMX console or the rules of the value pack.

23

The status of each mediation flow is displayed at the GUI. At the GUI, it is possible
to view, edit, apply and save the configuration of the mediation flows for each
value pack.

The status of each mediation flow is also displayed at the Java JMX console along
with troubleshooting information.

See [R10] Unified Correlation Analyzer for Event Based Correlation – User

Interface Guide

See Chapter 3.4.2.2 Defining Collection flows for additional information.

3.2.2 Alarm collection and validation

A UCA for EBC Value Pack is able to receive any of the following types of
alarms/events:

 Alarm creation (Alarm): a new alarm.

 Alarm state change (AlarmStateChange): an alarm indicating a status change
(networkState, operatorState, problemState).

 Alarm attribute value change (AlarmAttributeValueChange): an alarm
indicating an attribute value change (except state attributes).

Alarm deletion (AlarmDeletion): a deleted alarm.

The full definition of these Alarm types is described in the Chapter 0 “

All flavors of Alarms objects inherit from Event class.

Alarm” of this document.

The UCA for EBC core system can guarantee that the alarms forwarded to the Value
Packs have a predefined set of mandatory fields defined.

The table below indicates the list of mandatory alarm fields (the presence of all
mandatory fields is enforced by the UCA framework):

Table 1 - Alarm Collection validation

Alarm type Mandatory fields Comments

Alarm - Identifier

- Source identifier

- originatingManagedEntity

- probableCause

- alarmType

- perceivedSeverity

networkState, operatorState,
problemState are ‘noted’ as
mandatory in the schema but
functionally, they are optional

AlarmStateChange -Identifier

AlarmAttributeValueCha
nge

-Identifier

AlarmDeletion -Identifier

24

In addition to validating the presence of mandatory fields, the framework does the
following processing during alarm collection:

If an alarm is missing a mandatory attribute, the alarm is ignored and an error
message is added to the ${UCA_EBC_INSTANCE}/logs/uca-ebc.log file.

If the alarmRaisedTime attribute is not provided, this attribute is set with the
current time.

If either one of the networkState, operatorState and problemState attributes is
missing, the following default values are used: NOT_CLEARED,
NOT_ACKNOWLEDGED and NOT_CLOSED.

The UCA framework validates that each incoming alarm message conforms to the
UCA for EBC Alarm schema during collection. As this validation is CPU consuming, it
can be de-activated by setting the following property in the UCA for EBC properties
file (located at: ${UCA_EBC_INSTANCE}/conf/uca-ebc.properties):

 collector.messages.validation=false

On the other hand, to activate alarm validation by the alarm collector, you need to
set the following property in the UCA for EBC properties file:

 collector.messages.validation=true

See UCA for EBC Administration chapter in [R2] Unified Correlation Analyzer for

Event Based Correlation – Administration, Configuration and Troubleshooting Guide

3.3 Scenario core features
All UCA for EBC Scenarios are built on top of a set of basic functionalities provided
by the UCA for EBC framework.

These functionalities are:

 Alarm compression

 Alarm or Event filtering

 Alarm or Event enrichment

 Alarm or Event life cycle

 Automatic rules firing

3.3.1 Alarm compression

UCA for EBC offers a way to the Scenario developer to implement alarm
compression. This compression takes place when an Alarm or Alarm-related event
has been dispatched to a Scenario by the Dispatcher component.

Alarm compression is a scenario policy that can be set and configured for each
scenario defined in the ValuePackConfiguration.xml file of a Value Pack.

By default alarm compression is not enabled. If enabled, Alarm Attribute Value
Change and Alarm State Change events will be compressed (grouped together) over
a period of time (called compressionPeriod) before being sent to the Scenario.

The goal of Alarm compression is to improve the efficiency and performance of a
Scenario by reducing the flow of alarm Attribute Value Change and alarm State
Change events.

 For more information regarding compression and how to enable/disable

compression for a Scenario, please go to Chapter 4.1.1.5 “compressionMode”

25

3.3.2 Alarm or Event filtering

UCA for EBC offers a way to the Scenario developer to implement alarm or event
filtering. This filtering takes place when an Alarm or Alarm-related event has been
dispatched to a Scenario by the Dispatcher component, right after the compression
phase (if enabled) described in chapter 3.3.1 “Alarm compression”.

Alarm filtering is based on filter files. Each scenario is associated with a filter file in
the Scenario specific section of the ValuePackConfiguration.xml file of a

Value Pack.

The goal of Alarm filtering is to reduce the flow of Alarms and Alarm-related events
being sent to a Scenario by defining a set of filters. In the filter file, you can define
the type(s) of Alarms and Alarm-related events that should be forwarded to the
Scenario and the ones that should be filtered out using pattern patching on the
fields of the Alarms and Alarm-related events.

 For more information regarding filtering and how to configure filtering for a

Scenario, please go to Chapter 3.5.3 “Filter definition file”

3.3.3 Alarm or Event enrichment

UCA for EBC offers a way to the Scenario developer to implement alarm
enrichment. This enrichment takes place after the Alarm has been collected and
before it is injected in the Scenario Working memory.

The above picture shows incoming Alarms but it applies also to incoming Events.

This feature is typically used when some external additional information is
necessary to accomplish the alarm correlation. Such additional information can be
some topology information coming from the Topology database or from any other
source of information. This information is used to enrich the processed alarm
before applying the correlation rules.

Another typical use of alarm enrichment is when you need to process your own
objects (other than the default Alarm and Alarm-related objects) in the rules.

For more detailed information on how to implement Alarm Enrichment, See:

Chapter 3.5.6 “Alarm Enrichment” of this document

“Implementing alarm enrichment” chapter [R7] Unified Correlation Analyzer for
Event Based Correlation – Value Pack Development Guide

[R11] Unified Correlation Analyzer for Event Based Correlation – Topology
Extension

26

3.3.4 Alarm lifecycle

UCA for EBC scenarios can be either in STREAM or CLOUD processing mode.
Choosing one or the other of these processing modes has an impact on the way the
Alarm lifecycle is managed by the UCA for EBC framework within the scenario.

3.3.4.1 CLOUD Mode

The CLOUD processing mode is the “usual” processing mode of inference engines.
Users of rules engine are familiar with this mode because it behaves exactly the
same way as any pure forward chaining rules engine, including previous versions of
Drools or TeMIP Expert for instance.

When running in CLOUD mode, the engine sees all facts in the working memory.
There is no notion of flow of time, although events have a timestamp as usual. In
other words, although the engine knows that a given event was created, for
instance, on January 1st 2012, at 09:35:40.767, it is not possible for the engine to
determine how "old" the event is, because there is no concept of "now".

In this mode, the Drools engine will apply its usual many-to-many pattern
matching algorithm, using the rules constraints to find the matching tuples,
activate and fire rules as usual.

This mode does not impose any kind of additional requirements on facts. So for
instance:

There is no notion of time. No clock synchronization requirements.

There is no requirement on event ordering. The engine looks at the events as an
unordered cloud against which the engine tries to match rules.

In CLOUD mode, it is not possible to use sliding windows, because sliding windows
are based on the concept of "now" and there is no such concept in CLOUD mode.

With the CLOUD mode, the UCA for EBC framework fully controls the lifecycle of the
Alarms objects stored in Working Memory by applying the following algorithm:

On ‘Alarm’ message reception, an Alarm Object is created (if not already present) in
each scenario for which this alarm matches the alarm filter. This Alarm Object will
be constructed with the information from the ‘Alarm message’. Each new alarm
object is inserted into the scenario’s Working Memory if this alarm is eligible (Refer
to 4.1.3.2 alarmEligibilityPolicy).

Note: Any new alarm inserted to the Working memory has the specific attribute
‘justInserted’ set to ‘true’. This alarm attribute can be used in rule condition in order
for the rule to be triggered on each new alarm insertion. It is then the responsibility
of the rule developer to clear the ‘justInserted’ flag by calling the alarm method
setJustInserted(false) in the rule ‘then’ section.

On any ‘Alarm state change’ message reception (AlarmStateChange), the
associated alarm Object is retrieved from the scenarios’ Working Memory where it
is present. The alarm object state attributes (networkState, problemState,
operatorState) are updated given the new values from the AlarmStateChange
message. In the case when the alarm becomes ‘Not Eligible’ anymore (Refer to
4.1.3.2 alarmEligibilityPolicy) the alarm is retracted from Working Memory after
the alarm attribute ‘aboutToBeRetracted’ to ‘false’ (in the same manner as for
AlarmDeletion messages). Then the rules are fired again.

Note: Any alarm that has its state updated in Working Memory has the specific
attribute ‘hasStateChanged’ set to ‘true’. This alarm attribute can be used in rule
condition in order for the rule to be triggered on alarm state changes. It is then the

27

responsibility to the rule developer the clear the ‘hasStateChanged’ flag by calling
the alarm method setHasStateChanged(false) in the rule ‘then’ section.

On reception of an ‘Alarm attribute change’ message (AlarmAttributeChange) such
as perceivedSeverity… the corresponding attributes of the WM alarm Object is
updated (for each scenario where the alarm object is present), and then the rules
evaluation is triggered again.

Note: Any alarm that has attributes updated in Working Memory has the specific
attribute ‘hasAVCChanged’ set to ‘true’ (AVC stands for Attribute Value Change).
This alarm attribute can be used in rule condition in order for the rule to be
triggered on alarm attribute changes. It is then the responsibility to the rule
developer the clear the ‘hasAVCChanged’ flag by calling the alarm method
setHasAVCChanged(false) in the rule ‘then’ section.

On ‘AlarmDeletion’ reception, the associated alarm objects are retrieved from the
scenarios’ working memory. The alarm retraction is done in two steps:

Update the alarm attribute ‘aboutToBeRetracted’ to ‘true’ and then fire the rules
again.

Finally a garbage collection mechanism will automatically retract all alarms with
the attribute ‘aboutToBeRetracted’ set to ‘true’. If you wanted to cancel the
removal of the alarm from Working Memory, you could clear the
‘aboutToBeRetracted’ flag by setting it to ‘false’ using the
setAboutToBeRetracted(boolean) method of the Alarm object.

The Alarm Object will remain in the scenario’s working memory as long as no
AlarmDeletion message is received, as long as the alarm remains valid according to
the alarmEligibilityPolicy (See Chapter 4.1.3.2 alarmEligibilityPolicy), or as long as
it is not explicitly retracted from Working Memory (using a “retract” statement in
the rules).

Note: the four alarm attributes (‘justInserted’, ‘hasStateChanged’,
‘hasAVCChanged’, and ‘aboutToBeRetracted’) give the developper the possibility to
implement specific processing at alarm Working Memory insertion, attribute
change, state change or retraction.

The following is an example of rules using these alarm attributes in the rules
condition (fireAllRulesPolicy set to EACH_ACCESS, See Chapter 4.1.1.2
fireAllRulesPolicy):

package hp.uca.expert.engine

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

rule "Processing at alarm creation"

 when

 a : Alarm (justInserted == true)

 then

 System.out.println ("========Alarm just inserted in Working

Memory : " + a.getIdentifier());

 // place your alarm processing code here

 // Optionally reset the JustInserted flag

 a.setJustInserted(false);

End

rule "Processing at alarm attribute change"

 when

 a : Alarm (hasAVCChanged == true)

 then

28

 System.out.println ("========Alarm attributes just updated in

Working Memory : " + a.getIdentifier());

 // place your alarm processing code here

 // Optionally reset the HasAVCChanged flag

 a.setHasAVCChanged(false);

End

rule "Processing at alarm state change"

 when

 a : Alarm (hasStateChanged == true)

 then

 System.out.println ("========Alarm state just updated in

Working Memory : " + a.getIdentifier());

 // place your alarm processing code here

 // Optionally reset the HasStateChanged flag

 a.setHasStateChanged(false);

End

rule "Processing at alarm deletion"

 when

 a : Alarm (aboutToBeRetracted == true)

 then

 System.out.println ("========Alarm about to be retracted from

Working Memory : " + a.getIdentifier());

 // place your alarm processing code here

 // Optionally reset the AboutToBeRetracted flag to cancel

 // alarm removal from Working Memory

 a.setAboutToBeRetracted (false);

end

Rule Sample 1 - Using ‘justInserted’, ‘hasAVCChanged’, ‘hasStateChanged’ and
‘aboutToBeRetracted’ alarm flags

3.3.4.2 STREAM (Complex Event Processing) Mode

When using the STREAM, the Drools engine knows the concept of time flow and the
concept of "now", i.e., the engine understands how old events are based on the
current timestamp read from the Session Clock. This characteristic extends the
temporal reasoning possibilities of the engine with features like:

 Sliding Window support (ex: window:time() or window:length())

 Automatic Event Retraction (expiration time)

 Automatic Rule Delaying when using Negative Patterns (ex: not(Alarm(this
after[0s,10s] $f))

With the STREAM mode any type of alarm message (Alarm, AlarmStateChange,
AlarmAttributeChange, AlarmDeletion) has its corresponding object inserted in the
working memory by the UCA for EBC framework.

The Framework does not manage any Alarm lifecycle in STREAM mode. However it
automatically retracts each created Working Memory object after a predefined
(configurable) period of time.

29

In STREAM mode, it is recommended to set the fireAllRulesPolicy to ‘EACH_ACCESS’
(See Chapter 4.1.1.2 fireAllRulesPolicy).

Figure 4 - Working Memory in STREAM mode

The STREAM mode is specifically useful for writing rules where the order of
incoming alarms messages is key or if the time at which the messages arrive is
important.

The following is an example of rule implementation in STREAM mode:

package hp.uca.expert.engine

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmStateChange;

import com.hp.uca.expert.alarm.AlarmAttributeValueChange;

import com.hp.uca.expert.alarm.AlarmDeletion;

rule "Trace for alarm creation"

 when

 a : Alarm ()

 then

 System.out.println ("======== New Alarm ====================" +

a.getIdentifier());

end

rule "Trace for alarm state change"

 when

 a : AlarmStateChange ()

 then

 System.out.println ("======== New Alarm State Change

====================" + a.getIdentifier());

end

rule "Trace for alarm AVC change"

 when

 a : AlarmAttributeValueChange ()

 then

 System.out.println ("======== New Alarm AVC

====================" + a.getIdentifier());

end

rule "Trace for alarm deletion"

 when

 a : AlarmDeletion ()

Working Memory

Alarm creation

AlarmDeletion message

AlarmAttributeValueChange message

AlarmStateChange message

30

 then

 System.out.println ("======== New Alarm deletion

====================" + a.getIdentifier());

end

Rule Sample 2 - STREAM mode and Alarms

3.3.4.3 Differences between CLOUD and STREAM modes

The following table summarizes the differences between CLOUD and STREAM
Scenario modes:

Feature Cloud Stream (CEP)

Rule syntax Standard Standard + Time based

Object lifetime in WM No expiration time,
Depends on Eligibility Policy
criteria,
Until explicitely retracted
(using the retract statement)

Automatic (or manual) Event
retraction at expiration time

Object types in WM Alarm
+
Any other object directly
inserted into Working Memory

Alarm (i.e. Alarm Creation)
AlarmStateChange
AlarmAttributeValueChange
AlarmDeletion
+
Any other object directly inserted
into Working Memory

Lifecycle Mgt Alarm is transparently
updated based on State
Change, Attribute Value
Change, Deletion messages
received from the mediation
layer

N/A

Filtering Via XML file configuration Via XML file configuration

Orchestration of
Scenarios Cascading

Via Scenario object in rules Via Scenario object in rules

Completed Action
retraction

Via Action retraction policy Via Action retraction policy

FireAllRule
recommended policy

WATCHDOG: to avoid
unnecessary (intermediate)
rules activation (and save
processing time in case of
transient rule activation)
EACH_ACCESS: all rules
activation

EACH_ACCESS

Table 2 - Summary CLOUD versus STREAM mode

31

3.3.5 Automatic rules firing

The rules loaded in UCA for EBC are automatically fired by the Scenario component.

The Drools Agenda is updated with the list of rules that have to be fired (Rule
Activation) during the next “fireAllRules” request when an alarm is:

 inserted in the Scenario’s Working Memory (either an alarm coming from the
Mediation layer, or an alarm directly inserted in Working Memory by a rule)

 updated in the Scenario’s Working Memory (when the value of an attribute of
an Alarm or any Object has changed)

 retracted from the Scenario’s Working memory

Depending on a specific Scenario policy (the fireAllRules policy), the ‘fireAllRules’ is
automatically requested:

 Either on regular basis

 Or after each Working Memory access

See Chapter 4.1.1.2 fireAllRulesPolicy, for more information about the

automatic rule firing mechanism.

32

3.4 Value Pack Definition

3.4.1 Files and distribution

The directory named ${UCA_EBC_INSTANCE}/deploy is the location where

UCA for EBC deploys Value Packs. Once deployed, each Value Pack has its own root
directory within this “deploy” directory.

Each Value Pack has the following folder structure:

Content of ${UCA_EBC_INSTANCE}/deploy/<Value Pack name>-<Value Pack
version>/:

conf/ Configuration directory of the Value Pack. Contains

ValuePackConfiguration.xml file that is main

configuration file of any Value Pack.

ValuePackConfigurat

ion.xml

This file is used to define the
configuration of the Value Pack, its
Scenarios, and Mediation Flows.

context.xml (optional) This file can be used to define Spring
beans that can be used in the “global”
part of the definition of Scenarios in
the
ValuePackConfiguration.xml

file. These global variables (associated
with Spring beans) can then be used in
rules files.

See [R7] Unified Correlation Analyzer
for Event Based Correlation – Value
Pack Development Guide, Chapter
Spring Framework Integration.

lib/ Java Libraries necessary for the Value Pack

<scenario

name>/

Each scenario has a directory named after it. This directory has a
specific structure (see next paragraph about Scenario)

Table 3 - Value Pack distribution files

Defining a Value pack is a task that involves:

 specifying the basic attributes of the Value Pack, such as its name and
version

 listing the different Scenarios used by this Value Pack (and their
configuration parameters)

 optionally, listing the different Mediation Flows used by this Value Pack (and
their configuration parameters)

3.4.2 Value pack definition file

The Value Pack is defined in the ValuePackConfiguration.xml file:

This file is located in the ${UCA_EBC_INSTANCE}/deploy/<Value Pack Name>/conf/
directory.

The following table lists the different properties that define a Value Pack:

33

Type Name Value

Attribute name Property ‘name’ that identifies the name
of the Value Pack.

Attribute version Property ‘version’ that indicates the
version of the Value Pack.

Property scenarios List of the Scenarios defined by the Value
Pack

Property mediationFlows Optional.

List of the Mediation Flows defined by the
Value Pack

Property dbFlows Optional.

List of the DB Flows defined by the Value
Pack

Table 4 - Value Pack properties

3.4.2.1 Value Pack definition example

Following is a sample ValuePackConfiguration.xml file where the Value

Pack, its Scenarios and Mediation Flows are defined:

<?xml version="1.0" encoding="UTF-8"?>

<valuePackConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 name="skeleton_project"

 version="1.0">

 <scenarios>

 <scenario name="skeleton">

 <filterFile>src/main/resources/valuepack/skeleton/filters-file.xml</filterFile>

 <fireAllRulesPolicy>EACH_ACCESS</fireAllRulesPolicy>

 <globals></globals>

 <processingMode>STREAM</processingMode>

 <rulesFiles>

 <rulesFile>

 <filename>file:./src/main/resources/valuepack/skeleton/skeleton.drl</filename>

 <name>rulesFile1</name>

 <ruleFileType>DRL</ruleFileType>

 <rulesFile>

 </rulesFiles>

 </scenario>

 </scenarios>

 <mediationFlows>

 <mediationFlow name="temipFlow"

 actionReference="TeMIP_FlowManagement"

 flowNameKey="flowName">

 <!-- Comment out the flowCreation and flowDeletion sections to use static flows

 instead of dynamic flows -->

 <flowCreation>

 <actionParameter>

 <key>operation</key>

 <value>CreateFlow</value>

 </actionParameter>

 <actionParameter>

 <key>flowType</key>

 <!-- flowType can only be dynamic in the case of flowDeletion -->

 <value>dynamic</value>

 </actionParameter>

 <actionParameter>

 <key>operationContext</key>

 <!-- a valid TeMIP Operation Context name -->

 <value>oc_xxx</value>

 </actionParameter>

 </flowCreation>

 <flowDeletion>

34

 <actionParameter>

 <key>operation</key>

 <value>DeleteFlow</value>

 </actionParameter>

 <actionParameter>

 <key>flowType</key>

 <!-- flowType can only be dynamic in the case of flowDeletion -->

 <value>dynamic</value>

 </actionParameter>

 </flowDeletion>

 <flowResynchronization>

 <actionParameter>

 <key>operation</key>

 <value>ResynchFlow</value>

 </actionParameter>

 <actionParameter>

 <key>flowType</key>

 <!-- flowType can be either static or dynamic -->

 <value>dynamic</value>

 </actionParameter>

 </flowResynchronization>

 <flowStatus>

 <actionParameter>

 <key>operation</key>

 <value>StatusFlow</value>

 </actionParameter>

 <actionParameter>

 <key>flowType</key>

 <!-- flowType can be either static or dynamic -->

 <value>dynamic</value>

 </actionParameter>

 </flowStatus>

 </mediationFlow>

 </mediationFlows>

</valuePackConfiguration>

XML Configuration 1 - ValuePackConfiguration.xml example

3.4.2.2 Defining Collection flows

The <mediationFlows> tags of the Value Pack Configuration file indicates the list
of Mediation Flows to use with the Value Pack.

Inside the <mediationFlows> tag, you can define as many Mediation Flows as you
want, each Mediation Flow being defined inside a <mediationFlow> tag.

Each <mediationFlow> tag defines a list of Action parameters used to set-up a
Mediation Flow.

For Channel Adapters that support ‘dynamic’ Alarm Flows, the configuration of the
flow (creation, deletion, resynchronization or status request) is done through a
standard “configuration” Action, targeted to the Channel Adapter itself.

As described in Chapter 5.3 Actions, the Action is a set of key/value pairs sent to an
OSS OpenMediation Channel Adapter (the routing information is uniquely defined
via the ‘actionReference’ parameter, see Chapter 5.3.2 Action registry).

Each <mediationFlow> tag is configured using the following sequence of XML tags
(the order is important).

Type Name Value

Attribute name Mandatory.

Attribute ‘name’ that identifies the name of the

Mediation Flow.

This attribute will be used when automatically

constructing the value of the ‘flowName’ key/value

pair.

For instance, if the flowNameKey attribute is set to

‘flowName’, the Value Pack name-version is ‘myVP-

35

Type Name Value

0.1’, and the Flow name is ‘myFlow’, then the following

key/value pair is automatically added to all

CreateFlow/DeleteFlow/ResynchFlow/StatusFlow

directives:

<actionParameter>

 <key>flowName</key>

 <value>myVP-0.1##myFlow</value>

</actionParameter>

Attribute automaticStart Optional.

The automaticStart attribute of type Boolean indicates

whether to automatically start the Mediation Flow

when the Value Pack starts (this is the default value if

the automaticStart attribute is omitted) or not.

If the Mediation Flow is not set to automatically start

when the Value Pack start (or even if it is), it can be

started (also stopped or resynchronized) from the

Rules of any Scenarios of the Value Pack.

Please see Chapter 5.11 Collection Flows or refer

to [R3] Unified Correlation Analyzer for Event Based

Correlation – JavaDoc UCA Engine for more information

on how to start/stop/resynchronize a Mediation Flow

from the Rules of any Scenario.

Attribute flowNameKey Mandatory.

The flowNameKey attribute is a parameter that is

automatically added in the arguments of the Action

generated using this set of parameters. For all phase

(creation, deletion, resynchronization, status), an

Action key/value parameter is automatically added

with the ValuePack identifier.

For instance, if the flowNameKey attribute is set to

‘flowName’, the Value Pack name-version is ‘myVP-

0.1’, and the Flow name is ‘myFlow’, then the following

parameter is automatically added in the Action:
<actionParameter>

 <key>flowName</key>

 <value>myVP-0.1##myFlow</value>

</actionParameter>

In addition of the one defined in the selected phase:
<actionParameter>

 <key>operation</key>

 <value>StatusFlow</value>

</actionParameter>

<actionParameter>

 <key>flowType</key>

 <value>dynamic</value>

</actionParameter>

Attribute actionReference Mandatory.

The actionReference defined in the ActionRegistry (see

Chapter 5.3.2 Action registry)

36

Type Name Value

Attribute lastEventReceived

FirstDuringResync

hronization

Mandatory.

This attribute is of type Boolean. When set to true, it

means that the Flow is sending the Events in INVERTED

order (most recent Event first).

Typical value is true for a TeMIP flow.

Property flowCreation Recommended if the targetted Channel Adapter

supports ‘dynamic’ flows, but optional.

List of key/value pairs that will define the Action sent

to the Channel Adapter to create a Value Pack specific

Alarm Flow when the Value Pack starts.

Property flowDeletion Recommended if the targetted Channel Adapter

supports ‘dynamic’ flows, but optional.

List of key/value pairs that will define the Action sent

to the Channel Adapter to delete a Value Pack specific

Alarm Flow when the Value Pack stops.

Property flowResynchroniz

ation

Recommended but optional.

List of key/value pairs that will define the Action sent

to the targeted Channel Adapter to resynchronize a

Value Pack specific Alarm Flow when a

resynchronization of the Value Pack is requested.

This parameter is valid, whether the Channel Adapter

supports ‘dynamic’ or ‘static’ flows.

When this tag is not present, the button

“Resynchronize” will not be present in the UCA

Administration GUI for this Value Pack (See [R10]

Unified Correlation Analyzer for Event Based
Correlation – User Interface Guide)

Property flowStatus Mandatory.

List of key/value pairs that will define the Action sent

to the Channel Adapter to check the status of the

Channel Adapter and its flow.

This parameter is valid, whether the Channel Adapter

supports ‘dynamic’ or ‘static’ flows.

The UCA framework will check the status of the flow

every 30s and the Value Pack status reflects the

Mediation Flow status (turns to DEGRADED when the

mediation is no more available for instance).

Table 5 - Mediation Flows properties

In the above table, in the “Type” column, the term “Attribute” refers to an XML
attribute of the <mediationFlow> tag, while the term “Property” refers to a
separate XML tag inside the <mediationFlow> tag.

The <dbFlows> tags of the Value Pack Configuration file indicates the list of DB
Flows to use with the Value Pack.

Inside the <dbFlows> tag, you can define as many DB Flows as you want, each DB
Flow being defined inside a <dbFlow> tag.

Each <dbFlow> tag defines the parameters needed to set-up a DB Flow.

37

Each <dbFlow> tag is configured using only following attributes.

Type Name Value

Attribute name Mandatory.

Identifies the name of the DB Flow.

Attribute dbNotifierName Mandatory.

Identifies the name of the DB Notifier bean

instantiated to handle this DB flow

 Attribute lastEventReceivedFir

stDuringResynchroni

zation

Mandatory.

This attribute is of type Boolean. When set to

true, it means that the Flow is sending the Events

in INVERTED order (most recent Event first).

Typical value is false for a standard DB flow.

Attribute automaticStart Optional.

The automaticStart attribute of type Boolean

indicates whether to automatically start the DB

Flow when the Value Pack starts (this is the

default value if the automaticStart attribute is

omitted) or not.

If the DB Flow is not set to automatically start

when the Value Pack start (or even if it is), it can

be started (also stopped or resynchronized) from

the Rules of any Scenarios of the Value Pack.

Please see Chapter 5.11 Collection Flows

or refer to [R3] Unified Correlation Analyzer for

Event Based Correlation – JavaDoc UCA Engine for

more information on how to

start/stop/resynchronize a DB Flow from the

Rules of any Scenario.

Attribute sourceIdentifier Optional.

When an alarm is collected though DB flow, the

sourceIdentifier is replaced by this value.

Property eligibilityScope Recommended.

It is a Java evaluated boolean expression defining

the eligibility of an alarm to pass through the DB

flow at synchronization time.

If not specified, all alarms are eligible through

that DB flow.

3.5 Scenario

3.5.1 Files and distribution

Each scenario directory should contain:

38

Name Format Description Comments

*-filter.xml XML Contains the
definition of
the filter for
this scenario

The name of the filter file
must match the name of the
filter file referenced in the
scenario definition part in the

ValuePackConfiguratio

n.xml file

<rule file 1>.drl

<rule file 2>.drl

 …

DRL Contains a
set of rules
for the
scenario

The names of the rules files
must match the names of the
rules files referenced in the
scenario definition part in the

ValuePackConfiguratio

n.xml file.

Apart from this constraint,
rule file names can be
anything, provided they have a
.drl extension.

Table 6 - Scenario files distribution

3.5.2 Scenario definition file

Each scenario is defined in the ValuePackConfiguration.xml file:

${UCA_EBC_INSTANCE}/deploy/<Value Pack Name>/conf

The <scenarios> tags of the Value Pack Configuration file indicates the list of
Scenarios defined for the Value Pack.

Inside the <scenarios> tag, you can define as many Scenarios as you want, each
Scenario being defined inside a <scenario> tag.

Each <scenario> tag defines the parameters and policies of the Scenario.

Each Scenarios is configured using the following sequence of XML tags (the order is
important):

Type Name Value

Attribute name Mandatory.

Property ‘name’ that identifies the name

of the Scenario.

Property automaticRefreshOnConfigu

rationChange

See Chapter 4.1.5 Automatic handling of

configuration files modifications

Property actionRetractedAutomatical

lyWhenCompleted

See Chapter 4.1.4.1

actionRetractedAutomaticallyWhenComp

leted

Property alarmEligibilityPolicy See Chapter 4.1.3.2 alarmEligibilityPolicy

Property asyncActionPeriod See Chapter 4.1.2.3 asyncActionPeriod

Property clockTypeMode Not Used

Property eligibleForBroadcast See Chapter 4.1.3.1 eligibleForBroadcast

39

Type Name Value

Property filterFiles At least one filter file must be defined

See Chapter 3.5.3 Filter definition file.

The filterFile property is for backward-

compatibility only.

Property filterFile

Property filterTagsFile See Chapter 3.5.3 Filter definition file

Property mapperFile See Chapter 3.5.5 Mappers definition file

Property fireAllRulePeriod See Chapter 4.1.2.1 fireAllRulePeriod

Property fireAllRulesDuringResynchro

nization

See Chapter 4.1.1.3

fireAllRulesDuringResynchronization

Property fireAllRulesPolicy Mandatory.

See Chapter 4.1.1.2 fireAllRulesPolicy

Property garbageCollectionPeriod See Chapter 4.1.2.4

garbageCollectionPeriod

Property globals Mandatory.

List of SpringFramework Beans reference

that should be injected in the Scenario

(Use these objects in rule).

See [R7] Unified Correlation Analyzer
for Event Based Correlation – Value
Pack Development Guide

Property global Mandatory only if used in the Scenario

rule.

A SpringFramework Beans reference that

should be injected in the Scenario (Use

these objects in rule).

Property processingMode Mandatory.

See Chapter 4.1.1.1 Processing Mode

Property rulesFiles Mandatory.

See Chapter 3.5.8 Rules files

Property tickPeriod See Chapter 4.1.2.2 tickPeriod

Property customLifeCycleClass See Chapter 3.5.6 Alarm Enrichment

Property customInitializationClass See Chapter 3.5.7Scenario Initialization

class

Property compressionMode See Chapter 4.1.1.5 compressionMode

Property compressionPeriod See Chapter 4.1.1.5 compressionMode

Property retractOnResyncPolicy See Chapter 4.1.1.4

retractOnResyncPolicy

Table 7 - Scenario properties

In the above table, in the “Type” column, the term “Attribute” refers to an XML
attribute of the <scenario> tag, while the term “Property” refers to a separate XML
tag inside the <scenario> tag.

40

3.5.2.1 Scenario definition example

The following is a sample ValuePackConfiguration.xml file (assuming this file is
deployed in the ${UCA_EBC_INSTANCE}/deploy/myValuePack-
1.0/conf/ directory):

<?xml version="1.0" encoding="UTF-8"?>

<valuePackConfiguration

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 name="myValuePack"

 version="1.0">

 <scenarios>

 <scenario name="com.acme.dummy.Scenario1">

 <actionRetractedAutomaticallyWhenCompleted>true</actionRetractedAutomaticallyWhenCompleted>

 <asyncActionPeriod>1000</asyncActionPeriod>

 <clockTypeMode>NORMAL</clockTypeMode>

 <filterFile>deploy/myValuePack-1.0/scenario1/myFilters.xml</filterFile>

 <fireAllRulePeriod>1000</fireAllRulePeriod>

 <fireAllRulesDuringResynchronization>true</fireAllRulesDuringResynchronization>

 <fireAllRulesPolicy>WATCHDOG</fireAllRulesPolicy>

 <globals></globals>

 <processingMode>CLOUD</processingMode>

 <rulesFiles>

 <rulesFile>

 <filename>file:./deploy/myValuePack-1.0/scenario1/myRules.drl</filename>

 <name>My Rules</name>

 <ruleFileType>DRL</ruleFileType>

 </rulesFile>

 </rulesFiles>

 <tickPeriod>30000</tickPeriod>

 </scenario>

 </scenarios>

</valuePackConfiguration>

XML Configuration 2 - Scenario configuration example

3.5.3 Filter definition file

The filter definition file of a scenario is stored at the following location:
${UCA_EBC_INSTANCE}/deploy/<myValuepack>-

<version>/<myScenario>

Where:

 myValuepack is the Value pack name

 version is the Value pack version

 myScenario is the scenario name.

The name of the filter file can be anything, but the path for the filter file must be
recorded in the configuration file for the Value Pack (the
${UCA_EBC_INSTANCE}/deploy/<myValuepack>-

<version>/conf/ValuePackConfiguration.xml file).

In the ValuePackConfiguration.xml file, the path for the filter file must
be specified inside a <filterFile>…</filterFile> XML tag (inside a

<scenario>…</scenario> XML tag), as shown in the screen capture below:

41

Figure 5 - Referencing a filter file inside a ValuePackConfiguration.xml file

Note: It is possible to define more than one filter file for a scenario. Instead of using
the <filterFile>…</filterFile> tag to define the filter, you can use the
<filterFiles>…</filterFiles> tag to define multiple filter files. All the filter files will
be taken into account during the filtering process, as if there was just one filter file
containing all the top filters defined in all the filter files. Below is an example of
how to define multiple filter files:

Figure 6 - Referencing multiple filter files inside a ValuePackConfiguration.xml
file

A filter file defines a set of top filters. If the collected Alarm passes one of these
top filters (there’s an implicit OR operator between each top filter), the alarm will
be sent to the scenario and if eligible (Please refer to section 4.1.3 “Alarm
eligibility” for more information on alarm eligibility) the alarm will be inserted into
the scenario’s working memory.

42

Some value packs may need to know which filter allowed an alarm to be inserted
into a scenario’s working memory. The getPassingFilters() method on the

Alarm object returns the list of such filters.

3.5.3.1 Filter definition file syntax

The complete syntax of the filter definition XML file is defined in the uca-expert-
file.xsd XML Schema file located in the ${UCA_EBC_HOME}/schemas folder.

Any filter definition file must contain one and only one <filters
xmlns="http://hp.com/uca/expert/filter”>…</filters> XML element.

Inside the <filters xmlns="http://hp.com/uca/expert/filter”>…</filters> XML
element, you can define one or more <topFilter>…</topFilter> XML elements, one
for each top filter that you want to define. There’s an implicit OR operator between
each top filter. Incoming alarms need only pass one of the top filters.

3.5.3.1.1. The <topFilter> XML element

Each <topFilter>…</topFilter> XML element has a mandatory name attribute that
defines the name of the top filter:

<topFilter name=”mytopfilter”>…</topFilter>

A <topFilter> XML element has an optional “tagsGroup” attribute that defines the
group of tags that need to be proposed by the GUI tag editor utility. It should
contain a valid group name or a list of comma-separated group names:

<topFilter name=”mytopfilter” tagsGroup=”myTags1”> … </topFilter>

<topFilter name=”mytopfilter” tagsGroup=”myTags1,myTags2”> … </topFilter>

Inside a <topFilter>…</topFilter> XML element, you can have a sequence of either
of the following XML elements (there’s an implicit AND operator on all the XML
elements in the sequence):

<allCondition>…</allCondition>

<anyCondition>…</anyCondition>

<anyNotCondition>…</anyNotCondition>

<notCondition>…</notCondition>

Each of these XML elements can have an optional tag attribute (see section 3.5.4
“Filter tags” for more information on filter tags).

3.5.3.1.2. The <allCondition> XML element

<allCondition>…</allCondition> XML elements define a group of conditions that
must all be true in order for the “allCondition” to be true.

Inside an <allCondition>…</allCondition> XML element, you can have a sequence of
either of the following XML elements (there’s an implicit AND operator on all the
XML elements in the sequence):

<allCondition>…</allCondition>

<anyCondition>…</anyCondition>

<anyNotCondition>…</anyNotCondition>

<notCondition>…</notCondition>

<dateFilterStatement>…</dateFilterStatement>

<stringFilterStatement>…</stringFilterStatement>

43

<intFilterStatement>…</intFilterStatement>

<doubleFilterStatement>…</doubleFilterStatement>

<instanceOfFilterStatement>…</instanceOfFilterStatement>

< isPresentFilterStatement>…</isPresentFilterStatement>

Each of these XML elements can have an optional tag attribute (see section 3.5.4
“Filter tags” for more information on filter tags).

3.5.3.1.3. The <anyCondition> XML element

<anyCondition>…</anyCondition> XML elements define a group of conditions, only
one of which must be true in order for the “anyCondition” to be true.

Inside an <anyCondition>…</anyCondition> XML element, you can have a sequence
of either of the following XML elements (there’s an implicit OR operator on all the
XML elements in the sequence):

<allCondition>…</allCondition>

<anyCondition>…</anyCondition>

<anyNotCondition>…</anyNotCondition>

<notCondition>…</notCondition>

<dateFilterStatement>…</dateFilterStatement>

<stringFilterStatement>…</stringFilterStatement>

<intFilterStatement>…</intFilterStatement>

<doubleFilterStatement>…</doubleFilterStatement>

<instanceOfFilterStatement>…</instanceOfFilterStatement>

< isPresentFilterStatement>…</isPresentFilterStatement>

Each of these XML elements can have an optional tag attribute (see section 3.5.4
“Filter tags” for more information on filter tags).

3.5.3.1.4. The <anyNotCondition> XML element

<anyNotCondition>…</anyNotCondition> XML elements define a group of
conditions, only one of which must be false in order for the “anyNotCondition” to be
true.

Inside an <anyNotCondition>…</anyNotCondition> XML element, you can have a
sequence of either of the following XML elements (there’s an implicit OR operator
on all the XML elements in the sequence):

<allCondition>…</allCondition>

<anyCondition>…</anyCondition>

<anyNotCondition>…</anyNotCondition>

<notCondition>…</notCondition>

<dateFilterStatement>…</dateFilterStatement>

<stringFilterStatement>…</stringFilterStatement>

<intFilterStatement>…</intFilterStatement>

<doubleFilterStatement>…</doubleFilterStatement>

<instanceOfFilterStatement>…</instanceOfFilterStatement>

44

< isPresentFilterStatement>…</isPresentFilterStatement>

Each of these XML elements can have an optional tag attribute (see section 3.5.4
“Filter tags” for more information on filter tags).

3.5.3.1.5. The <notCondition> XML element

<notCondition>…</notCondition> XML elements define a group of conditions that
must all be false in order for the “notCondition” to be true.

Inside an <notCondition>…</notCondition> XML element, you can have a sequence
of either of the following XML elements (there’s an implicit AND operator on all the
XML elements in the sequence):

<allCondition>…</allCondition>

<anyCondition>…</anyCondition>

<anyNotCondition>…</anyNotCondition>

<notCondition>…</notCondition>

<dateFilterStatement>…</dateFilterStatement>

<stringFilterStatement>…</stringFilterStatement>

<intFilterStatement>…</intFilterStatement>

<doubleFilterStatement>…</doubleFilterStatement>

<instanceOfFilterStatement>…</instanceOfFilterStatement>

< isPresentFilterStatement>…</isPresentFilterStatement>

Each of these XML elements can have an optional tag attribute (see section 3.5.4
“Filter tags” for more information on filter tags).

3.5.3.1.6. The <dateFilterStatement> XML element

<dateFilterStatement>…</dateFilterStatement> XML elements define a condition
on an attribute of the Alarm of type “date”.

Inside an <dateFilterStatement>…</dateFilterStatement> XML element, you must
have a sequence of the following mandatory XML elements:

<fieldName>…</fieldName>. The value of the <fieldName>…</fieldName> XML
element must be the name of an attribute of the Alarm of type “date”, for example
“alarmRaisedTime”

<operator>…</operator>. The following values are possible for the
<operator>…</operator> XML element:

 isBefore

 isAfter

 isEqual

<fieldValue>…</fieldValue>. The value of the <fieldValue>…</fieldValue> XML
element must be a “date” constant, for example “2009-09-
16T10:44:55.803+02:00”

<dateFilterStatement> XML elements can have an optional tag attribute (see
section 3.5.4 “Filter tags” for more information on filter tags).

45

3.5.3.1.7. The <stringFilterStatement> XML element

<stringFilterStatement>…</stringFilterStatement> XML elements define a
condition on an attribute of the Alarm of type “string”.

Inside an <stringFilterStatement>…</stringFilterStatement> XML element, you
must have a sequence of the following mandatory XML elements:

<fieldName>…</fieldName>. The value of the <fieldName>…</fieldName> XML
element must be the name of an attribute of the Alarm of type “string”, for
example “originatingManagedEntity”

<operator>…</operator>. The following values are possible for the
<operator>…</operator> XML element:

 isEqual

 isNotEqual

 contains

 doesNotContain

 matches

 startsWith

 endsWith

 isListedIn

<fieldValue>…</fieldValue>. The value of the fieldValue XML element must be a
“string” constant, for example: “BOX B1”.

<stringFilterStatement> XML elements can have an optional tag attribute (see
section 3.5.4 “Filter tags” for more information on filter tags).

matches operator

When the operator is “matches”, then the value of the fieldValue XML element
must be a “string” constant representing a Regular Expression, for example “BOX
.*”.

The Regular Expression must match the whole value of the fieldValue XML
element, not just a sub-string. If you want to match a sub-string of the fieldValue
XML element, please use the “contains” operator instead.

For a full detail of the syntax of Regular Expressions used by the “matches”
operator, please refer to:

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

Note

Please note that by default the Regular Expression .* will not match character
strings that contain line terminators. This is the default behavior of the “matches”
operator. If you want to use a Regular Expression that will match character strings
that contain line terminators, then you should add (?s) to your Regular Expression.

For example, the Regular Expression (?s).* will match any multi-line character
string, whereas the Regular Expression .* will only match single-line character
strings.

isListedIn operator

When the operator is “isListedIn”, then the fieldValue represents a comma
separated list of strings.

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

46

Strings containing commas must be quoted with double-quotes.

The double-quotre character must be escaped with a backslash ‘\’ in a quoted
string. For example: BOX B1, “BOX, B2”,BOX \“B3\”.

3.5.3.1.8. The <intFilterStatement> XML element

<intFilterStatement>…</intFilterStatement> XML elements define a condition on
an attribute of the Alarm of type “integer”.

Inside an <intFilterStatement>…</intFilterStatement> XML element, you must
have a sequence of the following mandatory XML elements:

<fieldName>…</fieldName>. The value of the <fieldName>…</fieldName> XML
element must be the name of an attribute of the Alarm of type “integer”.

<operator>…</operator>. The following values are possible for the
<operator>…</operator> XML element:

 isEqual

 isNotEqual

 isLower

 isGreater

 isLowerEqual

 isGreaterEqual

<fieldValue>…</fieldValue>. The value of the <fieldValue>…</fieldValue> XML
element must be an “integer” constant, for example “12345”

<intFilterStatement> XML elements can have an optional tag attribute (see section
3.5.4 “Filter tags” for more information on filter tags).

3.5.3.1.9. The <doubleFilterStatement> XML element

<doubleFilterStatement> is an XML element similar to <intFilterStatement>except
that the condition value is a “double”.

3.5.3.1.10. The < instanceOfFilterStatement> XML element

< instanceOfFilterStatement> XML elements define a condition on the class of the
incoming Event.

Inside an < instanceOfFilterStatement>…</instanceOfFilterStatement> XML
element, you must have a sequence of the following mandatory XML element:

<fullClassName>…</fullClassName>. The value of this XML element must be the
fully qualified class name of the incoming Event.

Example for an Alarm:
<fullClassName>com.hp.uca.expert.alarm.AlarmCommon</fullClassName>

<instanceOfFilterStatement> XML elements can have an optional tag attribute (see
section 3.5.4 “Filter tags” for more information on filter tags).

3.5.3.1.11. The < isPresentFilterStatement> XML element

<isPresentFilterStatement> XML elements define a condition on the presence of a
specific attribute of the Alarm.

Inside an <isPresentFilterStatement>…</isPresentFilterStatement> XML element,
you must have a sequence of the following mandatory XML elements:

47

<fieldName>…</fieldName>. The value of the <fieldName>…</fieldName> XML
element must be the name of the required attribute to be part of the Alarm.

<isPresentFilterStatement> XML elements can have an optional tag attribute (see
section 3.5.4 “Filter tags” for more information on filter tags).

Note

For more information on the XML schema of filter files, please refer to schema

files delivered in ${UCA_EBC_HOME}/schemas

3.5.3.2 Filter definition sample

The following example defines a top filter where all conditions must be true
(there’s an implicit AND operator between each condition because the conditions
are defined inside a <allCondition>…</allCondition> XML tag):

 alarmRaisedTime after 2009-09-16T10:44:55.803+02:00

 originatingManagedEntity matches “BOX .*”

<?xml version="1.0" encoding="UTF-8" ?>

<filters xmlns="http://hp.com/uca/expert/filter">

 <topFilter name="test">

 <allCondition>

 <dateFilterStatement>

 <fieldName>alarmRaisedTime</fieldName>

 <operator>isAfter</operator>

 <fieldValue>2009-09-16T10:44:55.803+02:00</fieldValue>

 </dateFilterStatement>

 <stringFilterStatement>

 <fieldName>originatingManagedEntity</fieldName>

 <operator>matches</operator>

 <fieldValue>BOX .*</fieldValue>

 </stringFilterStatement>

 </allCondition>

 </topFilter>

</filters>

XML Configuration 3 - Filter definition example

3.5.4 Filter tags file

The filter definition XML schema lets you define “tags” at various levels of the
definition of the filter. Tags are a way to assign a name (a tag) to conditions or
groups of conditions in a filter, so that once the alarm has passed a filter it is
possible to retrieve the list of conditions or groups of conditions that were true
when the alarm was evaluated against the filter.

To retrieve the list of such tags that were true when the alarm was evaluated
against the filter, the getPassingFiltersTags(topFiltername) method on

the Alarm object can be used.

Below is an example of the definition of a top filter that contains tags:

<?xml version="1.0" encoding="UTF-8" ?>

<filters xmlns="http://hp.com/uca/expert/filter">

48

 <topFilter name="test">

 <anyCondition tag="BOX">

 <stringFilterStatement>

 <fieldName>originatingManagedEntity</fieldName>

 <operator>matches</operator>

 <fieldValue>BOX .*</fieldValue>

 </stringFilterStatement>

 </anyCondition>

 <anyCondition tag="CARD">

 <stringFilterStatement>

 <fieldName>originatingManagedEntity</fieldName>

 <operator>matches</operator>

 <fieldValue>CARD .*</fieldValue>

 </stringFilterStatement>

 </anyCondition>

 </topFilter>

</filters>

XML Configuration 4 - Filter definition example that contains tags

3.5.4.1 Editing Filter Tags with UCA for EBC Admin GUI

Within your scenario definition file, you have (since UCA for EBC V3.0) the possibility
to specify a list of tags that can be understood by the UCA for EBC Admin GUI in
order to display a tag editor form when filling out the tag of a filter. This greatly
eases the use of tags within your scenario and ensures that you only set valid tags
in your filter file(s).

Just like for the filter file, the name of the filter tags file can be anything, but the
path for the filter tags file must be recorded in the configuration file for the Value
Pack (the ${UCA_EBC_INSTANCE}/deploy/<myValuepack>-

<version>/conf/ValuePackConfiguration.xml file).

In the ValuePackConfiguration.xml file, the path for the filter tags file
must be specified inside a <filterTagsFile>…</filterTagsFile> XML
tag (inside a <scenario>…</scenario> XML tag), as shown in the screen

capture below:

Figure 7 - Referencing a filter tags file inside a ValuePackConfiguration.xml file

Then you have to populate your file according the uca-expert-filter-
tags.xsd XML schema definition file (a copy of this file is available in the

49

${UCA_EBC_HOME}/schemas directory). Below is an example of a filter tags

XML file:

<?xml version="1.0" encoding="UTF-8"?>

<tags xmlns="http://hp.com/uca/expert/filter/tags">

 <groups>

 <group>

 <simpleTags>

 <simpleTag name="BOX"/>

 <simpleTag name="CARD"/>

 </simpleTags>

 </group>

 <group name="correlation">

 <paramTags>

 <paramTag name="CORR_KEY" enum="Node,Location,null"/>

 <paramTag name="CORR_KEY2" enum="Node,Location,null"/>

 <paramTag name="CORR_NAME" />

 <paramTag name="CORR_PRIORITY" />

 </paramTags>

 </group>

 <group name="trigger">

 <simpleTags>

 <simpleTag name="Trigger"/>

 </simpleTags>

 <paramTags>

 <paramTag name="TIME_LIMIT_SECOND" />

 <paramTag name="TRIGGER_PRIORITY" />

 </paramTags>

 </group>

 </groups>

</tags>

As shown above, the root XML tag of a filter tags file is: <tags>…</tags>.

Inside this root XML, a list of groups (called tags groups) can be defined inside a
<groups>…</groups> XML tag.

Each tags group is defined by a <group>…</group> XML tag. Tags groups can

be assigned a name by setting the name attribute of a <group>…</group> XML
tag. For example: <group name=”correlation”>…</group>. The name

attribute is optional. If not present, the tags defined in the tags group are
considered “general purpose” and can be used as tags anywhere in an associated
filter file. If present, the tags defined in the tags group are considered “specific”
and can be used as tags in an associated filter file, only inside top filters where the
tagsGroup attribute of the top filter equals the name attribute of the tags group
or where the tagsGroup attribute of the top filter contains a list of tags groups

names, one of which equals the name attribute of the tags group.

There are two kinds of tags that can be defined in a tags group:

Simple tags: tags are defined as simple free text strings

Parameter tags: tags are defined as key/value pairs. The value can either be a
simple free text string or a text value from a list of possible values.

All tags are defined inside a <group>…</group> XML tag. Simple tags are

defined inside using a <simpleTags>…</simpleTags> XML tag, whereas
parameter tags are defined inside using a <paramTags>…</paramTags> XML

tag.

50

Each simple tag is defined by a <simpleTag>…</simpleTag> XML tag. The

mandatory name attribute indicates the name of the tag, to be used when tagging
filter conditions inside a filter file by using the tag attribute. For example:

<simpleTag name="Trigger"/>

Each parameter tag is defined by a <paramTag>…</paramTag> XML tag. The
mandatory name attribute indicates the name of the tag, to be used when tagging

filter conditions inside a filter file by using the tag attribute.

The <paramTag> can have optional attributes:

Attribute Description

enum Used to specify a list of authorized values for that tag.

type Used by UI to control the edition of the value for that tag.

Can be set for example to “numeric”, “boolean”, etc...

Is also used by UI Filter Builder utility to separate tags when

this attribute is set to “separator” or “submenu”.

default Used by UI Filter Builder utility to set a default value when

adding this tag.

tooltip Used by UI Filter Builder utility to display a comment when

mouse is over that tag.

use When set to “required”, it means to the UI Filter Builder

utility that this tag should always be present.

If the optional enum attribute is omitted, the value of the tag is understood to be a

simple free text string. For example:

<paramTag name="CORR_NAME"/>

On the other hand, if the optional enum attribute is present, the value of the tag is

to be one value among the list of possible values indicated by the value of the
enum attribute. The value of the enum attribute should be a comma-separated list

of possible values for the tag. For example:

<paramTag name="CORR_KEY" enum="Node,Location,null"/>

In the associated filter file, filter conditions can be properly tagged according to the
filter tag file using a comma-separated list of valid simple tags or parameter tags.
For example:

<allCondition tag="Trigger,CORR_NAME=LTE,CORR_KEY=Node">

Filter file tags can be easily edited in the filter file using the UCA for EBC Admin GUI.
Clicking on the “Edit tag” icon will display a tag editor form that abides by the
associated filter tag file. The tag editor displays groups of tags according to the
following algorithm:

If the <topFilter> tagsGroup attribute is not specified if the filter file, all groups

are displayed.

If the <topFilter> tagsGroup attribute is specified in the filter file, then

 All groups (defined in the filter tags file) with no “name” attribute are displayed

51

 All groups (defined in the filter tags file) with a “name” attribute matching the
tagsGroup attribute are displayed. If the tagsGroup contains a list of comma-

separated group names, all groups (defined in the filter tags file) matching one
value in the list will be displayed.

The below example displays the tags from all groups defined in the
my_tags.xml file because the filter condition of the filter file currently being

edited at the UCA for EBC Admin GUI is part of a topFilter that doesn’t have an
associated tagsGroup attribute:

Figure 8 - Editing Filter Tags with UCA for EBC Admin GUI

If you use parameter tags in your filter file(s), you can retrieve the key/value pairs
of the parameter tags associated with an Alarm that passed the filters by using the
getPassingFiltersParams() method on the Alarm object.

You can also edit the filter tags using the Filter Builder utility within UCA for EBC
Admin GUI.

[R10] Unified Correlation Analyzer for Event Based Correlation – User Interface

Guide, chapter Troubleshooting UCA for event based Correlation

3.5.5 Mappers definition file

The Mappers are mainly used in the context of topology aware Value packs.

This configuration file offers mainly two different functionalities:

A way to establish the correspondence between some data contained in the
received alarm and a topology instance during the Alarm Enrichment process (see
Chapter 3.5.6 Alarm Enrichment).

A way to define Cypher Queries for retrieving information in the graph database

The Scenario mappers file is defined using the <mapperFile> tag in the scenario
configuration file.

52

The mappers definition file is stored in the scenario directory:
${UCA_EBC_INSTANCE}/deploy/<myValuepack>-

<version>/<myScenario>/mappers.xml

Where:

 myValuepack is the Value pack name

 version is the Value pack version

 myScenario is the scenario name.

3.5.5.1 Mapper definitions

The mappers’ configuration file can define several mappers. Usually a mapper is
dedicated to a certain type of Alarm meaning that one mapper should be defined
per alarm type.

A mapper is identified with a name and is made of either:

 One or a set of ‘extract’ instructions

 A ‘pattern’ instruction

3.5.5.1.1. The ‘extract’ mapper

Each extract instruction allows extracting all or a portion of the specified alarm
attribute thanks to a regular expression.

The alarm attribute is defined using the <fieldName> tag.

This regular expression is defined thanks to two tags: the <matcher> tag and the
<mappedTo> tag.

The <matcher> Tag defines the string subsets to extract, i.e. the part of the regular
expression that is within parenthesis.

Whereas the <mappedTo> Tag indicate how to use the extracted substring(s).

Here below is an example:

<mapper name='retrieveSwitchName'>

 <extract>

 <fieldName>originatingManagedEntity</fieldName>

 <matcher>SWITCH (.*)$</matcher>

 <mappedTo>$1</mappedTo>

 </extract>

</mapper>

The <extract> element has also two optional attributes:

Attribute Description

replaceAll This attribute of Boolean type is used to specify what to do

when multiple patterns are matching.

When false, only first matching pattern will be applied.

When true, all matching patterns will be applied

unchangedValuetIfNoMatch This attribute of Boolean type is used to specify what to do

when no pattern is matching.

When false, it means that the result value will be empty.

When true, the value of fieldName is left unchanged.

53

Finally, all the extracted substrings are concatenated together in order to make the
final mapping string.

3.5.5.1.2. The ‘pattern’ mapper

A pattern mapper is used to build a mapping result from other mappers.

The regular expression defining which other mappers are to be used is the
<expression> tag.

The result is defined thanks to two tags: the <matcher> tag and the <mappedTo>
tag.

The <matcher> tag defines the string subsets to extract, i.e. the part of the regular
expression that is within parenthesis.

Whereas the <mappedTo> tag indicate how to use the extracted substring(s).

Let's suppose we have defined mappers named 'btsID' and 'location' to extract
values from corresponding fields and we would like to have a mapper that
concatenates the results of those 2 ‘extract’ mappers. A pattern can be defined as
per example below to achieve this:

 <mapper name='NodeB_UniqueID'>

 <pattern>

 <expression>[btsID]~[location]</expression>

 <matcher>(.*)</matcher>

 <mappedTo>$1</mappedTo>

 </pattern>

 </mapper>

A pattern mapper has few optional attributes:

Attribute Description

regex This attribute defines the regular expression to match a

mapper name

removed This attribute defines the regular expression to be ignored

from the matcher in order to form the mapper name

replaceAll This attribute of Boolean type is used to specify what to do

when multiple patterns are matching.

When false, only first matching pattern will be applied.

When true, all matching patterns will be applied

bestEffortIfNoMatch This attribute of Boolean type is used to specify what to do

when not all patterns are matching.

When false, it means that the result value will be empty.

When true, the mappers are executed on best effort basis.

Let's suppose you want to use ${x} instead of [] to define your mapper names.
So you would set the two first attributes as per example below:

54

 <pattern regex="\$\{\w*\}" removed="\$\{|\}">

3.5.5.1.3. Mapper Example

This is an example of mapper usage.

With this example the mappers file is as follow:

<?xml version="1.0" encoding="UTF-8" ?>
<mappers xmlns="http://hp.com/uca/expert/instancemapper">
 <mapper name="TopoInstance">
 <extract>
 <fieldName>originatingManagedEntity</fieldName>
 <matcher>(.*) (.*)</matcher>
 <mappedTo>$1_$2</mappedTo>
 </extract>
 <extract>
 <fieldName>additionalInformation</fieldName>
 <matcher>.*:([0-9]*):.*</matcher>
 <mappedTo>:$1</mappedTo>
 </extract>
 </mapper>
</mappers>

This file is defining one Mapper Called “TopoInstance”.

In the previous example, this mapper is made of the concatenation of two pieces of
information. The first one coming from the originatingManagedEntity attribute of
the alarm, and the second one from the additionalInformation attribute.

From the ‘originatingManageEntity’ attribute we expect to have a string made of
two words. The regular expression (<matcher>) defines two substrings (one for
each word of the ‘originatingManageEntity’ attribute). The <mappedTo> section
tells how to put these two words together in the final extract substring. In our case
the two words are concatenated with a ‘_’ character between the two.

From the ‘additionalInformation’ attribute, the <matcher> Tag expression extracts
a number located between two semicolon characters. The <mappedTo> string
produces a string starting with a semicolon and followed by the extracted number.

Finally the two strings are concatenated together.

Now when the following alarm is received:
<Alarms xmlns="http://hp.com/uca/expert/x733Alarm">
 <AlarmCreationInterface>
 <sourceIdentifier>src</sourceIdentifier>
 <identifier>12300</identifier>
 <originatingManagedEntity>BOX B1</originatingManagedEntity>
 <alarmType>PROCESSING_ERROR_ALARM</alarmType>
 <probableCause>Fire</probableCause>
 <specificProblem>Fire</specificProblem>
 <perceivedSeverity>CRITICAL</perceivedSeverity>
 <alarmRaisedTime>2009-09-16T12:00:00.000+02:00</alarmRaisedTime>
 <additionalText>Alarm text</additionalText>
 <additionalInformation>network info:6502: status
failed</additionalInformation>
 <proposedRepairActions>action</proposedRepairActions>
 <customFields>
 <customField name="field1" value="v1"/>
 <customField name="field2" value="v2"/>
 <customField name="field3" value="100"/>
 </customFields>
 </AlarmCreationInterface>
</Alarms>

The produced mapping is : BOX_B1:6502

55

3.5.5.1.4. Using the mappers

Mappers are typically used during alarm enrichment process (see Chapter 3.5.6
Alarm Enrichment).

The resulting string of a given mapper can be retrieved using the static
doMapping() method below with the alarm object as input parameter.

Example:

String topoIdentifier = MapperUtils.doMapping(alarm, “TopoInstance”);

Doing this way the mapping between the alarm and the corresponding topology
instance is fully configurable through configuration file and does not require any
code change.

The mappers can also be retrieved from the scenario object. This is done using the
method getMappers(). To retrieve a specific mapper (for example a mapper

named “NetworkInstance”), the following must be done:

 theScenario.getMappers.getMapper("NetworkInstance");

3.5.5.2 Cypher queries definitions

The mappers’ configuration file can define several cypher queries. A cypher query is
identified by a name and defines a cypher request.

Example of definitions of two queries: ‘GetPortLink’ and ‘GetRemotePort’
<?xml version="1.0" encoding="UTF-8" ?>
<mappers xmlns="http://hp.com/uca/expert/instancemapper">
 <cypherQuery name='GetPortLink'>
 <query><![CDATA[START n=node:PortsByUniqueId(uniqueId = {portName})
MATCH (n)<-[link:LINK]->() RETURN link]]></query>
 </cypherQuery>
 <cypherQuery name='GetRemotePort'>
 <query><![CDATA[START n=node:PortsByUniqueId(uniqueId = {portName})
MATCH (n)<-[:LINK]->(m) RETURN m]]></query>
 </cypherQuery>
</mappers>

3.5.5.2.1. Using the cypher queries

Cypher queries can be used during alarm enrichment process or any other process
that would required getting topology information within a scenario.

To use a cypher query, it first must be retrieved from the scenario and then
executed thanks to the com.hp.uca.expert.topology.CypherQuery utility class.

The result of the query is then analysed to extract the required information.

Example of use:

56

 // Get the Scenario associated to the current thread
 Scenario theScenario = ScenarioThreadLocal.getScenario();

 // retrieve the Cypher query from configuration
 String query =
theScenario.getMappers().getCypherQuery("GetPortLink");

 Map<String,Object> params = new HashMap<String, Object>();
 params.put("portName", portName);

 // execute the query
 ExecutionResult result = CypherQuery.executeAndreturnResult(query,
params);

 // get information from the result (in this case the ‘LINK’ relation)
 ResourceIterator<Relationship> links = result.columnAs("link");
 if (links.hasNext()) {
 link = links.next();
 }

3.5.5.3 Combining the use of Filter Tags and Mappers

As said above, a mapper may be very specific to each alarm type. On solutions
dealing with alarms coming from several different sources, several mappers will be
used.

More over the mapping between the alarm content and the targeted instance may
evolve over time depending on the network elements versions. It is therefore very
useful to adapt the instance mapping through configuration instead of going back
to the code to support the changes.

For such solution, the association between Filter Tags and Mappers is used:

A specific Top Filter is used to characterize the Alarm Type (returning a Tag
representing the Alarm Type)

The returned Tag is used to select the correct Instance Mapper

As both Filters and Mappers are configuration file, this solution can evolve without
Java code modification

Example of Alarm Identification Top filter:
<?xml version="1.0" encoding="UTF-8" ?>
<filters xmlns="http://hp.com/uca/expert/filter">
 <topFilter name="AlarmType">
 <anyCondition>
 <anyCondition tag="Ciena_EVC”>
 <stringFilterStatement>
 <fieldName>sourceIdentifier</fieldName>
 <operator>contains</operator>
 <fieldValue>ciena</fieldValue>
 </stringFilterStatement>
 <stringFilterStatement>
 <fieldName>originatingManagedEntity</fieldName>
 <operator>matches</operator>
 <fieldValue>EVC_SEGMENT.*</fieldValue>
 </stringFilterStatement>
 </anyCondition>
 <anyCondition tag="2IP_LAG”>
 <stringFilterStatement>
 <fieldName>sourceIdentifier</fieldName>
 <operator>contains</operator>
 <fieldValue>2IP</fieldValue>
 </stringFilterStatement>
 <stringFilterStatement>
 <fieldName>originatingManagedEntity</fieldName>
 <operator>matches</operator>
 <fieldValue>LAG .*</fieldValue>
 </stringFilterStatement>

57

 </anyCondition>
 </anyCondition>
 </topFilter>
</filters>

This Top Filters identifies two types of alarms: Ciena_EVC and 2IP_LAG

Then a mapper is written for each of these alarms:
<?xml version="1.0" encoding="UTF-8" ?>
<mappers xmlns="http://hp.com/uca/expert/instancemapper">
 <mapper name="Ciena_EVC">
 <extract>
 <fieldName>originatingManagedEntity</fieldName>
 <matcher>EVC_SEGMENT (.*)</matcher>
 <mappedTo>Ciena_EVC_$1</mappedTo>
 </extract>
 </mapper>
 <mapper name="2IP_LAG">
 <extract>
 <fieldName>originatingManagedEntity</fieldName>
 <matcher>LAG (.*)</matcher>
 <mappedTo>2IP_LAG_$1</mappedTo>
 </extract>
 </mapper>
</mappers>

The generic Alarm enrichment Code would be the following:
public EnrichedAlarm(Alarm alarm) {
 super(alarm);

 // retrieve the Alarm Type From Filter Tags
 Set<String> tags = alarm.getPassingFiltersTags().get("AlarmType");

 if ((tags != null) && (tags.size() != 0)) {

 // get the instance mapping from mappers
 InstanceId =alarm.doMapping(tags.toArray()[0]);

 // use the mapped instance (topology query for instance)

 …

}

3.5.6 Alarm Enrichment

Alarm Enrichment is implemented by a Java Class that extends the
com.hp.uca.expert.lifecycle.alarm.AlarmLifeCycle Java Class and

overrides the following methods:

 // ---
 // Default override processing on Alarm creation at Global system layer
 // ---
 @Override
 public Event onAlarmCreationProcess(Alarm alarm) {
 // by def, nothing
 return alarm;
 }

 // ---
 // Default override processing on Alarm deletion at Global system layer
 // ---
 @Override
 public Event onAlarmDeletionProcess(AlarmDeletion deletion) {
 return deletion;
 }

 // ---

58

 // Default override processing on Alarm state change at Global system layer
 // ---
 @Override
 public Event onAlarmStateChangeProcess(AlarmStateChange stChange) {
 return stChange;
 }

 // --
 // Default override processing on Alarm AVC at Global system layer
 // --
 @Override
 public Event onAlarmAttributeValueChangeProcess(
 AlarmAttributeValueChange avc) {
 return avc;
 }

The use of this new class must be declared in the ValuePack
configuration.xml file in the proper scenario section. This is done by setting

the <customLifeCycleClass> tag as follows:

<customLifeCycleClass>

 com.hp.uca.ebc.myVp.myScenarioLifeCycle

</customLifeCycleClass>

Where com.hp.uca.ebc.myVp.myScenarioLifeCycle is the Extended

Scenario LifeCycle Class.

Alarm Enrichment information can be stored in any of the standard alarm
attributes. The ‘additionalText’ attribute is usually a good candidate for storing this
extra information. Another alternative can be to use a ‘LocalVariable’ associated
with the Alarm.

However, in order to simplify the process of writing rules, it can be preferable to
store enrichment information directly in some specific Alarm Object attributes. For
this purpose, standard UCA for EBC alarm objects (Alarm, AlarmDeletion,
AlarmAttributeValueChange and AlarmStateChange) can be extended.

In such a case, ‘onAlarmXXXXProcess()’ methods from the extended AlarmLifeCycle
Class can be written to use extended alarm objects:

@Override
 public Event onAlarmCreationProcess(Alarm alarm) {
 LogHelper.enter(log, "onAlarmCreationProcess()");

 ExtendedAlarm extendedAlarm = new ExtendedAlarm (alarm);

 // do the Alarm enrichment from external source here!
 …

 LogHelper.exit(log, "onAlarmCreationProcess()");
 return extendedAlarm;

}

3.5.7 Scenario Initialization class

It is usually necessary setting up an environment or performing some initialization
before starting the normal scenario processing.

This can be achieved by configuring the spring context in order to instanciate Java
classes that perform this initialization.

59

An alternative to the use of the Spring context is to develop an initialization Class.

This class must extend the DefaultScenarioInitialization class as follow:

package my.package;

public class MyScenarioInitialization extends DefaultScenarioInitialization {

 public MyScenarioInitialization(Scenario scenario,

 ValuePackApplicationContext valuePackApplicationContext) {

 super(scenario, valuePackApplicationContext);

 }

 @Override

 public void initializeScenario() throws UcaException {

 //put your code here

 }

 @Override

 public void disposeScenario() throws UcaException {

 //put your code here

 }

}

This initialization Class is declared in the Scenarion configuration section of the
ValuepackConfiguration.xml file as follow:

<customInitializationClass>my.package.MyScenarioInitialization</customInitializa
tionClass>

3.5.8 Rules files

Rules files can be either template rules files or standard rules files.

Each Scenario can have multiple Rule Files. The rules files are defined in the
Valuepack configuration file (ValuePackConfiguration.xml). All rule files

will be loaded at scenario initialization unless the disabledAtStartup=”true”
attribute is set for a specific <rulesFile>...</rulesFile> XML entity in the

Valuepack configuration file. For example:

…

<rulesFiles>

 <rulesFile disabledAtStartup="true">

 <filename>file:./deploy/vp-1.0/scenario/rules.drl</filename>

 <name>alarmforwarder rules</name>

 <ruleFileType>DRL</ruleFileType>

 </rulesFile>

 …

</rulesFiles>

…

60

When rules file are disabled at startup, they can be loaded/unloaded dynamically
using Java code thanks to a couple of methods on the RuleSession object:

 void loadRulesFile(String rulesFileName)

 load or re-load the RulesFile given as parameter.

 void unLoadRulesFile(String rulesFileName)

 unload the RulesFile given as parameter

A specific rule can also be removed from the knowledgebase with the following
method:

void removeRule(String packageName,
String ruleName)

 Remove the rule from the knowledge base.

Note

In order to preserve working memory integrity and to avoid interfering with the
locking mechanism implemented by the UCA for EBC framework, Drools keywords
MUST NOT be used directly when developping UCA for EBC rules.

In particular, all timer based keywords should be avoided: duration, timer,
calendar.

3.5.8.1 Standard rules files

Standard Rules files are standard Drools ‘.drl’ file.

These files are loaded by the Drools engine at Scenario start-up.

Then, the Drools Builder dynamically compiles the Rule Files to transparently
generate Java classes representing the righ hand-side part of the rule (the ‘then’
part).

When firing a rule, the Drools engine will call the Java generated method(s).

Standard rules files are defined as follow in the ValuePackConfiguration.xml file:

 <rulesFiles>
 <rulesFile>
 <filename>file:./src/test/resources/myScenarioRules.drl</filename>
 <name>rulesFileName</name>
 <ruleFileType>DRL</ruleFileType>
 </rulesFile>
 </rulesFiles>

Where :
<filename> defines the rules Files filename
<name> is the rules file given name
<ruleFileType> This is the RuleFile Type (DRL) for standard rule.

See [R7] Unified Correlation Analyzer for Event Based Correlation – Value Pack

Development Guide, for more information on How to write a Rule.

61

3.5.8.2 Template rule files

Template rules files are similar to standard rules files except that template rules
file contain parameters. Template rules files are always associated with template
parameters files wich is defined with an additional tag in the RulesFile definition:
 <paramsFilename>file:./src/test/resources/myScenarioRules.xml</paramsFilename>

It is useful to use template rules files when a same rule must be ‘duplicated’ in
order to just change one or two parameters like a threshold value, a time window,
etc...

The concept of ‘Template rule’ exists in Drools and is fully integrated in UCA for EBC
product. Indeed, instead of defining a rule with all specific values, it is possible to
define a rule in a template section with some ‘variables’ included.

When a template rules file is loaded in the engine, it is compiled with its associated
parameters file that provides values for the different variables. The same rule can
be instantiated several times depending on the number of definitions in the
parameter file

Template file parameters can be modified without modifying the template rules file
itself. Updating the parameters and reloading the rule or scenario is enough to
make the Drools engine use the new parameters (no UCA for EBC restart is needed).

3.5.8.2.1. Basics

A template rules file may contain one or multiple rules. The file suffix of a template
rule file is ‘.xdrl’

Here are the different parts that compose a template rules file:

template header

var-name1

var-name2

package package-name

imports

globals

functions

template "name"

queries

rules (that contain $var-name1 and $var-name2)

end template

Rule Sample 3 - Template rules file main components

Template header

This corresponds to the list of variables used in the template rule. When the
template is compiled, each variable defined in the ‘template header’ section is
replaced by its actual value (from the template parameters file).

62

Template “name”

This defines the beginning of the template’s scope. From this point on, the
compilation of the file will replace any variable by its associated value. If several
values exist for variable, the rules that use this variable will be duplicated. The
Template section ends by the ‘end template’ tag.

Note

The import, global and functions sections of the file can not be in the scope of the
template, i.e. variables cannot be used in these sections.

3.5.8.2.2. Sample of Templates rules file

Template rules files can be used for scenarios that are either in STREAM or CLOUD
modes. The definition of a template rules file is almost the same as the definition
of a standard rules file in the ValuePackConfiguration.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<valuePackConfiguration

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 name="myValuePack" version="1.0">

 <scenarios>

 <scenario name="myScenario">

 <filterFile>deploy/myValuePack-

1.0/myScenario/myfilter.xml</filterFile>

 <fireAllRulesPolicy>EACH_ACCESS</fireAllRulesPolicy>

 <globals></globals>

 <processingMode>STREAM</processingMode>

 <rulesFiles>

 <rulesFile>

 <filename>file:./deploy/myValuePack-

1.0/myScenario/myTemplate.drl</filename>

 <name>myRules</name>

 <paramsFilename>file:./deploy/myValuePack-

1.0/myScenario/myParams.xml</paramsFilename>

 <ruleFileType>XDRL</ruleFileType>

 </rulesFile>

 </rulesFiles>

 </scenario>

 </scenarios>

</valuePackConfiguration>

XML Configuration 5 - Template definition in Scenario

The template rule is defined as ‘XDRL’ type and requires an extra parameter that
corresponds to the file that contains the list of variables with associated values.

Let’s imagine a case where you want to count each time you received x fault alarms
over a certain period of time. The following template rules file illustrates this
example:

template header

thresholdValue

action

timewindow

63

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

declare Alarm

 @role(event)

 @timestamp(dateTimestamp)

 @expires(60s)

end

template "my scenario template"

rule "Count ${thresholdValue} faults"

when

 a: Alarm(perceivedSeverity != PerceivedSeverity.CLEAR)

 $alarms : ArrayList(size == (${thresholdValue} - 1))

 from collect(

 Alarm(this != $a, this after [0, ${timewindow}] $a))

 then

 ${action}

 end

end template

Rule Sample 4 - Template Rules file example

Now, let’s see the associated parameters file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<RuleParametersCollection

xmlns="http://hp.com/uca/expert/engine/template">

 <RuleParameters>

 <parameter name="thresholdValue">

 <value>30</value>

 </parameter>

 <parameter name="action">

 <value> System.out.println("########## WARNING

(30 alarms) received ###########");</value>

 </parameter>

 <parameter name="timewindow">

 <value>30s</value>

 </parameter>

 </RuleParameters>

 <RuleParameters>

 <parameter name="thresholdValue">

 <value>600</value>

 </parameter>

 <parameter name=" action ">

 <value> System.out.println("########## CRITICAL

(600 alarms) received ###########");</value>

 </parameter>

 <parameter name=" timewindow ">

 <value>60s</value>

 </parameter>

 </RuleParameters>

<RuleParametersCollection>

XML Configuration 6 - Rule Parameter file example

64

Important Note

Although the Drools engine supports Template Parameters Files in either XML File
or Properties File format, UCA for EBC only supports XML File format.

65

In real time, when such a template rules file is compiled, the following two rules
(notice the duplication of the same rule twice) are generated and loaded in the
engine memory:

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

declare Alarm

 @role(event)

 @timestamp(dateTimestamp)

 @expires(60s)

end

rule "Count 30 faults"

when

 a: Alarm(perceivedSeverity != PerceivedSeverity.CLEAR)

 $alarms : ArrayList(size == (30 - 1))

 from collect(

 Alarm(this != $a, this after [0, 30s] $a))

 then

 System.out.println("########## WARNING (30 alarms) received

###########");

 End

rule "Count 600 faults"

when

 a: Alarm(perceivedSeverity != PerceivedSeverity.CLEAR)

 $alarms : ArrayList(size == (600 - 1))

 from collect(

 Alarm(this != $a, this after [0, 60s] $a))

 then

 System.out.println("########## CRITICAL (60 alarms) received

###########");

 End

Rule Sample 5 - Rule generated from Template example

The usage of template rules files avoids the duplication of rules that would have
same structure and where “generic” rule can be written instead.

66

3.6 Value Pack Life Cycle
The following picture explains the Value pack life cycle within the UCA for EBC
product:

Figure 9 - Value Pack Life Cycle

Bold lines transitions indicate a specific action on a Value Pack (deploy, start, stop,
etc…).

Dotted lines transitions indicate either internal processing or a problem.

Running state: all scenarios are in “Running” state and so is the mediation.

Failed state: in case of XML file configuration problem, or when all scenarios of the
Value Pack are in a “Failed” or “Degraded” state.

Degraded state: when the state of one or more scenario is “Degraded”, and/or the
mediation is not available.

3.6.1 Installing a Value Pack

An UCA for EBC Value pack is a zip file generated using the UCA for EBC
Development toolkit.

To install a Value Pack, you need to copy the zip file in the
${UCA_EBC_INSTANCE}/valuepacks directory.

Or you can use the UCA GUI Dashboard (UCA for EBC > Application > Monitoring) to

directly upload your Value Pack from your development station, of course being
logged with admin or developper rights on GUI.

No other action is needed to install a value pack. The UCA for EBC server will
automatically detect the newly installed Value pack. This value pack will then be
visible from the UCA GUI Dashboard (UCA for EBC > Application > Monitoring).

Refer to [R10] Unified Correlation Analyzer for Event Based Correlation – User

Interface Guide for all GUI Administration features.

3.6.2 Deploying a Value Pack

Deploying a value pack can be done in two ways:

Not
Deployed

Stopped

Degraded

Install VP

Deploy VP

Undeploy VP

Value Pack Lifecycle

Stop VP

Failed
Running

Start VP

Stop VP

Start VP

Undeploy VP

Starting

67

From the command line, by executing the following commands (executed as the
“uca” user):

$ cd ${UCA_EBC_HOME}/bin
$ uca-ebc-admin --deploy -vpn valuepackName -vpv valuepackVersion

Where valuepackName and valuepackVersion are the name and version of the

value pack to deploy (example: llef-example 1.0)

From the Web GUI.

By clicking on the “deploy” button from the Value pack Monitoring view.

3.6.2.1 File organization

At the end of the deployment step, the files delivered by the Value Pack are
deployed in the

${UCA_EBC_INSTANCE}/deploy/{valuepackName}-{valuepackVersion} directory.

Directories Description

lib/ This directory contains the jar files needed by the
Value Pack

conf/ This directory contains the configuration files that
defines the Value Pack and its scenarios

<Scenario

Name>/

There is one <Scenario Name>/ for each scenario
of the Value Pack. Each directory is named after the
scenario and contains all the rules files (including
filter and parameter files) for the scenario.

Table 8 - File structure of a deployed Value Pack

3.6.3 Starting a Value Pack

Starting a value pack can be done in two ways:

From the command line, by executing the following commands (executed as the
“uca” user):

$ cd ${UCA_EBC_HOME}/bin
$ uca-ebc-admin --start -vpn valuepackName -vpv valuepackVersion

Where valuepackName and valuepackVersion are the name and version of

the value pack to start (example: llef-example 1.0)

From the Web GUI

By clicking on the “start” button from the Value pack Monitoring view.

Starting a Value Pack will also create all the mediation flows defined for this Value
Pack in the mediation flows section of the ValuePackConfiguration.xml

file.

3.6.4 Stopping a Value Pack

Stopping a value pack can be done in two ways:

From the command line, by executing the following commands (executed as the
“uca” user)

68

$ cd ${UCA_EBC_HOME}/bin
$ uca-ebc-admin --stop -vpn valuepackName -vpv valuepackVersion

Where valuepackName and valuepackVersion are the name and version of the

value pack to stop (example: llef-example 1.0)

From the Web GUI

By clicking on the “stop” button from the Value pack Monitoring view

Stopping a Value Pack will also delete the mediation flow(s) associated with this
Value Pack.

3.6.5 Un-deploying a Value Pack

Un-deploying a value pack can be done in two ways:

From the command line, by executing the following commands (executed as the
“uca” user)

$ cd ${UCA_EBC_HOME}/bin
$ uca-ebc-admin --undeploy -vpn valuepackName -vpv
valuepackVersion

Where valuepackName and valuepackVersion are the name and version of the

value pack to un-deploy (example: llef-example 1.0)

From the Web GUI

By clicking on the “undeploy” button from the Value pack Monitoring view.

Undeploying a value pack performs the following actions:

 It removes the Value Pack from the ${UCA_EBC_INSTANCE}/deploy directory

 It make an archive ZIP file of the Value Pack and stores it in the
${UCA_EBC_INSTANCE}/valuepacks directory (so that it can be

deployed back later on). The zipped value pack that was previously present
in the ${UCA_EBC_INSTANCE}/valuepacks directory is moved to the

${UCA_EBC_INSTANCE}/archive directory and a timestamp is added

to the file name.

Once the value pack has been undeployed, it can be deployed back again by using
the -deploy, --deploy option.

3.6.6 Removing a Value Pack

Once undeployed, a Value Pack can be fully removed either through a remove shell
command:

$ rm ${UCA_EBC_INSTANCE}/valuepacks/vpName-vp-vpVersion.zip

Or from the Web GUI

By clicking on the “remove” button from the Value pack Monitoring view.

69

3.7 Scenario Life Cycle and Status
The following picture explains the Scenario life cycle within the UCA for EBC
product:

Figure 10 - Scenario Lifecycle

As shown in the figure above, most of the bold lines transitions are driven by the
Value Pack itself.

Dotted lines transitions indicate internal processing or a problem:

 Running: all rules files have been loaded successfully.

 Failed: rules have not loaded successfully

 Degraded: a problem has been detected at run-time (exception in the right
hand side (‘then’) part of the rule), usually a customer code problem.

Stopped

Degraded

Start VP

Scenario Lifecycle

Stop VP
Failed

Running

Start VP

Starting

Stop VP

Stop VP

Reset
Status

70

Chapter 4

Scenario Policies

The behavior of a UCA for EBC scenario is driven by a set of configurable properties.
These properties are called Policies.

The scenario properties modify the default behavior of a scenario to better suit
your needs.

The following is the list of configurable Scenario Policies:

Processing policies:

 processingMode

 fireAllRulesPolicy

 fireAllRulesDuringResynchronization

 retractOnResyncPolicy

 compressionMode

 Time-related settings:

 fireAllRulePeriod

 tickPeriod

 asyncActionPeriod

 garbageCollectionPeriod

Filtering:

 alarmEligibilityPolicy

Garbage Collection:

 actionRetractedAutomaticallyWhenCompleted

 eligibleForBroadcast

See Chapter 3.5.2 “Scenario definition file” to learn how to apply these policies

to a Scenario.

4.1.1 Processing policies

4.1.1.1 Processing Mode

This policy defines the Alarm processing Mode as defined in the section above
(3.3.4 Alarm lifecycle).

The value can be STREAM or CLOUD.

71

4.1.1.2 fireAllRulesPolicy

This policy can take two possible values: EACH_ACCESS or WATCHDOG.

When EACH_ACCESS is chosen, each 'insert', 'update' or 'retract' operation on the
Scenario’s working memory will trigger the rules evaluation.

When WATCHDOG is chosen, the rule evaluation is done periodically. It can be used
to optimize the rules processing. The evaluation period is set using the
‘fireAllRulePeriod’ policy.

Warning: Using the WATCHDOG policy will prevent the rule engine from firing the
rules when some transient changes occur on objects in Working Memory. For
instance, in CLOUD mode, a transient change of the ‘aboutToBeRetracted’ alarm
attribute from ‘false’ to ‘true’ will be ignored and will not trigger the rules
evaluation.

4.1.1.3 fireAllRulesDuringResynchronization

This policy is a boolean policy. Its value can either be “true” or “false”.

Resynchronization is the phase where the Channel Adapter resends all alarms
(except “closed” alarms) from its backing store. This phase comes when the
Channel Adapter collection is established or upon operator’s specific request.

During the re-synchronization an important alarm flow is received within a short
period of time which leads to a great number of rule evaluations, implying a
potential impact on performance.

The fireAllRulesDuringResynchronization policy - when set to false – prevents rule
evaluation during resynchronization.

A single ‘fireAllRule’ is performed when the resynchronization terminates.

Note: When this policy is not defined in the XML file, the policy is false by default:
the rules will not be triggered during a resynchronization.

4.1.1.4 retractOnResyncPolicy

This policy can take three possible values: NONE, PER_FLOW or ALL.

As stated above, resynchronization is the phase where the Channel Adapter
resends all alarms (except “closed” alarms) from its backing store. This phase
comes when the Channel Adapter collection is established or upon operator’s
specific request.

To have a consistent state in Working Memory, it is usually a good idea to retract
the alarms from Working Memory prior to resynchronizing a Mediation Flow. This
prevents alarms from potentially ending up being duplicated in Working Memory (in
STREAM mode for example), rules not being fired as expected (update rules being
triggered instead of insert rules in CLOUD mode for example), and basically not
having a predictable state of the Working Memory. If you don’t want to write rules
that will specifically deal with the resynchronization, it is usually advisable to
enable the retractOnResyncPolicy (by setting it to a value other than NONE).

The following values are possible for the retractOnResyncPolicy:

 NONE: No object is retracted from Working Memory upon resynchronization
of a Mediation Flow

 PER_FLOW: All Alarm(1) objects associated with the resynchronizing
Mediation Flow (as indicated by the targetValuePack(2) property of the
Alarm(1) objects) are retracted from Working Memory upon
resynchronization of a Mediation Flow (this is the default value if the
retractOnResyncPolicy property is omitted)

72

 ALL: All objects are retracted from Working Memory upon resynchronization
of a Mediation Flow

Note: When this policy is not defined in the XML file, the policy is set to PER_FLOW
by default: when a resynchronization is initiated on a Mediation Flow, all alarms
associated with this specific Mediation Flow will be retracted from Working
Memory.

Notes

(1) Alarm objects are all objects that implement the AlarmCommon interface (either directly

or indirectly by extending an object that implements this interface: see Chapter 3.5.6 Alarm

Enrichment), i.e.:

 Alarm (and derived objects)

 AlarmAttributeValueChange (and derived objects)

 AlarmDeletion (and derived objects)

 AlarmStateChange (and derived objects)

 Any object that implements the AlarmCommon interface or extends an object that

does

The AlarmCommon interface, and the Alarm, AlarmAttributeValueChange,

AlarmStateChange, and AlarmDeletion classes are located in the com.hp.uca.expert.alarm

package.

(2) The format of the “TargetValuePack” property is the following: <value pack
name>-<value pack version>##<mediation flow name>, for example: pd-example-
2.1##temipFlow.

4.1.1.5 compressionMode

This policy is a Boolean policy. Its value can either be “true” or “false”. By default
compressionMode is set to “false”, i.e. compression is disabled.

When set to true, compression is enabled. When this is the case, alarm Attribute
Value Change and alarm State Change events are compressed before being sent to
the scenario.

Alarm Attribute Value Change events that target the same Alarm (identified by the
identifier field) over a period of time (called compressionPeriod) are grouped
together and replaced by a single Alarm Attribute Value Change event that contains
the aggregated attribute changes contained in all the Alarm Attribute Value Change
events. The same mechanism applies to alarm State Change events.

Compression limits the number of Alarm Attribute Value Change and State Change
events being sent to the Scenario, thus improving the overall performance of the
Drools engine of the Scenario because fewer events need to be processed.

It is interesting to enable the compression policy when a lot of Alarm Attribute
Value Change and State Change events on a small number of distinct Alarms are
expected to be received by a Scenario.

When the compression policy is enabled, you can also set the compressionPeriod
property that defines the period of time over which to compress Alarm Attribute
Value Change and State Change events. The default value for the
compressionPeriod is set to 1000 milliseconds (1 second).

Below is an example of how to set the compressionMode and compressionPeriod
properties for a Scenario in the ValuePackConfiguration.xml file of a Value

Pack:

73

<?xml version="1.0" encoding="UTF-8"?>

<valuePackConfiguration

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 name="myValuePack"

 version="1.0">

 <scenarios>

 <scenario name="com.acme.dummy.Scenario1">

<actionRetractedAutomaticallyWhenCompleted>true</actionRetractedAutomaticallyWhenCompleted>

 <asyncActionPeriod>1000</asyncActionPeriod>

 <clockTypeMode>NORMAL</clockTypeMode>

 <filterFile>deploy/myValuePack-1.0/scenario1/myFilters.xml</filterFile>

 <fireAllRulePeriod>1000</fireAllRulePeriod>

 <fireAllRulesDuringResynchronization>true</fireAllRulesDuringResynchronization>

 <fireAllRulesPolicy>WATCHDOG</fireAllRulesPolicy>

 <globals></globals>

 <processingMode>CLOUD</processingMode>

 <rulesFiles>

 <rulesFile>

 <filename>file:./deploy/myValuePack-1.0/scenario1/myRules.drl</filename>

 <name>My Rules</name>

 <ruleFileType>DRL</ruleFileType>

 </rulesFile>

 </rulesFiles>

 <tickPeriod>30000</tickPeriod>

 <compressionMode>true</compressionMode>

 <compressionPeriod>1000</compressionPeriod><!-- in milliseconds -->

 </scenario>

 </scenarios>

</valuePackConfiguration>

XML Configuration 7 – Enabling the CompressionMode for a Scenario

4.1.2 Time-related settings

Note: In this section, all timer values are defined in milliseconds.

4.1.2.1 fireAllRulePeriod

This timer configures the fireAllRules period. This is the time interval between two
executions of the evaluation of the rules, in case the “WATCHDOG” fireAllRulePolicy
is selected.

Default value: 1000 (milliseconds), so 1 second.

4.1.2.2 tickPeriod

This property configures the tickFlag timer period. This is the time interval between
two updates of the TickFlag object present in WorkingMemory.

This object can be used in rule conditions to implement recurrent rule executions.

Default value: 30000 (milliseconds), so 30 seconds.

4.1.2.3 asyncActionPeriod

This timer configures the asynchronous action management period. This is the time
between two calls of the Asynchronous Action Management agent. The
Asynchronous Action Management agent calls the Asynchronous Actions callbacks

74

(see Chapter 5.3.3 Action callback) and updates the Asynchronous Actions status in
Working Memory.

Default value: 1000 (milliseconds), so 1 second.

4.1.2.4 garbageCollectionPeriod

This timer configures the garbage collection period. This is the time interval
between two garbage collections. The garbage collection will retract both:

Completed actions (if the actionRetractedAutomaticallyWhenCompleted Policy is
set to “true”)

Alarms with a ‘aboutToBeRetracted’ attribute equals to ‘true’.

Default value: 10000 (milliseconds), so 10 seconds.

4.1.3 Alarm eligibility

The following alarm eligibility policies filter alarms coming into a scenario. They are
used in addition to the scenario filter file described in section 2.4.1 “Filters”.

4.1.3.1 eligibleForBroadcast

This policy is a boolean policy. Its value can either be “true” or “false”.

When set to “true”, the scenario is able to receive incoming alarms from the
mediation layer (then these alarms are filtered or not by the scenario filter).

When set to “false”, the scenario is not able to receive incoming alarms from the
mediation layer. The scenario can only receive alarms from other scenarios (either
in the same Value Pack or another Value Pack) using scenario cascading capabilities
(See chapter 6.1.6 Orchestration API).

The default value for this eligibleForBroadcast property is “true”. By default, all
scenarios can receive incoming alarms from the mediation layer.

4.1.3.2 alarmEligibilityPolicy

The alarmEligibilityPolicy is a Boolean expression. Its value is an expression that is
evaluated and can either be “true” or “false”. This policy determines whether an
Alarm is eligible or not to be inserted into Working Memory or to remain in Working
Memory.

If this expression is evaluated to “true”, the alarm will be inserted in the scenario’s
Working Memory. In the same way, if the expression results in a value of “false” the
alarm will not be inserted or will be automatically retracted from the Working
Memory.

A usual alarmEligibilityPolicy Expression can be based on the combination of the
following alarm statuses: NetworkState, OperatorState, and ProblemState.

The possible values for a NetworkState are: "NOT_CLEARED", "CLEARED".

The possible values for an OperatorState are: "NOT_ACKNOWLEDGED",
"ACKNOWLEDGED", "TERMINATED".

The possible values for a ProblemState are: "NOT_HANDLED", "HANDLED",
"CLOSED".

The syntax of the alarmEligibilityPolicy expression is similar to a Java condition
expression.

The following are examples of valid alarmEligibilityPolicy expressions:

NetworkState=="NOT_CLEARED"

75

NetworkState=="NOT_CLEARED" && OperatorState!="TERMINATED"

NetworkState=="NOT_CLEARED" && OperatorState!="TERMINATED" &&
ProblemState!="CLOSED"

NetworkState!="CLEARED" && (OperatorState=="TERMINATED" ||
OperatorState=="ACKNOWLEDGED") && ProblemState!="CLOSED"

Warning:

The alarmEligibility expression is specified within an XML file and must respect the
XML grammar. This means that particular characters such as &, <, >, “, ‘ are not
allowed and must be replaced by their XMl representation counterpart.

The expression : OperatorState!="TERMINATED"

Should then be represented as :
<alarmEligibilityPolicy>

 OperatorState!="TERMINATED"

</alarmEligibilityPolicy>

Which is not really readable as soon as the expression becomes a little bit more
complex.

Another way the set the expression in a more readable way is to use the XML
CDATA Tag which allows using the special characters in the expression string as
follow:
<alarmEligibilityPolicy><![CDATA[

 OperatorState!="TERMINATED"

]]></alarmEligibilityPolicy>

Default value: The default value for the alarmEligibilityPolicy expression is "true";
meaning that each alarm will be systematically inserted into Working Memory and
will never be automatically retracted later on.

4.1.4 Garbage Collection

4.1.4.1 actionRetractedAutomaticallyWhenCompleted

This policy is a boolean policy. Its value can either be “true” or “false”.

When an action completes, the object associated to the executed action remains in
WorkingMemory with a status set to “Completed”.

By setting the actionRetractedAutomaticallyWhenCompleted boolean policy to
“true”, the UCA for EBC framework will automatically retract any Action object that
has a status of “Completed” from Working Memory. By setting this policy to “false”,
all Action objects will remain in Working Memory until they are explicitely removed
(using a retract statement).

Default Value: true

4.1.5 Automatic handling of configuration files modifications

4.1.5.1 automaticRefreshOnConfigurationChange

This policy is a boolean policy. Its value can either be “true” or “false”.

The Scenario Configuration files (filters, rule files, mapping files, specific
configuration Files) are read at scenario startup. Such files can be modified from
the GUI and a GUI button can be used to make the scenario re-read the file and take
the new values into account.

76

There automaticRefreshOnConfigurationChange policy is a way to make the system
automatically re-read the configuration files without any operation from the GUI.

This can be useful if the configuration files are automatically generated from an
external application.

When setting the automaticRefreshOnConfigurationChange to ‘true’ the
configurations files are periodically checked and reloaded if detected as changed.

Default Value: false

77

Chapter 5

Common Objects

This chapter defines the common Java objects provided by the UCA for EBC
framework and gives information on how to use these objects in the rules.

Refer to [R3] Unified Correlation Analyzer for Event Based Correlation – JavaDoc

UCA Engine for detailed usage of the API.

5.1 Events
Event class was introduced in V3.1. It is a generic class to define all incoming
objects within UCA-EBC. More specifically, Alarm class is a specialization of Event
class.

In the rules, the following imports can be used to deal with event content:

import com.hp.uca.expert.event.Event;

Event attributes can be used in the rules “condition” part, and Event methods can
be called in the rules “action” part.

5.1.1 Identification attributes

Attribute Method Type
identifier getIdentifier() String

sourceIdentifier getSourceIdentifier() String

Table 9 - Event identification attributes and methods

5.1.2 Orchestration attributes

Attribute Method Type
orchestraData getOrchestraData() Map<String, Serializable>

convergenceComplete isConvergenceComplete() boolean

eventUUID getEventUUID() UUID

Table 10 - Event orchestration attributes and methods

78

Note

The Orchestration attributes and methods are detailed in  6.1.6 Orchestration

API.

5.1.3 Interfaces hierarchy

With following super interfaces:

79

80

5.2 Alarms models used in the rules
In the rules, the following imports can be used to deal with alarm content:
import com.hp.uca.expert.event.Event;

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmStateChange;

import com.hp.uca.expert.alarm.AlarmAttributeValueChange;

import com.hp.uca.expert.alarm.AlarmDeletion;

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import com.hp.uca.expert.x733alarm.AlarmType;

import com.hp.uca.expert.x733alarm.CustomFields;

import com.hp.uca.expert.x733alarm.CustomField;

All flavors of Alarms objects inherit from Event class.

5.2.1 Alarm

import com.hp.uca.expert.alarm.Alarm;

Alarm attributes can be used in the rules “condition” part, and Alarm methods can
be called in the rules “action” part.

5.2.1.1 General attributes

Attribute Method Type
originatingManagedEntity getOriginatingManagedEntity() String

originatingManagedEntityStru

cture

getOriginatingManagedEntityStruc

ture()

OriginatingManagedEntityStru

cture

alarmType getAlarmType() AlarmType

perceivedSeverity getPerceivedSeverity() PerceivedSeverity

probableCause getProbableCause() String

alarmRaisedTime getAlarmRaisedTime() XMLGregorianCalendar

timeInMilliseconds getTimeInMilliseconds() long

specificProblem getSpecificProblem() String

additionalInformation getAdditionalInformation() String

additionalText getAdditionalText() String

customFields getCustomFields() CustomFields

 getCustomFieldValue(String

field)

String

81

 setCustomFieldValue(String

field, String value)

boolean

proposedRepairActions getProposedRepairActions() String

alarmAdditionalData getAlarmAdditionalData() String

Table 11 - Alarm attributes and methods

Note

The alarmRaisedTime field is automatically updated when using the
setTimeInMilliSecond() method.

5.2.1.2 Status attributes

Attribute Method Type
networkState getNetworkState() NetworkState

operatorState getOperatorState() OperatorState

problemState getProblemState() ProblemState

problemInformation getProblemInformation() String

Table 12 - Alarm status attributes and methods

5.2.1.3 Correlation purpose attributes

Attribute Method Type
notificationIdentifier getNotificationIdentifier() String

correlationsNotificationIden

tifiers

getCorrelationsNotificationIdentif

iers()

String

Table 13 - Alarm Correlation attributes and methods

5.2.1.4 Association purpose attributes

Attribute Method Type
parents getParents() String

children getChildren() String

Table 14 - Alarm Association attributes and methods

5.2.1.5 Example

import com.hp.uca.expert.alarm.Alarm;

rule "Sample"

when

 a: Alarm(originatingManagedEntity == "BOX .b1")

then

 System.out.println(a.getOriginatingManagedEntity());

 a.setAdditionalText(a.getAdditionalText() + " Append user defined");

end

Rule Sample 6 - Alarm attributes

82

5.2.1.6 AlarmCreationInterface detailed

83

5.2.2 AlarmStateChange

Import

import com.hp.uca.expert.alarm.AlarmStateChange;

Attributes and methods

AlarmStateChange attributes can be used in the rules “condition” part, and
AlarmStateChange methods can be called in the rules “action” part:

5.2.2.1 Identification attributes

Attribute Method Type

Identifier getIdentifier() String

Table 15 - AlarmStateChange identifier attributes and methods

5.2.2.2 General attributes

Attribute Method Type
originatingManagedEntity getOriginatingManagedEntity() String

originatingManagedEntityStru

cture

getOriginatingManagedEntityStruc

ture()

OriginatingManagedEntityStru

cture

sourceIndicator getSourceIndicator() String

additionalText getAdditionalText() String

attributeChanges getAttributeChanges() AttributeChanges

Table 16 - AlarmStateChange general attributes and methods

84

5.2.2.3 AlarmStateChangeInterface detailed

5.2.3 AlarmAttributeValueChange

import com.hp.uca.expert.alarm.AlarmAttributeValueChange;

AlarmAttributeValueChange attributes can be used in the rules “condition” part,
and AlarmAttributeValueChange methods can be called in the rules “action” part:

5.2.3.1 Identification attributes

Attribute Method Type
Identifier getIdentifier() String

Table 17 - AlarmAttributeValueChange identifier attributes and methods

85

5.2.3.2 General attributes

Attribute Method Type
originatingManagedEntity getOriginatingManagedEntity() String

originatingManagedEntityStru

cture

getOriginatingManagedEntityStruc

ture()

OriginatingManagedEntityStru

cture

sourceIndicator getSourceIndicator() String

additionalText getAdditionalText() String

attributeChanges getAttributeChanges() AttributeChanges

Table 18 - AlarmAttributeValueChange general attributes and methods

5.2.3.3 AlarmAttributeValueChangeInterface detailed

86

5.2.4 AlarmDeletion

import com.hp.uca.expert.alarm.AlarmDeletion;

AlarmDeletion attributes can be used in the rules “condition” part, and
AlarmDeletion methods can be called in the rules “action” part:

5.2.4.1 Identification attributes

Attribute Method Type
identifier getIdentifier() String

Table 19 - AlarmDeletion identifier attributes and methods

5.2.4.2 General attributes

Attribute Method Type
originatingManagedEntity getOriginatingManagedEntity() String

originatingManagedEntityStru

cture

getOriginatingManagedEntityStruc

ture()

OriginatingManagedEntityStru

cture

sourceIndicator getSourceIndicator() String

additionalText getAdditionalText() String

Table 20 - AlarmDeletion general attributes and methods

5.2.4.3 AlarmDeletionInterface detailed

87

5.2.5 Properties of alarms

5.2.5.1 AlarmType

Import

import com.hp.uca.expert.x733alarm.AlarmType;

Values

The following table shows the possible values for the AlarmType attribute:

AlarmType values

AlarmType.UNKNOWN_ALARM_TYPE

AlarmType.COMMUNICATIONS_ALARM

AlarmType.PROCESSING_ERROR_ALARM

AlarmType.ENVIRONMENTAL_ALARM

AlarmType.QUALITY_OF_SERVICE_ALARM

AlarmType.EQUIPMENT_ALARM

AlarmType.INTEGRITY_VIOLATION

AlarmType.OPERATIONAL_VIOLATION

AlarmType.PHYSICAL_VIOLATION

AlarmType.SECURITY_VIOLATION

AlarmType.TIME_DOMAIN_VIOLATION

Table 21 - AlarmType values

Example

Below is an example of how to use the AlarmType attribute in rules:

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.AlarmType;

rule "Sample"

when

 a: Alarm(originatingManagedEntity == "BOX .b1" &&

 alarmType==AlarmType.EQUIPMENT_ALARM)

then

 // Do Something

end

Rule Sample 7 - AlarmType example

5.2.5.2 PerceivedSeverity

Import

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

Values

The following table shows the possible values for the PerceivedSeverity attribute:

88

PerceivedSeverity values
PerceivedSeverity.CLEAR

PerceivedSeverity.CRITICAL

PerceivedSeverity.INDETERMINATE

PerceivedSeverity.MAJOR

PerceivedSeverity.MINOR

PerceivedSeverity.WARNING

Table 22 - PerceivedSeverity values

Example

Below is an example of how to use the PerceivedSeverity attribute in rules:

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

rule "Sample"

when

 a: Alarm(perceivedSeverity == PerceivedSeverity.CRITICAL)

then

 // Do Something

end

Rule Sample 8 - PerceivedSeverity example

5.2.5.3 NetworkState

Import

import com.hp.uca.expert.x733alarm.NetworkState;

Values

The following table shows the possible values for the NetworkState attribute:

NetworkState values

NetworkState.NOT_CLEARED

NetworkState.CLEARED

Table 23 - NetworkState values

Example

Below is an example of how to use the NetworkState attribute in rules:

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.NetworkState;

rule "Sample"

when

 a: Alarm(networkState == NetworkState.NOT_CLEARED)

then

 // Do Something

end

Rule Sample 9 - NetworkState example

89

5.2.5.4 OperatorState

Import

import com.hp.uca.expert.x733alarm.OperatorState;

Values

The following table shows the possible values for the OperatorState attribute:

OperatorState values
OperatorState.NOT_ACKNOWLEDGED

OperatorState.ACKNOWLEDGED

OperatorState.TERMINATED

Table 24 - OperatorState values

Example

Below is an example of how to use the OperatorState attribute in rules:

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.OperatorState;

rule "Sample"

when

 a: Alarm(operatorState == OperatorState.NOT_CLEARED)

then

 // Do Something

end

Rule Sample 10 - OperatorState example

5.2.5.5 ProblemState

Import

import com.hp.uca.expert.x733alarm.ProblemState;

Values

The following table shows the possible values for the ProblemState attribute:

ProblemState values

ProblemState.NOT_HANDLED

ProblemState.HANDLED

ProblemState.CLOSED

Table 25 - ProblemState values

Example

Below is an example of how to use the ProblemState attribute in rules:

import com.hp.uca.expert.alarm.Alarm;

90

import com.hp.uca.expert.x733alarm.ProblemState;

rule "Sample"

when

 a: Alarm(problemState == ProblemState.NOT_HANDLED)

then

 // Do Something

end

Rule Sample 11 - ProblemState example

5.2.5.6 CustomFields

Import

import com.hp.uca.expert.x733alarm.CustomFields;

import com.hp.uca.expert.x733alarm.CustomField;

CustomFields attributes and methods

CustomFields attributes can be used in the rules “condition” part, and CustomFields
methods can be called in the rules “action” part:

Attribute Method Type
customField getCustomField() List<CustomField>

Table 26 - CustomFields attributes and methods

There is no “set” method on “CustomField”, but the list of custom fields can be
modified in the rules “action” part.

CustomField attributes and methods

CustomField attributes can be used in the rules “condition” part, and CustomField
methods can be called in the rules “action” part:

Attribute Method Type
name getName() / setName() String

value getValue() / setValue() String

Table 27 - CustomField attributes and methods

Alternative method with Alarm Object

The Alarm object also supports the following methods that

are useful to get or set a CustomField:
 String getCustomFieldValue(String fieldName)

 boolean setCustomFieldValue(String fieldName, String value)

Example

import com.hp.uca.expert.x733alarm.CustomFields;

import com.hp.uca.expert.x733alarm.CustomField;

import com.hp.uca.expert.alarm.AlarmObjectFactory;

rule "Sample"

91

when

 a: Alarm(originatingManagedEntity == "BOX .b1")

then

 // Usage 1

 CustomField newCF = new AlarmObjectFactory().createCustomField();

 newCF.setName("Origin");

 newCF.setValue("UCA EBC system");

 a.getCustomField().add(newCF);

 // Alternatively, Usage 2

 a.setCustomFieldValue("Origin", "UCA EBC system");

end

Rule Sample 12 - CustomField example

5.2.5.7 AttributeChanges

Import

import com.hp.uca.expert.x733alarm.AttributeChanges;

import com.hp.uca.expert.x733alarm.AttributeChange;

AttributeChanges attributes and methods

AttributesChanges attributes can be used in the rules “condition” part, and
AttributesChanges methods can be called in the rules “action” part:

Attribute Method Type
attributeChange getAttributeChange() List<AttributeChange>

Table 28 - AttributeChanges attributes and methods

There is no “set” method on “attributeChange”, but the list can be modified in the
rules “action” part.

AttributeChange attributes and methods

AttributeChange attributes can be used in the rules “condition” part, and
AttributeChange methods can be called in the rules “action” part:

Attribute Method Type
name getName() / setName() String

newValue getNewValue() / setNewValue() String

oldValue getOldValue() /

setOldValue ()

String

Table 29 - AttributeChange attributes and methods

5.3 Actions

92

UCA for EBC Actions are a means to trigger actions on external systems by going
through the mediation layer: OSS Open Mediation V7.1 (NOM V7.1).

Such actions can be

Alarm Object actions routed to and executed by a Network Management System
(alarm creation, alarm termination, alarm grouping etc…)

Script execution (execution of executables or command-line scripts) on the system
hosting the mediation layer

Actions are routed to the mediation using the information stored in the
ActionRegistry.xml file.

When new Action Java objects are created in the rules, the constructor method for
the Action Java object must reference a valid actionReference defined in the
ActionRegistry.xml file. ActionReferences define how to route actions to the

mediation layer, and to the proper Channel Adapter (the Channel Adapter able to
process the action request) on the mediation layer.

5.3.1 Action Class

Please refer to [R4] Unified Correlation Analyzer for Event Based Correlation –

JavaDoc UCA Actions for more information on Actions.

Import

import com.hp.uca.mediation.action.client.Action;

Description

The proper way to create and execute actions is to perform the following 4 steps in
sequence:

Create the action object using the Action(String actionReference)

constructor.

The actionReference parameter references an <Action

actionReference="…">…</Action> XML entity in the

ActionRegistry.xml file that contains information for routing actions to the

proper Channel Adapter on the mediation layer depending on the type of action
(identified by the actionReference).

Please refer to chapter 5.3.2 “Action registry” for more information on how to
define actionReferences that will target specific Channel Adapters on the

mediation layer.

Here’s an example of how to create an Action object:
Action action = new Action("TeMIP_AO_Directives_localhost");

Specify what action to execute by using the addCommand(String key,

String value) method.

This method defines what action to execute by defining key/value pairs that will be
interpreted by the proper Channel Adapter on the mediation layer.

Here’s an example of how to define an Action object:
action.addCommand("directiveName", "TERMINATE");

action.addCommand("entityName", a.getIdentifier());

93

action.addCommand("UserId", "UCA for EBC");

Associate the newly created Action object to the current Scenario using the
addAction(Action action) method.

Failure to associate the Action object with the current Scenario will result in the
action being improperly processed.

Here’s an example of how to associate an Action object to the current scenario:
theScenario.addAction(action);

Request the execution of the action by using either the executeSync()method
or the executeAsync(String synchronizationKey) method.

Here’s an example of how to request synchronous execution of an Action object:
action.executeSync();

Here’s an example of how to request asynchronous execution of an Action object:
action.executeAsync(Action.NO_SYNCHRONIZATION_KEY);

Example

The following chapters show how to use an action in a UCA for EBC rule for
terminating an alarm. Actions can be executed either synchronously using the
executeSync() method or asynchronously using the

executeAsync(String synchronizationKey) method.

The difference between synchronous and asynchronous actions is that
synchronous action requests are blocking while asynchronous action requests are
not.

Notes

Actions have a default timeout defined in the
${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file. The default
timeout is specified by the action.timeout property. The value of this property

is in milliseconds. For example:

action.timeout = 60000

In case you need to, this default action timeout can be either changed in the
${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file or overwritten

for any single action by using the public void setActionTimeout(int
actionTimeout) method of any Action object. The actionTimeout

parameter is also in milliseconds. For example:

// Sets this action timeout to 10 seconds

action.setActionTimeout(10000);

When the timeout is reached, the action fails. The status explanation of the action
indicates that the action has timed out.

5.3.1.1 Synchronous actions
rule "Any Acknowledged Alarm with Add text request for termination

(Action)"

when

 a: Alarm(operatorState == OperatorState.ACKNOWLEDGED &&

additionalText matches "to terminate")

then

94

 theScenario.getLogger().info("[RULE " + drools.getRule().getName()

+ "] Found acknowledged alarm: identifier = " + a.getIdentifier() +

":");

 theScenario.getLogger().debug(a.toFormattedString());

 // Terminating the Alarm

 Action action = new Action("TeMIP_AO_Directives_localhost");

 action.addCommand("directiveName", "TERMINATE");

 action.addCommand("entityName", a.getIdentifier());

 action.addCommand("UserId", "UCA for EBC");

 theScenario.addAction(action); // Associate the action with the

scenario

 theScenario.getLogger().info("Executing synchronous TERMINATE

directive on alarm: " + a.getIdentifier());

 action.executeSync(); // This call is blocking. The execution of

the rule will continue only after the action has been executed.

 theScenario.getLogger().debug(action);

 if (action.getActionStatus() ==

com.hp.uca.mediation.action.client.ActionStatus.Completed)

 {

 theScenario.getLogger().info("Action successful");

 } else {

 theScenario.getLogger().error("Action failed:

"+action.getActionStatusExplanation());

 }

end

Rule Sample 13 - Simple Action example (synchronous)

When a call to executeSync() is made, the execution of the rule is stopped

until the synchronous action terminates (either successfully or not).

5.3.1.2 Asynchronous actions

rule "Any Acknowledged Alarm with Add text request for termination

(Action)"

 when

 a: Alarm(operatorState == OperatorState.ACKNOWLEDGED &&

additionalText matches "to terminate")

 then

 theScenario.getLogger().info("[RULE " + drools.getRule().getName()

+ "] Found acknowledged alarm: identifier = " + a.getIdentifier() +

":");

 theScenario.getLogger().debug(a.toFormattedString());

 // Terminating the Alarm

 Action action = new Action("TeMIP_AO_Directives_localhost");

 action.addCommand("directiveName", "TERMINATE");

 action.addCommand("entityName", a.getIdentifier());

 action.addCommand("UserId", "UCA for EBC");

 theScenario.addAction(action); // Associate the action with the

scenario

 theScenario.getLogger().info("Executing synchronous TERMINATE

directive on alarm: " + a.getIdentifier());

95

 action.executeAsync(Action.NO_SYNCHRONIZATION_KEY); // This call is

non-blocking. The execution of the rule will continue right away and

not wait for the action to be executed

end

Rule Sample 14 - Simple Action example (asynchronous)

When a call to executeAsync(String synchronizationKey) is made,

the execution or the rule continues right way. Rule execution is not stopped.

The executeAsync(String synchronizationKey) method has a mandatory parameter
called synchronizationKey.

The purpose of this parameter is to preserve the order of groups of asynchronous
actions that have the same synchronizationKey value. Because

asynchronous actions are executed in parallel by a pool of threads, the order is
thus not preserved. For example, asynchronous action A requested before
asynchronous action B can end up being executed after asynchronous action B. This
can be a problem in some use cases, when you need groups of asynchronous
actions affecting the same object (an Alarm for example) to be executed in the
order they are requested. In such a case, you could use, for example, the identifier
of the alarm as a synchronizationKey for all asynchronous actions related to

alarms.

The synchronizationKey must match the name of a key you have used in an
addCommand(String key, String value) call for the same Action

object.

For example, in order to use the identifier of the alarm as
synchronizationKey, you have to write:

import com.hp.uca.mediation.action.client.Action;

import com.hp.uca.temip.mvp.aodirective.mapper.AODirective;

import com.hp.uca.temip.mvp.aodirective.mapper.AODirectiveKey;

…

#declare any global variables here

global Scenario theScenario;

…

rule "Rule 1"

 when

 a: Alarm(…)

 then

 …

 // Setting the Alarm Additional Text

 Action action = new Action("TeMIP_AO_Directives_localhost");

 action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET);

 action.addCommand(AODirectiveKey.ENTITY_NAME, a.getIdentifier());

 action.addCommand(AODirectiveKey. ADDITIONAL_TEXT, "New Text");

 theScenario.addAction(action); // Associate the action with the

scenario

 // Execute the directive asynchronously, using the entity name as

Synchronization Key

 action.executeAsync(AODirectiveKey.ENTITY_NAME);

 …
End

96

rule "Rule 2"

 when

 a: Alarm(…)

 then

 …

 // Terminating the Alarm

 Action action = new Action("TeMIP_AO_Directives_localhost");

 action.addCommand(AODirectiveKey.DIRECTIVE_NAME,

AODirective.TERMINATE);

 action.addCommand(AODirectiveKey.ENTITY_NAME, a.getIdentifier());

 action.addCommand(AODirectiveKey.USERID, "UCA for EBC");

 theScenario.addAction(action); // Associate the action with the

scenario

 // Execute the directive asynchronously, using the entity name as

Synchronization Key

 action.executeAsync(AODirectiveKey.ENTITY_NAME);

 …

end

In the above example, the SET and TERMINATE directives are both executed
asynchronously. In both cases, the entity name (alarm identifier) is used as the
synchronization key. You can notice that the synchronizationKey matches

the name of a key (AODirectiveKey.ENTITY_NAME) you have used in an
addCommand(String key, String value) call for the same Action

object.

If both SET and TERMINATE directives are executed on the same alarm object (i.e.
same alarm identifier), the directives will be executed in the order they are
requested thanks to the synchronization key.

If you don't want to use any synchronization key, please use an empty string or the
Action.NO_SYNCHRONIZATION_KEY constant:

 …

 // Execute the directive asynchronously, using no Synchronization

Key

 action.executeAsync(Action.NO_SYNCHRONIZATION_KEY);

You can execute custom code when the asynchronous action terminates (either
successfully or not) by using action callbacks as described in chapter 5.3.3 “Action
callbacks”.

5.3.2 Action registry

The Action Registry is a configuration file used to define routing information for any
Action processed by the rules.

This file is located at: ${UCA_EBC_INSTANCE}/conf/ActionRegistry.xml

The <MediationValuePack> tags of the Action Registry define a list of services
called <Action>.

97

Each of these <Action> entries defines one action reference that can be used in the
rules. Each action reference defines a specific “action service” provided by the
mediation layer.

The file is a sequence of XML tags (the order is important).

The <MediationValuePack> tag defines the identification of a target Channel
Adapter (the Channel Adapter that will be targeted by the actions).

Type Name Value

Attribute MvpName Channel Adapter name

Attribute MvpVersion Channel Adapter version

Attribute url URL of the Open Mediation entry point.

For UCA for EBC, the entry point is the

UCA for EBC Channel Adapter.

This URL is the URL of the Action web

service of the UCA for EBC Channel

Adapter, used for processing UCA for

EBC external actions.

Attribute brokerURL URL of the Open Mediation entry point.

For UCA for EBC, the entry point is the

UCA for EBC Channel Adapter.

This URL is the URL of the JMS Broker

service of the UCA for EBC Channel

Adapter, used for forwarding Alarms to

OSS Open Mediation V7.1.

Property Action List of Channel Adapter services

Table 30 - ActionRegistry - MediationValuePack properties

Each <Action> tag defines a separate action service implemented by the target
Channel Adapter defined by the <MediationValuePack> tag:

Type Name Value

Attribute actionReference Unique reference that will be used in the

rule to define the routing information of

an Action

Property ServiceName Identifier of the service supported by the

Channel Adapter. This information is

available in the Channel Adapter

specification guide.

Property NmsName The identifier of the NMS that will

receive the Action. This information can

be used by the Channel Adapter to know

on which physical machine to send the

action.

Table 31 - ActionRegistry – Action properties

Example

Here’s an example of the ActionRegistry.xml file:

98

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ActionRegistryXML xmlns="http://registry.action.mediation.uca.hp.com/">

 <MediationValuePack MvpName="temip"

 MvpVersion="1.0"

 url=http://localhost:26700/uca/mediation/action/ActionService?WSDL

brokerURL="failover://tcp://localhost:10000">

 <Action actionReference="TeMIP_AO_Directives_localhost">

 <ServiceName>aoDirective</ServiceName>

 <NmsName>localTeMIP</NmsName>

 </Action>

 <Action actionReference="TeMIP_TT_Directives_localhost">

 <ServiceName>ttDirective</ServiceName>

 <NmsName>localTeMIP</NmsName>

 </Action>

 <Action actionReference="TeMIP_FlowManagement">

 <ServiceName>subscriptionManagement</ServiceName>

 <NmsName>localTeMIP</NmsName>

 </Action>

 </MediationValuePack>

 <MediationValuePack MvpName="exec"

 MvpVersion="1.0"

url=http://localhost:26700/uca/mediation/action/ActionService?WSDL

brokerURL="failover://tcp://localhost:10000">

 <Action actionReference="Exec_localhost">

 <ServiceName>commandsExecution</ServiceName>

 <NmsName>localhost</NmsName>

 </Action>

 </MediationValuePack>

</ActionRegistryXML>

XML Configuration 8 - ActionRegistry.xml example

In the example above, the Channel Adapter ‘temip’ Version ‘1.0’ available through
the URL ‘http://localhost:26700/uca/mediation/action/ActionService?WSDL’ (URL
of the UCA Channel Adapter entry point, used by any Action processed by UCA for
EBC) is able to manage the following services:

aoDirective: Action service to process TeMIP Alarm Object directives. This action
service can be referenced in the rules by using the
“TeMIP_AO_Directives_localhost” actionReference.

ttDirective: Action service to process TeMIP Trouble Ticket directives. This action
service can be referenced in the rules by using the
“TeMIP_TT_Directives_localhost” actionReference.

subscriptionManagement: Action service to process TeMIP Channel Adapter flow
creation/deletion. This service is used by the UCA for EBC framework to create
Alarm Flows at Value Pack start-up (See Chapter 3.4.2.2 Defining Collection flows)

Note

Please see [R2] Unified Correlation Analyzer for Event Based Correlation –

Administration, Configuration and Troubleshooting Guide for more information on
how to configure the ActionRegistry.xml file.

Please refer to [R9] OSS Open Mediation V7.1 Installation and Configuration

Guide for more information on how to configure the OSS Open Mediation V7.1 (NOM
V7.1) to support the execution of Actions.

http://localhost:26700/uca/mediation/action/ActionService?WSDL
http://localhost:26700/uca/mediation/action/ActionService?WSDL

99

5.3.3 Action callbacks

It is possible to define action callbacks when using asynchronous actions. The
action callback is a Java method that will be automatically called when the
asynchronous action terminates.

This callback is called when the action is effectively processed. The callbacks are
called at the next execution of the Asynchronous Action Management agent. This
agent is called at regular intervals. The interval at which this agent is run depends
on the value of the “asyncActionPeriod” Scenario policy. See chapter 4.1.2.3
asyncActionPeriod

Import

import com.hp.uca.common.callback.Callback;

Callback Constructor

The callback Object constructor is:

public Callback(java.lang.reflect.Method method, Object theObject, Object[]
arguments)

Example

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.expert.flag.Flag;

import com.hp.uca.expert.vp.sample.ActionCallback;

import com.hp.uca.temip.mvp.aodirective.mapper.AODirective;

import com.hp.uca.temip.mvp.aodirective.mapper.AODirectiveKey;

import com.hp.uca.mediation.action.client.Action;

import com.hp.uca.mediation.action.exception.UcaActionExecutionException;

import com.hp.uca.mediation.action.exception.UcaActionInitializationException;

#declare any global variables here

global Scenario theScenario;

rule "Clear Alarm"

when

 alarm : Alarm()

then

 Action action = null;

 try {

 action = new Action(“TeMIP_AO_Directives_localhost");

 action.addCommand(AODirectiveKey.DIRECTIVE_NAME,

 AODirective.CLEARALARM);

 action.addCommand(AODirectiveKey.ENTITY_NAME, alarm.getIdentifier());

 action.addCommand(AODirectiveKey.USERID, "UCA EBC - ActionId: "

 + action.getActionId());

 theScenario.addAction(action);

 try {

 action.setCallback(ActionCallback

 .buildClearAlarmValidationCallback(action));

 } catch (SecurityException e) {

 // Manage the Exception

 } catch (NoSuchMethodException e) {

 // Manage the Exception

 }

 action.executeAsync(Action.NO_SYNCHRONIZATION_KEY);

 } catch (UcaActionInitializationException e) {

 // Manage the Exception

 }

end

You can define the following Java Class to define an Action callback.

100

package com.hp.uca.expert.vp.sample;

import java.lang.reflect.Method;

import org.apache.log4j.Logger;

import com.hp.uca.common.callback.Callback;

import com.hp.uca.common.trace.LogHelper;

import com.hp.uca.common.trace.SpecificLogManager;

import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.mediation.action.client.Action;

public final class ActionCallback {

 private static final int ARGUMENT_1 = 0;

 private static final int NB_CALLBACK_ARGUMENTS = 1;

 private static final String CLEAR_ALARM_CALLBACK_NAME =

"clearAlarmValidationCallback";

 /**

 * Log used to trace this component

 */

 private static final Logger LOG = Logger.getLogger(ActionCallback.class);

 /**

 * Hide Default constructor

 */

 private ActionCallback() {

 }

 /**

 * @param action

 * @return the {@linkplain Callback}

 *

 * @throws SecurityException

 * @throws NoSuchMethodException

 */

 public static Callback buildClearAlarmValidationCallback(Action action)

 throws SecurityException, NoSuchMethodException {

 if (LOG.isTraceEnabled()) {

 LogHelper.method(LOG, "buildClearAlarmValidationCallback()");

 }

 Class<?> partypes[] = new Class[NB_CALLBACK_ARGUMENTS];

 partypes[ARGUMENT_1] = Action.class;

 Object arglist[] = new Object[NB_CALLBACK_ARGUMENTS];

 arglist[ARGUMENT_1] = action;

 Method method = PD_ActionCallback.class.getMethod(

 CLEAR_ALARM_CALLBACK_NAME, partypes);

 Callback callback = new Callback(method, null, arglist);

 return callback;

 }

 /**

 * @param action

 */

 public static void clearAlarmValidationCallback(Action action) {

 if (LOG.isTraceEnabled()) {

 LogHelper.enter(LOG, "clearAlarmValidationCallback()");

 }

 // ActionStatus: Failed

 // ActionStatusExplanation: Specialized Exception: Generic Exception

 // (Source Of The Error = ClearAlarm)

 switch (action.getActionStatus()) {

 case Failed:

 if (action.getActionStatusExplanation().contains(

 "Generic Exception (Source Of The Error =

ClearAlarm)")) {

 LOG.warn("Was already cleared, forcing Action Status

to Completed");

 action.acknowledgeActionFailure();

 }

 break;

 default:

 break;

 }

101

 if (LOG.isTraceEnabled()) {

 LogHelper.exit(LOG, "clearAlarmValidationCallback()");

 }

 }

}

Rule Sample 15 - Action Callback example

102

5.4 Flags
The UCA for EBC product provides a set of Flag Java object. These objects are useful
to trigger rule execution in complex use cases or to trigger internal processing
(Synchronization, etc…).

Pleas refer to [R3] Unified Correlation Analyzer for Event Based Correlation –

JavaDoc UCA Engine for more information on Flag objects.

All Flag objects inherit from FlagBase class and have the following list of attributes
and methods:

Attribute Method Type
id getId() String

description getDescription() String

value getValue() Boolean

creationTime getCreationTime() Long

Table 32 - Flags attributes and methods

Flags attributes can be used in rules conditions, and Flag methods can be called in
rules actions.

5.4.1 Flag

This kind of Flag can be explicitely inserted in Working Memory by some rules and
be used to trigger other rules on demand.

import com.hp.uca.expert.flag.Flag;

103

Example

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.expert.flag.Flag;

#declare any global variables here

global Scenario theScenario;

rule "First Alarm => Insert Flag Object to start a Time Window"

no-loop

when

 firstAlarm : Alarm()

 not Flag(description matches

firstAlarm.getOriginatingManagedEntity())

then

 LogHelper.enter(theScenario.getLogger(), drools.getRule().getName());

 Flag flag=new Flag(firstAlarm.getIdentifier(),

firstAlarm.getOriginatingManagedEntity() , false);

 theScenario.getLogger().info("Inserting Flag for Context: " +

flag.getDescription());

 theScenario.getSession().insert(flag);

 theScenario.getLogger().info("Enabling the triggering of Context: " +

flag.getDescription());

 flag.setValue(true);

 theScenario.getLogger().debug("Add Watchdog item: ");

 theScenario.createWatchdogItem(5000, flag, false, "Flag:" +

flag.getDescription(),true);

 LogHelper.exit(theScenario.getLogger(), drools.getRule().getName());

end

rule "End of TimeWindow => Do Something once"

when

 firstAlarm : Alarm()

 myFlag : Flag(value == true,

 id matches firstAlarm.identifier)

then

 // Do Something once

end

Rule Sample 16 - Flag example

In the rule example above, the Flag is used to trigger rule after a delay.

5.4.2 ScenarioInitFlag

This kind of Flag can be inserted by the rules in the Working Memory and used to
trigger any rules on demand.

104

The rule developer can use this object to let multiple rules be triggered when the
Scenario is started for instance.

No ScenarioInitFlag is automatically inserted by the Scenario.

import com.hp.uca.expert.flag.ScenarioInitFlag;

5.4.3 TickFlag

This Flag is automatically inserted in the Scenario’s working memory at start-up.

It is convenient way to trigger rules when regular rule evaluation is needed.

The TickFlag is automatically updated in Working Memory with a periodicity
configured by the “tickPeriod” Scenario property (See Chapter 4.1.2.2 tickPeriod).

import com.hp.uca.expert.flag.TickFlag;

105

Example

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.expert.flag.TickFlag;

#declare any global variables here

global Scenario theScenario;

rule "Rule - Regular tick processing for Alarm"

salience 10

no-loop

 when

 TickFlag()

 alarm : Alarm(tickFlagAware == true)

 then

 // Do Something

end

Rule Sample 17 - TickFlag example

The above rule will be regularly evaluated at TickFlag period, only for Alarms that
are subject to regular evaluation (in this example we select Alarms based on the
value of the tickFlagAware field).

The tickFlagAware field is available for following Objects:

 Alarm

 Group

5.4.4 SynchronizationFlag

This Flag is automatically inserted in the Scenario’s working memory at start-up.

This flag can be used in rule conditions to trigger rules based on the Scenario’s
synchronization state. This flag indicates when the alarm resynchronization
initiated at scenario startup or by request after the initial start of the scenario is
complete.

import com.hp.uca.expert.flag.SynchronizationFlag;

106

Example

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.expert.flag.SynchronizationFlag;

#declare any global variables here

global Scenario theScenario;

rule "Store Mediation Resynchronization Start"

 when

 flag: SynchronizationFlag(value == false)

 then

 // Do Something when the Scenario Working Memory has been cleared, and

that the mediation is about to send historical alarms.

end

rule "Store Mediation Resynchronization End"

 when

 flag: SynchronizationFlag(value == true)

 then

 // Do Something when the Scenario is fully synchronized

end

Rule Sample 18 - SynchronizationFlag example

The value of the SynchronizationFlag is automatically updated by the UCA for EBC
framework:

 false: when at least one Mediation Flow associated with the Scenario’s Value
Pack is in a resynchronizing state. The Working Memory is automatically
cleared or not or only partially, depending on the value of the Scenario’s
retractOnResyncPolicy(1), and a Resynchronization request is sent to the
OSS Open Mediation Channel Adapter associated with the Mediation Flow.

 true: the Scenario is fully synchronized, i.e. all Mediation Flows associated
with the Scenario’s Value Pack are fully synchronized (no Mediation Flow
associated with the Scenario’s Value Pack is currently resynchronizing).

Notes

(1) Please see Chapter 4.1.1.4 retractOnResyncPolicy for more information.

5.4.5 Internal Flags
The following list of administration Flags are used by the UCA for EBC framework to
trigger internal processing.

These flags are public for reference, but we do not recommend them to be used in
customer rules.

107

Flag class Usage

AsyncActionFlag Recurrent processing of Asynchronous

Actions.

Update the status of completed Action in

Working Memory when they are effectively

completed

See Chapter 4.1.2.3 asyncActionPeriod

FireAllRuleFlag Recurrent rule firing when Scenario is

configured as ‘WATCHDOG’.

See Chapter 4.1.1.2 fireAllRulesPolicy and

Chapter 4.1.2.1 fireAllRulePeriod

GarbageCollectionFlag Recurrent rule firing when Alarm & Action

garbage collection is issued.

See Chapter 4.1.2.4 garbageCollectionPeriod

Table 33 - Value Pack properties

5.5 Groups
The UCA for EBC framework provides Java object to collect Alarms.

These are:

 Group

 PropagationGroup

These Group objects are useful to group Alarms and States. They act as Alarm
containers but they also store additional information associated with the Group
(creation time, LocalVariable, etc...).

Refer to [R3] Unified Correlation Analyzer for Event Based Correlation – JavaDoc
UCA Engine for detailed information.

Both Grouping classes inherit from GroupBase Java class:

108

5.5.1 Group

import com.hp.uca.expert.group.Group;

Group attributes can be used in rules conditions, and Group methods can be called
in rules actions:

Attribute Method Description Type
name getName() Name of the Group String

trigger getTrigger() Alarm at the origin of the group creation Alarm

alarms getAlarms() Map of Alarm to group Map<String

,Alarm>

109

problemAlarm getProblemAlarm() Optional: used to store a Problem Alarm if

needed. Usually, a problem alarm is a new

Alarm generated by the rules to represent a

group

Alarm

creationTime getCreationTime() Creation Time of the group. Automatically set

at Group instantiation.

Long

refTimeMillisecond getRefTimeMilliseco

nd()

Usually the trigger Alarm reference time. Long

var getVar() Optional. Used to store any Object needed in

the rule processing

LocalVaria

ble

Table 34 - Group attributes and methods

Example

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.group.Group;

#declare any global variables here

global Scenario theScenario;

rule "Correlation - Correlate & Attach to the Group"

 when

 a: Alarm(justInserted == true)

 group: Group(trigger.getVar().getString("Site") matches

a.getVar().getString("Site"),

 trigger != a)

 then

 a.setJustInserted(false);

 // Do Something for instance

 group.getAlarms().put(a.getIdentifier(), a);

end

Rule Sample 19 - Group example

5.5.2 PropagationGroup

PropagationGroup class was introduced in V3.2

import com.hp.uca.expert.group.PropagationGroup;

PropagationGroup attributes can be used in rules conditions, and
PropagationGroup methods can be called in rules actions:

Attribute Method Description Type
name getName() Name of the Group String

dbDomain getDbDomain() The DB domain String

dbId getDbId() The DB ID Long

dbType getDbType() The DB type String

dbUniqueIdReference getDbUniqueIdRefere

nce ()

The DB unique ref. String

impactingStatesMap getImpactingStatesL

ist()

The Impacting States list Collection

<State>

rootCauseAlarmsMap getImpactingStatesL

ist()

The Root Cause Alarms list Collection

<Alarm>

110

creationTime getCreationTime() Creation Time of the group. Automatically set

at Group instantiation.

Long

refTimeMillisecond getRefTimeMilliseco

nd()

Usually the trigger Alarm reference time. Long

var getVar() Optional. Used to store any Object needed in

the rule processing

LocalVaria

ble

Table 35 - Group attributes and methods

Example

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.group.Group;

#declare any global variables here

global Scenario theScenario;

rule "Correlation - Correlate & Attach to the Group"

 when

 a: Alarm(justInserted == true)

 group: Group(trigger.getVar().getString("Site") matches

a.getVar().getString("Site"),

 trigger != a)

 then

 a.setJustInserted(false);

 // Do Something for instance

 group.getAlarms().put(a.getIdentifier(), a);

end

Rule Sample 20 - Group example

5.6 State
State objects were introduced in V3.2. They inherit Event class. They are useful
objects to identify the current state of an impacted element stored in the Topology
DB.

import com.hp.uca.expert.state.State;

State attributes can be used in rules conditions, and States methods can be called
in rules actions

111

5.7 LocalVariable
The UCA for EBC framework provides a LocalVariable Java object. Such an object is
useful to associate any Java Object to an Alarm, a Group, a Flag, or an Action.

Refer to [R3] Unified Correlation Analyzer for Event Based Correlation – JavaDoc
UCA Engine for detailed information.

LocalVariable methods

Method Description Type
put(String key, Object

value)

Add an object in the LocalVariable using an

identifier (key)

void

get(String key) Get an Object stored in the LocalVariable using its

identifier

Object

remove(String key) Remove one Object defined by its identifier Object

getMap() Returns the Map where all Object are stored Map<String,Object>

getKeys() Returns all identifiers of the Object stored Set<String>

clear() Clear all entries from the LocalVariable void

getString(String key) Returns a String if the Object corresponding to the

identifier is a String.

String

getBoolean(String key) Returns a Boolean if the Object corresponding to

the identifier is a Boolean.

Boolean

Table 36 - LocalVariable methods

Example

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.scenario.Scenario;

112

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.group.Group;

#declare any global variables here

global Scenario theScenario;

rule "LocalVariable example"

 when

 a: Alarm(justInserted == true)

 group: Group(trigger.getVar().getString("Site") matches

a.getVar().getString("Site"),

 trigger != a)

 then

 AcmeObject myCustomizedObject=new AcmeObject();

 a.getVar().put(“myDummyObject”, myCustomizedObject);

 group.getVar().put(“endOfProcess”, new Boolean(true));

end

Rule Sample 21 - LocalVariable example

113

5.8 Watchdog Item
You can use Watchdog Items (associated to your scenario) to update any object in
Working Memory after an initial delay or at regular intervals.

Then the update of the object in Working Memory after an initial delay or at regular
intervals can be used to trigger other rules.

This feature is available through the Scenario interface:

public int createWatchdogItem(long timeDelayMs, Object object,

 boolean recurrent, String description,

 boolean cancelIfNotInWorkingMemory)

This method returns the id of the Watchdog Item that was just created.

Refer to [R3] Unified Correlation Analyzer for Event Based Correlation – JavaDoc
UCA Engine for detailed information.

WatchdogItem usage

Argument Description Type
timeDelayMs The period or the delay before the

‘update’ is issued on the object in

Working Memory. This time is in

Millisecond

long

object The Object that is ‘updated’ in Working

Memory

Object

recurrent True: the object will be recurrently

updated.

False: the object will be ‘updated’ only

once after delay.

boolean

description A textual description to qualify this

Watchdog Item.

String

cancelIfNotInWorkingMemory True: the 'object' will be updated only if

it is still present in Working Memory. If

the 'object' is not in Working Memory

anymore, the WatchdogItem will be

cancelled altogether (no more

recurrence).

False: the 'object' will be updated

regardless of whether it is still present

in Working Memory or not

boolean

Table 37 - WatchdogItem usage

114

Example

In the example below, the Watchdog Item feature is used to trigger a rule after a
delay:

package com.hp.uca.expert.vp.cascading.communication;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmStateChange;

import com.hp.uca.expert.alarm.AlarmAttributeValueChange;

import com.hp.uca.expert.alarm.AlarmDeletion;

import com.hp.uca.expert.x733alarm.CustomFields;

import com.hp.uca.expert.x733alarm.CustomField;

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import com.hp.uca.expert.x733alarm.NetworkState; // NOT_CLEARED, CLEARED

import com.hp.uca.expert.x733alarm.OperatorState; // NOT_ACKNOWLEDGED,

ACKNOWLEDGED, TERMINATED

import com.hp.uca.expert.x733alarm.ProblemState; // NOT_HANDLED, HANDLED, CLOSED

import com.hp.uca.expert.util.MessageFileHandler;

import com.hp.uca.mediation.action.client.Action;

import com.hp.uca.mediation.action.client.ActionStatus;

import com.hp.uca.mediation.action.jaxws.ActionResponseItem;

import com.hp.uca.temip.mvp.aodirective.mapper.AODirective;

import com.hp.uca.temip.mvp.aodirective.mapper.AODirectiveKey;

import com.hp.uca.temip.mvp.aodirective.mapper.Partition;

import com.hp.uca.temip.mvp.aodirective.mapper.EventID;

import java.util.ArrayList;

import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.common.trace.LogHelper;

import com.hp.uca.expert.flag.Flag;

import com.hp.uca.expert.vp.cascading.common.Actions;

#declare any global variables here

global Scenario theScenario;

declare Alarm

@role(event)

@timestamp(dateTimestamp)

@expires(60s)

end

declare Flag

@role(event)

@timestamp(creationTime)

@expires(60m)

end

rule "First Alarm => Insert Flag Object to start a Filter Time Window"

no-loop

when

 firstAlarm : Alarm()

 not Flag(description matches firstAlarm.getOriginatingManagedEntity())

then

 LogHelper.enter(theScenario.getLogger(), drools.getRule().getName());

 Flag flag=new Flag(firstAlarm.getIdentifier(),

firstAlarm.getOriginatingManagedEntity() , false);

 theScenario.getLogger().info("Inserting Flag for Context: " +

flag.getDescription());

 theScenario.getSession().insert(flag);

 theScenario.getLogger().info("Enabling the triggering of Context: " +

flag.getDescription());

 flag.setValue(true);

 theScenario.getLogger().debug("Create Watchdog item: ");

 int watchdogItemId = theScenario.createWatchdogItem(5000, flag, false, "Flag:"

+ flag.getDescription(),true);

 LogHelper.exit(theScenario.getLogger(), drools.getRule().getName());

end

rule "End of TimeWindow => Send first alarm and group similar alarms"

when

 firstAlarm : Alarm()

 myFlag : Flag(value == true,

 id matches firstAlarm.identifier)

 alarms : ArrayList()

 from collect(

 Alarm(identifier != firstAlarm.identifier,

 originatingManagedEntity ==

firstAlarm.getOriginatingManagedEntity(),

 this after [0, 20s] firstAlarm))

then

115

 LogHelper.enter(theScenario.getLogger(), drools.getRule().getName());

 Flag newFlag=myFlag;

 ArrayList<Alarm> newAlarms=new ArrayList<Alarm>();

 if (alarms != null) {

 theScenario.getLogger().info("Grouping Alarm: " +

firstAlarm.getIdentifier());

 for (Object o: alarms) {

 newAlarms.add((Alarm) o);

 }

 Actions.associateAlarms(theScenario,firstAlarm,newAlarms);

 } else {

 theScenario.getLogger().debug("No additional Alarms");

 }

 theScenario.getLogger().debug("delegateAlarm: " +firstAlarm.getIdentifier());

 theScenario.getSession().retract(firstAlarm);

 theScenario.delegateAlarmToScenario("myVP", "1.0",

"com.hp.uca.expert.vp.cascading.Enrichment", firstAlarm);

 for (Alarm a: newAlarms) {

 theScenario.getSession().retract(a);

 }

 theScenario.getSession().retract(newFlag);

 LogHelper.enter(theScenario.getLogger(), drools.getRule().getName());

end

Rule Sample 22 - WatchdogItem example

In case you need to, Watchdog Items can be removed by calling the
deleteWatchdogItem(…) method available through the Scenario interface:

public boolean deleteWatchdogItem(int watchdogItemId)

You have to pass the Watchdog Item Id of the Watchdog Item you want to remove
to the deleteWatchdogItem(…) method.
You can retrieve the Watchdog Item Id of a Watchdog Item when you create it. It is
returned by the call to the createWatchdogItem(…) method.

5.9 Watchdog Item callbacks
The UCA for EBC framework provides a temporal feature called “Watchdog Item
callback” to call a Java method after an initial delay or at regular intervals.

This feature is available through the Scenario interface:

public int createCallbackWatchdogItem(long timeDelayMs,

Callback callback,

 boolean recurrent, String description,

 boolean cancelIfNotInWorkingMemory, Object objectInWM)

This method returns the id of the Callback Watchdog Item that was just created.

import com.hp.uca.common.callback.Callback;

Callback Constructor

The callback Object constructor is:

public Callback(java.lang.reflect.Method method, Object theObject, Object[]
arguments)

116

The Callback object is shared with the Action Callback (see chapter 5.3.3

Action callback)

Refer to [R3] Unified Correlation Analyzer for Event Based Correlation

– JavaDoc UCA Engine for detailed information.

WatchdogItem Callback usage

Argument Description Type
timeDelayMs The period or the delay before the

callback is called. This time is in

Millisecond

long

callback The callback to invoke at timer

expiration

Callback

recurrent true: the callback will be recurrently

invoked.

false: the callback will be invoked only

once after delay.

boolean

description A textual description to qualify this

Callback.

String

cancelIfNotInWorkingMemory True: the callback will be executed only

if the 'objectInWM' is still present in

Working Memory. If the 'objectInWM' is

not in Working Memory anymore, the

WatchdogItem Callback will be

cancelled altogether (no more

recurrence).

False: the callback will be executed

regardless of whether the 'objectInWM'

is still present in Working Memory or

not

boolean

objectInWM The Object to verify in Working

Memory

Object

Table 38 - WatchdogItem Callback usage

117

Example

In the example below, the Watchdog Item Callback feature is used to call a
navigation processing after a while (update some Alarm field in TeMIP Client GUI,
for instance)

package com.hp.uca.expert.vp.cascading.communication;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.expert.flag.Flag;

import com.hp.uca.expert.sample.Navigation;

#declare any global variables here

global Scenario theScenario;

rule "Do some Java processing after a while"

when

 alarm : Alarm()

then

 Navigation.addCallbackForNavigation(// Add needed arguments);

end

And the associated Java processing:

package com.hp.uca.expert.vp.sample;

import java.lang.reflect.Method;

import java.util.Set;

import org.apache.log4j.Logger;

import com.hp.uca.common.callback.Callback;

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.group.Group;

import com.hp.uca.expert.group.Qualifier;

import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.expert.vp.sample.interfaces.CustomInterface;

import com.hp.uca.expert.vp.sample.services.Service_Util;

public final class Navigation {

 private static final String CALLBACK_FOR_NAVIGATION_DESCRIPTION = "Callback

for navigation";

 private static final String EXCEPTION_RECEIVED_BY_ADDCALLBACK_FOR_NAVIGATION =

"Exception received by addcallbackForNavigation()";

 private static final int ARGUMENT_4 = 3;

 private static final int ARGUMENT_3 = 2;

 private static final int ARGUMENT_2 = 1;

 private static final int ARGUMENT_1 = 0;

 private static final int NB_CALLBACK_ARGUMENTS = 4;

 private static final String CALLBACK_FOR_NAVIGATION_METHOD_NAME =

"callbackForNavigation";

 private static final int INFINITE_DELAY = -1;

 /**

 * Log used to trace this component

 */

 private static final Logger LOG = Logger.getLogger(Navigation.class);

 /**

 * Hide Default constructor

 */

 private PD_Navigation() {

 }

118

 /**

 * @param scenario

 * @param alarm

 * @param qualifier

 * @param custom

 * @param delay

 */

 public static void addCallbackForNavigation(Scenario scenario,

 Alarm alarm, Qualifier qualifier, CustomInterface custom,

long delay) {

 Class<?> partypes[] = new Class[NB_CALLBACK_ARGUMENTS];

 partypes[ARGUMENT_1] = Scenario.class;

 partypes[ARGUMENT_2] = Alarm.class;

 partypes[ARGUMENT_3] = Qualifier.class;

 partypes[ARGUMENT_4] = CustomInterface.class;

 Object arglist[] = new Object[NB_CALLBACK_ARGUMENTS];

 arglist[ARGUMENT_1] = scenario;

 arglist[ARGUMENT_2] = alarm;

 arglist[ARGUMENT_3] = qualifier;

 arglist[ARGUMENT_4] = custom;

 try {

 Method method = Navigation.class.getMethod(

 CALLBACK_FOR_NAVIGATION_METHOD_NAME,

partypes);

 Callback callback = new Callback(method, null, arglist);

 int watchdogItemId =

scenario.createCallbackWatchdogItem(delay, callback, false,

 CALLBACK_FOR_NAVIGATION_DESCRIPTION, true,

alarm);

 } catch (SecurityException e) {

 // Manage the exception

 } catch (NoSuchMethodException e) {

 // Manage the exception

 }

 }

 /**

 * @param scenario

 * the current scenario where this processing takes place

 * @param alarm

 * @param qualifier

 * @param custom

 */

 public static void callbackForNavigation(Scenario scenario,

 Alarm alarm, Qualifier qualifier, CustomInterface custom) {

 // Do something depending on arguments of this method

 }

}

Rule Sample 23 - WatchdogItem callback example

In case you need to, Watchdog Items can be removed by calling the
deleteWatchdogItem(…) method available through the Scenario interface:

public boolean deleteWatchdogItem(int watchdogItemId)

You have to pass the Watchdog Item Id of the Watchdog Item you want to remove
to the deleteWatchdogItem(…) method.
You can retrieve the Watchdog Item Id of a Watchdog Item when you create it. It is
returned by the call to the createCallbackWatchdogItem(…) method.

119

5.10 Rule Session
When writing rules, the Working Memory should only be accessed through the
com.hp.uca.expert.rulesession.RuleSessionInterface.

The Rule Session is available using the following method on the Scenario:

theScenario.getSession()

Important Note

Drools insert, update, and retract statements MUST NOT be used directly. It is
mandatory, for working memory integrity to use the RuleSessionInterface to
perform these Working Memory actions, by using the following statements instead:

theScenario.getSession().insert(…)

theScenario.getSession().update(…)

theScenario.getSession().retract(…)

Refer to [R3] Unified Correlation Analyzer for Event Based Correlation

– JavaDoc UCA Engine for detailed information.

120

RuleSession usage

Method Description Return
Type

insert(Object object) Insert an object in the Working Memory.

Insertion is the act of telling the

WorkingMemory about a fact, which you do by

theScenario.getSession().insert(yourObject).

When you insert a fact, it is examined for

matches against the rules. This means all of the

work for deciding about firing or not firing a

rule is done during insertion; no rule, however,

is executed until the Scenario calls

fireAllRules() depending on Scenario’s policies.

See [R5] JBoss Drools Expert guide for more

information about WorkingMemoryEntryPoint

insertion

FactHandle

insert(Collection<Obje

ct> objectCollection)

Insert a collection of object in the Working

Memory in “bulk mode” (the rules are not fired

until the whole collection is inserted).

This method is similar to the insert(Object

object) method except that it inserts a

collection of object in the Working Memory

instead of just one object.

This method can be called by writing the

following code in your rules file:

theScenario.getSession().insert(yourObjectCollec

tion).

The insertion of the collection of objects passed

as parameter to the method into Working

Memory is done in “bulk mode”: the rules are

not fired during the insert.

Instead, the rules are fired at the end of the

insertion of the collection of objects, depending

on the Scenario's policies, provided the Scenario

is in FireAllRulesPolicy.EACH_ACCESS mode.

Collection<F

actHandle>

update(Object object) Update an object in the Working Memory.

The Rule Engine must be notified of modified

facts, so that they can be reprocessed.

Internally, modification is actually a retract

followed by an insert (automatic processing of

Drools); the Rule Engine removes the fact from

the WorkingMemory and inserts it again.

You must use the

theScenario.getSession().update() method to

notify the WorkingMemory of changed objects.

See [R5] JBoss Drools Expert guide for more

information about WorkingMemoryEntryPoint

update

FactHandle

retract(Object object) Retract an object from the Working Memory.

Retraction is the removal of a fact from Working

Memory, which means that it will no longer

track and match that fact, and any rules that

void

121

are activated and dependent on that fact will be

cancelled. Note that it is possible to have rules

that depend on the nonexistence of a fact, in

which case retracting a fact may cause a rule to

activate.

See [R5] JBoss Drools Expert guide for more

information about WorkingMemoryEntryPoint

retraction

getQueryResults(String

query, Object...

arguments)

Retrieves the QueryResults of the specified

Drools query and arguments.

See [R5] JBoss Drools Expert guide for more

information about Drools Queries

QueryResults

openLiveQuery(String

query, Object[]

arguments,

ViewChangedEventListen

er listener);

Opens a Live Query, which has a listener

attached to it that listens to changes in the

result set of the LiveQuery (instead of returning

an iterable result set as is the case with the

getQueryResults(String, Object...) method)

See [R5] JBoss Drools Expert guide for more

information about Drools Live Queries

LiveQuery

Table 39 - Rule Session usage

Example

package com.hp.uca.expert.vp.sample;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.scenario.Scenario;

#declare any global variables here

global Scenario theScenario;

rule "Example of Rule Session access"

when

 alarm : Alarm()

then

 Flag flag=new Flag(firstAlarm.getIdentifier(),

 firstAlarm.getOriginatingManagedEntity() , false);

 // Do not use insert() directly, use the getSession() instead

 theScenario.getSession().insert(flag);

 // Do not use retract() directly, use the getSession() instead

 theScenario.getSession().retract(alarm);

end

Rule Sample 24 - RuleSession (WorkingMemory) mandatory access

122

5.11 Collection Flows
The Mediation Flows and DB Flows defined in the
ValuePackConfiguration.xml file of a Value Pack are accessible from the

rules.

The list of Mediation Flows associated with a Scenario’s Value Pack are available

using the following method on the Scenario’s Value Pack:

theScenario.getValuePack().getValuePackMediationFlows()

The list of DB Flows associated with a Scenario’s Value Pack are available using the

following method on the Scenario’s Value Pack:

theScenario.getValuePack().getDbFlowsMap()

You can then get information on each Collection Flow (its Name, Type, Status, and
Synchronization Status among other things) and also perform actions on each
Mediation Flow, namely start/stop/resynchronize it:

 getName()

 getFlowType()

 getFlowStatus()

 getFlowStatusHistory()

 getSynchronizationStatus()

 start()

 stop()

 resynchronize()

Each Collection Flow inherit the Flow Java interface.

123

A Mediation Flow is a specialized Flow as per below diagram:

A DB Flow is a specialized Flow as per below diagram:

Please refer to [R3] Unified Correlation Analyzer for Event Based

Correlation – JavaDoc UCA Engine for detailed information.

Below is an example of how to work with Mediation Flows in Rules files:

124

Example
package com.hp.uca.expert.vp.sample;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.CustomFields;

import com.hp.uca.expert.x733alarm.CustomField;

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import com.hp.uca.expert.x733alarm.NetworkState; // NOT_CLEARED, CLEARED

import com.hp.uca.expert.x733alarm.OperatorState; // NOT_ACKNOWLEDGED,

ACKNOWLEDGED, TERMINATED

import com.hp.uca.expert.x733alarm.ProblemState; // NOT_HANDLED, HANDLED, CLOSED

import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.common.trace.LogHelper;

import com.hp.uca.expert.vp.flow.FlowStatus;

import com.hp.uca.expert.vp.flow.ValuePackMediationFlow;

#declare any global variables here

global Scenario theScenario;

rule "My Rule"

 when

 …

 then

 LogHelper.enter(theScenario.getLogger(), drools.getRule().getName());

 …

 for (ValuePackMediationFlow flow:

 theScenario.getValuePack().getValuePackMediationFlows().values()) {

 …

 if (flow.getFlowStatus().equals(FlowStatus.Inactive)) {

 flow.start();

 }

 …

 if (flow.getFlowStatus().equals(FlowStatus.Active)) {

 flow.stop();

 }

 …

 if (flow.getFlowStatus().equals(FlowStatus.Active)) {

 flow.resynchronize();

 }

 …

 }

 …

 LogHelper.exit(theScenario.getLogger(), drools.getRule().getName());

end

 Rule Sample 25 – Mediation Flow example

5.12 Scenario Loggers
The UCA for EBC product provides advanced logging mechanism that is able to trace
specific rule processing for each Scenario.

The UCA for EBC Administration GUI fully supports this logging mechanism.

[R10] Unified Correlation Analyzer for Event Based Correlation – User Interface

Guide, chapter Troubleshooting UCA for event based Correlation

To take benefits from this mechanism, the rule developer must use the logger
provided by the Scenario:

theScenario.getLogger()

The getLogger() method provides access to a standard org.apache.log4j.Logger
object.

All standard Logger methods are available to better qualify the level of information
needed (for example info(), debug(), warn(), etc…)

125

Example
package com.hp.uca.expert.vp.sample;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.CustomFields;

import com.hp.uca.expert.x733alarm.CustomField;

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import com.hp.uca.expert.x733alarm.NetworkState; // NOT_CLEARED, CLEARED

import com.hp.uca.expert.x733alarm.OperatorState; // NOT_ACKNOWLEDGED,

ACKNOWLEDGED, TERMINATED

import com.hp.uca.expert.x733alarm.ProblemState; // NOT_HANDLED, HANDLED, CLOSED

import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.common.trace.LogHelper;

#declare any global variables here

global Scenario theScenario;

rule "Any new Acknowledged Alarm"

 when

 a: Alarm(operatorState == OperatorState.ACKNOWLEDGED)

 then

 LogHelper.enter(theScenario.getLogger(), drools.getRule().getName());

 theScenario.getLogger().info("[RULE " + drools.getRule().getName() + "] Found

new acknowledged alarm: identifier = " + a.getIdentifier()+ ":");

 theScenario.getLogger().debug(a.toFormattedString());

 LogHelper.exit(theScenario.getLogger(), drools.getRule().getName());

end

rule "Any new Terminated Alarm"

 when

 a: Alarm(operatorState == OperatorState.TERMINATED)

 then

 LogHelper.enter(theScenario.getLogger(), drools.getRule().getName());

 theScenario.getLogger().info("[RULE " + drools.getRule().getName() + "] Found

new terminated alarm: identifier = " + a.getIdentifier() + ":");

 theScenario.getLogger().debug(a.toFormattedString());

 LogHelper.exit(theScenario.getLogger(), drools.getRule().getName());

end

 Rule Sample 26 - Scenario logger example

126

Chapter 6

Advanced UCA for EBC features

6.1 Orchestration of event cascading between scenarios
The Orchestrating event cascading feature is introduced since UCA-EBC 3.1, as an
extension of the alarms cascading between scenarios provided in UCA-EBC 3.0. It is
the capability of defining, per UCA EBC server, an event workflow between the
scenarios running on the same server (belonging or not to the same Value Pack).
This workflow is made of several routes, each of them describing the way in which
an event is cascaded to one or more scenarios:

 Copying an event from one scenario to another (COPY)

 Aggregating the information (orchestra data) added by several scenarios on
copies of the same event, and sending the resulted aggregated event to
another scenario (JOIN).

This feature is implemented via one method of the Scenario interface:

boolean applyOrchestration(Event event);

For all types of operations, orchestration is implemented regardless of the
scenario’s mode (CLOUD or STREAM). This means that all possible combinations of
pushing events between scenarios defined in the orchestration workflow are
accepted:

 cascading from a STREAM scenario to a STREAM scenario

 cascading from a STREAM scenario to a CLOUD scenario

 cascading from a CLOUD scenario to a STREAM scenario

 cascading from a CLOUD scenario to a CLOUD scenario

However, in the case of the JOIN operation, there are some limitations for the
STREAM to CLOUD cascading, detailed in 6.1.5 “Scenario mode

(STREAM/CLOUD) impact on event cascading”.

6.1.1 Orchestration Principles

As described above the Orchestration is made thanks to the definitions of Routes
between scenarios.

The two Route types available for Orchestration are COPY and JOIN, detailed in the
following subsections.

Each of the routes has to have at least one source scenario and one destination
scenario.

 The Source scenario

 This scenario will provide the event to be cascaded. It is identified by:

 the full valuepack name (valuePackName-valuePackVersion)

 the scenario name.

127

 The Destination scenario

 It is composed of:

 An Orchestra Filter (Optional). It is the name of a TopFilter part of
the Orchestra Filters.

Orchestra Filters are defined in a specific Filter Configuration File:
${UCA_EBC_INSTANCE}/conf/OrchestraFilters.xml. The schema for
this file is the same as the one used for defining the scenario’s
Filters.

A filter is specified by its name (TopFilter’s name).

The Orchestra Filter is an optional parameter. When specified, the
Event will have to pass this filter prior to be cascaded to the target
scenario.When the filter is not specified, the event is
systematically cascaded to the target scenario.

 A Target scenario. To this scenario the event is cascaded. It is
identified by:

 the full valuepack name (valuePackName-
valuePackVersion)

 the scenario name.

6.1.1.1 The COPY route

This Route is used to copy an Event from a source scenario to one or several
destination scenarios.

The orchestrated event is duplicated and a cloned event is sent to each destination
scenario. Cloned events are independent Java Objects that can be updated by all
scenarios without interactions between each other.

A COPY Rule example is shown in Figure 11:

Figure 11 - COPY Route example

Once the event is cascaded to the target scenario, it is injected to the scenario in a
way that the scenario’s filters (filters defined at the scenario level) are evaluated.
The event will then be pushed to the target scenario’s working memory only if it

128

passes both the Orchestra filter (if specified) and at least one of the scenario’s top
filters.

During the copy of the Event, the clone() overridable Java method is invoked. If the
cascaded object’s class extends the Event class, make sure that you have
overridden the clone() method.

A good practice, in the case of a COPY route, is to define the target scenario’s policy
‘eligibleForBroadcast’ as ‘false’. This is to ensure that events entering the scenario
are coming only from the source Scenario and not also from the network.

See chapter 4.1.3.1 eligibleForBroadcast.

6.1.1.2 The JOIN route

This Route is used to aggregate information coming from several source scenarios
into an enriched event sent to a destination scenario.

In the case of JOIN Route the destination scenario is sometimes called
“convergence scenario”.

The JOIN method supposes that:

 The source scenario is either eligible to broadcast or receives cascaded
events.

 There is at least another scenario (on the same UCA-EBC server) that
receives the same event (2 source scenarios at least for one target
scenario). If not, it is advised to use COPY instead.

As for the COPY Route, the Destination is defined by an Orchestra Filter (optional)
and a Target scenario. And as for the COPY Route, the Event will have to pass the
filter (when defined) prior to be cascaded to the target scenario.

The JOIN route has an extra tag that must be specified: the expireTime
(milliseconds). This is used to limit (timeout) the wait time of the join operation.

A timer is activated at the receipt of the first event contributing to the JOIN route.
Then,

 If events are received from all source scenarios before the expireTime is
reached, the aggregated event will contain enrichement data for all these
source scenarios and the boolean convergenceComplete is set to true.

 If the expireTime is reached before all events are received from the source
scenarios, the aggregated event will contain only the enrichment data
received so far and the boolean convergenceComplete is set to false.

Join with timer example example:

3 source scenarios contribute to a join with an expiration time of 1000 milliseconds.

If only 2 event copies are received from the source scenarios and 1000 milliseconds
passed since the reception of the first event, then the event containing aggregated
information from the two contributing events is sent to the convergence scenario
and the convergenceComplete boolean is set to false.

When the third event is received later on (if any), it is also sent to the convergence
scenario, having the convergenceComplete tag set to false.

 Therefore, the convergence scenario has to manage the case of receiving several
events with the boolean convergenceComplete set to false or one event with the
boolean set to true.

Note: Even if the third event will be the only one to participate in the second JOIN,
the JOIN mechanism waits again for an expireTime period before sending this event
to the target scenario.

129

A JOIN Rule example is shown in Figure 12:

Figure 12 - JOIN Rule example

Note that the same source scenario can contribute to different “convergence
scenarios”.

Events are cloned Java Objects that can be updated by all Scenarios without
interactions with each other.

The JOIN route source scenarios can enrich the event by calling the method of the
Orchestrable interface:

void addOrchestraDataInScenario(Serializable orchestraData);

The data information has to be a Serializable object. It will be internally attached
to the event in a Map using the full scenario name. The full scenario name is
composed of the scenario name, its corresponding value pack name and version) of
the calling scenario as key.

All primitive types are Serializable. If wanting to add a custom object, it has to
implement the java.io.Serializable interface.

The JOIN route implementation sends an aggregated event containing the
orchestra data added by each of the source scenarios source to the destination
(convergence) scenario.

The orchestra data added by all the source scenarios to the event can be retrieved
by the convergence scenario by calling the method of the Orchestrable interface:

 Map<String, Serializable> getOrchestraData();

Also, retrieve only the orchestra Data added by a specific scenario on the event can
be done by calling the method of the Orchestrable interface:

 Serializable getOrchestraData(String scenarioFullName);

The key the full scenario name is in the form of ValuePackName-
ValuePackVersion:ScenarioName.

Note: As for the COPY Route the event cascaded to the target scenario, is injected
to the scenario in a way that the scenario’s filter (filters defined at the scenario
level) are evaluated. The event will then be pushed to the target scenario’s working
memory only if it passes both the Orchestra filter (if specified) and at least one of
the scenario’s top filter.

6.1.2 Orchestra Routes Configuration File

For the events to be routed between Value Packs, Orchestration Routes have to be
defined in the OrchestraConfiguration.xml file of the UCA-EBC server

130

instance, in the ${UCA_EBC_INSTANCE}/conf folder. This file is only loaded at

UCA-EBC server instance start (static loading), so if this file is modified, the
server has to be restarted so that the new Orchestration configuration can be
taken into consideration.

This configuration files complies to the schema definition:
${UCA_EBC_HOME}/schemas/OrchestraConfiguration.xsd

The <OrchestraWorkflow> tag of the OrchestraConfiguration.xml file contains the
list of all the routes defined between the scenarios, as shown in the simplified
schema below:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<OrchestraWorkflow>

 <Routes>

 <Route>

 <COPY>

 <Source>

 <ValuePackNameVersion></ValuePackNameVersion>

 </Source>

 <Destinations>

 <Destination>

 <Filter>

 <filterName></filterName>

 </Filter>

 <Target>

 <ValuePackNameVersion></ValuePackNameVersion>

 </Target>

 </Destination>

 </Destinations>

 </COPY>

 or

 <JOIN>

 <Sources>

 <Source>

 <ValuePackNameVersion></ValuePackNameVersion>

 </Source>

 </Sources>

 <ExpireTime></ExpireTime>

 <Destination>

 <Filter>

 <filterName></filterName>

 </Filter>

 <Target>

 <ValuePackNameVersion></ValuePackNameVersion>

 </Target>

 </Destination>

 </JOIN>

 <Route>

 </Routes>

</OrchestraWorkflow>

Each of the tags of the Orchestra schema is described in the following tables:

OrchestraWorkflow Tag

Defines the Orchestra workflow

Type Name Value

131

Element Routes Container for each Route definition

Table 40 - OrchestraWorkflow Tag

Routes Tag

Defines the Routes container

Type Name Value

Element List<Route> Defines a list of <Route>

Table 41 - Routes Tag

Route Tag

Define a route (either COPY or JOIN)

Type Name Value

Choice COPY Defines a COPY Route

Choice JOIN Defines a JOIN Route

Table 42 - Route Tag

COPY Tag

Defines a COPY Route

Type Name Value

Element Source Identifies the source scenario requesting the event routing.

SeeTable 48 for detailed definition of scenario

identification.

Element Destinations Identifies a list of destination scenarios which will eventually

receive a copy of the routed event.

Table 43 - Orchestra COPY route properties

JOIN Tag

Defines a JOIN route

Type Name Value

Element Sources Identifies a list of source scenarios which will contribute to the

JOIN route with events.

Element ExpireTime Specifies the maximum wait time (in milliseconds and starting

from the reception of the first copy of an event contributing to

the join route) for the aggregation of an event.

Element Destination Identifies the scenario destination which will eventually receive

the cascaded event containing all the aggregated orchestra data.

Table 44 - Orchestra JOIN route properties

132

Destinations Tag

Define a list of destinations

Type Name Value

Element List<Destination> Defines a list of <Destination>

Table 45 - Destinations Tag

Destination Tag

Define a list of destinations

Type Name Value

Element Filter (Optional)

An Orchestra Top Filter name the Event has to pass to be sent to

the target Scenario

Element Target Identifies the target scenario the event is sent to. SeeTable

48 for detailed definition of scenario identification.

Table 46 - Destination Tag

Sources Tag

Define a list of Sources

Type Name Value

Element List<Source> Defines a list of <Source>

Source identifies the source scenario requesting the event

routing. SeeTable 48 for detailed definition of scenario

identification.

Table 47 - Sources Tag

Scenario identification (<Source> or <Target> tags)

Type Name Value

Element ValuePackNameVersion Identifies the Value Pack Name and version with the

form:

valuepackName-valuePackVersion

Element ScenarioName Identifies the Scenario Name.

Table 48 - Orchestra Scenario identification (<Source> or <Target> tags)

6.1.3 Orchestration definition example

The following is a sample OrchestraConfiguration.xml file (assuming this file is
deployed in the ${UCA_EBC_INSTANCE}/conf directory). It describes an
Orchestration Workflow with the following routes (assuming only scenario1 in VP1
and scenario1 in VP2 are receiving events from the network (eligibleToBroadcast is
set to true)):

133

 1 route to copy the event from one scenario (scenario1 from VP1) to other 2
scenarios (scenario2 and scenario3 from VP1)

 1 route to converge (join) the event copies of the same event from 3
scenarios (scenario2 and scenario3 from VP1 and scenario1 from VP2) into
one event to send to another scenario (scenario4 in VP1), and having the
expire time for the convergence set to 1000 milliseconds

 1 route to copy the event from a scenario (scenario4 in VP1) to another
(scenario2 in VP2).

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<OrchestraWorkflow xmlns="http://hp.com/uca/expert/orchestra/config">

 <Routes>

 <Route>

 <COPY>

 <Source>

 <ValuePackNameVersion>VP1-1.0</ValuePackNameVersion>

 <ScenarioName>scenario1</ScenarioName>

 </Source>

 <Destinations>

 <Destination>

 <Target>

 <ValuePackNameVersion>VP1-1.0</ValuePackNameVersion>

 <ScenarioName>scenario2</ScenarioName>

 </Target>

 </Destination>

 <Destination>

 <Target>

 <ValuePackNameVersion>VP1-1.0</ValuePackNameVersion>

 <ScenarioName>scenario3</ScenarioName>

 </Target>

 </Destination>

 </Destinations>

 </COPY>

 </Route>

 <Route>

 <JOIN>

 <Sources>

 <Source>

 <ValuePackNameVersion>VP1-1.0</ValuePackNameVersion>

 <ScenarioName>scenario2</ScenarioName>

 </Source>

 <Source>

 <ValuePackNameVersion>VP1-1.0</ValuePackNameVersion>

 <ScenarioName>scenario3</ScenarioName>

 </Source>

 <Source>

 <ValuePackNameVersion>VP2-1.0</ValuePackNameVersion>

 <ScenarioName>scenario1</ScenarioName>

 </Source>

 </Sources>

 <ExpireTime>1000</ExpireTime>

 <Destination>

 <Target>

 <ValuePackNameVersion>VP1-1.0</ValuePackNameVersion>

 <ScenarioName>scenario4</ScenarioName>

 </Target>

 </Destination>

 </JOIN>

 </Route>

 <Route>

 <COPY>

 <Source>

 <ValuePackNameVersion>VP1-1.0</ValuePackNameVersion>

 <ScenarioName>scenario4</ScenarioName>

 </Source>

 <Destinations>

 <Destination>

 <Target>

 <ValuePackNameVersion>VP2-1.0</ValuePackNameVersion>

 <ScenarioName>scenario2</ScenarioName>

134

 </Target>

 </Destination>

 </Destinations>

 </COPY>

 </Route>

 </Routes>

</OrchestraWorkflow>

 XML Configuration 9 - Orchestration configuration example

This is the graphical representation of the above example:

6.1.4 Orchestration looping option

In the OrchestraConfiguration.xml file several routes between the scenarios can be
defined. In most of cases, it is not desired to have loops in the workflow, e.g. to
cascade events from one scenario to others and so on, and send back to the initial
one. This may lead to an overflow of the memory.

Nevertheless, if the developer wants to define loops in the Orchestra Workflow, it is
possible by explicitly setting to true the uca.ebc.orchestra.loops.allowed property
from the uca-ebc.properties file (found in the ${UCA_EBC_INSTANCE}/conf
directory). By default, this property is set to false. If the property is set to false
and a loop is detected in the OrchestraConfiguration.xml, an Error is thrown
stopping the server. The error indicates that either the orchestra loops property
should be set to false, either loops should be removed from the configuration file.

6.1.5 Scenario mode (STREAM/CLOUD) impact on event cascading

Event cascading is possible whatever the scenario’s mode STREAM or CLOUD. In the
following, all the combinations of STREAM and CLOUD cascading between two
scenarios are presented.

6.1.5.1 Cascading events from STREAM to STREAM or CLOUD

Event cascading from STREAM TO STREAM is supported by both types of routes
(COPY and JOIN).

COPY events from STREAM to STREAM or CLOUD

135

A typical use case for event cascading from STREAM to STREAM or CLOUD is the
implementation of a pre-filtering layer scenario. In such a case, a first STREAM
scenario is designed to “reduce” incoming traffic. It then focuses only on a specific
type of events or on specific technologies (originatingManagedObject filter). This is
usually a standard pattern matching like link Down/Up, repeatedEvent, etc…

Then the result of this first filtering scenario is provided to a second scenario which
can be STREAM or CLOUD (depending on the needs). This second scenario acts more
as a functional block implementing the real business logic, as show in Figure 13.

 Figure 13 - Cascading from STREAM to STREAM

JOIN events from STREAM to a STREAM or CLOUD

Cascading events through a JOIN route from several STREAM scenarios to a
STREAM scenario can be done, for example, when a more complex task is divided in
multiple layer scenarios. Then, each scenario can add extra information to the
event, and the target scenario will receive the event containing all the added
information added in the “orchestra data” object.

Cascading events through a JOIN route from several STREAM scenarios to a CLOUD
scenario is also possible for all event types, but only orchestra data added for the
“Alarm” (AlarmCreation type) is conserved when the alarm enters the target
scenario’s Working Memory.

When sending other types of event (like AttributeValueChange or
AlarmStateChange), the corresponding alarm will be updated in the CLOUD scenario
according to the default Alarm lifecycle in CLOUD mode (which is without updating
the orchestra data object). If wanting to update the orchestra data added when one
of other event types than Alarm are inserted into the working memory, the default
Alarm lifecycle in CLOUD mode has to be overwritted.

Depending on the Event instance, the whole lifecycle can be overritted with the
method void doLifecycleProcessing(Event event) of the
com.hp.uca.expert.lifecycle.common.LifeCycleExtensionWorkingMe
moryAccessAllowed interface.

In the case of AttributeValueChange or AlarmStateChange, the following methods
of
com.hp.uca.expert.lifecycle.alarm.AlarmLifeCycleExtensionWorki
ngMemoryAccessAllowedCloud interface have to be overwritted to update also

the orchestra data:

 boolean onUpdateSpecificFieldsFromAttributeValueChange(

Value Pack
Rule

Engine/Scenario

Rule

Engine/Scenario

UCA for EBC

STREAM

STREAM

Input

events

Pattern

matching/reduce traffic

136

 AlarmAttributeValueChange alarmAttributeValueChange,
 Event alarmInWorkingMemory);

 boolean onUpdateSpecificFieldsFromAlarm(Alarm
newAlarm,Event alarmInWorkingMemory);

boolean onUpdateSpecificFieldsFromStateChange

(AlarmStateChange alarmStateChange, Event alarmInWorkingMemory);

Note

See  3.3.3 Alarm or Event enrichment and  3.3.4 Alarm lifecycle for details
on the LifeCycle Extension mechanism.

6.1.5.2 Cascading from CLOUD to CLOUD

The CLOUD to CLOUD event cascading use case may be encountered when an
important correlation block needs to be split into two to reduce complexity: the
second CLOUD scenario provides added-value on top of the first one.

This mode is supported by both types of routes: COPY and JOIN.

6.1.5.3 Cascading from CLOUD to STREAM

The CLOUD to STREAM event cascading use case is supported by both types of
routes: COPY and JOIN).

For each Alarm Attribute Value Change (AVC) or Alarm State Change (ASC)
cascaded from a CLOUD scenario to a STREAM scenario, the default Alarm Lifecycle
is that the corresponding Alarm creation is created and inserted into the STREAM
scenario’s working memory, and only after the AVC or the ASC is inserted.

See  3.3.4 Alarm lifecycle for details.

For each Alarm Deletion, when the source scenario is in CLOUD mode, an Alarm
Deletion has to be explicity created for continuing applying Orchestration,
whether to a STREAM or to a CLOUD scenario. For this, a

new AlarmDeletion has to be created and a call to
com.hp.uca.expert.alarm.AlarmUpdater.replaceAllFields(

Alarm,AlarmDeletion) has to be done in its rule file at the reception of an

“aboutToBeRetracted”. An example is shown in the following code:

rule "Enrichment - [About to be retracted] => Send to
Orchestra"
 when
 a: Alarm (aboutToBeRetracted == true)
 then
 LogHelper.enter(theScenario.getLogger(),
drools.getRule().getName(), a.getIdentifier());

 //have to explicity create an Alarm Deletion for
continuing applying Orchestration
 //when scenario in CLOUD mode
 //for this use AlarmUpdater.replaceAllFields(Alarm,
AlarmDeletion)
 AlarmDeletion generatedAlarmDeletion = new
AlarmDeletion();
 AlarmUpdater.replaceAllFields(a,
generatedAlarmDeletion);

137

 theScenario.getLogger().info("Send to Orchestra About
to be retracted\n"+ generatedAlarmDeletion.getIdentifier());
 theScenario.applyOrchestration(generatedAlarmDeletion);
 LogHelper.exit(theScenario.getLogger(),
drools.getRule().getName(),a.getIdentifier());
end

This mode is also supported by both types of routes: COPY and JOIN, described in
the following sections:

COPY events from CLOUD to STREAM

The CLOUD to STREAM event cascading use case is supported even if it is an
unusual use case. Indeed, the CLOUD scenario is generally the end of the
correlation chain where the event lifecycle is managed.

 Figure 14 - Cascading from CLOUD to STREAM

JOIN events from CLOUD to STREAM

Cascading events through a JOIN route from several CLOUD scenarios to a STREAM
scenario is also possible for all Event types.

As explained in 6.1.5.1 Cascading events from STREAM to STREAM or

CLOUD, for the JOIN events from STREAM to STREAM or CLOUD, the orchestra
data added only for the “Alarm” (AlarmCreation event type) will be updated by
default (default Lifecycle). Therefore, if the event lifecycle of the source scenarios
(in CLOUD mode) is not extended to add orchestra data for other event types then
AlarmCreation (like AttributeValueChange, AlarmStateChange, etc.), the STREAM
scenario will receive events enriched with orchestra data only for the
AlarmCreation type. It will also receive the other events but without the orchestra
data enriched by the CLOUD scenario. If the lifecycle in the source CLOUD scenario is
updated for the other event types, then the target STREAM scenario will receive
enriched events with orchestra data for each event type.

6.1.6 Orchestration API

The UCA for EBC event cascading feature is available through the Scenario

interface:
 boolean applyOrchestration(Event event);

In the case of JOIN routes (Convergence case) there are two methods available
through the Orchestrable interface:

Value Pack

Rule

Engine/Scenario

Rule

Engine/Scenario

UCA for EBC

CLOUD

STREAM

Input

events
events

138

void addOrchestraDataInScenario(Serializable orchestraData);
 Map<String, Serializable> getOrchestraData();

6.1.6.1 Orchestration Methods

Cascading method of the Scenario Interface

Method Description
applyOrchestration

(Event event)

Used to cascade an event to other scenarios, according to the workflow
defined in the OrchestraConfiguration.xml file.

The applyOrchestration() method argument must implement the
com.hp.uca.expert.Event interface. It is the case for the Alarm,
AlarmStateChange, AlarmAttributeChange and AlarmDeletion classes.

The event argument is cloned by the applyOrchestration() method and
thus the cascaded object is a completely new Java object that is independent
from the one passed as argument.

The applyOrchestration() method does not perform any action on the
passed argument: If this event is in Working Memory it will remain in working
memory and will not be retracted by the applyOrchestration method.

This method can be called in STREAM or CLOUD mode.

Table 49 - Orchestration method

JOIN (Convergence case) methods of the Orchestrable Interface

Method Description
void

addOrchestraDataInScenar

io(Serializable

orchestraData)

This method is to be called by a source scenario of a JOIN route, to
add data to the orchestra data object attached to the event. This
data must implement the Serializable interface. It is attached to the
event in a Map having the calling scenario fullname as key.
Note: All primitive types (Integer, String etc ...) are Serializable.

Serializable

getOrchestraData()
This method is to be called from a “convergence scenario”
(Destination of a JOIN route) to get the orchestra data. The returned
type is a Map<String, Serializable>.
Calling this method implies the knowledge Serializable object stored
as orchestraData. It must be a contract between the source
scenarios and the Destination Scenario of a JOIN Route.

Serializable

getOrchestraData(String

scenarioFullName)

 throws

OrchestraException;

This method, as getOrchestraData(), can be called from a
“convergence scenario” (Destination of a JOIN route) to get the
orchestraData entry added by a scenario (the key is the scenario full
name). It throws an OrchestraException if there is no entry or if
orchestraData is empty.

void

resetUuidAndClearOrchest

raData();

This method can be used when wanting to continue applying
orchestration on the event, without taking into consideration all the
orchestration done before. It resets the internal event UUID (unique
identifier used by the Orchestration component) and clears the
orchestraData object.

boolean

isConvergenceComplete();
This method can be used to check if the event (coming from a JOIN
route) has the boolean convergence complete true (If all events are
received from all source scenarios before the expireTime is reached

in the JOIN route) or false if not, as detailed in 6.1.1.2.The JOIN

route.

Table 50 - JOIN (Convergence case) methods

139

6.1.6.2 Example

 Example of rule using the Orchestra API to apply orchestration
package com.hp.uca.expert.vp.sample;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmStateChange;

import com.hp.uca.expert.alarm.AlarmAttributeValueChange;

import com.hp.uca.expert.alarm.AlarmDeletion;

import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.common.trace.LogHelper;

#declare any global variables here

global Scenario theScenario;

declare Alarm

@role(event)

@timestamp(dateTimestamp)

@expires(60s)

end

rule "Send an Alarm to another Scenario"

when

 # Any alarm inserted in the Working memory

 # has the specific attribute 'justInserted' set to true

 alarm : Alarm (justInserted == true)

then

 # Do something with the alarm, like calling the method defined for

 alarm insertion in Sample.java found in com.hp.uca.expert.vp.sample;

 Sample.newAlarmInsertion(alarm);

 alarm.setJustInserted(false);

 # Retract from Working Memory

 theScenario.getSession().retract(alarm);

 # Continue the orchestrion for this alarm

 theScenario.applyOrchestration(alarm);

 end

Rule Sample 27 - Orchestraion API scenario rule example

140

 Example of rule using the Orchestra API to add orchestra data
package com.hp.uca.expert.vp.sample;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmStateChange;

import com.hp.uca.expert.alarm.AlarmAttributeValueChange;

import com.hp.uca.expert.alarm.AlarmDeletion;

import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.common.trace.LogHelper;

#declare any global variables here

global Scenario theScenario;

declare Alarm

@role(event)

@timestamp(dateTimestamp)

@expires(60s)

end

rule "Send an Alarm to another Scenario"

when

 # Any alarm inserted in the Working memory

 # has the specific attribute 'justInserted' set to true

 alarm : Alarm (justInserted == true)

then

 # Add some information in the object attached to the alarm

 alarm.addOrchestraDataInScenario ("adding some important info");

 alarm.setJustInserted(false);

 # Continue the orchestrion for this alarm

 theScenario.applyOrchestration(alarm);

 end

Rule Sample 28 - Orchestraion API scenario rule for source scenario in JOIN
example

 Example of rule using the Orchestra API to get the orchestra data
package com.hp.uca.expert.vp.sample;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmStateChange;

import com.hp.uca.expert.alarm.AlarmAttributeValueChange;

import com.hp.uca.expert.alarm.AlarmDeletion;

import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.common.trace.LogHelper;

#declare any global variables here

global Scenario theScenario;

declare Alarm

@role(event)

@timestamp(dateTimestamp)

@expires(60s)

end

rule "Send an Alarm to another Scenario"

when

 # Any alarm inserted in the Working memory

 # has the specific attribute 'justInserted' set to true

 alarm : Alarm (justInserted == true)

then

 # Do something with the modification done by the other scenarios,

 like calling a method using them in Sample.java found in

 com.hp.uca.expert.vp.sample;

 Sample.haveSometingDoneWithOrchestraData(alarm.getOrchestraData());

 alarm.setJustInserted(false);

141

 # Retract (or not) the alarm depending if it is still needed(or not)

 in the Scenario Working Memory

 theScenario.getSession().retract(a);

 # Continue the orchestrion for this alarm

 theScenario.applyOrchestration(alarm);

 end

Rule Sample 29 - Orchestraion API scenario rule for target scenario in JOIN
example

Note

The “Orchestration of Scenarios Cascading” Value Pack delivered with the UCA-EBC
3.2 Server and with the UCA-EBC 3.2 Development Kit provides an example of a
Scenario Orchestration with COPY routes.

The “Orchestration of Scenarios Cascading in JOIN Routes” Value Pack delivered
with the UCA-EBC 3.2 Development Kit provides an example of a Scenario
Orchestration with JOIN routes.

 See [R12] Unified Correlation Analyzer for Event Based Correlation – Value

Pack Examples for details on each of the Value Packs delivered as examples of the
Orchestration of scenarios cascading feature.

6.2 Scenario Specific Configuration
The Scenario Specific Configuration files are optional XML configuration files
specific to a given Value pack scenario.

The UCA for EBC product and its Value Pack concept allows any rule developer
building a powerful and flexible correlation solution. This flexibility implies a high
level of configuration and tunning of the processing of the Value Pack’s scenarios.

A convinient way to configure an application is by using XML files. The JAXB
package (part of Java JDK), can help marshalling / unmarshalling the information
from XML to Java Object (and vice versa) and make it usable from the Value Pack
rules or associated Java code.

The Scenario Specific Configuration feature helps integrating any complex
configuration with the UCA for EBC Administration User Interface allowing to read,
change and save the configuration from the UCA-EBC Administration Interface.

 See [R10] Unified Correlation Analyzer for Event Based Correlation – User

Interface Guide for more information on how is displayed the Specific Scenario
Configuration

A rule developer can use any XML file as a Scenario Specific Configuration file for
his Value Pack scenario, provided this file is integrated with JAXB so that the
Scenario Specific Configuration can be easily displayed at the UCA for EBC
Administration GUI.

To make the UCA-EBC system taking into account a new Scenario Specific
Configuration file, the developer needs to give a reference to the JAXB Object
representing this configuration (any Java class defining a @XmlRootElement,
compatible with JAXB implementation). This is done using the following method
from the Scenario interface (usually from a scenario initialization method).

142

void addSpecificConfiguration(Object specificConfiguration);

Refer to [R3] Unified Correlation Analyzer for Event Based Correlation

– JavaDoc UCA Engine for detailed information.

6.2.1 Setting-up a Value pack specific Configuration file

The following sections explains how to easely create a Specific Configuration file
for a sceanrio:

 Defining the XSD of the configuration file.

 Generating the JAXB Binding Java Classes.

 Wraps the Root Binding Java Class to an XmlConfiguration object.

 Integrating these Java Classes into UCA for EBC.

Note

There are multiple ways to use JAXB based information. JAXB allows generating
Java code from XSD, or generating an XSD (if needed) from an annoted Java Class.
In this example, we are starting from the XSD.

6.2.1.1 Schema definition

This is the starting point when introducing a Scenario Specific Configuration file.

Let’s assume that the Scenario behavior must be configured via an XML file
compliant with the following XSD file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xs:schema xmlns="http://config.pd.vp.expert.uca.hp.com/"

 targetNamespace=http://config.pd.vp.expert.uca.hp.com/

 xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

 <xs:element name="ProblemPolicies">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="mainPolicy" type="MainPolicy" minOccurs="0"

maxOccurs="1" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="MainPolicy">

 <xs:all>

 <xs:element name="candidateVisibilityTimeMode"

 type="CandidateVisibilityTimeMode"

 minOccurs="1" maxOccurs="1" />

 <xs:element name="candidateVisibilityTimeValue" type="xs:long"

 minOccurs="1" maxOccurs="1" />

 <xs:element name="defaultActionAODirectiveReference" type="xs:string"

 minOccurs="1" maxOccurs="1" />

 <xs:element name="defaultActionScriptReference" type="xs:string"

 minOccurs="1" maxOccurs="1" />

 </xs:all>

 </xs:complexType>

 <xs:simpleType name="CandidateVisibilityTimeMode">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Min" />

 <xs:enumeration value="Max" />

 <xs:enumeration value="Value" />

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

XML Configuration 10 - Specific Configuration Schema example

http://config.pd.vp.expert.uca.hp.com/

143

Example of Scenario Specific Configuration XML file complying to this schema:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ProblemPolicies xmlns="http://config.pd.vp.expert.uca.hp.com/">

 <mainPolicy>

 <candidateVisibilityTimeMode>Max</candidateVisibilityTimeMode>

 <candidateVisibilityTimeValue>30000</candidateVisibilityTimeValue>

<defaultActionAODirectiveReference>TeMIP_AO_Directives_localhost</defaultActionAO

DirectiveReference>

<defaultActionScriptReference>Exec_localhost</defaultActionScriptReference>

 </mainPolicy>

</ProblemPolicies>

XML Configuration 11 - Specific Configuration XML file example

6.2.1.2 Binding Java classes generation

JAXB is used to generate Binding Java classes from the xsd file.

This can be done in several different ways. We can describe at least two: using
maven or the xjc command-line tool.

Using maven plugin:
<plugin>

 <groupId>org.jvnet.jaxb2.maven2</groupId>

 <artifactId>maven-jaxb2-plugin</artifactId>

 <version>${maven-jaxb2-plugin.version}</version>

 <configuration>

 <schemaDirectory>src/main/resources/valuepack/conf

 </schemaDirectory>

 <strict>true</strict>

 <verbose>true</verbose>

 <forceRegenerate>true</forceRegenerate>

 <removeOldOutput>true</removeOldOutput>

 </configuration>

</plugin>

Using command line tool:

$JAVA_HOME/bin/xjc –p com.hp.mypackage –d src/schema
mySchema.xsd

Refer to Oracle XJC user documentation

http://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/jaxb/xjc
.html

Applying the Binding compilation process to the XSD given as example, we obtain a
set of Java Classes.

The following Class is the one containing the @XmlRootElement:
//

// This file was generated by the JavaTM Architecture for XML Binding(JAXB) Reference

Implementation, vhudson-jaxb-ri-2.1-520

// See http://java.sun.com/xml/jaxb

// Any modifications to this file will be lost upon recompilation of the source schema.

// Generated on: 2012.01.16 at 02:45:50 PM CET

//

package com.hp.uca.example.config;

http://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/jaxb/xjc.html
http://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/jaxb/xjc.html

144

import java.util.ArrayList;

import java.util.List;

import javax.xml.bind.annotation.XmlAccessType;

import javax.xml.bind.annotation.XmlAccessorType;

import javax.xml.bind.annotation.XmlRootElement;

import javax.xml.bind.annotation.XmlType;

/**

 * <p>Java class for anonymous complex type.

 *

 * <p>The following schema fragment specifies the expected content contained within this

class.

 *

 * <pre>

 * <complexType>

 * <complexContent>

 * <restriction base="{http://www.w3.org/2001/XMLSchema}anyType">

 * <sequence>

 * <element name="mainPolicy"

type="{http://config.pd.vp.expert.uca.hp.com/}MainPolicy" minOccurs="0"/>

* </sequence>

 * </restriction>

 * </complexContent>

 * </complexType>

 * </pre>

 *

 *

 */

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name = "", propOrder = {

 "mainPolicy",

 "problemPolicy"

})

@XmlRootElement(name = "ProblemPolicies")

public class ProblemPolicies {

 protected MainPolicy mainPolicy;

 protected List<ProblemPolicy> problemPolicy;

 /**

 * Gets the value of the mainPolicy property.

 *

 * @return

 * possible object is

 * {@link MainPolicy }

 *

 */

 public MainPolicy getMainPolicy() {

 return mainPolicy;

 }

 /**

 * Sets the value of the mainPolicy property.

 *

 * @param value

 * allowed object is

 * {@link MainPolicy }

 *

 */

 public void setMainPolicy(MainPolicy value) {

 this.mainPolicy = value;

 }

}

XML Configuration 12 - Binding Java Class example

With this set of classes, the rule developer is able to unmarshall an XML file to
automatically instanciate these classes with the information stored in the XML
document. (It is also possible to generate an XML file from these Java instances).

6.2.1.3 Wraping the JAXB Binding class into a XmlConfiguration object.

In order to make the system taking into account the new Specific Configuration file.
A wrapper class implementing the XmlConfiguration object must be provided.

Refer to the XmlConfiguration Javadoc for full details on this class.

This wrapper class can be implemented as follow:

145

package com.hp.uca.example.config;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.hp.uca.common.properties.exception.ConfigurationFileException;
import com.hp.uca.common.xml.XmlConfiguration;

public final class MySpecificConfiguration extends XmlConfiguration {

 public static final String RESOURCE_PROBLEM_CONFIG_XML = "valuepack/conf/MyVPConfig.xml";
 private static final Logger LOG = LoggerFactory.getLogger(MySpecificConfiguration.class);

 public MySpecificConfiguration() {
 super();

 setObjectClass(ProblemPolicies.class);

 try {
 initialize(RESOURCE_PROBLEM_CONFIG_XML);

 refreshFromFile();

 } catch (ConfigurationFileException e) {
 LogHelper.logErrorDebug(LOG,
 "Invalid Configuration File", e);
 setWorkFlow(buildDefaultValues());
 }
 }

 public ProblemPolicies getProblemPolicies() {
 return (ProblemPolicies) getTheObject();
 }

 public void setProblemPolicies (ProblemPolicies problemPolicies) {
 setTheObject(problemPolicies);
 }
}

XML Configuration 13 – XmlConfiguration Wrapper

6.2.1.4 Scenario Specific Configuration registration

Then the rule developer registers the XmlConfiguration object to the UCA-EBC
system. The best location for doing this is from the scenario initialization routine as
follow:

package com.hp.uca.example.config

import com.hp.uca.common.exception.UcaException;
import com.hp.uca.expert.lifecycle.DefaultScenarioInitialization;
import com.hp.uca.expert.scenario.Scenario;
import com.hp.uca.expert.vp.internal.ValuePackApplicationContext;

public class ScenarioInitialization extends DefaultScenarioInitialization {

 public ScenarioInitialization(Scenario scenario,
 ValuePackApplicationContext valuePackApplicationContext) {
 super(scenario, valuePackApplicationContext);

 scenario.addSpecificConfiguration(new MySpecificConfiguration());
 }

 @Override
 public void initializeScenario() throws UcaException {
 Orchestra.initialization(getScenario());

 }
}

XML Configuration 14 – Scenario Specific Configuration integration example

146

At startup, the ValuePack scenario automatically reads the XML file, and the UCA
for EBC Administration Interface is able to display the XML Scenario Specific
Configuration.

6.3 Persisting alarms into a DB
With UCA-EBC 3.1 it is possible to store alarms in an SQL DB of your choice. This is
simply done by some configuration of the value pack.

6.3.1 Configuring the DB persistence feature

You simply need to define multiple Spring beans in the value pack context.xml file:

 The datasource

 The Data Access Objects

 The Alarm forwarder

 The DB notifier

This feature is clearly explained in the Value Pack Development Guide.

Also, you have to define a dbFlow as well (see Chapter 3.4.2.2 Defining Collection
flows) in the ValuePackConfiguration.xml file.

6.3.2 Accessing DB to retrieve persisted alarms

You need to use the REST API delivered with UCA-EBC 3.1.

This API is explained in appendix.

147

Appendix A

A.1 UCA for EBC REST API – DB Access

This guide provides technical information about the DB REST API feature introduced in UCA-
EBC 3.1. This API is intended to provide easy access to the alarms stored by the DB Alarm
Forwarder feature. Most of methods returning alarms handle both XML encoded or JSON
encoded alarms. The type used to return alarms depends on the "Accept" header part of the
HTTP request.

Indications for reading this guide
keyword enotes

keyword denotes

{baseurl} the URL to use to access the API.(*)

{identifier} an identifier of the stored alarm

{field} a field of an alarm. Can be X733 or custom.

{value} a value of a field of an alarm.

{session} an unique session identifier

[1]..[9] a footnote

 (*) This refers to http://your-uca-ebc-server-address:8888/uca-ebc-rest-api/invoke/db

Getting started
To verify that the REST API is up and running, you can do so by connecting to:
http://your-uca-ebc-server-address:8888/uca-ebc-rest-api/

If it returns an error, make sure the REST API is activated on the UCA-EBC server side.
This is done by uncommenting the uca.ebc.rest.api property in uca-ebc.properties file.
A UCA-EBC server restart is needed to take the change into account.

Once you are connected to the REST API, a default page will be displayed where you can:
• access to a tests page (where most commands can be executed, except the CREATE and
DELETE ones)
• access the WADL (and XML schemas used)

Knowing which are the AlarmDao objects defined
First of all, you need to know which value pack has an AlarmDao object defined. This is done
by querying:

GET {baseurl}/list Return a list of AlarmDao identifiers

An AlarmDao identifier is in the form:
• name : in which case it refers to an AlarmDao bean defined in UCA-EBC main
applicationcontext.xml
• name@vpNameVersion : in which case it refers to an AlarmDao bean defined in the Value
Pack context.xml referenced by vpNameVersion

http://your-uca-ebc-server-address:8888/uca-ebc-rest-api/

148

Information retrieved using this command will help end-user to set up correctly the optional
parameters [1] and [8] in REST commands below.

Getting stored alarms
Once you know which VP you need to access, you can send following requests:

GET {baseurl}/getids [1] [2] [8] Return the list of all alarm identifiers stored in the DB
GET {baseurl}/get [1] [2] [8] Return the list of all alarms along with their fields
GET {baseurl}/get/{identifier} [1] [8] Return a single alarm
GET {baseurl}/get/{identifier}/{field} [1] [8] Return a particular field of an alarm

Doing actions on stored alarms
You can do the following actions on a stored alarm by sending following requests:

POST {baseurl}/clear/{identifier} [1] [8] Set the networkState field to CLEARED
POST {baseurl}/ack/{identifier} [1] [8] Set the operatorState field to ACKNOWLEDGED
POST {baseurl}/terminate/{identifier} [1] [8] Set the operatorState field to TERMINATED
POST {baseurl}/set/{identifier}/{field}/{value} [1] [8] Set any field value
POST {baseurl}/append/{identifier}/{field}/{value} [1] [7] [8] Append a value to a specific field

Storing new alarms
You can store a new alarm into the DB by sending following request, followed by the
AlarmCreationInterface encoded in JSON or XML:

POST {baseurl}/new [1] [8] Creates the requested alarm

Deleting alarms
You can remove an alarm from the DB by sending following request:
DELETE {baseurl}/del/{identifier} [1] [8] Deletes the requested alarm

You can also purge alarms that meet a predefined condition. Such a condition is defined in
previousy VP context.xml (or in main context)
DELETE {baseurl}/purge [1] [8] [10] Purges alarms that fill the specified condition.

Registering for DB updates through REST
It is possible to register for DB updates that you will get by polling the DB periodically. No
push notification is used in this version.
• First, register your unique session identifier.
• Then, when 200 OK is returned by above method. You can call the poll method 'getupdates'
to receive updates. If you have asked for it [5], the first call to this method will send back all
alarms stored in DB.
• At the end, do not forget to unregister your session.

GET {baseurl}/register/{session} [3] [5] [6] [8] [12] Register for notifications service using unique
session identifier
GET {baseurl}/getupdates/{session} Return the notifications (alarms, changes) since
last call
GET {baseurl}/unregister/{session} [3] [8] Unregister your session

Registering for DB updates through NOM adapter
It is possible to register for DB updates that you will through the NOM mediation platform.
Alarm updates will be sent as push notifications.

149

• First, register your NOM mediation flow as defined in the UCA-EBC main configuration.
• Then, when 200 OK is returned by above method. You will receive updates through NOM
channel. If you have asked for it [5], the UCA-EBC will send back all alarms stored in DB
upon the creation of the flow.
• At the end, do not forget to unregister your NOM mediation flow.

GET {baseurl}/createflow [3] [4] [5] [8] [11] [12] Create the NOM mediation flow
GET {baseurl}/deleteflow [3] [8] [11] Delete the NOM mediation flow

GET {baseurl}/resyncflow [3] [8] [11] Trigger a resynchronization of the NOM
mediation flow.

Advanced Requests
The following requests are for advanced users only as they return the fully detailed as stored
in the DB, so end-user needs to know exactly what are the meaning of all fields. Those
requests return only JSON messages as the internal alarms are not available through JAXB.

GET {baseurl}/getdetails [1] [2] [8] Return the list of fully detailed alarms
GET {baseurl}/getdetails/{identifier} [1] [8] Return the fully detailed single alarm
GET {baseurl}/getsessions [9] Return the list of REST sessions registered

Optional arguments

Footn
ote

Option Description Default

[1] dao=[name-of-dao] The DAO bean name as
defined in the VP context.xml
(or in main context)

"alarmDao"

[2] since=[when] A timestamp in milliseconds
since alarms have been
inserted or updated

"0" meaning that all
alarms will be returned

[3] notifier=[name-of-notifier] The notifier bean as defined
in the VP context.xml

"dbNotifier"

[4] actionReference=[actionReference
]

The action reference as
defined in the VP
ValuePackConfiguration.xml

"TeMIP_FlowManagement"

[5] summarize=[true|false] When true, tells to receive all
stored alarms on first poll

"false"

[6] retention=[time] Specifies the amount of time
in milliseconds for which the
updates will be kept. Future
getupdates should be done
before this time, otherwise
the updates will be lost

"600000", meaning 10
minutes

[7] separator=[string] Specifies the separator that
will be used before appending
new value to a field.

" "

[8] vp=[vp-name-version] The Value Pack in which the
alarmDao is defined

null

[9] audit=[true|false] Returns the list of registered
sessions identifiers. If true, a
full audit of registered
sessions will be returned

"false"

[10] condition=[name-of-condition] The purge condition bean
name as defined in the VP
context.xml (or in main
context).

"purgeCondition"

[11] flowName=[name-of-alarm-flow] The alarm flow name on
which to perform the action.

"REST-API driven Flow"

150

[12] eligibilityScope=[scope-of-
eligible-alarms]

Specifies a Java evaluated
boolean expression defining
the eligibility of an alarm to
pass through at flow
resynchronization (or at
startup when summarize is
"true").

"true"

ption Dsciption Default

Examples of use
Here below are few examples using the Linux curl command.
• Try on server with no DB enabled value pack first. List the AlarmDao beans (Here below, we
suppose we have not defined an AlarmDao in main context)
$ curl http://your-uca-ebc-server-address:8888/uca-ebc-rest-api/invoke/db/list
{"id":[]}

• Deploy and start persistence-example. Redo same command
$ curl http://your-uca-ebc-server-address:8888/uca-ebc-rest-api/invoke/db/list
{"id":["alarmDao@persistence-example-3.1"]}

• List the alarms of the persistence-example
$ curl http://your-uca-ebc-server-address:8888/uca-ebc-rest-
api/invoke/db/getids?vp=persistence-example-3.1
{"id":[]}

• Generate few alarms. Redo same command.
$ uca-ebc-injector -f /var/opt/UCA-EBC/instances/default/deploy/persistence-example-3.1
/scenario/Alarms.xml -r --number 10
$ curl http://your-uca-ebc-server-address:8888/uca-ebc-rest-
api/invoke/db/getids?vp=persistence-example-3.1
{"id":

["CORRELATED-1","CORRELATED-2","CORRELATED-3","CORRELATED-

4","CORRELATED-5","CORRELATED...

• Retrieve an alarm
$ curl http://your-uca-ebc-server-address:8888/uca-ebc-rest-
api/invoke/db/get/CORRELATED-1?vp=persistence-example-3.1
<?xml version="1.0" encoding="UTF-8" standalone="yes"?

><alarm xmlns:ns2="http://hp.com/uca/expert/

x733Alarm"><ns2:identifier>CORRELATED-1</

ns2:identifier><ns2:sourceIdentifier>TeMIP EMS</

ns2:sourceIdentifier><ns2:alarmRaisedTime>2014-03-

26T16:08:12.544+01:00</

ns2:alarmRaisedTime><ns2:originatingManagedEntity>BOX B1</

ns2:originatingManagedEntity><ns2:alarmType>COMMUNICATIONS_ALARM</

ns2:alarmType><ns2:probableCause>Fire</

ns2:probableCause><ns2:perceivedSeverity>CRITICAL</

ns2:perceivedSeverity><ns2:networkState>NOT_CLEARED</

ns2:networkState><ns2:operatorState>NOT_ACKNOWLEDGED</

ns2:operatorState><ns2:problemState>NOT_HANDLED</

ns2:problemState><ns2:customFields><ns2:customField value="1"

name="AlarmId"/></ns2:customFields></alarm>

• Acknowledge alarm
$ curl -X POST http://your-uca-ebc-server-address:8888/uca-ebc-rest-api/invoke/db/ack/
CORRELATED-1?vp=persistence-example-3.1
{"oldValue":"NOT_ACKNOWLEDGED","newValue":"ACKNOWLEDGED","name":"ope

ratorState"}

151

• Set a field, append new stuff to it and retrieve the final field value in XML
$ curl -X POST http://your-uca-ebc-server-address:8888/uca-ebc-rest-api/invoke/db/set/
CORRELATED-1/additionalText/Test1?vp=persistence-example-3.1
{"oldValue":null,"newValue":"Test1","name":"additionalText"}

$ curl -X POST http://your-uca-ebc-server-address:8888/uca-ebc-rest-api/invoke/db/
append/CORRELATED-1/additionalText/Test2?vp=persistence-example-3.1&separator=,
{"oldValue":"Test1","newValue":"Test1,Test2","name":"additionalText"

}

$ curl -H "Accept: application/xml" http://your-uca-ebc-server-address:8888/uca-ebc-rest-api/
invoke/db/get/CORRELATED-1/additionalText?vp=persistence-example-3.1
<?xml version="1.0" encoding="UTF-8" standalone="yes"?

><alarmField><name>additionalText</name><value>Test1,Test2</value></

alarmField>

• Create new alarm encoded in JSON
$ curl http://your-uca-ebc-server-address:8888/uca-ebc-rest-api/invoke/
db/new?vp=persistence-example-3.1 -H "Content-Type:
application/json" -d '{"identifier":"CORRELATED-1000","sourceIdentifier":"TeMIP
EMS","originatingManagedEntity":"BOX
B2","alarmType":"COMMUNICATIONS_ALARM","probableCause":"Fire","perceivedSeverity":
"MINOR","networkState":"…
<?xml version="1.0" encoding="UTF-8" standalone="yes"?

><result><result>200</result><status>OK</status></result>

• Delete that alarm
$ curl -X DELETE http://your-uca-ebc-server-address:8888/uca-ebc-rest-api/invoke/db/del/
CORRELATED-1000?vp=persistence-example-3.1
{"result":200,"status":"OK"}

A.2 UCA for EBC XML schemas

Note: All UCA-EBC configuration File schemas and Alarms (Alarms, AlarmStateChangeInterface, and
AlarmAttributeChangeInterface) schemas have been removed from the documentation. They are
now available in the ${UCA_EBC_HOME}/schemas folder.

152

Glossary

DRL: Drools Rule file

EVP: UCA for EBC Value Pack

GUI: Graphical User Interface

JAXB: Java Architecture for XML Binding

JMS: Java Messaging Service

JMX: Java Management Extension, used to access or process action on the UCA for
EBC product.

JNDI: Java Naming and Directory Interface

Inference engine: Process that uses a Rete algorithm

LHS: Left Hand Side, is Drools naming convention for the condition part (when) of
a Rule

NMS: Network Management System

RHS: Right Hand Side, is Drools naming convention for the action part (then) of a
Rule.

SDK: Software Development Kit

XML: Extensible Markup Language

XSD: Schema of an XML file, describing its structure. XSD stands for XML Schema
Definition

X733: Standard describing the structure of an Alarm used in telecommunication
environment.

