HP Propel

Software Version: 1.11

Service Exchange SDK

Document release date: April 2015

Software release date: April 2015

SX SDK Legal NOUCES . . . oottt ittt e e e e e e e e e e e e e e 2

SDK OVBIVIEBW . .ottt e et e et e e e e 4
HP Service EXChange OVEIVIEWttt e e e et e e e e e e e e e e e e e e 6
AdAPLErS IN HP SX L 14
CONEENE PACKS . . .ottt e e 27
SXHP OO PIUGIN .t e e e e e 36
CaSE EXCNANGE . . ot 37
OVBIVIBW . o oottt et et e e e e e e 37
(7] ot o £ 38
CONfIQUIALION . . .o e e e e 53
(@7 7T 1T 1 62
OO IO S . 64
Change ObSEIVErS .. o 70
Provided CONENt PACKSot e e e e e e e e e 72
How to extend HP SX Content (HP SM Problem entity)t e e e e 74
How to develop an adapter (JIRA)ot e 114
TICKEHING USE CASE . . o ittt ittt e e e et e e e e e e e e 116
CaSse BXChaANgE USE CASEt e 130
Request to fUlfill USE CASEot 147
AGOregation IN HP SX Lo 168
How to create CX content (HP SM Problem entity) e e e e e 182
Appendix A: Service EXChange - APl 197
Appendix B: OPEration EXECULOISt ittt it et et et e e e e et e e e e e e e e 230
Appendix C: Ticket management Operations MESSATES ot vttt vt e e e e et e e e e e e 237
Appendix D: Per instance operation definition 248
Appendix E: HP SX 0perations ref@renCe e 248

Appendix F: Development Ul e e 258

SX SDK Legal Notices

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services.
Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions
contained herein. The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor’s standard commercial license.

Copyright Notice

© Copyright 2014-2015 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe® is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

UNIX® is a registered trademark of The Open Group.

RED HAT READY™ Logo and RED HAT CERTIFIED PARTNER™ Logo are trademarks of Red Hat, Inc.

The OpenStack word mark and the Square O Design, together or apart, are trademarks or registered trademarks of OpenStack Foundation in the
United States and other countries, and are used with the OpenStack Foundation’s permission.

Documentation Updates

The title page of this document contains the following identifying information:

® Software Version number, which indicates the software version.
® Document Release Date, which changes each time the document is updated.
® Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to the following URL and sign-in or register:
https://softwaresupport.hp.com/

Use the Search function at the top of the page to find documentation, whitepapers, and other information sources. To learn more about using the
customer support site, go to:

https://softwaresupport.hp.com/documents/10180/14684/HP_Software_Customer_Support_Handbook/

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HP sales representative for
details.

Support

Visit the HP Software Support Online web site at https://softwaresupport.hp.com/ .

This web site provides contact information and details about the products, services, and support that HP Software offers.

https://softwaresupport.hp.com/
https://softwaresupport.hp.com/
https://softwaresupport.hp.com/documents/10180/14684/HP_Software_Customer_Support_Handbook/
https://softwaresupport.hp.com/

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support
tools needed to manage your business. As a valued support customer, you can benefit by using the support web site to:

® Search for knowledge documents of interest

® Submit and track support cases and enhancement requests

® Download software patches

® Manage support contracts

® Look up HP support contacts

® Review information about available services

® Enter into discussions with other software customers

® Research and register for software training

To learn more about using the customer support site, go to:
https://softwaresupport.hp.com/documents/10180/14684/HP_Software_Customer_Support_Handbook/ .

Disclaimer

HP Software provides full support for the product funcionality as provided. Customer owns the necessary servicing and repair of any
development created with the SDK tool.

https://softwaresupport.hp.com/documents/10180/14684/HP_Software_Customer_Support_Handbook/
https://softwaresupport.hp.com/documents/10180/14684/HP_Software_Customer_Support_Handbook/

SDK Overview

This chapter describes the content supplied in the SDK package. It also explains how to setup your development environment with the SDK.

SDK contents description

Within the SDK you will find the following directory structure and files:

® doc
® HP Propel Service Exchange v.1.10 SDK.pdf
® javadoc
® m2-repo
® sx-content
* JIRA
® sm-problem
® sm-problem-cx
® sx-ui-war

javadoc - contains sx-api.jar and sx-adapter-api.jar javadocs. These are the APIs that you can use to develop a custom java adapter to add
support for a new backend system type that HP SX interacts with.

m2-repo - contains a maven repository with all the dependencies needed to develop your custom content. The most significant artifacts contained
are listed in the table below.

artifactld description

sx-api Core HP SX api.

sx-adapter-api Adapter-related HP SX api.

00-sx-plugin This is a crucial artifact for HP OO flows development in HP SX. It

contains the implementation for the HP OO operation that enables
you to send messages to HP SX AMQP queues within your HP OO
flow.

sx-maven-plugin A useful development tool that allows for deploying development
content in an automated fashion.

sx-content - contains source code for the example implementations. It is referenced in the HP Propel Service Exchange v.1.10 SDK. Under each
subdirectory you will find an example maven project that builds an HP SX content pack. The content pack is built into content-<project_name>
module's target.

sx-ui-war - contains a testing Ul web application war file.

Development setup

In this section you will learn how to setup a maven project to develop your custom content.

Prerequisites

® Running HP SX instance - It is presumed that you have access to an HP SX instance dedicated to your development.

Setting up your project

1. Populate your maven repository with SDK artifacts - Copy the contents of the m2-repo directory into your local maven repository (it is
usually in <your hone directory>/.nR2/repository). By doing so you have maintained all the necessary dependencies to compile
your HP SX content pack and to run HP SX development tools.

2. Setup your maven project - The specific structure of the maven project depends on the use case that you would like to implement. In
the most general case you will setup a maven project that contains three sub modules. The content sub module, oo content pack sub
module, and sx adapter sub module. Use the example implementation as a starting point. JIRA provides the most complex example,
containing a new backend system adapter implementation. See How to develop an adapter (JIRA).

3. If you need to create your own OO flows in HP OO Studio you have to also populate a OO maven repository with SDK artifacts. Copy the
contents of the m2-repo directory into the OO maven repository (it is usually in <your hone di rect ory>/. 0o/ dat a/ maven).

Development using sx-maven-plugin

The SDK provided sx- maven- pl ugi n artifact is a tool that simplifies content development. It provides an automated way to deploy your content
i.e. you do not need to build an HP SX content pack and upload it. Instead you only need to run the maven build and your content is ready to be
tested in your HP SX instance.

See How to extend HP SX Content (HP SM Problem entity) where its setup and usage is described in more detail.

HP SX testing Ul

In the sx- ui - war directory of the SDK package you will find a war file containing a developer testing Ul.

Deploy this war into your development HP SX instance jboss application server. The web application will be available under / sx- ui context i.e.
the following URL:

https://sx_host: 8444/ sx- ui

The HP SX testing Ul needs to be configured in a similar way as the HP SX administration Ul that is part of HP SX itself. Proper configuration is
needed for these files:

® <YOUR _HP_SX JBOSS_HOVE_DEPLOY_DI R>\ sx- ui . war \ WEB- | NF\ cl asses\ confi g\ users.json
® <YOUR_HP_SX JBOSS_HOVE_DEPLOY_DI R>\ sx- ui . war \ WEB- | NF\ cl asses\ config\infrastructure.json

user s. j son - the configuration is the same as in the native HP SX administration Ul. See the HP SX Configuration Guide for details. By default
the user admin of the Provider organization has the Ul role which enables access to the development features.

The valid roles in the HP SX testing Ul are:

* Ul
* ADMINISTRATOR

NOTE: When enabling the Ul role in the HP SX testing Ul you need to enable the role in the native HP SX administration Ul as well (i.e. add the
role in users. j son located in sx. war .)

i nfrastructure.json - here you need to configure a single value - secretKey. This must match the secr et Key of the IDM instance that your
HP SX instance uses.

infrastructure.json

" AUTHENTI CATI ON": {
"secretKey": "<your_secret_key>"

HP SX testing Ul use cases

Generally it can be said that the HP SX testing Ul enables development without the need to enter the Propel portal. It mainly supports the
following use cases:

® Submit order requests: test a request to fulfill use case
® Submit ticketing requests: test a ticket management use case
® Notifications monitor and handling: this is where you can monitor the request state and perform approve/deny actions.

Development Ul

With HP SX testing Ul you also get access to Development Ul. See Appendix F: Development Ul

Where to go next

In case you need to:

a. Develop HP SX content for a system already supported by HP SX (for example HP SM). In this case you do not need any

java adapter coding. You will need to provide operation definitions and optionally HP OO flows. Read How to extend HP SX
Content (HP SM Problem entity).

b. Add support for a system type not yet supported OOB. In this case you need to implement the java adapter for your system,
see How to develop an adapter (JIRA). This chapter presumes that you have a basic understanding of the development setup
explained in How to extend HP SX Content (HP SM Problem entity).

HP Service Exchange Overview

Service Exchange Architecture

® Service Exchange Architecture
® Overview
® High level architecture
® Adapter role
® Content packs
* AMQP
® HP SX use cases
® Ticketing
® Request to fulfill (R2F)
® Case Exchange (CX)
* HP SX lifecycle

Overview

HP SX is an extensible and customizable framework that allows clients to integrate with any backend system without the need to implement a
specific exchange format for each system. Clients communicate with HP SX through SX REST APIs and use a unified data format independent of
the target backend system. HP SX then processes the request, transforms it into a backend system-specific data format, and sends it to the
system. During the processing of the request, HP SX natifies the client about progress and results.

3rd Party
Catalog

requdst

SX AP

Service Exchange

HP Service Manager HP CSA

3rd Party System

HP Service Anywhere

High level architecture

The powerful HP SX features like extensibility and customizability are achieved through software architecture utilizing "adapters" and "content
packs".

Adapter role

An HP SX adapter is a component that interacts with a particular underlying system and makes this underlying system accessible to HP SX
functionality. An example of an underlying system is: HP SM, HP CSA, SAP or any other similar product. Such underlying systems will be called
backend systems in this document. In order to enable a backend system - make it accessible by HP SX - one needs to write implement an
adapter. The adapter then adapts a particular backend system to HP SX paradigms (queues, notifications, operation execution, etc.) As a result,
HP SX enables multiple different backend systems and makes their functionality available to HP SX clients, for example Propel catalog.

Content packs

HP SX content packs are the key customization components. They contain the high level process definition modeled in HP Operation
Orchestration flows (OO flows), and definitions of backend system interactions (operations). They provide business logic to the specific adapter.
For example the approval process of an order is modeled in OO Flow. The create order, approve operations etc. must be defined.

OO Flow implementation and the operations that have to be defined depend on the specific features that the content pack supports.

The operations are defined in a special HP SX JSON notation that is interpreted by the adapter's component called operation executor. The

operations typically define a set of calls to backend systems' APIs. These calls (steps of the operation) are executed sequentially. The operation
definition framework uses Freemarker templates to compose URLSs, request bodies, transform responses and others. The Freemarker templates
are also a part of content packs.

Content packs can be deployed into HP SX at runtime.

AMQP

The adapters interact with surrounding components through AMQP. The chosen AMQP implementation is RabbitMQ (http://www.rabbitmg.com/).

HP SX use cases

HP SX is designed to support the following use cases:

® Ticket managment - this includes routing submit ticket requests to backend systems, listing tickets, adding comments and attachments,
closing tickets, watching ticket changes in backend systems.

® Request to fulfill (R2F) - catalog based self-service fulfillment.

® Case Exchange (CX) - exchanging records across multiple systems to facilitate collaboration across silos.

Ticketing

HP SX provides a public Ticketing API to allow clients to interact with ticketing systems such as JIRA, Bugzilla, and HP SM. Ticketing use case
requires that the ticketing API is synchronous. This is the only the case where the adapter does not interact through AMQP. The client sends a
request to HP SX and waits for the response.

The request is received by HP SX, passed to the operation executor component which then executes the given operation against a remote
system. The ticketing client using HP SX (for example Propel portal) does not to need know anything about the backend ticketing system's API
and data format, it communicates with HP SX via the HP SX unified data format. The data transformation definitions are part of the content pack.
HP SX also makes it possible to define ticket properties in the content pack i.e. each backend system type defines its ticket properties.

This use case does not require any interaction state modeling in OO flows. For more details about the API see SX API Docs. For more info about
ticketing go to Ticketing use case.

Ticketing client

A

<=<ficket operation==

SX

Operation executor

Ticketing system

Request to fulfill (R2F)

HP SX provides a public R2F API so that clients (for example Propel portal) may integrate with any fulfilment system supported by HP SX.
Fulfilment system here means a backend system as defined above that participates in R2F use case. R2F, unlike Ticketing, is an asynchronous
process. The client sends a request containing all the information needed to fulfill the request (fulfillment system instance id, requested itemid ...)
and HP SX immediately sends the response with the generated request ID. The client then waits for the incoming notifications from HP SX. HP
SX accepts the incoming request and sends it to the Operation Orchestrations server, causing the associated OO flow to execute. The OO flow
decides which HP SX operation should be executed based on the input data, and instructs HP SX to run the operation by sending it an
asynchronous message. HP SX executes the operation via its Operation Executor causing an interaction with the fulfillment system and invoking

the corresponding operation on the fulfilment system side. After the operation is finished, there might be data changes on the fulfillment system
that HP SX and the client are interested in. Here the backend system specific Change Observer component becomes involved, detecting such
data changes and processing them when they occur. Each data change is handled by the Change Observer in the following way:

1. A notification about the change is sent to the client.
2. The corresponding OO flow is executed to determine if further action is necessary.

For more details about the SX API, see SX API Docs.

10

RZF client

A

==r2f operation= =

Y

SX

== AEYNCE = _ .
= < notification= >

=< async=>

=< async=:=

Operation executor Change observer

11

v 7

Fulfillment system

Case Exchange (CX)

HP SX provides a framework to implement automatic data exchange between two or more backend systems.

The typical implementation of this usecase in HP SX enables automatic incident delegation from one service desk system into another service
desk system. The automatic delegation here means new linked incident creation in the other service desk system. The linked incidents are then
kept aware of each others updates and their states are changed based on the changes occurring in the linked incidents.

CX workflow is similar to R2F workflow except there is no initial request from a client (for example Propel portal.) The initiation comes from a
defined change in the backend system that HP SX is configured to watch for. CX boots when HP SX is booted. Special CX components - Change
Observers - listen for changes in specified backend systems, and for each change they execute the corresponding OO flow which determines the
sequence of operations to be executed. The main difference between R2F and CX is that in CX there is no client request and the CX OO flows
have a different logic in them. For more details see Case Exchange documentation.

12

SX

Cperation
Orchestration

Operation executor Change observer

Fulfillment system Fulfillment system

HP SX lifecycle

In the following it is presumed that HP SX prerequisites are fulfilled. They include:

® running RabbitMQ
® running HP OO

An HP SX instance can be in one of the following stages:

® Starting - in this stage, the following actions are performed:

® checking if important RabbitMQ queues exist and creating them if they do not

® starting of RabbitMQ listeners

® loading and parsing of all available configuration files

® Joading and initialization of content packs

® content pack initialization includes the check for oo flow versions and possibly the uploading of a new oo flow.

® Running

® instance is initialized and all APIs listen for incoming requests

¢ all change observers wait for events in fulfilment systems.

® content packs are reloaded dynamically this applies to HP OO flows too they are redeployed into HP OO with the content pack

upload.
® Closing
® closing of RabbitMQ listeners
¢ shutdown.

13

® Stopped - this stage is important for configurations that cannot be loaded dynamically within the running state. The examples follow
® configure HP SX infrastructure (RabbitMQ, HP OO, SMTP server)
¢ configure backend system instances
® deploy new adapters for backend systems

Adapters in HP SX

® Adapters in HP SX
® Working queues in HP SX
® A typical HP SX R2F message flow
® com.hp.ccue.serviceExchange.adapter.Adapter
® Adapter identification and /request message decoration
® Extending AdapterAbstract
® com.hp.ccue.serviceExchange.adapter.pipeline.Pipeline
® AdapterPipelineBuilder
® com.hp.ccue.serviceExchange.adapter.pipeline.PipelineBlock
com.hp.ccue.serviceExchange.adapter.pipeline.ExecutionContext
Variables
Writing custom blocks
Default variable binding
Placing a block into a pipeline
® Connecting several blocks together
® Change observers
® Operation executors

Adapters in HP SX

This chapter is an introduction to the HP SX adapter API. You should be able to implement your own custom adapter after reading it.
The main role of an adapter is that it adapts an existing backend system to HP SX paradigms.These are the main components of each adapter:

® com.hp.ccue.serviceExchange.adapter.Adapter implementation: adapter interaction manager, capable of boot/shutdown

® pipeline: pipelines are used for the processing of AMQP messages, are made of blocks any of which might be custom blocks. Generic
blocks are provided.

® change detector: detects changes in the backend system and initiates further processing

® operation executor: influences operation execution (from operations.json)

® case exchange adapter: if you want to enable the backend system for case exchange functionality.

All components except the com.hp.ccue.serviceExchange.adapter.Adapter implementation (which glues them together) are optional. But
before leaving out a particular component, make sure that it will not be needed once the adapter is booted. Most likely the Operation Executor will
be needed - without it an adapter is not able to do anything. There are cases where the pipeline is not needed, mostly where adapters execute
operations on request, not as a result of AMQP messages received (these are ticketing adapters.)

Working queues in HP SX

There are three working queues in HP SX :

® CN - queue for submitting catalog notifications. Messages published to this queue are forwarded to catalog (catalog notification.)

® OO - queue for submitting OO flow requests. Messages published to this queue are fowarded to OO (Operations Orchestration engine.)

® SX - queue for passing messages to adapter pipelines. Messages come from: OO, /operation RESTful endpoint and change
observers/pollers.

The logic behind CN and OO queues could be invoked directly (the logic which is performed by queue consumers/listeners), but most of the time
the natural asynchronicity is not a problem. Actually it is desired, and simplifies the whole program workflow. The listener on the SX queue first
determines which adapter is interested in the received message, and then passes it to the adapter.

A typical HP SX R2F message flow
To demonstrate the cooperation of the adapter components a description of the message flow for an R2F use case is provided here.
This is the typical flow of an order message in HP SX, indicating which queue plays which role:

1. The incoming order request is submitted through the HP SX RESTful interface (/request REST endpoint.) After some decoration it goes
directly to the OO queue, and OO decides what to do next.

14

. After the message is processed in OO it goes directly to the HP SX queue.

. The adapter is chosen based on the properties of the incoming message (builtin AMQP property type.)

4. The adapter chooses a pipeline for the message processing. For messages from OO, this is usually a PLAIN pipeline, which just
executes an operation (via OperationExecutor.) This involves an interaction with the underlying system (for example HP CSA, HP SM)
during the operation execution. HP SX remembers that an entity is created in the underlying system and sets up constant monitoring of
changes of this entity (RESTful polling, RESTful callback notification,...)

5. Whenever a change of the monitored entity occurs, a message is published into the HP SX queue with the type set to
'{adapter}: CHANGE'.The message about the change from the HP SX queue is dispatched by executing CHANGE pipeline (based on
message properties/type.) This pipeline usually executes operation, notifies catalog (CN queue), and possibly invokes OO flow (OO
queue.)

6. [Point 2 extension]: OO might also decide to send an email (approve/reject/close request) instead of publishing a message.

7. Clicking a link in such an email invokes /operation RESTful endpoint, which in turn passes the message to the HP SX queue and sets the
message type to ‘{adapter}: OPERATION'.

8. The OPERATION pipeline usually: executes operation and notifies catalog.

9. The steps 2, 3, 4, 5, 6, 7 occur in iterations untill depending on the specific implementation

w N

This diagram shows the static relationship between queues. It uses the OOB available HP SM adapter as an example:

Catalog
REST
Irequest
REST
Service Exchange
decorator
00 -
:D:I:l ———>| [Operation Orchestration
4
CN
SM Adapter
(s]0)
Invocation
Block
PLAIN
Catalog
Natification
Block OPERATION
8SX
CLIAHCE Listener
CASEEXOP
Operation - g‘
Execution SmChangeQObserver E D | ¢
Block gg
ES
SOAP/REST

Service Manager

Here is a detailed diagram of an HP SX adapter, again using the HP SM adapter as an example:

15

/request

decorator
SM Adapter
<&~ SmChangeObserver
g » PLAIN
§- :O’ Operation
= T Execution
§ E ‘ Block
=
2
Catalog OPERATION
«—— Notification
Block
SX Message |-t
Listener
00 CHANGE
" Invocation
Block
CASEEXOP
Case
Exchange
Handler Block

————————> Sm CaseExchangeAdapter

Here you see that an adapter interacts with:

® backend system via REST/SOAP/HTTP (green lines)
® the rest of SX via AMQP queues (orange lines.)

com.hp.ccue.serviceExchange.adapter.Adapter

A fully qualified package name is used here in order to clearly differentiate between the adapter and the Adapter class implementation. The
Adapter java class processes incoming AMQP messages, which are pre-processed by the SX Message Listener (the classic implementation of an
AMQP listener.)

All adapter instances in the system are available via instances of com.hp.ccue.serviceExchange.adapter.AdapterRegistry. This registry is
scanned by SX Message Listener in order to find an adapter which is interested in the processing of the received message. Each incoming AMQP
message has its type - sample type values are CSA:PLAIN, CSA:CHANGE, SM:OPERATION. These types must be set by any SX queue
publishing code (for example OO.) The first part of type (before the colon) is called major type throughout the API docs. The default
implementation of isInterested() returns true if major type matches an adapter name. After the adapter is chosen, its processMessage() method
is called.

Here is a non-default implementation of the isInterested() method:

16

@Conponent
public class OperationCentricAdapter extends AdapterAbstract {

@verride

public boolean islnterested(String najor Type, MessageProperties properties) {
/1 this is nore conplicated - we inspect operation nanme (not the nmjorType)
final String operationName = extract Operati onNane(properties);
return get Operati onExecutor().isOperationRecogni zed(operati onNane) ;

NOTE: The first adapter in the row is ALWAYS SxInternalAdapter (hamed SX), which is used to implement core HP SX functionality. It is
necessary to not pass the message to other adapters if it is an internal message.

Regarding AMQP message processing, the entry point to an adapter is the processMessage() method. It is given:

® the body of the AMQP message parsed as JSON
®* AMQP message headers
® an initial data context.

public interface Adapter {

/**

* Handl es the given AMQP nessage.

* @aram properties nessage properties

* @aram nmessage AMQP/ JSON nessage to be handl ed/ processed

* @araminitial ContextData initial data context, may be null

*

* @eturn execution context after the processing finishes

*/

publ i ¢ ExecutionContext processMessage(MessageProperties properties, Mp<String,
bj ect > nessageBody, @\ul | abl e Map<String, Object> initial ContextData);

Adapter identification and /request message decoration

An adapter instance in the registry is also identified by its name or system type. Name and system type are usually the same. Name is used
mainly for internal SX identification purposes (e.g. HP SM, HP CSA, EMAIL). System type is directly referenced in an incoming RESTful /request
message, under a system_type key. The /request message uses the identified adapter for /request message decoration. Sample existing
names/system types are given here:

® SM/SM
® CSA/CSA
® EMAIL/urn:propel:email

Extending AdapterAbstract

When writing a custom adapter, it is recommended to use the provided implementation

17

com hp. ccue. servi ceExchange. adapt er. provi ded. Adapt er Abst r act (see javadoc). This class takes in constructor:

pipeline builder: see below.
name: identifies adapter - make sure it is unigue.
[opt] operation executor: see below.

L]
L]
L]
® [opt] subsystem type: identifies adapter in incoming /request message. Same as name if not provided.

An adapter implementation should have its @r g. spri ngf r amewor k. st er eot ype. Conponent annotation in order to have it spring-enabled.
It might then also @Aut owi r e its internal fields.

IMPORTANT: It is crucial to not ommit the execution of af t er Pr operti esSet (). This call registers an adapter to the adapter registry.

Here is a simple working adapter implementation:

@Conponent
public class MyAdapter extends AdapterAbstract {

@\ut owi r ed
publ i c MyAdapt er (MyQOper ati onExecut or oper ati onExecutor, MPi pelineBuil der
pi pel i neBui | der) {
super (Const ant s. M\Y_ADAPTER_NAME, operati onExecutor, pipelineBuilder);

set Request MessageHeader Tenpl at e(" ny-r 2f/ sx/ t enpl at es/ gener at eMessageHeader . ft1");
}

NOTE: The invocation of setRequestMessageHeaderTemplate() signals that this adapter is interested in /request message decoration. The result
of decoration should be aligned with message format expectations as described in SX Messages.

com.hp.ccue.serviceExchange.adapter.pipeline.Pipeline

An adapter uses a pipeline for message processing, and can have any number of pipelines. Pipelines are an internal abstraction of an adapter.
When choosing the appropriate pipeline, by default the adapter just takes the second part of the type AMQP message property and uses it for the
pipeline name. NOTE: If the type is CSA:PLAIN the CSA adapter extracts the pipeline name 'PLAIN' - this can be overriden in

get Pi pel i neNarmeFor Message()).

AdapterPipelineBuilder

If the pipeline is about to be used for the first time, it is built using the constructor-given AdapterPipelineBuilder (lazy construction). Here is a
simplistic bui | dPi pel i ne() method implementation:

18

@Conponent
public class M/PipelineBuilder inplenents AdapterPipelineBuilder {

@verride
public Pipeline buildPipeline(Adapter adapter, PipelineBuilderFactory factory,
String nane) {
/1 we can build only a single pipeline: OPERATI ON
switch (nane) {
case Nanes. Pl PELI NE_OPERATI ON:
return buil dOperationPi peline(factory);
defaul t:
return null;

private Pipeline buildQperationPipeline(PipelineBuilderFactory factory) {
Bui |l der b = factory. newBui | der (Nanmes. Pl PELI NE_OPERATI ON) ;
b. addBl ock(...);
b. addBl ock(...);
b. addBl ock(...);
return b. build();

}

com.hp.ccue.serviceExchange.adapter.pipeline.PipelineBlock

Pipelines are intended for linear executions of steps during AMQP message processing. Pipeline elements are called blocks and they are
executed linearly, see PipelineBlock.execute(). If branching is required, it could be implemented (via isBlockinterested()), but consider first if two
pipelines sharing some common blocks might be a better solution.

See pipeline block API javadoc (com.hp.ccue.serviceExchange.adapter.pipeline). There are some provided/prebuilt blocks available in package
com.hp.ccue.serviceExchange.adapter.provided (See javadoc.)

com.hp.ccue.serviceExchange.adapter.pipeline.ExecutionContext

Before the pipeline's execute() method is invoked, an ExecutionContext is created. It serves for storing the message's processing state. Any
message processing state must be stored into the Execut i onCont ext object.

WARNING: Saving the message processing state to a block member variable might lead to concurrency issues. Pipelines and blocks are
intended to be ThreadSafe! Always save the state to the execution context.

There is:

® operation name
® arbitrary java data (map):
® can be pre-initialized from above
® does not have to be serializable - you can store here a reference to your action classes
® the default implementation puts AMQP message headers into the data map
®* AMQP message as JSON (map):
® message/value-centric
® must be serializable to JSON.

The default implementation of the initial execution context construction is available in the Adapt er Abst ract . i ni t Cont ext () method.

Variables

19

The order of block execution is determined by their order in the pipeline. Variables are a way to make a block independent, generic, pluggable
and thus reusable. There are two kinds of variable:

® block variable:
® has a name (local to a block)
® isINorOUT
® is strongly typed (String, Map,...)

Configured block variables named varl, var2, var3 and var4 are depicted in this diagram:

PipelineBlock

IN vart: Map

OUT var4: Map IN var2: Enum

A

-
-

IN var3: String

3

® context variable:
® points to some place in the execution context (for example 'message’ field 'instanceConfig’)
® s strongly typed (String, Map,...)
® does not have a name but is identified by creating an instance of
com.hp.ccue.serviceExchange.adapter.pipeline.ContextVariable
® once the value is retrieved (looked up in the execution context), it is cached on a specific place in the execution context again
® uses one of the provided factory methods ContextVariable.newXxx()

Instantiated context variables are depicted in this diagram:

ExecutionContext
RS
o
>
%,
5. G,
\5.‘;/,.‘ "keys": ["consumer1”, "consumer" | /;,&
[) %
“?Q_e, "InstanceConfig" : { %@‘5
¢’//O¢ "endpoint" : "https://mpavmcsa03.hpswlabs.adapps.hp.com:8444/csa”, 3
a (4 "user' 1 { %
A "loginName" : "admin”, ‘/>@=£‘
J'Ié "password" : "ENC{tgQNe+DQgUs8Mb4zYCTmQ==}" "‘:.{%
(7 }: B
P, g Ko
@"'6‘ "organization" : "CSA_CONSUMER" /%,-%
%, } '
’ =)
’9/5 "messageHeader" : { ”{@/
%‘% "targetinstance" : "CSAPrague2’
P }
%,)
“
N
Q.
%,
v‘,\&
2,
%,
s,

Writing custom blocks

A pipeline block usually does a very simple thing which could be expressed with a few lines of code: it wraps a simple Java code. Its
uniqueness is that it executes in a pipeline. It therefore needs to adapt pipeline input to input which is expected by the wrapped Java logic. For

example:

You want to create a custom block which transforms JSON to JSON via a predefined ftl (Freemarker.) The ftl is the same for all inputs. The Java
code which needs to be executed looks like this:

20

private MessageTransforner nt;

private final String tenpl atePath;

public Map<String, Object> transforn(Map<String, Cbject> nessageln) {
String transfornmResult = nt.transformvkssage(nessageln, tenplatePath);
return JsonUtils.readJsonNot hrow(transfornResult);

To summarize the inputs and outputs needed:
® one input variable typed as Map "messageln”
® one output variable typed as Map "messageOut"
® one Java member variable (to store template path)
® threadsafe MessageTransformer instance.

When implementing the custom block:

extend PipelineBlockAbstract: this is the easiest way to implement the custom block

declare Java fields for inputs common to all invocations

declare block variables for inputs/outputs specific to the invocation (per ExecutionContext instance)
bind the block variables to a real place in ExecutionContext (ContextVariable)

perform the wrapped Java logic in the doExecute() method.

Here is the result of this effort:

21

MessageTransformBlock

package com hp. ccue. servi ceExchange. adapt er. provi ded;

import java.util.Map;

i mport com hp. ccue. servi ceExchange. adapt er . pi pel i ne. Execut i onCont ext ;

i mport com hp. ccue. servi ceExchange. adapt er. pi pel i ne. Cont ext Vari abl e;

i mport com hp. ccue. servi ceExchange. adapt er. pi pel i ne. i npl . Bl ockVari abl e. Type;

i mport com hp. ccue. servi ceExchange. adapt er . pi pel i ne. i npl . Pi pel i neBl ockAbstract;
i mport com hp. ccue. servi ceExchange. nessage. MessageTr ansf or ner ;

i mport com hp. ccue. servi ceExchange. utils.JsonUtils;

/**
* Generic nessage transform bl ock.
*/
public class MessageTransfornBl ock extends PipelineBl ockAbstract {
/'l bloc variabl e nanes
public static final String VAR MSG IN = "nessagel n";
public static final String VAR MSG OUT = "nessageQut";

/1 menbers
private final String tenplatePath;
private final MessageTransformer nt;

prot ect ed MessageTr ansf or nBl ock(MessageTransforner nt, String tenpl atePath,
Cont ext Var i abl e<Map> nessagel n, Cont ext Vari abl e<Map> nessageQut) {
this.nt = nt;
this.tenpl atePath = tenpl at ePat h;
bi ndBl ockVari abl e(VAR_MSG I N, Type.IN, nessageln);
bi ndBl ockVari abl e(VAR_MSG_QUT, Type. QUT, nessageCut);
}
@verride
public void doExecut e(Executi onContext context) {
@uppr essWar ni ngs("unchecked")
String r = nt.transformVessage((Map<String, Object>) getVariabl e(context,
VAR_MSG_ I N), tenplatePath);
Map<String, Ooject> newsg = JsonUtils.readJsonNot hrow(r);
set Vari abl e(context, VAR MSG OUT, new\sgq);

NOTES:

® bindBlockVariable() method creates the binding between block variable (it creates it) and context variable.

® doExecute() method gets/sets the variable value via getVariable() and setVariable().

® The entire block is quite universal and therefore easily reusable. The transformation source/target can be customized by providing
ContextVariable instances in the Block constructor.

Default variable binding

If a block variable will be bound to a specific place in the context in most cases, you can also provide variable default:

22

/**
* Generic nessage transform bl ock.
*/
public class MessageTransfornBl ock extends PipelineBl ockAbstract {

/**
* Default input/output message context binding - {@ink
Execut i onCont ext #nessage} .
*/
public static final ContextVariabl e<Map> DEFAULT_MESSACE I N =
Cont ext Vari abl e. newEnt i reMessage() ;
public static final ContextVariabl e<Map> DEFAULT_MESSAGE_QUT =
Cont ext Vari abl e. newEnt i reMessage() ;

prot ect ed MessageTr ansf or nBl ock(MessageTransforner nt, String tenpl atePath,
Cont ext Vari abl e<Map> nessagel n, Cont ext Vari abl e<Map> nessageQut) {
super (StringUtils. getlLastSegnment(tenpl atePath, "/"));
this.tenplatePath = tenpl at ePat h;
this.m = nt;
bi ndBl ockVari abl e(VAR_MSG_ I N, Type.IN, nmessageln, DEFAULT_MESSACE_I N);
bi ndBl ockVari abl e(VAR_MSG_OUT, Type. QUT, nessageCut, DEFAULT_MESSAGE QUT);

NOTE: The bindBlockVariable() method used checks if the third argument (messageln, messageOut) is null, and if it is it uses the fourth argument
(DEFAULT_MESSAGE_IN, DEFAULT_MESSAGE_OUT), which is considered a default/fallback.

Placing a block into a pipeline

When a block executes, it needs to bind its variables to a real place in an execution context: it needs to bind a block variable to a context variable
(connect the yellow dots). Presuming the example block is placed in a pipeline like this:

private Pipeline buil dMsgTransfornPi peline(PipelineBuil derFactory factory) {
Bui | der b = factory. newBui |l der (Nanes. Pl PELI NE_MSG_TRANSFORM ;
/1 just transformthe nessage
/1 we need just one ContextVariable - the input and output are the sane
Cont ext Vari abl e<Map> ct xMsg = Cont ext Vari abl e. newenti reMessage() ;
/'l now create/configure the bl ock
b. addBl ock(new MessageTr ansf or mBl ock(nt,
"sx-r2f/sx/tenpl at es/ ooMsgToQper ati onMsg. ft1", ctxMg, ctxMg);
/1 we are done with pipeline building, the result is stored in ctx.nessage
return b.build();
}

The block is now configured to transform the entire message in the context (for both input and output). This is what was done:

23

ExecutionContext

operation
data={..}
message = { ... }

ContextVariable: Map [message]

MessageTransform
Block

messageOut messageln
Map Map

NOTE: By default, the presence of input variables is checked during the validate() routine in PipelineBlockAbstract. If an input variable evaluates
to a null value (missing/not set), a validation exception is raised. If an input variable is intended as optional, set a boolean validate flag of the
bindBlockVariable() method to false.

Connecting several blocks together

To connect two blocks together (i.e. to bind their block variables), bind them to the same context variable. Here is an example:

Cont ext Var i abl e<Map> cat al ogNoti fi cati onMessage =
Cont ext Vari abl e. newbDat aMap(" cnMessage") ;
b. addBl ock(new PrepareCat al ogNoti fi cati onMessageBl ock(
Cont ext Vari abl e. newFi xedVal ue(Request St at e. COVPLETED) ,
cat al ogNot i fi cati onMessage));
b. addBl ock(new Cat al ogNoti fi cati onBl ock(cnPubl i sher,
/1 notification nessage
cat al ogNot i fi cati onMessage,
/1 entity IDis "id" in the nessage
Cont ext Vari abl e. newmessageStri ng(MessageConst ants. | D),
/1 notification type - always request

Cont ext Vari abl e. newFi xedVal ue(Cat al ogNoti fi cati onMessagePubl i sher. Notifi cati onType. REQUE!
));

There are two blocks here:

®* PrepareCatalogNotificationBlock: creates JSON (map) to be published to catalog (notify catalog)
® CatalogNotificationBlock: publishes the given message (map) to catalog, providing it also with entity id (string) and notification type
(enum).

Clearly the output of PrepareCatalogNotificationBlock needs to be bound to one of the inputs of CatalogNotificationBlock. This is done by

24

declaring the context variable which is passed to both blocks:

®* PrepareCatalogNotificationBlock: bind to OUTPUT BlockVariable
® CatalogNotificationBlock: bind to INPUT BlockVariable.

This diagram depicts the process:

ContextVariable: fixed Enum = NotificationType. REQUEST CaontextVariable: fixed String = RequestState. COMPLETED

ExecutionContext

operation

data = | ContextVariable: Map [data.cnMessage]
cnMessage :{ ..},
o}

message = {

id :"1234-5678",
)

ContextVariable: String [message.id]

Catalog Notification Block
Prepare Catalog Notification Block

notificationType: Enum

catalogNotificationMsg: Map requestState: String
AMQP requestld: String
catalogMotificationMsg: Map
NOTES:

®* The cnMessage property in the data context is initially empty/missing. Once the Prepare Catalog Notification Block sets the value, it is
created in the context.

® The Catalog Notification Block does not have any output variables, it just initiates catalog notification via AMQP.

® |f you look at the diagram carefully, you can see that it is possible to define something like a fixedValue ContextProperty. This
property would not originate in context values but in your Java code, which is a very useful concept.

® Bare in mind that a real PrepateCatalogNotifcationBlock has seven internal variables. Five are omitted in the diagram to keep it simple.

Change observers

Because of HP SX's asynchronous nature, the adapter needs to detect entity changes in the backend system. The detection could be active -
polling, or passive - an exposed endpoint receiving notifications. Once the change is detected the adapter acts accordingly. It usually sends an
AMQP message to an SX queue to be dispatched by itself, with the type {adapterName}:CHANGE. Despite the fact that change detection can be
done in several ways (for example polling or active notification from the backend system), HP SX in particular supports the polling approach in the
API.

The change observer implementation needs to implement class ChangeCbser ver (which extends Runnabl e interface):

25

@Conponent
public class CsaChangebserver inplenments ChangeCbserver {

@/al ue(" ${adapt er. csa. change. observer.interval }")
private int polllnterval;

public int getPolllnterval Sec() {
return polllnterval;

|
@verride
public void run() {
}
}
NOTES:

® In the run() routine, the observer should check changes in all configured instances.

® Property values have been injected (adapter.csa.change.observer.interval). These properties are taken from
META- | NF/ adapt er . properti es. You can place in this file any custom content and it will be loaded automatically during application
boot.

At this step in the construction of the adapter an instance of change observer needs to be set, so that the adapter schedules or unschedules the
observer during the adapter boot and shutdown. Here is an example:

@Conponent
public class CsaAdapter extends AdapterAbstract {

@\wut ow red
publ i ¢ CsaAdapt er (CsaOper ati onExecut or operati onExecut or,
CsaPi pel i neBui | der pi pel i neBui | der,
CsaChangeObserver changeObserver) {
super (CsaConst ant s. CSA_ADAPTER_NAME, oper ati onExecutor, pipelineBuil der);
set ChangeCbser ver (changeCbserver);

NOTE: Using @Autowired saved some coding.

Operation executors

An adapter is usually accompanied by an operations.json file. This file is part of the content, containing definiton of operations made of steps to be
executed linearly. It is a similar concept to pipelines. However, these operations/steps are mainly concerned with interactions with the backend
system and the transformation of sent/received messages. The interaction and message transformation can be easily expressed in
operations.json, more easily than in Java. For more on this topic see Operations configuration and templates. The interpretation of operations.json
is performed by com.hp.ccue.serviceExchange.operation.OperationExecutor.

The OperationExecutor is given a message (from the pipeline Execution Context.) The operation execution output (the transformed message) is
subject to further pipeline execution. With regard to pipelines, there is a block which is capable of an operation execution called
OperationExecutionBlock. It wraps the given instance of OperationExecutor and delegates the operation execution to it. A pipeline with an
operation execution block might look like this:

26

AMQP Catalog
- Motification
Block

ExecutionContext

operation
data
message
Prepare .
Catalog Operation
Notification Execution
Block Block
OperationExecutor message

operations.json

HTTR/REST/SOAP

backend system

For more details on operation executors and how to extend the default HP SX ones, see Appendix B: Operation executors.

Content packs

® HP SX Content packs
® Overview
® Content Management Ul
® Downloading content packs

27

® Deleting content packs

® Upload content packs
® Content Pack Structure

® File metadata.json
File sx/flows.json
File sx/operations.json
Custom operations.json files for specific instances
FreeMarker templates

® Special message directives

® HP OO content packs

® Function sendMessageToMQ

® Limitations
® Java code can be changed only by writing a new HP SX Adapter
® Creating new content packs
® 1. Create content pack structure
® 2. Define metadata.json
® 3. Define operations
® 4. Create the OO flow
® 5. Zip the content pack and upload
® Creating content packs in development
® See also

HP SX Content packs

Overview

Content packs are extension points to HP SX. A typical role of a content pack in HP SX is - in collaboration with adapters - to enable HP SX to
communicate with backend systems, for example, HP SM or HP CSA. They also contain the order message lifecycle modeled in HP OO flows in

R2F use case.

Technically a content pack is a zipped file containing operation definitions, FreeMarker templates, OO flows and optionally other configuration
files. Content packs can be installed/uninstalled into the running HP SX server.

Content Management Ul

The HP SX Content Management Ul provides an easy interface to view content packs that are currently uploaded in HP SX, download, upload
and remove them.

Upload and delete operations include the automatic upload or removal of relevant OO jar files (HP OO content packs), and the merging of HP SX
customizations into the running HP SX server.

1. Open the Content Management section from HP SX Ul.

2. In the Content Management Ul, view the available content packs with the following details:
version numbers

which adapter they connect to

when last uploaded

their high level features

the relevant OO content pack name.

Downloading content packs

1. To download a content pack, check the appropriate content pack in the Id/Name column.

. Click the Download button.
3. When prompted, Save the <contentpack>.zip. Depending on your browser settings, select the location through Save As... or copy the
<contentpack>.zip from the Downloads folder to another location. View and customize the files.

N

Deleting content packs
1. To delete one or more content packs, check the appropriate content packs in the Id/Name column.

2. Click the Delete button.
3. A confirmation with the number of content packs deleted appears below the buttons on the top of the Content Management Ul.

28

Upload content packs

. To upload a content pack, click the Upload button.
Locate the .zip or .jar to be uploaded, for example, the sm-case-exchange.zip containing a customized case-exchange.json file.

. Select Open.
It takes a moment for the upload to process. When it is complete a confirmation appears below the buttons on the top of the Content

Management Ul and the Upload Time for the relevant content pack is updated.

Note: When uploading a content pack that was already loaded, HP SX will automatically detect this. The content pack does not need to be
selected or specified. HP SX replaces the old version. Content pack are identified by ID attribute provided in their metadata file.

Content Pack Structure

Content packs contain the following folders and files:

® [00] - folder containing the HP OO content pack(s) of custom OO flow(s).
® [sx] - folder containing HP SX-specific configuration files.

® [templates] - folder containing Freemarker templates

® operations.json - file containing HP SX operation definitions

® flows.json - file containing the mapping of adapter and message type to OO flow
® metadata.json - the content pack description file.

This is an example structure. The structure may differ for specific use cases and adapters. For example HP SM content packs contain an sm
folder where the customization HP SM unload files are located. Similarly ticketing content packs do not contain OO flows (HP OO content packs)
so the oo folder and flows.json are not present.

File metadata.json

Sample net adat a. j son

29

Sample metadata.json

{
"id": "smr2f",
"nanme": "SMrequest to fullfilnment",
"description": "",
"version": "1.0.0",
"adapter": "SM,
"features": [
"raf",
"smr2f"
1,
"files": [
{
"path": "snl SXR2FCust omi zati ons. unl ",
"version": "1.01.1",
"type": "sm.unl oad"
}
{
"path": "snml SXR2FDB. unl ",
"version": "1.01.1",
"type": "sm.unl oad"
1
{
"pat h": "snl SXR2FExt Access. unl ",
"version": "1.01.2",
"type": "sm.unl oad"
}
]
}

File metadata.json is a description file of the content pack. It contains the following information:

id - content pack’s unique ID, limited to 30 characters.

name - content pack name.

description - content pack description.

version - content pack version. IMPORTANT: If you make changes to a content pack increase the version number before upload.
adapter - defines the adapter the content pack is created for.

features - list of the basic HP SX use cases that the content pack supports. When developing your custom content pack specify all use
cases that you implement (r2f, ticketing, case-exchange)

® files - list of adapter-specific files where there is a need to specify a type and a version; currently used for HP SM unload files only. The
version specified here is checked by HP SX self-test.

List of currently defined features in HP SX are:
® r2f - general requests for fulfilment
® ticketing
® case-exchange

NOTE: Customers can define new features. This is useful if a custom SX adapter wants to check whether a content pack with a specific feature is
deployed.

File sx/flows.json

File f 1 ows. j son contains the mapping of the pair - adapter type and message type to OO flow - and the definition of parameters that will be
passed to the OO flow.

30

Structure of flows.json

{
"<adapt er Type>": {
"<nessageType>": ({
“flowd": "<flow d>",
"conpresshMessage": true|fal se,
"paraneters": [
{
"nanme": "<paraneterName>",
"val ueSel ector": "<val ueSel ect or Expressi on>",
"source": "<sourceType>"
}
]
}
}
}

This file specifies the following:

® adapterType - same as the adapter in the content pack description.
®* messageType - HP SX can receive several types of messages. A user can specify different flows for different types - they are matched
to the messageType received in http request body on the /reqgeust REST endpoint. See Appendix A: Service Exchange - API
* flowld - identifier of OO flow that is invoked to process a message. The HP OO content pack containing the flow is located in the /oo
folder of the content pack.
® compressMessage - tells HP SX whether it should compress a message before sending it to OO.
® parameters - array of input parameters of flow:
® parameterName - parameter name, the flow receives the parameter with this name during invocation.
® valueSelectorExpression - expression that references the value of the configuration. It uses dot notation to get subproperties
(i.e. JsonPath).
® sourceType - source of the value, which can be one of:
® infrastructure - find value in configuration file: sx.war/WEB-INF/classes/config/infrastructure.json
® oo-properties - find value in configuration file: sx.war/WEB-INF/classes/config/oo/properties.json
® message - find value in the input JSON message to be sent to OO.

Here is an example:

31

Sample flows.json

{
"SM{
"order": {
"flow d": "95b152da- 9666- 4c05- 883c- 593e45bf f aa5",
"conpressMessage": true,
"paraneters": [
{
"nanme": "sxConfiguration.jnmsBroker",
"val ueSel ector": "$.JM5_BROKER. endpoi nt",
"source": "infrastructure"
1
{
"nane": "sxConfiguration.sntpServer",
"val ueSel ector": "$.sntpServer",
"source": "oo-properties”
1
{
"name": "orderlnfo.id",
"val ueSel ector": "$.orderlnfo.id",
"source": "nessage"
}
]
}
}
}

File sx/operations.json

File oper ati ons. j son contains operation definitions that are interpreted by the adapter's operation executor. An operation is list of step
definitions. Invoking an operation means invoking all the steps the operation consists of. The steps are invoked sequentially in the order they are
defined.

Structure of operations.json

{

"<operation_1>": |
<stepDefinition_1>,
<stepDefinition_n>

1.

"<operation_2>": [
<stepDefinition_1>

]

}

Step definition format can differ depending on the adapter type, but the oper at i onName must be unique to the adapter type. There is though a
base implementation that adapters extend. See Appendix B: Operation executors for the operations definition format provided by the base
implementation.

Example:

32

Sample operations.json

{
"checkSubscription": [

{
"l abel": "Retrieve subscription”,
"request Url Tenpl ate": "subscriptionUrl.ftl",
"responseTenpl ate": "subscriptionResponse.ftl",
"met hod": "CET"

H

{
"l abel": "Retrieve service instance",
"request Url Tenpl ate": "servicelnstanceUrl.ftl",
"responseTenpl ate": "servicel nstanceResponse. ftl",
“net hod": "GET"

H

{
"l abel": "Retrieve root conponent”,
"request Ur|l Tenpl ate": "root Conponent Url.ftl",
"responseTenpl ate": "root Conponent Response. ftl",
"met hod": "CET"

H

{
"l abel": "Create subscription notification",
"resul t Tenpl ate": "subscriptionNotification.ftl"

}

]
}

Custom operations.json files for specific instances

HP SX allows you to change the behavior of any operation for specific instances, by overriding operations. For more info see:

Appendix D: Per instance operation definition

FreeMarker templates

FreeMarker templates are used to transform messages to and from the HP SX JSON format. Templates are written in FTL (FreeMarker template
language).

Example of a template transforming the JSON format to XML (In the example it is presumed that an HP SX order message is transformed):

33

Sample template: JSON to XML

<#swi tch orderl nfo. order Type>
<#case "change">
<#i f orderlnfo.subscription.subscriptionld??>
<Envel ope xm ns="http://schemas. xm soap. or g/ soap/ envel ope/ " ><Body>
<Retri eveSXSubscri pti onRequest xm ns="http://schenas. hp. com SM 7" >
<nmodel >

<keys><subscri pti onl D>${ order | nf 0. subscri pti on. subscri ptionl d}</subscriptionl D></ keys>
<i nstance/ >
</ nodel >
</ RetrieveSXSubscri pti onRequest >
</ Body></ Envel ope>
</#if>
<#br eak>
<#tcase "quote">
<#br eak>
</ #swi t ch>

Example of a template transforming XML to the JSON format (The output of this transformation is HP SX order message):

Sample template: XML to JSON

<#ftl ns_prefixes={
"soap":"http://schemas. xm soap. or g/ soap/ envel ope/ "
"snmi':"http://schemas. hp.com SM 7"}
>
<#swi tch nessage. order| nfo. order Type>
<#case "change">
{
"orderlnfo":{
"subscription": {
<#i f
doc["soap: Envel ope/ soap: Body/ sm Ret ri eveSXSubscri pti onResponse/ @ et ur nCode"] =="9" >
"status": "Del eted",

"di spl ayName": ""
<#el se>
"status":
"${doc["soap: Envel ope/ soap: Body/ sm Ret ri eveSXSubscri pti onResponse/ sm nodel / sm i nst ance/ si
"di spl ayName" :
"${doc["soap: Envel ope/ soap: Body/ sm Retri eveSXSubscri pti onResponse/ sm nodel / sm i nst ance/ si
</ #if>
}
}
}
<#br eak>
<#case "quote">
<#br eak>

</ #swi t ch>

Special message directives

HP SX also supports a few special JSON directives. These can influence message processing in the following operation steps when set in the

34

output JSON message.They are also useful to influence the message processing in the adapter's pipeline blocks that follows the operation
executor block executing the operation.

These directives are:

® skipProcessing - JSON boolean property. If in the JSON message the step output is skipped, both the following steps of the operation
and pipeline processing are skipped.

® skipProcessingReason - JSON text property. Describes the reason why the processing was skipped.

® stopListening - JSON text property. If set in the JSON message then HP SX will stop listening for changes of this entity. This is mainly

used by EntityChangeCleanupBlock (see javadoc).
® skipFlowRun - JSON boolean property. If set in the JSON message the OO flow is not called at the end of the operation.

HP OO content packs

HP SX content packs usually come with custom HP OO flows, which are designed in HP Operation Orchestration Studio. The output of HP OO
Studio is the HP OO Content Pack which is a jar file. This jar file must be put into the HP SX content pack's oo/ folder. When an HP SX content
pack is uploaded to the HP SX server the HP OO Content Packs are automatically deployed on the HP OO server defined in
infrastructure.json.

IMPORTANT: If you make changes to an HP OO Content Pack you need to manually increase its version number. This is required for the content
pack changes to be detected and re-deployed to the HP OO sever. The content pack version is kept in a cont ent pack. properti es file that
can be found in the HP OO studio project folder.

Function sendMessageToMQ

To send messages from OO flow back to HP SX use function sendMessageToMQfrom plugin oo- sx- pl ugi n. This plugin adds a new message
into HP SX's AMQP queue.

This function's input properties are:

® brokerUrl - set value to ${sxConfiguration.jmsBroker} (passed to OO flow after defined in flows.json)
® brokerUsername - set value to ${sxConfiguration.jmsBrokerUsername} (passed to OO flow after defined in flows.json)
® brokerPassword - set value to ${sxConfiguration.jmsBrokerPassword} (passed to OO flow after defined in flows.json)
® queueName - assign from input parameter queueName (always passed to OO flow by HP SX)
® operationName - name of the HP SX operation
® messageText - JSON message to be sent as message body
® messageCompressed - whether the messageText should be zip compressed.
Limitations

Content packs of the current HP SX version have the following limitations:

Java code can be changed only by writing a new HP SX Adapter

Currently there is no way to customize the Java implementation of existing HP SX adapters. That means if you want, for example, to extend the
HP SM adapter with a feature which is totally different from creating an order or from case exchange then you cannot do it without defining a new

adapter.

Creating new content packs

Creating a new HP SX content pack involves these steps:

1. Create the content pack structure
2. Define met adat a. j son
3. Define operations:
a. Declare in sx/ operations.json
b. Create FreeMarker templates in sx/ t enpl at es/
4. Create the OO flow:
a. Design the OO flow in HP OO Studio
b. Define sx/fl ows. j son
5. Zip the content pack and upload to the HP SX server.

The steps in detail:

1. Create content pack structure

Create the content pack folder structure based on Content Pack Structure.

35

2. Define metadata.json
Create the metadata.json file in the root folder of your content pack and fill in the fields according to File metadata.json. Make sure that you

choose an ID which is unique in the whole HP SX system. Select the HP SX features your content pack will implement. If you are writing a new
content pack for a new adapter, you can also define a new feature (with a unique name).

3. Define operations

First create a new sx/operations.json file and according to the specifications in File sx/operations.json define your new operations and operation
steps. Then create the referenced FreeMarker templates in the sx/templates folder.

4, Create the OO flow

a. If your new content pack requires an OO flow too, use HP OO Studio to design the OO flow.

b. When complete, export your design into the HP OO content pack (which is a jar file), and copy that file into the oo/ folder of the
content pack. Use the Create new content pack menu item in HP OO Studio.

c. Next, map your new OO flow to an existing adapter and message type in the sx/fl ows. j son file. Create the file according to
sx/ fl ows. j son specifications.

d. Set the flowld to the ID of your new OO flow (find it in the root element of the flow XML file, or the Properties tab in HP OO
Studio), and fill the input parameters to be passed to the OO flow.

5. Zip the content pack and upload

Zip your content pack into one file and using the HP SX Content Management Ul upload it.

Creating content packs in development
When developing your content you do not need to follow the above manual process. A more convenient approach for the content developer is the
setup maven build that uses HP OO SDK maven plugin to create the HP OO content pack, and packs it together with SX files into the HP SX

content pack archive. See Creating an HP SX content module in How to extend HP SX Content (HP SM Problem entity) for a detailed description
of how to setup such a maven project, or see the example content implementations provided with the SDK package.

See also

How to extend HP SX Content (HP SM Problem entity)

SX HP OO plugin
SX HP OO plugin

Introduction

SX HP OO plugin (0o-sx-plugin artifact provided in SDK's maven repository) is a key component for OO flows in HP SX. It provides a way for the
OO flow to interact with SX by sending a message into SX Rabbit AMQP.

It is an extension to HP OO, implementing a single sendMessageToM)Qoperation. Its parameters are listed in the table below:

parameter description

brokerHostname JMS broker URL. The Rabbit AMQP used by your HP SX.
brokerUsername Rabbit AMQP user.

brokerPassword Rabbit AMQP password.

gueueName Name of the Rabbit queue the message will be sent to, it is based on

the configuration in sx. properti es.
messageType Usually in the format 'ADAPTER_NAME:TYPE', typically this
parameter is used to determine the pipeline that will process the
message (for example SM: PLAIN will be handled by PLAIN pipeline.)
operationName Optional - put into AMQP message header when there is content.

messageText The message itself when compression is not used (development.)

36

messageCompressed The message itself Base64 encoded.

The parameters brokerHostname, brokerUsername, brokerPassword, queueName are HP SX configuration parameters.

Configuring the SX HP OO plugin in HP OO Studio

To use the sendMessageToMQ plugin operation in HP OO Studio when designing your OO flows, follow these steps.

1. Add the plugin into the maven repository of your HP OO Studio instance. The simplest method is to copy the contents of the m2-repo
directory from your SDK package into the HP OO Studio repository: (<your _hone_di r >/ . oo/ dat a/ maven).
2. Perform the operation import into your specific OO flow project.
a. Under the Library folder of your OO project, create a new folder for the operation. It is named JMSsender in the example below.
b. In the created folder right click > New > Operation.
¢. Find com.hp.ccue.serviceExchange:0o0-sx-plugin and sendMessageToMQ in the list. See the screenshot below.
d. Click OK.

(=Y Operations Orchestration Studio =sla | X |

File Edit Tools Settings SCM Window Help
Projects Oa 2 |welome x| 4 b HE
+ 39 0 X
BE oo-sm-problem-project
(= Library

suo:uf g

[SXFlows
| Configuration

yleunoog g!

P
(&Y Create operations -

Select operations to import:

sojgelies wol

»

com.hp.coue.serviceExchange:oo-sx-plugin: 1. 1.0.0

- || sendMessageToMQ

-+ [] com.hp.oo:00-base-context-plugin: 1. 1.1

-+ [com.hp.oo:00-base-egacy-plugin: 1. 1.1

-+ [com.hp.oo:00-base-plugin: 1. 1.1

-+ [com.hp.oo:00-dotnet-web-actions-meduster-plugin: 1. 1. 1
-+ [com.hp.oo:00-dotnet-web-actions-plugin: 1. 1. 1
H
H
H
H

B Community Home P3|

m

| Dependencies

() Content Packs: [=1 Librar

P2 00X

- Base [1.1.1]

- []] com.hp.0o:00-dotnet-web-actions-powershel-plugin: 1. 1. 1

- []] com.hp.oo:00-excel-egacy-plugin: 1.1, 1

- []] com.hp.oo:0o-fs-legacy-plugin:1.1.1

- []] com.hp.oo:00-fs-plugin: 1.1.1 =

BB BB B - - B

Replace common prefix ™ of the actions with: ".}

Online Content

Muore tutorials are available in the HP OO Studio Home directory.

% References | |8 Problems : uk Search | -Eé‘_ HP Live Netwark Search | |\ 5CM Messages | SCM Changes

Case Exchange
Overview

CX is a subsystem of HP SX, designed for exchanging entity data between two or more external systems. The aim is to have some entity data, for
example Incidents, automatically synchronized between two different systems without the need for human intervention.

37

CX does all the work of data transformation including connecting systems of different types, for example HP SM and HP SAW. In addition, CX
removes the need to setup the two systems to communicate directly with each other, which helps simplify the security and environment setup.
Instead of having to provide an adapter for each possible system-type pair combination, it is sufficient to implement CX between system A and HP
SX, and system B and HP SX.

CX works in the following way:

1. A pairing between source and target system is defined.

2. The source system is observed for changes CX is interested in.

3. Once an interesting entity change is detected (Creation, Update, Status change), CX performs the following:
a. Retrieves any important entity data from the source system.
b. Transforms the entity data to the canonical model representation.
c. Changes the data of a connected entity on a target system in the way defined by the configuration.

Example:
There is an HP SM instance called SM03 and an HP SAW instance called SAWO02.

To set up CX to clone any new Incident created on SM03 to SAWO02 systems:

1. Create a CX pairing (see External systems and entities pairing) between SM03 and SAWO02, where SM03 is a source system and
SAWO02 is the target system.
2. Set up cloning of new incidents for the pairing.

Once finished with the configuration, any new Incident created on SM03 is automatically cloned to SAWO02.

When a new system type adapter (for example for Remedy) is being written, the adapter can be implemented to support CX. What needs to be
done to accomplish this is described in the following example, see Case exchange use case. Once CX is enabled for the new system type, it can
participate in CX together with all the other systems supporting CX, without any need to change any existing systems.

Concepts

¢ Canonical Model
® Canonical Model Format
® Common canonical model parts
® Entity specific canonical model parts
® Canonical Model Translation
® Example mappings
® ES property name -> SX property name
ES property value -> SX property value
external system alias name -> SX external system name
SX entity name -> ES entity name
SX property name -> ES property name
® SX property value -> ES property value
Single or Multiple linkedEntity
External systems and entities pairing
Change Observation
Symmetry

Canonical Model

HP SX can exchange entities (incidents, tasks, etc) between different external systems (HP SM, HP SAW,
JIRA, etc.) Every system uses its own entity format. HP SX translates from these formats to a universal HP SX
format - a canonical model. The canonical model contains information about entities, external systems and
event.

38

Service Exchange

External system mapping configuration

-
Red ports are in specific odapter formot

i
(]

£l

NN 3
hY ;‘)
— Event + Entity | Ta canonical
1 } /
h-\.___'_,_,.,-"

11
Change Observer

r. ——
\-._ d.-f/ --"--.___
I". Green parts are in 53X canonical model Prepare apérahms
l' — R - -
Send event 2 rd ~ L
W\ ! S operation '-H_ e
Get entity \ Messages J
1 5
= = l,I

Operation Orchastration

Run eperation .
par Run operation

External system A

How it works:

External system B

A change observer detects a change in external system A. It creates an event, for example, incidentResolved. The format of an event message
is adapter/system specific. A set of possible events is the same for one entity type (for example, Incident.)

1. HP SX retrieves the entity from system A. The entity is in an adapter-specific format

® The most frequent scenario

2. HP SX translates the entity + event message + information about external systems to the canonical model

3. The OO flow decides which operations will be called in external systems A and B

a. Copy some properties of the entity to system B (first operation.)
b. Update the external status of entity in system A (second operation.)

® QOperation messages contain two main parts: entity and linkedEntity both represented in the canonical model

® The entity part contains information about the source system (A), and about the entity in the source system

® The linkedEntity part contains information about the target system (B), and the entity in the target system
4. HP SX runs the operations. The canonical model is transformed to the adapter-specific format during the operations

Canonical Model Format

39

Canonical model Example

{
"event":"inci dent Resol ved",
"entity":{
"instanceType": " SAW,
"instance": "nsal b003sngx",
"entityType":"Incident",
"entityld":"19423",
"properties":{
"Title":"Wndow was broken",
"Description":"An angry enpl oyee broke the w ndow',
"Urgency":"U3",
"Status":"Resol ved",
"l pact":"l4",
"Sol ution":"We buy new wi ndow and installed it.",
"Conpl eti onCode": " Resol vedbyfi x",
"Attachnments": |
{
"id": "3987",
"nanme": "w ndow"',
"type": "inmgel/ png",
"size": 723454
}
{
"id": "3987",
"nanme": "w ndow_detail",
"type": "imagel/ png",
"size": 901211
}
1,
"Comment s": [
{
"id": "121,
"author": "jim breaker",
"content": "I send you picture of the w ndow. "
}
]
}

}

"linkedEntity":{
"instanceAlias":"supportSM,
"instanceType":"SM',
"instance":"npavnsml2",
"entityType":"lncident",
"entityld":"1M2391",

"properties":{
"Status":"Conpl ete"
}
}
}

Common canonical model parts

These parts are the same for all entities (incidents, tasks, problems, ...). All fields except "linkedEntity.entityld" are mandatory. Each entity type is
a common name for the entity, for example probsummary in HP SM is not represented as probsummary, but Incident, as this is the canonical

40

model system-independent name for the entity.

json field

event

entity
entity.instanceType

entity.instance

entity.entityType

entity.entityld

linkedEntity or linkedEntities

linkedEntity.instanceAlias

linkedEntity.instanceType

linkedEntity.instance

linkedEntity.entityType

linkedEntity.entityld

Entity specific canonical model parts

These parts are specific to each entity (incident, task, problem, ...

json field
entity.properties

entity.properties.attachments

entity.properties.attachments.id
entity.properties.attachments.name
entity.properties.attachments.type
entity.properties.attachments.size

entity.properties.comments

entity.properties.comments.id
entity.properties.comments.author
entity.properties.comments.content

linkedEntity.properties

description

Event name must exist in a set of events for the given entity type.
Describes the source system and entity which was changed.
Type of source system/adapter (e.g. HP SM, HP SAW, JIRA.)

ID of the specific source external system. HP SX has mapping from
this ID to URLs for communication with the system.

Entity type (for example, Incident, Task, Problem.) Every entity type
has its own set of events and specific properties.

ID of entity in source system.

Describes the entity and target system, where the entity will be
cloned or refreshed.

User of source system uses this alias to identify the target system,
HP SX has mapping between aliases and real external systems.

Type of target system/adapter (for example, HP SM, HP SAW, HP
JIRA))

ID of the specific target external system. HP SX has a mapping from
this ID to URLs for communication with the system.

Entity type in the target system. It can be different from
entity.entityType. For example: Incidents from HP SAW are cloned as
Tasks to HP SM.

ID of entity in the target system. It can be empty before cloning.

description
Set of properties, specific for a given entity type.

List of attachments which were added from the last event. HP SX
copies it to the target external system. Now attachments are used for
the Incident entity type only, but it can be used elsewhere.

ID of the attachment in the external system.

Name of the attachment.

MIME type, for example, “image/gif* or "application/xml".
Attachment size in bytes.

List of comments which were added from the last event. HP SX
copies them to the target external system. Now comments are used
for the Incident entity type only, but they can be used elsewhere.

ID of the comment in the external system.

Author of the comment.

The comment.

Set of properties. They can be specific for a given entity type, but

typically there is only "Status". These properties are only copied to
external reference fields, see pairing.

If you add a new adapter (for example Bugzilla), but you work with an existing entity (for example incidents)

you have to conform to both common and entity-specific parts of the canonical model. If you are newly adding support for an entity (for example
change requests), and there is no canonical model specified for it yet, you need to specify the entity-specific part of the canonical model.

41

Canonical Model Translation

HP SX translates entity names, property names, property values and external system names to and from the canonical model.

The following table shows where and how HP SX does these translations (note that for simplicity, ES replaces ‘external system’ in the table):

Translation

ES entity name -> SX entity name
ES property name -> SX property name

ES property value -> SX property value

external system alias name -> SX external
system name

SX entity name -> ES entity name
SX property name -> ES property name

SX property value -> ES property value

SX external system name -> external system
alias name

Example mappings

ES property name -> SX property name

Translation executed by ...

ChangeObserver.

convert*ToCanonicalModel freemarker
template.

convert*ToCanonicalModel freemarker
template. It uses *-mappings.json
configuration.

convert*ToCanonicalModel freemarker
template. The template uses
the FindExternalSystemForAlias class.

freemarker template during running
operation.

freemarker template during running
operation.

freemarker template during running
operation. It can use *-mappings.json
configuration.

freemarker template, before it updates

external references in the source system.

The template uses the
FindAliasForExternalSystem class.

42

Example

JIRA ChangeObserver listens for change of
issues and creates an Incident event

see example

see example

see example

see example

see example

see example

preparelnputAfterOperation.ftl in
content-sm-case-exchange

convertincidentToCanonicalModelResult.ftl

<#assi gn

| oadConfi g=' com hp. ccue. servi ceExchange. adapt er . freemar ker . LoadConfi g' ?new()/ >

<#assi gn

fi ndkey='com hp. ccue. servi ceExchange. adapt er. freenar ker . Fi ndKeyFor Val ue' ?new()/ >
<#assi gn

fi ndExt Syst enmFor Al i as=' com hp. ccue. servi ceExchange. caseex. fr eemar ker . Fi ndExt er nal Syst en
/>

<#tassi gn sawiappi ng=l oadConfi g(cont ext. cont ent St or age

"saw case- exchange/ saw mappi ngs") />

<#assi gn

fi ndExt Syst enfor Al i as=' com hp. ccue. servi ceExchange. caseex. f reemar ker . Fi ndExt er nal Syst ent
/>

<#assi gn secondExt er nal Syst en¥f i ndExt Syst enfor Al i as(cont ext . appCont ext,

entityChange. i nstanceType, entityChange.instance, data.externallnstanceAlias)!"" />
{
"event": "${nessage. entityChange. changeReason}"
"entity": {
"instanceType": "${nmessage.entityChange.instanceType}",
"instance": "${nessage.entityChange.instance}",
"entityType": "lIncident",

"entityld": "${nmessage.entityChange.entityld}"
"properties": {
"Title":"${nessage. enti t yChange. dat a. response. properties. Di spl ayLabel }" //
property DisplayLabel in SAWformat is mapped to property Title in canonical node
,"Description": "${nessage. entityChange. data.response. properties. Descri ption}
,"Urgency": "${findKey(sawVvappi ng. | nci dent. Ur gency,
nessage. enti t yChange. dat a. response. properties. Urgency)}"
,"Status": "${findKey(sawappi ng. | nci dent. St atus
message. enti t yChange. dat a. response. properties. Status)}" // property Status has sane
nane in SAWformat and canoni cal node

}

H

"linkedEntity": {
"instanceAlias": "${nmessage.entityChange. data. external | nstanceAlias}",
"instanceType": "${secondExternal System targetlnstanceType}"
"instance": "${secondExternal Systemtargetlnstance}"

b

ES property value -> SX property value

It translates by the convertincidentToCanonicalModel freemarker template, and uses the saw-mappings.json configuration.

43

convertincidentToCanonicalModelResult.ftl

//function for |oading config fromcontent pack

<#assi gn

| oadConfi g=' com hp. ccue. servi ceExchange. adapt er. f reenar ker. LoadConfi g' ?new() />

/Il oad val ue mapping config (SAW->SX) to hashMap

<#assi gn sawiappi ng=I oadConfi g(cont ext. cont ent St or age

"saw case- exchange/ saw mappi ngs") />

//function for finding key by value in hashMap

<#assi gn

fi ndkey='com hp. ccue. servi ceExchange. adapt er. freenar ker . Fi ndKeyFor Val ue' ?new()/ >
<#assi gn

fi ndExt Syst enfor Al i as=' com hp. ccue. servi ceExchange. caseex. f reemar ker . Fi ndExt er nal Syst ent
/>

<#assi gn

fi ndExt Syst enFor Al i as=' com hp. ccue. servi ceExchange. caseex. fr eemar ker . Fi ndExt er nal Syst enf
/>

<#tassi gn secondExt er nal Syst en=f i ndExt Syst enfor Al i as(cont ext . appCont ext ,

entityChange.instanceType, entityChange.instance, data.externallnstanceAlias)!"" />
{
"event": "${nessage. entityChange. changeReason}"
"entity": {
"instanceType": "${nessage. entityChange.instanceType}"
"instance": "${nmessage.entityChange.instance}",
"entityType": "Incident",

"entityld": "${nessage.entityChange.entityld}"
"properties": {
"Title":"${message. enti tyChange. dat a. response. properties. Di spl ayLabel }"
,"Description": "${nmessage. entityChange. data.response. properties. Description}"
,"Urgency": "${findKey(sawVappi ng. | nci dent. Ur gency,
message. enti t yChange. dat a. response. properties. Urgency)}" //convert U gency SAWval ue
to Urgency SX val ue by sw mapping.json config
,"Status": "${findKey(sawVappi ng. | nci dent. St at us,
nmessage. enti t yChange. dat a. response. properties. Status)}"//convert Satus SAWval ue to
Status SX val ue by saw mappi ng.json config

}

H

"linkedEntity": {
"instanceAlias": "${nmessage. entityChange. data. external | nstanceAlias}"
"instanceType": "${secondExternal System targetlnstanceType}"
"instance": "${secondExternal Systemtargetlnstance}"

H

44

saw-mapping.json

"I'ncident": { //property value nmapping for entity I|ncident
"Status": { //mapping for Status property, key is value in SX, value is value
in SAW
"Open": "Ready",
"Wor kl nProgress”: "InProgress"”,
"Pendi ngChange": "Pendi ng",
"Pendi ngQ her": "Suspended",
"Conpl ete": "Conplete"

b
"Urgency": { //mapping for Urgency property, key is value in SX, value is

val ue in SAW
"U4": "NoDi sruption",
"U3": "SlightDisruption”,
"W2": "SevereDi sruption”,
"ULl": "Total LossOf Service"

external system alias name -> SX external system name

It translates by the convertincidentToCanonicalModel freemarker template, and the template uses the FindExternalSystemForAlias class. The
class is found in external-system.json.

45

convertincidentToCanonicalModelResult.ftl

<#assi gn

| oadConfi g=' com hp. ccue. servi ceExchange. adapt er . freemar ker . LoadConfi g' ?new()/ >
<#assi gn

fi ndkey='com hp. ccue. servi ceExchange. adapt er. freenar ker . Fi ndKeyFor Val ue' ?new()/ >
<#assi gn

fi ndExt Syst enmFor Al i as=' com hp. ccue. servi ceExchange. caseex. fr eemar ker . Fi ndExt er nal Syst en
/>

<#tassi gn sawiappi ng=l oadConfi g(cont ext. cont ent St or age

"saw case- exchange/ saw mappi ngs") />

/1this method find in of second external systemby its alias in first external system
<#assi gn

fi ndExt Syst enfor Al i as=' com hp. ccue. servi ceExchange. caseex. f r eemar ker . Fi ndExt er nal Syst enf
/>

/1find id of second external systemby its alias in first external system

<#tassi gn secondExt er nal Syst en=f i ndExt Syst entor Al i as(cont ext . appCont ext ,

entityChange. i nstanceType, entityChange.instance, data.externallnstanceAlias)!"" />
{
"event": "${nessage. entityChange. changeReason}"
"entity": {
"instanceType": "${nessage. entityChange.instanceType}"
"instance": "${nessage.entityChange.instance}",
"entityType": "lIncident",

"entityld": "${nmessage.entityChange.entityld}",
"properties": {
"Title":"${nmessage. entityChange. dat a.response. properties. Di spl ayLabel }"
,"Description": "${nmessage. entityChange. data.response. properties. Description}"
,"Urgency": "${findKey(sawVvappi ng. | nci dent. Ur gency,
nessage. enti t yChange. dat a. response. properties. Urgency)}"
,"Status": "${findKey(sawappi ng. | nci dent. St atus
nmessage. enti t yChange. dat a. response. properties. Status)}"

}
H
"linkedEntity": {
"instanceAlias": "${nmessage. entityChange. data. external | nstanceAlias}"
"instanceType": "${secondExternal SystemtargetlnstanceType}",//using of found
secondExt er nal System by al i as
"instance": "${secondExternal Systemtargetlnstance}",//using of found
secondExt er nal System by al i as
b

}

46

external-systems.json

{/Ithis file is used by findExtSystenforAlias nmethod from
convertl nci dent ToCanoni cal Model Resul t. ftl
"ext ernal SystemAl i ases": [

{
"sourcel nstanceType": "SAW,
"sourcel nstance": "nsal b003sngx",
"targetl|nstanceType": "SM',
"targetlnstance": "npavrmsnil0",
"targetAlias": "SM

}

SX entity name -> ES entity name

resolvedincidentUrl.ftl

<#escape x as x?url >

<#noescape>${i nst anceConfi g. endpoi nt } </ #noescape>

/ 9/ rest/sxce_inci dents/ ${nessage. args.|inkedEntity.entityld}/action/update
/I sxce_incident url part says that entity Incident in SXis napped to entity
sxce_incidents in SM

</ #escape>

SX property name -> ES property name

resolvelncidentRequest.ftl

<#assi gn
| oadConfi g=' com hp. ccue. servi ceExchange. adapt er. freemar ker. LoadConfi g' ?new()/ >

<#tassi gn snivappi ng=l oadConfi g(cont ext. content St orage, "sm case-exchange/ sm mappi ngs")

/>
<#-- @tlvariable nane="nessage" type="java.util.Mp" -->
<#tassi gn entity=nessage.args.entity/>
{
"I'ncident” : {
"Status": "Resol ved"
,"C osur eCode":

"${ smvappi ng. I nci dent . Conpl eti onCode[entity. properties. Conpl eti onCode]!""}"
/1 Conpl etitionCode property in SX is mapped to C osureCode property in SM
,"Solution": "${entity.properties. Solution}"
,"Category":"incident"

SX property value -> ES property value

47

resolvelncidentRequest.ftl

//function for |oading config fromcontent pack
<#assi gn

| oadConfi g=' com hp. ccue. servi ceExchange. adapt er. f reenar ker. LoadConfi g' ?new() />

/11 oad val ue mappi ng config (SM<->SX) to hashMap

<#tassi gn snivappi ng=l oadConfi g(cont ext. cont ent St orage, "sm case-exchange/ sm mappi ngs")

/>
<#-- @tlvariable nane="nessage" type="java.util.Mp" -->
<#assi gn entity=nessage.args.entity/>
{
“I'ncident" : {
"Status": "Resol ved"
, " Cl osureCode":

"${ smvappi ng. | nci dent. Conpl eti onCode[entity. properties. ConpletionCode]!""}"//convert
Conpl eti onCode SM val ue to Conpl eti onCode SX val ue by sm mappi ng.json config

,"Solution": "${entity.properties. Solution}"
,"Category":"incident"
}
}
sm-mapping.json
{

"Incident": { //property value mapping for entity I|ncident
" Conpl eti onCode": { //mapping for ConpletionCode property,
value is value in SM
"Successful Di agnosi s": "",
"NoFaul t Found": "",
"NoUser Response": "",
" Not Repr oduci bl e": "Not Reproduci bl e",
"Qut of Scope": "CQut of Scope",
"Request Rej ect ed": "Request Rejected",
"Resol vedbyfi x": "Sol ved by Change/ Servi ce Request",
"Resol vedWor kar ound": "Sol ved by Workar ound”,
"Unabl et oSol ve": "Unable to solve",
"Wt hdrawnbyUser": "Wt hdrawn by User",
"Sol vedByUser I nstruction": "Sol ved by User Instruction",
"Aut omatical | yd osed": "Autonatical ly C osed"

Single or Multiple linkedEntity

One entity in an external system can be mapped to several entities in other external systems.

Example:

48

key is value in SX

SM

Incident
M 12030

3
|[\

f

SX

/N
JIRA N SAW
= i

There are two ways to handle this in HP SX. If you write a new adapter you need to choose one method:

1. If an incident changes in system A, ChangeObserver generates two events: one for system B, one for system C. The rest of the scenario
is the same. There is still one linkedEntity section in the canonical model. This is the method used in the SAW adapter.

2. If an incident changes in system A, ChangeObserver generates one event. HP SX receives the entity with several external references
and transforms them to the canonical model with several linkedEntities. Then HP SX automatically converts it to two canonical models
with one linkedEntity and calls the OO flow twice. This is the method used in the SM adapter.

The following example shows the canonical model with several external references:

49

Canonical model with several external referencies

{
"event":"incidentResol ved",
"entity":{
"instanceType": " SAW,
"instance": " nmpavnsnil2",
"entityType":"Incident",
"entityld":"1ML2030",
"properties":{
"Title":"Wndow was broken",
"Description":"An angry enpl oyee broke the w ndow',
"Urgency":"U3",
"Status":"Resol ved",
“lnpact":"14",
"Solution":"We buy new wi ndow and installed it.",
" Conpl eti onCode": " Resol vedbyfi x",
"Attachnments":[],
"Comments":[]
}
b
"linkedEntities":[
{
"instanceAlias":"external JI RA",
"instanceType":"JI RA",
"instance":"kpj 00765a",
"entityType":"Incident",
"entityld":"SE-64",
"properties":({
"Status": " Conpl ete"
}
b
{
"instanceAlias":"citSAW,
"instanceType": " SAW,
"instance": "nmsal b003sngx",
"entityType":"lncident",
"entityld":"32711",
"properties":({
"Status":"Conpl ete"
}
}
]
}

External systems and entities pairing

References from an entity in external system A to an entity in external system B are not stored in HP SX, they are stored in the external systems.
HP SX needs at least two fields on an entity: "external_system_alias" and "external_entity_id". A better solution is a table with columns:
"external_system_alias", "external_entity_id" and "external_entity_status". Each row of the table corresponds to one external system.

If you do not use an external reference "table" for your system/adapter, you can still integrate by case exchange,
but you cannot exchange to a number of other systems at the same time. See Single or Multiple linkedEntity.

50

Examples:

® SM - External references are stored in the SX custom table "SXRegisteredEntitiesV2".
® JIRA - External reference is stored as JSON in field "Environment".
® SAW - External references are stored in an internal table accessed by REST.

External system pairing is configurable in ext er nal _syst em j son. There are sections for every external system pair (most often
bi-directionally).

external_system.json

"ext ernal SystemAl i ases": [
{
"sourcel nstanceType": "SM',
"sourcel nstance": "npavnmsmlO",
"targetlnstanceType": "SAW,
"targetlnstance": "nsal b0O0O3sngx",
"targetAlias": "l obSAW

"sour cel nstanceType": "SAW,
"sourcel nstance": "nsal b003sngx",
"targetlnstanceType": "SM',
"targetlnstance": "nmpavnmsnil0",
"target Alias": "supportSM

Basic linking scenario:

51

Service Exchange

External system mapping configuration

7
2/
Change Observer /6

External system
aliaszf LOB

entity_id:123
ext_alias: CIT

ext_id:456

—

User of system A fills the ext_alias field of an entity.
HP SX detects the change of the entity.

PONPE

HP SX creates a new entity in System B.

a. HP SXfills ext_alias of system A.

b. HP SXfills ext_id of incident in system A
System B returns the ID of the new incident.
HP SXfills ext_id of the incident in system B.

o o

Change Observation

See Change Observers.

Symmetry

5

N

1

\

\
xternal system

Alia\iz CIT

entity_id:456

axt_alias: LOB

’e

ext_id: 123

A
\

y

b

HP SX translates system B alias to the ID of system B by external_system.json mapping.

There are three ways to define a set of events for a given entity type:

® Symmetrical (Default)
® Non-symmetrical
® Mixed.

52

Symmetrical:

® This is the default method.
® Every event can be thrown from both paired systems, for example, an entity is cloned from system A to B and also from B to A.
® There is one eventGroup and both paired systems share it.

Example: Incident case exchange for SAW<->SM.

Non-symmetrical:

® There are two sets (groups) of events: incoming and outgoing.
® Incoming and outgoing events can have different implementations.
® First system has incoming events only, the second has outgoing events only.

Example: Problem case exchange for SM<->SM.

Mixed:

® There is one set of events.
® There are two event groups, each for one of any paired systems, for example, an entity is cloned from system A to B only, the entity is
resolved in system B and then CX resolves it in system A only.

Example: Incident case exchange for JIRA<->SM.

53

Configuration

Table of Contents:

® Qverview
® external-systems.json
® case-exchange.json
® *-mappings.json
® Entity name mappings
® Property value mappings
® Freemarker code
® Configuration concepts
External systems
External system pairs
Entity types to be case exchanged
Events
Event filters
Event groups
Event and Event Group actions

Overview

This configuration section describes how the CX framework is configured to communicate with backend systems and to perform entity data
exchange from one system to another. It includes:

® Which configuration files are involved in setting up CX operations.
® How various concepts of CX (like Events and Event Groups) are set up, including real-life examples of JSON configuration to illustrate
what is being described.

Configuration files

There are two configuration files involved in CX configuration: ext er nal - syst ens. j son and
case- exchange. j son..The data format of both files is JSON.

external-systems.json

There is one external-systems.json file in the HP SX war. In its first section, externalSystems, it contains the definitions for individual external
systems one by one in an array. In the second section, externalSystemAliases, it contains definitions of external system pairs.
Here is an example from the ext er nal - syst ens. j son file:

54

external-systems.json

"external Systenms": [// definitions of external systens, each itemof the array
defines one external systeminstance

{ Il the first external systeminstance
"instanceType": "SAW, // the type of the defined system
"instance": "nmsal b003sngx", // the name of the external system

"regi steredEvent G oups": [// the array of event groups that should be
observed on the external system

"I nci dent CaseExchangeEvent s"
]
b
{ I/ the second external systeminstance
"instanceType": "SM',
"instance": "npavnsnD8",
"regi steredEvent G oups": [
"I nci dent CaseExchangeEvent s"
]
}
1
"external SystemAliases": [// definitions of external systempairs, each item of
the array defines one external system pair
{ /Il first external systempair

"sour cel nstanceType": "SM', // the type of source external system of the
pair

"sourcel nstance": "npavnmsn08", // the nane of the source external system
i nstance

"targetlnstanceType": "SAW, // the target external systemtype

"targetlnstance": "nsal b003sngx", // the target external system nane

"targetAlias": "saw' // the alias used in source external systemto

identify the target external system eg. the target external systemalias in the
source external system

H

{ Il second external system pair
"sourcel nstanceType": "SAW,
"sour cel nstance": "msal bO03sngx",
"targetl|nstanceType": "SM',
"targetlnstance": "npavnmsn08",
"targetAlias": "SM8"

}

case-exchange.json
While there is only one ext er nal - syst ens. j son file, there are typically multiple case- exchange. j son files. Their content is combined as if
there was a single file.

NOTE: If some case-exchange.json files contain incompatible content, the resulting configuration is non-deterministic and may cause problems.
Each case- exchange. j son file may contain the following sections:

1. Events. Events are defined on the level of the external system type, for example, HP SM. The events recognized by the CX framework
are defined in this section:

55

events

"events": { // the "events" section
"SM': { // the identifier of the external system whose events we are
defi ni ng
"inci dent Ext er nal Ref erenceCreated": { // the nane of the defined
event
"entityType": "probsummary", // the native (eg. external system
specific) entity type
"entityFilter": "RECORD['vendor']!=null &&
RECORD] ' ref erence. no'] ==nul | && (| SCREATE || | SUPDATE &&
OLDRECORD[' vendor '] ! =NEWRECORD[' vendor'])", // the filter defining event trigger
condition
"changeType": ["create", "update"] // optional Service nmanager
specific field
b
"inci dent Updat ed": {
"entityType": "probsunmary",
"entityFilter": "RECORD 'vendor']!=null &&
OLDRECORD[' vendor '] ==NEWRECORD[' vendor'] &&
(OLDRECORD[' bri ef .description']!=RECORD["' brief.description'] ||
OLDRECORD[' action'].toString()!=RECORD['action'].toString() ||
OLDRECORD[' severity']!=RECORD ' severity'] ||
OLDRECORD{ "initial.inpact']!=RECORD["'initial.inpact'])",
"changeType": ["update"]
}

2. eventGroups. In this section, event groups are defined by specifying a list of contained events for each of them:

eventGroups

"eventGroups": { // the "event Groups" section
"I nci dent CaseExchangeEvents": [// the nane of the event group being defined
"i nci dent Ext er nal Ref erenceCreated", // the nanme of the first event
bel onging to the group
nci dent Updated", // the name of the second event belonging to the group
nci dent Resol ved", //
nci dent Reopened",
nci dent Cl osed",
nci dent Omer shi pAssi gned",
nci dent Oamner shi pAccept ed",
nci dent Rej ect ed"”,
nci dent Cancel | ed"

]

askCaseExchangeEvents": [// the name of another event group
"t askExt er nal Ref erenceCreated" // this group only contains one event

]

3. eventActions. The action or sequence of actions to be performed once an event is triggered. The order of execution when merging
event actions from multiple configuration files is not defined. Each Action represents one of two currently supported action types:

® executeOperation — An HP SX operation is executed. Based on the value of the backendSystemType property, the operation

56

definition is searched for in content packs associated with the respective backend system type.

® executeOoFlow - An OO Flow is executed. Based on the value of the backendSystemType property, the flow is executed on
behalf of the corresponding backend system. The flow to be executed is determined by the value of the messageType property.
The message type is used to search for flow information in the f | ows. j son file.

eventActions

"event Actions": { // the "eventActions" section
"incidentC osed": { // the event we're defining actions for
{ /1 the first action to be executed when the event is triggered
"action": "executeQperation", // action = execute operation
"backendSyst enfType": "SM' // the backend systemto be
searched for the operation (each content pack's netadata.json file contains
the "adapter" property assigning the content pack to the respective backend

system
"operati onNane": "retrievelncident" // the nane of the
operation to be executed
},
{ /'l the second action to be executed when the event is triggered
"action": "executeQperation",
"backendSyst enfType": " SX"
"operationNane": "convert Assi gnnent G- oupTol nst ance"
},
{ /1 the third action to be executed when the event is triggered
"action": "executeQoFlow', // action = execute OO fl ow

"backendSyst enifype": "SX", // the backend system on whose
behal f the OO flow will be executed

"messageType": "Incident CaseExchangeFl ow' // the type of the
nmessage to be sent to the OO flow, al so deternines which OO fl ow shoul d be
used - corresponds to the key in the flows.json configuration file

}

4. eventGroupActions - The action or sequence of actions to be performed once an event from the given event group is triggered. The
order of execution between event actions and event group actions is not deterministic, so it is not recommended to mix event actions and
event group actions together when the order of execution is important. Both the syntax and semantics of the eventGroupActions is the

same as for the eventActions

*-mappings.json

Each external system type participating in CX has its own set of entities, its own vocabulary, and its own property names and values. To allow CX
to communicate between different types of systems, the vocabulary, entities and properties, and their values, have to be unified. The CX
implementation uses a common data format for the exchanged data called the Canonical Model. As a helper for data transformation between the
canonical model and the external system native data model, each external system can provide a mapping file to aid the translations.

The name of the mapping file is in the form of <external_system_type>-mappings.json, for example sm-mappings.json. It may contain
translation tables for entity names and property values. The translation tables can be used by content packs to make easy transformations, most
importantly in Freemarker templates. Property names are not typically translated via translation table as it is much easier to perform their
translation directly in Freemarker templates. In the next paragraphs, we will show an example of each of the mappings.

Entity name mappings

In this section of the mapping file, the native entity names are mapped to canonical model entity names:

57

Entity Name Mappings

"entityType": { // the section start

"Incident": "probsummary", // pair of Canonical Mbdel/native external system
entity nane
"I nci dent Task": "imrask" // another pair for another entity

}

Property value mappings

For each entity, a mapping for some of its property values between the Canonical Model and the native external system values may be provided:

Property Value Mappings

“Incident”: { // the nane of the entity
"Status": { // the nane of the property in Canonical Mdel whose val ues will
be translated via this table

"Cpen": "Ready", // pair of Canonical Mdel/native external system
property val ue
"Wor kl nProgress”: "InProgress", // another pair

"Pendi ngChange": "Pendi ng",
"Pendi ngQt her": "Suspended",
"Conpl ete": "Conpl ete"

H
"Urgency": { // another property whose values will be translated
"U4": "NoDi sruption",
"U3": "SlightDisruption”,
"U2": "SevereDi sruption",
"Ul": "Total LossOf Servi ce"
}

Freemarker code

Once the mapping is defined in the mapping file, the mapping can be used to translate the value within a Freemarker template:

58

Freemarker Code

<#assi gn

fi ndKey='com hp. ccue. servi ceExchange. adapt er. f reemar ker . Fi ndKeyFor Val ue' ?new()/> //
declare the findKey function defined in Java code of Service Exchange APl for Adapters
<#tassi gn sawiMappi ng=l oadConfi g(cont ext. cont ent St or age,

"saw case- exchange/ saw nmappi ngs") /> // declare the sawMappi ng variabl e containing the
mappi ng for Service Anywhere (SAW system

{
"properties": {

"Urgency": "${findKey(sawvappi ng.|nci dent.Urgency, entityProperties. U gency)}", //
use the Service Exchange provided findKey() function to performthe translation of
Urgency to Canonical Mdel specific val ue

"Status": "${findKey(sawiappi ng. | ncident. Status, entityProperties.Status)}" // use
the Service Exchange provided findKey() function to performthe translation of Status
to Canoni cal Mdel specific value

}
}

Configuration concepts

When configuring a CX framework for HP SX content, the following items need to be configured:

External Systems

External System Pairs

Entity Types to be Case Exchanged
Events

Event Filters

Event Groups

Event and Event Group Actions

External systems

In order to have an external system participate in CX, it must be present in the external system configuration. The configuration entry must
contain:

® the system type (for example HP SM, JIRA), the name of the system instance (corresponding to the name assigned to it in
the instances.json configuration file for the respective external system type.)
® the array of event groups CX will handle for this particular external system.

Here is an example of an external system configuration:

External System

{
"instanceType": "SM', // the type of the external system
"instance": "npavmsmapp0l1", // the name of the concrete external systeminstance
"regi steredEvent G oups": [// the event groups activated for this systeminstance
" TaskCaseExchangeEvent s",
"TaskCaseExchangel nci dent Event s"
]
}

59

External system pairs

To configure CX to perform entity data exchange between two particular systems, it is necessary to create an external system pair for them. In the
pair definition:

® source system must be specified by its type and name
® target system must be specified by its type and name
® an alias to be used by users in the source system to identify the target system.

Here is an example of an external system pair configuration:

External system Pair

{
"sourcel nstanceType": "SM', // the source external systemtype
"sour cel nstance": "npavnsn08", // the source external system nane
"targetlnstanceType": "JIRA", // the target (receiving) external systemtype
"targetlnstance": "npavm nt0l1", // the target (receiving) external system nane
"targetAlias": "jira" // the alias used for the target systeminstance in the
source system
}

Entity types to be case exchanged

The entity types to be case exchanged are not specified directly. Instead, for each external system, an array of event groups is specified to be
watched for in the system. See the External Systems section for an example of such a configuration. Each event group consists of several
individual events, typically all associated with a specific entity type. See the Event Groups section for an example of an Event Group configuration
and the Events section for an event configuration example. In this way, this indirect specification determines which entities are processed for the
particular external system.

Events

The operation of the CX framework is based on events. Depending on the external system type and the changed entity type, the set of potential
events that can occur is defined. The source external system is being watched for changes. Once an entity change occurs, CX is notified by the
external system Change Observer. For each applicable event, its filter is checked and if its filter condition is satisfied by the entity change, the
corresponding event is triggered. See the Event Filters section for more detail. As a result, each entity change can trigger one or more events.
Here is an example event definition:

Event

"incidentUpdated": { // the nane of the event being defined
"entityType": "probsumrary”, // the native type of the entity the event is
defined for; probsummary is Service Manager's type for Incident
"entityFilter": "RECORD'vendor']!=null &&
OLDRECORD| ' vendor '] ==NEWRECORD[' vendor'] &&
(OLDRECORD[' bri ef . description']!=RECORD[' bri ef.description'] ||
OLDRECORD] ' action'].toString()!=RECORD["'action'].toString() ||
OLDRECORD[' severity']!=RECORD ' severity'] ||
OLDRECORD["initial.inpact']!=RECORD["initial.inpact'])", // the filter containing
bool ean expression for the event triggering; Service Manager Change Qbserver provides
informati on about entity val ue before (OLDRECORD) and after (RECORD) the change
"changeType": ["update"] // this field is optional and is used by Service
Manager Change Observer to determ ne whether the event should be triggered for new,
existing or both type of records

}

60

Event filters

The definition of each event contains one or more filters. The filters are conditional expressions operating over changed entity data, written in
Javascript syntax. Once an entity change is being processed by the CX framework, the filters for each potential event are evaluated. If at least
one of them is evaluated to true, the respective event is triggered, ready for further processing. The input parameters for the condition vary
between external system types because they are heavily depending on the entity change data, which in turn is generated by the system's Change
Observer, and their format and content are not standardized.

Here is an example of an event filter definition for HP SM:

Filter Expression

" RECORD| ' assi gnment']! =nul | && (| SCREATE || | SUPDATE &&
OLDRECORD] ' assi gnnent']! =NEWRECORD] ' assi gnnent'])"

Event groups

Events may be grouped together to form an Event Group. All the events in a group need to be applicable to the same entity. Event groups have
two purposes:

® To allow assigning a common action to a set of events.

® To configure which events should be observed on a particular system.
Only event groups may be assigned to a target external system. Therefore, the only way to observe an event on a particular external system is to
create an event group containing that event and add the event group to the registeredEventGroups property array in the external system
configuration. An event may be part of different Event Groups.
Here is an example of an Event Group definition:

Event Group

"I nci dent CaseExchangeEvents”: [// the name of the Event G oup
"i nci dent Ext er nal Ref erenceCreated", // an array of individual Events to be part

of the Event Group, identified by their name
"i nci dent Updat ed",

nci dent Resol ved",

nci dent Reopened”,

nci dent Cl osed",

nci dent Omner shi pAssi gned"”,

nci dent Omner shi pAccept ed”,

nci dent Rej ect ed”,

nci dent Cancel | ed"

Here is an example of how to assign the Event Group to an external system instance:

61

Event Group assignment

"instanceType": "SM', // the External Systemtype

"instance": "npavmsn09", // the External System name

"regi steredEvent G oups”": ["problem ReferringEntityEvents"”] // an array of Event
Groups to be observed for this External Systeminstance

}

Event and Event Group actions

The last piece of the configuration is to define what the CX framework should perform after an Event is triggered. The execution units in HP SX
are called operations. For each event, the user can define a set of operations to be executed once the Event is triggered. Another set of
operations can be configured for a whole event group. If operations are defined for the Event Group and for an Event from such a group, the
group operations execute first, and then the event operations execute.

Here is an example of an Event operation definition:

Event Group Actions

"I nci dent CaseExchangeEvents": [

{
"action": "executeQOperation",
"operationNane": "retrievelncident"
I8
{
"action": "executeQperation",
"operationNane": "convertl nci dent ToCanoni cal Model "
I3
{
"action": "executeCQoFl ow',
"backendSyst enTType": "SX',
"messageType": "Incident CaseExchangeFl ow'
}

The same block of configuration can be used to configure operations for an Event Group.

Operations

Introduction

Whenever the CX framework needs to interact with an external system, it uses an HP SX operation. An operation is a set of steps, where each of
the steps represents a network interaction with a target system (typically a REST call.) The output of an operation is a JSON message available to
other HP SX components.

See Appendix B: Operation executors for information about operation definitions, their format and properties.

The CX actions for Incident events are configured in the following way:

62

eventGroupActions

"event GroupActions": {

"I nci dent CaseExchangeEvents": [

{
"action": "executeQperation",
"operationNanme": “"retrievelncident”
b
{
"action": "executeQperation",
"operationNanme": "convertl nci dent ToCanoni cal Model "
b
{
"action": "executeOoFl ow',
"backendSyst enType": "SX",
"messageType": "I nci dent CaseExchangeFl ow'
}

The meaning of this configuration is:

Once a change is detected and an Incident event is triggered, then:
1. Operation 'retrievelncident' is executed.
2. Operation 'convertincidentToCanonicalModel' is executed.
3. 'IncidentCaseExchangeFlow' OO flow is executed.

Each adapter willing to participate in Incident CX must provide its own implementation of the two operations, retrievelncident and
convertincidentToCanonicalModel. The Incident OO Flow is standardized across various systems and there is no need to customize it.

In addition, there is one more important operation involved in CX: the default implementation of ChangeObserver uses the operation
getChangedincidents to periodically poll an external system for any changes on observed Incidents.

Any adapter using a Change Observer extending the PollingChangeObserverBase to check for changes in an external system, must also
provide the implementation of the getChangedIncidents operation.
In the following section, each of the three operations in described in detail.

'‘getChangedIincidents' operation

This operation only needs to be implemented for adapters having a change observer extending the PollingChangeObserverBase class. The
result of this operation should contain the array of changes in an external system instance, one array item per changed entity. The concrete
format is customizable, as any logic working with changed entity data is left to be implemented by the adapter-specific change observer. See the
Javadoc PollingChangeObserverBase java class for more detail. This operation is executed from within the PollingChangeObserverBase class
common code to check for changes in the external system entities that have happened in the time interval since the last check.

By default, the input message contains a 'messageHeader.targetinstance’ field and a 'lastUpdateTime' field. The input of the operation can be
customized by overriding the customizeGetChangedEntitiesMessage() method in the PollingChangeObserverBase class.

As already stated, the output of this operation is not strictly defined and must be aligned with the particular ChangeObserver implementation for
the adapter.

'retrievelncident’ operation
This operation is called by the CX framework whenever an event has been triggered for a particular Incident to retrieve the incident properties.
The input for the operation looks like this:

63

'retrievelncident’ operation input

{
"entityChange": { // the structured information about the changed event

"instanceType": "SM', // the external systemtype
"instance": "npavnsnD4", // the nane of the external system
"entityType": "lIncident", // the type of the changed entity
"entityld": "IM)3245", // the ID of the changed entity
"changeType": "update", // the type of the change (create vs. update)
"changeReason": "caseExchange", // the reason of the change (the value wll

typically be caseExchange)
"changeArgs": "aaa", // optional property - the argunents of the change
"data": {} // the data associated with the change

}

The operation is responsible for issuing a request to the external system and retrieving all the changed entity properties. In this way it is possible
to create an entity representation in the canonical model, which is the next operation in line.

‘convertincidentToCanonicalModel' operation

The CX framework is designed to work with many external system types. Obviously, each external system uses its own data format to represent
its entities. The CX framework is introducing a common data format for representing entities from different external systems in a uniform way, see
Canonical Model. The 'retrievelncident' operation returns the entity data in its native format. The ‘convertincidentToCanonicalModel' operation
is responsible for converting the Incident data from the native format to the canonical format, so that the data can be freely exchanged with other
external system types. The ‘convertincidentToCanonicalModel' operation is executed before the Incident OO flow is invoked, as the OO Flow
expects the data to be in canonical format.

The input of the 'convertincidentToCanonicalModel' operation is determined by the output of the 'retrievelncident' operation and may vary
from external system to external system.

The output is a canonical model representing the entity and its properties, together with any linked entity if applicable.

Event/Entity specific operations

Besides the common operations described above, CX defines one or more operations specific to any particular event. For example, if an
incidentUpdated event is triggered, the updateLinkedIncident operation on the target external system is invoked. Which operation or
operations are invoked is determined by the specific OO Flow.

For each event, the OO flow decides which operation on which external system is invoked, and in which order. For the external system to be able
to participate in CX for the respective entity, it must implement all the operations defined by the respective OO Flow associated with the
respective entity type. Each entity type must have exactly one OO Flow associated with it. A set of operations needed by a specific OO flow is
part of its documentation and is not described here.

The arguments for each such operation are determined by the OO flow as well.

OO0 flows

® Overview
® Case exchange OO flow description
® About Incident flow

Overview

OO flow is part of the CX configuration. The main function of the flow is deciding which operations will be called in external systems.
Main facts:
For every entity type (Incident, Task, Problem etc) there is one CX OO flow.

OO flow runs after an event is triggered in a source external system.

OO0 flow works with messages in the canonical model only, see Canonical Model.

OO flow decides which HP SX operations to call in source and target external systems.

OO flow decides which adapters process operations.

OO flow can decide to do nothing: for example, where an entity was rejected but it was not yet cloned to an external system.

If an entity in a source system is mapped to several external systems, OO flow will run once for every external system, see Single or
Multiple linkedEntity.

64

® OO flow calls HP SX by sending JMS messages.

Case exchange OO flow description

The following section explains how the OO flow is executed and which conditions/operations are called. Here is a screenshot of a real Incident CX
flow:

- g |
parsgJSON

nothing to do 5
4
e . " De=—Q

condition clone success
incident

= %)
3 . | 6 T
g~ @——&F Qo @

incidentUpdat condition condition update linked SuCcess

d entity

msg send
failed

0. Message in canonical model is sent to OO flow.

65

Input message of the flow

"event":"inci dent Updat ed",
"entity":{
"instanceType": " SM',
"instance": " nmpavnsnil0",
"entityType":"Incident",
"entityld":"1ML3087",
"properties":{
"Title":"Wndow was broken",
"Description":"An angry enpl oyee broke the w ndow',
"Status":"Pendi ngVendor",
"Urgency":"14",
"l npact":"I2",
"Attachments":[]
}

}

"linkedEntity":{
"instanceAlias":"saw",
"instanceType": " SAW,
"instance": "nmsal b003sngx",
"entityType":"Incident",
"entityld":"19822",
"properties":({

"Status":"Conpl ete",
"Attachments":[]

1. The first OO step parses the message and splits it into many OO context variables (for example, entity.instance, entity.properties.Title). The
other OO steps use these context variables directly, and do not parse the json message again.

2. This step checks if the event is incidentUpdate

condition:

$(' event') == "'incidentUpdated

3. This step checks if the incident is linked to an external system

condition:

nonEnptyString($('linkedEntity.instanceType')) &&
nonEnptyString($('1inkedEntity.instance'))

4. This step checks if the incident is linked to any other incident in the external system. If it is not, the incident will be cloned, or else the incident
will be updated. A similar scenario is used for most events, because a user can work with an incident in the source system and link the incident to
an external system in any phase of the lifecycle (for example, during resolving). This means the clone operation has to switch the cloned incident
to the right state.

66

condition:

nonEnptyString($('linkedEntity.entityld'))

5. This step calls the cloning operation in the external system and the updating operation in the source system. A batch operation is used. The
typical implementation in the adapter is: SX creates a new incident in the target system. The operation returns ID + state of the new incident and
adds it to the message. The second operation copies this information back to the source system.

In the following example you can see unfilled parts of the message, which will be filled by the first operation. You can also see how the adapter is
chosen by target system type.

67

messageText

{ Il placehol ders ${xxx} will be replaced by OO context variables frominput nessage.
First step of the flow prepared it.
"operations":|
{ //first operation for target system
"operationNane": "cl onel nci dent",
"messageType": "${linkedEntity.instanceType}: PLAIN', //nessageType
(adapter) is choosen by information in input nessage
"message": {
"messageHeader": {
"backendSyst enilype": "${1i nkedEntity.instanceType}",
"targetlnstance": "${linkedEntity.instance}"

H
"args":{

"event":"${event}",

"entity":${entity},

"linkedEntity":{
"instanceType":"${linkedEntity.instanceType}",
"instance":"${linkedEntity.instance}"

}

}

}
H
{ //second operation for source system
"operati onNane": "updat eLi nkedl nci dent | nf 0",
"messageType": "${entity.instanceType}: PLAI N',
"message": {
"messageHeader": {
"backendSyst enilype": "${entity.instanceType}",
"targetlnstance":"${entity.instance}"

T,

"args":{
"event":"${event}",
"entity":{

"instanceType": "${entity.instanceType}",
"instance":"${entity.instance}",
"entityType":"${entity.entityType}",
"entityld":"${entity.entityld}"
b
"linkedEntity":{
"instanceAlias":"${linkedEntity.instanceAlias}",
"instanceType":"${linkedEntity.instanceType}",
"instance":"${linkedEntity.instance}",
"TODO entityType":"TODO. overwite in clonelncident”, //these
parts will be filled by output of the first operation
"TODO entityld":"TODO overwrite in clonelncident",
"properties":{
"TODO: Status": "TODO overwite in clonelncident”
}

68

6. This step calls the updating operation in the external system and the source system. The content is similar to step 5, but there is only a single

operation for the target system.

messageText

"messageHeader " : {

"backendSyst enType": "${1 i nkedEntity.instanceType}",

"targetlnstance":"${linkedEntity.instance}"
1
"args":{

"event":"${event}",

"entity":${entity},

"l'inkedEntity": ${linkedEntity}

This is a description of one incident flow branch. Other branches are very similar.

About Incident flow

Incident CX flow is shared for all incidents exchanging between every type of system (i.e.
is a conversion table between events and SX operations:

incident was cloned already

event name operation in target operation in source
system system

incidentExternalReferenceCreated --

incidentUpdated updateLinkedIncident -

incidentClosed closelncident updateLinkedincidentinfo
incidentResolved resolvelncident updateLinkedincidentinfo
incidentReopened reopenlincident updateLinkedIncidentinfo

incidentOwnershipAssigned assignOwnershipTolncident updateLinkedIncidentinfo
incidentOwnershipAccepted acceptOwnershipOfincident updateLinkedIncidentinfo
incidentRejected rejectincident updateLinkedincidentinfo

incidentCancelled cancellncident updateLinkedincidentinfo

All events are symmetrical, see: Symmetry.

message format for updateLinkedIncidentinfo operation:

69

it is shared across all backend system adapters). Here

incident was not cloned yet

operation in target
system

clonelncident
clonelncident
clonelncident
clonelncident
clonelncident
clonelncident

clonelncident

operation in source
system

updateLinkedIncidentinfo
updateLinkedIncidentinfo
updateLinkedIncidentinfo
updateLinkedIncidentinfo
updateLinkedIncidentinfo
updateLinkedincidentinfo

updateLinkedIncidentinfo

message

"nmessage": {
"messageHeader": {
"backendSyst eniType": "${entity.instanceType}",
"targetlnstance":"${entity.instance}"

H
"args":{
"event": "updat eLi nkedl nci dent | nf 0",
"entity":{
"instanceType":"${entity.instanceType}",
"instance":"${entity.instance}",
"entityType":"${entity.entityType}",
"entityld":"${entity.entityld}"
H
"linkedEntity":{
"instanceAlias":"${linkedEntity.instanceAlias}",
"instanceType": "${linkedEntity.instanceType}",
"instance":"${linkedEntity.instance}",
"entityType": "${previ ousOperati onResult.entityType}",//filled by previous
operation
"entityld":"${previousQperationResult.entityld}",//filled by previous
operation
"properties":{
"Status": "${previousOperationResult.Status}"//filled by previous
operation
}
}
}

message format for all other operations (clonelncident, updateLinkedIncident, closelncident, resolvelncident, reopenincident,
assignOwnershipTolncident, acceptOwnershipOfincident, rejectincident, cancellncident):

message

"message": {
"messageHeader": {
"backendSyst enifype": "${l i nkedEntity.instanceType}",
"targetlnstance":"${linkedEntity.instance}"

b

"args":{
"event":"${event}",
"entity":${entity},
"l'inkedEntity":${linkedEntity}

}

Change Observers

Table of Contents:

70

® Overview
® ChangeObserver implementation
® Polling change observer implementation
® Overriding CxPollingCommand
® Overriding SxPollingByAliasCommand

This section offers:

An overview of change detection.

Describes the support for change detection in the existing code.

Outlines the way to use change detection with new HP SX adapters.

Gives a specific example of how change detection is implemented in the HP SAW adapter using the Polling Command.
Describes what should be the outcome of a brand new implementation of change detection not based on existing code.

Overview

Each external system type participating in CX must be able to perform relevant change detection in the external system. The mechanism can be
either based on periodical polling of the external system, or on having the changes pushed back to the adapter. In either case, the external
system adapter willing to participate in CX must provide its implementation of the ChangeObserver interface provided by the CX API. The
implementer of the system-specific Change Observer can chose to reuse an existing polling based system and only override methods for system
specific execution, or implement the change observation completely from scratch.

In either case, the Change Observer is responsible for:

® Collecting information about changed entities.
® Checking event filters for each change.
® Sending a CX message to the respective pipeline of the external system adapter for each triggered event.

ChangeObserver implementation

What follows are details for implementing the ChangeObserver:

a. Based on an existing Polling Observer
b. From scratch.

Polling change observer implementation

The existing implementation of ChangeObserver can be found in the CompositeChangeObserver Java class. The class is abstract and anyone
wanting to use it as a base for his own implementation must create a subclass. The implementation of the class is fairly simple. In its constructor,
the class is expecting a List of Commands (Runnables). The commands are then sequentially executed when checking the external system for
changes. The subclass is expected to pass its own list of commands to the CompositeChangeObserver constructor.

There are no restrictions on the nature of the Runnables passed as commands. However, to facilitate the existing code in the CX framework for
change polling, the implementer is expected to extend the PollingBaseCommand or one of its subclasses - CxPollingByAliasCommand or
CxPollingCommand. These two classes differ in their mode of operation:

1. CxPollingByAliasCommand issues one request per alias, whose source external system type matches the ChangeObserver's external
system type.
An example: The SawChangeObserver is polling HP SAW systems for changes. There are three aliases defined in
ext er nal - syst ems. j son. The first alias connects an HP SAW system to an HP SM system, the second alias connects an HP SM
system to an HP SAW system, and the third alias connects an HP SAW system to another HP SAW system. Only the first and third alias
is processed by the SawChangeObserver, because the source external system type of these aliases is HP SAW. When polling those
systems, one polling request is issued to the source external system of the first alias and the other request is issued to the source
external system of the third alias.

2. CxPollingCommand processes all the systems present in the i nst ances. j son configuration file for the corresponding external system
type (for example JIRA.) For each instance, it checks whether the system is defined in the external-systems.json file as well. If it is, the
CxPollingCommand polls the respective external system for changes.

Once the changes are detected, the mechanism for processing them is the same for both implementations:

® Each event defined for the entity type that has been changed in the external system has an event filter defined in the configuration. The
event filter is an expression containing variables whose value is determined by the entity change. If the filter evaluates to true for the
particular change, the respective event is triggered.

® The triggered event is placed into a message. The message is sent to HP SX for further processing. The pipeline for processing the
message is set to CaseExchangePipeline.

®* The CaseExchangePipeline makes sure the actions defined for the event or its event group are executed, and typically at the end of the
processing a message to Operations Orchestration is sent.

71

Overriding CxPollingCommand

The most important method to override in the Polling Change Observer based on CxPollingCommand is the constructor. Several parameters have
to be passed to the CxPollingcommand constructor:

The String representing the type of the external system to be polled, for example SAW.

The String representing the (adapter-specific) entity type to be polled, for example probsummary.

The name of the instances configuration file for the external system type.

The name of the HP SX operation to be called to poll the remote system for changes.

The Operation Executor to be used to execute the operation.

The rule store for the particular external system type. It stores the events and event filters for the respective system and returns them as
a List of Listeners

® The Filter Evaluator to be used for event filter evaluations.

Another method to be overridden by the subclass is extractChangedEntities(). It is called to extract the list of changed entities from a Map
representing the polling operation result. Note that the output of the operation is not standardized and may hugely differ between external system
types.

For proper entity ID extraction from a changed entity representation, the extractEntityld() method is called. It gets a Map of the entity JSON
object as its argument.

The last abstract method to override is prepareMessageForCustomDataCx(). This method is called to prepare a message to be sent to the
CaseExchangePipeline, representing the event generated by the change in the external system entity.

Overriding SxPollingByAliasCommand

While the mode of operation of SxPollingByAliasCommand is different to CxPollingCommand, the set of methods to be overridden is the same,
including the constructor and its parameters.

Provided content packs

OOB content packs

HP SX contains the following out-of-the-box content packs:

sx-base - the base content for HP SX. This content pack is required and cannot be removed.
csa-r2f - the content pack providing files for HP CSA requests-to-fulfillment.

sm-r2f - the content pack providing files for HP SM requests-to-fulfillment.

sm-ticketing - the content pack providing files for HP SM ticketing.

sm-case-exchange - the content pack providing files for HP SX CX customizations.
sm-test-ui-support - the content pack providing files for HP SM related functions of HP SX UlI.
csa-test-ui-support - the content pack providing files for HP CSA related functions of HP SX Ul.
mock-r2f - an empty content pack.

email-r2f — the content pack providing files for email requests-to-fulfillment.
saw-case-exchange — the content pack providing files for HP SAW CX customizations.

Apart from the system or testing content pack, OOB content packs implement the business functionality outlined in the table below.

Content pack Description

csa-r2f Enables request-to-fulfill (R2F) use case for CSA offerings
aggregated into the Propel portal catalog.

Contains support for portal actions:

approve/deny request
® check subscription
® cancel subscription

sm-r2f Enables R2F use case for HP SM catalog items aggregated into
Propel portal catalog.

It implements notification emails. Notification emails are sent to

® approver after the user submits the request
® requester notifying the approval/denial
® requester notifying fulfillment

72

email-r2f

sm-ticketing

case-exchange

sm-case-exchange

saw-case-exchange

SDK provided content packs

Provides support for items that are considered to be fulfilled by
confirmation in UL.

Scenario:

1. User requests an item.

2. An email is sent to the appropriate person. The email sent
contains links to confirm or deny the request.

3. The request is finished/denied by clicking the confirm/deny link.

Provides support for the ticketing use case with HP SM as the
ticketing backend system.

Supports standard ticketing management operations: create, add
comment, add attachment, close etc.

Create ticket operation results in the creation of an Interaction entity
in HP SM.

This content pack contains backend system-type independent CX
configuration and operations.

It supports mainly:

® Incident case exchange - where incidents are exchanged
between systems

® Incident task case exchange - where tasks created under an
incident are exchanged. The main advantage with this is that
multiple tasks under a single incident can be assigned to
different systems simultaneously.

This content pack contains backend system-type specifics: CX
configuration and operations specific to HP SM, that support generic
configuration in content-case-exchange.

This includes mainly case exchange event definitions.

This content pack contains backend system-type specifics: CX
configuration and operations specific to HP SAW, that support
generic configuration in content-case-exchange.

This includes mainly CX event definitions.

These are content packs provided within the SDK package in sx- cont ent directory:

Content pack

73

Description

jira Ticketing

Provides support for the ticketing use case with JIRA as the ticketing
backend system.

Supports standard ticketing management operations: create, add
comment, add attachment, close etc.

Create ticket operation results in the creation of an ISSUE entity in
JIRA.

The exposed JIRA ISSUE properties that are submitted as ticket
properties are:

summary
description
project
issuetype
priority
reporter
asignee

R2f

The user creates an order in Propel. When creating an order, the
user chooses a project to create the task in and specifies the
properties of the task (title, description, reporter, priority.) As a result,
a task in JIRA is created with Open status and a mail is sent to the
lead of the JIRA project (who is acting as the Approver). Additionally,
a notification is sent to the catalog.

The lead invokes the approve operation in Propel. As a result, the
task status is set to In Progress and a notification email is sent to the
reporter. Additionally, a notification is sent to the catalog.

A developer resolves the task in JIRA. As a result, the reporter
receives an email. Additionally, a notification is sent to the catalog.

A developer closes the task in JIRA. As a result, SX stops listening to
changes of this task.

Case-exchange

Contains support for CX events and operations in the JIRA backend
system type.

The use case supported:

1. An Incident clone is triggered in a linked external system, an
incident is cloned in JIRA as a linked issue.

2. When the JIRA linked issue is resolved, the original incident will
be automatically resolved as well.

How to extend HP SX Content (HP SM Problem entity)

® HP SX content overview

HP SM configuration
® SOAP API configuration and testing
® REST API configuration and testing
® Additional APl needed

74

® Setup Problem entity update triggers
® Creating SM unload files
Defining messages
HP SX content module
OO0 flow
® Configure OO Studio
® Prepare Maven OO build
® Create an OO project
® Define OO flow inputs
® Design OO flow
HP SX Adapter configuration
® Prepare Maven content build
¢ Content pack structure
® Flow configuration
® Operations configuration and templates
Testing and Troubleshooting
¢ Content management Ul
Content upload maven plugin
Testing using the SX REST interface
HP SX log files
HP OO UI

This section demonstrates how to extend HP SX content capabilities.

The example shows the the implementation of an HP SX content pack for OOB provided HP SM adapter. To demonstrate HP SX capabalities the
HP SM entity called Problem was chosen. The example extends HP SX functionality to:

support the cr eat e operation for Problem entity

monitor its state

send notifications about it back to the Propel catalog

when the Problem is solved, inform the submitter via email.

To explain the create operation in more detail. After the implementation of this example HP SX will be able to handle an icoming POST request on
its /request REST resource that represents a request to create a Problem entity in HP SM. This is basically what the R2F use case of HP SX is
called. It is presumed that the icoming request is issued by Propel portal but there is no dependency to it so the request could be issued by any
kind of HP SX client.

HP SX content overview

In this overview section a general brief overview is repeated for readers convenience. The aspects of HP SX that are most important to
understand the example implementation are highlighted.

HP SX in the HP Propel stack acts as a communication platform with fulfillment systems such as HP SM or CSA. As HP SM is so widely
customizable HP SX cannot supply a one-size-fits-all solution. Usually, for a specific HP SM instance specific content matching has to be created.

HP SX content consists of two main parts:

®* OO Flow
® This describes high-level interaction state actions. For example, if a request is closed inform the submitter, or if an entity does
not exist yet, create it.
® Adapter operation definitions
® These translate high-level operations, such as cr eat ePr obl em into a sequence of low level system calls using REST or
SOAP interfaces on a target system.

HP SX request processing:

1. The processing starts when a message arrives at an HP SX request REST endpoint. The incoming message is in the form of a JSON file
containing information such as:

the fulfillment system type

the fulfillment system instance

the requestor

the requested items identification

selected user options.

Based on this information HP SX decides which OO flow to invoke.

2. The OO flow usually starts by checking if the request already has an ID in the external system. If not, a cr eat e operation is invoked back on
the SX adapter

75

3. The SX adapter performs the series of calls needed to create an entity in an external system, and as a last step usually registers to listen out
for changes of the just-created entity. As part of the natification registration it determines which adapter operation will be used for the checking of
the entity state.

4. When a change occurs in the external system, HP SX invokes a check operation. This check retrieves all the required information about the
affected entity in the form of a JSON representing the state of the entity.

5. The OO flow is invoked again, taking this state as an input. The flow decides if the change is worthy of interest, and if any actions are needed.
For example, it could invoke another operation or create and send an email notification.

6. The entity lifecycle normally ends in a closed state - if this state is detected, HP SX stops listening out for specific entity changes.

HP SM configuration

In HP SM Problem entities are kept in the rootcause table. This table is exposed via SOAP and REST endpoints as well. Find this configuration
from the HP SM UI, by going to Tailoring > Web services > Web service configuration.

NOTE: The preferable method is to use REST endpoints. It may in some cases be a better option to use SOAP, so this is explained here too.

SOAP API configuration and testing

On the Web service configuration page you see that the Problem entity is exposed using a service called ProblemManagement. This service
name also represents the WSDL name of your service. This WSDL is accessible using the following URL:
http://sm_host:13080/SM/7/ProblemManagement.wsdl

You can test the cr eat e operation using a SOAP client such as the Wizdler extension for Google Chrome. When it is installed, web service
operations can be invoked using the wizdler icon at the end of the address bar, as you see in this screenshot:

[sr_host:13080/SM/7/Prol »

€ - C | [sm_host13080/SM/7/ProblemManagementwsdl Hir B & B =
=% Apps o Designer o Service Exchange ﬁJenkins Jvﬂ ProblemManagement . lnkins—old »
. .] ¥ 5° ProblemManagement ' T
This XML file does not appear to have any style inform @ CloseProblem m below. H
% CreateProblem 5
rv<definitions xmlns="http://schemas.xmlso % ReopenProblem
xmlns:cmn="http://schemas.hp.com/5M/7/Co| % RetrieveProblem

xm%:s:thp=”éttp:ffsc?emas.xmlsnap.crgfw) RetrieveProblemKeysList
xmlns imime="http://schemas.xmlsoap.org/w o : ; : . com/SM/T"

BRI i 5 : % RetrieveProblemList 2 o "
xmlns:soap="http://schemas.xmlsoap.org/w g o/ 2001/ XMLSchema
xmlns:xsi="http://www.w3.o0rg/2001/XMHML5ch ¥ UpdateProblem
tcargetHamespace="http://schemas.hp.com/3
xsi:schemalocation="http://schemas.xmlso o/ wsdl/ ">
T<LYpES>

v<x=2:schema xmlns:xs="http://www.w3.o0xrg/2001/¥MLSchema" xmlns="http://schemas.hp.com/SH/ 7"

xmlns:con="http://schemas.hp.com/5H/7/Common"
xmlns:xmime="http://www.w3.0rg/2005/05/xmlimime™ attributeFormDefault="ungualified"
elementFormDefault="gualified" targetNamespace="http://schemas.hp.com/SHM/7" version="2014-
8-28 Bev 1">

<¥s!import namespace="http://www.w3.org/2005/05/ xmlmime"

schemalocation="http://www.w3.o0rg/2005/05/xmlmime" />

<¥s!import namespace="http://=schemas.hp.com/5M/7/Common™

schemalocation="http://mpavmsml0.HPSWLABS .ADAPPS.HP.COM:13080/5M/7/Common . xad" />
y<xs:complexType name="ProblemFeyvasIvpe™>

¥IHS:SeguUence>

<xsz:element minQccurs="0" name="Id"™ nillable="trus"™ type="cmn:StringType™/>
</x=3:zequence>
<Esiattribute name="guery" type="xs:string" use="pptional"/>
<Esiattribute name="updatecounter” type="xs:long" use="gptional"/>
</xs:complexTvpe>
yv<xs:complexType name="ProblemInstanceIyvpe™s>
WLHI a2MNENCe >

76

When the Cr eat ePr obl emoperation is invoked without providing any input, the following errors occur:

Please provide an Area.

Please provide a Subarea.

Please provide a Description.

Invalid Assignment Group

Message fc-1501 Could not be found:
Please provide a Service.

Please provide a Title.

Please provide an Impact.

Please provide an Urgency.

By default these mandatory fields are not exposed on the web service and need to be added manually.

Go to the Problem web service configuration and add fields according to the following table:

Field Caption Type
brief.description Title

description Description

initial.impact Impact

severity Urgency

subcategory Area

category Category

affected.item AffectedService

assignment AssignmentGroup

product.type Subarea

Now it is possible to create the problem entity without validation errors. Invoke the Cr eat ePr obl emoperation using Wizdler and pass the
following message as an input:

7

Create Problem request

<Envel ope xm ns="http://schemas. xm soap. or g/ soap/ envel ope/ ">

<Body>
<Cr eat ePr obl enRequest xm ns="http://schenmas. hp. coni SM 7" >
<nodel >
<keys/ >
<i nst ance>
<Titl e>Sanpl e Problenx/Title>
<Descri pti on>
<Description>lt doesn’'t work at all.</Description>
</ Descri pti on>
<l npact >4</ | npact >
<Ur gency>2</ Ur gency>
<Servi ce>Appl i cati ons</ Servi ce>
<Assi gnnment G oup>Appl i cati on</ Assi gnnent G oup>
<Ar ea>dat a</ Ar ea>
<Subarea>data or file incorrect</Subarea>
</instance>
</ nodel >
</ Cr eat ePr obl enRequest >
</ Body>

</ Envel ope>

The element nessages now informs of the successful problem creation:

Response messages

<nmessages>
<cmm: nmessage type="String">Probl em PMLO031 has been opened. </ cmm: nessage>
<cm: nessage type="String">Problemrecord added. </ cnrm: nessage>

</ nessages>

You can also see the ID of the newly created problem entity in the keys element:

Resposne Problem ID

<keys>
<ld type="String">PMLO031</|d>
</ keys>

The newly created problem is also visible in the HP SM UlI, for example using Problem Management > Problem Control > Search Problems.

78

REST API configuration and testing

Since version 9.32, HP SM supports REST APIs. Use them for checking the Problem entity state in this example. To do this, expose a few more
fields in the response.

The fields are summarized in the following table:

Field Caption Type
current.phase CurrentPhase

status Status

opened.by OpenedBy

root.cause RootCause

expected.resolution.time Resolution Time

In Problem web service you see that the rootcause table is exposed under the problem’s collection name. The Rest URL of the detail of the
just-created Problem entity looks like this:
http://<sm_host>:13080/SM/9/rest/problems/PM10031

Test the REST endpoint using a REST client. For example, the DHC — REST HTTP API Client available from the Google Chrome app store.

79

[B DHC x* W
€ - C | [4 chrome-extensiony//aejoelaoggembcahagimdiliamlcdmfm/dhchtml 7 % @ B =
$f Apps o Designer o Service Exchange 3 Jenkins £ CCUEFTCJenkins £ Consumption Jenkins 3 Jenkins-old £ FTC Jenkins »

¥ DHC *™ o
SERVICE
HTTP v fi sm_host:13080/SM/9/rest/problems/PM10031 201 | GET v
HEADERS form - BODY
| Authorization - Basic YWRiaW4BY2hht % & ¥HR does not allow an entity-body for GET request.
&-B
B e e e R P L
288 OK elapsed time 1.4s
HEADERS form ~ BODY formatted ~
Connection: Keep-Alive {
Content-Length: 473 Bytes "Messages"” : [
Content-Type: application/json;charset=utf-8 1,
Date: 2014 Aug 27 17:42:45 +10s "Problem” : |
Keep-Alive: timeout=1200000, max=1000 Bl o
Server: Apache-Coyote/1.1 ":S::lg"meztﬁ':{;:ﬁrﬂ; e L ralon .
X-Content-Type-Optio... nosniff . aregory - S . .
CurrentPhase” : "Problem Detection, Logging and
Categorization”,
"Description” : [
"It doesn\u2819t work at all."
1s
"Id” : "PM1B@&31",
"Impact™ : "4",
"OpenedBy" : "falcon”,
"Service” : "Applications”,
DO YOU LIKE THIS APP? @ BY PAYPAL OR BITCOIN , RATE IT, WRITE A REVIEVY. TERMS OF SERVICE - PRIVACY POLICY - CONTACT

In order to get a proper response you need to provide an Authorization header containing the username and password of an HP SM operator user
in your organization. The REST call should return properties of the Problem entity in the form of a JSON structure such as this:

80

Response Problem detail

{

"Messages": |

1.

"Problem: {
"Area": "data",
"Assi gnment Group": "Application",
"Category": "BPPM,
"Current Phase": "Problem Detection, Logging and Categorization",
"Description": [

"It doesn\u2019t work at all."

1.
"1d": "PMLOO31",
“lnpact": "4",
"COpenedBy": "fal con",
"Service": "Applications",
"Status": "Open",
"Subarea": "data or file incorrect",
"Title": "Sanple Problent,
"Urgency": "2"

},

"ReturnCode": 0

}

Additional API needed

In order to notify the submitter about the problem’s solution the submitter's email address is needed. This can be retrieved using the existing
operator SOAP APl in HP SM. It is available in the FSCManagement web service. The Ret ri eveOper at or operation takes the operator name
as an input and returns the email address in the Email property.

Setup Problem entity update triggers

HP SX needs to know about any changes occurring with the problem entity in HP SM. This is done through update triggers added to relevant HP
SM data tables: the table that stores the problem entity.

I'ib.SX EntityChangeV2. entityAfterUpdate

The update triggers usually call common HP SX trigger code - |i b. SX_EntityChangeV2. entit yAfter Updat e. This procedure performs
the following:

1. Checks whether the change is of interest, which requires listening to the changed entity. This information is stored in the
SxRegisteredEntitiesV2 table.
2. If there is some registration matching, the given entity ID of the new record is stored in the SxEntityChangesV2 table.

HP SX performs periodic polling for records in SxEntityChangesV2. This polling is done through HP SM-defined external access to the table,
which makes the polling a REST call. If change polling finds a record, HP SX starts processing it and removes the record when complete.

Defining an update trigger

In order to enable change listening for the Problem entity in this example, a new update trigger needs to be defined.
NOTE: A new trigger can only be defined using an HP SM standalone client, not through the web interface.

Go to System Definitions > Tables > rootcause.

Click New... in the Associated triggers section.

Enter a new trigger name, for example, SX.rootcause.after.update.

Choose 4-After Update Trigger Type and enter the following text into the Script area:

rwNE

81

lib. SX _EntityChangeV2.entityAfterUpdate('id , oldrecord, record);

5. Click Save.

This new trigger calls the HP SX common trigger code every time a Problem entity is created or updated.

Creating SM unload files

When HP SM customizations are complete, back them up somewhere and move them across all of your HP SM installations. HP SM supports “
unload” files for this purpose.

You can define an unload on one system, export it, and then import it to another system.

Defining and creating an HP SM unload:

1. In the HP SM Ul go to System Administration > Ongoing Maintenance > Unload Manager > Create Unload.

2. Enter values according to the following table:

Name Value

Defect Id SXProblem_1.01
Summary SXProblem
Apps version SM9.32

Hotfix type Official

3. Define the content of your unload file. This is all that is necessary to change at this point (problems web service and new problem trigger):

Object Type Query
triggers trigger.name="SX.rootcause.after.update"
extaccess service.name="ProblemManagement" and object.name="Problem"

4. Click OK to save the unload definition.
5. To download a new unload file now:
a. Click Proceed.

b. Provide a file name and click Proceed again.

Applying an HP SM unload

1. Go to System Administration > Ongoing Maintenance > Unload Manager > Apply Unload.
2. Choose the just-downloaded unload file.

3. Provide a backup file name.

4. NOTE: There could be a conflict during the application of the unload which has to be solved manually. Perform the conflict resolution using the
HP SM Client only, not the web interface.

For each line in conflict:
a. Double click the line in conflict and fix the content in the right column.
b. When complete, check the Reconciled checkbox and click Save.

5. When all conflicts are reconciled, finish the unload application wizard.

At this point the HP SM instance is prepared, and you are ready to create the sample content.

82

Defining messages

HP SX is a message driven system. If you want something from HP SX your request has to pass in the form of a JSON message. These
messages are consumed by your adapter definitions or OO. HP SX itself only needs to understand a few important message parts. They are
messageType and routing properties (system type, target instance). For a Cr eat ePr obl emoperation you can reuse an existing message

format, one used for R2F use cases.

An example CreateProblem message:

Create problem message

{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: request ™",
"messageType": " probl ent,
"name" : "My problent,
"description" : "Problemdesc",
"urgency" @ "1",
"items" |
{
"route" : {
"@ype" : "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: rout e",
"systemtype" : "SM,
"target _instance" : "http://<sm host>: 13080/ SM'
}
}
]
}

This message will be available as a message source for HP SX’s OO flow input bindings, as shown later. It will also be used as an input into an
adapter Cr eat ePr obl emoperation. The create message is only one message going through HP SX in this example scenario. A representation
of the Problem entity state also needs to be produced by the checkPr obl emoperation. It is called every time the specific problem entity changes
in HP SM, and again if it is used as an input for an OO flow. This message is fully under HP SX’s control as it is not exposed outside its system.
This example chooses a simple JSON structure named pr obl eml nf o, containing all relevant properties. Notice also the message header in this

example, which is system generated:

83

Problem status message

{
"messageHeader" : {
"backendSyst enlType" : "SM',
"external I d" : "b91f 09f 4- Oeb7- 48ea- af a9- 252f 1d8d91ba",
"messageType" : "problent,
"targetlnstance" : "npavnmsnmlO"
H
"probl em nfo" : {
"contact" : "falcon",
"“contactEnmmil" : "petr.fiedler@mp.cont,
"cont act Ful | Nane" : " FALCON',
"id" : "PMLO032",
"phase" : "Problem Prioritization and Pl anning",
"status" : "Open",
"title" : "My problent
}
}

HP SX content module

This example uses Apache Maven (http://maven.apache.org/index.html) for building the HP SX content pack.

At least two modules are needed, the first for the OO content pack and the second for the SX content pack. Also a common parent POM module
needs to be defined for the two. The directory structure will look like this:

® sx-demo-content
® content-sm-problem
® pom.xml
® 00-sm-problem-cp
® pom.xml
® pom.xml

In the parent pom xni the version of dependent libraries is defined, also some further configuration is added:

84

Parent pom.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://mven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>com hp. propel . servi ceExchange</ gr oupl d>
<artifactld>service-exchange-content-ponx/artifactld>
<versi on>1. 1. 0- SNAPSHOT</ ver si on>
<packagi ng>ponx/ packagi ng>
<name>Servi ce Exchange Content </ nane>

<properties>
<oosdk. ver si on>10. 10. 9</ oosdk. ver si on>
<sx.version>1.0. 1</ sx. versi on>
<sx- nessagi ng. ver si on>1. 0. 1</ sx- nessagi ng. ver si on>
</ properties>
<modul es>
<nmodul e>cont ent - sm pr obl enx/ nodul e>
<nmodul e>00- sm pr obl em cp</ nodul e>
</ modul es>
<dependencyManagenent >
<dependenci es>
<dependency>
<gr oupl d>com hp. propel . servi ceExchange</ gr oupl d>
<artifact!| d>o00-sm probl emcp</artifactld>
<ver si on>1. 1. 0- SNAPSHOT</ ver si on>
</ dependency>
<dependency>
<gr oupl d>com hp. ccue. servi ceExchange</ gr oupl d>
<artifactld>o0-sx-plugin</artifactld>
<ver si on>${ sx- nessagi ng. ver si on} </ ver si on>
</ dependency>
</ dependenci es>
</ dependencyManagenent >
</ proj ect >

The properties element captures versions of HP OO SDK, core HP SX components, and the version of the SX plugin for HP OO. It is also

necessary to populate the maven repository with SX and OO artifacts.

To do so, copy the artifacts from the SDK package nm2-r epo directory into the local maven repository in your home folder, usually at: c:\\Users

\user _nane\. m2\repository for Windows or / hone/ user _nane/ . n2/ r eposi t ory for Linux.

OO flow

An OO flow in HP SX is used for high level business process modeling. In this example it is used for:

® problem creation
® submitter notification about problem closure.

NOTE: For OO flow creation, HP OO Studio 10.10 needs to be installed.

85

Configure OO Studio

Prior to starting, you need to add the SX OO plugin artifact (maven artifactld oo- sx- pl ugi n) and all its dependencies into your OO internal
maven repository. Copy your full local repository (hore/ . n2/ r eposi t or y) into the directory used by OO (hone/ . oo/ dat a/ maven). The
following procedure presumes that you have already copied the n2- r epo directory of the SDK package into your local maven repository.

The Base 1.1.1 OO Content pack needs to be uploaded into your HP OO studio. If it is not listed in the Content packs panel, upload it using the
Import content pack button on the panel toolbar.

Prepare Maven OO build

The OO project will be placed in the following directory:
sx- deno- cont ent/ 0o- sm probl em cp/ src/ mai n/ resour ces/ 00- sm probl em proj ect

The Maven pom xml file is also needed for the oo- sm pr obl em cp module. It is responsible for packaging the OO project into an OO Content
pack deployable to an OO Central server. A Maven plugin from the OO SDK is used for this packaging.

OO Content Pack pom.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://nmaven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0. 0
http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<parent >
<groupl d>com hp. propel . servi ceExchange</ gr oupl d>
<artifactld>service-exchange-content-ponx/artifactld>
<version>1. 1. 0- SNAPSHOT</ ver si on>
</ par ent >
<artifact!| d>00-sm probl emcp</artifactld>
<packagi ng>j ar </ packagi ng>
<dependenci es>
<dependency>
<groupl d>com hp. ccue. servi ceExchange</ gr oupl d>
<artifactld>o00-sx-plugin</artifactld>
</ dependency>
</ dependenci es>
<bui | d>
<resour ces>
<resource>

<di rect ory>${proj ect. basedir}/src/ nain/resources/ oo-sm probl em project</directory>
</ resource>
</ resources>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-resources-plugin</artifactld>
<versi on>2. 6</ver si on>
<configuration>
<i ncl udeEnpt yDi r s>t rue</i ncl udeEnpt yDi r s>
</ configuration>
</ pl ugi n>
<pl ugi n>
<gr oupl d>com hp. oo. sdk</ gr oupl d>
<artifactld>o0-cont ent pack- maven- pl ugi n</artifactld>
<ver si on>${ oosdk. ver si on} </ ver si on>

86

<executions>
<execution>
<i d>gener at e- cont ent pack- pl ugi n</i d>
<phase>pr ocess- sour ces</ phase>
<goal s>
<goal >gener at e- cont ent pack</ goal >
</ goal s>
</ execution>
</ executi ons>
<configuration>

<dest i nati onFol der >${ proj ect . bui | d. out put Di r ect ory} </ dest i nat i onFol der >
<artifactltens>
<artifactltenp
<gr oupl d>com hp. ccue. servi ceExchange</ gr oupl d>
<artifactld>o0-sx-plugin</artifactld>
<versi on>${ sx- nessagi ng. ver si on} </ ver si on>
</artifactltenr
</artifactltens>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

87

Create an OO project

. Open OO Studio.

. Click the New Project icon in the Projects section.

. Enter oo- sm pr obl em proj ect as a project name. It has to match the project directory name specified in the resources section of pom xn .
Specify sx- denp- cont ent \ 0o- sm pr obl em cp\ src\ mai n\resour ces as the location.

. Now OO Studio creates an empty project.

. Under the Library folder of your project, create a new folder using the right mouse menu and choosing New > Folder... Name it JIMSsender.

. Under this folder create a new Operation. After a moment the Create Operation dialog appears listing all the available operations in the OO
internal Maven repository. Choose sendMessageToMQ under com.hp.ccue.serviceExchange:00-sx-plugin:1.1.0.0, as in the example below:

~No oA wWN R

-
. 5 . il
(&Y Operations Orchestration Studio |ﬂ_]
File Edit Tools Settings SCM Window Help
Projects Oa 7 |welkome x| 408 [ee
+29|® X% |z
[El+{z= oo-sm-problem-project | @
B[Library i
7 SXFlows @
- 20 Configuration =
3
o
3
— : €«
—_— .
(&) Create operations - 1 2 9?
1 =
Select operations to import: = g
=) [¥] com.hp.ccue.serviceExchange:oo-sx-plugin: 1. 1.0.0 -~ %

m Community Home Pgj

sendMessageToMQ

-+ [] com.hp.ootoo-base-context-plugin: 1. 1.1

-+ [] com.hp.ootoo-basedegacy-plugin:1.1.1

- [] com.hp.ootoo-base-plugin: 1. 1.1

-+ [] com.hp.ootoo-domet-web-actions-msduster-plugin: 1. 1.1
-+ [] com.hp.ootoo-dotmet-web-actions-plugin: 1. 1. 1
5
5
5
5

m

| Dependencies

) Content Packs: [=1 Librar

2 9 X

- Base [1.1.1]

- [] com.hp. oo :00-dotnet-web-actions-powershel-plugin: 1. 1. 1

- [] com.hp. oo:o0-exceHegacy-plugin: 1. 1. 1

- [] com.hp.ootoo-fedegacy-plugin:1.1.1

- []] com.hp.oo:oo-fs-plugin: 1.1.1 o

BB BB B - BB

Replace common prefix ™ of the actions with: ‘

Online Content

More tutoriz re available in the HP OO0 Studio Home directory.

[ﬁ, SCM Changes

% References | '.L Problems | u?; Search | -Ea HP Live Network Search | ,) SCM Messages

Define OO flow inputs

To design the flow:

1. Create a new folder under Library, call it for example SXFlows.

88

2. Choose New > Flow from the context menu for this folder. Enter a flow name such as SMProblemFlow. A new empty flow is now created.

3. Now to define input parameters. Input parameters are not required, however it is a good practice to declare them explicitly. Input parameters

can be divided into three categories:

« SX internal
« SX configuration

« Custom ones.

4. Switch to the Properties tab and define the input parameters according to the following table:

Input

queueName

messageType

messageCompressed

sxConfiguration.jmsBroker

Required

yes

yes

yes

yes

sxConfiguration.jmsBrokerUsernameyes

sxConfiguration.jmsBrokerPasswordyes

sxConfiguration.smtpServer
sxConfiguration.smtpPort

sxConfiguration.smtpUser

sxConfiguration.smtpPassword

sxConfiguration.mailFrom

problemInfo.id

probleminfo.title
problemInfo.phase

problemlinfo.status

probleminfo.contact
probleminfo.contactEmail
problemInfo.rootCause

probleminfo.resolutionTime

yes
yes

no

no

yes

no

no
no

no

no
no
no

no

From

Prompt User

Prompt User

Prompt User

Prompt User

Prompt User

Prompt User

Prompt User

Prompt User

Prompt User

Meaning

Messaging queue used for
communication with adapter.

Identifies adapter pipeline used
to handle message.

Contains message which will be
passed back to SX, for
performance reasons message
is compressed.

Rabbit MQ hostname.

User name for authentication in
Rabbit MQ.

Password used for
authentication in Rabbit MQ.

Mail server hostname.
Mail server port.

Optional mail server username if
authentication is switched on.

Optional mail server password if
authentication is switched on.

Sender address used for
notification emails.

ID of problem entity for HP SM or
blank for new entity.

Problem title.
Problem workflow current phase.

Problem status such as Open or
Closed.

Submitter full name.
Submitter email address.
Problem solution description.

Problem resolution time.

NOTE: These inputs have to match the definitions provided in the f | ows. j son file, in the adapter content step created later.

The screenshot below shows fully defined flow inputs:

89

-
(&Y Operations Orchestration Studio™ .

Bien va

E

=]

File Edit Tools Settings

SCM

| Projects O& &

+I29 P X

== oo-sm-problem-project
E}B Library
e M] 115 sender
B2 SXFlows
8 sproblemFlow
7 Configuration

l|= Dependencies Og 7

Ll |_ﬂ Content Packs | [Library |
|2 ® X

l (Bl Base [1.1.1] -
E}Eb Library F
77 Accelerator Packs

27 How Do I flows

m

BE Utility Operations

i [Containers

£) Date and Time

t- () Deprecated

£t [Flow Variable Mani
k-] HTML Formatting
#-] Looping

[=+- (7= Math and Compari
E| == Simple Evaluat
Addition
. Divider

. ¥

£
£
=
=
=
£

Window Help

Welcome X | ,!? SMProblemFlow - Flow X |

i.. E %ﬁ ¥ Local Connection ~

Mame: -SMProbiemF.I.ow|

4 T | 3

Location: joo-sm-problem-project/Library fSXFlows /SMProblemFlaw
UUID: 06370fea-f11f-4c0f-ae23-a6fc78%eda1f
Assign Categories:

| Inpugi Outputs | Responses | Description | Scriptet |

s vi Input Summary 4k X

Inputs

Add Input Remove Input k &

Input Required Type From
queuehame @] |Single value + | Prompt User ==
messageType [¥] |Single Value « | Prompt User B
messageCompressed [Single Value - | Prompt User |
sxConfiguration. jmsBroker [Single Value - | Prompt User _ﬁ
sxConfiguration. jmsBrokerUsername [Single Value - | Prompt User _ﬁ
sxConfiguration. jmsBrokerPassword @] Single Value - | Prompt User _g
sxConfiguration. smtpServer @] Single Value - | Prompt User _g
sxConfiguration. smtpPort @] Single Value - | Prompt User _g
sxConfiguration. smiplser] Single Value - | Value: =
sxConfiguration. smtpPassword] Single Value - | Value: _g
sxConfiguration. mailFram @] Single Value - | Prompt User _g
problemInfo.id] Single Value - | Value: |
problemInfo. title] Single Value - | Value: =
problemInfo.phase] Single Value - | Value: =
problemInfo.status] Single Value - | Value: |
problemInfo. contact] |Single value - | Value: |
problemInfo, contactEmail] |Single value - | Value: |
problemInfo. rootCause [[] |Single value - | Value: =
problemInfo. resolutionTime] |single value - | Value: |

Design | Properties |

|$ References |

|;\, Problems | |Q‘\, Search | |§a HP Live Network Search | |;) SCM Messages | |ﬁ SCM Changes
——— -

| SL00] ?|

Sjleunoog 44

I saeLe), wold Q| |

e

Design OO flow

Now the flow inputs are defined you can start the OO flow design.

The flow is responsible for two main things:

1. It invokes the create operation on the adapter if the problem entity is new.

2. It notifies the submitter via email if the problem is closed.

The initial node of the flow checks if the pr obl em nf 0. i d parameter is empty or not. Use the Equal operation from the Base content for this.

Choose Base/Library/Utility Operations/Math and Comparison/Simple Evaluators/Equal from the Content Pack's panel and drag them into
the flow design area. Fill in inputs according to this table:

Input
valuel
value2

operation

Assign from Variable

<not assigned>
<not assigned>

<not assigned>

Otherwise
Use Constant
Use Constant

Use Constant

Constant Value

${probleminfo.id}

When the ID check succeeds the flow will send a message back to HP SX, using the sendMessageToMQ operation created earlier. Drag it from

90

the Projects section and move it into the design area. Enter the input bindings according to the following table:

Input Assign from Variable Otherwise Constant Value
brokerUrl sxConfiguration.jmsBroker Use Constant
brokerUsername sxConfiguration.jmsBrokerUsernamelse Constant

brokerPassword sxConfiguration.jmsBrokerPasswordUse Constant
queueName queueName Use Constant
operationName <not assigned> Use Constant createProblem
messageText <not assigned> Use Constant
messageCompressed messageCompressed Use Constant
messageType messageType Use Constant

When the ID check fails (ID is not empty), another check has to be performed. This time it needs to check if the problem status is Closed. Again,
use the Equal operation from the Base content pack. Enter the input bindings according to the following table:

Input Assign from Variable Otherwise Constant Value
valuel <not assigned> Use Constant ${probleminfo.status}
value2 <not assigned> Use Constant Closed

operation <not assigned> Use Constant ==

When the status is closed HP SX will notify the submitter that this is the case via email. Drag the Base/Library/Operations/Email/Send Mail
component from the Content Pack panel. Input bindings are described in the following table:

Input Assign from Variable Otherwise Constant Value

hostname <not assigned> Use Constant ${sxConfiguration.smtpSever}

port <not assigned> Use Constant ${sxConfiguration.smtpPort}

from <not assigned> Use Constant ${sxConfiguration.mailFrom}

to <not assigned> Use Constant ${probleminfo.contactEmail}

subject <not assigned> Use Constant Problem was solved:
${probleminfo.title}

body <not assigned> Use Constant See bellow

htmIEmail <not assigned> Use Constant true

username <not assigned> Use Constant ${sxConfiguration.smtpUser}

password <not assigned> Use Constant ${sxConfiguration.smtpPassword}

91

Email body

<htnm >
<body>
<h3>Your probl em was sol ved: ${problem nfo.title}</h3>
<t abl e border="1">
<tr>
<t d>Root Cause</td>
<t d>${ pr obl em nf 0. r oot Cause} </t d>
</[tr>
<tr>
<t d>Resol ution Tine</td>
<t d>${ pr obl em nf o. resol uti onTi ne} </t d>
</[tr>
</t abl e>
</ body>
</htm >

With the key flow steps configured, the last step is to connect them all together and add the appropriate flow results. The screenshot below shows
the fully designed flow:

92

T U SSSa e —

[E=SRIE)

File Edit Tools Settings S5CM Window Help
| Projects O 7 | weome x | -# sMproblemFlow - Flow X | 4 ¢ B |6
3 -] = =
200X NEHEG S XBE XD E S [E :
E|E> oo-sm-problem-project i
[Library —
] MSsender %
B2 SXFlows i
“#® SMProblemFlow & g
- [Configuration | | g
=
| Error: €
| @ failure =
=]
4 £ . s
send message | | g
createProblem | z
a
Resolved: i
SUCCESS
| Dependencies oa & | t ' . @
staflls = T
Content Packs | =] Library | d Send email to
submitter -
E N B Error:
| failure \
(1= Base [1.1.1] - .
E}Eb Library F |
77 Accelerator Packs 3 | L]
How Do I flows 2 |
S peratians [Resolved : i
i Temates success e
[Tutorials Resolved :
[=-[z=- Utility Operations sUCCEss
[[Containers
- [Date and Time
[#- [Deprecated
[) Flow Variable Mani
[#- [HTML Formatting
[#- [Looping
E—JB Math and Compari
=)z Simple Evaluat
i
|Iﬂ Inspector | f
- | i
< LI} | * |Design | Properties|
|$ References | |.;\, Problems | |% Search | |ﬁ HP Live Network Search | |\,E.) SCM Messages | |ﬁ SCM Changes

The flow is now complete. In order to test it you need to design an adapter operation, as described in next section.

HP SX Adapter configuration

This section describes how to implement an HP SX adapter configuration. l.e. it describes the configuration that needs to be present in the

content pack so that the HP SM adapter uses the content.

Prepare Maven content build

The content project will be placed in the directory:

sx-deno- cont ent/ cont ent - sm probl enf src/ mai n/ resour ces.

The module's pom xm is responsible for packaging our content together with the OO content pack into one content archive, uploadable into

a running HP SX instance.

93

SX Content Pack pom.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://mven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0.0
http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >
<artifactl d>servi ce-exchange-content-ponx/artifactld>
<gr oupl d>com hp. propel . servi ceExchange</ gr oupl d>
<version>1. 1. 0- SNAPSHOT</ ver si on>
</ par ent >
<artifactld>content-smproblen</artifactld>
<dependenci es>
<dependency>
<gr oupl d>com hp. propel . servi ceExchange</ gr oupl d>
<artifact!l d>o00-sm probl emcp</artifactld>
</ dependency>
</ dependenci es>
<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. naven. pl ugi ns</ gr oupl d>
<artifact!| d>naven- dependency-pl ugi n</artifactld>
<executions>
<execution>
<i d>copy- dependenci es</i d>
<phase>conpi | e</ phase>
<goal s>
<goal >copy- dependenci es</ goal >
</ goal s>
<configuration>

<out put Directory>${project. build.directory}/cl asses/oo</out putDirectory>
<over Wit eRel eases>f al se</ over Wit eRel eases>
<over Wit eSnapshot s>f al se</ over Wi t eSnapshot s>
<over Witel f Newer >t rue</over Wit el f Newer >
<excl udeTransitive>true</excludeTransitive>

<i ncl udeG oupl ds>com hp. propel . servi ceExchange</i ncl udeG oupl ds>
</ configuration>
</ executi on>
</ execut i ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

Content pack structure

The content pack structure consists of three JSON configuration files:
1. A JSON configuration file for the content pack metadata definition.

2. A JSON configuration file for the flow invocation.

94

3. A JSON configuration file for the operation step definitions.

There are also Freemarker template files for the transformation of requests and responses from external system APIs. They can also contain HP
SM unload files and other proprietary content not directly interpreted by HP SX.

The file structure under the sx- denp- cont ent/ cont ent - sm pr obl enf sr ¢/ mai n/ r esour ces directory should look like this:

® sm

¢ SXProblem.unl (exported from SM earlier)
® 00 (OO content pack is placed here during the build, it does not have to exist in the source directories)
® sx

® flows.json

® operations.json

* templates

® Freemarker templates

®* metadata.json

Met adat a. j son contains basic content pack metadata such as id, name, description and version. It also contains the version of the nested HP
SM unload file.

Content pack metadata

{
"id": "smproblent,
"nane": "SM probl em deno content",
"description": "Denp Service Exchange content dealing with problementity
lifecycle in Service Manager",
"version": "1.0.0",
"adapter": "SM',
"features": [
I,
"files": [
{
"path": "snl SXProbl em unl",
"version": "1.01",
"type": "sm.unl oad"
}
]
}

Flow configuration

Flow configuration is expressed in a f | ows. j son file. It specifies which flow will be invoked for problem entity operations, and bindings of flow
inputs to different information sources in HP SX. These could be input messages or various configuration files. The Flow ID could be obtained
from the Properties tab of the SMProblemFlow detail page in OO Studio. For each flow input parameter one structure in the parameters list must
be provided. The structure contains hames which have to match the flow input names. It also contains source property, possible values are
described in the following table:

Source Purpose

message Used for values coming from an SX input message. This has a
default value when no source is provided.

infrastructure Provides infrastructure configuration values such as messaging
server connection settings, or various SX REST endpoint URLs. The
configuration is in the
sx. war/ WEB- | NF/ cl asses/ config/infrastructure.json
file.

0o-properties Contains OO configuration properties such as SMTP server settings.
The configuration is in the
sx. war/ WEB- | NF/ cl asses/ confi g/ oo/ properties.jsonfile.

The ValueSelector property holds a JSONPath expression selecting a specific value from a selected source. It has a similar syntax to XPath. It

95

usually starts with $ and contains dot delimited property names. For example, if you want to select a contact email value from a problem status
message, JSONPath will look Ithis way: $. pr obl eml nf 0. cont act Emai | . See http://code.google.com/p/json-path/ for more examples. It is
necessary to bind several properties for JMS settings (used for passing messages back to HP SX), SMTP server settings (used for sending email
notifications), and Problem entity status properties from the status message defined earlier.

"SM': {
"problent: {
"flow d": "06370f ea-f 11f - 4cOf - ae2a- a6f c789ed81f ",
"conpressMessage": true,
"paraneters": [

{
"name": "sxConfiguration.jnsBroker",
"val ueSel ector": "$. JM5_BROKER. endpoi nt",
"source": "infrastructure"

h

{
"name": "sxConfiguration.jnsBrokerUsernane",
"val ueSel ector": "$. JMS5_BROKER | ogi nNane",
"source": "infrastructure"

h

{
"nane": "sxConfiguration.jnmsBrokerPassword",
"val ueSel ector": "$. JM5_BROKER. passwor d",
"source": "infrastructure"

h

{
"nane": "sxConfiguration.sntpServer",
"val ueSel ector": "$.sntpServer",
"source": "o0o-properties"

h

{
"nane": "sxConfiguration.sntpPort",
"val ueSel ector": "$.sntpPort",
"source": "o0o-properties"

h

{
"nane": "sxConfiguration.sntpUser",
"val ueSel ector": "$.sntpUser",
"source": "o0o-properties"

h

{
"nane": "sxConfiguration.sntpPassword",
"val ueSel ector": "$. snt pPassword",
"source": "o0o-properties"

h

{
"nane": "sxConfiguration.mil Froni,
"val ueSel ector": "$. mail Front,
"source": "o0o-properties"

h

{
"nane": "sxConfiguration.emil Bcc",
"val ueSel ector": "$. enuil Bcc",
"source": "o0o-properties"”

h

{
"nane": "problem nfo.id",
"val ueSel ector": "$. problemnfo.id",
"source": "nessage"

h

{
"nane": "problem nfo.title",
"val ueSel ector": "$.problem nfo.title",
"source": "nessage"

h

{
"nane": "probl em nfo. phase",
"val ueSel ector": "$. probl el nf o. phase”,
"source": "nessage"

96

nanme": "probl em nfo. status",
"val ueSel ector": "$. probl em nfo. status",
"source": "nessage"
"nane": "probl em nfo. contactFul | Nanme",
"val ueSel ector": "$. probl em nf o. contact Ful | Nane",
"source": "nessage"
"nane": "probl em nfo.contactEmail",
"val ueSel ector": "$. probl em nfo. contact Emai | ",
"source": "nessage"
"nane": "probl em nfo.root Cause",
"val ueSel ector": "$. probl em nf o. root Cause",
"source": "nessage"
"nane": "probl em nfo.resol uti onTi me",
"val ueSel ector": "$. probl em nfo.resol uti onTi nme",
"source": "nessage"

97

Operations configuration and templates

Two operations are needed for the example content:

1. cr eat ePr obl emwill be responsible for the creation of the Problem entity in HP SM.
2. checkPr obl emwill retrieve the current status of the entity from HP SM.

For each of these operations it is necessary to define a sequence of steps that correspond to the individual SOAP or REST calls invoked on the
target HP SM instance.

CreateProblem operation
For the create operation, one SOAP request (the CreateProblemRequest that was tested earlier) is needed. Typically for SOAP calls it is

necessary to provide the r equest Ur | Tenpl at e to get the URL, the r equest Tenpl at e for request transformation, the response template for
the server response transformation, and a few http headers as well.

Create problem operation

{
"createProblent: [
{
"l abel": "Create problent,
"request Url Tenpl ate": "snSoapUrl.ftl",
"request Tenpl ate": "createProblemftl"”,
"responseTenpl ate": "createProbl enResponse. ftl",
"header - SOAPActi on": "Create",
"header - Accept": "text/xm"
b
]
}

The result of the request transformation should be a SOAP request containing all the relevant information, which is then sent to the HP SM server.
In this example problem title, description and urgency values are entered.

Templates are written using Freemarker, a powerful template language good for generating text output. A Freemarker manual is available here:
http://freemarker.org/docs/index.html.

Each transformation takes input in the form of structured hash (or Map in Java terminology.) It contains key value pairs. Key is always a string,
value could be a primitive type (String, Boolean, Number or another Map or List.)

In your template include values from the input using the following syntax: ${ expr essi on}. An expression could be a simple dot delimited key
name or something more complicated. See the Freemarker Manual expressions section of
http://freemarker.org/docs/dgui_template_exp.html#exp_cheatsheet for a full reference.

For more complicated template operations such as iteration over lists or conditions there are Freemarker directives. They have xml-like element
syntax, and the element name starts with the # character. In the example below an escape directive is used, which ensures that all expression
results included into the template are properly encoded for XML output. For example, < is replaced by the XML entity >. For a full directive
reference see http://freemarker.org/docs/ref_directive_alphaidx.html

NOTE: The message is available in the template input under the message key.

98

createProblem template

<#-- @tlvariable nane="nessage" type="java.util.Mp" -->
<#escape x as x?xm >
<Envel ope xm ns="http://schemas. xrm soap. or g/ soap/ envel ope/ ">

<Body>
<Cr eat ePr obl enRequest xm ns="http://schemas. hp. coni SM 7" >
<nmodel >
<keys/ >
<i nst ance>
<Titl e>${nessage. nane}</Titl e>
<Descri ption>
<Descri pti on>${ nessage. descri pti on} </ Descri ption>
</ Descri ption>
<l npact >4</ | npact >
<Ur gency>${ nessage. ur gency} </ Ur gency>
<Servi ce>Appl i cati ons</ Servi ce>
<Assi gnment G- oup>Appl i cati on</ Assi gnnent G oup>
<Ar ea>dat a</ Ar ea>
<Subarea>data or file incorrect</Subarea>
</instance>
</ nodel >
</ Cr eat ePr obl enRequest >
</ Body>

</ Envel ope>
</ #escape>

After the SOAP request is processed by an HP SM server, HP SX will receive back a SOAP response. Usually it is necessary to be able to use
information from the response in the later steps of the operation. It is a task for response template transformation. It is passed the original
message and server response as an input. Freemarker has native support for working with XML inputs, for example XPath queries can be used
for selecting values from the response. The result of response transformation has to be a JSON structure. HP SX will merge this structure into the
original message and use the result as an input for the next operation step. See the ft| directive defining the XML namespaces in the example
below. They are then used in an XPath query selecting the ID of the just-created problem entity. ID is placed under the id property of the
probleminfo structure. Also note that the server response is available in the template input under the doc.result key

createProblemResponse template

<#ftl ns_prefixes={
"soap":"http://schemas. xm soap. or g/ soap/ envel ope/ ",
"smi':"http://schemas. hp.com SM 7"}
>
<#escape x as Xx?json_string>
{
"probl em nfo":{
"idt:
"${doc. resul t["soap: Envel ope/ soap: Body/ sm Cr eat ePr obl enResponse/ sm nodel / sm keys/sm |d"]]
}
}

</ #escape>

To summarize: after the first step of the cr eat ePr obl emoperation, a problem entity is created in HP SM and its ID is made available in the input

99

message.

The goal of the next step is to register HP SX as a listener for any problem entity changes. To make this happen some information is needed.

Property Description

notifyTemplate This template is used to generate the input message that is later
passed as the input for a checkProblem operation every time the
problem entity is changed in HP SM.

callbackTemplate This template creates a notification for the Propel catalog when a
change occurs in HP SM.

operationName Name of the operation invoked when the problem entity changes.

idSelector JSONPath expression selecting the ID of the problem entity being
watched.

firstRunimmediately If set to true, the first check operation executes immediately.

entityTypeSelector Name of the HP SM data table containing the problem entity.

Create problem operation cont.

{

"createProbleni: [

"l abel ": "Watch interaction changes",
"notifyTenplate": "checkProblemftl",
"cal | backTenpl ate": "cal | backNotify.ftl",
"operati onNanme": "checkProbl ent,
"idSelector": "$.problenmnfo.id",
"firstRunl nmedi atel y": true,
"entityTypeSel ector": "rootcause"

The cr eat ePr obl emoperation is now complete..

CheckProblem operation
The goal of the checkPr obl emoperation is to retrieve various problem entity properties from HP SM. This time the SM REST interface will be

used. For REST calls you first have to obtain the URL in r equest Ur| Tenpl at e. The http method also needs to be provided, which is GET in
this case. In addition r esponseTenpl at e is needed.

100

Check problem operation

{
"checkProbl em': [
{
"l abel": "Retrieve probleni,
"request Url Tenpl ate": "retrieveProblemur !l .ftl",
"responseTenpl ate": "retrieveProbl enResponse. ftl",
"met hod": "CET",
"header - Accept": "application/json"
I3

The Request URL template takes input consisting of message and instance configuration (in this example an HP SM instance.) The instance
configuration is used as the base URL and appended by the HP SM REST problem collection context. At the end there is the ID of a specific
problem entity.

<#escape x as x?url>
<#noescape>${i nst anceConfi g. endpoi nt } </ #noescape>/ 9/ r est / pr obl ens/ ${ message. pr obl em nf o. i d}
</ #escape>

For the http GET operation there is no request body, so the request template is missing here. The Response transformation is easier also, as HP

SM produces a JSON response which easily maps into Freemarker hash input. Notice that Freemarker is strict about ${ expr essi on} results. If
the expression produces null, it causes a processing error. See the usage of the #i f directive bellow which deals with this problem.

retrieveProblem response template

<#escape x as Xx?json_string>

{
"problem nfo": {
"title": "${doc.result.Problem Title}",
"phase": "${doc.result.Probl em CurrentPhase}",
"status": "${doc.result.Problem Status}",
"contact": "${doc.result.Probl em QpenedBy}"
<#if doc.result.Probl em Root Cause?? && doc. result.Probl em Root Cause?si ze > ;
0>
,"root Cause": "${doc.result.Probl em Root Cause?join("\n")}"
</#if>
<#if doc.result.Probl em Resol utionTi me??>
,"resolutionTine": "${doc.result.Probl em Resol utionTi ne}"
</ #if>
}
}

</ #escape>

The next step in the checkPr obl emoperation is to fetch the email address and the full name of the given operator (Cont act property.) The
existing SOAP APl is used here.

101

Check problem operation cont.

{
"checkProbl ent': [

"label": "Retrieve submtter emmil"
"request Ul Tenpl ate": "snSoapUrl.ftl",
"request Tenpl ate": "retrieveQperator.ftl",
"responseTenpl ate": "retrieveQperatorResponse.ftl",
"header - SOAPActi on": "Retrieve",
"header - Accept": "text/xm"

}

The request template fills the operator name into the request.

retrieveOperator template

<#escape x as x?xml >
<Envel ope xm ns="http://schemas. xm soap. or g/ soap/ envel ope/ ">

<Body>
<Ret ri eveOper at or Request xm ns="http://schemas. hp. com SM 7" >
<nodel >
<keys>
<Name>${ nessage. pr obl eml nf 0. cont act } </ Nane>
</ keys>
<i nst ance/ >
</ nodel >
</ Retri eveQper at or Request >
</ Body>

</ Envel ope>
</ #escape>

The response template extends the pr obl em nf o structure by the full name and email.

102

retrieveOperator template

<#ftl ns_prefixes={

"soap":"http://schemas. xnm soap. or g/ soap/ envel ope/ ",

"smi':"http://schemas. hp. coml SM 7"}
>
<#escape x as x?json_string>
{

"probl em nfo": {

"cont act Ful | Name" :

"${doc. resul t["soap: Envel ope/ soap: Body/ sm Ret ri eveQper at or Response/ sm nodel / sm i nst ance/ «
"contact Enai | ":
"${doc. resul t["soap: Envel ope/ soap: Body/ sm Retri eveOper at or Response/ sm nodel / sm i nst ance/ ¢
}
}

</ #escape>

Callback notification

The goal of the notification callback is to inform the catalog about changes in HP SM. For this example it is not needed as the HP Propel Catalog
is not aware of the Problem entity and therefore will ignore such notifications.

However, this functionality is explained here in case it is required.

The following statuses are reported in notifications:

Status Description

submitted Problem in HP SM is in phase 'Problem Detection, Logging and
Categorization' or '‘Problem Prioritization and Planning’

completed Problem in HP SM is closed

in_progress For all other Problem phases

Notifications have to contain an HP SX request ID, and can in addition contain other optional attributes, for example displayName or externalld.

103

<#fescape x as x?json_string>

{
"@ype": "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : sx: notification",
"id": "${message. messageHeader. external I d}",
"renotel d": "${nessage. problem nfo.id}",
"di spl ayNanme": "${nessage.problem nfo.title}",
"submitter": "${nmessage. probl enl nfo.contact}",
<#i f message. probl em nfo.status == 'C osed' >
"state" : "conpl eted"
<#el sei f nessage. probl em nf o. phase == ' Probl em Det ecti on, Loggi ng and
Categori zation' || message. probl em nfo. phase == 'Problem Prioritization and Pl anning' >
"state" : "submtted"
<#el se>
"state" : "in_progress"
</#i f>
}

</ #escape>

Testing and Troubleshooting

At this point the HP SX example content is complete, it now needs to be tested.

To build the content, call:

mvn clean install

The newly built content pack will be in:
content-sm probl emtarget\content-smprobl em 1. 1. 0- SNAPSHOT. j ar .

Deploy it either using the Content management Ul, or the HP SX content upload maven plugin.

Content management Ul
The Content Management Ul is available using the following URL:
https://sx_host: 8444/ sx/ cont ent Managenent . j sp
Procedure to upload a content pack:
a) Upload the content pack using the Upload button.
b) Select the cont ent - sm probl em t ar get\ cont ent - sm probl em 1. 1. 0- SNAPSHOT. j ar file.

¢) Click OK.

Content upload maven plugin

Another way of uploading content is by using the HP SX content upload maven plugin from the command line. In order to do this you need a
properly configured sx- maven- pl ugi n in your root pom xm file. The configuration contains the following properties:

Property Default value Description

idmuUrl https://catalog_host:8444/idm-service URL of the IdM service on the Propel catalog
machine

idmTransportUser idmTransportUser User used for authorization of API calls on

the IdM service

104

idmTransportPassword idmTransportUser User password used for authorization of API
calls on the IdM service

sxUrl https://sx_host:8444/sx URL of SX service on HP Propel SX machine

username admin HP SX Administrator User with permission to
upload SX content packs - it has to have the
ADMINISTRATOR role within the selected

tenant
password cloud Password of the HP SX Administrator User
tenant Provider Organization name of the HP SX

Administrator User

When configured properly it is possible to upload an HP SX content pack using the following command, executed in the cont ent - sm pr obl em
directory:

mvn install com hp. ccue. servi ceExchange: sx- maven- pl ugi n: upl oadCont ent

When the operation completes content metadata is returned by the HP SX server. You can find it in sx. | og.

Content upload maven plugin output

{
"id" : "smproblent,
"files" @ [{
"path" : "sm SXProbl emunl",
"version" : "1.01",
"type" : "sm.unl oad"
I
"description" : "Denp Service Exchange content dealing with problementity |ifecycle
in Service Manager",
"nane" : "SM probl em deno content",
"features" : [],
"ooContent" : {
"nane" : "o0o-sm probl emproject”,
"version" : "1.0.0"
I3
"upl oadTi me" : "2014-09-12T16: 59: 30+0200",
"adapter" : "SM',
"version" : "1.0.0",
"_links" : {
"self" : {
"href" : "/sx/api/content/sm problenf
}
}
}

Sometimes it is useful (no change in OO flow) and faster, to upload HP SX content and not update the OO flow in the OO Central server. To do
so use the - Dski pOOUpl oad=t r ue parameter from the command line:

105

mvn install

com hp. ccue. servi ceExchange: sx- maven- pl ugi n: upl oadCont ent
- Dski pOQUpl oad=t r ue

Testing using the SX REST interface

When the new content pack is uploaded you can use for example the DHC client again, to test it.

o=
1 DHC * N .
€ - C |[) chrome-extension://aejoelaoggembecahagimdiliamlcdmfm/dhc.html w i @ B =
I Apps o Designer o ServiceExchange £ Jenkins £ CCUEFTClenkins £ ConsumptionJenkins £ Jenkins-old £ FTC Jenkins Cloud OS Jenkins »
‘@ DHC o7 x
SERVICE
HTTP v | :/f| sx_host:8080/sx/apifreques ?0] | POST v Send
HEADERS form = BODY text =
¥ Content-Type . applicationfjson * 1.1
2 "@type": “urn:x-hp:2014:scftware:cloud:data_model:sx:request”,
¥ Authorization : Basic c3hDYXRhbGInY @ x & 2 ‘messagsType":"problem”,
4 "name” : "My First Problem”,
n a7 I:l 5 "description” : "This problem was published using SX",
6 "urgency” : "2,
7 "items" : [
8 {
9 "route® : {
1@ "@type” : “urn:x-hp:2014:software:cloud:data_model:sx:route”,
L "system_type" : “SM",
12 "target_instance™ : "http://sm_host:13080/5M"
13 }
14 ¥
15 1
16}
Text | JSON | XML | HTML length: 448 Bytes
R
262 AC ce pt e d elapsed time 810ms
HEADERS form ~ BODY formatted
Content-Length: 53 Bytes]
Content-Type: application/json "id" : "38628a16-1728-4e61-aab2-befc75f63172"
Date: 2014 Oct & 15:31:02 }
Server. Apache-Coyote/1.1
download length: 53 Bytes

DO YOU LIKE THIS APP? @ BY PAYPAL OR BITCOIN , RATE IT, WRITE A REVIEW.

TERMS OF SERVICE - PRIVACY POLICY - CONTACT

A POST request has to be submitted to the http://sx_host:8080/sx/api/request endpoint. The request content has to contain the JSON message

described earlier.

106

Create problem request

{
"@ype": "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : sx: request ",
"messageType": " probl ent,
"nane" : "My First Problent,
"description" : "This problemwas published using SX',
"urgency" @ "2",
"items" |
{
"route" : {
"@ype" : "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : sx: route",
"systemtype" : "SM,
"target __instance" : "http://smhost: 13080/ SM'
}
}
]
}

If the request is successful, HP SX will return a request ID.

Create problem response

"id":"38628al6-1728-4e61-aab2- bef c75f63172"

In case of an error, troubleshoot the issue by inspecting the log files, see the HP SX log files section.

HP SX log files

Log files for the HP SX instance are placed in JBOSS_HOVE/ st andal one/ | ogs directory.

There are several files containing log messages from different components and using different log levels:

File name Purpose

sx.log General SX log containing info and error messages from all
components

sx-messages.log Contains incoming messages as they entered SX

notification.log Outgoing catalog notification log

adapter type-messages.log Detailed log for given adapter type, containing full communication

with external system (request, responses, operation
inputs/outputs,...) . For example, an HP SM file is named
sm nessages. | og

sx-trace.log Detailed log aggregating trace messages from all adapters

When an issue occurs, checking the sx. | og is a good starting point as overall information about what HP SX is doing, together with all errors (if

107

they occurred), is contained there.

For a more detailed analysis of issues communicating with external systems, use the adapter-specific log file. For HP SM it is the file

sm nessages. | og. In the log shown below you can see the create problem message dispatches successfully. At first HP SX sent a message
saying ‘execute problem OO flow into Rabbit MQ'. Then the OO message listener picked up this message and executed the flow on the OO
Central server. Based on the message the OO flow decided that CreateProblem needs to be invoked back on SX, and so it is executed. In
addition, the registration states that the entity status should be checked immediately, so a checkProblem operation is executed too. As a result of
this operation a notification is issued saying that the problem is in the submitted state.

Create problem in sx.log

2014-10-08 17:28:03.450 INFO [com hp. ccue. servi ceExchange. oo. QoUtils] - Conpressing
00 nmessage original: 680 conpressed: 472 rati o0:69.411766
2014-10-08 17:28:03.463 INFO [com hp. ccue. servi ceExchange. j ns. Rabbi t MgSender I npl] -
connecting to rabbit_sx@mpavnoo02. hpsw abs. adapps. hp. com
2014-10-08 17:28:03.780 INFO [com hp.ccue. servi ceExchange. rest. Request Resource] - SX
response: {

"id" : "942aec34-80eb-47el-918e-ac21832e485a"
}
2014-10-08 17:28:04.097 INFO [com hp.ccue. servi ceExchange. oo. CoFl owessageli st ener]
OO fl ow successfully executed, uri =
http: // npavnoo02. hpswl abs. adapps. hp. com 8080/ oo/ rest/ executi ons/ 221752429/ sunmary
2014-10-08 17:28:04.261 I NFO [com hp. ccue. servi ceExchange. adapt er. sm SmAdapter] -
executing pipeline PLAIN
2014-10-08 17:28:04. 264 | NFO
[com hp. ccue. servi ceExchange. adapt er. sm SnOper at i onExecutor] - Executing operation
' createProbl em
2014-10-08 17:28:05.657 | NFO
[com hp. ccue. servi ceExchange. adapt er. sm SnmOper at i onExecutor] - register entity:
nmpavnsnil0: PMLO160
2014-10-08 17:28:05.977 I NFO [com hp. ccue. servi ceExchange. adapt er. sm SmAdapter] -
executing pipeline SX MANAGED CHANGE
2014-10-08 17:28:05.989 I NFO
[com hp. ccue. servi ceExchange. adapt er. sm SnOper at i onExecutor] - Executing operation
' checkProbl em
2014-10-08 17:28:06.731 INFO [com hp.ccue. servi ceExchange. oo. QoUtils] - Conpressing
00 message origi nal : 555 conpressed: 432 ratio: 77.83784
2014-10-08 17:28:06.808 I NFO [com hp.ccue. servi ceExchange. oo. CoFl owMessageli st ener] -
QO fl ow successfully executed, uri =
http:// nmpavnmo02. hpswl abs. adapps. hp. com 8080/ oo/ rest/ executi ons/ 221752445/ sumary
2014-10-08 17:28:07.241 INFO [com hp.ccue. servi ceExchange. rest. Cat al ogResource] -
Recei ved notification ({

"@ype" : "urn:x-hp:2014:software: cl oud: dat a_nodel : sx: notification",

"di spl ayNanme" : "My test ticket",

"id" : "942aec34-80eb-47el-918e-ac21832e485a",

"renmoteld" : "PMLO160",

"state" : "submtted",

"submtter" : "fal con"
})
2014-10-08 17:28:07.250 I NFO
[com hp. ccue. servi ceExchange. cat al og. Cat al ogNoti fi cati onMessageli stener] -
Notification to http://1ocal host: 8080/ sx/api/catal og was successful .

When a change occurs in HP SM, for example the problem entity is moved to the next phase, HP SX detects this change and the checkPr obl en
operation is invoked again. In this case it notifies the catalog about an in_progress problem state.

108

SM change notification in sx.log

2014-10-08 17:30:00.217 I NFO
[com hp. ccue. servi ceExchange. adapt er . sm db. SnChangeCObserver] - SM change
r oot cause/ PMLO160/ sxManaged/ nul | / update from npavnsmlO i s processing
2014-10-08 17:30:00.356 INFO [com hp.ccue. servi ceExchange. adapt er. sm SmAdapter] -
executing pipeline SX MANAGED CHANGE
2014-10-08 17:30:00. 363 | NFO
[com hp. ccue. servi ceExchange. adapt er. sm SmOper at i onExecutor] - Executing operation
' checkProbl en
2014-10-08 17:30: 01.304 I NFO [com hp. ccue. servi ceExchange. 0o. QoUtils] - Conpressing
00 nmessage original : 598 conpressed: 464 ratio: 77.59197
2014-10-08 17:30:01.723 INFO [com hp.ccue. servi ceExchange. oo. CoFl owessageli st ener] -
QO fl ow successfully executed, uri =
http:// nmpavnoo02. hpswl abs. adapps. hp. com 8080/ oo/ rest/ executi ons/ 221752473/ sunmary
2014-10-08 17:30:02.285 INFO [com hp.ccue. servi ceExchange. rest. Cat al ogResource] -
Recei ved notification ({

"@ype" : "urn:x-hp:2014: sof tware: cl oud: dat a_nodel : sx: notification",

"di spl ayNane" : "M test ticket",

"id" : "942aec34-80eb-47el-918e-ac21832e485a",

"renoteld" : "PMLO160",

"state" : "in_progress",

"submitter" : "falcon"
b
2014-10-08 17:30: 02.293 I NFO
[com hp. ccue. servi ceExchange. cat al og. Cat al ogNoti fi cati onMessagelLi stener] -
Notification to http://1ocal host: 8080/ sx/api/catal og was successful .

An example of a detailed communication with HP SM in an sm nessages. | og:

Create problem in sm-messages.log

2014-10-08 17:28: 04.261 TRACE [com hp. ccue. servi ceExchange. adapt er. sm SmAdapter] -
initializing context for message:

{@ype=urn: x- hp: 2014: sof t war e: cl oud: dat a_nodel : sx: request, nessageType=probl em
nane=My test ticket, description=My test desc, urgency=4,

itens=[{route={ @ype=urn: x- hp: 2014: sof t war e: cl oud: dat a_nodel : sx: route, systemtype=SM
target _i nstance=http://npavnsnil0. hpswl abs. adapps. hp. com 13080/ SM }],

nmessageHeader ={ nessageType=pr obl em backendSyst enType=SM t argetl| nstance=npavnsmnilO,
ext ernal | d=942aec34- 80eb-47el-918e-ac21832e485a}, startDate=2014-10-08T15: 28: 03Z,
endDat e=2015- 10- 08T15: 28: 037}

2014-10-08 17:28:04.261 INFO [com hp.ccue. servi ceExchange. adapt er. sm SmAdapter] -
executing pipeline PLAIN

2014-10-08 17:28:04. 264 | NFO

[com hp. ccue. servi ceExchange. adapt er. sm SnOper ati onExecutor] - Executing operation

' creat eProbl em

2014-10-08 17:28: 04. 270 DEBUG

[com hp. ccue. servi ceExchange. adapt er. sm SnOper at i onExecutor] - executing step 'Create
pr obl em

2014-10-08 17:28: 04.273 TRACE

[com hp. ccue. servi ceExchange. adapt er. sm SnOper ati onExecutor] - using integration

109

account: 'true'

2014-10-08 17:28:04.273 TRACE [com hp. ccue. servi ceExchange. adapter.sm Htt pdientlnpl]
- Sending ' POST' request to http://nmpavnmsnl0. hpsw abs. adapps. hp. com 13080/ SM 7/ ws,
payl oad = content-type: text/xm; charset=UTF-8, content: <Envel ope

xm ns="http://schemas. xm soap. or g/ soap/ envel ope/ ">

<Body>
<Cr eat ePr obl enRequest xm ns="http://schemas. hp. coni SM 7" >
<nodel >
<keys/ >
<i nst ance>
<Title>My test ticket</Title>
<Descri ption>
<Descri pti on>My test desc</Description>
</ Descri pti on>
<l npact >4</ | npact >
<Ur gency>4</ Ur gency>
<Servi ce>Appl i cati ons</ Servi ce>
<Assi gnnment Gr oup>Appl i cat i on</ Assi gnnment Gr oup>
<Ar ea>dat a</ Ar ea>
<Subarea>data or file incorrect</Subarea>
</instance>
</ nodel >
</ Cr eat ePr obl enRequest >
</ Body>

</ Envel ope>

2014-10-08 17:28:05.623 TRACE
[com hp. ccue. servi ceExchange. adapter.sm H t pCl i ent |l npl. Ht t pResponse] - Response XM
<?xm version="1.0" encodi ng="UTF- 8" ?><SOAP- ENV: Envel ope
xm ns: SOAP- ENV="htt p:// schenas. xnml soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Body>
<Cr eat ePr obl enResponse xm ns="http://schenas. hp. conl SM 7"
xm ns: corm="htt p://schemas. hp. coml SM 7/ Connmon"
xm ns: xm ne="http://ww. w3. or g/ 2005/ 05/ xm m ne"
xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schema"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" nessage="Success" returnCode="0"
schemaRevi si onDat e="2014- 10- 01" schemaRevi si onLevel =" 0" st at us="SUCCESS"
xsi : schemaLocati on="http://schemas. hp. com SM 7
http:// npavnsnl0. HPSW.ABS. ADAPPS. HP. COM 13080/ SM 7/ Pr obl em xsd" >
<nodel >
<keys>
<ld type="String">PML0160</ | d>
</ keys>
<i nstance recordi d="PMLO160 - BPPM - Open - My test ticket"
uni quequer y="i d=" ; PML0160" ; " >
<ld type="String">PML0160</ | d>
<Cat egory type="String">BPPM/ Cat egory>
<Assi gnnent G oup type="String">Application</ Assi gnnent G oup>
<Status type="String">0Open</ St at us>
<Title type="String">M test ticket</Title>
<Description type="Array">
<Description type="String">W test desc</Description>
</ Descri pti on>
<OpenedBy type="String">fal con</ OpenedBy>
<Urgency type="String">4</ U gency>
<Area type="String">dat a</ Area>
<Subarea type="String">data or file incorrect</Subarea>
<Current Phase type="String">Probl em Detection, Logging and
Cat egori zat i on</ Curr ent Phase>

110

<l npact type="String">4</I|npact >
<Service type="String">Applications</Service>
<rcStatus type="String">0pen</rcStatus>
</instance>
</ nodel >
<nmessages>
<cmm: nessage type="String">Probl em PMLO160 has been opened. </ crm: nessage>
<cmm: nmessage type="String">Probl emrecord added. </ crm: mnessage>
</ nessages>
</ Cr eat ePr obl enResponse>
</ SCAP- ENV: Body>
</ SOAP- ENV: Envel ope>

2014-10-08 17:28: 05. 640 DEBUG
[com hp. ccue. servi ceExchange. adapt er. sm SnmOper at i onExecutor] - executing step 'Watch
interaction changes'
2014-10-08 17:28: 05. 657 | NFO
[com hp. ccue. servi ceExchange. adapt er. sm SnOper ati onExecutor] - register entity:
nmpavnsnil0: PMLO160
2014-10-08 17: 28: 05. 666 TRACE [com hp. ccue. servi ceExchange. adapt er. sm db. SnDaol npl] -
regi sterEntity rootcause/ PMLO160/" nul |'/sxManaged/ nul |l in npavnsnilO
2014-10-08 17:28:05. 759 TRACE [com hp. ccue. servi ceExchange. adapt er.sm soap. SnCl i ent] -
got REST response
http:// mpavimsnil0. hpswl abs. adapps. hp. com 13080/ SM 9/ r est/ sxregi st eredent i ti es[POST] :
code = 200, body = {
"Messages": ["SxRegisteredEntitiesV2 record added."],
"Ret urnCode": 0,
"SXRegi steredEntities": {
"entityld": "PMLO160",
"entityType": "rootcause",
"id": "fa2835c9-f101-44dc-8elb-c38096cald48",
"reason": "sxManaged",
"sxId": "Fi doSM

111

HP OO Ul

Sometimes you can see that OO is executed but no further operation is called back on HP SX. In the case of a cr eat e operation this is an error.

To identify what went wrong go to the OO Central Ul and look at the specific flow executed there. OO is typically running on
https://sx_host:8443/00. The default username is admin and the password changeit. In the left column click Run Management and choose the
row corresponding to your execution. It could be identified by name, or the Run ID displayed in the HP SX logs. The earlier log example contains
following:

2014-10-08 17:28:04.097 I NFO [com hp. ccue. servi ceExchange. oo. CoFl omessageli stener] -
OO fl ow successfully executed, uri =
http:// nmpavnmo02. hpswl abs. adapps. hp. com 8080/ oo/ rest/ executi ons/ 221752429/ sunmary

The Run ID is the number close to the end of the URL. For example, in the example above it is 221752429. Use it for filtering on the run list, or
simply paste the ID into the Run ID column filter field.

- e E=re =)
/) HP Operations Orchestrat. % | e
<« C | [mpavmoo02.hpswlabs.adapps.hp.com:8080/00/#/runtimeWorkspace/runs Fic & @ JB E|
i Apps o Designer © ServiceExchange O Jenkins £ CCUEFTClenkins 3 Consumption Jenkins 3 Jenkins-old G} FTC Jenkins £ Cloud 05 Jenkins £ Vehud Jenkins 5 systinet-platform-je.. (/) Designer US »
@ Operations Orchestration admin | @ @ |Logout
Run Explorer Scheduler
o |7 waiies
Run Name RunID Status Start Time User Duration
221752429 v v
SX:FidoSX, op=createProblem 221752429 Completed - Resolved 5:26 PM admin 0.744 seconds

@

Dashboard

¥

Run Management

Content
Management

£]

System
Configuration

To check the input flow parameters, click on a run row. Display it by clicking on the down pointing arrow in the middle of the top bar (containing
the execution name and status.)

112

€ - C |[) mpavmoo02.hpswlabs.adapps.hp.com:8080/00/#/runtimeWorkspace/runs/221752429

i Apps o Designer © ServiceExchange O Jenkins £ CCUEFTClenkins 3 Consumption Jenkins 3 Jenkins-old G} FTC Jenkins £ Cloud 05 Jenkins £ Vehud Jenkins 5 systinet-platform-je.. (/) Designer US

To ¢ @ B

@ Operations Orchestration

admin | @ (@ |Logout

Run Explorer Scheduler

]

‘| SX:FidoSX, op=createProblem
Start Time: 5:28 PM

Duration: 0.744 seconds

Flow UUID:
N/A
Flow Name:
N/A
@ Path:
Dashboard N/A
Description:
O
Run Management
Content
Management
System
Configuration

User: admin

RunID: 221752429

Flow Inputs:
messageType
queueName

messageCo...

sxConfigurat...
sxConfigurat..
sxConfigurat...

sxConfigurat..

configuration

Primary
Result:

Completed - Resolved

3

SM:PLAIN

FidoSX
H4sIARAAARAAATTRPW/CMBDdKIgPVMYCCRL
mpavmoo02.hpswiabs.adapps.np.com
smtp3.hp.com

25

noreply-ServiceExchange@hp.com

{ "smtpServer" : "smtp3.hp.com”, "smtpPort’

queueName FidoSX
operationName createProblem
messageText

messageCompr... | HasIAAAAAAAAAJTRPW/CMBDAKFgPVmMYCcRLUAKIDNzZIWY
messageType SM:PLAIN

true

Inspect individual step inputs and outputs within the flow execution by selecting a step in the left column and switching to Step Details in the right

column, as in the example screenshot below:

113

/' {) HP Operations Orchestral %

3 Apps 0 Designer

€ - C |[1 mpavmoo02hpswlabs.adapps.hp.com:3080/00/#/runtimeWorkspace/runs/221752429

T ¢ @ JB

Service Exchange j Jenkins] CCUEFTC Jenkins { Consumption Jenkins 3 Jenkins-old G} FTC Jenkins £ Cloud 05 Jenkins £ Vehud Jenkins {5 systinet-platform-je.. (/) Designer US

@ Operations Orchestration

admin | @ (@ |Logout

®

Dashboard

O

Run Management

[

Content
Management

]

System
Configuration

Run Explorer Scheduler

S
‘| SX:FidoSX, op=createProblem

A &

Step Name
[idis empty
send message createProblem
£¥ Resolved : success

Completed - Resolved =i

v
Flow Graph Step Details
Transition Message
SUCES send message createProblem
success

StepID: 23bf6106-def8-de56-adee-a38a5a247a04

Start Time: 5:28PM

End Time: 5:28 PM

Response: Resolved: success

Duration: 0.245 seconds

Inputs: brokerUrl mpavmon02.hpswiabs.adapps.hp.com
brokerlsername | rabbit_sx
brokerPassword ke
queueName FidoSX
operationName createProblem
messageText
messageCompr... HAsIAAAAAAAAAJTRPW/CMBDdKfgPVmYCcRLUAKIDRZIwWY
messageType SM:PLAIN

Primary true

Result:

How to develop an adapter (JIRA)

Developing an adapter explained with a JIRA adapter example

When to use this guide

This chapter explains how to integrate HP SX with a new backend system that is not yet supported by HP SX. If you wish to customize the

behavior of an already supported system, for example HP SM or HP CSA, it may be enough to only create a new content pack for the existing
adapter. See How to extend HP SX Content (HP SM Problem entity) for creating a custom content pack.

This section describes the implementation of three HP SX functions: ticketing, request-to-fulfilment (R2F), and Case Exchange. The procedures

start from the simplest to the more complex, explained with the example of JIRA.

Throughout this example it is presumed that a maven project is being built, and that a root maven module is set up as described in How to extend
HP SX Content (HP SM Problem entity). The modules are created under this root project. The project is included in the SDK pack under

sx-content/jira.

For the java part of the adapter, a maven module is created according to this example:

114

Adapter maven module

<proj ect xm ns="http://mven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi :schemaLocati on="http:// maven. apache. org/ POM 4. 0.0
http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >
<groupl d>your . parent. group. i d</ groupl d>
<artifactld>your-parent-artifact-id</artifactld>
<versi on>your _ver si on</ ver si on>
</ parent >
<artifactld>sx-adapter-jira</artifactld>
<packagi ng>j ar </ packagi ng>
<nane>J| RA Adapt er </ nane>
<dependenci es>
<dependency>
<groupl d>com hp. ccue. servi ceExchange</ gr oupl d>
<artifactld>sx-api</artifactld>
</ dependency>
<dependency>
<groupl d>com hp. ccue. servi ceExchange</ gr oupl d>
<artifactld>sx-adapter-api</artifactld>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ranmewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
</ dependency>
</ dependenci es>
</ proj ect >

The dependencies that you need to have acces to are:
® sx-api
® sx-adapter-api
® spring-context

Ticketing usecase

JIRA adapter example implementation - Ticketing usecase

Case exchange usecase

Case exchange use case

Request-to-fulfill usecase

Request to fulfill use case

Java adapter deployment

The methods to deploy the content part are described in How to extend HP SX Content (HP SM Problem entity). For development, the usage of
sx- maven- pl ugi n is advisable.

The java part of the adapter is a jar file that must be deployed into the HP SX application server. Do this before you upload your content pack as
there is a validation that will not let you upload a content pack for a non existing adapter.

To deploy the adapter jar:

115

. Stop your SX instance jboss e.g. servi ce j boss-7 stop

. Copy the adapter jar file into <YOUR_JBOSS_HOMVE>/ st andal one/ depl oynent s/ sx. war/ VWEB- I NF/ | i b
. Create an i nst ances. j son configuration file in a location that reflects adapter implementation.

. Restart your SX instance jboss e. g. servi ce j boss-7 start

A WOWDNPRE

Ticketing use case

® Ticket management message flow in HP SX
® Adapter class
® OperationExecutor and Pipelinebuilder
® Operation Executor
® PipelineBuilder
® Ticketing content pack
L]
® Example operation implementation - createTicket
® requestUrl

requestTemplate

responseTemplate
® Ticket properties
® Summary

Ticketing is the simplest HP SX use case. In order to adapt a backend system to the ticketing use case it is necessary to:

® Setup an adapter class.
® Setup an operation executor class.
® Define a set of operations that are necessary to perform ticket management through the Propel Portal.

At the end of the implementation of this use case you can manage JIRA issues as tickets in the Propel Portal.

@ It is necessary that you have access to the example implementation sources contained in the HP SX SDK distribution. You will need to
refer to the source code to be able to fully understand the contents of this topic. Especially refer to the ftl templates.

It is also advisable to refer to HP SX API javadoc, also contained in the SDK package under the javadoc folder.

Finally, you may also want to consult the How to extend HP SX Content (HP SM Problem entity) topic which has details about many
development techniques, for example:

® uploading SX content packs using the SX content management Ul and the SX upload maven plugin
® analysis of SX log files.

Ticket management message flow in HP SX

. The incoming ticket management request is submitted through SX RESTful interface (/ticket REST resource)
The incoming message is decorated and updated according to the specific call

. The incoming rest call is mapped to the appropriate operation from oper ati ons. j son

. The correct adapter is chosen from among the registered adapters

. The operation is executed using the adapter's operation executor.

ghwN PR

The ticket management requests are documented in the SX API doc. Use the Appendix C: Ticket management operations messages as a
reference on the format of messages to be passed to and returned from an operation execution.

The set of operations that the API calls are mapped to and that need to be defined in oper at i ons. j son are as follows:

Operation Note

createTicket Creates a new ticket

retrieveTicket Retrieves a ticket

listTickets Lists tickets matching the given criteria

116

listTicketProperties Returns enumeration of properties that are wanted visible to portal

users

ticketProperty-${propertyName} This operation must be implemented for each property returned by
listTicketProperties

listTicketAttachments Lists ticket attachments

createTicketAttachment Creates a ticket attachment

retrieveTicketAttachment Retrieves ticket attachment metadata

createTicketComment Creates a comment

closeTicket Closes a ticket

NOTE: This set of operations is configured in the sx- base content pack in the oper at i onMappi ngs. j son file. It is possible to change this
mapping by customizing the sx- base content pack. See Content packs, in particular the content pack update details. Be aware that
customizations made will affect all adapters in your HP SX instance.

Adapter class

The provided abstract class com hp. ccue. servi ceExchange. adapt er. provi ded. Adapt er Abst r act is used.

JIRA adapter class

@Conponent
public class JiraAdapter extends AdapterAbstract {
@\ut owi r ed
public JiraAdapter (JiraQperati onExecut or operati onExecutor, JiraPi pelineBuilder
pi pel i neBui | der) {
super (Ji raConst ants. J| RA_ADAPTER_NAME, operati onExecut or, pipelineBuilder);

The @r g. spri ngf ramewor k. st er eot ype. Conponent annotation is used in order to have it spring-enabled.
Ji raConst ant s. JI RA_ADAPTER_NAME name constant is introduced in a separate class. Make sure it is unique among adapter name
constants.

Define the Spring framework component scanning in the context definition with a name following the * Cont ext . xm pattern, for example:

Spring context definition file

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: context="http://ww. springfranmework. org/ schena/ cont ext"
xsi : schemaLocation="http://ww. spri ngfranework. org/ schena/ beans
http://ww. spri ngfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranmewor k. or g/ schenma/ cont ext
http://ww. springfranewor k. or g/ schena/ cont ext/ spri ng-cont ext. xsd">

<cont ext : component - scan base- package="com exanpl e. adapt er. package.jira"/>

</ beans>

OperationExecutor and Pipelinebuilder

The adapter constructor accepts operation executor and pipeline builder. Minimal implementations are sufficient. In both cases you can extend

117

the provided implementation, see the example code below:

Operation Executor

Operation executor

@Conponent
public class JiraOperati onExecutor extends BaseQperati onExecutor {

public JiraQperationExecutor() {
super (Ji raConstants. J| RA_ADAPTER_NAME, Jiral nstancesCf g. CFG_NAME) ;
set Def aul t Ht t pRequest Cont ent Type(Medi aType. APPLI CATI ON_JSON) ;

Here a default content type appl i cati on/j son is specified. This means that all requests defined in oper ati ons. j son will be issued with this
content type unless another content type is specified..

It is useful to override the getDetailErrorMessage()method, see the source code for the actual implementation.

PipelineBuilder

PipelineBuilder

@conponent
public class JiraPi pelineBuil der inplenents AdapterPipelineBuilder {

@verride
public Pipeline buildPipeline(Adapter adapter, PipelineBuilderFactory factory,
String nane) ({
return null;

This is the minimal adapter implementation sufficient for an HP SX ticketing use case - the Java implementation of the adapter itself is now
complete.

Ticketing content pack

The above implementation of the adapter has only defined a new backend system of type JIRA, and an adapter that will process messages for
this type of system with a default HP SX implementation. Now the set of ticketing operations must be defined. The operation definitions are
deployed in an HP SX content pack.

For the content pack, define a new maven module in your project, for example:

118

Content maven module

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://mven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0.0
http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<par ent >
<groupl d>your . parent. group. i d</ groupl d>
<artifactld>your-parent-artifact-id</artifactld>
<versi on>your _ver si on</ ver si on>
</ parent >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<artifactld>content-jira-ticketing</artifactld>

</ proj ect >

In this module create a structure as described in Content packs. This content pack will only contain operation definitions and ftl templates, so omit
the oo directory.

-- main
'-- resources
[-- sx
| | -- tenpl ates
| “-- operations.json
“-- netadata.json

Example operation implementation - createTicket
The operations definition is explained here using the example of the cr eat eTi cket operation.

NOTE: You can test the operations by performing corresponding actions in the Propel Ul. Alternatively, you could test the REST calls in a browser
client like Postman or DHC, but the APIs require a valid IdM Token to be passed in the X-Auth-Token header. You need to perform a REST call to
the IdmServer to get such a token (using basic HTTP authentication with user idmTransportUser and password idmTransportUser), like this one:

POST /idmservicel/v2.0/tokens
Aut hori zation: Basic aWRt VHIhbnNwb3JOVXN cj ppZGLUcnFuc3BvcnRVc2Vy

Cont ent - Type: application/json

{

"passwor dCredenti al s" : {
"username" : "consumer",
"password" : "cloud"

1,

"t enant Nanme" : " CONSUMER'

}

According to JIRA rest APl documentation you need to issue the following request to create an issue in JIRA:

Method URI Request media type Response media type

119

POST (/[context]?)/rest/api/l at eapplicasiva/json

{ "fields": {
"project”:
{
"key": "TEST"
b
"summary": "REST ye nerry gentlemen.",
"description": "Creating of an issue using project

using the REST API ",
"issuetype": {
"name": "Bug"

Example response:

JIRA create issue response

{ "id":"39000",

"key":"TEST-101",

"self":"http://1ocal host: 8090/ rest/api/2/issue/ 39000"

The cr eat eTi cket operation is defined in the oper at i ons. j son file of the content pack.

operations.json

{
"createTicket": [
{
"l abel": "Create Ticket",
"request Url Tenpl ate": "createTicketUl.ftl",
"request Tenpl ate": "createTicket Request.ftl",
"responseTenpl ate": "createTi cket Response. ftl'
"met hod": " POST"
}
]
}

The above is an example of an operation that has a single step labeled "Create Ticket". In this step it issues a POST http request to a URL
returned by requestUrITemplate with a body returned by requestTemplate, and the response of the POST http request will be transformed by

the responseTemplate which will be the result of the operation.

application/json

keys and i ssue type nanes

'
1

The implementations of the ftl templates that are used in this operation configuration are presented below.

The operation definition is interpreted by the operation executor. The operation executor's input is a generic HP SX message to create a ticket.
This message together with some context information are the input to the requestUrITemplate and requestTemplate ftl, whereas the response
template will receive the http request response. For a detailed introduction to the HP SX operation executor framework see Appendix B: Operation

120

executors.

A general description of the messages passed to the HP SX operation executor is documented in Ticket management operations messages doc.
The example message that will be passed to the operation executor when creating a ticket is as follows:

Example create ticket message

{

"description" : "JIRA Test ticket 2 desc",

"name" : "JIRA Test ticket 2",

"properties” @ [{
"@ype" : "urn:x-hp:2014: sof tware: cl oud: dat a_nodel : property:text",
"nanme" : "nane",
"value" : "JIRA Test ticket 2"

boA
"@ype" : "urn:x-hp:2014: sof tware: cl oud: dat a_nodel : property:text",
"nanme" : "description",
"value" : "JIRA Test ticket 2 desc"

boA
"@ype" : "urn:x-hp:2014: software: cl oud: dat a_nodel : property: sel ect",
"nanme" : "project",
"val ue" : "DES"

boA
"@ype" : "urn:x-hp:2014: sof tware: cl oud: dat a_nodel : property: sel ect",
"nanme" : "issuetype",
"val ue" : "1"

boA
"@ype" : "urn:x-hp:2014: sof tware: cl oud: dat a_nodel : property: sel ect",
"nanme" : "priority",
"val ue" : "1"

boA
"@ype" : "urn:x-hp:2014: sof twar e: cl oud: dat a_nodel : property: sel ect _from many",
"name" : "reporter",
"val ue" "consuner"

boA
"@ype" : "urn:x-hp:2014: sof twar e: cl oud: dat a_nodel : property: sel ect _from many",
"nanme" : "assignee",
"val ue" @ ""

Pl

"messageHeader" : {
"backendSyst enifype" : "JI RA",
"userld" : "consuner",
"targetlnstance" : "npavm nt01"

}

"recipient" : {
"nanme" "consuner"

}

}
requestUrl

The template composes the rest call URL. It does not need any data from an incoming message. Note: The ftl transformation data model contains
the i nst anceConfi g object. For a full context reference see Appendix B: Operation executors.

121

createTicketUrl.ftl

<#escape x as x?url>

<#noescape>${i nst anceConfi g. endpoi nt } </ #noescape>
/rest/api/latest/issue

</ #escape>

requestTemplate
This transforms the message into a valid POST request body of the JIRA REST endpoint.

NOTE: The message content is accessed through the nessage ftl data model node. See line 2 for an example.

createTicketRequest.ftl

<#assi gn val uevap = {}/>
<#l i st message.properties as property>
<#tassi gn val ueMap = val ueMap + {property.name : property.val ue}/>

</ #list>
<#escape x as Xx?json_string>
{
"fields": {
"summary": "${nmessage. nane}",
<#i f message. descri pti on?has_cont ent >
"description": "${nmessage. description}",
</ #if>
"project": {
"key": "${val ueMap. project}"
b
"issuetype": {
"id": "${val ueMap.issuetype}"
b
"priority": {
"id": "${valueMap.priority}"
H
"reporter": {
"nanme": "${val ueMap.reporter}"
}

<#i f val ueMap. assi gned_t o?has_cont ent >
"assignee": {
"real _nane": "${val ueMap. assi gned_to}"
}
</ #if>
}
}

</ #escape>

responseTemplate

This adapts the JIRA response format to the HP SX format. Use Appendix C: Ticket management operations messages as a reference.

122

The example response of the HP SX cr eat eTi cket operation:

createTicket response

{
"result":
{
" _links" {
"sel f" {
“href" "/sx/api/ticket/DES-2313"
}
b
"id" "DES- 2313",
"nang" "JIRA Test ticket 2",
"description" "JIRA Test ticket 2 desc"
"openTi ne" "2014-10-14T13: 36: 17+02: 00"
"updat eTi me" "2014- 10- 14T13: 36: 17+02: 00"
"status" "submtted",
"properties"” [{
"@ype" : "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel :
"name" : "project",
"val ue" " DES"
oA
"@ype" : "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel :
"name" : "issuetype"
"val ue" "l
oA
"@ype" : "urn:x-hp:2014: sof tware: cl oud: dat a_nodel :
"name" : "priority",
"val ue" "l
oA
"@ype" : "urn:x-hp:2014: sof twar e: cl oud: dat a_nodel :
"nane" : "reporter",
"val ue" "consuner"
Pl
"conment s" [1]
}
}

It is not possible to construct this response as the JIRA response only contains ID, key and self. It is necessary to add a second step that retrieves

the created JIRA issue.

In the oper ati ons. j son file:

123

property:

property:

property:

property:

sel ect",

sel ect",

sel ect",

sel ect _from nmany"

operations.json

{
"createTicket": [
{
"l abel": "Create Ticket"
"request Url Tenpl ate": "createTicketUrl.ftl",
"request Tenpl ate": "createTicket Request.ftl",
"responseTenpl ate": "createTi cket Response. ftl",
"met hod": "POST"
H
{
"l abel": "Retrieve Ticket",
"requestUrl Tenpl ate": "getTicketUrl.ftl"
"responseTenpl ate": "getTi cket Response. ftl"
}
]
}

Method specification is not needed as the GET method is the default when the r equest Tenpl at e is not specified.
The first step's r esponseTenpl at e writes down the ID of the created issue into the message body.

NOTE: The responseTemplate gets exactly the same input as requestTemplate except that it is nested under the "doc" key in the incoming data
model. The response body is under "result".

createTicketResponse.ftl

<#escape x as x?json_string>

{
"id": "${doc.result.key}"

}

</ #escape>

The next step is using the ID to retrieve the issue:

getTicketUrl.ftl

<#escape x as x?url >
<#noescape>${i nst anceConfi g. endpoi nt } </ #noescape>
/rest/api/latest/issuel/ ${nmessage. i d}?fi el ds=sunmary, descri ption, creat ed, updat ed, st at us, pi

Finally, transform the JIRA response into the HP SX format:

getTicketResponse.ftl

<#include "jiraTicketingWils.ftl"/>

124

<#escape x as x7?json_string>

<#assign result = doc.result/>
<#tassign fields = result.fields/>

{
"result": {
"_links": {
"self": {
"href": "/sx/api/ticket/${result.key?url}"
}
b
"id": "${resul t.key}",
"nane": "${fields.summary}",
"description": "${fields.description!""}",
"openTinme": "${toSxDate(fields.created)}",
"updateTime": "${toSxDate(fields.updated)}",
"status": "${toSxStatus(fields.status.statusCategory.key)}",
"properties": [
{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : property: sel ect”,
"nane": "project"”,
"value": "${fields.project.key}"
}
{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : property: sel ect",
"nanme": "issuetype",
"value": "${fields.issuetype.id}"
}
{
"@ype": "urn:x-hp:2014: sof tware: cl oud: dat a_nodel : property: sel ect"”,
"name": "priority",
"value": "${fields.priority.id}"
H
{
"@ype":
"urn: x- hp: 2014: sof t war e: cl oud: dat a_nodel : property: sel ect _from nmany",
"nanme": "reporter",
"value": "${fields.reporter.nane}"
}
<#if fields.assignee??>
{
"@ype":
"urn: x-hp: 2014: sof t war e: cl oud: dat a_nodel : property: sel ect _from nmany",
"nane": "assignee",
"val ue": "${fields.assignee.nane}"
}
</ #if>

1.
"conmments": |
<#list fields.coment.coments as conment >

{
"id": "${conment.id}",
"aut hor": "${conment. aut hor.nane}",
"time": "${toSxDate(conment.created)}",
"description": "${comrent. body}"

}<#i f comment _has_next>, </ #if>

</ #list>

125

}

</ #escape>

126

jiraTicketingUils.ftl isincluded. It contains the utility functions t oSxDat e and t oSxSt at us.

NOTE: The cr eat eTi cket operation in the example project is more complicated than what is shown here, as it also contains permission
checks for the current user. The permission checks are necessary as all REST calls are performed under the integration user, not under the
current user.

Ticket properties

The JIRA issue attributes: those properties that need to be visible in the Propel portal, are defined by the | i st Ti cket Pr oper ty operation. This
operation simply enumerates the properties. See the following example implementation:

operations.json

"listTicketProperties": [

{

"l abel ": "List Ticket Properties",
"result Tenplate": "listTicketProperti esResponse.ftl"”

listTicketPropertiesResponse.ftl

<#escape x as Xx?json_string>

"result": {
"@elf": "/sx/apil/ticket/property",
"properties": [

{
"@ype": "urn:x-hp:2014: software: cl oud: dat a_nodel : property:text",
"nane": "nane",
"di spl ayNane": "Title",
"l ength": 255,
"required": false,
"requiredQutsidePropertiesList": true
}
{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : property:text",
"nane": "description",
"di spl ayNane": "Description",
"l ength": 200000,
"required": false,
"requiredQutsidePropertiesList": fal se
}
{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : property: sel ect",
"nanme": "project",

127

"di spl ayNane": "Project",
"valuesUrl": "/sx/api/ticket/property/project",
"required": true

b

{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : property: sel ect"
"nane": "issuetype",
"di spl ayName": "lssue Type",
"valuesUrl": "/sx/api/ticket/property/issuetype"
"required": true

H

{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : property: sel ect"
"nane": "priority"
"di spl ayNane": "Priority",
"valuesUrl": "/sx/api/ticket/property/priority",
"required": true

H

{
"@ype":

"urn: x-hp: 2014: sof t war e: cl oud: dat a_nodel : property: sel ect _from nany"

"name": "reporter",
"di spl ayNanme": "Reporter",
"searchUrl": "/sx/api/ticket/property/user",
"required": true,
"default": "${nmessage. nessageHeader. userl|d}"

b

{
"@ype":

"urn: x-hp: 2014: sof t war e: cl oud: dat a_nodel : property: sel ect _from nmany"

"nane": "assignee"
"di spl ayName": "Assignee",
"searchUrl": "/sx/api/ticket/property/user",
"required": false
"default": ""

}

}

</ #escape>

128

All possible property types can be listed using an SX API. See the Ticket property descriptors in the SX API doc.

Each property returned by | i st Ti cket Properti es that is of the type sel ect or sel ect _f r om many needs a corresponding operation to list
the possible values, for example, project property.

opertations.json

"ticketProperty-project": [

{
"l abel ": "Get Project Property Val ues",
"request Url Tenpl ate": "listProjectsUrl.ftl",
"responseTenpl ate": "listProjectsResponse.ftl"
}

listProjectsUrl.ftl

<#escape x as x?url>
<#noescape>${i nst anceConfi g. endpoi nt } </ #noescape>
/rest/api/latest/project

</ #escape>

listProjectsResponse.ftl

<#fescape x as Xx?json_string>

{
"result": {
" links": {
"self": {
"href": "/sx/api/ticket/property/project”
}
}
"val ues": [
<#list doc.result?sort_by("nane") as itenp
{
"value": "${item key}"
"label": "${item nanme}"
}<#if item has_next>, </#if>
</ #list>
]
}
}

</ #escape>

129

Summary

The rest of the operations are implemented analogically. Use the Appendix C: Ticket management operations messages as a reference on the
input and output messages of individual operations.

Case exchange use case

® Use case definition
® Qverview
® Implementation
® Configuration
® JIRA adapter support
® Plain Pipeline
® JiraAdapter class
® JiraChangeObserver class
¢ JiraCxPollingCommand
® JiraCaseExchangeRuleStore
® JiraEventFilterEvaluator
® getChangedincidentsForCx operation
® Case exchange pipeline

This section describes how to implement a CX-capable adapter, using the example of JIRA as the ticketing system. This procedure extends the
implementation described in Ticketing use case.
(D It is necessary that you have access to the example implementation sources contained in the SX distribution. You will need to refer to
the source code to be able to fully understand the contents of this topic. Especially refer to the ftl templates.
It is also advisable to refer to the SX API javadoc.

Finally, you may also want to consult the How to extend HP SX Content (HP SM Problem entity) topic which has details about many
development techniques, for example:

® uploading SX content packs using the SX content management Ul and the SX upload maven plugin
® analysis of SX log files.

Use case definition

The goal of this example is to enable the following functionality.

1. HP SMincident is delegated to JIRA by setting incident's properties as
® Status = Pending vendor
® Vendor = <your_jira_instance_alias>

In this way, a new linked issue is created in your JIRA instance.

2. When the JIRA linked issue is resolved, the original HP SM incident is also automatically resolved.

Overview

The core actors that initiate actions in a CX use case are the change observers. The change observers periodically poll an external system for
changes and filter these changes to trigger configured events. Once an event is detected a message is generated and sent to HP SX for
processing. Appropriate actions are performed based on the configuration.

The implementation of our use case consists of two tasks:

1. configuration
2. implement the JIRA adapter CX support

Implementation

Configuration

To configure incident CX between JIRA and an HP SM instance it is necessary to register | nci dent CaseExchangeEvent s on the particular
instances and to pair these instances in both directions.

So in our example we need to have support for this example configuration:

130

external-systems.json

"external Systems": [

{
"instanceType": "SM',
"instance": <your_ HP_SM.i nstance>,
"regi steredEvent Groups": [
"I nci dent CaseExchangeEvent s"
]
}
{
"instanceType": "JIRA",
"instance": <your_JI RA instance>,
"regi steredEvent Goups": [
"I nci dent CaseExchangeEvent s"
]
}
]
"external SystemAl i ases": [
{
"sourcel nstanceType": "SM',
"sourcel nstance": <your_ HP_SM i nstance>,
"targetlnstanceType": "JIRA",
"targetlnstance": <your_JI RA instance>,
"target Alias": <your_JIRA instance_alias>
}
{
"sourcel nstanceType": "JIRA",
"sourcel nstance": <your_JI RA instance>,
"targetlnstanceType": "SM',
"targetlnstance": <your_HP_SM i nstance>,
"targetAlias": <your_HP_SM.instance_alias>
}

See Configuration for a complete reference of CX configuration.

The HP SM adapter is available OOB and supports Incident CX. The OOB content contains | nci dent CaseExchangeEvent s and
event G oupAct i ons definition.

131

content-case-exchange/case-exchange.json

"event Groups": {

"I nci dent CaseExchangeEvents": [

"inci dent Ext er nal Ref erenceCreat ed"”,

nci dent Updat ed",
nci dent Resol ved",
nci dent Reopened”,
nci dent Cl osed",
nci dent Omer shi pAssi gned",
nci dent Oamner shi pAccept ed”,
nci dent Rej ect ed"”,
nci dent Cancel | ed"”

}
"event G oupActions": {
"I nci dent CaseExchangeEvents": [

{
"action": "executeQperation",
"operationNane": "retrievel ncident”
1
{
"action": "executeQperation",
"operationNane": "convertlnci dent ToCanoni cal Model "
1
{
"action": "executeQoFl ow',
"backendSyst eniType": "SX',
"messageType": "I nci dent CaseExchangeFl ow'
}

This configuration contains all the operations we need to support both HP SM and JIRA.
For HP SM the operations are available OOB.
For JIRA it is clear that it is necessary to implement the following

® retrievelncident
® convertincidentToCanonicalModel

The rest of the operations are derived from the | nci dent CaseExchangeFl ow OO flow. With deeper inspection of the flow you may note that for
this use case JIRA will only need:

¢ clonelncident
See OO flows, for the | nci dent CaseExchangeF| ow description.

In addition to the operations, the events need to be defined. The events definition for HP SM is available OOB. See
cont ent - sm case- exchange/ case- exchage. j son. The eventi nci dent Ext er nal Ref er enceCr eat ed is the crucial starting point for
this use case.

For JIRA we must define the event that will trigger the action in point 2 of the use case. Create a r esour ces/ case- exchange. j son file in the
JIRA content module:

132

content-jira/case-exchange.json

{
"events": {
"JIRA": {
"incident Resol ved": {
"entityType": "lIncident",
"entityFilter": "Bool ean(RECORD. st atus) && RECORD. status.to == "'5"" [/
a javascript condition matching updates where the issue status was set to Resol ved
}
}
}
}

i nci dent Resol ved is an event belonging to | nci dent CaseExchangeEvent s that is registered on the JIRA instance. As noted, these events
are mapped to the specific set of actions in cont ent - case- exchange/ case- exchange. j son OOB. TheentityTypeandentityFilter
fields are adapter-specific and are dependent on the implementation of change observing. See below for further information.

JIRA adapter support

To implement adapter support for CX it is necessary to add the following capabilities to the adapter:

" the adapter must be able to handle a message that will execute the creation of a linked incident in JIRA (i.e. plain pipeline)
" implement change observing
" the adapter must handle the message generated by the change observer (i.e. case_exchange_pipeline.)

Plain Pipeline
In summary, the process that enables the use case: the creation of new linked issues in a JIRA instance, is:

. HP SM adapter's change observer (implemented OOB) detects an i nci dent Ext er nal Ref er enceCr eat ed event in HP SM.

. The event results in a CX type message being sent.

. The message is handled by an adapter (the HP SM adapter in this case) in a CX pipeline.

. The CX pipeline contains a CX handler block that is responsible for the execution of eventGroupActions defined in
cont ent - case- exchange/ case- exchange. j son

. The last action in the defined event G- oupActi onis an | nci dent CaseExchangeFl ow execution which, based on the message,
decides that it should call a clone incident in JIRA and so sends a message to execute the cl onel nci dent operation.

6. This message is sent to the PLAIN pipeline.

7. At this point the JIRA adapter comes into play. Support for a PLAIN pipeline needs to be added for the JIRA adapter as it does not know

how to build a PLAIN pipeline yet.

A WOWN PR

(4]

To extend the empty Pi pel i neBui | der implementation introduced as part of the ticketing use case:

133

@Conponent
public class JiraPipelineBuil der inplenments AdapterPipelineBuilder {

@verride
public Pipeline buildPipeline(Adapter adapter, PipelineBuilderFactory factory,
String nane) {
switch (nane) {

case Nanes. Pl PELI NE_PLAI N:
return buil dPl ai nPi peline(factory);

defaul t:
return null;

}

public Pipeline buildPl ainPipeline(PipelineBuilderFactory factory) {
Pi pel i neBui | der buil der = factory. newBuil der (Nanes. Pl PELI NE_PLAI N) ;
bui | der . addBl ock(new Oper ati onExecuti onBl ock());
return builder. build();

Qper at i onExecut i onBl ock is now added into the PLAIN pipeline, making the pipeline capable of executing operations received in messages.

Now it is enough to implement the JIRA cl onel nci dent operation and the first part of the use case (HP SM to JIRA incident delegation) is
implemented:

operations.json

"clonelncident": [

{
"l abel ": "d one incident",
"request Url Tenpl ate": "createTicketUrl.ftl",
"request Tenpl ate": "cl onel nci dent Request. ftl",
"responseTenpl ate": "cl onel nci dent Response. ftl",
"met hod": " POST"

H

{
"l abel": "Get ticket after clone incident",
"request Url Tenpl ate": "getTicket AfterC onelncidentUrl.ftl",
"responseTenpl ate": "getTi cket AfterCl onel nci dent Response. ftl",
"met hod": " CGET"

}

See the ftl templates in the example sources for details. For your convenience, here are the cl onel nci dent Request. ftl and
get Ti cket Aft er d onel nci dent Response. ft| templates:

134

clonelncidentRequest.ftl

<#include "jiraCaseExchangeUtils.ftl"/>

<#assign | oadConfig =

' com hp. ccue. servi ceExchange. adapt er. freemar ker. LoadConfi g' ?new()/ >

<#tassi gn findAliasFor External System =

' com hp. ccue. servi ceExchange. adapt er . f r eenar ker . caseex. Fi ndAl i asFor Ext er nal Syst enl ?new()
/>

<#tassign jiraMappi ng = | oadConfi g(context.contentStorage, "jiraljira-cx-mppings")/>
<#fassign entity = nessage.args.entity/>

<#assign |inkedEntity = nessage.args.!|inkedEntity/>

<#assign properties = entity.properties/>

<#escape x as Xx?json_string>

<#tassi gn environnment Val ue>

[{
"external EntityType": "${entity.entityType}",
"external Entityld": "${entity.entityld}",
"external InstanceAlias": "${findAliasFor External Syst en(context.appCont ext,
linkedEntity.instanceType, |inkedEntity.instance, entity.instanceType,
entity.instance)}"
}H
</ #assi gn>
{
"fields": {
"summary": "${properties. Title}",

<#if properties. Description?has_content>
"description": "${properties.Description}",
</#if>
"project”: {
"key": "SE" <#-- hard-coded for now, use a project key in your JIRA
instead -->
b
"issuetype": {
"id"': "1" <#-- Bug -->
}

"priority": {
"id": "${get Mappi ngVal ue(jiraMapping. | nci dent. Urgency,
properties. Ugency)}"

b
"reporter": {
"name": "System admi n" <#-- hard-coded for now, use a username in your
JIRA instead -->
b
"environment": "${environmentVal ue}" <#-- better solution: use customfields;

we store the external Entity in environment field for deno purposes only -->

}
}

</ #escape>

135

getTicketAfterClonelncidentResponse.ftl

<#include "jiraCaseExchangeUtils.ftl"/>

<#assi gn
| oadConfi g=' com hp. ccue. servi ceExchange. adapt er. f reenar ker. LoadConfi g' ?new() />
<#assign jiraMappi ng = | oadConfi g(context.content Storage, "jiraljira-cx-mappings")/>
<#escape x as x?json_string>
{
"args": {
"linkedEntity": {
"entityType": "lncident",

"entityld": "${doc.result.key}",
"properties”: {
"Status": "${get Mappi ngKey(jiraMappi ng. | ncident. Status,
doc.result.fields.status.id)}"

}

b
"tmp": null
}

</ #escape>

NOTE: HP SX is storing a reference to the HP SM entity in the environment property (as a JSON string). Storing the reference is actually not
needed in the first use case, but it will be important for the second.

The first use case is now implemented and can be tested like this:

® Choose an existing SM incident or create a hew one.

® Set the status field to "Pending Vendor" and the Vendor field to "jira" (or whatever targetAlias for JIRA is in the
ext ernal - syst ens. j son file).

® Click Save and Exit.

You should now observe that:
® A JIRA issue has been created with the same title (i.e. summary) and description as the HP SM incident. Also, the issue should
have the corresponding priority.
® |f you open the HP SM incident again, it should have the Vendor Ticket property updated to the key of the new issue.

JiraAdapter class

The adapter needs to be capable of change observation. To modify the adapter class:

JiraAdapter.java

@Conponent
public class JiraAdapter extends AdapterAbstract {

@\ut owi r ed
public JiraAdapter (JiraQperati onExecutor operati onExecutor, JiraPipelineBuilder
pi pel i neBui | der, JiraChangeCbserver changeGbserver) {
super (Ji raConst ants. J| RA_ADAPTER _NAME, operati onExecutor, pipelineBuilder);

/'l setting change observer
set ChangeObser ver (changeQbserver) ;

Autowire the Ji r aChangeObser ver in the constructor and set it. The Ji r aChangeObser ver implementation is described below.

136

JiraChangeObserver class

For Ji raChangeQbser ver we use SDK's base class Conposi t eChangeCbser ver . This base class is used as it provides the possibility to use
multiple polling commands which will be useful in an R2F use case.

JiraChangeObserver.java

@Conponent
public class JiraChangeCbserver extends ConpositeChangeCbserver {
@/al ue("${adapter.jira.change.|listener. del ayBef oreNext Run}")
private int polllnterval;
@\ut owi r ed
publ i c JiraChangeObserver (JiraCxPol I i ngCommand cxPol | i ngCommand) {
super (I mut abl eLi st. <Runnabl e>of (cxPol | i ngConmand)) ;
}
@verride
public int getPolllnterval Sec() {
return polllnterval;

JiraCxPollingCommand

See the following example implementation that already contains the implementation of abstract ancestor methods. CxPol | i ngComrand is an
implementation that uses an operation of the supplied name to list changes in an external system. It then uses the ent i t yFi | t er property of
event definitions to assign the changes to configured events, and sends an internal CX type message. The abstract methods provide
customization points to change retrieval and message generation processes.

NOTE: Ji raCaseExchangeRul eSt or e and Ji raEvent Fi | t er Eval uat or are autowired in the constructor.

137

JiraCxPollingCommand.java

@Conponent
public class JiraCxPollingConmand extends CxPol | ingConmand {
private static final String KEY_ENTITY_ID = "entityld";
private static final String KEY_EXTERNAL_ENTITIES = "external Entities";
private static final String KEY_H STORIES = "histories";
public static final String OPERATI ON_CGET_CHANGES = "get Changedl nci dent sFor Cx";
@\ut owi r ed
public JiraCxPol | i ngCommand(Ji r aQper at i onExecut or oper ati onExecut or,
Ji raCaseExchangeRul eSt or e caseExchangeRul eSt or e,
JiraEventFilterEvaluator filterEvaluator) {
super (Ji raConstants. JI RA_TYPE, JiraConstants. ENTI TY_I NCI DENT,
JiraConstants. Jiral nstancesCf g. CFG_NANME,
OPERATI ON_GET_CHANGES,
oper ati onExecut or, caseExchangeRul eStore, filterEval uator);
}
@verride
@\onnul |
protected List<Map<String, Object>> extractChangedEntities(Map<String, Object>
changedEntities) {
Li st <Map<String, Object>> result = getField(changedEntities, KEY_H STORIES);
return Objects.firstNonNull (result, Collections.<Map<String,
Obj ect >>enptyList());
}
@onnul |
@verride
protected String extractEntityld(Map<String, Object> entity) {
return getStrField(entity, KEY_ENTITY_ID);
}
@verride
protected Map<String, bject> prepareMessageCust onDat aFor Cx(Map<String, bject>
entity, final Set<String> externallnstanceAliases) {
Map<String, Map<String, OCbject>> externalEntities = getField(entity,
KEY_EXTERNAL_ENTI TI ES) ;
Map<String, Map<String, Object>> relevantExternal Entities =
Maps. filterKeys(external Entities, new Predicate<String>() {
@verride
public bool ean apply(@\ullable String alias) {
return external |l nstanceAl i ases. contains(alias);
}
B
return | mmutabl eMap. <String, Object>of (KEY_EXTERNAL_ENTI TI ES,
rel evant External Entities);
}
}

The dependencies here are Ji r aCaseExchangeRul eSt ore and Ji raEvent Fi |l t er Eval uat or.

JiraCaseExchangeRuleStore

For Ji raCaseExchangeRul eSt or e we simply extend Menor yCaseExchangeRul eSt or e and make it a bean.

138

JiraCaseExchangeRuleStore.java

@Conponent
public class JiraCaseExchangeRul eStore extends MenoryCaseExchangeRul eStore {

}

This class is necessary for correct cont en-j i r a/ case- exchange. j son rules for loading.

JiraEventFilterEvaluator

JiraEventFilterEvaluator.java

@Conponent

public class JiraEventFilterEval uator extends EventFilterEval uator {
private static final String KEY_I TEMS = "itens";
@verride

protected Map<String, Object> extractProperties(Mp<String, Object> entityJson) ({
return getField(entityJson, KEY_ITEMS);

}

@verride

protected String extractOperation(Mp<String, Object> entityJson) {
return null;

}

JiraEvent Fi | t er Eval uat or is a class that is responsible for the evaluation of a filter that defines events in case- exchange. j son. See the
JIRA i nci dent Resol ved event definition for an example. This class will perform the filter on changes detected by the change observer. See
javadoc.

getChangedIncidentsForCx operation

Ji raCxPol I i ngConmand supplies get Changedl nci dent sFor Cx for the operation that is used to list changes. The result of this operation will
be passed to Ji raEvent Fi | t er Eval uat or.

For JIRA this example implementation is recommended:

139

operations.json

"get ChangedI nci dent sFor Cx": [

{
"label": "Get time zone",
"request Url Tenpl ate": "getTi neZoneUrl . ftl",
"responseTenpl ate": "get Ti neZoneResponse. ftl"

b

{
"l abel": "Get changed incidents for CX",
"requestUr|l Tenpl ate": "listTicketsUrl.ftl",
"request Tenpl ate": "get Changedl nci dent sFor CxRequest . ftl",
"responseTenpl ate": "get Changedl nci dent sFor CxResponse. ftl",
"nmet hod": "POST"

}

See the ftl template in the example source for details. For your convenience here are get Changed| nci dent sFor CxRequest . ftl and
get Changedl| nci dent sFor CxResponse. ftl:

getChangedincidentsForCxRequest.ftl

<#tassign formatDate =
' com hp. ccue. servi ceExchange. adapt er. freenar ker . For mat Dat e' ?new()/ >
<#escape x as x?json_string>
{
"maxResul ts": 1000, <#-- overriding as it defaults to 50; note that the count is
also limted by jira.search.views.default.max -->
"val i dateQuery": true,
"jgl": "updated >= \"${formatDat e(message. | ast Updat eTi ne, "yyyy- MM dd HH mmi',
message. tnp. ti neZone) }\"",
"fields": ["environnent"],
"expand": ["changel 0g"]
}

</ #escape>

getChangedincidentsForCxResponse.ftl

<#include "jiraConstants.ftl"/>
<#tassign witeJson =
' com hp. ccue. servi ceExchange. adapter. freemarker. Wi teJson' ?new)/ >
<#function i sH storyRecordRel evant history | ast UpdatedTi ne>
<#l ocal timestanp = history.created?date(Jl RA_TI ME_FORVAT) />
<#l ocal referenceTinme = | ast Updat edTi me?nunber _t o_date/ >
<#return tinmestanp gte referenceTi ne/ >
</ #function>
<#function getExternal Entities issue>
<#l ocal environment = issue.fields.environnent!"[]"/>
<#att enpt >
<#l ocal external Entities = environnent?eval />

140

<#r ecover >
<#l ocal external Entities =[]/>
</ #at t enpt >
<#if external Entities?i s_sequence>
<#return external Entities/>
<#el se>
<#return []/>
</ #if>
</ #functi on>
<#escape x as x?json_string>
{
"histories": [
<#tassign firstltem = true>
<#list doc.result.issues as issue>
<#assign external Entities = getExternal Entities(issue)/>
<#i f external Entities?has_content> <#-- exclude records w thout externa
entities -->
<#l i st issue.changel og. histories as history>
<#if isH storyRecordRel evant (hi story, nessage.| astUpdateTi ne)>
<#-- exclude records ol der than |astUpdateTi ne-->
<#if Ifirstltenp, <#el se><#assign firstltem = fal se></#if>

{
"entityld": "${issue.key}"
"external Entities": {
<#list external Entities as external Entity>
"${external Entity. external | nstanceAlias}": {
"entityld": "${external Entity.external Entityld}"
"entityType": "${external Entity.external EntityType}"
}<#if external Entity_has_next>, </ #if>
</ #list>
b
"items": {
<#list history.itens as itenp
"${itemfield}": {
"front': <#noescape>${writedson(itemfrom}</#noescape>,
"to": <#noescape>${witedson(itemto)}</#noescape>
}<#if item has_next>, </#if>
</#list>
}
}
</[#i f>
</#list>
</#if>
</[#list>

I,
"Date": "${doc.resul tHeaders. Date}"

"tnp": null
}

</ #escape>

141

Case exchange pipeline
So far change listening and event filtering have been implemented. We have enabled that an event is triggered after a defined change, and a
message is sent to HP SX. Now it is necessary to process the message correctly.

The CX message processing needs to be assigned into a case exchange pipeline.

JiraAdapter.java

@verride
protected String getPipel i neNanmeFor Message(MessagePr operties properties,

Map<String, Object> angpMessage) {
final String subType = extract MessageSubtype(properties.getType());
i f (MessageSubType. CHANGE. equal s(subType)) {

final String reason = getStrFiel d(amgpMessage,
switch (reason) {

Entit yChangeMsg. REASON) ;

case EntityChangeMsg. REASON_CASE EXCHANCE:
return JiraConstants. Pl PELI NE_CASE EXCHANGE CHANGE;

defaul t:
throw new ||| egal Argunent Exception();
}
}
return super.getPi pel i neNameFor Message(properties, angpMessage);
}

The pipeline is built in Ji r aPi pel i neBui | der:

142

@Conponent
public class JiraPipelineBuil der inplenments AdapterPipelineBuilder {
@\ut owi r ed
private JiraCaseExchangeAdapt er caseExchangeAdapt er;
@verride
public Pipeline buildPipeline(Adapter adapter, PipelineBuilderFactory factory,
String nane) {
switch (nane) {

case JiraConstants. Pl PELI NE_CASE_EXCHANGE_CHANGE:
return buil dCaseExchangeChangePi pel i ne(factory);

private Pipeline buil dCaseExchangeChangePi pel i ne(Pi peli neBuil derFactory factory) {
final PipelineBuilder builder =
factory. newBui | der (Ji raConst ants. Pl PELI NE_CASE_EXCHANGE_CHANCE) ;
bui | der. addBl ock(new CaseExchangeChangeHandl er Bl ock(caseExchangeAdapter));
return builder.build();

The CaseExchangeHandl er Bl ock that is supplied with Ji r aCaseExchangeAdapt er . CaseExchangeChangeHand! er Bl ock is used. Itis
the crucial block that decides, based on the cont ent - case- exchange/ case- exchange. j son configuration, which actions will be performed.
Basically it ensures that the correct event group action is taken. Ji r aCaseExchangeAdapt er supplies the correct rulestore. See the following
example:

143

JiraCaseExchangeAdapter

@Conponent
public class JiraCaseExchangeAdapt er extends Abstract CaseExchangeAdapter {
private static final Logger log =
Logger Fact ory. get Logger (Ji raCaseExchangeAdapt er. cl ass);
private CaseExchangeRul eStore rul eStore;
@\ut owi r ed
publ i c JiraCaseExchangeAdapt er (Ji raCaseExchangeRul eStore rul eStore) {
this.ruleStore = rul eStore;
}
@verride
public void boot() {
if (log.isTraceEnabled()) {
| og.trace("booting");
}
if (log.isTraceEnabled()) {
| og.trace("boot conpleted");

}
}
@verride
public void shutdown() {
if (log.isTraceEnabled()) {
| og.trace("shutdown");
}
}
@verride
public String get AdapterType() {
return JiraConstants.JI RA TYPE;
}
@verride
public void registerEntityChangelLi st ener(CaseExchangeEntityChangelLi stener
listener) {
rul eStore.registerEntityChangelLi stener(listener);
}
@verride
public void
updat eCaseExchangeEnt i t yChangelLi st ener s(Set <CaseExchangeEnti t yChangeli st ener >
listeners) {
rul eSt ore. updat eCaseExchangeEnt i t yChangelLi st eners(li steners);
}
@verride
public void unregisterEntityChangeListener(String instance, String entityType,
String entityld, String changeReason) {
rul eStore. unregi sterEntityChangeli stener(instance, entityType, entityld,
changeReason) ;
}
@verride
public void onConfigurationRel oaded() ({
/1 not supported

}

To finish the implementation of the second use case the ret ri evel nci dent and convert | nci dent ToCanoni cal Model must be defined:

144

operations.json

"retrievelncident": [

{
"l abel": "Retrieve incident",
"request Url Tenpl ate": "retrievelndicidentUrl.ftl",
"responseTenpl ate": "retrievel ndi ci dent Response. ftl"
}
1,
"convertlnci dent ToCanoni cal Model ": [
{
"l abel ": "Convert incident to canonical nodel",
"resul t Tenpl ate": "convertlnci dent ToCanoni cal Model Resul t.ftl"
}
1,

Theretrievel nci dent operation basically retrieves the issue and stores its data in the ent i t yChange. enti t y field in the message. Here is
the convert | nci dent ToCanoni cal Model Resul t. ft| template:

145

convertincidentToCanonicalModelResult.ftl

<#include "jiraCaseExchangeUtils.ftl"/>

<#assi gn

| oadConfi g=' com hp. ccue. servi ceExchange. adapt er. f reenar ker. LoadConfi g' ?new() />

<#assi gn

fi ndExt Syst enfor Al i as=' com hp. ccue. servi ceExchange. adapt er. f reemar ker . caseex. Fi ndExt er na
/>

<#tassign jiraMappi ng = | oadConfi g(context.contentStorage, "jiraljira-cx-mppings")/>

<#assi gn entityChange = nessage. entityChange />
<#assign external Entities = entityChange. data.external Entities![]/>
<#assign entity = entityChange.entity />
<#escape x as Xx?json_string>
{
"event": "${entityChange. changeReason}"
"entity": {
"instanceType": "${entityChange.instanceType}",
"instance": "${entityChange.instance}",
"entityType": "${entityChange.entityType}",
"entityld": "${entityChange.entityld}",
"properties”: {
"Status": "${get Mappi ngKey(jiraMappi ng. | nci dent. Status
entity.fields.status.id)}"
}
b
"l'inkedEntities": [
<#list external Entities?keys as alias>
<#assign aliasHash = findExt Systenfor Al i as(cont ext. appCont ext,
entityChange. i nstanceType, entityChange.instance, alias)!{} />
<#tassi gn external Entity = external Entities[alias] />

{
"instanceAlias": "${alias}"
"instanceType": "${aliasHash.targetlnstanceType}",
"instance": "${aliasHash.targetlnstance}",

"entityType": "${external Entity.entityType}"
"entityld": "${external Entity.entityld}"
}<#if alias_has_next>, </ #if>
</ #list>
]

ntityChange": {}
}

</ #escape>

The implementation of the CX process has been described up to the point where the content-case-exchange/case-exchange.json configuration
actions will be taken. That means | nci ndent CaseExchangeOOF| owis invoked. This flow will send messages to execute operations in the
linked systems. In our use case the HP SM incident will be resolved.

The second use case can now be tested like this:

® Choose an existing HP SM incident or create a new one. Set the status field to "Pending Vendor" and the Vendor field to "jira" (or
whatever is the targetAlias for JIRA in the ext er nal - syst ens. j son file.) Click Save and Exit.
You should now observe that:
® A corresponding JIRA issue has been created.
® Resolve the JIRA issue.
® |f you now examine the HP SM incident, it should have the Resolved status as well.

146

Request to fulfill use case

® Use case definition
® Implementation
® |[nitial changes
® OO Flow and the createOrder operation
® Change listening
® Support for R2F changes in JiraChangeObserver
® Registering our task for change observing
® Pipeline for handling R2F changes
® Test of the change listening implementation
® Approve/deny operation

In this chapter how to implement a request-to-fulfill (R2F) capable adapter with JIRA as an example fulfillment system is explained. This
information is extending the example implementation described in Ticketing use case and Case exchange use case.

(D It is necessary that you have access to the example implementation sources contained in the HP SX distribution. You will need to refer
to the source code to be able to fully understand the contents of this topic. Especially refer to the ftl templates and the OO flow.

It is also advisable to refer to the SX API javadoc.

Finally, you may also want to consult the How to extend HP SX Content (HP SM Problem entity) topic which has details about many
development techniques, including:

testing REST APIs with browser clients

uploading SX content packs using SX content management Ul and SX upload maven plugin
analysis of SX log files

OO - development of new OO content packs, OO UlI.

Use case definition

For the purpose of this example, fulfillment in JIRA will be interpreted as performing a JIRA task (i.e. to an issue of type Task) in a chosen project
in JIRA. Projects will play the role of catalog items. Also included is a slightly artificial approval process in order to demonstrate how to implement
support for the approve/deny operations. The use case can be summarized in the following flow:

® The user creates an order in Propel. When creating an order, the user chooses a project in which to create a task and specifies
the properties of this task (title, description, reporter, priority). As a result, a task in JIRA is created with Open status and an email is sent
to the lead of the JIRA project who is acting as the Approver. Additionally, a notification is sent to the catalog.

® The lead invokes the approve operation in Propel. As a result, the task status is set to In Progress and a notification email is sent to the
reporter. Additionally, a notification is sent to the catalog.

® A developer resolves the task in JIRA. As a result, the reporter receives an email. Additionally, a notification is sent to the catalog.

® A developer closes the task in JIRA. As a result, HP SX stops listening out for changes of this task.

Implementation

Initial changes

First, add "r2f" to the feature listin cont ent -j i ra/ src/ mai n/ r esour ces/ net adat a. j son. Before the actual implementation, try to call the
REST endpoint for creating orders in a browser REST client such as Postman - http://www.getpostman.com/ or DHC, and see what happens.

147

PGST /sx/ api / request

Cont ent - Type: application/json

Aut hori zation: Basic c3hDYXRhbGnVHIhbnNwb3JOVXN cj pzeENndGFsb2dUcnmFuc3BvenRVe2Vy
{

"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: request ",
"messageType": "order",
"nanme": "I need 'Service Exchange Task'",
"description”: "I need to performa 'Service Exchange Task'",
"items": [
{
"id": "SE",
"name": "Service Exchange Task",

"quantity": "1",
"recipient": {

"@el f": ",
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: person",
"nane": "consuner"”
I3
"properties": [
{
"@ype":
"urn: x-hp: 2014: sof t war e: cl oud: dat a_nodel : property: sel ect",
"name": "priority",
"val ue": "3",
"di spl ayNarme": "Priority"
}
1.
"route": {
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: route",
"systemtype": "JIRA",
"target _instance": "http://npavm nt01l. hpsw abs. adapps. hp. com 8080"
}

This example uses basic HTTP authentication with the notification user. See WEB- | NF/ sx. pr operti es, properties

catal og. notificationUser and catal og. notificati onUser Passwor d, Defaults are

sxCat al ogTransport User/ sxCat al ogTransport User. Note that the Postman client (or other) can create the basic authentication header
for you.

Normal authentication - as documented in Appendix A: Service Exchange - API - is done with an IdM token passed via the X-Auth-Token header;
however, we also support basic authentication for debugging purposes.

NOTE: The key of the JIRA project (where to create the task) ("SE") is used as the id of the catalog item, and HP SX passes priority as an
example of a catalog item property.

If you now perform the REST call, you will find the following exception from the RequestResource class in the logs:

java.l ang. Nul | Poi nt er Excepti on: nessageHeader == null

This indicates that it is necessary to set a request message header template in the JiraAdapter. For this, add the following
setRequestMessageHeaderTemplate() call to the JiraAdapter constructor:

148

JiraAdapter.java

public JiraAdapter(JiraQOperati onExecutor operati onExecutor, JiraPipelineBuilder
pi pel i neBui | der) {
super (Ji raConstants. J| RA_ADAPTER _NAME, operati onExecutor, pipelineBuilder);

set Request MessageHeader Tenpl ate("j i ral/ sx/tenpl at es/ gener at eMessageHeader . ft1");
}

Then add the following gener at eMessageHeader . ft | template (whose structure is suggested in the javadoc of the
setRequestMessageHeaderTemplate() method):

generateMessageHeader . ftl

<#assign route = itens[0].route/>
<#escape x as Xx?json_string>
{
"messageHeader": {
"messageType": "${nmessageType}",
"backendSyst enType": "${route.systemtype}",
"targetlnstance": "${route.target_instance}"

}
}

</ #escape>

Although it is not strictly necessary, override also the decorateRequestMessage() method in the JiraAdapter. This proactively converts a URL
passed in the POST body to an instance ID from the jira/i nstances. j son file:

JiraAdapter.java

@verride
public void decorat eRequest Message(Map<String, hject> nessage) {

super . decor at eRequest Message(nmessage) ;
Map<String, Object> nmessageHeader = getFi el d(nessage,
MessageConst ant s. MESSAGE_HEADER) ;
Map<String, Object> instances =
configuration. get Configuration(Jiral nstancesCfg. CFG_NAVME) ;
MessageUti | s. fixTargetl nstancel nMessageHeader (nessageHeader, instances);

With these changes in place, if you now perform the REST call you will get the following exception from the RequestResource class:

149

java.l ang. Runti neException: Failed to find flow config for JIRA adapter,
nmessageType=or der

This is because HP SX is trying to invoke an OO flow to initiate the creation.

OO Flow and the createOrder operation
Now you must create the necessary OO flow and the related infrastructure, for details see the example sources.

1. Create a maven module oo-j i r a- cp similar to the oo- sm pr obl em cp module in How to extend HP SX Content (HP SM Problem
entity).

2. Modify the pom xm incontent-jira-cptorefertooo-jira-cp, as it was done for cont ent - sm pr obl em

3. Create an OO project 00-j i ra- proj ect inoo-jira-cp/src/ main/resource.

The OO flow will ook like this:

150

:

,
TY———

File Edit Tools Settings SCM Window Help
Projeeis O & # vieome x| @ JiraR2fFlow - low X | -
'?’.|.x e “ . B%"Loml&nnecﬁon < x ‘ . x‘ 9 e ‘ \' sﬂ rgT
B[oo-jira-project “
E}E Library —
| B MSsender @
E- [oo-sx-plugin -
EIB SKFlows Z
. §or=RofFlow r [g
[[Configuration @ __| z
> SRR >
4 | | —
send message Resolved: €
createOrder Success =
e -
0 ;
=
o
a
| Error:
. failure
send email to Resolved -
appraver CCESS
P
[| 0
|| M
I Error:
' failure
| F
| Dependencies O g8 | ([
[ContentPacia] (] utrarr Q
2| 9% O
E-) Base [L11] statug ==In send approved Resolved :
Progress to submitter UCCESS
m I
Error:
failure
A f—l‘
send email to Resolved :
submitter success
R
Errar:
failure
il Resolved :
i success
i |
f ||E] Inspector | 0]
|Design | Properties |

1] Jenkins m...

If the incoming message does not contain the task ID, the OO flow sends a message to HP SX, which (through the PLAIN pipeline) executes an
operation named cr eat eOr der. Otherwise, if the message contains an ID, the OO flow sends a notifying email message based on the task

status. For details, see the example sources.

Next, to register the flow in HP SX and specify its input parameter bindings, add a f | ows. j son file to
content-jiral/src/ min/resources/sx:

151

flows.json

{
"JIRA": {
"order": {
"flow d": <your_ flow.id>,
"conpressMessage": true,
"paraneters": [
{
"nane": "sxConfiguration.jnsBroker",
"val ueSel ector": "$.JM5_BROKER. endpoint",
"source": "infrastructure"
}
/1 ... and other properties conming fromconfiguration files
{
"nane": "orderlnfo.id",
"val ueSel ector": "$.orderlnfo.id",
"source": "nmessage"
}
{
"nane": "orderInfo.title",
"val ueSel ector": "$.orderInfo.title",
"source": "nmessage"
}
/1 ... and other properties conmng fromthe input
]
}
}
}

nessage

If you now call the REST request endpoint, HP SX will invoke the OO flow and return a success response similar to this:

"id":"38628al6-1728- 4e61- aab2- bef c75f 63172"

This is a reference ID for the request and is generated by HP SX. This document calls this id externalld. However, the actual creation of the task

will fail as the createOrder operation is not yet defined, which can be done in this way:

152

operations.json

"createOrder": [

{
"l abel": "Create order",
"requestUrl Tenpl ate": "createTicketUrl.ftl",
"request Tenpl ate": "createOrderRequest.ftl",
"responseTenpl ate": "createO der Response. ftl",
"net hod": "POST"

}

The step is straight-forward as you can see from the following templates:

createOrderRequest.ftl

<#assign item = nessage.itens[0]/>
<#assi gn val uevap = {}/>
<#list itemproperties as property>
<#tassi gn val ueMap = val ueMap + {property.nanme : property.val ue}/>

</ #list>

<#escape x as Xx?json_string>

{

"fields": {

"summary": "${nmessage. nane}",
<#i f message. descri pti on?has_cont ent >
"description": "${message. description}"”,
</#i f>

"project": {
"key": "${itemid}"

}
"issuetype": {
Ilidll: II3II
},
"priority": {
"id": "${valueMap.priority}"
T,
"reporter": {
"nane": "${itemrecipient.nanme}"
}

}
}

<[/ #escape>

153

createOrderResponse.ftl

<#escape x as x?json_string>

{

"orderlInfo": {
"id": "${doc.result.key}"

}

</ #escape>

If you now call the REST request endpoint, the new task will finally be created in JIRA. Check that it is created with the chosen title (i.e.
summary), description, project, priority, and reporter, and that it has the initial Open status.

Change listening

Support for R2F changes in JiraChangeObserver

Now JiraChangeObserver needs to be changed so that it notifies about R2F changes:

JiraChangeObserver.java

@Conponent
public class JiraChangeObserver extends ConpositeChangeCbserver {
@/al ue(" ${adapter.jira.change.listener. del ayBef oreNext Run}")
private int polllnterval;
@\ut owi r ed
publ i c JiraChangeObserver (JiraR2f Pol | i ngConmand r 2f Pol | i ngConmand,
Ji raCxPol | i ngCommand cxPol | i ngCommand) {
super (I nmut abl eLi st . <Runnabl e>of (r 2f Pol | i ngCommand, c¢xPol | i ngConmand)) ;

}

@verride

public int getPolllnterval Sec() {
return polllnterval;

}

Here is the JiraR2fPollingCommand that performs the actual polling functionality:

154

JiraR2fPollingCommand.java

@Conponent

public class JiraR2fPol | i ngConmand ext ends R2f Pol | i ngComrand {
private static final String KEY_ENTITY_ID = "entityld";
private static final String KEY_ENTITIES = "entities";

/**

* Qperation for fetching changed incidents.

*

/

public static final String OPERATI ON_CGET_CHANGES = "get Changedl nci dent sFor R2f ";
@\ut owi r ed

public JiraR2f Pol | i ngConmmand(Ji raOper ati onExecut or operati onExecutor) {
super (Ji raConstants. JI RA_TYPE, JiraConstants. ENTI TY_I NCI DENT,
Jiral nstancesCf g. CFG_NAVE, OPERATI ON_GET_CHANGES, operati onExecutor);
}
@onnul |
@verride
protected List<Map<String, Object>> extractChangedEntities(Mp<String, Object>
changedEntities) {
return getFi el d(changedEntities, KEY_ENTITIES);
}
@onnul |
@verride
protected String extractEntityld(Map<String, Object> entity) {
return getStrField(entity, KEY_ENTITY_ID);
}

For details about this class, see the javadoc R2fPollingCommand. In short, the command performs the following

® |t executes the getChangedincidentsForR2f operation which is passed the lastUpdateTime as the timestamp for which changes are to be

retrieved.

For each changed entity whose ID is registered in HP SX for R2F polling (as if stored with DefaultNotificationSetupExecutor, see the next
section for details about registration), an entity changed message is sent to HP SX.
® |t extracts a new timestamp from the operation result and saves it to the database.

Here is the getChangedIncidentsForR2f operation:

155

operations.json

"get Changedl| nci dent sFor R2f ": [

{
"label": "Get time zone",
"request Url Tenpl ate": "getTi neZoneUrl . ftl",
"responseTenpl ate": "get Ti neZoneResponse. ftl"
b
{
"l abel ": "Get changed incidents for R2F",
"requestUr|l Tenpl ate": "listTicketsUrl.ftl",
"request Tenpl ate": "get Changedl nci dent sFor R2f Request . ft ",
"responseTenpl ate": "get Changedl nci dent sFor R2f Response. ftl",
"nmet hod": "POST"
}

This operation will return JIRA tasks updated or created since the last check for changes:

getChangedIncidentsForR2fRequest.ftl

<#assign formatDate =
' com hp. ccue. servi ceExchange. adapt er. fr eemar ker . For mat Dat e' ?new() / >
<#escape x as x?json_string>

{

"maxResul ts": 1000, <#-- overriding as it defaults to 50; note that the count
also limted by jira.search.views.default.mx -->

"val i dateQuery": true,

"jgl": "updated >= \"${fornat Dat e(message. | ast Updat eTi ne, "yyyy-Mvtdd HH mt',
nmessage. tnp. ti meZone) }\""

}

<[/ #escape>

156

is

getChangedIncidentsForR2fResponse.ftl

<#include "jiraConstants.ftl"/>

<#function islssueRel evant issue | astUpdatedTi ne>
<#l ocal tinestanp = issue.fields.updated?date(Jl RA_TI VE_FORVAT)/ >
<#l ocal referenceTine = | ast Updat edTi ne?nunber _to_date/ >
<#return tinmestanp gte referenceTi ne/ >

</ #functi on>

<#escape x as Xx?json_string>

{
"entities": [
<#assign firstltem= true>
<#list doc.result.issues as issue>
<#if islssueRel evant (i ssue, nessage. | ast UpdateTi ne) >
<#if Ifirstltenp, <#el se><#assign firstltem = fal se></#if>
{
"entityld": "${issue.key}"
}
</#if>
</ #list>
I,
"Date": "${doc.resul t Headers. Date}",
"tnp": null
}

</ #escape>

Registering our task for change observing

It is now necessary to make sure that this task is registered for change observing, otherwise the changes will be ignored by the
JiraR2fPollingCommand.

To do this add a second step to the createOrder operation:

operations.json

"createOrder": [

{
"l abel ": "Setup notifications",
"notifyTenplate": "notifyTenplate. ftl",
"cal | backTenpl ate": "cal | backTenpl ate. ftl",
"operati onNanme": "checkOrder",
"idSelector": "$.orderlnfo.id"

}

This step is a SetupNotifications step, see Appendix B: Operation executors topic for details. In order that the JiraOperationExecutor properly
supports this type of step, its executeNotificationSetup() method must be overridden. This is done in the following way:

157

JiraOperationExecutor.java

@\ut owi r ed
public JiraQperationExecutor(JiraNotificationSetupExecutor
notificationSetupExecutor) {
super (Ji raConst ants. JI| RA_ADAPTER _NAME, Jiral nstancesCf g. CFG_NAME) ;
this.notificationSetupExecutor = notificationSetupExecutor;

}

@verride
protected void executeNotificationSetup(

String entityld, String checkQperation, Map<String, Object>
checkOperati onl nput Message, String catal ogCal | backTenpl at e,

EntityRegi strati onMode node, Map<String, Object> context, Mp<String,
bj ect > stepConfig) throws Exception {

notificationSetupExecutor. executeNotificationSetup(
entityld, checkOperation, checkOperationlnputMessage,

cat al ogCal | backTenpl ate, node, context, stepConfig);

}

That is, the actual step execution is delegated to a subclass of DefaultNotificationSetupExecutor called JiraNotificationSetupExecutor:

JiraNotificationSetupExecutor.java

@Conponent
public class JiraNotificationSetupExecutor extends Defaul t NotificationSetupExecutor {
public JiraNotificationSetupExecutor() ({
super (JiraConst ants. JI RA_TYPE, JiraConstants. ENTI TY_I NCl DENT) ;

}

For details of the implementation, see DefaultNotificationSetupExecutor javadocs.

In short, the step does the following:

® |t extracts the JIRA task ID from the input message using the JSONPath $.orderlnfo.id.
* |t performs a FreeMarker transformation with the notifyTemplate.ftl template.
® |t registers the task in the SX database, namely it stores
® the externalld
the JIRA task id
the operation name to be executed when changes are detected ("checkOrder" here)
the result of the notifyTemplate.ftl transformation (which will serve as input for the checkOrder operation)
the callbackTemplate property value which is the path of a FreeMarker template from which catalog notifications will be

generated.

Here is the noti fyTenpl ate. ft! file:

158

notifyTemplate.ftl

<#assign route = nessage.itens[0].route/>
<#assi gn nessageHeader = nmessage. nessageHeader/ >
<#escape x as Xx?json_string>
{
"nmessageHeader": {
<#l i st messageHeader ?keys as key>
"${key}": "${messageHeader[key]}"<#if key_ has_next>, </ #if>
</ #list>
}

ype": "${message. Qype}",
": "${message. nane}",

nanme" :
"description": "${nessage.description}",
"items": [
{

"route": {

"@ype": "${route. @ype}",
"systemtype": "${route.systemtype}",
"target_instance": "${route.target_instance}

1.
"orderinfo": {
"id": "${nessage.orderlnfo.id}"

}

</ #escape>

The checkOrder operation and the callbackTemplate.ftl template are outlined in the next section - they can be left empty for now.

Pipeline for handling R2F changes

If you now test the observer by making changes to a registered entity, you will see that the JIRA adapter will try to handle an incoming message of
subtype MessageSubType.CHANGE and a reason EntityChangeMsg.REASON_SX_MANAGED.

To add support for such a message:

159

JiraAdapter.java

@verride
protected String getPipeli neNanmeFor Message(MessageProperties properties,
Map<String, Ooject> angpMessage) ({
final String subType = extract MessageSubtype(properties.getType());
i f (MessageSubType. CHANGE. equal s(subType)) {
final String reason = getStrFiel d(amgpMessage, EntityChangeMsg. REASON) ;
switch (reason) {
case EntityChangeMsg. REASON_SX MANAGED: // Addi ng pipeline nane
return JiraConstants. Pl PELI NE_SX MANAGED CHANGE;
case EntityChangeMsg. REASON_CASE EXCHANCE:
return JiraConstants. Pl PELI NE_CASE EXCHANGE CHANGE;
defaul t:
throw new |11 egal Argunment Exception();

}

return super. get Pi pel i neNaneFor Message(properties, angpMessage);

PipelineBuilder.java

@\wut ow red
private StorageFactory storageFactory;
@\ut owi r ed
private Catal ogNotificati onMessagePublisher cnPublisher;
@\ut owi r ed
private OoFl owMessagePubl i sher ooFl owMessagePubl i sher;
@\ut owi r ed
private MessageTransfornmer nessageTransforner;

@verride
public Pipeline buildPipeline(Adapter adapter, PipelineBuilderFactory factory,
String nane) {
switch (nane) {

case JiraConstants. Pl PELI NE_SX MANAGED CHANGE:
return buil dSxManagedChangePi pel i ne(factory);

}

public Pipeline buil dSxManagedChangePi pel i ne(Pi pel i neBui | der Factory factory) {

Pi pel i neBui | der buil der =

factory. newBui | der (Ji raConst ants. Pl PELI NE_SX_MANAGED CHANGE) ;
/| prepare entitylnfo variable
Cont ext Vari abl e<Entitylnfo> entitylnfo =

Cont ext Vari abl e. newbDat aVal ue(Entityl nfo. class, ENTITY_I NFO_PROPERTY_PATH) ;
/1 retrieve entity info from database
/'l keep reference to RetrieveEntitylnfoBlock - we want its VAR TARGET_| NSTANCE

160

RetrieveEntitylnfoBl ock retrieveEntitylnfoBl ock;
return builder.build();

/'l operation execution fromentity info
bui | der. addBl ock(new Entityl nf oQperati onExecut or Bl ock(
st or ageFact ory,
entitylnfo));
/1 extract target instance (it is not in the nmessage anynore)
Cont ext Vari abl e<Stri ng> targetlnstance =
retrieveEntitylnfoBl ock.descVariabl e(RetrieveEntityl nfoBl ock. VAR TARGET_| NSTANCE,
String. class). bi nding;
/1 catalog notification
bui | der. addBl ock(new Entityl nf oAwar eCat al ogNot i fi cati onBl ock(
JI RA_TYPE,
cnPubl i sher,
st or ageFactory,
messageTr ansf or ner,
targetlnstance,
nul |,
entitylnfo
));
/1 finally if not explicitly suppressed, notify QO
bui | der . addBl ock(new Ool nvocat i onBl ock(CONDI TI ONAL_OO _FLOW BLOCK_NANME_SUFFI X,
ooFl owMessagePubl i sher) {
protected bool ean islnterested(Executi onContext context) {
return !context.nmessage.i sEnpty() &&
I cont ext . message. cont ai nsKey(MessageDi recti ves. SKI P_FLOW RUN) ;
}
1)
/'l entity change cl eanup
bui | der. addBl ock(new EntityChangeC eanupBl ock(
JI RA_TYPE,
st orageFactory,
targetlnstance));
bui | der. addBl ock(retrieveEntitylnfoBl ock = new
RetrieveEntityl nfoBl ock(JI RA_TYPE, storageFactory, entitylnfo));

161

To summarize the purpose of each block added into the pipeline.

® RetrieveEntitylnfoBlock
® Using the ID of the entity, it retrieves the information stored at the notification setup time, see the previous section.
® EntitylnfoOperationExecutorBlock
® Executes the check operation, called "checkOrder" in this example.
® EntitylnfoAwareCatalogNotificationBlock
® Applies the catalog notification template to the message and notifies the catalog with the resulting message.
¢ OolnvocationBlock
® Calls the OO flow.
¢ EntityChangeCleanupBlock
® Deregisters listening out for entity changes based on whether the output message of the checkOrder operation contains the
stopListenting directive.

Now, to implement the checkOrder specified in the notification setup, follow this example:

operations.json

"checkOrder": [

{
"l abel ": "Get order”,
"request Url Tenpl ate": "getOrderUrl.ftl",
"responseTenpl ate": "get Order Response. ftl"
H
{
"l abel ": "Get order approver",
"request Url Tenpl ate": "get Order ApproverUrl . ftl",
"responseTenpl ate": "get O der Approver Response. ft|"
},
{
"l abel ": "Get order approver info",
"request Url Tenpl ate": "get Order ApproverlinfoUrl.ftl",
"responseTenpl ate": "get Order Approver | nf oResponse. ftl"
}

The first step gets most of the task data:

162

getOrderResponse.ftl

<#escape x as x?json_string>
<#assign fields = doc.result.fields/>

{
"orderlnfo": {
"id": "${doc.result.key}"
"title": "${fields.sumary}"
"description": "${fields.description!""}",
"status": {
"id": "${fields.status.id}",
"name": "${fields.status.nane}"
b
<#if fields.resolution??>
"resolution": {
"id": "${fields.resolution.id}",
“name": "${fields.resolution.nane}"
H
</#if>
"resolutiondate": "${fields.resolutiondate!""}"
"reporter”: {
"nane": "${fields.reporter.nane}"”
"emai | Address": "${fields.reporter.ennil Address}"
b
"project": {
"id": "${fields.project.key}",
"name": "${fields.project.nanme}"
b
"itemNane": "${fields.project.nane} Task"
}
<#if fields.status.id == "6"> <#-- Cosed -->
"stopListening”: "${doc.result.key}"
</[#i f>
}

</ #escape>

NOTE: The stopListening directive is used to unregister a task from HP SX for a task with a Closed status.
The other two steps in the checkOrder operation retrieve information about the approver and store it in under orderinfo.approver.

Here is the callbackTemplate.ftl file which is used by EntityInfoAwareCatalogNotificationBlock to create the notification message:

callbackTemplate.json

163

<#assign SUBM TTED = "subnmitted">
<#tassi gn PENDI NG_APPROVAL = "pendi ng_approval ">
<#assi gn APPROVED = "approved">
<#assi gn | N PROGRESS = "in_progress">
<#assi gn COVPLETED = "conpl eted">
<#tassi gn REJECTED = "rejected">
<#function toSxStatus jiraStatus jiraResol ution>
<#swi tch jiraStatus>
<#tcase "1"> <#-- Open -->
<#return PENDI NG _APPROVAL>
<#fcase "3"> <#-- In Progress -->
<#return APPROVED >
<#case "4"> <#-- Reopened -->
<#return | N_PROGRESS/ >
<#case "5"> <#-- Resolved - fall through -->
<#case "6"> <#-- Closed -->
<#swi tch jiraResol ution>
<#tcase "1"> <#-- Fixed -->
<#return COVPLETED >
<#case "2"> <#-- Wn't Fix -->
<#return REJECTED >
<#tcase "3"> <#-- Duplicate -->
<#return COVPLETED >
<#case "4"> <#-- Inconplete -->
<#return REJECTED >
<#case "5"> <#-- Cannot Reproduce -->
<#return REJECTED >
<#fcase "10000"> <#-- Done -->
<#return COVPLETED>
</ #swi t ch>
</ #swi t ch>
</ #f uncti on>
<#escape x as x7?json_string>
<#tassi gn orderlnfo = nessage.orderlnfo/>
<#assign status = toSxStatus(orderInfo.status.id, (orderinfo.resolution.id)!"")/>

[
{

"@ype": "urn:x-hp:2014: sof tware: cl oud: dat a_nodel : sx: notification",
"id": "${nessage. nessageHeader. external I d}",

"renoteld": "${orderInfo.id}",

"di spl ayNanme": "${orderInfo.title}",

"requestor": "${orderlnfo.reporter.nanme}",

"state": "${status}",

<#i f status == PENDI NG APPROVAL>

"approvers" : [

{

nane": "${orderl nfo.approver. nane}"

}

1.
</#if>

"subscription": {
midte N A
}
}
]

</ #escape>

Test of the change listening implementation

164

You can now test the implementation like this:

® Call the create-order REST endpoint. You should now observe that:
® Anew task is created in JIRA.
® A catalog notification has been sent reporting the status "pending_approval" and showing the project lead as Approver, which
you can check in the notification.log.

{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: notification",
"id": "d4cac721-15bc-43f7-87ec- 6ea7d3748537",
"renptel d": "SE-6469",
"di spl ayNane": "I need ' Service Exchange Task'",
"requestor": "consuner",
"state": "pending_approval ",
"approvers": [
{
"nanme": "joe.nanager"
}
1.
"subscription": {
"id': "NA"
}
}

® A notification mail has been sent to the Approver asking them to approve or deny the request.
* Now resolve the task with the resolution Fixed in JIRA. You should now observe that:
® A catalog notification has been sent reporting the status "completed":

{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: notification",
"id": "d4cac721-15bc-43f7-87ec- 6ea7d3748537",
"renptel d": "SE-6469",
"di spl ayNanme": "I need ' Service Exchange Task'",
"requestor": "consuner",
"state": "conpleted",
"subscription": {
"id': "NA"
}
}

® A notification mail has been sent to the reporter.
® |f you now close the task in JIRA, HP SX will stop observing changes of the task. You can check this by reopening the task where you
will see that no catalog notifications have been sent.

Approve/deny operation

Approval still needs to be implemented. The approval operation is invoked through the SX RESTful API (/operation resource), as documented in
Appendix A: Service Exchange - API. Try to call it now with an Open task:

GET /sx/ api / oper ati on?nmessageText =<encodedMessage>
Cont ent - Type: application/json
Aut hori zation: Basic anmBl LmlhbnFnzXI 6Y2hhbndl aXQ=

Here the encodedMessage is base64 encoding of:

165

"@ype": "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : sx: i nvoke"
"entityld": "d4cac721-15bc-43f7-87ec-6ea7d3748537",
"entityType": "request"”,

"operationNane": "approve",
"recipient": {
"nane": "joe.nanager"
¥
"paraneters": [
{
"nane": "nessage",
"val ue": "Approved."
}

You can use an online encode e.g. on https://www.base64encode.org/.

NOTE: The documented POST endpoint is not used as it requires an IdM token passed via the X-Auth-Token header. Instead a GET version with
basic authentication is used, which exists for debugging purposes. If you perform the call, it will succeed, but the actual approval will fail with the
following exception in the log:

java.lang. |11 egal Argunent Exception: pipeline OPERATI ON not recogni zed

To add support for the OPERATION pipeline to JiraPipelineBuilder:

166

JiraPipelineBuilder.java

@verride
public Pipeline buildPipeline(Adapter adapter, PipelineBuilderFactory factory,

String nane) {
switch (nane) {

case Nanes. Pl PELI NE_OPERATI ON:
return buil dOperati onPi peline(factory);

}

private Pipeline buildQperationPipeline(PipelineBuilderFactory factory) {
final PipelineBuilder builder = factory.newBuil der(Names. Pl PELI NE_OPERATI ON) ;
bui | der. addBl ock(new Oper ati onExecuti onBl ock());
Cont ext Vari abl e<Map> cat al ogNoti fi cati onMessage =
Cont ext Vari abl e. newDat aMap(CATALOG_NOTI FI CATI ON_MESSAGE_PROPERTY_PATH) ;
bui | der. addBl ock(new PrepareCat al ogNoti fi cati onMessageBl ock(

Cont ext Vari abl e. newFi xedVal ue(MessageConst ant s. Request St at e. COWPLETED) ,
cat al ogNoti ficati onMessage));
bui | der. addBl ock(new Cat al ogNoti fi cati onBl ock(cnPublisher,
/1 notification nmessage
cat al ogNoti fi cati onMessage,
/1 entity IDis "id" in the nessage
Cont ext Vari abl e. newMessageSt ri ng(MessageConst ants. | D),
/1 notification type - always request
Cont ext Vari abl e. newFi xedVal ue(Noti fi cati onType. REQUEST)

)
return builder.build();

Beside the operation execution, a notification to the catalog is performed. If you now call the approval endpoint, the approval will still fail, this time
with the following exception:

java.lang. |11 egal Argunent Exception: JIRA: invalid operation requested: 'approve'

So implement the approve operation:

167

operations.json

"approve": [

{
"l abel ": " Approve order",
"request Url Tenpl ate": "approveOrderUrl.ftl",
"request Tenpl ate": "approveOrder Request.ftl",
"met hod": " POST"

}

The REST call will simply move the task to the In Progress state and add the approval message as a new comment.
Now if you call the approval endpoint, you should observe the following:

® The task is now in the In Progress status.
® Catalog notifications have been sent, which you can check in noti fi cati on. | og:

{
"@ype" : "urn:x-hp:2014: sof tware: cl oud: dat a_nodel : sx: notification",
"di spl ayNane" : "approve request SE-6469",
"state" : "conpleted",
"id" : "bl31lbc6f-f289-4d91-8a07- c502aa4a8f 16"
}
{
"@ype" : "urn:x-hp:2014: software: cl oud: dat a_nodel : sx: notification",
"id" : "d4cac721-15bc-43f7-87ec- 6ear7d3748537",
"renoteld" : "SE-6469",
"di splayName" : "I need 'Service Exchange Task'",
"requestor" : "consuner",
"state" : "approved",
"subscription" : {
"id" o "NA"
}
}

® A notification mail has been sent to the reporter, reporting that the request has been approved.

Support for the deny operation is similar and you can find it in the example sources.

Aggregation in HP SX

Overview

A working aggregation process is a prerequisite to the request to fulfill (R2F) use case as it is the aggregation process that exposes your backend
system entities to be requested (e.g., HP SM catalog items, HP CSA offerings, and so on) in the HP Propel portal. Aggregation creates offerings
that can then be published into catalogs. HP Propel portal users can order offerings from catalogs that are accessible to their organization.

With the introduction of HP Propel 1.11, the aggregation process is driven by HP SX. This chapter describes the details of implementing
aggregation in your adapter.

168

Aggregation in HP SX

1. User defines aggregation using the aggregation Ul. A specific set of operations which determine aggregation properties must be
implemented (more information follows).

2. Aggregation is run either manually or can be set to be invoked automatically when a change in backend system is detected.

3. To enable automatic re-aggregation it is necessary to implement change observing, a process where the backend system is periodically
polled for changes. Every change detected generates a message of type CHANGE and with reason aggr egat i on. These messages are
handled in a special pipeline. This pipeline can use Aggr egat i onl nvocat i onBl ock that is provided in the HP SX API.

Prerequisite
(D In this guide it is assumed that you have finished the minimal adapter classes implementation that enables the ticketing functionality.

See Ticketing use case.

Code excerpts from the implementation of out-of-the-box provided Service Anywhere (SAW) adapter are used throughout this chapter.

Aggregation operations

The following set of operations must be defined in oper at i ons. j son to support aggregation for your system. These operations are invoked
either at aggregation definition time or at aggregation run time.

Operation Note

listOfferings Lists backend system offerings

getOffering Gets offering

getOfferinglcon Gets the icon of an offering, option sets and options as well as

additional offering attachments

listCatalogs Returns list of available catalogs. Should be empty if external system
doesn't support multiple catalogs.

listLanguages Returns list of available catalog languages. Should be empty if
external system doesn't support multiple catalog localizations.

listCategories Returns list of all categories defined in service catalog in external
system.

getAggregationFeatures Lists aggregation features (e.g., automatic aggregation, source filter
hint)

NOTE: | i st eni ngOnOF f er i ng operation has been deprecated

Documentation of the input and output operations format follows. The input message can be seen in the developer Ul and is presented here for
the reader's convenience. The invariant parts (e.g., instanceConfig, infrastructure, context, etc.) of the input are omitted here.

listOfferings

Input

169

{

"nmessage" : {
"l anguageCode" : ${I| anguageCode},
"startlndex" : ${startlndex},
"sortBy" : "itenNane",
"preview' : "true",

"sourceFilter" ,
"pageSi ze" : ${pageSi ze},

"messageHeader" : {
"backendSyst eniType" : "${backendSystenilype}" |,
"targetlnstance" : "${targetlnstanceNanme}"
b
"sortDirection" : "ascending",
"sourceCatal og" : "${sourceCatal ogld}"
}
}
Output
{
"@tartlndex": ${startlndex},
"@tenmsPerPage": ${itensPerPage},
"@otal Results": ${itenmsPerPage},
"result": [
{
"itemd": "${item d}",
"itemName": "${itenName}",
"itenDi spl ayNanme": "${itenDi spl ayNanme}",
"category": "${category}",
"updat eTi me": "2014-07-10T14: 00: 05. 3932"
b
]
}
Placeholder description
itemd Backend system offering id
getOffering
Input
{
"nmessage” : {
"l anguageCode" : null,
"item D' : "90b73e8d47207a2e01472092ec1100a8",
"messageHeader" : {
"backendSyst emlype" : "${backendSystenilype}" |,
"targetlnstance" : "${targetlnstanceNane}"

b
}

170

Output

Following is example output from an HP CSA adapter. The most complex part in this format is the offering options description. A separate section
is dedicated to offering options below. A list of attachments could be returned as well. These are fetched using get O f eri ngl con operation and
are attached to offering in HP Propel. Category sections contains itemNames for categories where current offering belongs to in external system.
It could be more than one category. See als listCategories operation below.

{
"result": {
"nane": "Test VM
“description": "",
"icon": "\/csalapi/blobstore/ccuePl atformlinux.png?tag=library"
"pricing": {
"base": {
"initial": {
"val ue": 0,
"currency": "USD'
H
"recurrence": {
"period": "YEAR',
"anmount": {
"val ue": 0,
“currency": "USD'
}
}
}
b
"option_sets": [
{
"@ype":
"urn: x-hp: 2012: sof t war e: cl oud: dat a_nodel : servi ce-of fering: opti on-set"”
"nane": "Profiles",
ext": {
"csa_nanme_key": "configurations"
b
"multi _select": false
"options": [

{

"@ype":
"urn: x-hp: 2012: sof t war e: cl oud: dat a_nodel : servi ce-of feri ng: opti on",
"nane": "No profile selected.”
"description": "Design w thout any profile applied."
"ext": {
"csa_nanme_key": "no_profile"
H
"l ocked": false
"sel ected": true,

"pricing": {
"initial": {
"val ue": 0,

“currency": "USD'
b
"recurrence": {
"period": "YEAR',
"anmount ": {
"val ue": 0,
"currency": "USD'
}
}

171

},

"properties": [

{
"@ype": "urn:x-hp:2012: sof t war e: cl oud: dat a_nodel : et anodel : property",
"name": "Server 1.vnmNanmePrefix",
"description": "vnmNanmePrefix property.",
"ext": {

"csa_nanme_key":
"8a4134al- d78a- 455e- h856- d7c76397d793; Vcent er Ser ver Type__VERSI ON__04. 10. 00000001; viNanePr
"csa_confidential": fal se
b
"access": {
"of fering": "H DDEN',
"catal ogltent: "H DDEN',
"request": "EDI TABLE",
"instance": "H DDEN'
H
"property_type": "STRING',
"constraints": [
{
"@ype":
"urn: x-hp: 2012: sof t war e: cl oud: dat a_nodel : property: constrai nt:val ue: required",
"required": true,
"validate": true

}
]
b
{
"@ype": "urn:x-hp:2012: sof t war e: cl oud: dat a_nodel : met anodel : property",
"name": "",
"description": "",
"ext": {
"csa_nane_key": "DESI GN_CONFI GURATI ON',
"csa_confidential": fal se
b
"access": {
"of fering": "H DDEN',
"catal ogltent: "H DDEN',
"request": "H DDEN',
"instance": "H DDEN'
H
"property_type": "STRING',
"property_value": "no_profile",
"constraints": [
{
"@ype":

"urn: x-hp: 2012: sof t war e: cl oud: dat a_nodel : property: constraint:val ue: required",
"required": false,
"validate": true

"nane": "SX_REMOTE_OPTI ON_I D 90b73e8d47207a2e01472092bf 120093",
"ext": {
"csa_nanme_key":
" SX_REMOTE_OPTI ON_I D 90b73e8d47207a2e01472092bf 120093"
H

"access": {

172

"of fering": "EDI TABLE"
"catal oglten: "EDI TABLE",
"request": "H DDEN',
"instance": "H DDEN'
H
"property_type"
"property_val ue":

"STRI NG',

"constraints": [
{
"@ype":
"urn: x-hp:2012: sof t war e: cl oud: dat a_nodel : property: constraint
"required": false
"validate": true
}
]
}
]
}
]
}
1.
"properties": [
{
"name": "SX PROVIDER | D',
"ext": {
"csa_nane_key": "SX PROVI DER | D
b
"access": {
"of fering": "EDI TABLE"
"catal oglten: "EDI TABLE",
"request": "H DDEN',
"instance": "H DDEN'
H
"property_type": "STRING',
"property_value": "https://npavn001ll. hpsw abs. adapps
"constraints": [
{
"@ype":
"urn: x-hp:2012: sof t war e: cl oud: dat a_nodel : property: constraint
"required": false
"validate": true
}
]
b
{
"name": " SX_PROVI DER TYPE",
"ext": {
"csa_nanme_key": " SX_PROVI DER TYPE"
H
"access": {
"of fering": "EDI TABLE"
"catal oglten: "EDI TABLE",
"request": "H DDEN',
"instance": "H DDEN'
H
"property_type": "STRING',
"property_val ue": "CSA"

"constraints"

{

[

173

"90b73e8d47207a2e01472092bf 130094",

:val ue: requi red"

hp. com 8444/ csa"

:val ue: requi red"

"@ype":

"urn: x-hp: 2012: sof t war e: cl oud: dat a_node
"required": false
"validate": true

"name":
ext": {
"csa_nane_key"
b
"access": {
"of fering": "EDI TABLE",
"catal ogltenm': "EDI TABLE",
"request": "H DDEN',
"instance": "H DDEN'
H
"property_type"
"property_val ue":
"constraints": [

{

" SX_REMOTE_OFFERI NG | D',

"STRI NG',

"@ype":

"urn: x-hp: 2012: sof t war e: cl oud: dat a_node
"required": false
"validate": true

nane": "SX REMOTE CATALOG | D
ext": {
"csa_nane_key"
}
"access": {
"of fering": "EDI TABLE"
"catal ogltent: "ED TABLE",
"request": "H DDEN',
"instance": "H DDEN'
}
"property_type":
"property_val ue":
"constraints": [

{

"STRI NG',

"@ype":

:property: constraint:val ue: required"

" SX_REMOTE_OFFERI NG_| D'

"90b73e8d47207a2e01472092bf 05008d",

I property:constraint:val ue:required",

" SX_REMOTE_CATALOG | D'

"90d9650a36988e5d0136988f 03ab000f ",

"urn: x-hp: 2012: sof t war e: cl oud: dat a_nodel : property: constrai nt:val ue: requi red"

fal se,
true

"required":
"val i date":

"nane":
ext": {
"csa_nane_key"

}

"access": {
"offering":
"catal ogltent:

"EDI TABLE",
"EDI TABLE",

" SX_REMOTE_CATEGORY_NAME"

" SX_REMOTE_CATEGORY_NAME"

174

"request": "H DDEN',
"instance": "H DDEN'
}
"property_type": "STRING',
"property_val ue": "SI MPLE_SYSTEM'
"constraints": [
{
"@ype":
"urn: x-hp: 2012: sof t war e: cl oud: dat a_nodel : property: constraint:val ue: required"
"required": false
"validate": true

}
]
}
]
b
"attachments" : [
{
"content Type" : "image/jpeg"
i g

"/ csal api / servi ce/ of fering/ 90cef cca481e3c4601481e4f 4a2c00cc/ attachment/fil e/ 90cef ccadof 7:
"nane" : "Koal a.]j pg"

}
{
"content Type" : "application/pdf"
"id" o
"/ csal api/ servicel of fering/ 90cef ccad481le3c4601481e4f 4a2c00cc/ attachnent/fil e/ 90cef ccad9f 7:
"name" : "notes.pdf"
}

1.
"category": [
"Fi nance and Accounti ng"

]

175

HP Propel Option Model

Custom properties defined in backend system catalog items must be mapped into the Option Model in HP Propel. It consists of a three level
structure as described in the following.

® Option Set - represents group of options
® name - display name shown in Ul
® description - optional description shown in Ul

® ext

® csa_name_key - internal identification used for tracking changes during the aggregation. Make sure this value
consistently represents your option set and doesn't change over the time.

® multi_select - boolean value; if true Ul renders option set as a group of check boxes, otherwise radio buttons are used
® pricing - captures initial and recurring price of entire offering

® options - defines options within the option set

name - option display name shown in Ul

description - optional description shown in Ul

getOfferinglcon

ext

® csa_name_key - internal identification for tracking changes during the aggregation. Make sure this value
consistently represents your option and doesn't change over the time.
selected - boolean value representing initial option state. False indicates option is not selected by default.
pricing - captures pricing adjustment when option is selected
option_sets - additional option sets can be nested here. In the Ul they are visible only if option is selected;
otherwise they are hidden.
properties - list of properties sent to fulfillment when option is selected
® name - option display name shown in the Ul
description - optional description shown in the Ul

ext
.

access -

csa_name_key - internal identification used during fulfillment and for tracking changes during
aggregation. Make sure this value consistently represents your property and doesn't change over the
time.

defines property visibility for administrators or end users. For end user editable properties, use

"request": "EDITABLE". For administrator editable properties use "offering": "EDITABLE", "catalogltem™:
"EDITABLE". For hidden property use "HIDDEN" for all 4 access options.

property_
]

type - contains type of property. Supported values are:
STRING - input field

TEXTAREA - multi-line input field

NUMBER - numeric field

DATE - shows as date selector

BOOLEAN - presented by check box

LIST - choice from predefined list of values

property_value - contains default value or list of predefined values for LIST property.Can contain:

name - display name shown in Ul selector
value - value sent to fulfillment as property value
pricing - cost adjustment when value is selected

constraints - defines validation rules for the property. Supported types are:

urn:x-hp:2012:software:cloud:data_model:property:constraint:value:required - makes property
mandatory

urn:x-hp:2012:software:cloud:data_model:property:constraint:list:multi-select - controls single/multi
select for LIST properties
urn:x-hp:2012:software:cloud:data_model:property:constraint:integer:max-value - maximum value
validation for NUMBER
urn:x-hp:2012:software:cloud:data_model:property:constraint:integer:min-value - minimum value
validation for NUMBER

Only issue a GET request for the Icon URL or additional offering attachments if your system provides such a URL or returns a stream with the
data in the result. The latter is implemented using custom step type. See Appendix B: Operation executors.

listCatalogs

Input

176

{

"messageHeader" : {
"backendSyst enType" : "${backendSyst enilype}"
"targetlnstance" : "${targetlnstanceNane}"
}
}
Output
{
"result" : [{
"val ue" : "90d9650a36988e5d0136988f 03ab000f ",
"nanme" : "d obal Shared Catal og",
"description"” : "G obal Shared Catal og"
P,
"messageHeader" : {
"backendSyst enifype" : "${backendSystenType}" ,
"targetlnstance" : "${targetlnstanceName}"
}
}
listLanguages
Input
{
"messageHeader" : {
"backendSyst enilype" : "${backendSystenilype}"
"targetlnstance" : "${targetlnstanceNane}"
}
}
Output
{
"result": [
{
"val ue": "${val ue}",
"nane": "${label}"
}
]
}

listCategories

Input

177

"l anguageCode" : "${| anguageCode}",
"messageHeader" : {
"backendSyst eniType" : "${backendSystenType}",
"targetlnstance" : "${targetlnstanceNane}"
b
"sourceCatal og" : "${sourceCatal aog}"
}
Output
{
"result" : [
{
"itenmDescription” : "Contains itenms such as Security Mnitoring, New
Appl i cation Hosting, License Managenent",
"itenDi spl ayNane" : "Application Support",
"itemd" : "1558",
"itemName" : "Application Support” /1 could be sane as iteml d when backend
system doesn't support human readable ids
H
]
}

getAggregationFeatures

Input
{
"messageHeader" : {
"backendSyst enifype" : "${backendSystenType}" ,
"targetlnstance" : "${targetlnstanceNane}"
}
}
Output
{
"aut omati cAggregation": true,
"sourceFilterH nt": "Optional hint describing source filter syntax and exanpl es
could be here. Could be formatted using HTM. tags."
}

This specifies whether automatic aggregation is supported and also hint shown for source filter field.

Java adapter support
Change observer class

In order to enable automatic aggregation it is necessary to implement offering change observing. It is possible to implement a ChangeObserver
from scratch but for the majority of cases provided the HP SX SDK abstract classes can be extended.

178

In the following example Conposi t eChangeCbser ver is used to set up the change observer class. It accepts an arbitrary number of
commands, and must be supplied with at least one. In this example a single command is supplied that will list offering changes.

Change Observer class

@Conponent
public class SawChangeObserver extends ConpositeChangeCbserver {

@/al ue(" ${adapt er. saw. change. | i st ener . del ayBef or eNext Run}")
private int polllnterval;

@\ut owi r ed
publ i ¢ SawChangeCbser ver (SawAggr egat i onPol | i ngCommand aggr egati onPol | i ngCommand) {
super (| mut abl eLi st. <Runnabl e>of (aggr egati onPol | i ngConmmrand)) ;

}

@verride
public int getPolllnterval Sec() {
return polllnterval;

Aggregation polling command

The change observer command must be implemented. AggregationPollingCommand provided in the HP SX SDK is extended in this example.

Aggregation polling command

@Conponent
public class SawAggregationPol | i ngCommand extends Aggregati onPol | i ngConmmand {

/**

* (Operation for fetching changed offerings.

*/
public static final String OPERATI ON_CET_CHANGES = "get ChangedO ferings”;
@\ut owi r ed

publ i ¢ SawAggr egati onPol | i ngCommand(SawOper at i onExecut or oper ati onExecutor) {
super (SawConst ant s. SAW ADAPTER_NAME, SawConst ants. ENTI TY_OFFERI NG,
Sawl nst ancesCf g. CFG_NAME, OPERATI ON_GET_CHANGES, operati onExecutor);
}
}

The command is supplied with the name of an operation that will be used to retrieved changed offerings. The time of the last check for changes is
provided by the HP SX AggregationPollingCommand to this operation in the input message.

Implement the operation in oper ati ons. j son.

179

operations.json

"get ChangedOf ferings": [
{

)

Following is the changed offerings operation output format.

{
"entitylds": [
"${entityldi}","${entityld2}",...,"${entityl dN}"
1.
“Date": "${doc.resul tHeaders. Date}"
}

Be sure your change observer class is set in the adapter class. Use the same approach as in this SAW adapter code excerpt. Change observer is

injected in the constructor, and set using set ChangeCbser ver method.

Adapter class

@\ut owi r ed
publ i ¢ SawAdapt er (SawOper ati onExecut or executor, SawPi pel i neBuil der buil der,
SawChangeObserver changeCbserver) {
super (SawConst ant s. SAW ADAPTER_NAME, executor, buil der);
set Request MessageHeader Tenpl at e(" sawr 2f / sx/ t enpl at es/ gener at eMessageHeader . ft1");

set ChangeQbser ver (changeCbserver);

}

Aggregation Pipeline
When a change is detected by the change observer, a message is generated with type CHANGE and reason aggr egat i on. A pipeline has to be
defined to handle these messages. Your adapter should include code similar to the SAW example shown here.

In the adapter class get the pipeline name for the message:

180

Adapter class

@verride
protected String getPi peli neNameFor Message(MessageProperties properties, Mp<String,
Ooj ect > angpMessage) {
final String subType = extract MessageSubtype(properties.getType());
i f (MessageSubType. CHANGE. equal s(subType)) {
final String reason = getStrFiel d(amgpMessage, EntityChangeMsg. REASON) ;
switch (reason) {

case EntityChangeMsg. REASON_AGGREGATI ON:
return SawConst ants. Pl PELI NE_AGGREGATI ON_CHANGE;

defaul t:
throw new |11 egal Argument Exception();

}
}

return super. get Pi pel i neNaneFor Message(properties, angpMessage);

Build the pipeline for the name PI PELI NE_AGGREGATI ON_CHANGE in the pipeline builder.

Pipeline builder class

@\ut owi r ed

private AggregationServi ce aggregationService;

@verride

public Pipeline buildPipeline(Adapter adapter, PipelineBuilderFactory factory, String
nanme) {

switch (name) {

case SawConst ants. Pl PELI NE_AGGREGATI ON_CHANGE:
return buil dAggregati onChangePi pel i ne(factory);
defaul t:
return null;

}

public Pipeline buil dAggregati onChangePi pel i ne(Pi pel i neBui |l der Factory factory) {
Pi pel i neBui | der buil der =

factory. newBui | der (SawConst ant s. Pl PELI NE_AGGREGATI ON_CHANGE) ;
bui | der. addBl ock(new Aggregati onl nvocati onBl ock(SAW TYPE, aggregati onService));
return builder.build();

HP SX SDK provides Aggr egat i onl nvocat i onBl ock which handles the aggregation change merging logic.

181

How to create CX content (HP SM Problem entity)

Introduction and purpose
HP SM database triggers
HP SM external access (Web Service Configuration)
case-exchange.json
® More information

® external-systems.json, Group Alias Mappings

* More info
® Converting to the Canonical Model
®* OO Flow

* More info
® operations.json

® Problem entity retrieval

® Problem entity creation

* More info
® Calling external systems (HP SM) and FTL templates
® Problem entity retrieval
® Problem entity creation

Introduction and purpose
The purpose of this section is to provide a simple introduction to HP SX Case Exchange (CX) content creation based on one such existing content
- the Problem CX. Find information about this content and how to install and run it in SX Problem Case Exchange Content Installation. In this

section, one "operation" of the existing content is used - the Problem items' duplication among HP SM instances - and using this as an
example the whole configuration and coding process is demonstrated.

This section expects that you know the basics of HP SX functionality and content creation (including for example the OO Flow integration into HP
SX content etc.) See How to extend HP SX Content (HP SM Problem entity) as a starting point if you need more basic information.

HP SM database triggers
This example works with Problem items in HP SM, so HP SX needs to know when changes of these items occur. This is handled by using SM
database triggers. In this example, one trigger (script) for Problem items creation is added and one for Problem update. Add the following

triggers to the rootcause table (representing the Problem Ul entity) in the HP SM Client application System Definition > Tables > rootcause >
Triggers.

SX.rootcause.after.create trigger

lib. SX_EntityChangeV2.entityAfterAdd('id' , record);

SX.rootcause.after.update trigger

l'ib. SX_EntityChangeV2.entityAfterUpdate('id , oldrecord, record);

Work will also be done with Problem items' Activity Lines (watching for changes). These are stored in a separate table activityproblem. Add
the following triggers for this:

SX.activityproblem.before.add

I'i b. SX_EntityChangeV2. onActi vityCreateO Update(record);

182

SX.activityproblem.after.add

l'ib. SX_EntityChangeV2. entityAfter Add('thenunber', record);

HP SM external access (Web Service Configuration)

The next step is to make all the mentioned content accessible via remote APIs (REST, SOAP).

For Problem items, the required web service is already setup in HP SM, but it needs to be modified. In the HP SM Client application go to
Tailoring > Web Services > Web Service Configuration and search for the Object name Problem. Add the following entries into the table
under the Fields tab. It must be possible to remotely access those fields in order to create copies of Problem items with such fields filled.

Field Caption
current.phase CurrentPhase
status Status
description Description
opened.by OpenedBy
root.cause RootCause

id Id
brief.description Title

expected.resolution.time

ResolutionTime

initial.impact Impact

severity Urgency
subcategory Area

category Category
affected.item Service
assignment AssignmentGroup
product.type Subarea

rcStatus rcStatus

Now the Expressions tab needs to be updated too. Enter the following code, which is needed when updating Problem items (or other HP SM
items. By default HP SM requires that when some of the updates (like Status changes) are made, a Change is created and written as a Journal
Update. This code ensures that no Activity Line is written in such a case - it would be excessive to add these each time the data is automatically
updated remotely - but the proper Journal Update is entered.

Expressions tab content for Problem web service

cl eanup($pm activity); cl eanup($rc. update); $rc. updat e={"external case-exchange update"}

case-exchange.json

Now to start creating the case- exchange. j son configuration file.

It is assumed that the content pack build structure already exists - see How to extend HP SX Content (HP SM Problem entity) topic for how to
create it.

183

The case- exchange. j son config file needs to be placed in the sr ¢/ mai n/ r esour ces directory of your build module. Its content must be
defined in relation to the operation needed - Problem items creation (duplication) in HP SM by HP SX CX. The configuration file defines the
following 3 important sections - events, eventActions and eventGroups.

In the events section reactions to specific items that are of interest are defined, and their specific statuses. In this case it is necessary to react
(create a Problem copy) when the source Problem Status field (rcStatus) changes its value to Pending Vendor. To this end, add the following
events section to the case- exchange. j son file:

"events" section in case-exhange.json config file

"events": {
"SM{
"problemreferringEntityStatusChanged": {
"changeType": ["update"],
"entityFilter": "OLDRECORD['rcStatus']!=NEWRECORD['rcStatus'] &&
NEWRECORD[' r ¢St at us'] ==' Pendi ng Vendor' ",
"entityType": "rootcause"

Next is the eventActions section. Here you define the actions to be executed when a given change occurs (as defined in previous section).
In this case you need to:

® Retrieve the entity (Problem) from HP SM
® Convert it to the Canonical (Generic) Model
® Send it to OO for further processing.

The following code ensures this. You will see more about the first two operations' definitions in the oper at i ons. j son file description section.

"eventActions" section in case-exchange.json config file

"event Actions": {
"problemreferringEntityStatusChanged": [

{
"action": "executeCperation",
"operationNane": "retrieveProbl enCX",
"message": {}
I3
{
"action": "executeQperation",
"operati onNanme": "convert Probl enToCanoni cal Model ",
"message": {}
I3
{
"action": "executeCQoFl ow',
"backendSyst enType": "SM',
"messageType": "probl enCx",
"operationNanme": "referringEntityStatusChanged”,
"message": {
"messageHeader": {
"optional CXProbl emNanmeAppendi x": " probl em copy”
}
}
}

184

The last action required is pretty straightforward - it sends the operationName parameter (and others) as the OO Flow Operation discriminator to
OO0.

NOTE: The results from previous operations in this event actions block are sent to OO with this message too.

What is done with the message on the OO side is further examined in the OO Flow section.

Lastly there is an eventGroups section. This groups common eventActions from the previous section together, and is further used in the
ext ernal - syst ens. j son file. It is useful that the eventActions be grouped together by default if they belong to one way of operations. As only
one operation is created for now, this configuration is simple:

"eventGroups" section in case-exchange.json config file

"event Groups": {
"probl em ReferringEntityEvents": [
"problemreferringEntityStatusChanged"

More information

To know more about SX Case Exchange configuration, go to the Configuration topic.

external-systems.json, Group Alias Mappings

As stated in the case- exchange. j son description section, the ext er nal - syst ens. j son configuration file contains the mapping of actual
server machines to Event Groups (from the case- exchange. j son). The externalSystems section describes this:

externalSystems section from external-systems.json config file

"external Systens": |

{

"instanceType": "SM',

"instance": "your_sm.instance_1",

"regi steredBEvent Goups”: ["problem ReferringEntityEvents"]
}

As you can see, the problem.ReferringEntityEvents Event Group (the same as in case- exchange. j son) is mapped to 'your_sm_instance_1'.
i.e. HP SX will be listening out for changes on the server 'your_sm_instance_1' which conform to the problem.referringEntityStatusChanged event
entityFilter, and executing operations from the problem.referringEntityStatusChanged eventActions part.

Next, you need to define externalSystemAliases in this configuration file.

185

externalSystemAliases section from external-systems.json config file

"external SystemAl i ases": [

{

"sourcel nstanceType": "SM',

"sourcel nstance": "your_sm.nstance_1",
"targetlnstanceType": "SM',
"targetlnstance": "your_sm.instance_2",
"target Alias": "snRdirectionAlias"

As you can see, 'your_sm_instance_1'is defined as a source instance and 'your_sm_instance_2' as a target instance, and named with an
alias 'sm2directionAlias'. This alias is used in the Group Alias Mappings file, name it for example sm& oupAl i asMappi ngs. j son:

smGroupAliasMappings.json

"your_sm.instance_1":{
"Application": "snRdirectionAlias"

So in this file, Problem entities from 'your_sm_instance_1' server have been defined, which have the 'Application' Assignment Group mapped
to 'sm2directionAlias'. This mapping is used when converting an entity to canonical model.

More info

To know more about SX CX configuration, see Configuration.

Converting to the Canonical Model

Before moving to the conversion template alone, the Problem Mapping file - pr obl em mappi ngs. j son - needs to be understood as it is used
during the conversion to the canonical model.

186

problem-mappings.json file

{
"entityType": {
"Probl ent: "rootcause"
}
"Probleni: {
"rcStatus": {
"Accepted": "Accepted",
"Open": "Open",
"Pendi ngVendor": "Pendi ng Vendor",
"Pendi ngCust oner": "Pending User",
"Referred": "Deferred",
"Rej ected": "Rejected",
"Wor kl nProgress": "Wk In Progress",
"Cl osed": "C osed"
}
}
}

The first part, the entityType section, is important for the canonical model conversion as it maps the Ul name of the entity (‘Problem’ in this
example) to the database name (here 'rootcause'.) The second part, the Problem section with the rcStatus subsection in this case, contains the
mapping of the Status Ul field's possible database values (represented as the rcStatus field in the database) to its Ul values. This mapping will
be used in the convert Pr obl eniffoCanoni cal Model Resul t. ft | template too, so view it below as a whole and then the important parts will
each be explained separately.

convertProblemToCanonicalModelResult.ftl template file L] Expand

source

187

<#assign witeJson='com hp. ccue. servi ceExchange. adapt er. freemarker. Wi teJson' ?new()/ >
<#assi gn
| oadConfi g=' com hp. ccue. servi ceExchange. adapt er. freenmar ker. LoadConfi g' ?new() />
<#assi gn
fi ndKey='com hp. ccue. servi ceExchange. adapt er. fr eemar ker . Fi ndKeyFor Val ue' ?new()/ >
<#assi gn
fi ndExt Syst enfFor Al i as=' com hp. ccue. servi ceExchange. caseex. freemar ker . Fi ndExt er nal Syst en
/>
<#assi gn probl enmVappi ng=I oadConfi g(cont ext. cont ent St or age
"sm probl em cx/ probl em mappi ngs") />
<#tassi gn snt oupAl i asMappi ng=I oadConfi g(cont ext. configuration
"snl sniz oupAl i asMappi ngs") />
<#escape x as x?json_string>
{
"event": "${nessage. entityChange. changeReason}"
"entity": {
"instanceType": "${nmessage. entityChange.instanceType}"
"instance": "${nessage.entityChange.instance}",
"entityType": "${findKey(probl emVappi ng. entityType,
nmessage. enti t yChange. entityType)}",
"entityld": "${nmessage.entityChange.entityld}"
"properties": {
<#noescape>${w it eJson(nessage. entityChange. entity, true)}</#noescape>,
"Description": "${nmessage.entityChange.entity.Description?join(", ")}",
"Status": "${findKey(probl emVappi ng. Probl em rcStatus
nmessage. enti tyChange. entity.rcStatus)}"

}
b
<#i f nessage. entityChange. entity. Assignment G oup?has_content &&
message. enti t yChange. changeReason == 'problemreferringEntityStatusChanged' >
<#-- (A) NEW REFERENCE | S SET => RETURN NEW REFERENCE BASED ON MAPPI NGS - - >
<#assi gn
i nst anceAssi gnnent G oups=sn oupAl i asMappi ng[nessage. enti t yChange. i nstance]!"" />
<#i f instanceAssi gnnment G oups?has_cont ent >

<#assi gn
groupCor r espondi ngAl i as=i nst anceAssi gnnment Gr oups[nessage. enti t yChange. entity. Assi gnnent G
/>
<#el se>
<#assi gn groupCorrespondi ngAl i as="" />
</#i f>
<#assi gn al i as=fi ndExt Syst enfor Al i as(cont ext . appCont ext,
nmessage. enti t yChange. i nst anceType, nessage. entityChange. i nstance,
groupCor respondi ngAlias)!"" />
"linkedEntities": [{
"instance": "${alias.targetlnstance}"
,"instanceType": "${alias.targetlnstanceType}"
,"entityType": "Problent
,"entityld": "${nessage.entityChange.entity.VendorTicket!""}"
,"instanceAlias": "${alias.targetAlias}",
"properties": {
"Attachments": [],
"Status":
}
H
</#i f>

}

<[/ #escape>

188

Firstly, notice the findExtSystemForAlias, problemMapping and smGroupAliasMapping "imports" in the initial assign section. The first one is
an external function used to search for the destination HP SM server in order to place the created Problem copy on. The second two are
previously mentioned mappings - pr obl em mappi ngs. j son and sn oupAl i asMappi ngs. j son - and they are used further down in the
file.

Now you can see the message.entityChange.changeReason input being copied into the event parameter. After this comes the first large
important part:

"entity" object creation

"entity": {
"instanceType": "${nessage.entityChange.instanceType}",
"instance": "${nmessage. entityChange.instance}",

"entityType": "${findKey(probl enVappi ng.entityType,
message. entityChange. entityType)}",
"entityld": "${nessage.entityChange.entityld}",
"properties": {
<#noescape>${witeJson(nessage. enti tyChange.entity, true)}</#noescape>,
"Description": "${message. entityChange.entity. Description?join(", ")}",
"Status": "${findKey(probl emVappi ng. Probl em rcSt at us,
message. enti tyChange.entity.rcStatus)}"”
}
}

The entity object is created (prepared to be sent to 0o) with the following important fields:

® instanceType, instance and entityld that are simply copied from the incoming HP SM message.
® entityType is searched for in the pr obl emMVappi ng config, as the incoming Ul value needs to be mapped to the outgoing database
value (‘Problem' to 'rootcause’ in this case).

The properties section is populated with all the source attributes from the incoming HP SM Problem item's representation (using the wri t eJson
call). The exceptions are the Description field (this is split into a multi-line array when read from HP SM with a remote call), and the Status field
(mapped with the usage of pr obl eniVappi ng config.)

The next section deals with the creation of External References - it is called linkedEntities. The data is used to convert them to External
References in the OO Flow section.

189

"linkedEntities" creation

<#i f nessage. entityChange. entity. Assi gnnent Group?has_content &&

message. enti t yChange. changeReason == 'problemreferringEntityStatusChanged' >
<#-- (A) NEW REFERENCE | S SET => RETURN NEW REFERENCE BASED ON MAPPI NGS - - >
<#assi gn
i nst anceAssi gnnment Gr oups=snmG oupAl i asMappi ng[nessage. enti tyChange. i nstance]!"" />
<#i f instanceAssi gnment G oups?has_cont ent >
<#assi gn
groupCorrespondi ngAl i as=i nst anceAssi gnnent G oups[nessage. enti t yChange. entity. Assi gnnent G
/>
<#el se>
<#tassi gn groupCorrespondi ngAl i as="" />
</ #if>

<#tassi gn al i as=fi ndExt Syst enfor Al i as(cont ext. appCont ext,
nmessage. enti t yChange. i nst anceType, nessage. entityChange. i nstance,
groupCorrespondi ngAlias)!"" />

"linkedEntities": [{
"instance": "${alias.targetlnstance}"
,"instanceType": "${alias.targetlnstanceType}"
,"entityType": "Probl ent
,"entityld": "${nessage. entityChange.entity.VendorTicket!""}"
,"instanceAlias": "${alias.targetAlias}",
"properties”: {
"Attachments": [],
"Status": ""

H

Here one important object is prepared - the alias field.

First, look to see if the incoming message contains a filled AssignmentGroup field, as the target HP SM instance will be mapped according to
it. Also note if the changeReason is probl em ref erri ngEnti t ySt at usChanged as only at this moment is the mapping created.

Next, assign an | nst anceAssi gnrrent Gr oups variable (for mapping) according to sniGr oupAl i asMappi ng and the source instance where
the Problem entity was created (from which the incoming message is routed).

If such an instance mapping exists (the i nst anceAssi gnnment Gr oups variable was filled), search in the instanceAssignmentGroups for the
concrete alias according to the AssignmentGroup incoming parameter. All these prepared input parameters are then sent to the
findExtSystemForAlias function, which does the search for the alias object.

Next, the linkedEntities field creation is done mostly by using the objects whose population was just explained.

OO Flow

Now, creating a simple OO Flow consisting of a parameter parsing and sending a message back to HP SX for Problem item duplicate creation,
will be explained.

For basic information about creating OO Flows for HP SX, see How to extend HP SX Content (HP SM Problem entity), the OO flow section.

To create a simple Flow like the one in this screenshot:

190

|—_‘|' “:H "::g, E&) T Local Connecion ~ @Y‘Eg. Lﬁ O &= N . e ¥ BE—?éQ o

B - 2 - B

parsel3S0ON
onRefgrringEn send message Resolved :
tityStajusCha createPrablem success

Clone Problem

into new

systemn and add

to reference

map
Error:
failure

Start OO Studio and create a new empty Flow (Project).

First, add a par seJ SON operation. This parses incoming JSON messages and sets the parameters needed as OO Flow input parameters. In this
example the event, entity and linkedEntity input parameters are important, so enter them as a comma separated values list into the
propertyNamesToJson field in the parseJSON step (Single Value - Constant Value.)

For the second step, which operation should be performed now in OO must be decided. This is decided based on the incoming operationName
(as setin case- exchange. j son config). This example case is waiting for the referringEntityStatusChanged operation. Add an 'Equal' OO
Operation (located in a place like / Base [1.1.1]/Library/Uility Operations/Math and Conpari son/ Si npl e

Eval uat or s/ Equal) and enter the Constant value referringEntityStatusChanged as value2 (valuel not set), operation is ==. This way, the
referringEntityStatusChanged parameter existence is checked for, and if it exists, the flow moves on to the next step (the success branch of the
flow). Otherwise, it can end in an error state for now (not pictured on the screenshot, but could for example be connected to the final error step on
the right).

Now the most important step - sending a message back to SX, to do a Problem item duplication:

Add a sendMessageToMQ step (just like in How to extend HP SX Content (HP SM Problem entity).) As its messageText input, set the following
code into the Constant Value field. Also ensure you have set the operationName Input to 'x:batch - this provides an opportunity to call more
operations in a row. It is not required immediately, but will be needed in the future. For example, if an External Reference mapping creation is
called after the new Problem entity comes into existence on another HP SM server.

191

Create Problem opearation call

"operations": [
{
"operationNane": "createProbl enCX",
"message": {
"messageHeader": {
"backendSyst enType": "${IinkedEntity.instanceType}",
"targetlnstance": "${linkedEntity.instance}"
I3
"args":{
"event":"${event}",
"entity": ${entity},
"linkedEntity": ${linkedEntity}

I3
name": "${entity.properties.Title} problem copy",
"description": "${entity.properties.Description}",
"urgency": "${entity.properties. U gency}",

"inpact": "${entity.properties.lnpact}",

"area": "${entity.properties.Area}",

"subarea": "${entity.properties. Subarea}",

"assi gnment Group": "${entity.properties. Assi gnnent G oup}",
"service": "${entity.properties.Service}"

As you can see from the code itself, the first and most important part is the operationName parameter, that says which SX operation should be
called. For the definition of the example operation - createProblemCX - see the oper ati ons. j son config description, under the subsection
Problem entity creation.

Next a targetinstance and backendSystemType must be set, based on the incoming parameters in the linkedEntity object. See its creation in
Converting to the Canonical Model section.

Next all three incoming objects are forwarded for further processing - event, entity and linkedEntity.

Lastly the Problem specific fields are set, based on the incoming entity object. See its creation in the Canonical Model section again, and see the
usage of the created fields in the cr eat ePr obl enCX operation templates later.

This is everything needed from the OO Flow for now, so after you have created the final 'success' and 'failure' states and the appropriate
transitions as pictured in the screenshot, close OO Studio.

More info

To know more about OO Flows in relation to CX functionality, please refer to OO flows.

operations.json

Problem entity retrieval

As described in the case- exchange. j son file description section, the following operations need to be defined: Problem entity retrieval from HP
SM and conversion to the Canonical Model.

Beginning with the retrieval operation:

192

Problem entity retrieval operation definition

"retrieveProblenCX": [
{
"label": "Retrieve SMentity details",
"request Url Tenpl ate": "problenCx/retrieveSnEntityUl.ftl",
"responseTenpl ate": "problenCx/retrieveSnEntityResponse.ftl",
"met hod": "CET"

b

{
"l abel": "Retrieve external references",
"request Url Tenpl ate": "probl enCx/retrieveExt ernal Ref erencesUrl.ftl",
"responseTenpl ate": "probl enCx/retrieveExternal Ref erencesResponse. ftl",
"nmet hod": "CGET"

}

It is necessary to fetch 2 objects:

® The Problem entity itself
®* The External References table, which will be used to write the mapping to the created Problem on the other HP SM server instance (

'your_sm_instance_2' in this example.)

Furthermore, the requestUrITemplate, responseTemplate or requestTemplate (which is not used in our case) can be defined. The (FTL)
Templates used are described in the next section.

To finish the current config file:

convertProblemToCanonicalModel operation definition

"convert Probl enifoCanoni cal Model ": [

{

"l abel": "Convert Problemto canonical npdel",
"resul t Tenpl ate": "probl enCx/ convert Probl enToCanoni cal Model Resul t. ftl"

Another kind of template is used here, the resultTemplate. This template content is described in Converting to the Canonical Model section.

Problem entity creation

The following code is used for the createProblemCX operation basic configuration:

193

createProblemCX operation definition

"creat eProbl enCX": |

{
"l abel": "Create problent,
"request Url Tenpl ate": "snBSoapUrl.ftl",
"request Tenpl ate": "createProblemftl",
"responseTenpl ate": "createProbl enResponse. ftl",
"header - SOAPActi on": "Create",
"header - Accept": "text/xm"

}

A SOAP message is sent to HP SM to create a Problem entity. Most importantly the requestUrITemplate (to direct into the right HP SM server
host and the correct URL) and the requestTemplate (to send the correct data) fields are needed. The response from HP SM is parsed - in the
responseTemplate part. Lastly, notice the header-SOAPAction parameter. It is needed to distinguish between the called operation on the HP
SM side and the proper value found from the Action Names field. See the Web Service Configuration page for the appropriate HP SM object (go
to Tailoring > Web Services ->Web Service Configuration and search for Object name Problem).

The (FTL) Templates used are described in the next section.

More info

To know more about the HP SX Operations usage for CX use cases, consult Operations.

Calling external systems (HP SM) and FTL templates

Problem entity retrieval
First, it is necessary to write the FTL templates needed for the Problem retrieval operation.
As explained in the previous section, this includes both the Problem item alone and the external references.

For the Problem entity first step, the URL from which the data will be obtained must be constructed. The retri eveSnEntityUrl . ftl file
handles that.

retrieveSmEntityUrl.ftl

<#-- @tlvariable nane="instanceConfig" type="java.util.Mp" -->
<#-- @tlvariable nane="nessage" type="java.util.Mp" -->
<#escape x as x?url >

<#i f message. entityChange.entityType == ' probsumuary' ><#assi gn
entityRest Col | ecti on='sxce_inci dents' >

</ #if>

<#i f message. entityChange.entityType == 'rootcause' ><#assi gn
entityRest Col | ecti on='probl ens' >

</#if>

<#if entityRestCollection??
><#noescape>${i nst anceConfi g. endpoi nt}/ 9/ rest/ ${entityRest Col | ection}/${nessage. entityCh:

Notice that this file can be used to handle the Incident (probsummary) item too, the actual second 'if' handles the rootcause (Problem) object. The
difference to the probsummary URL is in the part behindthe . . . /rest/... Thereis a name of the retrieved objects collection stored in the
entityRestCollection variable, problems in this example. The REST collection name for the object can be found in HP SM.

In the HP SM Client application go to Tailoring > Web Services > Web Service Configuration and search for the Object name 'Problem’. Then
go to the Restful tab and see the collection name in the Resource Collection Name: field.

194

Next, parse the received result inthe retri eveSnEnt i t yResponse. ft1 file:

retrieveSmEntityResponse.ftl

<#assign witeJson='com hp. ccue. servi ceExchange. adapt er. freemarker. Wi teJson' ?new()/ >
<#escape x as x?json_string>

<#i f nessage.entityChange.entityType == 'probsumary' ><#assi gn

entityU Type='lncident'>

</ #i f>

<#i f nessage. entityChange.entityType == 'rootcause' ><#assi gn entityU Type=' Probl enl >
</#if>

<#if doc.result.ReturnCode==0 && entityU Type?? >

{

"entityChange": {
"entity": <#noescape>${writelson(doc.result[entityU Type])}</#noescape>
}

}
</ #if>

</ #escape>

Here all the input is written into the output JSON structure as the entityChange.entity object. The writeout
<#noescape>${witeJson(doc.resul t[entityU Type])}</#noescape> ensures that. There is a conditional switch first, based on
message.entityChange.entity Type (‘rootcause' in this case). The entityUiType variable ('Problem’), is set under the key where the data is stored
in the incoming message (from HP SM.)

Now the External References - the retrieval code is similar to the Problem item itself, with a few minor differences:

retrieveExternalReferencesUrl.ftl

<#-- @tlvariable nane="instanceConfig" type="java.util.Mp" -->
<#-- @tlvariable nane="nessage" type="java.util.Mp" -->
<#escape x as x?url >

<#noescape>${i nst anceConfi g. endpoi nt } </ #noescape>

/ 9/ rest/sxexternal references/ ?2query=${"i nternal EntityType=\"" +
nmessage. enti tyChange. entityType + "\" and internal Entityld=\""+
nmessage. entityChange.entityld + "\""}&vi ew=expand

</ #escape>

As you may guess, the only difference in the r et ri eveExt er nal Ref erencesUr| . ft| template is the name of the retrieved objects collection
- sxexternalreferences this time.

retrieveExternalReferencesResponse.ftl

<#assign witeJson='com hp. ccue. servi ceExchange. adapter. freenmarker. WiteJson' ?new()/>
<#fescape x as Xx7?json_string>
<#i f doc. result.ReturnCode==0>
{

"entityChange": {

" SXExt er nal Ref erences": <#if doc.result.content??

><#noescape>${writelson(doc.resul t.content)}</#noescape><#el se>[]</#if>

}

}
</ #if>
</ #escape>

195

Again, the code is very similar, only this time the incoming content is re-written into the entityChange.SXExternalReferences object. The result
does not appear in this section, but see the complete source code of Problem CX in SX Problem Case Exchange Content Installation, and note
the convert Probl enToCanoni cal Model Resul t. ft| template section.

Problem entity creation

This example use the HP SM SOAP interface for the Problem object creation. See the SOAP interface URL from snSoapUr| . ftl:

smSoapUrl.ftl

<#-- @tlvariable nane="instanceConfig" type="java.util.Mp" -->
${i nstanceConfi g. endpoi nt}/ 7/ ws

If you point your browser to the URL: htt p: // your _sm i nt ance: your _sm port/ SM 7/ Probl emvVanagenent . wsdl (specified in the
Service Name field in the HP SM Web Service Configuration section), you can see the SOAP interface WSDL and all operations, object
structures etc.. As you will see in cr eat eProbl em ft 1, the CreateProblem operation is called:

createProblem.ftl

<#escape x as x?xm >
<Envel ope xm ns="http://schemas. xm soap. or g/ soap/ envel ope/ ">

<Body>
<Cr eat ePr obl enRequest xm ns="http://schenas. hp. conmf SM 7" >
<nodel >
<keys/>

<i nst ance>
<Titl e>${message. nane}</Titl e>
<Descri ption>
<Descri pti on>${ message. descri pti on} </ Descri pti on>
</ Descri ption>
<l npact >${ message. i npact!" 4"} </ | npact >
<Ur gency>${ nessage. urgency}</ Urgency>
<Servi ce>${ nessage. servi ce! "Applications"}</ Servi ce>

<Assi gnnent G oup>${ nessage. assi gnnent G- oup! " Appl i cati on"} </ Assi gnnent G oup>
<Area>${ nessage. area! "dat a"} </ Area>
<Subar ea>${ nessage. subarea! "data or file incorrect"}</Subarea>

</instance>
</ nodel >
</ Cr eat ePr obl enRequest >
</ Body>
</ Envel ope>
</ #escape>

The structure needing to be sent is defined by the wsdl, it is only necessary to fill in fields required by this example:

* Title

® Description

® Impact

® Urgency

® Service

® Assignment Group
* Area

® Subarea

196

How these input values came into existence can be seen from the OO flow operation call (Create problem operation call code block), and the
convert Probl enifoCanoni cal Model Resul t. ft 1, which prepares the data for the OO flow.

Appendix A: Service Exchange - API

Table of Contents
® Introduction
® Overview
® Client's Entry Points
® Resources
®* Requests
® Create Request
® Operations
® Invoke operation
® Callback
® Request State Notification
® Subscription State Notification
® Tickets
Create Ticket
Create Ticket Attachment
Create Ticket Comment
List Tickets
List Ticket Attachments
Get ticket attachment
Ticket Detail
Ticket Operations
Ticket Operation Descriptors
Ticket Property Descriptors
Ticket Property Info (common)
® Ticket Callback
® Ticket State Notification
® Content Packs Management
® List Content Packs

® Content Pack Detail
® Content Pack Delete
® Content Pack Upload
® Content pack archive format
CCUE API Specification
Owner: Ales Jerabek, Petr Fiedler
Status: ACTIVE

Reviewers:
Last COMPLETED revision:

Last REVIEW revision:
Revision History

Version Date Remarks

1.0 2014/Apr/7 Initial proposal.

Introduction

This is a proposal of the specification for SX API. This API design follows REST architectural style principles with including custom media types
and HATEOAS.

197

Overview

Client's Entry Points

Resource Method

Requests POST
Operations POST
Callback POST
Tickets POST
POST
POST
GET
GET
GET
POST
GET

GET

POST

GET
Content Packs GET

GET

DELETE

POST

Resources

Requests

The resource allows to list existing offerings and create new one.

198

URI

http://[host]

http://[host]

generated

http://[host]

http://[host]

http://[host]

http://[host]

http://[host]

http://[host]

http://[host]

http://[host]

http://[host]

http://[host]

http://[host]

http://[host]

http://[host]

http://[host]

http://[host]

Description

‘[port] (/[cont exddtd)d mew requpsesd fulfill

:[port] (/[cont Bwok&)obapticeper at i on

Send a notification about a
request state

:[port] (/[cont ex¢dte)neapii¢ket cket

[port] (/[cont axti} Ajthelwinent wkethd iicket at t
:[port] (/[cont kistliRetapi / ticket/filter

[port] (/[cont kst {icRetapiathinekes / [d] / at t
[port] (/[cont ext lichetapiachimenet / [i d] / at t
[port] (/[cont skkpPid@pi / ticket/[id]
:[port] (/[cont agtljtiekétegomimenket / [i d] / con
[port] (/[cont TkkePpropertytdeskeptops operty
:[port] (/[cont Bxkefpropertytinfoketd yaloperty

enumeration

t[port] (/[cont exnkfitéafickét mrepetyirdperty
and value enumeration based on
values of properties the property
is dependent on

[port] (/[cont emi¢He? pbepatidn ddeztipaper at i ¢

;[port] (/[cont kst t@teappackent ent /

:[port] (/[cont eshiett hapk deeit ent / [i d]

s[port] (/[cont petet@rbaeint packent / [i d]

[port] (/[cont eptdad) dapertqeankent /

URI (/[context]?)/api/request

Methods POST

Create Request

Request
Method URI Request Media Types Response Media Types Description
POST (/[context]?)/api/requasiication/json application/json Create a new request to
fulfill
Template:
{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: request ",

"nmessageType": ${nmessageType},
"nane": ${nane},
"description": ${description},
"startDate": ${startDate},
"endDat e": ${endDat e},

"items" |
{
"id" o ${item d},
"name" : ${itenNane},
"quantity" : ${quantity},
"recipient": {
"@el f": ${sel f ToReci pi ent},
"@ype": "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : sx: person",
name": ${user Nane}
3

"properties": |

1

"route": {
"@ype": "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : sx: route"
"system type": ${systenilype},
"target_instance": ${targetlnstance}

}
}
1
"attachments": [
{
" links": {
"sel f":{
"href": ${attachnment Url}
}
H
"name": ${attachnent Nane}
}
]
}
Description:

199

Param
messageType
name
description
startDate
endDate

itemld

itemName
quantity
selfToRecipient
userName
systemType
targetinstance
attachmentUrl

attachmentName

Description

message type, it is "order" or "bundle" for now.
order name

order description

subscription start date (optional)

subscription end date (optional)

identifier of ordered item, back end system must know it (CSA
offering id or SM catalog item name)

human readable item name (Custom Laptop Provisioning)
quantity

uri to recipient (it is optional)

name of requester, it should be user of back end system

provider type, it is "SM" or "CSA" for now

URI of provider instance

URI with attachment content, SX will download content from there

Filename for attachment

Single request example:

PCOST /sx/ api/request HTTP/ 1.1
Host: exanpl e. com

Cont ent - Type: application/json
Cont ent - Lengt h: NNN

{
"@ype": "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : sx: request",
"messageType": "order",
"nane": "Ordering new desktop",

"description": "My desktop is nore than 5 years old.",
"startDate": "2014-04-09T16: 00: 00Z",
"endDat e": "2015-04-09T16: 00: 00Z",

"items" |

{

"id" : "Custom Desktop Provisioning",

"nane" : "Custom Desktop Provisioning",

"quantity" : 1,

"recipient": {
"@elf": "https://exanple.org/idm person/432423423432",
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: person",
"name": "HUGHES, JULIE"

b
"properties": [
{
"@ype": "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : property:text",
"nane": "description",
"val ue": "add al so optical nouse pl ease"
H
{

"@ype": "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : property: nunber",

200

"name": "menory",
"val ue": 16

},
{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : property: bool ean",
"nanme": "w t hMouse",
"val ue": "true"
},
{
"@ype": "urn:x-hp:2014: sof tware: cl oud: dat a_nodel : property: sel ect"”,
"nanme": "nodel ",
"val ue": "nodel 1"
}
1,
"route": {
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: rout e",
"systemtype": "SM',
"target _instance": "http://16.60.183.57: 13080/ SM'
}
}
1,
"attachments": [
{
" _links": {
"sel f":{
"href":

"/ consunpt i on/ api / mpp/ npp-r equest / 00000023/ att achnment / f f 8081814b3857db014b548e9bf c0371/ fi

}
b

"nane": "Koal a.]j pg"

201

Response

Http status 202 Accepted

Content - Type: application/json
Cont ent - Lengt h: NNN

{
"id": ${request!d}

}

Requestld is generated by SX, all request notifications will include it as well.

Bundle Example:

"@ype":"urn:x-hp: 2014: sof t war e: ¢l oud: dat a_nodel : sx: request ",
"nmessageType": "bundl e",
"name" : "new engi neer bundle",
"description":"",
"startDate":"2014-04-09T16: 00: 00",
"endDat e": "2015- 04- 09T16: 00: 00",
"items": [
{
"id":"90b73e8d4720508f 01472074b1430094" ,
"name":"2 Tier Platforn,
"quantity":1,
"recipient":{
"@elfr"",
"@ype":"urn:x-hp: 2014: sof t war e: cl oud: dat a_nodel : sx: person",
"nanme":"consumer"

}
"properties":
[
{
"@ype": "urn: x-hp: 2014: sof t war e: cl oud: dat a_nodel : property: sel ect",
"nane": "JBossType",
"val ue":"jboss"
}
{
"@ype":"urn:x-hp: 2014: sof t war e: ¢l oud: dat a_nodel : property: sel ect",
"nanme": " Oracl eDBType",
"val ue":"oracl e"
}
1.
"route":{
"@ype":"urn:x-hp: 2014: sof t war e: cl oud: dat a_nodel : sx: route",
"system type": " CSA",
"target _instance":"https://npavnD011l. hpswl abs. adapps. hp. com 8444/ csa"
}

202

"id":"iPaq",
"nane":"i Paq",
"quantity":1,
"recipient":
{

"@el f,

"@ype":"urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: person",
"name": " CONSUVER'

H
"properties":
[
{
"@ype":"urn: x-hp: 2014: sof t war e: cl oud: dat a_nodel : property:text",
"name": "nmenory",
"val ue":" 128"
b
{
"@ype":"urn: x-hp: 2014: sof t war e: cl oud: dat a_nodel : property: option",
"name": "battery",
"val ue": "true"
}
1.
"route":
{
"@ype":"urn: x-hp: 2014: sof t war e: cl oud: dat a_nodel : sx: route",
"systemtype":"SM',
"target_instance":"http://npavnsn06. hpsw abs. adapps. hp. com 13080/ SM'
}

203

Response to Bundle Request

Http status 202 Accepted

Cont ent - Type: application/json
Cont ent - Lengt h: NNN

{
"id": ${bundl el d},
"items": |
{
"id": ${item d},
"index": ${itenl ndex},
1
{
"id": ${item d},
"index": ${itenl ndex},
}
1
}

Both Bundleld and Itemld are generated by SX, all request notifications will include them as well.

ItemIndex marks the position of the item in the request array.

Operations

Invoke operation

Request
Method URI Request Media Types
POST (/[context]?)/api/ operadglioation/json
Template:

204

Response Media Types

application/json

Description

Invoke operation such as
cancel subscription or
custom operation on
realized components

"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: i nvoke",
"entityld": ${entityld},
"entityType": ${entityType},
"operationNane": ${operationNane},
"recipient": {
"@elf": ${sel f ToReci pient},
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: person”,
"name": ${user Nane}

I
"paraneters": [
{
"@ype": ${paraneterType}
"name": ${par anet er Nane},
"val ue": ${paraneterVal ue}
}
]
}
Description:
Param Description
entityld id of affected entity such as subscription id or realized component id
entityType type of entity allowed values are request, subscription,ticket
operationName name of operation to invoke e.g. cancel, approve, deny
selfToRecipient uri to recipient (it is optional)
userName name of approver, it should be user of back end system
parameters optional operation parameters
Example:

POST /sx/ api/operation HTTP/ 1.1
Host: exanpl e.com

Content - Type: application/json
Cont ent - Lengt h: NNN

{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: i nvoke",
"entityld": "287237842384523",
"entityType": "subscription",
"operati onNane": "cancel ",
"recipient": {
"@elf": "https://exanple.org/idm person/432423423432",
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: person",
"name": "joe.nanager"
b
"paraneters" @ [
]
}

205

Response

Http status 202 Accepted

Cont ent - Type: application/json
Cont ent - Lengt h: NNN

"id": ${requestld}

Requestld is generated by SX, all request notifications will include it as well.

Supported operations and their parameters

®* Request
® approve (message)
® deny (message)
® closeOrder (no parameters)
® Subscription
® cancel (no parameters)
® Component
® operations described in service notification

Callback

We expects that calling system provides following rest endpoint to the SX, there will be one endpoint for all notifications coming to single calling

system (e.g. single CCUE catalog instance).

URI generated

Methods POST

Request State Notification

Request
Method URI Request Media Types Response Media Types
POST generated application/json n/a
Template:
{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: notification",

"id": ${requestld}
"renpotel d": ${request Renot el d}
"state" : ${requestState},
"subscription": {

"id": ${subscriptionld}

}
}
Description:
Param Description
requestld request id

206

Description

Send a notification about
a request state

requestRemoteld
requestState

subscriptionid

State codes:
Items can be in the following states:

® submitted

® pending_approval

® approved

® rejected - (end state)

® in_progress

® completed - (end state)
® failed - (end state)

® cancelled - (end state)

Bundles can be in the following states:

® in_progress
® completed - (end state)
® failed - (end state)

backed id of request ("human readable"). It is not mandatory.
request state, see State code bellow

id of subscription, it is combination of fulfillment system identifier and
id in external system separated by :

when fulfillment system doesn't create subscription id is reported as
"NJA"

States can come in any order, but they have semantic order defined by previous list. Consumption will create subscription if state later than
pending_approval (approved) comes and subscription id is present (some id or "N/A" for quotas).

Example, single item request:

Lengt h: NNN
{

"@ype": "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : sx: notification",

"id": "1783512783512873",
"renoteld": "SD10396",

"state": "conpleted",
"subscription" : {

"id" : "CSAPrague: 90b73e8d456ace310145704d17142db1"
}

H

Bundle request notification:

207

Lengt h: NNN

{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: bundl eNoti fi cati on",
"id": "1783512783512873"
"state": "conpleted",
"di spl ayNane" : "new engi neer bundl e"
"items" @ [
{
"@ype": "urn:x-hp:2014: sof tware: cl oud: dat a_nodel : sx: notification",
"id": "6466623423523523"
"renoteld": "90cefbb74720f 4c40147b5cee41b4d8b",
"state": "conpleted",
"di spl ayNane" : "new engi neer bundle - item1/2 (2 Tier Platform"
"subscription" : {
"id" : "CSAPrague: 90b73e8d456ace310145704d17142db1"
}
}
]
}

Only includes items that have had their state changed.

Pending approval notification:

Lengt h: NNN
{
"@ype": "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : sx: notification",
"id": "1783512783512873"
"state": "pendi ng_approval ",
"approvers" : [
{
"nanme": "joe.mnager"
H
{
"nane": "jim nanager"
}
]
1}
Response

Http status 200 when natification was properly consumed. Anything else will cause another attempt for notification in future.

Subscription State Notification

Request
Method URI Request Media Types Response Media Types Description
POST generated application/json n/a Send a notification about
a subscription state
Template:

208

"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: subscri pti onNotification",

"id": ${subscriptionld},
"state": ${subscriptionState},
"conmponents": |

{
"@ype": ${conponent Type},
"id": ${conmponentld},
"di spl ayNane": ${conponent Di spl ayNane},
"properties": [
{
"@ype": ${propertyType}
"nanme": ${propertyNane},
"di spl ayNanme": ${propertyDi spl ayNane},
"val ue": ${propertyVal ue}
}
1
"operations": [
{
"name": ${operationNane},
"di spl ayNane": ${operationDi spl ayNane},
"paraneters": [
{
"@ype": ${paraneterType}
"nane": ${paranet er Nane},
"di spl ayNanme": ${paraneterDi spl ayNane},
"val ue": ${paraneter Def aul t Val ue}
}
]
}
]
}
]
}
Description:
Param Description
subscriptionld id of subscription
subscriptionState state of subscription
componentType realized component type e.g. server group
componentld realized component id (usable for calling operations on it later)
componentDisplayName realized component label
properties/parameters realized component properties or operation parameter descriptors

State codes:

Subscription can be in the following states:

® pending

® active

® expired - (end state)

® cancelled - (end state)

® terminated - (end state)
Example:

209

Lengt h: NNN
{

"@ype”
"state" "active",
"subscri ption" {
"id" : "90b73e8d456ace310145704d17142db1",
"state" "active",
"conponent s" [{
"nane" "Vcent er Server 0001",
"di spl ayNane" "Vcenter Server 1",
"properties" : [{
" name "request edMenorySi ze",
"di spl ayNane" "request edMenorySi ze"
oA
"nane "vimNamePr ef i x",
"di spl ayName" "vmNanePr efi x",
"val ue" " vt
bl
bl
}
1}
Response

"urn: x-hp: 2014: sof t war e: cl oud: dat a_nodel : sx: notification",

Http status 200 when notification was properly consumed. Anything else will cause another attempt for notification in future.

Tickets

The resource allows to list existing tickets and create new one. All ticketing related calls are authenticated using IdM token passed in

X-Auth-Token header.

Headers

Name

X-Auth-Token

Create Ticket
Request

Method

POST

Template:

Value

JWT IdM token

URI Request Media Types

(/[context]?)/api/ti ckaiplication/json

210

Description

token used for authorization, token is
validated using shared secret key and also
checked for expiration date

Response Media Types Description

application/hal+json Create a new ticket

"@ype": "urn:x-hp:2014: sof tware: cl oud: dat a_nodel : sx:ticket",

"name": ${nane},
"description": ${description},
"properties": |
{
"@ype": ${propertyType}
"nane": ${propertyNane},
"val ue": ${propertyVal ue}

Response

Cont ent - Type: application/hal +j son
Cont ent - Lengt h: NNN

{
" links": {...},
"nane": "asdasd",
"description": "asdasdasd",
"properties": [
]

}

Create Ticket Attachment

Request
Method URI Request Media Types
POST (/[context]?)/api/ti ckigpenidd]lonedttauhinmett
type
Headers
Name Value

Content-Disposition

Response

Http status 201 (Created)

attachment;filename=[filename];

211

Response Media Types Description

application/hal+json Adds attachment to ticket

Description

pass original file name which is later used as
name of attachment presented to user

Cont ent - Type: application/ hal +j son

Cont ent - Lengt h: NNN
{
"_links": {
"@el f": {
"href": ${attachnentUri}
}
1
"id": "cid:28735123782",
"nanme": "foo.jpg",
"type": "inmageljpg",
"l ength": 347523
}

Create Ticket Comment

Request
Method URI Request Media Types
POST (/[context]?)/api/ti ckegplibatdr/sonmmrent
{
"description": "New coment text"
}
Response

Same as get ticket response.

List Tickets
Request

Method URI Request Media Types

POST (/[context]?)/api/tickesplitadiéréfson

Query parameters

Param
start-index

page-size

Template:

212

Description

Response Media Types

application/hal+json

Response Media Types

application/json

Index of first row returned, 1 = first row

Maximum number of rows returned

Description

Adds comment to ticket

Description

List tickets

"sort": {
"field"': ${sortField},
"direction": ${sortDirection}

H
"filter": {
"status": "${ticketStatus}",
"nameAndDescri ption": "${textSearch}"
}
}
Response

Cont ent - Type: application/ hal +j son
Cont ent - Lengt h: NNN

{
"_links":{
"sel f":{
"href":"/sx/api/ticket/filter"
}
3
"@tartlndex": 1,
"@tensPer Page": 10,
"@ot al Resul ts": 34,
"_enbedded": [
{
" _links":{
"sel f":{
"href":"/sx/api/ticket/SD10348"
}
3
"id":"SD10348",
"name":"My laptop is broken",
"description":"It doesn't work at all.",
"openTi me":"2014- 05- 13T19: 38: 18+00: 00",
"updat eTi me": "2014- 05- 14T09: 08: 30+00: 00",
"status":"conpl eted"
}
}
}

List Ticket Attachments

Request

Method URI Request Media Types
GET (/[context]?)/api/tickew [id]/attachnment
Response

213

Response Media Types

application/hal+json

Description

List ticket attachments

Cont ent - Type: application/ hal +j son
Cont ent - Lengt h: NNN

{
"_links": {
"sel f": {
"href": "/sx/api/ticket/SD65466/ attachnent™
}
3
" _enbedded": [
{
"_links": {
"self": {
"href": "/sx/api/ticket/SD65466/attachnent/cid: 12836712468"
}
},
"name": "foo.jpg",
"id": "cid:12836712468"
"type": "image/jpeg"
"length": 134124
}
]
}

Get ticket attachment

Request

Method URI Request Media Types Response Media Types Description

GET (/[context]?)/api/tickew [id]/attachment/[atttacthment indhia type Get ticket attachment
Response
Headers:

Content-type:
Content-disposition:

Body: attachment

Ticket Detail
Request
Method URI Request Media Types Response Media Types Description
GET (/[context]?)/api/tickew [id] application/json Ticket detall
Response

214

Cont ent - Type: application/ hal +j son
Cont ent - Lengt h: NNN
{
" _links": {
"sel f": {
"href": "/sx/api/ticket/SD78364"
3
"attachments": {
"href": "/sx/api/ticket/SD78364/attachnment”
b
"createConment": {
"href": "/sx/api/ticket/SD78364/conment"”
3
"upl oadAtt achnment": {
"href": "/sx/api/ticket/SD78364/ attachnent”
3
"close": {
"href": "/sx/api/operation"
}
}
"@ype": "urn:x-hp:2014: sof twar e: cl oud: dat a_nodel : sx: ticket",
"id": "SDr8364",
"nane": "asdasd",
"description": "asdasdasd",
"properties": [
{
"@ype": "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : property: sel ect",
"nane": "contact Met hod",
"value": "emil"
}
1,
"status":"conpl eted",
"openTi ne": "2007-09- 06T08: 06: 00+00: 00",
"updat eTi ne": " 2008- 09-18T17: 11: 06+00: 00",

"comrents" : [
{
"id": "002136128746",
"author": "fal con",
"time": "2007-09-06T08: 06: 00+00: 00",
"description”: "New information here"
}
]
}

Links in ticket detail

The "_link" section of ticket detail (see the Response example above) contains links to resources and available "actions". Their absence signifies
that the resource/action is not available for current user. Attempts to visit such (missing) resources/actions will most likely result in 404 or 403
HTTP errors.

Link Name Link Description
sel f Link to itself (ticket detail)
attachments Resource listing all the attachments of the ticket (see List Ticket

Attachments)

215

cr eat eConment Resource allowing to create new comments (see Create Ticket

Comment)

upl oadAt t achnent Resource allowing to upload new attachments (see Create Ticket
Attachment)

ticket operation name (e.g. close) Operation resource you can use to execute the given ticket operation

(see Ticket Operations)

Ticket Operations

See Operations for general information about operations. Unlike request-to-fulfill-related operations, ticket operations return ticket detail reflecting
the state after operation finished. Ticket operation calls are synchronous.

See Ticket Operation Descriptors for how to list the descriptor of possible operations for a given tenant and locale. Which operations are actually
available for a given ticket at a given moment can be seen from the _link section in a ticket ticket detail response - see Links in ticket detail.

Here is an example of an operation invocation:

POST /sx/ api/ operation HTTP/ 1.1
Host: exanpl e.com

Content - Type: application/json
Cont ent - Lengt h: NNN

{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : sx: i nvoke",
"entityld": "SD78364"
"entityType": "ticket",
"operati onNane": "cl ose",
"paraneters" : [
{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : property:text",
"name": "description",
"value": "I have already solved this issue."
}
]
}

Ticket Operation Descriptors

The following endpoint is used to list ticket operation descriptors; see Ticket Operations for general information about ticket operations.

Request
Method URI Request Media Types Response Media Types Description
GET (/[context]?)/api/ticketw operationdescri ptoapplication/json List ticket operation
descriptors for the given
tenant
Additional request headers
Name Value Description
Accept-Language language tag Used to localize the descriptor (en by
default)
Response

The response looks like this:

216

Cont ent - Type: application/ hal +j son
Cont ent - Lengt h: NNN

{
"_links": {
"self": {"href": "/sx/apil/ticket/operationdescriptor"}
},
"_enbedded": [// may be enpty
{
"nane": ${operationNane},
"di spl ayNane": ${operationDi spl ayNane},
"style": ${operationStyle}, // optional
"paraneters": [// may be enpty
{
"@ype": ${paraneterType},
"nanme": ${paranet er Nane},
"di spl ayNane": ${paraneter D spl ayNane},
"l ength": ${maxParaneterlLength}, // optional
"required": ${isParaneterRequired} // optional
}
]
},
]
}

(default to fal se)

For backward compatibility for older SX adapter versions, the _embedded array is allowed to be empty, which is to be interpreted as if it contained

a close operation like the one in the example below.

Value

oper ati onNane

oper ati onDi spl ayNane

operationStyl e

par anet er Type

par anet er Nane

par anet er Di spl ayNane

maxPar anet er Lengt h

i sPar anet er Requi r ed

Example:

217

Explanation

Operation name (see Operations)

Display name of the operation (can be used e.g. as a Ul button text)

A flag used as a hint about the operation semantics (can be used e.g.
to choose Ul button color); currently the following values are planned
to be used in existing SX adapters: close_style, accept_style,
reject_style, reopen_style.

Type of the parameter (see Operations), taking the same values as
ticket property types (see Ticket Property Descriptors); currently only
the text type is planned to be used in existing SX adapters

Operation parameter name (see Operations).

Display name of the parameter (can be used e.g. a Ul label)

Maximum allowed parameter length; used with properties of the type
text.

Whether the parameter is required.

Cont ent - Type: application/ hal +j son
Cont ent - Lengt h: NNN

{
" links": {
"self": {"href": "/sx/api/ticket/operationdescriptor"}
}
" _enbedded": [
{
"nanme": "cl ose",
"di spl ayNanme": "C ose",
"style": "close_style",
"paraneters": |
{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : property:text",
"nanme": "description",
"di spl ayNane": "Comment",
"required": true
}
]
1
{
"nanme": "accept",
"di spl ayNanme": "Accept"”,
"style": "accept_style"
"paraneters": |
{
"@ype": "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : property:text",
"nane": "description",
"di spl ayNane": "Comment",
"l ength": 2000,
"required": false
}
]
}
{
"nanme": "reject",
"di spl ayNane": "Reject",
"style": "reject_style",
"paraneters”: [
{
"@ype": "urn:x-hp:2014: software: cl oud: dat a_nodel : property:text",
"nanme": "description",
"di spl ayNanme": "Coment",
"l ength": 2000,
"required": false
}
]
}
]
}

Ticket Property Descriptors

Request

218

Method URI Request Media Types Response Media Types Description

GET (/[context]?)/api/tickew property application/json List ticket property
descriptors

Additional request headers

Name Value Description

Accept-Language language tag Used to localize property's displayName
parameters (en by default)

Response

Cont ent - Type: application/ hal +j son
Cont ent - Lengt h: NNN

{
" links": "...",
"properties": [

{
"@ype": "urn:x-hp:2014: software: cl oud: dat a_nodel : property:text",
"nanme": "description",
"di spl ayName": "Description",
"description": "Fill in your question",
"l ength": 3000

b

{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : property: nunber”,
"nanme": "sonmeNunber",

"di spl ayNane": "Sone Number"

}

{
"@ype": "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : property: bool ean",
"name": "someCheckbox",

"di spl ayNanme": "Some Checkbox"

}

{
"@ype": "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : property: sel ect"”,

nane": "soneStaticList",
"di spl ayName": "Sonme Static List",
"val ues": [

“label": "A Label"
"val ue": "aVal ue"
]
H
{
"@ype": "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : property: sel ect”,
"name": "sonmeDynam cList",
"di spl ayNane": "Sonme Dynami c List",
"valuesUrl": "/api/ticket/property/soneDynam cList"
b
{
"@ype":

"urn: x-hp: 2014: sof t war e: cl oud: dat a_nodel : property: sel ect _from nany",
"name": "someQ her Dynami cLi st",
"di spl ayName": "Sonme O her Dynamic List",
"searchUrl": "/api/ticket/property/soneC herDynani cList",

219

"default": "default value for this field"

b

"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : property:text",
"nane": "sonePropertyDependent OnQ her Properties”,

"di spl ayNane": "Sonme Property Dependent On Ot her Properties",

"dependentOn": [

"someDynam cLi st", "someQ her Dynam cLi st"

1.

"propertyUrl™":
"/apil/ticket/property/somePropertyDependent OnQt her Properties”
b
{

"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : property: text",
"name": "status",

"di spl ayNane": "Status",
"readOnly": true

}

220

Properties describing Ticket Properties

Describing Property Name

@ype

nanme

di spl ayNane

description

| ength

dependent On

val ues

val uesUr |

searchUr|

propertyUrl

def aul t

readOnly

required

requi r edQut si deProperti esLi st

221

Describing Property Explanation

Type of the property.

Internal name of the property.

Name of the property. This name can be displayed to users. Can be
localized based on "Accept-Language" header.

Description of the property. This description can be displayed to
users. Can be localized based on "Accept-Language" header.

Used with properties of the type: "text". Max. allowed length the value
of this property can have.

Contains list of other properties the property is dependent on (the
visibility and/or allowed values are dependent on current values of
those other properties). When this descriptor is present and
nonempty, one of the following descriptors has to also be present:
valuesUrl, searchUrl, propertyUrl. The presence of this descriptor
also signifies to client, that it has to use the HTTP POST method to
visit those URLs and include current values of all the properties the
property depends on (see Ticket Property Info (common)). Note that
circular dependencies are not allowed.

Used with properties of the type: "select". Contains all the possible
values this property can have.

Used with properties of the type: "select". Contains URL of resource
containing info about visibility and all the possible values this property
can have - see Ticket Property Info and Values (specifics of property
type select).

Used with properties of the type: "select_from_many". Contains URL
of resource containing info about visibility and possible values this
property can have. Requires a query as an input (see Ticket Property
Info and Values (specifics of property type select_from_many)).

Used with properties of the type other than "select" and
"select_from_many" that are dependent on other properties. Contains
URL of resource containing info about visibility and default value
based on values of other properties.

Used with properties of the type: "select", "select_from_many".
Contains default value for this property. Can be user-specific.

Specifies whether this property is only used in Ticket Detail (meaning
it is not to be used when creating the ticket). When "readOnly" is
absent, its default value is false.

Specifies whether the user is required to fill in this property when
creating ticket. Note that the property is not to be considered required
, if it is not visible (see display parameter in Ticket Property Info
(common))

Only applies to properties with names: "name", "description".
Specifies that this property is not present in the standard property
array along with other properties, but is still present elsewhere in
request and response messages (see Ticket Detail). These
properties are always required.

Ticket Property Info (common)
Request

Method URI

GET

POST

Template for POST request

Request Media Types

(/[context]?)/api/tickem property/[propertyhppkdation/json

(/[context]?)/api/ti ckagplipatgre]son/ [pr oper t y Nppidationfjson

Response Media Types Description

Displays info about
property (its visibility and
optionally the default
value).

Generates info about
property (its visibility and
optionally the default
value) based on received
values of properties this
property is dependent on.

Note that only properties the property is dependent on should be sent in this request (dependencies are specified in Ticket Property Descriptors).

{
"properties": [
{
"@ype": ${propertyType},
"name": ${propertyNane},
"val ue": ${propertyVal ue}
}
]
}

Response (to both GET and POST requests)

Cont ent - Type: application/ hal +j son

Cont ent - Lengt h: NNN
{
"_links": ..M,
"display": true,
"default": "ABC'
}

Response parameters descriptions

Parameter

display

222

Description

(boolean) Specifies if the ticket property should be visible in the ticket
create/edit form. When the property is not visible, it can not be
required. When the property is not visible, all the ticket properties
dependent on this ticket property are also not visible. If the display
parameter is not present, the default value true is presumed.

default Specifies the default value of the ticket property. This default value
has a priority over the default value which can be set in Ticket

Property Descriptors .

Ticket Property Info and Values (specifics of property type select)

Request
Method URI Request Media Types Response Media Types
GET (/[context]?)/api/ticketw property/[propertydapkdation/json
POST (/[context]?)/api/ti ckaiplipatgejsoy/ [pr oper t y Napkdationfjson
Response

Cont ent - Type: application/ hal +j son
Cont ent - Lengt h: NNN

{
" links": "...",
"di splay": true,
"default": "a",
"val ues": [
{
"l abel ": "A"
"val ue": "a"
}
{
"l abel ": "B",
"name": "b"
}
]
}

Ticket Property Info and Values (specifics of property type select_from_many)
Request

Method URI Request Media Types Response Media Types

223

Description

Displays info about
property (its visibility and
optionally the default
value) and lists ticket
property values (for
dynamic lists)

Generates info about
property (its visibility and
optionally the default
value) based on received
values of properties this
property is dependent on
and lists ticket property
values (for dynamic lists)

Description

GET

POST

Query parameters

Param

q

start-index

page-size

Response

Cont ent - Type:

(/[context]?)/api/ticket property/[propertydppkdation/json

(/[context]?)/api/ti ckagplipatge]soy/ [pr oper t y Npplidationfjson

Description

Displays info about
property (its visibility and
optionally the default
value) and lists ticket
property values (for
dynamic lists)

Generates info about
property (its visibility and
optionally the default
value) based on received
values of properties this
property is dependent on
and lists ticket property
values (for dynamic lists)

Property value label filter (only property values where label contains
the query String q will be returned - case insensitive)

Index of first property value returned, 1 = first value (1 by default)

Maximum number of property values returned (10 by default)

appl i cation/ hal +j son

Cont ent - Lengt h: NNN
{
" links": "...",
"display": true,
"default": "b",
" @ageSi ze": 10,
"@tartlndex": 1,
"@otal Count": 100,
"val ues": [
{
"l abel ": "A",
“val ue": "a"
}
{
"l abel ": "B",
"nanme": "b"
}
]
}

Example request:

(/[context]?)/api/ticket/property/ Contact?q=con&start-i ndex=1&page-si ze=2

Example response

224

" links":{"self":{"href":"/sx/api/ticket/property/Contact"}},

" @ageSi ze": 2,
"@tartlndex": 1,
"@ ot al Count": 5,

"val ues": [
{
"val ue": " CONLAN,
"l abel ": " CONLAN,
}
{
"val ue": " CONROY,
"l abel ": " CONROY,
}

Ticket Callback

CONNI E,
CONNI E"

CCOLLEEN',
COLLEEN'

We expects that ticketing micro service provides following rest endpoint to the SX.

URI

Methods

Ticket State Notification

Request
Method URI
POST generated
Example:

Request Media Types

generated

POST

Response Media Types

application/hal+json n/a

225

Description

Send a notification about
a ticket state

Cont ent - Type: application/ hal +j son
Cont ent - Lengt h: NNN

{
"_links": {
"sel f": {
“href": "/sx/api/ticket/SD78364"
}
¥
"@ype": "urn:x-hp:2014: sof tware: cl oud: dat a_nodel : sx:ticket",
"id": "SDrg8364",
"nane": "asdasd",
"description": "asdasdasd",
"properties": [
{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : property: sel ect”,
"name": "contact Met hod",
"val ue": "email"
}

]
"status":"conpl eted",
"openTi nme": "2007-09-06T08: 06: 00+00: 00",
"updat eTi me": "2008- 09- 18T17: 11: 06+00: 00"

}

Description:
State codes:
Ticket can be in the following states:

® submitted

® pending_approval

® approved

® rejected - (end state)

® in_progress

® completed - (end state)
® failed - (end state)

® cancelled - (end state)

Content Packs Management

The resource allows to list existing content packs and upload new one. All calls are authenticated using IdM token passed in X-Auth-Token
header.

Headers
Name Value Description
X-Auth-Token JWT IdM token token used for authorization, token is

validated using shared secret key and also
checked for expiration date

List Content Packs
Request

Method URI Request Media Types Response Media Types Description

226

GET (/[context] ?)/api/contiemt application/hal+json

Response

Cont ent - Type: application/ hal +j son
Cont ent - Lengt h: NNN

{
"_links":{
"sel f":{
“href":"/sx/api/content"
}
H
" _enbedded": [
{
"_links":{
"sel f":{
"href":"/sx/api/content/csa-r2f"
}
}
"id":"csa-r2f",
"nanme":"CSA request to fullfilnent"
"description":"",
"adapter":" CSA",
"version":"1.0.0",
"features": [
"raf",
"csa-r2f"
1
"ooContent": {
"nane": " o0o0-csa-r2f-cp"
"version":"1.2.0"
}
}
]
}

Content Pack Detail

Request
Method URI Request Media Types Response Media Types
GET (/[context] ?)/ api/ contemt / [i d] application/hal+json
Response

227

List content packs

Description

Content pack detail

Cont ent - Type: application/ hal +j son
Cont ent - Lengt h: NNN
{
" _links":{
"sel f":{
“href":"/sx/api/content/csa-r2f"
}
},
"id":"csa-r2f",
"nanme":"CSA request to fullfilnent",
"description":"",
"adapter":" CSA",
"version":"1.0.0",
"features": |
"ra2f",
"csa-r2f"
1,
"ooContent":{
"nane": " o0o0-csa-r2f-cp",
"version":"1.2.0"

Content Pack Delete

Request
Method URI Request Media Types Response Media Types Description
DELETE (/[context]?)/api/contrmt/[id] N/A delete content pack
Response

Http status 204 No Content

Cont ent - Type: NNN
Cont ent - Lengt h: NNN

Content Pack Upload

Request
Method URI Request Media Types Response Media Types Description
POST (/[context] ?)/api/ contapplication/octet-stream application/hal+json Upload Content pack

Stream is zipped content pack archive.

Response

228

Cont ent - Type: application/ hal +j son

Cont ent - Lengt h: NNN
{
"_links":{
"sel f":{

“href":"/sx/api/content/csa-r2f"

},

"id":"csa-r2f",

"nanme":"CSA request to fullfilnent",

"description":"",

"adapter": " CSA",

"version":"1.0.0",

"features": |
"ra2f",
"csa-r2f"

1,

"ooContent":{
"name
"version":"1.2.0"

Content pack archive format

:"o0o0-csa-r2f-cp",

Content pack contains configurations for specific part of SX functionality. It does not contain java code.

Structure

path

/metadata.json

/oo/[cpName].jar

/sm/[unloadName].unl
/sx/flows.json
/sx/operations.json

/sx/templates/[freemarkertemplateName].ftl

/sx/[configName].json

Metadata example

is required?

yes

no

no

no

yes

no

no

229

description

File in json format. It contains basic
information about SX content pack.

OO content pack. SX can upload it to oo
server automatically. Update policy depends
on sx.content.oo.upload property.

Unload files exported from SM. User have to
unzip the files and import it to SM manually.

Mapping between operations and oo flows in
json format.

Mapping between operations and freemarker
templates in json format.

Freemarker templates transform SX
canonical format to external systems formats
(SM, CSA, ..)

More json configurations for specific part of
SX functionality.

"id": "smr2f-change",

"nane": "SMrequest to fullfilment by change",
"description": "",

"version": "1.0.0",

"adapter": "SM',
"features": |

"rafn,

"smr2f",

"smr 2f - change"

Metadata structure

property description

id id must be unique

name content pack name

description content pack description

version content pack version

adapter Adapter specifics which external system the CP uses. Now SX

contains CSA and SM adapters.

features Features which CP provides. SX uses this information for
enabling/disabling its REST APIs.

Appendix B: Operation executors

® Overview of step properties recognized by BaseOperationExecutor
® Properties common for all step types
® Properties for SubmitHttpRequest step type
® Properties for SetupNotifications step type
® Properties for PerformFtITransformation step type
® More about BaseOperationExecutor step types
® Notes applying to more step types
Message merging

Repeated step execution
FTL transformation

® PerformFtlTransformation step type
® SubmitHttpRequest step type

® SetupNotifications step type

Operation executors

com hp. ccue. servi ceExchange. oper ati on. Oper at i onExecut or interprets oper ati ons. j son. Here is an example
oper ati ons. j son content:

230

"getCatal ogltens": [

{
"l abel": "Get catalog itenms - changes",
"request Ul Tenpl ate": "snSoapUrl.ftl",
"request Tenpl ate": "retrieveCatal ogltensChanges.ftl",
"responseTenpl ate": "retrieveCatal ogltenmsChangesResponse. ftl",
"header - SOAPAction": "RetrieveKeysList",
"header - Accept": "text/xm"

b

{
"l abel": "Get catalog itenms - changes",
"request Ul Tenpl ate": "snSoapUrl.ftl",
"request Tenpl ate": "retrieveCatal ogltensChanges2.ftl",
"responseTenpl ate": "retrieveCatal ogltenmsChangesResponse. ftl",
"header - SOAPAction": "RetrieveKeysList",
"header - Accept": "text/xm"

H

{
"l abel": "Get catalog itens - quotes"”,
"request Ul Tenpl ate": "snSoapUrl.ftl",
"request Tenpl ate": "retrieveCatal ogltenmsQuotes.ftl",
"responseTenpl ate": "retrieveCatal ogltensQuot esResponse. ftl",
"header - SOAPAction": "RetrieveKeysList",
"header - Accept": "text/xm"

}

1.
"createOrder": [

{
"label": "Create cart",
"request Ul Tenpl ate": "snSoapUrl.ftl",
"request Tenpl ate": "createCart.ftl",
"responseTenpl ate": "createCart Response.ftl",
"header - SOAPActi on": "Create",
"header - Accept": "text/xm"

H

More about the oper at i ons. j son file format can be found in HOWTO Sample SX Content. As you can see, an operation is named and it
consists of steps. The operation executor is able to interpret this file and execute operation/steps one by one. It has a simple method for operation
execution and an introspective method for determining whether the operation is recognized:

231

public interface Operati onExecutor ({
/**
* Executes named operation with the given execution context.
* The execution context is to be used during backend-specific step execution.
* It is not intended to hold data values - data values are to be put
* into nmessage.

* @ar am oper ati onNane operation to be executed

* @aram nmessage nessage to be processed and returned

* @aram cont ext execution context (may be null)

*

* @eturn processed nessage

*/

public Map<String, Object> executeOperation(String operati onNane, Mp<String,
Obj ect > nessage,

Map<String, Object> context);

/**

* @aram operati onNanme nanme of the operation to recognize

* @eturn true if the operation is recognized (and can be executed), false
ot herw se

*/

publ i c bool ean isOperati onRecogni zed(String operationNane);

The subject for the operation is always the JSON message, and optionally the Java context.

BaseOperationExecutor basics

The default implementation of OperationExecutor is in com hp. ccue. servi ceExchange. oper ati on. BaseOper at i onExecut or .
BaseOperationExecutor can interpret these step types:

® SubmitHttpRequest step: used for executing an HTTP request, while performing FreeMarker transformations when creating inputs and
processing outputs of the HTTP request.
® BaseOperationExecutor recognizes a step as a SubmitHttpRequest step if the requestUrITemplate step property is supplied.
® SetupNotifications step: used for setting up listening for changes of an entity in the external system.
® BaseOperationExecutor recognizes a step as a SetupNotifications step if it is not recognized as a SubmitHttpRequest step and
the notifyTemplate step property is supplied.
* PerformFtITransformation step: used for performing a FreeMarker transformation only.
® BaseOperationExecutor recognizes a step as a PerformFtlTransformation step if it is not recognized as a SubmitHttpRequest or
a SetupNotifications step. and the step resultTemplate property is supplied.
® custom step: used for subclass-specific steps.
® BaseOperationExecutor recognizes a step as a custom step if is not recognized as a step of the three above types.

NOTE: Steps of all types can be executed repeatedly if set up using the inputSelector and inputName step properties.

When implementing an SX adapter, you can either use this default implementation of you can extend it. The BaseOperationExecutor provides the
final implementation of the executeOperation method of the OperationExecutor interface. Its constructor needs:

® adapter type (String, e.g. SM, CSA,...)
® instances.json config path (because this file is read and passed to particular steps as part of an FTL data model.)

It has the following overridable methods to customize its behavior:

* addStepDecorator: Any step can be decorated via StepDecorator (add/remove properties) before being executed, whether the step is
to be decorated or not is determined by StepFilter.
* beforeExecuteOperation: Invoked before the actual execution of operation steps. Override this method if you need a pre-invocation

232

hook. Default implementation is empty.

® afterExecuteOperation: Invoked after the actual execution of operation steps. Override this method if you need a post-invocation hook.
Default implementation is empty.

¢ finallyAfterExecuteOperation: Invoked in the final clause of a try-finally block surrounding the execution of operation steps (including
beforeExecuteOperation and afterExecuteOperation invocations.) Exceptions thrown by this method are not propagated, they are only
logged. Override this method if you need a tear-down hook. Default implementation is empty.

® executeNotificationSetup: Invoked when executing the SetupNotifications notification step - see below for the SetupNotifications step

type. You will need to override this method so that your operation executor supports the SetupNotifications step type. Default
implementation of this method throws an UnsupportedOperationException.

® executeCustomStep: Invoked to execute a subclass-specific operation step. You will need to override this method for your operation
executor to support steps of a custom type. Default implementation of this method throws an UnsupportedOperationException.
® Others (see JavaDoc): setDefaultHttpRequestContentType, skipLoggingForOperation, beforeHttpRequestSubmit,

checkProcessingError, handleAuthentication, afterHttpResponseReceived, recognizeResponseError, getDetailErrorMessage,

isResponseSuccess, createDefaultFtIDatamodel.

Overview of step properties recognized by BaseOperationExecutor

Properties common for all step types

Property
label

inputSelector

inputName

Properties for SubmitHttpRequest step type

Property
requestUriTemplate

requestContentSelector
requestHeaderTemplate
requestTemplate
method

header-*

responseTemplate

uselntegrationAccount

233

Description
Step display name used for logging purposes

Allows iteration over items in input message. Contains JSONPath
expression. Current step is invoked for each item separately

Specifies input key name during input selector iteration. Currently
processed item is available with this key in the input message

Description
FreeMarker template for request URL

Selects request body using JSONPath directly from the input
message

FreeMarker template for JSON object containing additional request
headers

FreeMarker template for request body

Http method used for REST requests (GET/POST/PUT/DELETE),
defaults to POST for operations with header-SOAPAction, GET
otherwise

Arbitrary HTTP header (header-SOAPAction,
header-Content-Type,...)

FreeMarker template for response transformation

Boolean flag indicating whether to execute the request under an
integration account

Properties for SetupNotifications step type

Property Description

idSelector JSON path expression returning ID of the given entity

operationName Name of check operation invoked when entity is changed in external
system

notifyTemplate FreeMarker template for input message for the check operation

callbackTemplate FreeMarker template for catalog notification

firstRunimmediately Boolean flag saying if the first notification is invoked at registration
time

Properties for PerformFtITransformation step type

Property Description

resultTemplate FreeMarker template for the transformation

More about BaseOperationExecutor step types

Notes applying to more step types

Message merging

The PerformFtITransformation step and optionally also SubmitHttpRequest modify the input message by merging a result map into it. The
merging is performed by doing the following for every key of the result map:

® |f the key is contained in the message and both values are maps then the maps are merged using the same algorithm as the message

and the result map
® |f the key is contained in the message and both values are lists then the list from the result map is appended to the list from the message

® QOtherwise, the value from the result map is simply put into the message (overwriting the original value if present.)

Here is an example:

{
"owner": "paul",
"approvers": ["john", "marry"],
"properties": {
"width": 10,
"hei ght": 20
}
}

Assuming the following map results from the transformation in the PerformFtITransformation step:

234

"owner": "bob",
"approvers": ["fred"],
"properties": {
"hei ght": 25,
“depth": 30

The message will look like this:

{
"owner": "bob",
"approvers": ["john", "marry", "fred"],
"properties": {
"w dth": 10,
“height": 25,
"depth": 30
}
}

Repeated step execution

If you need to iterate over an array and execute a step repeatedly for each item, use the inputSelector and inputName step properties. The
inputSelector property contains a JSONPath to the array to iterate over. The executor will look up the array, and for each item, it will put the item
under the key specified by inputName to the message, perform one step execution, and remove the key from the message. Here is an example:

"orderinfo": {
"approvers": ["john", "mary"]

For an initial message and inputSelector=$.orderInfo.approvers and inputName=approver, then the given step will be executed twice, once
against the following message:

{
"orderinfo": {
"approvers": ["john", "mary"]
} il
"approver": "john"
}

And once against this message:

235

"orderinfo": {
"approvers": ["john", "mary"]

},

"approver":

mary

FTL transformation

All built-in step types perform FreeMarker transformations. The data model (unless stated otherwise) contains the following default keys:

message: the message (Map<String, Object>) passed to the step

context: the context object (Map<String, Object>) passed to the step

instanceConfig: instance configuration (Map<String, Object>) of the external system passed to the step

infrastructureConfig: infrastructure configuration (Map<String, Object>)

bundle: a resource bundle as copied from the context.bundle (is missing if missing in the context)

executeOperation: a function allowing to execute other operations (<#assign operationResult=executeOperation("operation_name",
{"itemName":"my name", "other_data": object.field})>)

The context contains the following keys:

® targetinstance: instance name (String) of the external system
® configuration: Configuration Spring bean
® contentStorage: ContentStorageApi Spring bean

You can also override the beforeOperationExecution() method to add additional keys to the context object.

Here is an example of a template for request URL that can be used in a SubmitHttpRequest step:

${i nst anceConfi g. endpoi nt }/ api / npp/ npp- r equest / ${ message. r equest 1 d?url }

PerformFtITransformation step type

This step type has a single property resultTemplate that refers to a FreeMarker template which is assumed to produce a JSON document. The
step retrieves the template, performs the transformation against a dataModel with the default keys, converts the result to a Java map, and merges
the result into the input message.

SubmitHttpRequest step type

This step leverages a generic HTTP client (com hp. ccue. servi ceExchange. htt p. Ht t pd i ent - JavaDoc link). You can submit
REST/SOAP requests by using this step. The step is identified as SubmitHttpRequest if it uses the requestUrITemplate property. In order to
submit an HTTP request one needs to know at least the:

* URL
®* method: defaults to POST for steps with header-SOAPAction property, otherwise GET.

A request might also have a body. The body can be created via requestTemplate or requestContentSelector. HTTP headers including
Content-Type can be specified via:

® header-* step property, all fields starting with this prefix are put into the request as HTTP headers
® requestHeaderTemplate: generated map is put into the request as headers
® StepDecorator: a generic advanced concept for setting up step-defaults (JavaDoc link.)

Content-Type in particular can also be specified via setDefaultHttpRequestContentType(String mimeType), for example if you know that your
backend system communicates almost exclusively via JSON. After the request body and headers are built, BaseOperationExecutor calls:

® handleAuthentication (JavaDoc link)
® beforeHttpRequestSubmit (JavaDoc link.)

After the request is submitted and the response is received back, the following methods are called:

® afterHttpResponseReceived (JavaDoc link)
® recognizeResponseError (JavaDoc link) which calls:

236

® isResponseSuccess (JavaDoc link)
® if there is an error, it also calls getDetailErrorMessage (JavaDoc link.)

The response is then transformed via the responseTemplate if specified. The result of the transformation is merged back to the message. If this
template is not specified, the HTTP response is merged back into the message as follows:

® "result": response body

if the response has no body, this key is missing

if the body is JSON it is automatically converted to map

if itis XML it is converted to f r eermar ker . ext . dom NodeModel

if it is a zero-length string or a whitespace-only string, the value is null
® otherwise the response is put there as is - as one long string

® ‘“resultHeaders": result HTTP headers, this key is always present.

NOTE: the responseTemplate gets exactly the same input except that it is nested under the "doc" key in the incoming data model.

SetupNotifications step type

This step is used to set up listening for changes of an entity in an external system. First it extracts the ID of the entity to listen to by resolving the
JSONPath expression in the idSelector step property against the input message. Then it retrieves the FreeMarker template referred to by the
notifyTemplate property, performs the transformation against a dataModel with the default keys, and converts the result to a Java map. Finally it
executes the overridable method.

voi d executeNotificationSetup(
String entityld, String checkOperation, Mp<String, Object>
checkl nput Message,
String catal ogCal | backTenpl ate, EntityRegi strati onMbde node,
Map<String, Object> context, Map<String, Object> stepConfig)

This is done using the following actual parameters:

entityld: the extracted entity id

checkOperation: value of operationName step property

checkOperationinputMessage: map resulting from notifyTemplate transformation

catalogCallbackTemplate: value of callbackTemplate step property

mode: REGISTER_AND_NOTIFY_IMMEDIATELY if the firstRunimmediately step property is set to true, and REGISTER_ONLY
otherwise

® context: context object passed to the step

® stepConfig: map of step properties.

The semantics of the executeNotificationSetup method is to make sure that subsequent changes of the given entity in the external system will
result in the check operation being executed (with checkOperationinputMessage as input message), and in a catalog notification

subsequently being sent. The catalog notification message will be produced by performing a FreeMarker transformation with a template referred
to by the catalogCallbackTemplate argument against a data model, with the message coming from the check operation under the key "message".
Additionally, if mode is equal to REGISTER_AND_NOTIFY_IMMEDIATELY, a first notification is performed immediately.

Appendix C: Ticket management operations messages

© Overv(ijew

Operaotions doc
createTicket
retrieveTicket
listTickets
listTicketProperties
ticketProperty-${propertyName} [type: select]
ticketProperty-${propertyName} [type: select_from_many]
listTicketAttachements
createTicketAttachment
retrieveTicketAttachment
createTicketComment
closeTicket

Overview

O O 0O o0 0O O O O O

This is the documentation of message formats passed to and returned from ticket management operations. These messages are based on
requests to /ticket and /operation resource of SX REST API. Rest resource classes modify requests into messages documented here.

237

Use this documentation when implementing ticketing operations ftls, as a reference on the formats of messages that will be passed in and the
format that you need to return.

Generally all ticket resource requests get the following message header before being passed to operation execution:

"messageHeader" : {
"backendSyst enifype" : "${backendSysteniype}",
"userld" : "${userld}",
"targetlnstance" : "${targetlnstanceNane}"
}

Your ftl transformations also have access to operation execution context. For details see Appendix B: Operation executors.

Operations doc

createTicket

Input
{
"description" : "${ticketNane}",
"name" : "${ticketDescription}",
"properties” : [{
"@ype" : "urn:x-hp:2014: sof tware: cl oud: dat a_nodel : property:text"”,
"nanme" : "nanme",
"value" : "${ticketName}"
oA
"@ype" : "urn:x-hp:2014: software: cl oud: dat a_nodel : property:text"”,
"nane" : "description",
"val ue" : "${ticketDescription}"
b
1
"messageHeader" : {
"backendSyst enType" : "${backendSystenType}",
"userld" : "${userld}",
"targetlnstance" : "${targetlnstanceNane}"
I3
"recipient" : {
"nane" : "${userld}"”
}
}

The list of properties corresponds to the properties defined by the listTickteProperties operation.

Output

Return the ticket created, see retriveTicket operation response.

NOTE: cr eat eTi cket is usualy implemented as a two phase operation where the second phase is the same asthe ret ri eveTi cket
operation.

retrieveTicket

Input

238

{
"id" o "${ticketld}",
"messageHeader" : {
"backendSyst eniType" : "${backendSystenilype}",
"userld" : "${userld}",
"targetlnstance" : "${targetlnstanceNane}"
H
"recipient” : {
"name" : "${userld}"
}
}

Response

"result": {
_links" @ {
"self" : {
“href" : "/sx/api/ticket/${ticketld}"

}
H
"idt o "${ticketld}",
"name" : "${ticket Nanme}",
"description" : "${ticketDescription}",
"openTi me" : "${openTine}",
"updat eTi ne" : "${updateTine}",
"status" : "${status}",

"properties" : [{

"@ype" : "${propertyType}",

"name" : "exanpl eProp",

"val ue" : "exanpl ePropVal ue"

b

1
"comrents" : [{
"id" : "${coment!d}",
"author" : "${comment Aut horld}",
"time" : "${comentTinme}",
"description" : "${comment Text}"

}H

Placeholder Possible values

status submitted, in_progress, completed

For ${propertyType}. See | i st Ti cket Properti es.

listTickets

Input template

239

"sort" : {
"field" : "${sortField}",
"direction" : "${sortDirection}"”
H
"filter" @ {
"nanmeAndDescription" : "${textToFilterNameAndDecri ption}"
b
"startlndex" : "${startlndex}",
"pageSi ze" : "${pageSi ze}",
"messageHeader" : {
"backendSyst eniType" : "${backendSystenilype}",
"userld" : "${userld}",
"targetlnstance" : "${targetlnstanceNane}"
b
"recipient” : {
"name" : "${recipi ent Nane}"
}
}

Placeholder Possible values
sortField name, openTime, updateTime

sortDirection ascending, descending

Output

" _links" @ {
"sel f" o {
"href" : "/sx/api/ticket/filter"
}
}

"@tartlndex" : ${startlndex},
"@tensPer Page" : ${pageSize},
"@otal Results" : ${count},
" _enbedded" : [{
"_links" @ {
"self" : {
"href" : "/sx/api/ticket/${ticketld}"
}
b
"id" o "${ticketld}",
"nanme" : "${ticket Nane}",
"description" : "${ticketDescription}",
"openTime" : "${openTine}",
"updat eTi me" : "${updateTi ne}",
"status" : "${status}",

b

240

listTicketProperties

Input

Message header. No input needed as the ticket properties are invariant for an adapter.

Output

Returns the definition of properties that you want to make visible to the portal user. The supported property types and their descriptors are
described in SX API DOC. It is repeated here for convenience in the example output.

{
"result" : {
"@elf" : "/sx/api/ticket/property",
"properties" : [
{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : property:text",
"nane": "description",
"di spl ayNane": "Description",
"description": "Fill in your question",
"l ength": 3000
b
{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : property: nunber",
"name": "soneNunber",
"di spl ayNane": " Some Number”
H
{
"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : property: bool ean",
"name": "sonmeCheckbox",
"di spl ayNane": "Sone Checkbox"
H
{
"@ype": "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : property: sel ect",
"name": "soneStaticList",
"di spl ayNane": "Sone Static List",
"val ues": [
"l abel ": "A Label"
"val ue": "aVal ue"
]
b
{
"@ype": "urn:x-hp: 2014: sof t war e: cl oud: dat a_nodel : property: sel ect",
"nanme": "sonmeDynam cList",
"di spl ayNane": "Sonme Dynamic List",
"valuesUrl": "/api/ticket/property/someDynam cList"
H
{
"@ype":
"urn: x-hp: 2014: sof t war e: cl oud: dat a_nodel : property: sel ect _from many",
"nane": "sonmeQ her Dynami cList",
"di spl ayNane": "Sone Other Dynanmic List",
"searchUrl": "/api/ticket/property/someQ herDynam cList",
"default": "default value for this field"
H
{

"@ype": "urn:x-hp:2014: sof t war e: cl oud: dat a_nodel : property:text",

name": "status",

241

"di spl ayNane": "Status",
"readOnl y": true

]
b
"messageHeader" : {
"backendSyst enifype" : "${backendSystenilype}"
"userld" : "${userld}",
"targetlnstance" : "${targetlnstanceNane}"
H
"recipient" : {
"name" : "${userld}"”

}

242

ticketProperty-${propertyName} [type: select]

Input
{
"accept Language" : "${accept LanguageHeader}",
"nmessageHeader" : {
"backendSyst eniType" : "${backendSysteniype}",
"userld" : "${userld}",
"targetlnstance" : "${targetlnstanceNane}"
b
"recipient" : {
"nane” : "${userld}"”
}
}
Output
{
"_links" : {
"sel f" @ {
"href" : "/sx/api/ticket/property/${propertyNane}"
}
b
"val ues" : [{
"val ue" : "val uel",
"label" : "label 1"
b
]
}

ticketProperty-${propertyName} [type: select_from_many]

Input

243

"startlndex" : "${startlndex}",
"pageSi ze" : "${pageSi ze}",
"g"r "${a}",
"accept Language" : "${acceptLanguageHeader}"
"messageHeader" : {
"backendSyst enilype" : "${backendSystenilype}"
"userld" : "${userld}",
"targetlnstance" : "${targetlnstanceNanme}"
b
"recipient" : {
"nane” : "${userld}"”
}
}

Output

" _links" @ {
"self" : {
"href" : "/sx/api/ticket/property/ ${propertyNane}"
}
}
" @ageSi ze": ${pageSi ze},
"@tartlndex": ${startlndex},
"@otal Count": ${total Count},
"val ues": [
{
"l abel ": "A"
"val ue": "a"
}
{
"l abel": "B",
"nane": "b"

listTicketAttachements

Input

244

{

“id" oo "${id}",
"messageHeader" : {
"backendSyst eniType" : "${backendSystenilype}",
"userld" : "${userld}",
"targetlnstance" : "${targetlnstanceNane}"
H
"recipient” : {
"name" : "${userld}"
}
}
Output
"result" : {
{
"_links" : {
"sel f" : {
"href" : "/sx/api/ticket/${id}/attachment"
}
b
" _enbedded" : [
{
" links" : {
"self" : {
"href" : "/sx/api/ticket/${ticketld}/attachment/${attachnment!d}"
}
H
"id" . "${attachnentld}",
"length" : ${length},
"name" : "${attachment Nane}",
"type" : "${attachnent Medi aType}"
b
]
}
}

createTicketAttachment

Input

245

"content" : <byte array>
"idt o "${ticketld}",
"fileName" : "${fileNanme}",
"messageHeader" : {
"backendSyst enifype" : "${backendSystenType}"
"userld" : "${userld}",
"targetlnstance" : "${targetlnstanceNane}"
H
"content Type" : "${content Type}"
"recipient" : {
"nane” : "${userld}"”
}

}

Content is filled by the operation executor. See Appendix B: Operation executors for details about fileUpload requests configuration.

Output
"result" : {
" _links" @ {
"self" : {
"href" : "/sx/api/ticket/${ticketld}/attachment/${attachnentld}"
}
}
"id" : "${attachmentld}",
"length" : ${length},
"nanme" : "${attachment Nanme}",
"type" : "${attachnment Medi aType}"
}
}

retrieveTicketAttachment

Input
{
"idt o "${idyr,
"attachmentld" : "${attachmentld}",
"messageHeader" : {
"backendSyst eniType" : "${backendSystenilype}",
"userld" : "${userld}",
"targetlnstance" : "${targetlnstanceNane}"
b
"recipient" : {
"name" : "${userld}”
}
}
Output

No response is needed, it returns the file itself.

246

createTicketComment

Input
{
"id" o "${ticketld}",
"dat estanmp” : "${ti neComment Added}"
"description” : "${coment Text}",
"messageHeader" : {
"backendSyst enifype" : "${backendSysteniType}",
"userld" : "${userld}",
"targetlnstance" : "${targetlnstanceNane}"
H
"recipient" : {
"nane" : "${userld}"”
}
}
Output

No need to return anything.

closeTicket

cl oseTi cket is invoked as a general operation on the /operation resource of SX REST API and therefore the input message contains the
operation identification as well.

Input

"@ype" : "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : sx: i nvoke",
"entityld" : "${ticketld}",
"entityType" : "ticket",
"operationNane" : "close",
"id" oo "${ticketld}",
"datestamp” : "${tinmeC osed}",
"description" : "${closingConrent}"
"parameters" : [{
"@ype" : "urn:x-hp:2014: sof t ware: cl oud: dat a_nodel : property:text",
"nane" : "description",
"val ue" : "${cl osi ngConmment}"
Pl
"messageHeader " : {
"backendSyst enilype" : "${backendSystenilype}",
“"userld" : "S${userld}",
"targetlnstance" : "${targetlnstanceNane}"
b
"recipient" : {
"name" : "${userld}"

}

Output

247

No need to return anything.

Appendix D: Per instance operation definition

Writing custom operations.json files for specific instances

HP SX allows you to change the behavior of any operation for specific instances by overriding operations. You can do this by creating custom
oper ati ons. j son files. Names of these files need to follow the format: oper at i ons- {i nst anceNane}. j son, where the i nst anceNane is
the name of an instance specified in i nst ances. j son. Any operation defined in this file will override an operation of the same name from a
generic oper ati ons. j son file.

NOTE: The content of a custom oper at i ons. j son file has exactly the same format as the generic one, and all the FTL files have to be in the
same content pack as the custom oper at i ons. j son file.

The custom file should be in the same directory inside the content pack where the generic file would generaly be, but it does not need to be in
exactly the same content pack as the generic file that the custom file is trying to replace.

Example:
If your i nst ances. j son for HP SM looks like this:

{
"SM nstance01": {
"endpoint": "https://snD1. exanpl e. com 13080/ SM',
"user": {
"l ogi nNanme": "adm n",
"password": "password"”

}

And you are using this HP SM instance for managing tickets (using the standard HP SM Ticketing SX content pack), then you can alter the way
HP SX creates comments for tickets in this HP SM instance just by creating the file oper at i ons- SM nst ance01. j son in a new content pack,
containing an override of operation createTicketComment, like this:

{

"createTi cket Comment ": [

{

"l abel ":"Create Custom Conmment",

"request Url Tenpl ate": "custonmBnBSoapUrl.ftl",
"request Tenpl at e": "cust onCr eat eComment . ft1",
"header - SOAPActi on": " Create",

"header - Accept": "text/xm"

Appendix E: HP SX operations reference

® Overview
® Ticketing use case operations
® Aggregation use case operations

248

® R2F use case operations
® createOrder
® Input
® OQutput
® checkOrder
® Input
® OQutput
® getChangedEntitiesForR2f
® input
® output
® approve/deny
® input
® output
® checkSubcription
® cancel
® input
® output
® CX use case operations
® Incident CX operations
® getChangedincidentsForCx
® input
® output
® retrievelncident
® input
® output
¢ convertincidentToCanonicalModel
® clonelncident, updateLinkedIncident, closelncident, resolvelncident, reopenincident, assignOwnershipTolncident,
acceptOwnershipOfincident, rejectincident, cancellncident
® input
® output
¢ clonelncident
® closelncident, resolvelncident, reopenincident, assignOwnershipTolncident,
acceptOwnershipOfincident, rejectincident, cancellncident
® updateLinkedIncident
® updateLinkedincidentinfo, deleteLinkedIncidentinfo
® input
® output
¢ downloadAttachment
® input
® output
® uploadAttachment
® input
® output

Overview

This document serves as quick reference of operations (oper at i ons. j son file) in HP SX that need to be implemented for each HP SX use
case.

249

Ticketing use case operations

Operation
createTicket
retrieveTicket
listTickets
listTicketProperties

ticketProperty-${propertyName}

listTicketAttachments
createTicketAttachment
retrieveTicketAttachment
createTicketComment

closeTicket

Note

Creates a new ticket

Retrieves a ticket

Lists tickets matching the given criteria

Returns list of ticket properties visible to portal users

This operation must be implemented for each property returned by
listTicketProperties

Lists ticket attachments

Creates a ticket attachment
Retrieves ticket attachment metadata
Creates a comment

Closes a ticket

Detailed description can be found in Appendix C: Ticket management operations messages

Aggregation use case operations

With correct adapter java code the following operations enable the aggregation use case. See Aggregation in HP SX.

Operation
listOfferings
getOffering
getOfferinglcon

listCatalogs

listLanguages

getAggregationFeatures

R2F use case operations

Note

Lists backend system offerings
Gets offering

Gets the icon of an offering

Returns list of available catalogs; empty if external system doesn't
support multiple catalogs.

Returns list of available catalog languages; empty if external system
doesn't support multiple catalog localizations.

Lists aggregation features (e.g., automatic aggregation, etc.)

For an R2F use case the set of operation is virtually driven by the specific implementation. It is the OO flow, operations definitions and java code
together that determines the set of operations and their names. A typical set of operations can be through the following.

Operation

createOrder

Note
In an R2F use case there will likely be an operation corresponding to

"createOrder " - the name of the operation being defined in the OO
flow.

250

checkOrder The "checkOrder" operation is defined by the order status notification
setup. Order status notification setup is the last step in the
"createOrder" operation. It causes the backend system entity
representing the order to be registered in HP SX so that its changes
are notified back to the HP Propel portal. (These notifications are
called catalog notifications in the example sources and javadoc.) The
operation name is specified by the operationName attribute of the
notification step definition. This is true in the majority of cases where
the adapter uses Def aul t Noti fi cati onSet upExecut or to
execute notification setup.

getChangedEntitiesForR2f "getChangedEntitiesForR2f" represents the operation responsible for
getting changed entities representing orders in the backend system
into the periodic polling for changes process. The name of this
operation is specified in the polling command definition. This is true in
the case when CompositeChangeObserver implementation supplied
with the R2fPollingCommand implementation is used. This is the
recommended approach.

approve/deny The approve and deny operations are optional. If you do not need to
implement an approval process they can be omitted. The HP Propel
portal will display approve/deny buttons for a request once the
approvers are present in the change notification.

checkSubcription "checkSubcription" is the operation defined by the subscription status
notification setup. Subscription status notification setup is the last
step of the "checkOrder" operation, and is implemented only in
systems that contain subscription-like entities. The operation name is
specified by the operationName attribute of the notification step
definition. This is true in the majority of cases where the adapter uses
Def aul t Noti fi cati onSet upExecut or to execute notification
setup.

cancel Cancel subscription. Called when cancel subscription is clicked in
Propel portal.

createOrder

Input
The input for this operation is typically the REST api /request resource payload (Your R2F OO flow can modify the structure but usually you will
just pass it through). The request payload is specified in the Appendix A: Service Exchange - API. The header of the message can be modified

by providing a ftl template See javadoc AdapterAbstract.setRequestHeaderTemplate(). In this case the OO flow recieves a message containing
the transformed header.

Output

No specific output format required.

This operation must execute notification setup if your backend system will not push changes to HP SX itself.
checkOrder
NOTE: The following applies only when using Def aul t Noti ti fi cati onSet upExecut or.

Input

The input is the result of the not i f yTenpl at e ftl transformation. The transformation result is stored in HP SX at notification setup, i.e., at the last
step of createOrder.

Output

No specific output format needed. The output is used as input to cal | backTenpl at e ftl transformation.

251

getChangedEntitiesForR2f

NOTE: This applies only when the most advisable approach to change observing is used, i.e., Conposi t eChangeCbser ver implementation
supplied with R2f Pol | i ngComrand implementation.

input

The time of the last update is provided.

"l ast Updat eTi ne": ${I| ast Updat eTi ne}

output
No specific output format needed. Your Pol | i ngConmand handles the format. See javadoc.

For example:

"entities": [
{
"entityld": "${entitylld}"

}

approve/deny

input

Invoked through REST call on /operation resource. See Appendix A: Service Exchange - API for the format of the message passed in.

output

No specific output format required.

checkSubcription
This operation is analogous to the checkOrder operation. The same rules apply.
cancel

input

Invoked through REST call on /operation resource. See Appendix A: Service Exchange - API for the format passed in.

output

No specific output format required.

252

CX use case operations

The set of operations depends on your CX use case. Some of the operations may not be vallid in your use case, and it is possible that you will
only need to provide an empty implementation to prevent HP SX from failing. Your use case may not need to support all events.

The following summarizes the CX flow in HP SX:

1. The adapter's ChangeQbser ver polls the backend system for changed CX entities. Usually the changed entities are retrieved using an
implementation of CXPol | i ngCommand which lists changes using a get ChangedEnt i t i esFor CX operation. The name of the
operation is not fixed; the command defines the name.

2. Detected changes are evaluated for events belonging to an event group of | nci dent CaseExchangeEvent s,
TaskCaseExchangeEvent s or TaskCaseExchangel nci dent Event s. The event evaluation is backend system specific and must be
a part of the adapter implementation.

3. Event group actions are triggered sequentially:

IncidentCaseExchangeEvents TaskCaseExchangeEvents TaskCaseExchangelncidentEv
1. execute operation execute operation execute operation

retrievel nci dent retrieveTask retrievel nci dent
2. execute operation execute operation execute operation

convert | nci dent ToCanoni calchmder t Assi gnnent G oupTol momarecé | nci dent ToCanoni ci

3. execute OO flow execute operation execute OO flow
I nci dent CaseExchangeFl ow convert TaskToCanoni cal Mbdélnci dent TaskCaseExchangel

4. execute OO flow
I nci dent TaskCaseExchangeFl ow

The action result id is passed to the next action. The input to OO flows is the entity in canonical model format.

4. The OO flow maps CX events to a batch of operations. The following table shows the mapping for | nci dent CaseExchangeFl ow. If
you need more details or are interested in IncidentTaskCaseExchangeFlow, use the HP SX content management Ul to download the
case-exchange content pack which contains the flows .

event operations

incidentExternalReferenceCreated clonelncident,updateLinkedIncidentinfo, ${attachmentOperations}
incidentUpdated updateLinkedincident, ${attachmentOperations}

incidentClosed closelncident, updateLinkedIncidentinfo,

${attachmentOperations}

incidentResolved resolvelncident, updateLinkedIncidentinfo,
${attachmentOperations}

incidentReopened reopenlincident, updateLinkedIncidentinfo,
${attachmentOperations}

incidentOwnershipAssigned assignOwnershipTolncident, updateLinkedIncidentinfo,
${attachmentOperations}

incidentOwnershipAccepted acceptOwnershipOfincident, updateLinkedincidentinfo,
${attachmentOperations}

incidentRejected rejectincident, deleteLinkedIncidentinfo, ${attachmentOperations}

incidentCancelled cancellncident,updateLinkedIncidentinfo,
${attachmentOperations}

NOTE: ${attachmentOperations} is a pair of downloadAttachment and uploadAttachement per every single incident attachment.

Incident CX operations

The event group | nci dent CaseExchangeEvent s defines Incindent case exchange HP SX feature. The set of operations that need to be
implemented to support Incident case exchange can be obtained from the above.

Operation Note

253

"getChangedEntitiesForCX"

retrievelncident

convertincidentToCanonicalModel

clonelncident

updateLinkedIncidentinfo

updateLinkedincident

closelncident
resolvelncident
reopenlincident
assignOwnershipTolncident
acceptOwnershipOfincident
rejectincident
deleteLinkedIncidentinfo
cancellncident
downloadAttachment

uploadAttachment

getChangedIincidentsForCx

"getChangedIincidentsForCx" represents the operation responsible for
getting changed entities representing incidents in the backend system
into the periodic polling for changes process. The name of this
operation is specified in the polling command definition. This is true
when the most advisable approach to change observing is used i.e.
Conposi t eChangeCbser ver implementation supplied with

CXPol | i ngConmand implementation.

Retrieves incident; result is parsed by
convert | nci dent ToCanoni cal Mbdel operation.

Convert incident to canonical HP SX format. See Case exchange
Concepts.

Clones incident into linked system

Updates the event source incident with the info about chages to the
linked incident (e.g. the ID of the incident created by clone operation).
This operation is called after second operations like clonelncident,
closelncident etc. See above.

Updates the linked incident with changes of the source incident (e. g.
changed description)

Closes incident

Resolves incident

Reopens incident

Assigns ownership of incident

Accept ownership of incident

Rejects incident

Deletes information about linked incident
Cancels incident

Downloads attachment

Uploads attachment. This operation needs to be able to decide
whether the attachment is already uploaded or is a new attachment.

NOTE: This applies only when the most advisable approach to change observing is used, i.e., Conposi t eChangeCbser ver implementation

supplied with CXPol | i ngComrand implementation.

input

The time of the last update is provided.

"l ast Updat eTi ne":

output

${| ast Updat eTi ne}

No specific output format required; your Pol | i ngComrand handles the format. See javadoc.

For example:

254

"entities": [
{
"entityld": "${entitylld}"

H

retrievelncident

input

{
"entityChange": {
"entityld": "${entityld}"
}
}

entityld is the id in the backend system.

output

The output serves as the input for the convert | nci dent ToCanoni cal Model operation, and no specification is needed. For example, if your
backend system returns data in json format, use the format returned.

{
"entityChange": {
"entity": {...<any json representation of your entity>. .}

}
}

convertincidentToCanonicalModel

This is the most complex transformation. See special topic Case exchange Concepts.

clonelncident, updateLinkedIncident, closelncident, resolvelncident, reopenincident,
assignOwnershipTolncident, acceptOwnershipOfincident, rejectincident, cancellncident

input

These operations get input in the following form. It is the canonical model format enriched with header.

255

"messageHeader": {

"backendSyst enType": "${linkedEntity.instanceType}",
"targetlnstance": "${linkedEntity.instance}"
b
"args": {
"event": "${event}",
"entity": ${entity},
"linkedEntity": ${linkedEntity}
}

NOTE: ${entity} and ${linkedEntity} stand for the corresponding structure in canonical model format. See Case exchange Concepts.
${event} Event that triggered action (e.g. incidentExternalReferenceCreated)

The ${linkedEntity} for cl onel nci dent cannot contain information as it is to be created. In this case ${linkedEntity} is a structure as shown here:

"l'inkedEntity":{
"instanceType": "${linkedEntity.instanceType}",
"instance":"${linkedEntity.instance}"

output

clonelncident
The following output is required by the next operation (updat eLi nkedl nci dent | nf 0). Add any kind of information needed for your

specific implementation.

{
"args": {
"linkedEntity": {
"entityType": "Incident",
"entityld": "${incidentlD}",
"properties": {
"Status": "${incidentStatus}"
}
}
}
}

closelncident, resolvelncident, reopenincident, assignOwnershipTolncident, acceptOwnershipOfincident,

rejectincident, cancellncident

256

"args": {
"linkedEntity": {
"properties": {
"Status": "${incidentStatus}"
}

updateLinkedIncident
No specific output format is required.
updateLinkedIncidentinfo, deleteLinkedIncidentIinfo

input

Note that the linked entity status must be returned in the previous operation. Additionally, linked entityType and entityld must be returned with
operation cl onel nci dent .

{
"nmessageHeader": {
"backendSyst emlype": "${entity.instanceType}",
"targetlnstance": "${entity.instance}"
H
"args": {
"event": "${event}",
"entity": {
"instanceType": "${entity.instanceType}",
"instance": "${entity.instance}",
"entityType": "${entity.entityType}",
"entityld": "${entity.entityld}"
H
"linkedEntity": {
"initiator": false,
"instanceAlias": "${linkedEntity.instanceAlias}",
"instanceType": "${linkedEntity.instanceType}",
"instance": "${linkedEntity.instance}",
"entityType": "${linkedEntity.entityType}",
"entityld": "${linkedEntity.entityld}",
"properties": {
"Status": "${linkedEntityStatus}"
}
}
}
}
output

No specific output format required.

downloadAttachment

input

257

"messageHeader": {
"backendSyst eniType": "${entity.instanceType}",
"targetlnstance": "${entity.instance}"
¥
"messageArgs": {
"entity": ${entity},
"attachnent": ${attachnent}

NOTE: ${entity} stands for the corresponding structure in canonical model format. ${attachment} stands for a single attachment structure in
canonical model format. See Case exchange Concepts.

output

No specific output required. You provide information that enables you to decide in uploadAttachment whether the attachment needs to be
uploaded or has already been uploaded.

uploadAttachment

input

"messageHeader": {
"backendSyst enTType": "${linkedEntity.instanceType}",
"targetlnstance": "${linkedEntity.instance}"
¥
"messageArgs": {
"entity": ${linkedEntity},
"attachnent": ${attachnent}

NOTE: ${linkedEntity} stands for the corresponding structure in canonical model format. ${attachment} stands for a single attachment structure
in canonical model format. See Case exchange Concepts.

output

No specific output required.

Appendix F: Development Ul

Overview

HP SX development Ul is a tool that simplifies content customization and development. With HP SX development Ul you can:

® Browse visualized message flow in HP SX and trace FTL transformation inputs and output.
® Edit source code directly on the server and test it immediately by replaying events.
® Set breakpoints and observe action execution step by step.

How to access development Ul

Development Ul can be accessed through the HP SX testing Ul. In order to access development Ul you need to install the HP SX testing Ul. See
SDK Overview for more information.

258

() Service Exchange

Create Order Wizard
Clear SM orders
Tickets

Notifications (flat list)
Content Management [>]
A dminicteatin

Message flow visualization

() Service Exchange

Flow Visualiser

Start event logging by clicking the start log button. Once logging is started the following actions in HP SX will be logged:

® JMS messages
® HTTP calls
® HP SX operation execution (FTL transformations)

The logged operations are displayed when refresh is clicked. The procedure to log and display events is as follows:

1. Click start log.
2. Trigger the action that you wish to view outside of development Ul (e.g., submit order, create ticket from Propel portal or SX testing Ul).
3. Click refresh (once or as many times needed).

You should see message flows similar to the following:

259

() service Exchange

Flow Visualiser
step : Get Aggregation Features

consumer Logi

Thu Feb 1915:17:48 CET 2015

wransform : csa-r2f/sx/templates/getAggregationFeatures.ftl [edit source 0 Thu Feb 1915:17:48 CET 2015
receiveJms : SX failed 9550 Thu Feb 1915:17:30 CET 2015
operation : createOrder failed 9525 Thu Feb 1915:17:30 CET 2015
step: Create cart 4356 Thu Feb 1915:17:30 CET 2015
transform : sm-r2f/sx/templates/smSoapUrl.ftl [edit source] 0 Thu Feb 19 15:17:30 CET 2015
transform : sm-r2f/sx/templates/createCart.ftl [edit source] 0 ThuFeb 19 15:17:30 CET 2015

-« hrepRequest : http://mpavmsmapp01.hpswlabs.adapps.hp.com:13080/5M/7/ws 4292 Thu Feb 13 15:17:30 CET 2015
transform : sm-r2f/sx/templates/createCartResponse.ftl [ed 4 ThuFeb 1915:17:34 CET 2015

step : Retrieve requestor 2274 Thu Feb 1915:17:34 CET 2015
transform : sm-r2f/sx/templates/smSoapUrl.ftl [edit source] 1 Thu Feb 19 15:17:34 CET 2015
transform : sm-r2f/sx/templates/retrieveRequestor.ftl [edit source’ 0 Thu Feb 1915:17:34 CET 2015

< hrepRequest : http://mpavmsmapp01.hpswlabs.adapps.hp.com:13080/5M/7/ws 2258 ThuFeb 19 15:17:34 CET 2015
transform : sm-r2f/sx/templates/retrieveRequestorResponse.ftl [edit source] 3 Thu Feb 1915:17:37 CET 2015

step: Get catalog item 2733 Thu Feb 1915:17:37 CET 2015
transform : sm-r2f/sx/templates/smSoapUrL.ftl [edit source] 0 Thu Feb 1915:17:37 CET 2015
transform : sm-r2f/sx/templates/retrieveCatalogltem.ftl [edit source] 0 Thu Feb 19 15:17:37 CET 2015

< hrepRequest : http://mpavmsmapp01.hpswlabs.adapps.hp.com:13080/5M/7/ws 2696 ThuFeb 19 15:17:37 CET 2015
transform : sm-r2f/sx/templates/retrieveCatalogitemResponse.ftl [edit source] 16 Thu Feb 1315:17:39 CET 2015

step: Add cart item failed 152 Thu Feb 1915:17:39 CET 2015
transform : sm-r2f/sx/templates/smSoapUrL.ftl [edit source] 1 ThuFeb 1915:17:39 CET 2015
transform : sm-r2f/sx/templates/additemToCart.ftl [edit source] 1 Thu Feb 19 15:17:39 CET 2015

<« httpRequest : hi hpswlabs.adapps.hp.com:13080/5M/7/ws failed m Thu Feb 1915:17:39 CET 2015
sendJms : PBCN 16 Thu Feb 13 15:17:39 CET 2015
receiveJms: CN 216 Thu Feb 1915:17:39 CET 2015
catalogNotification : entityld=8e28c6b4-b1e9-49b1-af87-d03cd49e14d2 216 Thu Feb 1915:17:39 CET 2015

<t httpRequest : https://mpavmpropel05.hpswlabs.adapps.hp.com:8444/idm-service/v2.0/tokens 199 ThuFeb 1915:17:39 CET 2015

In this image you see failed operation createOrder, and the steps in this operation. Each step includes the FTL transformations and HTTP
requests involved. By clicking individual items you can display event details: operation, operation step, or HTTP request, allowing you to track to
the failed event. In this case it is the HTTP request under the Add cart item step of the createOrder operation. Clicking the failed HTTP request
item displays the request payload and response as shown in the following.

consumer Log

(/) service Exchange

Event Detail

“http://mp

Input

ppO1.hpswlabs.adapps.hp.com:13080/SM/7/ws" failed

RN o v J e

[Sending *{POST}' request to {http://mpavmsmappol.hpswlabs.adapps.hp.co
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
<Body>
<AddItemToCartviaOrderRequest xmlns="http: //schenas.hp.con/SH/7">
<modal>
<keys>
<ItemName/>
</keys>
<instance>
<CartId>97</C
<CartItemld x:
<Delivery/>

“http:/ /. 3.

£/2001/XMLSchema- instance” />

<ItemName>Custon Desktop Provisioningc/ItemName>
<Quantity>1</Quantity>

<RequestedFor>MAURER, ALLISONC/RequestedFor>
<RequestedForDept »</Reques tedForDept >

arg/2081/XiL5chena- instance" />
lone="yes"

<op
</instance:
<messages>
<message xmlns="http://schemas .hp.com/SH/7/Common”/>
</messages>
</model>
</AddItenToCartVia0rderRequest>
</Body>
|</Envelope>

13080/5M/7/ws}, payload = {content-type: t

<HTML><BODY>Not Authorized</BODY> </HTML>

Error

Modify FTLs and replay events

To modify FTL source code either click [E‘Ijlt 50U |IC":'] in the flow visualization, or find the FTL under the SX Source Editor tab.

260

() service Exchange

SX Source Editor

consumer Logi

= ®OE[9 oo
[Case Exchange] #-- @Ftlvariable name="message” type="java.util.Map" - =
[CSA request to fullfilment] <Fescape x as x?aml>
[Support for test Ul (CSA)] E:a’sxgn orderInto - meszsge.orderInfol>
ign item = message.item
[EMAIL request to fullfilment] <#assign smOptions = message.smOptions/>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
[MOCK request to fullfilment] <Body>
<foo>
[SAW Case Exchange] foo
) </fo0>
[SAW request to fullfilment] <AddTtenToCartViaOrderRequest xm http: //schemas . hp. com/SH/7">
<model>
[Support for test Ul (SAW)] <keys>
- <Itemliame/>
[SAW ticketing] /keyes
<instance>
[SM Case Exchange] <CartId>${orderInfo.cartld}¢/CartIds
[SM request to fullfilment] <ca£§1t=m;a xsiinil="true" xml hittp://wew. w3, org/2801/XMLSchema- instance” />
<Delivery/>
Operations.json <ItemName>${item.id}</ItemName>
<Quantity>${item.quantity}</Quantity>
[templates] <RequestedFor>${orderInfo. requestor}</Requestedfor>
<RequestedFm‘Dapt></Reque'tedFurD pt>
additemToCart.frl <Req pedindi
JonNotify.ftl <ServicesLA x R "http://wm\-.ws.urg/zeaj/msmemr‘mstan:e"/>
aggregationNotify.ftl <#if (smoptions?keys)?size » @»
<options><xml 1.e >
approveChangeOrQuote.ftl Form>
i c#list smoptions?keys as optionName>
callbackNotify.ftl c#aszign found = false>
callbackSubscriptionNotify.ftl <#assign optien = smOptions[optienName]>
<#list item.properties as property>
cancel. fil csassign propertylame = property.name>
<#if propertyName?starts_with("SX_REHOTE OPTION ID_*
cancelResponse.ftl <#assign propertyName = propertyName[26..]>
ofnif>
closelnteraction.ftl <#if propertyName optionName>
<§{option.tag} ${option. Ettrlbutes >${property.value}${option. children}</${option. tagh>
createAttachment.fil (o ,adfzg"(fz\,"d }$tproperty. 15{op Fe/3{op e}
. <raif>
createAttachmentMultipartMetadata.ftl </alist>
c#if Ifound>
createCart ftl <§{option.tag} ${option.steributes}>${option.children}</${option.tag}>
createCartResponse.ftl oy
Position Ln 10,Ch 4 Tolak_ Ln60,Ch261S | 4

createSRCInteraction.ftl
createSRCInteractionResponse.ftl

Toggle editor

Breakpoint |/

After you have modified the FTL, save your changes. Go back to your event and replay the event to try your changes. You can immediately see

the results.

@ Service Exchange

Event Detail

transform "sm-r2f/sx/templates/additemToCart.ftl"

Input Freemarker Template
FXoEE] e v =] I Jo@ @
N [c#-- @ftlvarisble name="message” type="java.util.Map” --><descape x as xi.
"message” : { lc#assign orderInfo = message.orderInfosceassign item = message.items<#ass
"@type" x- hp'2216'sm‘tware'cluud'data model:sx:request”, <Body>
‘messagerype ' <Foor
“name” 24 "Custom Desktop Provisioning'” oo
deseription </foo>
“items” : [{ <AddItemToCartviaOrderRequest xmlns="http://schemas.hp.com/SH/7"3
"Custom Desktop Provisioning”, <model>
‘Custom Desktop Provisioning”, <keys»
<Itemtiame/>
</keys>

"urn:x-hp:2014: softuare: cloud: data_model:sx:person”,

"name” i "Allison.Maurer”
"properties” : [{

" - rn:x-hp:2014: software:cloud: data_model:property:text’

"name” : "description”,

"value" : "desc”

1

rnix-hp:2014: softuare: cloud:data_model: sx:route”,

system_t:
"target_instance”

: "http://mpavmsmappl. hpswlabs .adapps.hp.co: 1

rls
"messageHeader

"2015-02-19T14:17:
616-02-19T14:17: 27

z",

977,
"MAURER, ALLTSON"

"requestor”

“smoptions” : {
de;cr‘lpt)nn

tag” : text”,
"attributes" "id=\"description\" label=\"Description\" mult)livv

o T+ i

»

<instance>
<CartTd>${orderInfo. cartld}</CartId>
<CartItemld xsiinil="true” xmlnsixsi="http://wwi.u3.c
<Delivery/>
<Itemame>3{iten.id}c/Itemlane>
<Quant1ty>${atam qusnt;ty}(/Quantlt,

${orderInfo.req
<RequestedF\:l Dept </ Requeﬂeafurbepw
<RequestedForType>individual</RequestedFor Typex
<ServiceSLA xsi:nil="true” xmlns:xsi="http://uww.u3.c
#if (;mDptxnr\s’ksys)’s)ze> S
1

lc#1ist smOptions?keys as optionName><#assign found = false><#assign optic
lc#assign found = true></#if></#1ist><#if Ifound>
leraif></#1ists </Form></Options>

leraifs <option.list/>

</instance>

<messages>
<message xnl ttp://schemas . hp.com/SH/7/Common™ />

</messages>

</model>
</AddItenToCartViaOrderRequest>
</Body>

</Envelope>

[c/#escapes

Set breakpoints and debug

consumer Log/

Event was replayed: Thu Feb 19 15:25:35 CET 2015

Error

freemarker.core.NonBooleanException: For "#if" condition: Expected a boolean, but
this evaluated to a number (wrapper: f.t.SimpleNumber):

> (smOptions?keys)?size [in template -r2f/sx/templates/addltemToCart.ftl" at
line 27, column 26]

FTL stack trace ("~" means nesting-related):
- Failed at: #if (smOptions?keys)?size [in template "sm-
r2f/sx/templates/additemToCart.fil" at line 27, column 211

Breakpoints can be set on the FTL template level.In the SX Source Editor tab locate where the in template you want to pause execution, and

check Breakpoint.

261

createReqUrL.ftl FXCYE]

105t

J < Ele

denyReqRequest.ftl f “automaticAggregation™: false
denyReqUrl.ftl i
generateMessageHeader.ftl
getAggregationFeatures.ftl
getApprovalRequest.ftl
getApprovalResponse.ftl
getApprovalUrL.ftl
get(atalogltemResponse.ftl
getCatalogltemUrLftl
getinstanceResponse.ftl
getinstanceUrl.ftl
getOfferinglconUrl.ftl
getOfferingResponse.ftl
getOfferingUrL.ftl
getRegForApprovalResponse.ftl
getReqForApprovalUrl.ftl
getReqResponse.ftl

getReqUrL.ftl
getSubscriptionCatalogResponse.fil
getSubscriptionCatalogUrL.ftl
getSubscriptionResponse.ftl
getSubscriptionUrLftl
getUserinfoResponse.ftl
getUserinfoUrl.ftl

Positon Ln1,cn1 Total Lna,cnas
languagesResponse.ftl

Toggle editt
listCatalogs.ftl 0ggle editor

lictC £ Breakpoint ¥

Click save. A breakpoint will be indicated next to FTL name as shown in the following:

createReqUrl.fil
denyReqRequest.ftl
denyReqUrlL.ftl
generateMessageHeader.ftl

@ getAggregationFeatures.ftl
getApprovalRequest.ftl

getApprovalResponse.ftl

Click start debugging on the Flow Visualiser tab. When execution stops at the breakpoint, debugging buttons resume event and next event are

displayed.

() Service Exchange

Flow Visualiser
Event

operation : getAggregationFeatures is running...

step : Get Aggregation Features is running...

» transform : csa-r2f/sx/ gati atures.ftl [edit source] was paused by debugger

Duration
14500

14500
14499

consumer Loge

ThuFeb 19 15:32:43 CET 2015

Time

Thu Feb 19 15:32:29 CET 2015
Thu Feb 19 15:32:29 CET 2015
Thu Feb 19 15:32:29 CET 2015

262

	Service Exchange SDK Cover Page Only
	Propel_111_SX_SDK_wiki_output ExternalReferenceRemoved
	SX SDK Legal Notices
	SDK Overview
	HP Service Exchange Overview
	Adapters in HP SX
	Content packs
	SX HP OO plugin
	Case Exchange
	Overview
	Concepts
	Configuration
	Operations
	OO flows
	Change Observers

	Provided content packs
	How to extend HP SX Content (HP SM Problem entity)
	How to develop an adapter (JIRA)
	Ticketing use case
	Case exchange use case
	Request to fulfill use case

	Aggregation in HP SX
	How to create CX content (HP SM Problem entity)
	Appendix A: Service Exchange - API
	Appendix B: Operation executors
	Appendix C: Ticket management operations messages
	Appendix D: Per instance operation definition
	Appendix E: HP SX operations reference
	Appendix F: Development UI

