

HP Service Provisioner

User’s and System Integrator’s Guide

Edition: V70-1A

for Microsoft Windows® Server 2012 R2, HP-UX 11i v3, and
Red Hat Enterprise Linux 6.6 operating systems

Manufacturing Part Number: None

January 21, 2015

 Copyright 2013-2015 Hewlett-Packard Development Company, L.P.

HP Service Provisioner

Legal Notices
Warranty.

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-
Packard shall not be held liable for errors contained herein or direct, indirect, special, incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be obtained
from your local Sales and Service Office.

Restricted Rights Legend.

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS
252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-
19(c)(1,2).

Copyright Notices.

© Copyright 2013-2015 Hewlett-Packard Development Company, L.P .

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Trademark Notices.

Java™ is a registered trademark of Oracle and/or its affiliates.

Linux is a U.S. registered trademark of Linus Torvalds

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Red Hat® Enterprise Linux® is a registered trademark of Red Hat, Inc.

JBoss® is a registered trademark of Red Hat, Inc. in the United States and other countries

EnterpriseDB® is a registered trademark of EnterpriseDB.

Postgres Plus® Advanced Server is a registered trademark of EnterpriseDB.

Oracle® is a registered trademark of Oracle and/or its affiliates.

UNIX® is a registered trademark of the Open Group.

Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation.

Document id: HPSA p158-pd026302

2

 HP Service Provisioner

1 Introduction to HP Service Provisioner ... 11
Standards .. 12
Catalog Driven ... 13
Service Specifications and Service Instances ... 13
Service Orders and Product Instances .. 14

2 Fulfillment Processes ... 19
States .. 19
Operations .. 20
Action Workflows .. 21
State Transitions ... 21
Processing Direction ... 22
Error Handling .. 23

Rollback ... 24
Modify Operations ... 25

Structural Modify .. 26
Shadow Characteristics .. 27

Manual Design and Assign ... 28
Force Operations .. 29
Life-Cycle Profiles ... 29
Conditional Child Removal .. 31

3 Implementation Architecture .. 33

4 Installation .. 35
Deploying HP Service Provisioner ... 35
Configuring HP Service Provisioner .. 36

Generate Service Id ... 36
SRModule and TrueviewModule Configuration ... 36
Sender Module Configuration ... 36
Conflict Module Configuration ... 36
Audit Module Configuration ... 36

Installing HP Service Provisioner License ... 37
Localization .. 37

Localizing HP Service Provisioner Engine Components .. 37
Localizing HP Service Provisioner UI ... 38

Deploy SOM Demo Solution ... 38

5 Client Integration ... 39
Northbound API ... 39
Conflicts ... 41

Cancelation .. 41
Order Entry UI .. 41

 3

HP Service Provisioner

6 Editing the Service Catalog ... 43

Administrative and Operational States ... 43
Templates ... 44
Profiles ... 45

Restrictions .. 47
Characteristic Annotations ... 47
Scope ... 48

EWI Specifications ... 48
RFS Specifications ... 49
CFS Specifications ... 51
Product Specification.. 51

Resource .. 53
Migration ... 53
Solution and Queue ... 53

Import and Export of Catalog Content ... 54

7 Monitoring and Interacting With Running Orders .. 55
Inspecting Service Orders and Product Instances ... 55
Performing Manual Design .. 57
Interacting with State Transition Action Workflow Jobs ... 58
Activities .. 59
Audit ... 60
Annotations .. 63

8 Processes for Resource Facing Services ... 65
Action Workflow Contract ... 65
Reading Characteristic Values from Action Workflows .. 67

Testing for Modified Characteristics ... 68
Writing Characteristic Values from Action Workflows ... 69
Interaction with Subscription Repository ... 69
Integration with Trueview Inventory .. 70

9 Delta Operations .. 71
Variable Cardinality CFSs .. 71
Requirements .. 74
Partial and Full Instance Trees ... 74
Northbound API ... 74
Delta Operations ... 76

Delta Tree .. 77
Fulfillment Processes for Delta Trees .. 78
Delta Operation Example .. 78
Migration between Products .. 83

4

 HP Service Provisioner

10 Dependencies .. 85

Terminology ... 85
Dependency Example ... 86
Managing Resource Product Instances ... 87
Managing Dependencies .. 87

11 Scheduled Requests .. 89
Schedule API .. 89
Scheduling Events .. 90
Schedule Modification.. 91
Repeating Schedule Example ... 92

12 Workflow Manager Module and Node Library .. 95
Workflow Manager Modules.. 95

SRModule .. 95
TrueviewModule ... 97

Workflow Nodes for Accessing Characteristics ... 98
SOMAssignResult ... 98
SOMCharacteristicsModified .. 99
SOMGetCharacteristics ... 100

Workflow Nodes for Managing Dependencies .. 101
SOMResourceCreateDependency ... 101
SOMResourceGetCapacityUsage .. 102
SOMResourceListIngoingDependencies ... 102
SOMResourceListOutgoingDependencies .. 103
SOMResourceModifyDependency .. 104
SOMResourceRemoveDependency ... 105
SOMResourceReplaceDependency ... 106
SOMResourceUpdateCapacity .. 106

Workflow Nodes for Product Instance Access ... 107
SOMCreateProductInstance .. 107
SOMDeleteProductInstance .. 109
SOMGetProductInstance ... 110
SOMUpdateProductInstance ... 111
SOMUpdateProductInstanceState ... 112

Workflow Node for Accessing Trueview Inventory .. 113
TVWSRequest ... 113

 5

HP Service Provisioner

Install Location Descriptors
The following names are used to define install locations throughout this guide.

Descriptor What the Descriptor Represents

$ACTIVATOR_OPT The base install location of HP Service Provisioner and HP Service
Activator.
The UNIX® location is /opt/OV/ServiceActivator
The Windows® location is
<install drive>:\HP\OpenView\ServiceActivator

$ACTIVATOR_ETC The install location of specific HP Service Provisioner and HP Service
Activator files.
The UNIX location is /etc/opt/OV/ServiceActivator
The Windows location is
<install
drive>:\HP\OpenView\ServiceActivator\etc

$ACTIVATOR_VAR The install location of specific HP Service Activator files.
The UNIX location is /var/opt/OV/ServiceActivator
The Windows location is
<install
drive>:\HP\OpenView\ServiceActivator\var

$ACTIVATOR_BIN The install location of specific HP Service Activator files.
The UNIX location is /opt/OV/ServiceActivator/bin
The Windows location is
<install
drive>:\HP\OpenView\ServiceActivator\bin

$JBOSS_HOME The install location for JBoss.
The UNIX location is
/opt/HP/jboss
The Windows location is
<install drive>:\HP\jboss

$JBOSS_DEPLOY The install location of the HP Service Activator JEE components.
The UNIX location is
/opt/HP/jboss/standalone/deployments
The Windows location is
<install drive>:\HP\jboss\standalone\
deployments

$JBOSS_EAR_LIB The location for libraries (Java *.jar files) to be executed by the HP
Service Activator engine (Workflow Manager and Resource Manager).
The UNIX location is
/opt/HP/jboss/standalone/deployments/hpsa.ear/lib

The Windows location is
<install drive>:\HP\jboss\standalone\deployments\
hpsa.ear\lib

6

 HP Service Provisioner

Conventions
The following typographical conventions are used in this guide.

Font What the Font
Represents Example

Italic Book or manual
titles, and
manpage names

Refer to the document HP Service Activator—
Workflows and the Workflow Manager and the
Javadocs for more information

Provides
emphasis

You must follow these steps.

Computer Text and items on
the computer
screen

The system replies: Press Enter

Command names Use the InventoryBuilder command

Method names The get_all_replies() method does the
following…

File and directory
names

Edit the file
$ACTIVATOR_ETC/config/mwfm.xml

Computer
Bold

Text that you
must type

At the prompt, type: ls –l

 7

HP Service Provisioner

In This Guide
This guide provides a general description of HP’s Service Provisioner product as well as the
detailed information needed

• to define products and services in the technical service catalog and maintain the definitions

and

• to monitor and interact with the HP Service Provisioner runtime engine as service orders are
executed, in particular when order processing requires manual action.

The guide has the following chapters, which address different groups within the entire audience:

• Introduction to HP Service Provisioner: This chapter contains a complete general
description of the HP Service Provisioner product from a function perspective. Read it to gain
a general understanding of the product, for example to assess it for a potential application, or as
an introduction before reading one or more of the following specific chapters in order to learn
to use the product.

• Fulfillment Processes: This contains detailed information about the fulfillment processes
supported by HP Service Provisioner including information about CFS/RFS processing order
and rollback.

• Implementation Architecture: This chapter describes how HP Service Provisioner is
implemented on the combined platform of HP Service Activator and HP Subscription
Repository, interworking also with Trueview Inventory.

• Installation: This chapter contains information about how to install and configure HP Service
Provisioner. A description of how to localize HP Service Provisioner is also included.

• Client Integration: This chapter is aimed at system integrators and describes the northbound
API of the HP Service Provisioner, facing the client system, i.e. CRM or Order Management
System which will inject service order requests into HP Service Provisioner.

• Editing the Service Catalog: This chapter, aimed at system integrators and technical product
managers, describes how to edit the contents of the catalog from the HP Service Activator user
interface. It is relevant for the system integrator who will implement an initial catalog for a
solution, and for the technical product manager who will maintain it.

• Monitoring and Interacting with Running Orders: This chapter is the specific guide for
(runtime) operators of HP Service Provisioner solutions with screenshots.

• Processes for Resource Facing Services: This chapter, aimed at system integrators, explains
how to implement process functionality for Resource Facing Service in the form of HP Service
Activator workflows.

• Delta Operations: This chapter describes the new and powerful delta operations supported in
HP Service Provisioner 7.0. With delta operations, it is possible to modify existing services by
specifying the desired end result; Service Provisioner will then calculate how transform the
existing service into the new service.

• Dependencies: This chapter, aimed at system integrators, explains how to use dependencies.
With dependencies it is possible for product instances the act as resources that can be
consumed by other product instances, CFSs, and RFSs.

8

 HP Service Provisioner

• Scheduled Requests: This chapter describes how to make use of scheduled requests in HP
Service Provisioner. With scheduled requests it is possible to schedule one or more requests to
be “fired” in the future. One-off as well as repeating scheduled requests are supported.

• Workflow Manager Modules and Node Library: This chapter describes how to configure
and use all workflow manager modules and workflow nodes that are included in the HP
Service Provisioner software.

Audience
The audience for this guide includes all groups who need information about the HP Service
Provisioner product:

• CSP solution architects who will evaluate the product

• Systems integrators who will plan and deliver service operations factories, including architects
as well as developers of catalog contents and fulfillment processes

• CSP technical product managers who will maintain product specifications in the service
catalog

• CSP operators who will work with the service operations factory at runtime: monitor it and
interact with running service orders

Document References
The following documentation will also be relevant, depending on the role of the reader:

• HP Service Activator, System Integrator’s Overview

• HP Service Activator, User’s and Administrator’s Guide

• HP Service Activator, Workflows and the Workflow Manager

• HP Subscription Repository v7.0, User Guide

• HP Subscription Repository v7.0, Developer Guide

• HP Subscription Repository v7.0, Installation and Administration Reference

• HP Trueview 2.1, Install Guide

• HP Trueview 2.1, Admin Guide

• HP Trueview 2.1, Inventory User Guide

 9

HP Service Provisioner

10

 HP Service Provisioner
 1. Introduction to HP Service Provisioner

1 Introduction to HP Service
Provisioner
HP OSS Fulfillment, see Figure 1, is HP’s implementation of the operational part of a
telecommunications factory for customer on-boarding. It supports the approach of a Service
Operations Factory concept to avoid technology silos. It includes:

• Catalog-driven Service Order Management to manage orders within the factory. It stores
product instances created by orders in a service inventory.

• Service Provisioner to map ordered products to Customer Facing Services and Resource
Facing Service, and further onto the network capabilities. Complex planning and provisioning
processes are managed through assign and design.

• Service Activation to orchestrate execution of commands towards network and IT
infrastructure.

• Trueview Inventory to provide additional functions like planning, inside plant, discovery, and
data accuracy.

Figure 1 HP OSS Fulfillment

HP Service Provisioner is a framework that supports both development and deployment of a broad
range of technical order management solutions. It applies to the space of converged services
delivered through combinations of IP network and IT processing infrastructures. It supports
unified service operations factories spanning multiple technologies and thus avoids technology
silos. Such factories can be set up for all situations where SID product structuring applies, i.e.

 11

HP Service Provisioner
1. Introduction to HP Service Provisioner

whenever all orderable products are specified by combining customer facing services which again
comprise resource facing services delivered by the converged infrastructure.

The positioning of Service Provisioner as part of HP OSS Fulfillment is shown in Figure 2. As the
figure shows, the factory contains two architecturally separate processing components: HP Service
Provisioner and HP Service Activator, and three data stores: the service catalog, the service
inventory, and the resource inventory. HP Service Provisioner interfaces to all three data stores
and is closely integrated with HP Service Activator.

Figure 2 HP Service Provisioner Positioning in HP OSS Fulfillment

Being a framework, HP Service Provisioner does not contain the complete solution for any
specific products and services. It contains the tools to develop and maintain such solutions, and it
contains the runtime engine for the solutions.

In terms of its technical implementation HP Service Provisioner is built on top of HP Service
Activator software which in a similar fashion contains tools and a runtime engine. The HP Service
Provisioner runtime engine is an extension of the HP Service Activator runtime engine.

The process to build and maintain specific solutions is one main topic of this document. The other
main topic is how operators interact with such solutions.

The northbound interface of HP Service Provisioner (the Service Activation Interface in Figure 2)
is a web service interface implemented as SOAP and REST over HTTP. Over this interface HP
Service Provisioner receives requests to process service orders. All requests are quickly responded
to when they have been checked for syntactic correctness. This synchronous response does not
convey the result of the request. That will be sent asynchronously over a message service that will
typically be JMS. For more details about interactions on the interface including the contents of the
request messages refer to Chapter 5.

Standards
HP Service Provisioner complies with applicable TMF Frameworx standards, the most important
ones being:

• SID, which defines the concepts of products and services, instances as well as their
specifications, with a hierarchical containment structure, along with the concept of
(product/service) characteristics, whose values can be invariant over all instances of a given
product/service, i.e. defined by the specifications, or may be specific to each instance (variant).

12

 HP Service Provisioner
 1. Introduction to HP Service Provisioner

• MTOSI, with its business agreement documented in TMF 518, which specifies:

1. the northbound interface of a HP Service Provisioner system (the Service Activation
Interface in Figure 2) that allows a client system (CRM/commercial order management
system in the BSS space) to request the creation of service orders, i.e. effectively product
instances, and state transitions to be performed on them, and

2. the data model used in exchanges across that interface, in particular the state model for
service orders to be processed by a HP Service Provisioner system

• TAM, the Telecom Applications Map. HP Service Provisioner and solutions built on it cover
Service Catalog, Service Inventory and most of Service Order Management as defined by
TAM: Service Data Collection, Service Design/Assign, Service Order Validation and Service
Order Orchestration.

• eTOM, the map of CSP processes. HP Service Provisioner covers a large part of the L2 Service
Configuration and Activation.

Catalog Driven
HP Service Provisioner is catalog driven. That is where the SID concepts come in. In SID terms
the catalog contains the specifications of the products and services that will be supported by a
solution. SID structuring is hierarchical. Taking a top-down view, products contain and can be
decomposed into services. In a bottom-up view, resource facing services can be combined into
customer facing services which are again combined into products.

The HP Service Provisioner catalog is technical, not commercial. It is not concerned with
commercial aspects of product offerings such as availability of products to particular categories of
customers or with their prices, such as will be needed to support the customer-facing selling
process, marketing campaigns, etc. Those aspects belong to commercial product catalogs, which
are BSS systems, out of scope for HP Service Provisioner. The HP Service Provisioner catalog
contains detailed technical information on how the services which constitute the substance of
converged telco/IT products are fulfilled and deployed.

Catalog content may be created as part of solution development and may be delivered by a system
integrator as part of solution delivery and support. The user interface to define and maintain the
catalog content is uncomplicated to use, once the concepts of the catalog are mastered. Hence it is
expected that new services will be added to the catalog and existing ones maintained with new
versions by the CSP’s technical product managers.

The highest technical complexity lies in the area of process implementation. Processes for
assigning resources, provisioning, and activation are implemented as workflows using the
Workflow Designer tool from HP Service Activator. Workflow development requires
programming skills. Once they have been developed, workflows can easily be tied to
specifications of resource facing services in the catalog.

Service Specifications and Service Instances
The catalog of HP Service Provisioner contains specifications of products and services. Every
technically distinct product to be offered and all the services needed as components of the products
will have their technical specifications in the catalog.

The concepts underpinning the catalog structure are standardized in SID. In particular the concepts
of products and services, with services falling into the categories of customer facing (CFS) and
resource facing (RFS) all specified in terms of their characteristics, come from SID. So does the
hierarchical structure: a product can be specified in terms of simpler products (in a commercial
product catalog), recursively, and eventually of customer facing services. Customer facing services
may again be specified in terms of simpler services: simpler customer facing services, also

 13

HP Service Provisioner
1. Introduction to HP Service Provisioner

recursively, implying a multi-level hierarchy, and resource facing services. Resource facing
services are those that use resources in the provider’s shared infrastructure.

SID clearly distinguishes between the specifications of products and services and instances of
them. We will maintain the distinction by using the abbreviations PS for product specification, and
CFSS/RFSS for specifications of CFS and RFS, respectively. PSs, CFSSs and RFSSs all belong in
the catalog. Data describing instances of products and services (CFS as well as RFS) are managed
in the service inventory, which is architecturally clearly separate from the catalog. The catalog is
maintained by technical product managers as part of the product offering life-cycle. The service
inventory is maintained by the running HP Service Provisioner solution as part of the service
instance life-cycle, i.e. as part of the processing of service orders.

NOTE HP Service Provisioner 7.0 has introduced a new object called an Engineering Work Item (EWI). Functionally, EWIs are similar to RFSs,
but their intended use is to serve as a placeholder for a special (manual) piece of work that needs to be carried out between two RFSs or
CFSs.

Service Orders and Product Instances
All the runtime processing capability of HP Service Provisioner is related to service orders and
product instances. The way requests are made on the northbound interface is compliant with
TMF 518. The NBI allows a client system to create and process service orders; once a service
order has resulted in the creation of a product instance, further requests to change its state can be
made by reference to the product instance by its service id.

The basis for service order processing requests is a state model. The default life-cycle1 of a service
order and the resulting product instance goes through the states shown in Figure 3, starting at the
top left (filled circle) and ending when the service order has been cancelled or the resulting
product instance has been retired at the lower left (circle). The arrows between the states indicate
the possible state transitions, not to be confused with the possible operations. The grey arrows
indicate state transitions for which it is not possible to associate action workflows (see the Section
“Action Workflows” on page 21).

Figure 3 Life-Cycle States (default) for Product Instances and the Possible State Transitions

term
inate

cancel

retire

de
sig

n
(2

)

ProvisionedDesignedChecked ActiveReserved

Terminated

check design
reserve

release

provision

deprovision

activate

deactivate

modify (2) modify

test (2) test

amend

cancel (2)

The default life-cycle states and the supported operations are shown in Figure 4. All operations are
comprised of one or more state transitions (except for the special noop operation which does not
contain any state transitions). Operations that contain a single state transition are illustrated with
solid arrows whereas operations comprised of multiple state transitions are illustrated with dashed
arrows.

1 Other life-cycle profiles are support as of HP Service Provisioner version 7.0; see the Section ”Life-Cycle Profiles” on page 29 for
more details.

14

 HP Service Provisioner
 1. Introduction to HP Service Provisioner

Figure 4 Life-Cycle States (default) for Product Instances and the Supported Operations

cancel

retire

de
sig

n

ProvisionedDesignedChecked ActiveReserved

Terminated

check
reserve

release

provision

deprovision

activate

deactivate

modify modify

test test

amend

design
reserve

provision
activate

provision

activate
activate

terminate

terminate

retire
retire

cancel

Requests supported on the NBI will contain a so-called request type which is mapped to an
operation that, in turn, performs one or more state transitions on service orders/product instances.
All the processes that are managed and executed by HP Service Provisioner implement such state
transitions. More details about state transition processes are given in the next section.

A request to create a new service order can work in two different modes depending on whether or
not the northbound system is CFS-aware:

1. The request may reference a product specification which is then looked up in the service
catalog by HP Service Provisioner.

2. The request may reference a product specification and all its constituent CFSs (including
nested CFSs). HP Service Provisioner will look up the PS in the service catalog, verify
that the CFSs match the CFSSs in the catalog, and add RFSs and EWIs to the correct
positions in the tree. Please read the Chapter “Delta Operations” on page 71 for more
details.

A product instance (PI) will be created based on the PS, and the PI will be the root of a tree whose
branches are CFSs, RFSs, and EWIs, and whose leaves are RFSs and EWIs.

The tree structure of a PS in the catalog is illustrated in Figure 5, which shows the general model
of the specification tree and an example. For CFSSs it is possible in the catalog to specify the
minimum and maximum number of occurrences, including “unlimited” (see the Section “Variable
Cardinality CFSs” on page 71). To make use of variable cardinality CFSs the northbound system
needs to be CFS-aware. Upon receiving a service request, HP Service Provisioner will create a
product instance as a tree structure mimicking the specification structure in the catalog.

 15

HP Service Provisioner
1. Introduction to HP Service Provisioner

Figure 5 Catalog Tree Structure

RFSS

CFSS

PS

EWIS

PS1

General Tree Model

CFSS1 CFSS2

CFSS11 CFSS12

RFSS1 RFSS2

EWIS1

EWIS3

RFSS3

RFSS21

RFSS4

Example

1..∞

0..1

EWIS2

LEGEND The bullet at the end of a line means that multiple occurrences of that object can be connected to one object at the other end. This
indicates the branching structure of the tree. In the example CFSS11 and CFSS12 are both children of CFSS1 and CFSS11 may occur
between 1 and an infinite number of times. Also, in this example CFSS2 is optional. RFSSs and EWISs always have the minimum and
maximum occurrences set to 1 (i.e. they are always mandatory)

When the service order is received, a product instance, which is a tree with a structure similar to
that of the specification, consisting of service instances, will be created by and persisted inside
Service Provisioner (as a tree with a product instance root and a number of service instance objects
as branches and leaves). In addition, Service Provisioner will generate a service id which can be
used to reference the product instance.

Subsequent requests for state transitions will then reference the product instance at the root of the
tree by its service id. For each product specification specified in the catalog, generally a large
number of instances will be created over the time during which the product is available.

Every CFSS defines a CFS (or multiple CFSs in the case of a variable number of occurrences) as
consisting of (decomposable into) a number of child services, which can be CFSs or RFSs, by
reference to their specifications. Also each product or service specification (PS, CFSS, or RFSS)
defines a set of characteristics for the service. Characteristic is the term used by SID. Synonyms
like “attributes” or “parameters” may be more familiar. The characteristics and their values are the
meat of a product or service instance. A PS, CFSS, or RFSS will also define a mapping between
the characteristics of the specification itself and those of the children. The mapping goes two
ways: There is an input mapping assigning values to the characteristics of the children from the
values of parent characteristics, and an output mapping going the opposite way.

An example of input and output mappings is shown in Figure 6. The parent has 3 characteristics,
P1, P2, and P3. One child is shown; it also has 3 characteristics, C1, C2, and C3. In this example,
the input mapping assigns values to all three child characteristics, of which C1 and C2 takes their
values from the same parent characteristic, P1. For the output mappings, the child characteristic C2
is mapped to the two parent characteristics, P2 and P3.

16

 HP Service Provisioner
 1. Introduction to HP Service Provisioner

Figure 6 Characteristic Input and Output Mappings

Parent
Specification

Child
Specification

Characteristic P1

Characteristic P2

Characteristic P3

Characteristic C1

Characteristic C2

Characteristic C3

Input Mappings

Child
Specification

Characteristic C1

Characteristic C2

Characteristic C3

Parent
Specification

Characteristic P1

Characteristic P2

Characteristic P3

Output Mappings

Characteristics may be invariant, i.e. with values defined once for all instances in the catalog. A
collection of characteristics (including types, description, restrictions, and default values) may be
defined as a profile. Profile characteristics are used to define a set or subset of properties of a
service offering that may be shared among multiple service offerings. A service offering may refer
to a number of such profiles.

In addition, a collection of characteristic values can be defined as a template. For example,
bandwidth and quality of service parameter definitions for different classes of service that could be
given user-friendly names such as ‘platinum’, ‘standard’ or ‘gamer’ may be gathered and hidden
behind the user-friendly name, in a template for a subscriber broadband access service.

Other, variant, characteristics may differ from instance to instance, typically information which
needs to be specified per customer such as the customer’s address.

Note that even when a value is specified for a characteristic in the catalog it may be overruled by a
parameter in a service request, possibly through an input mapping from a parent service. In such a
case the defined value is not invariant, but serves only as a default that may be overridden.

A product characteristic can be defined to be either “constant”, “set-once”, or “modifiable”:

• constant: The characteristic will always have its default value and it may not be overwritten by
a characteristic value from the service request.

• set-once: The characteristic can be set once upon creation of the product instance; either from
its defined default or from a characteristic value in a service request. Once set, the
characteristic may not be overwritten.

• modifiable: The characteristic can be set and updated at any time; typically this happens in the
event of a modify operation.

 17

HP Service Provisioner
1. Introduction to HP Service Provisioner

18

 HP Service Provisioner
 2. Fulfillment Processes

2 Fulfillment Processes
This chapter contains a walkthrough of the fulfillment processes supported by HP Service
Provisioner, and concepts are introduced that are important to understand in order to use HP
Service Provisioner as intended.

States
The possible states of service orders and product instances were introduced in the section “Service
Orders and Product Instances” on page 14. The intended use of each of the states in the default
life-cycle profile is as follows:

Checked It has been checked that it is technically feasible to build the services comprising
the product given the requested characteristics such as site address, etc. The
Checked state is a so-called transient state which means that this cannot be the
permanent state of a product instance. If this is the final state of an operation the
product instance will be deleted when the Checked state is reached.

Designed The ordered product has been decomposed according to the tree structure defined
in the service catalog and the resulting service tree persisted as an instance in
service inventory. When a product is in this state it is possible to manually
interact with the product if the “user interaction” flag has been set to “true”.

Reserved The shared infrastructure resources needed for the product (actually, for its RFSs)
have been reserved in resource inventory and associated with the instance in
service inventory.

Provisioned All network elements and other infrastructure resources which are affected
according to the design of the service have been configured to perform the
service. This implies all needed logical resources – such as bandwidth,
numbers/identifiers, registry entries, storage, etc. – have been allocated in the
infrastructure. The service has not been turned active.

Active The service is active in the infrastructure and usable subject to correct
functioning of the infrastructure as monitored by assurance systems.

Terminated All resources reserved for the product (its RFSs) have been released and may be
reused for new services. The product remains persisted in Service Provisioner’s
service inventory.

NOTE Additional – and simpler – life-cycle profiles will be introduced in the Section “Life-Cycle Profiles” on page 29.

Note in particular that the processes commonly referred to as “design and assign” are implied by
the states Designed and Reserved. With HP Service Provisioner, the “design” needed for a product
is the decomposition into its constituent services as controlled by the catalog, and “assign” means
selecting and associating specific resources in the shared infrastructure with RFSs as done by the
action workflows which are associated with its RFSSs in the catalog (workflows may also be
associated with PSs, CFSs, and EWIs). Typically, with HP Service Provisioner, the design and

 19

HP Service Provisioner
2. Fulfillment Processes

assign processes will be fully automated. See the Section “Manual Design and Assign” below for a
description of how to overrule the automation and allow manual interaction.

Operations
Service orders are managed by requesting operations which are mapped to a number of state
transitions. For example it is possible to make a single service request to create a new product
instance and make it active; this will cause a total of five state transitions: to Checked, to
Designed, to Reserved, to Provisioned, to Active. In such cases each transition in the sequence is
completely processed, by traversal of the product tree structure, before the next one is undertaken.

Service requests may initiate the following operations for the default life-cycle profile (see Figure
4 on page 15):

check From non-existing to Checked; this request will not persist the product instance
in service inventory, the service order is only cached for a period of time; hence
the operation may be repeated. The purpose is only to retrieve the information
whether the transition is feasible.

design From non-existing to Designed, from Checked to Designed, or from Terminated
to Designed.

reserve From non-existing to Reserved or from Designed to Reserved.

cancel From Checked to non-existing, from Designed to non-existing, or from Reserved
to non-existing.

provision From non-existing to Provisioned, from Designed to Provisioned, or from
Reserved to Provisioned

activate From non-existing to Active, from Designed to Active, from Reserved to Active
of from Provisioned to Active.

deactivate From Active to Provisioned

deprovision From Provisioned to Reserved

release From Reserved to Designed

terminate From Provisioned to Terminated or from Active to Terminated.

retire From Terminated to non-existing, from Provisioned to non-existing, or from
Active to non-existing.

amend From Designed to Designed.

modify From Provisioned to Provisioned or from Active to Active.

test From Provisioned to Provisioned or from Active to Active.

noop “No operation”; does not result in any state transitions.

Every state transition on a product (order) involves a process to be executed under control of the
HP Service Provisioner process engine. The process traverses the complete tree of the product
instance in a depth-first fashion.

NOTE The depth-first tree traversal can be in either “forward” or “backward” direction depending on the current state transition. For more details
read the Section “Processing Direction” on page 22.

20

 HP Service Provisioner
 2. Fulfillment Processes

Action Workflows
In the catalog it is possible to associate PSs, CFSs, RFSs, and EWIs with HP Service Activator
workflows that carry out specific actions for each transition between two states; such workflows
will be referred to as action workflows.

There are two ways of specifying action workflows for catalog items; either the same action
workflow can be specified to all possible state transitions (in this case the action workflow must
include all the required actions for all state transitions) or different action workflows may be
specified for each possible state transition (including no action workflow). Which of the two
options are preferable is entirely up to the system integrator. For all non-leaf items in the catalog it
is possible to define pre-workflows as well as post-workflows, and for leaf items only a single
action workflow can be defined.

RFS state transition action workflows play an important role because they will typically
implement the logic needed to interact with the network equipment and/or the resource inventory
system. Each time an RFS action workflow is run as part of the process for a particular state
transition, that transition is identified by parameters which must be taken into account by the
workflow.

An example showing some typical actions to include in RFS action workflows is shown below (for
selected state transitions):

non-existing → Checked Check availability of access device and cabling to support connection
to the customer site.

Designed → Reserved Based on relevant characteristics of the RFS, such as customer site
address, bandwidth required, etc., select appropriate shared resources
and reserve them for use by the RFS.

Reserved → Provisioned Through interaction with network elements, possibly working through
element managers, configure all needed network elements
appropriately to perform the service.

Provisioned → Active Configure network elements to allow traffic to flow on connections
that have been provisioned.

Active → Provisioned Configure network elements to disallow traffic to flow on connections
that have been provisioned.

Provisioned → Reserved Undo configuration of network elements (inverse of configuring them
for the service).

Reserved → Designed Remove recorded relationships between service inventory and
resource inventory and release resources in resource inventory

State Transitions
The product instance tree consist of leafs as well as non-leaf branches. The non-leaf branches of
the tree are the root (product instance), the CFS instance objects, and (optionally) some of the RFS
instance objects. The leaf branches are (typically, most of) the RFSs and the EWIs.

Each non-leaf branch has a set of children at the next level of decomposition. The process for any
non-leaf branch has the following steps for each state transition:

1. Execute an action workflow (if a pre-workflow has been defined in the catalog).

2. For each child branch, do the following (the children are processed in the order defined
for the branch; for backward transitions – e.g. from Provisioned to Terminated or from
right to left in Figure 3 – the children are processed in inverse order):

a. Perform the input mappings defined for the child branch, characteristics for which no
mapping is defined are not affected.

 21

HP Service Provisioner
2. Fulfillment Processes

b. In the context of the child branch, continue from step 1 (i.e. all branches are traversed

in a depth-first fashion in a recursive fashion)

c. Perform the output mappings defined for the child branch, characteristics for which
no mapping is defined are not affected.

3. Execute an action workflow (if a post-workflow has been defined in the catalog). For
leafs, this step is skipped.

For further description of input/output characteristics mappings, see the Section “Product
Specification” on page 51.

An example may help to understand the process. Figure 7 shows a product instance tree with only
a single layer of CFSs, a single layer of RFSs, and no EWIs. The actions performed during one
state transition process are shown as tings/circles with numbers indicating their sequence. Actions
number 1, 3, and 13 are executions of pre-workflows; actions number 2, 4, 7, 12 and 14 are input
mappings; actions number 6, 9, 11, 16, and 18 are output mappings, actions number 5, 8, and 15
are executions of RFS state transition action workflows, finally actions number 10, 17, and 19 are
executions of post-workflows.

Figure 7 Tree Traversal Process for a State Transition

PI1

CFS1 CFS2

RFS1 RFS2 RFS3

1

5

2

3

4
6 7

8

9

10

11 12

13

14

15

16

17

18
19

Processing Direction
When performing a specific state transition, the direction in which the CFSs and RFSs in the
product tree structure are processed depends on the start and end states; the possible directions are
“forward” and “backward”.

The tree traversal shown in Figure 7 is an example of a “forward” processing direction; this could,
for instance, be a state transition from Provisioned to Active. The processing order in this example
is:

 PI1 
 CFS1 
 RFS1 
 RFS2 
 CFS2 
 RFS3 

In the case of “backward” processing direction the processing order of the example tree shown in
Figure 6 will be as follows:

22

 HP Service Provisioner
 2. Fulfillment Processes

 PI1 
 CFS2 
 RFS3 
 CFS1 
 RFS2 
 RFS1 

In order to define an unambiguous processing direction for all possible state transition, the possible
states (as well as a “non-existing” state, i.e. the state of a product before it has been checked or
after it has been retired) are ordered by their so-called “maturity” levels. State transitions that
move towards a higher maturity level will enable “forward” processing direction whereas state
transitions that move towards a lower maturity will enable “backward” processing direction.

Figure 8 shows all states ordered by their maturity levels, with the highest maturity level listed at
the top and the lowest maturity level at the bottom. The two arrows indicate the processing
direction when traversing from one state to another.

Figure 8 Maturity Levels and Processing Direction

Active

Provisioned

Reserved

Designed

Checked

Terminated

Non-existing

Forward Backward

Error Handling
An attempted state transition may fail in the processing of an action workflow. When such a
failure occurs, the behavior of the HP Service Provisioner engine will depend on the selected
error-handling strategy which can be one of the following:

• Atomic: Service Provisioner will attempt to perform a full rollback, i.e. to the state the product
instance was in before executing the latest service request. This is the default error handling
strategy.

• Best-effort: Service Provisioner will set a “failed” flag for the instance that failed and then
continue in a best-effort manner.

• Partial: Service Provisioner will attempt to roll back to the previous “stable” state; e.g. if an
error happens in the state transition between Reserved and Provisioned, an attempt will be
made to roll back to the Reserved state (this was the error-handling behavior in HP Service
Provisioner 1.0).

 23

HP Service Provisioner
2. Fulfillment Processes

Rollback
If the error-handling strategy is set to either “Atomic” or “Partial” a consistent error in an action
workflow will trigger a rollback operation. During rollback, the actions that have been successfully
completed until the point of failure will be processed once again in “reverse” mode; this means
that if, for instance, a “reserve” action workflow for an RFS has been executed with success before
the point of failure, then the “release” action workflow (for the same RFS) will be called during
rollback.

IMPORTANT A consistent error (result code = 1) in an action workflow means that the workflow was able to clean up its own changes and bring the
affected service back to the state is was in before the action workflow was invoked. An inconsistent error (result code = 2) means that a
failing action workflow was not able to bring the affected service back to the state it was in before the action workflow was invoked. In
case of inconsistent errors, Service Provisioner will halt processing and neither attempt to do a roll back nor to roll forward. Therefore,
solutions should be carefully designed in such a way that inconsistent errors are a rare event.

Generally speaking, for all state transitions that are allowed to do changes outside of HP Service
Provisioner (i.e. in the resource inventory or in the network) and that can bring a product instance
from one state to another there is also an “inverse” state transition (see Figure 3 for the “default”
life-cycle profile). Table 1 shows the mappings between state transitions and inverse state
transitions for the default life-cycle profile.

Table 1 Mapping between State Transitions and Inverse State Transition

State Transition Name Inverse State Transition Name

Reserve Release

Provision Deprovision

Activate Deactivate

Release Reserve

Deprovision Provision

Deactivate Activate

As an example, consider the instance tree illustrated in Figure 7. If an error occurs during an
“activate” state transition (i.e. from “Provisioned” to “Active”) while processing the action
workflow for “RFS3”, the process will be as follows:

 PI1 (pre-WF, activate) 
 CFS1 (pre-WF, activate) 
 RFS1 (WF, activate) 
 RFS2 (WF, activate) 
 CFS1 (post-WF, activate) 
 CFS2 (pre-WF, activate) 
 RFS3 (WF, activate)  ERROR (result = 1)
 CFS2 (post-WF, deactivate) 
 CFS1 (pre-WF, deactivate) 
 RFS2 (WF, deactivate) 
 RFS1 (WF, deactivate) 
 CFS1 (post-WF, deactivate) 
 PI1 (post-WF, deactivate) 

LEGEND The  symbol indicates a “roll forward” operation and the  symbol indicates a “rollback” operation.

24

 HP Service Provisioner
 2. Fulfillment Processes

IMPORTANT The failing RFS action workflow (“RFS3” in the example shown above) will not be called again during rollback. Hence, in case of errors in
the action workflow it must attempt to revert all its actions before terminating.

There may be situations where rollback fails. If this happens the product instance will be left in an
inconsistent state; i.e. the states of the CFSs, RFSs, and EWIs in the product instance will not be
identical. An example of a rollback failure is illustrated below:

 PI1 (pre-WF, activate) 
 CFS1 (pre-WF, activate) 
 RFS1 (WF, activate) 
 RFS2 (WF, activate) 
 CFS1 (post-WF, activate) 
 CFS2 (pre-WF, activate) 
 RFS3 (WF, activate)  ERROR (result = 1)
 CFS2 (post-WF, deactivate) 
 CFS1 (pre-WF, deactivate) 
 RFS2 (WF, deactivate)  ERROR (result = 1)

In this example the “RFS2” workflow fails when the “deactivate” transition is executed and this
brings the rollback operation to a halt. This means that manual action will be required to clean up
the changes caused by the actions workflows for “RFS2” and “RFS 1” as well as the changes
caused by the action pre-workflows for “CFS1” and “PI1”.

Finally, there can be cases where rollback is even not attempted. This happens if an RFS workflow
fails with a “result” code larger than 1, which indicates that the RFS workflow was not able to
clean up its own changes. An example of this is shown here:

 PI1 (pre-WF, activate) 
 CFS1 (pre-WF, activate) 
 RFS1 (WF, activate) 
 RFS2 (WF, activate) 
 CFS1 (post-WF, activate) 
 CFS2 (pre-WF, activate) 
 RFS3 (WF, activate)  ERROR (result = 2)

Also in this case, manual actions will be required bring the state of the product instance back into a
consistent state.

Modify Operations
An existing product can be modified as a result of an incoming service request. Two types of
modifications are supported:

• Modifications of characteristic values: One or more characteristic values may be modified by
sending a service request to HP Service Provisioner containing new characteristic values. The
new characteristic values will be applied to the product instance (the “root”) before any state
transitions are commenced and may (or may not) ripple down from the product instance to
child CFSs, RFSs, and EWIs through characteristic input mappings. An example of a scenario
where characteristic modification can be used could be the modification of the upstream and
downstream bandwidths of an existing DSL service.

 25

HP Service Provisioner
2. Fulfillment Processes

• Structural modifications: CFSs may be added to and/or deleted from an existing product

instance through a service request containing “modify-add” and/or “modify-delete” actions. If
a service request contains multiple “modify-add”/”modify-delete” actions, they will be
added/deleted using the order in which they are specified in the service request. Structural
modifications are only possible for operations that explicitly support modifications. For the
default life-cycle profile (see Figure 3 and Figure 4) these operations are “modify”
(Active→Active or Provisioned→Provisioned) and “amend” (Designed→Designed). An
example of a “modify-add” scenario could be the addition of a VoIP service to an existing DSL
service.

Structural Modify
As described above, there are two types of structural modifications that may either add or delete
CFSs. The position in which to add a CFS or from which to delete a CFS is identified using a so-
called “path”. The “path” is in essence a space-separated list of index values that uniquely
identifies a position within a product instance tree; the “path” of the root element in a product
instance tree is an empty string. An example of a product instance tree with all paths (in brackets)
is shown below:
 PI1 []
 CFS1 [0]
 RFS1 [0 0]
 RFS2 [0 1]
 CFS2 [1]
 RFS3 [1 0]
 CFS3 [2]
 RFS4 [2 0]
 RFS5 [2 1]

To add or delete a CFS the service request must provide the following information:

• Add CFS: The service request must contain the name and version of the CFSS to add as well
the path. In addition, the following optional information may be provided: a CFS label, a
template name/version from which to get characteristics values, a list of characteristic values to
assign to the CFS’s characteristics, and lists of input/output mappings for this CFS. The CFS
instance to be added is created from the CFS specification; i.e. the CFS instance will include
child CFSs, child RFSs, and/or child EWIs. Before the new CFS instance is added to the
product instance, the CFS itself and all its children will traverse all states from Initial until
reaching the same state as the other instances. Hence, if a CFS is added to a product instance in
state Provisioned, it will traverse the states
Initial→Checked→Designed→Reserved→Provisioned (action workflows will be invoked, if
any have been defined for these transitions).

• Delete CFS: The service request must contain a “path” that uniquely identifies the position of
the CFS to be deleted. Before a CFS instance is deleted from the product instance the CFS
itself and all its children will traverse all states from its current state until reaching the Retired
state. Hence, if a CFS is deleted from a product instance in state Provisioned, it will traverse
the states Provisioned→Reserved→Designed→Terminated→Retired (action workflows will
be invoked if any have been defined for these transitions).

NOTE Using “path” to identify the position of a CFS to be added or deleted may be inconvenient in some cases because it may be considered
to be too technical. A much more powerful way to add or delete CFSs is using Delta Operations which is described in Chapter 9 on
page 71.

After the completion of a “modify-add” or “modify-delete” operation (or a combination of
multiple “modify-add” and “modify-delete” operations), the entire product instance will traverse
the “modify” or “amend” state transition (depending on the current state of the product instance).

26

 HP Service Provisioner
 2. Fulfillment Processes

An example of a “modify-add” operation is shown below. Consider the following product
instance:
 PI1 []
 CFS1 [0]
 RFS1 [0 0]
 RFS2 [0 1]
 CFS2 [1]
 RFS1 [1 0]

Now, someone wishes to add a new CFS (“CFS3”) to position “0 1”. The new CFS has two
children, “RFS4” and “RFS5”. In this case, the resulting product instance becomes:
 PI1 []
 CFS1 [0]
 RFS1 [0 0]
 CFS3 [0 1] - NEW
 RFS3 [0 1 0]
 RFS4 [0 1 1]
 RFS2 [0 2]
 CFS2 [1]
 RFS1 [1 0]

Notice that the “path” of “RFS2” has changed as a result of the insertion of “CFS3”.

Shadow Characteristics
In some cases it is convenient from with an action workflow to be able to access previous values
of certain characteristics. For instance, if an RFS’s action workflow for a “modify” state transition
needs to change an IP address, then both the new as and the old IP address may be needed; the old
IP address might be needed so that the address can be freed from a pool of resources, and the new
IP address will be needed for making the necessary changes in the network.

Shadow characteristics provide a convenient way of getting access to the previous values for all
characteristics. Before a new value is assigned to a characteristic HP Service Provisioner will copy
the current value of the characteristic to a so-called shadow characteristic; this will be done for all
characteristics in a product instance, including all its children.

Service Provisioner comes with two workflow nodes that can be used in action workflows to
access shadow characteristic values. One workflow node is a process node that can assign current
and/or shadow characteristic values to case-packet variables. The other workflow node is a rule
node that can be used to make a logic decision based on whether or not a one or more
characteristic values have changes (i.e. whether or not the current values match their shadow
characteristic values).

NOTE The two workflow nodes are documented in the Section “Workflow Nodes for Accessing Characteristics” on page 98.

In certain cases it may be desirable to not run an action workflow for a modify operation. As an
example, consider user who has subscribed to a triple play service modeled by product instance
containing a “Data” service, a “Video” service, and a “Voice” service. Now, if the user wishes to
modify the bandwidth of the “Data” service but not touch the two other services, then it would be
convenient if it was possible to completely skip the action workflows for the “Video” and “Voice”
services.

With HP Service Provisioner it is, in fact, possible to set a flag on action workflows (this has to be
done in the catalog) so that they will be skipped in the event of a modify operation, provided that
none of the characteristic values have been changed. If the flag is set, Service Provisioner will –
before reaching the point where the action workflow is to be called – compare all the service’s
characteristic values to their shadows, and if none of the characteristic values have changed the
action workflow will not be invoked.

 27

HP Service Provisioner
2. Fulfillment Processes

Manual Design and Assign
Design of a product means designing its components, i.e. the tree of CFSs, RFSs, and EWIs. In
general the design is determined once and for all in the catalog, so that the state transitions to the
desired end state can run automatically.

However, it is possible to allow a manual design action. It can be specified in a PS or service
specification that a manual design action shall take place for all instances of the product (if set on
the PS or any of its member CFSSs, RFSSs, or EWISs), or it can be specified by a parameter in the
service request to design an instance of a product. Then, after the product instance has been
created and persisted by the automated process that follows the tree structure defined in the
catalog, a manual action to consider and optionally alter the design must take place before the
product instance is considered to have fully reached the “Designed” state.

How to interact with HP Service Provisioner to perform such a manual action is described in the
Section “Performing Manual Design” on page 57.

Manual action makes it possible to remove or to add services or complete sub-trees from/to the
product instance, using all services specified in the catalog. Also, changing their characteristics is
possible.

This is a very complete capability to alter a design, because everything that is created, provisioned
and activated for a product is expressed as services.

A further possibility for manual interaction, applying to all state transitions, is to include user
interaction in the state transition action workflows. This is a general mechanism to include a
process that the user controls. It could be manual work, or it could be something the user does by
invoking another system. Hence it is a mechanism to integrate HP Service Provisioner with a peer
system in a way that was not specifically planned and implemented as a system integration, by
asking the user to work as intermediary.

For example, a manual design and assign process for a circuit included into a product as a single
RFS can involve Trueview Inventory by including in the action workflow algorithm for the
“reserve” state transition (from Designed to Reserved) a user interaction that works as follows:

1. The action workflow interacts with a user, asking him/her to perform a manual design using
Trueview, i.e. its user interface. The endpoints of the circuit are known as RFS
characteristics and are displayed to the user as part of the specification of the circuit. The
user is asked to obtain and enter the Trueview identifier of the designed circuit in response to
the interaction.

2. The user will take the information provided as input and transfer it manually to the proper
Trueview UI, ask Trueview to design the circuit, forcing Trueview to assign and keep track
of the necessary intermediate resources. When Trueview completes this design and assign
task, the final result will be available as an identifier assigned to the circuit. Note that there is
some leeway for the user to control the circuit design as long as the RFS characteristics are
respected. This output is then transferred manually back to the interaction with the RFS state
transition workflow, hence to HP Service Provisioner.

Of course, integration with Trueview Inventory could also be automated, if it is foreseen when an
automated solution is developed. The description above covers unforeseen integration points, or
points that are not supported by the API that is exposed by Trueview Inventory but only by its user
interface.

28

 HP Service Provisioner
 2. Fulfillment Processes

Force Operations
In addition to the processes described earlier in this chapter, the HP Service Provisioner process
engine supports “force” operations with the following capabilities:

• Set the state of a product instance (and its children) to any of the possible service order states.
No action workflows will be executed; only the state is set.

• Delete a product instance from HP Service Provisioner (and from Subscription Repository).
Again, no action workflows will be executed.

These operations can be useful in cases where a product instance is left in an inconsistent state; for
instance, due to a rollback error.

Force operations are invoked by sending a service request to HP Service Provisioner WS interface
containing the service id to identify the product instance as well as the <Force> element
containing the desired state of the product. A list of supported <Force> values (for the default
life-cycle profile) and their meanings is shown in Table 2. Please note that force operations
completely ignore the current state of the product instance.

Table 2 List of Supported Force Operations for the Default Life-Cycle Profile

Force Value Effect

Designed Set the state of the product instance to “Designed”

Reserved Set the state of the product instance to “Reserved”

Provisioned Set the state of the product instance to “Provisioned”

Active Set the state of the product instance to “Active”

Terminated Set the state of the product instance to “Terminated”

Checked Delete the product instance

Initial Delete the product instance

Retired Delete the product instance

Life-Cycle Profiles
The descriptions in all previous Chapters and Sections have been done with the assumption that
the life-cycle of the fulfillment processes supported by HP Service Provisioner use the states (and
thereof following state transitions and operations) described by MTOSI/TMF 518.

As of version 7.0 two additional so-called life-cycle profiles have been added to HP Service
Provisioner; so a total of three life-cycle profiles are now supported. The names of these life-cycle
profiles are:

• Default: This life-cycle profile is used if no other life-cycle profile has been explicitly
selected. It implements the states, state transitions, and operations described by
MTOSI/TMF 518.

• Reserved: This life-cycle profile is a much simplified version of the Default life-cycle profile.
In addition to the non-existing state it only contains the states Active and Reserved (thereof the
name of this life-cycle profile).

 29

HP Service Provisioner
2. Fulfillment Processes

• Simple: This life-cycle profile is the simplest imaginable life-cycle profile (hence, its name)

containing only the state Active in addition to the non-existing state.

The supported state transitions as well as the supported operations for the Default life-cycle profile
were already introduced in Chapter 1 (see Figure 3 and Figure 4).

Figure 9 shows the supported states, state transitions, and operations for the Reserve life-cycle
profile. All state transition names coincide with operations of identical names; only the operations
active and retire can span across two state transitions (illustrated using dashed arrows).

Figure 9 State Transitions and Operations for the Reserved Life-Cycle Profile

retire

ActiveReservedreserve
activate

deactivate

modify

retire

ActiveReservedreserve
activate

deactivate

modify

activate

retire

State Transitions Operations

The supported states, state transitions, and operations for the Simple life-cycle profile are
illustrated in Figure 10. For the Simple life-cycle profile there is a full match between all operation
names and state transition names as well as their start and end states.

Figure 10 State Transitions and Operations for the Simple Life-Cycle Profile

Activeactivate

modify

State Transitions Operations

Activeactivate

modify

NOTE Although not enforced by HP Service Provisioner, any given solution should stick to a single life-cycle profile in order to keep the
semantics of states, state transitions, and operations consistent across all supported services.

30

 HP Service Provisioner
 2. Fulfillment Processes

Conditional Child Removal
In HP Service Provisioner it is possible for child specifications (i.e. CFSSs, RFSSs, and EWISs) to
specify conditions that can cause instances created from them to be removed (or kept). An
example where this functionality can be used could be a triple-play service (data, voice, and video)
where it is possible for the subscriber to opt out of the voice or the video service (or both).

In the catalog it is possible for CFS specifications, RFS specifications, and EWI specifications to
specify the following two parameters:

• Included parameter: The value of this parameter must contain the name of one of the
characteristics that belong to this specification.

• Included condition: This parameter is used to define the condition for which this specification
(or more precisely, the instance based on this specification) shall be included in the product
instance tree. The supported conditions are identical to the restrictions that are supported for all
characteristics; please read the Section “Restrictions” on page 47.

The evaluation of the included parameter (i.e. the decision as to whether or not to remove this
child) is done when the very first state transition has been completed; i.e. for the Default life-cycle
profile this means just before the Checked state is reached.

An example of a product specification containing child CFSSs that can be conditionally stripped
off is shown below (RFSs are not included in this example):
 3Play (PS) --|
 |-- Data (CFS)
 |
 |-- Voice (CFS)
 | - Included parameter: include_voice
 | - Included condition: YES,TRUE (Enumeration)
 |
 |-- Video (CFS)
 - Included parameter: include_video
 - Included condition: YES,TRUE (Enumeration)
It is assumed that the characteristics include_voice and include_video are defined in the
3Play product specification and mapped to its CFSSs children to characteristics of identical
names.

Now, when creating an instance based on this specification, the fulfillment processes will copy the
values of the characteristics include_voice and include_video to the child CFS instances. If
the service request sets the value of these two characteristics to YES or TRUE, then the Video and
Voice CFSs will be included in the product instance tree. Otherwise, if the characteristics are set
to any other values then Service Provisioner will strip off the CFSs (Voice or Video or both) just
before the Checked state is reached.

If a CFS has been deleted from the product instance tree it may be re-added later on using a
“modify-add” operation. For more details on this please read the Section “Structural Modify” on
page 26.

 31

HP Service Provisioner
2. Fulfillment Processes

32

 HP Service Provisioner
 3. Implementation Architecture

3 Implementation Architecture
This chapter describes HP Service Provisioner from a software implementation perspective. This
information does not bear on the functionality of HP Service Provisioner software, but it is
important for operation of the software and to understand how state transition action workflows
access the data stores of service catalog, service inventory, and resource inventory.

The order processing engine of HP Service Provisioner is itself implemented as workflows (most
importantly, SOMController, SOMAction, and SOMRollback) that execute in the workflow
engine of HP Service Activator. The roles of the three workflows are as follows

• SOMController is responsible for orchestrating the Service Order Management state machine
and for all external communication (via JMS and WS/SOAP/REST); actions that are executed
are pushed onto a so-called action stack. In addition, this workflow is responsible for handling
scheduled requests, delta calculation, conflict detection, force operations, and cancelation of
ongoing processes.

• SOMAction is responsible for performing a depth-first traversal of all CFSs, RFSs, and EWIs
in a product instance and for invoking the processes associated with the PI, the CFSs, the
RFSs, and the EWIs (these processes are also implemented as workflows).

• SOMRollback is responsible for performing a full or a partial rollback in case of a consistent
error in one of the action workflows. It does so by popping actions off the action stack one by
one and reversing each action.

The interaction between the HP Service Provisioner process engine and action workflows happens
simply by running the latter within the same workflow engine directly under the control of the
process engine workflow as the parent job.

Of the three data stores which will be part of a solution based on HP Service Provisioner, the
service catalog and service inventory, although they are conceptually distinct, are both
implemented with HP Subscription Repository software.

The third data store, resource inventory, is less tightly integrated into HP Service Provisioner, as it
is not accessed from the HP Service Provisioner process engine. Access to resource inventory will
be needed from state transition action workflows. The resource inventory offering for HP’s
integrated service operations factory is Trueview Inventory. Therefore, HP Service Provisioner
comes with features to allow access to Trueview Inventory, but it will be possible on a project
basis to use a different inventory.

In relation to the HP Service Activator workflow engine both of the inventory platforms are
cooperating systems which expose web service interfaces for integration. As shown in Figure 11,
HP Service Provisioner includes workflow manager modules for both integrations. There is also a
library of workflow nodes for access to the service catalog and the service inventory. For more a
full description of the workflow manager module and the workflow nodes, read Chapter 12 on
page 95.

 33

HP Service Provisioner
3. Implementation Architecture

Figure 11 HP Service Provisioner Implementation Architecture

HP Service Activator Workflow Manager
SR

Module
Subscription
Repository

Trueview
InventoryHP Service Provisoner

process engine
RFS workflow

TV
Module

SOAP/WS

SOAP/WSWorkflows

For operation and administration of Subscription Repository and Trueview Inventory please refer
to the documentation for those products.

The primary user interface for HP Service Provisioner includes two UIs, one for editing the
catalog, described in Chapter 6, and one for monitoring and interacting with running orders,
described in Chapter 7. In addition, there is a user interface that allows the user to enter orders in a
generic manner.

All the HP Service Provisioner user interfaces are integrated in the (zero client-side footprint) web
service user interface for HP Service Activator, which is generally described in HP Service
Activator, User’s and Administrator’s Guide.

34

 HP Service Provisioner
 4. Installation

4 Installation
This chapter guides you through the steps required to install HP Service Provisioner. At a glance,
installation of HP Service Provisioner consists of the following steps:

• Install HP Service Activator

• Install HP Subscription Repository

• Deploy the HP Service Provisioner solution using the HP Service Activator Deployment
Manager

• Configure the required modules: SRModule, TrueviewModule, JMSSenderModule (or
SocketSenderModule) , and DBAuditModule

For information about installing HP Service Activator and HP Subscription Repository, please
refer to their respective documentation.

NOTE This document does not describe how to set up a JMS server. You may choose to use the JMS software that comes with JBoss AS 7.1
which is bundled with the HP Service Activator product. In that case, please consult the JBoss documentation for detailed instructions.

Deploying HP Service Provisioner
The HP Service Provisioner framework software is packaged as a zipped HP Service Activator
solution named SOM.zip which is installed along with the HP Service Activator core product (in
the directory $ACTIVATOR_OPT/SolutionPacks) and can be deployed with the HP Service
Activator Deployment Manager (which is introduced briefly in HP Service Activator, System
Integrator’s Overview and thoroughly document in the dedicated manual HP Service Activator,
Solution Separation and the Deployment Manager).

To deploy HP Service Provisioner follows these steps:

• Launch the Deployment Manager and configure the system database parameters (typically,
only the system database username and password need to be entered).

• Under “Local Deployment”, click the “Import Solution” menu item, select the ZIP file
$ACTIVATOR_OPT/SolutionPacks/SOM.zip, and click the [Import] button.

• Click the “Deploy Local Solution” menu item, select the solution named “SOM”, and click the
[Deploy solution] button.

Now the HP Service Provisioner software (workflows, UI components, workflow nodes and
modules) have been deployed.

 35

HP Service Provisioner
4. Installation

Configuring HP Service Provisioner
Before the HP Service Provisioner software can be used, you need to enable generation of service
ids and then configure four workflow manager modules as described in this section.

Generate Service Id
To use Service Provisioner, the Workflow Manager must be configured to automatically generate
service ids. This is done by setting the value of the XML element <Generate-Service-ID> to
“true” in the Workflow Manager’s configuration file, $ACTIVATOR_ETC/config/mwfm.xml.

SRModule and TrueviewModule Configuration

NOTE Configuration of the SRModule (named “ServiceOrderManagement”) is mandatory for running HP Service Provisioner. If HP Trueview
is used as the inventory system, you must also configure the TrueviewModule.

To use the SRModule and TrueviewModule they need to be added to the Workflow Manager’s
configuration file, $ACTIVATOR_ETC/config/mwfm.xml. It is recommended to copy the
examples in the file $ACTIVATOR_OPT/solutions/SOM/etc/newconfig/mwfm_SOM.xml and
then edit the configuration parameter to suit the environment. For a full documentation of the
parameters supported by the modules, please read the documentation in Chapter 12 (page 95).

If you do not wish to have clear text passwords in your configuration files, you can enable support
for encrypted passwords. In that case, you need to encrypt the password using HP Service
Activator’s crypt utility and paste the encrypted password into the configuration file.

The following example shows how to encrypt the password verySecret:
 $ACTIVATOR_OPT/bin/crypt -encrypt verySecret
 Text is verySecret and encrypted text is t4q0rlkf294JsRdTXn7SJA==

Hence, the encrypted version of verySecret is t4q0rlkf294JsRdTXn7SJA==.

Sender Module Configuration
The workflows implementing the service order management processes require that HP Service
Activator has a SenderModule enabled; typically, the JMSSenderModule or the
SocketSenderModule. Refer to HP Service Activator, Workflows and the Workflow Manager
for details of how to enable and configure these modules.

IMPORTANT The name of the JMSSenderModule must be som_sender_queue.

Conflict Module Configuration
HP Service Provisioner requires that a Conflict Module is present in order to detect conflicts and
enable cancelation of ongoing processes. To enable the Conflict Module open the Workflow
Manager’s configuration file and uncomment the module named conflict_module. The default
parameter values of the conflict module will suffice.

Audit Module Configuration
HP Service Provisioner requires that the Audit Module is configured unless the store_audit
parameter in the SRModule is explicitly set to “false”; see the description of the SRModule’s
store_audit parameter in Chapter 12 (page 95). To enable the Audit Module, uncomment the
module named auditor in the Workflow Manager’s configuration file,

36

 HP Service Provisioner
 4. Installation

$ACTIVATOR_ETC/config/mwfm.xml. Also, remember to set the value of the store_audit in
the Audit Module to “true”.

HP Service Provisioner stores audit records HP Service Activator’s database table named
AUDIT_RECORD. Since the use of the fields of audit records is entirely the responsibility of the
solution developer (i.e. outside the control of HP Service Activator), no database indexes have
been defined for the AUDIT_RECORD database table. This is a deliberate choice because excessive
use of database indexes has the potential of dramatically reducing the write performance for a
database table (because indexes will also need so be updated in case of DELETE, INSERT, and
UPDATE statements).

If a HP Service Provisioner solution needs to be able to query audit records using a specific
database column (or specific database columns), then please consider adding indexes to those
columns.

NOTE Please create database indexes with care. For instance, if a column can only contain a very small set of values (for instance true and
false) then the use of an index for such a column may not have the desired effect on performance; in fact, it may do more harm than
good.

Installing HP Service Provisioner License
HP Service Provisioner comes with an instant-on license which is valid 30 days after installing the
HP Service Activator product. To install, inspect for verification, or remove a license for HP
Service Provisioner, you can use the utilities checkLicense and updateLicense belonging to
HP Service Activator (found in $ACTIVATOR/bin).

IMPORTANT The checkLicense and updateLicense utilities must be invoked with the –som option.

Localization
Localizing HP Service Provisioner is similar to localizing HP Service Activator. Please read the
document HP Service Activator System Administrator’s Overview for instructions on how to
localize HP Service Activator.

Localizing HP Service Provisioner Engine Components
The resource property bundles (in English) are for the HP Service Provisioner engine components
can be found in the directory $ACTIVATOR_OPT/solutions/SOM/etc/nls. The localization
process begins with translating the resource bundle files (ending with _en.properties). You
must make a copy of each resource bundle file, where you replace _en in the file name with the
appropriate abbreviation for the locale, such as _jp or _dk.

Then you must translate the contents of each file to the language of the locale. The files must be
saved encoded in the ISO 8859-1 character set with appropriate escape sequences to represent
characters that do not have 8-bit codes; the Java utility native2ascii may be helpful to convert
from a UTF character set to ISO 8859-1.

Once the resource files have been translated, you must create a Java archive named somnls.jar
containing all resource bundle files and copy it to $JBOSS_EAR_LIB.

 37

HP Service Provisioner
4. Installation

Localizing HP Service Provisioner UI
The HP Service Provisioner UI is implemented with Java Server Faces. The resource property
bundles for these parts are found in the directory
$JBOSS_ACTIVATOR/WEB-INF/classes/jsf-resources. When you add support for a new
locale, you must also add that locale in the file
$ACTIVATOR_WAR/WEB-INF/classes/faces-config/locales.xml.

Deploy SOM Demo Solution

NOTE Deployment of the SOM Demo solution is optional; it is not a part of the HP Service Provisioner product.

In addition to the solution zip file containing the HP Service Provisioner framework software, a
demo solution called “SOM Demo” is also bundled with the installation kit.

The name of the “SOM Demo” solution zip file is SOM_Demo.zip and it is located in the directory
$ACTIVATOR_OPT/examples/som_demo). It can be deployed with the HP Service Activator
Deployment Manager using similar steps to the ones described in the Section “Deploying HP
Service Provisioner” on page 35.

The SOM Demo solution consists of sample workflows as well as a sample product catalog. The
sample workflows are:

• Five RFS action workflows; the workflows do not perform any actions, as such. Their role is
mainly to demonstrate the “contract” between the HP Service Provisioner workflows and the
action workflows.

• Two test workflows; one for sending dummy messages and one for listening to messages. In
order to use the listener workflow, you need to configure a ListenerModule (e.g. the
JMSListenerModule) and set the value of the parameter workflow to
SOMTestJMSListener. For more information about configuring the JMSListenerModule,
consult the HP Service Activator documentation.

• Three sample workflows that communicate with the Trueview Inventory system. There is one
workflow for creating an object in Trueview, one for retrieving an object, and one for deleting
an object.

If you wish to use the sample product catalog (which can be found in the directory
$ACTIVATOR_OPT/solutions/SOM_Demo/etc/data), you can import it into Subscription
Repository using the SOMData utility with the –import option. You need to have HP Service
Provisioner running before you can use the SOMData utility. Please read the Section “Import and
Export of Catalog Content” on page 54.

38

 HP Service Provisioner
 5. Client Integration

5 Client Integration
It is expected for CSP deployments of HP Service Provisioner, service order requests will always
be received by a CRM or Order Management client operation system. The client facing API of HP
Service Provisioner is the service activation interface as depicted in Figure 2. This interface with
its interactions and parameter information is described in the first section below.

For stand-alone testing of HP Service Provisioner a manual interface is also supported. It is shown
and briefly described in the last section of this chapter.

Northbound API
Two northbound APIs of HP Service Provisioner are implemented as web service interfaces:
SOAP and REST. All requests are quickly responded to when they have been checked for
syntactic correctness. This synchronous response does not convey the result of the processing of
the request, which may take some time depending on the complexity and whether manual effort is
involved.

Subsequent response information is returned as asynchronous messages (typically, via JMS). This
is because the time to wait for the additional message is variable, and by sending the messages
over a mechanism that has the capability to store and deliver asynchronously, HP Service
Provisioner and its client become less interdependent operationally: the requesting client is
relieved of being able to receive and process the response messages at all times.

First it is checked that references in the request to catalog and service inventory are correct, i.e. all
referenced items exist, and an update message is sent. If the request is not accepted due to an
invalid reference, that message terminates the interaction.

Then follows the processing of the requested operation which involves actions, such as state
transitions, scheduling, delta operations, etc. When everything has been processed successfully, or
when processing of the service request ends with a failure, the final response message is sent
asynchronously.

All requests to create a new product must refer to a PS in the service catalog whereas all requests
to operate on an existing product must refer to the service id of the product instance. Requests
received on the northbound interface have the following contents:

Request type The operation that is requested for a given service order (for
instance, “activate”); together with current state of the service
order/product instance it identifies the sequence of state transitions
to perform.

Request id Client’s identifier of the request, returned in all responses to allow
client to understand what is being responded to.

 39

HP Service Provisioner
5. Client Integration

Order id Optional, client’s identifier of the customer order from which the

request is derived; many requests may come from a single
customer, the order id of a service order/product instance is
displayed and is filterable in several places on the HP Service
Provisioner user interface to allow operators to locate activity from
a customer order.

Display label Optional, a label to display on the user interface for the product
instance.

Product name and version Identifies the product specification in the catalog; this is the
starting point for retrieving the complete tree of specifications.
Mandatory, if creating a new product instance.

Customer Name of customer, for display on the user interface.

Service id Not present when the request refers to a non-existing service order;
once the service order (and the product instance) has been created,
the service id is returned in a response and allows subsequent
requests to refer to it.

User Interaction Optional boolean parameter; indicates, when present, whether
manual intervention shall be allowed or not in the design of the
product instance, overruling the catalog attribute of the PS (see
next section).

Send asynchronous
response

Optional boolean parameter (default is “true”); indicates, when
present whether Service Provisioner shall send asynchronous
responses for this product instance (typically, via JMS).

Priority Optional, indicates the priority of this service request; higher
values means higher priority. Please note that prioritization only
becomes noticeable if many processes are contending for the same
processing resources.

Solution Name of the solution to which this product instance belongs.

Queue Name of the queue to place this request into.

Force Optional parameter; when set the processing engine enters “force”
mode which means that product instances can be forcefully deleted
or forced into any state. Action workflows will not be called when
operating in force mode. For more information, please read the
Section “Force Operations” on page 29.

Characteristics List of names and corresponding values of product characteristics;
these values are the parameters of the service order.

Error handling strategy Optional parameter, specifies how Service Provisioner shall behave
in case of errors (“ATOMIC”, “BEST_EFFORT”, or
“PARTIAL”).

Template name and version Optional, identifies a template from which to take values to assign
to the characteristics of a product instance.

CFS trees Optional, a list of CFS trees that are the immediate children of the
product instance. Mainly relevant when used in the context of delta
operations; see Chapter 9 on page 71 for details.

Modify actions Optional, a list of “modify-add” and/or “modify-delete” actions.
See the Section “Modify Operations” on page 25 for details.

Schedules Optional, a list of scheduled requests defined for this product
instance; see Chapter 11 on page 89.

40

 HP Service Provisioner
 5. Client Integration

When a request has been accepted for processing and the first asynchronous response has been
sent indicating the request is valid, the final response sent after all state transitions have been
completed will contain:

• Overall result code: 0 for complete and correct execution, 1 for error during a state transition,
but rollback successful, 2 for error during a state transition and unsuccessful rollback or for an
inconsistent error where rollback has not been attempted.

• Explanatory result text (a single string).

• An XML structure containing a list of activities for each state transition, invoked action
workflow, added/deleted CFS, etc.

Requests to HP Service Provisioner must be sent to the following URL:

• http://<SA host>:<SA port>/ServiceOrderManagement/ServiceOrderManagement

To extract the WSDL document for the synchronous part of the NBI access from a browser the
same URL with ?wsdl appended.

As mentioned in Chapter 4, you must configure for the HP Service Activator workflow manager a
sender module with the name som_sender_queue to send the asynchronous messages. This
module must be configured with the URL of the port where your client will be listening for the
messages.

Template files for the asynchronous response messages are found in the folder
$ACTIVATOR_OPT/solutions/SOM/etc/template_files.

Conflicts
Whenever HP Service Provisioner runs a process for a product instance, Service Provisioner
registers the product instance’s service id in HP Service Activator’s Conflict Module. If another
service request attempts to operate on the same service id the Conflict Module will detect that
there is a conflict which will be dealt with by Service Provisioner. In most cases a conflict will be
handled simply by rejecting the conflicting service request and sending an asynchronous response
with result code 1 (error) and an appropriate error message.

Cancelation
As described, HP Service Provisioner is capable of detecting service requests that are contending
for the same product instance. If the conflicting service request contains a “cancel” operation, the
operation will be injected into the running process (the one that holds the lock in the conflict
module). Next time the running process completes a state transition it will check for incoming
“cancel” requests, and if there are any “cancel” requests the running process will be canceled if
possible. It is only possible to cancel running processes in the states Checked, Designed, and
Reserved (for the default life-cycle profile); if any other state has been reached, the cancel
operation will be ignored.

Order Entry UI
In addition to sending service requests via the NBI, HP Service Provisioner comes with a graphical
user interface that can be used for entering orders manually. Please note that even for orders
entered using the UI, asynchronous responses will be sent unless if the “send asynchronous
response” field is explicitly set to “no”. To track progress of manually entered orders, use the
“Instance Management” user interface as described in Chapter 7.

The screen window for entering an order is included in the user interface of HP Service Activator
as a menu item that can be selected in the Work Area menu. This is shown in Figure 12. Select

 41

HP Service Provisioner
5. Client Integration

first then “Service Order Mgt” menu item, and then “Enter Order”; the order entry window will
then appear in the work area.

The data entry fields in the window are all described in the preceding section as contents of the
request message to create a service order.

Figure 12 Manual Entry of Service Request

42

 HP Service Provisioner
 6. Editing the Service Catalog

6 Editing the Service Catalog
This chapter is primarily of interest for the system integrator or technical product manager who
will define and maintain products and services in the service catalog.

An introduction to this topic was given in Chapter 1 (the sections “Catalog Driven” and “Service
Orders and Product Instances”). The contents of those sections are assumed to be present in the
reader’s mind. Additional detail is given here.

There are six kinds of items to define in the service catalog: Templates, Profiles, EWISs, RFSSs,
CFSSs, and PSs. Because of dependencies between them, they will normally be created in the
listed order, i.e. bottom up.

All items in the catalog have three common attributes: name, version, and description. The
combination of the name and the version identifies the item and is used to reference it. This
combination must be defined when the item is created and cannot subsequently be changed. The
description serves as documentation and may be edited at any time.

An important aspect of any product or product specification is the characteristics it defines for the
products or services to be derived from it. Conceptually a distinction is made between variant and
invariant characteristics, as discussed in Chapter 1. This distinction is not specified in the catalog,
but only by the way characteristics are used in service order processes. In the catalog a value must
be specified, even for characteristics that are intended to be variant. It will serve as default, in
cases where no values is provided for that characteristic.

Characteristics may be defined as part of a profile, or they may be defined directly on an EWIS,
RFSS, CFSS, or PS. Editing of characteristics is similar in all those cases and explained (only) in
the “Profiles” section.

Instead of assigning values to individual characteristics when creating a new service instance, it is
possible to create templates which contain groups of characteristic values which can be assigned to
instances by referring to the name and version of the template.

The screen window for editing the catalog is included in the user interface of HP Service Activator
as an item that can be selected in the Work Area menu. This is shown in Figure 10 and the
following figures. Select first “Service Order Mgt” and then “Catalog” to make the “Catalog
Management” window appear in the work area.

Administrative and Operational States
All types of catalog items support a so-called administrative state; the value of this state can be set
through the user interface. The administrative state can have either of the following four values:

• editable: When catalog items are in this state they may be edited through the user interface;
they are not available for use by services. Newly created catalog items will have this
administrative state (unless another administrative state has been explicitly assigned to the
catalog item).

• locked: Catalog items in this state can neither be edited nor are they available for use by
services.

 43

HP Service Provisioner
6. Editing the Service Catalog

• available: When catalog items are in this state they are available for use in services. Catalog

items in this state cannot be edited.

• retired: Catalog items in this state can neither be edited nor are they available for use by
services. Catalog items in this state behave identically to catalog items in “locked” state. The
intended use of the “retired” state is to indicate that a catalog item is never to be turned
“active” again.

HP Service Provisioner defines no restrictions for how to switch between the four administrative
states, it is entirely up to the user to ensure that the administrative values are set to appropriate
values. However, in typical use cases the life-cycle of the administrative state for a catalog item is
expected to be as shown in Figure 13. In the “Catalog Management” UI the administrative state of
a catalog item is marked by its color; the colors used to indicate the four different administrative
states are identical to the colors used in Figure 13.

Figure 13 Administrative States for Catalog Items

editable

available

locked

create

retiredretire delete

lock

lockrelease

edit

There are two ways to change the administrative state of a catalog items. Either the administrative
state can be changed from the “Create/Update” UI (this UI is only available if the current
administrative state of the catalog item is “editable”) or it can be changed by clicking on the small
arrow in the catalog tree to the right left of the catalog item’s name/version and then select the
“Administrative State” menu item.

In addition to the administrative state, HP Service Provisioner also supports an operational state
for PS, CFSS, RFSS, and EWIS catalog items. The operational state cannot be explicitly set;
instead it is derived from the administrative state of the catalog item itself and all of its constituent
components. The operational state can only have one of the two values shown below:

• available: This will be the operational state of a catalog item if the catalog item itself and all
of its constituent parts (child items, profiles, and templates) are in the administrative state
“available”. It is only possible to create product instances (and CFSs) from specifications that
are operationally available.

• not available: This will be the operational state of a catalog item if the catalog item itself or
any of its constituent parts (child items, profiles, and templates) are in an administrative state
different from “available”. It is not possible to create product instances (and CFSs) from
specifications that are operationally “not available”.

The operational states of catalog items are shown in the catalog tree to the left of the
names/versions of the catalog items. All catalog items that are operationally “available” are
marked with green tick marks.

Templates
A template is a group of characteristic values. Once defined it can be used to assign multiple
values to characteristics in a product (or CFS) just by referring to the name and version of the
template.

44

 HP Service Provisioner
 6. Editing the Service Catalog

To create a new template, go to the “Catalog Management” UI, click on the “Templates” tab, and
then click on the [+] button located to the right of the tabs; Figure 14 shows a screenshot of the
“Create Template” UI.

Figure 14 Catalog Management, Templates

Like all other catalog items, templates must have a name and version through which they can be
uniquely identified. Adding characteristic values to a template is simple. Enter a name and value
and click in the [+] button. To delete a characteristic, click on the pencil icon in the table row to
make the characteristic editable and then click on the blue [×] button (the one next to the [+]
button). Once all characteristic values have been added and/or delete click on the [OK] button.

Profiles
A profile is simply a group of characteristics with defined invariant values. It can be defined once
and used in several specifications as a convenient shorthand to include all those characteristics.
Every product or product specification can include multiple profiles. Even when a characteristic is
defined with a value in a profile, it can still be redefined with the same name, with or without an
invariant value, in an instance or specification, to overrule the value from the profile.

Figure 15 shows the Catalog Management window with focus on profiles. Select the Profile tab,
and a list of defined profiles will appear on the left (under the tabs).

To create a new profile definition, click the [+] button shown right to the bar with the tabs, and a
Create window will pop up (the Create window and the Update window are very similar). As for
all other catalog items the Name and Version fields are editable and mandatory to fill. The list of
characteristics will initially be empty. A profile must contain at least one characteristic.

 45

HP Service Provisioner
6. Editing the Service Catalog

Figure 15 Catalog Management, Profile

To delete a profile, click on the arrow icon to the right of the item in the catalog tree and select
Delete in the pop-up menu which appears.

Once a profile has been defined in the catalog, it can be referenced in EWISs, RFSSs, CFSSs or
PSs.

To inspect a profile, select it in the list. Its attributes will be shown and its characteristics listed on
the right.

To edit a profile, click on the arrow icon to the right of the item and select Update in the pop-up
menu which appears. An Update window pops up as shown in Figure 15. At the top of the window
are fields showing the name, version, and description attributes of the profile; in addition, the
administrative state is shown. Only the description and the administrative state can be changed in
the Update window. Next, the window contains a list of the currently defined characteristics,
showing for each one, its name, type, annotation, scope, description, value, and restriction and an
edit button (a pencil icon).

At the bottom of the window, under the list, is an edit area where one characteristic can be edited
at a time. Click the edit button (the pencil) in the row for an existing characteristic to edit it, or just
fill the fields to define a new characteristic. To commit a new characteristic or changes to an
existing one, click the [+] button. To delete an existing characteristic, click the [×] button.

If the name of an existing characteristic is changed during editing, committing it will add a new
characteristic with the new name.

Name, type and value are mandatory to define a characteristic, the other fields are optional. The
description of a characteristic serves documentation purposes only; it has no semantics.

A value must always be specified when a characteristic is defined. Even if the intention is that the
characteristic shall be variant, with a value to be specified from a request parameter, from manual
editing, or obtained from a state transition workflow, possibly through a mapping, the specified
value will serve as a default value. For characteristics of type string, empty values are allowed.

The following types are supported: string, boolean, integer, date (format: dd/MM/yyyy), and float
(decimal number).

Restrictions, annotations, and scope are optional and selected from drop-down lists. Detailed
descriptions of restrictions, annotations, and scope are given in the following subsections.

To commit the complete profile definition to the catalog, click the [OK] button.

46

 HP Service Provisioner
 6. Editing the Service Catalog

Restrictions
A specified restriction will be applied to characteristics values when they are received, as service
order parameters on the northbound interface or from manual entry. Available restrictions (types)
are:

• String: Supported restriction types are “string length”, “regular expression”, and “string
enumeration”

• Integer: Supported restriction types are “integer maximum”, “integer minimum”, and “integer
range”

• Float: Supported restriction types are “float maximum”, “float minimum”, and “float range”

• Date: Supported restriction type is “date pattern”

As described above, it is possible to define restrictions for characteristics. Restrictions are divided
into two parts; a restriction type and a restriction value. When a restriction type other than
“NONE” has been selected, the value(s) specifying the details, such as regular expression or value
interval must be entered in the field to the right. The syntax for the restriction values depends in
the restriction type. Valid restriction values are (listed by restriction type):

• String length: An integer value

• Regular expression: A valid regular expression

• String enumeration: A comma-separated list of string values; e.g. “PLATINUM, GOLD,
SILVER, BRONZE”

• Date pattern: A valid date pattern; e.g. “yyyy-MM-dd”

• Float maximum / Float minimum: A float value

• Float range: Two float values separated by a slash; e.g. “1.75/10.25”

• Integer maximum / Integer minimum: An integer value

• Integer range: Two integer values separated by a slash; e.g. “10/200”

Characteristic Annotations
In some cases it will be convenient for solution developers to be able to control if and when it shall
be possible to set or modify values of characteristics. For instance, there may be characteristic
values that must be identical for all product instances belonging to a specification (invariant),
characteristics that can only be set when the instance is created, and characteristics that can be
modified at any time.

 47

HP Service Provisioner
6. Editing the Service Catalog

HP Service Provisioner has so-called characteristic annotations to support these cases. The three
possible characteristic annotation values are:

• Constant: The value of the characteristic can only be set in the catalog; i.e. in the
specification, not in the instance. This means that once the instance is created the characteristic
cannot change its value as a result of a service request. In case of “manual design” the
characteristic may be modified (although this will normally be discouraged).

• Set-once (default): The value of the characteristic can be set when creating the product
instance. However, once the product instance has been created the characteristic will be treated
as if it was “Constant”.

• Modifiable: The value of the characteristic can be modified at any time.

Scope
When designing a service the number of characteristics can sometimes become unmanageable
because there may be a lot of characteristics that are only used inside the service’s action
workflows; hence, they have no significance for other services using this service.

The visibility of characteristics (on the UI) can be controlled be setting the “scope”; the following
scopes are possible:

• internal: This scope is used to mark characteristics that are only intended to be of interest to
the service’s own action workflow and/or for input/output mappings from/to this service
to/from child services, if any.

• visible: This scope is used to mark characteristics that are only intended to be modified by the
service’s own action workflow and/or as a result of output mappings to this service from child
services, if any. As opposed to internal characteristics, characteristics with this scope will be
visible on the UI.

• external: This scope is used to mark characteristics that are of “external” interest; i.e. they may
be modified by the service’s own action workflow and/or as a result of output mappings to this
service from child services, if any. But they may also be of interest to parent services; for
instance, because the parent service will pass values to these characteristics through parameters
mappings.

EWI Specifications
Figure 16 shows the Catalog Management window with focus on EWISs. Select the EWIS tab, and
a list of defined EWISs will appear on the left. To inspect an EWIS, select it in the list. Its
attributes will be shown and its characteristics listed on the right. The attributes of an EWIS
include the names of its associated state transition action workflow and an optional list of profiles;
note that the EWIS shown in Figure 16 does not have any profile associated. There are no
mappings of characteristics, as an EWI cannot be a parent branch in the tree structure of a product
instance; it can only appear as a leaf.

In the same way as with profiles, you can edit or delete existing EWISs and create new ones as
described in the section “Profiles” above. The editing steps are very similar, the only difference is
that an RFSS has the three attributes Profile, Workflow and User Interaction that are not found on
profiles.

The boolean attribute User Interaction, if set, will force the state transition process to reach the
state Designed to finish with a manual action, for any product that includes the specified EWI. It
has a similar effect when it appears on an RFSS, a CFSS, or on a PS.

48

 HP Service Provisioner
 6. Editing the Service Catalog

Figure 16 Catalog Management, EWI Specification

RFS Specifications
Figure 17 shows the Catalog Management window with focus on RFSSs. Select the RFSS tab, and
a list of defined RFSSs will appear on the left. To inspect an RFSS, select it in the list. Its
attributes will be shown and its characteristics listed on the right. The attributes of an RFSS
include the names of its associated state transition workflow and an optional list of profiles. And
RFSS may have other RFSSs or EWIs as children; mappings to these can be defined by selecting
the tab labeled “Characteristics Mappings”.

 49

HP Service Provisioner
6. Editing the Service Catalog

Figure 17 Catalog Management, RFS Specification

Existing RFSSs can be edited or deleted and new ones can be created as described in the sections
“Profiles” and “EWI Specifications” earlier in this chapter. The editing steps are very similar, the
only difference compared to EWISs is that RFSSs may have child items which is the case in the
example shown in Figure 18.

The boolean attribute User Interaction, if set, will force the state transition process to reach the
designed state to finish with a manual action, for any product that includes the specified RFS.

Figure 18 Catalog Management, RFS Specification with Child Items

50

 HP Service Provisioner
 6. Editing the Service Catalog

CFS Specifications
CFSSs are quite similar to RFSSs. They can also have contained (child) service specifications,
which can be either CFSSs, RFSSs, or EWISs, and for each child specification input and output
mappings of characteristics can exist. Like for RFSSs may they also have associated action
workflows.

Figure 19 shows the Catalog Management window with focus on CFSSs. Select the CFSS tab, and
a list of defined CFSSs will appear on the left. To inspect a CFSS, select it in the list. Its attributes
will be shown and its profile, additional characteristics and mappings listed on the right.

In the same way as with profiles and EWISs, you can edit or delete existing CFSSs and create new
ones as described in the sections “Profiles” and “EWI Specifications” above. In addition, you can
edit the list of child service specifications and the associated mappings; please refer to the section
“Product Specification” below, where those steps are described for the very similar case.

Figure 19 Catalog Management, CFS Specification

Product Specification
PSs are very similar to CFSSs. Like CFSSs, they can have contained (child) service specifications
and mappings of characteristics. The children must be CFSSs or EWISs.

Figure 20 shows the Service Catalog Management window with focus on PSs. Select the PS tab,
and a list of defined PSs will appear on the left. To inspect a PS, select it in the list. Its attributes
will be shown and its profiles, additional characteristics and mappings listed on the right.

In the same way as with the previously describes catalog items, you can edit or delete existing PSs
and create new ones as described in the sections “Profiles” and “EWI Specifications” above. The
editing steps for the attributes and characteristics are very similar.

 51

HP Service Provisioner
6. Editing the Service Catalog

Figure 20 Catalog Management, View Product Specification

With PSs (and with CFSSs and RFSSs) you can also edit the list of child service specifications.
For a PS all children must be CFSSs or EWIs, for a CFSS there can also be RFSSs. Figure 21
shows the Update Product Specification popup window which appears when you select Update in
the menu that pops up when you click the arrow icon. The process is similar when you create a
new PS. To build the list of child service specifications, work in the area under the “Children” tab.
An “Available” column will be shown for all the specifications that are already defined in the
catalog and are available for inclusion in the list. The “Included” column shows the service
specifications have been included in the child list. Click on an available/included service
specification and use the simple arrow buttons between the columns to include or exclude it. You
can include all available specifications by clicking on the →| button or empty the list of included
by clicking on the |← button.

It is important to notice that the order of the children is significant. It determines the order in
which they are processed during state transitions. Select a child and use the up/down buttons on
the right to move it up or down in the sequence.

When you have selected and ordered the child specifications, work in the “Characteristic
Mappings” tab to create the characteristic mappings. The PS (or CFSS, RFSS) you are working on
is the parent. Select one child service at a time from the “Child” drop-down list. You work on
input and output mappings, under the respective headings at left and right. Remember, a mapping
is a pairing of a parent characteristic and a child characteristic. To add a mapping, select the parent
and the child characteristics in the two drop-down fields, and then click the [+] button. To remove
a mapping, click the [×] button in the right side of the row. To change a mapping, select it in the
list, click the edit button, and the mapping will be shown in the two drop down fields. Change one
or the other, as appropriate, and click the [+] button.

When you are satisfied with the complete PS (or CFSS) definition, click the [OK] button to
commit it.

52

 HP Service Provisioner
 6. Editing the Service Catalog

Figure 21 Catalog Management, Update Product Specification

Resource
The Catalog Management UI for creating/updating product specifications has a radio button called
“Resource”. By changing this radio button to “Yes”, product instances based on this specification
will be usable as consumable resources (with capacities) from other instances. It is the
responsibility of a product instance’s own action workflows to set and modify its capacity. For
more details, please read Chapter 10.

Migration
In the UI to create/update product specifications there is a tab named “Migration”. In this tab it is
possible to add names/versions of other product that may be migrated into this product. Chapter 9
describes this topic in more detail.

Solution and Queue
The fields named “Solution” and “Queue” in the create/update product specification UI can be to
control which queue to be used when spawning workflow jobs to handle service requests that refer
to products of this type. The document HP Service Activator System Integrator’s Overview
provides a detailed description of this topic.

 53

HP Service Provisioner
6. Editing the Service Catalog

Import and Export of Catalog Content

NOTE HP Service Provisioner must be running in order to use the SOMData utility.

HP Service Provisioner includes a utility, called SOMData, to export catalog content (on a
development/test system) to a flat XML-formatted files and import it again from that file on the
target system, typically as part of solution installation and deployment on a target system. The
utilities are found in $ACTIVATOR_OPT/bin.

The utilities interwork with a running HP Service Activator Workflow Manager, which may run
on a different machine from the SOMData utility, and need credentials to establish a session with
the Workflow Manager. SOMData must be called with a number of options, from the following:
-export to export the catalog contents
-import to import the catalog contents
-filePath full path name of the file
-user mandatory, user name for session with workflow manager
-password mandatory, password for session with workflow manager
-host HP Service Activator host (omit if local)
-port HP Service Activator port number (omit if the default port is used)
-verbose generates verbose output
-help outputs usage information

Exactly one of the export and import parameters must be specified.

There is also a utility, SOMDataCleaner, which can be used to delete catalog and service
inventory contents. It has the same options as SOMData, except instead of choosing between
export and import, you must choose one of:
-instances delete product instances, but leave catalog contents
-all delete products instances and also profiles, product/service specifications, and

templates from the catalog

54

 HP Service Provisioner
 7. Monitoring and Interacting With Running Orders

7 Monitoring and Interacting With
Running Orders
This chapter is primarily of interest for the runtime operator who will monitor running orders and
possibly interact with them.

You can search for service orders which are being processed according to active requests, or for
product instances in the service inventory. The same search criteria are used for both, and both are
shown in the same way, as tree structured service orders/product instances. When viewing active
search orders you can inspect their progress as reflected in the state of each service in the tree.

When processing of a service order calls for manual action, an operator must locate the order,
launch the window for the manual action and then complete it. This must be done when the service
order enters the Designed state (if the instance requires manual user interaction), to make entry to
the state complete.

Finally, depending on how a specific solution is implemented, state transition action workflows
may require user interaction.

These three topics are covered by the sections in this chapter. For all of them you will work
through the HP Service Activator user interface. Normally you start by selecting “Service Order
Management” in the “Work Area” menu. This chapter also describes other ways to audit/monitor
running orders through the use of “activity lists”, audit records, and annocations.

There is also, primarily for testing purposes, a user interface for entering service order requests. It
is described in Chapter 5.

Inspecting Service Orders and Product Instances
Figure 22 shows the “Instance Management” window which appears when the “Instances” menu
item has been selected in the submenu under “Service Order Mgt”. Initially the window shows the
search filter and the first page of instances; if there are no processing instances the UI will
automatically display the “Static” tab.

You can search by filtering on values attributes of product instances:

• Product name and version, order id, request id, customer name, display label – these are all
parameters of the request that created the service order / product instance

• Service id – initially this attribute is not known; it will be returned to the client once it has been
assigned by the request which creates a service order / product instance

• Time interval – either when the service order / product instance was created, or when the most
recent request to change its state occurred.

• State – a drop-down with the possible states that product instance can be in

 55

HP Service Provisioner
7. Monitoring and Interacting With Running Orders

• Failed – if the product instance has been flagged as “failed” or not; i.e. if an action workflow

has failed

• Scheduled – if the product instance has one or more scheduled requests attached to itself or not

Figure 22 Instance Management, Search Filter

Once the results of a search are retrieved, you can choose by the tabs to view them from a
processing perspective or from a static perspective. The static perspective can be used even when
there is no order processing activity, typically for active services; you will see the data retrieved
from the service inventory about the products that passed your filter. The static view cannot be
expected to be up-to-date for service orders/product instances which are subject to ongoing order
processing, as the service inventory is only updated at the end of request processing.

The processing perspective is normally used to locate a particular service order. A narrow search
filter should be used, for example the service id or request id, to retrieve a single service order.
This view is limited to a single page. The static view is intended to show a number of product
instances and can be multiple pages long; see Figure 22 for an example.

The view will be very similar regardless of the selected perspective. It shows – see Figure 22 for
an example – all the product instances that match the search filter (in this example the filter is
empty), with their breakdown into CFSs, RFSs, and EWIs on subsequent indented lines. The view
summarizes the main attributes and the state of each product or service on a single line. The
breakdown can be collapsed or expanded. Figure 23 shows an example of a search by service id;
the resulting product instance tree has been expanded revealing its constituent CFSs and RFSs (no
EWIs in this example).

56

 HP Service Provisioner
 7. Monitoring and Interacting With Running Orders

Figure 23 Instance Management, Search for Service Id, Expanded Product Instance Tree

By clicking the magnifier icon you can launch a popup window, as shown in Figure 24, where
details of individual services are shown. This window is similar to the one that appears in the
catalog editor, as described in Chapter 6.

Figure 24 Instance Management, View Product Instance

Performing Manual Design
When the user interaction flag is active on a service order, all state transitions into the Designed
state require a manual action that can change the design, i.e. the tree structure composition and
even the characteristics and corresponding mappings of each product/service in the tree. For this
purpose you will use the “Design” UI.

The “Design” UI can be launched by clicking the magnifier icon shown to the right of the product
instances shown in the “Instance Management” UI. Alternatively, the “Design” UI can be
launched from the “SOM” queue; this queue is found by clicking the “Queues” menu item and

 57

HP Service Provisioner
7. Monitoring and Interacting With Running Orders

then on the “SOM” tab. If there are no processes waiting for manual user interaction, there may
not be any “SOM” tab. To bring up the “Design” UI, right-click on the job in the “SOM” queue
and select the “Interact with job” menu item. An example of the manual “Design” window is
shown in Figure 25.

In this window you can edit the entire tree structure of the product instance, in the same way as
you can edit its specification in the catalog (see Chapter 6). You can add or remove CFSs, RFSs,
and EWIs from the tree. CFSs, RFSs, or EWIs that you add must be picked from the catalog. You
can even add characteristics, with values and mappings, to services as needed. The main idea is to
allow services to be added to a product dynamically.

NOTE If the user does not have administrative privileges (or if the product instance is not in state Designed) the UI will be opened in read only
mode.

Figure 25 Service Order Details, Manual Design

When the manual design is complete, press the [Proceed] button to allow the overall automated
service order process to continue. If more work is needed before letting the process continue, press
the [Save] or [Close] button and return to the order at a later time.

Pressing the [Reject] button will cause the transition to fail and the order will be canceled.

Interacting with State Transition Action Workflow Jobs
State Transition action workflow jobs are written for specific solutions. They are not part of the
HP Service Provisioner framework product, so their behavior cannot be described here. But they
may include user interactions, to be launched via the HP Service Activator Jobs as described
immediately above. This could be to ask the user to make a choice, complete manual work, or
enter necessary data. An example of how this could be used for integration with Trueview
Inventory with the user acting as intermediary was given in Chapter 2 in the Section “Manual
Design and Assign”.

If a processing order requires user interaction due to an AskFor workflow node in one of the
action workflows, the “Instance Management” UI will display a small icon (resembling a human
operator) in the “Name” column; an example of this is shown in Figure 26. In this way, the
operator can easily see whether a process is stuck because it is waiting for a user to interact.

More information and specific instructions must be provided per solution.

58

 HP Service Provisioner
 7. Monitoring and Interacting With Running Orders

Figure 26 Instance Management, Waiting for User Interaction

Activities
Whenever an activity takes place for a product instance, HP Service Provisioner adds an “activity”
data record to an “activity list”. The activity list will be sent as part of the asynchronous responses
that can be emitted from Service Provisioner. Only the 200 newest activities will be stored; older
activities are silently deleted.

The following events result in activities being added to the activity list:
Conditional removal
of child instance

This activity indicates that Service Provisioner has stripped a child
instance from the product instance tree as a result of the specified
inclusion/exclusion conditions; please see the Section “Conditional
Child Removal” on page 31 for details.

Force operation Indicates that the state of a product instance has been forcefully set
or that a product instance has been forcefully deleted. Force
operations are described in the Section “Force Operations” on
page 29.

Modify add or
modify delete

Such an activity is written when a child instance is added to or delete
from an existing product instance as a result of a “modify-add” or
“modify-delete” operation (or as a result of a delta operation).

Schedule This activity is written when a fulfillment process results in a service
request being stored in the scheduler for this product instance.

State transition Indicates that the fulfillment process has completed a transition
between two states.

Workflow action This activity is stored for every action workflow that is executed.
The result code as well as the result text are stored as part of this
activity.

An example of an activity list for a product instance that was first activated and then modified is
shown below:
<Activities>
 <Activity id="0" type="STATE_TRANSITION" timestamp="2015-01-21 10:26:48.231"
 operation="activate" stateTransitionName="check" startState="Initial"
 endState="Checked" >
 </Activity>
 <Activity id="1" type="STATE_TRANSITION" timestamp="2015-01-21 10:26:48.468"
 operation="activate" stateTransitionName="design" startState="Checked"
 endState="Designed" >
 </Activity>
 <Activity id="2" type="STATE_TRANSITION" timestamp="2015-01-21 10:26:48.745"
 operation="activate" stateTransitionName="reserve"
 startState="Designed" endState="Reserved" >

 59

HP Service Provisioner
7. Monitoring and Interacting With Running Orders

 </Activity>
 <Activity id="3" type="STATE_TRANSITION" timestamp="2015-01-21 10:26:49.071"
 operation="activate" stateTransitionName="provision"
 startState="Reserved" endState="Provisioned" >
 </Activity>
 <Activity id="4" type="STATE_TRANSITION" timestamp="2015-01-21 10:26:49.671"
 operation="activate" stateTransitionName="activate"
 startState="Provisioned" endState="Active" >
 <Workflow itemType="CFS" itemName="C_DSL" itemVersion="3" path="0"
 postWF="false" rollback="false" wfName="Delay" result="0"
 resultText="OK" timestamp="2015-01-21 10:27:13.057" />
 </Activity>
 <Activity id="5" type="STATE_TRANSITION" timestamp="2015-01-21 10:27:49.091"
 operation="modify" stateTransitionName="deactivate"
 startState="Active" endState="Provisioned" >
 </Activity>
 <Activity id="6" type="STATE_TRANSITION" timestamp="2015-01-21 10:27:49.435"
 operation="modify" stateTransitionName="deprovision"
 startState="Provisioned" endState="Reserved" >
 </Activity>
 <Activity id="7" type="STATE_TRANSITION" timestamp="2015-01-21 10:27:49.844"
 operation="modify" stateTransitionName="release" startState="Reserved"
 endState="Designed" >
 </Activity>
 <Activity id="8" type="STATE_TRANSITION" timestamp="2015-01-21 10:27:50.211"
 operation="modify" stateTransitionName="terminate"
 startState="Designed" endState="Terminated" >
 </Activity>
 <Activity id="9" type="STATE_TRANSITION" timestamp="2015-01-21 10:27:50.522"
 operation="modify" stateTransitionName="retire"
 startState="Terminated" endState="Retired" >
 </Activity>
 <Activity id="10" type="MODIFY_DELETE" timestamp="2015-01-21 10:27:50.703" >
 <DeleteItem itemType="CFS" itemName="C_CPE" itemVersion="2"
 itemLabel="Modem/Router" path="1" />
 </Activity>
 <Activity id="11" type="STATE_TRANSITION" timestamp="2015-01-21 10:27:50.709"
 operation="modify" stateTransitionName="modify" startState="Active"
 endState="Active" >
 <Workflow itemType="CFS" itemName="C_DSL" itemVersion="3" path="0"
 postWF="false" rollback="false" wfName="Delay" result="0"
 resultText="OK" timestamp="2015-01-21 10:28:06.691" />
 </Activity>
</Activities>

In this example, the two state transitions activate and terminate result in a single action workflows
being executed. In addition, the activity list shows that the modify operation has resulted in a single
CFS being retired and then deleted.

Audit
HP Service Provisioner is capable of storing audit records that can be used to examine historical
orders; this functionality piggybacks on HP Service Activator’s Audit workflow node and “Audit
Message” UI. Figure 27 shows the “Audit Messages” UI where the messages have been filtered by
a service id (362).

60

 HP Service Provisioner
 7. Monitoring and Interacting With Running Orders

Figure 27 Audit Message UI

The following audit events are supported:
SOM_FORCE Written when a “force” operation takes place; i.e. the state of a product

instance has been forcefully set to a new value.
SOM_START Written when a new fulfillment process is about to commence for a product

instance. The service request has been successfully validated when this audit
record is written.

SOM_FINISHED Written when a fulfillment process is finished.
SOM_SCHEDULE Written when a service request has been scheduled to take place in the future

for a product instance. When the schedule is triggered, another SOM_START
event will be written (because a service request emitted by the scheduler is
treat like any other service request).

SOM_ERROR Written in case an error occurs for an ongoing fulfillment process.
SOM_RETIRE Written when product instance is retired and the product instance deleted.

Figure 28 shows the “Detailed Information” UI for audit message; in this example, an audit record
with event type SOM_STATE is inspected for service id 362.

 61

HP Service Provisioner
7. Monitoring and Interacting With Running Orders

Figure 28 Audit Message Detailed Information UI

The meaning of each of the fields in an audit record is listed below:
Host name Contains the name of the host on which the fulfillment process was running

when this audit record was written.
Service Id Contains the service id of the product instance for which a fulfillment process

has been running.
Order Id The order id of the service request.
Type The operation that is requested (also known as the “request type”).
State The current fulfillment state of the product instance.
Event type The type of this audit event (see the description of the supported event types

earlier in this section).
Date The date/time when this record was written.
Job Id The job id of the workflow job that was executing the fulfillment operation

for this product instance.
User name The customer name, defined in the service request.
Workflow name The name of the workflow from which the audit record was written. In

Service Provisioner all audit records are written from the SOMController
workflow.

Step name This field contains the request id of the service request.
Message Contains the name and version of the product instance using a slash as the

separator.
Life-cycle
profile

The name of the fulfillment life-cycle profile name used for this product
instance.

Product
instance

An XML representation of the product instance, including all its child
instances (RFSs, CFSs, and EWIs).

Display label The value of the display label which is assigned to the product instance from
the service request.

62

 HP Service Provisioner
 7. Monitoring and Interacting With Running Orders

Activities An XML representation of the activities that have taken place for this product

instance. The syntax of this XML structure is the same as the “activity list”
XML structure that is part of the asynchronous messages emitted from
Service Provisioner.

Service
request

An XML representation of the latest service request received via the
northbound interface (or from the scheduler). This field is only written if the
audit type in SOM_START.

IMPORTANT Audit records are intended to be used to do “post mortem” auditing of fulfillment process; i.e. to see what has happened in the past and
when it happened. It is not designed to be used to track the progress of on-going processes.

Annotations
In HP Service Provisioner it is possible for an operator to add annotations (small text messages) to
a running fulfillment process that can be read/edited by other operators. Annotations are purely for
informative purposes; they have no semantics. There are two ways to add/read/update annotations
in Service Provisioner:

• From the Instance Management UI (see Figure 26): In the row on the running process (in the
“Processing” tab) click the button with the pencil icon. This will bring up a small window in
which it is possible to read and modify the current annotations, see Figure 29. To save
modifications done to the annotations, click the [OK] button.

• From the HP Service Activator’s Jobs or Queues UI: In the row representing the running
fulfillment process, right-click to bring up a context menu. Then click on the menu item named
Annotate. This will bring up the window in which the annotations are displayed and can be
modified. Figure 30 shows how to access the annotations UI from HP Service Activator’s
“Jobs” UI.

Figure 29 UI for Reading and Writing Annotations

 63

HP Service Provisioner
7. Monitoring and Interacting With Running Orders

Figure 30 Accessing the Annotations UI from Jobs View

64

 HP Service Provisioner
 8. Processes for Resource Facing Services

8 Processes for Resource Facing
Services
This chapter is primarily of interest for the system integrator who will implement the technical
processes.

For each catalog item an action workflow (or two action workflows, pre- and post-workflows, if
the catalog item has children) is required to carry out the solution specific work. In order to keep a
clear separation between what is customer facing and what is resource facing, only action
workflows associated with RFSs should interact with external systems (resource inventory,
network equipment, etc.). Any action workflow could, in principle, interact with external system,
but such a design choice is discouraged.

Different algorithms must be implemented for all the state transitions which require some action. If
the same workflow is configured for all state transitions the workflow must begin with branching
logic based on the state transition name. Otherwise, if different action workflows are configured
for different state transitions, it is possible to keep a more clear separation of the roles of the
different action workflows. Which of the two options make most sense will depend on the
solution.

All the inputs to the action workflow are specified below as part of the workflow contract. In
addition to the start state and end state (and state transition name) the main inputs are the
characteristics for the instance (PI, CFS, RFS, or EWI), with the values they have after input
mapping has been performed.

In addition to the inputs the action workflow may look up information in service or resource
inventory, it may interact with operators to ask for more information, and it general it will be able
to interact with external systems. For the latter kind of interaction the means that are generally
available to HP Service Activator workflows can be used. Consult HP Service Activator, System
Integrator’s Overview for more information.

Information can be passed on to subsequent parts of the process from a state transition algorithm in
an action workflow by updating values of the case-packet variables holding the characteristics.

For a description of the typical work in state transition algorithms, please read the Sections
“States” and “State Transitions” in Chapter 2.

Action Workflow Contract
All action workflows must have contracts defined; otherwise they cannot be used by the HP
Service Provisioner workflows. The action workflow contract’s input parameters are described in
Table 3.

 65

HP Service Provisioner
8. Processes for Resource Facing Services

Table 3 Action Workflow Contract, Input Parameters

Input Parameter Type Description
parentJobId Integer Used to hold the job id for the workflow that spawned this

action workflow. Since the action workflow is, technically
speaking, running as a “macro job” it is currently not used.

syncToParent Boolean Used to indicate to the action workflow whether it needs to
synchronize back to the caller workflow upon completion.
In the current version of HP Service Provisioner, this
parameter is always set to “false”.

rollback Boolean Indicates whether or not this action workflow is called as
part of a rollback operation. If set to “true” this is a
rollback operation; otherwise, it is a “roll forward”
operation.

name String Contains the name of the instance that is currently being
processed.

version String Contains the version of the instance that is currently being
processed.

parameters Object Contains a map of all characteristics that are visible to this
instance. The characteristics can be accessed using the
standard HP Service Activator syntax for retrieving values
from maps.

Example: parameters{"bandwidth"}

startState String Contains the name of the start state for the state transition
that is currently taking place.

endState String Contains the name of the end state for the state transition
that is currently taking place.

requestType String Contains the name of the request type (a.k.a. operation)
that triggered the current fulfillment process (e.g. activate,
design, reserve, etc.).

requestId String Request identifier sent as part of service request.

rollbackStrategy String The selected error-handling strategy: ATOMIC,
BEST_EFFORT, or PARTIAL

customer String Contains the name of the customer.

post Boolean If set to “true” this workflow was called as a “post-
workflow”; otherwise it was called as a “pre-workflow”.

stateTransition String Name of the current state transition; in the action workflow
the use of this parameter may replace the use of the
startState and endState parameters which can lead to
a simpler workflow logic because only a single string
needs to be tested instead of two (the start state and the end
state).

66

 HP Service Provisioner
 8. Processes for Resource Facing Services

The output parameters of the action workflow contract are described in Table 4.

Table 4 Action Workflow Contract, Output Parameters

Output Parameter Type Description
Result Integer Used to pass a result code back to the caller workflow.

Possible result codes:
 0 = ok
 1 = error, consistent
 2 = error, inconsistent

resultText String Used to pass a result text back to the caller workflow.

SOM_INSTANCE Object For internal use.

This parameter must be passed back.

In addition, a number of system case-packet variables are implicitly passed to the action workflow;
of interest to HP Service Provisioner are the following system case-packet variables:

• SERVICE_ID – this case-packet variable contains the identifier (the service id) of the product
instance that is currently being processed.

• SOM_INSTANCE – this case-packet variable holds a reference to the product instance (i.e. the
root element of the “product instance tree”). This variable must never be modified by action
workflows.

• SOM_PATH – this case-packet variable contains a pointer to the instance within the “product
instance tree” that is currently being processed. This variable must never be modified by action
workflows.

For examples of action workflows with workflow contracts, see the five sample RFS action
workflows (their names starting with R_) that are part of the “SOM Demo” solution; see also the
Section “Deploy SOM Demo Solution” on page 38.

Reading Characteristic Values from Action Workflows
There are two ways to read values from characteristics into case-packet variables in an action
workflow:

• Directly from the parameters HashMap: This is done by using the standard HP Service
Activator syntax for reading values from maps using curly braces. The advantage of using this
syntax is that characteristic values can be accessed from any workflow node.
Example: parameters{"package"}

• Using the SOMGetCharacteristics workflow node: When using this workflow node it is
possible to access multiple characteristic values as well as multiple characteristic shadow
values (i.e. previous values) in a single operation. This workflow node is described in more
detail in Chapter 12.

 67

HP Service Provisioner
8. Processes for Resource Facing Services

An example of the use of the SOMGetCharacteristics workflow node is shown below:
 <Process-Node>
 <Name>SOMGetCharacteristics</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.
 SOMGetCharacteristics
 </Class-Name>
 <Param name="param2" value="ringback_id"/>
 <Param name="param3" value="phone_num"/>
 <Param name="shadow2" value="true"/>
 <Param name="shadow3" value="true"/>
 <Param name="variable0" value="ringback_id"/>
 <Param name="variable1" value="phone_num"/>
 <Param name="variable2" value="shadow_ringback_id"/>
 <Param name="variable3" value="shadow_phone_num"/>
 </Action>
 </Process-Node>

In this example the current values of the characteristics ringback_id and phone_num are
assigned to two case-packet variables by the same names. In addition, the previous values of the
same two characteristics are assigned to the two case-packet variables shadow_ringback_id and
shadow_phone_num, respectively.

NOTE The use of shadow characteristics only makes sense when used in the context of modify operations.

Testing for Modified Characteristics
HP Service Provisioner also includes a workflow rule node that can be used to test whether some
or all characteristics of the currently processing instance have been modified; the name of the
workflow node is SOMCharacteristicsModified. An example of its use is given below:
 <Rule-Node>
 <Name>CharModified?</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.
 SOMCharacteristicsModified
 </Class-Name>
 <Param name="modified_characteristics" value="modifiedList"/>
 <Param name="param0" value="phone_num"/>
 <Param name="param1" value="ringback_id"/>
 </Action>
 </Rule-Node>

In this example, the workflow node will test whether any of the two characteristics phone_num
and ringback_id have been modified for the currently processing instance; if no param
parameters are given the workflow node will test all the instance’s characteristics for any changes.
If any of the two characteristics have been modified, the workflow execution will continue along
the “true” branch; otherwise the workflow execution will continue along the “false” branch. If
there are any characteristics that have been modified, the workflow node parameter
modified_characteristics can be used to return a list of those characteristic names that have
been modified.

This workflow node is described in more detail in Chapter 12.

68

 HP Service Provisioner
 8. Processes for Resource Facing Services

Writing Characteristic Values from Action Workflows
When an action workflow has finished its tasks it will typically need to store some values into the
RFS characteristics. For this purpose, the SOMAssignResult workflow node is available. This
workflow takes any number of case-packet variables as input and stores them in the characteristics
of the currently processing instance. By default they are stored in characteristics of the same name
as the case-packet variables. However, it is also possible to store case-packet variables in
differently named characteristics.

An example of the use of the SOMAssignResult workflow node is shown in the following:
 <Process-Node>
 <Name>SOMAssignResult</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.SOMAssignResult
 </Class-Name>
 <Param name="param0" value="constant:bandwidth"/>
 <Param name="variable0" value="bw"/>
 <Param name="variable1" value="card"/>
 </Action>
 </Process-Node>

In this example the case-packet variable bw is stored in the characteristic named bandwidth, and
the case-packet variable card is stored in the characteristic by the same name.

Interaction with Subscription Repository

IMPORTANT In the vast majority of cases, there should be no need for action workflows to interact directly with Subscription Repository; all
communication with Subscription Repository should be left to HP Service Provisioner. The input and output characteristics should suffice
in most action workflows.

It is possible to interact with Subscription Repository through the SRModule described in
Chapter 12 on page 95. To interact with Subscription Repository, one of the following workflow
nodes can be used:

• SOMCreateProductInstance: Creates a product instance based on a product specification
(the product specification object can be retrieved using the SOMValidateRequest workflow
node).

• SOMDeleteProductInstance: Deletes a product instance in Subscription Repository.

• SOMGetProductInstance: Retrieves a product instance from Subscription Repository.

• SOMUpdateProductInstance: Updates a product instance in Subscription Repository.

• SOMUpdateProductInstanceState: Updates the state of a product instance state in
Subscription Repository.

All these workflow nodes should be used with utmost care (except SOMGetProductInstance).
The workflow nodes are described in more detail in Section “Workflow Nodes for Product
Instance Access” on page 107.

 69

HP Service Provisioner
8. Processes for Resource Facing Services

Integration with Trueview Inventory
If the solution uses Trueview as the inventory system, the TrueviewModule must be configured
in the $ACTIVATOR_ETC/config/mwfm.xml configuration file.

To send requests to Trueview (by means of the TrueviewModule) the workflow node
TVWSRequest can be used. The “SOM Demo” solution comes with three sample workflows that
demonstrate how to interact with Trueview:

• SOM_Demo_customer – creates a customer object in Trueview

• SOM_Demo_customer_delete – deletes a customer object in Trueview

• SOM_Demo_customer_get – retrieves a customer object from Trueview

Please read the description of the TVWSRequest workflow node (Chapter 12 page 113) for a full
description of how to use it (including an example).

70

 HP Service Provisioner
 9. Delta Operations

9 Delta Operations
In the previous version of HP Service Provisioner a product instance would always have a fixed
number of child instances, except in cases where a product instance was modified using a manual
design step (see Section “Manual Design and Assign” on page 28). So, once the product instance
tree was created it was not possible to add or delete CFSs at a later time.

As described in Chapter 2 two new mechanisms for adding/deleting CFSs to/from an existing
product instance have been added in HP Service Provisioner 7.0. These are:

• Modify-add/modify-delete operations: These operations can be used to add/delete CFSs
to/from an existing product instance by sending a service request containing the CFSs to be
added/delete and the positions in the product instance tree in which they are to be
added/deleted. Read the Section “Modify Operations” on page 25 for an introduction to
“modify-add” and “modify-delete” operations.

• Conditional child removal: This is a mechanism that can be used to remove child instance
branches or nodes from a product instance based on whether or not some characteristic values
meet a set of predefined conditions. This topic is explained in more detail in the Section
“Conditional Child Removal” on page 31.

In addition to these two new mechanisms, HP Service Provisioner version 7.0 has support for even
more powerful mechanisms for creating and modifying product instances which allows full control
over the number of child CFSs for a product instance. These new mechanisms for modifying
product instances is referred to as delta operations.

With delta operations it is possible for the northbound system in a modify operation to specify the
structure of the new product instance tree down to the CFS level (i.e. not including RFSs or EWIs).
HP Service Activator will then pass the new product instance tree and the existing product instance
tree through its Delta Engine which calculates the differences between the two trees as well as the
sequence of operations that are required to get from the old product instance tree to the new
product instance tree.

This is a completely different approach to modify operations compared to the modify mechanisms
that are described in Chapter 2. Instead of having to specify the changes that are to be done to an
existing product instance (down to a rather detailed technical level), delta operations makes it
possible to specify the desired end result. It is then up to the Delta Engine to calculate how to
reach that end result.

Variable Cardinality CFSs
If all product instances (based on the same specification) would always have the same number of
CFSs (and RFSs/EWIs), then it would not be possible to specify that one or more CFSs need to be
added (or deleted).

In order to support that a product specification can be instantiated into product instances with a
variable number of occurrences, HP Service Provisioner 7.0 introduces support for variable
cardinality CFSs; this means that it is possible for CFSSs to define (in the catalog) the minimum

 71

HP Service Provisioner
9. Delta Operations

and the maximum number of occurrences there must be for CFSs instantiated from CFSSs. The
following rules apply when specifying the minimum and maximum number of occurrences for
CFSs:

• Minimum occurrences: Must be set to a value equal to or greater than 0. If not specified,
Service Provisioner will assume that the value is 1.

• Maximum occurrences: Must be set to a value equal to or greater than 1 and always greater
than or equal to the value specified for minimum occurrences. The value unlimited is also
supported.

Setting the minimum and maximum number of occurrences for CFSs is done in the catalog. Figure
31 shows an example of an “Update CFS Specification” UI where the “Children” tab is selected.
To specify the minimum and maximum number of occurrences, click on the child CFSS in the
“Included” list. This will bring up the “Label” and “Cardinality” areas shown in the lower-right
corner. Then change the value of the “variable cardinality” radio button to Yes and fill in the two
areas labeled “Minimum occurrences” and “Maximum occurrences”. If an unlimited number of
maximum occurrences is desired (which is the case in this example), then change the value of the
“Unlimited” radio button to Yes. Finally, click the [OK] button in the “Cardinality” area to apply
the values for the minimum and maximum number of occurrences in memory. To save the values
in the catalog, click the [OK] button centered in the bottom of the “Update CFS Specification” UI.

Figure 31 CFSS with Child with a Variable Number of Occurrences

It is also possible to specify a label for child specification. This label will serve as the default label
value if not overwritten explicitly by the service request. To specify a label, enter a value (string)
in the “Label” field and click the [OK] button shown just below the “Label” field.

NOTE Labels can be specified for CFSS children, RFSS children, as well as EWIs children whereas variable cardinality can only be specified
for CFSS children.

Only CFSSs and product specifications can contain child CFSSs with a variable number of
occurrences. Figure 32 shows an example of a product specification that contains two CFSSs. The
CFSS “C_DSL” has not specified the minimum or the maximum number of occurrences; this
means that this CFSS is mandatory. The other CFSS, “C_CPE”, has minimum occurrences set to
zero and maximum occurrences set to 1; hence, this CFSS is optional.

72

 HP Service Provisioner
 9. Delta Operations

Figure 32 Product Specification with a Mandatory and an Optional Child CFSS

The “Catalog Management” UI displays the minimum and maximum number of occurrences of its
child CFSSs using the following syntax:

• [minimum occurrences..maximum occurrences]

 If both minimum and maximum occurrences are set to 1, nothing will be shown

 If the maximum number of occurrences is unlimited, then the mathematical infinity
symbol (∞) is shown

An example of a product specification where two out of three child CFSSs have variable
cardinality is illustrated in the screenshot of the “Catalog Management” UI shown in Figure 33.
The CFSS “C_DSL” is mandatory in this example. The CFSS “C_FixedIP” is displayed with a
[0..∞] suffix to indicate that it can occur from zero to an infinite number of times. The CFSS
“C_CPE” is suffixed with [0..1] to indicate that it is optional.

Figure 33 Product Specification containing CFSSs with Variable Number of Occurrences

 73

HP Service Provisioner
9. Delta Operations

Requirements
In order to make use of HP Service Provisioner’s support for a variable number of CFSs in product
instances, as well as the thereof following support for delta operations, the following capabilities
are required by the northbound system:

• The northbound system needs to be aware of PSs as well as CFSSs; this includes knowledge of
the characteristics of CFSSs (in order to be able to assign values to these).

• The northbound system should also be able to set the labels of CFSs so that they can be used
for identification in subsequent modify operations. CFS label do not necessarily need to be
unique; however, if the north-bound system needs to be able to uniquely identify CFSs, it is
recommended that the northbound system generates unique labels for the CFSs.

Partial and Full Instance Trees
As mentioned in the previous section, the northbound system needs to have knowledge of PSs as
well as CFSSs in order to make use of product specifications with CFSS with variable cardinality.
In order for the northbound system to create a product instance based on a specification with
children with a variable number of occurrences, the northbound system needs to send an instance
tree structure to HP Service Provisioner with the product as the root and a number of CFS
branches. Such an instance tree structure is referred to as a partial instance tree.

When HP Service Privisioner receives a service request containing a partial instance tree, it will
pass the partial instance tree through an algorithm that does the following:

• It validates the partial instance tree to ensure that its CFSs match the CFSSs (and their
minimum/maximum occurrences) specified in the catalog.

• It expands the partial instance tree by inserting RFSs and EWIs in the positions dictated by the
structure of the product specification tree.

The instance tree that results from this algorithm is called a full instance tree because it contains
everything (product instance, CFSs, RFSs, and EWIs).

IMPORTANT A partial instance tree is an instance tree containing a product instance with all its CFS children; a partial tree cannot contain RFS or
EWI children.

 A full instance tree is an instance tree containing a product instance with all its CFS, RFS, and EWI children; a full instance tree is
automatically generated by HP Service Provisioner based on a partial instance tree and the product specification tree.

After the full instance tree has been generated, HP Service Provisioner will run the fulfillment
processes for the entire tree in a depth-first manner, exactly like it is done for all other product
instance trees. Please read Chapter 2 on page 19 for a detailed description of HP Service
Provisioner’s fulfillment processes.

Northbound API
This section describes the northbound API extensions that have been introduced in HP Service
Provisioner 7.0 to support variable cardinality CFSs and delta operations. This is an extension to
the API described in the Section “Northbound API” on page 39.

Requests received on the northbound interface to create a new product instance or modify an
existing product instance (with variable cardinality CFSs) must – in addition to the content
described in the Section “Northbound API” on page 39 – contains one or more CFS elements with
the following contents for each CFS element:

74

 HP Service Provisioner
 9. Delta Operations

CFS name and version Identifies the CFSS in the catalog. Mandatory.

CFS label A label applied by the northbound system that can be used to
identify a CFS. Labels do no need to unique. Optional.

Characteristics List of names and corresponding values of CFS characteristics.
Optional.

Template name and version Identifies a template from which to take values to assign to the
characteristics of the CFS instance. Optional.

CFS instance One or more CFS instances following the syntax described in this
list; i.e. a tree of CFSs can be specified in this way. Optional.

A partial instance tree is equivalent to a product name and version along with its CFS instance
trees specified in a service request. Upon reception of a service request containing a partial
instance tree HP Service Provisioner will validate it and expand it to form the full instance tree
before commencing the fulfillment processes.

Example WS/SOAP Request Containing CFS Instances

An example of a SOAP request to activate an instance of the service shown in Figure 33 is shown
below:
 <Request>
 <RequestType>activate</RequestType>
 <RequestId>3226</RequestId>
 <ProductName>P_Data</ProductName>
 <ProductVersion>4</ProductVersion>
 <Customer>Acme</Customer>
 <CFS>
 <Name>C_DSL</Name>
 <Version>3</Version>
 <CFS>
 <Name>C_FixedIP</Name>
 <Version>2</Version>
 <Label>WebServer</Label>
 <Characteristic name="ip">10.20.30.55</Characteristic>
 </CFS>
 </CFS>
 <CFS>
 <Name>C_CPE</Name>
 <Version>2</Version>
 </CFS>
 </Request>

When HP Service Provisioner receives this service request it will – based on the contents of the
request – generate the following partial instance tree:
 P_Data.4 --|
 |-- C_DSL.3 --|
 | |-- C_FixedIP.2 (WebServer)
 |
 |-- C_CPE.2

When this partial instance tree has passed through the “validate and expand” algorithm, the result
will be the following full instance tree which will then be run through the fulfillment processes
(the added parts are marked in green):

 75

HP Service Provisioner
9. Delta Operations

 P_Data.4 --|
 |-- C_DSL.3 --|
 | |-- R_DSL.1
 | |
 | |-- C_FixedIP.2 (WebServer) --|
 | |-- R_FixedIP.6
 |
 |-- C_CPE.2 --|
 |-- R_DSL.1

Delta Operations
As explained in the beginning of this chapter, product instances that exist in HP Service
Provisioner can be modified using so-called delta operations. A delta operation is identical to a
modify operation with the exception that the modify service request must contain a partial tree (i.e.
a tree structure with a product instance and all its CFS children).

For the Default life-cycle profile the states that support modify operations are:

Designed When in this state, the operation is actually called amend; this operation is
semantically identical to a modify operation.

Provisioned, Active Both of these states support a modify operation. These states also have
support for a test operation (that leads back to the same state); the test
operation cannot be used for delta operations.

The other two life-cycle profiles supported by HP Service Provisioner both support modify
operations for product instances in the Active state.

When Service Provisioner receives a modify service request (with the service id of the product
instance to be modified) containing a partial instance tree, it will do the following:

• The old product instance tree will be read into memory based on the service id from the service
request.

• The received partial instance tree will be validated and expanded into a full instance tree; this
tree will be the new instance tree

• Finally, HP Service Provisioner will pass the old and the new instance trees to its delta engine
which will calculate the differences between the two trees; the differences will be expressed
using a so-called delta tree.

When the delta engine compares two nodes (one from the old instance tree and one from the new
instance tree) it will consider the two nodes to match if the following conditions are met:

• The types of the nodes are identical (i.e. both are CFSs, RFSs, or EWIs)

• The names and versions of the nodes are identical

• The labels of the two nodes are identical

HP Service Provisioner’s algorithm to calculate the delta tree is designed in a way that strives to
perform the best possible match between the old and the new instance tree; this is done to ensure
that it is possible to keep service disruption to a minimum when running the fulfillment processes
to get from the previous situation to the new situation.

NOTE If two or more instances belong to the same variable cardinality specification in the catalog, the algorithm gives no importance to the
order of the instances. For instance, if the old instance tree contains instance A followed by instance B (both belonging to the same
specification) and the new instance contains instance B followed by instance A, then the algorithm will see the two as being identical.

76

 HP Service Provisioner
 9. Delta Operations

Delta Tree
A delta tree contains a product instance as its root as well as CFS, RFS, and EWI child instances.
In contrast to an ordinary product instance tree which expresses the current structure of a product
instance, a delta tree expresses how to get from the old product instance structure to the new
product instance structure. It does so by including branches and nodes that represent the following:

• Nodes that exist in both the old and the new instance trees and that have not been modified; i.e.
the characteristic values of the nodes in the old and new product instances are all identical.
Such nodes will be tagged as KEEP.

• Nodes that exist in both the old and the new instance tree and that have been modified; i.e. at
least one characteristic value of the nodes in the old and new product instances is different.
Such nodes will be tagged as MODIFY.

• Nodes that exist in the old instance tree, but not in the new instance tree. Such nodes will be
tagged as DELETE.

• Nodes that exist in the new instance tree, but not in the old instance tree. Such nodes will be
tagged as ADD.

Example Delta Tree Calculation

This example shows how a delta tree could look like based on an old and a new product instance
tree. Consider the following old product instance tree:
 P_Data.4 --|
 |-- C_DSL.3 --|
 | |-- R_DSL.1
 | |
 | |-- C_FixedIP.2 (WebServer) --|
 | |-- R_FixedIP.6
 |
 |-- C_CPE.2 --|
 |-- R_DSL.1

Now, assume that Service Provisioner receives a service request that wants to modify the product
instance tree structure. The new product instance tree looks as follows:
 P_Data.4 --|
 |-- C_DSL.3 --|
 |-- R_DSL.1
 |
 |-- C_FixedIP.2 (WebServer) --|
 | |-- R_FixedIP.6
 |
 |-- C_FixedIP.2 (Email+FTP) --|
 |-- R_FixedIP.6

 77

HP Service Provisioner
9. Delta Operations

If these two trees are passed through HP Service Provisioner delta engine, the resulting delta tree
will look as shown below:
 P_Data.4 --|
 |-- C_DSL.3 --|
 | |-- R_DSL.1
 | |
 | |-- C_FixedIP.2 (WebServer) --|
 | | |-- R_FixedIP.6
 | |
 | |-- C_FixedIP.2 (Email+FTP) --|
 | |-- R_FixedIP.6
 |
 |-- C_CPE.2 --|
 |-- R_DSL.1

Nodes that carry the ADD tag are marked in green and nodes that carry the DELETE tag are marked
in red. The remaining nodes are either carry the KEEP or the MODIFY tag; this example makes no
distinction between KEEP and MODIFY tags because characteristic values are not considered here.

Fulfillment Processes for Delta Trees
Once a delta tree has been generated the fulfillment processes for actually transforming the old
product instance tree into the new product instance tree is as follows (in the listed sequence).

1. The old and the new product instance trees are deleted; they are not used anymore. Only
the delta tree is used onwards.

2. All nodes that carry the DELETE tag are moved through the fulfillment states from their
current state to the retired state (e.g. Active → Provisioned → Reserved → Designed →
Terminated → Retired); if action workflows are defined for the nodes for these state
transitions, they will be executed. Once this process is finished, the nodes are deleted
from the delta tree.

3. All nodes that carry the ADD tag are moved through the fulfillment states from the initial
state to the current state of the remaining nodes (e.g. Initial → Checked → Designed →
Reserved → Provisioned → Active); if action workflows are defined for the nodes for
these state transitions, they will be executed.

4. A modify state transition will be carried out for the entire instance tree (e.g. Active →
Active); if action workflows are defined for this state transitions, they will be executed.

The result of all these steps will be that the delta tree is no longer really a delta tree; now it’s
identical to the new product instance tree. In the final step, the product instance tree will be written
to Subscription Repository and an asynchronous message will be emitted.

Delta Operation Example
This section gives a complete example of delta operations. It starts by creating a new product
instance (based on a service request containing a partial instance tree) which is then structurally
modified. Finally, the example demonstrates a simple modify operation where just a single
characteristic value is changed.

Consider the product specification shown in Figure 33. This product specification mimics a “Data
Connectivity” product where it is possible to order a DSL connection and a CPE (for instance, a
DSL modem/router). In addition, a number of fixed IP addresses can be assigned to the DSL
connection; for instance, if the customer needs to host a web server or an email server.

Assume, that a customer opts for a simple product of this type; i.e. the product shall contain DSL
connectivity and a CPE. The following WS/SOAP service request is sent to HP Service
Provisioner to create this service:

78

 HP Service Provisioner
 9. Delta Operations

 <Request>
 <RequestType>activate</RequestType>
 <RequestId>3226</RequestId>
 <ProductName>P_Data</ProductName>
 <ProductVersion>4</ProductVersion>
 <Customer>Acme</Customer>
 <CFS>
 <Name>C_DSL</Name>
 <Version>3</Version>
 </CFS>
 <CFS>
 <Name>C_CPE</Name>
 <Version>2</Version>
 </CFS>
 </Request>

The screenshot in Figure 34 shows the product instance that results from this WS/SOAP service
request; the figure also shows that the two expected RFSs (“R_DSL” and “R_CPE”) have been
added to their correct positions by the “validate and expand” algorithm (because they were both
present in the product specification tree in the catalog).

Figure 34 Product Instance Created from Partial Product Instance Tree

Now, assume that the customer wants to replace the CPE with one of his own; hence, he does not
want a CPE to be part of the subscription anymore. At the same time he wishes to get two fixed IP
addresses (10.20.30.40 and 10.20.30.41) assigned to the DSL service to run a web server and an
email server.

 79

HP Service Provisioner
9. Delta Operations

The WS/SOAP request to fulfill the customer’s needs could look like the following example:
 <Request>
 <RequestType>modify</RequestType>
 <RequestId>3251</RequestId>
 <ProductName>P_Data</ProductName>
 <ProductVersion>4</ProductVersion>
 <Customer>Acme</Customer>
 <ServiceId>92450</ServiceId>
 <CFS>
 <Name>C_DSL</Name>
 <Version>3</Version>
 <CFS>
 <Name>C_FixedIP</Name>
 <Version>2</Version>
 <Label>Web</Label>
 <Characteristic name="ip">10.20.30.40</Characteristic>
 </CFS>
 <CFS>
 <Name>C_FixedIP</Name>
 <Version>2</Version>
 <Label>Mail</Label>
 <Characteristic name="ip">10.20.30.41</Characteristic>
 </CFS>
 </CFS>
 </Request>

While the fulfillment processes are ongoing (i.e. while Service Provisioner is transforming the
customer’s product into the new product) it is possible to get an overview of the delta operations in
HP Service Provisioner’s UI. Under the “Processing” tab in the “Instance Management” UI there
is a row for each active fulfillment process. By clicking the middle button (of the tree buttons in
the right side of each table row) it is possible to bring up a graphical representation of the partial
product instance tree, the old product instance tree, the new product instance tree, and the delta
tree. Figure 35 shows this UI displaying a graphical representation of the old instance tree, the new
instance tree, as well as the delta tree.

NOTE The two “R_FixedIP” RFSs are not visible in the “new tree” and the “delta tree” areas because the right part of the trees have been
truncated. They do exist in both trees, though.

80

 HP Service Provisioner
 9. Delta Operations

Figure 35 UI for Displaying Old and New Instance Trees and Delta Tree

The delta tree shown in the UI uses red and green colors to highlight nodes that carry the DELETE
and ADD tag, respectively. From this, it is clear that the “C_CPE” is to be deleted whereas two
“C_FixedIP” CFSs are to be added (as well as their two child RFSs).

The product instance tree after the delta operations are finished are shown in Figure 36. Note that
the value of the ip characteristic in the “C_FixedIP” CFS labeled “Mail” is “10.20.30.41” as
specified in the WS/SOAP service request.

Figure 36 Product Instance after Delta Operation (CFSs Added and Deleted)

 81

HP Service Provisioner
9. Delta Operations

Finally, the customer wishes to change the IP address of his email server (the “C_FixedIP” CFS
labeled “Mail”). The following WS/SOAP request shows how this could be done (note that the
value of the ip characteristic has changed to “10.20.30.42”):
 <Request>
 <RequestType>modify</RequestType>
 <RequestId>3251</RequestId>
 <ProductName>P_Data</ProductName>
 <ProductVersion>4</ProductVersion>
 <Customer>Acme</Customer>
 <ServiceId>92450</ServiceId>
 <CFS>
 <Name>C_DSL</Name>
 <Version>3</Version>
 <CFS>
 <Name>C_FixedIP</Name>
 <Version>2</Version>
 <Label>Web</Label>
 <Characteristic name="ip">10.20.30.40</Characteristic>
 </CFS>
 <CFS>
 <Name>C_FixedIP</Name>
 <Version>2</Version>
 <Label>Mail</Label>
 <Characteristic name="ip">10.20.30.42</Characteristic>
 </CFS>
 </CFS>
 </Request>

Figure 37 shows the “delta tree” UI displaying how the delta tree looks like for fulfilling this
modify request. The delta tree contains no red or green nodes because no nodes are deleted or
added. One node has a purple color to indicate that one or more characteristics have changed
values for this node. By clicking on the node, it is possible to bring up a window that displays the
characteristic values (current as well as shadow values). In this example, it is clear that the value of
the ip characteristic has been changed from “10.20.30.41” to “10.20.30.42”.

Figure 37 Delta Tree UI Displaying Modified Characteristic Values

82

 HP Service Provisioner
 9. Delta Operations

Migration between Products
All delta operations described so far in this chapter have all assumed that the old product instance
tree and the new product instance tree were both instances of the same product specification.
However, it is also possible to migrate a product instance from one product specification type to
another. This is done exactly in the same way as any other delta operation; a service request
containing a partial instance tree is sent to Service Provisioner who will then calculate a delta tree
that can change the existing product instance to the new product instance belonging to a different
product specification.

In principle, it would be possible to migrate from any type of product to any other type; but in
most cases the two specifications are expected to be similar. Otherwise, if the two product types
have no commonalities whatsoever, then the delta tree will basically delete all existing CFSs and
create new ones to match the new specification.

One condition must be met in order to be able to migrate from one product type to another. The
product specification for the new product must have the product specification of the old product in
its “migration list”. The “migration list” is a list that contains zero or more product names and
versions that identify products that can be migrated into a product of this specification. Figure 38
shows the “Update Product Specification” UI with its “Migration” tab selected. In this case, it is
possible to migrate products of the “P_Card” specification (version 1 and 2) to this product type. If
the “migration list” is empty it will not be possible to migrate any product instances into product
instances of this type.

Figure 38 Update Product Specification UI Displaying the Migration Tab

 83

HP Service Provisioner
9. Delta Operations

84

 HP Service Provisioner
 10. Dependencies

10 Dependencies
This chapter describes dependencies which has been introduced as of version 7.0 or HP Service
Provisioner. Dependencies can only exist between service instances, not between service
specifications.

By using dependencies it is possible to model resources that are consumable by other instance. As
an example, a product instance may model a network link with a capacity of 100 Mbps. This
resource can then be consumed by two other instances, each consuming 50 Mbps; or by ten other
instances, each consuming 10 Mbps.

Terminology
In HP Service Provisioner all dependencies have a single source and a single destination; if
instance A depends on instance B, then instance A is the source and B is the destination of the
dependency. The following restrictions apply for dependencies:

• Dependencies can only exist between instances; not between specifications

• Only product instances can be destinations of dependencies; such product instances are also
referred to as resource product instances; a resource product instance can be the destination of
multiple dependencies

• All instance types (product instances, CFSs, RFSs, as well as EWIs) can be the source of
dependencies; an instance can be the source of multiple dependencies

NOTE A product instance that is the destination of one or more dependencies is also said to have ingoing dependencies. Likewise, an instance
that is the source of one or more dependencies is also said to have outgoing dependencies.

In order for a product instance to act as a resource, two conditions must be met. The first condition
is that its specification must have the “Resource” flag set to “true” (see the Section “Resource” on
page 53). The second condition is that the product instance must set its capacity; this is done from
an action workflow belonging to the product instance. As alluded to by its name, the capacity is an
integer value that is used to model the capacity of a resource product instance.

A dependency in HP Service Provisioner will always use a certain amount of the capacity offered
by a resource product instance; this amount is referred to as the dependency’s used capacity
(shorthand form: used). The sum of the used capacities of all dependencies that have the same
resource their targets can never exceed the capacity of the resource.

 85

HP Service Provisioner
10. Dependencies

The source instance must always be the creator of a dependency. Two parameters are needed for a
source instance in order to create a dependency:

• Service id of the resource instance: A source instance uniquely identifies a resource instance
through the service id of the resource instance.

• Used capacity: The used capacity (a.k.a. “consumed capacity”) is needed so that the resource
instance can check whether the dependency can be created (i.e. whether there is enough free
capacity) and to adjust the total amount of capacity that is in use for the resource instance.

Dependency Example
Before describing how to manage resource instances and dependencies, the following example
may assist in better understanding dependencies.

Consider a VPN instance (with service id = 1) and a Site instance (with service id = 2). The VPN
as well as a Site instance are resources; their capacities are 20 and 2, respectively:
 VPN (SID:1) – Capacity:20 - Used:0

 Site (SID:2) – Capacity:2 - Used:0

Also, consider a SiteAttachment instance (with service id = 3) that is used to model a connection
between the VPN and the Site instances. The SiteAttachment is modeled as a product instance
with two CFSs (for simplicity, RFSs are left out of this example):
 SiteAttachment (SID:3) --|
 |-- VPN_Ref (CFS)
 |
 |-- Site_Ref (CFS)

The SiteAttachment product instance contains the VPN_Ref CFS and the Site_Ref CFS that are
intended to act as sources for dependencies to the VPN and Site instances, respectively.

When the fulfillment processes are executed the action workflows for VPN_Ref and Site_Ref will
be executed after one another. When the two action workflows have created the two dependencies,
the situation will look as follows for the VPN and Site instances:
 VPN (SID:1) – Capacity:20 – Used:1
 Used by [SID:3 – Used_capacity:1]

 Site (SID:2) – Capacity:2 – Used:1
 Used by [SID:3 – Used_capacity:1]

This means that the VPN instance knows that it is currently being used by an instance with service
id = 3 and the used capacity is 1. The situation is similar for the Site instance.

For the SiteAttachment instance, the situation will look as follows:
 SiteAttachment (SID:3) --|
 |-- VPN_Ref [Depends on SID:1 – used: 1]
 |
 |-- Site_Ref [Depends on SID:2 – used: 1]

86

 HP Service Provisioner
 10. Dependencies

Managing Resource Product Instances
HP Service Provisioner provides three workflow nodes that can be used from within the action
workflows of product instance resources to do the following:

• SOMResourceUpdateCapacity: Set and modify the capacity of the resource.

• SOMResourceGetCapacityUsage: Get the capacity of the resource as well as its used
capacity.

• SOMResourceListIngoingDependencies: Get a list of service ids of all instances that
have ingoing dependencies to this resource (along with the used capacities of each
dependency).

The three workflow nodes are described in details in Chapter 12.

Managing Dependencies
Five workflow nodes are provided by HP Service Provisioner to create, list, modify, replace, and
remove dependencies. The workflow nodes are to be used in action workflows of instances that
have (or are going to have) outgoing dependencies. The five workflow nodes are:

• SOMResourceCreateDependency: Create a dependency from the current instance (product
instance, CFS, RFS, or EWI) to a resource product instance.

• SOMResourceListOutgoingDependencies: Get a list of all service ids of product instance
resources that this instance has outgoing dependencies to. The workflow node also returns a list
of values representing how much capacity is used for each outgoing dependency.

• SOMResourceModifyDependency: Modify the used capacity of an existing dependency
from this instance (i.e. change the currently used capacity to a new value that may be higher or
lower).

• SOMResourceRemoveDependency: Remove an existing dependency emanating from this
instance.

• SOMResourceReplaceDependency: Remove an existing dependency from this instance and
create new dependency to a new product instance resource; i.e. this node effectively replaces
one dependency with another dependency. The functionality of this node is equivalent to
executing SOMResourceRemoveDependency followed by executing
SOMResourceCreateDependency.

The five workflow nodes for managing (outgoing) dependencies are described in more detail in
Chapter 12.

 87

HP Service Provisioner
10. Dependencies

88

 HP Service Provisioner
 11. Scheduled Requests

11 Scheduled Requests
HP Service Provisioner has support for scheduled requests which means that it is possible to define
one or more schedule events to be triggered at a specified time in the future. Schedule events can
be either one-off events or repeating events. The scheduling functionality is based to HP Service
Activator’s SchedulerModule which means that while a process is waiting in the scheduler it has
zero memory footprint.

The scheduling functionality in HP Service Provisioner is based on a simple principle: A
scheduled event is functionally equivalent to the reception of a scheduled service request. Hence,
anything that is possible as a result of the arrival of a service request is also possible using the HP
Service Provisioner’s scheduling functionality.

Schedule API
The API for setting up scheduled requests in HP Service Provisioner is an extension to the already
existing northbound API (see the Section “Northbound API” on page 39). To set up one or more
schedules, one or more “schedule” element need to be added to the service request as the last
element (or elements).

At a high level a service request containing two schedules may look as described in the following
simple example:

• Service Request: “Create DSL service and put it into Reserved state” (i.e. reserve operation)

• Schedule 1: “On May 1st, put the service into Active state” (activate operation)

• Schedule 2: “On August 31st, tear down the service” (retire operation)

NOTE The order in which schedules are defined has no significance.

A schedule element in HP Service Provisioner has the following contents:

Start time Mandatory. This is the time to trigger this schedule event (or the first time in
case this is a repeating schedule). There are two ways to specify the start time:

• Integer value: When using this syntax, convert the time to the number of
seconds since January 1, 1970 UTC.

• Time string: When using this syntax, use the time format
yyyy-MM-dd HH:mm:ss (UTC). For an explanation of the time format
string, please read the Javadocs for the class
java.text.SimpleDateFormat.

 89

HP Service Provisioner
11. Scheduled Requests

Ignore Missed
Events

Optional, default value is “false”. This expects a boolean value (“true” or
“false”). If the value is “true”, then HP Service Provisioner will not make any
attempts to trigger a schedule event that has been missed (e.g. because the start
time has already expired at the time when the service request was received).
Otherwise, if the value is “false”, a missed scheduling event will result in
Service Provisioner attempting to trigger the schedule event at the earliest time
possible.

Repeat Optional. A schedule may contain a single repeat section. If the repeat section
is present, it must contain the following:

• Frequency: Mandatory. This is the interval between repeating schedule
events. If set to an integer it specifies the number of seconds between
repetitions. If the integer value carries any of the suffixes s, m, h, d, or w,
the value must be specified in seconds, minutes, hours, days, or weeks,
respectively.

• End time: Optional. After this time there will be no more events based on
this schedule. The supported syntax is identical to that of start time. If no
end time is specified, the repeating schedule will continue infinitely.

Request The schedule must contain a service request. See the Section “Northbound
API” on page 39 for a description of service requests. Since a service request
may contain schedules and a schedule must contain a service request, a service
request can, in fact, contain several levels of schedules.

HP Service Provisioner will always set the service ids of requests embedded
inside schedules to the value of the service id of the product instance that this
request has been operating on. Therefore, if any of the embedded requests
contain service ids they will be silently overwritten.

NOTE For a full specification of the syntax for WS/SOAP service requests with schedules, please study the WSDL document; the Section
“Northbound API” on page 39 explains how the WSDL can be generated.

Scheduling Events
If HP Service Provisioner receives a service request that contains one or more schedules, it will
first finish the operation dictated by the “outer” request (i.e. the part of the request that is not
embedded inside any schedules). Then, when the operation is finished, Service Provisioner will
pass on the request to Service Provisioner’s scheduling engine that does the following (in the listed
order):

• For all schedules that are defined at the top level (i.e. not schedules within schedules) the
scheduling engine will calculate a list of timestamps (date and time) of their next schedule
event.

• If there are more than one element in the list, the list will be sorted in ascending order and the
first element will be elected as the next schedule event to be triggered. If the elected schedule is
a one-off schedule it will be stripped away from the request; otherwise, if the elected schedule
is a repeating schedule (and the end time has not been passed) it will remain in the list of
schedules.

• The “outer” request will be replaced with the request embedded in the newly elected schedule,
and the workflow job that processes this service will place itself in HP Service Activator
scheduler and wait until it is woken up.

• When the workflow job is woken up (i.e. at the time of the schedule event), it will run exactly
the same steps as if a new service request had just been received via the northbound interface.

90

 HP Service Provisioner
 11. Scheduled Requests

Example WS/SOAP Service Request with a Simple Schedule

The following example shows a WS/SOAP request containing a simple schedule (some mandatory
parts of the request that are not important for this example have been left out):
 <Request>
 <RequestType>reserve</RequestType>
 <RequestId>r-12241</RequestId>
 <ProductName>DSL</ProductName>
 <ProductVersion>7</ProductVersion>
 ... list of characteristic values, etc. ...
 <Schedule>
 <StartTime>2015-02-20 05:30:00</StartTime>
 <Request>
 <RequestType>active</RequestType>
 </Request>
 </Schedule>
 </Request>

This effect of this request is that a new service named DSL (version 3) will be created immediately
and the fulfillment processes will stop in the Reserved state. Then, on February 20, 2015 (at 5:30
in the morning) an activate request will be injected which means that the service will end up in the
Active state and therefore be available for consumption by the customer. Since there if only one
schedule in this request (and it is not a repeating schedule), the workflow job will not be passed to
the scheduling engine after the Active state is reached.

Schedule Modification
HP Service Provisioner supports three operations that can be used to modify the schedule (or
schedules) of product instances that currently have schedules attached to them. The three schedule
modification operations are:

• Delete schedule: A delete schedule operation will simply delete all schedules that are currently
attached to a product instance (identified by its service id) and then leave the product instance
in the state it is currently in.

• Replace schedule: A replace schedule operation will overwrite all schedules that are currently
attached to a product instance (identified by its service id) with the schedule or schedules that
exist in the new service request.

• Append to schedule: This operation can be used to append one or more schedules to an
existing list of schedules attached to a product instance. This operation can, for instance, be
used to set a future retire date/time for an existing instance.

The API for modifying a schedule is identical to the API described in the Section “Schedule API”
on page 89 with the exception that an attribute named modify needs to be specified and set to one
of the following values:

• DELETE: To delete the schedule.

• REPLACE: To replace the existing schedule.

• APPEND: To append a new schedule to the list of existing schedules.

 91

HP Service Provisioner
11. Scheduled Requests

Example WS/SOAP Service Request to Append a Schedule

The following example shows a WS/SOAP request that appends a schedule (requesting a retire
operation on August 12, 2015 at 8:00 in the morning) to an existing product with service id 17913:
 <Request>
 <RequestType>noop</RequestType>
 <RequestId>r-12241</RequestId>
 <ServiceId>17913</ServiceId>
 <Schedule modify="APPEND">
 <StartTime>2015-08-12 08:00:00</StartTime>
 <Request>
 <RequestType>retire</RequestType>
 </Request>
 </Schedule>
 </Request>

Notice that the request type is set to noop. This it done because this request is only meant to
append a schedule to the product instance; not to move it to another state.

Repeating Schedule Example
This section contains an example of a service request containing a list of schedules. The service
request creates a DSL service and brings it into active state for 3 months; during this time, the
bandwidth of the DSL service is modified every Friday and every Sunday (to provide higher
bandwidth in the weekend). This is an example of how such a WS/SOAP service request could
look like (some mandatory parts of the request that are not important for this example have been
left out):
 <Request>
 <RequestType>reserve</RequestType>
 <RequestId>r-12241</RequestId>
 <ProductName>DSL</ProductName>
 <ProductVersion>3</ProductVersion>
 <Characteristic name="bw">20Mbps</Characteristic>
 <Schedule>
 <StartTime>2015-04-01 07:00:00</StartTime>
 <Request>
 <RequestType>activate</RequestType>
 </Request>
 </Schedule>
 <Schedule>
 <StartTime>2015-06-30 17:00:00</StartTime>
 <Request>
 <RequestType>retire</RequestType>
 </Request>
 </Schedule>
 <Schedule>
 <StartTime>2015-04-03 22:00:00</StartTime>
 <Request>
 <RequestType>modify</RequestType>
 <Characteristic name="bw">20Mbps</Characteristic>
 <Repeat>
 <Frequency>1w</Frequency> <!-- Repeat every week -->
 </Repeat>
 </Request>
 </Schedule>
 <Schedule>
 <StartTime>2015-04-05 22:00:00</StartTime>
 <Request>
 <RequestType>modify</RequestType>
 <Characteristic name="bw">10Mbps</Characteristic>

92

 HP Service Provisioner
 11. Scheduled Requests

 <Repeat>
 <Frequency>1w</Frequency> <!-- Repeat every week -->
 </Repeat>
 </Request>
 </Schedule>
 </Request>

Figure 39 depicts how the service instance is created and how it traverses the service fulfillment
states based on scheduled requests. Between April 1st and June 30th repeated modify operations
toggle the value of the bandwidth characteristic bw between the two values 20Mbps and 10Mbps.

Figure 39 Service with Repeating Schedule and Predefined Start and End Dates

Checked

Designed

Reserved

Provisioned

reserve

Reserved

activate modify

SR

Active

modify modify retire

Active

bw = 20Mbps

Active

bw = 10Mbps

Active

bw = 20Mbps

Active

Provisioned

Reserved

Designed

Terminated

 93

HP Service Provisioner
11. Scheduled Requests

94

 HP Service Provisioner
 12. Workflow Manager Module and Node Library

12 Workflow Manager Module and Node
Library
This chapter lists the workflow manager modules and workflow nodes that are included in HP
Service Provisioner and describes their parameters. The content of this chapter is primarily of
interest to system integrators.

NOTE HP Service Provisioner includes additional workflow nodes than those listed in this chapter. The additional nodes are meant for internal
use only, and their behavior may be changed in the future without notice.

Workflow Manager Modules

SRModule
com.hp.ov.activator.mwfm.engine.module.som.SRModule

This module communicates with Subscription Repository via WS/SOAP. The configuration of this
module is mandatory in order for HP Service Provisioner to function. To use the module to interact
with Subscription Repository, you need to use the workflow nodes described in the Section
“Workflow Nodes for Product Instance Access” on page 107. To use Subscription Repository this
module must be configured in the file $ACTIVATOR_ETC/config/mwfm.xml. The name of the
module must be ServiceOrderManagement.

In order to optimize performance, the module maintains an in-memory cache of all product catalog
objects from Subscription Repository. The time between refreshing the cache is configurable.

Table 5 SRModule Parameters

Name Required Description Default
ws_url Yes The URL to use to communicate with

Subscription Repository.
None

username No The username to use to connect to Subscription
Repository. If Subscription Repository does not
require authentication, you may skip this
parameter (not recommended).

None

password No The password to use to connect to Subscription
Repository. The password may either be plain
text or encrypted format (if the
encrypted_password parameter is set to
“true”).

None

 95

HP Service Provisioner
12. Workflow Manager Module and Node Library

Name Required Description Default

encrypted_
password

No Set this parameter to “true” if you wish to
specify the password in encrypted format.

false

cache_retry_
interval

No The time in milliseconds to retry refreshing the
cache in case of communication errors.

10000

cache_refresh_
interval

No The time in minutes between refreshing the
cache during normal operation. (0 means, no
automatic refresh.)

60

debug No If this parameter is set to “true” the module will
log all communication in the JBoss
“server.log”. This parameter should not be set
to “true” in production environments.

false

retry_count No The number of times to retry connecting to
Subscription Repository in case the connection
is lost (0 means “no retry”).

3

retry_interval No The interval between connection retry attempts
(in milliseconds) when a workflow node tries to
communicate with Subscription Repository
through this module.

10000

min_threads No The minimum number of Java threads that will
be created to process requests.

1

max_threads No The maximum number of Java threads that will
be created to process requests. This is the
number of simultaneous requests that can be
processed. Additional requests will be queued
until one of the Java threads becomes available.

3

store_audit No If this value is set to “false” HP Service
Provisioner will not store any audit messages.

Please read the Section “Audit Module
Configuration” on page 36 for a description of
how to enable auditing.

true

sleep_time No The HP Service Provisioner orchestration
workflows contain a number of Sleep workflow
nodes that will slow down the fulfillment
processes if this parameter is set to an integer
value larger than zero. The value of this
parameter is in milliseconds. This parameter
exists mainly for debugging and demonstration
purposes.

IMPORTANT: This parameter should never
be set in production environments.

0

debug_workflow No If this value is set to “true”, HP Service
Provisioner will write a lot of tracing
information in the server.log.

IMPORTANT: This parameter should never
be set in production environments.

false

96

 HP Service Provisioner
 12. Workflow Manager Module and Node Library

Example Sample SRModule Configuration

 <Module>
 <Name>ServiceOrderManagement</Name>
 <Class-Name>
 com.hp.ov.activator.mwfm.engine.module.som.SRModule
 </Class-Name>
 <Param name="ws_url"
 value="http://10.10.7.8:8080/subscriptionrepository/operations"/>
 <Param name="username" value="hpsp"/>
 <Param name="password" value="verySecret"/>
 <Param name="encrypted_password" value="false"/>
 </Module>

TrueviewModule
com.hp.ov.activator.mwfm.engine.module.TrueviewModule

The Trueview module communicates with the Trueview inventory system via WS/SOAP. To use
the module to interact with Trueview, you need to use the TVWSRequest workflow node described
on page 113.

The module must be configured in the file $ACTIVATOR_ETC/config/mwfm.xml. There are no
requirements for the name of the module.

Table 6 TrueviewModule Parameters

Name Required Description Default
ws_url Yes The URL to use to communicate with

Trueview.
None

username Yes The username to use to connect to Trueview. None

password Yes The password to use to connect to Trueview. None

encrypted_
password

No Set this parameter to “true” if you wish to
specify the password in encrypted format.

false

retry_count No The number of times to retry connecting to
Trueview in case the connection is lost (0
means “no retry”).

3

retry_interval No The interval between connection retry
attempts (in milliseconds) when a workflow
node tries to communicate with Trueview
through this module.

10000

min_threads No The minimum number of Java threads that
will be created to process requests.

1

max_threads No The maximum number of Java threads that
will be created to process requests. This is
the number of simultaneous requests that can
be processed. Additional requests will be
queued until one of the Java threads becomes
available.

3

 97

HP Service Provisioner
12. Workflow Manager Module and Node Library

Example Sample TrueviewModule Configuration

 <Module>
 <Name>trueview</Name>
 <Class-Name>
 com.hp.ov.activator.mwfm.engine.module.TrueviewModule
 </Class-Name>
 <Param name="username" value="hpsp"/>
 <Param name="password" value="verySecret"/>
 <Param name="encrypted_password" value="false"/>
 <Param name="ws_url"
 value="http://10.10.7.9:8012/tnp-ws/services"/>
 <Param name="retry_count" value="10"/>
 <Param name="retry_interval" value="3000"/>
 <Param name="max_threads" value="20"/>
 </Module>

Workflow Nodes for Accessing Characteristics
The workflow nodes listed in this section can be used to access the characteristics of an instance
from the instance’s action workflows.

SOMAssignResult
com.hp.ov.activator.mwfm.component.builtin.som.SOMAssignResult

This workflow process node writes any number of case-packet variable values from the action
workflow of an instance that currently being processed to the instance’s characteristics. The node
must be used from an action workflow because it relies on specific values of system case-packet
variables set by the “SOMAction” and “SOMController” workflows.

By default the node writes the case-packet variable values to characteristics with the same name as
the case-packet variables; it is, however, possible to assign values to characteristics with names
that are different from the case-packet variable names.

Table 7 SOMAssignResults Parameters

Name Required Description Default Type
variable0,
variable1,
...
variableN

Yes Case-packet variables which are
to be assigned to characteristics
(of identical names, unless
paramN is specified).

None Any

param0,
param1,
...
paramN

No Names of the characteristics. If
not specified it is assumed that
the characteristic names are
identical to the case-packet
variable names.

None String

98

 HP Service Provisioner
 12. Workflow Manager Module and Node Library

Example SOMAssignResult – use in workflow

This workflow node assigns values to the charactistics named bandwidth, port, and card. The
values are taken from the case-packet variables with the names bw, pt, and card, respectively.
 <Process-Node>
 <Name>SOMAssignResult</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.SOMAssignResult
 </Class-Name>
 <Param name="param0" value="constant:bandwidth"/>
 <Param name="param1" value="constant:port"/>
 <Param name="variable0" value="bw"/>
 <Param name="variable1" value="pt"/>
 <Param name="variable2" value="card"/>
 </Action>
 </Process-Node>

SOMCharacteristicsModified
com.hp.ov.activator.mwfm.component.builtin.som.SOMCharacteristicsModified

This workflow rule can be used to test whether any characteristic of an instance that currently
being processed have been modified. It does so by comparing current characteristic values to their
corresponding shadow value. If there are any changes, the workflow processing will continue
along the “true” branch emanating from this rule node; otherwise the workflow processing will
continue along the “false” branch emanating from this node.

If no parameters are specified, the node will check all characteristics for any changes; otherwise, if
any paramN parameters are specified, the node will only check those listed here for changes. The
node may, optionally, return a list of those characteristic names that have been modified.

Table 8 SOMCharacteristicsModified Parameters

Name Required Description Default Type
param0,
param1,
...
paramN

No Names of the characteristics to
check for changes. If not
specified the node will check
all characteristics that belong
to this instance.

None String

modified_
characteristics

No If specified, the node will
return a list of characteristic
names (strings) that have been
modified.

None Object

Example SOMCharacteristicsModified – use in workflow

This workflow node checks whether any of the two characteristics phone_num and ringback_id
have been modified. If none of the two characteristics have been modified the case-packet variable
modifiedList will contain an empty list; otherwise it will contain a list containing those of the
two characteristics that have been modified.

 99

HP Service Provisioner
12. Workflow Manager Module and Node Library

 <Rule-Node>
 <Name>SOMCharacteristicsModified?</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.
 SOMCharacteristicsModified
 </Class-Name>
 <Param name="modified_characteristics" value="modifiedList"/>
 <Param name="param0" value="phone_num"/>
 <Param name="param1" value="ringback_id"/>
 </Action>
 </Rule-Node>

SOMGetCharacteristics
com.hp.ov.activator.mwfm.component.builtin.som.SOMGetCharacteristics

This workflow process node retrieves any number of characteristic values and writes them to case-
packet variables in an action workflow of an instance that currently being processed. The node can
retrieve current characteristic values as well as previous (also known as “shadow” characteristic
values. By default, the workflow retrieves values from characteristics with names matching the
names of the case-packet variables; it is, however, possible to get values from characteristics of
different names.

Table 9 SOMGetCharacteristics Parameters

Name Required Description Default Type
variable0,
variable1,
...
variable

Yes Case-packet variables which are
to be assigned to characteristics
(of identical names, unless
paramN is specified).

None Any

param0,
param1,
...
paramN

No Names of the characteristics. If
not specified it is assumed that
the characteristic names are
identical to the case-packet
variable names.

None String

shadow0,
shadow1,
...
shadowN

No Set this to true to get the
characteristic’s shadow value
instead of its current value.

false Boolean

Example SOMGetCharacteristics – use in workflow

This workflow node assigns the two case-packet variables ringback_id and phone_num with
the values of the characteristics by the same names. In addition, shadow values of the same two
characteristics are assigned to the case-packet variables shadow_ringback_id and
shadow_phone_num, respectively.

100

 HP Service Provisioner
 12. Workflow Manager Module and Node Library

 <Process-Node>
 <Name>SOMGetCharacteristics</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.
 SOMGetCharacteristics
 </Class-Name>
 <Param name="param2" value="ringback_id"/>
 <Param name="param3" value="phone_num"/>
 <Param name="shadow2" value="true"/>
 <Param name="shadow3" value="true"/>
 <Param name="variable0" value="ringback_id"/>
 <Param name="variable1" value="phone_num"/>
 <Param name="variable2" value="shadow_ringback_id"/>
 <Param name="variable3" value="shadow_phone_num"/>
 </Action>
 </Process-Node>

Workflow Nodes for Managing Dependencies
The workflow nodes listed in this section can be used to manage instances with ingoing as well as
outgoing dependencies. Dependencies are described in Chapter 10.

SOMResourceCreateDependency
com.hp.ov.activator.mwfm.component.builtin.
 som.SOMResourceCreateDependency

This workflow process node creates a dependency from the currently processing instance to a
target product instance resource. The product instance must have been marked as a resource in the
catalog in order to successfully create a dependency.

Table 10 SOMResourceCreateDependency Parameters

Name Required Description Default Type
target_id Yes The service id of the target

product instance resource to
which to create the dependency.

None String

capacity No The capacity to request from the
target product instance resource.

1 Numeric

Example SOMResourceCreateDependency – use in workflow

This is an example of a workflow node that attempts to create a new dependency from the current
instance to a resource product instance identified by the value of the case-packet variable tid. The
used capacity of the dependency is given by the value of the case-packet variable usedCap.
 <Process-Node>
 <Name>SOMResourceCreateDependency</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.
 SOMResourceCreateDependency
 </Class-Name>
 <Param name="capacity" value="usedCap"/>
 <Param name="target_id" value="tid"/>
 </Action>
 </Process-Node>

 101

HP Service Provisioner
12. Workflow Manager Module and Node Library

SOMResourceGetCapacityUsage
com.hp.ov.activator.mwfm.component.builtin.
 som.SOMResourceGetCapacityUsage

The workflow process nodes get information from the currently processing product instance
resource about its current (total) capacity as well as its used capacity. The used capacity can never
exceed the capacity.

Table 11 SOMResourceGetCapacityUsage Parameters

Name Required Description Default Type
capacity Yes The name of the case-packet

variable in which to return the
total capacity of this product
instance resource.

None Numeric

used Yes The name of the case-packet
variable in which to return the
used capacity of this product
instance resource.

None Numeric

Example SOMResourceGetCapacityUsage – use in workflow

In this example the workflow node reads the total capacity into the case-packet variable capacity
and the used capacity is read into the case-packet variable used.
 <Process-Node>
 <Name>SOMResourceGetCapacityUsage</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.
 SOMResourceGetCapacityUsage
 </Class-Name>
 <Param name="capacity" value="capacity"/>
 <Param name="used" value="used"/>
 </Action>
 </Process-Node>

SOMResourceListIngoingDependencies
com.hp.ov.activator.mwfm.component.builtin.
 som.SOMResourceListIngoingDependencies

This workflow process node retrieves a list of all service ids that have ingoing dependencies to the
currently processing product instance resource as well as a list of values representing how much
capacity is used by each source service id. The sizes of the two returned lists will always be
identical.

102

 HP Service Provisioner
 12. Workflow Manager Module and Node Library

Table 12 SOMResourceListIngoingDependencies Parameters

Name Required Description Default Type
capacities Yes The name of the case-packet

variable in which to return the
list of used capacities (integer
values) of the dependencies that
have this resource as their
targets.

None Object

dependencies Yes The name of the case-packet
variable in which to return the
list of service ids (string values)
of the instances that depend on
this resource.

None Object

Example SOMResourceListIngoingDependencies – use in workflow

In this example the workflow node reads the list of service ids of the instances that have ingoing
dependencies to this resource into the case-packet variable dep_list. In addition, the used
capacities of all dependencies are returned to the case-packet variable cap_list.
 <Process-Node>
 <Name>SOMResourceListIngoingDependencies</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.
 SOMResourceListIngoingDependencies
 </Class-Name>
 <Param name="capacities" value="cap_list"/>
 <Param name="dependencies" value="dep_list"/>
 </Action>
 </Process-Node>

SOMResourceListOutgoingDependencies
com.hp.ov.activator.mwfm.component.builtin.
 som.SOMResourceListOutgoingDependencies

This workflow process node retrieves a list of all service ids of the product instance resources that
the dependencies emanating from this instance have as their targets. In addition, a list of values
representing how much capacity is used by each of the outgoing dependencies is retrieved. The
sizes of the two returned lists will always be identical.

Table 13 SOMResourceListOutgoingDependencies Parameters

Name Required Description Default Type
capacities Yes The name of the case-packet

variable in which to return the
list of used capacities (integer
values) of all dependencies that
have this instance as their
sources.

None Object

 103

HP Service Provisioner
12. Workflow Manager Module and Node Library

Name Required Description Default Type

dependencies Yes The name of the case-packet
variable in which to return the
list of service ids (string values)
of the product instance
resources that this instance
depend on.

None Object

Example SOMResourceListOutgoingDependencies – use in workflow

In this example the workflow node reads the list of service ids of the product instance resources
that this instance depend on into the case-packet variable dep_list. In addition, the used
capacities of all dependencies are returned to the case-packet variable cap_list.
 <Process-Node>
 <Name>SOMResourceListOutgoingDependencies</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.
 SOMResourceListOutgoingDependencies
 </Class-Name>
 <Param name="capacities" value="cap_list"/>
 <Param name="dependencies" value="dep_list"/>
 </Action>
 </Process-Node>

SOMResourceModifyDependency
com.hp.ov.activator.mwfm.component.builtin.
 som.SOMResourceModifyDependency

This workflow process node modifies an existing dependency emanating from the currently
instance by changing its used capacity to a new value. The new capacity must be a value larger
than zero and not exceed the capacity of the target product instance resource.

Table 14 SOMResourceModifyDependency Parameters

Name Required Description Default Type
capacity No The new capacity to request

from the target product instance
resource.

1 Numeric

target_id Yes The service id of the target
product instance resource to
which to modify the used
capacity of an existing
dependency.

None String

Example SOMResourceModifyDependency – use in workflow

In this example the workflow node attempts to modify the used capacity of an outgoing
dependency that has the product instance resource with the service id given by the case-packet
variable tid as it target. The new capacity to request for this dependency is given by the case-
packet variable usedCap.

104

 HP Service Provisioner
 12. Workflow Manager Module and Node Library

 <Process-Node>
 <Name>SOMResourceModifyDependency</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.
 SOMResourceModifyDependency
 </Class-Name>
 <Param name="capacity" value="usedCap"/>
 <Param name="target_id" value="tid"/>
 </Action>
 </Process-Node>

SOMResourceRemoveDependency
com.hp.ov.activator.mwfm.component.builtin.
 som.SOMResourceRemoveDependency

This workflow process node removes a dependency from the current instance to a product instance
resource with a given service id.

Table 15 SOMResourceRemoveDependency Parameters

Name Required Description Default Type
target_id Yes The service id of the target

product instance resource to
which to delete a dependency
emanating from this instance.

None String

Example SOMResourceRemoveDependency – use in workflow

In this example the workflow node attempts to remove a dependency from this instance to the
product instance resource with the service id given by the case-packet variable tid.
 <Process-Node>
 <Name>SOMResourceRemoveDependency</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.
 SOMResourceRemoveDependency
 </Class-Name>
 <Param name="target_id" value="tid"/>
 </Action>
 </Process-Node>

 105

HP Service Provisioner
12. Workflow Manager Module and Node Library

SOMResourceReplaceDependency
com.hp.ov.activator.mwfm.component.builtin.
 som.SOMResourceReplaceDependency

This workflow process node replaces a dependency from the current instance to a product instance
resource with a given service id with a new dependency to another product instance with another
service id. The used capacity of the new dependency must also be provided to this workflow node.

Table 16 SOMResourceReplaceDependency Parameters

Name Required Description Default Type
capacity No The capacity to request from

the new target product instance
resource.

1 Numeric

old_target_id Yes The service id of the old target
product instance resource to
which to delete a dependency
emanating from this instance.

None String

new_target_id Yes The service id of the new target
product instance resource to
which to create a new
dependency emanating from
this instance.

None String

Example SOMResourceReplaceDependency – use in workflow

In this example the workflow node attempts to replace a dependency from this instance to the
product instance resource with the service id given by the case-packet variable old_tid with a
new dependency to the product instance resource with the service id given by the case-packet
variable new_tid. The used capacity of the new dependency is given by the case-packet variable
usedCap.
 <Process-Node>
 <Name>SOMResourceReplaceDependency</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.
 SOMResourceReplaceDependency
 </Class-Name>
 <Param name="capacity" value="usedCap"/>
 <Param name="new_target_id" value="new_tid"/>
 <Param name="old_target_id" value="old_tid"/>
 </Action>
 </Process-Node>

SOMResourceUpdateCapacity
com.hp.ov.activator.mwfm.component.builtin.
 som.SOMResourceUpdateCapacity

This workflow process set or updates the capacity of a product instance resource. This workflow
node can only be used in action workflows associated with product instances whose specifications
have been marked as resources in the catalog.

106

 HP Service Provisioner
 12. Workflow Manager Module and Node Library

Table 17 SOMResourceUpdateCapacity Parameters

Name Required Description Default Type
capacity Yes The capacity to of this product

instance resource. This values
cannot be lower than the
currently used capacity.

None Numeric

Example SOMResourceUpdateCapacity – use in workflow

In this example the workflow node sets the capacity of this product instance resource to a value
specified by the case-packet variable cap.
 <Process-Node>
 <Name>SOMResourceUpdateCatacity</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.
 SOMResourceUpdateCapacity
 </Class-Name>
 <Param name="capacity" value="cap"/>
 </Action>
 </Process-Node>

Workflow Nodes for Product Instance Access
The workflow nodes listed in this section can be used for direct access to product instances. In
most cases, there should be no reason to use these nodes in action workflows.

SOMCreateProductInstance
com.hp.ov.activator.mwfm.component.builtin.som.SOMCreateProductInstance

This workflow node creates a product instance in Subscription Repository and/or in memory based
on the name and version of the product specification.

Table 18 SOMCreateProductInstance Parameters

Name Required Description Default Type
product_name Yes The name of the product

specification from which to
create a product instance.

None String

product_version Yes The version of the product
specification from which to
create a product instance.

None String

customer Yes The value of the customer
attribute to set for this
product instance.

None String

id Yes The service id of the product
instance created by this
workflow node.

None String

 107

HP Service Provisioner
12. Workflow Manager Module and Node Library

Name Required Description Default Type

template_name No The name of a template from
which to use characteristic
values when creating this
product instance.

None String

template_version No The version of a template
from which to use
characteristic values when
creating this product instance.

None String

display_label No A display label to set for this
product instance.

"" String

order_id No An order id to be assigned to
this product instance.

None String

request_id No A request id to be assigned to
this product instance.

None String

request_type No A request type to be assigned
to this product instance.

None String

state No A life-cycle state to be
assigned to this product
instance (including all its
children).

"" String

characteristics No A Java map containing
characteristics to set for this
product instance. Keys in the
map are characteristic names
(strings) and values in the
map are characteristic values.

None Object

in_memory No If set to “true” the product
instance will only be created
in memory; not persisted to
Subscription Repository. If
set to “false” the product
instance will be created in
Subscription Repository and
in memory.

false Boolean

product_instance
_var

Yes The object case packet
variable name where the
created product Instance will
be returned to.

None Object

Example SOMCreateProductInstance – use in workflow

This example creates a product instance (name and version are “DSL” and “3”, respectively) with
service id = 22314 and sets its state to Reserved. Characteristics values are assigned from a
template; characteristics values are explicitly assigned in this example.

108

 HP Service Provisioner
 12. Workflow Manager Module and Node Library

 <Process-Node>
 <Name>SOMCreateProductInstance</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.
 SOMCreateProductInstance
 </Class-Name>
 <Param name="product_name" value="DSL"/>
 <Param name="product_version" value="3"/>
 <Param name="customer" value="Acme"/>
 <Param name="id" value="22314"/>
 <Param name="template_name" value="DSL_GOLD"/>
 <Param name="template_version" value="1"/>
 <Param name="product_instance_var" value="prodInstance"/>
 </Action>
 </Process-Node>

SOMDeleteProductInstance
com.hp.ov.activator.mwfm.component.builtin.som.SOMDeleteProductInstance

This workflow node deletes a product instance in Subscription Repository by its identifier.

Table 19 SOMDeleteProductInstance Parameters

Name Required Description Default Type
id Yes The service id of the Product

instance to be deleted.
None String

ignore_non
_existing
_instance

No If set to “false” the node will
fail if the product instance
does not exist. Otherwise, if
set to “true” the node will not
treat a non-existing product
instance as an error

false Boolean

Example SOMDeleteProductInstance – use in workflow

This example deletes a product instance with service id 22314. If the product instance does not
exist, the workflow node will not fail.
 <Process-Node>
 <Name>SOMAssignResult</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.
 SOMDeleteProductInstance
 </Class-Name>
 <Param name="id" value="22314"/>
 <Param name="ignore_non_existing_instance" value="true"/>
 </Action>
 </Process-Node>

 109

HP Service Provisioner
12. Workflow Manager Module and Node Library

SOMGetProductInstance
com.hp.ov.activator.mwfm.component.builtin.som.SOMGetProductInstance

This workflow node retrieves a product instance from Subscription Repository by its identifier.
Optionally, the node can overwrite the current order id, request id, and request type with new
values. In that case, it is important to note that the updated order id, request id, and request type are
only stored in memory. The SOMUpdateProductInstance workflow node needs to be called in
a subsequent state in order to store the new values in Subscription Repository.

Table 20 SOMGetProductInstance Parameters

Name Required Description Default Type
id Yes The service id of the Product

instance to be retrieved.
None String

order_id No An order id that may be
associated with the product
instance.

None String

request_id No A request id that may be
associated with the product
instance.

None String

request_type No A request type that may be
associated with the product
instance.

None String

ignore_non
_existing
_instance

No If set to “false” the node will
fail if the product instance
does not exist. Otherwise, if
set to “true” the node will not
treat a non-existing product
instance as an error

false Boolean

product_instance
_var

Yes The object case packet
variable name where the
retrieved product instance
will be returned.

None Object

Example SOMGetProductInstance – use in workflow

This example retrieves a product instance with service id = 22314 from Subscription Repository
and stores the result in the case-packet variable prodInstance. If the product instance does not
exist, the workflow node will fail.
 <Process-Node>
 <Name>SOMGetProductInstance</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.
 SOMGetProductInstance
 </Class-Name>
 <Param name="id" value="22314"/>
 <Param name="product_instance_var" value="prodInstance"/>
 </Action>
 </Process-Node>

110

 HP Service Provisioner
 12. Workflow Manager Module and Node Library

SOMUpdateProductInstance
com.hp.ov.activator.mwfm.component.builtin.som.SOMUpdateProductInstance

This workflow node either stores a newly created product instance or it updates (replaces) an
existing product instance in Subscription Repository. The SOMUpdateProductInstance
workflow node should be used very carefully in action workflows because it may have a disrupting
impact on the ongoing fulfillment processes (if updating the product instance for which the current
fulfillment process is executing).

Table 21 SOMUpdateProductInstance Parameters

Name Required Description Default Type
product_instance Yes The product instance object

to be stored or updated.
None Object

order_id No An order id that may be
associated with the product
instance.

None String

request_id No A request id that may be
associated with the product
instance.

None String

request_type No A request type that may be
associated with the product
instance.

None String

store No If this parameter is set to
“true” the node will operate
in strict store mode (as
opposed to the default mode
which is update mode). When
running in store mode the
node will fail if a product
instance with an identical
service id exists in
Subscription Repository.

false Boolean

Example SOMUpdateProductInstance – use in workflow

The following example stores (or updates) a product instance in Subscription Repository. The
product instance is read from the case-packet variable prodInstance.
 <Process-Node>
 <Name>SOMUpdateProductInstance</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.
 SOMUpdateProductInstance
 </Class-Name>
 <Param name="product_instance" value="prodInstance"/>
 </Action>
 </Process-Node>

 111

HP Service Provisioner
12. Workflow Manager Module and Node Library

SOMUpdateProductInstanceState
com.hp.ov.activator.mwfm.component.builtin.som.
 SOMUpdateProductInstanceState

This workflow node updates the state of a product instance (optionally, including all child
instances) and may (optionally) store the result in in Subscription Repository.

Table 22 SOMUpdateProductInstanceState Parameters

Name Required Description Default Type
instance Yes The (product) instance object

for which to assign a new
state value.

None Object

state Yes The new value to set as the
state of the instance

None String

recursive No If set to “true” the state will
be set on this instance and all
its children; otherwise, the
state will only be set on this
instance.

false Boolean

in_memory No If set to “true” the state will
only be updated in memory;
otherwise, it will also be
written to Subscription
Repository.

false Boolean

Example SOMUpdateProductInstanceState – use in workflow

The following example sets the state of the product instance (including all child instances) stored
in the case-packet variable prodInstance to Active and updates the product instance in
Subscription Repository.
 <Process-Node>
 <Name>SOMUpdateProductInstanceState</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.som.
 SOMUpdateProductInstanceState
 </Class-Name>
 <Param name="instance" value="prodInstance"/>
 <Param name="state" value="Active"/>
 <Param name="recursive" value="true"/>
 </Action>
 </Process-Node>

112

 HP Service Provisioner
 12. Workflow Manager Module and Node Library

Workflow Node for Accessing Trueview Inventory

TVWSRequest
com.hp.ov.activator.mwfm.component.builtin.TVWSRequestNode

This workflow node is used to send requests to and receive requests from Trueview Inventory via
WS/SOAP. The node uses the TrueviewModule described on page 97 for the actual
communication with Trueview.

The process for communicating with Trueview is the same in all cases, regardless of the operation.
An input object is created using custom Java code, and this object is then passed to the
TVWSRequest node (using the input parameter) along with an operation (using the operation
parameter).

For a complete list of operations, please read the Trueview Javadocs and refer to Trueview’s
WSDL file.

Table 23 TVWSRequest Parameters

Name Required Description Default Type
module_name Yes The name of the Trueview

Inventory module to be used.
None String

operation Yes The name of the web service
operation.

None String

input Yes The request object to pass to the
TrueviewModule.

None Object

response Yes The case-packet variable in
which to store the response
object received from Trueview
Inventory.

None Object

 113

HP Service Provisioner
12. Workflow Manager Module and Node Library

Example TVWSRequest – use in workflow

The following example uses a HP Service Activator Java process node to create a
CreateCustomer object which is subsequently passed to the TVWSRequest workflow node in
order to create a customer in Trueview.
 <Process-Node>
 <Name>Java</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.JavaNode
 </Class-Name>
 <Param name="expression" value="constant:func()"/>
 <Param name="in_scope" value="inputObject,JOB_ID"/>
 <Param name="javacode" value="constant:
 public void func()
 {
 com.tieroneoss.tnp.networkresources.CustomerT ct =
 new com.tieroneoss.tnp.networkresources.CustomerT();
 ct.setName("SOM_Demo");
 ct.setCustomerType("CUSTOMER");
 ct.setCustomerCode("SYSTEM");
 com.tieroneoss.tnpnml.CreateCustomer cc =
 new com.tieroneoss.tnpnml.CreateCustomer();
 cc.setCustomer(ct);
 inputObject=cc;
 }"/>
 </Action>
 <Next-Node>TVReq</Next-Node>
 </Process-Node>
 <Process-Node disablePersistence="false">
 <Name>TVReq</Name>
 <Action>
 <Class-Name>
 com.hp.ov.activator.mwfm.component.builtin.TVWSRequestNode
 </Class-Name>
 <Param name="input" value="inputObject"/>
 <Param name="module_name" value="trueview"/>
 <Param name="operation" value="createCustomer"/>
 <Param name="response" value="responseObject"/>
 </Action>
 </Process-Node>

NOTE The value of the javacode parameter has been formatted in this example for improved readability. It is recommended that you use
Java templates; read the documentation for the Java workflow node in the document HP Service Activator Workflows and the Workflow
Manager for additional information.

114

	User’s and System Integrator’s Guide
	Legal Notices
	Install Location Descriptors
	Conventions
	In This Guide
	Audience
	Document References

	1 Introduction to HP Service Provisioner
	Standards
	Catalog Driven
	Service Specifications and Service Instances
	Service Orders and Product Instances

	2 Fulfillment Processes
	States
	Operations
	Action Workflows
	State Transitions
	Processing Direction
	Error Handling
	Rollback

	Modify Operations
	Structural Modify
	Shadow Characteristics

	Manual Design and Assign
	Force Operations
	Life-Cycle Profiles
	Conditional Child Removal

	3 Implementation Architecture
	4 Installation
	Deploying HP Service Provisioner
	Configuring HP Service Provisioner
	Generate Service Id
	SRModule and TrueviewModule Configuration
	Sender Module Configuration
	Conflict Module Configuration
	Audit Module Configuration

	Installing HP Service Provisioner License
	Localization
	Localizing HP Service Provisioner Engine Components
	Localizing HP Service Provisioner UI

	Deploy SOM Demo Solution

	5 Client Integration
	Northbound API
	Conflicts
	Cancelation

	Order Entry UI

	6 Editing the Service Catalog
	Administrative and Operational States
	Templates
	Profiles
	Restrictions
	Characteristic Annotations
	Scope

	EWI Specifications
	RFS Specifications
	CFS Specifications
	Product Specification
	Resource
	Migration
	Solution and Queue

	Import and Export of Catalog Content

	7 Monitoring and Interacting With Running Orders
	Inspecting Service Orders and Product Instances
	Performing Manual Design
	Interacting with State Transition Action Workflow Jobs
	Activities
	Audit
	Annotations

	8 Processes for Resource Facing Services
	Action Workflow Contract
	Reading Characteristic Values from Action Workflows
	Testing for Modified Characteristics

	Writing Characteristic Values from Action Workflows
	Interaction with Subscription Repository
	Integration with Trueview Inventory

	9 Delta Operations
	Variable Cardinality CFSs
	Requirements
	Partial and Full Instance Trees
	Northbound API
	Delta Operations
	Delta Tree
	Fulfillment Processes for Delta Trees
	Delta Operation Example
	Migration between Products

	10 Dependencies
	Terminology
	Dependency Example
	Managing Resource Product Instances
	Managing Dependencies

	11 Scheduled Requests
	Schedule API
	Scheduling Events
	Schedule Modification
	Repeating Schedule Example

	12 Workflow Manager Module and Node Library
	Workflow Manager Modules
	SRModule
	TrueviewModule

	Workflow Nodes for Accessing Characteristics
	SOMAssignResult
	SOMCharacteristicsModified
	SOMGetCharacteristics

	Workflow Nodes for Managing Dependencies
	SOMResourceCreateDependency
	SOMResourceGetCapacityUsage
	SOMResourceListIngoingDependencies
	SOMResourceListOutgoingDependencies
	SOMResourceModifyDependency
	SOMResourceRemoveDependency
	SOMResourceReplaceDependency
	SOMResourceUpdateCapacity

	Workflow Nodes for Product Instance Access
	SOMCreateProductInstance
	SOMDeleteProductInstance
	SOMGetProductInstance
	SOMUpdateProductInstance
	SOMUpdateProductInstanceState

	Workflow Node for Accessing Trueview Inventory
	TVWSRequest

