
HP Service Activator

Developing Plug-Ins and Compound Tasks

Edition: V70-1A

for Microsoft Windows® Server 2012 R2, HP-UX i v3,
and Red Hat Enterprise Linux 6.6 operating systems
Manufacturing Part Number: None

January 18, 2015

© Copyright 2001-2015 Hewlett-Packard Development Company, L.P.

Legal Notices
Warranty.

Hewlett-Packard makes no warranty of any kind with regard to this manual, including,
but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. Hewlett-Packard shall not be held liable for errors contained herein or direct,
indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be
obtained from your local Sales and Service Office.

Restricted Rights Legend.

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause in DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Copyright Notices.

©Copyright 2001-2015 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial Items are
licensed to the U.S. Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

Printed in the US.
2

Trademark Notices.

Java™ is a registered trademark of Oracle and/or its affiliates.

Linux is a U.S. registered trademark of Linus Torvalds.

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Red Hat® Enterprise Linux® is a registered trademark of Red Hat, Inc.

JBoss® is a registered trademark of Red Hat, Inc. in the United States and other
countries.

EnterpriseDB® is a registered trademark of EnterpriseDB.

Postgres Plus® Advanced Server is a registered trademark of EnterpriseDB.

Oracle® is a registered trademark of Oracle and/or its affiliates.

UNIX® is a registered trademark of the Open Group.

Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation.

All other product names are the property of their respective trademark or service mark
holders and are hereby acknowledged.

Document id: p158-pd001409
 3

4

Contents
1. Understanding and Using Service Activator Plug-ins and Compound Tasks
Understanding Plug-ins. 16

Atomic Tasks . 16
Packaging a Plug-In . 17
Understanding the Resource Manager . 17
Understanding the Plug-in Life-Cycle. 24
Understanding Plug-in Archives . 26
Understanding the Plug-in Context . 28

Understanding Compound Tasks . 29
Using the Plug-in Library . 30

Accessing Plug-in Documentation . 30
Using Plug-in Classes. 30

2. Understanding and Using Service Builder
Using Service Builder to Create Plug-ins. 34

Starting Service Builder . 34
Creating a Project . 34
Creating a Plug-in . 34
Adding Atomic Tasks . 39
Using Common Source Files in Multiple Plug-ins . 41
Adding Java Classes (Source Files) . 42
Adding Scripts. 44
Adding Files . 45
Including Preprovisioning Scripts and Files . 46
Adding a Library. 47
Viewing General Properties . 48
Configuration Parameters . 50
Compiling a Plug-in . 51
Deploying a Plug-in . 53
Testing an Atomic Task . 54
Generating Plug-in Documentation. 55

Using Service Builder to Create Compound Tasks . 58
Creating Compound Tasks . 58
Importing and Exporting a Compound Task. 64
Deploying a Compound Task . 64
Testing a Compound Task . 65
Documenting a Compound Task . 65

Maintaining Consistency Between Deployed Tasks . 67
Configuring Authentication or Authorization . 68
Using Service Builder to Manage Plug-in Archives and Compound Tasks . 69
Setting Service Builder Configuration . 71
Using Service Builder from the Command Line . 72

3. Creating Customized Plug-ins and Compound Tasks
Creating Plug-ins: Advanced Tips. 76

Plug-in Java Class . 76
5

Contents
Executing Scripts and Commands. 80
Saving Data in the Database . 81
Reading Data from the Database. 83
Understanding the Plug-in Deployment Descriptor (Manifest) . 84
Packaging and Deploying a Plug-in . 85
The Difference Between PAR Deployment and Script Deployment. 85

Creating Compound Tasks Manually: Advanced Tips. 87

A. Generic CLI
Generic CLI Plug-in . 90

B. NNM Liaison
NNMLiaison Plug-in . 94

C. Generic LDAP
GenericLDAP Plug-in . 96

D. Generic HTTP Plugin
Generic HTTP Plug-in . 98
6

 7

8

In This Guide
This guide describes the process of developing plug-ins and compound tasks for HP
Service Activator.

Audience The audience for this guide is the Systems Integrator (SI). The SI has a combination of
some or all of the following:

• Understands and has a solid working knowledge of:

— UNIX® commands

— Windows® system administration

• Understands networking concepts and language

• Understands database programming and management

• Ability to program in Java™ and XML

• Understands security issues
 9

10

Conventions
The following typographical conventions are used in this guide.

Font What the Font
Represents Example

Italic Book or manual
titles, and manpage
names

Refer to the HP Service Activator — Workflows
and the Micro-Workflow Manager and the
Javadocs manpage for more information.

Provides emphasis You must follow these steps.

Specifies a variable
that you must supply
when entering a
command

Run the command:

InventoryBuilder <sourceFiles>

Parameters to a
method

The assigned_criteria parameter returns an
ACSE response.

Bold New terms The distinguishing attribute of this class...

Computer Text and items on the
computer screen

The system replies: Press Enter

Command names Use the InventoryBuilder command ...

Method names The get_all_replies() method does the
following...

File and directory
names

Edit the file
$ACTIVATOR_ETC/config/mwfm.xml

Process names Check to see if mwfm is running.

Window/dialog box
names

In the Test and Track dialog...

XML tag references Use the <DBTable> tag to...

Computer
Bold

Text that you must
type

At the prompt, type: ls -l

Keycap Keyboard keys Press Return.

[Button] Buttons on the user
interface

Click [Delete].

Click the [Apply] button.
 11

Menu
Items

A menu name
followed by a colon (:)
means that you select
the menu, then the
item. When the item
is followed by an
arrow (->), a
cascading menu
follows.

Select Locate:Objects->by Comment

Font What the Font
Represents Example
12

Install Location Descriptors
The following names are used throughout this guide to define install locations.

Descriptor What the Descriptor Represents

$ACTIVATOR
$ACTIVATOR_OPT

The base install location of Service Activator.
The UNIX location is /opt/OV/ServiceActivator
The Windows location is
<install drive>:\HP\OpenView\ServiceActivator\

$ACTIVATOR_ETC The install location of specific Service Activator files.
The UNIX location is /etc/opt/OV/ServiceActivator
The Windows location is
<install drive>:\HP\OpenView\ServiceActivator\etc\

$ACTIVATOR_VAR The install location of specific Service Activator files.
The UNIX location is /var/opt/OV/ServiceActivator
The Windows location is
<install drive>:\HP\OpenView\ServiceActivator\var\

$ACTIVATOR_BIN The install location of specific Service Activator files.
The UNIX location is /opt/OV/ServiceActivator/bin
The Windows location is
<install drive>:\HP\OpenView\ServiceActivator\bin\

$JBOSS_HOME The install location for JBoss.
The UNIX location is
/opt/HP/jboss
The Windows location is
<install drive>:\HP\jboss

$JBOSS_DEPLOY The install location of the Service Activator J2EE components.
The UNIX location is
/opt/HP/jboss/standalone/deployments
The Windows location is
<install drive>:\HP\jboss\standalone\deployments

$JBOSS_EAR_LIB The location for libraries (Java *.jar files) to be executed by the HPSA
engine (workflow manager and resource manager).
The UNIX location is
/opt/HP/jboss/standalone/deployments/hpsa.ear/lib
The Windows location is
<install drive>:\HP\jboss\standalone\deployments\hpsa.ear\lib

$ACTIVATOR_DB_USER The database user name you define.
Suggestion: ovactivator

$ACTIVATOR_SSH_USER The Secure Shell user name you define.
Suggestion: ovactusr
 13

14

1 Understanding and Using Service
Activator Plug-ins and Compound
Tasks

This chapter contains information about constructing plug-ins and compound tasks, and
their behavior in Service Activator.
Chapter 1 15

Understanding and Using Service Activator Plug-ins and Compound Tasks
Understanding Plug-ins
Understanding Plug-ins
A plug-in is a Java class that contains methods to perform configuration tasks related to
a specific type of software or hardware component. A plug-in should be able to perform
its operations on any component of that type as long as the target is reachable from the
Service Activator server and has the necessary prerequisites to enable the
communication from Service Activator. Typically this communication is via Secure Shell,
but other communication mechanisms are possible.

For information about where plug-ins fit in the overall Service Activator solution, see in
HP Service Activator—System Integrator’s Overview.

Service Activator comes complete with a number of plug-ins. You can find more details
about these plug-ins in the $ACTIVATOR/docs/plugins directory.

You can write your own plug-ins. They are created manually or using the Service Builder
tool. The following chapters in this book describe how to develop new plug-ins.

While nothing prevents you from creating a plug-in operating on multiple types of
components, there is, generally, no benefit from such grouping. The plug-in shipped with
Service Activator operates on a single type of target.

Atomic Tasks

The methods in a plug-in are called atomic tasks. There can be any number of atomic
tasks inside a plug-in. Each atomic task performs one individual configuration change on
a target. The semantics of an atomic task could be quite complex but generally are
simple changes.

One hallmark of an atomic task is that it should be reversible. That is, it should be
possible to reset the state of the target to the way it was before the task was performed.
There are cases where an atomic task is not reversible, but these are rare and should be
avoided if possible.

Figure 1-1 shows a plug-in used to configure DNS. Each of the tasks contained in the
plug-in (UXDNS_iniDNS, UXDNS_rmDNS, and so on) is called an atomic task.
Chapter 116

Understanding and Using Service Activator Plug-ins and Compound Tasks
Understanding Plug-ins
Figure 1-1 The DNS Plug-in

Atomic Task Parameters

Atomic tasks always take a list of parameters. These parameters tell the task what
target to operate on and, optionally, other values to specify the exact nature of the
change to make. The parameters are directly reflected in the parameters of the Java
method: each parameter to the atomic task is a parameter of the method. All parameters
must be of type String.

As noted above, each atomic task should be reversible. If the Resource Manager
determines that an activation transaction needs to be rolled back, then any atomic tasks
in a transaction that have been completed will be invoked again and told to undo their
changes. Thus, the atomic task methods take an initial parameter indicating whether
this is the DO_AND_CHECK or the UNDO_AND_CHECK invocation of the task.

Packaging a Plug-In

In many cases, a plug-in consists of more than just the Java class. Depending on the
target devices, the plug-in may also depend on scripts (in any scripting language
supported by the targets), libraries, and other non-executable files. All of these files,
along with a manifest that contains additional configuration data, comprise the plug-in.

All of the components of a plug-in are packaged and delivered in a Plug-in Archive
(PAR) that obeys a specific directory structure. For more details on this structure, see
“Understanding Plug-in Archives” on page 26. A PAR is delivered as a single file that
uses the Java Archive Format (this is the same as a ZIP format).

Understanding the Resource Manager

The Service Activator Resource Manager is XA compliant and participates in
transactions coordinated by a Transaction Manager. The Resource Manager shields the
plug-ins from the complexities of the XA protocol.
Chapter 1 17

Understanding and Using Service Activator Plug-ins and Compound Tasks
Understanding Plug-ins
NOTE XA is a standardized interface which is used to pass and coordinate transaction
identifiers. For additional information, see X/Open CAE Specification—Distributed
Transaction Processing: The XA Specification, ISBN 1-872630-24-3, published by X/Open
Company Limited, U.K., and currently available for download at the following URL:
http://www.opengroup.org/products/publications/catalog/c193.htm

The Resource Manager reliably maintains the state of each transaction in order to
recover transactions that were interrupted by a system failure. The default behavior of
Resource Manager is as follows:

• Each transaction initiated by a workflow passes through the Resource Manager.

• The Resource Manager assigns each transaction a unique ID (UID) based on the
transaction ID (XID). This UID is approximately 13 digits. It maps to the XID and
the transaction is saved in the database with the 13 digit name. The mapping
between the UID and the transaction ID is printed in the Resource Manager log file
found in:

$ACTIVATOR_VAR/log/resmgr_active_log.xml

The mapping is also maintained in the database.

• When the activation is complete, Resource Manager either deletes the transaction
from the DB or leave it in there based on the setting of SaveOldTransactions
configuration parameter in the resmgr.xml. See the comments in the resmgr.xml
for more information.

• When the Resource Manager starts up, it processes all the ongoing transactions
present in the database. Typically, there will be no transactions to recover unless the
Resource Manager had crashed during the execution of the transaction.

NOTE To view the state on an individual transaction, run the script:

ViewTransactionState[.bat] <options> [all] -dbUser <name> -dbPassword
<password>

Append the parameter all to see the entire list of saved states for this transaction. If
you do not use the parameter all, you will see only the last state of the transaction.

To delete the completed transactions from the database in case the
SaveOldTransactions is set to true, run the script:

DeleteCompletedTransactions[.bat] -dbUser <name> -dbPassword <password>

This script only deletes the Db transactions which have been completed.

Understanding Locking

Locking exists to prevent two or more related atomic tasks from interfering with one
another. For example, your plug-in might contain a task named addUser() that you
don't want to run at the same time as removeUser() on the same target machine. In its
typical usage, locking will prevent two atomic tasks from the same plug-in from
executing at the same time on a single target. It is also possible to confiugre no locking
arguments or a count, which indicate how many atomic tasks can be running in parallel
with the same values for the locking arguments. Locking is managed by the Resource
Manager and is based on the plug-in being used. An atomic task from one plug-in will
never block an atomic task from a different plug-in.
Chapter 118

Understanding and Using Service Activator Plug-ins and Compound Tasks
Understanding Plug-ins
NOTE The locking applies across different cluster nodes in a cluster environment.

When you create a plug-in using Service Builder, you specify the locking arguments or no
lock arguments for the plug-in. These locking arguments should be given as a
space-separated list of numbers in ascending order. Typically, a locking argument of 1 is
sufficient. However, you can set the locking arguments to include as many arguments as
you wish, for example, 1 3 5. The locking arguments must be space-separated, and they
must be in ascending order.

Typically, it is sufficient to lock on the machine argument of an atomic task. This is
usually the first string argument of an atomic task. However, more elaborate locking is
possible. You must specify at least one locking argument for a plug-in. The more locking
arguments you specify, the more fine-grained the locking will be. Since locking
arguments apply to an entire plug-in, you must ensure that every atomic task in a
plug-in has as many arguments as the highest locking argument number for that
plug-in.

When the Resource Manager is about to run an atomic task, it checks the locking
arguments for that plug-in. If there is another atomic task in the same plug-in that is
currently running with the same values for the locking arguments, the Resource
Manager will block the new atomic task from running until the first atomic task is
complete. When the first atomic task completes, the new atomic task can begin.

Example 1-1 Locking Example

Assume you have a plug-in named GLOBAL.testplugin with two atomic tasks:

public ExecutionDescriptor task_task1(int op, String machine, String name,
String directory)

public ExecutionDescriptor task_task2(int op, String machine, String name)

The locking argument for this plug-in is set to 1. This specifies the “machine” argument
as the locking argument. Locking arguments start with the first String argument to
your atomic task (not with the int op argument). Also, there is no requirement that the
first argument to every atomic task in this plug-in have the same name. A locking
argument of 1 specifies that the first String argument is the locking argument,
regardless of the parameter name used in the code.

The Resource Manager is currently running task_task1(DO_AND_CHECK,
"machine.domain.com", "joe", "/home") of the GLOBAL.testplugin. While this
atomic task is running, a request comes in to invoke task_task2(DO_AND_CHECK,
"machine.domain.com", "bill") of the GLOBAL.testplugin. When the second atomic
task request comes in, the Resource Manager checks a locking table to see if another
atomic task is currently running with a locking argument of machine.domain.com in the
same plug-in. Since the second atomic task request belongs to the same plug-in as the
first atomic task call, and since the locking argument (machine.domain.com) is
identical in both cases, the Resource Manager will block the second atomic task call until
the first has completed. If the second atomic task call had a parameter of
machine2.domain.com, there would not be any blocking, since the locking arguments do
not match.

If this plug-in specified the locking argument as 1 2, blocking would not take place. All
locking arguments must match for the Resource Manager to block an atomic task, so in
the above case blocking would not take place because “joe” does not equal “bill.”
Chapter 1 19

Understanding and Using Service Activator Plug-ins and Compound Tasks
Understanding Plug-ins
Configuring the Resource Manager

You can change various aspects of the Resource Manager behavior. This configuration is
specified in the resmgr.xml file. For information about these parameters, see the
comments in the $ACTIVATOR_ETC/config/resmgr.xml file.

Table 1-1 ResourceManager Parameters

Parameter Required Description Reconfigurable Default

Port Yes The port to which the Resource
Manager is bound.

No None

SaveOldTransactions No If SaveOldTransactions is
set to ‘true’, the DB row for
the transaction state in the
database is not deleted when
the activation completes ,
instead the completion
status is update to completed
and the transaction time is
set.

The completed transaction
can then be viewed with
ViewTransactionState[.ba
t].

If the parameter is set to
‘false’, the DB rows are
deleted when transactions
are completed.

No No

PluginMonitorPollIn
terval

Yes The interval in milliseconds
between attempts to retrieve
and cache last modified time
of deployed plugins.

No None

LockMonitorThreadSl
eepInterval

Yes The lock monitor thread
handles retry of releasing
locks to other atomic tasks.
Retry happens e.g. if one
cluster node goes down and
the work is taken over by
another cluster node or if a
cluster node is suspended.

No None

VARDirectory Yes A directory where the Resource
Manager repository is.

No None

EnableRemoteDeployment No Creates a deployer deploying
plug-in scripts, files, etc.

No No

EnableVersioning No Enables versioning of PAR into
account when executing plug-in
scripts.

No No
Chapter 120

Understanding and Using Service Activator Plug-ins and Compound Tasks
Understanding Plug-ins
CacheExpiration Yes Controls how long (in
milliseconds) plug-in objects will
be in cache.

No None

PluginLogs/SpecificPluin

name Yes Name of plugin whose log
should be written to a
separate log file.

No None

namespace No Name space of plugin. No GLOBAL

log_level No Debug level of the log
information for this Plug-in.

No INFORMAT
IVE

log_directory Yes A directory where the log files
will be placed.

Yes None

log_max_entries No The maximum number of log
entries written to a log file
before the log file is closed and a
new one is created.

Yes Will use the
Logger value

Logger

Logger ClassName Yes No None

Logger log_directory Yes A directory where the log files
will be placed.

Yes None

Logger log_level Yes The following log_level
parameters set the type of
information logged: ERROR - to
record only error messages
logged. WARNING - to record
errors and warnings.
INFORMATIVE - to record
errors, warnings and some
additional information. DEBUG
- to get additional debugging
information. DEBUG2 - to get
even more detailed debugging
information.

Yes None

Logger log_max_entries Yes The maximum number of log
entries written to a log file
before the log file is closed and a
new one is created.

Yes None

Deployer

Table 1-1 ResourceManager Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 1 21

Understanding and Using Service Activator Plug-ins and Compound Tasks
Understanding Plug-ins
Deployer ClassName Yes The configurable parameters
listed are applicable only to the
default
SSHScriptDeployerFactory
which provides a deployer that
uses Secure Shell for secure
communications.

SSHScriptDeploye
rFactory

None

Deployer Param Yes Parameter name and value pair
for deployer. This depends on
specified deployer in classname.
You can repeat this parameter
with different values as many
times as you need.

No None

DisabledtaskDelay No By default, if a task is disabled,
then the Resource Manager
instantly skips over the task,
acting as if the task succeeded
w/o any
stdout/stderr/description. You
can specify a finite delay if
desired. The
DisabledtaskDelay is specified
in seconds and is global for all
disabled tasks.

Yes 0

DisableAtomicTask No You can declare some atomics to
be disabled. This will allow an
existing solution to operate in
an environment where the give
atomics cannot actually run.
Thus, a complete solution can be
demonstrated in the absence of
various target hardware or
software.

You can disable one or more
atomics and can use some
rudimentary wild-carding... the
star (*) will work at the end of
the task name (not in the
middle). Repeat the tag to
disable multiple atomics. You
can repeat this parameter with
different values as many times
as you need.

Yes None

Database (ResMgrOracleDatabaseConnectionManager) The recommended one

datasource_name Yes The Datasource file name. The
datasource file must be found in
the directory $JBOSS_DEPLOY

No None

Table 1-1 ResourceManager Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 122

Understanding and Using Service Activator Plug-ins and Compound Tasks
Understanding Plug-ins
Database (ResMgrSimpleDatabaseConnectionManager)

driver Yes The name of the Java class
that implements the JDBC
driver to be used to access the
database

No None

Server_name Yes The Database server name or IP
address.

No None

user Yes The user name that is required
to make connection to the
database.

No None

password Yes The password for connecting as
the specified user.

No None

database_name Yes The name of the database to be
connected to.

No None

port Yes The port on which the DB
connections are to be made.

No None

connections Yes The number of simultaneous
connections that the module can
maintain to the database. This
allows multiple threads to work
against the database
concurrently.

Yes None

max_usages No The maximum number of times
that a connection is reused
before that connection is
released and another is
established. A value of 0 means
that connection will not be
released.

Yes 10000

timeout No Indicates how long a connection
can operate before it is forced to
close. The default value is 45
seconds. 0 indicates that there is
no time-out

Yes 45000

Table 1-1 ResourceManager Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 1 23

Understanding and Using Service Activator Plug-ins and Compound Tasks
Understanding Plug-ins
Understanding the Plug-in Life-Cycle

A plug-in moves into and out of several valid states during its life cycle, as shown in
Figure 1-2.

Figure 1-2 Plug-in Life Cycle Diagram

The plug-in moves from one valid state to another using valid transitions. These
transitions are established when the Resource Manager invokes a method.

The different states include:

created

The first time a workflow calls a plug-in for a transaction (and this plug-in is not in the
pool), a new instance of the plug-in is created by the Resource Manager. This initiates a
call to the setContext method (that the plug-in might have overridden). The Resource
Manager invokes this method before init() in order to set the context of the plug-in.
The context contains information about the current transaction (see getXID() from the
plug-in context).
Chapter 124

Understanding and Using Service Activator Plug-ins and Compound Tasks
Understanding Plug-ins
not initted

This is the state the plug-in is in right after the setContext() method finishes running.
The Resource Manager runs the init() method, which will transition the plug-in to the
initted state. This method is invoked only once with a list of attributes and values. If a
PluginException is thrown in this method, the plug-in is considered invalid, because it
was unable to initialize itself. The developer should throw this kind of exception in the
event of a misconfiguration.

busy

A plug-in instance is busy when it is being used in a transaction (for example, there is a
call to an atomic task)

task_xx (atomic task runtime)

Each time an atomic task invocation for this plug-in is requested, a call to the actual
method will occur. If the call happens during the normal running of the task, the first
parameter to this method (op parameter) is DO_AND_CHECK. If the request is within a
rollback, the value is UNDO_AND_CHECK.

pooled (busy)

After an atomic task is finished, the plug-in instance returns to the pool state (with busy
substate). The plug-in instance remains in this state until the current transaction ends,
such that the plug-in instance remains linked to the XID until the end of the transaction.

If the current transaction requires another atomic task within the same plug-in, the
plug-in instance is reused; it leaves the pool state (with busy substate) and returns to the
busy state. When the transaction ends, the plug-in instance goes to the pool state (with
free substate).

pooled (free)

When the transaction finishes, all the plug-in instances involved in this transaction are
marked as free in the pool so they can be used again by another transaction. Before that,
there is a call to the method transactionComplete(). This method is invoked so that
the plug-in can take any additional measures when it is disassociated from a transaction
(for example, releasing resources).

If another transaction requires a plug-in that has an instance as pooled and free, this
instance is used and there is a call to setContext() with information about the new
XID.

destroyed

After some time without being used by any transaction, the Resource Manager reaps
unused instances. Those plug-in instances in the pool marked as free are removed.
Before destroying the instances, there is a call to the destroy() method.

destroy()

This is the method invoked when the plug-in instance is destroyed in order to free
resources.

The Resource Manager can choose to create several plug-in instances, depending on the
number of simultaneous activations. An instance will remain linked to a transaction
from the first time it is used until the transaction ends.
Chapter 1 25

Understanding and Using Service Activator Plug-ins and Compound Tasks
Understanding Plug-ins
If there is a failure in the Resource Manager, and the Resource Manager goes down, new
instances are created when the running transactions are recovered (there is no
serialization of the plug-in instances).

NOTE You should not use member variables in the plug-in instance to store things like the
previous state of a resource if you expect to have that information available in a rollback.
There are special methods in the PARContext available for storing persistent state
across the life of a transaction. For additional information on these methods, see the
Javadoc for ParContext.

Understanding Plug-in Archives

Every plug-in archive has a specific file system layout. This directory structure is
automatically generated for you when you create a plug-in using Service Builder. The
parent directory typically has the same name as the plug-in. The directory structure for
the DNS plug-in archive, for example, is shown in Figure 1-3.

Figure 1-3 Plug-in Archive File Layout

A Plug-in Archive (PAR) is a file that contains all of the necessary elements to properly
run the plug-in’s atomic tasks on a target machine. These elements include classes, files,
scripts, preprovisioning scripts or files, and libraries.

The following paragraphs describe the purpose and contents of each directory. The src
and doc sections can be excluded when deploying a PAR because they are not needed at
runtime. Service Builder gives you the option of excluding them when deploying the
plug-in archive.

classes

This directory contains the Java class or classes for the plug-in. The Java compiler
generates this class or classes when you compile your code.

doc

This directory is created and populated when the documentation generation is run for a
plug-in. This process generates HTML files that are stored in this directory. The
information is gathered from the Javadoc in the Java class that is implementing the
plug-in for the given task, and from the deployment descriptor.
Chapter 126

Understanding and Using Service Activator Plug-ins and Compound Tasks
Understanding Plug-ins
files

This directory contains files (not scripts) that are used to configure the plug-in for a
particular environment. The plug-in copies these files to the target machine so that the
information required by the atomic task is available to it locally. Using files also
simplifies future changes to a plug-in.

For example, the Oracle® PAR uses an XML definition file stored in this directory to
write the SQL sentences used in each atomic task. An operator can change the
references in the file to adapt the plug-in to new releases of the database without
changing the source code of the plug-in.

lib

This directory contains a set of JAR and ZIP files. These files represent a set of tools that
the plug-in Java class or classes may need. These files are not copied to the target
machine. All of these files must be in this directory and not in subdirectories. These
JARs are available to be linked into the Resource Manager if your plug-in needs
additional functionality at run-time. An example of a file that you might include in the
lib directory is a JDBC driver for accessing a database from within your plug-in.

MANIFEST

Contains the deployment descriptor in the file par.xml that defines the characteristics
of the plug-in, including atomic tasks and scripts. You can modify this file for an existing
plug-in to create your own plug-in. Also, when you use Service Builder to create a
plug-in, Service Builder creates and populates par.xml automatically with the
information that you type.

preprov

This directory contains preprovisioning files that are copied to the target machine the
first time an atomic task from this plug-in is executed for a given target. The files
contain preprovisioning information that the atomic tasks use to set up the target
environment for the plug-in.

Each preprovisioning file may be marked as executable. The Resource Manager attempts
to execute each preprovisioning file when both of the following conditions apply:

• It is the first time the plug-in is used on the target machine.

• The executable flag for that file is set to true. In the GUI, this is represented as a
check-box.

Additionally, an interpreter may be specified that will be used to execute the file. This is
important if the file is a script.

scripts

This directory contains scripts that are called directly by atomic tasks. All the scripts are
copied to the target machine the first time an atomic task from this plug-in is executed
for a given target. An atomic task can use more than one script.

Additionally, an interpreter may be specified that will be used to run the script.
Chapter 1 27

Understanding and Using Service Activator Plug-ins and Compound Tasks
Understanding Plug-ins
src

This directory contains the Java source code that makes up the plug-in. Often there will
be only one Java source file that comprises the plug-in, but you can include as many
source files as you wish. The main plug-in class must do the following:

• Extend the class PARPlugin, which is provided as part of Service Activator

• Define one or more atomic task methods in the plug-in class

Additionally, the plug-in class may do the following:

• Provide an init() method

• Provide a destroy() method that cleans up a class instance before the instance is
destroyed

• Provide a transactionComplete() method that releases resources at the end of a
transaction involving this plug-in.

NOTE Scripts and files are copied to the remote machine only on first activation. Later this step
is skipped. If these files are removed from the target machine, you will have to re-deploy
the plug-in to Service Activator. This will force to upload scripts and files on the remote
machine once more.

For more information about building the source code for a plug-in, see “Creating
Plug-ins: Advanced Tips” on page 76.

Understanding the Plug-in Context

In most of the steps described in the plug-in life cycle, the plug-ins will have a context
available where they are able to log messages, run scripts remotely, retrieve plug-in
properties, and so on.

For a list of the available PARContext methods, see the Javadocs for ParContext.
Chapter 128

Understanding and Using Service Activator Plug-ins and Compound Tasks
Understanding Compound Tasks
Understanding Compound Tasks
A compound task is an ordered list of atomic tasks (or other compound tasks), along with
a mapping from the input parameters of the compound task to the parameters of each
called task. When a compound task is invoked, each of the atomic tasks within the
compound task are invoked in the order they were specified in the compound task. The
parameters that were passed to the compound task are passed to each called task
according to the parameter mapping specified in the compound task definition. For
additional information on parameter mapping, see “Changing Parameter Mappings” on
page 62 and “Creating Compound Tasks Manually: Advanced Tips” on page 87

If one of the atomic tasks in the compound task fails, each of the previously executed
tasks in the compound task is invoked again and told to undo the work it just completed.
This is how the transactionality of compound tasks is implemented.

Compound tasks can be created graphically within Service Builder. It is also possible to
specify the definition of a compound task using XML. In either case, just like plug-ins,
compound tasks must be deployed into Service Activator before they can be invoked from
the workflow engine.
Chapter 1 29

Understanding and Using Service Activator Plug-ins and Compound Tasks
Using the Plug-in Library
Using the Plug-in Library
Follow the instructions below to create and use the plug-in library.

Accessing Plug-in Documentation

Each plug-in normally has an associated Javadoc. Service Builder allows you to open
each plug-in and generate the plug-in documentation in HTML format. Use the following
steps:

1. Create a new project in Service Builder by selecting New Project from the File
menu.

2. Type a name for the project and, if you choose, a description field.

3. Select [Finish].

4. In the view of the directory structure, open the folder for the project you just created
and right-click the Plug-in Archives folder.

5. Select Add Plug-in Archive from the pop-up menu.

6. Use the file browser dialog box, locate the plug-in archive that you want to read
about, and then select Open.

7. From the Tools menu, select Generate Documentation to generate an index.html
file for this plug-in.

8. Browse to the doc directory for the project and open the index.html file to view the
documentation for that plug-in.

Using Plug-in Classes

Each plug-in can access certain plug-in classes within the library provided with Service
Activator. These include:

• AttributeTable – a standard Java class used to query for parameter values and
retrieve them.

• PARPlugin – a Service Activator class that all plug-ins are required to extend, which
provides init and destroy methods that a plug-in can override.

• PARContext – a Service Activator built-in variable of the PARPlugin that provides
several capabilities including the ability to execute scripts remotely, save transaction
state, and log messages to the Resource Manager log file. The PARContext interface
also includes the following 5 parent interfaces:

— PARLogger

— AtomicTaskStateSaver

— TransactionStateSaver

— StateSavingConstants

— DoneRequester

— DataUploader
Chapter 130

Understanding and Using Service Activator Plug-ins and Compound Tasks
Using the Plug-in Library
For more information about each of the classes discusses here, see the Javadocs for that
particular class.
Chapter 1 31

Understanding and Using Service Activator Plug-ins and Compound Tasks
Using the Plug-in Library
Chapter 132

2 Understanding and Using Service
Builder

This chapter provides information about the Service Builder tool supplied with Service
Activator and how to use it to develop and manage plug-ins and compound tasks.
Chapter 2 33

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
Using Service Builder to Create Plug-ins
The Service Builder tool provided with Service Activator is an Integrated Development
Environment (IDE) you can use to create plug-ins and the associated atomic tasks. This
is especially convenient when you are creating large, complex plug-ins, as Service
Builder automatically generates atomic task method stubs for you and updates the
deployment descriptor.

Since plug-ins are simply a collection of files that obey a well defined directory structure,
plug-ins can be created without the use of Service Builder. Many developers find a
hybrid approach to be the most useful: they use the Service Builder GUI to get the
structure right but do most of the actual writing of the plug-in code using their favorite
editor.

Service Builder also provides a GUI tool to create compound tasks built-up from atomic
tasks. Again, these can be created in any text editor, but generally the GUI tool is easier
for this activity.

Service Builder is also the conduit for deploying plug-ins into the Service Activator
environment and for obtaining information about the currently deployed plug-ins and
compound tasks. This functionality is available from the command line or the GUI mode.

Starting Service Builder

To start the Service Builder tool in the GUI mode, run:

$ACTIVATOR_BIN/servicebuilder

Creating a Project

In GUI mode, all of your work is organized by projects. Think of a project as a container
to hold plug-ins and compound tasks during your development phase. Once your plug-ins
are complete and a PAR has been generated, the plug-ins are no longer tied to the project
(for example, the PAR can then be used by a different project).

To begin, you must first create a project or open a previous project:

• To create a new project, select File from the menu, and then select New Project.

Specify the name and location of your project. You can name your project anything
you like. The project file name uses the project name by default, but it can be
modified.

• To open an existing project, select File from the menu, then select Open Project.

Creating a Plug-in

In the GUI you can create a new plug-in in two ways:

• To create a new plug-in from scratch in your project, right-click the Plug-in
Archives folder, and select New Plug-in.

NOTE If the Plug-in Archives folder is not visible, click the horizontal magnifying glass
icon to the left of your project folder.
Chapter 234

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
• Alternatively you may start from an existing plug-in and modify it. In your project,
right-click the Plug-in Archives folder, and select Add Plug-in Archive. Browse to
the location of some existing PAR files. Once you add a plug-in to a project, you have
a complete copy of that plug-in in your project. Changes you make to the plug-in are
not reflected in the original.

Creating a New Plug-in from Scratch

When you create a new plug-in from scratch, the wizard displays the following dialog
box:

Figure 2-1 Service Builder Plug-in Properties Dialog

1. Name your plug-in. This is also the name of the Java class; thus, it must be a valid
Java identifier.
Chapter 2 35

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
2. Type a brief description of your plug-in. This description is shown in the Javadoc and
the documentation of your plug-in.

3. Type the package name. A package name is not required, but it is encouraged. The
built-in plug-ins use the following package “com.hp.ov.activator.plugins”. You
should use a different package name.

4. Type the version number. The three fields correspond to major, minor, and revision.
The major field is required.

The system does not support multiple versions of the same plug-in active in the
system at the same time. The version information is currently only useful for being
able to determine which version is loaded. Future releases may support multiple
versions of a plug-in being deployed at the same time.

5. Choose the name space for your plug-in. A name space is used when referring to the
atomic tasks within a plug-in to perform activations with Service Activator (the Java
class and package name is not used from within Service Activator). Consider the
following requirements when choosing the name space for your plug-in:

• The combination of name space and atomic task name must be unique within the
set of tasks deployed on a server. Thus, if you have two tasks with the same
name in different plug-ins, the two plug-ins must have different name spaces.

• By convention, all plug-ins provided with Service Activator have a GLOBAL name
space, and all atomic task names are prepended by the plug-in name (for
example, UXOS_addDir).

6. Choose the deployment mode. The deployment mode tells the Resource Manager
whether it should copy files to the target resources or not:

• ON-DEMAND - copies scripts, files, and preprovisioning files to the target
systems prior to running the first atomic task on that target

• NO DEPLOYMENT - The Resource Manager will not copy these files to the
target systems. It assumes that the scripts, files, and preprovisioning files are
already available on the target system. In this case, the fact that these files are
packaged into the PAR is a simply a matter of keeping track of the versions that
are expected to be used together. The proper files must be manually provisioned
onto the target systems.

7. Specify which arguments of the atomic tasks will be used as locking arguments. If no
arguments should be used select None. Typically, plug-ins use only the first
argument as the locking arguments, so you would only specify “1”. See
“Understanding Locking” on page 18 for more information about locking arguments.
Set the Count value to the number of atomic tasks which can be running in parallel.

8. Click [Finish]:

• This creates the basic Java code for the plug-in. There are no atomic tasks yet;
just the basic Java shell.

• The Service Builder message section at the bottom of the window indicates a
successful addition of the plug-in.

• Service Builder creates a new PAR directory structure for your project that is
similar the one shown in Figure 2-2.
Chapter 236

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
Figure 2-2 Example of PAR Directory Structure

NOTE Figure 2-2 shows the PAR directory structure as displayed in Windows Explorer.
Chapter 2 37

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
Adding an Existing Plug-in

1. In Service Builder, right-click the Plug-in Archives folder of the project tree, and
select the Add Plug-in Archive option, as shown in Figure 2-3.

Figure 2-3 Add Plug-in Archive

2. Browse to the location of the PAR file you want to add to your project.

3. Select the PAR, and then click [Open]. A successful operation produces messages
similar to the following:
Chapter 238

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
Adding Atomic Tasks

1. Right-click the Atomic Tasks folder in the plug-in directory, and select New
Element.

2. In the Atomic Task dialog box (shown below), type the name of the atomic task you
are creating. If your plug-in is using the GLOBAL namespace, a good convention is to
prepend the name of the plug-in to the name of your atomic task. For example, the
addDir atomic task in the W2K plug-in is actually called W2K_addDir.

Figure 2-4 Service Builder Atomic Task Definition Dialog

3. Type a short description of the task. This description is kept in the manifest for the
plug-in and is accessible by Service Builder when it displays the list of all tasks that
are currently deployed to the Resource Manager.

NOTE When the task is first created, this description will be transferred to the Javadoc
comments above the newly generated atomic task. Any subsequent changes to the
description will not be transferred to the task header. Likewise, any edits to the task
header will not be transferred back to the task description.

4. Specify the names of the parameters, separating them with commas or spaces.
Usually, the parameters will begin with machine, as shown in the following example:

machine instance port password tablespace datafile data

5. Click [Finish]. The wizard will automatically create the code for the atomic task
and add it to the Java class.
Chapter 2 39

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
6. To view the Java code that was just generated, select the atomic task in the left-hand
pane of Service Builder. The Java code will appear in the right-hand pane, as shown
in Figure 2-5.

NOTE You can change the parameter list for an atomic task by editing the Java code directly. To
remove an atomic task from a plug-in, you must delete the method from the Java code.
For additional information, see “Creating Plug-ins: Advanced Tips” on page 76

Figure 2-5 Viewing the Java Code for a New Atomic Task
Chapter 240

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
Using Common Source Files in Multiple Plug-ins

Many plug-ins have files, scripts, and Java code that are unique to that individual
plug-in. Sometimes, however, there are files that can be used in multiple plug-ins.
Typically, in this case, you want to have any changes to any common files reflected in all
of the PARs that include them.

When you create a PAR and include these various files in it, the PAR actually contains a
copy of these files. However, the PAR also keeps a reference to the original location from
which the files were copied. This way, if a common file gets updated at a later point in
time, you can tell Service Builder to update the PAR with fresh copies of any of its files
that have been updated.

NOTE If you want to change the local (PAR) copy of a file without changing the original file, you
will need to break the link between the two files. You can use the following process to do
this:

1. Within the PAR directory structure but outside of Service Builder, make a copy of the
file (for example, copy myscript.bat to myscript.copy).

2. Remove the file from your plug-in by right-clicking on it in the Service Builder GUI
and selecting Remove From Plug-in.

3. Rename the copy you created in Step 1 back to its original name (for example,
rename myscript.copy to myscript.bat).

4. Add this file back into the plug-in by selecting the New Element option under the
relevant folder (for example, “Files”).

Updating the PAR File

The Update operation checks for PAR content (directory structure) changes to any
original file (Java class, script, file, preprovisioning program, JAR, or ZIP) in the PAR. If
it detects changes, Service Builder copies the changed files from their original location to
the destination in the current PAR.

1. Right-click the PAR folder, and then select Update.

The Service Builder message window shows a message similar to the following:

[12/13/03 2:48 PM][INFORMATIVE][Updating Plug-in files for 'my_plugin'...]

[12/13/03 2:48 PM][INFORMATIVE][Copying C:\project\scripts\my_script.sh...]

[12/13/03 2:48][INFORMATIVE][File 'C:\project\scripts\my_script.sh copied successfully to
'C:\project\tutorial\my_plugin\scripts\my_script.sh'.]
Chapter 2 41

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
Adding Java Classes (Source Files)

Sometimes your plug-in implementation will involve multiple Java source files. Only one
file can contain the atomic tasks, but other Java source files can be used in the plug-in.
You can add additional Java source files to your plug-ins by following these steps:

1. Right-click the Java classes folder in the plug-in directory structure, and then choose
New Element. The wizard displays the dialog box shown in Figure 2-6.

Figure 2-6 Service Builder Files Dialog - Adding a New Java Class

2. Specify the name of the class that you are adding.

3. Specify or browse to the location of the class you want to add.

4. Specify or browse to the location within the PAR where you want to place the new
class.

Make sure that the destination matches the package name

5. Type a description of the class and then click [Finish].

6. Repeat steps 1 through 5 for each Java class that you want to add to the plug-in.
When you have added your classes, the directory structure for the Java classes will
look similar to the one shown in Figure 2-7.
Chapter 242

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
Figure 2-7 Service Builder Project View - After Adding a New Java Class

7. To see the configuration of a class, right-click the class in the directory structure
under Java classes, and then select Properties.
Chapter 2 43

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
Adding Scripts

1. Right-click the Scripts folder in the plug-in directory, and then select New Element.
The wizard displays the dialog box in Figure 2-8:

Figure 2-8 Service Builder Files Dialog - Adding a Script

2. Type the symbolic name of the script. This is the name that is used when invoking
the scripts from within the Java class.

3. Specify or browse to the location of the script.

4. Specify or browse to the location in the PAR directory where you will store the script.
By default, the destination in the PAR is project directory/PAR_dir/scripts

5. Specify the interpreter that will run the script on the target machine, if required.
You can either use the full path or simply specify the name of the interpreter. If you
don’t provide the full path, the interpreter must be accessible from the $PATH
environment variable in the user account used in connecting to every target
machine.

6. Type a brief description of the script and its purpose.

7. Click [Finish] to add the script to the PAR. Once you have added the script to the
PAR, you can edit it from the Service Builder editor window:
Chapter 244

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
• To edit the script from Service Builder, double-click the script name in the
plug-in script directory.

Adding Files

1. Right-click the Files folder in the plug-in directory structure. The wizard displays
the dialog box in Figure 2-9:

Figure 2-9 Service Builder Files Dialog - Adding Files

2. Type the symbolic name of the file. This is the name that is used when referring to
the file from within the Java class.

3. Specify or browse to the location of the file.

4. Specify or browse to the location in the PAR directory where you will store the file.
By default, the destination in the PAR is project directory/PAR_dir/files

5. Type a brief description of the file and its purpose.

6. Click [Finish] to add the file to the PAR. Once the file is added to the PAR, you are
able to edit it from the Service Builder editor window:

• To edit the file from Service Builder, double-click the file name in the plug-in
Files directory.
Chapter 2 45

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
Including Preprovisioning Scripts and Files

1. To add scripts or files that the plug-in uses to set up the environment on the target
machine, right-click the Preprovisioning folder, and then select New Element.

Figure 2-10 Service Builder Files Dialog - Adding Preprovisioning Scripts and Files

2. Type the symbolic name of the file. This is the name that is used when invoking the
scripts from within the Java class.

3. Specify or browse to the location of the file.

4. Specify or browse to the location in the PAR directory where you will store the file.
By default, the destination in the PAR is project directory/PAR_dir/preprov.

5. Specify the location to which this file should be copied on the activation target
machine.

6. Specify the interpreter that runs the file on the target machine. You can either use
the full path or simply specify the name of the interpreter. If you don’t provide the
full path, the interpreter must be accessible from the $PATH environment variable in
the user account used in connecting to every target machine.

7. Type a brief description of the file and its purpose.

8. Click [Finish] to add the file to the PAR. Once the file is added to the PAR, you are
able to edit it from the Service Builder editor window:
Chapter 246

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
• To edit the file from Service Builder, double-click the file name in the plug-in
Pre-provisioning directory.

Adding a Library

1. To add a library to the PAR, right-click LIB, and then select New Element.

Figure 2-11 Service Builder Files Dialog - Adding a Library

2. Specify or browse to the location of the original file on the local machine.

3. Describe the purpose of the library, and then select [Finish]
Chapter 2 47

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
Viewing General Properties

1. To view the properties of a plug-in, right-click the plug-in shown in the PAR folder
structure, and then select the General option. The wizard displays the dialog box in
Figure 2-12:

Figure 2-12 Service Builder General Properties Dialog

2. If necessary, you can edit the following fields:

• Description

• Version

• Name Space

• Deployment
Chapter 248

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
• Locking Arguments

NOTE You cannot edit the Name, Package Name, and Class Name fields once you have
created the plug-in.
Chapter 2 49

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
Configuration Parameters

Configuration parameters are a mechanism by which the behavior of a plug-in can be
customized without modifying the Java code or the scripts. These parameters and their
values are maintained in the PAR manifest. The plug-in Java code can use the
PARContext API to ask for the value of these parameters at runtime. When scripts are
executed on the target machine, these same parameters can be passed to the script as
environment variables.

To create or modify the configuration parameters of a plug-in:

1. Right-click the plug-in you want to configure, and then choose Configuration
Parameters.

Figure 2-13 Service Builder UI - Configuration Parameters Menu Selection

Note that the two APIs that are used to execute commands on the target machine
must specifically indicate that these configuration parameters are to be exported
before executing the command. See the Javadoc specification for the APIs
PARContext.executeScript() and PARContext.executeCommand().

2. Define the plug-in parameters and values in the Plug-in configuration
parameters dialog box.
Chapter 250

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
Figure 2-14 Service Builder Plug-in Configuration Parameters Dialog

3. Click [Add] to add new lines to the table:

• Type the name of the parameter in the Attribute column and the value of the
parameter in the Value column.

• Service Activator will prepend ACTIVATOR_ to the Attribute name you define
when it exports the parameters to the target machine environment.

• A script running on the target can then use these environment variables.

• To remove an attribute, select it, and then click [Remove].

4. Click [Finish] when you have completed this task.

Compiling a Plug-in

1. Save all of the files that you intend to compile into your PAR.

2. Click the plug-in (in the plug-in directory structure) that you want to compile.

3. Select Tools, and then select Compile. This will compile all the Java source code
files located in the Java Classes folder of your plug-in.
Chapter 2 51

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
Figure 2-15 Service Builder Compile Menu Selection
Chapter 252

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
Deploying a Plug-in

1. Click Deployment, and then select Synchronize with Server. This connects you to
the activation server.

2. Select the plug-in archive that you want to deploy, and then select
Deployment->Deploy Plug-in Archive.

Figure 2-16 Service Builder Deployment Dialog

3. In the Deployment dialog box, specify the atomic tasks you want to make available
(publish) when you deploy the PAR.

4. Check the items that are appropriate for your deployment:

• Include source code – includes the source code with the PAR file deployment.

• Include documentation – includes the documentation with the PAR file
deployment.

• Deploy to server – sends the PAR to the server. Having the option to deploy or
not deploy is useful when you are working without a connection to the server. If
you do not deploy to the server, the operation performs a consistency check on
the plug-in and creates the PAR file for the plug-in.
Chapter 2 53

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
5. Click [Finish] to:

a. Create the deployment descriptor (par.xml).

b. Build the PAR file.

c. Check the consistency of the PAR.

d. Deploy the PAR file to the server.

e. Make the atomic tasks of the plug-in available on the server.

Testing an Atomic Task

1. Right-click an atomic task in a PAR, and then select [Test].

2. Enter the parameters to pass to the atomic task. There are two ways to specify them:
table mode or text mode. Table mode makes it easy if you don’t know the parameters
for the task and want to edit the values for each parameter individually. Text mode is
useful when you want to rerun a test using a list of parameters that you can paste
from a cut-buffer.

• In table mode, a value for each parameter in the table is passed to the atomic
task. If the value cell for a parameter is empty or contains only white space, the
value for the parameter will be passed as an empty string. If you need to pass a
value that consists of only white space, enter a string with the desired white
space characters surrounded by quotes (either single or double) in the value cell
for that parameter. Quotes can be embedded in a parameter by surrounding the
parameter with the alternate type of quote character.

• In text mode you must enter a string with the correct number of parameters.
Parameters are comma-separated or space-separated. You can embed white
space within an individual parameter by enclosing it in quotes (either single or
double). Quotes can be embedded in a parameter by surrounding the parameter
with the alternate type of quote character (for example “new user ‘jack’ ”).

NOTE When a plugin is deployed, it can take up until the
PluginMonitorPollInterval before the Resource Manager figure out that a
new plug-in or an updated plug-in has been deployed.
Chapter 254

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
Figure 2-17 Service Builder Test Dialog

3. Click [Test], and monitor the activity in the tracking area.

You can switch between table mode and text mode. If you expect to test an atomic task
repeatedly, you may find it helpful to switch to text mode, highlight the text of the
parameters and place it into your text buffer (Ctrl-C). Then the next time you want to
test the task with the same parameters you can paste the text back into the text mode
editor.

Generating Plug-in Documentation

1. To document your plug-in archives, select a plug-in from the project list.

2. Click Tools, and then select Generate Documentation.

3. To view the documentation, use an external browser or the browser provided by
Service Builder.

The following example shows documentation generated by Service Builder and
displayed in a Microsoft Internet Explorer browser.
Chapter 2 55

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
NOTE If you want to fully document the entire project, select the project itself, and then
generate the documentation.

Figure 2-18 Sample Plug-in Javadoc

Using the Javadoc Tags for Documentation

The following sections describe the list of tags you can use in a plug-in Javadoc. Service
Builder-generated code will already have these tags. All tags except @platform,
@author, and @preprov are atomic task specific.
Chapter 256

Understanding and Using Service Builder
Using Service Builder to Create Plug-ins
@platform

Use the @platform tag to denote the HW/OS platform of the target machine. Include any
relevant OS versions. If the plug-in is supported on multiple HW/OS platforms, list them
one per line by using the HTML
 tag. For example:

HP-UX 11.11

Sun Solaris 2.8

@author

Use the @author tag to specify the author and copyright notice.

@preprov

Use the @preprov tag to describe any preprovisioning requirements that are general to
the plug-in. In addition, use this tag in your atomic task Javadocs to describe
preprovisioning requirements that are specific to this atomic task and are not already
covered in the general preprov section. Use a separate @preprov tag for each
requirement. The generated Javadoc creates a bulleted list of these preprovisioning
requirements.

@param

Use the @param tag to document ALL atomic task parameters. Again, be sufficiently
detailed so that someone can use the atomic task without having to read/understand its
internal implementation of code/scripts.

@do_and_check

Use the @do_and_check tag to describe the functional details of the atomic task.

@undo_and_check

Use the @undo_and_check tag to indicate whether rollback is possible or not, and what
the results mean.

@warning

Use the @warning tag to describe any additional warnings/cautions. Use a separate
@warning tag for each warning/caution. The generated Javadoc creates a bullet-list of
these warnings.

@dependency

Use the @dependency tag to describe any dependencies that this atomic task has on
other atomic tasks. For example, if atomic task UXOS_createUser() must be performed
before this atomic task.
Chapter 2 57

Understanding and Using Service Builder
Using Service Builder to Create Compound Tasks
Using Service Builder to Create Compound Tasks
This section provides information about how to use the Service Builder tool supplied
with Service Activator to construct, deploy, test, and document compound tasks. It also
discusses methods you can use to maintain consistency between deployed tasks.

Creating Compound Tasks

This section provides instructions for creating, deploying, and testing compound tasks
using Service Builder.

1. To create a new compound task, click Tools, and then select New Compound Task.
This launches the wizard shown in Figure 2-19:

Figure 2-19 Service Builder New Compound Task Dialog

2. Type the name of the compound task.

3. Type a description of the compound task you are creating. This will appear in the
Javadocs for this compound task. This description will also be visible in the Manage
Tasks panel (under the File menu) after the compound task has been deployed.

4. Set the Namespace for the compound task. The combination of the Namespace and
the compound task name must be unique across all tasks.
Chapter 258

Understanding and Using Service Builder
Using Service Builder to Create Compound Tasks
5. Click [Finish]. The wizard displays a compound task work area similar to the one
shown in Figure 2-20.

Figure 2-20 Service Builder Compound Task Work Area

Adding Tasks to a Compound Task

Use the following steps to add atomic tasks to your compound task:

1. View the available PARs in the top left section. This always shows you the list of
PARs that were deployed from the last time you synchronized with the server.

2. Click a PAR to see the list of its atomic tasks in the top right section.

3. Drag and drop an atomic task from the list onto your compound task. Drop it onto
the name of the compound task (not onto the list below the compound task).

Your updated task will look similar to the one shown in Figure 2-21. When you save your
project, your directory structure will look similar to the one shown in Windows Explorer
in Figure 2-22.
Chapter 2 59

Understanding and Using Service Builder
Using Service Builder to Create Compound Tasks
Figure 2-21 Service Builder Compound Task Work Area
After Adding Atomic Tasks

Figure 2-22 Project Directory Structure - After Adding a Compound Task
Chapter 260

Understanding and Using Service Builder
Using Service Builder to Create Compound Tasks
You can also add other compound tasks to your compound task, as shown in Figure 2-23.
Use the following steps to do this.

1. View the available compound tasks in the Compound Tasks List. This always shows
you the list of compound tasks that were deployed from the last time you
synchronized with the server.

2. Drag and drop a compound task from the list onto your compound task.

Figure 2-23 Compound Task Work Area with Other Compound Tasks Available
Chapter 2 61

Understanding and Using Service Builder
Using Service Builder to Create Compound Tasks
Modifying Compound Tasks

In the following sections we will refer to the calling task and the called tasks. The
calling task is the compound task that we are creating/editing. The called tasks are those
atomic or compound tasks that are being invoked as part of the compound task we are
editing.

Reordering Tasks in the Compound Task

The order that the tasks in the compound task appear is the order in which they will be
called when the compound task is invoked. As tasks are added to the compound task,
they are always placed at the end of the list. To reorder the tasks, drag a task and drop it
again on the compound to have it placed at the end of the list.

Removing a Called Task

To remove a called task, right-click the task, then select Remove Task.

Changing Parameter Mappings

Each called task has a list of parameters that must be passed to it. The calling task also
has a list of parameters which is the union of all parameters for the called tasks.

Frequently, one or more called tasks will have a parameter name that is the same (for
example, machine). The Compound Task Editor automatically assumes that any called
task parameters with the same name should come from the same parameter in the
calling task. This may not be the desired behavior and can be overridden.

Conversely, some called task parameters may have different names, but should come
from the same parameter from the calling task. This can also be specified.

1. Click one of the called tasks to see a list of the parameters this task expects. Notice
there is a column for the name of the parameter in the called task. This column is
not editable. The second column, which is editable, shows the name of the parameter
in the calling task.

2. Click the calling task to see the unified list of parameters. Notice that any
parameters from the called tasks with the same name appear only once in the calling
task parameters.

3. If you want to make two called task parameters come from the same calling task
parameter, give them the same name. If you want two called task parameters to
come from different calling task parameters, give them different names. You should
use descriptive names (e.g. dnsServer instead of machine2).

Setting Constant Values for Called Task Parameters

One significant value of compound tasks is the ability to set constant values for some of
the parameters in the called tasks. For example, in the W2K_addDir atomic task, the
third parameter specifies the name of a skeleton directory that will be used to populate
the new directory being created. In many cases, you don’t want to use this behavior, so
you pass an empty string to this parameter. But rather than having to pass an empty
string from the workflow engine, you can set the value of this parameter in the
compound task to be an empty string.

1. Click the called task that contains the parameter you want to set to a constant value.

2. Enter the value for the parameter in the “Constant Value” column. Use two double
quotes to set an empty value (or a value containing only white space).
Chapter 262

Understanding and Using Service Builder
Using Service Builder to Create Compound Tasks
3. Click the calling task to see that the parameter no longer appears in the list of
calling task parameters. Note that the parameter will appear if there is another
called task that has a parameter of the same name. The constant value only applies
to the one called task parameter, not all parameters with the same name.

NOTE You cannot set a constant value for all of the parameters of a compound task. The
resulting compound task must take at least one non-constant parameter. You will get an
error when you attempt to deploy a compound task that does not have any non-constant
parameters.

Viewing the Properties of a Compound Task

1. To view the properties of a compound task, right-click the service in the Compound
Tasks folder, and then select Properties.

Figure 2-24 Service Builder Compound Task Properties Dialog

2. You may change the description. You cannot change the name or the namespace of
the compound task after it has been created.
Chapter 2 63

Understanding and Using Service Builder
Using Service Builder to Create Compound Tasks
Importing and Exporting a Compound Task

You can export a compound task to an XML file to facilitate sharing and to allow manual
edits to the compound task (see “Creating Compound Tasks Manually: Advanced Tips”
on page 87). Similarly, you can import a compound task from an XML file into your
project.

To export a compound task, follow these steps:

1. Right-click the compound task in the Compound Tasks folder.

2. Select Export to XML.

3. Choose a destination directory for the file.

To import a compound task into an existing project, follow these steps:

1. Right-click the Compound Tasks folder.

2. Select Add Compount Task.

3. Browse to the XML file that you want to import, select it, and click [Open]. Check
the message at the bottom of the window to see if the import operation was
successful.

Deploying a Compound Task

1. Click Deployment, and then select Synchronize with Server. This connects you to
the activation server.

Figure 2-25 Service Builder Compound Task Deployment Dialog
Chapter 264

Understanding and Using Service Builder
Using Service Builder to Create Compound Tasks
2. Click the compound task you want to deploy.

3. Click Deployment from the menu bar, and then select Deploy Compound Task. The
Deployment window shows the list of parameters and called tasks for the compound
task.

4. Verify that all of the values are what you expected:

• Click [Finish] to deploy the task

• Click [Cancel] to cancel the deployment and make changes to the task.

If the connection settings are defined and the connection is available, clicking
[Finish] deploys the compound task to the deployment engine and makes the task
available on the server.

Testing a Compound Task

Testing a compound task is very similar to testing an atomic task.

1. Right-click the compound task in the Compound Task folder in the project tree, and
select Test.

2. Follow the same instructions as in “Testing an Atomic Task” on page 54.

Documenting a Compound Task

1. Select the compound task that you want to document.

2. Click Tools, and then select Generate Documentation. This generates the
documentation for the compound task in HTML format.

3. Use a browser to view the documentation, or right-click the compound task, and then
select Documentation.

Figure 2-26 shows an example of the documentation generated by Service Builder in a
Microsoft Internet Explorer browser.
Chapter 2 65

Understanding and Using Service Builder
Using Service Builder to Create Compound Tasks
Figure 2-26 Sample Javadoc for a Compound Task
Chapter 266

Understanding and Using Service Builder
Maintaining Consistency Between Deployed Tasks
Maintaining Consistency Between Deployed Tasks
The process of developing atomic and compound tasks is typically iterative and involves
developing an initial version, deploying it, making changes, redeploying, and so on.
During this iterative process, you might make changes to an interface of an atomic task
that is called by a previously deployed compound task. This would cause consistency
issues for the compound task.

To avoid these consistency issues, when you change an atomic or compound task, Service
Builder checks all previously deployed compound tasks that depend on that task to
ensure that the task and all tasks that call it still have consistent interfaces.

If Service Builder identifies a consistency issue, it will move all dependent compound
tasks to an INVALID state, meaning that you cannot use them until you resolve the
consistency errors. Service Builder will notify you of the compound tasks that it has
moved to an INVALID state. You can also identify which compound tasks are INVALID by
bringing up the Manage Tasks dialog box, which lists all the compound tasks currently
deployed on the activation server.

NOTE When you are notified that a task has been invalidated, you should download the
original specification of the task in the Manage Tasks dialog box. The original
specification of the invalidated task will be deleted when Service Activator is restarted.

After you fix the consistency issues, redeploy the tasks.
Chapter 2 67

Understanding and Using Service Builder
Configuring Authentication or Authorization
Configuring Authentication or Authorization
The default deployment engine configuration allows anyone to deploy PARs or
Compound Tasks. You can configure the deployment engine to restrict deployment
access. Use the following steps to enable authentication/authorization restrictions when
deploying PARs and compound tasks:

1. Enable authentication/authorization in the workflow manager (see “Required and
Typical Workflow Manager Modules” on page 356 in HP Service
Activator—Workflows and the Workflow Manager).

2. Enable authorization in the deployer WAR file:

a. Edit the file $JBOSS_DEPLOY/hpsa.ear/deployer.war/WEB_INF/web.xml

b. Modify the value of the authenticate parameter, setting it to “true.” This
reconfigures the Java servlet that services requests to deploy PARs and
compound tasks.

c. Restart Service Activator.

3. Ensure that any users who should be allowed to perform deployments exist in the
“deployer” role. This may be accomplished in one of the following ways:

• Assuming you are using one of the built-in authentication modules
(HPUXAdvancedAuthModule, SolarisAdvancedAuthModule,
WindowsAdvancedAuthModule, DatabaseAdvancedAuthModule), you may
create a group in the OS called “deployer” and assign the appropriate users to
that group.

• Assuming that the authentication module you are using supports role-mapping
(all of the built-in modules support this), then you can simply supply a role
mapping from the “deployer” role to the roles/groups in your authentication
domain. See the discussion of role mapping files in Chapter Roles, Privileges and
Authentication of HP Service Activator - System Integrator’s Overview

4. Start Service Builder.

5. Click Settings, and then select Activation Server.

6. Specify the user and password information in the configuration parameters for the
activation server.

The user information is stored persistently in the file
$ACTIVATOR_ETC/config/service_builder.xml. Make sure to restrict read
access to this file.

Once you have completed steps 1-3, then anyone wishing to deploy PARs or compound
tasks must be a member of the “deployer” role and must configure Service Builder (as
per steps 4-6) to supply the proper username and password.
Chapter 268

Understanding and Using Service Builder
Using Service Builder to Manage Plug-in Archives and Compound Tasks
Using Service Builder to Manage Plug-in Archives and
Compound Tasks
To manage plug-in archives that are already deployed on the server, click File, then
select Manage Plug-in Archives.

Figure 2-27 Service Builder Manage Plug-in Archives Dialog

From the Manage PARs dialog, you can download a plug-in archive or delete it.
Downloading a plug-in archive allows you to edit and update it. Deleting a plug-in
archive removes the PAR and all references to it. This means that the atomic tasks in
this plug-in are no longer usable by any compound tasks. This will invalidate any
compound tasks that call it.

The Manage Tasks dialog box allows you to delete existing compound or atomic tasks,
enable and disable them, and export compound tasks to XML.
Chapter 2 69

Understanding and Using Service Builder
Using Service Builder to Manage Plug-in Archives and Compound Tasks
Figure 2-28 Service Builder Manage Tasks Dialog

Disabling a task means that it cannot be invoked. Attempting to invoke it will cause an
activation error. If a compound task contains either a compound or atomic task that is
disabled, then invoking the calling task will cause an activation error.
Chapter 270

Understanding and Using Service Builder
Setting Service Builder Configuration
Setting Service Builder Configuration
You can change some aspects of Service Builder’s behavior from the Settings menu.

From the Service Builder menu item you can set:

• The default home directory for new projects that you create (defaults to
$ACTIVATOR_VAR/projects).

• The default directory where compound tasks are exported to (defaults to
$ACTIVATOR_VAR/projects/ExportCTs).

• Whether to show plug-in and compound task documentation in an external browser
window or in the right-hand pane of the Service Builder GUI.

From the Activation Server menu item, you can set the details necessary for Service
Builder to contact the activation server. This includes:

• The host name and port where the activation server can be reached. This defaults to
localhost and port 8080. Note that the port is the HTTP port for the web server
that accepts and forwards requests to the activation server.

• Optionally, you may specify a proxy host and port if it is necessary to go through a
web proxy to reach the activation server from the machine where Service Builder is
running. By default, no proxy information is configured.

• Optionally, you may specify a username and password for connecting to the
activation server. By default, the activation server is not configured to perform any
authorization regarding who may deploy new plug-ins or compound tasks. If you
have configured the activation server to perform such authorization, then you will
need to put an appropriate username and password here.

Note that the username and password are stored in clear text (not encrypted) in the
service_builder.xml file. See Appendix D, “Security Considerations,” on page 65
for additional information about protecting access to this file.
Chapter 2 71

Understanding and Using Service Builder
Using Service Builder from the Command Line
Using Service Builder from the Command Line
Some of the operations of Service Builder are available via its command line. Issue the
-help option to see the list of invocation options that are supported. Here is the list of
available options:

Table 2-1 Common Service Builder Command Line Options

Option Syntax Purpose

-help Displays a list of the valid options

-version Displays the version information

-host <hostname> Sets the Service Activator server host for
this invocation of Service Builder only

-port <port> Sets the Service Activator server port for
this invocation of Service Builder only

-username <user> Sets the username with which to connect
to the Service Activator server for this
invocation of Service Builder only

-password <password> Sets the password with which to connect
to the Service Activator server for this
invocation of Service Builder only

-packPAR <dir> <file.par> Packs a directory into a plug-in archive

-verifyPAR <file.par> Verifies the contents of a plug-in archive
to ensure that the actual contents match
the PAR manifest

-listPAR Retrieves the list of available plug-in
archives from the repository

-deployPAR <file.par> Deploys a plug-in archive to the
repository

-deletePAR <name> <version> Deletes a plug-in archive from the
repository

-downloadPAR <name> <version>
[<destination>]

Downloads a plug-in archive from the
repository to the given destination

-listPARVersion Prints out the current version
information of the Plug-in Archice file

-compilePAR <dir> Compiles the Java classes associated with
the plug-in in the given directory

-compilePARdebug <dir> Compiles the Java classes associated with
the plug-in in the given directory with
debug turned on
Chapter 272

Understanding and Using Service Builder
Using Service Builder from the Command Line
-docPAR <dir> Generates the Javadoc documentation for
the plug-in in the given directory

-listTasks Retrieves the list of available tasks
(atomic and compound) that are deployed
in the repository

-addCT <task.xml> Deploys a compound task to the
repository

-deleteCT <task> Deletes the given compound task from
the repository

-enableTask <task> Enables the use of the given task that has
already been deployed to the repository

-disableTask <task> Disables the use of the given task

-exportCT <task> [<destination file>] Creates an XML file that describes the
given task that has been deployed in the
repository

-activate <task> <params> Causes the given task to be invoked with
the given parameters

Table 2-1 Common Service Builder Command Line Options (Continued)

Option Syntax Purpose
Chapter 2 73

Understanding and Using Service Builder
Using Service Builder from the Command Line
Chapter 274

3 Creating Customized Plug-ins and
Compound Tasks

This chapter explains advanced tips about how to create your own customized plug-ins
and compound tasks.
Chapter 3 75

Creating Customized Plug-ins and Compound Tasks
Creating Plug-ins: Advanced Tips
Creating Plug-ins: Advanced Tips
This section provides key information you need to generate, configure, and run a plug-in.
Some of this information is specific to manually creating a plug-in without Service
Builder, while other information is of general importance to help you create your own
plug-in. You should have some experience creating plug-ins using Service Builder before
you attempt to create one manually.

The code used in these examples was created for example purposes only and is not
generally useful. The simplest way to create your own plug-in (without using Service
Builder) is to modify the par.xml file of an existing plug-in:

1. Unpack the existing plug-in using jar:

jar xf Plugin.par

This creates the plug-in directory structure discussed in “Understanding Plug-in
Archives” on page 26.

2. Use the information provided in the following sections to make modifications to the
par.xml file.

Plug-in Java Class

You will find the plug-in Java class source code in the src directory. In this example, the
plug-in name is Example, so the Java class source code is the file Example.java.

1. Import statements

The plug-in source code needs to import the necessary classes into the local
namespace. These include:

• import com.hp.ov.activator.resmgr.*;

• import com.hp.ov.activator.resmgr.par.*;

• import com.hp.ov.activator.util.*;

• import java.net.*;

2. Javadoc comments

You can add Javadoc comments to your plug-in source code and use Service Builder
to generate that code into a Javadoc. Following is an example of Javadoc comments
nested within Java code:

/**
* Plug-in wizard automatically generated code (Mon Jan 13 10:22:52 MST 2003)
* <p>
* Example plug-in to demonstrate basic concepts. The atomic task
* presented here is for demonstration purposes only.
*
* @platform <i>HP-UX 11i,
* Solaris 2.8</i>
*
* @author HP Service Activator ServiceBuilder.
* @version 1.0.0
*/

3. Plug-in class declaration
Chapter 376

Creating Customized Plug-ins and Compound Tasks
Creating Plug-ins: Advanced Tips
The plug-in class declaration must extend the class PARPlugin. Your code entry
should look like this:

public class Example extends PARPlugin
{

4. Plug-in init method

The method init contains some user-added code to get the value of the configuration
parameter PASSWORD_FILE. The AttributeTable object provides each of the
configuration parameters defined in par.xml.

/**
 * Method invoked prior to any atomic task call.
 *
 * @param config The plug-in configuration object.
 */
public void init(AttributeTable config) throws PluginException
{

// Store the config object for later use
super.init(config);

// Insert your code here
String attribute = config.getAttribute("PASSWORD_FILE");
if (attribute.length() != 0) {

password_file = attribute;
}

}

/**
 * Method invoked before destroying the plug-in.
 * <p>
 * Intended for resource clean-up.
 */
public void destroy()
{

// Insert your code here
}

}

5. Plug-in atomic task methods

a. Name

Each atomic task in the plug-in is defined by the methods that begin with task_.
The example shown below contains the atomic task method called
task_Example_userExists. The actual atomic task name is
Example_userExists. The methods that define atomic tasks must return an
ExecutionDescriptor object and throw the PluginException.

public ExecutionDescriptor task_Example_userExists (int op, String machine,
String username) throws PluginException

b. Operation and return codes

The first parameter to every atomic task defined in the plug-in is the operation.
The operation is either DO_AND_CHECK or UNDO_AND_CHECK. During the
transaction that calls the atomic task (see plug-in life-cycle), the DO_AND_CHECK
operation is used to run the atomic task. The UNDO_AND_CHECK operation is used
to roll back the atomic task in the event of a failure during a compound task.
This will leave the target machine in its preactivation state.
Chapter 3 77

Creating Customized Plug-ins and Compound Tasks
Creating Plug-ins: Advanced Tips
The ExecutionDescriptor returned from an atomic task provides information
about the result of the atomic task call. An OK response indicates that an atomic
task completed successfully. An ERROR response indicates an error, and will
trigger a rollback call.

The precise definitions of the different ExecutionDescriptors that may be
returned by an atomic task are listed in Table 3-1. When designing your own
atomic task, you should follow these conventions.

An ERROR response from an atomic task’s DO_AND_CHECK call triggers a rollback
of the compound task. This rollback involves an UNDO_AND_CHECK call to all
previously executed atomic tasks in the compound task. The UNDO_AND_CHECK
calls occur in reverse order; the first atomic task in the compound task will be
rolled back last. Note that UNDO_AND_CHECK is not called for the atomic task that
returned the ERROR that caused the rollback. Before returning the error, it is the
responsibility of the DO_AND_CHECK call to attempt to restore the target system to

Table 3-1 Atomic Task Return Codes

majorCode minorCode
Condition when should be

used

ExecutionDescriptor.OK ExecutionDescriptor.NONE OK/NONE will be returned by
an atomic task when the
requested operation
(DO_AND_CHECK or
UNDO_AND_CHECK)
completed successfully.

ExecutionDescriptor.ERROR ExecutionDescriptor.CONSISTENT ERROR/CONSISTENT will be
returned by an atomic task
when the requested operation
(DO_AND_CHECK or
UNDO_AND_CHECK) was
unable to complete successfully,
but the target system was
successfully restored to the state
it was in before the requested
atomic task operation was
invoked.

Note that for
UNDO_AND_CHECK, an
ERROR/CONSISTENT return
implies that the net effect of the
UNDO_AND_CHECK call
involved no change to the target
system - it does not imply that
the system is restored to the
state it was in before the
DO_AND_CHECK call.

ExecutionDescriptor.ERROR ExecutionDescriptor.INCONSISTENT ERROR/INCONSISTENT will
be returned by an atomic task
when the requested operation
(DO_AND_CHECK or
UNDO_AND_CHECK) was
unable to complete successfully,
and the target system was not
restored to the state it was in
before the requested atomic task
operation was invoked.
Chapter 378

Creating Customized Plug-ins and Compound Tasks
Creating Plug-ins: Advanced Tips
the state it was in before the DO_AND_CHECK call. During rollback, each atomic
task’s UNDO_AND_CHECK response will be logged, but an ERROR will not stop the
rollback from continuing.

It is important to understand how the return code of an atomic task maps to the
return code of the compound task. If all atomic task DO_AND_CHECK operations in
a compound task return OK/NONE, the compound task will return OK/NONE. If an
atomic task DO_AND_CHECK operation in a compound task returns an ERROR
response, the compound task will return this ERROR response. Any errors during
rollback are not included as part of the compound task return.

In general, an atomic task should not return OK if it detects that the specific
operation has already been performed. By following this convention, you'll avoid
the possibility of rolling back an operation that was performed as part of a
separate compound task. For example, imagine an atomic task whose
DO_AND_CHECK operation adds a user to a UNIX machine (its UNDO_AND_CHECK
operation will remove the user from the UNIX machine). A previous compound
task (executed months ago) may have added “activatorUser” to the UNIX
machine “unix1.” When a new compound task tries to add “activatorUser” to
“unix1,” it is important that this atomic task return ERROR—otherwise, the
compound task would continue and could potentially rollback, causing the
“activatorUser” to be removed from “unix1.” This type of behavior would
violate transactional semantics, so it is important that you follow these
conventions.

Atomic tasks can also throw Java exceptions. Any exception thrown from an
atomic task will be caught by the Resource Manager and logged. The Resource
Manager considers a thrown atomic task exception to be equivalent to an
ERROR/INCONSISTENT return. Each atomic task has a PluginException listed in
its “throws” clause. You can throw a PluginException from your atomic task to
signal an unrecoverable error. Note that it is your choice whether to throw a
PluginException or return an ERROR ExecutionDescriptor when a failure
condition has been detected in your atomic task. However, an
ExecutionDescriptor can provide more information than a PluginException (that
is, majorCode, minorCode, stdout, stderr, description), and is generally preferred.

In some cases, it is very difficult (if not impossible), to properly implement
UNDO_AND_CHECK for an atomic task. This is often the case for “negative” atomic
tasks. For example, if your atomic task removes a directory as part of its
DO_AND_CHECK operation, it may not be possible to completely restore the deleted
directory in the UNDO_AND_CHECK operation. As a general policy, when an atomic
task cannot guarantee that an UNDO_AND_CHECK call will return the target
system to its initial state, ERROR/CONSISTENT is returned, and an undo is not
attempted.
Chapter 3 79

Creating Customized Plug-ins and Compound Tasks
Creating Plug-ins: Advanced Tips
// Check which operation the atomic task has to perform

switch (op) {
case DO_AND_CHECK:

// Insert your code here
return context.executeScript("do_Example_userExists_script",

machine, new String[]{username});
break;

case UNDO_AND_CHECK:
// Insert your code here
return new ExecutionDescriptor(ExecutionDescriptor.ERROR,

ExecutionDescriptor.CONSISTENT, “”, “”,
“Cannot perform UNDO operation for this task.”);

break;

default:
throw new PluginException("Operation not supported");

}

Executing Scripts and Commands

Many atomic tasks need to execute a script or command on the target machine. The
context.executeScript() and context.executeCommand() methods are provided to
perform this function. These calls return an ExecutionDescriptor based on the exit
code of the script or command. Table 3-2, Mapping Exit Codes to the Execution
Descriptor, provides the mapping between exit codes and the ExecutionDescriptor
returned by these methods. Follow these conventions when you write your own scripts or
commands to be invoked in this manner.

The script is named in the deployment descriptor (see “MANIFEST” on page 27). Here is
an example Perl script with file name userExists.pl.

Perl script
#
Checks if a user is defined in a password file
#
ARGV[0] username
#
Returns 0 if user is found
Returns 1 if user is not found
#
check no of arguments
if ($#ARGV != 0) {

print "Usage: $0 <username>\n";
exit 1;

}

Table 3-2 Mapping Exit Codes to the Execution Descriptor

Exit Code ExecutionDescriptor returned by
context.executeScript()

0 majorCode=OK, minorCode=NONE

1 majorCode=ERROR,
minorCode=CONSISTENT

2
(or anything else)

majorCode=ERROR,
minorCode=INCONSISTENT
Chapter 380

Creating Customized Plug-ins and Compound Tasks
Creating Plug-ins: Advanced Tips
get arguments
$username = $ARGV[0];

get value of passwordFile from configuration parameter if it exists
$passwordFile = "/etc/passwd";
if (defined $ENV{'ACTIVATOR_PASSWORD_FILE'}) {

$passwordFile = $ENV{'ACTIVATOR_PASSWORD_FILE'};
}

open passwordFile
if (! open passwordFile) {

print "$passwordFile not found!\n";
exit 1;

}

search for username
while (<passwordFile>) {

if (m/^$username/) {
username found
close passwordFile;
exit 0;

}
}
username not found
close passwordFile;
print "$username not found in $passwordFile!\n";
exit 1;

Capturing Output from Scripts and Commands

When you use context.executeScript() or context.executeCommand(), all of the
output from the process is captured in the ExecutionDescriptor that is returned. The
standard output and standard error from the process are captured in the stdout and
stderr fields of the ExecutionDescriptor. You can either simply return this
ExecutionDescriptor to the caller (the ResourceManager), or you can edit these fields
in some way as desired.

Saving Data in the Database

The plug-in framework allows uploading of data back to the Workflow Manager. But,
uploading large amount of data may lead to memory issues. Hence, the framework
allows the plug-in to write data into the database during its execution, which can be read
later during execution of rest of the workflow nodes. This is the way to pass large
amount of data from a plugin to the Workflow Manager, in case Service Activator is
running in a clustered environment due to that the data is possible to read from all
cluster nodes which is not the case if the information is passed in a file.

The plug-in can invoke the following method on the PARContext to save the data in the
database. The data is stored in the DATABASE_MESSAGE table.

String saveData(String messageUrl, long pos, byte[] data, int offset, int
len, String messageIdKey)

The message id is returned and has the value db:<message id>. The message id is also
uploaded back to the Workflow Manager as a key value pair; the key being the value
specified by the parameter messageIdKey and the value being db:<message id>.
Chapter 3 81

Creating Customized Plug-ins and Compound Tasks
Creating Plug-ins: Advanced Tips
Optionally, you can specify the message id with the syntax, db:<message id>, if data
has to be updated. In this case, the position from where data is to be updated has to be
specified.

In the Workflow Manager, the message id can be retrieved from the parameter
“uploaded_data_var” in the Activate node. Since the data is uploaded as key value pair,
use the messageIdKey to extract the message id.

The following exceptions must be handled:

PluginException thrown if incorrect message url is specified, or an exception occurs
when storing the data.

InterruptedException thrown in case of a database connectivity error.

The below example shows how the data can be saved from an atomic task:

 public ExecutionDescriptor task_TestSaveData_taskSaveAndUpdate (int op,
 String pluginDataToSave, String pluginDataToUpdate) throws PluginException,
 InterruptedException
 {

 // Check which operation the atomic task has to perform
 switch (op) {
 case DO_AND_CHECK:
 int pos=0;
 String messageId="db:0";
 int offset=0;
 Object obj=new String(pluginDataToSave);
 byte[] data=null;
 try{
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(baos);
 oos.writeObject(obj);
 oos.flush();
 data=baos.toByteArray();
 baos.close();
 oos.close();
 }catch(Exception e)
 {
 return new ExecutionDescriptor(ERROR_MAJOR,
 ERROR_MINOR,null, null,
 "taskSaveAndUpdate not executed");
 }
 //invoke saveData() on the PARContext
 messageId=context.saveData(messageId,pos,data,offset,data.length,"message_id");
 //print the message id
 context.logInfo("the message message after saving
 pluginDataToSave::"+messageId);
 //To append the string contained in pluginDataToUpdate to the saved data
 //invoke the saveData() with the newly created message id to update the data
 pos=data.length+1;
 obj=new String(pluginDataToUpdate);
 try{
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(baos);
 oos.writeObject(obj);
 oos.flush();
 data=baos.toByteArray();
 baos.close();
Chapter 382

Creating Customized Plug-ins and Compound Tasks
Creating Plug-ins: Advanced Tips
 oos.close();
 }catch(Exception e){
 return new ExecutionDescriptor(ERROR_MAJOR, ERROR_MINOR, null, null,
 "taskSaveAndUpdate not executed");
 }
 //invoke saveData() again
 messageId=context.saveData(messageId,pos,data,offset,data.length,"message_id");
 //print the message id, which should be the same as earlier
 context.logInfo("The message id after appending pluginData2 is::"+messageId);
 return new ExecutionDescriptor(OK_MAJOR, OK_MINOR, null, null, "
 taskSaveAndUpdate executed successfully");
 case UNDO_AND_CHECK:
 return new ExecutionDescriptor(OK_MAJOR, OK_MINOR, null, null, "No undo for
 taskSaveAndUpdate ");
 default:
 throw new PluginException ("Operation not supported");
 }
 }

Reading Data from the Database

The plug-in framework allows you to retrieve data written into the database by the
Workflow Manager.

The plug-in can invoke the following method on the PARContext to read the data from
the database. The data is read from the DATABASE_MESSAGE table:

byte[] readData(String messageUrl, long dataPosition, int dataLength)

The message id is specified using the syntax db:<message id>. The data is returned as
byte[].

Optionally, the plugin can retrieve partial data by specifying the dataPosition and
dataLength parameters. If both the data length and position are zero, then the complete
data is read.

The following exceptions must be handled:

PluginException thrown if incorrect message url is specified, or an exception occurs
when storing the data.

InterruptedException thrown in case of a database connectivity error.

The below example shows how complete data can be retrieved in an atomic task:

public ExecutionDescriptor task_TestReadData_completeData (int op, String
messageId) throws PluginException, InterruptedException

{
// Check which operation the atomic task has to perform
switch (op) {
case DO_AND_CHECK:
//the message id is in the format “db:<message id>”
Context.logInfo("The messageId is ::"+messageId);
byte[] data=context.readData(messageId, 0, 0);
try{
ObjectInputStream objectInputStream = new ObjectInputStream(new
ByteArrayInputStream(data));
Object mwfmData = objectInputStream.readObject();
context.logInfo("Activation successful, the data retrieved is ::"+mwfmData);
}catch(Exception e){
Chapter 3 83

Creating Customized Plug-ins and Compound Tasks
Creating Plug-ins: Advanced Tips
return new ExecutionDescriptor(ERROR_MAJOR, ERROR_MINOR, null, null,
"completeData not executed");
}
return new ExecutionDescriptor(OK_MAJOR, OK_MINOR, null, null, "
completeData executed successfully");
case UNDO_AND_CHECK:
return new ExecutionDescriptor(OK_MAJOR, OK_MINOR, null, null, "No undo for
completeData ");
default:
throw new PluginException ("Operation not supported");
}
}

The below example shows how partial data can be retrieved:

public ExecutionDescriptor task_TestReadData_partialData (int op, String
messageId) throws PluginException, InterruptedException
{
// Check which operation the atomic task has to perform
switch (op) {
case DO_AND_CHECK:
context.logInfo("The messageId is ::"+messageId);
//the data length is 30 since “write this first string”.getBytes() is 30
byte[] data=context.readData(messageId, 1, 30);
try{
ObjectInputStream objectInputStream = new ObjectInputStream(new
ByteArrayInputStream(data));
Object mwfmData = objectInputStream.readObject();
context.logInfo("Activation successful, the first string is ::"+mwfmData);
//read the second string, data is read from 31st position
data=context.readData(messageId, data.length+1, 31);
objectInputStream = new ObjectInputStream(new ByteArrayInputStream(data));
mwfmData = objectInputStream.readObject();
context.logInfo("Activation successful, the second string is ::"+mwfmData);
}catch(Exception e){
return new ExecutionDescriptor(ERROR_MAJOR, ERROR_MINOR, null, null, "
partialData not executed");
}
return new ExecutionDescriptor(OK_MAJOR, OK_MINOR, null, null, " partialData
executed successfully");
case UNDO_AND_CHECK:
return new ExecutionDescriptor(OK_MAJOR, OK_MINOR, null, null, "No undo for
artialData ");
default:
throw new PluginException ("Operation not supported");
}
}

Understanding the Plug-in Deployment Descriptor (Manifest)

The MANIFEST directory contains the file par.xml, which is also known as the
deployment descriptor. The par.xml file declares all of the components in the plug-in.
These components include the plug-in Java class, the atomic tasks defined in the Java
class, configuration parameters, scripts, files, preprovisioned scripts and files, and
libraries.
Chapter 384

Creating Customized Plug-ins and Compound Tasks
Creating Plug-ins: Advanced Tips
Further, par.xml contains the definition of each configuration parameter in the plug-in.
The configuration parameters can be accessed from the context object in the plug-in Java
class, or through the environment in scripts. From the environment, the configuration
parameter name begins with ACTIVATOR_ . See the Perl example above for an example of
gaining access to the configuration parameters from a script.

<Configuration>
<Param name="PASSWORD_FILE" value="/etc/passwd" />

</Configuration>

1. Atomic tasks

Each atomic task defined in the Java class must be declared in par.xml.

<AtomicTask>
<Task exported="true" execution="ON_LINE">

<Name>Example_userExists</Name>
<Argument>machine</Argument>
<Argument>username</Argument>

</Task>
</AtomicTask>

2. Scripts

Each script in the plug-in must be declared in par.xml. The attribute interpreter
specifies the command that the plug-in uses to run the script. The interpreter must
be in the path on the remote machine. The Script name is the same name used to
identify the script in the method executeScript of the plug-in context.

<Scripts>
<Script name="do_Example_userExists_script" file="userExists.pl"

interpreter="perl">
<Description>Perl script to check if user exists.</Description>

</Script>
</Scripts>

Packaging and Deploying a Plug-in

You can use Service Builder from the command-line to pack a plug-in into a Plug-in
Archive (PAR), as well as to deploy the plug-in.

1. Verify that your plug-in directory structure matches the one shown in
“Understanding Plug-in Archives” on page 26.

2. To pack a plug-in into a PAR, run:

servicebuilder -packPAR <plug-in directory> <PAR name>

3. To deploy the plug-in to the server, run:

servicebuilder -deployPAR <PAR name>

Your plug-in is now available on the server so that you can test it or invoke it from a
workflow Activate node.

The Difference Between PAR Deployment and Script Deployment

It is important to understand the distinction between PAR deployment and script
deployment. PAR deployment occurs when you use Service Builder to deploy a PAR. This
deployment stores the PAR on the Service Activator server machine, making it accessible
Chapter 3 85

Creating Customized Plug-ins and Compound Tasks
Creating Plug-ins: Advanced Tips
by the Resource Manager. The only machines affected by PAR deployment are the
Service Activator server machine and the machine hosting the Oracle database used by
Service Activator.

Script deployment is very different from PAR deployment. Script deployment occurs
when you invoke the context.executeScript() method of an atomic task, and the
Resource Manager deploys all the scripts for that plug-in to the target machine.

The Resource Manager maintains a cache that records whether script deployment for a
given plug-in has already occurred on a particular target machine. This allows the
Resource Manager to make an optimization and avoid copying all the plug-in scripts to a
target each time an atomic task is invoked. This cache is located in the
$ACTIVATOR_VAR/resmgr/cache directory.
Chapter 386

Creating Customized Plug-ins and Compound Tasks
Creating Compound Tasks Manually: Advanced Tips
Creating Compound Tasks Manually: Advanced Tips
A compound task is represented by an XML file that defines the compound task, its
called tasks, and its parameters.

There are two main advantages to editing the compound task XML file manually, rather
than through the GUI. First, it is easier to reorder the tasks. Second, you have control
over the order of the parameters in the compound task.

This is a case where you may find a hybrid approach easier than exclusively using the
GUI or manually creating the XML. First, create the compound task in the GUI, by
dragging and dropping the required atomic tasks. Then, if you need some fine control
over the order of the parameters or the order in which the atomics are called, follow
these steps:

1. Export the compound task to a file.

2. Edit the file manually.

3. Remove the compound task from the project.

4. Import the compound task from the file.

Example 3-1 Compound Task Example

Look at this example of a simple compound task that calls two atomic tasks.

<?xml version="1.0" encoding="UTF-8"?>
<!-- service builder 3.5 -->

<CompoundTask>
<Name>AddUserDir</Name>
<NameSpace type="GLOBAL"/>
<CalledTask>

<TaskName>MyCT</TaskName>
<NameSpace type="GLOBAL"/>
<Param name="machine"/>
<Param name="dir"/>
<Param name="username"/>

</CalledTask>

<CalledTask>
<TaskName>W2K_addDir</TaskName>
<NameSpace type="GLOBAL"/>
<Param name="machine"/>
<Param name="dir"/>
<Param name="skeldir" value=""""/>

</CalledTask>

<CalledTask>
<TaskName>W2K_chgPerm</TaskName>
<NameSpace type="GLOBAL"/>
<Param name="machine"/>
<Param name="username"/>
<Param compoundTaskName="dir" name="path"/>
<Param name="access" value="RWC"/>

</CalledTask>
</CompoundTask>
Chapter 3 87

Creating Customized Plug-ins and Compound Tasks
Creating Compound Tasks Manually: Advanced Tips
First notice the list of three parameters for the compound task. The order they appear in
the XML is the order they must be passed to the compound when it is called. You can
easily change this order in the XML. A similar change cannot be made from the Service
Builder GUI.

Next notice the list of called tasks. The order they appear in the XML is the order in
which they will be invoked when the compound is called.

Finally, notice the parameters to the called tasks. The order of the parameters within a
called task is important, and it depends on the actual order that the atomic task expects
them. The use of the compoundTaskName and value attributes is also important. These
are used to determine what parameter values from the compound task to pass to the
called task parameters. When a called task is invoked, the system first checks whether
the called task parameter has a value specified, in which case this constant value is
passed. If no constant value is specified, then the system next uses the
compoundTaskName attribute; if there is a matching parameter name in the compound
task parameter list, then the value of that compound task parameter is passed to the
called task. Finally, the system uses the name attribute; if there is a matching
parameter name in the compound task parameter list, then the value of that compound
task parameter is passed to the called task. If no matching compound task parameter is
found, an error will be thrown.
Chapter 388

A Generic CLI

This appendix describes the generic CLI plug-in.
Appendix A 89

Generic CLI
Generic CLI Plug-in
Generic CLI Plug-in

Table A-1 Generic CLI plug-in

Description Activation commands are obtained from a specified XML formatted file. The XML syntax
provides the description for a series of commands that are associated with a Connection
sequence. These are the commands used to establish the initial state of the device (such
as logging in). Should one of the commands fail, the connection is closed.

Once the connection has been made, the Activate sequence commands are executed.
Each of these commands can have an associated UNDO_AND_CHECK command.
Should a DO_AND_CHECK command fail, all UNDO_AND_CHECK commands up to
this point are then executed (in reverse order) to place the system back into a consistent
state.

Next, the Disconnect sequence of commands is specified. These commands are always
executed regardless of the successful completion or activate sequences in order to close
the connection completely.

The last series of commands in the file is the Rollback sequence. These commands define
the commands to be executed should an UNDO_AND_CHECK operation be requested.
You typically would want to invoke the activate/undo commands in reverse order (via the
Rewind element), but additional or an entirely different set of commands may be
specified.

Plug-in
archive

GenericCLI.par

Platform Any Telnet-capable or Secure Shell-capable system or device. It is also possible to adopt
custom application for establishing connection using any other protocol. All protocols
must be able to communicate using command line interface (CLI).

Atomic
Tasks

GenericCLI_activate Execute CLI activation commands from a single XML file or from
a connect and activation sequence file on the target host:

•Establish a connection to the host by using either telnet ssh or
other protocol of your choice (defined within the XML connection
sequence), and execute the Connect sequence in order. Should a
command fail, skip all subsequent commands.

•Upon successfully completing the entire Connect sequence,
execute the Activate sequence. Should a command fail, run all
UNDO_AND_CHECK commands associated with previously run
commands (in reverse order) to perform any required error
recovery.

•Finally, run the Disconnect sequence, and terminate the
connection.

•If an UNDO_AND_CHECK operation is requested, execute the
Rollback sequence instead of the Activate sequence.
Appendix A90

Generic CLI
Generic CLI Plug-in
GenericCLI_Activat
ePool

Same as the atomic task GenericCLI_Activate. The only
difference is that an extra parameter - poolName - which explicit
define the connection pool which should be used when executing
the atomic task. Only the Activation sequence in the XML
document is used as the configuration of the connection
establishment and later disconnect is configured though the pool
configuration (done from the operator ui).

See also For more information about this plug-in, see the Javadoc associated with the plug-in
code. You can find more information about this plug-in in the
$ACTIVATOR/docs/plugins directory. Windows users can access this information from
the desktop by navigating to Start-> All Programs-> HP OpenView-> Service
Activator-> Docs-> Plug-ins Documentation

Table A-1 Generic CLI plug-in (Continued)
Appendix A 91

Generic CLI
Generic CLI Plug-in
Appendix A92

B NNM Liaison

This appendix describes the NNMLiaison plug-in.
Appendix B 93

NNM Liaison
NNMLiaison Plug-in
NNMLiaison Plug-in

Table B-1 NNM Liaison Plug-in

Description

Plug-in for integration with HP Network Node Manager.

The NNMLiaison plug-in is useful for:

• Creating Interface Groups in NNMi's GUI

Plug-in
Archive

NNMLiaison.par

Platform

Supported NNMi platforms:

• all

Supported NNM versions:

• HP Network Node Manager version v9

Atomic Tasks

NNM_createInterfaceGroup The task creates an NNMi interface group and
filter. This allows the NNMi operator to lauch
interface group views with interfaces marked
with Service Activator custom attributes. The
views may also be cross launched from Service
Activator inventory view.

See Also

For more information about this plug-in, see the the Javadoc associated with the
plug-in code.

You can find more information about this plug-in in the $ACTIVATOR/docs/plugins
directory. Windows users can access this information from the desktop by navigating to
Start-> All Programs-> HP OpenView-> Service Activator-> Docs-> Plug-ins
Documentation
Appendix B94

C Generic LDAP

This appendix describes the GenericLDAP plug-in.
Appendix C 95

Generic LDAP
GenericLDAP Plug-in
GenericLDAP Plug-in

Table C-1 GenericLDAP Plug-in

Description
The plug-in provides the capability to execute a create, delete, modify, and search
operations against an LDAP server.

The plug-in has support for full roll-back functionality.

Plug-in
Archive

GenericLDAP.par

Platform Any LDAP server which support LDAP v3.0.

Atomic Tasks

The plug-in has one atomic tasks: GenericLDAP_execute.

All of the information needed by the plugin is passed in two parameters. The first
parameter contains the hostname of the target LDAP server and the second parameter
contains the rest of the information, including connection information and data to be
updated in the LDAP server's directory(ies). The second parameter comes in the form of
either an xml file or an xml string. Within this xml, you may specify one of several
different operations on the LDAP server

See Also

For more information about this plug-in then see the Javadoc associated with the
plug-in code.

You can find more information about this plug-in in the $ACTIVATOR/docs/plugins
directory. Windows users can access this information from the desktop by navigating to
Start-> All Programs-> HP OpenView-> Service Activator-> Docs-> Plug-ins
Documentation
Appendix C96

D Generic HTTP Plugin

This appendix describes the Generic HTTP plug-in.
Appendix D 97

Generic HTTP Plugin
Generic HTTP Plug-in
Generic HTTP Plug-in

Table D-1 Generic HTTP Plug-in

Description

The plug-in provides the capability to send HTTP(S) POST/GET request and receive
the response.

The plug-in also supports the following additional features.

The plug-in has support for full roll-back functionality in case of a POST request and
the parameter undo must be provided to make use of this capability.

Results from HTTP(S) GET and POST requests are uploaded back to the workflow
manager as key value pair, the key beeing HttpGet and HTTPPost respectively.

The content of returned cookie, if any, is uploaded with the key CookieValue.

Plug-in
Archive

GenericHTTP.par

Platform Any HTTP-capable system or device.

Atmic Tasks HTTPGet_URL Makes a HTTP(S) GET request to the specified target URL.

HTTPGet_URLAnd
Cookie

Makes a HTTP(S) GET request to the specified target URL. The
cookie returned from an earlier request can also be sent as a
request property

HTTPGet_URLCook
ieAndTimeout

Makes a HTTP(S) GET request to the specified target URL. A
cookie can also be sent as a request property. A connection and
read timeout can be associated with the http connection.

HTTPGet_URLCook
ieAndProxySettings

Makes a HTTP(S) GET request to the specified target URL. A
cookie can also be sent as a request property. The proxy host
and port necessary to connect to the target URL can also be
specified

HTTPGet_URLCook
ieAndNetworkAuthe
ntication

Makes a HTTP(S) GET request to the specified target URL. A
cookie can also be sent as a request property. The username and
password necessary to make a network authentication in order
connect to the target URL can also be specified.

HTTPGet_URLCook
ieAndSecureConnec
tion

Makes a HTTP(S) GET request to the specified target URL. A
cookie can also be sent as a request property. A keystore
containing a valid SSL certificate identifying the server and the
necessary key pasword and store password in order make a
secure connection to the target URL can also be specified.
Appendix D98

Generic HTTP Plugin
Generic HTTP Plug-in
HTTPGet Makes a HTTP(S) GET request to the specified target URL. It
has the following collection of parameters:

• httpUrl
The target URL for the HTTP(S) connection. This is also the
locking argument

• username
Username for network connection authentication

• password
Password for network connection authentication

• keystore
The location of the keystore file, necessary for client
authentication

• storepass
The password of the keystore file, necessary for client
authentication

• keypass
The password of the public certificate/private key pair

• proxyServer
Name of proxy server, if proxy is to be used

• proxyPort
Port of proxy server, if proxy is to be used

• cookie
Cookie of the HTTP(S) request

• connectTimeout
Connection timeout value, in milliseconds

• readTimeout
Read timeout value, in milliseconds

• contentType
The request content type. Default value is "text/xml".

HTTPPost_URLAnd
Request

Makes a HTTP(S) POST request to the specified target URL.
The message to be posted in case of normal execution and
during rollback should be specified.

HTTPPost_URLCoo
kieAndRequest

Makes a HTTP(S) POST request to the specified target URL.
The request and undoRequest to be posted should be specified.
The cookie returned from an earlier request can also be sent as
a request property.

HTTPPost_URLCoo
kieTimeoutAndRequ
est

Makes a HTTP(S) POST request to the specified target URL.
The request and undoRequest to be posted along with a cookie
can be specified. A connection and read timeout can also be
associated with the http connection to the target URL.

Table D-1 Generic HTTP Plug-in (Continued)
Appendix D 99

Generic HTTP Plugin
Generic HTTP Plug-in
HTTPPost_URLCoo
kieProxySettingsAn
dRequest

Makes a HTTP(S) POST request to the specified target URL.
The request and undoRequest to be posted along with a cookie
can be specified. The proxy host and port necessary to connect
to the target URL can also be specified.

HTTPPost_URLCoo
kieNetworkAuthenti
cationAndRequest

Makes a HTTP(S) POST request to the specified target URL.
The request and undoRequest to be posted along with a cookie
can be specified. The username and password necessary to
make a network authentication in order connect to the target
URL can also be specified.

HTTPPost_URLCoo
kieSecureConnectio
nAndRequest

Makes a HTTP(S) POST request to the specified target URL.
The request and undoRequest to be posted along with a cookie
can be specified. A keystore containing a valid SSL certificate
identifying the server and the necessary key pasword and store
password in order make a secure connection to the target URL
can also be specified.

GenericHTTP_HTT
PPost

Makes a HTTP(S) POST request to the specified target URL.
Besides all the parameters for the HTTPGet atomic task, two
additional parameters are needed.

• request
The message to be sent to the http(s) server

• undoRequest
The request sent to the http(s) server during roll-back

Here both parameters can either be the message to be sent or a
file URL for a file containing the message. For the second case,
the URL must start with file://

The task returns an ExecutionDescriptor with major code OK
and minor code NONE upon successful completion.

The task fails if the server sends back a response code different
than '200', In this case, the value of major code is ERROR and
the value of minor code depends on whether the POST request
has reached the target system. As from the HTTP plug-in's
perspective, there is no way to tell whether the target system
state is restored to the original state before the atomic task
operation was invoked, the rule is to set the minor code to
CONSISTENT if the error happens before the request has
reached the target system, and set to INCONSISTENT
otherwise

See Also

For more information about this plug-in, see the Javadoc associated with the plug-in
code.

You can find more information about this plug-in in the $ACTIVATOR/docs/plugins
directory. Windows users can access this information from the desktop by navigating to
Start-> All Programs-> HP OpenView-> Service Activator-> Docs-> Plug-ins
Documentation

Table D-1 Generic HTTP Plug-in (Continued)
Appendix D100

Index
Symbols
@author tag, PAR documentation, 57
@dependency tag, PAR documentation, 57
@do_and_check tag, PAR documentation, 57
@param tag, PAR documentation, 57
@preprov tag for PAR documentation, 57
@undo_and_check tag, PAR documentation, 57
@warning tag, PAR documentation, 57

A
advanced tips for creating plug-ins, 76
atomic task

adding using Service Builder, 39
declaring methods, 77
definition, 16
parameters, 17
setting parameters, 39
testing, 54

AttributeTable, 30
authorizing deployment, 68

C
classes

available for plug-ins, 30
PAR directory, 26
provided in library, 30

command line parameters, Service Builder, 72
compiling PARs, 51
compound task

adding services and changing parameters, 59
constant values, 62
creating, 58
deploying, 64
documenting, 65
enabling and disabling, 69
export to XML, 69
managing using Service Builder, 69
properties, 63
removing or changing a called task, 62
reordering tasks, 62
testing, 65

configuration parameters, 50
configuring Service Builder, 71
context, execution of a plug-in, 28
conventions

typographical, 11
created, plug-in state, 24
creating compound tasks using Service Builder, 58
creating plug-ins without service builder, 76

D
declaring

plug-in class, 77
deployed tasks, maintaining consistency, 67
deploying compound tasks, 64
deploying PARs

authentication, 68
authorization, 68
using Service Builder, 53

deployment authorization, 68

deployment descriptor, see MANIFEST
deployment modes

NO DEPLOYABLE, 36
ON-DEMAND, 36

destroy(), plug-in method, 25
destroyed, plug-in state, 25
DO_AND_CHECK, 17, 77
doc directory, PAR, 26
documenting compound tasks, 65
documenting plug-ins, 55

E
execution context of a plug-in, 28
ExecutionDescriptor, 78, 80
exporting and importing PARs, 38

F
files directory, PAR, 27
files, adding using Service Builder, 45

I
importing and exporting PARs, 38
interpreter, 44
invalid

compound tasks, 67

J
Java classes

description, 76
using Service Builder to add, 42

Javadoc tags for plug-in documentation, 56
Javadocs, accessing for plug-ins, 30

L
lib directory, PAR, 27
library

adding to PAR, 47
life-cycle of a plug-in, 24
locking

arguments, 19
description, 18
example, 19

locking, description, 19

M
MANIFEST directory, PAR, 27, 84
manifest, plug-in, 84
manually creating plug-ins, 76

N
NO DEPLOYMENT, 36
not initted, plug-in state, 25

O
ON-DEMAND, 36

P
PAR
 101

Index
adding atomic tasks, 39
classes directory, 26
compiling, 51
configuration parameters, 50
deploying using Service Builder, 53
deployment modes, 36
description, 17, 26
directory descriptions, 26
directory structure, 24, 26, 37
doc directory, 26
file layout, 26
files directory, 27
general properties, viewing, 48
generating documentation, 55
importing and exporting, 38
Javadoc tags for documentation, 56
lib directory, 27
MANIFEST directory, 27
scripts directory, 27
src directory, 28
testing using Service Builder, 54
updating, 41

PAR documentation
@author tag, 57
@do_and_check tag, 57
@param tag, 57
@preprov tag, 57
@undo_and_check tag, 57
@warning tag, 57

PAR documentation tag
@dependency, 57

par.xml, 84
parameters

atomic task, 17
PARContext, 28, 30
PARPlugin, 30
plug-in

archives, description, 26
busy, 25
class, declaring, 77
classes defined, 30
classes, description, 30
context, 28
creating in Service Builder, 35
creating manually, 76
definition, 16
deploying using Service Builder, 53
description, 16
destroyed, 25
documentation, 30
documentation tags, 56
enabling and disabling, 69
execution context, 28
generating documentation, 55
Javadocs, accessing, 30
life-cycle, 24
managing PARs using Service Builder, 69
method, declaring, 77
not initted, 25

properties, 48
service_xx, 25
states

busy, 25
created, 24
destroyed, 25
not initted, 25
pooled (busy), 25
pooled (free), 25

testing, 54
using Service Builder to manipulate, 34
valid states, 24

pooled (busy), plug-in state, 25
pooled (free), plug-in state, 25
preprovision scripts and files, including in a PAR, 46
preprovisioning

files, 27
include files in PAR, 46

project, Service Builder
creating, 34

properties, compound task, 63

R
reordering tasks in a compound task, 62
resmgr.xml, 20
Resource Manager

configuration, 20
resource manager

description, 17
resmgr.xml, 20

roles
, 68

S
scripts directory, PAR, 27
scripts, adding using Service Builder, 44
Service Builder

adding atomic tasks, 39
adding files, 45
adding information to the PAR library, 47
adding Java classes, 42
adding scripts, 44
adding services and changing parameters, 59, 61
command line, 72
compiling PARs, 51
configuration, 71
deploying a plug-in, 53
deploying compound tasks, 64
documenting compound tasks, 65
generating documentation for a PAR, 55
importing and exporting PARs, 38
including preprovisioning scripts and files, 46
maintaining consistency of deployed tasks, 67
managing plug-in archives and compound tasks, 69
removing or changing a called service, 62
starting, 34
testing a compound task, 65
testing a plug-in, 54
updating PARs, 41
102

Index
using to create compound tasks, 58
viewing general properties, 48
viewing properties of a compound task, 63

sharing source files between plug-ins, 41
src directory, PAR, 28
starting Service Builder, 34

T
tasks

maintaining consistency of deployed, 67
testing atomic tasks, 54
transaction ID, 18

U
UNDO_AND_CHECK, 17, 77
updating a PAR file, 41
using Service Builder to test a compound task, 65

V
valid states of a plug-in, 24
viewing properties of a compound task, 63
ViewTransactionState command, 18

X
XA protocol, 17
XID transaction ID, 18
103

Index
104

	Developing Plug-Ins and Compound Tasks
	1 Understanding and Using Service Activator Plug-ins and Compound Tasks
	Understanding Plug-ins
	Atomic Tasks
	Atomic Task Parameters

	Packaging a Plug-In
	Understanding the Resource Manager
	Understanding Locking
	Configuring the Resource Manager

	Understanding the Plug-in Life-Cycle
	Understanding Plug-in Archives
	Understanding the Plug-in Context

	Understanding Compound Tasks
	Using the Plug-in Library
	Accessing Plug-in Documentation
	Using Plug-in Classes

	2 Understanding and Using Service Builder
	Using Service Builder to Create Plug-ins
	Starting Service Builder
	Creating a Project
	Creating a Plug-in
	Creating a New Plug-in from Scratch
	Adding an Existing Plug-in

	Adding Atomic Tasks
	Using Common Source Files in Multiple Plug-ins
	Updating the PAR File

	Adding Java Classes (Source Files)
	Adding Scripts
	Adding Files
	Including Preprovisioning Scripts and Files
	Adding a Library
	Viewing General Properties
	Configuration Parameters
	Compiling a Plug-in
	Deploying a Plug-in
	Testing an Atomic Task
	Generating Plug-in Documentation
	Using the Javadoc Tags for Documentation

	Using Service Builder to Create Compound Tasks
	Creating Compound Tasks
	Adding Tasks to a Compound Task
	Modifying Compound Tasks

	Importing and Exporting a Compound Task
	Deploying a Compound Task
	Testing a Compound Task
	Documenting a Compound Task

	Maintaining Consistency Between Deployed Tasks
	Configuring Authentication or Authorization
	Using Service Builder to Manage Plug-in Archives and Compound Tasks
	Setting Service Builder Configuration
	Using Service Builder from the Command Line

	3 Creating Customized Plug-ins and Compound Tasks
	Creating Plug-ins: Advanced Tips
	Plug-in Java Class
	Executing Scripts and Commands
	Capturing Output from Scripts and Commands

	Saving Data in the Database
	Reading Data from the Database
	Understanding the Plug-in Deployment Descriptor (Manifest)
	Packaging and Deploying a Plug-in
	The Difference Between PAR Deployment and Script Deployment

	Creating Compound Tasks Manually: Advanced Tips

	A Generic CLI
	Generic CLI Plug-in

	B NNM Liaison
	NNMLiaison Plug-in

	C Generic LDAP
	GenericLDAP Plug-in

	D Generic HTTP Plugin
	Generic HTTP Plug-in

