HP Service Activator

System Integrator’s Overview

Edition: V70-1A

for Microsoft Windows® Server 2012 R2, HP-UX 11i v3,
Red Hat Enterprise Linux 6.6

Manufacturing Part Number: None
January 18, 2015

© Copyright 2001-2015 Hewlett-Packard Development Company, L.P.

Service Activator SystemIntegrator’s Overview

Legal Notices
Warranty.

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-
Packard shall not be held liable for errors contained herein or direct, indirect, special, incidental or
consequentialdamages in connection with the furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be obtained
from your local Sales and Service Office.

Restricted Rights Legend.

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS
252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-
19(c)(1,2).

Copyright Notices.
© Copyright 2001-2015 Hewlett-Packard Development Company, L.P .

Confidential computer software. Valid license from HP required for possession, use orcopying.
Consistentwith FAR 12.211 and 12.212, Commercial Computer Software, Computer Software

Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are setforth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Printed in the US.

Trademark Notices.

Java™ is a registered trademark of Oracle and/or its affiliates.

Linux is a U.S. registered trademark of Linus Torvalds

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Red Hat® Enterprise Linux® is a registered trademark of Red Hat, Inc.

JBoss® is a registered trademark of Red Hat, Inc. in the United States and other countries.
EnterpriseDB® s a registered trademark of EnterpriseDB.

Postgres Plus® Advanced Server is a registered trademark of EnterpriseDB.

Oracle® is a registered trademark of Oracle and/or its affiliates.

UNIX® is a registered trademark of the Open Group.

Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation.

Document id: p158-pd001212

Service Activator SystemIntegrator’s Overview
Document Information

Contents

1 INtroduCing HP SErviCe ACHIVATOLcvicuieeiiieitietiee e bbbt
Positioning an HP Service Activator Solutioncccceovveeveninnnas
HP Service Activator Component Architecture
SOIUTION PACKAGEScovivitieiiet ittt
A TYPICATWOTKTIOW ... bbbt
HP Service ACtiVAtor DOCUMENTALIONc.cvuivieitieeireieireiet ettt bbb

2 Solution CompPONENTS AN TOOIScriiiiiic bbb 17
DataASE REPOSTIOMIEScvuvceecescieiet et b bbb 18
Solution Data RepOSItOrieS (INVENTOIY) ...ttt sesnsnsnsnsens 18
o (0T R LTS Lo AN A2 L N I] PP 20
WOIKFIOWS......ooceciriieicece s
User Interface and Roles
=T g Yot= TSy (o] g a1 £ = To] o 28
Integration with Other HP NGOSS Products: NNMi, NA, UCMDB........cccccooviiiiininernsee s sssssseens 28
STo] Lo I I T=T o] [0}V 111 | SOOI 29

3 An Example SOlUtion: INtro_EXAMPIEcccviierrcceseseeeesre st sssssssse s sesessssssssssessssssssssssnss 31
Contents 0F the INtT0_EXAMPIE ..ottt b e 31
DEPIOYING the EXAMPIE ...ocveiciicccee ettt e st s 33
Examining Components of the Intro_EXample SOIULION ..o 34

Running the Intro_Example Solution Workflows

4 Solution Planning @nd ANGIYSIS. ...ttt st st sssessasssssssasssssssassssssssssssns 39
Activities in a Project to Build @ SOIUTIONcouviiiiiiiice e 39
AANAIY SIS 1. R AR bR 40
LR Y] LU o T DT o IO P TSP 43
STo] Lo g = o 1= g o TSROSO 43
QUEUING SUD-SYSTEIM ...ttt bbbt 43
CONNECTION POOIS ..ottt bbbttt 45
o 0o TR 46
USET INTEITACE AN ROIES ...ttt bbb bbbttt bbb bbbttt 48
ENCIYPTEA PASSWOITS......coutveriiiscieesiees ittt 51
DAL IMOTEIS ... 52
EXternal INVENTOrY INTEQTATION.......ccv ettt bbbt s s s e naen 52

Workflow Processes
Solution Monitoring

NN 0T d gl 0T 0T g I TN T - o - TR TRRN 55
6 HP Service ACTIVALOF PLatfOr M. ...ttt bbb bbb bbbttt b ettt b bt rnbenas 59
CIUSTEE PIATTOIM ...ttt £t bbb bbbttt 59
Cluster INSTAALION ANT SETUDivvirieeirieeree bbbt 61
WOIKFIOW LOAA DISTIIDULION......c.cuiiiiiciciiisicetssccets sttt st s st s e 61
Standby SiteS fOr DISASIEr RECOVEIYccciriiciiieiriicie ittt st s bbbt bbbt s s bt s s s 64
Internet ProtoCol VErSioNS (IPV4, IPVG) ... 64

Managing an HP Service ACHIVALOr CIUSTET ..o 64

Service Activator SystemIntegrator’s Overview
Document Information

Contents

7 Roles, Privileges and AULNENTICALIONcccovviiiiiiiiiiiiris sttt bbbt bbb b bbb ebenas 67
SystemUser and Predefined ROIES ..o 68
ASSIGNING PrIVIIEGES 10 ROIES ... bbb 68
Authentication and AsSIgNING ROIES 10 USEIS.......cccviieriiceinriseseseeesis s ssssssse s ssssssssesessssssessns 69
Organizing USEIS iN TEAMS ...c.cucviiieeeeterieceeietss sttt ssssse e seessse st ss st e s ss s se b et s st et s s et et e s s e s et et s et bbb s st et e s s e set et s nns 72
Light WeIght SINGIE SIGN ON......cecviiciieictes ettt 72
SPENEGOceitieitieiiieesseseseessssessssessssssssssssssssssssssssssssssssessssessessssesassesassessssessesessssssssssnsssssssssnsssnsssnssssnssssessssnssssessssesns 72

8 C ommOoN NEtWOIrK RESOUICE IMOTEocuiiiriieireie ittt bbb 75
Adapting the CNRM TOr @ SOIULION ... nens 75
CINRIM WOTKFIOWS ...ttt es sttt s bbbttt b st et snb et 76
CNRM 0n the INVENTONY USEE INTEITACE. ..o ettt st sss s 76
MOdel CONTFIGUIALION DALAc.cvviivciereiiceteiseee ettt s bt b et s et et s s s s s s e nenas 76
Object Classes 0T the CINRIM ...ttt ettt ettt e s st en s st et s s nnnas 7
Configuring CNRM Dataload From NNM icoocis e 87

QWD SEIVICE DESIGNEL ...ttt sttt b et b s e Rt s e st bt s bbb st et s s st b s s 91
DEFINING 8 WWED SEIVICEcviiiiiieiciceie ettt ettt e et e 91
WED SErViCe DESIGNET TOO ..ottt 93
EXracting WS DL DEfINItIONcucuiriccersicies ettt sttt essaen 96

OO Y= To - Y o a1 (] 1T PP 99
Lo (o [UTox Ao o OO TSRO 99
CONTIGUIALION ...t bbbt 99
USEE INTEITACE ...t bbbttt 99
TRIESNOIA VIOIATIONS ...t bbb bbbttt 100
USBQGE REPOIS. ...ttt bbb 101

11 INtegration WITh NINIMI ..ottt ne b e s s s s et s e nnnnas
POSIHIONING OF NINMI ..ottt s st s et b s s b s s s s e
Summary of Benefits of Integration With NNIM iccciiiiiiiiiiieses e
Readily Available Capabilities With NINMIcoiiiiece s
Components for Customized Integration With NNMIcccoovrrrirnnccsses s eses

Summary of Techniques for Configuring Integration on NNMi
Customizing and Configuring Service Activator to Work with NNM i

I 1 C=To L Lo TV I T N PPN 109
POSIHONING OF NA ..ot s e Rt b b e e R b s et s n et s e r e 109
Summary of Benefits of INtegration With NA ...t 109
Readily Available Capabilities WIth NA ... 110
Service Activator Components for Customized Integration With NA ..o 110
Summary of Techniques for Configuring Integration 0N NA ... s 110
Customizing and Configuring Service Activator to Work With NA ... 110

13 DEVRIOPMENT HiNTS ...ttt bbb 113
Configuring Database CredeNTIalScccvicriiiircerece st sa s 113
Configuring Injection of RequESt MESSAQES TOr TEST.....cccviiiiiciiceeree e 113
WOrkflow Testing and DEDUGGING.....ccuierirririiines s 113

Service Activator SystemIntegrator’s Overview
Document Information

Contents
14 SYSTEM CONFIGUIALION ...vcvicicicicictciccee ettt ettt et e ettt et b bt nn s b st 115
Number of Threads and MemOIY USAQE.........couuiuirriirieereiniee et ssens 115
DALE SOUICES ...ttt R s e e ettt 116
15 LLOCAIIZATION ...ttt ettt bbb bbb bbb bbbt 117
N 0o 2T o TG N Tod T o OO TOS 119
Appendix B CoNfIQUIation FIIEScciiieces ettt 121

APPENTiX € JAVA IMESSAGE SEIVICEouiiieiieeiiiieiseier i see st 123

Service Activator SystemIntegrator’s Overview

Document Information

In This Guide

This guide provides an overview of the HP Service Activator product, including its architecture
and components, and provides information to help plan and design Service Activated-based
solutions.

Audience

The audience for this guide is the Systems Integrator (SI) who will plan and deliver solutions,
particularly Sls with architect roles. It is not intended for the end user. Implementors will need
additional detail from the manuals for the different components of tools within the Service
Activator product.The Sl is expected to have some or all of the following background:

e Understanding and working knowledge of:
— UNIX® commands
— Windows® systemadministration

e Familiarity with Java™ and XML

e Understanding of security issues

e Understanding of the customer’s problem domain

Service Activator SystemIntegrator’s Overview
Document Information

Conventions

The following typographical conventions are used in this guide.

What the Font

thatyou select the
menu, then the item.
When followed by an
arrow (->), a
cascading menu
follows.

Font Represents Example
Italic Book or manual titles, Refer to HP Service Activator, Workflows and
and manpage names the Workflow Manager and the Javadocs for
more information
Provides emphasis, You must follow these steps.
introduces a new term
Identifies a variable or | Run the command:
parameter InventoryBui lder <sourceFiles>
The assigned_criteria parameter returns an
ACSE response.
Location descriptor $JBOSS_DEPLOY
Computer | Text anditems onthe The systemreplies: Press Enter
computer screen
Command names Use the InventoryBui lder command
Method names The get_all_replies() method does the
following...
File and directory Edit the file
names $ACTIVATOR_ETC/config/mwfm.xml
Window/dialog box Inthe Test and Track dialog...
names
Computer | Text thatyoumust type | Attheprompt, type: Is -1
Bold
Keycap Keyboard keys Press Return
[Button] | Buttonson theuser Click [Delete].
interface .
Click the [Apply] button.
Menu A menu name followed | Select Locate:Objects->by Comment
Items by a colon (:) means

Service Activator SystemIntegrator’s Overview
Document Information

Install Location Descriptors

The following names are used to define install locations throughout this guide.

Descriptor What the Descriptor Represents

$ACTIVATOR_OPT The base install location of Service Activator.

The UNIX® location is Zopt/0OV/ServiceActivator

The Windows® location is
<install drive>:\HP\OpenView\ServiceActivator

SACTIVATOR_ETC The install location of specific Service Activator files.

The UNIX location is Z/etc/opt/0OV/ServiceActivator

The Windows location is
<install drive>:\HP\OpenView\ServiceActivator\etc

$ACTIVATOR_VAR The install location of specific Service Activator files.

The UNIX location is /var/opt/0V/ServiceActivator

The Windows location is
<install drive>:\HP\OpenView\ServiceActivator\var

$ACTIVATOR_BIN The install location of specific Service Activator files.

The UNIX location is Zopt/0V/ServiceActivator/bin

The Windows location is
<install drive>:\HP\OpenView\ServiceActivator\bin

$JBOSS_HOME The install location for JBoss.

The UNIX location is Zopt/HP/jboss
The Windows location is <install drive>:\HP\jboss

$JBOSS_DEPLOY The install location of the Service ActivatorJ2EE components.

The UNIX location is
/opt/HP/jboss/server/standalone/deployments

The Windows location is
<install drive>:\HP\jboss\server\standalone\deployments

$JBOSS_EAR_LIB Location for libraries (Java *.jar files) to be executed by the HPSA engine

(workflow manager and resource manager):
$JBOSS_DEPLOY/hpsa.ear/lib

$JBOSS_ACTIVATOR More specific location of Service Activator Ul components deployed in JBoss:
$JBOSS_DEPLOY/hpsa.ear/activator.war

Service Activator SystemIntegrator’s Overview
Introducing HP Service Activator

1

Introducing HP Service Activator

HP Service Activatoris a customizable productthat performs tasks to activate services offered by
providers of converged IT and network communications services. It can perform any activation
task on elements of any infrastructure comprising network elements and IT servers, when the
targets can be configured through command or request interfaces, whether they use command
lines, web services, or any other protocol. The productis typically deployed to perform highly
repetitive activations where automation brings a significant advantage in terms of costsaving,
speedup and ensuring correct activation, butit is possible to use Service Activator to automate any
process that requires the execution of a sequence ofautomated command interactions.

The core of HP Service Activatoris a generic workflow engine. To build a solution for activation
of services in a specific domain the core must be supplemented with customized data models,
workflows and plug-ins for interaction with the elements in the provider’s environment. Work-
flows must implement the activation processes needed to add, modify or terminate services for
each of the provider’s customers. The product includes tools to assist the Sl in the customization
process.

This overview manual introduces the way Service Activator works in a deployed solution as well
as the tool setand the customization process thatthe SI must go through in a solution delivery
project.

Positioning an HP Service Activator Solution

Described here is the positioning of HP Service Activator for use as an activation systemin
fulfillment solutions. It should be noted that this positioning is not exclusive. Due to the flexibility
of Service Activatorworkflows and plug-ins, it is possible to customize solutions also for other
domains, notably network configuration as well as testand diagnostics, also known as network
troubleshooting applications.

Positioning in the Provider’s Environment

An activation systembuilt with HP Service Activatorwill typically be part of a complete service
fulfillment solution driven by requests from a CRM (Customer Relationship Management) system.
The fulfillment solution may comprise also order management (OM) and resource inventory, and
it may be integrated with other Operation and Business Support Systems (OSS and BSS) outside
of fulfillment.

The Service Activator-based activation systemtypically has a built-in data repository commonly
referred to as inventory: resource inventory, which is used to allocate resources in the network and
keep dataaboutdevices which are activated, and service inventory which records services and
their parameters as they are activated. Alternatively, if required, the activation systemcan access
the inventory data in an external inventory system.

The positioning of the activation systembetween a BSS system, which drives it with requests for
service activation, and the network and service infrastructure onwhich services are activated is
shown in Figure 1-1. In this diagram the flow of control is from north to south. The network and
service infrastructure may contain many different kinds of network elements and dataservers. The
latter can belong to a service infrastructure, for example GSM or IMS: HLR, HSS, servers for
voice mail, SMS, MMS, etc. They can also be related to Internet data services: DHCP, RADIUS,

Chapter 1

Service Activator SystemIntegrator’s Overview
Introducing HP Service Activator

email, etc. In general any server which needs to be activated with information abouta new
customer/subscribercan be part of the infrastructure thatis known to the Service Activatorsystem.

Positioning of HP Service Activator Activation System

Figure 1-1
BSS: CRM or
Service Order Management/Provisioning
System
Inventory HPSA Activation | Other OSS
System System
Network and Service Infrastructure
Voice Elomont Data Server Middleware
SOHSW“Ch quager
L
\
Network [Network
Element Element
L |
Provider's network and customer devices

Itis typical, but not mandatory that Service Activatoris driven by requests forwarded by an
external BSS system, as discussed above. Itis also possible to implement a stand-alone system
where requests to start workflows are entered directly from the userinterface on HP Service

Activator.

Positioning in TMF NGOSS Maps

For the reader who is familar with TMF’s (NGOSS) eTOM map of the processes which are
executed by a communications service provider to plan, deliver and maintain services, HP Service
Activator can be characterized by its position on the map as shown in Figure 1-2. Service
Activator helps to automate the processes designated in eTOM as ‘Service Configuration &

Activation’.

10 Chapter 1

Service Activator SystemIntegrator’s Overview
Introducing HP Service Activator

Figure 1-2

Service Management &

Retention & Loyalty I

HP Service Activator in the e TOM Map
Operations
Operations Support | | Fulfillment Assurance Billing
& Readiness
Customer Relationship ¢ Interface M |
M t Selli
anagemen # Problem Customer Billing &
CRM Marketing Order TP QoS / SLA Collestions
Support & Fulfillment Handling "8 Management Management
Readiness Response

: Service Service Service &
SMa0 Operation Problem Quallty Specific Instance
:"::m & Management | Management Rating
{7 ness
Resource Management & Resource Resource
Operations Re!_vuul Trouble Performance
Srph;&or(t) & P P! ioning [} Management
Readiness R Data Collection & P g
T r—
Supplier/Partner Relationship sip SIP Prablem sip SIP Settlements
SIFRM Manag ement Requisition Reporting & Performance & Billing
Support & M: [} Management Management
Readiness PP artner | M I
L J 1 1 1 J

HP Service Activatorcan also be positioned on TMF’s emerging Telecom Application Map
(TAM). TAM describes a number of so-called applications (with considerable overlap), grouped
in domains and sub-domains, from which a complete OSS can be constructed. The functions of
Service Activator fall mainly in the sub-domains of Resource Inventory Management, Resource
Order Management and Service Order Management.

Positioning in HP OSS Blueprint

Figure 1-3

Product &
Commercial

Customer
Mgmt

Customer

Customer &
Resource
Service

Mgmt

Resource
Mgmt

'Resource Service

HP offers a range of OSS solutions, all derived from an overall blueprint, which is similar to the
TM Frameworx maps, as shown in Figure 1-3.

Service Activator in HP NGOSS Solutions

nnel Access (Back Office, Customer, eBonding)

Customer Order Entry
Customer Order Management

Decomposition and Orchestration

Service Order

Design & Assign

ServiceActivation

A ——

nge
M ement

Product
Catalog

Product to
Service
Catalog

Service
l Catalog

Customer Management
Customer
Interacti

Subscription
Inventory

Customer
Service

Inventory Incident and

Problem
Service Management

Hierarchies

Workfol Configuration
Managel Management

Resource Resource
Catalog Inventorv
Discovery &

Test &
Diagnostics

Reconciliation

Help Desk
onMgmt

Customer
Impact
Management

Service
Impact
Management

Fault
Management

IP/IT/EMS
omain Mgmt

SLA Management
Reporting

SLA
Dashboard

Service
Quality
Management

Performance
Management

Customer
Experience
Assurance

Probe
Analysis

Fulfillment

Common Data

Assurance

Design & Assign,comprising the selection and reservation of resources for shared or exclusive use
by a service instance, and Service Activation, comprising the interactions with network elements
or systems in the provider’s service infrastructure that are needed to activate a service instance, are

Chapter 1

11

Service Activator SystemIntegrator’s Overview
Introducing HP Service Activator

identified in the blueprint as separate functional building blocks. HP Service Activator is normally
always usedto implement Service Activation, and it is usedto implement Design & Assign when
that function is automated. It is recommended for solutions intended to be reusable to clearly
separate the two functionalities, i.e. notcombine them in the same workflows.

HP Service Activatoralso has some capabilities in the Common Data column, identified asthe
Service Inventory and Resource Inventory functional building blocks. Generally these capabilities
are notused to build master inventory systems, but primarily to build data models for internal
purposes ofthe solution that is based on HP Service Activator. Solutions may integrate and
synchronize with external inventories.

HP Service Activator Component Architecture

Workflows

In Figure 1-1 there is a single box ‘HPSA Activation System’. This box has a number of
interfaces. Here we open the box and consider the components inside it. The various interfaces into
the box are handled by different internal components. Figure 1-4 shows the major components: the
workflow manager, the resource manager, and the web server, all of which run on the J2EE
platform JBoss. The web server (Apache Tomcat) is actually part of JBoss, whereas the other
components are HP Service Activator additions to the platform. For further discussion ofthe
platform and how Service Activatorcan scale by using a cluster of servers (Note: notbased on
JBoss clustering), see chapter6.

This section only scrapes the surface. For more information aboutthe components and the
associated development tools, read the next chapter and then go to the dedicated manuals as
needed.

The workflow manager and the resource manager togethermake up the workflow engine of
Service Activator. The workflow engine does the process work of the activation systemby
executing workflow jobs.

A workflow is a definition of an executable process. The definition is at a detailed algorithmic
level, suitable for control of interactions with activation targets. HP Service Activator workflows
should not be confused with business process workflows as supported by languages like BPEL. It
is possible, however, to implement processes which interact with human operators as well as
external systemand have significant duration in Service Activator. Workflows are composed from
a set of action primitives known as workflow nodes. They are executed by the workflow manager,
one nodeat a time. The crucial step in an activation workflow is the Activate node. This node
executes an activation task which is where the actual interaction with activation targets take place.

Plug-ins and activation tasks

Activation tasks consist of one or more atomic tasks; each atomic task interacts with a specific
activation target and is implemented as an element of the plug-in for that target, for example a
specific type of network element (vendor and model) or IT server, for example LDAP, or a voice
softswitch. A plug-in is a pluggable componentwhich is managed by the resource manager. A task
that consists of more than one atomic taskis called a compound task. A compound taskis executed
as a transaction:the atomic tasks are executed sequentially, and if one of them fails, any atomic
tasks that have already finished successfully will be undone by executing their “undo” parts, so
that the net effect of the compound task will be nil. The undo part of each atomic taskrestores the
state of the target as it was before the atomic taskwas executed.

12

Chapter 1

Service Activator SystemIntegrator’s Overview
Introducing HP Service Activator

Figure 1-4

HP Service Activator Components and Inte rfaces

Web Browser

| CRMSystem |

4

Workflow Manager

Data repositories
(Oracle)

wi wi wf

Resource Manager

plug-in plug-in

g

Infrastructure
activation targets

HP Service Activatorincludes a few generic plug-ins, which are not for specific devices or target
systems, but for a certain of type of interface, suchasa command line interface (CLI) or HTTP
message exchange interface. When a generic plug-in is used, it will have pre-implemented atomic
tasks which handle the communications protocol, but must be customized with additional control
information that determines the specific commands or messages that are exchanged. In these cases
a plug-in dedicated to a specific activation target comprises the generic plug-in plus the additional
customization. Such plug-ins occur frequently.

To savetime for connection establishment and session authentication it is often desirable to allow
several successive activation dialogs with a target equipment, i.e. to activate different service
instances, to occur within a single session between HP Service Activator (a plug-in) and the
equipment. This mode of operation is facilitated by supporting pools of reusable connections
(preauthenticated sessions) within the resource manager.

Plug-ins may be reusable from one solution to another,and a list of plug-ins that have been built is
maintained as a “plug-in library”. However, plug-ins are typically designed to fit the requirements
of a particular provider’s solution. To limit the implementation effort they are not generally
designed to be able to control all features of the target, and may therefore require additional work
when reused for a different project.

Solution Data Repositories (Inventory)

It will often be necessary as steps ofactivation processes implemented with workflows to access
data describing resources in the provider’s infrastructure as well as the services (instances) that
have been activated. Service Activator has the capability to model and maintain repositories of
data that is needed by the solution,commonly referred to as resource and service inventory data.
There is also a userinterface for working with inventory data.

Northbound interface

The native northbound interface of the workflow manager is a Java RMI interface which supports
arange of methods to inspectand control the state of the workflow manager. In particular it is

Chapter 1

13

Service Activator SystemIntegrator’s Overview
Introducing HP Service Activator

possible to request the workflow manager to start a workflow job, specified by name and with
parameters. The RMI is normally notused directly by an external requester, but all other NBls are
basedonit.

Solution Packages

For frequently occurring types of activation solutions pre-customized packages of plug-ins,
workflows and more, are maintained and made available for delivery projects. These packages
allow rapid delivery of solutions. Depending on the provider’s environment some customization
will still be required, to adaptto the provider’s specific network architecture, processes and service
definitions, to develop any additional plug-ins needed for targets not already supported, and to
integrate with other systems.

Solution packages exist for layer 2 (Metro Ethernet) and layer 3 (IP) VPN services and for
residential services delivered over IP networks (Internet access, IPTV, etc.).

A Typical Workflow

Figure 1-5

Workflows for activation of services typically follow a pattern as depicted in Figure 1-5.

Typical Service Activation Workflow

%

& provision
service

inventory

N\

execute
tasks

service infrastructure

In an actual workflow, each box as shownin Figure 1-5, will require several workflow nodes,the
number depending on the complexity of the details of the process. Atthe high level, as shown, the
process is typically as follows:

e A customer order is entered into a CRM system, where it is validated, approved and forwarded
to the next level of processing. In a simple case it can go directly to Service Activation. In a
more complex case, an order management process may be needed to decompose an order
which is for a bundle of services and to separate the request for automatic activation, which can
be handled by HP Service Activator, from other tasks which must be performed manually or
passed onto partners of the provider.

14

Chapter 1

Service Activator SystemIntegrator’s Overview
Introducing HP Service Activator

The activation systembased on HP Service Activatorreceives the request for activation ofa
service, maps to the appropriate workflow and starts an instance of the workflow as a job.

The workflow job inspects the parameter values from the request and calculates or gathers
additional necessary parameter values.

— For example, if a service typeis specified as ‘Gold” or ‘Silver’, the corresponding
technical values for bandwidth and similar parameters will be looked up. For a complex
technology, the derivatioin can also be complex

— Resources needed to satisfy the request, such as an access port, for example on a DSLAM,
where customer premises equipment can be connected, are allocated from resource
inventory. Resource identifiers will also be activation parameters. Allocated resources are
recorded in resource inventory.

— Parameter values, for example selection of a device or port, can also be obtained from a
dialog with an operator.

When all parameters are ready, the necessary activations are executed, ideally as a single task,
which may be compound.

— If an atomic task within a compound task fails, any preceeding atomic tasks are
automatically rolled back. This logic is notvisible in the workflow.

If the activation was successful,the newly activated service will be recorded in service
inventory. If it failed, any reserved resources are again released.

A summary of the action of the workflow, including service id, main parameter values, success
or failure, is recorded in HP Service Activator’s audit trail.

A response message to be returned to the requesteris prepared. Success or failure indication
and any relevant parameters that were derived by the workflow are included in the message.
The message is forwarded according to the protocol of the northbound interface. This may be
done by a sendermodule or by the web service interface after the workflow terminates.

The response message is processed by the order handling systemor CRM system. This is
outside the scope of the activation system.

In actual implementations process logic is often divided over several workflows. A parent
workflow can startinstances of child workflows and synchronize with their completion. An
architecture is recommended where the northbound communication to receive and respond to
incoming request messages is separated from activation details that will differ for each type of
request. This topic will be discussed in chapter 5.

HP Service Activator Documentation

This manual provides an introduction and overview:

Chapter 2 describes in more detail each of the components of HP Service Activatorthat were
introduced above along with the tool(s) for customizing the corresponding part of a solution.

Chapter 3 walks through a simple (not real) solution containing components of all the kinds
introduced in the first chapters.

Chapter 4 provides a brief guide for planning a solution delivery project and identifies the
topics to be covered in the analysis phase which may be needed as a pre-sales activity to scope
the delivery project.

Chapter 5 discusses some design topics for the different components of a solution.

Chapter 6 describes how HP Service Activatorcan be deployed on a cluster of JBoss platforms
for scalability and high availability.

Chapter 1

15

Service Activator SystemIntegrator’s Overview
Introducing HP Service Activator

e Chapter 7 describes the use of roles to control access and customize the userinterface for
different groups of users.

e Chapter 8 describes the Common Network Resource Model.

e Chapter 9 describes the Web Server Designer, a tool to generate a web service serviet
dedicated to a solution.

e Chapter 11 describes the integration of HP Service Activator and HP NNMi.

e Chapter 12 describes the integration of HP Service Activator and HP Network Automation
(NA).

e Chapter 13 gives some useful hints about testing and debugging.
e Chapter 14 gives advice about configuring an HP Service Activator system.
e Chapter 15 gives an overview of the process of localizing an HP Service Activator solution.

For further familiarization with HP Service Activator it will be useful to study some of the

example material thatis provided as part of the installable kit. A simple example is introduced in
chapter 2. A more thorough example - using management of layer 2 VPN services as use case -
complete with inventory datamodel, workflows and plug-in code is fully documented in a separate
manual, Putting Service Activatorto Work: A Sample Service Scenario for VPLS.

For an actual customization and solution delivery project, detailed manuals are provided for
installation on each supported operating systemplatform and for the major components of HP
Service Activator and the associated customization tools:

e HP Service Activator, Workflows and the Workflow Manager provides all the information
needed to understand workflows in detail, including descriptions of the workflow node and
workflow manager module libraries, how to extend the libraries with new nodes and modules,
and the workflow designer tool.

e HP Service Activator, Inventory Subsystem explains how to customize a solution data
repository model with definitions of each entity class (database table) and the user interface to
presentthe data model. This manual also describes the Inventory Builder, the tool used to
process inventory definitions.

e HP Service Activator, XMaps explains how to customize a solution to use a graphical
representation to model solution data. The manual also described the XMap Designer, a too
used to configure XMaps.

e HP Service Activator, Developing Plug-Ins and Compound Tasks explains the concepts of
plug-ins, atomic tasks and compound tasks, and how to use the Service Builder tool to build
plug-ins and customize compound tasks.

e HP Service Activator, Solution Separation and the Deployment Manager explains how
customized solutions can be managed on a target system: installed, inspected, removed. The
Deployment Manager is the tool to use for managing solutions.

There is one manual describing the HP Service Activator and its user interface in a generic way for
users and systemadministrators: HP Service Activator, User’s and Administrator’s Guide. You
should read that manual as an introduction and to understand how you can supply solution specific
information.

16 Chapter 1

Service Activator SystemIntegrator’s Overview
Solution Components and Tools

Solution Components and Tools

In chapter 1 the components of HP Service Activatorwere introduced: workflow manager,
resource manager, data repositories. Correspondingly, a customized solution will contain different
components: workflows implementing activation processes, plug-ins implementing target
interactions, and definitions for the required data model. On top of the workflows it will generally
be necessary to add a northbound interface for receiving and responding to service activation
requests. Depending on specific requirements it may also be necessary to integrate with other
OSS/BSS systems.

Service Activator comes with a set of tools which make the process of customization a joy. They
will be introduced in this chapterand each one s thoroughly documented in one of the manuals
listed at the end of chapter 1. Here is an overview of this chapter:

e The first section, “Database Repositories”, describes the key role thatis played by the
prerequisite database to hold a number of repositories thatare used by HP Service Activator.

e The second section, “Solution Data Repositories ”, introduces the capabilities of HP Service
Activator to manage repositories of resource and service data, also known as inventory,
including the tree-structured inventory userinterface. The tools in this area are the Inventory
Builder and the Inventory Tree Designer.

e The third section, “Plug-Ins and Activation Tasks”, introduces the concepts of HP Service
Activator plug-ins, including plug-ins thatare developed as new Java source code by the
solution integrator as well as generic plug-ins that can be customized. The toolin this area is
the Service Builder.

e The fourth section, “Workflows”, explains the capabilities and architecture of the workflow
manager and introduces the construction of workflows. The tool for building workflows is the
Workflow Designer.

e The fifth section, “User Interface and Roles”, introduces the user interface of HP Service
Activator.

e The sixth section, “Interfaces for Integration”, describes how an HP Service Activatorsolution
is integrated with other OSS/BSS systems, primarily how to construct anorthbound interface
for receiving and responding to service activation requests. There is no tool dedicated to
building NBIs.

e The seventh section, “Integration with Other HP NGOSS Products: NNMi, NA, uCMDB”,
introduces the components which are presentin HP Service Activator to enable integration
with the mentioned products.

e The final section, “Solution Deployment”, describes how to organize, package and deploy all
the components of a solution. The Deployment Manager is the tool that is used to deploy and
manage one or more customized solutions onthe HP Service Activator platform.

The next chapter, “An Example Solution: Intro_Example”, walks througha small example
solution which does not activate devices in a real environment, butincludes examples of all the
solution components that have been discussed in sections ofthis chpater as material for study.

Chapter 2

17

Service Activator SystemIntegrator’s Overview
Solution Components and Tools

Database Repositories

Service Activator uses severaldata repositories, all stored in tables of one or more databases, for
different purposes. The first five repositories listed here are held in predefined tables thatare
created when Service Activator is installed. These five repositories must all be store in the same
database schema, known as the systemdatabase.

e Static Repository - customized items deployed on the system: workflows, plug-ins, compound
tasks, inventory presentation tree definitions; the static repository for atomic and compound
tasks is also called the task repository,

o Workflow Job Repository - state information about running workflow jobs and about cluster
nodes

e Auxiliary Repository - temporary data for use under workflow control

e Audit and Message Repository - audit trail collected from running workflow jobs and
modifications of inventory data, messages shown to operators

e Statistics Repository - server usage and workflow job statistics

e Solution Data Repository (Inventory) - the data model defined by the SI, primarily intended but
not restricted to store data pertaining to infrastructure resources (network elements, servers,
applications, etc.).

The database product used to manage all the repositories is a prerequsite for installing and running
HP Service Activator. Two options exist for the database product to use: Oracle Database and
Postgres Plus Advanced Server (PPAS) from EnterpriseDB. Both of these products are compatible
with HP Service Activatorin terms of the SQL statements and responses that are exchanged over
JDBC connections and both options are supported.

By default, all the repositories are held in the systemdatabase which is defined when HP Service
Activator is installed. The solution data (inventory) repository can be held in another databases, or
even across multiple databases. To control the use of database servers and of physical disk space it
is possibleto organize the tables in different tablespaces.

The different components of HP Service Activator all use JDBC database connections to the
repositories that they need to access. Database connections are organized in pools, known as data
sources. A base set of pools are configured with names and sizes when HP Service Activator is
configured at installation time. The standard configuration can be changed to accommodate
additional needs in a solution (see “Data Sources” in chapter 5).

Solution Data Repositories (Inventory)

Repositories of data representing resources and services, or indeed anything thatis needed, can be
incorporated in an HP Service Activator solution. Such repositories can be accessed from
workflows as well as from the user interface. Data repositories are commonly referred to as
resource inventory and service inventory, but these concepts and the distinction between them are
notimplied by the tools thatare used.

The HP Service Activator core productincludes a Common Network Resource Model (CNRM)
which is suitable for frequently managed new generation networks based on IP, Ethernet and
MPLS technology. The network architecture thatthe CNRM is intended for is depicted in Figure
2-1.

Such networks may be used for a number of purposes, implying the CNRM can be used in several
different activation solutions:

e to provide corporate VPN services;

e to carry the traffic between (residential and business) customersites and provider platforms for
a range of services: Internetaccess, VoIP, IPTV;

18

Chapter 2

Service Activator SystemIntegrator’s Overview
Solution Components and Tools

Figure 2-1

fopology Network
— e CE
CE Router < -:::: outer

e to carry other provider traffic, for example between different platforms in the provider’s
service network such as mobile backhaul from BST to BSC.

Network Architecture Modelled by Common Network Resource Model

Internet ﬁ)

Router B
" Tv | VoD
/_\/__ -

e

&?U

T
4

s o PE Router e

B FQ A switch
Home SV:M Provider MPLS PE Router

C

Core Network
L2 AccessProv{der Ascess]

Acces witch PE Router
switch

8

The CNRM can be used, possibly with extensions and adaptations, for solutions in the NGN space.
For solutions in other spaces adifferent model must be built as needed. For example, a solutionto
activate mobile services will need to model the various servers involved, like HLR, etc., which
must receive information about subscribers, butthe solution has no need to know the radio and
backbone transmission networks.

In general the datamodel must contain the entities that are needed by the activation processes. It
must be defined in terms of entity classes. The solution designer may define any desired entity
classes.

The data for each entity class will be stored in a separate table in the underlying database, and data
entities can be accessed through Java bean objects from workflows. On the user interface different
forms are used to create, display and edit entities of different classes.

Entity class definitions, known as “resource definitions” or “resource bean definitions” (the name
does notimply thatevery entity must represent a resource), are given as compact XM L-formatted
files, onefile per entity class. The definition format has a number of powerful features to allow the
definition of fields, search keys, entity relationships, etc. Relationships between different entities
are represented with foreign keys, i.e. inter-table pointers. Inheritance can be used to define an
entity class which extends and modifies an existing entity class.

Deploying a datamodel from its definition in terms of entity classes is done with a tool, the
Inventory Builder. The Inventory Builder reads the definitions and generates all the code that is
needed for deployment: SQL statements that will create the database tables with indexes etc., Java
code for beans to access the data for each entity class,and Java Server Pages (JSPs implemented
with Struts) for forms to access the data from the userinterface. The beans are used by the JSPs as
well as by workflows. A number of workflow nodes are available in the built-in node library to
create, query, reserve, release, update and delete repository databy means of the beans. The
customizer will be aware thatthe beans and JSPs are created and deployed, but does not normally
need to look into them.

Chapter 2

19

Service Activator SystemIntegrator’s Overview
Solution Components and Tools

HP Service Activator’s user interface for accessing datain the repositories, known as the inventory
user interface, is based on an explorer-style expandable tree structure where data entities are
associated with branches of the tree. Entity relationships are used to define the child branches
which appear when a branch is expanded. An example screenshot from the CNRM is shown in
Figure 2-2. There is a graphical tool, the Inventory Tree Designer, to build tree definitions, branch
by branch. A solution can include one or more tree definitions.

Figure 2-2 Inventory User Inte rface Screenshot

&l HP Service Activator - Inventory - Google Chrome == -
[iron.dnk.hp.com: 8080/ activator/jsp/inventory-guifinventory/irventory.jsp

Inventory Instanc

CRModel/Parameters 52 w| Wiew InterfaceType = -

B & Parameters

Gl & Administrative units View InterfaceType

E & Equipment types

B & Interfaces types
B @ 1to10of 22
O =g Aggregated InterfaceTypeMame
O &g Ethernet *
O ‘2 FastEthernet GenericType * Ethernet The generic type (i.e. Ethernet, Serial)
o GigabitEthernet - 10Mbisec.
o : Loipback Description Ethernct
O =g MFR “endor “endor delivering the type of device
O =g Multilink
O = Port-channel
O =g serial
[%@ TenGigabitEthernet
=N+ oY

B & WA and MNM Configuration

[& uUpload Configuration

Name Value Description

Ethernet Type of interface as listed by vendor

Description of interface

For a description of the inventory user interface, see the chapter “Inventory User Interface” in HP
Service Activator, User’s and Administrator’s Guide.

To build a working acquaintance with resource definitions, refer to example material introduced in
chapter 3. For a full description of the details of resource definitions, tree definitions and the tools
to manage them, refer to HP Service Activator, Inventory Subsystem.

For some solutions it may be necessary to integrate HP Service Activator with an external
inventory. Approaches to address such arequirement are discussed in chapter4.

Plug-Ins and Activation Tasks

In activation processes controlled by HP Service Activatorworkflows, interactions with target
devices or systems, possibly through element managers, take place in Activate nodes. Activate
nodes execute activation tasks. Two components of HP Service Activatorare involved in the
execution of an activation task: the workflow manager and the resource manager, as shown in
Figure 2-3. Alsoshown are plug-ins and optional connection pools that exist within the resource
manager.

20 Chapter 2

Service Activator SystemIntegrator’s Overview
Solution Components and Tools

Figure 2-3

Components Involved in Target Interactions

workflow manager

resource manager
B B
I

Network and service

infrastructure

The task can be a single atomic task, or it can be a compound task, i.e. a list of atomic tasks.To
execute an activation task the workflow manager will retrieve the definition of the task from the
task repository and, if it is a compound task, control the sequencing of atomic tasks and rollback if
a failure occurs. Parameters of a compound task are mapped to parameters for each atomic task.
Each atomic taskinvokation with parameters is passed to the resource manager which will retrieve
the corresponding plug-in Java class method from the task repository and execute it. During
rollback, atomic tasks will be invoked in undo mode. Atomic tasks are responsible for
communication with target devices or systems and pass to them for execution all appropriate
commands or messages.

To execute an atomic task a plug-in will generally first setup an authenticated session with the
target in question and then execute a command-response dialog with the target through the session.
Authenticated sessions may be reused over multiple activation dialogs. In this case the plug-in will
return the session to a connection pool after use, and for new dialogs reacquire a session from the
connection pool. Connection pooling is a built-in capability of the resource manager. Connection
pools can be set up statically, as a systemadministrative task, or they can be created dynamically,
when needed by plug-ins.

For each solution one or more plug-ins will be needed depending on the set of targets on which
services must be activated. In many cases it will be possible to use one of the generic plug-ins, in
other cases it may be possible to reuse a dedicated plug-in from a previous solution. Otherwise it
will be necessary to develop a new dedicated plug-in.

Plug-In Development

Development of a new plug-in entails the writing of the atomic tasks as Java methods. The Service
Builder tool is a graphical development environment that supports this work. Figure 2-4 gives an
idea of how the Service Builder works and what must be added to implement a plug-in. Before the
time of the screenshotanew plug-in called doc.Example has been defined in a popup form, then
an atomic taskcalled sample_atomic has beeninitiated using another popup form. The code that
is shown (including the prefix task_ for the method name) has then been generated by Service
Builder with placeholders for comments that will be used to generate plug-in documentation as
Javadoc, and for the code to implement the actions of the atomic tasks in the do and undo modes,
respectively. The sample_atomic task takes two parameters named paramO and paraml (thus

Chapter 2

21

Service Activator SystemIntegrator’s Overview
Solution Components and Tools

Figure 2-4

defined in the popup screen,any names can be used), the runtime values for which must be
supplied by the invoking Activate node in the workflow that initiates execution of the task.

Atomic Task in Service Builder

B3 service Builder

File Edit Tools Deployment Settings Help

T & B B [@ current Project | labs Current Plug-n | Example

| Project:
g-glle;os]ectlabs Position | 62 1 Modfied | Ves

= Plug-pa

i Compound Tasks

T L
Toces * example for doc purposes

Ejp\ i -
=[] Filé!

-] Pre-provisioning
e
) Seripts

[@param paraml

%
% @do_snd check <i>D0_AND CHECE description</i>
* Bundo_snd_check <i>UNDO_AND_CHECE descripriond/ix
* [@preprov <ixPre-provisioning regquirements</ix

* [warning <ixAdditional warnings</ix

endency <i>Dependencies with other elements</ix

*
public ExecutionDescriptor task sample_atomic (int ap tring parawl, String paraml rows PluginExcepti

hgs to perform

operation the atomT

#fitch (op) |
case DO_AND _CHECH:
/¢ Insert your code here

brealk;
caze UNDO_AND CHECE:
/4 Imsert your code here

break;
default:

throw new PluginException #fcration not supported™):

+

return null;

<) >

[09-04-17 13:13]1[INFORMATIVE][Welcome to Service Builder]
[09-04-17 13:13] [INFORMATIVE][Project lshs successfully read from CHP/Open'iew Servicedctivator fsolutionsTrainingésources/servicebuilderdabs jap]
[03-04-17 13:15] [INEORMATIVE][doc Example pluc-in archive successfully added to project labs]

The do mode (case DO_AND_CHECK) of an atomic task must always be implemented with
appropriate Java code. The undo mode must also be implemented if it shall be possible to use the
atomic taskin a compound task in any sequential position other than the very last one. If there is
no such requirement, implementation of the undo case can be omitted.

An atomic task, when executed in the do mode, may fail, when for some reasonit is not possible to
complete the necessary interactions with the targets. If possible, the atomic task must fail cleanly,
the target should be left in the same state as when execution of the task began. As Figure 2-4
shows, an atomic taskmust return an ExecutionDescriptor. The ExecutionDescriptor
makes it possible to distinguish between success and failure, and between clean failure and “dirty”
failure, i.e. the second order failure, when a change that was made to the target cannot be removed.
The ExecutionDescriptor also includes a descriptive text field. The information collected
from all atomic tasks thatare executed in the forward path (do mode) of an activation task is
passed backto the calling workflow and may subsequently be processed in the continuation of the
workflow. Result information from atomic tasks executed in the rollback path (undo mode) is not
made available to the workflow.

The Service Builder packages a plug-in as a single file in an archive format known as a plug-in
archive identified by the file name suffix .par. To make use of existing Java libraries in a plug-in,
the - jar files can be included in the LIB folder of the plug-in archive. Plug-in archives can be
deployed into the task repository of an HP Service Activator system.

Compound tasks do not belong to plug-ins. Typically a compound task will include atomic tasks
from more than one plug-in. The Service Builder can also be used to build static compound tasks,
i.e. compound tasks with fixed member atomic tasks. An XML-formatted file which describes the
compound taskis produced for distribution.

22

Chapter 2

Service Activator SystemIntegrator’s Overview
Solution Components and Tools

The Service Builder can also deploy plug-ins and compound tasks into HP Service Activator’s task
repository from the distribution files (.par and .xml, respectively).

Customizing Control Templates for Generic Plug-ins

Three generic plug-ins are supplied as part of the HP Service Activatorcore product:the generic
CLI plug-in, the generic HTTP plug-in and the LDAP plug-in. These plug-ins implement
communication protocols for command line interface communication, for HTTP, and for LDAP
respectively. But they do notinclude information about commands or HTTP messages to send or
what to expect as responses. The controlling information must be prepared by the calling workflow
and supplied in the form of task parameters.

The CLI plug-in is controlled by an XML-formatted dialog control document. A dialog, for
example with a complex router device, may comprise a large number of commands, and so the
control document may be quite large. The control document will contain information abouthow to
establish a session (log in) with the device, a sequence of command-response exchanges, and
finally how to terminate the session. The specification for each command response exchange
includes the exact command line to be sent, the expected response (next prompt) and patterns that
allow recognition of possible error responses. Note thateven a long dialog with many commands
is executed as a single atomic task. In order to ensure clean failure of the task when an error
response is received for a command, the CLI plug-in supports rollback of the command sequence
(sub atomic task rollback). Command sequence rollback uses rollback commands that can be
specified for each command-response exchange thatis part of the sequence.

The HTTPPost atomic task supported by the generic HTTP plug-in makes a single HTTP Post call
to a specified target. It supports features such as HTTPS with exchange of certificates and use of a
proxy. The main parameter to achieve the intended effect is the HTTP Post message body,
typically in SOAP format. This plug-in can be used when all necessary message formats are well
known and simple enough thatit is convenientto prepare templates for them and decode the
responses by parsing XML in the workflow.

The LDAP plug-in can retrieve information from an LDAP directory and create, modify and delete
entries. The dialog it performs with the directory service is also controlled by an XML-formatted
dialog control document.

The generic CLI and HTTP plug-ins are quite different. But in both cases, there is a main
parameter which takes the form of a document, the command sequence dialog control document
and the HTTP message body, respectively. And in both cases the document will typically include a
number of strings whose values must be sourced from variables of the workflow job that invokes
the atomic task, representing items such as: username and password for authentication of the
session/request by the target, names of devices, ports, interfaces and other objects that exist and
must be manipulated on the target. The way to handle this situation is to prepare a template
document with replaceable placeholders for variable values, and to use a workflow nodeto
substitute the actual values for the placeholders to obtain the final document to submit to the plug-
in. The resulting workflow logic will be as shown in Figure 2-4, where the TransformXML node is
used to achieve the parameter value substitution. For simple cases the ComposeMessage node can
also be used.

Chapter 2 23

Service Activator SystemIntegrator’s Overview
Solution Components and Tools

Figure 2-5

Workflows

Parameter Value Substitution for Generic Plug-in

template (.XSL):

workflow execution

workflow continuation|

TransformXML Activate

\ /

login sequence

CLI command-reply
dialog

In summary, when a generic plug-in is used, the target specific interaction control information will
be found, notin the plug-in, butin the control document templates.

Workflows are programs which define the activation processes ofan HP Service Activator
solution. An execution of a workflow is called a job. The workflow manager is the operating
systemfor workflow jobs: it starts new jobs when called upontodo it, it executes the workflow
nodes of running jobs in the proper sequence, it persists and safeguards the states ofrunning jobs,
and it manages the sharing of a number of execution threads by all concurrent jobs. Refer to
chapter 6 for a description of how the workflow engine can scale by deploying the workflow
manager on a cluster of HP Service Activator servers.

As programs, workflows consistofa number of directionally connected nodes. Each node
performs a basic action. The workflow manager executes onenode at a time:

e select aready job
e run the next node for the selected job
e savethe state of the job to the workflow job repository

Persisting the states of workflow jobs between node executions makes the workflow engine robust.
It allows HP Service Activator to stop and restart at any time, whether intended or unintended, and
workflow jobs will justcontinue from the pointwhere they were persisted. In practice it is not
necessary to persist the state after every single node, therefore it is possible per workflow nodeto
disable saving of the job state to optimize on processing time.

The state of a workflow job consists primarily of its case packet: the values of a set of variables,
some common ones are predefined for all workflows, others are added as part of the workflow
definition.

A library of workflow nodes are available that can be used to compose workflows. Workflows are
composed with the Workflow Designer, a tool with a user interface that displays a workflow as a
directed graph, with nodes connected by arrows to represent their algorithmic sequence. Two
special types of nodes allow the introduction of branching in the sequencing logic, based on values
of variables: rule nodes, for two-way branches,and switch nodes, for n-way branches. Figure 2-6
is a snapshot ofthe Workflow Designer, with the library from which nodes can be picked on the
left and the workflow chart with nodes, arrows and branches on the right.

24

Chapter 2

Service Activator SystemIntegrator’s Overview
Solution Components and Tools

Figure 2-6 Workflow Designer
B HP Service Activator Workflow Designer - C:\HP\OpenView\ServiceActivatorisolutions\VPN_Exampleletc\workflows\VE_CreateSite.xml #4%
Fle Edit Wiew Workflow \:Eluvmem Preferences EI'L -
NBES v 5 k%0 =& [wE3e & e e v
builtin \ VE_CreateSite \
4 All Nodes ~
#- @ Database 1
#-- Errors o
e T e | =
¥ Createlnventory
:5: Deletelnventary
3] Querylnventory = =
#--Fi8 Job Control
-] Math
#- Resources - true
o oy [Fs T
8 e _
*- @ TeMIP Variab... 4
-0 variable Manipulation vihere clause
REseu... 53 Qu.. e
<G T
true
ConfirmResa... v Up.. B3 Upd... B3 Assign A=t
Confirm Reservation Port InUse Create Site et OK sync_status
< > -
Drawing View | XML Code Yiew
~Mode Attrib rAction Par
Property Yalue Marne Yalue
Wame ‘Get Router instance ~ bean ‘com.hp, ov, activator, example PERouter
Description | find_by_method findByhame
Action lcomm.hp, ov. activator, mwfm.c. ., ki _yausll router_nams
fersist False v wariable router_obj
The built-in node library covers the functions which are generally needed in activation workflows.
Nodes range from very powerful ones which accomplish significant tasks, like transformations of
XML documents, to simple ones, like comparison of two values or simple string manipulation.
Functions accomplished with nodes include:
e inventory operations: create, query, update, delete repository data using beans
e reserve and release resources
e execute activation tasks
e spawn child workflow jobs
e wait to get data from outside the workflow job: from an operator through a popup dialog, from
anotherworkflow job, or from an external source via a programmatic interface
e send message (or email) toan external system
e various transformations of documents, typically XML formatted, for parsing of incoming
request messages and preparation of messages to be sent
e postmessages to be shown to operators, process log entries for troubleshooting purposesand
audit trail records
¢ liaison functions for integration with other relevant HP products, TeMIP and uCMDB
Data manipulated by a workflow is held in variables thatare passed to and from workflow nodes
as input and output parameters. Typically, the request message whose receipt triggers execution of
a workflow is passed into the workflow job in a preinitialized variable, the first nodes of the
workflow will extract field values from the message into other, simpler variables. Some of these
values will be used as keys for retrieving datafrom repositories, and retrieved datawill be placed
in further variables, etc., until all the parameters that are needed for the actual activation are held
in a setof variables, from where they are passed to the activation taskthrough an activation node.
Chapter 2 25

Service Activator SystemIntegrator’s Overview
Solution Components and Tools

A number of types are supported forvariables, reflecting those of the underlying Java language:
String, Boolean, Integer, Float, Object. Objects can be beans, maps, arrays and vectors.

The input and output parameters for each node in a workflow are specified as constants or mapped
to workflow variables by means of the Workflow Designer.

Workflow Structure

Workflow jobs can spawn child jobs to execute other workflows. The parent may initialize
variables of the child and may also synchronize with the child to retrieve result values back into its
own variables. A single workflow job is restricted to a single string (thread) of node executions.
Parallel algorithms can be realized by spawning multiple child jobs to work concurrently, for
example tooptimize activation of multiple independent devices.

Multiple workflows working in parent-child relationships can also be used to architect complex
processes in layers. A good practice is to use one workflow, designated as the controller
workflow, todeal with northbound communication and process orchestration, and use dedicated
workflows, spawned from the controller, to deal with service and device specific details.

Workflow Manager Architecture

The workflow manager has a core which is concerned with the execution of workflows, onenode
at a time, as described above. Other functions of the workflow manager are implemented as
pluggable workflow manager modules. Modules are used for all functions which interface the
workflow manager to its environment, like synchronizing with external sources of input, sending
messages and emails, accessing the database, interacting with the transaction manager to execute
activation tasks, etc., as illustrated in Figure 2-7. All tasks which involve wait points are generally
performed by modules which run in separate threads from nodes of active jobs, to avoid depleting
and potentially even deadlocking the power of the core engine.

Other examples of functions performed by workflow manager modules are management of
scheduled workflows, authentication of users and RMI connections, writing of logs and audit
trails, job distribution within a cluster (see chapter 6), and collection of statistics.

Figure 2-7 Workflow Manager Architecture
WFManager interface
workflow manager
database
request module
workflow
listener x database
module
sender activation persistence
module workflow I module
workflow
states
activation log
module module
resource log
manager
26 Chapter 2

Service Activator SystemIntegrator’s Overview
Solution Components and Tools

Algorithms residing in workflow manager modules can easily be replaced, because modules are
pluggable. In some cases, like authentication, several modules are provided in the product
distribution, making the choice configurable.

Each workflow nodeis implemented as a Java class, extending a base node class with
specializations for process nodes, rule nodes and switch nodes, and similarly with modules. As
with nodes there is a built-in library of modules, providing a wide range of generic capabilities.
The libraries can be extended by adding new nodes and modules. Extensions can be provided in
solution packages (see below), or they can be implemented as customizations for a delivery
project.

User Interface and Roles

Figure 2-8

HP Service Activatorsupports aweb browser based userinterface, which does notrely on any
components to be installed on the client side. It is implemented as a collection of web pages which
are executed in the web server component of the HP Service Activatorplatform (Apache Tomcat
in JBoss). The pages are implemented in multiple technologies:plain HTML, Java Server Pages
and Java Server Faces.

The inventory userinterface that was mentioned under “Solution Data Repositories (Inventory)”
above s launchable from the main window of the HP Service Activatoruser interface as a separate
window. A special feature that can be customized in the inventory Ul is an operation to start a
workflow job with input parameters that can be sourced from entities in the repository or entered
by the user.

Other functions are available within the working area of the main window, selected from menus in
the left hand side. Figure 2-8 shows the menu with the active jobs list (empty) selected and
displayed in the working area. The Work Area and Tools menus can be customized; the ones
shown here are the installation defaults.

User Interface Screenshot

T ciive obs

The user interface allows operators to monitor activity within the workflow engine, including
active activation transactions. Information about active jobs can be filtered by values of key
characteristic variables of the job, such as order id (identifier of the request thattriggered the job),
service id (identifier of the service being activated) and type and state of the workflow.

Some HP Service Activator solutions require operators to interact with workflow jobs throughthe
user interface. There are also a number of housekeeping functions (Self Management) for the
systemadministrator. The menu and other capabilities that each usergets via the user interface is
controlled through roles that are established through log-in authentication. Only the admin role has

Chapter 2

27

Service Activator SystemIntegrator’s Overview
Solution Components and Tools

access to the Self Management functions, other users may be specialized to interact with certain
workflows, butnotwith others. The datathat users may view and edit via the inventory user
interface can also be controlled by roles.

The texts thatare displayed on the user interface are organized as resource bundles and can be
translated and localized by the systemintegrator.

For a general description of HP Service Activator’s userinterface, see HP Service Activator,
User’s and Administrator’s Guide.

Interfaces for Integration

The main integration of HP Service Activator for a solution is normally the northbound integration
to the CRM / Order Management systemwhich is the source of activation requests. Northbound
integration may be realized in different ways depending on the requirements.

The “classical” northbound interface for HP Service Activator uses workflow manager modules
for listening to request messages and sending response messages. This approach is illustrated in
Figure 2-7. Listener and sender modules, which can receive and send messages in any format, are
provided in the built-in workflow manager module library for TCP sockets and for JMS. With this
approach, receiving and sending are done on separate connections and are asynchronous. Such
decoupling is desired whenever workflow jobs can have non-neglible duration, to avoid occupying
connection resources while workflows are running.

Sender and listener modules can also be used to implement peer interfaces to other OSS systems,
with one-way notifications or two-way interactions as required.

An alternative to listener and sender modules is to use a web service interface, so that requests are
received by the web server component of the platform (JBossWS in Apache Tomcat) and handled
by a servlet which can start workflows. A toolis provided, the Web Service Designer, which can
generate the servlet that will expose a collection of workflows as web service methods that allow
them to be run conveniently by a client. A WSDL document defining the exposed interface for
import to a client systemcan be generated.

The native generic RMI for the workflow manager is also available in a web service version. With
this interface the method to start a workflow job can be called by forwarding a SOAP formatted
request specifying the name of the workflow to run and initial values for workflow variables as
parameters. A web service as described in the preceeding paragraph is justa convenient
specialization of the capabilities of this interface.

The section “Northbound Interface” in chapter 5 elaborates on the two approaches to northbound
integration that have been outlined here.

Integration with Other HP NGOSS Products: NNMi, NA, uCMDB

An important aspect of HP Service Activatoris the support for solutions which include also HP
NGOSS products such as NNMi, NA and UCMDB, and where the products work seemlessly
togetherand mutually enhance each other’s capabilities.

As of HP Service Activator V5.1 support for interworking with NNMi V9.10, UCMDB V8.0 and
NA V9.10 is included.

The HP Service Activator productkit includes a number of components which serve to bind the
products together, mostly in the form of hooks such as workflow nodes and plug-ins dedicated to
interaction with the other products in order to allow the building of integrated solutions, butalso
readily usable capabilities suchas Ul crosslaunch with single sign-on and workflows which can
load data into the Common Network Resource Model from NNMi.

Chapter 11 is about integration with NNMi, and chapter 12 about integration with NA. These two
chapters have similar organization, discussing the positioning of the product concerned to setthe
scene for integration, the potential benefits of integration, the integration capabilities that are

28 Chapter 2

Service Activator SystemIntegrator’s Overview
Solution Components and Tools

available out-of-the-box, the components (hooks)that facilitate customized integration, and how to
customize and configure an integrated solution.

There is nota chapter about integration with UCMDB. The components for UCMDB integration
are a number of workflow nodes (Create/Delete/Query/Update UCMDBClsandRelations) which
can be used to access datain a UCMDB data repository with similar power to those nodes which
are used to access the native inventory of HP Service Activatorfor the case where the inventory
for a solutionwill consistofdata managed with UCMDB.

Solution Deployment

An HP Service Activator solution comprises different customized parts that are separate from and
added on top of the core product framework: inventory data model, workflows, plug-ins, etc. All
these parts have source files, mostly different XML documents, which are prepared using the
appropriate specialized tools. To become operational ona running HP Service Activator system,
all the customized parts of a solution must be deployed into the static repository and file structures
where they are accessed at runtime.

Deployment can be done with the specialized tools: the Workflow Designer can deploy
workflows, the Inventory Builder can deploy resource definitions, etc. An entire solution can be
deployed in a single operation with the Deployment Manager. The Deployment Manageris an
umbrella for the specialized tools, it will use each one of them as needed.

In order to be managed with the Deployment Manager the source files for a solution must be
arranged in a directory hierarchy which obeys a certain structure. The Deployment Manager can
create the structure,and it can import entire solutions from zip or tar archives of the structure. You
are not forced to keep yoursource files in a solution hierarchy, but it is strongly recommended to
name and use a solution structure.

See chapter 3 for illustrations of the solution directory structure and screenshots of the
Deployment Manager.

Itis possibleto have multiple independentsolutions onasingle HP Service Activatorplatform. All
sources for each solution must include a short name of the solution, which is used to keep the
deployed solutions separate, and must obey some naming conventions to avoid name clashes, for
example of databasetables. The Deployment Manager can deploy and undeploy each solution in
turn.

The Deployment Manager is particularly useful with clustered platforms, where HP Service
Activator is running symmetrically on multiple servers. It will ensure thata solution is identically
deployed on all servers within the cluster. The Deployment Manager can also manage versions of
solutions, where some of the source files are updated.

Chapter 2

29

Service Activator SystemIntegrator’s Overview
An Example Solution: Intro_Example

An Example Solution: Intro_Example

This section walks you briskly through a very simple example solution, too simple to be realistic,
which has components of all the types that have been described. A larger example with more
substance, yetstill only anexample for study, notactivating real services, is described in a
separate manual, Putting Service Activatorto Work: A Sample Service Scenario for VPLS. Both
examples are found as zip files in the $ACTIVATOR_OPT/examples directory when HP Service
Activator has beeninstalled, named Intro_Example.zip and VPN_Example.zip, respectively.

The Intro_Example is our subject here. The service that it activates is a point-to-point connection
terminating on two switches assumed to be customer facing. The switches with the ports where the
connections terminate are modelled as resources. There are workflows to create and delete
connections, working through a plug-in that activates the service by configuring the endpoint
switches. It doesn’treally do that, it only writes some log entries. The Intro_Example uses the
socket listener and sender modules to implement its northbound request interface. The listener
module receives request messages and then starts the controller workflow.

Throughoutthis section you will be instructed to use the different HP Service Activatortools to
investigate the solution components. This assumes you have installed HP Service Activator. After
installation ona Windows platform you can launch the tools, the documentation and the user
interface (in a browser) from the start -> all programs -> HP Service Activator
menu, or from desktop icons. For otherplatforms, consultthe installation guide in question.

Contents of the Intro_Example

Figure 3-1

To access the source files of the Intro_Example, launch the Deployment Manager, select
Deployment -> Import Solution, andbrowse to the zip file, as shownin Figure 3-1. Click
[Import].

Deployment Manager, Import Solution

7% HP Service Activator Deployment Manager

Deployrent Verfication Configuration Wizards — Help

A EBREH &

. Import Solution

« Create Solution Skeleton Sl v
i 1 From directory

(@]

.
» Undeploy Local Solution
» Delete Local Solution From zipftar fie

atch Operations @ | vatar _examplelIntro_Example.zip
 Create Pakch Skeleton
® Deploy Patch
« Undeploy Patch
+ Delste Patch
ion Operations
« Create Customization Skeleton
* Deploy Customization
« Undeploy Customization
» Delete Customization
et GRS

 Copy Solution ko Remote Server|
 Deploy Remate Sclution Log
» Undeploy Remote Solution
» Delsts Remate Solution

Preferences

List Solutions

Deployment

Verification

Configuration

ID=ployment - Impart Solution

Chapter 3

31

Service Activator SystemIntegrator’s Overview
An Example Solution: Intro_Example

Figure 3-2

The zip file contents will be unpacked into dedicated directories for the different solution
components, according to the conventions of the Deployment Manager, under
$ACTIVATOR_OPT/solutions/Intro_Example, see Figure 3-2. We will reference the
component directories with their names relative to this solution root directory.

Intro_Example Solution Directories

= |J) Intro_Example A | | Z]Intro_Controller, xml
I badkup | Intro_CreateConnection. xml
cr =] Intro_DeleteConnection, xml
) docs workﬂo'..\'.dtd
=l I3 etc
=l) config
| inventoryTree
I2) newconfig
I =gl
1) template_files
=) tests
= [) messages
|0 Intro_Example
=)
I install
() inventory
I log
H I3 plugins 2

Browsing the various component directories, you will find:

e Inplugins, theplug-in archive file Intro.Switch.par. This is the plug-in for switch
devices in deployable plug-in archive format. It has two atomic tasks:

— createConnectionEndPoint, intended to create a unilateral connection from a
customer facing port on one switch to a port on another switch; both switches and ports are
identified by parameters

— deleteConnectionEndPoint, intended to delete a unilateral connection from a
customer facing port on one switch to a port on another switch; again both switches and
ports are identified by parameters

e InCT, deployable definitions of two compound tasks that are invoked from the workflows:
Intro.CreateConnection and Intro.DeleteConnection. Both tasks take parameters
specifying two endpoints, each given by a switch and a port on that switch. The first task
creates a bilateral connection as two unileateral connections between the two endpoints. The
secondtasksimilarly deletes a bilateral connection.

e In etc/workflows, three workflows:

— Intro_Controller, controller workflow which is started by the socket listener. It parses
the request message, extracts the fields (tagged elements) of the message to variables, and
uses the value of the action field as the name of a workflow to run as a child job; it must
be one of the othertwo workflows.

— Intro_CreateConnection, workflow for creating a connection, specified by variables
initialized from the controller.

— Intro_DeleteConnection, workflow for deleting a connection, similarly.

¢ In inventory, resource definitions for two resource dataentity classes, IntroSwitch and
IntroPort, where a port belongs to a switch identified by a foreign key on the port entity.

e Inetc/sql, scriptsto populate the resource inventory with a few switches and their ports.

32

Chapter 3

Service Activator SystemIntegrator’s Overview
An Example Solution: Intro_Example

In etc/config/inventoryTree/intro-Tree.xml, the definition ofa simple tree in which
switch and port datais made accessible on the inventory userinterface.

In etc/tests/message/ Intro_Example, sample request messages (intro-Message-
1.xml and intro-Message-2.xml) with format definition in etc/config/intro-
Message.dtd. You can use HP Service Activator’s regular user interface to select one of
these messages and inject it for processing (send it to the port configured for the socket listener
module). This feature must be enabled in the configuration file for the userinterface
($IBOSS_ACTIVATOR/WEB-INF/web. xml) by setting the value of the parameter named
tests to true. Do this before or after you deploy the Intro_Example solution, but before you

start HP Service Activator.

In etc/template_files/Intro_Example, templates for response messages to be sent after
processing of a request (ERROR_intro.-template and OK_intro.template) and for an
information pane to be shown to an operator.

In newconfig/mwfm.xml, afragment to be copied into the configuration file for the workflow
manager ($ACTIVATOR_ETC/mwfm.xml) to configure the socket receiver and sendermodules.
Do this before or after you deploy the Intro_Example solution (peruse the long configuration
file in an editor to find a proper place for the fragment), but before you start HP Service
Activator.

Deploying the Example

Once you have unpacked the solution zip file as described above, use the Deployment Manager to
deploy the complete solution. First you must configure the Deployment Manager to be able to
access the systemdatabase; select Preferences -> Configure Database Connection,
enter the username and password for your HP Service Activator installation, and click [OK]. Then
select Deployment -> Deploy Local Solution and thenin the drop-down list labelled
Solution name:, which shows all undeployed solutions present (unpacked under
$ACTIVATOR_OPT/solutions) onthe server, select Intro_Example. Check the Create
Inventory Tables field and click [Deploy solution].

Figure 3-3

Deployment Manager, Deploy Solution

1# HP Service Activator Deployment Manager

Deployment Verffication Configuration Wizards Help
& EROP

e Deploy Solution on Local Server

i

Solution name: Intro_Example v

Deployment file: orsolutionsiInkro_Exampleldeploy.xml

* Delete Local Solution

[0 nat deplay workFlows, plug-ins, inventary trees or compaund tasks

atch Cperations
* Creats Patch Skeleton

[]Do nat deploy SQL

« Deploy Patch

o Undeploy Pateh [oa nat backup

« Delete Patch [Force

ustormization Operations [Zreate inwentary tables

* Create Customization Skeleton

« Deploy Customization

« Undeploy Custamization

« Delete Customization

emate Operations Log

* Copy Solution to Remate Server
« Deploy Remote Solukion

« Undeploy Remote Solution

» Delete Remote Solution

Freferences

List Solutions

Deployment

Verification

Configuration

Deployment - Deploy Local Solution

Chapter 3

33

Service Activator SystemIntegrator’s Overview
An Example Solution: Intro_Example

The Deployment Manager will then deploy all components of the solution into HP Service
Activator’s internal directories and static repository (database tables).

Make sure you have changed the configuration files for the workflow manager (mwfm.xml) and
for HP Service Activator’s user interface (web.xml) as described above under “Contents of the
Intro_Example”. In the workflow manager configuration file you should also enable the auditor
module: search for auditor, uncomment the <Module> element for the DBAuditModule; setthe
parameter store_audit to havevalue “true. This module is used to write audit trail records,
and the workflows in the example generate such records.

When this has been done, you must start HP Service Activator (restart, if it is already running) to
be able to run the solution.

Examining Components of the Intro_Example Solution

We will now take a closer look at the components of the Intro_Example solution.

The plug-in can be imported from thearchive file Intro.Switch.par into the Service Builder
and studied at the source code level, if desired. You will need to create a Service Builder project as
a workspace to import the plug-in. We will notgo into the details here, refer to HP Service
Activator, Developing Plug-Ins and Compound Tasks. The plug-in is documented with Javadoc,
which you can study to understand the atomic tasks, their parameters and actions. To access the
Javadoc you can extract the contents ofthe archive with Winzip, go to the doc directory, and
double-click on the html file to openit in a browser.

The compound task definition files can also be imported and studied in the Service Builder which
has dedicated functions for editing compound tasks. Alternatively, the xml files, which are quite
straightforward, can be studied in a text editor. Be sure to understand the sequence of parameters
of each compound task.

To study the workflows, launch the Workflow Designer, and open the workflow definition files.
The initial location of the file open window will be $ACTIVATOR_ETC/workflows, you will need

to navigate to the solution’s workflow directory to open the files. With the Intro_Controller
workflow open, the Workflow Designer appears as in Figure 3-4.

34

Chapter 3

Service Activator SystemIntegrator’s Overview
An Example Solution: Intro_Example

Figure 3-4

Intro_Controller Workflow in Workflow Designer

BY HP Service Activator Workflow Designer - C:\HP\OpenView\ServiceA ctivatorisolutions\intro_Exampleletciworkflows\intra_Controller.xml

File Edt ¥iew ‘Workflow Deployment Preferences Help

NEBES v 5 [k2a 2w #de[&@] [v @ oo v

builkin Inkra_Cantraller 1

_4 All Mades

@ Database

& Errors

[File

E Ireeentaory

[1ob Contral

Math

Messages

&3 Miscellaneous
% Resources

~<2 Rules

(% Scheduling
[+ Service Instances
& Tasks & Activation
g TeMP

% UCMDB Request

remo.. @
RemoveData

SendMessage [
Send status message ta 055

i

- GenericUIDialog

-1 Wariable Manipulation
-] HTTPRequest ﬁ\

Startioband... P Assign Xe1
Start child warkFflaw Update state

PutMessage At

Print message ko operatar
ComposeMess. .. ‘1%_,
Compose OF message

true

ComposeMessage 5%_,
COMpOse BFFOr Message

< >

Drawing Yiew | Handlers Yiew | XML Code View

rhode Atribut

rAction Parameter

Marne Map BML message action
Description Maps the content of the %ML message Fields into case-,.. aswitch msa/bodyfaSwitch
Action com.hp.ov. activator.mwfm, component. builtin, XMLMa. .. cuskomer msg/header/customer

msg/header/action

grere_rissng_tags e
SERYICE_ID
WORKFLOMW _ORDER_TD
wml_url

z5witch

msg/header/service_id
msg/header/order_id
message_url
msg/bodyfzSwitch

Inactive O

The workflows are simple. It is possible to understand the algorithms by inspecting them, node by

node. Some clues are given here:

In Figure 3-4 the first node of the controller workflow, an XML mapper node, is selected. It

extracts from the request message, which has been received by the listener module and passed to

the workflow job, several values identified by XPath-like tag sequences to workflow variables.

You can decipher this from the Action Parameters shown in the lower right corner (variable names

in Name column, tag sequences in Value column). Take a closer look at one of the sample
messages (in etc/tests/messages/Intro_Example) to understand howthe tag sequences
relate to the message format. You may notethe use of the variables WORKFLOW_ORDER_ID
and SERVICE_ID to hold the identifiers for the order and the service, respectively. These
predefined variables are used by convention to make it possible in a general way to display
information from running workflow jobs. The same is true for WORKFLOW_STATE, whose
value is intended to give the observer an idea of how far the workflow job has progressed
whenever it is inspected. The values of these predefined variables are automatically inherited to
child workflows.

The controller workflow starts one of the otherworkflows to do the actual work that was
requested. The name of the workflow is extracted literally from the request message. In a more

complete implementation it would be appropriate to perform a database lookup to validate the
request.

The child workflow in its final Sync node (true for both child workflows) returns a status that is
inspected by the controller to determine if the child completed its tasksuccessfully.

The ComposeMessage nodes in the controller substitute variable values for placeholders in

templates to create response messages which the controller will send back to the originator of the

request. The PutMessage node posts the response message into the message area of the user
interface, so you can easily see it when the workflow has run. Inspect the message template files
(in etc/template_files/Intro_Example) to understand howthe value substitution works.

Chapter 3

35

Service Activator SystemIntegrator’s Overview
An Example Solution: Intro_Example

Figure 3-5

The Intro_CreateConnection workflow (shownas screenshotin Figure 3-5) begins by allocating
and reserving ports for the A and Z ends of the connection on switch devices which are specified
by values that originate from the request message and have been passed from the controller
workflow. This is done with ReserveResource nodes. Then follows the activation which invokes
the compound task that will configure the switches. The workflow has looping logic to repeat the
attempt after a failure. The GenericUIDialog andAskFornodes synchronize with an operator; the
one in the Retry loop will ask the operator to decide whether a retry is appropriate. The node
labelled “Askfor confirmation” posts an information panel with a description of the connection
thatwill be created, and waits for the operator to read the information and perform the required
cabling before allowing the workflow to proceed, but does nottake any input from the operator.

Intro_CreateConnection Workflow

False g e [
Sync with controlisr

False

Reserv.., 4 ommmao». Jt Mukidssign 3
Reserve Z port MNokify operator 1 Set status (rarc)

Pt y
‘Write audit record

PutMessage JI As5... Hel
Hotfy operator 2 Retrying

False

true

Composaie... GenericUlDia. . ¥ Ass... =1 Activate a4 Multidssion Yab = | LpdateServicelns... ga
Prepare instruction Ak For confirmation Activating Craste conrection Set status (actvin) Store completed instance

After a successfulactivation information aboutthe newly created service is recorded as a simple
service instance. Service instances are generic and predefined, the systemintegrator does not need
to prepare a definition; they are stored in a database table thatis created at installation time, notby
the Inventory Builder. A service instance includes a unique identifier (database key) and contains
the names and values of a number of additional variables, identified by name. This predefined
capability can be used if services are simple and you have no special requirements for a service
data repository, its structure or presentation. Finally, the syncnode at the end of the workflow
passes information back to the operation_statusand operation_description variables of the
controller workflow where they are used to determine the choice and contents ofthe response
message.

When you have understood the process to create a service, the Intro_DeleteConnection workflow
will be straightforward. It is supplied with the service identifier, retrieves all additional
information aboutthe service to be deleted from the service instance and unravels everything that
was doneduring creation.

The resource definitions for resource data entity classes can be processed with the Inventory
Builder. But to inspectthese XML files you must use an editor. During deployment some instances
of switch and port data were populated into the tables defined by the resource definitions. After
you have launched HP Service Activator’s main user interface (when you are running the solution,
see below) you can view this datain the inventory user interface which is controlled by the tree
definition that was also deployed, from file /etc/config/inventoryTree/intro-Tree.xml.
The Inventory TreeDesigner tool can be used to inspect the tree definition itself as shown in Figure
3-6.

36

Chapter 3

Service Activator SystemIntegrator’s Overview
An Example Solution: Intro_Example

Figure 3-6

Intro Tree in Inventory Tree Designer

£ HPSA Inventory Tree Designer El@gt

File Deployment Setting Help
Nel v 9o
Intro_Example Inkro Tres
7 Beans =4 InventoryTree
#- @ IntroPort =l [@ Catalog
=W ntroSwitch =
& Port
EBranch Editor
Al
Defhlame Switch |
BranchType ‘
Type Swikch |
Image swibch, gif
Reservedimnage
Class-Name com.hp.ov.activator.inkro, IntroSwitch
Find-By Findall |
Label $Switch. Switch
Seroll o V!
Encloses a branch definition, repeatable
Design View | XML Code View

Running the Intro_Example Solution Workflows

With HP Service Activatorrunning, launch the user interface in a browser and log in; if you have
not configured an authentication module, youwill not need to type a password.

Inspect inventory. In the left hand menu of the main userinterface window click Inventory,
and the inventory userinterface opens in a dedicated window. In this window select Instance
Views -> Intro Example/Intro Tree. Then expand the tree and click in the sensitive area
of a switch or port branch (or right-click to get an operations menu) to view the forms that display
the field value datafor the entity associated with the branch. Compare the data you seein the view
forms to the fields defined in the resource definitions. If you inspect the tree after you have created
a connection you will notice the ports that have been reserved for the activated service are marked
with anr.

Make request to run workflow. You can select and inject one of the sample request messages to

run the workflows. In the left hand menu, open the Self Management part at the bottom by clicking
the little triangle. Then select Test Messaging. A list of the two sample messages will appear in
the work area as shown in Figure 3-7. The first message contains a request to create a connection,

the second message a request to delete the same.

Now right-click on one of the two message names, and then click Start Test in the single-item
pop-up menu thatappears. The message will besentto the listener module, which will startthe
controller workflow. The resulting workflow job will read and process the message. The controller
job will start a child job to do the requested work.

As you know from examining the workflows, they contain AskFor nodes that synchronize with an
operator. To perform this interaction, select Jobs at thetop of the left hand menu. In the job list
that appears, select the tab labeled Intro (the tab label is specified by a parameter of the AskFor
node). You will see a list of jobs waiting for interaction. Unless you have injected more than one
request message, there will be justone job in the list. Right-click on it, and select Interact
with job in the pop-up menu that appears. Study the pop-up window and click [Submit] to
close it and signal to the workflow job to proceed.

Chapter 3

37

Service Activator SystemIntegrator’s Overview
An Example Solution: Intro_Example

Figure 3-7

User Interface with Test Messages

1 y
() Service Activator (mﬂ(‘ T

Test Messaging

Jobs
Queuss = B
Messages Intro_Ex intro-Message

availal Description
ml
Audit Messages intro-Message-2.xml
Track Activations

warkflows

Services

Inventary

Service Instances

Logs

Search Logs

Service Order Wiew

Business Calendar

Service Order Mgt

Tools -

Refresh ON

Self Management ~

Self Monitor

Pool Management
[queue Management
[clean Up

Reload

Statistics
Distribution

Export

Wiew License Info
Usage Information

Test Messaging

Total Jobs:
Activating:
Waiting:

Scheduled:

System Status:

@®loccao

Inspect effects of workflow. The simplest way to study the result of running the workflow is to
view the request response message. The sendermodule will attempt to send it, but since no
application is waiting for it, the sending will fail. It is also posted in the message list on the user
interface, and you can view it there. Select Messages in the left hand menu to see the message
display. The posted messages will appear under thetab Intro (the tabis specified by a parameter
of the PutMessage node in the controller workflow). Compare the message you see to the template
from which it was generated.

When a request has been successfully it is documented with an audit record which you can inspect
in the Audit Record view (select Audit Messages in the left hand menu).

When a service has been created you can inspect the service instance record that has been stored to
hold information aboutit. In the left hand menu, click the ‘+’ to expand Service Instances,
thenclick Open Instance. A special window will then open; click the ‘+’ to expand the list of
service instances,and click onthe service identifier of the branch line to view the details.

Anothereffect you can study is the warning messages written by the atomic tasks in the log of the
resource manager. Select Logs in in the left hand menu, then select the RESMGR tab at the top of
the work area, and then the resmgr_active file name at the bottom. Scroll down the file to see
the yellow entries (these entries are written as warnings, hence the yellow color, so they will be
easy to spot). If you study the Java source code of the plug-in you can find the statements that log
the warnings. The other entries are written by the resource manager itself. Try to make outwhat
they document. You can also view the log of the workflow manager (Logs -> WWFM ->

mwfm_active); here youwill see error entries in red color written by the sendermodule when it
fails to send the request response message.

Finally you can inspect the inventory userinterface to find the ports that are reserved and used
when a connection service is created.

38

Chapter 3

Service Activator SystemIntegrator’s Overview
Solution Planning and Analysis

Solution Planning and Analysis

This chapter gives an overview of the activities that must be undertaken in a project to build a
solution based on HP Service Activator and explains the aspects ofa solution that must be
analyzed early onto establish a solid base for scoping and planning a delivery project.

Activities in a Project to Build a Solution

Some solution delivery projects will start with a solution that exists more or less off the shelf, in
the form of a solution package or a similar solution that has been delivered previously. Other
projects will start from scratch or with very little in the form of reusable customization. Even when
a rich solution package is used, it must generally be expected that the customer has requirements
which are not met with the existing solution, so that the package must be enhanced or changed.

In general a solution delivery project can be broken into these phases, which are quite generic:

e Analysis: determine and understand all requirements in sufficient detail to develop a general
description of the solution and plan the work to build it. The amount of work in the subsequent
phases will depend heavily on the scope of the services that must be activated, the number of
activation targets and complexity of the interfaces to control them, as well as the complexity of
other process and integration requirements.

If a solution package or another existing solution is used as starting point, the analysis work
will take the form of gap analysis, where the required capabilities are compared to what is
already supported.

e Design: drawing board work to identify and determine full details of all components to be
built, so that they can be described and the ideas for building each one developed. Components
of a solution will include:

— Northbound interface to receive orders from CRM systemor other systemwhich is the
source of orders.

— Workflows to execute the processes to configure and control activation of services.
— Activation tasks to interact with target devices and systems for activation of services.

— Operational model for resource repository. You can build a data model of the resources
needed for the solution using HP Service Activator’s inventory capability. You will then
need to design a way load datainto the resource repository when the solution is installed
and keep the repository regularly synchronized with the network; the source of the data
can be an existing resource inventory system, or it can be the network devices directly.
Alternatively, if there is a requriement to interface directly with an existing external
inventory systemand you are building a solution from scratch, then you can build such an
interface using an API supported by thatsystem.

— Data model for resource and service data repositories.

e Implementation and testing: use HP Service Activatortools to build all components
according to design; testthemas units and as a complete solution. In this phase the
interworking of the components with external systems and devices must also be tested. Also
latestin this phase documentation and plans for use of the solution must be prepared along with
training of the user’s of the solution.

Chapter 4

39

Service Activator SystemIntegrator’s Overview
Solution Planning and Analysis

Analysis

Install the solution in the production environment, perform appropriate tests to ensure it works
properly, train the users,commission and hand over for production use.

The following information must be collected, clarified, documented and understood as part of the
analysis of an activation solution:

Full definitions of the services to be activated including the underlying technology, the
packaging and organization of the services, the detailed features, and the intended evolution of
the services.

The tasks involved in activating services. Understand all activation targets thatare involved in
each service, the protocols for interacting with them, and the command-response or message
exchange interactions that must take place in the activation processes.

In order to fully understand activation tasks it may be necessary to study the network
architecture to identify devices with different roles. This can be the background for
understanding which devices need to be activated for a specific service. For example, when end
customer’s equipment is attached to the provider’s network through some access device such
asa DSLAM or access switch, where there is a port or interface dedicated to the customer then
it will typically be necessary to reserve the port or interface in the resource data model and also
to perform some action to enable the customer’s traffic across the access port. Whether it will
also be necessary to enable functions per customer on devices further towards the core of the
network, such as aggregation devices and MPLS edge devices, will vary depending on the
service and the network architecture.

How activation processes are initiated. Normally these processes are triggered by XML
messages received via a northbound interface from a an order management or CRM system.
Various flavors of XML interfaces, including web services, are possible. Alternatively, in some
solutions, there can be a requirement to supporta user interface for entry of orders directly into
HP Service Activator.

How the solution will fit into the provider’s overall OSS/BSS environment, apart from order
entry. Which other systems will it interface to, what data will be exchanged? At what point in
the activation processes will there be interactions with othersystems?

Requirements for integrating with an external inventory system, initially or at a later stage. The
provider may enforce as a policy thatall dataof a given type, for example resource inventory,
is maintained in a single inventory system, and that other systems, including the activation
system, must retrieve and update the data by interfacing to that inventory system. Such a
requirement is fundamental to the way HP Service Activatormust be customized and must be
made clear very early in the project.

Requirements for maintaining resource and service datain HP Service Activator’s data
repositories. Such a requirement may be explicitly stated, or it may be implicit thatthe data
will be needed by activation processes. Itis generally easier to customize HP Service Activator
to maintain resource and service datain its own repositories than to integrate with an external
inventory system.

A very important point to decide and understand is how datadescribing physical and logical
resources that must be held in HP Service Activator’s resource datarepository shall be loaded
and kept synchronized with the actual state of the resources. One possible way is toinclude
workflows that can upload device details from devices in the network. Anotherpossible way is
to refresh data from an external systemthatis already synchronized with the network.

Volumes of activation orders to be processed and of data to be managed. Number of users
performing web interactions with the solution and nature of interactions. This information is
needed to determine the processing capacity that is needed.

Requirements for the time allowed to process orders. The analysis of the implication of this
requirement combined with volume of orders will involve the activation targets and their

40

Chapter 4

Service Activator SystemIntegrator’s Overview
Solution Planning and Analysis

ability to execute the implied interactions in a timely fashion. HP Service Activatoris rarely
the bottleneck in a solution.

e High availability requirement. This requirement togetherwith transaction volume may justify /
necessitate deployment of the solution on a cluster of servers.

e User interface requirements, for example: entering orders, monitoring activity,
browsing/editing datain HP Service Activatorrepositories. If several userfunctions shall be
available, there may be requirements to useroles and privileges to differentiate between users.

A special aspect of user interface is localization of messages from English to local language.

e Audit trail requirement: what information is required to be stored as historical information
aboutcompleted orders.

With all requirement information collected and organized it is possible to characterize the solution
and to identify and estimate work items for the delivery project.

Chapter 4

41

Service Activator SystemIntegrator’s Overview
Solution Planning and Analysis

42 Chapter 4

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

Solution Design

This chapter provides information that is intended to help you as systemintegrator in the solution
design phase, after you have collected complete information in the analysis, before you embark on
implementation of the components of your solution using the HP Service Activator tools. It is not a
textbook on high level solution design, more collection of useful bits of information, for example it
does nottell you how to design activation processes. You will also need to consultthe manuals for
the individual components and tools, as listed at the end of chapter 1. When you considertasks that
require Java programming, you must consider in addition to the PDF-formatted manuals also the
Javadoc which describes a range of interfaces and classes and can be accessed when HP Service
Activator has beeninstalled by selecting (on Windows) start -> all programs -> HP
Service Activator -> Docs -> JavaDoc. On Unix systems the location is
/opt/0V/ServiceActivator/docs/javadoc. Anexample page is shown in Figure 5-1.

We explain here some best practices, discuss some possible ways to solve common problems, and
discuss some considerations that will have an impact on how the operating solution will be
experienced by operators.

Solution Labelling

In order to be able to manage and keep separate different solutions, or parts of a large solution, it is
strongly recommended that you use the source file organization supported by the Deployment
Manager for all the source files of your solution(s) and that you use a well-chosen short string to
uniquely label all the parts of the solution, as follows:

e Asthe name space part of the name of plug-ins and compound tasks.

e Asthe value of the<Solution> element in definitions of resource beans and inventory trees
(required for deployment).

e Asprefix for database table names for resource beans.

e Asthe solution name in the workflow settings ofeach workflow and also as prefix for the
name of each workflow.

Queuing Sub-System

The queuing sub-systemmakes it possible to control how many jobs of a given typeis running in
parallel at the same time. By calling the rmi method startQueueJob instead of the standard startJob
method the queuing sub-systemwill ensure only the configured number of jobs for this queue is
running. If more jobs are tried to be started they will be waiting in the queue until there is free
capacity.

What can be a type of a queueis up to the solution developer to select. It could be a given service
type like at DSL service or a given target system.

There is no limitation abouthow many queues can be defined for a give solution. It makes senseto
not have a very high number as you will then be splitting the capacity of Service Activatorin to
small pieces. The full system capacity will not be possible to use unless the max capacity of all
queues is used.

Chapter 5

43

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

In future version it will be possible to configure listener module to call the startQueueJob method
instead of the startJob method and in 7.0 the rmi interface can be used or the SOAP interface.

By using queuing it will be possibleto ensure free capacity for high important tasks by defining
dedicated queues. Also it would be possible to build the solution in such a way so it will be
possible to stop activation of a certain activation types.

Itis possible from the Service Activator Ul to lock a queue to accept new incoming request but
still continue to process the already received requests. It is also possibleto lock a queue to not
process received request, but still continue to receive new incoming requests.

Requestreceived in the queuing sub-systemwhich have not yet been started as jobs in Service
Activator are saved in the database and will picked up by the other cluster nodes in the systemin
case of a failover. A requestwill be deleted from the database when the job is started.

Itis possibleto configure a number of requests to stay in a cache. The reason for having a cache is
to make it faster to start jobs. Also the queuing sub-systemwill ensure to read new request from
the database so the queue threads can start jobs immediately when there is free capacity.

The queuing sub-systemrequires the queue and the queue persistence modules to be configured.

Configurable aspects of queues

A queue can be configured via the Service ActivatorUl or by means of the
$ACTIVATOR_OPT/bin/queuetool, which usean xml file asinput. The xml file must follow the
schema defined in queues.xsd. Apart from this then queues can also be configured as part of the
deployment of a solution by defining the queues in anxml file and specify the file in the
deployment descriptor.

A queue must be configured with the following parameters:
Solution name — the name of the solution this queue belongs to.
Name — the name of the queue.

Queue class - the class in the queuing systemwhich should be used for this queue. Two different
queues can be used; com.hp.ov.activator.mwfm.engine.module.queuing.WeightedBlockingQueue
and java.util.concurrent.PriorityBlockingQueue.

Threads — how many threads in the queuing systemshould be created to start jobs based on the
received requests.

Max jobs — how many jobs can be running in parallel per Service Activatorcluster node.

Cache —indicating how many of the received requests should stay in memory along with also
being saved in the database.

Locked input- indicating if the queue should, when created, accept to receive requests or not.
Locked output-indicating if the queue should, when created, start to process requests ornot.

TTL - how long time a requestshould be staying in the queue before it is deleted. The value must
be provided in seconds and the default value is 0 indicating that it would stay forever.

Description — a text string which can be used to tell what is this queue used for.

44 Chapter 5

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

Connection Pools

How pools work

An introduction to connection pools was given in chapter2, through Figure 2-3 and its explanatory
text. Connection pools can be used as the foundation for high performance deployments of the
generic CLI plug-in. The basic mechanism is general and is described here as such. In future
product versions connection pooling may be supported for additional plug-ins.

Connection pools are actually session pools, as the active connections in a pool will generally be
authenticated sessions with the target equipment. Authentication does not happen by magic, the
dialog to perform must be configured (or customized as part of dialog control documents) for each
pool.

Each connection pool is associated with a plug-in and contains sessions foruse with a specific
activation target. When the execution of an atomic task within the plug-in is requested (from a
workflow job) it will refer to the pool rather than directly to target. The plug-in will then interact
with the connection pool to acquire a session for the duration of the implied dialog with the target.
Three scenarios are possible:

= if an unusedsession exists in the pool it will be allocated and used;

= otherwise, unless the maximum number of sessions forthe pool has been reached, a new
session will be created, initialized, allocated and used

= if the maximum number of sessions are already active, the new atomic task is queued until
a session becomes available.

Once a session has been aquired by the plug-in it will useit directly, without pool management
involvement, to conduct its dialog with the target.

After the dialog it is the responsibility of the plug-in to restore the session to its initial state
(context, prompt level) before releasing it to the pool.

There is a special case for clustered platforms, where the resource manager may need to redirect an
atomic taskto be executed on the cluster node where the pool resides; see the description of
unlimited pools below.

Configurable aspects of pools

A pool must be configured with instructions for initial and final actions after a connection has been
created and before it is closed, as well as some timeout values and optionally a maximum number
of connections that may exist in the pool. At runtime the resource manager will use the plug-in
assocated with the pool to execute the instructions for initial and final actions.

A pool consists of subpools, at least one. Some of the configurations belong to subpools. This
means they can be different for different subpools.

A maximum time — the Acquire timeout— for an atomic task to wait to acquire a session can be
configured; if it is exceeded the atomic taskwill fail.

A maximum time for the entire pool to be idle — the Pool timeout - can also be configured. When
this timeout happens the poolwill be cleaned out from memory. It will be reinstantiated when
needed.

The following configurations belong to subpools.
Unused sessions are held for a configurable maximum time — the Idle timeout — then destroyed.

A maximum for the duration of an atomic task’s dialog with the target — the In use timeout — can
also be configured. If the timeout expires while a dialog is ongoing the atomic task will terminate
with an error.

Chapter 5

45

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

The maximum number of connections (sessions) for each subpoolis configurable.

A multiline text parameter known as ‘Session management’ is also configurable per subpool. This
text is actually processed by the plug-in, soits syntaxand specific meaning will depend onthe
plug-in. For the CLI plug-in it must include the <Connect>, <Disconnect> and <Validate>
elements of the dialog control document. The <Connect> element contains the target URL and the
dialog to be executed to authenticate and initialize a session; this element must include any
credentials required by thetarget. The <Disconnect> element contains any final dialog to be
executed before the connection is destroyed. For more details refer to the Javadoc for the generic
CLI plug-in.

Refer to HP Service Activator, User’s and Administrator’s Guide for a description of how a
systemadministrator configures pools and manages their states.

Pools and target locking

When you use a pool of connections to a target you will generally want to allow multiple sessions
to be active in parallel. The standard behaviour of the resource manager, to lock the target during a
session and not allow additional sessions (as described in the session below on Plug-Ins), will be
undesirable. Instead, the size of the pool should put the limit onthe number of parallel sessions.
The Activate workflow node supports a parameter called ignore_locking_argument. Set this
parameter to ‘true’ to disable the standard resource locking of the resource.

Design considerations for the use of pools

Plug-Ins

You should generally choose to use connection pools if your solution must satisfy performance
requirements which render unacceptable the overhead of creating and authenticating a fresh
connection for each atomic task. Then you have a couple of additional design decisions to make.

Each connection pool you use can be either static or dynamic:

e staticpool The pool is created with complete configuration by a systemadministrator
action before it is used.

e dynamic pool The poolis created as a side effect of the first atomic task that will need it;
the configuration of the poolis included with the parameters for the atomic
task. On subsequent atomic tasks, pool configuration parameters will be
ignored.

Depending on its configuration a pool will be either limited to a maximum number of connections
or not limited in this respect. The difference is important when the pool is deployed on a clustered
platform (see chapter 6 for a description of clusters):

e limited pool A limited poolwill exist ononly one server (cluster node); if a task that will
usethe poolis invoked on anothercluster node, it will be redirected to the
one where the pool resides; this will happen within the resource manager.

e unlimited pool Anumlimited poolwill be instantited on every cluster node where a task
needs to use it in accordance with configuration for load balancing; the total
number of connections within the pool will be the sum over all nodes in the
cluster.

Customized Use of Generic Plug-ins

As described in chapter 2 if your activation target is controlled by a command line dialog you will
not need to constructanew plug-in. Instead you will customize control document templates to be
used with the generic CLI plug-in. Similarly if youractivation target supports HTTP and it is
convenientto prepare template files for each message you will need to send, then you can usethe
generic HTTP plug-in. In both of these cases you will need to read the documentation for the
generic plug-in you are using. It will be found as Javadoc.

46

Chapter 5

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

A question that will come up for command-line interfaces is how many commands to include in a
single command document template, sothatit is executed as an atomic task. Since there may be
significant overhead in establishing a session and committing changes on the target device you
should strive to accomplish the complete activation of all aspects ofa service within a single
atomic task. Combinations of multiple smaller files can be accomplished with include-files and the

XSL call-template construct. The result may well be large control documents containing many
commands.

Creating New Plug-ins

When the generic plug-ins are not sufficient, you will needto create your own plug-in(s). Then
refer to HP Service Activator, Developing Plug-Ins and Compound Taskswhich gives you the

details about plug-in programming using the Service Builder. Some general points relevant for
plug-in design are briefly stated here:

All plug-ins extend a base class called PARPIugin. For detailed information, refer to the Javadoc

(see Figure 5-1). From class PARPIugin all plug-ins have available a context field with a set of
callable methods.

Figure 5-1 Javadoc for Class PARPIugin
Z HP Service Activator - Microsoft internet Explorer provided by Hewlett-Packard
O Back ~ = @ h Fsewch Faverites 2 R “o3
8] CovP\Openivien Senice Actvatordocs havadod index. bl * Be s * Google v | M search =+ ? &, - (Sgnin
1)) To help protect your security, b t Exglorer h this file from show tve content that could sccess your computer, Cick here for options. . E
HP Service Activator DocumenmlA Overview Package [MFTT] Tree Deprecated Index Help ~ HP Service Acaivator
All Classes ﬁ MO FRAMES AN Documentation
Packages B
e Mmooy | || TG
com hp ov actator mutm component | C1355 PARPlugin
‘ - = Java.lang.Coject
M”;‘QEE'E".EM;,I[. . A Loom hpcou activator.resmgr.par. PARFlogin
JobRequestDescriptor
JobResponseDescriptor
JebStatistics public abstract class PARPlugin
iobStatsticsResponseDescnptor extends java.lang.Cbject
J SO tor
This is the base class for all the phig-ins that may be placed in a phg-in archive (PAR)
Author:
rigtor Hewlett-Packard Company
(c) Copyright 2007 Hewlett-Packard Development Company, LP
; | i Field Summary
QueyeDetailsDescriplor PR oongg
Mwmm- The configuration object for the phig-in
QueyeHockAdaMET I ntext
R i’ rigtor The context for the phag-mn.
ResponseDescrptor
RoleMagping vanie i | no -
BoeMappingSupport = en first atomic task argoment is DO_AND_CHECK, this mstructs the
g onine b e ¥ atomic task to perform the appropriate DO_AND_CHECK operation. 4
ol 5§ My Computer
In principle every atomic task must be implemented for both the do and undo modes. However, if
you don’t use compound tasks, the undo mode will never be used, soyou can skip it. Even if
compound tasks are used, this is also true for an atomic taskthat will notbe used in any compound
task or only be in the last sequential position, because then the atomic taskwill never be called in
the undo mode.
As you design the implementation of undo mode you may need information about the state of
activation targets before the do mode of the atomic task was executed, so that you can restore it.
Such information may have been passed as oneor more parameters to the atomic task, or you may
have retrieved it from the activation target before its state is changed (in do mode). You can use
the methods of the TransactionStateSaver (or AtomicTaskStateSaver) interface which are inherited
by the context to save the information for later retrieval, should the atomic task be called in the
Chapter 5 47

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

Target Locking

undo mode as part of unrolling the transaction. However, don’toverdo it; it may notalways be
meaningful to attempt to do a perfect job in the undo mode: in a taskintended to destroy a service
a besteffort approach may bethe right one. When a service can only be partially destroyed, your
best choice may be to design the destroy method to be idempotent, i.e. record the partially
destroyed state and finish the job when the destroy method is called a second time.

If you write significant amounts of Java code, note that you can conveniently use the Service
Builder in combination with a more powerful Java development environment, for example Eclipse.

A question you will confrontwhen you create a new plug-in is target locking. Some targets will
not be able to engage in multiple sessions concurrently,and even if the target does nothave a
problem, you may want to eliminate concurrency at the session level. The resource manager
supports locking of a target. To determine when two calls to any atomic tasks in the plug-in
address the same target, the resource manager looks at the first arguments (param0, paramli, ...).
You should think about this aspect when you define the arguments for the atomic tasks in your
plug-in. You must define for the entire plug-in (not per atomic task) how many parameters to use
for logging, with a minimum of one, and these parameters should then have the same meaning for
all atomic tasks in the plug-in.

As an example, the first parameter may be the IP address/hostname of an element manager and the
second parameter may identify a device in the communication with the element manager. If you
will accept multiple concurrent sessions to the element manager, but you want to prevent two
workflow jobs from configuring the same device concurrently, the number of locking arguments
for the plug-in shall be two. It would then be natural to use the third argument to identify the
function to perform and subsequent arguments to be function-specific.

As an alternative to locking ona set of argument values when one atomic task is actively using
them, you can seta limit higher than one onthe number of concurrentactivations that you will
allow.

Secure Communication with Targets

The resource manager has a general capability to use ssh,secure shell, to communicate with
targets. It is used by the built-in NNMi plug-in (see chapter 11) and optionally by the built-in
generic CLI plug-in; it can also be used by plug-ins that you develop. To use it you must prepare
and install keys for the secure communication and run the ActivatorConfig utility to configure the
resource manager. These topics are covered in HP Service Activator, Installation Guide.

Plug-ins for Web Services and Corba Interfaces

A frequently occurring case is an activation target which exposes a web service NBI described in
WSDL form. The recommended approach to build a plug-in for such a target is to use the
JBossWS utility WSConsume which is available as part of the HP Service Activator installation to
generate from the WDSL a Java class where the web service methods are callable as stubs and
then incorporate the generated class into the plug-in as an auxiliary Java class. The simplest
approach to complete the plug-in is then to wrap each web service method as an atomic task
method, butyou may also want to call multiple methods, possibly with looping and branching,
within a single atomic task.

A very similar process will apply to a Corba interface defined in the form of IDL. You can
generate a class with stubs that can call the Corba methods and then wrap them as atomic task
methods. Use this link for further information on Java IDL technology:
http://java.sun.com/j2se/1.5.0/docs/quide/idl/indexhtml.

User Interface and Roles

The systemintegrator of an activation solution must understand the usercommunity, how it can be
divided into users with different roles, and the requirements each role has for viewing data,

48

Chapter 5

http://java.sun.com/j2se/1.5.0/docs/guide/idl/index.html

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

monitoring activity and interacting with processes. For more information onroles and what you
can restrict and organize by means of them, see chapter 7.

HP Service Activator’s main user interface window has functions to display information about
ongoing activity as well as messages and audit trails produced by the workflow jobs and user
activity in the past. Such information is shown in the various windows available in the Work Area
menu. As systemintegrator you should be familiar with how these windows work, and you should
plan how you intend yourusers will usethem. Such a plan will guide you to decide the details of
the information which you can control by customization. To become familiar with the user
interface, read the pertinent chapters in HP Service Activator, User’s and Administrator’s Guide
and work the Ul on a running system.

You can customize theitems that appear in the Work Area and Tools parts of the left hand menu
of the main Ul window; see HP Service Activator, User’s and Administrator’s Guide for more
information.

Four common case-packet variables are presentin all workflows intended to hold
1) an identifier of the order being processed (WORKFLOW_ORDER_ID),

2) an identifier of the service being activated (SERVICE_ID),

3) the type of the workflow (WORKFLOW_TYPE), and

4) the state of the workflow (WORKFLOW_STATE).

The values of these variables can be shown in several of the lists (jobs, messages, audit records,
including the service order view) available on the user interface. They can also be used to search
for jobs and other related items. You should use them properly in yourworkflows toensure that
meaningful information is shown in these Ul views. Use the type to classify your workflows, first
of all by solution, and within each solution as you see fit. When a workflow passes through several
phases the state can be used to indicate how far along a job is, particular when it is waiting for
something time consuming such as operator input, an activation task, or other external interaction.
The values you assign to these variables can be chosen freely.

General recommendations are:

e Use messages shown in the Message window (generated by PutMessage nodes in workflows)
for debugging during development, and when the solution is in operation only for well thought
out diagnostic information thatwill make the user aware of problems that have occurred and
point to causes that the usercan repair.

e Use audit records generated explicitly using the Audit node in workflows to create an accurate
audit trail. In addition toa number of standard fields of audit records you can add any needed
information from case-packet variables, to properly document what has been accomplished by
your workflow. Audit records should always be written at the end of a workflow.

All strings shown on the userinterface are collected in resource bundles to allow localization. See
Appendix A for more information.

Ul Integration Using LWSSO or SPENEGO

Part of the integration of HP Service Activator with other HP NGOSS products such as NNMi and
NA is GUI integration involving cross launching from the GUI of one application to that of
another.

One way of GUI interworking is the use of HP’s Light Weight Single Sign On (LWSSO)) to
eliminate the need for the userto log in to each application; seethe section “Light Weight Single
Sign On” in chapter 7.

NOTE

NA does not support LWSSO and hence it is not possible to crosslaunch from NA to HP Service Activator as
described in this section.

Chapter 5

49

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

A second way of GUI interworking is to use SPENEGO to provide the same function as LWSSO;
see the section “SPENEGOQO” in chapter 7

Anotheraspectis to configure one systemto know the relevant URLs for contextual views of a
launched application. In order to be able to setup cross launch capability from anotherapplication
supporting LWSSO to HP Service Activator views you will needto know the relevant URL
formats. They are described here in the following.

The general format is
http://<hostname>: <port>/activator/<activator-subsystem>?<parameters>

where <hostname> must be an IP address or name of the servier hosting Service Activator, and
<port> is the port number configured at systeminstallation for access to HP Service Activator’s
web server (default is 8080).

<activator-subsystem>defines the view you want to launch. Values are:
e views as shown in Work Area jsp/<jsp-file-name>
e Service Order View jsf/sov/serviceOrderView.jsf?<parameters>

e Inventory Ul OpenlinventoryFG.do?<parameters>

Look in the menu configuration file $ACTIVATOR_ETC/config/menu .xml for <jsp-file-name>
for the Work Area views.

<parameters> take the standard form for a URL: <name>=<value>, with multiple occurrences
separated by &

For service order view the following parameters can be used to specify the filter and the tab to
select: jobld, serviceld, orderld, type, state, resultsTab (value shall be one of: jobsTab,
messagesTab, auditTab, transactionsTab). Example:

http://<host-name>:<port>/activator/jsf/sov/serviceOrderView.jsF?
serviceld=site00l&resul tsTab=audi tTab

For inventory Ul the context must be specified as a specific instance branch to be selected using
the following parameters; all are mandatory except operation:

e solution name of solution the tree belongs to

e View name of tree definition

o cl =true (to indicate cross launch)

e operation to invoke an operation on the branch

e DbranchPath sequence of branch names from tree definition leading to the desired branch,

separated by ‘| characters
e pk primary key of the instanceto be selected

BExample (from CNRM):

http://<host-name>:<port>/activator/OpenlnventoryFG.do?
solution=CRModel & iew=Equ ipmentéc I=true&operation=view&
branchPath=Catal og |Region |[Network |PEs| PE&pk=100

NOTE In the definiion of the inventory tree all <Branch> elements in the branch path must include the <Parent-Find-
By> child element Thisis to allow the branch to be shown in its lineage (with all ancestors). Normally the
<Parent-Find-By> element is not needed in tree definions, so this is a significant extra requirement for the
definion of an inventory tree.

50 Chapter 5

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

Ul Integration Without LWSSO

You may also want to cross-launch HP Service Activator Ul windows from external non-HP
applications which do not support HP LWSSO. In this case, you can use the URL for logging in to
HP Service Activator, including credentials for authentication, with a redirect parameter to
indicate the page you want to access:

http://<SA-host>:<SA-port>/activator/jsp/login.jsp?redirect=<page>
&hpsa_user=<username>&hpsa _password=<password>

where <page> is the path part of the URL for the page you want to display, i.e. Zactivator
followed by the path of the page file relative to $JBOSS_ACTIVATOR (i.e. the activator.war
directory), for example activator/jsp/saRunningJobs. jsp for the pageto display running
jobs. This scheme will also work for pages in the Ul part of a customized solution.

Note that the slash characters appearing in the <page> part must be escaped (because the slash
character is a special delimiter in a URL) as the sequence %2F. So, if the SA-hostis
SAhost.mycompany.com, the HPSA-port is 8080, the username is foo and the password is bah,
and you want to display running jobs, the complete URL will be:

http://SAhost_mycompany . com:8080/activator/jsp/login. jsp

?redirect=%2Factivator®%2F jsp%2FsaRunningJobs. jsp
&hpsa_user=foo&hpsa_password=bah

If you prefer to transfer the password in encrypted form, change the parameter name to
hpsa_encrypted_password and usethe crypt utility in $ACTIVATOR_OPT/bin toencrypt it.

A Note on Workflow Start Role Attribute

Most workflows do notget started from the workflows list on the user interface, butdriven from
an external message, for example throughthe socket listener, or as child jobs of other workflow
jobs. To preventusers from accidentally starting such a workflow you can setthe start (or default)
role attribute in the workflow definition.

Viewing Jobs During Activation

Workflow jobs engaged in activation transactions (while executing an Activate node) will be
visible on the activation queue in the Active Jobs view by users who have the ‘internal’ role. This
role is normally notassigned to human users, butyou can modify this behavior by setting the role
attribute on the Activate node (using the Workflow Designer). The activation queue tab will then
be visible to users with the specified role, and they will be able to select “View Activation’ from
the right-click menu to launch the Transaction Details window.

You will not want users to be able to actually interact with a job during an activation transaction
(that would allow the workflow job to continue as if the activation had completed). It can be
prevented by configuring the userinterface to hide the ‘Interact with Job’ item from the right-click
menu of jobs on the activation queue.

Encrypted Passwords

One of the dataitems you may need to model for an activation targetis a password that will be
used to authenticate HP Service Activator when it establishes asession with the target. You will
want to avoid to store the password in clear text in resource inventory, log files, etc., soyou will
need to be able to encrypt the password after it is entered, for example on the inventory Ul, using
an encryption scheme thatallows you to decrypt it again before transmission to the target, where it
may be encrypted again using the key appropriate for that particular connection.

You can configure fields of resource beans for the inventory to be treated as passwords that must
be encrypted upon entry. There are a number of ways to decrypt passwords (encrypted strings)
when needed: by a workflow node (Decrypt), by a context method for use in workflow manager
modules, by a context method for use in plug-ins, by an attribute in a control document for the CLI

plug-in.

Chapter 5

51

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

Data Models

To create a datamodel for resource and service inventory you must apply entity relationship
analysis to the datayou need to representin order to determine entity classes and the foreign keys
you need to represent relationships.

The inventory subsystem, i.e. the Inventory Builder and the beans and JSPs it generates, has many
features that you should be aware of:

e arange of field data classes, including passwords as described above, with several control
attributes

¢ inheritance, which lets you define resource superclasses and then subclasses by adding fields to
a superclass

o flexible definition of keys thatcan be used to retrieve desired entity instances by resulting
findBy methods, including foreign keys which represent relationships between different entity
classes

e useof entity relationships to define keys comprising fields from inter-related entity classes
(database joins)

For inventory trees and forms presented on the inventory Ul there is also a rich set of features to

control the structure and appearance of the trees and the operations that can be performed by users
with different roles.

Consult the inventory manual, HP Service Activator, Inventory Subsystem, for detailed
information.

External Inventory Integration

You may need to integrate your solution with a preexisting inventory system.

If the inventory is held in a database with known table definitions, and the HP Service Activator
systemcan access the data at the SQL level, you can integrate by creating resource definitions that
match the existing data, then use the resulting beans in yourworkflows to access the external
inventory.

If the inventory is accessible only through a higher level API, one approach you can take is to
design and build a number of workflow nodes to access the datain a way thatwill be convenientto
use from your workflows: create, query, update, etc., as needed. Such nodes will typically usea
tailor-made workflow module to maintain a session with the external inventory.

A setof nodes providing a liaison to HP’s uCMDB product are available in the built-in library.

Workflow Processes

Controller Workflow Pattern

The section “A Typical Workflow” in chapter 1 and the example in chapter 2 give yousome
general ideas of what you can do with workflows. The patternthatyou seein the Intro example
with a controller workflow that handles the northbound communication and separate workflows to
handle each type of request (in this case, create and delete service) is often useful. This pattern is a
refinement of the single process that was described as “a typical workflow”.

Activation Workflow Structure: Before - Activate - After

When you have complex activations involving several targets it is generally recommended to use
compound tasks in order to simplify the error recovery logic in the workflow. A workflow with an
activation task should have a clear before-and-after structure: before the activation only
preparations, like retrieval, calculation and selection of parameters for the activation, possibly
including resource reservations take place; after the activation come service inventory updates,

52

Chapter 5

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

output of informative messages, writing of audit records. If the activation fails, it should fail
cleanly, and the updates that need to be undone or changed should be minimized.

Workflow States

Depending on the logic, a workflow job may go through a sequence of states, for example
“preparation”, “activation”, “data updating”, as described in the preceding paragraph.

NOTE

State, as discussed here, is the value of a single variable, and should not be confused with the complete
state of a workflow job which comprises the values of its entire case-packet, as discussed in the section
“Workflows” in chapter 2.

Figure 5-2

All workflows havea common case-packet variable WORKFLOW _STATE, intended to reflect
the current state of a workflow job. The value of this state variable is visible for monitoring on HP
Service Activator’s web user interface in the same way as the variables for order id, service id and
workflow type; see “User Interface and Roles” earlier in this chapter.

The WORKFLOW_STATE variable can be setin the same way as other variables in workflows,
butthere is also another feature that makes it easy to associate states with nodes of a workflow and
view the association. A value can be set for each node as the attribute State; it will be
automatically assigned to the WORKFLOW_STATE case-packet variable when the node is
executed. When a node is selected, all other nodes which have the same State attribute value are
highlighted (in light blue), as shown by the example in Figure 5-2.

Workflow in Designer with State

[49 Service Activanes Workiiow Dieiigrer - EAHPYDpen Ve SorvsceAetivatceaokutocm\Traring etelororiicms\C LiDiceras el 2

There is nota predefined set of values for the workflow state variable. The values can be freely
chosen as part of solution design. In the example in Figure 5-2 three values were used as shown in
the drop-down list that appears expanded from the tools bar. A reduced view of the workflow to
showthe possible state transitions as control passes through the nodes can be selected by the State
View tab as shown in Figure 5-3 (for the workflow thatwas shown in Figure 5-2).

Chapter 5

53

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

Figure 5-3

State View of Workflow in Designer

[HP Service Activator Workllow Designer - CAHP\OpenView\SenviceActivatonsalutions\Training\ete\workllows\CLIDermai *+ (5= = R
File Edit View Workflow Deployment Preferences Help

T4 BEB|vEHe|h 2m: s oBHEE@ D |[00% - @ st st
buittin TR ClDemo |

Al Nodes .
[BusinessCalendar
[y Data

@ Database

3 2 Errors ¥ Initial Tag

. 4 = X Termination Tag
E S

@ Prepare
X Activate

Examine -

«

Drawing View | Handlers View | state view | Description View | ML Code View|

Mode Attributes Action Parameter:
Meme Show CLI dialog to user ~ ||| dizlog_datad updatafdialog_id} ~
Necrrintion = ||| dimons tahel T diskon with the tarnet cvehem wac acch T

Business Processes

Although workflows are primarily intended to implement activations, it is also possible using

interactions with operators and possibly external systems to implement business processes ofsome
complexity and duration.

Using Cache with Inventory

Hint: frequent queries to very stable database tables may be optimized by using the Inventory
Caching Module; it works togetherwith the Querylnventory workflow node. Look for details in
HP Service Activator, Workflows and the Workflow Manager.

Starting Workflow from Inventory Ul

Although it is generally expected that most workflow processes are initiated by receipt of request
messages from a northbound system, it is also possible to start workflow jobs from the Inventory
UL You can use this feature for example if you have some processes which are not service
oriented requests, for example device configuration or inventory maintenance. You can also
provide an emergency route to initiate service activations, for situations where the northbound
systemis out of operation. It is possible to initialize case-packet variables of the workflow job that
is started with values thatare sourced from inventory or entered by the user.

Interworking with NNMiand NA

Through the liaisons for NNMi and NA workflows can access devices and invoke actions on NA
and NNMi to perform a number of functions. Refer to the dedicated chapters, 11 and 12.

Workflow Job Persistence

In a workflow definition you determine for each node whether the state of a job executing the
workflow shall be stored (“persisted”) in the database after execution of the node. Should the
workflow manager be restarted while the workflow is running, the job will be restarted at the last
point of persistence. It is not necessary to persist after every single node; there is a performance
costassociated with storing the data. Nodes which only change state internally in the workflow

manager generally do notrequire persistence; they can be reexecuted after a restart, which will in
reality happen very rarely, or never.

Business Calendars

A dedicated set of workflow nodes - IsTimelncluded, GetNextIncludedTime,
GetBusinessHoursAfterDuration, GetTimeRangesOfBusinessDay,
GetCalendarTimezone - allows workflows toconsulta business calendardefined for a solution
with weekly working days and hours per day as well as annual holidays to avoid undesired activity

54

Chapter 5

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

outside of business hours. Business calendars are created and edited from the userinterface. It is
configurable whether the editor shows time of day in 12 hour (am/pm) or 24 hour format.

Considerations for Custom Workflow Nodes

You can extend the library of built-in workflow nodes by implementing customnodes. The same
is true for workflow manager modules. Information about these topics is found in HP Service
Activator, Workflows and the Workflow Manager.

There is a golden rule to observe: a workflow node must never occupy a workflow thread when it
is waiting for an external event.

Solution Monitoring

In addition to monitoring the operation of HP Service Activator on the Ul it is also possibleto use
HP OM (using OM notification messages) or any monitoring systemthatis based on receiving
SNMP traps. HP Service Activator includes a self-monitoring module, which can be configured on
the workflow manager, to monitor a setof conditions and emit traps when they occur. The
supported conditions are:

e JVM heap size exceeds configured threshold

e number of running job exceeds threshold

e cluster nodeis internally suspended, i.e. lost connectivity to system database
e cluster nodeis down

Alternatively, if there is no external systemto monitor HP Service Activator, the self monitoring
module can be configured to write information into audit records or log messages. Refer to HP
Service Activator, Workflows and the Workflow Manager for detailed information about this
module.

Additional traps or OM messages can be sent by workflows based on any condition that can be
detected by the workflow logic. The typical reasonto send such a message / trap would be an
unusualnegative response from an activation target. It is up to the solution designerhow to use
this capability.

OIDs for Traps Emitted from HPSA

You can use the workflow node SendSNMPTrap in conjunction with the workflow manager
module SNMPSenderModule to send out SNMP traps. Traps will include one or more OIDs and a
trap message.

The OID branch assigned to the HSPA product for sending traps is:
iso(1) org(3) dod(6) internet(1) private(4) enterprises(1) hp(11) nm(2) hpSA (52)
orin short: 1.3.6.1.4.1.11.2.52.

Some sub-branches ofthis branch are used for system generated traps (as described above). For
solution generated traps you should select a value >= 100 for the next branch and build a further
OID sub-tree as needed to distinguish between different traps from the solution.

Northbound Interface

In most cases an HP Service Activator solution will need to be integrated northbound with an
Order Management or CRM systemwhich will be the originator of requests to create, modify or
terminate services. The activation systemwill then respond to each request with one or more
messages to acknowledge receipt and to indicate progress and completion of the requested process.

The general assumption is that the activation systemis implemented as a collection of workflows
that can accomplish a set of tasks which the originator or client systemwill request. In other
words, each request from the client to perform a task can be translated to: run a specific workflow

Chapter 5

55

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

with some case-packet variables initialized with parameter values supplied by the client as values
of elements in the message.

Two approaches to implementing the northbound integration were introduced in the section
“Interfaces for Integration” in chapter 2:

e using listener and sender modules of the workflow manager
e usingweb services implemented with serviets
The choice of which approach to take will depend on circumstances and specific requirements.

A description of how to configure secure communication on the northbound interface is included
as an appendix in HP Service Activator, Installation Guide.

Workflow Contract

When a workflow is invoked either on a northbound interface or internally by a parent workflow,
we speak of the contract of the workflow as defining:

input the setof case-packet variables which are expected to be initialized by the invoker, with
some of them marked as mandatory; the requestto starta workflow job will fail if values
mandatory input values are missing (empty values, for example empty strings, are
permitted)

output the set of case-packet variables whose final values will be returned to the invoker; onthe
RMI interface of the Workflow Manager the case-packet is returned as a map containing
the output variables (with the names as keys)

The workflow contract is defined by means of the Workflow Designer.

Using Listener and Sender Modules

Two pairs of listener and sendermodules are available: the socket module pair and the IMS
module pair. The interworking between modules and workflows follows the same patternin both
cases. Aninstance of the listener module is configured to listen at an access point of the
underlying communication service for an incoming message and start a named workflow each time
a message arrives. The message is stored in a temporary database entry,and accesstoit is
provided to the workflow job through one initialized case-packet variable. In both cases, socket
and JMS, a message is sent back to the client by using the SendMessage workflow node with two
parameters: one identifying the sendermodule instance, anotherholding or identifying the
message.

In the case of the socket listener and sendermodules the underlying communication service is
TCP. The access points are ports, and the messages are exchanged as raw TCP messages. In the
JMS case the underlying communication service is a MOM (message-oriented middleware)
supporting a JMS interface. The access pointare JMS destinations, and messages are exchanged as
MOM/JMS messages. See AppendixC for more information onusing JMS.

With the listener/sender module approach parsing of incoming request messages is left to the
workflow job thatis started by the listener module. It is recommended to use a controller workflow
to handle the parsing (at least of the general message fields such as order identifier, customer
identifier, service identifier and request type which are not specific to the type of request) and
determine the appropriate workflow to handle the specific request.

The Intro example described in chapter 3 follows this recommendation with one controller
workflow and a separate workflow for each requesttype. The example shows how to implement
parsing of request messages with the XMLMapper node and how to use templates of response
messages where values of case-packet variables are substituted forplaceholders. This pattern
represents a recommended best practice.

If you have multiple solutions with unrelated request message streams and formats, it is
recommended to usea separate instance of the listener module for each solution, each one
listening on a separate port.

56

Chapter 5

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

Using Web Service Servlets

The second approach uses servlets deployed in JBoss, more specifically they are deployed with
JBossWSin Apache Tomcat which is part of the JBoss platform that HP Service Activator runs
on. The servlet for a service can be generated with the Web Service Designer tool which is
provided as part of the HP Service Activator core product. This tool and its useis described in
chapter 8. When the generated servlet has been deployed, a description of its interface in WSDL
can be extracted from JBossWS on the running platform - see chapter 8 for more detail - and
imported in a client systemto support generation or configuration of the necessary interface
component on the client side.

In this approach a set of web service methods are exposed, where each method will run a specific
workflow. Incoming messages will be parsed by the servlet and parameters of the method are
assigned as initial values to case-packet variables of the workflow job.

The method may juststart the workflow job and return the job identifier to the calling web service
client, or it may wait for the job to complete, and return a response message including final values
of case-packet variables. In the latter case the call-return communication synchronizes the caller
with the activation system. In the former case the activation job may run asynchronously with
continued activity on the client side, and will typically need to send one or more notification
messages to inform the client of progress and final status ofthe activation job. Such messages can
be implemented according to the sendermodule approach as described above, or can be sentover
HTTP using the generic HTTP plug-in.

Synchronous calls are not recommended when there may be many jobs with long or unpredictable
duration. Servlets are not fault tolerant; the relationship between a running job and the client that
requested it will be lost in the case of server host failure.

With this approach there is no obvious need for a controller workflow. Compared to the first
approach the servlet takes on the role of the controller workflow.

Chapter 5

57

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

Figure 6-1

HP Service Activator Platform

As described in chapter 1 the core component of an HP Service Activatorproduction systemis a
workflow engine. The workflow engine comprises the workflow and resource managers.

The workflow engine runs in the framework of JBoss (version 7.0.2). JBoss is a J2EE platform
which can run on a range of hardware and operating system platforms. HP Service Activator is
specifically supported on HP-UX on HP Itanium processors,on Red Hat Enterprise Linux on x86-
64 processors,and on Windows 2008 Servers onany hardware platform. In addition to JBoss, the
operating system, and the processorhardware, HP Service Activator requires access to a database
server via JDBC connections.

The complete stack comprising the workflow engine on top of the required platform is shown in
Figure 6-1.

HP Service Activator Platform Stack

HPSA Workflow
Engine

JBoss J2EE Server

Operating System

Server Hardware

Cluster Platform

As described above, HP Service Activator can be deployed on a range of different hardware, from
small and inexpensive to large, very powerful processing systems. HP Service Activator-based
systems can also be deployed on clusters of separate servers, interconnected within a segment of a
local area network. The term cluster node (or justnode) is used to designate a server in a cluster.

Cluster configurations provide three important benefits:

o BExtreme scalability: the workload of the HP Service Activatorsolution can be distributed over
all thenodes in a cluster; when a node is added, the total processing power is enhanced.

e High availability: if one of thenodes in a cluster suffers a failure and ceases to function or is
taken out operation, all running workflow jobs will continute to run and are redistributed over
the remaining nodes (one or more).

e Easy configuration of server nodes on standby sites for disaster recovery.

The unit of work for an HP Service Activator systemis a workflow job. A cluster node is selected
to run a workflow job when the job is started. The job will remain on the selected node until it
completes, except when a node failure occurs. All the processing of the workflow job, including
activation transactions down to atomic tasks takes place onthe same node. But when a job starts a
child job, a different node may well be selected for the child job.

Chapter 6

59

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

Figure 6-2

At any point in time when an HP Service Activatorproduction systemis running, there will be a
number of jobs running on each of the nodes. The distribution of work will change when jobs
terminate, and when new jobs are started. The systemadministrator can view the running jobs and
their assignment to cluster nodes.

Workflow jobs are executed as a sequence ofworkflow nodes (note: a different meaning of the
word node!) determined by the control logic of the workflow, with branching controlled by rule
nodes. As the execution of each workflow node completes, the state of the workflow job may be
persisted, allowing execution of the job to be restarted from the next node. After a node which has
no external impact, persistence may be omitted to enhance performance. Workflow nodes which
have external impact are those which perform activation tasks, update the database (inventory or
audit trail), postmessages to queues,send messages to othersystems, or perform any otheraction
which causes something to change outside of the workflow engine itself. The persistence property
as described here allows a workflow job to be restarted, if the clusternode it runs on suffers a
failure or is halted, while the job is running. Restarting can take place without any startup costs on
any node in the cluster.

To allow completely symmetric assignment of workflow jobs to cluster nodes, all the information
thatis needed torun ajob is held in database repositories that can be accessed by all the nodes.
This includes the static information: workflows, compound and atomic tasks (plug-ins), inventory
tree definitions, as well as the dynamic states of workflow jobs, including values of case packet
variables, and of active compound transactions, including locks on activation targets.

As aresult of the symmetry and thesingle database, a cluster of workflow engines will appear and
behave like a single distributed engine as illustrated in Figure 6-2 for a cluster comprising 3 nodes.
Operators and external systems can interact with a running workflow through the web service
interface of any node in the cluster.

HP Service Activator Distributed Workflow Engine

single distributed HPSA engine

Cluster Node 1 Cluster Node 2 Cluster Node 3

Given the equal access to persisted workflows from all nodes in the cluster, it could be considered
to monitor the relative loads on differents nodes and migrate jobs between nodes to balance the
load. There would be a performance penalty, since a job that remains on the same node benefits
from having its state cached in the workflow engine. Assuming most workflows are short lived,
the benefit would notbe great. In HP Service Activator workflow jobs only migrate upon node
failure.

In the event of a node failure, it will be detected by the othernodes in the cluster. One of them will
then automatically assume therole of redistribution manager. The redistribution manager will
restart all workflow jobs thatwere active on the failed node. For each job a new cluster node is
chosento execute it. In this way the load of the failed node will be shared over all the remaining
functional nodes.

Detection of cluster node failure is done by means of keep alive timers that are monitored by keep
alive modules of the workflow managers on all active nodes in the cluster. The timers are also held
in the shared database.

60

Chapter 6

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

Cluster Installation and Setup

For details on how to install and configure an HP Service Activator cluster, please refer to the
Installation Guide. Only the main principles are mentioned here as part of the explanation of the
clustering concept:

e HP Service Activatormust be installed on each node in the cluster. This will also install JBoss
on each node. HP Service Activatorclustering does not build on JBoss clustering. The JBoss
servers are independent and not aware of each other.

e When HP Service Activator is installed on the first node, the database tables used by the
workflow manager and other parts of the HP Service Activator platform (as opposed to the
tables belonging to the customized datamodel of a solution to be added on top) shall be
created. When HP Service Activator is installed on subsequent nodes, the same database user
shall be specified, but the tables shall not be created again. An additional entry (row) will then
be created in the table (CLUSTERNODELIST) thatdescribes the nodes of the cluster.

e HP Service Activatormust be configured on each of the nodes in the cluster. For example, the
workflow manager is configured in file mwfmxml. The configuration shall normally be
identical on all nodes of the cluster.

¢ Nodes can be installed on different sites. Each site is either a primary site or a standby site for
disasterrecovery. The name and type of the site must be given for each node where HP Service
Activator is installed.

e Except on a Windows server a virtual IP address can be defined for the server. The virtual
address must be associated with an interface on the server. The virtual address is useful in the
internal load balancing scenario described below.

Workflow Load Distribution

The important control decision that determines the distribution of load across the cluster is the
selection of the node where each new workflow job is started.

Except for child workflows the initiative to starta workflow activity always originates outside of
HP Service Activator, typically in a CRM or Order Management system. The external component
which makes requests for workflow jobs to be run can also be a catalog-driven workflow
controller delivered by HP as part of a solution. Service orders may also be entered into an order
portal GUI, which can translate orders directly to requests to run workflows.

Once a workflow job has been started in response to an external request, it may spawn child jobs.
The complexity of the workflows thatare started by an external initiator will vary depending on
the solution. In complex cases, the initial workflow will spawn many additional jobs.

Different mechanisms can be implemented to interface the external control component to HP
Service Activator’s workflow manager, but in the end the requestto run a workflow job is always
made by a call onthe API of the workflow manager: startJob (asynchronous mode) or
startAndWaitForJob (synchronous mode).

NOTE

The case when a user starts a workfiow from the main Ul or from the inventory Ul is not special. The request
is passed via the JBoss web server through a call on the workfow manager’s API.

The actual API call may be implemented in different ways. It can be made directly by an external
controlling componentusing either the RMI or SOAP version of the API. Alternatively it can be
made by a workflow manager module, such as the socket listener, or by a web service NBI
dedicated to an activation solution, i.e. a specific set of workflows exposed as web service
methods.

Regardless of these technical variants, the more significant difference has to do with the selection
of the cluster node where the job will run, as this is the decision that will affect load balancing in
the cluster. The selection is made by a module of the workflow manager which receives the API

Chapter 6

61

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

call, known as the distribution module. Three different distribution modules implementing
different selection algorithms (see below, Internal Load Balancing) are available in the HP Service
Activator kit; the workflow manager must be configured to know which distribution module to
use. When the distribution module has selected the node to process a workflow job, it transfers the
workflow job tothat node.

The workflow manager can run in “stand-alone mode” (similar to versions prior to V5) with no
active distribution module.

As for other workflow manager modules it is possible to extend HP Service Activator with
additional node selection algorithms by implementing new distribution modules.

All distribution modules allow the node selection algorithm to be bypassed forworkflows thatare
started by a call on the external API.

Internal Load Balancing, Virtual IP Address

Figure 6-3

Internal load balancing is the intended normal distribution model, where HP Service Activator
itself takes care of load balancing. In this mode it does not matter which cluster node receives the
request to starta workflow job. The originator of the request therefore does not require any load
balancing capability. It is enoughto know a single node which can receive all the calls and
distribute them across the cluster, as illustrated in Figure 6-3.

Internal Load Balancing

Request Originator

Distribution | | Distribution | ! Distribution
e i e

| Workflow

Workflow

Manager

Workflow

Manager Manager

Cluster Node

HPSA Cluster

HPSA Service Activatorsupports theuse of two IP addresses foreach server in a cluster, the
physical IP address and the virtual IP address. If a cluster node fails and goes out of operation, its
physical IP address will become unreachable, whereas the virtual IP address will be taken over by
one of the remaining servers in the cluster, the “failover” server. The fail over process may take up
to a minute. After fail over requests sentto the virtual IP adress of the failing cluster node will be
transparently received by the failover server, which will initiate processing in the usualway.

By default the virtual IP address will automatically move back to the node it belongs when that
node again becomes available. You can configure the keep alive workflow manager module to
overrule this behaviour, if you prefer to manually decide from the Ul when the virtual IP address
shall move back.

The HP Service Activator serveraddress known by the request originator should be the virtual IP
address of the node designated to receive the requests.

62

Chapter 6

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

Four distribution modules, supporting different algorithms, are available as part of the HP Service
Activator standard product distribution. The workflow manager can be configured to use any one
of these. The four algorithms are:

e Plain round robin.

e Weighted round robin, where each cluster node can be assigned a different weight according to
its processing power.

e Selection of the node which has the shortest queue ofworkflow jobs waiting for a processing
thread in the workflow manager (a measure of the load at the time when the decision is made).

e Selection is based on the value of a pre-initialized case-packet variable of the job to be started.

When a workflow job spawns a child job, the load balancing algorithm will again be applied, soa
family of jobs with a common ancestorare nottied to the same cluster node.

External Load Balancing

Figure 6-4

In the external load balancing model, the clusternode that receives the external API call to starta
workflow job also runs the job. To achieve this behavior the active distribution module must be
configured to run externally requested workflows locally, i.e. the node selection algorithm is not
used. This means the external originator of the requests to run workflows will determine the
distribution of processing across the cluster.

This mode of operation is supported to allow the use of request originating systems which already
supporta desired load balancing algorithm. Such systems will need to know all the cluster nodes
and to maintain information aboutthem, which requests have been dispatched to each one, etc., in
order to make load balancing decisions.

When a job is started on a cluster node where the distribution function is disabled, any child jobs
will run on the same cluster node. This is a logical consequence ofthe balancing logic being

implemented externally. However, when jobs are redistributed after a node failure, they will still
be distributed as opposed to all being executed by the node which acts as redistribution manager.

External Load Balancing

Request Originator &
Load Balancer

I- _____ e — — — _ : Fm---- | A : I- o _ _____ :
1
1| (Distribution) | ! (Distribution) | ! 1| (Distribution) | !
! 1 1 ! 1
! ! L | - ! ! -
I : 1 : I :
1 1 1
| Workflow | | Workflow | | Workflow |
! Mana ' ! M ' ! M '
! ger ! ! anager ! ! anager !
l L ! l !
! 1 ! 1 ! 1
! L . ! .
1 1 1
. ClserNode | 1 _ Cluster N | . Clust N |
HPSA Cluster

Chapter 6

63

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

Standby Sites for Disaster Recovery

For the case of mission critical solutions where servers must be in standby mode at a secondary
disaster protection site, HP Service Activator cluster configuration allows cluster nodes to be
associated with sites, and sites can be categorized as primary or standby. The category is actually a
modifiable state of a site. Only the nodes at the primary site need to be running in normal
operation, but the standby site(s) is also included in the installed and configured systemand is
visible from the userinterface.

The database serverthat HP Service Activator uses may also be configured with primary and
standby sites and use a product from the database vendorto automatically maintain an up-to-date
copy of the database at the standby site(s). Alternatively independent database servers can be used
at the sites and backups of the database can be regularly transferred to the standby site(s).

In the event of a disaster, i.e. the servers at the primary site become unavailable, the server(s) at
the disastersite must be started, the systemadministrator must connectto it (one of them) and
change the state of the site from standby to primary. Northbound systems and users must then
make sure to access the (a) new primary server. A configuration change may be needed, because
the secondary site may have different host names and IP addresses fromthe original primary site.

The procedure for switchback to the original primary site must be similar. The secondary site must
be deactivated, the original primary site restarted, the states of the sites must be swapped; this can
be done from the systemadministrator user interface, and then the systemwill again be ready for
normal operation.

Internet Protocol Versions (IPv4, IPv6)

HP Service Activatorwill run in an IPv4 oran IPv6 environment. When deployed in a cluster
and/orwith a separate database server,all the machines which make up the platform, including
database servers, must run the same version of Internet Protocol and use it for the interconnection
of the cluster. All of the relevant setup is done during installation, for details see the installation
guide.

For external communication, with activation targets as well as peer systems via liaisons, etc., HP
Service Activator can use any mix of IPv4 and IPv6, independently of the version that is used for
internal cluster interconnection.

Managing an HP Service Activator Cluster

User Interface Functions for Cluster Nodes

HP Service Activator’s systemadministrator interface (see HP Service Activator, User’s and
Administrator’s Guide) has features for managing a cluster:

e The operator can view how jobs currently running are distributed across the nodes of the
cluster.

e The operator can setthe state of a site to primary or standby.
e Statistics reports can be produced about the load of the nodes overa specified period of time.
¢ Nodes can be taken in and out of operation.

The last feature is known on the interface as locking and unlocking of a node. When a node is
locked, it will no longer be a candidate to run new workflow jobs. The load onthe node will then
drain as current jobs run to completion. When there is no load left the node can be taken of
operation for hardware or software maintenance.

Cluster nodes can also be suspended: all jobs are immediately suspended with saved state so they
can be resumed later. Suspension is primarily intended to be applied to a complete cluster to allow
backup of a frozen database. No use case is intended for suspending asingle node.

64

Chapter 6

Service Activator SystemIntegrator’s Overview
HP Service Activator Platform

Synchronizing Time on Cluster Nodes

In order to allow proper cooperation between the workflow engines in a cluster, the date and time
on all the servers must be kept synchronized using a tool suchas NTP (Network Time Protocol).

Chapter 6 65

Service Activator SystemIntegrator’s Overview
Roles, Privileges and Authentication

2

Roles, Privileges and Authentication

Some Service Activator solutions are black boxes with very few users. Others may have a larger
user community. The inventory subsystem, in particular, may allow users to perform operations on
many different types of entities. It is possible, therefore, to assign privileges to perform operations
from the userinterface with any desired granularity.

Privileges in Service Activatorare granted to roles. When a user logs in to Service Activator, an
authentication takes place based on user name and password, and a list of roles is established that
the userwill have during the session. The useris then permitted to perform any operation for
which the privilege has been granted to one of the roles in the list.

NOTE

Authentication must be configured for the workflow manager, otherwise it will not occur, and users will not get
any roles. It is not enabled at installation time.

The user interface operations that may require privileges fall in four areas:

e Functions available as menu items in HP Service Activator’s main Ul window. The menu falls
in two parts, the Work Area and the Self Management menu. The Self Management menu as a
whole is only available to users who have the - predefined - systemadministrator role,
normally named ‘admin’. For the work area a required role can be assigned to each menu item.

o Workflow related operations,also performed from the main Ul window: starting and stopping
workflow jobs, inspecting the state of a workflow job, interacting with a workflow job,
viewing messages posted on queues by workflow jobs.

e Inventory operations performed from the inventory Ul window: view a tree; expand a branch in
atree to see more branches; create, view, edit or delete a resource instance.

e Deploying plug-ins using the Service Builder tools. In this case the userdoes not log in to
Service Activator’s web-based Ul, butthe Service Builder invokes methods to deploy plug-ins
on the resource manager, and these methods may require authorization using the user’s identity
as established by the operating system.

As customizer of a Service Activator solution you must define the roles that shall exist for the
system, and you must assign to roles the privileges to perform specific operations. Typically you
will then leave it to the systemadministrator to define users and assign roles to them. You must
decide which operations shall require specific privileges. If it is not necessary to distinguish
between different categories of users, you can simplify your task by leaving many operations
available to any authenticated user. You generally do this by omitting to configure a privilege for
each operation (for example to interact with a workflow or perform an operation on the inventory
Ul). You must also decide the granularity of the roles you define. If you make few large roles,
each with wide privileges, you will simplify thetask of the systemadministrator. If you make
many small roles, each with limited privileges, you enable the systemadministrator to assign
privileges to usergroups with fine granularity.

The first section in this chapter introduces the systemuserand the predefined systemadministrator
role.

The second section gives an overview, with references to additional information, of how the
privileges to perform the operations in the four mentioned areas are assigned to roles. This is done
in different ways, using different tools, for each of the four areas.

Chapter 7

67

Service Activator SystemIntegrator’s Overview
Roles, Privileges and Authentication

The third section gives an overview of the different modules you can choose from to authenticate
users and establish their roles at log-in, and how to configure these modules.

The fourth section describes how users can be grouped in teams, and finally there is a section that
describes HP Service Activator’s support for HP’s Light-Weight Single Sign On framework.

Management of users, roles and privileges is done by the system administrator using the User
Management view available from the Self Management menu area of HP Service Activator’s main
UI, as described in HP Service Activator, User’s and Administrator’s Guide.

System User and Predefined Roles

There are two predefined roles, ‘admin’ and ‘internal’.

The “admin’ role, as described above, is the systemadministrator role with privileges to perform
systemadministrator functions. It is possible, but notrecommended to change the name of the role
by editing the configuration file for the workflow manager, mwfm_xml, see “Setting the Workflow
Manager Parameters” in HP Service Activator, Workflows and the Workflow Manager.

The “internal’ role exists for technical implementation reasons. This role has the privilege to
interwork with workflow jobs which are sleeping or waiting for activations or othersoftware
internal interactions. It is not intended to be assigned to human users.

One special user, the system user, is created with username and password during installation
(system configuration) of HP Service Activator. It exists primarily for technical implementation
reasons and has all roles, including the predefined ones ‘admin’ and ‘internal’. Software
components (for example workflow manager modules) which need to perform ‘internal’
interactions with workflow jobs will take on the identity of the systemuser. When the workflow
managers on separate cluster nodes interact, they also make use of the systemuser.

It is not possible from the user interface to change the name or password of the systemuseror to
revoke any roles from it.

The systemuser is not intended to be used by a systemadministrator during normal operation, but
must be used to create at least the first ordinary useronce authentication has been enabled.

NOTE

If a non-native authenticator module is used (see “Authentication and Assigning Roles to Users” below), the
predefined roles and the system user are not automatically created during installation. They must then be
explicity created in the appropriate environment (operating system or LDAP) before authentication is
configured. If this is not done, the system will malfunction.

Assigning Privileges to Roles

The privileges to perform operations related to workflows and inventory can be defined and
assigned to roles with a fine granularity as part of the customization of workflows and inventory.

Roles and also their relationships to inventory Ul privileges can be described in an XML-
formatted file. The schema for the document is found in file
$ACTIVATOR_ETC/config/ummData.xsd. If youhave defined the roles and relationships in the
User Management view so that they are recorded in Service Activator’s static repository in the
systemdatabase, you can use the UMMData script to export them to a file and include it in a
solution to be deployed with the Deployment Manager. Refer to the manual for the Deployment
Manager for information on how to include the roles file in a deployable solution.

For each of the four areas of potentially privileged operations, the information on how to define
the operations with privileges and assign them to roles is found in different manuals, as outlined
here:

68

Chapter 7

Service Activator SystemIntegrator’s Overview
Roles, Privileges and Authentication

User Interface

Workflows

Inventory

Privileges to view and select menu items in the work area of HP Service Activator’s main Ul are
assigned directly to roles. Configuration of the Ul menu is described in HP Service Activator,
User’s and Administrator’s Guide.

For operations related to workflows, privileges are also assigned directly to roles, see “Setting
Roles” in HP Service Activator, Workflows and the Workflow Manager. In the same manual,
specifically for information about message and request queues, see “Queues”, and for information
abouthow to make these queues permanent using the <Permanent-Queue> tag, see “Setting the
Workflow Manager Parameters™.

With respect to inventory operations, see “Inventory Tree Definitions” in HP Service Activator,
Inventory Subsystem, for information aboutdefining the privileges, known as operation types,
branch types and tree definitions. The assignment of these privileges to roles is done as part of
User Managementin HP Service Activator’s main Ul.

Deploying Plug-ins

For deploying plug-ins, there is only one privilege, it is preassigned to a role named “deployer”.
The role is only required if you have enabled authentication of plug-in deployment. For more
information, see “Configuring Authentication or Authorization” in HP Service Activator,
Developing Plug-Ins and Compound Tasks.

Authentication and Assigning Roles to Users

User authentication in Service Activator is the process of validating thata supplied (user name,
password) pair is valid, determining the identity of the user, and retrieving the list of the user’s
roles. It is done by a module of the workflow manager, known as an authenticator module.

On avirgin system, after installation of Service Activator, authentication is disabled. You enable
it, like other functions performed by workflow manager modules, by editing a specification of the
module you want to use - its name, Java class, and configuration parameters, into the configuration
file for the workflow manager, mwfm.xml.

You have six authenticator modules to choose from, HP Service Activator’s native recommended
module, the DatabaseAdvancedAuthModul e, one for each of the four supported operating
systems, Windows, HP-UX, Solaris and Red Hat Linux, and finally an authenticatormodule that
uses LDAP to access a directory service. For special requirements it is possible to build additional
authenticator modules.

NOTE

If you configure a non-native authenticator module remember to define the system user and predefined roles
(with the same name and password that was defined at system installation tme) within the data that is the
foundation for authentication (i.e. OS users and groups or LDAP).

Native Authenticator Module

With the native authenticator module the userinformation is held in Service Activator’s own
database, and all useradministration functions are done through the User Management view of
Service Activator’s main UI.

OS-based Authenticator Modules

The OS-based authenticator modules delegate authentication to the operating system, validating
Service Activator user credentials against the same database that the operating systemuses for its
own users. These modules then retrieve all user groups that the validated userbelongs to and maps

Chapter 7

69

Service Activator SystemIntegrator’s Overview
Roles, Privileges and Authentication

them to roles using the role mapping file. By default, the role mapping file is absent,and each
group name is taken directly as a role name.

When you use one of the operating systembased authenticator modules, you manage Service
Activator users by the same tools that you use to manage users of the operating system, including
the creation of dedicated groups to implement theroles you have defined for Service Activator.

Role Mapping
You will understand how to construct role mappings from the following example, which shows the
contents ofa role mapping file that maps the two groups activ_users and activ_oper to the same
Service Activator role, operator, and a third group root to the admin role.
<?xml version="1.0" encoding="utf-8" ?>
<IDOCTYPE RoleMappings SYSTEM "‘role_mappings.dtd'>
<RoleMappings>
<Role>
<Name>operator</Name>
<Mapping>activ_users</Mapping>
<Mapp ing>activ_oper</Mapping>
</Role>
<Role>
<Name>admi n</Name>
<Mapp ing>root</Mapping>
</Role>
</RoleMappings>
The role mapping file must be named and placed as:
$ACTIVATOR_ETC/config/role_mappings.xml . After you create or change it, reload the
configuration from the Self Management menu of Service Activator’s main Ul toallow it to take
effect.
NOTE If you write your own authenticator module - see “Writhg New Authenticator Module” in HP Service Activator,

Workflows and the Workflow Manager - you must consider if your module needs to support role mapping.

LDAP Authenticator Module

The LDAP-based authenticator module assumes that information about users and their roles is held
in a directory which exposes an LDAP service interface where a client can authenticate users and
look up their roles.

The LDAP authenticatormodule is based on the following assumptions about entries in the
directory tree:

e There is aroot entry used to authenticate the module (HPSA) as a client of the directory service
when it binds to the service.

e HPSA users are represented by entries which are children of a single entry (the user parent),
typically an organizationUnit entry with ou=People.

e All user entries must have an attribute whose value is the HPSA username. The name of of this
attribute is configurable.

e User entries also contain the HPSA password for the user.

e Similarly HPSA roles are represented as entries which are children of a single entry (the role
parent), typically an organizationUnit entry with ou=Roles.

e All role entries must have an attribute whose value is the HPSA role name. The name of of this
attribute is also configurable.

e Each role entry has a multi-valued attribute (its name is configurable) with a value for each
user who has the role. The value equals the distinguished name of the user entry.

To illustrate these points, Figure 7-1 is a screenshot from a directory browser showing a directory
that meets the assumptions.

70

Chapter 7

Service Activator SystemIntegrator’s Overview
Roles, Privileges and Authentication

Figure 7-1

Role Mapping

LDAP Directory Tree

£ LDAP Browser'Editor v2.8.2 - [ldap://localhost/dc=my-domain,dc=com]
File Edit “iew LDIF Help
P 28 D IO A FT &S
[de=my-domain,de=com 1| Attribute | Walua
o 3 ou=People description the HFSA Admin group
EI uid=]duks objectClass groupOfMames
i mermber uid=jduke ou=People,dc=rmy-domain dc=com
-3 I.F!U—adl’ﬂll"l mamber uid=admin,ou=People de=my-domain,de=com
o=] uid=test cn admin
o= [uid=nane
¢ CJou=Roles
D:cn=admin_
o [cn=intema
o=] cn=test
[Reay. [u

You cannot create the entries in the directory from HPSA. It is possible to use an existing directory
where userentries already exist. Even therole entries may be reused, if a role conceptis already
implemented in thedirectory in a way that is compatibile with the assumptions. Otherwise, the
systemadministrator must, using the user interface provided directly by the directory, create the
entries that can be used to authenticate HPSA users and map each user’s name to the appropriate
setof roles.

To configure the LDAP authenticatormodule you need to provide: hostand port where the
directory service is running; username and password for authentication of the session from the
module (as client on HPSA) to the server; complete distinguished names for the user and role
parent entries; configurable attribute names (see the assumptions); aspecification of whether you
want to use SSL to access the directory service.

If the role names held in the directory are not the actual names as used in HPSA, you can userole
mapping in the same way as for the OS-based authenticator module.

If you use OS-based authentication and you want to use HPSA role names which are different
from the usergroup names that have been configured on the OS, you can use role mapping.

You will understand how to construct role mappings from the following example, which shows the
contents ofa role mapping file that maps thetwo groups activ_usersand activ_oper to the same
Service Activator role, operator, and a third group rootto the admin role.

<?xml version="1.0" encoding="utf-8" ?>
<IDOCTYPE RoleMappings SYSTEM "‘role_mappings.dtd">
<RoleMappings>
<Role>
<Name>operator</Name>
<Mapp ing>activ_users</Mapping>
<Mapp ing>activ_oper</Mapping>
</Role>
<Role>
<Name>admi n</Name>
<Mapp ing>root</Mapp ing>
</Role>
</RoleMappings>

Chapter 7

71

Service Activator SystemIntegrator’s Overview
Roles, Privileges and Authentication

The role mapping file must be named and placed as:
$ACTIVATOR_ETC/config/role_mappings.xml . After you create or change it, reload the
configuration from the Self Management menu of Service Activator’s main Ul toallow it to take
effect.

NOTE

Role mapping is not restricted to OS authentication. It can be used to map the names of roles that are
defined in the authentication environment, also for LDAP authentication, to Service Activator role names. If
you write your own authenticator module - see “Writing New Authenticator Module” in HP Service Activator,
Workflows and the Workflow Manager - you must consider if your module needs to support role mapping.

Organizing Users in Teams

For use on systems with many users there is a concept of teams. You can divide the user
community in teams and appointone or more administrators for each team. A team administrator
can access the user management functions in the Self Management menu, but is restricted to
manage the members of his/her own team.

Each userwill belongto exactly oneteam. Roles must then be assigned to teams, and the team
roles limit what roles can be assigned to the users in the team. Initially there is a default team
which has all roles.

NOTE

The team feature is only available when configured on the native authentication module.

Light Weight Single Sign On

SPENEGO

LWSSO is a framework thata number of HP NGOSS (and other) products adhere to. Within this
framework a user can log in to establish a session with one productand may then execute a cross
launch action that will bring upa GUI of anotherproduct - in a separate window or in a frame of
the window from which the action was launched - without having to log in to the second product.
LWSSO is based on transferring encrypted cookies between the product servers, via the user’s
browser client. The cookie will contain the user’s identity (user name), but not the password. The
password is only authenticated when the initial session is established, and the authentication
mechanisms (and users’ passwords) may be different on the various products that cooperate within
the framework.

HP Service Activatorsupports LWSSO. It allows cross launchto and from otherproducts which
also support LWSSO. NNMi and UCMDB fall in this category, NA does not. When launching an
NA window from Service Activator, the user will be confronted with NA’s log in dialog, but only
once in a session.

The use of LWSSO must be configured for Service Activatorat installation time. At this time a
number of parameters concerning the encryption method, etc., must be entered. See the Installation
Guide for details.

Some special considerations for the use of LWSSO must be noted: Functions which require access
to the user’s password are not possible when Service Activator has been cross launched using
LWSSO: user management, use of stored filters and searches. Time skew between cooperating
servers must not exceed 15 minutes.

SPNEGO is used by client-server software to negotiate the choice of security technology.
SPNEGO is used when a client application wants to authenticate to a remote server, but neither
end is sure what authentication protocols the other supports. The pseudo-mechanism uses a
protocol to determine what common GSSAPI mechanisms are available, selects one and then
dispatches all further security operations to it. This can help organizations deploy new security
mechanisms in a phased manner.

72

Chapter 7

Service Activator SystemIntegrator’s Overview
Roles, Privileges and Authentication

HP Service Activatorcan be configured to use SPENEGO to redirect to the main page. The
spnego-login.jsp must be used for this.

It is donethis way to supportboth,common login and SPNEGO login at the same time. If the site
is configured entirely with SPNEGO then the client itself will preventa non SPNEGO userto
reach the server code making impossible both authentication systems.

HP Service Activatorcan be configured to use SPENEGO with Kerberos.The configuration is
doneas part of running ActivatorConfig like with LWSSO.

Internet Explorer will only perform SPNEGO authentication against sites which are configured in
the Local Intranet zone.

Firefox will only perform SPNEGO authentication against sites configured in “network.negotiate-
auth.trusted-uris” parameter.

Chapter 7

73

Service Activator SystemIntegrator’s Overview
C ommon Netw ork Resource Model

8 C ommon Network Resource Model

The Common Network Resource Model (CNRM) is a data model appropriate for a class of
commonly managed new generation networks based on IP, Ethernet and MPLS technology. The
model is included in the HP Service Activator core product packaged as a deployable solution
(designated CRModel) which can be used as a basis for a customized solution or in fact by
multiple solutions which will manage different services over the same network. The CNRM
consists of resource definitions, tree definitions for the inventory user interface and functions
implemented as workflows which can be launched from the inventory UL,

The model matches well the types of networks which are typically managed with the HP BTO
NNM and NA products. It is eminently suitable for solutions where HP Service Activatoris
integrated with these products (as discussed in chapters 11 and 12). The CNRM can be populated
by uploading data representing the network and its equipment. Data upload can be achieved
through integration with NNM:i.

NOTE The modeliing of classical transmission technologies (SDH, SONET, T1)for layer 1 transport is not covered
by the CNRM, but must be added to the model if needed. With respect to the MPLS core network, the model
is only concerned with edge devices. Additons will be needed to manage routing of label switched paths
across core (P) routers.

The CNRM was introduced in the section “Solution Data Repositories (Inventory)” (starting on p.
18). The introduction included a diagram of the network architecture that CNRM s suitable for
and listed some services that such networks are used for: corporate VPN services; traffic between
customer sites and (provider or third party) platforms providing a range of services (Internet
access, VoIP, IPTV); interconnection of elements of provider infrastructure (mobile backhaul).

The network architecture as depicted in Figure 2-1 includes an MPLS core network and L2
(Ethernet) access networks. L2 and L3 VPN technologies are used to structure traffic across the
MPLS core network. Traffic across the L2 access network normally uses providerbridging, i.e. S-
VLAN tags are used to identify the traffic for specific services. PE routers can also have interfaces
to legacy access networks (ATM, frame relay, SDH, TDM), but the model does not cover these
networks.

Adapting the CNRM for a Solution

For some solutions, those which are not concerned with networks that resemble Figure 2-1, the
CNRM will be notbe useful. For those solutions a different model must be created according to
the requirements.

In many cases, when the network and services of the service provider requiring an activation
solution, do resemble Figure 2-1, extensions or adaptations may be needed to match precisely the
provider’s network architecture and the datarequired to manage the equipment and services
involved in a solution.

An important case where the CNRM is used with some extensions is the solution package for L2
and L3 VPN management. In fact the model is a generalization of the one that was used in the
VPN SP before it was included in the core product.

The CNRM is presentin the core product in the form of resource and tree definition source files,
soit is possible to modify the model in any way required for a solution. Even in cases where

Chapter 8 75

Service Activator SystemIntegrator’s Overview
C ommon Netw ork Resource Model

requirements dictate a significantly different model, it may be useful to take the CNRM as a
starting point and work with differences and modifications rather than elaborating a complete
model from scratch.

For a project where the CNRM can be used with modest modifications, considerations of support
and maintenance of the solution over time suggestthat the solution should be constructed in such a
way that such evolution of the CNRM as may occur in future product releases may be incorporated
smoothly. It is recommended, therefore, to strive to maintain the resource bean definitions of the
CNRM unchanged and implement any modifications in specializations of the classes ofthe
CNRM.

When defining a specialization you can use the <ParentField> element to define for the specialized
class properties to override the properties of the superclass (parent) fields, such as: name, label, list
of values, visibility, modifiability and formatting.

CNRM Workflows

The CRModel solution package includes the following workflows:

CRModel_ModifyChannel execute a dialog with a network element to create
or delete an aggregate or channelized interface

CRModel_NNMi_Dataload_Check_Nodes checks that data in CNRM is also in NNMi

CRModel_NNMi_Dataload_Launcher master workflow for loading CNRM data model
from NNMi

CRModel_PostProcess post process workflow for dataload from NNMi

CRModel_RouterUpload loads the interfaces on a network element by

direct dialog with the network element

CNRM on the Inventory User Interface

Three inventory Ul trees are included in the CRModel solution package for presentation and
management of the CNRM:

CNRM/Equipment Shows the data of the CNRM
CNRM/Parameters For configuring the CNRM by editing configuration data
CNRM/NNMi Dataload For controlling dataload from NNMi

You can usethesetrees as you see fit for a customized solution. You can modify them according
to customer requirements and taste. Refer to HP Service Activator, User’s and Administrator’s
Guide for a description of the three trees and the functions that can be invoked from them.

The trees usethe CNRM resource beans and the forms generated from them by the Inventory
Builder. They also usea number of hand crafted JSPs for special operations like dataload from
NNMi and management of aggregate and channelized interfaces.

Model Configuration Data

A number of (resource bean) object classes are associated with the CNRM but do not model
elements of a network. These classes configure the model by defining valid values for fields of the
proper network model classes. They are shown with entity relationships in Figure 8-1. Each region
object defines a valid value for the region property of a network, each ElementType object defines
a valid value for the ElementType property of a network element, etc.

An important aspect of this is thata solution may contain mappings and templates for network
elements and their interfaces which depend on interface type, OS versionand element type. The
configured property values will be used as indexes for lookup of the proper mapping or template to
apply for each network element or interface. The groupings of OSVersions and ElementTypes

76

Chapter 8

Service Activator SystemIntegrator’s Overview
C ommon Netw ork Resource Model

make it possible to associate mappings and templates with groups rather than individual
OSVersions and ElementTypes without losing accuracy of the model data.

The CRModel solution package itself contains a table, RouterTemplate, which is indexed by
Vendor, OSVersionGroup and ElementTypeGroup and identifies a template for the dialog to query
a network element for its interfaces and a Java class to parse the response.

NOTE

The RouterTemplate table cannot be edited via the trees that are provided on the inventory Ul. To add
templates corresponding to new OS versions and element types you will need to use a difierent SQL tool.

Figure 8-1

Model Configuration Data Classes

OSVersionGroup H Vendor ElementComponentType

Region InterfaceType l_'/
l. LinkType l ElementTypeGroup
Location OSVersion l
PWPolicy ElementType

There are very few fields on these objects (beans): the main one for each is simply the name which
defines a valid value of the corresponding property. In addition there are the foreign keys
representing the entity relationships and description fields.

The PWPolicy table also falls in the category of model configuration. It contains username and
password for a group of devices. This is useful when the same username and password are used for
several devices and must be regularly updated. Instead of updating them as properties of each
network element object, they need to be updated only on the PWPolicy object.

When the CRModel packaged solution is deployed, the Vendor class is populated with a large
number of vendors whose equipment is supported by NNMi. For some vendors OS versions and
element types (and groups of both) are also populated at this time. Further the
ElementComponentType is populated with some values. Similarly a rich setof interface types
relevant for the modelled technologies are also populated. Additional objects of these classes, as
well as regions, locations and PWPolicy objects can be added via the Parameters tree on the
inventory user interface.

Object Classes of the CNRM

This section describes the (resource bean) object classes ofthe actual CNRM. The object classes
and their entity relationships are depicted in Figure 8-2. The fields on the objects which have
values constrained by the model configuration data classes are indicated by showing relationships
to greyed-out model configuration objects.

e All of a provider’s resources are placed in one or more regions.
e Each region will contain one or more networks; networks can also be hierarchically nested.

e A region contains a number of locations where equipment can be placed; locations are not
nested within networks. This allows two or more networks to meet at a common location,
where network elements belonging to different networks can be colocated.

e The central object class is NetworkElement (NE). An NE has a location and belongstoa
network.

Chapter 8

77

Service Activator SystemIntegrator’s Overview
C ommon Netw ork Resource Model

e An NE can be decomposed into ElementComponents, on which there may be interfaces which
serve as termination points for traffic.

e NEs can be connected by links which terminate on termination points.

e NEs are of specific element types provided by vendors. The operational characteristics
(command set) of the NE will depend on the firmware (OSVersion); the firmware is also
provided by the equipment vendor.

Figure 8-2 Common Network Resource Model Objects

Network NetworkElement ElementComponent

TerminationPoint
/Interface

Network
Attachment

The model is topological in the sense that those links between network elements which are needed
for activation purposes, because the devices at their endpoints must be configured for services, are
represented by objects. But the topology does not need to be complete to support service
activation: links between devices where the endpoints are not configured for individual services do
notneed to be represented. Unless such devices and their links are also added, the model cannot be
used to generate a complete topological map of the provider’s network.

The properties of the object classes, including the fields, are described in the following
subsections. Foreach class there is a general description of the meaning of the class and a table
which describes the fields of the bean.

The following conventions apply to primary key and foreign key fields:
e Every object class has a single field primary key; hence foreign keys are also single fields.

e For thereal resource objects (not system parameters) the primary key is always called ‘<class
name>ld’, e.g. Networkld. Foreign keys referencing them have the same or a derived name,
which includes the ‘Id’, in some cases preceded by an underscore. These primary keys are
generated from sequences to automatically ensure uniqueness. Most ofthese objects also have
a ‘Name’ field intended to be meaningful for users. The convention for device interfaces is to
follow the vendor’s standard naming scheme that will also be used in device commands.

In general the bean classes have many keys; to study which findBy methods are available, refer to
resource definition files in the inventory directory of the CRModel solution package.

An ‘M’ in the type column indicates the field is mandatory.
Bean Class Network

This object class is used to represent a collection of NEs and the links between them.

In general networks may be nested to any depth. A network which has nested subnetworks may
also have direct member NEs (not members of any of the subnetworks).

78 Chapter 8

Service Activator SystemIntegrator’s Overview
C ommon Netw ork Resource Model

The network object has a type field which can be used to distinguish different types of subnetwork,
for example with respect to nesting. The intended meaning of the predefined values is as follows
(use Figure 2-1 as architectural reference):

network A setof PE devices (NEs) and the CE devices that are attached to them; also used for
collections of unattached orunmanaged CE devices. No nesting.

access network A collection of aggregation devices (NEs) and the simple access topologies (nested)
attached to them. Aggregation devices will be linked by aggregation trunks to PE devices in
a network. The relationship of the PE device to the access network is modelled with a
NetworkAttachment object. S-VLAN tags assigned to attachment circuits over an access
network must be unique on an access network. If several access networks are attached to
the same PE device, uniqueness mustextend to the union of such access networks
(complete flow domain).

topology A collection of access devices (NEs) connected in a simple ring or string topology within
an access network. Nested within an access network. Aggregation switches may also be
part of the ring or string, but in the model they will belong directly to the access network
with a NetworkAttachment to represent that topologically they are part of the ring or string.

Other network types may be defined for othernetwork structures, in particular if a solution uses
nesting of networks.

Table 8-1 Fields of Network Bean
Name Type Description
Networkld String Primary key
Name String M User friendly name
Type enumeration: See text above
Network,
AccessNetwork,
Topology
ASN String Autonomous systemnumber
Region String Foreign key, represents relationship to
Region object
ParentNetworkld String Foreign key, represents relationship to
enclosing Network object

Bean Class NetworkElement

This object class represents individual network elements. Its fields hold the information needed
when management communication takes place directly from HP Service Activatorto each NE
(using CLI). Some modification may be needed if the network elements are managed through an
element manager. In simple cases it may suffice to use the Management_IP field to hold the
address of the element manager. In more complex case it may be necessary to introduce an
additional object class to model the element manager and establish a relationship between the
NetworkElement and the ElementManager.

NEs are implemented as reservable beans to allow mutual exclusion zones to be implemented
easily in workflows: the NE is reserved over the section of the workflow where exclusive access is
required to the model of the NE and its components, or to communicate with the NE. NEs are not
expected to be reserved in their entirety for subscriber services.

Chapter 8 79

Service Activator SystemIntegrator’s Overview
C ommon Netw ork Resource Model

NOTE The NE class can be specialized for a solution, the subclass will then inherit the reservability property. Do not
set the maxCount atribute on the subclass.
NEs play different roles in the network: PE router, CE router, aggregation switch, access switch.
The role is represented by the value of the Role field.
When comparing the Table 8-2 to the inventory Ul forms for the NetworkElement bean beware
thatsome of the fields have labels which deviate from the values shown in the Name column.
Table 8-2 Fields of NetworkElement Bean
Name Type Description
NetworkElementld String Primary key
Networkld String Foreign key, represents relationship to
Network object that the NE belongs to
Name String Human meaningful name of the device
Description String Additional user information aboutthe device
Location String Constrained by configured Locations
IP String Primary IP address ofthe device
Management_IP String IP address used for management
communication with the device
Managementinterface enumeration: Protocol used for management
telnet, ssh communication with the device
PWPolicyEnabled boolean True if PWPolicy is used
PWPolicy String Foreign key, references object defining
username and password information to use for
the device
UsernameEnabled boolean If true, send username to device for
authentication
Username String The username for authentication by the device
Password String The password for authentication by the device
(password)
EnablePassword String The enable password for authentication by the
(password) device
Vendor String Constrained by configured Vendors
OSVersion String Constrained by configured OS\ersions
ElementType String Constrained by configured ElementTypes
SerialNumber String Serial number of the device (inventory
information)
80 Chapter 8

Service Activator SystemIntegrator’s Overview
C ommon Netw ork Resource Model

Name Type Description
Role enumeration: See text above
PERouter,
CERouter,
AggregationSwi
tch,
AccessSwitch
AdminState enumeration: Administrative state, semantics defined by
Up, Down, solution
Unknown,
Reserved
LifeCycleState enumeration: Life cycle state, semantics defined by the
Planned, solution that uses the CNRM, buta
Preconfigured, NetworkElement will notbe eligible as
Accessible, endpointfor a Link created on the inventory
Ready Ul unless it is Ready
ROCommunity String SNMP read-only community string
RWCommunity String SNMP read-write community string
NNMi UUID String Universally unique identifier of
corresponding NNMi object
NNMi ID String Local identifier of corresponding NNMi
object
NNMi Last Update Date Time the object was last updated/refreshed
from NNMi.

Bean Class NetworkAttachment

This object class models an n:m relationship between NetworkElements and Networks. An object
of the class exists to representthat the NE is attached through a link to the network, which is not
the one it belongs to, but may bea subordinate one, e.g. the NE can be an aggregation switch
belonging to an access network and the network an access topology.

Table 8-3

Fields of Network Attachment Bean

Name Type Description
NetworkElementld String Identifies the NE
Networkld String Identifies the Network the NE is attached to

Bean Class ElementComponent

This object class allows hierarchical decomposition of an NE, typically into racks, slots, cards,
ports, in a generic way without restriction to specific componenttypes.

The Type field is usedto indicate the type of component, determining its level in the containment
hierarchy. The predefined values for this field include Slot and Port as well as Controller. An
ElementComponent with ComponentType Slot represents a slotas well as the card that it holds.

Chapter 8

81

Service Activator SystemIntegrator’s Overview
C ommon Netw ork Resource Model

The value Controller is used for a porton a controller card which supports multiplexing of
channels and has the ability to create channelized interfaces on a subset ofthe channels.

The capability to create a channelized interface on a Controller port is included in the Common
Resources solution and can be invoked from the inventory UL.

The EC is reservable for the same reason that is described for NetworkElement above.

Table 8-4 Fields of ElementComponent Bean
Name Type Description
ElementComponentld String Primary key
NE_Id String M Foreign key, represents relationship to NE
object thatthe component belongs to
ParentEC_Id String Foreign key, represents relationship to
enclosing element component
Name String M User meaningful name of the component,
vendornaming convention applies; typically
the type of port/interface, rack number, slot
number within rack, and port number on
card will be included (when applicable)
Description String Additional user information aboutthe
component
State enumeration: State, semantics defined by solution
Up, Down,
Unknown, Added,
Removed
ECType enumeration: See text above
Slot, Port,
Controller M
Type String For a given ComponentType, the Type
further characterizes the component. Type of
slot: what cards can it holds; type of card:
for example, SDH linecard, Ethernet
linecard; type of port: Ethernet, GigEth,
SDH with layer rate - STM-1 etc., E1, etc.
By vendorconvention this information may
also be part of Name field.
This field may be informative or may have
semantics according to application.
ComponentNumber String Slot number, port number, etc. Not expected
to be globally unique, only within the parent
component.
By vendorconvention this information may
also be part of Name field.
This field may be informative or may have
semantics according to application.
82 Chapter 8

Service Activator SystemIntegrator’s Overview
C ommon Netw ork Resource Model

Name

Type

Description

Capacity

int

Indicates number of units of capacity onthe
component.

Used with ComponentType Port or
Controller in situations where ports reside on
a daughter cards, which are notmodelled as
separate ElementComponents, and the
daughtercard may comprise multiple
physical ports or is preconfigured with
multiple separate termination points (E1s
within STM-1); indicates number of
physical or logical ports

NNMi UUID

String

Universally unique identifier of
corresponding NNMi object

NNMi ID

String

Local identifier of corresponding NNMi
object

NNMi Last Update

Date

Time the object was last updated/refreshed
from NNMi.

Bean Class TerminationPoint

Termination points reside on ports. Depending on the type of the port there can be many
termination pointsona port: for example VLAN tagged sub-interfaces on an Ethernet port or E1
channels on an SDH port. TerminationPoint fields are listed in Table 8-5.

Termination points often support switch/router interfaces, which can be configured for service.
Interfaces are modelled as a specialization of TerminationPoint. See the section below

Table 8-5 Fields of TerminationPoint Bean

Name Type Description

TerminationPointid String Primary key

Name String M Number of the slot, vendorconventions
apply

NE_Id String M Foreign key, represents relationship to NE
object that the termination point belongs to

EC Id String Foreign key, represents relationship to
element component (port) object that the
termination point belongs to

State enum: Up, Down, | Semantics of these values defined by

Unknown solution using the CNRM

Bean Class Interface

This specialization of TerminationPoint covers all the technology and application details that are
added to generic termination points when they are used as switch/router interfaces for an NGN

application.

Chapter 8

83

Service Activator SystemIntegrator’s Overview
C ommon Netw ork Resource Model

An interface is a resource that can be reserved for a service. In the simplest case it corresponds toa
physical port ona network element. An Ethernet interface can be divided into VLAN-specific
subinterfaces; these are created when needed as child interfaces of the port interface.

Itis also possibleto create aggregate interfaces with bandwidth in multiples of the port by
concatenating single port interface. Some network elements have controllers which allow
channelized subinterfaces to be created for specific multiplexing timeslots on a physical port
interface. The CNRM comes with a workflow, CRModel_ModifyChannel, to manage aggregate
and channelized interface, i.e. creating and deleting them. This workflow can be launched from
appropriate branches of the CNRM/Equipment tree on the inventory UI.

Anotherworkflow, CRModel_RouterUpload, is available to load information about
ElementComponents and interfaces from an NE, parse it and create the implied objectsin the
model; it is launchable from network element branches of the CNRM/Equipment tree..

Likewise a workflow to create aggregated interfaces from interfaces on multiple portsis included
with the CNRM and can be invoked from the inventory Ul.

Table 8-6 Fields of Interface Bean
Name Type Description
TerminationPointld String Primary key
Type String M Type of interface
ParentIf String Foreign key, represents relationship to
parent interface (only used for subinterface)
IPAddr String IP address assigned to the interface
Subtype String Subtype of interface, more specific than type
(in VPN SP set to indicate how the interface
is used for a service)
Encapsulation String For Ethernet interface: none or Eternet-
dotlq
For serial interface: FR, HDLC or PPP
Description String Uploaded from equipment
Ifindex String SNMP identification index
ActivationState enumeratiuon: Semantics defined by solution using the
Activated, Failed, | CNRM
Undefined, Ready
UsageState enumeration: Semantics defined by solution using the
Available, CNRM
SublfPresent,
Uplink, Reserved,
InBundle, Trunk,
ASBRLink,
SwitchPort
VLANId String Tag for traffic belonging to the (sub-)
interface
VLANMode String
84 Chapter 8

Service Activator SystemIntegrator’s Overview
C ommon Netw ork Resource Model

Bean Class Link

Name Type Description

DLCI String For a frame relay interface, DLCI of the
traffic

Timeslots String For channelized interface: which time slots

NumberOfSlots String For channelized interface: number of
timeslots

Bandwidth String Bandwidth of interface (bps)

LMIType String For FR: Cisco, ansior q933a

IntfType String For FR: dte/dce interface type

BundleKey String Alphanumeric name of an aggregate
interface; identical on aggregate and its
members

Bundleld String Numeric identifier of an aggregate interface

NNMi_UUID String Universally unique identifier of
corresponding NNMi object

NNMi_ID String Local identifier of corresponding NNMi
object

NNMi_LastUpdate Date Time the object was last updated/refreshed
from NNMi.

In a classical layer transport network model, a connection in one (server) layer of a network is
usedas a link in the topology of the next higher (client) layer. In the common network resource
model the link property is the more interesting one. Algorithms will generally configure link
endpoints to allow certain traffic (typically by VLAN tag) rather than explicitly create connections
by setting up cross-connections. Cross-connections occur in the server (transmission) layers that
are beyond the scope of the model.

A link connects two termination points, ontwo NEs.

Links are typically used as trunks, i.e. traffic for many different customer services identified by
different VLAN tags may pass the same link.

Four types of links are distinguished:

e aggegation trunk, connecting a PE router to an aggregation switch

e access trunk, connecting switches in the access network

e access link, where one endpointis on customer premises, outside of the provider network

e ASBR link, connecting PE routers in two different core networks with different ASN values

Link fields are specified in Table 8-7. Fields which are not stored, but calculated for display or
other useto supportaform are not listed.

Chapter 8

85

Service Activator SystemIntegrator’s Overview
C ommon Netw ork Resource Model

Table 8-7 Fields of Link Bean

Name Type Description

Linkld String Identifies the link

Name String

NE1 String Foreign key, represents relationship to NE
object at endpoint 1; shown as hame of NE

TP1 String Foreign key, represents relationship to
termination point object atendpoint 1;
shown as name of termination point. In
Create Link form only eligible termination
points can be selected.

Type String Constrained by configured LinkTypes; see
above.

NE2 String Foreign key, represents relationship to NE
object at endpoint 2

TP2 String Foreign key, represents relationship to
termination point object atendpoint2

NNMi_UUID String Universally unique identifier of
corresponding NNMi object

NNMi_ID String Local identifier of corresponding NNMi
object

NNMi_LastUpdateDate String Time the object was last updated/refreshed
from NNMi.

The Creation form for the Link bean has wizard functionality. Field values are selected one by
one, and the value selected for one field determines what can be selected for the next field. To
calculate what can be selected at the steps ofthe process, each of the classes Network,
NetworkElement and Interface has a method, findEligibleForLink, implementing a special
algorithm in explicit Java code.

86 Chapter 8

Service Activator SystemIntegrator’s Overview
C ommon Netw ork Resource Model

Configuring CNRM Dataload from NNMi

Figure 8-3

Inwventory Cl

The CNRM can be populated with data either directly from the network elements or from NMMi,
if the latter is presentand set up to interwork with HP Service Activator. Dataload from NNMi
comprises network elements, interfaces and links. Direct dataload is performed by the
CRModel_RouterUpload workflow that fetches datafrom one network at a time and can be
invoked from the network element branches in the CNRM/Equipment tree.

The dataload process can be repeated regularly to update the model with new entities. One of the
three trees of the userinterface for the CNRM is dedicated to controlling the dataload process.
Refer to HP Service Activator, User’s and Administrator’s Guide for a description of that tree and
how to execute the dataload process. You will need a general understanding ofthe process before
you study this section, which explains how to customize the process.

Before you configure the dataload process you must create the skeleton structure comprising
regions, networks and locations that the network elements will belong to. Likewise you can create

password policies. This is conveniently accomplished using the Equipment and Parameters trees
on the inventory Ul.

The primary tool to edit/configure the process is the subtree of the CRModel/Parameters tree
which starts from the NNMi Dataload branch, as shown in Figure 8-3.

NNMI Dataload Branch of CRModel/Parameters Tree

w5 Instance

CREModel/Parameters & w| Edit Scope 57

O D Parameters

B Administrative units Update DL_Scope

[H & Equipment types
H & Interfaces types

)) Name Value Description
H &2 MNA and MMM Configuration
B8 & Upload Configuration Primary key.
O H Interface Upload Maime * |D9f5'U|t Scope file

B0 MMM Dataload
& Scopes

[D Enrichment

idertifier
<?xml version="1.0" encoding="UTF-5"2> <!DOCTYPE DataloadScope

SYSTEN "NNMi_Dataload Scope.dtd"> <Dataload3cope> <HostNames:
<NamexEnter the host name/IP</Name> </HostNames:

O @ skipTopology&nalysis </Dataloadicaper
O @ PostProcessiorkflow Contents Scope file
H & Interface Mappings L] contents

[H & vendor Mappings
[H & Element Type Mappings
[& Element Component Type Mappings

Two aspects of the confguration are specified using XML documents:scope and enrichment.
These XML documents are notstored in files, butin the solution datarepository, i.e. database
tables. Therefore they are edited using a simple editor in the forms quadrant of the inventory Ul, as
the example shows. If you prefer, you can copy the document to a text editor and paste it back
after editing. The syntaxdefinitions (.dtd files) for the two documents are found in the
etc/config directory of the CRModel solution package.

Chapter 8

87

Service Activator SystemIntegrator’s Overview
C ommon Netw ork Resource Model

The dataload process has anumber of steps:
1. Bxtraction of datafrom NNMi

2. Pre-commit enrichment; this includes transformations included in the built-in enrichment
snippetto map the datato CNRM representation, and finishes optionally with topology analysis

3. Comparison, reconciliation and commitment by the userof changes to existing data in the
CNRM

4. Post-commit enrichment (optional)
5. Postprocessing (optional)

The dataload process begins with retrieval of data from NNMi, restricted by the specified scope.
The scope s specified in a document which identifies the names of the network elements to
upload, as shown in Figure 8-3. The document is in the format accepted by NNMi. Full names can
be listed explicitly (Name element), or wildcards can be used (WName element) using the syntax
for the SQL LIKE construct, i.e. the percent character ‘%’ matches any sequence of 0 or more
characters, and the underscore character *_’ matches any single character. Devices which are not in
the specified scope will be disregarded by the NMMi dataload operation.

You can define several scope documents. One of them must be selected for each dataload
operation. If the dataload operation is large and time consuming, this is a convenient mechanism
for dividing it up.

Once the data has been retrieved, it is enriched. A number of specification documents, enrichment
snippets, control this part of the process. They are applied one ata time, the built-in snippetshall
be the first one. It includes a number of transformations that serve to map the extracted datatoa
form compliant with the CNRM. Attributes representing equipment vendors, element types and
interface types are mapped from the NNMi values to CNRM values. The mappings take several
attributes of the loaded NMM i objects into consideration and use regular expression patterns to
recognize their values. These mappings are defined in tables that can be edited using the last three
branches of the NNMi Dataload subtree. A rich and normally sufficient set of mappings are
prepopulated when the CNRM s installed.

Enrichment complements the mapped information with information that is needed for the model
but cannot be retrieved from NNMi. You can define several enrichment snippets, typically for
different types of enrichment that you want to combine. All of the defined enrichment snippets
will be applied to every dataload operation. Enrichment is the most complex part of the dataload
process to customize, soit is described under a separate heading below.

The networks to include in the CNRM are not modelled in NNMi, sothey must be created by the
user before dataload. The roles of network elements and the membership relations between
network elements and networks are also notknown by NNMi, soyou can add them by defining
appropriate enrichment rules. When aggregation/access switches are loaded with links to already
known aggregation/access switches, the automatic topology analysis can determine that they
belong to the same access network/topology, allowing youto save some enrichment rules. This
analysis can be disabled by configuration on thethird branch of NNMi Dataload subtree.

At this point NetworkAttachment objects are automatically created when the indicative links are
created (see “Bean Class NetworkAttachment” above).

After enrichment and topology analysis, the data that have been loaded and enriched is compared
to theexisting CNRM model, and manual reconciliation must be done to handle conflicts (see the
description in HP Service Activator, User’s and Administrator’s Guide for details). Up to this
point the process has only considered a core subset ofthe fields of the network element, interface
and link objects. Only this core subset ofthe fields is presentin the tables which hold the loaded
data up to the point of commitment.

After commitment of loaded data,a second round of enrichment may take place to assign values to
additional attributes that were not retrieved or mapped.

88

Chapter 8

Service Activator SystemIntegrator’s Overview
C ommon Netw ork Resource Model

Finally, optional postprocessing is performed by running a workflow which has access to the
intermediate dataload objects as they appear after manual reconciliation. This makes it possible to
determine which network elements have been affected by the dataload. The workflow
CRModel_PostProcess, if configured, will go through those network elements and for each one
run a direct interface upload (the workflow CRModel _RouterUpload). The reason for this is that
information aboutaggregate channels configured on the device cannot be extracted from NNMi,
so it must be extracted directly from each device. You can also write yourown workflow to run at
this time. Whetherto run a postprocessing workflow, and which one, is configured on the fourth
branch of the NNMi Dataload subtree.

Model Enrichment

Once again, the purpose of enrichment is to add the information that could not be retrieved from
NNMi. Forexample, CNRM networks are not modelled in NNMi, so NNMi cannot decide in
which network each network element belongs. And there are a number of fields in CNRM that
cannotbe derived in a generic way from information in NNMi.

Enrichment applies rules to loaded data of the classes network element, interface and link. Arule
is evaluated for each object of the class to which it applies. If a condition stated in terms of a field
value is satisfied, an action is applied to the object. The action can be:

e to assignvalues to fields of the object (<Assignment> element), or

e to establish a relation to anotherobject (implemented by assigning a value to a foreign key, but
thatis notexplicitly stated, <Relation> element), or

e to extend the object with a specialization and assign values for the fields of the specialization
(<Narrowing> element), or

e to apply a transformation to the object implemented in a customJava class (<Transformation>
element)

Each rule defines the class of data it applies to and states the condition. The condition always
refers toa single field. It can be a field of the object itself, or of a related object. The related object
can be the network element thatan interface belongs to, or it can be a network element or interface
at an endpointof a link. The condition is about the value of the field. It can specify that the field
must have a specific stated value, or no value (stated as null, this will also match an empty string),
or the value can be stated as a regular expression: if it is matched, the condition will be true. A
specific value is specified with the == operator: a regular expression with the like operator. A
condition can be empty, then it is always true, i.e. the rule is applied to all objects of the stated
class.

Transformatins can be used for enrichments which are more complex than what can be expressed
with rules, if a condition is needed that cannot be stated using the value of a single field, or the
value to be assigned must be computed.

Rules are divided into normal rules and extension rules. Normal rules are executed before
commitment of changes, extension rules after. Normal rules can only assign values to the core
subset of object fields. Extension rules can assign values to the fields which are not in this subset.
Names of the fields in the core subset mustbe rendered in capital letters. Extension fields must be
rendered as specified in the resource definitions (and shown in tables above).

The core fields are the following:

NetworkElement: NAME, DESCRIPTION, MANAGEMENTINTERFACE, ADMINSTATE,
LIFECYCLESTATE, ROLE, VENDOR, LOCATION, OS_VERSION, OS_VERSION_GROUP,
ELEMENT_TYPE, ELEMENT_TYPE_GROUP, LAST_UPDATE, MANAGEMENT_IP,
PRIMARY_IP, SERIAL_NUMBER, RO_COMMUNITY, RW_COMMUNITY

Interface: NAME, DESCRIPTION, LAST_UPDATE, TYPE, ACTIVATION_STATE,
USAGE_STATE, IPADDRESS, IF_INDEX, BANDWIDTH, DLCI, VLANID,
ENCAPSULATION

Chapter 8

89

Service Activator SystemIntegrator’s Overview
C ommon Netw ork Resource Model

Link: NAME, LAST_UPDATE

Finally a snippetmay also define filters to prevent specified fields to be updated with uploaded
values, i.e. eliminate changes before reconciliation (<Overwrite> element). Here is an example
enrichment snippet containing some rules to define the network membership relation and some
attribute values that cannot be uploaded for two network elements:

<?xml version="1_0" encoding=""UTF-8"7?>
<IDOCTYPE Enrichment SYSTEM "NNMi_Dataload Enrichment.dtd">
<Enrichment>
<Overwrite/>
<Rules>
<Rule type="NetworkElement" condition=""">
<Assignment name="LOCATION" value="Lab"/>
</Rule>
<Rule type="NetworkElement"
condition=""NetworkElement.NAME=="c3600-1.dnk.hp.com*®">
<Relation type="Network'"™ name="NAME" value="Lab-Core'"/>
<Assignment name="ROLE"™ value="'PE"/>
</Rule>
<Rule type="NetworkElement"
condition="NetworkElement.NAME=="c3400-1.dnk_hp.com*®*>
<Relation type="Network"™ name="NAME" value="Lab-Ring"/>
<Assignment name="ROLE"™ value="'AccessSwitch"/>
</Rule>
</Rules>
<Extensions>
<Rule type="NetworkElement"
condition="NetworkElement.NAME=="c3600-1.dnk_hp.com*®*>
<Assignment name="PWPolicy" value="100"/>
<Assignment name="PWPolicyEnabled" value="true'/>
</Rule>
<Rule type="NetworkElement"
condition=""NetworkElement.NAME=="c3400-1.dnk.hp.com*®">
<Assignment name="PWPolicy" value="101"/>
<Assignment name="PWPolicyEnabled" value="true"/>
</Rule> </Rules>
<Extensions/>
</Enrichment>

In this example you will note that each network element is identified explicitly, and the relations
and assignments are different for each of them. By using general patterns, reflected in password
policies, naming conventions, etc., it will be possible to create more generally applicable rules. For
example, if a unique prefix is used for the names of network elements belonging to a specific
network, then partial wildcarding (in a regular expression) of the network element name can be
usedto build a single rule for all the network elements in each network.

For complete information on the syntaxof enrichment snippets, refer to the file
NNMi_Dataload_Enrichment.dtd. For information onhow to implement transformations in
customJava, see the Javadoc for the translate method of class TransformationTranslator.

NOTE In the snippet syntax description in the dtd file the (XML) atribute that defines the class of data affected by a
rule is called type; a field of a resource bean object is called attribute; the object to which the field of a
conditon belongs is called the scope of the condition; and field filters are defined with overwrite elements.

90 Chapter 8

Service Activator SystemIntegrator’s Overview
Web Service Designer

Web Service Designer

The Web Service Designer is a tool dedicated to generating specialized servlets exposing the
capability to run HP Service Activator workflows as web service methods. Each servlet will
include a set of convenient methods mapping to the set of workflows which are required for
integration with a specific type of client. Each web service method must have input parameters to
agree with the contract of the workflow and may return as output parameters result values defined
as part of the contract. The web service method in the servlet will receive the input parameters and
use them to initialize the case-packet variables. In the case of a synchronous method the servlet
will also extract the output parameters from the case-packet when the workflow job has finished
and place them in the response message.

The servlets can be deployed very simply with JBossWSon the HP Service Activator platform.
The endpoint where the web service can be called will belong to the web service port of the JBoss
server, i.e. the same port where Ul requests are served (by default port 8080).

HP Service Activatoralso has a generic web service interface supporting a subset of the complete
API of the workflow manager whose primary form is RMI. Compared to the generic interface the
servlets generated with the Web Service Designer are specialized to contain dedicated methods to
use for a particular application; they avoid exposing the concept of workflows and generic
methods to control them. As systemintegrator you will control the names of the methods and their
parameters.

Each web service is defined in an XML document, the web service definition file, which is created
and edited with the tool. Consider this file a source file in the same way as workflow, resource
(bean) and tree definition files. It should not be confused with a WSDL file (in W3C standardized
web service definition language), which is used for external definition of a web service interface.
The file produced by thetool is in a private format, the schema for which is in file
$ACTIVATOR_ETC/config/wsd-config.xsd. It is concerned with both the definition of the
interface and its mapping to workflows.

With the tool you can create and edit the web service definition; you can generate the servlet Java
class, you can compile the class and build the web-application archive (.war file) containing the
servlet, and you can deploy it on the HP Service Activator platform. Finally, when the web
application has been deployed, JBossWS can generate a WSDL description of the interface,
reflecting the methods and parameters that have been specified. is predictable, Do notexpect to be
able to retrofit any preexisting interface specified by existing WSDL, it may notbe possible to
mimick all parameter types.

Servlets generated with the Web Service Designer will use SOAP over HTTP as transport,and the
style of communication will be rpc (remote procedure call).

Defining a Web Service

The web service call to run an HP Service Activator workflow can be synchronous or
asynchronous. This choice is made for each method; you can combine synchronous and
asynchronous methods in the same servlet. In both cases the call will startthe workflow as a job.
In the synchronous case it then waits for the workflow job to complete andis able to return final
values of case-packet variables as result information to the caller. In the asynchronous case the
web service method does not wait for the job to complete; the only return information is the job id.

Chapter 9

91

Service Activator SystemIntegrator’s Overview

Web Service Designer

A separate mechanism will then be needed for providing progress and result information to the
caller; refer to the section “Northbound Interface” in chapter5 for further discussion ofthis topic.

Before you use the tool you must prepare the following:

o alist of the workflows you want to be runnable as web service methods; for each one you must
name the method you want to expose (typically the name will be similar to the name of the
workflow)

o for each runnable workflow the list of case-packet variables that must be initializable from
values of parameters of the web service; alternatively the servlet can pass all parameters to the
workflow job in an XML document obtained by applying an XSL transformation to the set of
parameter values

o for each synchronous method the list of case-packet variables whose final values must be
returned to the caller

o for each of the input or output parameters a name for the parameter (the default choice will be
the name of the case-packet variable) and a type; the type must agree with the type of the
associated case-packet variable in the workflow (the tool does notread the types from
workflow definitions; you must select them)

o for each method with multiple outputparameters a decision on how to package the parameters
in the result message (see below for more information)

With the tool you must then define the methods, each one named and mapped to a workflow and
with a list of input and output parameters. From these definitions the tool will generate a Java class
with your methods annotated to be callable as web service methods. The call parameters and
result types of the generated methods will be translated to input and output messages to be
exchanged between the caller and the HP Service Activatorplatform.

The input parameters will be combined as named elements (like members of a bean) of the input
message.

NOTE

All specified input parameters will be mandatory, even if this may not be specified in the generated WSDL.
Calls with missing parameters will be rejected by the servlet

The result returned from a servlet method must be a single object. If there is exactly one output
parameter, the type of the result message will be the type of the output parameter. If there are
multiple output parameters, you can choose to package them as a record (bean) with the
parameters as named fields or as a hashmap with an entry for each parameter, in which case the
parameter name is passed as the key. The latter form is more generic: the parameter names will not
appear in theexternal definition (WSDL) of the interface, only as datain the messages.

You can useall the types supported forworkflow case-packet variables for input and output
parameters: String, Integer, Long, Boolean, Double, Float, Data, Object, List, Map, Set, Bean.
Along with List and Set collection types you must also define a subtype, i.e. the type of the
elements. Along with a Map parameter you must define two subtypes, forthe keys and values,
respectively. For Object and Bean you must provide a properly annotated Java class (library) that
implements theclass in question. Bean classes generated by the inventory builder can be used.

If you want to use the same multi-field response from several methods, you can define a bean class
to represent the response. Then you will notneed to list the bean members as output parameters for
each method, and you will avoid to have several response bean classes generated with the same
members but different names (derived from the name of the method).

For information on how to create resource definitions and running the inventory builder to create
bean classes, refer to HP Service Activator, Inventory Subsystem. If you create beans for the sole
purpose of using them as parameters for web service methods, you can keep them separate from
any beans created to be used for managing inventory. Create the beans before you work with the
Web Service Designer to build the web service. Combine all beans you need in a jar file; the jar

92

Chapter 10

Service Activator SystemIntegrator’s Overview
Web Service Designer

file will be included in the web archive you build. Beans you use for web services do not need to
be deployed.

Authentication of the calling client is mandatory. There are two ways to authenticate the caller of
the web service methods: either it is done globally, once per session, by the JBossWS
authentication handler using username and password supplied in the HTTP header when the
session is opened, or it is done by each method. When the latter mechanism is selected, username
and password will be added as two parameters to each method.

Web Service Designer Tool

Figure 9-1

The Web Service Designer is a stand-alone tool in the family of HP Service Activator design time
tools. It is basically a Ul tool for editing a web service definition with additional capabilities to
generate servlet Java classes, build web archives and deploy them. All the functions except editing
are also available as command line functions, and thetool is integrated with the Deployment
Manager for deploying web services even across a multi-node cluster platform.

As the tool is quite simple, it has no dedicated manual; it is fully described in this chapter.

Figure 9-1 shows the userinterface of the Web Service Designer, where the definition of an
example web service called TriplePlay is open. The root of the web service tree is selected,
allowing to edit the global properties of the web service.

Web Service Designer, Global properties

B HP Service Activator WebService Designer
File Tools Deployment Setting Help

N e E v B) (¥ cotomethod: 3

| TriplePlay *

RS cbservice

Branch Editor
= WebService
|oigiry brue
Name TriplePlay

on 5 rlply worfownt

Package of the web service class.

Design View | XML Code View

For the login property select true, if you want each method to login separately, or false, if you want
session based authentication. In the first case each method will automatically get two parameters,
username and password, before any explicitly specified parameters.

The Name property defines the name of the servlet. You must also define a package name for the
Java class to be generated. The name of the servlet class will be appended to the package name
you give.

Defining a Web Service Method

Right-click in the upperframe on the tree root (labelled WebService) to bring up a menu where
you can add or paste a method to the servlet (prepare for pasting by selecting the copy operation
from the right-click menu of an existing method).

Figure 9-2 shows the Web Service Designer Ul, where the servlet has been expanded to showits
methods, and one of them (activateData) is selected, so that its properties and parameters can be

Chapter 9

93

Service Activator SystemIntegrator’s Overview

Web Service Designer

Figure 9-2

edited. You can right-click on a method in the upper frame to geta menu comprising the following
operations: copy the method, delete the method, move up and move down.

Web Service Designer, Method properties and parameters

B HP Service Activator WebService Designer Q@@

Fie Tools Deployment Setting Help
N « 5 @ Gotomethod:
TriplePlay *
=-ICD WebService
~—&@ allocatePort
@ activateConnectivity
[RactivateData
@ activateVoice
~— 4@ activateVideo
‘Branch Editor
=] Method
mwfmiethod
workflowhame
returnType
=) InputParam
casePackethame
Type
+ InputParam
InputParam
) InputParam

~

activateData
startAndWaitForJob
TP_ActivateData
bean
subscriberld
subscriber
String
ipAddress
emaildddress
password
) InputParam appPackage
casePacketiame result_code
Type String
+ OutputParam FailureTesxt

Quput from the web service.

Design View | ML Code View

To add an input or output parameter to the selected method, right-click on the root of the lower
frame (labelled Method) and select the appropriate item in the menu thatappears; the same applies
to the mwfmMethod and workflowName properties of the method, which in Figure 9-2 have
already been added.

The method properties are as follows:

Method the name of the method is editable

mwfmMethod selectable as startJob (asynchronous, applies if omitted) or
startAndWaitForJob (synchronous)

workflowName name of the workflow torun (Method is used if omitted)

returnType selectable as none, all (hashmap) or bean (record)

For each input or output parameter you can enter its name, add the name of the associated case-
packet variable and select its type. If you omit the name of the variable it is assumed to be the
same as the parameter name.

Using a Template for Method Input as XML Document

If you don’twant the servlet to initialize individual case-packet variables from the input
parameters, you can specify an XSL transformation to apply. The resulting XML document, which
will then contain all the parameters in a format that the workflow can parse, will be passed to the
workflow job through the case-packet variable message_url. The workflow must include logic to
parse the document, typically to reextract the parameter values. To handle input parameters in this
way you must specify an input template by adding the InputTemplate element to the method. As
the value of this element you must specify the file name of the XSL file defining the
transformation and two (optional) properties: storeMessage and directory.

94

Chapter 10

Service Activator SystemIntegrator’s Overview
Web Service Designer

The parameters that must be presentin incoming messages that invoke the method must be
specified as values of the name attribute of an <xsl:param> element appearing in the beginning of
the template. A simple example of a template with 3 parameters: id, h_param and b_param is
shown here:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform'>
<xsl:output method="xml" indent=""yes" xalan:indent-amount="2"
encoding="UTF-8" xmlIns:xalan="http://xml .apache.org/xslt"/>
<xsl:param name="id"/>
<xsl:param name="h_param"/>
<xsl:param name="b_param"/>
<xsl:template match="/">
<msg msg_id="{$id}"">
<header>h_param</header>
<body>b_param</body>
</msg>
</xsl:template>
</xsl:stylesheet>

If a message to invoke the example method contains the parameter values 1, 2 and 3, the resulting
XML document that is passed to the workflow job after the transformation will be:

<?xml version="1.0" encoding="UTF-8"?>
<msg msg_id="1">

<header>2</header>

<body>3</body>
</msg>

All parameters will be string typed.
The following details apply to the InputTemplate element and its properties:

InputTemplate The name of the XSL file. It can be an absolute file name, or it can start with

and be relative to $ACTIVATOR_ETC (the default, can be omitted),
$ACTIVATOR_OPT, $ACTIVATOR_VAR or $ACTIVATOR_SOLUTION.

storeMessage The value determines where the XML document resulting from the

transformation is placed:
database (default) the document is placed in a row in the database_message table,
file the document is placed in a file,

memory the document will be passed inits entirety through the message_url case
packet variable.

The choice will be encoded in the message_url value, and the encoding is
supported by the workflow nodes that useit.

directory Only used when storeMessage is file; this is the directory where the file is

stored. It can be an absolute path name, or it can start and be relative to
$ACTIVATOR_VAR, $ACTIVATOR_ETC, $ACTIVATOR_OPT or
$ACTIVATOR_SOLUTION. The default is the value is omitted is
$ACTIVATOR_VAR/received/messages. The name of the individual XML
document file is autogenerated and includes a timestamp.

Build and Deploy Web Servlet

When you have finished defining the servlet and its methods, you can generate the code and build
the web application archive. Select each step from the Tools menu which is shownin Figure 9-3.

Chapter 9

95

Service Activator SystemIntegrator’s Overview

Web Service Designer

Figure 9-3

Web Service Designer Tools menu

B HP Service Activator WebService Designer
File MEEEE Deployment Setting Help

TH(Generate (™ Gotomethod: v
| Build
Tr
ke Generate in
0 puldin
Branch Editor
o webservie [
lgin true
Mame TriplePlay
Package com. hp.sa.tripleplay. workflownbi

Design Yiew | XML Code view|

If your generated code will needto make reference to other Java classes, for example resource
beans, you can place such classes in libraries (.jar files) and add those libraries into the process in
the Web Service Designer through the ‘Default Libraries...” operation thatyou can launch from the
Setting menu.

To build and deploy the servlet, first select Generate from the Tools menu. This operation will
generate the Java code for the servlet. It will generate a sequence ofdirectories, according to the
Package defined, starting with classes, in the directory where the web service definition file is
located, normally <Solution>/etc/web-services. The operation also generates a deployment
descriptor file (web.xml), defining the mapping from URL to servlet code. This file is placed in the
web subdirectory, which will be a sibling to the classes directory. If you want to place the classes
and web directory in a different location (from that of the web service definition file), choose
‘Cenerate in’ from the Tools menu and browse to the desired location.

Next select Build. This operation will compile the Java code with the specified libraries in the
classpath and place the resulting class file along with you have specified, in a web archive,
packaged as a .war file, in the war directory. Again, if you do notwant the generated war directory
to be place in the same parent directory as the web service definition file, use ‘Build in” from the
Tools and browse to the desired location.

Finally, if you also want to deploy the web service, select the Deploy operation in the Deployment
menu. This function will retrieve the .war file from the war directory and copy it to the
$JBOSS_DEPLOY/hpsa.ear directory, whereby it will be activated when JBoss is restarted (it is
not hot deployed in a subdirectory of $JBOSS_DEPLOY).

To include the web service servlet in a deployed solution, you must include either the definition
file and the library files orthe generated .war file in the solution distribution archive and include in
the deployment descriptor (deploy.xml) file a description of how to (generate and) deploy the
serviet.

Extracting WSDL Definition

When a servlet has been deployed with JBossWS you can view it in the list of deployed services as
shown in Figure 9-4. Use this URL in your web browser:

http://<SA host>:<SA port>/mwFmsoap/WFManagerService?wsdl

The table will have an entry for each deployed web service. In Figure 9-4 one service is shown: the
generic web service for the API of the workflow manager.

96

Chapter 10

Service Activator SystemIntegrator’s Overview
Web Service Designer

Figure 9-4

To obtain the WSDL for a service, just click on its Endpoint Address (http:// ?wsdl). JBossWS
will generate and return the WSDL document. You can save it from the browser to a file. You will
need to edit the file to insert the proper XML header:

<?xml version="1.0" encoding="UTF-8"?>

You can study the WSDL document to observe the definitions of your web service methods as
operations with input and output messages,and you can use it as external documentation of the
interface supported by the servlet. Software products used as client systems may be able to import
the WSDL document and use it directly to drive communication with the HP Service Activator
server or to generate client side artifacts for integration.

JBo0ssWS Deployed Services List

+ JBoss Management x \

<« C | [127.00.1:3990/consolefApphtml#webservice-runtime ¥y =

{0) Messages

JBoss Application Server 7.1

= Server Webservices

Configuration
Web Service Endpoints

Wieb Serice Endpoints. Endpoints nead to be deploved as regular applications

Manage Deployments

B Status
JuM
Datasources MName Context Deployment
A » WiFManagerService rrwfrmsoap hpsa.ear
JMDI Wiews T-Tof1
Transacrions
Name: WFManagersenice Context: mwftnsoap
Class: comn.hp.ov.activaror.ws. WEManagerivs Type: JAHWS_JSE
= Runtime Operations
56 WDL Url: hrtp:f {localhost: BOBO/ mw frmsoap WFM Deployment: hpsa.par

wesdl

Chapter 9

97

Service Activator SystemIntegrator’s Overview
Web Service Designer

98 Chapter 10

Service Activator SystemIntegrator’s Overview
Usage Monitoring

10

Introduction

Usage Monitoring

This chapter covers the Usage Monitoring component in HP Service Activator, that counts
incoming service requests and allows generation of so-called usage reports.

HP Service Activator6.2 introduces a new way to monitor the usage of a HP Service Activator
server or cluster. A new module, called the “Usage Monitoring Module”, counts service requests
for all nodes in a cluster, analyzes the data, and stores usage data records to the database at regular
intervals. The Usage Monitoring module cannot be disabled.

DEFINITION

A service request is defined as a workfiow job that is launched by an external source; this includes workflow
jobs started via HP Service Activator’'s Java/RMI interface (e.g. from the web Ul or using the mwFmtool).
If a workflow job starts one or more child workflow jobs (within the same HP Service Activator cluster), the
child jobs will not be counted as service requests.

The Usage Monitoring module has been carefully designed so thatit will have negligible impact
on the system performance; the number of database transactions caused by the Usage Monitoring
module cannotexceed one transaction per minute.

Configuration

The Usage Monitoring module accepts two configuration parameters that can be configured in the
“usage_monitoring_module” in the file $ACTIVATOR_ETC/mwfm_xml:

e collection_interval determines the number of seconds between two consecutive usage data
collection events. The collection interval cannot be lower than 60 seconds. (Default: 3600)

e usage_threshold determines the maximum number of service requests within a collection
interval. (Default: Unlimited)

If HP Service Activator is running in a cluster configuration, the Usage Monitoring module
configuration must be identical onall cluster nodes.

User Interface

The Usage Information Ul is launched by clicking the “Usage Information” menu item in HP
Service Activator navigation menu (in the “Self Management” section).

An example of the Usage Information Ul is shown in Figure 10-1. The Usage Information Ul
consist of three panels:

e Usage Summary displays the average rate, the maximum rate, the total number of processed
service requests,as well as an indication of whether or not the configured threshold has been
exceeded.

e Configuration display the configuration data.

e Download Usage Report allows you to download a usage report covering the last 1, 2, 3, 6,
12, or 24 months. The usage report is a zipped text file protected by a digital signature.

Chapter 10

99

Service Activator SystemIntegrator’s Overview
Usage Monitoring

NOTE If the data collection interval is setto 1 minute (which is the shortest possible collection interval), the size of a
usage reportzip fle covering three months will be approximately 1 megabyte.

In this example thethreshold was setto 25 and the collection interval was setto 3 minutes. In
addition, the Ul shows that the threshold value was exceeded twice.

Figure 10-1 Usage Information View

Usage Information

m Ysage Summary

- Average Rate: 9.143 service requests per 3 minutes

- Maximum Rate: 63 service requests per 3 minutes
- Total: 128693
- Threshold Exceeded: Yes (2 times)

Reset rate values Reset threshold
m Configuration

- Threshold: 25

- Interval: 3 minutes

m Cownload Usage Report

Period: I 1 month 'I

The Usage Information view contains two reset buttons that can be used to reset the rate values
(averate and maximum rate) and “threshold exceeded” events, respectively. Please note that
pressing the reset buttons does not affect the raw usage data in a usage report. This means that
threshold violations that might have occurred before the [Reset threshold] buttonwas
pressed will still be marked as threshold violations in the usage report.

Threshold Violations

If the configured service request threshold has been violation, the user will be notified in three
different ways:

e Workflow Manager logs

= A warning message will be written with the text “Usage Threshold violation! Current
breaches count N”, where N is the number of detected threshold violations.

e JBossserver.logfile

= A log message will be written with the text “Usage Threshold violation! Current breaches
countN”, where N is the number of detected threshold violations.

e HP Service Activatorweb Ul

= In the “System Status” area (lower-left corner of the main web UI) an exclamation mark
will be displayed to indicate threshold violations.

Figure 10-2 shows an example of the “System Status” area in the case of a threshold violation;
please notice the exclamation mark inside the green status indicator. The exclamation mark can be
removed by clicking the [Reset threshold] buttonin the Usage Information view; but this
will not prevent threshold violations from being displayed in usage reports.

100 Chapter 10

Service Activator SystemIntegrator’s Overview
Usage Monitoring

Figure 10-2 System Status Indicating a Threshold Violation
Total Jobs: BO
Activating: 17
Waiting: 21
Scheduled: 4
System Status: L
NOTE If the system is in either suspended or locked state, the “System Status” area will not display an exclamation

mark in the event of a threshold violation. However, once the system enters “normal” state, the exclamation
mark will be displayed.

Usage Reports

Usage Records

The usage records collected by the Usage Monitoring module are stored in the systemdatabase. If
and when needed, it is possible to generate a so-called usage report that contains the usage data
records for a selected duration preceded by some additional information. A usage report is
structured as follows:

e HP Service Activator basic information
= Header and exact HP Service Activatorversion
= Report generation timestamp
= List of clusternodes (hostnames and IP addresses)
= Java version information
e Configuration
= Configured collection interval and threshold
e Summary
= Average and maximum rates
= Number of threshold violations
e Changes in configuration (if any)
e License information
= Detailed information aboutall valid HP Service Activator licenses
e Raw data

= A list of usage records (one line per record). This section may grow very large if the
collection interval is short. The usage records are written as comma-separated values in
order to make is easy toimport them into other programs for further analysis (e.g.
Microsoft Excel).

e Digital signature

= Used to protect against fraud

The usage records consist of a single line of comma-separated values. Figure 10-3 shows an
annotated example of a usagerecord; in this example the HP Service Activator system consists of
two cluster nodes.

Chapter 10

101

Service Activator SystemIntegrator’s Overview

Usage Monitoring

Figure 10-3

Usage Record example

Workflow jobs
Sequence (total and by Event
number cluster node) notification

|

2013-10-13 18:15,185,63,"63,0",218,"104,114",25, , THRES

f f f

Timestamp Service Configuration
Requests (threshold and
(total and by interval)

cluster node)

As shown in the figure, a usage record consists of:

A time stamp for when the usage record was collected
A monitonically increasing sequence number

The number of processed service requests within this collection interval; specified as the total
number followed by the number of service requests percluster node (in double quotes).

The number of processed workflow jobs within this collection interval; specified as the total
number followed by the number of workflow jobs per cluster node (in double quotes).

= Inthe example shown in Figure 10-3 the two cluster nodes have been running 104 and 114
workflow jobs, respectively. Hence, the load seems to have been distributed reasonably

well. If the number of workflow jobs varies a lot between the cluster nodes, it may indicate
that the load distribution needs to be adjusted.

The configured threshold and collection interval
An optional event notification string. The following events are possible:
» THRES if the threshold was exceeded in the current collection interval

= CONF if a Usage Monitoring configuration change was detected in the current collection
interval

= FAILOVER if acluster failover eventwas detected in the current collection interval

= |f more than one of these three events occurin the same interval, they will be written as a
double-quoted list of comma-separated values.

Generating a Usage Report

A usage report can be generated in two ways:

From the Usage Monitoring web Ul

= Inthe Usage Monitoring Ul, selectthe number of months you wish to cover (counting
backward from today) and then click the [Download] button to download the usage report
as a zip file.

From command line

= Run the createUsageReport[.bat] utility and provide the number of days (counting
backward from today) you want the usage report to cover.

= Run the utility with the —help option to seea full list of supported parameters.

= The command-line utility generates a plain (unzipped) text file that can be easily searched
using standard tools.

102

Chapter 10

Service Activator SystemIntegrator’s Overview
Usage Monitoring

Usage Report Example

An example of a usage report with two consecutive threshold violations is shown below (a few
parts, marked with asterisks, have been left out):

HP Service Activator V62-1A Usage Report

HP Service Activator version: V62-1A (V62-1A)
Report generation timestamp : 2013-10-13 18:37:29:279

Cluster nodes
- sal.example.com (10.20.232.11)
- sa2.example.com (10.20.232.12)

Java information
- Java HotSpot(TM) 64-Bit Server W
- Version: 1.6.0 29
- Architecture: 64-bit

Usage col lection configuration
- Threshold : 25
- Interval : 3 minutes
Maximum permitted rate is 25 service requests per 3 minutes

Summary
- Average service requests 1 9.143 service requests per 3 minutes
- Maximum rate : 63 service requests per 3 minutes
- Threshold exceeded : Yes (2 times)

Detected configuration changes
2013-10-13 17:58:00:000
- Old configuration - UNLIMITED service requests per hour
- New configuration : 25 service requests per 3 minutes

License information

- License Type: Instant On

- Expiration Date: Apr 1, 2014
- Days Remaining: 163

Raw data

2013-10-13 18:03,181,12,"12,0",55,"30,25",25,180
2013-10-13 18:06,182,0,0,0",40,"20,20", 25,180
2013-10-13 18:09,183,15,"15,0",113,"54,59", 25,180
2013-10-13 18:12,184,0,"0,0",92,"45,47",25,180
2013-10-13 18:15,185,63,"63,0",218,"104,114",25, 180, THRES
2013-10-13 18:18,187,37,"37,0",134,"66,68", 25,180, THRES
2013-10-13 18:21,189,0,'0,0",40,"20,20",25,180
2013-10-13 18:24,190,0,"0,0",40,"20,20",25,180
2013-10-13 18:27,191,0,'0,0",40,"20,20", 25,180
2013-10-13 18:30,192,0,"0,0",40,"20,20",25,180
2013-10-13 18:33,193,0,'0,0",40,"20,20", 25,180
2013-10-13 18:36,194,0,"0,0",40,"20,20",25,180

>>>>50d9c654cd 7554aeabe 3FF622162939b53b2dad 7<<<<

If the an operator has clicked the [Reset threshold] buttonin the Usage Monitoring Ul, the
number of displayed "Threshold exceeded” events in usage report may be lower than the actual
number of threshold violations.

To get an exact list of threshold violations you need to search through the usage report for
occurrences of the string "THRES”. In this way, you will also be able to see exactly when the
threshold violations have occurred.

In the usage report example shown above, a search for "THRES” will reveal that the two threshold
violations happened on October 13, 2013 at 18:15 and 18:18, respectively.

Chapter 10

103

Service Activator SystemIntegrator’s Overview
Integration w ith NNMi

11

Integration with NNMi

This chapter covers the integration of HP Service Activatorwith the HP NGOSS product Network
Node Manager (NNMi).

The components dedicated to integration of HP Service Activator with NNMi are licensed for use
as the NNMi Liaison. To use these components the RTU (right to use) must be purchased in
addition to the license for the HP Service Activator core product.

Positioning of NNMi

NNMi enables a customer to monitor and manage all the devices in an IP network from a single
point of control; a graphical web browser based user interface offers the user topological and
tabular views of the network and its status, and is launch pad for control functions.

NNMi interworks with devices by means of the SNMP protocol. The product has built-in
knowledge of a large number of devices through their SNMP MIBs.

NNMi can automatically discoverand build a model of a network asiit is.

Fault reports from devices are received as SNMP traps and correlated to perform root cause and
service impact analysis.

Summary of Benefits of Integration with NNMi

Overall, instead of two separate solutions NNMi and Service Activator will appear and behaveas a
well-integrated single solution for network and service management including service activation.

The capabilities of NNMi are enhanced in ways which will significantly assist operators in
focusing on high priority incidents to meet committed SLAs and provide bettervisibility of the
state of important services.

e Service Activator workflows to activate services by configuring network elements can also
enrich NNMi objects with service and customer related information. This will enable
prioritization of network faults based on evalauation of service importance. You get new
possibilities to group interfaces based on the type of service that is using each interface, or the
customer that is using the interface.

e Enhanced synchronization of NNMi data model with the network, as Service Activator may
request NNMi to rediscover the state of a device when a service has been activated oniit.

e Service Activator workflows to perform diagnostic analysis and corrective actions can be
initiated from NNMi. This will enrich the scope of control actions an NNMi operator can take
when faults have been discovered, or the action could even by fully automated.

e GUI crosslaunch from NNMi views to Service Activator inventory and service order views
allows an operator to view Service Activator dataand activity related to known objects.

e Not only the network, but also the activation systembased on Service Activator can be
monitored with NNMi

Through the integration with NNMi the Service Activator solution will benefit greatly from
availability of consolidated information aboutthe network and its state:

Chapter 11

105

Service Activator SystemIntegrator’s Overview
Integration w ith NNMi

e The resource inventory data model of the network can be populated by loading data already
discovered by NNMi. Likewise the data model can be synchronized with the NMMi data
model on an ongoing basis.

e Service Activator workflows can obtain real-time device status from NNMi.

e GUI crosslaunch from a Service Activator inventory view into NNMi topology view and status
lists. For example with Service Activator resource inventory objects such as network or
subnetwork as launch pad, launch a topological view. Or from Service Activator service
inventory customer object, launch an NNMi interface group view of all the device interfaces
carrying the customer’s traffic.

Readily Available Capabilities with NNMi

The capabilities thatare available “out of the box” without customizing items like Service
Activator workflows, modules and data models include populating and synchronizing the
Common Network Resource Modeland mutual GUI crosslaunch.

Loading and Synchronizing of the CNRM

The workflow for this purpose and the definition of the inventory Ul tree from which it can be
launched is provided as part of the Common Network Resource Model deployable solution pack
which is described in chapter 8.

The first time the dataloaderis used it will populate the CNRM datamodel with network elements,
interfaces and links. On subsequent runs it will updatethe CNRM data model to include newly
discovered objects.

Ul Cross Launch from Service Activator to NNMi

Cross launch from Service Activator to NNMi generally requires JSP customization and
incorporation in an inventory tree or main Ul menu (see below). Some cross launch functions are
precustomized as part of CNRM:

o from every interface branch in the CNRM equipment tree the NNMi interface form is
launchable

e from every network element branch in the CNRM equipment tree the NNMi L2 and L3
neighbor views are launchable
Ul Cross Launch from NNMi to Service Activator

Cross launch from NNMi to Service Activator inventory Ul is simple to configure in NNMi. It will
be a menu item associated with the relevant NNMi object type, for example node or interface. The
substance ofthe menu item is the URL to launch (see “Summary of Techniques for Configuring
Integration on NNMi” below).

Components for Customized Integration with NNMi

The components that are available on Service Activator for useas a basis for customized
integration with NNM i include a plug-in to automate configuration of NNMi as part of service
activation, three workflow manager modules and three workflow nodes. The nodes serve
essentially to invoke the functions provided by the modules.

NNM Liaison plug-in
The plug-in contains atomic tasks that can create an interface group view on NNMi.

SNMP trap module

This is a general purpose module, not restricted to integration with NNMi, which can issuean
SNMP trap.

106 Chapter 11

Service Activator SystemIntegrator’s Overview
Integration w ith NNMi

NNM i module

This module acts as a web service client towards NNMi. It supports all needed calls from Service
Activator to the NNMi web application, as used by the workflow nodes and the data load module.
It can create annotations on NNMi objects and pull data from NNMi.

Dataload module

This module performs the taskof loading and synchronizing the CNRM data model from/with
NNMi using the functions of the NNMi module to communicate with NNMi.

Workflow Nodes

Three workflow nodes are available that can be used in solution workflows:

o (etBeans retrieves objects from NNMi’s network data model
e RediscoverHost requests NNMi to rediscover a specific network element
e UpdateCustomAttributes sets values of customattributes on an NNMi data object

For details, consult HP Service Activator, Workflows and the Workflow Manager.

Summary of Techniques for Configuring Integration on NNMi

To configure nodes and interfaces for cross launch of Service Activator views: define for a type of
NNMi object a URL action to launch an Service Activator view. Refer to the section *.

User Interface and Roles” in chapter 5 for a description of the URL formats to use to launch the
various HPSA views.

The action (that you define on NNMi) may use one or more ext properties of the NNMi
installation (for example hostname and portof HPSA server) and customattribute values of the
object, such as primary key of the HPSA counterpart object) to constructthe URL.The URL action
will typically include a filter to enable it when necessary customattributes are set. Note that
Service Activator has a script that can be used to setext properties on an NNMi installation.
Consult NNMi online help for URL Actions for specific detailed information.

To create action scripts to launch Service Activator workflows you can install and use the mwfm
command line tool.

Customizing and Configuring Service Activator to Work with NNMi

To use the NNMi workflow manager module and the NNMi dataload module you must configure
them in the configuration file for the workflow manager. Parameters for other aspects of
interactions with NNMi, including Ul cross launch, NMMi dataload,and settings for workflows
are configured through the inventory Ul, in the Parameters tree for the CNRM as described in HP
Service Activator, User’s and Administrator’s Guide.

Workflows to Interwork With NNMi

You can create workflows to perform functions on HPSA that you want NNMi users to be able to
perform as actions; there are no special integration concerns for the workflow as such; integration
is done by the invoking script on the NNMi side.

In activation workflows you can use NNMi workflow nodes to retrieve infornation from NNMi,
create interface groups or annotations on NNMi objects, and invoke host rediscovery. Beware of
the control parameters which are part of the NNMiConfiguration singleton resource bean (part
of the CRModel solution) as mentioned in the preceeding paragraph. If relevant yourworkflows
should obey these settings.

Chapter 11 107

Service Activator SystemIntegrator’s Overview
Integration w ith NNMi

If you usethe NNMLiaison plug-in, note that it can be configured in file
SACTIVATION_ETC/config/NNMLiaisonConfig.xml (see also example file and dtd file in the

same directory).

Ul Cross Load

You can create JSPs (with Struts actions)to implement cross load functions in addition to the ones
already available (see above); for this you will need to understand NNMi URLs. As an example,
study the Ul part of the CRModel solution, the Struts-config and JSPs.

108 Chapter 11

Service Activator SystemIntegrator’s Overview
Integration w ith NA

12

Integration with NA

This chapter covers the integration of HP Service Activatorwith the HP NGOSS product Network
Automation.

The components dedicated to integration of Service Activator with NA are licensed for use as the
NA Liaison. To use these components the RTU (right to use) must be purchased in addition to the
license for the Service Activator core product.

Positioning of NA

NA maintains router configurations and enforces configuration policies.

NA connects to devices and configures them. NA also allows other systemto establish connections
to devices and intercepts them to monitor and log the configuration changes. NA typically
establishes abaseline configuration for each device according to its role in the network.

NA enforces compliance of policies for configuring devices; this involves monitoring, comparing
configurations to policies applicable to a group that a device belongs to, detection of violations,
alerting.

NA manages and downloads firmware versions and patches to all devices in a network and
performs backup and restoring of device configurations.

NA is generally notconcerned with configuring specific interfaces on service provider devices for
individual customer services.

Summary of Benefits of Integration with NA

By combining configuration management, setting up baseline configuration of devices done with
NA, and service activation, setup of customer service specific configuration done with Service
Activator, the complete device/service lifecycle is managed. NA is used heavily in the buildup of
network and service infrastructure, specifically to configure routing protocols, MPLS forwarding,
core network interfaces, BGP peering, ASN, general security settings, ACLs, passwords, QoS for
the service provider’s own traffic and otheraspects which are general and not specific to
individual customers’ VPNs. Once the infrastructure for a service offering is in place, Service
Activator will automate flow-through configuration of devices for all aspects of customer specific
services with minimal operator involvement and elimination of the requirement for operators to
master the commands needed to configure services.

Service Activator workflows can be used to control and automate processes consisting ofseveral
NA actions, for example to run testscripts, draw conclusions and take remedial actions.

NA can provide connectivity to devices that Service Activatorcan useincluding tunnelling to
devices that are not easily reachable, thus eliminating the need to configure Service Activator with
device specific usernames, passwords. etc., and ensuring that all device interactions to activate
services are logged togetherwith all other device interactions.

NA can ensure integrity of services configured on devices: when configuring the device Service
Activator will also configure NA to monitor the setup, leveraging NA’s ability to enforce policy
compliance.

Chapter 12

109

Service Activator SystemIntegrator’s Overview
Integration w ith NA

Also in the process of configuring a device for a specific customer service, Service Activatorcan
instruct NA to backup the device configuration, after all changes have been made, and annotate the
backup with a comment stating it was requested by Service Activator due to the specific service
that was configured.

As aminimum, evenif the functions of NA and Service Activatorare notcombined to obtain these
benefits, some coordination is necessary to avoid counterproductive effects such as NA detecting
and “repairing” by undoing the service specific device configurations setup by Service Activator
as violations of policy.

Readily Available Capabilities with NA

NA, with its management of connections across the network and into shielded network domains
can be usedas a proxy for network elements to provide connectivity for Service Activatorto
establish command sessions with network elements. The generic CLI plug-in can be configured to
use this capability.

The NA userinterface can be accessed by cross launch from the CNRM tree of the Service
Activator inventory user interface. Note that NA does notsupport Single Sign On.

The platform for running Service Activator and NA can be shared, including hardware, operating
system, and the database server (Oracle). The two applications both include JBoss, and it will be
necessary to configure one or the other JBoss instance to use non-default port numbers for
overlapping functions, such as web service access, etc.

Service Activator Components for Customized Integration with NA

A large number of workflow nodes are available, allowing Service Activator workflows to
exercise arange of the capabilities of NA, including:

e take backup snapshot ofdevice

e run scripts of different types

o create/delete devices and device groups,and manage group membership

e manage associations between device groups and rules, conditions and policies
o retrieve different types of information from NA to Service Activator

These nodes interwork with NA by invoking its web service interface through a dedicated
workflow manager module.

Summary of Techniques for Configuring Integration on NA

Where NA functions involve the running of scripts, it will be possiblein a script to use the mwfm
command line tool to run a Service Activatorworkflow.

Cross launching of Service Activator Ul from NA is notpossible.

Customizing and Configuring Service Activator to Work with NA

To usethe NA workflow manager module you must configure it in the configuration file for the
workflow manager; this will be needed for workflows that interwork with NA as well as for GUI
cross launch.

Workflows to Interwork With NA

In general workflows can be written to perform any tasks which can be accomplished through
execution of NA actions or scripts, using the workflow nodes thatare available. Such workflows
can be integrated in flow-through activation systems, or they can be launchable from the inventory
ul.

110 Chapter 12

Service Activator SystemIntegrator’s Overview
Integration w ith NA

If you write workflows with the capability to access devices through the CLI plug-in using NA as
a proxy, youwill need the following parameters to connectto NA: protocol, hostname, port,
username and password. Your workflow can get them from the singleton resource bean named
NAConfiguration which is included in the CRModel solution and edited in the inventory Ul, in
the Parameters tree for the CNRM as described in HP Service Activator, User’s and
Administrator’s Guide.

Monitoring Integrity of Constructs Configured on Devices

When Service Activatoractivates a service by configuring one or more devices with specific
constructs, for example Virtual Router Forwarding tables, the activation workflow can be extended
to setup arule and a policy on NA to monitor the integrity of those constructs. The rule that
defines remedial actions when the policy has been violated must be created on NA in advance and
may involve such actions as creating trouble tickets, sending email, even executing automatic
repair. NA is generally geared to manage groups of devices, notindividual services,so it will be
necessary to define a dedicated “group” per service instance and add the affected device to that
group. Then the policy which knows the command pattern for the construct for the service can be
defined for the group and associated with the action rule. The activation workflow can accomplish
all of that by means of the workflow nodes for NA integration.

Chapter 12

111

Service Activator SystemIntegrator’s Overview
Integration w ith NA

112 Chapter 12

Service Activator SystemIntegrator’s Overview
Development Hints

13 Development Hints

This chapter contains miscellaneous useful information that will be useful during development,
including testing and debugging.

Configuring Database Credentials

The Workflow Designer, Deployment Manager, Tree Deployer, Tree Designer and the Inventory
Builder all require the username and password for the system database to deploy data. To avoid
having to enter the credentials repeatedly, it is possible to create a configuration file with this
information that is read by the tools during startup. The file must be named dbAccess.cfgand be
placed in the directory $ACTIVATOR_ETC/config. Anexample file exists in this directory and is
named dbAccess_example.cfg.

NOTE This fle must not be present in a production environment

Configuring Injection of Request Messages for Test

If you usethe socket listener to receive incoming request messages,a message injector can be
configured as part of the System Administrator menu in the navigation pane of the main Ul. Files
thatyou wish to be able to inject must be placed in
$ACTIVATOR_ETC/templates_files/<your solution>.

In the Ul configuration file $JBOSS_ACTIVATOR/WEB- INF/web.xml configure these two
parameters, then restart HP Service Activator.

tests True enables injection of messages to a socket (CRM
simulation). Default is false.

socketL istener_port The socket port to which tests messages will be injected.

This port must match the configuration of the socket
listener module which is to receive the messages.

A menu item named Test Messaging will appear at the botton. When you select it a view listing
available files for injecting are shown. Right-click on the one youwant and select Start Test.
This will inject the message into the socket listener which will should start your workflow.

Workflow Testing and Debugging

To avoid having to inject messages to start workflows, you can start your workflow from the
Workflows view available in the Work Area of the navigation pane of the main UL. For this to
work, your workflow must be independent of pre-initialized variables. For initial testing you can
start the workflow in debug mode and initialize variables manually (see below). When you are
confident with the workflow, make the northbound integration and test the interaction with a
northbound systemto start the workflow.

Chapter 13 113

Service Activator SystemIntegrator’s Overview

Development Hints

There are several ways to trace what is happening when you run your new and unproven
workflows.

You can outputtrace messages thatyou can read in the Messages view. A number of messages
will be generated automatically by the workflow manager when the workflow contains or does
something invalid.

You can study the log file produced by the workflow manager and resource manager. You can
include entries generated from your own workflow (Log node) or plug-in (context method).
Such log entries can be directed to dedicated files.

You can dump the case-packet of your workflow to a file (WriteCasePacket node).

You can place extra AskFor nodes to interact with yourworkflow job, thus controlling its
progress.

If you setthe tests variable in the Ul configuration file (see above), you can start your
workflow in debug mode from the Workflows view. It will then interact with you from a
special queue, Debug, in the Active Jobs view when it reaches a breakpoint node, initially the
first node, before the breakpoint node is executed. In the debug interaction window you can
select single-step or setthe next breakpoint, and you can read and edit values of case-packet
variables, for example to initialize them as discussed above. You can view the current
breakpoint in a flowchart (workflow) view, and you can dump the case-packetto a file. An
example of the debug window is shown in Figure 13-1.

Figure 13-1 Debug Interaction Window

Debug Yiew - Google Chrome bli-

[3 iron.dnk.hp.com:8080/activatar/jsf/debugGLl/sabebugUl jsfPjobld=22 8queueName=debug

() Service Activator ! —

Ll workflow Yiew
Service It Host Hame Start Time Post Tims Step Queus
Fri Jan 09 Fri Jan 09
22 22 iron.dnk hp.com askFor_testl Initialized 15:39:44 CET 15:39:44 CET AskFor debug
2015 2015
Configure Break Point
® Select Break Poirt | Remove Break Point
STOP AT EVERY NODE -
User Case-Packet Details
add_opt Float 1000.0 B 1000.0 or sdd_op1
add_op2 Float 1000.0 B 1000.0 or sdd_opz
add_ap3 Float 10000 B 1000.0 or sdd_op3
add_op4 Float 10000 [o] 1000.0 or add_opa
add_ops Float 1000.0 n 1000.0 or add_ops
add_result [1 B 1 o 3dd_result
test_queue String B & test_queus
vard String B aF vard
System Case-Packet Details
ANNOTATION String B & ANNOTATION

114

Chapter 13

Service Activator SystemIntegrator’s Overview
System Configuration

14

System Configuration

Most of the configurable aspects of HP Service Activatorsolutions are covered in detail
elsewhere:

e The resource manager has its own configuration file (resmgr.xml) which is described in
detail in HP Service Activator, Developing Plug-Ins and Compound Tasks

e The workflow manager has its own configuration file (mwfm.xml) which is described in detalil
in HP Service Activator, Workflows and the Workflow Manager. Note that some important
workflow manager modules are notconfigured to be active upon installation, you must change
the configuration file to use these modules: authentication, audit, socket listener/sender,
statistics collection

e The userinterface is configured has a main configuration file (web.xml) and separate files for
solution specific modifications to the default Work Area menu. Both aspectare described in
HP Service Activator, User’s and Administrator’s Guide.

e Appendix B contains a list with descriptions of all configuration files

A couple of topics deserve special mention here.

Number of Threads and Memory Usage

The amount of parallel activity that can take place in an HP Service Activator systemis configured
for the workflow manager (in file mwfm.xml). The maximum number of workflow jobs that can
exist simultaneously is determined by the parameter Max-Work-List-Length. When this
number is reached, attempts to start additional jobs will fail. A typically much smaller number of
operating systemthreads will be used to execute the workflows, determined by the (global)
parameter Max-Threads. The assignment of threads to active jobs is managed by the Work
Manager module.

When a job is waiting on a queue or for an activation, it will notoccupy a workflow job thread.
However, to control the amount of parallel activation activity, the Activation module (normally
named activator), manages a private pool of so-called activation threads. The maximum number of
concurrent activations will be limited by the (module) parameter max_threads. Whenall these
threads are in use, additional workflow jobs attempting to start activations will be queued.
Activations do not occupy operating systemthreads in the workflow manager, butthey doin the
resource manager. That is the real significance of the max_threads parameter.

A starvation problem may occur in the resource manager: if the arrival rate of activation requests
is higher than the execution rate over a period of time, all activation threads may become busy and
some activation tasks may need to wait to acquire a thread. This is notin itself a problem, asthe
capacity of the activation target will necessarily set the ultimate limit for the number of activation
requests that can be processed. However, if a solution has multiple activation targets, it may occur
thatall activation threads are waiting for justone or some of them, while others targets are not
engaged. It may then be advantageous to divide up the total number of activation threads and
dedicate different pools for different targets or groups of targets to let loose the full potential of
parallel processing. This can be achieved by configurings multiple instances of the Activation
module, each one with a thread pool dedicated to one or more activation targets. Activate nodes in

Chapter 14

115

Service Activator SystemIntegrator’s Overview

System Configuration

workflows must then use the activation_module parameter to select an Activation module
instance and hence one of the thread pools.

The memory consumption of the workflow engine, i.e. workflow manager plus resource manager,
will depend on the number and size of deployed workflows and plug-ins, buteven more on the
number of workflow threads and activation threads along with the sizes of their case-packets and
the variables of the plug-ins. If you setthe maximum numbers for the threads very high, out-of-
memory exceptions may occur at run-time. You should make sure thatyour systemtesting goes to
the limits that you have configured.

Instructions for increasing the memory size of the JBoss process that includes the workflow engine
are found in HP Service Activator, Installation Guide.

Data Sources

Pools of JDBC database connections are known as data sources. Separate data sources are used for
different data access purposes. The configuration script for HP Service Activator
(ActivatorConfig) generates a datasource configuration with six data sources. All of the generated
data sources will refer to the same database, the systemdatabase. Except for the inventoryDB data
source this must remain so.

Depending on the needs of a solution it can be appropriate to add datasources and modify the
autogenerated poolsizes. When pools are temporarily exhausted, parallel processing will be
limited. If customized elements of a solution fail to release connections to their pools, permanent
pool exhaustion will cause the processing of the kind that uses the pool to stop.

The automatically generated data sources are the following (with names used in the
standalone.xml configuration file):

defaultDB for a number of internal systempurposes

mwfmDB for access from the workflow manager, to persisted workflow states and by
default to inventory data (via the db database module)

resmgrDB for access from the resource manager, to resource locks, to deployed plug-ins

inventoryDB for access from Ul to inventory data (solution data repository)

uibB for all otheraccess from Ul
serviceDB for access from the workflow manager to definitions of atomic and compound
tasks

The generated data source configuration shall be changed in the following cases:

e To access inventory data (solution data repository) in more than one database (for example in
the case of external inventory integration; see the section on the topic in chapter 5). To access
inventory data in more than one database from workflows will require a database module to be
configured for the workflow manager per database (see HP Service Activator, Workflows and
the Workflow Manager), and to access the inventory data from the inventory Ul will require
separate inventory tree definitions (see HP Service Activator, Inventory Subsystem).

e To useseparate pools for data access from workflows when some of the accesses use generated
beans and others use explicit SQL code and/orcustomnodes. This will facilitate
troubleshooting and support by isolating the effect of errors in the customcode.

Refer to the HP Service Activator, User’s and Administrator’s Guide for a description of how to
configure data sources.

116

Chapter 14

Service Activator SystemIntegrator’s Overview
Localization

15

|_ocalization

This chapter describes the different resource bundles that must be translated to localize an HP
Service Activator solution.

In general the Java resource bundles you must translate are files with names ending in
_en_properties. You must make a copy of each resource bundle file, where you replace _en in
the file name with the appropriate abbreviation for the locale, like _jp or _dk.

Then you must translate the contents ofeach file to the language of the locale. The files must be
saved encoded in the ISO 8859-1 character set with appropriate escape sequences to represent
characters that do not have 8-bit codes; the Java utility native2ascii may be helpful to convert
from a UTF character setto 1ISO 8859-1.

NOTE

When the same English word or phrase appears in property files for several parts of the Ul, make sure to
translate it consistenty. On the other hand, a property may be used in several places within a single part of
the Ul, and you should make sure that the translation you choose is appropriate in all of those places.

After you modify resource bundles, restart HP Service Activatorfor the new resources to become
available.

Localizing the Main Ul Window and most views

The basic resource property bundles are found in SACTIVATOR_ETC/nls.

You must create a Java archive named nls. jar contaning all the translated resource bundle files
and deploy it to $JBOSS_EAR_LIB.

There are a couple of small exceptions: column headers for the Logs view, non-default column
headers for the Active Jobs view, and non-default entries in the Work Area menu are not defined
in the resource property bundles. The “non-default” items occuronly when the Ul has been
configured in special ways; follow the reference at the beginning of chapter 14 to understand the
options.

If you want to localize the column header for Logs views, do it directly in file
$IBOSS_ACTIVATOR/xsl/salLogs.xslt.

If you define non-default columns for the Active Jobs view, you must define them exactly as you
want them to appear in file $IBOSS_ACTIVATOR/WEB- INF/web . xml.

If you introduce new items in the Work Area menu or change the label on existing ones, you must
define the labels exactly as you want them to appear in the solution menu file.

Localizing the Service Order View and more

Some parts the Ul are implemented with Java Server Faces. The resource property bundles for
these parts are found in $JBOSS_ACTIVATOR/WEB-INF/classes/jsf-resources. Whenyou
add support for a new locale, you must also add that locale in file $JBOSS_ACTI1VATOR/WEB-
INF/classes/faces-config/locales.xml.

Chapter 15

117

Service Activator SystemIntegrator’s Overview
Localization

Localizing the User Management Ul

Files to localize for the User Management Ul are:
$JIBOSS_ACTIVATOR/WEB-INF/c lasses/umm.properties and
$JIBOSS_ACTIVATOR/WEB- INF/c lasses/com/hp/ov/act ivator/mwfm/umm/* _.properties

Localizing Inventory Ul

There are several parts to localize for the Inventory Ul relating to inventory resources and tree
definitions, as described in a dedicated chapter in HP Service Activator, Inventory Subsystem.

Custom Ul Files in Solution Source Hierarchy

In the solution source hierarchy you build, files to be deployed for the Ul should be placed under
the Ul directory, which is a direct child directory of the main solution directory (in Figure 3-2
there is no Ul directory, but it should be at same level as etc, inventory, plugins). The paths used
under the Ul directory should equal the target paths relative to $IBOSS_ACTIVATOR.

118 Chapter 15

Service Activator SystemIntegrator’s Overview
Scripts

Appendix A Scripts

This table contains locations and descriptions of the scripts that are available in Service Activator.
Unless otherwise indicated, these files are located in the SACTIVATOR_BIN directory. In general
the scripts have help options to explain usage,or do so when called without or with incorrect

Table A-1

parameters.

Service Activator Scripts

Script

Description

/etc/init.d/activator or
/sbin/init.d/activator

Starts/stops the Service Activator processes
(Linux and HP-UX, only).

ActivatorConfig[-bat]

Configures Service Activator for a specific
environment.

AssignNonRoot

Configures Service Activator to run as non-root,
only on UNIX

CatchSocketSenderMessages[-bat]

Listens for messages ona given port and prints
those messages to stdout. This script is typically
used for testing and demonstration of the
SocketSenderModule of the Workflow Manager.
By default, it listens on port 4099, buttakes a
single parameter to specify the port.

checkLicence.[bat]

Checks the status ofthe HP OpenView AutoPass
license and prints outdebug information.

CleanLogs[-bat]

Deletes all butthe active logs

createUsageReport[.bat]

Generates a digitally signed usage report and
stores theresult in a file.

crypt[.bat]

Encrypts or decrypts a password for local use, to

avoid storing unencrypted passwords in the
workflow manager configuration file.

dc[-bat]

Starts Data Collector, command line tool for
gathering information about the Service Activator
components (Workflow Manager, Resource
Manager, JBosS).

DeleteCompleteTransactions|[.bat]

Cleans up saved completed activation
transactions.

deploymentmanager [-bat]

Invokes the Deployment Manager executable.

Appendix A

119

Service Activator SystemIntegrator’s Overview
Scripts

Script Description
designer[.bat] Runs the Workflow Designer tool
generateEncryptedPassword[. bat] Utility to generate an encrypted password. This

can be used when an additional data source file
has to be created.

generateMD5[.bat] Calculates MD5 checksum for a file.
InventoryBui lder[.bat] Runs the InventoryBuilder tool.
InventoryTreeDeployer[.bat] Runs the Inventory TreeDeployer tool.
InventoryTreeDesigner[.bat] Runs the InventoryTreeDesigner tool.
modifySystemPassword[-bat] Utility to update the systemuserpassword.
mwfmtoo I [.bat] A command line tool for performing workflow

engine tasks such as starting workflows and
viewing posted messages. If this script is

executed without any parameters, it will display a
list of all the tasks that can be performed.

NNMExtP roperties[-bat] Creates ext properties on NNMi.
remove. serviceactivator Uninstalls Service Activatoron UNIX.
removeC lusterNode [-bat] Removes the specified cluster node from the

clusternodelist table in the systemdatabase.

servicebuilder[.bat] Invokes the Service Builder executable, either the
command line (if arguments are passed)or the
GUI (if no arguments are passed).

TestAtomicTask[.bat] Starts an atomic task for testing purposes.

UMMData[.bat] Imports/export roles with inventory Ul privileges
from/to file.

updateL icence. [bat] The script lets you update your trial or existing

licence for HP Service Activator.

ViewTransactionState[.bat] Displays the different states ofa completed
transaction.

WebServiceDesigner[.bat] Runs the WebServiceDesigner tool.

120 Appendix A

Service Activator SystemIntegrator’s Overview
Configuration Files

Appendix B Configuration Files

The following table identifies and describes the configuration files that are provided with Service
Activator. Unless otherwise indicated, these files are located in $ACTIVATOR_ETC/config.

Table B-1

Service Activator Configuration Files

File

Description

CompoundTask .dtd

Document type definition (DTD) for compound task
files created by Service Builder.

par.dtd

DTD for the MANIFEST/par.xml file found in the
Plug-in Archive (PAR).

resmgr . xml
(resmgr .dtd)

Configuration file for the Resource Manager and
associated DTD.

CLIv4.dtd

DTD for dialog control document for the Generic CLI
plug-in.

LDAP.dtd

DTD for dialog control document for the LDAP plug-
in.

service_builder.xml

Configuration file for Service Builder.

designer.xml

Configuration file for the Workflow Designer.

$ACTIVATOR _ETC/
workflows/workflow.dtd

DTD for workflow definition.

inventoryTree.dtd

DTD for inventory tree definition file.

mwfm.xml
(mwfm.dtd)

Configuration file for the Workflow Manager and
associated DTD.

role_mappings.xml
(role_mappings.dtd)

Definition file and associated DTD for configuring

role mappings. The role mappings definition file is
optional.

dm.dtd (dm.xml)

Configuration file and associated DTD for the
Deployment Manager.

deploy.dtd

DTD for deployment descriptor.

menu.xml (menu.dtd)

Default menu definition file for Work Area menu and
its DTD.

Appendix B

121

Service Activator SystemIntegrator’s Overview

Configuration Files

File

Description

solutionmenu .dtd

DTD for solution specific modifications to menu
definition.

Queues. xsd

XDS for queue management configuration

ummData .xsd

XSD for usermanagement data

xmaps . xsd

XSD for xmaps

WebService.xsd

XSD for web service definitions (SOAP)

$JBOSS_DEPLOY/

hpsa.ear/activator.war/
WEB-INF/web . xml

Configuration file for the Ul and servlets. For
additional information, see the following references:
Chapter 7, the section “Other User Interface
Configuration” in HP Service Activator, User’s and
Administrator’s Guide;

Chapter 5, the beginning, in HP Service Activator,
Inventory Subsystem;

Chapter 4, the section “AskFor” in HP Service
Activator, Workflows and the Workflow Manager.

$JBOSS_HOME/ standalone/
configuration/standalone.xml

General configuration file for JBoss. Data sources
used by HP Service Activator are defined in this file.
For additional information, see:

Chapter 14, the section “Data Sources” in this guide;

Chapter 7, the section “Data Source Configuration” in
HP Service Activator, User’s and Administrator’s
Guide;

Chapter 4, the section “Adding a Data Source for
Inventory UI”, in HP Service Activator, Inventory
Subsystem.

$JBOSS_DEPLOY/

hpsa.ear/deployer .war/
WEB-INF/web . xml

Contains the configuration for the deployer serviet
used by Service Builder. See “Configuring
Authentication or Authorization” in HP Service
Activator, Developing Plug-Ins and Compound Tasks
for a description of the configurable parameters in this
file.

122

Appendix B

Service Activator SystemIntegrator’s Overview
Java Message Service

Appendix C Java Message Service

This appendix gives you a quick introduction to those aspects of JMS, Java Message Service,
which are relevant with respectto using this type of communication interface for an HP Service
Activator solution.

JMS is a standardized interface for access from a Java-based client toa MOM infrastructure
(Message Oriented Middleware). A MOM productis used build the infrastructure for intercommu-
nication between applications within an enterprise. Several MOM products come with JMS
providers, i.e. a software layer that makes it possible to access the intercommunication service
overa JMS interface. When sucha MOM is available it can be used for intercommunication
between HP Service Activator and other systems that it must be integrated with.

JMS comprises two datatransfer modes, using two kinds of service access points known as
destinations: queues and topics. An installation may supportone or both modes. Queues are for
point-to-point communication: one client, the sender, puts a message into the queue; the other
client receives the message. Topics are for one-to-many communication, where the senderdoes not
know the receivers. A sender client publishes a message on a topic; several clients can subscribe to
receive messages from the topic.

When one client receives request messages from anotherclient, the queue is the appropriate mode
of communication. If the responseis only of interest for the originator of the request, it is also
appropriate to send it on a queue; two different queues will be needed for requests and responses.
If the response is actually a general status update which could be of interest to multiple parties the
appropriate mode will be topic. The same is the case when a client wishes to communicate a state
change which is not the result of a specific request; this situation could occur, for example, when
the client is an Element Manager detecting changes that happen on network elements, or even new
network elements thatare deployed in the network.

Figure C-1 shows two JMS clients exchanging messages through two queues, one for each
direction of traffic.

Figure C-1 MOM, JMS Provider and JIMS Clients

Client A

Client A

MOM with JMS

Provider

Queues and topics are generally created and managed by administration of the MOM and JMS
provider software, not by client-server interactions. Clients connectto destinations which already

Appendix B 123

Service Activator SystemIntegrator’s Overview

Java Message Service

exist through administrative configuration of the infrastructure by making requests toa JMS
connection factory to create connection objects, which will be different for queues and topics. The
client will find the connection factory and the destination by looking them up using a JNDI
naming service.

JMS Listener and Sender Modules

Durable Topics

From V5.1 HP Service Activatorincludes JMS listener and senderworkflow manager modules
which make it possible for an HP Service Activator-based systemto act as a JMS client, i.e. to
receive and/orsend messages over a JMS interface.

The communicating parties on HP Service Activatorwill be workflow jobs. A running job can put
a message tothe JMS service by executing the SendMessage node with a parameter specifying the
sendermodule. The listener module can start a workflow job to process each received message.

Some administrative facts abouta JMS provider must be known to its clients. These facts must be
known to the JMS listener and sender modules as configuration parameters.

Before a client can access adestination, it must connecttoit. To do that, it must look up the
destination through a JNDI naming server. The basic installation specific administrative facts that
any communicating client must know are: the host name/address and port number where the JNDI
server provides the lookup service, the name of the initial context class that must be instantiated to
usethe JNDI server, the name of the connection factory of the JMS server, and the name(s) of the
destination(s) it will use.Finally, dependingon its configuration, the JMS provider may demand
that the client authenticate the requestto connect to a destination by supplying username and
password.

Additional parameters of the JMS listener and sendermodules control the local behaviour of the
modules, internally and vis-a-vis communicating workflow jobs. These parameters are not related
to JMS as such. You will find them described in HP Service Activator, Workflows and the
Workflow Manager, in the sections about these modules.

What is sentas a message from a workflow using the JMS sendermodule is conveyed as the body
of a JMS message. There are currently no means to control and use JMS message header fields
(JMSDeliveryMode, JMSMessagelD, JIMSTimestamp, JMSCorrelationID, JMSReplyTo,
JMSRedelivered, IMSType, IMSExpiration, JMSPriority, or message properties). Likewise it is
only the body of a received JMS message which is passed to the workflow job that will process the
message.

Queues are always store-and-forward. The MOM is expected to retain messages until they are
consumed. The receiving client is not requried to listen for messages at all times. If it is inactive
for a period and then reconnects, it will receive messages that have been sentin the meantime.

With topics, in general, listeners only receive the messages that are published while the listener is
connected, but it is possible to create a durable topic subscription, thereby requesting of the IMS
provider that when the listening client temporarily disconnects, published messages shallbe
retained and delivered when it reconnects. A durable topic subscription must be identified by a
unique identifier supplied by the client. A durable subscription will exist until it is explicitly
unsubscribed by the client.

Using HornetQ in JBoss as MOM

If you need to integrate HP Service Activatorwith another application that also supports IMS, and
the capabilities of JIMS are appropriate for the integration, butthere is no suitable MOM in the
customer’s environment, then it is possible to use HornetQ which is available as a part of the
JBoss application server that HP Service Activator is running on.

To accomplish this, you will need to configure HornetQ to support the necessary destinations with
the appropriate security (roles, user names and password). The topic of managing HornetQ is
beyond the scope of this manual. You must find and read the applicable JBoss documentation.

124

Appendix B

Service Activator SystemIntegrator’s Overview
Java Message Service

You will need to add the use of HornetQ under messaging in the JBoss configuration file
$JBOSS_HOME/standalone/configuration/standalone.xml. You will needto usethe
utility add-user in $JBOSS_HOME/bin to add application user(s) with role(s).

Appendix B 125

	1 Introducing HP Service Activator
	Positioning an HP Service Activator Solution
	Positioning in the Provider’s Environment
	Positioning in TMF NGOSS Maps
	Positioning in HP OSS Blueprint

	HP Service Activator Component Architecture
	Workflows
	Plug-ins and activation tasks
	Solution Data Repositories (Inventory)
	Northbound interface

	Solution Packages
	A Typical Workflow
	HP Service Activator Documentation

	2 Solution Components and Tools
	Database Repositories
	Solution Data Repositories (Inventory)
	Plug-Ins and Activation Tasks
	Plug-In Development
	Customizing Control Templates for Generic Plug-ins

	Workflows
	Workflow Structure
	Workflow Manager Architecture

	User Interface and Roles
	Interfaces for Integration
	Integration with Other HP NGOSS Products: NNMi, NA, uCMDB
	Solution Deployment

	3 An Example Solution: Intro_Example
	Contents of the Intro_Example
	Deploying the Example
	Examining Components of the Intro_Example Solution
	Running the Intro_Example Solution Workflows

	4 Solution Planning and Analysis
	Activities in a Project to Build a Solution
	Analysis

	5 Solution Design
	Solution Labelling
	Queuing Sub-System
	Configurable aspects of queues

	Connection Pools
	How pools work
	Configurable aspects of pools
	Pools and target locking
	Design considerations for the use of pools

	Plug-Ins
	Customized Use of Generic Plug-ins
	Creating New Plug-ins
	Target Locking
	Secure Communication with Targets
	Plug-ins for Web Services and Corba Interfaces

	User Interface and Roles
	UI Integration Using LWSSO or SPENEGO
	UI Integration Without LWSSO
	A Note on Workflow Start Role Attribute
	Viewing Jobs During Activation

	Encrypted Passwords
	Data Models
	External Inventory Integration
	Workflow Processes
	Controller Workflow Pattern
	Activation Workflow Structure: Before - Activate - After
	Workflow States
	Business Processes
	Using Cache with Inventory
	Starting Workflow from Inventory UI
	Interworking with NNMi and NA
	Workflow Job Persistence
	Business Calendars
	Considerations for Custom Workflow Nodes

	Solution Monitoring
	OIDs for Traps Emitted from HPSA

	Northbound Interface
	Workflow Contract
	Using Listener and Sender Modules
	Using Web Service Servlets

	6 HP Service Activator Platform
	Cluster Platform
	Cluster Installation and Setup
	Workflow Load Distribution
	Internal Load Balancing, Virtual IP Address
	External Load Balancing

	Standby Sites for Disaster Recovery
	Internet Protocol Versions (IPv4, IPv6)
	Managing an HP Service Activator Cluster
	User Interface Functions for Cluster Nodes
	Synchronizing Time on Cluster Nodes

	7 Roles, Privileges and Authentication
	System User and Predefined Roles
	Assigning Privileges to Roles
	User Interface
	Workflows
	Inventory
	Deploying Plug-ins

	Authentication and Assigning Roles to Users
	Native Authenticator Module
	OS-based Authenticator Modules
	Role Mapping
	LDAP Authenticator Module
	Role Mapping

	Organizing Users in Teams
	Light Weight Single Sign On
	SPENEGO

	8 C ommon Network Resource Model
	Adapting the CNRM for a Solution
	CNRM Workflows
	CNRM on the Inventory User Interface
	Model Configuration Data
	Object Classes of the CNRM
	Bean Class Network
	Bean Class NetworkElement
	Bean Class NetworkAttachment
	Bean Class ElementComponent
	Bean Class TerminationPoint
	Bean Class Interface
	Bean Class Link

	Configuring CNRM Dataload from NNMi
	Model Enrichment

	9 Web Service Designer
	Defining a Web Service
	Web Service Designer Tool
	Defining a Web Service Method
	Using a Template for Method Input as XML Document
	Build and Deploy Web Servlet

	Extracting WSDL Definition

	10 Usage Monitoring
	Introduction
	Configuration
	User Interface
	Threshold Violations
	Usage Reports
	Usage Records
	Generating a Usage Report
	Usage Report Example

	11 Integration with NNMi
	Positioning of NNMi
	Summary of Benefits of Integration with NNMi
	Readily Available Capabilities with NNMi
	Loading and Synchronizing of the CNRM
	UI Cross Launch from Service Activator to NNMi
	UI Cross Launch from NNMi to Service Activator

	Components for Customized Integration with NNMi
	NNMLiaison plug-in
	SNMP trap module
	NNMi module
	Dataload module
	Workflow Nodes

	Summary of Techniques for Configuring Integration on NNMi
	Customizing and Configuring Service Activator to Work with NNMi
	Workflows to Interwork With NNMi
	UI Cross Load

	12 Integration with NA
	Positioning of NA
	Summary of Benefits of Integration with NA
	Readily Available Capabilities with NA
	Service Activator Components for Customized Integration with NA
	Summary of Techniques for Configuring Integration on NA
	Customizing and Configuring Service Activator to Work with NA
	Workflows to Interwork With NA
	Monitoring Integrity of Constructs Configured on Devices

	13 Development Hints
	Configuring Database Credentials
	Configuring Injection of Request Messages for Test
	Workflow Testing and Debugging

	14 System Configuration
	Number of Threads and Memory Usage
	Data Sources

	15 Localization
	Localizing the Main UI Window and most views
	Localizing the Service Order View and more
	Localizing the User Management UI
	Custom UI Files in Solution Source Hierarchy
	Appendix A Scripts
	Appendix B Configuration Files
	Appendix C Java Message Service
	JMS Listener and Sender Modules
	Durable Topics
	Using HornetQ in JBoss as MOM

