
HP Business Service Management
for the Windows and Linux operating systems

Software Version: 9.12

TransactionVision Advanced Customization Guide Version 9.10

Document Release Date: November 2011

Software Release Date: November 2011

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial Items are
licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notices

© Copyright 2000-2011 Hewlett-Packard Development Company, L.P.

Trademark Notices

TransactionVision® is a registered trademark of the Hewlett-Packard Company.

Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.
AMD and the AMD Arrow symbol are trademarks of Advanced Micro Devices, Inc.
Google™ and Google Maps™ are trademarks of Google Inc.
Intel®, Itanium®, Pentium®, and Intel® Xeon® are trademarks of Intel Corporation in the U.S. and
other countries.
iPod is a trademark of Apple Computer, Inc.
Java is a registered trademark of Oracle and/or its affiliates.
Microsoft®, Windows®, Windows NT®, Windows® XP, and Windows Vista® are U.S. registered
trademarks of Microsoft Corporation.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
UNIX® is a registered trademark of The Open Group.

Acknowledgements

This product includes software developed by the Apache Software Foundation
(http://www.apache.org).

This product includes software developed by the JDOM Project (http://www.jdom.org).

This product includes software developed by the MX4J project (http://mx4j.sourceforge.net).

 3

Table of Contents

Warranty .. 2
Restricted Rights Legend .. 2
Trademark Notices .. 2
Table of Contents .. 3
1. Welcome to This Guide ... 5

1.1. Who Should Read This Guide ... 5
1.2. Transaction Management Documentation ... 5
1.3. Additional Online Resources ... 6
1.4. Documentation Updates ... 7

2. Architecture Overview .. 9
2.1. System Components... 9
2.2. Database (RDBMS) ... 10

3. Extending the Analyzer ... 11
3.1. About XML Message Data in Events .. 11
3.2. How to Convert Custom Message Data Formats in Events ... 12
3.3. Overview of XDM Files .. 13
3.4. How to Map Custom Message Data Fields to Database Tables 13
3.5. Additional XDM File Examples .. 17
3.6. How to Classify Business Transactions and Map Attributes to Database Tables 19
3.7. How to Perform Custom Correlation of Related Events .. 23

4. Reference - Extending the Analyzer .. 29
4.1. Using the Beans.xml File ... 29
4.2. Unmarshalling Message Data .. 31
4.3. Trimming Data From an Event .. 47
4.4. XML-Database mapping Using XDM Files .. 47
4.5. Performing Event Analysis .. 49
4.6. Transaction Classification .. 55
4.7. Extending the System Model ... 82

5. Using the Query Services .. 85
5.1. The Query Document ... 86
5.2. Sample Usage... 88
5.3. Class QueryService .. 90
5.4. Class QueryDoc ... 95
5.5. Class QueryDoc.WhereClause ... 97
5.6. Interface Query .. 100
5.7. Interface Cursor ... 101
5.8. Class DataManagerException .. 106

6. Extending the User Interface ... 109
6.1. Adding Query Pages .. 109

Table of Contents

4

6.2. Adding Columns to the Event List View ... 111
6.3. User Interface Utility Classes .. 112
6.4. Using Job Beans ... 114

7. Java Agent Point Extensions for TransactionVision ... 117
7.1. TV Specific Point Extension .. 117
7.2. Extension for Code Snippets .. 118
7.3. TV Callbacks (TV Extension - $callback$) ... 122
7.4. Point Expressions (TV Extension - $type$) ... 125
7.5. TV Event Lifecycle .. 131
7.6. Testing TV Agent Point Extensions .. 132
7.7. Custom Content Handlers .. 136
7.8. Payload Capture For Servlets ... 138
7.9. Payload Capture for Servlets ... 140

8. Generic Events .. 141
8.1. The Generic Event XML Specification ... 141
8.2. Sending Generic Events ... 147

9. Database Schema ... 152
9.1. System model object tables .. 152
9.2. Event Tables .. 159
9.3. Event Relationship Tables ... 163
9.4. Transaction Tables ... 163
9.5. Statistics Tables ... 164
9.6. RUM processing Tables ... 166
9.7. Other internal tables ... 167

10. Event XML Schema .. 168
10.1. Basic Types .. 168
10.2. Event Schema Description ... 169

11. The Data Manager ... 173
11.1. Using the DataManager to Access the Database ... 173
11.2. XML-Database Mapping Using XDM Files .. 176
11.3. The XDM Syntax ... 176
11.4. The XMLDatabaseMapper Interface ... 183
11.5. Extending the /Event Document Type ... 185
11.6. Extending the /Transaction Document Type ... 186

Appendix: EventModifierRules DTD ... 187

 5

1. Welcome to This Guide

This guide describes how the TransactionVision platform can be extended and customized to
achieve further control over its various functions. It presents an architecture overview of the
TransactionVision system and documents the different methods available to use and extend
the Analyzer and the query service.
This chapter contains the following sections:

• 1.1. Who Should Read This Guide

• 1.2. TransactionVision Documentation

• 1.3. Additional Online Resources

• 1.4. Documentation Updates

1.1. Who Should Read This Guide
This guide is for the following users of TransactionVision:

• Application developers

• System or instance administrators

• Database administrators
Readers of this guide should be working with HP Support or other representative.

1.2. Transaction Management Documentation
Transaction Management documentation provides information on using the Transaction
Management application of BSM and deploying and administering the TransactionVision
components in the BSM deployment environment.
The Transaction Management documentation includes:

• The TransactionVision Deployment Guide describes the installation and
configuration of the TransactionVision-specific components in the HP Business
Service Management deployment environment. This guide is available as a PDF in
the BSM Online Documentation Library.

• The Using Transaction Management guide describes how to set up and configure
TransactionVision to track transactions, and how to view and customize reports and
topologies of business transactions. This guide is available as the Transaction
Management Portal or as a PDF in the BSM Online Documentation Library.

Chapter 1 • Welcome to This Guide

6

• The TransactionVision Planning Guide contains important information for sizing
and planning new installations of TransactionVision.

• The TransactionVision Advanced Customization Guide contains information for
how the TransactionVision platform can be extended and customized to achieve
further control over its various functions. This guide is available as a PDF in the
BSM Online Documentation Library: Transaction Management Portal >
TransactionVision Administration > Advanced Customization, Using the APIs
topic.

Note: Updates to these guides sometimes occur independently of the software. See 1.4
below for information on how to get the most current documentation.
Additional Transaction Management documentation can be found in the following areas of
the Documentation Library:
• Release Notes. Provides a list of version limitations and last-minute updates. You can

also access the most updated release notes file from the product DVD or from the HP
Software Support Web site.

• What’s New. Provides a list of new features and version highlights. In HP Business
Service Management, select Help > What’s New.

• Online Documentation Library. The Documentation Library is an online help system
that describes how to work with HP Business Service Management and the Transaction
Management application. You access the Documentation Library using a Web browser.
For a list of viewing considerations, see “Viewing the HP Business Service Management
Site” in chapter 6 of the HP Business Service Management Deployment Guide PDF.

To access the Documentation Library, in HP Business Service Management, select Help
> Documentation Library. Context-sensitive help is available from specific HP
Business Service Management pages by selecting Help > Help on this page and from
specific windows by clicking the Help button. For details on using the Documentation
Library, see “Working with the HP Business Service Management Documentation
Library” in Platform Administration.

1.3. Additional Online Resources
Troubleshooting & Knowledge Base accesses the Troubleshooting page on the HP
Software Support Web site where you can search the Self-solve knowledge base. Choose
Help > Troubleshooting & Knowledge Base. The URL for this Web site is
http://h20230.www2.hp.com/troubleshooting.jsp.
HP Software Support accesses the HP Software Support Web site. This site enables you to
browse the Self-solve knowledge base. You can also post to and search user discussion
forums, submit support requests, download patches and updated documentation, and more.
Choose Help > HP Software Support. The URL for this Web site is
www.hp.com/go/hpsoftwaresupport.
Most of the support areas require that you register as an HP Passport user and sign in. Many
also require a support contract.
To find more information about access levels, go to:
http://h20230.www2.hp.com/new_access_levels.jsp
To register for an HP Passport user ID, go to:
http://h20229.www2.hp.com/passport-registration.html

Chapter 1 •Welcome to This Guide

 7

1.4. Documentation Updates

HP Software is continually updating its product documentation with new information. To
check for recent updates, or to verify that you are using the most recent edition of a
document, go to the HP Software Product Manuals Web site
(http://h20230.www2.hp.com/selfsolve/manuals).
To search for TransactionVision documentation, choose TransactionVision, the desired
product version and operating system, and click Search.

 9

2. Architecture Overview

This chapter includes the following sections:
• 2.1. System Components
• 2.2. Database

2.1. System Components
TransactionVision consists of the following logical components:
• The agent component generates events based on the technology being monitored. The

agent gets configuration and filtering messages from the configuration queue and sends
events into the event queue. The event and configuration queues are represented by the
“event transport” box in the diagram on the following page.

• The Analyzer component is responsible for retrieving and analyzing events from the
communication link. It contains a chain of Java bean contexts, each performing a
particular function on the event data. Each bean context can hold multiple chained beans
to perform custom processing of the event data. The beans in each bean context are
controlled by the Beans.xml file. The main components of the Analyzer include:

Unmarshaller bean context. Converts raw event data from its binary format into XML.
This bean context provides an environment for user message data unmarshaller beans to
be plugged in.

DBWriteExit bean context. Allows a custom bean to trim or cut down on the data
written into the database. This gives a user flexibility to cut down on storage size.
Typically this is an XSLT which processes the XML tree generated by the unmarshaller
context.

Database write context. Maps the XML tree generated by the unmarshaller and trim
contexts to database tables and writing the tree into the database. This context uses the
XML data mapper component to map the XML tree to relational database tables.

Analysis context. Performs event correlation, local and business transaction analysis,
transaction classification, statistics analysis and any other custom data analysis.

Note: This guide provides details of extending the installed TransactionVision components.
Incorrect changes to the components will break the functioning of the product.

Chapter 2 • Architecture Overview

10

2.2. Database (RDBMS)
The RDBMS consists of a TVISION schema, where communication links, filter, queries and
other administration related information is stored and Analyzer-specific schemas, where
events collected by each Analyzer are stored. Each of these schemas consists of an event
table, where the event identifier and the XML event are stored, and several lookup tables
that provide indexes to the event. In addition there are several other tables in an Analyzer
schema storing event correlation, local transaction, business transaction and other system
infrastructure objects related information.
The following diagram shows the TransactionVision architecture layout:

 11

3. Extending the Analyzer

The Analyzer reads in binary event packets from the TransactionVision Event Queue and
processes them through a chain of bean contexts. Each bean context performs a specific
function to analyze and write data from the event into the database. Many of these
operations can be extended and customized to perform transformations based on your
systems or application needs. This chain of beans is defined by the Beans.xml file which can
be found in the XML section of the Analyzer Configuration page. The sequence of bean
contexts includes:

• The event modifier context, which allows users to write custom beans to modify the
incoming event, such as convert binary message data into XML.

• The data writer context, which contains beans to write the data into various
relational database tables.

• The analysis context, which contains various beans to perform event analysis,
transaction analysis and correlation of events to create a business transaction.

Each context holds beans that perform a default function and can be replaced or added on to
perform further actions on the data being processed. The following sections document
common tasks related to extending the Analyzer:
• 3.1. About XML Message Data in Events
• 3.2. How to Convert Custom Message Data Formats in Events
• 3.3. Overview of XDM Files
• 3.4. How to Map Custom Message Data Fields to Database Tables
• 3.5. Additional XDM File Examples
• 3.6. How to Classify Business Transactions and Map Attributes to Database Tables
• 3.7. How to Perform Custom Correlation of Related Events

3.1. About XML Message Data in Events
When your message data is composed of XML, a custom bean is not required to have the
XML processed by the Analyzer. Instead, TransactionVision provides a default modifier that
is enabled by default and attaches the message data XML contents to the TransactionVision
event.
The default event modifier bean is:
com.bristol.tvision.services.analysis. eventmodifier.DefaultModifierBean

Chapter 3 • Extending the Analyzer

12

This beans scans the user data for any XML data and, if found, adds it to the Event XML
document at the position /Event/UserData/Chunk[@seqNo=’n’] where n is the number of
the data range (defined in the data collection filter).
You can view the collected XML data from events in the User Data portion of the Event
Details report:

The collected XML message data can be mapped to custom database tables based on the
kind of analysis that is required to be performed on the message data. Section 3.4 describes
how to implement this mapping.

3.2. How to Convert Custom Message Data Formats in Events
Typically, event data from applications may contain binary, text or XML data embedded
within the message. This data is often in custom and proprietary formats that are not known
to the TransactionVision Analyzer. A common task is to convert these custom formats into
XML within the Analyzer for later use in reports for analysis, browsing or querying.

 13

To code the conversion, access the EventModifierRules XML in the TransactionVision
Administration application of BSM as follows:

For details see 4.2.2The Rules-based Event Modifier Bean.

3.3. Overview of XDM Files
Certain pieces of information in the message data may be useful to be queried upon by
custom reports or analysis modules. In that case, these fields need to be extracted from the
message data and mapped to database columns by the Analyzer. Before these fields can be
written to a database column by the Analyzer, they need to be extracted from the message
and converted to XML (if not already in the XML format). Section 3.2 describes how to
extract binary message data and convert it to XML and Section 3.1 describes how to handle
XML message data.
The TransactionVision database schema is made extensible through the XML to Database
Mapping (XDM) files. As message data specific columns are added to the database, the
XDM files can be updated to describe the new schema. Hence XML to Database mapping
serves several purposes:
• To describe to the CreateSqlScript program the layout of the project database schema

tables.
• To describe to the Analyzer the fields that are to be extracted from the XML event data

and stored in event lookup tables for fast searching and retrieval.
• To describe to the Analyzer the fields that are to be extracted from the transaction XML

document and stored in the transaction lookup tables.
• To describe the database schema to the query services for use in TransactionVision user

interface views and reports.

3.4. How to Map Custom Message Data Fields to Database Tables
The task in this section describes how to map event XML data to database fields using
TransactionVision’s XDM (XML to Database Mapping) module.

Chapter 3 • Extending the Analyzer

14

3.4.1. Step 1: Determine which fields in the XML event document need to be mapped to
database columns
Consider a WebSphere MQ MQPUT request event which has the following XML segment
in its message data:

<Event>
 <Data>
 <Order>
 <ID>123456</ID>
 <Branch>Danbury</Branch>
 <Account></Account>
 <Ticker>MSFT</Ticker>
 <Price>88.88</Price>
 <Shares>1000</Shares>
 </Order>
 </Data>
</Event>

Consider a WebSphere MQ MQPUT reply event in response to the above request that
contains the following XML segment in its message data:

<Event>
 <Data>
 <Result>
 <ID>123456</ID>
 <Type>Stock</Type>
 <Status>Success</Status>
 </Result>
 </Data>
</Event>

3.4.2. Step 2: Determine the Database Column Names for these Fields
The mapping of message data to database columns enables custom business reports and
queries to be written to view and analyze the contents of the message data.
Consider that the following fields need to be mapped to database columns from the message
data described in Step (1).
For the MQPUT request message data, a TRADE_ORDER table can be defined as follows:

Field Name SQL Type Length
ORDERID VARCHAR 16
BRANCH VARCHAR 16

ACCOUNT VARCHAR 8
TICKER VARCHAR 8
PRICE VARCHAR 8

SHARES VARCHAR 8
PROGINST_ID INTEGER 4

SEQUENCE_NO INTEGER 4
For the MQPUT reply message data, a TRADE_RESULT table can be defined as follows:

Field Name SQL Type Length
ORDERID VARCHAR 16

TYPE VARCHAR 8
STATUS VARCHAR 12

 15

PROGINST_ID INTEGER 4
SEQUENCE_NO INTEGER 4

In both the above tables, PROGINST_ID and SEQUENCE_NO are event identification
fields that are required to join with the TransactionVision EVENT table, while the remaining
columns contain business content to be extracted from the message data.
3.4.3. Step 3: Construct XDM File Entries
Now that we have determined the format and contents of the message data in Step 1 and
which database tables need to be populated in Step 2, a mapping can be created from the
XML message data contents to the database columns.
XDM files are managed through the TransactionVision Administration application of BSM
as follows:

Consider the following XML segment:
<Event>
 <Data>
 <Order>
 <ID>123456</ID>
 ...
 </Order>
 </Data>
</Event>

The XPath to the Order ID field can be written as: /Event/Data/Order/ID.
The value at this XPath needs to be written to the ORDERID column of the
TRADE_ORDER table.
This mapping can be done in an XDM file as follows:

<Table name="TRADE_ORDER" categoryPath=" /Event/StdHeader/TechName"
categoryValues="MQSERIES,JMS">
<Column name="ORDERID" type="VARCHAR" size="16"
description="OrderID">
 <Path>/Event/Data/Order/ID</Path>
 </Column>
 ...

Chapter 3 • Extending the Analyzer

16

The above XDM file segment defines a table name TRADE_ORDER in the Table element.
The table contains a column ORDERID, defined by the Column element, of type
VARCHAR and size 16 bytes. The Column of name ORDERID has an XPath mapping,
defined by the Path element to be /Event/Data/Order/ID.
The table definition part of the XDM segment is applied when a new schema is created
either by CreateSqlScript or the Create Analyzer wizard. The XPath mapping part of the
XDM segment is applied by the Analyzer when processing events. When an event contains
data at the XPath value /Event/Data/Order/ID, the Analyzer extracts the value and writes a
row to the mapped column ORDERID belonging to table TRADE_ODER for that event.
The categoryPath and categoryValues attributes for the Table element, indicates that this
mapping is applied only to MQSeries and JMS events.
The complete mapping of the MQPUT request message to the TRADE_ORDER table is as
follows:

<Mapping documentType="/Event">
 <Key name="proginst_id" type="BIGINT"
description="ProgramInstanceId">
 <Path>/Event/EventID/@programInstID</Path>
 </Key>
 <Key name="sequence_no" type="INTEGER"
description="SequenceNumber">
 <Path>/Event/EventID/@sequenceNum</Path>
 </Key>

 <Table name="TRADE_ORDER" categoryPath="
/Event/StdHeader/TechName" categoryValues="MQSERIES,JMS">
 <Column name="orderid" type="VARCHAR" size="16"
description="OrderID">
 <Path>/Event/Data/Order/ID</Path>
 </Column>
 <Column name="branch" type="VARCHAR" size="16"
description="Branch">
 <Path>/Event/Data/Order/Branch</Path>
 </Column>
 <Column name="account" type="VARCHAR" size="8"
description="AccountNumber">
 <Path>/Event/Data/Order/Account</Path>
 </Column>
 <Column name="ticker" type="VARCHAR" size="8"
description="Ticker">
 <Path>/Event/Data/Order/Ticker</Path>
 </Column>
 <Column name="price" type="VARCHAR" size="8"
description="Price">
 <Path>/Event/Data/Order/Price</Path>
 </Column>
 <Column name="shares" type="VARCHAR" size="8"
description="NumberOfShares">
 <Path>/Event/Data/Order/Shares</Path>
 /Column>
 </Table>

</Mapping>

The file Stock.xdm is available in <TVISION_HOME>/samples/stock.

 17

3.4.4. Step 5: Verify that the XDM Mapping works correctly
After modify an XDM file, restart the Analyzer and generate events containing the message
data with the expected XPath entries. Verify that rows are written into the TRADE_ORDER
table for every event containing the expected message data.

3.5. Additional XDM File Examples
The XDM mappings can be defined for specific events (technology, platform, etc.) by using
the attributes categoryPath and categoryValues. The common mapping defined in the file
Event.xdm (data in the standard event header) uses categoryPath=”COMMON” and will be
written for every event. The mappings defined in the other XDM files will only be applied if
the value of categoryPath in the current event matches one of the values listed in
categoryValues. The XML schema format of XDM files is defined in
<TVISION_HOME>/config/xmlschema/XDM.xsd. The following code is an extract from
the file Event.xdm.

<?xml version="1.0"?>
<Mapping documentType=’’/Event’’>
 <Key name="proginst_id" type="INTEGER"
description="ProgramInstanceId">
 <Path>/Event/EventID/@programInstID</Path>
 </Key>
 <Key name="sequence_no" type="INTEGER"
description="SequenceNumber">
 <Path>/Event/EventID/@sequenceNum</Path>
 </Key>
 <Table name="EVENT_LOOKUP" categoryPath="COMMON">
 <Column name="host_id" type="INTEGER"
description="Host" isObject="true">
 <Path>/Event/StdHeader/Host/@objectId</Path>
 </Column>
 <Column name="program_id" type="INTEGER"
description="Program" isObject="true">
 <Path>/Event/StdHeader/ProgramName/@objectId</Path>
 </Column>
 ...
 </Table>
</Mapping>

The above snippet from Event.xdm defines a table EVENT containing the XML document
and a table EVENT_LOOKUP, containing various indexed columns of data from the XML
document. The key columns proginst_id and sequence_no are integer types and mapped to
XPath expressions /Event/EventID/@programInstID and /Event/EventID/@sequenceNum.
These key columns are primary keys common to the EVENT and EVENT_LOOKUP tables.
Similarly, the columns host_id and program_id are mapped to XPath expressions
/Event/StdHeader/Host/@objectId and /Event/StdHeader/ProgramName/@objectId
respectively.
The preceding XDM file specifies that when an XML event is written to the database by the
DBWrite module in the Analyzer, these fields are extracted and written into the database
columns mapped to in the XDM file. Similarly, when the database is queried using the
QueryService XML interface, these XDM files are used to construct the corresponding SQL
query.

Chapter 3 • Extending the Analyzer

18

The isObject attribute for a Column tag in the XDM file refers to that column being an
identifier for an object in the system model table. The documentType attribute defines the
type of the mapping (event, transaction, statistics, etc.). The key is the primary key and is
common to the document table and the lookup tables. Each lookup column is indexed.
The conversionType attribute for a Column tag means that field requires a formatting
conversion before writing to the database. The TypeConvService is called into before
writing that field into the database. This is typically used for writing date/time or
enumeration fields.

<Column name="primary_time" type="CHAR" size="20"
description="PrimaryTime " conversionType="Date">
<Path>/Event/StdHeader/EntryTime</Path>
</Column>

The categoryPath attribute on the Table tag contains either COMMON or an XPath
expression into the event document. The string COMMON indicates that this table contains
data common to every event and should be written for every event going through the
Analyzer. If the categoryPath contains an XPath expression, the mapping only applies to
events which have a value at this path that matches any of the values specified in
‘categoryValues’ If the categoryPath is empty, the mapping will be applied to all events.
Example: a table mapping with categoryPath=’/Event/Technology’
categoryValues’=”MQSERIES,SERVLET” will only insert rows for MQSeries and Servlet
events.

<Table name="EVENT_LOOKUP" categoryPath="COMMON">
...
</Table>
<Table name="OS390_LOOKUP" categoryPath=’’
/Event/StdHeader/TechName’’ categoryValues="MQSERIES,SERVLET">
...
</Table>

A column can map to multiple XPath expressions, as in the following sample code. This
assumes that only one of the XPaths will exist in a given event document.

<Column name="msgid" type="CHAR" size="72" description="MessageID">

<Path>/Event/Technology/MQSeries/MQPUT/MQPUTExit/MQMD/MsgId</Path>

<Path>/Event/Technology/MQSeries/MQPUT1/MQPUT1Exit/MQMD/MsgId</Path
>

<Path>/Event/Technology/MQSeries/MQGET/MQGETExit/MQMD/MsgId</Path>
</Column>

Additionally, business transaction attributes (as opposed to event attributes) can also be
mapped to transaction based XDM files. Refer to Section 10.2 for details on the XDM file
layout.

 19

3.6. How to Classify Business Transactions and Map Attributes to Database Tables
3.6.1. Overview of Transaction Classification
Transaction classification allows users to partition their business transactions into different
transaction classes and set transaction attributes based on event data. These classes are
created based on data in the messages flowing through the business system. A transaction is
classified to a transaction class when attributes in one or more events in the transaction
match the criteria defined in for the transaction tracing rule assigned to the transaction on the
Transaction Tracing Configuration page. This page also allows setting of attributes on
transactions. These attribute values can be extracted from one or more events belonging to
that transaction. These attributes then can be mapped to database tables using XDM files.
Consider a business system consisting of a JSP/servlet based user interface, a middle-tier
based on EJBs and a mainframe based backend. The following sample classification criteria
may be applied to such a system:
• Based on the types of business systems these transactions involve. For example, if the 3-

tier system described above supports financial transactions such those dealing with
stocks and bonds, transaction classes may be created based on this.

• Based on statistics that need to be collected for each class. Such statistics may include
service level and response time requirements for different classes of transactions. In the
3-tier system described earlier, aggregate response times could be measured for each tier
of the system.

The Transaction Tracking Report lists transaction classes and attributes automatically along
with common attributes such as start time, response time etc. For more information about
this report, see Using Transaction Management.
3.6.2. Task Description
The task in this section describes the following:
• How to extract event data and map that data to transaction attributes.
• How to map transaction attributes to database tables using transaction XDM files.
• How to use the Transaction Definition Editor to perform transaction classification
The sample message data used in this section is from the TRADE demo system, for which
the schema and event databases are included with TransactionVision. Refer to the Using
Transaction Management for information on how to set up the TRADE demo database.
The previous sections in this chapter have discussed mapping event attributes to database
tables. This section describes how to map business transaction attributes to database tables.
This involves extracting attributes from events that apply to the business transaction the
event belongs to and writing them to business transaction XDM tables.

Chapter 3 • Extending the Analyzer

20

3.6.3. Implementation
Note. As of Version 9.0, transaction classification for many types of transactions is
performed by using the Classification Wizards, which make it easier to perform the steps
below. See Transaction Tracing in the Using Transaction Management Guide.
Step 1: Determine the event attributes that apply to a business transaction
Consider a request event which has the following XML segment in its message data:

<Event>
 <Data>
 <Order>
 <Account>123456</Account>
 <Transaction>Danbury</Transaction>
 <Type></Type>
 <Product>MSFT</Product>
 <Quantity>88.88</Quantity>
 <!----- present in FX transactions -->
 <Currency>1000</Currency>
 <RecvAccount>1000</RecvAccount>
 <!----- present in Bond transactions -->
 <Maturity>1000</Maturity>
 <Issue>1000</Issue>
 <!----- present in Equity transactions -->
 <Symbol>1000</Symbol>
 </Order>
 </Data>
</Event>

Three kinds of transactions flow through this TRADE system: Bond, Equity and FX (foreign
exchange). Besides a common header, each transaction type has data specific to that
transaction.
Consider the reply event in response to the above request that contains the following XML
segment in its message data:

<Event>
 <Data>
 <Order>
 <ID>123456</ID>
 <Region>Stock</UnitPrice>
 <Status>Success</Status>
 <Reason>Success</Reason>
 <!----- present in Bond transactions -->
 <Yield>5.94</Yield>
 </Order>
 </Data>
</Event>

Step 2: Determine Database Column Names for Fields
The mapping of message data to transaction database columns enables custom business
reports and queries to be written to view and analyze the contents of the business
transaction. Consider that the following fields need to be mapped to database columns from
the message data described in Step 1.
The TRADE_BUSINESS_TRANSACTION table is defined as below:

 21

Field Name SQL Type Length
ORDERID VARCHAR 20
REGION VARCHAR 12
ACCOUNT VARCHAR 12
TRADETYPE VARCHAR 12
TRADEACTION VARCHAR 12
AMOUNT DOUBLE 8
STATUS VARCHAR 12
REASON VARCHAR 32
BONDISSUE VARCHAR 12
BONDMATURITY INTEGER 4
EQUITYSYMBOL VARCHAR 8
VALUE DOUBLE 8
CUSTOMER VARCHAR 32
BUSINESS_TRANS_ID INTEGER 4

In the above table, the BUSINESS_TRANS_ID column is a transaction identification field
that is required to join with the TransactionVision BUSINESS_TRANSACTION table,
while the remaining columns contain business content that are extracted from the message
data.
Step 3: Extract Transaction Attributes from Event Data
Now that we have determined the format and contents of the message data in Step 1, these
event fields need to be set as transaction attributes. This is done in the Transaction
Definition Editor by creating Attribute rules in the transaction class you are defining. These
attributes are maintained by the Analyzer as it processes events and are then mapped to
database tables defined in the transaction XDM file.
Once a transaction attribute has been defined, with an XPath location of
/Transaction/OrderID. A Rule with a name of SetOrderID sets the value of the
transaction attribute at XPath /Transaction/OrderID from the attribute value in the event
data at XPath /Event/Technology/Servlet/Response/Headers/Header[@name='orderid'].
The two important pieces of information in the above attribute rule are the event XPath,
which is the source of the data, and the transaction XPath, which is the destination to which
the source data is copied into.
Value rules can also set constant values into transaction attributes. In the following example
a constant value of Completed is set into the transaction attribute at XPath location
/Transaction/State.
The attribute rules can be used in the context of class rules, which determine that the
attribute rules are applied only for certain classes. Consider the example below:
Here, the attribute rule of name OrderID is applied only for already classified transactions
of class “Bond”.
Attribute rules also can have match criteria such that the rules are applied to every event
when a match criteria is successful.
Here, the value rule to set the value of Amount at XPath location /Transaction/Amount
from the event XPath /Event/Data/Chunk/Order/Amount, is fired when the logical AND
of the Match criteria evaluate to True.
Refer to Section 4.5.9 for details on the syntax of the classification rules.

Chapter 3 • Extending the Analyzer

22

Step 4: Construct XDM File Entries for Transaction Attributes
Now that we have determined the contents of the transaction attributes and extracted them
from the event data as in Step (1) and (3) and determined which database tables need to be
populated as in Step (2), a mapping can be created from the XML transaction attributes to
the database columns.
Consider the below transaction document created by rules set XML segment:
<Transaction>
 <OrderID>123456</OrderID>
 <Account> </Account>
 <Region> </Region>
 <TradeType> </ TradeType >
 <TradeAction> </TradeAction>
 <Amount> </Amount>
 ...
</Transaction>

The XPath to the OrderID field can be written as: /Transaction/OrderID.
The value at this XPath is to be written to the ORDERID column of the
TRADE_BUSINESS_TRANSACTION table for the business transactions for which this
value is set.
This mapping can be done in an XDM file as follows:

<Mapping documentType="/Transaction">

 <Key name="business_trans_id" type="INTEGER"
generateSequence="true" description="TransactionId">
 <Path>/Transaction/BusinessTransId</Path>
 </Key>
 <Table name="TRADE_BUSINESS_TRANSACTION">
 <Column name="orderid" type="VARCHAR" size="20"
description="OrderID">
 <Path>/Transaction/OrderID</Path>
 </Column>
 <Column name="account" type="VARCHAR" size="12"
description="Account">
 <Path>/Transaction/Account</Path>
 </Column>
 ...

The above XDM file segment, the Table element defines a table name
TRADE_BUSINESS_TRANSACTION. The table contains a column ORDERID, defined
by the Column element, of type VARCHAR and size 20 bytes. The Column of name
ORDERID has an XPath mapping, defined by the Path element to be
/Transaction/OrderID. The key for the TRADE_BUSINESS_TRANSACTION is defined
by the Key element to be business_trans_id column of type INTEGER.
The table definition part of the XDM segment is applied when a new Analyzer schema is
created either by the CreateSqlScript or the Analyzer creation web pages. The XPath
mapping part of the XDM segment is applied by the Analyzer when processing events.
When a transaction contains data at the XPath value /Transaction/OrderID set by the
classification rules, the Analyzer extracts the value from the transaction document and
writes a row to the mapped column ORDERID belonging to table
TRADE_BUSINESS_TRANSACTION for that transaction..

 23

Step 5: Determine the Transaction Classes and their Classification Criteria
Transaction classification can be based on a variety of different criteria based on the
transactions flowing through your business systems. In the sample TRADE system,
transaction classification is performed based on the type of financial transactions flowing
through the system, namely Equity, Bonds and Funds Transfer. Hence, the next step would
be to identify fields in the message data which identify the event and its transaction to be
one of these three types. For this system, this field is an attribute Product in the XPath
element /Event/Technology/Servlet/Request/Parameters/Parameter. The next section
describes how to build a classification rule using this XPath value.
Step 6: Implement Classification Rules
Consider the Transaction definition example for the TRADE sample:
In the above image, a transaction class called Bond is defined, which applies to the database
schema TRADE. Within the bond class there are one or more classification rules for the
Bond transaction class.
The Match conditions specify the rule criteria. The first Match condition has a rule which
evaluates to True when the XPath value of /Event/StdHeader/ProgramName in an event
equals the value of TradeSession. Multiple Match conditions are logically AND’d together.
The second Match condition criteria evaluates to True if a JMS event with the XPath
element /Event/Technology/JMS/Method has a value of publish. In other words, any event
with the program name TradeSession, a JMS method of publish, and a Product value of
BOND will be classified to a Bond transaction class.
Values in "Match" criteria may contain one wildcard character, as in the following example:

"*FlowEngine", "DataFlow*", and "Data*Engine"

Once a transaction is classified, attributes are attached to the transaction based on the
Attribute rules defined in the Transaction Definition editor. The rules for setting and writing
attributes are described in Steps 3 and 4.
Step 8: Verify that the transaction classification works correctly and the transaction attributes
are written correctly
The results of the above steps can be verified by looking at the Transaction Tracking Report.
For each business transaction, this report will show you the class of the transaction and any
custom attributes that have been set for that transaction. Other custom reports may be
written based on the transaction attributes collected.

3.7. How to Perform Custom Correlation of Related Events
3.7.1. Overview of Custom Event Correlation
By default, the TransactionVision Analyzer correlates WebSphere MQ MQPUT and
MQGET events or JMS send and receive events based on certain criteria such as message id,
correlation id, put time and other fields in these events. However, there may be times when
these criteria are not sufficient to perform event correlation. These criteria may then either
need to be expanded to include other data fields, such as those from the message data, or
may need to be relaxed to exclude some of the standard fields, or may need to be modified
in other ways.
Here are some scenarios where a custom correlation bean may be required:
• TransactionVision agents may not be installed on some systems, such as those belonging

to external agents. Hence, the messages going out to the unmonitored systems would
need to be correlated with the replies coming back from these systems.

Chapter 3 • Extending the Analyzer

24

• Unique message ids or correlation ids are not used by the applications. In this scenario,
custom fields from the message data may need to be used to correlate message PUTs
and GETs.

• An application that replies to a message swaps the message id and correlation id fields
and this application is not monitored by TransactionVision agents.

This correlation can be done by writing XML based event correlation rules in the
EventCorrelationDefinition.xml file. Alternately, if complex logic is required to be
implemented, a Java bean can be written to override the IEventCorrelation interface. Refer
to Chapter 4, Section 4.5 on the details of a bean implementation.
3.7.2. Task Description
This task walks through the creation of a XML event correlation rule. The requirement for
the bean is to correlate WebSphere MQ events for which the message id and correlation ids
have been swapped.
3.7.3. Implementation

Step 1: Determine Correlation Requirements
Consider two applications A and B, where application A is monitored by a
TransactionVision agent while application B is not. The sequence of events for this system
is as follows:
• Application A performed an MQPUT on a queue q1, with message id m1 and

correlation id c1.
• Application B read the message using an MQGET from queue q1 and processed the

message.
• Application B then placed a reply message using MQPUT on the reply-to queue q2, with

message id c1 and correlation id m1. Hence, the message ids and correlation ids were
swapped by application B.

• Application A performed an MQGET to read this message.
Now, because application B does not have agents enabled and its MQGET/MQPUT are not
received, this transaction path remains un-correlated and no message flow arc is drawn
between application A’s MQPUT and application A’s MQGET. The custom event
correlation bean seeks to complete this path.
Step 2: Determine which Events need to be Correlated and Common Correlation Data between
the Events
For this task, the requirement is to correlate an MQPUT event from application A with an
MQGET event from the same application A, which have their message id and correlation id
swapped.
Step 3: Implement XML Based Event Correlation Rules
The correlation process in the Analyzer consists of two phases:
• The first phase involves generating lookup keys based on the characteristics of the

current event. This lookup key is then inserted into the database and then used to match
up with other correlated events as they arrive into the Analyzer. The XML event
correlation rule file has a CreateLookupKey stanza that allows creation of custom
lookup keys based on fields from the incoming event. If a bean is being implemented,
the createLookupKeys method is invoked to generate these lookup keys. Hence, for
application A for a MQPUT event, a lookup key comprising of the message id needs to

 25

be created, while for an MQGET event from application A, a lookup key comprising of
the correlation id should be created.

• The second phase involves relation generation. Specifically, a set of events is passed as
potential candidate for matching with the current event. This set is composed of the
events that have the same lookup key as the current event. The purpose of this phase is
to further narrow down set of event matches based on additional criteria which have not
been covered by the lookup key data. For example, for application A, the correlation
should only be performed between MQPUTs and MQGETs and not between APIs of the
same type. This phase is implemented by creating a CreateRelation stanza in the XML
event correlation definition file or by implementing the correlateEvents method of the
event correlation bean.

The event correlation rule file is namedEventCorrelationDefinition.xml. and can be found
in the XML tab of the Analyzer Configuration page.
The basic template of a correlation rule file is as follows:

<EventCorrelationDefinition>
 <RelationLookupType id=1001" name="JMSToUserEvent"
dbschema="BROKER">
 <CreateLookupKey technology="UserEvent" id="1">
 . . .
 </CreateLookupKey>

 <CreateRelation keyRuleId1="1" keyRuleId2="2" id="1">
 . . .
 </CreateRelation>
 . . .
 </RelationLookupType>
</EventCorrelationDefinition>

Here, a RelationLookupType stanza is composed of one or more CreateLookupKey and
CreateRelation stanzas. The CreateLookupKey stanza allows defining lookup keys from
fields of certain events and the CreateRelation stanza allows matching up keys of different
events.
The following is the event correlation rule file to correlate on the message id of a successful
MQPUT with the correlation id of a successful MQGET. The steps following this listing
describe the different stanzas in this file. The file is available in
<TVISION_HOME>/samples/stock.

00001 <?xml version="1.0"?>
00002 <EventCorrelationDefinition>
00003 <!--
00004 Sample correlation rule file to correlate on swapped message id
and correlation
00005 ids for MQPUTs and MQGETs.
00006 -->
00007 <RelationLookupType id="1001" name="SwapMessageCorrelId"
dbschema="*">
00008
00009 <CreateLookupKey technology="MQSERIES" id="1">
00010 <Match xpath="/Event/Technology/MQSeries/@API"
operator="EQUAL" value="MQPUT"/>
00011 <Match xpath="/Event/Technology/
MQSeries/*/*Exit/CompCode" operator="UNEQUAL" value="2"/>
00012 <Attribute name="LookupKey">
00013 <Path>/RelationLookup/LookupKey</Path>

Chapter 3 • Extending the Analyzer

26

00014 <ValueRule name="SetLookupKey">
00015 <Value type="XPath">/
Event/Technology/MQSeries/*/*Exit/MQMD/MsgId</Value>
00016 </ValueRule>
00017 </Attribute>
00018 </CreateLookupKey>
00019
00020 <CreateLookupKey technology="MQSERIES" id="2">
00021 <Match xpath="/Event/Technology/MQSeries/@API"
operator="EQUAL" value="MQGET"/>
00022 <Match xpath="/Event/Technology/
MQSeries/*/*Exit/CompCode" operator="UNEQUAL" value="2"/>
00023 <Attribute name="LookupKey">
00024 <Path>/RelationLookup/LookupKey</Path>
00025 <ValueRule name="SetLookupKey">
00026 <Value type="XPath">/Event/Technology/
MQSeries/*/*Exit/MQMD/CorrelId</Value>
00027 </ValueRule>
00028 </Attribute>
00029 </CreateLookupKey>
00030
00031 <CreateRelation keyRuleId1="1" keyRuleId2="2" id="1">
00032 <Attribute name="RelationType">
00033 <Path>/EventRelation/RelationType</Path>
00034 <ValueRule name="SetRelationType">
00035 <Value type="Constant">17</Value>
00036 </ValueRule>
00037 </Attribute>
00038 <Attribute name="Direction">
00039 <Path>/EventRelation/Direction</Path>
00040 <ValueRule name="SetDirection">
00041 <Value type="Constant">1</Value>
00042 </ValueRule>
00043 </Attribute>
00044 <Attribute name="Confidence">
00045 <Path>/EventRelation/Confidence</Path>
00046 <ValueRule name="SetConfidence">
00047 <Value type="Constant">1</Value>
00048 </ValueRule>
00049 </Attribute>
00050 </CreateRelation>
00051
00052 </RelationLookupType>
00053
00054 </EventCorrelationDefinition>

• Line 7 provides the RelationLookupType stanza that contains the CreateLookupKey and
CreateRelation rules. This element provides a constant id and name and defines the list
of schemas to which its rules apply. An event correlation definition file may contain
multiple RelationLookupType elements. The list of schemas in the dbschema attribute
can be comma separated. Note that you should choose an id > 1000 for custom
correlation types.

• Lines 9-18 define a lookup key rule for events from the MQSeries technology. Lines 10
and 11 define that this rule should be applied to all events with the API MQPUT and
whose CompCode (completion code) is not equal to 2(failed). Lines 12-17 specify that
when these criteria are matched for an event, a lookup key from the field MsgId is
created for that event.

 27

• Similarly, lines 20-29 create a lookup key from the CorrelId field for all successful
MQGET APIs.

• The CreateRelation stanza on lines 31-54 specifies that the lookup keys created by rule
id 1 and 2 should be matched up. Hence, two events that have the same lookup key
created by rules 1 and 2, will have an event relation created. This event relation has the
attributes of RelationType, Direction and Confidence set in the CreateRelation stanza.

Refer to Section “4.6.6 Custom Event Correlation” for details on customizing this rules file.
Step 4: Enable the Analyzer to Invoke the XML Correlation Rules
This involves editing the Beans.xml file to add the XML rule correlation bean, which then
loads the EventCorrelationDefinition.xml rule file. The following line in bold needs to be
added in the Beans.xml file:

<Module type="Context" name="CorrelationTechHelperCtx">
...
<Attribute name="UserCorrelationBean"
value="com.bristol.tvision.services.analysis.eventanalysis.XMLRuleC
orrelationBean"

 <Module type="Context" name="CorrelationMQHelperCtx"
class="com.bristol.tvision.services.analysis.eventanalysis.Correlat
ionMQHelperCtx">

 <!-- This context contains beans that perform MQ specific
event correlation. -->
 <!-- For each MQ event the bean that matches the
technology of the event to correlate with will be called. -->

 <Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.MQToMQRe
lationshipBean"/>

 </Module>

Step 5: Test the Correlation Bean
The correlation bean can be verified by checking the transaction path in the transaction
tracking report. A completely correlated path will have message path flows between local
transactions.

 29

4. Reference - Extending the Analyzer

This chapter contains the following sections:
• 4.1. Using the Beans.xml File
• 4.2. Unmarshalling Message Data
• 4.3. Trimming Data From an Event
• 4.4. XML-Database mapping Using XDM Files
• 4.5. Performing Event Analysis
• 4.6. Transaction Classification
• 4.7. Extending the System Model

4.1. Using the Beans.xml File
The file Beans.xml located in the XML tab of the Analyzer Configuration page controls the beans
loaded by the Analyzer framework for event processing.
Important: This file is used by the Analyzer internally. Modifying sections that are not documented
here could break the correct functioning of the Analyzer.
Each module listed in the Beans.xml file has a type and a name. The type can be a Context, which
can hold other modules or a Bean type, which is loaded by a Context. A module of type Bean
contains the class that implements an interface which is used by its context. Each context defines a
known interface for the beans it contains, loads the bean and calls into the interface implemented by
the bean to perform its function. In the example segment below, the EventModifierCtx is a bean
context which holds the DefaultModifierBean bean.

<Module type=’’Context’’ name=’’ EventModifierCtx’’>
<Module type=’’Bean’’ class=’’com.bristol.tvision.services.analysis.
eventmodifier.DefaultModifierBean’’/>
</Module>

Each context uses its own rules to determine how its beans are invoked. The following contexts can
be modified or added to:
• EventModifierCtx
• DBWriteExitCtx
• CorrelationTechHelperCtx
The following sections will document how each of the above contexts can be modified.

Chapter 4 • Reference - Extending the Analyzer

30

The following section gives an example of plugging in your own implementation of EJB correlation
analysis into the analysis framework:
<!-- context bean that allows build relationship between EJBs or EJB to
other technology
 Here is one sample. Note that the SampleEJBToMQRelationshipBean is not
in the shipment.

<Module
class="com.bristol.tvision.services.analysis.eventanalysis.CorrelationEJB
HelperCtx" name="CorrelationEJBHelperCtx" type="Context">
 <Module
class="com.bristol.tvision.extension.staples.services.SampleEJBToMQRelati
onshipBean" type="Bean"/>
</Module>
!-->

4.1.1. Enabling and Disabling Beans for Specific Events
Many of the default beans of TransactionVision can be configured to only getting called for specific
events by using match conditions similar to those used in custom correlation or local transaction
analysis. This is accomplished by adding an <Include> or <Exclude> section to the bean definition
in the Beans.xml file. The following sample definition will call the Transaction Classification bean
only for MQ events:
<Module name="ClassifyTransactionCtx" type="Context">
 <Module
class="com.bristol.tvision.services.analysis.eventanalysis.StandardClassi
fyTransactionBean" type="Bean"/>
 <Include>
 <Match xpath="/Event/StdHeader/TechName" operator="EQUAL"
value="MQSERIES"/>
 </Include>
</Module>

And this sample definition will disable Transaction Classification for any MQ and JMS events:

<Module name="ClassifyTransactionCtx" type="Context">
 <Module
class="com.bristol.tvision.services.analysis.eventanalysis.StandardClassi
fyTransactionBean" type="Bean"/>
<Exclude>
 <Match xpath="/Event/StdHeader/TechName" operator="EQUAL"
value="MQSERIES"/>
 <Match xpath="/Event/StdHeader/TechName" operator="EQUAL"
value="JMS"/>
 </Exclude>
</Module>

The match conditions can also be defined on the context instead of the bean level, in which case they
are effective for all beans of this context. The next sample definition will disable all event modifier
beans for all MQ events:

<Module name="EventModifierCtx" type="Context">
 <Exclude>
 <Match xpath="/Event/StdHeader/TechName" operator="EQUAL"
value="MQSERIES"/>
 </Exclude>

 31

 <Module
class="com.bristol.tvision.services.analysis.eventmodifier.DefaultModifie
rBean" type="Bean"/>
 <Module class=...>

</Module>

Note that you can only define either one <Include> or <Exclude> definitions for a bean or context,
but not both. For a detailed description of the match conditions see the corresponding sections in
Custom Correlation or Custom Local Transaction Analysis.
The following default TransactionVision analysis contexts (and their beans) can be configured:
• EventModifierCtx
• SystemModelCtx
• DBWriteExitCtx
• DBWriteEventCtx
• AnalyzeEventCtx
• CorrelationTechHelperCtx
• LocalTransactionTechHelperCtx
• ClassifyTransactionCtx

4.2. Unmarshalling Message Data

Typically, binary message data has a proprietary, user-defined format. The EventModifierCtx
context allows a user to add a bean to “unmarshal” this binary data; that is, convert the binary data to
XML for later use by TransactionVision in reports, for analysis or querying. To help converting
binary data to XML, TransactionVision provides a set of utility classes.
4.2.1. The Default Modifier Bean
The TransactionVision installation comes with a default event modifier bean:
com.bristol.tvision.services.analysis.eventmodifier.DefaultModifierBean. This bean scans the
user data for any XML data and, if found, simply adds it to the Event XML document at the position
/Event/UserData/Chunk[@seqNo=’n’] where ‘n’ is the number of the data range (defined in the
data collection filter).
4.2.2. The Rules-based Event Modifier Bean
This bean uses a rules file to govern what is extracted, how, and where the result is placed in the
event being processed. For each event, it applies each rule in the rules file to see if it matches the
event. If so, it adds a new element to the event based on the value specified in the rule. The rules
support both regular expressions and XPath expressions to denote the data to pull out of an event. By
changing the rules, you can change what the bean looks for in the incoming events, and what it
extracts.

Chapter 4 • Reference - Extending the Analyzer

32

Rules are configured in an analyzer’s EventModifierRules.xml which is edited from the Transaction
Management Configuration tab:

After defining your rules and clicking the Apply button, restart the analyzer process on the
TransactionVision server host.
 The Rules File
The TransactionVision Processing Server installation includes example rules files at
<TVISION_HOME>/samples/eventmodifiers/rulebased.
The following tables describe the XML elements used in defining rules. See Appendix A for
corresponding EventModifierRules.dtd.

<RegExp> - Matches a regular expression against data in the event.

Attributes Description Required?

src Event XPath specifying the event data to match the regular
expression against. Any event XPath can be used, or the special
keyword “blob” can be used which refers to the binary blob data
of the event transformed into the code page of the analyzer.
Examples of “blob” src can be found in
TVISION_HOME/samples/eventmodifiers/rulebased/
SwiftEventModifierRules.xml

yes

expression The regular expression to match against the data in the src
XPath. This expression supports regular expressions as
supported by the Java Pattern class. See
http://download.oracle.com/javase/6/docs/api/java/util/regex/Pat
tern.html

yes

dest The name of the new element to create under no

 33

/Event/CustomFields in the event XML document, if the regular
expression matches for the event.
If this attribute is omitted, then the rule functions purely as a
conditional check governing whether any enclosed rules are
evaluated. If specified, the value attribute must be specified as
well to control the value assigned.

value The value to store into the new element, if the regular expression
matches for the event. This is a string pattern in which capturing
groups (parts of the expression enclosed in parentheses) in the
regular expression can be referred to with a $ syntax where $1
refers to the first capturing group, $n to the nth. $0 to the entire
matched expression. See the Java Pattern and Matcher classes.
http://download.oracle.com/javase/6/docs/api/java/util/regex/Patt
ern.html
http://download.oracle.com/javase/6/docs/api/java/util/regex/Mat
cher.html
You can mix literal string data with capturing group designators.
For example “$1.$2” indicates the assigned value should be the
first capturing group followed by a period followed by the second
capturing group.

no

 If this attribute is omitted, then the rule functions purely as a
conditional check governing whether any enclosed rules are
evaluated. If specified, the dest attribute must be specified as well
to control the element the value is stored into.

action The action to be taken by the rule if it matches the event. Possible
actions are:

• add_field - Create element specified by the dest attribute
under /Event/CustomFields.

• delete_event - Delete the event being processed.
If this attribute is omitted, it will default to the add_field action.

no

<XPathExp> - Matches an XPath expression against data in the event.

Attributes Description Required?

expression The XPath expression to evaluate on the event. Any XPath in
the event XML document can be accessed.
This expression supports XPath expressions as supported by the
Java XPath class. See
http://download.oracle.com/javase/6/docs/api/javax/xml/xpath/X
Path.html

yes

dest The name of the new element to create under
/Event/CustomFields in the event XML document, if the XPath
expression matches for the event.

no

Chapter 4 • Reference - Extending the Analyzer

34

If this attribute is omitted, then the rule functions purely as a
conditional check governing whether any enclosed rules are
evaluated. If specified, the value attribute must be specified as
well to control the value assigned.

value The value to store into the new element, if the expression XPath
matches for the event. This is an XPath expression to evaluate
based on the data in the event. This expression supports XPath
expressions as supported by the Java XPath class. See
http://download.oracle.com/javase/6/docs/api/javax/xml/xpath/X
Path.html.
If this attribute is omitted, then the rule functions purely as a
conditional check governing whether any enclosed rules are
evaluated. If specified, the dest attribute must be specified as well
to control the element the value is stored into.

no

action The action to be taken by the rule if it matches the event. Possible
actions are:
• add_field - Create element specified by the dest attribute
under /Event/CustomFields.
• delete_event - Delete the event being processed.
If this attribute is omitted, it will default to the add_field action.

no

< OneOf >

Encloses RegExp or XPathExp rules and evaluates them in order until one of them matches the event or
all have been tried.

4.2.3. Adding a Message Data Unmarshal Bean
Adding a custom message or user data unmarshal bean involves modifying the Beans.xml file to
replace the default class with one or more custom written classes.

<Module type="Context" name="EventModifierCtx">
<Module type="Bean"
class="com.bristol.tvision.demo.stock.StockTradePayloadProcessingBean"/>
 </Module>

For example, in the code snippet above, a bean
com.bristol.tvision.demo.stock.StockTradePayloadProcessingBean processes any stock trade
related custom data. If no event modifier bean is plugged in, the binary data will be saved into tables
as a BLOB. The bean invoked by the EventModifierCtx context needs to implement the
IEventModifier interface.
4.2.4. Disabling CICS Transaction Tracking
Typically in CICS environments, events from the same task are placed in the same business
transaction. This assumption does not apply to long running transactions that repeat the same set of
operations. Hence, the file Beans.xml as follows can be modified to add a list of transaction ids for
which events should not be placed in the same business transaction. A comma separated list of
transactions may be entered.

 35

<Module
class="com.bristol.tvision.services.analysis.unmarshal.mqseries.Unmarshal
MQHeaderBean" type="Bean">
 <Attribute name="UnmarshalMsgDataBean"
value="com.bristol.tvision.services.analysis.unmarshal.UnmarshalAppDataDe
fault"/>
 <Attribute name="MaxDataLength" value="-1"/>
 <Attribute name="DisableCICSTxnTrackingGen" value="BTCD"/>
</Module>

In this example, events from the CICS transaction BTCD will not have a tracking id based on their
task number automatically generated by the Analyzer. Hence, they will not be automatically placed
in the same business transaction, unless they belong to the same unit of work or if they are correlated
to other events. The unit of work or event correlation behavior will not be affected by this setting.
4.2.5. IEventModifier Interface
This interface contains one method, modify(), defined as:
public boolean modify(XMLEvent event, ConnectionInfo conInfo)
throws EventModifyException

Description:
The method modify() is called to modify an unmarshaled XML event. For example, to convert the
BLOB set stored in the XMLEvent object into the user-data section of the XML tree or modify the
event’s XML data. The BLOB set contains the event’s binary message data.
The framework will check the return boolean value to decide whether to continue the event
processing steps or not. A false return value means the current event under processing shall be
discarded right away.
Important: data should typically be added in the XML event tree. Removing certain nodes from the
tree could break the analysis and database write operations in later contexts.
Parameters:
event - The XML event to which the XML format of the message data is appended to. The
XMLEvent class is documented in detail in Section 4.2.6.
conInfo - The connection information data structure.
Throws:
EventModifyException - This exception represents a failure in the bean performing the XMLEvent
modification.
4.2.6. XML Related Classes
This section documents the relevant public methods of the classes XMLEvent, XPathSearch and
XMLParser. Class XMLEvent contains the incoming event converted to an XML DOM tree. Class
XPathSearch is a utility class to search a DOM tree using XPath queries. Class XMLParser is a
wrapper class around the Apache DOM parser, with better error handling facilities.
The full TransactionVision event information is saved in XML document format. To retrieve values
of different fields, an XPath expression is used to specify the location of the field. TransactionVision
provides the file XPathConstants.java, which contains XPath expression constants used to locate
different fields in the event. This file is useful for writing plug-in beans and reports and can be found
at <TVISION_HOME>/java/src.

Chapter 4 • Reference - Extending the Analyzer

36

4.2.7. Class XMLEvent
package com.bristol.tvision.services.analysis.xml
public class XMLEvent
extends com.bristol.tvision.shared.xml.XMLDocument
implements java.io.Serializable

The class XMLEvent contains event data in XML DOM representation. It also holds a set of cached
properties to carry inter-module communication information, and a list of BLOBs to hold application
data which cannot be placed in the XML DOM tree. Note, that all the public methods of the class
org.w3c.dom.Document are available to users of XMLEvent. The following methods are defined in
the XMLEvent class.
Methods:
getAttribute
public java.lang.Object getAttribute(java.lang.String key)

setAttribute
public void setAttribute(java.lang.String key,
 java.lang.Object value)
removeAttribute
public java.lang.Object removeAttribute(java.lang.String key)

The above three methods allow the user to set a cached value at one stage of event processing, which
can be used at another point of event processing without parsing the XML document. For example
during the unmarshal message data phase values can be stored which may later be used during
analysis. Typically, the key would be an XPath into the XML document and the value would be the
XML element value. The user of the above APIs must ensure that TransactionVision internal values
are not overwritten or deleted. This can be done by using unique XPaths to message data as the key.

• getDocumentValue

getDocumentValue
public java.lang.String getDocumentValue(java.lang.String xpath)

This method retrieves a value from the XML document specified by a given XPath expression .
Since it takes advantage of the caching capabilities of XMLEvent it is the preferred method to
access values in the XML document. If the value at the given XPath has never been accessed
before, the method will perform an XPath search on the DOM tree to retrieve the value,
otherwise it will return the value from the cache.

• getBlobCount
getBlobcount
public int getBlobCount()

Returns the number of BLOBs available, using the blobIterator() method.

• blobIterator
blobIterator
public java.util.Iterator blobIterator()

Typically, event message data is stored into one BLOB field in the XMLEvent object. However,
if data ranges are used in the data collection filter an array of BLOBs is created, one BLOB for
each data range. This method returns an Iterator for instances of type XMLEvent.Blob.

• deleteBlob
deleteBlob
public void deleteBlob(int seqNo,

 37

 boolean deleteUserDataRef,
 boolean deleteDataChunk)
 throws TVisionException

This method is used to delete the binary message data from XMLEvent. This method should
typically be called if an EventModifier plugin bean converts binary data to XML. In that case,
the binary data may no longer be required to be stored in the database and should be deleted
using this method. If the message data is unmarshaled into the technology tree under, for
example, the /Event/Technology/MQSeries/MQPUTEntry/Buffer subtree, the
deleteUserDataRef and deleteDataChunk flags should be set to true. If the message data is
unmarshalled into /Event/Data/Chunk, then both flags should be set to false. Also, if you want to
replace a chunk with a different BLOB, call this method with both flags set to false and then call
addBlob() to add a new BLOL into the XMLEvent.

Parameters:

seqNo - 0-based BLOB index

deleteUserDataRef – true if /Event//UserDataRef[@chunk=n] should be removed

deleteDataChunk – true if /Event/Data/Chunk[@seqNo=n] should be removed

• getPiiID
getPiiId
public long getPiiId()

• getEventSeqNo
getEventSeqNo
public int getEventSeqNo()

The PiiId (Program Instance Id) and the SeqNo (Sequence Number) together form a unique
identifier to an event. They may be used to access event data from database tables.

• Inner Class XMLEvent.Blob

Inner Class XMLEvent.Blob
public static class Blob {

 public int id; // id of the blob, starting with
0
 public int from; // data range start
 public int to; // data range end
 public int type; // type of BLOB data
 // (Binary, String, or XML,
 // defined in TVisionCommon.java)
 public int ccsid; // the character set id
 public byte[] blob; // the data

 public Blob(int ID, int from, int to, int type, int
ccsid,
byte[] blob);

 }

Instances of this class are returned by the method ‘blobIterator()’ and represent the data ranges
for the message data.

Chapter 4 • Reference - Extending the Analyzer

38

4.2.8. Class XPathSearch
package com.bristol.tvision.util.xml
public class XPathSearch
extends XPathSearchBase

The helper class XPathSearch allows access to elements of an XML document using the XPath
syntax.
This class does not support the full standard XPath syntax. The following subset is supported:
• path to a text element: /Test/Value
• path to an attribute: /Test/Value/@attribute
• access a multi-valued element by qualifying attribute value:

 /Test/Value[@attribute='X']/Name
• indexed access to a multi-valued element /Test/List[0], Test/List[0]/Value
• wildcard /Test/*/Name, /Test/*lue, /Test/Val*
Constructor:

• XPathSearch
XPathSearch(org.w3c.dom.Document doc)

Creates an XPathSearch object from a DOM document or derived class like XMLEvent.

• XPathSearch
XPathSearch(java.io.InputStream stream) throws XMLException

Creates an XPathSearch object from an InputStream.

The InputStream is parsed into a DOM document without validation

• XPathSearch
XPathSearch(java.io.Reader reader) throws XMLException

Creates an XPathSearch object from an InputStream.

The InputStream is parsed into a DOM document.

Parameters:

stream - The InputStream containing the XML data

validate - Use parser validation
Methods:

• getNodes
public org.w3c.dom.NodeList getNodes(java.lang.String xpath)
 throws XMLException

This method returns a list of all nodes in the XML document matching the XPath query. The
elements in the array are ordered according to the order of the elements in the DOM tree.

Overrides:

getNodes in class XPathSearchBase

Parameters:

xpath - The XPath expression for the query

 39

Returns:

A list of all nodes matching the query

Throws:

XMLException - Signals error during retrieving the values from the document

• getValues
public java.lang.String[] getValues(java.lang.String xpath)
 throws XMLException

This method returns the value of all text elements in the XML document matching the XPath
query. The elements in the array are ordered according to the order of the elements in the DOM
tree.

Overrides:

getValues in class XPathSearchBase

Parameters:

xpath - The XPath expression for the query

Returns:

The value of all text elements matching the query

Throws:

XMLException - Signals error during retrieving the values from the document

• getValue
public java.lang.String getValue(java.lang.String xpath)
 throws XMLException

This method returns the value of the first text element in the XML document matching the XPath
query.

Overrides:

getValue in class XPathSearchBase

Parameters:

xpath - The XPath expression for the query

Returns:

The value of the first matching text element

Throws:

XMLException - Signals error during retrieving the values from the document
4.2.9. Class XMLParser
package com.bristol.tvision.util.xml
public class XMLParser
implements org.xml.sax.ErrorHandler

This class is a wrapper around the Apache DOM parser and is a utility useful to parse XML files or
convert binary streams containing XML data into a DOM tree.

Chapter 4 • Reference - Extending the Analyzer

40

Constructor:

• XMLParser
XMLParser()

Creates a parser instance

Parameters:

validation – whether to create a validating parser or not
Methods:

• parse
public org.w3c.dom.Document parse(java.lang.String systemId,
 java.lang.String schema)
 throws XMLException

Parses a XML file and uses the specified XML schema rather than a schema reference in the
document itself for schema validation

Parameters:

systemId - The system id for the XML source

schema - The schema to use for validation

Returns:

The parsed document as a DOM tree

Throws:

XMLException - Signals errors during parsing

• parse
public org.w3c.dom.Document parse(org.xml.sax.InputSource src)
throws XMLException

Parses a XML document from an Input Source. If schema is not null, the parser property
external-noNamespaceSchemaLocation is set for schema validation

Parameters:

src - The input source for the document

Returns:

The parsed document as a DOM tree

Throws:

XMLException - Signals an error during parsing

• parse
public org.w3c.dom.Document parse(java.io.InputStream stream,
 java.lang.String schema)
 throws XMLException

Parses a XML document from an input stream and uses the specified XML schema rather than a
schema reference in the document itself for schema validation

 41

Parameters:

stream - The input stream for the document

schema - The schema to use for validation

Returns:

The parsed document as a DOM tree

Throws:

XMLException - Signals an error during parsing
4.2.10. Other Utility Classes
Often, binary structures embedded in the message data will need to be converted to XML. This can
be accomplished with a two step process, first extract the binary data into Java data types and then
convert these data types to appropriate XML elements. The Java class java.io.DataInputStream could
be used to walk through a binary stream, extract and convert data into Java basic types. Also, the
“Translator” class can be used to convert raw binary data into a Java UTF String with code page
conversion:

package com.bristol.tvision.util.charmapper
public class Translator {

public static Translator instance(int srcCcsid);
 public String translate(byte[] rawData);
}

Once Java basic types have been extracted from the binary stream these values need to be converted
to XML data. This can be done using the utility XML builder classes in the package
com.bristol.tvision.services.analysis.xml. These classes allow a user to set values of native Java
types, a element name and get the XML tag output appended to a DOM tree using the toDOM()
method. These classes implement the DOMElement interface.
4.2.11. Interface DOMElement

public interface DOMElement
This class defines a common interface for classes which output XML into a DOM tree.
Methods:

• toDom
toDOM
public void toDOM(org.w3c.dom.Document doc,
org.w3c.dom.Node root)

This method appends nodes to the DOM tree doc at node location root.
4.2.12. Class EventElement
public abstract class EventElement
extends java.lang.Object
implements DOMElement

This class is the super class of all XML builder classes that output XML elements into a DOM tree.

Chapter 4 • Reference - Extending the Analyzer

42

Methods:

• Constructor
public EventElement(java.lang.String name)

The constructor of the EventElement class takes in the element name as a parameter. The
element name is used by the toDOM method to output the node of element name to the XML
DOM tree.

• toDOM
public abstract org.w3c.dom.Element
 toDOM(org.w3c.dom.Document doc, org.w3c.dom.Node root)

This is the same method as in the interface DOMElement.
4.2.13. Class TextElement
public abstract class TextElement
extends EventElement

This class is a super class for those XML element classes which have only one text node as a child.
This class allows adding attributes to the XML element.
Methods:

• Constructor
public TextElement(java.lang.String elementName)

The constructor takes in the element name of the node to be inserted into the XML DOM tree.

• toDOM
public void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

Overrides:

toDOM in class EventElement

• addAttribute
public void addAttribute(java.lang.String name,
 java.lang.String value)

This method allows adding a name-value pair of attributes to the XML element.

• hasNonNullValue
public abstract boolean hasNonNullValue()

This method returns true if this element has a non-null value and false otherwise.
4.2.14. Class ByteElement
public class ByteElement
extends TextElement

 43

Fields:

• value
public byte value

This field holds the byte value to be converted to an XML DOM tree node by the toDOM
method.

Constructors:

• ByteElement
public ByteElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output in the XML DOM tree node.
Methods:

• toDOM
public void toDOM(org.w3c.dom.Document doc,
org.w3c.dom.Node root)

This method appends a node containing the byte value held by the field value to the DOM tree
doc at node location root with the element name elementName specified in the constructor of
this object.

• toString
public java.lang.String toString()

Overrides:

toString in class java.lang.Object

This method converts the byte held in the field value to a string representation.

• hasNonNullValue
public boolean hasNonNullValue()

Overrides:

hasNonNullValue in class TextElement

This method returns true if this element has a non-null value and false otherwise.
4.2.15. Class ByteStringElement
public class ByteStringElement
extends TextElement

Fields:

• value
public byte[] value

This field holds the byte array value to be converted to an XML DOM tree node by the toDOM
method.

Constructor:
public ByteStringElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output into the XML DOM tree node.

Chapter 4 • Reference - Extending the Analyzer

44

4.2.16. ByteStringElement
public ByteStringElement(java.lang.String elementName,
 boolean isZOS)

The constructor takes in the element name of the tag to be output into the XML DOM tree node.
Methods:

• toDOM
public void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

Specified by:

hasNonNullValue in class TextElement

This method appends a node containing the byte array value held by value to the DOM tree doc
at node location root with the element name elementName specified in the constructor of this
object.

• toString
public java.lang.String toString()
Overrides:
toString in class java.lang.Object

This method converts a byte array held in the value field to a string representation.

• hasNonNullValue
public boolean hasNonNullValue()

Overrides:

hasNonNullValue in class TextElement

This method returns true if this element has a non-null value and false otherwise.
4.2.17. Class IntElement

public class IntElement
extends TextElement

Fields:

• value
public int value

This field holds the integer value to be converted to an XML DOM tree node by the toDOM
method.

Constructors:

• IntElement
public IntElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output into the XML DOM tree node.

 45

Methods:

• toDOM
public void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

This method appends a node containing the integer value held by field value to the DOM tree
doc at node location root with the element name elementName specified in the constructor of
this object.

• toString
public java.lang.String toString()
Overrides:
toString in class java.lang.Object

This method converts an integer to a string representation.

• hasNonNullValue
public boolean hasNonNullValue()

Overrides:

hasNonNullValue in class TextElement

This method returns true if this element has a non-null value and false otherwise.
4.2.18. Class IntHexElement

public class IntHexElement
extends IntElement

This class’s toDOM method outputs an integer value to a XML DOM node element as a
hexadecimal string.
4.2.19. Class LongElement

public class LongElement
extends TextElement

Fields:

• value
public long value

This field holds the integer long value to be converted to an XML DOM tree node by the
toDOM method.

Constructors:

• LongElement
public LongElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output into the XML DOM tree node.

Chapter 4 • Reference - Extending the Analyzer

46

Methods:

• toDOM
public void toDOM(org.w3c.dom.Document doc,

 org.w3c.dom.Node root)

This method appends a node containing the integer long value held by the field value to the
DOM tree doc at node location root with the element name elementName specified in the
constructor of this object.

• toString
public java.lang.String toString()
Overrides:
toString in class java.lang.Object

This method converts the integer long held in the field value to a string representation.

• hasNonNullValue
public boolean hasNonNullValue()

Overrides:
hasNonNullValue in class TextElement

This method returns true if this element has a non-null value and false otherwise.
4.2.20. Class LongHexElement
public class LongHexElement
extends LongElement

This class’s toDOM method outputs an integer long value to a XML DOM node element as a
hexadecimal string.
4.2.21. Class StringElement
public class StringElement
extends TextElement

Fields:

• value
public java.lang.String value

This field holds the String value to be converted to an XML DOM tree node by the toDOM
method.

Constructor:

• StringElement
public StringElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output into the XML DOM tree node.
Methods:

• toDOM
public void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

This method appends a node containing the String value held by the field value to the DOM tree
doc at node location root with the element name elementName specified in the constructor of
this object.

 47

• toString
public java.lang.String toString()
Overrides:
toString in class java.lang.Object

This method converts the String held in the field value to a string representation.

• hasNonNullValue
public boolean hasNonNullValue()

Overrides:

hasNonNullValue in class TextElement

This method returns true if this element has a non-null value and false otherwise.
4.2.22. Class RawStringElement
public class RawStringElement
extends TextElement

This class’s toDOM method outputs a String value to a XML DOM node element as a string whose
non-ASCII characters are converted to hexadecimal values.

4.3. Trimming Data From an Event
The DBWriteCtx context is invoked by the Analyzer framework before the database write operation.
It gives a user defined bean an opportunity to trim out data from the XML event packet. Beans
loaded by this context need to implement the IDBWriteExit interface.
4.3.1. Interface IDBWriteExit
public interface IDBWrite

Methods

• modify
public XMLEvent modify(XMLEvent event)
 throws DBWriteExitException

This method trims data off the XML event. The bean has to make a copy of the XML event and
return the trimmed copy.

Parameters:

event - The XML event to trim.

Returns:
The return value is the trimmed XML event
Throws:
TrimEventDataException - Trimming of the event failed
The sample code under <TVISION_HOME>/samples/dbwritexit shows how to write a bean to plug
into the database write exit context.

4.4. XML-Database mapping Using XDM Files
The TransactionVision database schema is made extensible through the XML to Database Mapping
(XDM) files. As new technologies or message data specific information is added, new XDM files
can be written to describe the lookup tables for the technology and message-specific data in those
events. Hence the purpose of the XML to Database mapping is twofold:

Chapter 4 • Reference - Extending the Analyzer

48

• To describe which fields are to be extracted from the XML event and transaction data and stored
in lookup tables for fast searching and retrieval.

• To make the database schema partially data-driven.
The definitions contained in the XML Database Mapping (XDM) file are used as input not only to
the TransactionVision Data Manager (including the query services), but also to a program that
generates the commands necessary to create the lookup tables.
The XDM mappings can be technology or platform specific. The common mapping defined in the
file Event.xdm (data in the standard event header) will be written for every event, but the mappings
defined in the other XDM files will only be applied if the current event matches the mapping’s
“category’ (technology or platform) definition. The XML schema format of XDM files is defined in
<TVISION_HOME>/config/xmlschema/XDM.xsd. The following code is an extract from the file
Event.xdm.

<?xml version="1.0"?>
<Mapping documentType=’’/Event’’>
 <Key name="proginst_id" type="BIGINT"
description="ProgramInstanceId">
 <Path>/Event/EventID/@programInstID</Path>
 </Key>
 <Key name="sequence_no" type="INTEGER"
description="SequenceNumber">
 <Path>/Event/EventID/@sequenceNum</Path>
 </Key>
 <Table name="EVENT_LOOKUP" categoryPath="COMMON">
 <Column name="host_id" type="BIGINT" description="Host"
isObject="true">
 <Path>/Event/StdHeader/Host/@objectId</Path>
 </Column>
 <Column name="program_id" type="BIGINT" description="Program"
isObject="true">
 <Path>/Event/StdHeader/ProgramName/@objectId</Path>
 </Column>
 ...
 </Table>
</Mapping>

The above snippet from Event.xdm defines a table EVENT_LOOKUP, containing various indexed
columns of data from the XML document. The key columns proginst_id and sequence_no are
mapped to XPath expressions /Event/EventID/@programInstID and
/Event/EventID/@sequenceNum. These key columns are primary keys common to all event based
lookup tables. Similarly columns host_id and program_id are mapped to XPath expressions
/Event/StdHeader/Host/@objectId and /Event/StdHeader/ProgramName/@objectId respectively.
The above XDM file specifies that when an XML event is written to the database by the DBWrite
module in the Analyzer, these fields are extracted and written into the database columns mapped to
in the XDM file. Similarly, when the database is queried using the QueryService XML interface,
these XDM files are used to construct the corresponding SQL query.
For more details on the XDM functionality, see chapter 10.2.

 49

4.5. Performing Event Analysis
There are five categories of event analysis activities defined in TransactionVision:
• Event Correlation: Establishing relation(s) between any two events. Examples include message

path relation representing a message flow from one event to another, and transaction path
relation representing a control flow between the two events.

• Local Transaction Analysis: Grouping events of the same technology that participate in the
same unit of work in the same thread of execution into one local transaction object.

• Business Transaction Analysis: Grouping local transaction objects participating in the
processing of the same business activity instance into one business transaction object. This is
achieved by establishing relation between any two local transaction objects through the
corresponding message path or transaction path relation of respective events in the local
transaction objects.

• Statistics Analysis: Calculating event statistics for the Static Topology View
• User Analysis: This can be any customized infrastructure or business level analysis.
Each event analysis task is implemented in an event analysis bean. The class AnalyzeEventBean
defines the base class for these beans.
The individual beans are managed under a multi-level analyze event context framework. The class
AnalyzeEventCtx defines the top level context. The set of beans to be managed under this context
are specified in the Beans.xml file. Each registered bean is executed following the order defined in
the file. The following is an example of the event analysis context setup for the stock trade
simulation example:
<Module type="Context" name="AnalyzeEventCtx">

<!-- This context contains beans that perform transaction analysis. -->
<!-- Each registered bean in the chain is called. -->

<!----- TransactionVision Event Correlation bean -->
<Module type="Bean"

class="com.bristol.tvision.services.analysis.eventanalysis.EventCorrela

tionBean"/>

<!----- TransactionVision Local Transaction Analysis bean -->

<Module type="Bean"

class="com.bristol.tvision.services.analysis.eventanalysis.LocalTransa
ctionAnalysisBean"/>

<!----- TransactionVision Default Business Transaction Analysis bean -->

<Module type="Bean"

class="com.bristol.tvision.services.analysis.eventanalysis.BusinessTran

sactionAnalysisBean">

<!----- TransactionVision Statistics beans -->

<Module type="Context" name="StatisticsCtx"
class="com.bristol.tvision.services.analysis.statistics.StatisticsCtx">

Chapter 4 • Reference - Extending the Analyzer

50

 <Module type="Bean"
class="com.bristol.tvision.services.analysis.statistics.MQStatisticsBea
n"/>
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.statistics.JMSStatisticsBe
an"/>
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.statistics.ServletStatisti
csBean"/>
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.statistics.EJBStatisticsBe
an"/>
</Module>

<!----User Analysis bean for the stock trade simulation -->
<Module type="Bean"
class="com.bristol.tvision.demo.stock.StockTradeAnalysisBean"/>

</Module>

4.5.1. Event Analysis Utility Classes and Interface
The following utility classes are extensively used in implementing various types of event analysis
beans.
4.5.2. Interface Cache
package com.bristol.tvision.util.cache
public interface Cache

TransactionVision maintains various in-memory caches for miscellaneous objects. These caches are
implemented as LRU caches, meaning that always the most recent processed data is available. For
example, a local transaction cache is maintained to store a mapping from event ID to local
transaction data. This interface defines the methods for manipulating the cache.
Methods:

• insert
public void insert(java.lang.Object key, java.lang.Object value)

Insert a new key-value pair into the cache.

Parameters:

key - new cache object key field

value - new cache object value field

• get
public Object get(java.lang.Object key)

This method returns the value field of the cache entry with the matching key.

Parameters:

key - key field of the cache entry to be matched

Returns:

The value field of the cache entry if a matching object is found.

 51

• remove
public void remove(java.lang.Object key)

Remove the cache entry with the matching key.

Parameters:

key - key field of the cache entry to be matched

• removeAll
public void removeAll()

Remove all cache entries.

• getSize
public int getSize()

Return the defined cache size specified in the CacheProperty file.

Returns:

The defined cache size

• resize
public void resize(int size)

Resizes (and clears) the cache.

Parameters:

size - new cache size

• getElementCount
public int getElementCount()

Return the current number of cache entries.

Returns:

The current number of cache entries.

• getCacheName
public java.lang.String getCacheName()

Return the name of this cache.

Returns:

The name of this cache
4.5.3. Class ConnectionInfo
package com.bristol.tvision.datamgr
public class ConnectionInfo

This class is a simple structure for holding the TransactionVision database connection and
schema name within an object which can be passed through the event analysis service
framework.

Chapter 4 • Reference - Extending the Analyzer

52

Fields:

• con
public java.sql.Connection con

A TransactionVision Connection object to the database. This connection object implements the
Java SQL Connection object interface.

• schema
public java.lang.String schema

String for the current project database schema.
4.5.4. Class EventID
package com.bristol.tvision.datamgr.dbtypes
public class EventID

Each event is uniquely identified by a pair of integer ID: a program instance (PII) ID and a sequence
number. The program instance ID points to the program instance (threads, tasks, etc.) the event
occurs within. This class defines a wrapper around these two identifiers for an event.
Constructor:

• EventID
EventID(int piiId, int seqNo)

Creates an event ID object for an event with the program instance ID piiId and sequence number
seqNo.

Fields:

• piiId
public int piiId

The program instance id for this event

• seqNo
public int seqNo

The sequence number of this event
Methods:

• equals
public boolean equals(EventID eventId)

Parameters:

eventId - eventId to be matched

Returns:

true if the event ID matches, false otherwise.

• hashCode
public int hashCode()

Return a unique integer has code for this event ID object.

Returns:

The integer hash code for this event ID object

 53

Overrides:

equals in class java.lang.Object

Parameters:

eventID - EventID object to compare to.

Returns:

true if the two EventIDs are equivalent.
Determine if the input event is the same as this event.

• toString
public java.lang.String toString()

Returns:

A string describing this event ID object.
4.5.5. Class TechEventID
package com.bristol.tvision.datamgr.dbtypes
public class TechEventID

This class extends class EventID and additionally holds the technology ID of the event.
Constructor:

• TechEventID
TechEventID(int piiId, int seqNo, int techId)

Creates an event ID object for an event with the program instance ID piiId, sequence number
seqNo., and technology ID techId

Fields:

public int techId

The technology ID for this event.
4.5.6. Interface IAnalyze
package com.bristol.tvision.services.analysis.eventanalysis
public interface IAnalyze

This defines the interface for general-purpose event analysis beans.
Methods:

• analyze
public void analyze(XMLEvent event, ConnectionInfo)
 throws AnalyzeEventException

This method implements a specific event analysis task on the given event.
Parameters:

conInfo - database connection info object for the current project

event - completed XML document for the current event

Throws:

AnalyzeEventException - Signals errors during the event correlation analysis

Chapter 4 • Reference - Extending the Analyzer

54

4.5.7. Class AnalyzeEventCtx
package com.bristol.tvision.services.analysis.eventanalysis
public class AnalyzeEventCtx extends ChainManagerCtx implements IAnalyze

This is the top level event analysis context class and holds all analysis beans for the event analysis.
During analysis, the analyze() interface will be called for all beans contained in this context (in
sequential order).
4.5.8. Class AnalyzeEventBean
package com.bristol.tvision.services.analysis.eventanalysis
public abstract class AnalyzeEventBean extends ChainManagedBean implements
IAnalyze

This is the abstract base class for all event analysis beans. Any custom event analysis bean should
derive directly or indirectly from this class, and implement the IAnalyze interface methods.
Fields:

• Analysis Type
public static final int EVENT_CORRELATION = 1;
public static final int LOCAL_TRANSACTION_ANALYSIS = 2;
public static final int BUSINESS_TRANSACTION_ANALYSIS = 3;
public static final int BUSINESS_PROCESS_ANALYSIS = 4;
public static final int USER_ANALYSIS = 5;
The type of analysis implemented by the event analysis bean instance.
Methods:

• getAnalysisType
public int getAnalysisType()

Return the analysis type of the event analysis bean.
4.5.9. Custom Business Transaction Attributes and Classification
Business transaction attributes are stored in the table BUSINESS_TRANSACTION which is defined
by an XDM file, and thus are easily extensible. Additional custom business transaction attributes can
be simply added by modifying the corresponding Transaction.xdm file. The table schema which is
defined by the standard definition in Transaction.xdm contains the following columns (among
others that are used internally):

• business_trans_id: a unique ID for the transaction generated by the database

• class_id: the ID of the transaction class (FK into table transaction_class)

• starttime: the start time of the transaction

• endtime: the end time of the transaction

• responsetime: the time difference between start and end timestate: the current state of the
transaction (-1=Unknown, 0=Processing, 1=Completed)

• result: the result of the transaction (-1=Unknown, 0=Failed, 1=Success)

• exception: the transaction has been flagged erroneous (0=false, 1=true)

• label: a label for the transaction to display in the GUI

 55

• sla_state: the SLA state of the transaction (0=None, 1=Violated, 2=AgedOut)

• value: the transaction value (based on the currency defined in the transaction class)

• update_id: a unique ID which gets incremented every time the transaction has been updated

• events_stored: whether event data has been stored (only applicable in failure mode, 0=No,
1=Yes)

When modifying the XDM definition to add custom business transaction attributes it is important not
to alter or delete any of those predefined, standard, attributes.
If no standard or custom transaction classification bean is plugged in into the Analyzer framework,
the attributes are populated with the following values during event transaction analysis:

business_trans_id generated by the database

class_id 0 (Unclassified)

starttime time of the earliest event in this business transaction

endtime time of the latest event in this business transaction

state -1 (Unknown)

result -1 (Unknown)

exception 0 (false)

label null

sla_state
value

0 (None)
null

events_stored 1 (in normal mode), 0 (in failure mode)

responsetime difference between starttime and endtime

update_id generated by the database

There are two different ways to populate the values of custom transaction attributes or to modify the
default values of the standard attributes:

• Use the StandardClassifyTransactionBean and define rules how to classify transactions and
update attribute values. This approach does not require any additional coding, only the
classification rules have to be defined in the Transaction Definition Editor .

• Write a custom classification bean that implements the IClassifyTransaction interface. This
approach is useful if more complex transaction classification is needed than the standard
classification bean can provide

4.6. Transaction Classification
By default, TransactionVision does not classify the business transactions it processes; the class ID of
each transaction will be 0 (Unclassified), indicating that this transaction does not belong to any
transaction class. To enable transaction classification, you have to define your classes and
classification rules in the Transaction Definition Editor.

Chapter 4 • Reference - Extending the Analyzer

56

4.6.1. Transaction Classification with the Standard Classification Bean
The StandardClassifyTransactionBean is a default implementation of a classification bean and
allows user customized transaction classification without the need to write a single line of code.
Although the rule engine of this standard bean is simple and fairly limited, it may well be sufficient
for a great amount of classification cases. It is well suited for transactions that can be classified
based on the attributes of one event of the transaction.
The classification logic is driven by classification rules defined in the Transaction Definition Editor
which specify how and when transactions are classified and transaction attributes are set or updated.
These rules will get evaluated for each event being processed in the transaction analysis in the
Analyzer. Each class can be assigned to one or more database schemas, so that for an event of a
particular project only class rules that are valid for the project schema will get evaluated. For more
information about the Transaction Definition Editor, see the Using Transaction Management.
Prior to TransactionVision version 7.50 classification rules have been defined in XML form in the
TransactionDefinition.xml file, but now the class definitions can be easily created and edited from
within the TransactionVision application of HP BSM. In the following sections we will continue to
describe the structure of the classification rules in XML form, since it relates tightly to the structure
of presenting and editing the various components in the Transaction Definition Editor. Internally, the
class definitions are stored in XML format in the TVISION system table CLASSIFICATION.
The main structure of a class definition is:

<Class name="StockTrade">
 <Classify>
 Conditions for setting the class
 Rules for updating the transaction attributes (once)
 Action rules
 </Classify>

 <Classify>
 Different conditions for setting the class
 Rules for updating the transaction attributes (once)
 Action rules
 </Classify>

Rules for updating the transaction attributes

</Class>

Each <Class> definition consists of one or more <Classify> sections that contain rules for
identifying the transaction class, a list of rules to set transaction attribute values at the time of
classification, and a list of action rules (described later), followed by a list of rules outside of the
<Classify> section for setting attribute values of all events of the transaction.
The evaluation flow is as follows:

• If the current transaction has not been classified yet (class_id == -1, Unclassified), then all
<Classify> sections of all class definitions matching with the current event schema are
evaluated. If a classification is successful, the transaction class ID of the transaction will get set
and all attribute rules contained in the class definition will get evaluated as well. No further
<Classify> section will be evaluated any more. If none of the classifications are successful, the
union of all attribute rules (outside of <Classify> sections) of all class definitions for the current
event schema are evaluated.

 57

Note: This is necessary because the processing order of events in the analyzer can be different to
the order the events really happened, and the classification algorithm needs to make sure that all
rules for a certain class will get evaluated even if the event which will classify the transaction
will be processed at a later time. As a consequence, rules outside of <Classify> sections should
always be specific enough (by defining appropriate matching rules) to match only on events of
the class they are meant for, because they will also get executed on events that might belong to
another class for which the classifying event has not been processed yet.

• If the current transaction already has its class attribute set, only the attribute rules in the
corresponding class definition outside of the <Classify> sections are evaluated. The conditions
inside of the corresponding <Classify> section are not evaluated again.

Each <Classify> section contains one ore more <Match> conditions, e.g.:

<Class name="StockTrade">
<Classify>
<Match xpath="/Event/Technology/JMS/Caller" operator="EQUAL"
value="StockTrade"/>
 <Match xpath="/Event/Technology/JMS/MQObject/Queue" operator="EQUAL"
value="TRADE_REQUEST"/>
 {…}

If the logical AND of these conditions results in true, the current transaction is considered to be
‘classified’, and the class_id attribute of the current transaction is set to the corresponding class ID
of the definition class. In general, a match condition consist of a @xpath, @operator, and @value
attribute. The @xpath attribute specifies a certain value from either the current XML event or the
transaction document. @operator can be one of the following:
• EQUAL, UNEQUAL: compares the value in the document (specified by xpath) against the

string in ‘value’. For EQUAL, a single wildcard “*” is allowed at any position, e.g. “amqsput*”,
“*QUEUE”, “TV*QUEUE”. For strings without wildcard both operators are case-insensitive.

• GREATER, LESS, GREATEREQUAL. LESSEQUAL: compares the numeric value in the
document against the numeric value of the string in ‘value’

• EXISTS, NOTEXISTS: checks for existence of any value at the specified xpath. The ‘value’
attribute is ignored and should be set to “”

• SUBSTRING: matches if the value in the document contains the string in ‘value’ as a substring.
This operator is case-sensitive.

• REGEXPR: matches if the regular expression given in ‘value’ matches the value in the
document. Examples for regular expressions are “MQPUT|MQGET”, “QUEUE[1-9]”, etc. See
the Java documentation for regular expressions at
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html for details.

@value can either contain a literal string value - an enumeration constant (if there is an enumeration
defined for this XPath), or another XPath expression into the current event or transaction document.
The condition gets evaluated by string comparison of the document value with the specified value.
As mentioned before, the match conditions in one <Classify> section are logically AND-ed together.
To specify an alternative set of conditions (logical OR), one or more additional <Classify> sections
for the same class can be added.
Attribute rules are used to set and update values of transaction attributes. They can either be defined
inside of a <Classify> section, in which case they are only evaluated once at the time of
classification, or they can appear outside of the <Classify> section if they have to be evaluated for
all events the transaction.

Chapter 4 • Reference - Extending the Analyzer

58

Here is an example of such an attribute rule:

<Attribute>
<Path>/Transaction/Declined</Path>
<ValueRule>
<Match xpath="/Event/StdHeader/ProgramName" operator="EQUAL"
value="DeclineTrade01"/>
 <Match xpath="/Event/Technology/MQSeries/MQObject/@objectName"
operator="EQUAL" value="TRADE_REPLY"/>
 <Value type="Constant">true</Value>
</ValueRule>

<ValueRule>
<Match xpath="/Event/StdHeader/ProgramName" operator="EQUAL"
value="DeclineTrade02"/>
 <Match xpath="/Event/Technology/MQSeries/MQObject/@objectName"
operator="EQUAL" value="TRADE_REPLY"/>
 <Value type="Constant">true</Value>
</ValueRule>
</Attribute>

Each <Attribute> element defines rules for setting the value of a certain transaction attribute. The
<Path> element specifies the Xpath for the transaction attribute. The possible values for this
transaction attribute are specified in one or more <ValueRule> sections. Each <ValueRule> specifies
a set of match conditions (logical AND) and the new value for the attribute if the match conditions
fire. The <ValueRule> definitions for an <Attribute> are evaluated in sequential order, and once a
certain rule has fired, the transaction attribute will get updated with the value defined within this
rule, and all following <ValueRule> sections will get skipped.
The new values for a transaction attribute are specified within the <Value> element and can have
one of two possible types (specified with the @type attribute):
• “Constant” specifies a literal String value or an enumeration constant (if there is an enumeration

defined for this XPath)
• “XPath” specifies that the new value should be retrieved dynamically at runtime from either the

XML event or transaction document
It is possible to specify multiple <Value> element for one attribute, in which case the attribute value
will be the concatenation of all evaluated <Value> definitions, like .e.g.:

<Attribute>
<Path>/Transaction/Label</Path>
<ValueRule>
<Value type="XPath">/Event/Data/Order/Ticker</Value>
 <Value type="Constant">_</Value>
 <Value type="XPath">/Transaction/Account</Value>
 <Value type="Constant">_</Value>
 <Value type="XPath">/Transaction/OrderID</Value>
</ValueRule>
</Attribute>

 59

Every time the transaction analysis calls into the standard classification bean for an event all
<Attribute> definitions for the corresponding transaction class are getting evaluated in sequential
order. But by default the <Attribute> rules are only evaluated if the corresponding transaction
attribute has no value yet, the definition is considered to be final. Once a final rule has set the value
of the transaction attribute, it (and other final rules that refer to the same attribute) will not be
evaluated again.
To allow transaction attributes to get set and updated more than once, the attribute rule can be
declared with an attribute @final set to “false”:

<Attribute final=’’false’’>
 <Path>/Transaction/EndTime</Path>
 {…}

This forces an attribute rule to get evaluated every time, even when the transaction attribute is
already set. An attribute rule without the @final attribute is equivalent to @final=”true”.
Another rule attribute, @precedence, can be used to control the setting of new values for transaction
attributes:

<Attribute precedence="true">
<Path>/Transaction/State</Path>
{…}

This attribute can only be set for rules referencing integer valued transaction attributes. If set to true
then an existing attribute value only gets overwritten if the new value is greater than the old value.
This mainly makes sense for ‘state’ and ‘result’ like attributes where all values can be ordered
according to a priority (e.g. UNKNOWN->PROCESSING->COMPLETE), though in general it can
be applied to any integer valued attribute. All @precedence rules are automatically considered to be
non-final too. By default (if the @precedence attribute is not specified) the value is false.
In addition to the <Class> definitions you can also define one or more <Common> sections in the UI
Transaction Definition Editor. The structure of a <Common> definition is similar to the <Class>
definition:

<Common name=’’Common1’’>
 <Evaluate>
Conditions for triggering the following rules
Rules for updating the transaction attributes
Action rules
 </Evaluate>

 <Evaluate>
Conditions for triggering the following rules
Rules for updating the transaction attributes
Action rules
 </Evaluate>

</Common>

Unlike the rules defined in the <Class> sections, the rules defined in the <Common> section are
valid for all classes (including UNCLASSIFIED) and will get evaluated on every event,
irrespectively of the classification status. Like <Class> definitions, <Common> sections can be
assigned to one or more project schemas to restrict the evaluation of the sections to events of those
projects.

Chapter 4 • Reference - Extending the Analyzer

60

Any transactions that have been successfully classified will show up with their respective class name
in the reports that categorize by class, such as the Transaction Tracking Report. Also, any errors that
are encountered during the classification process will get logged in the Analyzer.log file.
4.6.2. Classification Action Rules
In addition to setting and updating transaction attribute values, the classification rules can also
trigger custom actions. Action rules specify a java class implementing
com.bristol.tvision.services.analysis.eventanalysis.IAnalyzerAction and can appear in two
locations of the classification rules:
• As part of an Attribute rule. The action is executed after the value of the attribute has been

updated
<Attribute precedence="true">
 <Path>/Transaction/State</Path>
 <ValueRule >
 <Match xpath="/Event/StdHeader/ProgramName" operator="EQUAL"
value="TradeServlet"/>
 <Value type="Constant">Completed</Value>
 <Action type="JAVACLASS" code="1"
reason="TestInvocation">com.bristol.tvision.services.analysis.actions.S
ampleAction</Action>
 </ValueRule>
</Attribute>

In this example, if the event is generated from the program TradeServlet, the transaction
attribute named State will be set to "Completed". After the attribute has been updated, the bean
specified in the action tag is invoked. The sample bean logs information about the event and the
transaction to the analyzer trace log.

The <Action> rule can have the following attributes: type, code, and reason. Currently, the only
Action type available is “JAVACLASS”. Code and reason provide a means of passing an integer
and/or string for use in the action method. They are not required. If the action is invoked as part
of an Attribute definition, a reference to the transaction attribute is also passed into the action
method call.

• As part of a <Classify> or <Evaluate> section:

<Classify>
 <Match…./>
 <Attribute…./>
<Action type="JAVACLASS" code="1"
reason="TestInvocation">com.bristol.tvision.services.analysis.actions.S
ampleAction</Action>
</Classify>

<Evaluate>
 <Match…./>
 <Attribute…./>
<Action type="JAVACLASS" code="1"
reason="TestInvocation">com.bristol.tvision.services.analysis.actions.S
ampleAction</Action>
</Evaluate>

The actions defined inside of <Classify> and <Common> sections will be executed in textual order,
after all attribute rules have been evaluated.

 61

If you write a custom action class, it must implement
com.bristol.tvision.services.analysis.eventanalysis.IAnalyzerAction interface and must provide an
action method to be invoked by the standard classification bean:

public interface IAnalyzerAction {

 boolean action(int code, String reason, XMLDocument inputDoc,
XMLDocument outputDoc, Attribute attr, ConnectionInfo conInfo);
}

The code and reason string will get passed in from the rule definition (null if not specified).
InputDoc is the event XML document, and outputDoc is the transaction XML document. Attr is a
reference to the updated transaction attribute if the action has been invoked as part of an attribute
rule, or null otherwise. To identify which attribute triggered the action, you can reference
attr.attrPath which contains the XPath for the attribute. The method has to return true if it has
modified the transaction document, or false otherwise.
The custom class has to be added to the Analyzer’s CLASSPATH.
4.6.3. The ClassifyTransactionCtx and the IClassifyTransaction Interface
Transaction classification beans are plugged in into the Analyzer framework by placing them into
the ClassifyTransactionCtx in the Beans.xml file; for example:

<Module type="Context" name="ClassifyTransactionCtx">
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.StandardClassi
fyTransactionBean"/>
 </Module>

The context can contain multiple beans, in which case the beans are processed in sequential order.
Each classification bean has to extend com.bristol.tvision.services.analysis.framework and
implement the IClassifyTransaction interface which contains the following two methods:

• classify

public boolean
classify(com.bristol.tvision.services.analysis.xml.XMLEvent event,

com.bristol.tvision.services.analysis.eventanalysis.XMLTransaction txn,
com.bristol.tvision.datamgr.dbtypes.EventID[] correlatedEvents,
com.bristol.tvision.datamgr.ConnectionInfo conInfo)
 throws
com.bristol.tvision.services.analysis.eventanalysis.AnalyzeEventException

Parameters:

event - The current event.

txn - The transaction document for the current event.

correlatedEvents - The list of correlated events.

conInfo - The current database connection.

Returns:

true if the transaction doc has been updated, false otherwise

Throws:

Chapter 4 • Reference - Extending the Analyzer

62

com.bristol.tvision.services.analysis.eventanalysis.AnalyzeEventException - The analysis
process failed.

• hasTimeRules
public boolean
hasTimeRules(com.bristol.tvision.datamgr.ConnectionInfo conInfo.
String className)

Returns whether the classification rules for the given class contain rules for start/endtime of the
transaction (/Transaction/Starttime and /Transaction/Endtime).

Parameters:

conInfo - The current database connection

className - The name of the class

Returns:

true if the given class has rules for start/endtime of the transaction, false otherwise
For each event that gets processed during the event transaction analysis phase the classify method of
each registered classification bean will be called, and the logical OR of all bean invocations will be
returned back to the transaction analysis phase in the Analyzer. If the returned value is true (meaning
one or more beans have modified the transaction document) the corresponding row values in the
business_transaction table will get updated by the Analyzer framework.
4.6.4. Writing a Custom Classification Bean
A classification bean has to implement the classify interface described above and can trigger the
update of business transaction attributes by modifying the XMLTransaction object (the business
transaction for the current event), which gets passed into the call. The bean has access to all
XMLDocument values in the current event and the corresponding business transaction object by
using the method getDocumentValue(String xpath); for example:

String progName = event.getDocumentValue(XpathConstants.PROGRAM_NAME);
String oldLabel = txn.getDocumentValue(XMLTransaction.LABEL_XPATH);

The bean can set and modify all of the additional custom transaction attributes, and most of the
standard ones. The exceptions are business_trans_id, update_id, timerule_state, and events_stored.
Updating those values is not allowed and may lead to unexpected results in the Analyzer. The update
of transaction attributes is done by using the method setDocumentValue(String xpath, String value);
for example

tnx.setDocumentValue(XMLTransaction.LABEL_XPATH, newLabel);

If the bean has modified any of the transaction attributes, it has to return a boolean true value from
the classify call; otherwise, the new values will not be written to the database in the Analyzer
framework.
If the transaction document remains unchanged, the bean should return false to avoid unnecessary
database write overhead.

 63

To classify a certain transaction, the bean has to update the class_id attribute of the transaction
document (XMLTransaction.CLASS_ID_XPATH). This integer value is a foreign key into the
CLASSIFICATION table and thus should only contain values that correspond to valid transaction
class entries. The transaction class Ids can easily be accessed by using the utility class
TransactionClassCache:

int classId = TransactionClassCache.instance(schema).getClassId(conInfo,
className);

The utility class reads the transaction class data only once at initialization time from the database and
returns all Ids without any further database access.
4.6.5. Logging SLA Violations
When a transaction gets classified, the analyzer can monitor its response time against the SLA value
defined for the corresponding transaction class, and fire an alert in case the SLA is violated. The
SLA violation logging can be enabled by removing the comment around the LogSLAViolationCtx
section in Beans.xml and by placing the appropriate logging bean (standard or custom logging bean)
into it.
TransactionVision ships with a standard logging bean, com.bristol.tvision.
.services.analysis.eventanalysis.LogSLAViolationBean, which logs the transaction together with
its SLA and response time to the SLAViolationLog defined in Analyzer.Logging.xml.
If you write a custom logging class, it must implement the
com.bristol.tvision.services.analysis.eventanalysis.ILogSLAViolation interface:

public boolean slaViolation(XMLTransaction txn, ConnectionInfo conInfo);

For the normal analyzer processing mode, the return value of this method is ignored. In failure
mode, the return value indicates to the analyzer whether to write the whole business transaction to
the database (return true) or to discard it (return false). The custom class needs to be added to the
Analyzer’s CLASSPATH by running the TVisionSetupInfo utility again.
4.6.6. Custom Event Correlation
There are two ways to establish relationships between either two user events or a user event and a
standard Sensor event:
Implement the correlation logic through a Java bean that implements the interface
com.bristol.tvision.services.analysis.eventanalysis.IEventCorrelation. Install this bean as the
UserCorelationBean for the CorrelationTechHelperCtx in the analyzer configuration file Beans.xml:

(extracted from <TVISION_HOME>/config/services/Beans.xml)
<Module name="CorrelationTechHelperCtx" type="Context">
<Attribute name="UserCorrelationBean"
 value="com.bristol.tvision.extension.MyCorrelationBean/>

TransactionVision supports an XML rule engine for event correlation purposes
(com.bristol.tvision.services.analysis.eventanalysis.XMLRuleCorrelationBean). This is similar
to the rule engine for transaction classification. The custom correlation logic is implemented through
XML syntax rules that are stored in the analyzer configuration file
EventCorrelationDefinition.xml. For each event (Sensor or user), it will evaluate the correlation
rules against the event, create correlation lookup key(s) and event relation(s) according to the
matched rules. The bean will also take care of updating the memory cache and database tables for
the entities created.

Chapter 4 • Reference - Extending the Analyzer

64

The rule engine bean can be enabled by modifying the Beans.xml file as follows:

(extracted from <TVISION_HOME>/config/services/Beans.xml)
<Module name="CorrelationTechHelperCtx" type="Context">
 <Attribute name="UserCorrelationBean" value="com.bristol.
tvision.services.analysis.eventanalysis.XMLRuleCorrelationBean"
/>

Event Correlation Using the XML Rule File
The event correlation rules follow the same syntax as the transaction classification rules. Refer to the
transaction classification section in Chapter 3 for a detailed description on the rule basics. This
section covers the details specific to the event correlation rule engine. For an example of the rules,
see the analyzer configuration file EventCorrelationDefinition.xml.
The high level framework for the correlation rules is as follows:

<EventCorrelationDefinition>
<RelationLookupType id=1001" name="JMSToUserEvent" dbschema="BROKER">
 <CreateLookupKey technology="UserEvent" id="1">
 . . .
 </CreateLookupKey>
 . . .
 <CreateRelation keyRuleId1="1" keyRuleId2="2" id="1">
 . . .
 </CreateRelation>
</RelationLookupType>
</EventCorrelationDefinition>

RelationLookupType
This element defines a relation type. It takes three attributes that characterizes the lookup type:
Attributes:

Name Type Use Description

id xsd:int required The relation lookup type ID. This ID should be unique in the
type definition scope. The type ID should have a value greater
than 1000.

name xsd:string required Relation lookup type name.

dbschema xsd:string optional A string representing the database schema. The presence of
this attribute limits the relation lookup type scope to the
particular database schema.

This element can have two types of child elements: CreateLookupKey and CreateRelation. The
former implements a single rule set for creating lookup keys from individual event specific for this
relation lookup type. The latter implements a single rule set for creating relation entity between two
events that obey the matching conditions specified.

• CreateLookupKey

This element defines a set of rules for creating a lookup key for the relation type this element
belongs to. The following illustrates the structure of this element and its children:
<CreateLookupKey technology="UserEvent" id="1">
<Match xpath="/Event/StdHeader/ProgramName" operator="EQUAL"
value="Validate"/>

 65

<Match xpath="/Event/Technology/UserEvent/Class" operator="EQUAL"
value="JDBC"/>
<Attribute name="LookupKey">
 <Path>/RelationLookup/LookupKey</Path>
 <ValueRule name="SetLookupKey">
 <Value type="XPath">/Event/Data/Chunk/Order/OrderID</Value>
 </ValueRule>
</Attribute>
</CreateLookupKey>

Attributes:

Name Type Use Description

technology xsd:string required String representing a technology name. This must be one
of the technologies supported by TransactionVision. Only
events belonging to the specified technology will be
evaluated against this rule.

Id xsd:int required An integer uniquely identifying this CreateLookupKey
rule among all belonging to the same RelationLookupType
object. This ID can be used in the relation creation stage to
identify events that have lookup keys created based on this
rule.

The following is a list of supported technology names to be used for reference in
TransactionVision configuration or definition files (for example, in XML event correlation
definition):

• MQSERIES for WebSphere MQ
• MQIMSBRIDGE for WebSphere MQ IMS bridge
• Servlet for J2EE Servlet
• JSP for J2EE JSP
• JMS for J2EE Java Message Service
• EJB for J2EE Enterprise Java Beans
• CICS for IBM CICS
• UserEvent for TransactionVision User Event

Match

There can be one or more match conditions. All the conditions must be met (AND) for a proper
event match.

Attribute LookupKey
There should be exactly one Attribute element with the name LookupKey and path
/RelationLookup/LookupKey, as shown in the above example. There can be one or more
ValueRule elements with optional match conditions for assigning the lookup key value based on the
event contents.
In the above example, the lookup key value is extracted from the event document under the path
/Event/Data/Chunk/Order/OrderID.

Chapter 4 • Reference - Extending the Analyzer

66

• CreateRelation

This element implements a rule for creating a relation between two events having the same
lookup key. This element has two attributes “keyRuleId1” and “keyRuleId2”. These attributes
refer to the CreateLookupKey id attribute:

Attributes:

Name Type Use Description

keyRuleId1 xsd:int required The source event of this relation object should have its
lookup key generated by the CreateLookupKey element with
id equals to the value of this attribute.

keyRuleId2 xsd:int required The destination event of this relation object should have its
lookup key generated by the CreateLookupKey element with
id equals to the value of this attribute.

id xsd:int required An integer ID for this CreateRelation element.

The following illustrates the structure of this element and its children:

<CreateRelation keyRuleId1="3" keyRuleId2="5" id="1">
 <Attribute name="RelationType">
 <Path>/EventRelation/RelationType</Path>
 <ValueRule name="SetRelationType">
 <Value type="Constant">18</Value>
 </ValueRule>
 </Attribute>
 <Attribute name="Direction">
 <Path>/EventRelation/Direction</Path>
 <ValueRule name="SetDirection">
 <Value type="Constant">2</Value>
 </ValueRule>
 </Attribute>
 <Attribute name="Confidence">
 <Path>/EventRelation/Confidence</Path>
 <ValueRule name="SetConfidence">
 <Value type="Constant">1</Value>
 </ValueRule>
 </Attribute>
</CreateLookupKey>

This example says that a relation is to be created between event 1 (source) and 2 (destination) if
the following conditions are met:

• Event 1 and 2 has the same lookup key value for this relation type.
• Event 1’s lookup key for this relation type is created under the CreateLookupKey rule

with id equals to 3.
• Event 2’s lookup key for this relation type is created under the CreateLookupKey rule

with id equals to 5

The CreateRelation element should always have the three child Attribute elements as shown
above:

• The RelationType element should always have the value 17 or 18. 17 indicates a
message path (suitable for representing message oriented middleware activities) while
18 indicates general purpose transaction control flow.

 67

• The Direction element defines the relation direction, and should have value equals to 0
(unknown), 1 (inbound, flow from destination to source event), or 2 (outbound, flow
from source to destination event).

• The Confidence element indicates whether the relation is strong (value = 1) or weak
(value = 0). In general, the relation confidence should be set to strong (1).

Time-Based Correlation
In the area of event correlation, there are certain scenarios where perfect correlation data is not
available. While there may be enough correlation information--based on either standard technology
context or customer specific business data--to triage the events and limit the matching event
candidates to a minimum set, additional factors need to be considered to complete the correlation
process and result in one-to-one event relationship.
One such factor is event time stamps. In certain situations, TransactionVision can correlate specific
event candidates by considering the respective event execution time. One example: two events A and
B representing EJB X and Y method calls respectively are reported to TransactionVision, with EJB
X method invoking the EJB Y method. In this case TransactionVision can reasonably assume that
the two events' exit timestamps are very close based on the call latency nature.
Thus TransactionVision can deduce that by truncating the respective event time stamps to a
precision consistent with the expected latency, the two events would have the same truncated
timestamp, and this can in turn be considered as a matching key in a lookup key based correlation
algorithm.
TransactionVision provides a correlation component that supports this type of time based correlation
enhancement. One can consider this as a correlation algorithm based on a mix of time and
payload/technology specific data keys.
<RelationLookupType id="1001" name="Time_Correlation" >

<CreateLookupKey technology="MQSERIES" id="101" timeInterval="10">

<Match xpath="/Event/StdHeader/ProgramName" operator="EQUAL"
value="amqsput"/>

<Match xpath="/Event/Technology/MQSeries/@API" operator="EQUAL"
value="MQPUT"/

<Attribute name="LookupKey">

<Path>/RelationLookup/LookupKey</Path>

<ValueRule name="SetLookupKey">
<Value type="Constant">0</Value>

 </ValueRule>

 </Attribute>

</CreateLookupKey>

[…]

<CreateRelation keyRuleId1="101" keyRuleId2="101" id="1">

 […]

 </CreateRelation>

</RelationLookupType>

This will correlate all events which happen within a 10 minute time interval into one business
transaction, provided they match the other conditions (if present, this is optional).
Note that in order for this to work, different transactions have to be separated in time by at least the
same interval length.

Chapter 4 • Reference - Extending the Analyzer

68

Event Correlation Using a Custom Bean
For event correlation, the class CorrelationTechHelperCtx defines the top-level context for managing
all event correlation beans. These beans are managed into different groups according to the
technology categories the beans are associated with. Each category is managed by a technology
specific event correlation context. Each context is designated to handle a particular type of
technology (e.g.: WebSphere MQ). That is, all the events being passed to the context belong to the
same technology. The technology specific context itself holds a set of correlation beans which
implements the Interface IEventCorrelation, each is responsible for correlating the current
technology to one particular other technology.
In Addition to these technology specific contexts it is possible to plug in a custom
‘UserCorrelationBean’, which will be invoked for every event processed by the event analysis
service, irrespectively of the technology.
The following is an example of event correlation context definition in the Beans.xml file:

<Module type="Context" name="CorrelationTechHelperCtx">

<!-- This context contains beans that perform event correlation. -->
<!-- For each event the correlation context that matches the event's
technology will be called. -->

<!-- This context contains beans that perform MQSeries event correlation
-->
<Module type="Context" name="CorrelationMQHelperCtx"
class="com.bristol.tvision.services.analysis.eventanalysis.CorrelationMQH
elperCtx">

<!----- This bean is provided by TransactionVision for establishing default
intra MQSeries event correlation such as MQPUT -- MQGET message path
relations -->

<Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.MQToMQRelation
shipBean"/>

<!----- This bean is provided by TransactionVision for establishing
MQSeries -- IMSBridge message path relations -->

<Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.MQToBridgeRela
tionshipBean"/>

<!----- This bean is developed specifically the stock trade simulation for
establishing a custom transaction path relation between a failed MQGET
call and the MQPUT call issued by the stock trade initiating program -->

<Module type="Bean" class="com.bristol.tvision.demo.
stock.StockTradeRelationshipBean"/>

<!----The CorrelationTechHelperCtx provides a hook for the user to plug in
a technology independent custom correlation bean:
<!-- UserCorrelationBean :
1.) the ‘createLookupKeys()’ method of the user bean is called after the
default lookup key generation for events of all technologies and can add
additional lookup keys

 69

2.) the ‘correlateEvents()’ method of the user bean is called after the
default correlation for events of all technologies and can generate
additional event relations -->

<Attribute name="UserCorrelationBean"
value="com.bristol.tvision.services.analysis.eventanalysis.UserCorrelatio
nBean"/ -->

</Module>

</Module>

For WebSphere MQ, TransactionVision provides a bean MQToMQRelationshipBean that handles
all WebSphere MQ correlation tasks. This includes matching MQPUT or MQPUT1 calls to MQGET
calls that handle the same message. The resultant relation is known as the message path relation,
indicating a data flow between the two corresponding applications.
It is possible to add additional correlation logic in several ways:
• A new correlation bean can be developed and added to the correlation processing chain. In the

above example, the StockTradeRelationshipBean bean is invoked in the MQSeries event context
along with the MQToMQRelationshipBean.

• The default correlation bean can be replaced by a user bean through subclassing or aggregation.
This allows modifications to the default correlation behavior. For example, a bean can be
developed that invokes the MQToMQRelationshipBean correlation interfaces, examines the
correlation results, and makes modifications to the results if necessary.

• Provide an implementation for the UserCorrelationBean.
An event correlation bean should implement the interface IEventCorrelation. The IEventCorrelation
interface defines two methods createLookupKeys and correlate for the two phases discussed before.
The class CorrelationTechHelperBean serves as the base class for all event correlation beans
In TransactionVision, event correlation is performed on a per event, per technology basis. The
correlation task is divided into two phases.
The first phase involves generating lookup keys based on the characteristics of the current event. The
purpose of setting up these keys is to identify the set of events bearing the same lookup key as the
potential candidates for correlation in the second phase. For example, in the case of MQPUT(1) –
MQGET message path relation generation, for each MQPUT(1) and MQGET event, a key
composed of the message ID (MQMD.MsgId), correlation ID (MQMD.CorrelId), message put data
and time is generated.
For any event, the createLookupKeys() method of each bean contained in the technology specific
context will be called. In the above example, for a MQ event the MQToMQRelationshipBean as
well as the MSToBridge RelationshipBean will both generate a lookup key for the current event.
The second phase involves relation generation. Specifically, a set of events is passed as potential
candidate for matching with the current event. This set is composed of the events that have the same
lookup key as the current event. For example, for a MQGET event, all the MQPUT(1) /MQGET
events having the same key (message Id + correlation ID + message put data + message put time) are
passed as potential match candidates. Further tests can now be conducted on individual candidate
event to see if it is truly related to the current event. For example, events with the same method/API
name (MQPUT-MQPUT, MQGET-MQGET) should not result in a message path relation.

Chapter 4 • Reference - Extending the Analyzer

70

For a certain set of candidates with matching lookup keys, the type of the correlation (e.g., MQ-MQ
or MQ-IMS) determines which beans correlateEvents() method is called. In the above example, a set
of events with matching lookup key of type MQ-MQ will be passed on to the
MQToMQRelationshipBean, a set of events with type MQ-IMS will be passed on to the
MQToBridgeRelationshipBean. Currently the following correlation types are defined for
TransactionVision as constants in class EventCorrelationBean:

public class EventCorrelationBean extends AnalyzeEventBean {

 public static final int MQ_PUT_GET_TYPE = 1;
 public static final int MQ_IMSBRIDGE_TYPE = 2;
 public static final int IMSBRIDGE_ENTRY_EXIT_TYPE = 3;
 public static final int JMS_SEND_RCV_TYPE = 4;
 public static final int PROXY_TYPE = 5;
 public static final int PUBSUB_TYPE = 6;
 public static final int CICS_TRANS_TYPE = 7;
 public static final int MQ_CICS_TYPE = 8;
. . .
}

The correlation type for a correlation bean has to provided in the constructor call. For user defined
correlation beans, new correlation types should be >= 100.
4.6.7. Interface IEventCorrelation

package com.bristol.tvision.util.services.analysis.eventanalysis
public interface IEventCorrelation
The IEventCorrelation interface defines the methods to be implemented by any event correlation
bean.
Methods:

• createLookupKeys
public void createLookupKeys(ConnectionInfo conInfo, XMLEvent event,
java.awt.List lookupKeys) throws AnalyzeEventException

Generate one or more lookup keys for correlation purpose for the given event.

Parameters:

conInfo - database connection info object for the current project

event - completed XML document for the current event

lookupKeys - list of lookup keys to be added

Throws:

AnalyzeEventException - Signals errors during the event correlation analysis

• correlateEvents
public void correlateEvents (ConnectionInfo conInfo, TechEventID id,
TechEventID idToMatch, int correlationType, List eventRelations)
throws AnalyzeEventException

Decide whether a relation should be established between the two events passed. If the conclusion
is affirmative, generate new relation objects and add them to the given list.

Parameters:

conInfo - database connection info object for the current project

 71

id - event ID object for the current event to be matched

idToMatch - event ID object for the potential matching event candidate

correlationType - the correlation type

eventRelations - list of event relations generated

Throws:

AnalyzeEventException - Signals errors during the event correlation analysis

4.6.8. Class CorrelationTechHelperBean
package com.bristol.tvision.util.services.analysis.eventanalysis
public abstract class CorrelationTechHelperBean
extends ChainManagedBean
implements IEventCorrelation

This is the abstract base class for all event correlation beans.
Constructor:

• CorrelationTechHelperBean
CorrelationTechHelperBean(java.lang.String technology, int
correlationType) throws AnalyzeEventException

Creates an instance of this event correlation bean for the given technology and correlation type.
The correlation type is a unique integer and should be >= 100 for new user-defined correlation
types.

Methods:

• createLookupKeys

Refer to the definition of IEventCorrelation.

• correlateEvents

Refer to the definition of IEventCorrelation.

• getCorrelationType
public int getCorrelationType()

Return the correlation type string.

• Class MQCorrelationData
package com.bristol.tvision.datamgr.dbtypes
public class MQCorrelationData

This class defines a collection of event attributes relevant to the event correlation process. For
example, in the IEventCorrelation::correlateEvents method, event attributes for the two events to be
matched can be retrieved through a correlation data cache. The attributes are returned in an object
instance of this class.
Constructor:
MQCorrelationData
MQCorrelationData(int apiCode, java.lang.String putApplName, java.lang.String
putApplType,String userId, long qmgrId, long mqObjId, java.lang.String eventTime, long
programId)

Chapter 4 • Reference - Extending the Analyzer

72

MQCorrelationData(int apiCode, java.lang.String putApplName, java.lang.String
putApplType,String userId, long qmgrId, long mqObjId, java.lang.String eventTime, long
programId, java.lang.String jobNameId, java.lang.String jobStepId, java.lang.String sysId,
java.lang.String transId, java.lang.String imsId, java.lang.String imsRegionType,
java.lang.String imsRegionId, long imsTxnId, java.lang.String imsPsbId)
Creates an instance of a WebSphere MQ correlation event attribute data collection object based on
the given event attributes.
Fields:
• int apiCode
• String putApplName
• String putApplType
• String userId
• long qmgrId
• long mqObjId
• String eventTime
• long programId
4.6.9. Class JMSCorrelationData
package com.bristol.tvision.datamgr.dbtypes
public class JMSCorrelationData

Similar to the class MQCorrelationData, this class defines a collection of event attributes relevant to
the event correlation process of JMS events.
Constructor:
JMSCorrelationData
JMSCorrelationData(int methodCode, String appId, String userId, String destination, String
eventTime, long programId, String putApplType, long qmgrId, long mqObjId)
Creates an instance of a JMS correlation event attribute data collection object based on the given
event attributes.
Fields:
• int methodCode
• String appId
• String userId
• String destination
• String eventTime
• long programId
• String putApplType
• long qmgrId
• long mqObjid
4.6.10. Class LookupKey
package com.bristol.tvision.datamgr.dbtypes
public class LookupKey

This class defines the lookup key object to be used in identifying potential events for correlation
purpose.

 73

Constructor:
LookupKey
LookupKey(java.lang.String keyValue, int typeId)

Creates a new lookup key instance with the given key and the correlation type id.

Fields:
• String keyValue
• int typeId
Methods:

• equals
public boolean equals (LookupKey lookupKey)

Determine whether two LookupKey objects are equivalent.
Overrides:

equals in class java.lang.Object

Decide whether the given lookupKey is equal to this key object. The two objects are equal if the
corresponding key, correlation type string, and type ID are the same.

Parameters:

lookupKey - lookup key object to be compared

Returns:

true if the two keys are equal, false otherwise
4.6.11. Class EventRelation

package com.bristol.tvision.datamgr.dbtypes
public class EventRelation

This class defines an event relation object between any two events.
Fields:
Relation Type
public static final int UNKNOWN_PATH = 0;
public static final int MESSAGE_PATH = 1;
public static final int TRANSACTION_PATH = 2;
public static final int BIDIRECTION = 16
Type of the event relation:
• MESSAGE_PATH indicates a direct message flow between the two events. That means the two

events are associated with the same message data. For example, a MQPUT and MQGET call
dealing with the same message bears a message path relation.

• TRANSACTION_PATH indicates a control flow between two events.
• BIDIRECTION is a type mask that indicates the bi-direction nature of the relation between the

two events.
Relation Direction
public static final int RELATION_PATH_IN = 1;

Chapter 4 • Reference - Extending the Analyzer

74

public static final int RELATION_PATH_OUT = 2;
public static final int RELATION_UNKNOWN = 0;
Direction of the event relation. Note that the event object is created in conjunction with an event pair
(event1, event2). This indicates the direction from event1 to event2.
Confidence Factor
public static final int WEAK_RELATION = 0;
public static final int STRONG_RELATION = 1;
This factor is assigned by the event correlation module. There are cases where the correlation
module may not have perfect data for a deterministic decision on the event relation generated. In
such case, the relation created can carry a WEAK_RELATION confidence factor indicating the
uncertainty in the decision.
int relation
Bitfield indicating the relation type, e.g. MESSAGE_PATH | BIDIRECTION
int direction
Bitfield indicating the relation direction, e.g. RELATION_PATH_IN | RELATION_PATH_OUT
int confidence
Confidence factor, either WAEK_RELATION or STRONG_RELATION
int latency
The latency between the two events in milliseconds
Constructor:
EventRelation
EventRelation(int relation, int direction, int confidence, int latency)

Creates a relation object with the given relation type, direction, confidence factor, and latency.
4.6.12. Class MQRelationDBService
package com.bristol.tvision.datamgr.dbservices
public class MQRelationDBService

This class defines an internal database service for accessing MQSeries correlation related
information. For example, this service works in conjunction with the caching mechanism and stores
MQSeries event correlation attributes. The following describes the public interfaces of interest to the
custom event analysis beans developers.
Methods:

• instance
public static MQRelationDBService instance(java.lang.String schema)

Return the singleton instance of the MQRelationDBServices.

Parameters:

schema - Database schema for the current project

Returns:

Singleton instance of the MQRelationDBService.

 75

• getCorrelationData
public MQCorrelationData getCorrelationData(java.lang.Connection con,
EventID eventID) throws DataManagerException

Return the MQSeries correlation event data for the given event.

Parameters:

con - Java SQL database connection handle, probably from the ConnectionInfo object.

eventID - EventID object for the interested event

Returns:

A MQCorrelationData object for the given event.

Throws:

DataManagerException - Signals errors during internal database operations.
4.6.13. Class JMSRelationDBService
package com.bristol.tvision.datamgr.dbservices
public class JMSRelationDBService

This class defines an internal database service for accessing JMS correlation related information.
Methods:

• instance
public static JMSRelationDBService instance(java.lang.String schema)

Return the singleton instance of the JMSRelationDBServices.

Parameters:

schema - Database schema for the current project

Returns:

Singleton instance of the JMSRelationDBService.

• getCorrelationData
public JMSCorrelationData
getCorrelationData(java.sql.Connection con,EventID eventId) throws
DataManagerException

Return the MQSeries correlation event data for the given event.

Parameters:

con – Java SQL database connection handle, probably from the ConnectionInfo object.

eventID – EventID object for the interested event

Returns:

A JMSCorrelationData object for the given event.

Throws:

DataManagerException - Signals errors during internal database operations.

Chapter 4 • Reference - Extending the Analyzer

76

Sample Custom Event Correlation Bean
Refer to the code in the directory <TVISION_HOME>/samples/stock to see a sample
implementation of a custom event correlation bean (StockTradeRelationshipBean.java).
StockTradeRelationshipBean implements the IEventCorrelation interface and is derived from the
class CorrelationTechHelperBean. It builds a custom message path relation between a failed
MQGET event (CompCode equals to MQCC_FAILED) and the MQPUT event that participates in
the same trade request processing. The stock trade example follows a request-reply messaging
model. The StockTrade program records the message ID field of the initial request message, and
uses this value as the correlation ID value to be matched when it reads the reply message through the
MQGET call. In other words, for a particular transaction, the message ID field in the MQMD object
of the StockTrade – MQPUT(1) event should be the equal to the correlation ID field in the MQGET
event.
The following is the code fragment for the StockTradeRelationshipBean constructor. It specifies that
the bean handles MQSeries events and generates custom event relation of type
“REQUEST_REPLY_TYPE” correlation as described above:

public static final String REQUEST_REPLY_TYPE = 100;
public StockTradeRelationshipBean() throws AnalyzeEventException {
super(TVisionCommon.TECH_NAME_MQSERIES, REQUEST_REPLY_TYPE);
}

The next code fragement contains the implementation of the createLookupKeys method. As
discussed before, the message ID or correlation ID value in the message descriptor record is used as
the lookup key for MQPUT(1) and MQGET respectively.
public void createLookupKeys(ConnectionInfo conInfo, XMLEvent event,
 List lookupKeys) throws
AnalyzeEventException {
try {
XPathSearch lookup = new XPathSearch(event);
String correlId;
/* for StockTrade->MQPUT call (request event), use MQMD.MsgID as */
/* lookup key, for StockTrade->MQGET call (reply event), use */
/* MQMD.CorrelId as the lookup key */
switch (StockTradeHelper.getEventType(lookup)) {
case StockTradeHelper.MQSERIES_REQUEST_EVENT:
correlId = lookup.getValue(XPathConstants.MSGID);
if (correlId == null)
 return;
break;
case StockTradeHelper.MQSERIES_REPLY_EVENT:
if (Integer.parseInt(lookup.getValue(XPathConstants.COMPCODE)) !=
 MQDefs.MQCC_FAILED)
return;
 correlId = lookup.getValue(XPathConstants.CORRELID);
 if (correlId == null)
return;
 break;
default:
return;
 }

/* create a new lookup key and add it to the list */
LookupKey key = new LookupKey(correlId, REQUEST_REPLY_TYPE);
lookupKeys.add(key);
 }

 77

 catch (XMLException ex) {
throw new AnalyzeEventException(ex);
 }
}

The next code fragment contains the implementation of the correlateEvents method:
public void correlateEvents(ConnectionInfo conInfo, TechEventID id,
TechEventID idToMatch, List eventRelations) throws AnalyzeEventException
{

try {
/* Retrieve data relevant for event correlation from cache. */
Cache cache = AnalysisCacheManager.instance().getCorrelationCache
(conInfo.schema);
MQCorrelationData data = (MQCorrelationData) cache.get(id);
if (data == null) {
 data = MQRelationDBService.instance(conInfo.schema).getCorrelationData(
 conInfo.con, id);
 if (data != null)
 cache.insert(id, data);
 else
 return;
}
MQCorrelationData dataToMatch = (MQCorrelationData) cache.get(idToMatch);
if (dataToMatch == null) {
 dataToMatch =
 MQRelationDBService.instance(conInfo.schema).getCorrelationData(
 conInfo.con, idToMatch);
 if (dataToMatch != null)
 cache.insert(idToMatch, dataToMatch);
 else
 return;
}
int apiId = data. apiCode;
int apiIdToMatch = dataToMatch.apiCode;
if (apiId != apiIdToMatch) {
 EventRelation eventRelation = new EventRelation();
 eventRelation.setRelation(EventRelation.MESSAGE_PATH |
 EventRelation.BIDIRECTION);
 eventRelation.setDirection(EventRelation.RELATION_UNKNOWN);
 eventRelation.setConfidence(EventRelation.STRONG_RELATION);
 eventRelations.add(eventRelation);
}
}
catch (DataManagerException ex) {
 throw new AnalyzeEventException(ex);
}
}

The AnalysisCacheManager object provides an internal memory cache for storing selected attributes
of the events to be matched. Refer to the MQCorrelationData class definition for a list of attributes
supported. This cache allows quick access to certain event attributes without executing an event data
query, thus improving the correlation process performance.
To decide whether the two events are indeed related, the API code of the two events are compared to
ensure that one event is MQPUT(1) and the other one is MQGET. Since only MQPUT(1) and
MQGET events can be potential candidates, it is enough to check whether the two event API codes
are different or not.

Chapter 4 • Reference - Extending the Analyzer

78

Once it is decided that the two events are related, a new event relation object is created and inserted
to the relation list. The relation is of type MESSAGE_PATH, has no direction attribute, and has a
STRONG_RELATION confidence factor.
The following code fragment is the change to the Beans.xml file for including this custom event
correlation bean. It tells the Analyzer framework to load and run the StockTradeCorrelationBean
bean as a part of the CorrelationMQHelperCtx context.
This bean will be invoked after the default MQToMQRelationshipBean for every MQSeries event.

<Module type="Context" name="CorrelationTechHelperCtx">

<Module type="Context" name="CorrelationMQHelperCtx"
class="com.bristol.tvision.services.analysis.eventanalysis.CorrelationMQH
elperCtx">

<Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.MQToMQRelation
shipBean"/>

<Module type="Bean" class="com.bristol.tvision.demo.
stock.StockTradeRelationshipBean"/>

</Module>

</Module>

4.6.14. Custom Local Transaction Definition
Customization of the local transaction analysis algorithm in the Analyzer allows modification of the
unit of work or local transaction definition for a set of events. By default, TransactionVision uses the
sync-point APIs such as MQCMIT, MQBACK, etc., to group events into local transactions.
However some applications may not be transactional in nature. For these applications, it may be
useful to group sets of events into logical local transactions.
The local transaction rule definition file follows the same syntax as the transaction classification
rules. See the “Transaction Classification” section earlier in this chapter for a detailed description on
the rule basics. This section covers the details specific to the local transaction rule engine.
The basic goal of the rules defined in the LocalTransactionDefinition.xml file is to set local
transaction attributes, if the event currently being processed matches certain criteria. These
attributes, such as the LookupKey attribute, are then used by the framework to either, create a new
local transaction id and assign that id to the event or find an existing local transaction that has the
same attributes, and assign its local transaction id to the current event.
An example application of the LocalTransactionDefinition.xml rule file is to correlate an MQPUT of
a request with an MQGET for the reply in the same process based on message id, where the MQPUT
and MQGET do not exist in the same unit of work. This happens when an application puts a request,
and waits for a reply with an MQGET for the same id until it times out. The request and reply will
by placed in the same unit of work by the Analyzer only if the sync-point options have been used by
the application. If not, the LocalTransactionDefinition.xml file may be used to generate a custom
LookupKey attribute based on the message id field in the MQPUT and MQGET events.

 79

4.6.15. LocalTransactionDefinition.xml File
This file is located in the analyzer configuration XML tab The layout of this rule file is as follows:
 <LocalTransactionDefinition>

 <LocalTransactionType dbschema="*"
 hasMultiTracking="false" >

 <Match xpath=". . ." operator="EQUAL" value=". . ."/>

 . . .

 <LocalTransactionAttributes>

 <Attribute name="LookupKey">

 <Path> . . . </Path>

 <ValueRule name="SetLookupKey">

 <Value type="XPath"> . . . </Value>

 <Value type="XPath"> . . . </Value>

 </ValueRule>

 </Attribute>

 </LocalTransactionAttributes>

 </LocalTransactionType>

 </LocalTransactionDefinition>

The LocalTransactionDefinition element is the root element and only one instance of this element
can exist in a definition file. Each root element can contain several LocalTransactionType elements.
Each LocalTransactionType element has a dbschema attribute containing one or more schemas
(comma separated) to which this rule type applies. Hence, the attributes and match criteria contained
in this LocalTransactionType element only apply to events being written to the given schemas. The
schema attribute can be set to “*”, or left out completely, to indicate that the rule is applicable to all
schemas. A set of Match child elements determine whether the attributes specified in the
LocalTransactionAttributes element should be applied to the current event. The
LocalTransactionAttributes element contains a set of Attribute elements. Each attribute is set at the
XPath specified in the Path element. The value for this attribute comes from the Value elements.
These may be constants or XPaths into the current event document. The Attribute element may
contain additional Match criteria to determine which attributes need to be set.
4.6.16. LocalTransactionType
This element defines a local transaction rule type. It takes three attributes that characterizes the
lookup type:
Attributes:

Name Type Use Description

dbschema xsd:string optional A string representing the database schema. The
presence of this attribute limits the relation lookup
type scope to the particular database schema.

hasMultiTracking xsd:boolean optional A boolean value, which when true indicates that the
local transaction can have multiple tracking ids and
the processMultiTracking() method of the
ILocalTransaction interface needs to be executed.

Chapter 4 • Reference - Extending the Analyzer

80

This element can contain two kinds of child elements, multiple Match elements and one
LocalTransactionAttributes element. The Match elements contain the criteria based on which
attributes will be set for an event. For example:
<Match xpath="/Event/StdHeader/TechName" operator="EQUAL"
value="MQSERIES"/>

 <Match xpath="/Event/StdHeader/HostArch/OS" operator="UNEQUAL"
value="OS390_CICS"/>

The above two Match criteria evaluate to true if the event is an MQSeries event, but not from z/OS
CICS. When an event which matches these criteria is evaluated, the attribute setting rules contained
in the LocalTransactionAttributes element are executed.
4.6.17. LocalTranasctionAttributes
One element of this type is required. This element holds multiple attribute elements, each defining
an Attribute to be set. The LookupKey attribute containing a Path /LocalTransaction/LookupKey is
required. Attribute names need to be unique for a given LocalTransactionAttributes element. There
can be multiple Attribute rules with the same XPath but a different name, Match and Value rules.
For example:
<LocalTransactionAttributes>
 <Attribute name="LookupKey">
 <Path>/LocalTransaction/LookupKey</Path>
 <ValueRule name="SetLookupKey">
 <Value type="XPath">/Event/EventID/@programInstID</Value>
<Value type="Constant">-</Value>
 <Value type="XPath">/Event/StdHeader/@uow</Value>
 </ValueRule>
 </Attribute>
</LocalTransactionAttributes>

The above LocalTransactionAttributes element contains one Attribute called LookupKey. This
attribute maps to the XPath /LocalTransaction/LookupKey and is set to a concatenation of three
values in the Value elements. The attribute ‘LookupKey’ determines the local transaction for the
current event – events with the same LookupKey will be part of the same local transaction.
Typically, for WebSphere MQ events, only the LookupKey attribute needs to be set to group events
into a unit of work. However, for other events such as JMS, Servlet or EJB events, additional
attributes such as TrackingId (/LocalTransaction/TrackingId), ParentTxnKey
(/LocalTransaction/ParentTxnKey) and TrackingSeq (/LocalTransaction/TrackingSeq) may be set.
The TrackingId attribute is used to group multiple local transactions into business transactions for
the J2EE Sensors. In custom local transaction definitions, generating the same tracking id for certain
events can be used to group their local transactions into the same business transaction. The
ParentTxnKey and TrackingSeq attributes are primarily used by the TransactionVision Transaction
Analysis view to draw links between local transactions. These attributes are reported by the Sensors
and typically would not need to be customized.
4.6.18. Sample LocalTransactionDefinition.xml Rule File

The following sample rule file sets the LookupKey local transaction attribute to the event message
id field for all events from queue TVISION.TEST.Q for all events being written to the
TEST.SCHEMA. For events to any other schema besides TEST.SCHEMA, the LookupKey attribute
is set using the default MQSeries strict algorithm to use the program instance id and unit of work ids.

<LocalTransactionDefinition>
 <LocalTransactionType dbschema="TEST.SCHEMA"
 hasMultiTracking="false" >

 81

<Match xpath="/Event/StdHeader/TechName" operator="EQUAL"
value="MQSERIES"/>
<Match xpath="/Event/Technology/MQSeries/MQObject/@objectName"
operator="EQUAL" value="TVISION.TEST.Q"/>
<LocalTransactionAttributes>
<Attribute name="LookupKey">
<Path>/LocalTransaction/LookupKey</Path>
<ValueRule name="SetLookupKey">
 <Value
type="XPath">/Event/Technology/MQSeries/*/*Exit/MQMD/MsgId</Value>
</ValueRule>
</Attribute>
</LocalTransactionAttributes>
</LocalTransactionType>

 <LocalTransactionType dbschema="*"
 hasMultiTracking="false" >
<Match xpath="/Event/StdHeader/TechName" operator="EQUAL"
value="MQSERIES"/>
<LocalTransactionAttributes>
<Attribute name="LookupKey">
<ValueRule name="SetLookupKey">
<Value type="XPath">/Event/EventID/@programInstID</Value>
<Value type="Constant">-</Value>
 <Value type="XPath">/Event/StdHeader/@uow</Value>
</ValueRule>
</Attribute>
</LocalTransactionAttributes>
</LocalTransactionType>
</LocalTransactionDefinition>

4.6.19. Changes to the Beans.xml File
To enable usage of the LocalTransactionDefinition.xml rules file, the analyzer configuration file
Beans.xml must be modified to enable use of the rules bean. The following changes are required to
the Beans.xml file:

<Module type="Context" name="LocalTransactionTechHelperCtx">
 . . .
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.MQLocalTransac
tionBean">
 <Attribute name="AlgorithmBean"
value="com.bristol.tvision.services.analysis.eventanalysis.XMLRuleLocalTr
ansactionBean"/>
 <!--Attribute name="AlgorithmBean"
value="com.bristol.tvision.services.analysis.eventanalysis.MQStrictLocalT
ransaction"/ -->
 <!-- Attribute name="AlgorithmBean"
value="com.bristol.tvision.services.analysis.eventanalysis.MQDefaultLocal
Transaction"/ -->
 </Module>

 . . .

The same needs to be repeated for the corresponding technology where the rule bean needs to be
applied.

Chapter 4 • Reference - Extending the Analyzer

82

Local transaction analysis algorithm beans can be chained by placing multiple bean names in the
Beans.xml file as below:

<Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.
MQLocalTransactionBean">
 <Attribute name="AlgorithmBean"
value="com.bristol.tvision.services.
analysis.eventanalysis.XMLRuleLocalTransactionBean"/>
 <Attribute name="AlgorithmBean"
value="com.bristol.tvision.services.
analysis.eventanalysis.MQStrictLocalTransaction"/>
</Module>

The local transaction beans are initialized and invoked in the sequence they are placed in the
Beans.xml file. For example, in the above snippet the XMLRuleLocalTransactionBean rules will be
executed before the MQStrictLocalTransaction getAttributes() method is invoked. By default, the
chain of invocation is broken and subsequent beans are NOT called when a bean's getAttribute()
method returns a non-null lookup key. Hence, in the above example, the MQStrictLocalTransaction
bean is invoked only when there is no matching rule set in the LocalTransactionDefinition.xml
file which create a non-null lookup key. Note: it is important to place the
XMLRuleLocalTransactionBean before any standard beans if it is intended to replace the generated
default lookup key.In some scenarios, it may be desired that certain events do not have a local
transaction id. To do this, create a rule that sets the return key value as a constant NULL.
The following example rule does not create a local transaction id for all events from queue
TVISION.TEST.Q, by setting the LookupKey attribute to a constant NULL value.

<LocalTransactionType dbschema="*" hasMultiTracking="false" >
 <Match xpath="/Event/StdHeader/TechName" operator="EQUAL" value="MQSERIES"/>
 <Match xpath="/Event/Technology/MQSeries/MQObject/@objectName" operator="EQUAL"
value="TVISION.TEST.Q"/>
 <LocalTransactionAttributes>
 <Attribute name="LookupKey">
<Path>/LocalTransaction/LookupKey</Path>
<ValueRule name="SetLookupKey">
 <Value type="Constant">NULL</Value>
 </ValueRule>
 </Attribute>
 </LocalTransactionAttributes>
</LocalTransactionType>

4.7. Extending the System Model
Use the analyzer configuration file RemoteDefinition.xml to define objects in your system that the
agent might otherwise not be able to fully resolve.
For example, suppose you have a remote queue on queue manager QM1 that points to some queue
on queue manager QM2. A sensored application putting to the queue on QM1 does not connect to
QM2 to fully discover what type of object the final destination queue is. The destination queue
might be an alias queue or even another remote queue. If no sensored application on QM2 ever
connects directly to the destination of the QM1 remote queue, then the object will never be fully
resolved, possibly resulting in a missing link in the correlation of events.

 83

By manually defining objects in RemoteDefinition.xml, you can specify the details of objects that
the agent could not completely resolve otherwise.
Each <RemoteObject> tag defines an object. When the analyzer attempts to resolve the target of a
remote queue, it checks whether an entry exists with the same object and queue manager name. If
such a match is found, the MQObject definitions within the RemoteObject tag will replace the
generic queue definition provided by the agent. Embedding an additional MQObject tag within the
first MQObject tag creates a "resolveto" relationship.
Therefore, the first RemoteObject tag in the following example can be interpreted as: If the
destination of a remote queue has the name RALIAS2.QUEUE on queue manager
perplex7.tv2.manager, create for this object an alias queue RALIAS2.QUEUE that resolves to a
local queue RRR.QUEUE.
Possible values for the objectType attribute include:
Q_LOCAL
Q_MODEL
Q_ALIAS
Q_REMOTE
Q_CLUSTER
Q_LOCAL_CLUSTER
Q_ALIAS_CLUSTER
Q_REMOTE_CLUSTER

Take care in creating and modifying these definitions as inserting objects that don't actually match
the topology of your system could break the correlation of events.
Example RemoteDefinition.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<RemoteDefinition>
 <RemoteObject objectName="RALIAS2.QUEUE"
queueManager="perplex7.tv2.manager">
 <MQObject objectName="RALIAS2.QUEUE" objectType="Q_ALIAS"
queueManager="perplex7.tv2.manager">
 <MQObject objectName="RRR.QUEUE" objectType="Q_LOCAL"
queueManager="perplex7.tv2.manager"/>
 </MQObject>
 </RemoteObject->

 <RemoteObject objectName="TEST.CLUSTER.QUEUE"
queueManager="SECOND_CLUSTER">
 <MQObject objectName="TEST.CLUSTER.QUEUE" objectType="Q_REMOTE"
queueManager="SECOND_CLUSTER">
 <MQObject clusterName="SECOND_CLUSTER"
objectName="TEST.CLUSTER.QUEUE" objectType="Q_LOCAL_CLUSTER"
queueManager="deepakelap.tv3.manager"/>
 </MQObject>

 </RemoteObject>
</RemoteDefinition>

Chapter 4 • Reference - Extending the Analyzer

84

4.7.1. User Events
Each user event can optionally carry data about system resource objects involved in the event. The
user defined types have type ID greater than the value
com.bristol.tvision.userevents.Constants.USEROBJECT_TYPE_BASE.
On the Analyzer side, all user object types should be included in a central configuration file
SystemModelDefinition.xml located in the general processing server configuration tab. Both
the Analyzer and Web components read this configuration file, and use the information for runtime
object type validation.
The following is an example of this file:

<?xml version="1.0" encoding="UTF-8"?>
<SystemModelDefinition>
 <ObjectClass name="JDBC" base="100000">
 <ObjectType name="DatabaseServer" id="1"/>
 </ObjectClass>
 <ObjectClass name="FTP" base="101000">
 <ObjectType name="FTPServer" id="1"/>
 </ObjectClass>
</SystemModelDefinition>

• User object types should be grouped under various object type classes. Each class is defined
under the element /SystemModelDefinition/ObjectClass. In the example, two classes are defined
for database and FTP technology objects respectively.

• Each object type class should have a string attribute “name” and integer attribute “base”, which
defines the base for the type ID for all objects in the class.

• The element /SystemModelDefinition/ObjectClass/ObjectType defines a single object type. It
has a string attribute “name” for the object type name, and an integer attribute “id”. The id
attribute, combining with the object type class ID base, forms the final type ID for the object
type. In this example, the object type “DatabaseServer” has type ID 100001 (100000 + 1), and
the object type “FTPServer” has type ID 101001 (101000 + 1).

It is important to ensure that the object type ID values used by the user events are consistent with the
ones from the central configuration file.

 85

5. Using the Query Services

This chapter contains the following sections:

• 5.1. The Query Document

• 5.2. Sample Usage

• 5.3. Class QueryService

• 5.4. Class QueryDoc

• 5.5. Class QueryDoc.WhereClause

• 5.6. Interface Query

• 5.7. Interface Cursor

• 5.8. Class DataManagerException
The Query Services interfaces provide a means to retrieve XDM mapped data from the
database using an XML based query document. The QueryService interface is the top-level
interface to create and run queries. The methods in this class return an object that
implements the Query interface, which can be used to execute the query. Many of the
methods in this class take a “query doc” argument – an XML document describing the query
to execute. The query object can either be constructed manually with DOM tree operations,
or by using the helper class QueryDoc which offers convenient methods to assemble the
query and which is described in more detail later in this chapter. A Cursor object is returned
from several of the QueryService methods, which allows a user to iterate over the results.
The QueryService implementation converts the input XML query into an SQL statement and
executes it. The Cursor class is a wrapper around the JDBC cursor classes.
The following sections will describe each of these objects and interfaces and show sample
code to document their usage.

Chapter 5 • Using the Query Services

86

5.1. The Query Document
The query document is used to describe the query to be executed. The schema of the XML
document is defined in the file <TVISION_HOME>/config/xmlschema/Query.xsd:

A sample query document:

<?xml version="1.0" encoding="UTF-8"?>
<Query>
 <BaseDocumentType>/Event</BaseDocumentType>

 <Select>/Event/PrimaryTime</Select>
 <Select>/Event/SecondaryTime</Select>

 <Group>
 <Where negated="false" translateValue=’’false’’>
 <XPath>/Event/Technology/MQSeries/@apiCode</XPath>
 <Operator>equal</Operator>
 <Value>8</Value>
 <Value>11</Value>

 87

 <Value>12</Value>
 </Where>
 </Group>
 <OrderBy direction=’’DESC’’>/Event/PrimaryTime</OrderBy>
</Query>

The above query searches for events on the XPath
“/Event/Technology/MQSeries/@apiCode”, that is the lookup column corresponding to the
MQSeries API code for values 8 (MQGET), 11(MQPUT) and 12 (MQPUT1), and retrieves
their primary and secondary time. The result is sorted by primary time in descending order.
Note that you can specify multiple <Group> sections, and the conditions of all <Group>
sections are ORed together in the final query.

<?xml version="1.0" encoding="UTF-8"?>
<Query>
 <Group>
 <Where negated="false" translateValue=’’false’’>
 <XPath>/Event/Technology/MQSeries/@apiCode</XPath>
 <Operator>equal</Operator>
 <Value>MQGET</Value>
 </Where>
 <Where negated="false" translateValue=’’true’’>
 <XPath>/Event/StdHeader/ProgramName/@objectId</XPath>
 <Operator>equal</Operator>
 <Value>amqsput</Value>
 <Value>amqsput1</Value>
 </Where>
 </Group>
</Query>

The above query searches for WebSphere MQ API “MQGET” events from programs with
name “amqsput”and “amqsput1” and returns all column values.
An AND operation is performed on the two Where clauses in the above query, while an OR
operation is performed on values within the same Where clause. There are two approaches
to reference system model objects in a query document: you can specify the object_id that is
stored in the lookup table, or you can set the attribute “translateValue” to true and compose
a query doc based on object name instead of object id. This attribute causes the data in the
<Value> subelement to be treated as an object name. The corresponding object ID is looked
up and used before submitting the query to the query engine.
For example, the following code looks up an event where the program name is test and the
internal system model table says the object ID of test is 12:

<Where negated="false">
 <XPath>/Event/StdHeader/ProgramName/@objectId</XPath>
 <Operator>equal</Operator>
 <Value>12</Value>
</Where>

To use the object name instead of the object ID, the code would be as follows:
<Where negated="false" translateValue=’’true’’>
 <XPath>/Event/StdHeader/ProgramName/@objectId</XPath>
 <Operator>equal</Operator>
 <Value>test</Value>
</Where>

Chapter 5 • Using the Query Services

88

Furthermore, you can use SQL wildcard support for a more powerful query:

<Where negated="false" translateValue=’’true’’>
 <XPath>/Event/StdHeader/ProgramName/@objectId</XPath>
 <Operator>equal</Operator>
 <Value>tes*</Value><!---- query all program names beginning with
‘tes’ !-->
 </Where>

The “negated” and “translateValue” attributes are optional and default to ‘false’.
By default, if the query document does not contain a Select clause, the query will retrieve all
available columns of the base document type. It is recommended to specify an explicit
Select clause since the retrieval of all column values requires a database join of all tables.
The “BaseDocumentType” specifies the document type that should be used for the base
query and determines the join order in the resulting SQL query. The element is optional, by
default every query is considered to be an event based query with document type “/Event”.
Besides “/Event”, the query engine also supports transaction based queries with the
document type “/Transaction”:

<?xml version="1.0" encoding="UTF-8"?>
<Query>
 <BaseDocumentType>/Transaction</BaseDocumentType>

 <Select>/Transaction/ResponseTime</Select>

 <Group>
 <Where>
 <XPath>/Transaction/StartTime</XPath>
 <Operator>greater</Operator>
 <Value>20070327140015000000</Value>
 </Where>
 </Group>
</Query>

As a third option, the query engine allows to use both document types together. This allows
to define queries that can use both event and transaction data. In this case the
BaseDocumentType has to be set to the document type that should be used as the base table
for the table joins.

5.2. Sample Usage
The following sample code shows how to create a query document, use the QueryService
interface to get a Query object back and then execute the query. The sample counts the
number of events for each MQPUT, MQPUT1 and MQGET. To assemble the query
document the helper class QueryDoc is used.

// instantiate a new query document.
QueryDoc qdoc = new QueryDoc();

String[] apiCodes = { String.valueOf(MQDefs.MQPUT),
 String.valueOf(MQDefs.MQPUT1),
 String.valueOf(MQDefs.MQGET)};

 89

// set the WhereClause of the QueryDocument to retrieve events
// containing a list of APIs, MQPUT, MQPUT1 and MQGET.
QueryDoc.WhereClause clause = new QueryDoc.WhereClause("mqputget",
 false,
 XPathConstants.APICODE,
QueryOp.EQ_QUERY_STRING,
 apiCodes,
 false);

// set the WhereClause into the QueryDoc.
qdoc.addWhere(clause);

// select the fields to be retrieved in this case the program id.
String[] selects = { XPathConstants.PROGRAM_ID };
qdoc.addSelect(selects);

// gets and execute the query.
Cursor queryCursor = customReportBean.getQueryResults(qdoc);

// map of API name versus event count for that API.
HashMap nameToCount = new HashMap();
int maxValue = 0;

// iterate through the query fetching the results from the
database.
while (queryCursor.next()){

 String objValue = queryCursor.getValue(1,true);
 Integer count = (Integer)nameToCount.get(objValue);
 if (count == null)
 {
 count = new Integer(1);
 nameToCount.put(objValue,count);
 } else {
 int newValue = count.intValue() + 1;
 nameToCount.put(objValue,new Integer(newValue));
 if (newValue > maxValue)
 maxValue = newValue;
 }
}
// always close cursor at the end
queryCursor.close();

The method getQueryResults used in the above code snippet is as follows. This method gets
the QueryService instance (QueryService is a singleton object), gets an event list query
object and executes the query, returning the result set cursor.

public Cursor getQueryResults(QueryDoc queryDoc) throws
DataManagerException
 {
 // get a reference to the singleton QueryService instance.
 QueryService queryServ = QueryService.instance();

 // get a query object.
 Query queryObj = queryServ.getQuery(queryDoc, false,
false);

 // execute the query and return a result set cursor.
 return queryObj.execute();

Chapter 5 • Using the Query Services

90

 }

5.3. Class QueryService

public class com.bristol.tvision.datamgr.query.QueryService
extends java.lang.Object

QueryService is the main interface to query the XDM tables. It is a singleton object that has
methods that take a XML query document as the query definition and returns a query object.
This query object can then be executed to obtain a cursor, which is then used in consecutive
calls to retrieve data. All the methods in this interface that get a cursor or data from the
database require a valid JDBC SQL connection handle. The methods throw a
DataManagerException on an error condition occurring.
This interface defines the following methods.
Methods

• instance

instance
public static QueryService instance()

This method returns the singleton instance for the service.

Returns:

The return value is a reference to the singleton instance.

Example:
 QueryService queryServ = QueryService.instance();

• getEventDetail
public org.w3c.dom.Document getEventDetail(ConnectionInfo con,
 EventID eventId,
 TypeConvService convSvr)
 throws DataManagerException

This method returns the event XML document for a given event.

Parameters:
con The database connection to use
eventId The specified event
convSvr The TypeConvService allows fields like date and time formatting, time-

zone and other conversions to be applied to the retrieved data. A value
of null implies that no conversions are applied. Refer to the section on
TypeConvService for more information on the supported conversions.

Returns:

The return value is an XML document containing event data.

Throws:

DataManagerException - if retrieving of the XML document fails

 91

• getUserDataLength
public long getUserDataLength(ConnectionInfo con,
 EventID eventId,
 int dataNum)
 throws DataManagerException

This method returns the length of a given message data segment for a given event.
Typically, message data is segmented when a data collection filter using data ranges is
used to collect data. In that case, this method allows you to get the size of a particular
data segment.

Parameters:
con - the database connection to use.
eventId The event id the event that the message data belongs to.
dataNum The segment number of the message data, where the first segment has

index 0.

Returns:

The return value is the length of the message data segment.

Throws:

DataManagerException – occurs if the database operation fails.

• getUserData

public byte[] getUserData(ConnectionInfo con,
 EventID eventId,
 int dataNum,
 int offset,
 int length)
 throws DataManagerException

This method returns a segment of a message data segment. This segment is specified by
a starting offset (offset) and the length (length) to return.

Parameters:
con The database connection to use.
eventId The event id the user data belongs to.
dataNum The segment number of the user data.
offset The starting offset of the segment to retrieve.
length The number of bytes to return.

Returns:

The return value is the message data part of the event of id eventId.

Throws:

DataManagerException - if database operation fails.

Example:

The following code retrieves the first (index 0) segment of the message data buffer into a
byte array.

QueryService queryService =
QueryService.instance();

Chapter 5 • Using the Query Services

92

int dataLength =
(int)queryService.getUserDataLength(con, eventId, 0);
byte[] rawData =
queryService.getUserData(con,eventId,0,0,dataLength);

• getNextListDocument
public org.w3c.dom.Document getNextListDocument(Cursor cursor,
QueryResultPager pager, QueryResultFormatter formatter)
throws DataManagerException

This method Returns the next XML list document for a given query cursor and pager
object that defines the page size.

Parameters:
cursor The query cursor on the events
pager The pager object (the same instance of the pager object has to be passed

into consecutive calls of get
formatter The formatter object to format the result

Returns:

The XML list document for the page.

Throws:

DataManagerException - if retrieving of the data or assembly of the XML document
fails.

• getPreviousListDocument
public org.w3c.dom.Document getPreviousListDocument
(Cursor cursor, QueryResultPager pager, QueryResultFormatter
formatter)
throws DataManagerException

This method Returns the previous XML list document for a given query cursor and
pager object that defines the page size.

Parameters:
cursor The query cursor on the events.
pager The pager object (the same instance of the pager object has to be passed

into consecutive calls of get).
formatter

The formatter object to format the result.

Returns:

The XML list document for the previous page.

Throws:

DataManagerException - if retrieving of the data or assembly of the XML document
fails.

 93

• getFirstListDocument
public org.w3c.dom.Document getFirstListDocument(Cursor cursor,
QueryResultPager pager, QueryResultFormatter formatter)
throws DataManagerException

This method returns the XML list document of the first result page for a given query
cursor and pager object that defines the page size.

Parameters:
cursor The query cursor on the events.
pager The pager object (the same instance of the pager object has to be passed

into consecutive calls of get).
formatter The formatter object to format the result.

Returns:

The XML list document for the first page.

Throws:

DataManagerException - if retrieving of the data or assembly of the XML document
fails.

• getLastListDocument
public org.w3c.dom.Document getLastListDocument(Cursor cursor,
QueryResultPager pager, QueryResultFormatter formatter)
throws DataManagerException

This method returns the XML list document of the last result page for a given query
cursor and pager object that defines the page size.

Parameters:
cursor The query cursor on the events.
pager The pager object (the same instance of the pager object has to be passed

into consecutive calls of get).
formatter The formatter object to format the result.

Returns:

The XML list document for the last page.

Throws:

DataManagerException - if retrieving of the data or assembly of the XML document
fails.

• getListDocument
public org.w3c.dom.Document getListDocument(Cursor cursor, int
pageNo, QueryResultPager pager, QueryResultFormatter formatter)
throws DataManagerException

This method returns the XML list document of a specific result page for a given query
cursor and pager object that defines the page size.

Parameters:
cursor The query cursor on the events.
pageNo The number of the page to retrieve the data from
pager The pager object (the same instance of the pager object has to be passed

Chapter 5 • Using the Query Services

94

into consecutive calls of get).
formatter The formatter object to format the result.

Returns:

The XML list document for the specified page.

Throws:

DataManagerException - if retrieving of the data or assembly of the XML document
fails.

• getQuery
public Query getQuery(Document queryDoc, boolean
useScrollableCursor)
 throws DataManagerException

This method returns a query that is executed across all analyzer schemas / databases.
The results from each analyzer schema are merged together and returned.

Parameters:
queryDoc The XML query document specifying the rows to include in the result.

The WHERE clauses are ignored.

useScrollab
leCursor

Whether to use a scrollable cursor which allows forward and backward
iteration

Returns:

A Query object ready for execution

Throws:

DataManagerException - if parsing the query doc or executing the query fails

• getQuery
public Query getQuery(ConnectionInfo conInfo, Document queryDoc,
boolean useScrollableCursor)
 throws DataManagerException

This method returns a Returns a query on a single schema (conInfo.schema), executed
on a single database connection (conInfo.con).

Parameters:
conInfo The database connection info, containing the database connection and the

database schema name.

queryDoc The XML query document specifying the rows to include in the result.
The WHERE clauses are ignored.

useScrollab
leCursor

Whether to use a scrollable cursor which allows forward and backward
iteration

Returns:

A Query object ready for execution

Throws:

DataManagerException - if parsing the query doc or executing the query fails

 95

5.4. Class QueryDoc
public class com.bristol.tvision.shared.query.QueryDoc
extends com.bristol.tvision.shared.xml.XMLDocument

The QueryDoc class is a helper class that can be used to assemble a query document.
Constructors

• QueryDoc
public QueryDoc()

This constructor creates new QueryDoc with base document type “/Event”. The root
element 'Query' is created automatically.

• QueryDoc
public QueryDoc(QueryDoc other)

This copy constructor creates a new QueryDoc from the given input QueryDoc.

Parameters:

other - QueryDoc instance used to create a new QueryDoc from.

• QueryDoc
public QueryDoc(java.lang.String baseDocType)

This constructor creates an empty QueryDoc for the specified base document type.

• toString
public String toString()

This method returns the XML query document as a string.

Returns:

The return value is a string of the XML document. Returns null on failure.

• addSelects
public boolean addSelects(java.lang.String[] xpaths)

This method sets an array of XPath expressions, which form the “SELECT” part of the
query.

• addWhere
public boolean addWhere(WhereClause clause, int groupId)

Add a where clause under given query group. The groupId can be any integer > 0.For
each ‘Group’ section in the query document use a different id.

Parameters:
clause where clause
groupId group id

Return:

true if operation succeeds.

Chapter 5 • Using the Query Services

96

• updateBufferClause
public boolean updateBufferClause(BufferClause clause,
 int groupId)

Add a buffer clause under given query group. The groupID can be any integer > 0.
Parameters:
clause buffer clause
groupId group id

Return:

true if operation succeeds.

• deleteWhereClauseByName
public void deleteWhereClauseByName(String name, int groupId)

Delete a where clause under the given query group. GroupId should be the ID of an
existing query group.

Parameters:
name where clause name
groupId group id

• deleteBufferClause
public void deleteBufferClause(int groupId)

Delete a buffer clause under the given query group. GroupId should be the ID of an
existing query group.

Parameters:

groupId - group id

• findWhereClauseByName
public WhereClause findWhereClauseByName(String name, int
groupId)

Retrieve the where clause of given name under given query group. GroupId should be
the ID of an existing query group.

Parameters:
name where clause name
groupId query group id

Return:

WhereClause instance.

• getBufferClause
public BufferClause getBufferClause(int groupId)

Get buffer clause under given query group.

Return:

BufferClause instance

 97

• getWhereClauseNames
public String[] getWhereClauseNames(int groupId)

Get all where clause names under given query group.

Return:

An array of where clause names.

• isLinearSearch
public boolean isLinearSearch()

Check if query document contains linear search clause.

Return:

true if query document is linear searching.

• isBufferSearch
public boolean isBufferSearch()

Check if query document contains buffer clause

Return:

true if there’s at least one buffer clause

• equals
public boolean equals(QueryDoc d)

Check if two queries equal or not.

• groupCompare
public boolean groupCompare(QueryDoc d, int groupId1, int
groupId2)

Compare group of different query doc.

• printQueryDoc
public void printQueryDoc(OutputStream out)

Dump query document to given output stream.

Parameter:

out - output stream instance.

5.5. Class QueryDoc.WhereClause
This is an inner static class in the class QueryDoc. It is a utility class that helps to define the
where condition of the query. This condition is the matching criteria for which events should
be retrieved from the database.
Fields

• name
public java.lang.String name

Name of the where clause

Chapter 5 • Using the Query Services

98

• negated
public boolean negated

Whether the where clause has "not" condition

• xpath
public java.lang.String xpath

XPath for the where clause

• operator
public java.lang.String operator

Operator for the where clause

• values
public java.lang.String[] values

Values for the where clause

• isLinearCond
public boolean isLinearCond

Specifies whether the “Where” clause is a linear search condition.

• needTranslate
public boolean needTranslate

If true, causes all data in the <Value> subelement to be treated as an object name. The
corresponding object ID will be looked up and used before submitting the query to the
query engine.

• valueType
public java.lang.String valueType

• TYPE_BIN
public static final java.lang.String TYPE_BIN

• TYPE_TEXT
public static final java.lang.String TYPE_TEXT

• codePage
public java.lang.String codePage

Constructors

• QueryDoc.WhereClause
public QueryDoc.WhereClause()

This constructor creates an empty object.

• QueryDoc.WhereClause
public QueryDoc.WhereClause(boolean Negated,
 java.lang.String XPath,
 java.lang.String Operator,
 java.lang.String[] Values)

This constructor creates a “WhereClause” object using the given data.

 99

Parameters:

Negated - Whether the where clause has "not" condition

XPath - XPath of where clause

Operator - Operator of where clause

Values - Values of where clause.

• QueryDoc.WhereClause
public QueryDoc.WhereClause(java.lang.String Name,
 boolean Negated,
 java.lang.String XPath,
 java.lang.String Operator,
 java.lang.String[] Values,
 boolean IsLinearCond)

This constructor creates a “WhereClause” object using the given data.

Parameters:
Name - Name of the where clause
Negated - Whether the where clause has "not" condition
XPath - XPath of where clause
Operator - Operator of where clause
Values - Values of where clause
IsLinerCond - True if where clause is at linear condition

• QueryDoc.WhereClause
public QueryDoc.WhereClause(java.lang.String Name,
 boolean Negated,
 java.lang.String XPath,
 java.lang.String Operator,
 java.lang.String[] Values,
 boolean IsLinearCond,
 java.lang.String valueType,
 java.lang.String codePage)

This constructor creates a “WhereClause” object using the given data.

Parameters:
Name - Name of the where clause
Negated - Whether the where clause has "not" condition
XPath - XPath of where clause
Operator - Operator of where clause
Values - Values of where clause
IsLinerCond - True if where clause is at linear condition
valueType - Either of the following values. For display purpose only.

 QueryDoc.WhereClause.TYPE_BIN

 QueryDoc.WhereClause.TYPE_TEXT

codePage - The character set code page, that is used when converting the hexidecimal
 value string into text

Chapter 5 • Using the Query Services

100

Methods

• equals
public boolean equals(QueryDoc.WhereClause c)

This method compares two WhereClause objects.

Parameters:

c - another instance of WhereClause

Returns:

true if two are considered be equal
5.5.1. Example
The sample code below creates a query document with a “WhereClause” and a
“SelectClause” using the methods updateWhereClause and insertSelect. The query condition
is named “mqputget” and specifies to match all MQPUT, MQPUT1 and MQGET APIs. The
data fetched out of the database is specified by the selects String array and contains the
XPath expressions for the fields entry time, exit time, API code, host id, program id,
program instance id and sequence number.

QueryDoc qdoc = new QueryDoc();

String[] apiCodes = { String.valueOf(MQDefs.MQPUT),
 String.valueOf(MQDefs.MQPUT1),
 String.valueOf(MQDefs.MQGET)};
QueryDoc.WhereClause clause = new QueryDoc.WhereClause("mqputget",
 true,

XPathConstants.APICODE,
QueryOp.EQ_QUERY_STRING,

 apiCodes,
 false);

String[] selects = { XPathConstants.PRIMARYTIME,
 XPathConstants.APICODE,
 XPathConstants.HOST_ID,
 XPathConstants.PROGRAM_ID,
 XPathConstants.PROGINST_ID,
 XPathConstants.SEQUENCE_NO };

qdoc.addWhere(clause, 1);
qdoc.addSelects(selects);

5.6. Interface Query
public interface com.bristol.tvision.datamgr.query.Query

This interface provides the functionality to run a query. This object is obtained from
methods in the QueryService class.

 101

Methods

• execute
public Cursor execute()
 throws DataManagerException

This method executes the query and returns a Cursor object to be iterated over.

Throws:

DataManagerException - If executing the query fails

• close
public void close()
 throws DataManagerException

This method closes the query and releases the database resources. The query can not be
executed again once close has been called.

Throws:

DataManagerException - If release of the database resources fails

• cancel
public void cancel()
 throws DataManagerException

This method can be called from a different thread to cancel the current query execution.

Throws:

DataManagerException - If the cancel fails

5.7. Interface Cursor
public interface com.bristol.tvision.datamgr.query.Cursor

The cursor interface is used to iterate over data returned by a query.
Methods

• getRowCount
public int getRowCount()

This method returns the number of table rows in the query result, or -1 if this feature is
not supported

Returns:

The number of rows

• getColumnCount
public int getColumnCount()

This method returns the number of columns in the query result

Returns:

The number of columns

• getColumnDescription
public java.lang.String getColumnDescription(int index)

Chapter 5 • Using the Query Services

102

This method returns the column description for the specified column. The index of the
first column is 1.

Parameters:

index - The index of the column

Returns:

The column name

• getColumnName
public java.lang.String getColumnName(int index)

This method returns the database column name for the specified column. The index of
the first column is 1.

Parameters:

index - The index of the column

Returns:

The column name

• getRow
public int getRow()
 throws DataManagerException

This method returns the current row for this cursor

Returns:

The current row, or 0 if there is no current row

• getValue
public java.lang.String getValue(int index)
 throws DataManagerException

This method returns the value of the column as a String value. The index of the first
column is 1.

Parameters:

index - The index of the column

Returns:

The value of the column, converted into a String

Throws:

DataManagerException - If getting the value from the underlying ResultSet fails

• getValue
public java.lang.String getValue(int index,
 TypeConvService convSvr)
 throws DataManagerException

This method returns the value of the column as a String value (converted by the type
conversion service). The index of the first column is 1.

 103

Parameters:
index The index of the column
convSvr The type conversion service to use.

Returns:

The value of the column, converted into a String

Throws:

DataManagerException - If getting the value from the underlying ResultSet fails

• getIntValue
public int getIntValue(int index)
 throws DataManagerException

This method returns the value of the column as an integer value. The index of the first
column is 1.

Parameters:

index - The index of the column

Returns:

The value of the column, converted into a integer

Throws:

DataManagerException - if getting the value from the underlying ResultSet fails

• getLongValue
public long getLongValue(int index)
 throws DataManagerException

This method returns the value of the column as a long value. The index of the first
column is 1.

Parameters:

index - The index of the column

Returns:

The value of the column, converted into a long

Throws:

DataManagerException - if getting the value from the underlying ResultSet fails

• getValue
public java.lang.String getValue(java.lang.String key)
 throws DataManagerException

This method returns the value of the column as a String value. The column is identified
by a key (XPath for XDM columns).

Parameters:

key - The key for the column

Returns:

The value of the column, converted into a String

Chapter 5 • Using the Query Services

104

Throws:

DataManagerException - If getting the value from the underlying ResultSet fails

• getValue
public java.lang.String getValue(java.lang.String key,
 TypeConvService convSvr)
 throws DataManagerException

This method returns the value of the column as a String value (possibly converted by the
type conversion service). The column is identified by a key (XPath for XDM columns).

Parameters:
key The key for the column
convSvr The type conversion service to use

Returns:

The value of the column, converted into a String

Throws:

DataManagerException - If getting the value from the underlying ResultSet fails

• getIntValue
public int getIntValue(java.lang.String key)
 throws DataManagerException

This method returns the value of the column as an integer value. The column is
identified by a key (XPath for XDM columns).

Parameters:

key - The key for the column

Returns:

The value of the column, converted into a integer

Throws:

DataManagerException - if getting the value from the underlying ResultSet fails

• getLongValue
public int getLongValue(java.lang.String key)
 throws DataManagerException

This method returns the value of the column as a long value. The column is identified by
a key (XPath for XDM columns).

Parameters:

key - The key for the column

Returns:

The value of the column, converted into a long

Throws:

DataManagerException - if getting the value from the underlying ResultSet fails

 105

• getValueMap
public java.util.Map getValueMap(TypeConvService convSvr)
 throws DataManagerException

This method returns a Map object which contains a mapping from XPath to current
column value, or null if this feature is not supported.

Parameters:

convSvr - The type conversion service to use.

Returns:

A Map object containing the values of the current row

Throws:

DataManagerException - if getting the values from the underlying ResultSet fails

• wasNull
public boolean wasNull()
 throws DataManagerException

This method reports whether the last column read with getValue() or getIntValue had a
value of SQL NULL

Returns:

true if the last column value read was SQL NULL and false otherwise

Throws:

DataManagerException - if accessing the ResultSet fails

• next
public boolean next()
 throws DataManagerException

This method moves the cursor forward one row from its current position. A Cursor is
initially positioned before the first row, calls to next() advance the cursor to the next
row.

Returns:

true if the new current row is valid; false if there are no more rows

Throws:

DataManagerException - if moving the cursor in the underlying ResultSet fails

• previous
public boolean previous()
 throws DataManagerException

This method moves the cursor backwards one row from its current position. A Cursor is
initially positioned before the first row, calls to previous() advance the cursor to the
previous row.

Returns:

true if the new current row is valid; false if there are no more rows

Chapter 5 • Using the Query Services

106

Throws:

DataManagerException - if moving the cursor in the underlying ResultSet fails

• absolute
public boolean absolute(int row)
 throws DataManagerException

This method moves the cursor to an absolute row position.

Parameters:

row - The row to position on

Returns:

true if the new current row is valid; false if cursor is not positioned on valid row

Throws:

DataManagerException - if positioning the cursor in the underlying ResultSet fails

• close
public void close()
 throws DataManagerException

This method closes the cursor and all with the cursor associated database resources

Throws:

DataManagerException - if closing the underlying JDBC resources fails

Linda add beforeFirst and AfterLast

5.8. Class DataManagerException
public class DataManagerException
extends TVisionException

This exception class contains errors from the DataManager package.
Constructors

• DataManagerException
public DataManagerException()

This constructor creates new DataManagerException without a detail message string.

• DataManagerException
public DataManagerException(java.lang.Throwable t)

This method constructs a DataManagerException with the specified embedded
Throwable.

• DataManagerException
public DataManagerException(java.lang.Object[] args)

This method constructs a DataManagerException with the specified logging arguments.

Parameters:

args - the logging arguments

 107

• DataManagerException
public DataManagerException(java.lang.Throwable t,
 java.lang.Object[] args)

This method constructs a DataManagerException with the specified embedded
Throwable and the specified logging arguments.

Parameters:

t - the exception to chain

args - the logging arguments
Methods

• getSQLException
public java.sql.SQLException getSQLException()

This method returns the embedded exception as a SQLException if it is an instance of
SQLException, null otherwise.

Returns:

The SQLException, or null if the embedded exception is not an instance of
SQLException

• isUniqueViolationException
public boolean isUniqueViolationException()

Returns true if the embedded exception is a SQLException indicating a violation of an
unique constraint, false otherwise.

Returns:

true if exception is a unique constraint violation

• isOperationCanceledException
public boolean isOperationCanceledException()

This method returns true if the embedded exception is an SQLException indicating that
the executed SQL query has been canceled, false otherwise.

Returns:

true if exception is a SQL cancellation violation

 109

6. Extending the User Interface

This chapter contains the following sections:

• 6.1. Adding Query Pages

• 6.2. Adding Columns to the Event List View

• 6.3 User Interface Utility Classes

• 6.4. Using Job Beans

6.1. Adding Query Pages
Data indexed into lookup tables using the XDM files can be queried using the
TransactionVision query page. The query page consists of two parts: the left-hand side query
navigator pane and the right-hand side value input pane. The configuration file
PresentationQuery.xml located on the TransactionVisision Configuration / General tab
needs to be modified to add a new entry to the query navigator pane and the value input pane
the new entry uses. The following is a sample entry in the PresentationQuery.xml file:
<Group name="Stock">
 <Category name="OrderID" desc="Order ID" type="default
jsp="querySimpleString.jsp">
 <Path>/Event/Data/Order/ID</Path>
 </Category>
 <Category name-"Account" desc="Account Number" type="default"
jps="querySimpleString.jsp">
 <Path>/Event/Data/Order/Account</Path>
 </Category>
</Group>
<Group name="General">
 <Category name="entrytime" desc="Event Entry Time" type="time"
jsp="queryTime.jsp">
 <Path>/Event/StdHeader/EntryTime</Path>
 </Category>
 <Category name="host" desc="Host" type="object" objectType="1"
jsp="queryObject.jsp">
 <Path>/Event/StdHeader/Host/@objectId</Path>
 </Category>
</Group>

Chapter 6 • Extending the User Interface

110

This sample creates two query groups. These groups create a criteria grouping the query
navigator pane list box. Each category in the group adds a criteria entry in the navigator
pane list box. Each category corresponds to a possible WHERE clause in the generated SQL
query. The description text is used as an entry in the navigator list box. When the criteria
entry is clicked on, the JSP specified in the jsp attribute is invoked in the right-hand side
panel, which brings up the user interface to input the value to query upon. The type attribute
describes the type of the field being queried. the Path element specifies the XPath in the
XML document of the field being queried. The name attribute of Category gives a unique
name to the category. This is used by the query navigator pane to select which value input
pane to use. For example, ViewServlet?viewSelect=query&queryPage=program, where
program corresponds to the name attribute value.
In the above sample, the Stock group containing categories OrderID and Account are
created. The OrderID is a simple string type with and XPath of /Event/Data/Oder/ID.
The type attribute of Category identifies the data type of the WHERE clause. It can only be
one of the following values:
time This is a raw 20-character string of format

yyyymmddhhmmssnnnnnn. The query page will use
queryTime.jsp to display the edit page. Supported
operations include <, <=, ==, >, >=, and query for a time
frame.

simpleInt This is an integer field, such as DataLength. The query
page will use querySimpleInt.jsp to display the edit page.

multipleInt This is a set of integer fields. However, only an
enumeration of integers is valid for this field, and each
value has the corresponding user-friendly description. A
typical example is fields of WebSphere MQ completion
code. The GUI engine uses queryMultipleInt.jsp or
queryMultipleIntExt.jsp to display the edit page, the latter
one displays the value along with the description, while the
former one does not. The == operation is supported.

simpleString This is a formatted string in hexadecimal character code
format. If a user wants to query on 'ABC', but the real data
in the database is stored as '65 66 67', which is the character
code of 'ABC' in code page 1252. The query page uses
queryByteArray.jsp to facilitate the conversion between
'ABC' to '65 66 67' (CP 1252). It also allows the user to
query the hexadecimal string directly.

default This is a plain text string field. The query page uses
querySimpleString.jsp to display the edit page. The only
operation supported is 'LIKE'.

object This query field is an integer of object id. The value of
@objectType must be a valid object type id in the system
model tables. The query edit page will retrieve all the
object ids currently in the system model tables for the user
to choose. The value of @jsp determines which JSP is used
in the query page. The value 'queryOjbect.jsp' simply
displays a pane that lets the user multi-select all possible
values. 'queryGroupedOject.jsp' displays a multi-select list
box of all possible values and a list of object types to help
group-selecting objects of that type.

 111

groupedObject This is only used for WebSphere MQ objects. This type differs
from 'object' in that the query page uses
queryGroupedObject.jsp to display all MQ objects, which are
further grouped under they MQ queue manager names.

The "isLinearCondition" attribute to the Category element tells the query engine to perform
a sequential linear search on data in the XML tables. A sample usage is:

<Category name="wbibroker" desc="WBI Broker" type="object"
objectType-"1017" jsp="queryObject.jsp" isLinearCondition="true">
 <Path>/Event/Technology/MQSeries/MQSI2TRACE/MQSI2TRACEEntry/MQSIM
FH/BrokerName/@objectId</Path>
</Category>

In this example, the object id for the XPath to BrokerName is searched in XML documents
linearly. Note that this kind of query may be significantly slow on large databases and the
query should typically be narrowed down to smaller results using other query conditions like
time.

6.2. Adding Columns to the Event List View
It is possible to add custom columns to the Event List view. This is similar to adding a new
query page, only the data indexed into lookup tables using the XDM files can be added as an
event list column.
To do this follow this two step procedure:
6.2.1. Step 1: Modify DefaultUserColumnData.xml.
The configuration file DefaultUserColumnData.xml must be modified by entering a
corresponding <Column> tag to the <ColOptions> section.
To modify this file, access the TransactionVision Administration Configuration page. Go to
TransactionVision (root) > Configuration > General. Then choose
DefaultUserColumnData.xml.
For example:
 <ColOptions>
 [...]
 <Column desc="User Id" hidden="false" name="UserId" pos="61"
gid="1"/>
 </ColOptions>

desc This attribute corresponds to the value displayed in the UI.
hidden This attribute indicates whether this field is visible or hidden by

default.
name This attribute corresponds, and must match exactly, the

description attribute for the corresponding field defined in the
XDM file.

pos This attribute is a unique index, typically increased one higher
than the existing count.

gid This attribute is the grouping under which this option falls in the
UI.

Chapter 6 • Extending the User Interface

112

6.3. User Interface Utility Classes
The following utility classes may be useful while developing custom reports and user
interface enhancements for TransactionVision.

• Class TypeConvService
public class com.bristol.tvision.util.typeconv.TypeConvService
extends java.lang.Object

This class contains convenient utility methods to format strings for user interface
presentation. The QueryService calls into this object’s convert method to perform
conversions based on the user interface settings. This class provides date, time and
enumeration formatting capabilities.
Methods

• convert
public java.lang.String convert(TypeConvService.Type convType,
 java.lang.String xpath,
 java.lang.String value)
 throws TVisionException

This method converts from a raw value string into user-friendly named description

Parameters:

convType - the conversion type
TypeConvService.Type.DATE: converts a 20-character time string
“yyyymmddhhmmssnnnnnn” to a user-friendly string. The exact output can be
configured through the properties: timeFormat, timeZoneID.

TypeConvService.Type.DATEONLY: converts an 8-character date yyyymmdd string
to user-friendly string.

TypeConvService.Type.TIMEONLY: converts an 8-character time string hhmmss to
user-friendly string.

TypeConvService.Type.ENUM: give XPath and the raw value in XMLEvent,
return the user-friendly description. For example 0 for XPath field
“..CompletionCode..” would return MQCC_OK.

TypeConvService.Type.MSUNIT: appends milli-seconds to the value

TypeConvService.Type.SECUNIT: append seconds to the value.

TypeConvService.Type.TIMESKEW: converts from time-skew 20-character string
to a user-displayable string.

xpath - The XPath to value's original data field

value - contains string format of the data

Returns:

The return value is a description.

Throws:

TVisionException – An error occurred during conversion.

 113

• retrieve
public java.lang.String retrieve(TypeConvService.Type convType,
 java.lang.String xpath,
 java.lang.String desc)
 throws TVisionException

This method converts from a user-friendly named description to raw value string. This is
used for transforming enumeration values to their enumeration values. For example, for
a given XPath field, the value 0 can be looked up from the descriptive field say
MQCC_OK.

Parameters:

convType - the conversion type

xpath - The XPath to value's original data field

desc - the user-friendly named description

Returns:

value, may be null, if no XPath is found in knowledge base

Throws:

TVisionException – An error occurred during conversion.

• getTimeFormat
public int getTimeFormat()

• setTimeFormat
public void setTimeFormat(int format)

This method allows setting the time format on all time fields in the result document
returned by the QueryService. The valid values for this field are:

 TVisionCommon.TIME_MILLISECOND_ONLY = 1;

 TVisionCommon.TIME_MICROSECOND_ONLY = 2;

 TVisionCommon.TIME_MILLISECOND_AND_DATE = 3;

 TVisionCommon.TIME_MICROSECOND_AND_DATE = 4;

• setTimeZoneID
public void setTimeZoneID(java.lang.String id)

This method sets the time zone to which all time fields in the result document returned
by the QueryService are converted to. The id string should be a valid Java time zone ID.

• getTimeZoneID
public java.lang.String getTimeZoneID()

convertDateStringToDateObj
public static java.util.Date
convertDateStringToDateObj(java.lang.String str)

This method converts a date-time string in the TransactionVision format to Java
standard Date object. A date-time string looks like “yyyymmddhhmmssmmm” e.g.
“20020123105501123”. The last three numbers are millisecond. The micro-second part
is ignored.

Chapter 6 • Extending the User Interface

114

Parameters:

str - Date String

Returns:

Data object. If failed to convert due to incorrect input string return null.

6.4. Using Job Beans
A job is a task that runs at a specified frequency. A job typically gathers statistics of recently
arrived events and stores calculated results in a way that is easily accessible by a report. By
using a job, the reports themselves do not have to perform complex, time-consuming queries
to present report data. Instead, they use already calculated data that is periodically updated
by a job running in the background. A job is a bean that implements a particular task.
6.4.1. JobBean
package com.bristol.tvision.job;
public class JobBean extends implements IJob;

All job beans should extend the JobBean basic class and implement the IJob interface. This
is required in order for the job to be managed by the job manager.
The JobBean class implements a method called allowMultipleJobsPerSchema(), which
returns true by default. If a job should only ever have one instance allowable per schema,
override this method to return false:

Public Boolean allowMultipleJobsPerSchema()
6.4.2. IJob Interface
The IJob interface contains the following functions:

• public void init(String startupparam) throws JobException;

The Init method is called once as the job transitions from a stopped to started state. Any
one-time initialization for this job can be performed here. The JobManager will pass in
this job's startup parameters (specified in the job definition).

• public void exit() throws JobException;

The exit method is called when a job is stopped. Any cleanup can be done here.

• public void run(ConnectionInfo con) throws JobException;

This method will be called when this job is scheduled to perform its particular task.
Note: Do not call con.close() to disconnect a connection, as it is used internally by
TransactionVision.

Job beans do not need to implement database connect logic if the TransactionVision
DataManager classes are used for database access. If you use TransactionVision
DataManager classes, the Job scheduler will handle the database reconnection. The only
requirement for this is to embed a DataManagerException in the JobException thrown
from the run() method, as in the following example:
Public void run(ConnectionInfo con) throws JobException {
 try{
 […]
 } catch (DataManagerException ex) {
 throw new JobExceptin(ex);
 }
}

 115

• public void cancel() throws JobException;

This function is called in order to interrupt a job that is currently processing (that is,
while it is in its run method). If you want it to support the ability of the job to be
cancelled while it is running, code your run and cancel methods so that the job
gracefully breaks out of whatever processing it’s in the middle of.

• public void forceStop() throws JobException;

This function is similar to cancel, but indicates that the user wants the job to end
immediately without waiting for finishing up any cleanup. By default, it calls cancel. It
is up to the bean to override and handle this correctly if it is to support a forced stop.

In addition the JobBean class provides the following helper functions

• public int getJobID()

This will return the current jobs id, which is a unique identifier for a job.

• public String getState(ConnectionInfo con) throws JobException
public void setState(ConnectionInfo con,String state) throws JobException

Up to 128 bytes of customer user data can be stored and associated with a particular job.
A Job Bean can optionally take advantage of this feature to store any state information it
might want to maintain from one run to another. The getState method will return the
current contents of this data. The setState method allows setting of this data.

6.4.3. Example: SQL Job Bean
The SQL job bean is a job that executes user specified SQL statements and optionally fires
alerts whenever one of the SQL statements returns a non-empty result set. It is implemented
as the com.bristol.tvision.job.SQLJobBean class. When the returned result set is non-empty,
it takes the result set and forwards it to a Log4J category that the user specifies. Thus, you
can use it to alert on anything in the database to any output destination you can configure
with Log4J (files, email, SNMP, etc).
In order to use this job bean, you need to add a job definition to the config/job/Job.xml file.
You may find example definitions in this file if you look for "SQL Alert Jobs". Below is an
example definition that sends alerts when individual transactions exceed SLA.
<JobDef name="Check for Late Transactions"
 desc="Send an alert if individual transactions exceed SLA"
 classname="com.bristol.tvision.job.SQLJobBean"
 priority="0" startup="automatic" interval="5" units="minutes"
 params='-title "Late Transactions" -description "Each of the
transactions listed above failed to meet the response time target
specified for the respective class of transaction." -action Alerts
-sql "update $pschema.business_transaction set alert1=1 where
$pschema.business_transaction.business_trans_id in (select
bt.business_trans_id from $pschema.business_transaction bt,
$pschema.transaction_class tc where bt.alert1 IS NULL and
bt.class_id=tc.class_id and ((bt.responsetime > tc.sla) or
((bt.state != 1) and bt.starttime <
tvision.to_evt_time_fmt(CURRENT_TIMESTAMP - CURRENT_TIMEZONE -
(tc.sla/1000.0) SECONDS)))); select
class_name,bt.business_trans_id,TVISION.FROM_EVTTIME(bt.starttime)
as \"Start time\",bt.responsetime,tc.sla from
$pschema.business_transaction bt, $pschema.transaction_class tc
where bt.alert1=1 and bt.class_id=tc.class_id; update
$pschema.business_transaction set alert1=2 where
$pschema.business_transaction.alert1=1;"' />

Chapter 6 • Extending the User Interface

116

In addition to the above definition, you also need to enable some commented-out columns in
the Transaction.xdm file (look for "SQLJobBean") and re-create your project schema. There
is also some Log4J configuration you need to set in the UI.Logging.xml file (in the "Alerts"
category and the associated appenders listed in it).
Note that the ALERT_HTML_LOGFILE appender uses an XSL transformation to convert
the XML formatted result set into a HTML formatted alert. You may modify the
config/logging/xsl/ResultSetToHTML.xsl file to generate the HTML format that you desire.

 117

7. Java Agent Point Extensions for TransactionVision

TransactionVision can manage events created by user applications beyond those originating
from the standard TransactionVision agents. In essence, you can add code in your
application or by configuring the Java Agent points file to generate events in propriety
format. This type of event is known as a user event.
In general, your applications are also responsible for delivering the event to the Analyzer
through the standard communication links. In some cases such as Java environment, the
TransactionVision agent can be configured to generate and deliver user events automatically
without custom coding.
See the Using Transaction Management for information about enabling communication
links to process user events in addition to standard TransactionVision (TV) events.
This chapter contains the following sections:

• 7.1. TV Specific Point Extension

• 7.2. Extension for Code Snippets

• 7.3. TV Callbacks (TV Extension - $callback$)

• 7.4. Point Expressions (TV Extension - $type$)

• 7.5. TV Event Lifecycle

• 7.6. Testing TV Agent Point Extensions

• 7.7. Custom Content Handlers

• 7.8. Payload Capture For Servlets

7.1. TV Specific Point Extension
In general, a TV Point Extension is an extension defined in a Diagnostics Point file, for the
purpose of extending the standard TV event generation and filtering capability.

Chapter 7 • Java Agent Point Extensions for TransactionVision

118

7.1.1. Point Extension Types
There are three types of TV Point Extensions, each of which has its own syntax.

Term Description
Extension for
Code Snippets

Uses Diagnostics Code Snippet information during the TV Event Lifecycle

TV Callbacks API interface used to “extend” the TV Event Lifecycle reviewing user specific
coded data

Point Expressions Regex-based Expression used to “extend” the TV Event Lifecycle reviewing
payload, arguments, and instance fields

7.1.2. General Syntax (in auto_detect.points)
Most TV Point Extensions are defined in the detail line of Diagnostics Instrumentation
Points (except for JMS and Servlet Payloads). Below is an example Point that illustrates the
general syntax for defining TV Point Extensions.

[GenericEvent1]

class = !TestUserEvent

method = !triggerMethod1

signature = !.*

detail = tv:tag:extension:extension:...

Where:

tag: is the name of the Diagnostics tag used to map to a TV rule (e.g., user_event).
extension: is a TV Point Extension definition, which must be in either one of the
following formats:
Extension for Code Snippets: NewTag=... (no $ delimeter)
TV Callback: $callback$=...
Point expression: $type$=... ($type$ must be one of the expression content types)
TV Point Extension definitions are separated by : (colon).

7.2. Extension for Code Snippets
7.2.1. Overview
Code Snippets are an extension of the Diagnostics Agent that allows for data collection
without altering the agent code at the customer site or internally. This section describes how
to use them to insert addition information into TV events. For the complete documentation
on Code Snippets, please refer to Chapter 6, Custom Instrumentation for Java Applications,
in the HP Diagnostics Java Agent Guide.
Code Snippets can be set to execute on Method Entry, Exit and Inside the Method or as the
caller of the method. In General, special variables exist (#return, #callee, etc.) or
variables can be created (#newvar=blah blah). A single # means the variable only exists
inside the snippet and a double ## means that it is a special field. If “store-thread” or “store-
probe” is set in the details, this data is accessible by the TV Agent through the TV Extension
for Code Snippets.

 119

7.2.2. Syntax of Extension
NewTag=specialFieldName

Where:
NewTag – a new XML tag to be added to the event. Note: If the NewTag is
$ProgramName$, it would not create a new Event field but would overwrite the existing
field.
specialFieldName – a special field name to retrieve the data stored by the Diagnostics
Code Snippets. This name must refer to a special field (i.e., a variable with the ## prefix)
by which data is stored.

7.2.3. Example – Points File
Below is an example Point. We are going to create a new User Event field called
WebServiceName which will contain the Web Service name. This name will be retrieved
from the data named SOAPHandler_wsname stored by a Diagnostics Code Snippet.
[Oracle-10g-WS-Inbound]

class = oracle.j2ee.ws.server.JAXRPCProcessor

method = doService

signature = !.*

detail = ws-operation,before:code:777a7ede,store-thread,diag,
 tv:user_event:WebServiceName=SOAPHandler_wsname
layer = Web Services

7.2.4. Example – Code Snippet
Below is the example Code Snippet. We are interested in the web service name,
represented as ##SOAPHandler_wsname in the Code Snippet.
Used by [Oracle-10g-WS-Inbound]

Note that the special field ##SOAPHandler_wsname is later referenced by
the probe.

The name cannot be changed here without also changing the probe code!

777a7ede = #endpoint = #callee.getEndpoint();\

##SOAPHandler_wsname = #endpoint.getWebServiceName();\

#portqname = #endpoint.getPortName();\

#operation =
#callee.determineOperationQName(#arg1.getMessageContext()).getLocalPart();\

"DIAG_ARG:type=ws&ws_name="+ ##SOAPHandler_wsname + "&ws_op="+ #operation
+\

"&ws_ns=" + #portqname.getNamespaceURI() + "&ws_port=" +
#portqname.getLocalPart();

7.2.5. Step by Step “Mechanics”
• The class oracle.j2ee.ws.server.JAXRPCProcessor is loaded and the

doService method is executed
• The TV User Event Entry Method is executed and saves the arguments/etc. for the User

Event.
• The Code Snippet is executed and loads the Web Service name into a thread-wide

storage under the name SOAPHandler_wsname.
• The Diagnostics Entry Method is executed and pushes an Entry Event onto the Fragment

Stack.

Chapter 7 • Java Agent Point Extensions for TransactionVision

120

• The TV User Event Exit Method is executed and it calls a TV Code Snippet API which
traverses a Diagnostics Proxy into a Diagnostics Thread Agent to query on name
SOAPHandler_wsname and load that value.

• The TV User Event Technology Header (XML Payload) is appended with a new field
called WebServiceName which contains the value retrieved in the previous call.

• The Diagnostic Exit Method is execute and pops the Fragment Stack.
7.2.6. Example Events
Below is a screenshot of the collected events in the Event Analysis report.

 121

The Event Detail shows the added WebServiceName field.

7.2.7. Enabling Code Snippets for TV
• Allways on a Diagnostics Point and Diagnostics product mode turned on (either “diag”

and/or no “tv” on detail)

• Only if TV product mode turned on AND the tv:user_event tag specifies Code
Snippet fields in the details

Chapter 7 • Java Agent Point Extensions for TransactionVision

122

7.3. TV Callbacks (TV Extension - $callback$)
7.3.1. Overview
Callbacks allow a user to execute custom code during various parts of the Event Creation
lifecycle for the purposes of adding to the event, filtering, etc.
All Callbacks should always extend the
com.bristol.tvision.appCL.CoreCallbacks.BasicCallback class.
7.3.2. Syntax of Extension
$callback$=class[@name.jar]
or
$callback$=alias
Where:
class – a callback class name
name.jar – a JAR file to be loaded into the application class loader or not needed if the
class is a Core Callback (already contained in the callbacks.jar library file)
alias – a property name defined in the TV.properties which contains the class and/or jar
implementing the callback. The property name should be prefixed with the “callback”
prefix, e.g., callback.alias=class@name.jar.
7.3.3. Callback Interface
Note that this interface is actually an “inner class” part of
com.bristol.tvision.bootCL.EventInfo;
 Import com.bristol.tvision.bootCL.EventInfo.IEventInfo;

 public static interface IEventInfo {

 public String validateCallback(String inString);

 public boolean analyzeMethod(Object[] entryArgs, Object classInstance,
String className, EventInfo eventInfo);

 public boolean beforeGenerateStandardHeader(EventInfo thisInfo, Object
thisEvent);

 public boolean beforeGenerateTechnologyHeader(EventInfo thisInfo, Object
thisEvent);

 public void addEventXML(StringBuffer xml,EventInfo thisInfo, Object
thisEvent);

 public boolean beforeGenerateEvent(EventInfo thisInfo, Object thisEvent);

7.3.4. Core Callbacks
Note: that all TV Core Callbacks included with the TV Java Agent are/should be
implemented with callback “alias” definitions.
In auto_detect.points:
[DumpCallback]

class = !AClassName

method = !AClassMethod

signature = !.*

detail = tv:user_event:$callback$=DumpCallback

[StackCallback]

class = !AClassName

method = !AClassMethod

 123

signature = !.*

detail = tv:user_event:$callback$=StackCallback

In TV.properties:

Core Callbacks

callback.DumpCallback=com.bristol.tvision.appCL.CoreCallbacks.DumpC
allback

callback.StackCallback=com.bristol.tvision.appCL.CoreCallbacks.Stac
kCallback

Where:

Callback Description
DumpCallback A callback implementation that dumps arguments, return value, and class

instance (fields/methods)
StackCallback A callback implementation that generates a stack trace at runtime

7.3.5. Custom Callbacks
All Callback implementation classes shall extend this class.
package com.bristol.tvision.appCL.CoreCallbacks;

import java.io.*;

import java.awt.*;

import java.awt.image.*;

import java.net.*;

import com.bristol.tvision.bootCL.*;

import com.bristol.tvision.appCL.sensor.event.*;

import com.bristol.tvision.appCL.sensor.generic.*;

import com.bristol.tvision.bootCL.EventInfo.*;

public class BasicCallback implements EventInfo.IEventInfo

{

 public static boolean
traceCalls=System.getProperty("tv.callback.trace","false").equalsIgnoreCase("true");

 public static boolean
stackOn=System.getProperty("tv.callback.stack","false").equalsIgnoreCase("true");

 public static boolean
debugOn=System.getProperty("tv.callback.debug","false").equalsIgnoreCase("true");

 public static boolean
dumpArgs=System.getProperty("tv.callback.dumpargs","false").equalsIgnoreCase("true");

 public String validateCallback(String inString)

 {

Logging.generalLog(this.getClass().getName(),Logging.LOG_TYPE_INFO,"VALIDATING
CALLBACK);

 return BootUtils.getSnippetChecksum(inString);

 }

 public boolean beforeGenerateEvent(EventInfo thisInfo,Object thisEvent)

Chapter 7 • Java Agent Point Extensions for TransactionVision

124

 {

 if(traceCalls)
Logging.generalLog(this.getClass().getName(),Logging.LOG_TYPE_INFO,"Calling
beforeGenerateEvent...");

 return true;

 }

 public boolean beforeGenerateTechnologyHeader(EventInfo thisInfo,Object
thisEvent)

 {

 if(traceCalls)
Logging.generalLog(this.getClass().getName(),Logging.LOG_TYPE_INFO,"Calling
beforeGenerateTechnologyHeader...");

 return true;

 }

 public boolean beforeGenerateStandardHeader(EventInfo thisInfo,Object thisEvent)

 {

 if(traceCalls)
Logging.generalLog(this.getClass().getName(),Logging.LOG_TYPE_INFO,"Calling
beforeGenerateStandardHeader...");

 return true;

 }

 public void addEventXML(StringBuffer xml,EventInfo thisInfo,Object thisEvent)

 {

 if(traceCalls)
Logging.generalLog(this.getClass().getName(),Logging.LOG_TYPE_INFO,"Calling
addEventXML...");

 }

 public boolean analyzeMethod(Object[] entryArgs,Object classInstance,String
className,EventInfo eventInfo)

 {

 if(traceCalls)
Logging.generalLog(this.getClass().getName(),Logging.LOG_TYPE_INFO,"Calling
analyzeMethod...");

 if(stackOn) {

 try {

 throw new Exception("TV CALLBACK STACK TRACE");

 }

 catch(Exception e) {

Logging.generalLog(this.getClass().getName(),Logging.LOG_TYPE_INFO,TVAgentExceptio
n.getStackTraceString(e));

 }

 }

 return true;

 }

}

7.3.6. Sample Class to Monitor (Where?)
public class TestUserEvent
{

 public static void main(String[] args)

 125

 {

 try {

 new TestUserEvent().doit();

 }

 catch(Exception e) {

 System.out.println("Error is: "+e.toString());

 }

 }

 public void doit() throws Exception

 {

 while(true) {

 System.out.print("Do Trigger...");

 triggerMethod1(1,"test1",new String[0],new int[0]);

 Thread.sleep(5000);

 }

 }

 public boolean triggerMethod1(int test1,String test2,String[]
theString,int[] isInt) throws Exception

 {

 if(System.getProperty("throw.Exception")!=null)

 throw new Exception("is bad");

 return true;

 }

}

7.4. Point Expressions (TV Extension - $type$)
7.4.1. Overview
Point Expressions are an extension to a standard TV rule which can be used to create new
Event data (to be used for custom correlation, display, etc.), filter, and/or also to do
customized functions (such as routing).
Point expressions can either be set per point, or on a global basis depending on the type.
7.4.2. Syntax
Point Expressions are specified in two parts: 1) Extension definition and 2) Expression
definition. An Extension definitions on per point basis (e.g., arguments and class instances)
shall be specified in the auto_detect.points file. Extension definition on per payload basis
(e.g., Servlet and JMS payload) shall be specified in the TV.properties file.
7.4.2.1 Syntax of Extension Definition in auto_detect.points
This syntax shall be used in a TV Extension defined in the auto_detect.points file. In this
case, each expression will be executed on per point basis.
$type$=ext1.ext2

Where:
$type$ – expression content type; specifying the content type to evaluate
ext1.ext2 – property name appendix for referencing to an Expression definition
7.4.2.2 Syntax of Extension Definition in TV.properties

Chapter 7 • Java Agent Point Extensions for TransactionVision

126

This syntax shall be used in the TV.properties file for Servlet and JMS Payload only. It is
executed on per in/out payload basis.
servlet.content.expression.definitions=$type$=ext1.ext2[:$type$=ext
1.ext2]...

or
jms.content.expression.definitions=$type$=ext1.ext2[:$type$=ext1.ex
t2]...

Where:
$type$ – expression content type; specifying the content type to evaluate
ext1.ext2 – property appendix for referencing to an Expression definition
7.4.2.3 Syntax of Expression Definition Defined in TV.properties
This syntax shall be used in the TV.properties file to specify expressions.
expression.ext1.ext2=expression;expression;...

Where:
expression.ext1.ext2 – a property name to be referenced by Extension definitions
expression – an associated expression. Expressions are separated by semicolons (;).
Expressions have the following syntax:
operator=param=val,param=val,...

Where:
operator – an expression operator
param=val – an expression parameter
7.4.3. Comparison with regular points reviewing content

Feature Standard Expressions

Payload Capture to
Analyzer (JMS and
Servlet)

Required to find
correlation

 Not Necessary –
correlation found on
Agent side and added to
event

Use Arguments and
Return values as
content

Write special code and
associated rules specific
to method

Add a property

Use class instance
fields and methods
(getxxx) as content

Not Possible Add a property

7.4.4. Expression Use Cases

Feature Example
Create and/or Store
new XML sections

<conversationId>…seq#......</conversationId>

Create and/or Store
new String sections

Queue: xxxx

Conditionals are
based on Stored
Sections

Conditional could be based on match on seq# for a stored XML section

 127

7.4.5. Expression Content Types
All content is string based, and will have a default max byte setting (which can be
overridden).
7.4.5.1 Type Summary

Feature Parameters Context Keyword ($type$)
Outbound Servlet
Payload

 All Servlet payload $outservletpayload
$

Inbound Servlet
Payload

 All Servlet payload $inservletpayload$

Outbound JMS
Payload

 All JMS payload $outjmspayload$

Inbound JMS
Payload

 All JMS payload $injmspayload$

Outbound Arguments Argument # (arg#=) Per Point $outargs$
Inbound Arguments Argument # (arg#=) Per Point $inargs$
Return value Per Point $return$
In Class Instance
fields/methods

Expression:
instance.field /etc
(inspect=)

Per Point $ininstance$

Out Class Instance
fields/methods

Expression:
instance.field /etc
(inspect=)

Per Point $outinstance$

7.4.5.2 Servlet Payload
This type compares existing Servlet Request and Response payload with existing
expressions for the purpose of creating new correlation values, metadata, and sophisticated
routing and filtering.
7.4.5.3 JMS Payload
This type compares existing JMS inbound (receive, onMessage) and outbound (send,
publish) payload with existing expressions for the purpose of creating new correlation
values, metadata, and sophisticated routing and filtering.
7.4.5.4 Arguments
This type compares method arguments using the arg# parameter to specify the argument to
convert to a string (using toString()) against existing expressions for the purpose of
creating new correlation values, metadata, and sophisticated routing and filtering.
7.4.5.5 Instances
This type compares method arguments using the inspect= parameter to specify a
“reflection script” to locate a target instance that would be converted to a string (using
toString()) against existing expressions for the purpose of creating new correlation
values, metadata, and sophisticated routing and filtering.

Chapter 7 • Java Agent Point Extensions for TransactionVision

128

7.4.6. Expression Operators
Operator Description

matchXML Find XML section <tag>….</tag> and store and/or create new section.
The matchXML operator will extract a string of fixed length which
matches the overall expression.

matchString Find String by match (offiset:length) and store and/or create new
section. The matchString operator will match a string starting point
and extract a string using extractoffset and extractlength.

condition Filter/Set section based on compare with store
Properties
[=global]

Parameters global to all Expressions

7.4.7. Expression Parameters
7.4.7.1 Overview
Expression parameters can be applied on a global or per instance basis, and should be
entered in lower case as they are case sensitive.

Paramter Description
tag= New name of the Event XML tag to be created
debug= Turn on debug
arg#= Index of argument to be used in $inargs$ and $outargs$. This

index starts from 1, referring to the first argument in a method call.
inspect= Expression to be used in $ininstance$ and $outinstance$
inspectoffset= offset into the content to apply expression (default=0)
inspectlength= Total length in content to apply expression (default is end of content)
store= Name to store in
encode= XML Encode
extractoffset= Where to start extraction in a matched String (matchString operator

only – default=0)
extractlength= Total length to extract in the matched String (matchString operator

only – default is end of extracted content)
filter= Filter if no content match or condition
filterempty= Filter if no content exists
tagsection= New Section name for inserting the Tag in Event XML

7.4.7.2 Syntax of Inspect
Syntax:
inspect=token.token...

Where:
token is a field or a method call to methods (that have no arguments) in the current instance.
A method call token should have () appended after the method name.
Example:
inspect=fieldName1.method1().fieldName2

Explanation:
The scripting engine will look for field fieldName1 in the current instance (the current
instance is initialized as the class runtime instance) executing and load that as the current
instance and call method1() to get the retuned object as the current instance and then look
for field fieldName2 in that returned object and use the object in as field fieldName2 as
the final instance and execute a toString() call as the content.
7.4.7.3 Parameter Scope Examples

 129

Global Parameters Example:
expression.outpayload.test=properties=global,debug=true;
matchXML=<html>.*</html>,store=test,tag=NewTag,encode=true;

Per-Expression Parameters Example:
expression.outpayload.test=matchXML=<html>.*</html>,
debug=true,store=test,tag=NewTag,encode=true;

7.4.8. Example
7.4.8.1 A Points-Oriented Example
7.4.8.1.1 Extension Definition In auto_detect.points
 [Servlet-all]

; ------------- extends HttpServlet ---------------------

; (See HttpCorrelation point for ignore documentation)

; In addition, ignore class we know we are not interested in.

;

; tv:servlet tags this as a servlet for the TV Plugin module

;

class = javax.servlet.http.HttpServlet

method = !(service)|(do.*)

signature = !.*

ignore_cl =
com.ibm.ws.jsp.runtime.HttpJspBase,weblogic.servlet.jsp.JspBase,jav
ax.servlet.http.HttpServlet, weblogic.servlet.JSPServlet,
com.bea.netuix.servlets.manager.UIServlet,
com.sap.engine.services.servlets_jsp.server.servlet.InvokerServlet,
com.ibm.ws.webcontainer.jsp.servlet.JspServlet,
com.ibm.ws.webcontainer.jsp.runtime.HttpJspBase,
org.apache.jetspeed.portlet.Portlet,
org.apache.jetspeed.portlet.PortletAdapter,
com.ibm.wps.portlets.struts.WpsStrutsPortlet,
com.ibm.workplace.util.portal.portlet.LwpStrutsPortlet,
com.sapportals.wcm.portal.proxy.PCProxyServlet,
com.sapportals.wcm.app.servlet.WcmHtmlbBaseServlet,
weblogic.wsee.jaxws.JAXWSServlet,
org.apache.jasper.servlet.JspServlet

ignore_tree = org.apache.jasper.runtime.HttpJspBase

deep_mode = soft

layer = Web Tier/Servlet

detail = diag,tv:servlet:$inargs$=inargs.test

7.4.8.1.1 Expression Definition In TV.properties
expression.inargs.test=properties=global,debug=true,args=1;matchXML
=<html>.*</html>,store=test,tag=NewTag,tagsection=ExpressionBasedCC
Section,encode=true;matchString=<img,tag=NewSection,tagsection=Expr
essionBasedCCSection,encode=true;condition=Hello,store=test,filter=
true

7.4.8.2 A Payload-Oriented Example
7.4.8.2.1 Extension Definition In TV.properties
servlet.content.expression.definitions=$outservletpayload$=outpaylo
ad.test

Chapter 7 • Java Agent Point Extensions for TransactionVision

130

7.4.8.2.2 Expression Definition In TV.properties
expression.outpayload.test=properties=global,debug=true,args=1;matc
hXML=<html>.*</html>,store=test,tag=NewTag,tagsection=ExpressionBas
edCCSection,encode=true;matchString=<img,tag=NewSection,tagsection=
ExpressionBasedCCSection,encode=true;condition=Hello,store=test,fil
ter=true

7.4.8.3 Expression Definition in Details
Part 1: properties=global,debug=true -> Debug on for all expressions
Part 2: matchXML=<html>.*</html>,store=test,tag=NewTag,encode=true; ->
Match XML tag, store in test, and new EventXML is called “NewTag”
Part 3: matchString=<img,tag=NewSection,Max=4000;encode=true -> Match
section, maximum of 4000 bytes, encode contents
Part 4: condition=Hello,store=test,filter=true -> get stored contents of test,
check to see if word “Hello” there, if not – then filter
7.4.8.4 Event Details
Below is the Event Detail of a Servlet event from the Tomcat Hello World example.

 131

7.4.8.5 Output Page from the Example

7.5. TV Event Lifecycle
7.5.1. The Event Lifecycle and Point Extensions
• Method Entry

• Callback to validate for security reasons and load class/jar into classpath
(one time only) – method: validateCallback

• Filtering Takes Place
• Event Object State created
• Class, Method, Argument Type, Arguments stored in Event Object State

o Callback – to add additional filtering on method, arguments, payload,
etc…monitor argument size – method: analyzeMethod

o Expressions- to evaluate arguments ($inargs$), provide additional
filtering, and evaluate class instance information ($ininstance$)

• Exit

• Method Exit

o Callback – to modify the Standard Header before it is persisted – method:
beforeGenerateStandardHeader

Chapter 7 • Java Agent Point Extensions for TransactionVision

132

• Generate Standard Header

o Callback – to modify the Technology Header before it is persisted – method:
beforeGenerateTechnologyHeader

o Expressions- to evaluate arguments ($outargs$), provide additional
filtering, and evaluate class instance information ($outinstance$) and
return value ($return$)

o CodeSnippets- get Results and store

• Generate Technology Header

o Callback – method: addEventXML

o Check Code Snippet Results

o Expressions- to evaluate JMS payload and provide additional filtering
($injmspayload$ or $outjmspayload$)

o Expressions- to evaluate Servlet payload and provide additional filtering
($inservletpayload$ and $outservletpayload$)

o Callback – last chance to filter event and/or re-route it – method:
beforeGenerateEvent

• Generate Event

• Event sent Via Transport

7.6. Testing TV Agent Point Extensions
7.6.1. Testing Servlet and JMS Expressions using the Java Agent Web Interface
http://localhost:35000/inst/tvAgentProxy?handler=extTrack&test=true
&type=servlet&content=c:\hold\servletcontent.txt

where:
test=true

type is either servlet or jms
content specifies the content to simulate as payload or a file pointing to the content
inbound is either true or false (JMS only)

 133

produces:

7.6.2. Using Tomcat as a Live Test Platform
7.6.2.1 Edit TV.properties to enable Expression Capture in Servlets
Remove the # (comment char) in front of the lines in bold as such:

Expression Based system for payload, arguments, and instances

tvagent.sysprop.application.jms.handlerclass=com.bristol.tvision.ap
pCL.sensor.generic.TVCallbackSnippetUtils$DefaultExpressionBasedIns
pection

tvagent.sysprop.application.servlet.handlerclass=com.bristol.tvisio
n.appCL.sensor.generic.TVCallbackSnippetUtils$DefaultExpressionBase
dInspection

tvagent.sysprop.application.argument.handlerclass=com.bristol.tvisi
on.appCL.sensor.generic.TVCallbackSnippetUtils$DefaultExpressionBas
edInspection

tvagent.sysprop.application.instance.handlerclass=com.bristol.tvisi
on.appCL.sensor.generic.TVCallbackSnippetUtils$DefaultExpressionBas
edInspection

Expressions

Chapter 7 • Java Agent Point Extensions for TransactionVision

134

expression.outpayload.test=properties=global,debug=true,arg#=1;matc
hXML=<html>.*</html>,store=test,tag=NewTag,encode=true;matchString=
<img,tag=NewSection,encode=true;condition=Hello,store=test,filter=t
rue

Core Callbacks

callback.Dump=com.bristol.tvision.appCL.CoreCallbacks.DumpCallback

callback.Stack=com.bristol.tvision.appCL.CoreCallbacks.StackCallbac
k

Core Payloads

#jms.content.expression.definitions=xxx

servlet.content.expression.definitions=$outservletpayload$=outpaylo
ad.test

7.6.2.2 Modify the Tomcat Startup to include the Java Agent
Edit the catalina.bat file and modify the JAVA_OPTS to include the Java Agent
7.6.2.3 Launch Tomcat (run.bat)

 135

7.6.2.4 Go to Servlet Sample Screen
http://localhost:8080/servlets-examples/

8.6.2.5 Execute “Hello World”

7.6.2.6 Verify Results in the Analyzer (NewTag, NewSection instances)

Chapter 7 • Java Agent Point Extensions for TransactionVision

136

7.6.3. Troubleshooting
7.6.3.1 Viewing Existing Expression Information
http://localhost:35000/inst/tvAgentProxy?handler=extTrack

7.6.3.2 Modifying an Expression
http://localhost:35000/inst/tvAgentProxy?handler=extTrack&property=p
ropertyname&val=newvalue&type=expressiontype

where:
type=expressiontype specifies a valid expression type (e.g., $outservletpayload$)
property=propertyname should match expression.propertyname in TV.properties
val=newvalue specifies the new value for that property
example:
http://localhost:35000/inst/tvAgentProxy?handler=extTrack&property=o
utpayload.test&type=$outservletpayload$&value=properties=global,debu
g=true;matchXML=<html>.*</html>,store=test33,tag=NewTag,encode=true;
matchString=<img,tag=NewSection,encode=true;condition=Hello,store=te
st,filter=true

7.7. Custom Content Handlers
Content Handlers are implementations called to handle content presented during:
• JMS Inbound and Outbound payload
• Servlet Inbound and Outbound payload
• Argument Inspection
• Class Instance Inspection
In general, the user should not modify these handlers without consulting HP personnel as
this will circumvent the existing Transaction flow processing.
7.7.1. Core Content Handlers
The implementation class of the core content handlers are specified in the TV.properties
file. The DefaultExpressionBasedInspection class is the default handler for all of the
content types.

 137

tvagent.sysprop.application.jms.handlerclass=com.bristol.tvision.ap
pCL.sensor.generic.TVCallbackSnippetUtils$DefaultExpressionBasedIns
pection

tvagent.sysprop.application.servlet.handlerclass=com.bristol.tvisio
n.appCL.sensor.generic.TVCallbackSnippetUtils$DefaultExpressionBase
dInspection

tvagent.sysprop.application.argument.handlerclass=com.bristol.tvisi
on.appCL.sensor.generic.TVCallbackSnippetUtils$DefaultExpressionBas
edInspection

tvagent.sysprop.application.instance.handlerclass=com.bristol.tvisi
on.appCL.sensor.generic.TVCallbackSnippetUtils$DefaultExpressionBas
edInspection

7.7.2. Custom Content Handler Interface
//

// SERVLET PAYLOAD INSPECTION

//

 public static interface IInspectServletPayload {

 public boolean reviewServletPayload(EventInfo eventInfo,

 String techName, EventInfo.PointsArgs pointsArgs,

 byte[] requestData, byte[] responseData);

 }

//

// JMS PAYLOAD INSPECTION

//

 public static interface IInspectJMSPayload {

 public boolean reviewJMSPayload(EventInfo eventInfo, String
techName,

 EventInfo.PointsArgs pointsArgs,

 byte[] userData, boolean isOutbound);

 }

//

// ARGUMENT INSPECTION

//

 public static interface IInspectArguments {

 public boolean reviewArguments(Object[] entryArgs,

 EventInfo.PointsArgs pointsArgs, Object classInstance,

 String className,EventInfo eventInfo, boolean
isOutbound);

 public boolean reviewReturn(String returnArg, Object[]
entryArgs,

 EventInfo.PointsArgs pointsArgs, String className,

 EventInfo eventInfo);

 }

Chapter 7 • Java Agent Point Extensions for TransactionVision

138

//

// INSTANCE INSPECTION

//

 public static interface IInspectInstance {

 public boolean reviewInstance(Object[] entryArgs,

 EventInfo.PointsArgs pointsArgs, Object classInstance,

 String className, EventInfo eventInfo, boolean
isOutbound);

 }

7.8. Payload Capture For Servlets
7.8.1. Overview
Payload capture is achieved by hooking the following interfaces used by Servlets to process
a HTTP Servlet Stream:
Where the following arguments are used:
HttpServerRequest req

HttpServerResponse res

To Monitor all possible input and output streams methods and copy bytes in real time to a
central buffer in thread local:
InputStream in = req.getInputStream();

BufferedReader br = req.getReader();

OutputStream out = req.getOutputStream();

PrintWriter pr = req.getWriter();

So, in essence the capture is focused on the interfaces InputStream, BufferedReader,
OutputStream, and PrintWriter
7.8.2. Defining “AppServer” specific Implementations for these Interfaces in the
auto_detect.points file
The auto_detect.points file should define implementations for the specific AppServer and
use the tv:payload tag, this should be simulator to this Tomcat example:
;

; ServletInputStream for JBOSS/TOMCAT

;

[CatalinaServletInputStream]

class = org.apache.catalina.connector.CoyoteInputStream

method = !(read)|(readLine)

signature = !.*

detail = tv:payload

;

;

; ServletOutputStream for JBOSS/TOMCAT

;

[CatalinaServletOutputStream]
class = org.apache.catalina.connector.CoyoteOutputStream

 139

method = !(write)
signature = !.*
detail = tv:payload
;
;
; PrintWriter for JBOSS/TOMCAT
;
[CatalinaPrintWriter]
class = org.apache.catalina.connector.CoyoteWriter
method = !(write)|(print)|(println)
signature = !.*
detail = tv:payload
;
;
; PrintReader for JBOSS/TOMCAT
;
[CatalinaPrintReader]
class = org.apache.catalina.connector.CoyoteReader
method = !(write)|(print)|(println)
signature = !.*
detail = tv:payload
7.8.3. The TV Payload Handling rules (GenericStreamCapture.xml)
<?xml version="1.0" encoding="UTF-8"?>
 <InstrumentationDef>
 <PointsFileTag name="payload">
 <Action name="ForwardMethodCall">
 <SensorClass name="com.mercury.opal.capture.proxy.GenericStreamCapture"/>
 <SensorMethodPrefix name="StreamCapture_"/>

 <MethodSignature name="int readLine(byte[],int,int)"/>
 <MethodSignature name="int read(byte[],int,int)"/>
 <MethodSignature name="int read(char[],int,int)"/>
 <MethodSignature name="int read(byte[])"/>
 <MethodSignature name="String readLine()"/>
 <MethodSignature name="int read()"/>

 <MethodSignature name="void write(int)"/>
 <MethodSignature name="void write(byte[])"/>
 <MethodSignature name="void write(byte[],int,int)"/>

Chapter 7 • Java Agent Point Extensions for TransactionVision

140

 <MethodSignature name="void write(char[])"/>
 <MethodSignature name="void write(char[],int,int)"/>
 <MethodSignature name="void print(char)"/>
 <MethodSignature name="void print(double)"/>
 <MethodSignature name="void print(float)"/>
 <MethodSignature name="void print(int)"/>
 <MethodSignature name="void print(long)"/>
 <MethodSignature name="void print(java.lang.Object)"/>
 <MethodSignature name="void print(java.lang.String)"/>
 <MethodSignature name="void print(boolean)"/>
 <MethodSignature name="void print(char[])"/>
 <MethodSignature name="void println(char)"/>
 <MethodSignature name="void println(double)"/>
 <MethodSignature name="void println(float)"/>
 <MethodSignature name="void println(int)"/>
 <MethodSignature name="void println(long)"/>
 <MethodSignature name="void println(java.lang.String)"/>
 <MethodSignature name="void println(boolean)"/>
 <MethodSignature name="void println(char[])"/>
 <MethodSignature name="void println()"/>
 </Action>
 </PointsFileTag>
</InstrumentationDef>

7.9. Payload Capture for Servlets
HP Software Support or customer assistance teams may find the JASM utilities helpful for
troubleshooting and fine tuning Java Agent configuration. These utilities are intended for
test or POC deployment environments only, and only under supervision of the HP customer
assistance team. For information about these utilities, see <Java
<java_agent_install_dir>/DiagnosticsAgent\DiagnosticsAgent\contrib\JASMUtilities\Snapin
s/JASM_Utilities.doc.

 141

8. Generic Events

Generic events is a User Event extension XML specification which provides the ability to support
custom agents without requiring specialized code. Specifically, generic events can be used to
drive

• creation of system model objects in TransactionVision
• caller/callee relationship links between system model objects and have those relationships

display in TransactionVision topology UIs. Optionally, latency can be specified between
related objects.

8.1. The Generic Event XML Specification

This section lists (in xpath format) and describes the XML elements comprising the generic event
XML specification. Required elements are noted with "(required)" next to the element. Elements
or attributes which are not supported in the current release of TransactionVision are noted with
“(future)”. When sending events using the Java Agent (see the “Sending Events Using JMS”
section below), only /Event/Technology/UserEvent descendants can be explicitly set.

/Event/EventID

Used to specify the event sequence number. If omitted, the analyzer will automatically generate
the sequence number.

 Attributes

Name Required? Description

sequenceNum yes The event sequence
number.

/Event/Technology/UserEvent/TrackingIds

Contains one or more Id elements to be used as the correlation key.

/Event/StdHeader

Attributes

Name Required? Description
ouw no Specify unit-of-work numeric identifier for the local transaction.

Chapter 8 • Generic Events

142

If omitted, the event will be in its own local transaction.

/Event/StdHeader/TechName (required)

Must be set to “UserEvent”.

/Event/StdHeader/ProgramName (required)

The application name.

Attributes

Name Required? Description

publishCI (future) no

If set to true will populate infrastructure CI of type
running_software with attribute discovered_product_name set
to the value of ProgramName. Related CIs (host_node,
ip_address, and interface) will be published from information
provided in elements:

• /StdHeader/Host
• /StdHeader/HostMacAddress
• /StdHeader/HostIPAddress
• /StdHeader/HostArch

If only /StdHeader/Host is available, the event analyzer
will attempt to lookup and rely on some previous event
having reported this information. |

/Event/StdHeader/ProgramInstance

The unique identifier for the running thread of execution. One or more arbitrary child elements of
ProgramInstance must be specified. The concatenation of these child elements are used to
generate the unique identifier. If ProgramInstance is omitted, the analyzer will generate a unique
identifier for each generic event.

/Event/StdHeader/PrimaryTime (required)

The event start epoch timestamp in milliseconds.

 143

Attributes

Name Required? Description
epoch yes Must be set to "true".

/Event/StdHeader/SecondayTime

The event end epoch timestamp in milliseconds. If omitted, will be set to the value of
PrimaryTime.

Attributes

Name Required? Description

epoch yes Must be set to
"true".

/Event/StdHeader/TimeSkew

The time skew in microseconds to apply to PrimaryTime and SecondaryTime.

/Event/Technology/UserEvent (required)

Attributes

Name Required? Description

type yes Must be set to
"generic".

/Event/Technology/UserEvent/GenericEvent/TechType (required)

The technology type. Used to categorize generic events.

/Event/Technology/UserEvent/GenericEvent/Action

Specifies the action associated with the event. For example, a security related application may set
this to, “denied”, “granted”, “authenticated”, etc.

/Event/Technology/UserEvent/GenericEvent/Status

Specifies the context-specific event status.

Chapter 8 • Generic Events

144

/Event/Technology/UserEvent/GenericEvent/CompCode

Specifies the event completion code where 0, 1, and 2 indicate success, warning, and error
respectively. If omitted, it will default to 0 (success).

/Event/Technology/UserEvent/GenericEvent/User

An example of an arbitrary context-specific element inserted by the event source. These extra
elements can then be made available for use through the usual TransactionVision functionality -
populating XDM columns, classification rules, correlation rules, etc.

/Event/Technology/UserEvent/GenericEvent/CustomObject

Specifies a custom system model object to represent the generic event. If omitted, the event will
be represented by the ProgramName system model object.

Attributes

Name Required? Description
type yes The system model object type.
name yes The name of the system model object

signature no
The signature of the system model object. If omitted, a
signature of the form, typeId/host/name will automatically be
constructed.

/Event/Technology/UserEvent/GenericEvent/CustomObject/PopulateInfrastructureCI (future)

Specifies the running_software CI to publish corresponding to the custom system model object.
Information needed to create related CIs (host_node, ip_address, and interface) will be taken from
elements:

• /StdHeader/Host
• /StdHeader/HostMacAddress
• /StdHeader/HostIPAddress
• /StdHeader/HostArch

The running_software CI can only be populated if all the host details are available. If only
/StdHeader/Host is available, the event analyzer will attempt to lookup and rely on some previous
event having reported this information.

 145

/Event/Technology/UserEvent/GenericEvent/CustomObject/PopulateInfrastructureCI/CIAttribute
(required) (future)

Sets an attribute on the CI to be published. Either a discovered_product_name or product_name
(model supported) attribute needs to be specified. Any number of additional attributes may also
be specified.

Attributes

Name Required? Description
name yes The CI attribute name
value yes The CI attribute value

type no The CI attribute type. If omitted, will
default to “string”.

/Event/Technology/UserEvent/GenericEvent/RelatedObjects

Contains 0 or more RelatedObject elements representing nodes connected to the generic event
node in the topology graph.

/Event/Technology/UserEvent/GenericEvent/RelatedObjects/RelatedObject

Represents a node connected to the generic event node in the topology graph. Matching criteria
on system model object signatures along with references to the resulting matched objects in the
transaction will specify the nodes to be connected.

Attributes

Name Required? Description
type yes The system model object type

signatureMatch yes

The signature of the system model object in which wild-card
characters can be specified if the exact signature is
unknown, or to specify multiple system model objects. For
example:

• */TradeServlet
• */appserverABC/*

onlyIfExists yes

Boolean specifying a condition for creating the topology
graph node and link corresponding to the system model
object matching the pattern in signatureMatch. If set to true,
the node and link are created only if one of this transaction's
events references the system model object.

direction yes Specifies link direction “to” or “from” related object.

Chapter 8 • Generic Events

146

latency no The latency of the interaction between the generic event
node and the connected node in milliseconds.

/Event/Technology/UserEvent/GenericEvent/RelatedCustomObjects

Contains 0 or more RelatedCustomObject elements representing nodes connected to the generic
event node in the topology graph.

/Event/Technology/UserEvent/GenericEvent/RelatedCustomObjects/RelatedCustomObject

Represents a node connected to the generic event node in the topology graph.

Attributes

Name Required? Description
type yes The custom system model object type.
name yes The name of the custom system model object

direction yes Specifies direction “to” or “from” the custom system model
object.

xpath yes The xpath corresponding to the table column in which the
custom system model object ID will be stored.

latency no The latency of the interaction between the generic event node
and the connected node in milliseconds.

/Event/Technology/UserEvent/GenericEvent/RelatedCustomObjects/RelatedCustomObject/Populate
InfrastructureCI (future)

Specifies the running_software CI to publish corresponding to the custom system model object.

/Event/Technology/UserEvent/GenericEvent/RelatedCustomObjects/RelatedCustomObject/Populate
InfrastructureCI/CIAttribute (required) (future)

Set an attribute on the CI to be published. Either discovered_product_name or product_name
(model supported) attribute needs to be specified. Any number of additional attributes may also
be specified.

Attributes

Name Required? Description
name yes The CI attribute name
value yes The CI attribute value
type no The CI attribute type. If omitted, will default to

 147

“string”.

/Event/Technology/UserEvent/GenericEvent/RelatedCustomObjects/RelatedCustomObject/Populate
InfrastructureCI/CIRelationsInfo (required) (future)

Contains the following elements (structured the same as the ones in the StdHeader element)
needed to create CIs related to the running_softwae CI.

• Host
• HostMacAddress
• HostIPAddress
• HostArch

The running_software CI can only be populated if all the host details are available. If only Host
is available, the event analyzer will attempt to lookup and rely on some previous event having
reported this information.

8.2. Sending Generic Events

Events can be sent to an analyzer using HTTP Post or a TransactionVision supported JMS (WMQ
or SonicMQ).

8.2.1. Sending Events Using HTTP Post

The following HTTP request headers need to be set when sending events using HTTP Post

• content-type: text/xml; charset="UTF-8"
• X-JMS-CorrelationID: TVisionUserEvents
• X-JMS-MessageType: TEXT
• X-JMS-DestinationQueue: HTTP.EVENT.QUEUE

Additionally, the following HTTP request headers default to the values shown, so it is not
necessary to set them. They are listed here for reference

• X-JMS-TimeToLive: 0
• X-JMS-DeliveryMode: PERSISTENT
• X-JMS-Version: jmshttp/1.0
• X-JMS-Action: push-msg

Chapter 8 • Generic Events

148

8.2.2. Sending Events Using JMS

The Java Agent includes generic event utility classes which can be used to create generic
event XML and send to the analyzer via the configured JMS.

The following example sends a simple generic event with only the TechType, Action, and
Status, elements set.

package tv.test.generic.event.java.agent;

import com.bristol.tvision.appCL.sensor.generic.*;

/**
 * Simple example to demonstrate sending a generic event.
 *
 */
public class SimpleGenericEventSend {

 public static void main(String[] args) throws Exception {
 SimpleGenericEventSend sender = new
SimpleGenericEventSend();

 GenericJavaSensor.initSDK();

 System.out.println("Sending generic event...");
 sender.sendEvent();
 System.out.println("Generic event sent.");
 }

 public void sendEvent() {
 try {
 //
 // Open Event, set reduced payload, Technology type,
and Program name
 //
 GenericJavaSensor myInst =
GenericJavaSensor.openEvent(true, "generic", "MyProgram");

 //
 // Add GenericEvent opening XML element
 //
 myInst.addLevel("GenericEvent");

 // Add GenericEvent child tags using
addGenericPayloadTag(elementName, encode, elementContent)

 myInst.addGenericPayloadTag("TechType", true, "SSO");

 myInst.addGenericPayloadTag("Action", true, "login");

 myInst.addGenericPayloadTag("Status", true, "ok");

 //

 149

 // Close GenericEvent XML element
 //
 myInst.removeLevel("GenericEvent");

 //
 // Send the Event
 //
 myInst.sendGenericPayload();
 }
 catch(Exception e) {
 System.out.println("Error sending generic event: " +
e);
 e.printStackTrace();
 }
 }

}
To compile the above example, the JAVA_AGENT_HOME environment variable needs to
be set and appCL.jar needs to be in the classpath:

set JAVA_AGENT_HOME=C:\MercuryDiagnostics\JavaAgent
javac -classpath %JAVA_AGENT_HOME%\TransactionVisionAgent\java\lib\appCL.jar
SimpleGenericEventSend.java

To execute, set com.hp.javaagent.diagnostics.home and com.hp.javaagent.transaction.home
system properties

java -
Dcom.hp.javaagent.diagnostics.home="C:\MercuryDiagnostics\JavaAgent\DiagnosticsA
gent" -
Dcom.hp.javaagent.transaction.home="C:\MercuryDiagnostics\JavaAgent\TransactionVi
sionAgent" tv.test.generic.event.java.agent.SimpleGenericEventSend

The resulting generic event XML is.

The following advanced example specifies a custom system model object to represent the
event and also specifies relations to other system model objects. Note, the example requires
custom system model object types SiteMinder and FTPServer to be configured in the
SystemModelDefintion xml in the TransactionVision Administration UI beforehand. For
example:

<SystemModelDefinition>
 <ObjectClass name="IDM" base="101000">
 <ObjectType name="SiteMinder" id="1"
xpath="/Event/Technology/UserEvent/GenericEvent/TestLookup/SiteMinder"/>
 </ObjectClass>
 <ObjectClass name="FTP" base="102000">
 <ObjectType name="FTPServer" id="1"
xpath="/Event/Technology/UserEvent/GenericEvent/TestLookup/FTPServer"/>
 </ObjectClass>
</SystemModelDefinition>

Chapter 8 • Generic Events

150

See the “Extending the System Model” section in this guide for further details.

package tv.test.generic.event.java.agent;

import java.util.Hashtable;

import com.bristol.tvision.appCL.sensor.generic.*;

/**
 * Advanced example to demonstrate sending a generic event.
 *
 */
public class AdvancedGenericEventSend {

 public static void main(String[] args) throws Exception {
 AdvancedGenericEventSend sender = new
AdvancedGenericEventSend();

 GenericJavaSensor.initSDK();

 System.out.println("Sending generic event...");
 sender.sendEvent();
 System.out.println("Generic event sent.");
 }

 public void sendEvent() {
 try {
 //
 // Open Event, set reduced payload, Technology type,
and Program name
 //
 GenericJavaSensor myInst =
GenericJavaSensor.openEvent(true, "generic", "MyProgram");

 //
 // Add GenericEvent opening XML element
 //
 myInst.addLevel("GenericEvent");

 // Add GenericEvent child tag using
addGenericPayloadTag(elementName, encode, elementContent)
 myInst.addGenericPayloadTag("TechType", true, "SSO");

 //
 // Set Attributes
 //
 Hashtable custObjAttributes = new Hashtable();
 custObjAttributes.put("type", "SiteMinder");
 custObjAttributes.put("name", "testsiteminder");

 // Add CustomObject tag with attributes and no
content
 myInst.addGenericPayloadTag("CustomObject",
custObjAttributes, true, "");

 151

 // Add RelatedObjects opening XML element
 myInst.addLevel("RelatedObjects");

 //
 // Set Attributes
 //
 Hashtable relObjAttributes = new Hashtable();
 relObjAttributes.put("type", "servlet");
 relObjAttributes.put("signatureMatch",
"*/FundServlet");
 relObjAttributes.put("onlyIfExists", "false");
 relObjAttributes.put("direction", "to");
 relObjAttributes.put("latency", "123");

 // Add RelatedObject tag with attributes and no
content
 myInst.addGenericPayloadTag("RelatedObject",
relObjAttributes, true, "");

 //
 // Close RelatedObjects XML element
 //
 myInst.removeLevel("RelatedObjects");

 //
 // Add RelatedCustomObjects opening XML element
 //
 myInst.addLevel("RelatedCustomObjects");

 //
 // Set Attributes
 //
 Hashtable relCustObjAttributes = new Hashtable();
 relCustObjAttributes.put("type", "FTPServer");
 relCustObjAttributes.put("name", "testftpserver");
 relCustObjAttributes.put("direction", "to");
 relCustObjAttributes.put("latency", "456");

 // Add RelatedCustomObject tag with attributes and no
content
 myInst.addGenericPayloadTag("RelatedCustomObject",
relCustObjAttributes, true, "");

 //
 // Close RelatedCustomObjects XML element
 //
 myInst.removeLevel("RelatedCustomObjects");

 //
 // Close GenericEvent XML element
 //
 myInst.removeLevel("GenericEvent");

 //
 // Send the Event
 //

Chapter 9 • Database Schema

152

 myInst.sendGenericPayload();
 }
 catch(Exception e) {
 System.out.println("Error sending generic event: " +
e);
 e.printStackTrace();
 }
 }
}

The above results in the following generic event XML.

9. Database Schema

This chapter contains the following sections:

• 8.1. System Model Object tables

• 8.2. Event Tables

• 8.3. Event Relationship Tables

• 8.4. Transaction Tables

• 8.5. Statistics Tables

• 8.6. RUM processing Tables

• 8.7. Other internal tables

9.1. System model object tables
The System Object Model tables are used to store all the System Model objects and the
relationships between them. System model objects include general resources as well as
technology-specific resources.
9.1.1. Object Types
As such, different technologies will be assigned different ranges of object types. This is
described in the table below.
Object Types

Value
(range)

Description

 153

0 – 999 Basic System Model Objects (hosts,
technologies, Program Instances, etc.)

1 Host

2 Not used

3 Program

4 Program Instance

5 z/OS Jobname

6 z/OS Jobstep

7 z/OS CICS Region

8 z/OS CICS Transaction

9 z/OS IMS ID

10 z/OS IMS Region Type

11 z/OS IMS Region ID

12 z/OS IMS Transaction

13 z/OS IMS PSB

14 OS400 Jobname

15 z/OS CICS Task

16 User Name

17 Proxy

18 Statistics

100 Transaction Class

510 CICS Task

511 CICS Transaction

512 CICS Region

520 Batch TCB

521 Batch Jobstep

522 Batch Job

1000-1999 MQSeries Objects

1000 Unknown type

1001 None

1002 Queue

Chapter 9 • Database Schema

154

1003 Local Queue

1004 Model Queue

1005 Alias Queue

1006 Remote Queue

1007 Cluster Queue

1008 Local Cluster Queue

1009 Alias Cluster Queue

1010 Remote Cluster Queue

1011 Namelist

1012 Process

1013 Queue Manager

1014 Distribution List

1015 Cluster

1016 WBI Message Flow

1017 WBI Broker

1018 Connection Name

1019 Cluster Name

1020 ReplyTo Queue

1021 ReplyTo Queue Manager

2000 Proxy Object

3000-3100 Servlet Objects

3000 Server

3001 UI/Job Server

3002 Servlet

3003 Internet

3004 JSP

3005 EJB

3006 EJB Method

3007 Probe

3008 Probe Group

 155

3101-3199 JMS Objects

3101 Topic

3102 Queue

3103 Connection Name

3104 Tibco Global Queue

3105 Tibco Global Topic

3106 Sonic Broker URL

3107 Sonic Node

3108 Sonice Topic Routing Definition

3109 Sonic Queue Routing Definition

3110 Sonic Cluster

3111 Sonic Cluster Queue

3112 Sonic Cluster Topic

3113 BEA Server

3114 Sonic Domain

4000-4999 CICS Objects

4001 SYSID

4002 APPLID

4003 TREMID

4004 File

4005 TD Queue

4006 TS Queue

4007 TD Alias Queue

5000-5999 User Event Objects

5001 User Event Class

5002 User Event Method

5003 User Event Status

5004 User Event Technology

6000-6999 JDBC Objects

6001 Database

Chapter 9 • Database Schema

156

6002 Schema

6003 Table

6004 View

6005 Alias

6006 SQL

6007 DB Object Group

6008 SQL Statement

6009 Procedure

6010 Database URL

7000-7999 RUM Objects

7001 End User Name

7002 Country

7003 State

7004 City

7005 End User Group

8000-8999 Tuxedo Objects

8001 Queue

8002 Queue Space

8003 Service

9.1.2. Signatures
Each System Model Object has a unique object id that is assigned when the object is inserted
into the table. In addition to this unique identifier, each object can be considered to have a
signature that identifies that object uniquely. The signature of the object can be generated
from event data and looked up in the SYS_MDL_OBJECT table to find the corresponding
unique object id. The signature can be uniquely generated from the attributes of the object
in an event.
The general format for a signature is a list of all the successor objects from left (highest) to
right (the final object), separated by forward slashes. In addition, the object type identifier
(see table above) is a prefix to the signature since two objects of different types might
otherwise have the same signature.
Signature Examples

Object Type Example Signature

Host 1/macbeth

 157

(Object type/hostname)

Program Instance
(Unix/NT)

4/U/2001080617592300000/132/1
(Object type/platform id/start time/process id/thread id)

Program Instance
(CICS – z/OS)

2/C/CICS/ABCD/A0F1
(Object type/platform id/CICS region/transaction id/task
id)

MQSeries Queue
Manager

1001/qm1 (Object type/queue manager name)

MQSeries Queue
(local)

1002/qm1/LOCAL.QUEUE
(Object type/queue manager/queue)

MQSeries Queue
(alias)

1003/qm1/ALIAS.QUEUE
(Object type/queue manager/queue)

9.1.3. System Model Relationships
The following table shows the relationship between system model objects:

Relation
Type

Relation Name Examples of the Relationship

SYS_MDL_OBJECT

PK OBJECT_ID BIGINT

 SIGNATURE VARCHAR(255)
 OBJECT_NAME VARCHAR(128)
 OBJECT_TYPE INTEGER
 OBJECT_DOC VARCHAR(3200)
 CMDB_ID VARCHAR(32)

SYS_MDL_OBJECT_ATTR

PK OBJECT_ID BIGINT
PK ATTR_NAME VARCHAR(124)

 ATTR_VALUE VARCHAR(215)

SYS_MDL_OBJECT_RELATION

PK OBJECT_ID1 BIGINT
PK OBJECT_ID2 BIGINT

 RELATION_TYPE INTEGER
 DIRECTION INTEGER
 CMDB_ID VARCHAR(32)

Chapter 9 • Database Schema

158

Relation
Type

Relation Name Examples of the Relationship

1 OWNS A host owns all the programs it hosts.
A program owns its program instances.
A queue manager owns all the queues it
hosts.
A host owns all application servers it hosts.
An application server owns all web
(enterprise) applications.
A web application owns all servlets, JSP, and
EJB it contains.
An EJB owns all the methods it defines.
An IMS control region job owns transaction.
A z/OS job owns all its job steps.
A TIBCO connection owns TIBCO targets.

2 CONTAINS A name List and its contents.

3 USES A queue uses a connection name.
A program uses a queue.
A program uses its EJB and servlets.
A CICS transaction uses programs.
A CICS program uses CICS PC programs.
A CICS program uses CICS files.
A CICS program uses CICS TD queues.

4 RESOLVETO An alias queue and the base queue it refers to
A remote queue and the queue it refers to
A model queue and the dynamic queue
generated from it
A CICS TD queue and indirect queue

5 ABSTRACTS Cluster name and cluster object
Cluster object and cluster queue

6 ALIAS Program instance and MQSI message flow
Program instance and MQSI broker

7 ONE_TO_ONE EJB entity beans relationship

8 ONE_TO_MANY EJB entity beans relationship

 159

Relation
Type

Relation Name Examples of the Relationship

9 MANY_TO_ONE EJB entity beans relationship

10 MANY_TO_MANY EJB entity beans relationship

11 STARTS Two CICS transactions; one starts the other

12 BRIDGE_TO TIBCO bridge source and target

13 ROUTE_TO TIBCO route source and target

14 ROUTE_TO_FROM TIBCO route source and target

15 DEPENDS_ON Transaction class and program

9.1.4. System Model Attributes
For each system model object an arbitrary number of additional attributes can be stored in
the SYS_MDL_OBECT_ATTR table. Each row in the table contains the object id of the
corresponding system module object, and a name/value pair for the attribute and its value.

9.2. Event Tables
Data in the event tables is split up into three basic sections:

• The core event data

• The user data

• Lookup tables
The core event data contains a unique compound key identifying that event and an XML
document, which contains the entire event data (minus user data which was not
unmarshalled into XML.) The XML data gets stored in LOB columns. For performance
reasons, the Analyzer can be configured to store the XML data into a VARCHAR column
instead. Should the event XML data exceed the maximum size of this VARCHAR column, a
separate row will be inserted into the EVENT_OVERFLOW table, which defines the
event_data as LOB. To configure the Analyzer to use VARCHAR, edit the DatabaseDef.xml
file in <TVISION_HOME>/config.datamgr and replace:
For ORACLE:
<Table name="EVENT">
 <Column name="event_data" type="CLOB" size="1M"/>

with the following:
<Table name="EVENT">
 <Column name="event_data" type="LONGVARCHAR"/>

If the Oracle datatype LONG cannot be used (it has officially been
deprecated by Oracle and is subject to certain restrictions), the
event data can alternatively be split up into two or more VARCHAR2
columns that have to be named data1, data2, …, dataN:

Chapter 9 • Database Schema

160

<Table name="EVENT">
 <Column name="data1" type="VARCHAR" size=’’4000’’/>
 <Column name="data2" type="VARCHAR" size=’’4000’’/>
 <Column name="data3" type="VARCHAR" size=’’4000’’/>
 <Column name="data4" type="VARCHAR" size=’’4000’’/>

The analyzer will split up the XML event document into several
parts and store each part into one of those columns. Whenever the
XML document is retrieved within TransactionVision, the full
document is reassembled again.

For DB2 and SQL Server:
<Table name="EVENT">
 <Column name="event_data" type="CLOB" size="1M"/>

with the following:
<Table name="EVENT">
 <Column name="event_data" type="VARCHAR" size="15000"/>

Note: This change will only improve performance if most of the events will fit into the
LONGVARCHAR/VARCHAR column (thus minimizing the need to use the overflow
table). In DB2 the maximum size for the VARCHAR is dependent on the database
tablespace page size and should be determined by a DBA.
The PARTIAL_EVENT table is a temporary container for Entry- or Exit only events. If the
corresponding partial event arrives in the Analyzer within a defined time interval, a
matching thread running in the Analyzer will merge those events and store them in the
EVENT table as usual.
User data that was not unmarshalled into XML is stored in the USER_DATA table in the
raw format (no data conversion). As with the XML event data, the Analyzer can be
configured to use VARCHAR instead of BLOB columns. Edit the DatabaseDef.xml file in
<TVISION_HOME>/config/datamgr and replace:
For ORACLE:

<Table name="USER_DATA">
<Column name="user_data" type="BLOB" size="10M"/>

with the following:

<Table name="USER_DATA">
<Column name="user_data" type="LONGVARBINARY"/>

Or alternatively (similar to EVENT) you can define the table with multiple RAW columns:

<Table name="USER_DATA">
<Column name="data1" type="VARBINARY" size=’’2000’’/>
<Column name="data2" type="VARBINARY" size=’’2000’’/>
<Column name="data3" type="VARBINARY" size=’’2000’’/>
<Column name="data4" type="VARBINARY" size=’’2000’’/>

For DB2 and SQL Server:
<Table name="USER_DATA">
<Column name="user_data" type="BLOB" size="10M"/>

with the following:

 161

<Table name="USER_DATA">
<Column name="user_data" type="VARBINARY" size="15000"/>

Note that if any values or data types are changed in DatabaseDef.xml, the corresponding
tables must be dropped and then re-created for the changes to take effect.
The lookup tables are used to store fields for quick searching; all columns in these tables are
indexed. The XML to Database Mapping (XDM) file uses XPath statements to identify
which data items are to be extracted from the XML event data and placed into the lookup
tables. Lookup tables for the basic event data and the technology/platform specific event
data are shown in the following figures.

Chapter 9 • Database Schema

162

XML Database Mapper

USER_DATA_OVERFLOW

PK proginst_id LARGEINT
PK sequence_no INTEGER
PK data_num INTEGER

 user_data BINARY(10485760)
 event_time TIMESTAMP

EVENT_OVERFLOW

PK proginst_id LARGEINT
PK sequence_no INTEGER

 event_data CHAR(1048576)
 event_time TIMESTAMP

PARTIAL_EVENT

PK proginst_id LARGEINT
PK sequence_no INTEGER
PK event_type INTEGER

 event_data BINARY(10485760)
 event_time TIMESTAMP

USER_DATA

PK proginst_id LARGEINT
PK sequence_no INTEGER
PK data_num INTEGER

 type INTEGER
 ccsid INTEGER
 user_data BINARY(524287)
 event_time TIMESTAMP

EVENT

PK proginst_id LARGEINT
PK sequence_no INTEGER

 event_data CHAR(1048576)
 event_time TIMESTAMP

EVENT_LOOKUP

PK proginst_id LARGEINT
PK sequence_no INTEGER

 host_id LARGEINT
 program_id LARGEINT
 tech_id INTEGER
 username_id LARGEINT
 primary_time CHAR(20)
 secondary_time CHAR(20)
 local_trans_id LARGEINT
 seq_id LARGEINT
 hierarchy CHAR(255)
 event_time TIMESTAMP

SERVLET_LOOKUP

PK proginst_id LARGEINT
PK sequence_no INTEGER

 status INTEGER
 method INTEGER
 servlet_id LARGEINT
 webapp_id LARGEINT
 appserver_id LARGEINT
 caller_id LARGEINT
 data_size INTEGER
 event_time TIMESTAMP
 probe_id LARGEINT
 probe_group_id LARGEINT
 uri_id LARGEINT
 client_ip CHAR(20)
 url_id LARGEINT
 bpm_txn_id LARGEINT
 bpm_txn_flow_id LARGEINT
 bpm_location_id LARGEINT
 bpm_biz_app_id LARGEINT

OS390_LOOKUP

PK proginst_id LARGEINT
PK sequence_no INTEGER

 jobname LARGEINT
 jobstep LARGEINT
 cicstask LARGEINT
 cicsregion LARGEINT
 cicstransaction LARGEINT
 imsregionid LARGEINT
 imsregiontype LARGEINT
 imsid LARGEINT
 imstransaction LARGEINT
 imspsb LARGEINT
 event_time TIMESTAMP

JDBC_LOOKUP

PK proginst_id LARGEINT
PK sequence_no INTEGER

 class INTEGER
 method INTEGER
 appserver_id LARGEINT
 webapp_id LARGEINT
 db LARGEINT
 caller_id LARGEINT
 sql_id LARGEINT
 fullsql_id LARGEINT
 sql_stmt INTEGER
 sql_result INTEGER
 sql_code INTEGER
 sql_state CHAR(16)
 stat_time INTEGER
 stat_gets INTEGER
 stat_iter INTEGER
 event_time TIMESTAMP

JMS_LOOKUP

PK proginst_id LARGEINT
PK sequence_no INTEGER

 method INTEGER
 class CHAR(200)
 appserver_id LARGEINT
 webapp_id LARGEINT
 topic_id LARGEINT
 queue_id LARGEINT
 msg_id CHAR(255)
 correl_id CHAR(255)
 app_id CHAR(196)
 user_id CHAR(84)
 put_ts LARGEINT
 putappltype INTEGER
 qmgr_id LARGEINT
 mqobj_id LARGEINT
 caller_id LARGEINT
 error_code CHAR(196)
 exception_class INTEGER
 data_size INTEGER
 conn_id LARGEINT
 event_time TIMESTAMP

CICS_LOOKUP

PK proginst_id LARGEINT
PK sequence_no INTEGER

 api INTEGER
 api_type INTEGER
 terminal_id LARGEINT
 appl_id LARGEINT
 start_code CHAR(4)
 resource_id LARGEINT
 EIBRESP INTEGER
 datasize INTEGER
 event_time TIMESTAMP

EJB_LOOKUP

PK proginst_id LARGEINT
PK sequence_no INTEGER

 ejb_id LARGEINT
 method_id LARGEINT
 ejb_type INTEGER
 appserver_id LARGEINT
 app_id LARGEINT
 caller_id LARGEINT
 status INTEGER
 event_time TIMESTAMP
 caller_pii LARGEINT

OS400_LOOKUP

PK proginst_id LARGEINT
PK sequence_no INTEGER

 as400jobname LARGEINT
 event_time TIMESTAMP

BTTRACE_LOOKUP

PK proginst_id LARGEINT
PK sequence_no INTEGER

 apicode INTEGER
 severity INTEGER
 event_time TIMESTAMP

 163

9.3. Event Relationship Tables
EVENT_RELATION table stores the relationship between two events determined by
technology specific event correlation logic. If the relationship type is defined as
BIDIRECTION, there will be two entries in this table: event1 -> event 2 and event2 ->
event1. If the logic determines the two events are correlated in certain way with 100%
certainty, the confidence factor is set to STRONG_RELATION, otherwise
WEAK_RELATION.
RELATION_LOOKUP table stores a correlation lookup id for each event. The logic to
generate this lookup id is specific to the technology used by this event.

EVENT_RELATION

 proginst_id LARGEINT
 sequence_no INTEGER
 proginst_id2 LARGEINT
 sequence_no2 INTEGER
 relation_type INTEGER
 direction INTEGER
 confidence INTEGER
 latency INTEGER
 event_time TIMESTAMP

RELATION_LOOKUP

 lookup_key CHAR(255)
 type_id INTEGER
 proginst_id LARGEINT
 sequence_no INTEGER
 tech_id INTEGER
 event_time TIMESTAMP
 keyrule_id INTEGER

EVENT

PK proginst_id LARGEINT
PK sequence_no INTEGER

 event_data CHAR(1048576)
 event_time TIMESTAMP

9.4. Transaction Tables
Local and Business Transactions are created and updated during the Event Analysis phase in
the Analyzer. The local transaction analysis populates the LOCAL_TRANSACTION table
and links the event data to the corresponding transaction through the column local_trans_id
in the table EVENT_LOOKUP. The BUSINESS_TRANSACTION table is defined through
an XDM file and populated during business transaction analysis.

Chapter 9 • Database Schema

164

XML Database Mapper

BUSINESS_TRANSACTION

PK business_trans_id LARGEINT

 class_id INTEGER
 stable_txn_id LARGEINT
 starttime CHAR(20)
 endtime CHAR(20)
 responsetime LARGEINT
 tv_starttime CHAR(20)
 tv_endtime CHAR(20)
 tv_responsetime LARGEINT
 rum_responsetime LARGEINT
 state INTEGER
 result INTEGER
 exception_state INTEGER
 label CHAR(128)
 update_id LARGEINT
 timerule_state INTEGER
 sla_state INTEGER
 events_stored INTEGER
 topology_doc CHAR(131072)
 value NUMERIC(15,3)
 txn_timestamp TIMESTAMP
 rum_guid CHAR(255)
 eug_subnet_id LARGEINT
 location_id LARGEINT
 is_bpievent CHAR(1)

LOCAL_TRANSACTION

PK local_trans_id LARGEINT

 key_name CHAR(255)
 business_trans_id LARGEINT
 starttime CHAR(20)
 tracking_id CHAR(255)
 tracking_seq INTEGER
 parent_txn_key CHAR(255)
 multi_tracking INTEGER
 txn_timestamp TIMESTAMP

TRACKING_OVERFLOW

 tracking_id CHAR(255)
 tracking_seq INTEGER
 parent_txn_key CHAR(255)
 local_trans_id LARGEINT
 txn_timestamp TIMESTAMP

9.5. Statistics Tables
The statistics tables contain data used by various Reports in the TransactionVision UI/Job
Server. The data in the TOPOLOGY_STATS and JDBC_STATS is collected by the
Analyzer and used for the static Topology View and as a Datasource for event based reports.
The BAC_SAMPLE_STATISTICS is used for delivering data samples to BSM.

 165

9.5.1. Physical model

BAC_SAMPLE_STATISTICS

PK sample_timestamp TIMESTAMP
PK class_id INTEGER

 start_time TIMESTAMP
 end_time TIMESTAMP
 seq_no INTEGER
 sum_response_time LARGEINT
 sum_tv_response_time LARGEINT
 sum_rum_response_time LARGEINT
 max_response_time LARGEINT
 max_response_time_txnid INTEGER
 exp_tx_count INTEGER
 late_tx_count INTEGER
 failed_tx_count INTEGER
 tx_count INTEGER
 total_tx_value LARGEINT
 total_failed_tx_value LARGEINT
 total_exp_tx_value LARGEINT
 total_late_tx_value LARGEINT

TOPOLOGY_STATS

PK start_time TIMESTAMP
PK end_time TIMESTAMP
PK source_objid LARGEINT
PK dest_objid LARGEINT
PK link_objid LARGEINT
PK tech_id INTEGER

 msg_success INTEGER
 msg_warn INTEGER
 msg_error INTEGER
 putget_success INTEGER
 putget_warn INTEGER
 putget_error INTEGER
 byte_success LARGEINT
 byte_warn LARGEINT
 byte_error LARGEINT
 min_latency INTEGER
 max_latency INTEGER
 avg_latency REAL
 latency_count INTEGER
 type INTEGER

JDBC_STATS

PK start_time TIMESTAMP
PK end_time TIMESTAMP
PK source_objid LARGEINT
PK dest_objid LARGEINT
PK link_objid LARGEINT
PK tech_id INTEGER

 min_latencycur INTEGER
 max_latencycur INTEGER
 avg_latencycur REAL
 latency_countcur INTEGER
 cursor_iter INTEGER
 cursor_get LARGEINT
 total_time LARGEINT

Chapter 9 • Database Schema

166

9.6. RUM processing Tables
These tables are used for processing RUM events. The analyzer will process events sent by
the RUM engine and update the TransactionVision business transaction data with the
available RUM data (end user group information, end-to-end response times, etc). The
RUM_LOOKUP table is defined via XDM and populated during RUM event processing.
RUM_EVENT_RECOVERY and RUM_BUFFER_TABLE are used internally.

RUM_BUFFER_TABLE

 rum_guid CHAR(255)
 session_id CHAR(50)
 timestamp LARGEINT
 subnet_id LARGEINT
 location_id LARGEINT
 pagetime LARGEINT
 creation_time TIMESTAMP

RUM_LOOKUP

PK proginst_id LARGEINT
PK sequence_no INTEGER

 client_starttime CHAR(20)
 client_responsetime LARGEINT
 session_id CHAR(50)
 client_timestamp TIMESTAMP

RUM_EVENT_RECOVERY

 insertion_time TIMESTAMP
 id INTEGER
 data BINARY(1048576)
 compressed INTEGER

 167

9.7. Other internal tables
These tables are used internally by the analyzer. The SCRATCH table is used for storing the
analyzer recovery status, the ID_TABLE is used for id generation, the SEQUENCE_MAP
and DIRTY_BIT tables for system model processing, and the BPI_BUFFER_TABLE for
BPI event processing. The SCHEMA_VERSION table contains the the TransactionVision
schema version number.

SCHEMA_VERSION

 version INTEGER

SCRATCH

PK key_name CHAR(30)

 bvalue BINARY(1048576)
 cvalue CHAR(1048576)
 lvalue LARGEINT

BPI_BUFFER_TABLE

 id INTEGER
 txn_id LARGEINT
 expire_time TIMESTAMP
 type INTEGER
 xml_data CHAR(10240)

SEQUENCE_MAP

PK sequence CHAR(255)

 id INTEGER

ID_TABLE

PK key_name CHAR(30)

 id INTEGER

DIRTY_BIT

PK module_id INTEGER

 status INTEGER

 168

10. Event XML Schema

This section describes the various XML documents stored in TransactionVision database
tables. XML schemas are used to describe TransactionVision data.
This chapter contains the following sections:

• 9.1. Basic Types

• 9.2. Event Schema Description

10.1. Basic Types
Basic types are technology specific data types and are described using schema tags
xsd:simpleType or xsd:complexType. For example, MQMD belonging to the MQSeries
technology may be described in a schema as:

 <xsd:complexType name="MQMD">
 <xsd:sequence>
 <xsd:element name="StrucId" type="MQCHAR4"/>
 <xsd:element name="Version" type="MQLONG"/>
 <xsd:element name="Report" type="MQLONG"/>
 <xsd:element name="MsgType" type="MQLONG"/>
 <!-- and so on… -- >
 </xsd:sequence>
 </xsd:complexType>

and the basic types MQCHAR4 and MQLONG are:
 <xsd:simpleType name="MQCHAR4">
 <xsd:restriction base="xsd:string">
 <xsd:length value="4" fixed="true"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="MQLONG">
 <xsd:restriction base="xsd:long"/>
 </xsd:simpleType>

 169

Similarly, all data types in a particular technology need to be described as above.
Technology specific methods such as MQGET, MQPUT etc. extend the “API” base type.

 <xsd:element name="MQPUT">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Hconn"
type="MQHCONN"/>
 <xsd:element name="Hobj" type="MQHOBJ"/>

 <xsd:element name="pMsgDesc"
type="PMQMD"/>
 <xsd:element name="BufferLength"
type="MQLONG"/>
 <xsd:element name="pCompCode"
type="pMQLONG"/>
 <xsd:element name="pReasonCode"
type="pMQLONG"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

10.2. Event Schema Description
An event packet saved in the database would have the following layout: Detailed Schema
definition can be found under <TVISION_HOME>/config/xmlschema/Event.xsd.
<?xml version="1.0" encoding="UTF-8"?>
<Event>
<EventID programInstID="642" sequenceNum="7"/>
<StdHeader minorVersion="1" uow="…" version="5">
<HostArch>
<OS>AIX</OS>
<Vendor>IBM</Vendor>
<HostArchValue>0xFFFFFFFF80030780</HostArchValue>

</HostArch>
<Encoding>273</Encoding>
…

</StdHeader>
<Technology>
<MQSeries API="MQPUT" … >
<MQPUT>
<MQPUTEntry>
<HConn>0x5</HConn>
<HObj>0x200EC268</HObj>
<MQMD parameterName="MsgDesc" pointerValue="0x2FF22288">
<StrucId>MQMD_STRUC_ID "MD"</StrucId>
<Version>MQMD_VERSION_1 1</Version>
<Report>MQRO_NONE 0</Report>
<MsgType>MQMT_DATAGRAM 8</MsgType>
…

</MQMD>
<MQPMO parameterName="PutMsgOpts" pointerValue="0x2FF223F8">
<StrucId>MQPMO_STRUC_ID "PMO"</StrucId>
<Version>MQPMO_VERSION_1 1</Version>
<Options>MQPMO_NONE 0x0</Options>
…

</MQPMO>
<BufferLength>25</BufferLength>
<Buffer pointerValue="0x2FF2253C">
 <UserDataRef chunk="0"/>
</Buffer>
<CompCode pointerValue="0x2FF224FC">N/A</CompCode>
<ReasonCode pointerValue="0x2FF22500">N/A</ReasonCode>

</MQPUTEntry>
<MQPUTExit>
<HConn>0x5</HConn>
<HObj>0x200EC268</HObj>

Chapter 10 • Event XML Schema

170

…
</MQPUTExit>

</MQPUT>
</MQSeries>

</Technology>
<Data>
 <Chunk blobType="0" ccsid="0" from="0" seqNo="0" to="24"/>
</Data>

</Event>

 171

The diagram below shows the basic structure of the type hierarchy of objects used to
describe an event.

Chapter 10 • Event XML Schema

172

 173

11. The Data Manager

This chapter contains the following sections:

• 10.1. Using the DataManager to Access the Database

• 10.2. XML-Database Mapping Using XDM Files

• 10.3. The XDM Syntax

• 10.4. The XMLDatabaseMapper Interface

• 10.5. Extending the /Event Document Type

• 10.6. Extending the /Transaction Document Type

• 10.7. Adding New Document Types

11.1. Using the DataManager to Access the Database
Custom beans and reports that need to access the database may use the service interface of
the DataManager class to conveniently perform tasks which otherwise would have to be
coded on the JDBC level.
A reference to the DataManager object can be obtained with the instance() method.
If the DataManager instance is used outside of the TransactionVision application context
(for example, in a standalone Java application), the first call into the DataManager must be
 DataManager.instance().init()
Beans and reports that run within the TransactionVision application are not required to do
this; they can expect the instance to be successfully initialized.
Custom beans running within the TransactionVision Analyzer Framework will usually get
the current database connection passed in as a parameter of class ConnectionInfo, which
encapsulates the JDBC connection handle and the database schema name for the current
processed event:
public class ConnectionInfo {

 /** The database connection */
 public Connection con;
 /** The database schema */
 public String schema;

 public ConnectionInfo(Connection con, String schema) ;

}

Chapter 11 • The Data Manager

174

In cases where the custom code needs to obtain its own database connection, the
DataManager offers three different methods for this purpose:

• getThreadConnection() will return a connection for the current thread. If this is the first
time the thread calls into this method, a new connection to the database is returned.
Every following call from the same thread will return the same connection, until it is
getting released with releaseThreadConnection().

• getConnection() will always create and return a new connection to the database. This
connection will get released with a call to releaseConnection(Connection con).

Interface
init
public static DataManager instance()

Returns the DataManager Singleton instance
Methods
Here is the complete list of the methods that make up the supported DataManager interface.

• init

public void init()
 throws com.bristol.tvision.datamgr.DataManagerException

Initializes the DataManager with the database properties configured for the Processing
Server in the Admin UI

Throws:

com.bristol.tvision.datamgr.DataManagerException - If initialization fails

• getThreadConnection
public java.sql.Connection getThreadConnection()
 throws
com.bristol.tvision.datamgr.DataManagerException

Returns the database connection for the current thread. If there is no connection stored in
the connection map for this thread, a new connection is established by calling into the
configured ConnectionSource, and this connection will be returned for all following
calls.

Returns:

The database connection for the current thread

Throws:

com.bristol.tvision.datamgr.DataManagerException - if getting a new connection from
the ConnectionSource fails

• releaseThreadConnection

public void releaseThreadConnection()
 throws
com.bristol.tvision.datamgr.DataManagerException

Releases (closes) the connection for the current thread.

 175

Throws:

com.bristol.tvision.datamgr.DataManagerException - if closing the connection fails

• getConnection

public java.sql.Connection getConnection()
 throws
com.bristol.tvision.datamgr.DataManagerException

Returns a new database connection which is not cached, which means every call into this
method will obtain a new connection from the configured ConnectionSource.

Returns:

The database connection

Throws:

com.bristol.tvision.datamgr.DataManagerException - if getting a new connection from
the ConnectionSource fails

• releaseConnection

public void releaseConnection(java.sql.Connection con)
 throws
com.bristol.tvision.datamgr.DataManagerException

Close the connection which has been obtained from a call to getConnection.

Throws:

com.bristol.tvision.datamgr.DataManagerException - if closing the connection fails

• commitTransaction

public void commitTransaction(java.sql.Connection con)
 throws
com.bristol.tvision.datamgr.DataManagerException

Performs a commit on current the database transaction

Parameters:

con - The connection holding the transaction to commit

Throws:

com.bristol.tvision.datamgr.DataManagerException - if the commit fails

• rollbackTransaction

public void rollbackTransaction(java.sql.Connection con)
 throws
com.bristol.tvision.datamgr.DataManagerException

Performs a rollback on the current database transaction

Parameters:

con - The connection holding the transaction to roll back

Chapter 11 • The Data Manager

176

Throws:

com.bristol.tvision.datamgr.DataManagerException - if the rollback fails

11.2. XML-Database Mapping Using XDM Files
The TransactionVision database schema is made extensible through the XML to Database
Mapping (XDM) files. XDM is a generic way to describe the mapping of values contained
in XML documents onto table columns in the database and allows fast, indexed XML data
retrieval by the database engine.
The XML mapping is implemented by the class XMLDatabaseMapper and is used in
TransactionVision to store the event and transaction data into lookup tables for fast retrieval.
This class is also accessible from custom beans and reports and allows user written code to
map basically any XML data to the database.
XML mappings are grouped into different ‘document types’. Each document type is defined
by the root tag value for its documents and describes a mapping from XML to a set of
database tables that logically belong together. These tables must share the same primary key,
and the join across all these tables represents the mapped XML data for one XML document.
In TransactionVision there are three predefined document types:
/Event
This document type consists of all event based XML mappings, including standard header
event data, technology specific event data, and platform specific event data.
/Transaction
This document type maps data for the transaction analysis to the database tables.
/EventStatistics
This document type contains mappings for event statistics that are used for the topology
view and various reports.

11.3. The XDM Syntax
XML mappings are defined in XDM files located in the XDM tab of the top level
TransactionVisions Configuration page. The XML schema format of XDM files is defined
in <TVISION_HOME>/config/xmlschema/XDM.xsd. Each XDM file defines a mapping of
XML data to a particular database table. The syntax to describe this mapping is as follows:
<Mapping documentType="/Event">
Defines the document type for this mapping. This mapping is only valid for XML
documents that have the same root tag as “documentType”.
<Mapping documentType="/Event" dbschema="SCHEMA1,SCHEMA2">
The dbschema attribute can specify one schema (or a list of schemas) for which the mapping
is valid. The data insertion and retrieval methods of the XMLDatabaseMapper will not use
this mapping if the supplied database schema parameter does not match. If this attribute is
missing, the mapping is valid for all schemas. The <DBSchema> syntax of previous
versions is still supported.
<Key name="proginst_id" type="BIGINT"
description="ProgramInstanceId">
<Path>/Event/EventID/@programInstID</Path>
</Key>
<Key name="sequence_no" type="INTEGER"
description="SequenceNumber">
<Path>/Event/EventID/@sequenceNum</Path>

 177

</Key>

Defines the primary key for the database table. All XDM mappings of the same document
type must have the same key definition. There may be multiple key tags, in which case a
compound primary key will get created. The structure of the key tag is similar to the Column
tag and will be described there.
<Table name="EVENT_LOOKUP" categoryPath="COMMON">

Specifies the database table for the mapping. For mappings of the document type “/Event”,
the XDM mappings can be technology or platform specific. The categoryPath attribute on
the Table tag contains either “COMMON” to indicate that this table contains data common
to every event and should be written for every event going through the Analyzer, or it can
contain an XPath to the event document which is used as a criteria to decide if the mapping
is applicable to the current event. If the “categoryPath” attribute contains an XPath, the
attribute “categoryValues” contains a list of qualifying values from the event data. The
standard event XDM mappings use XPaths to the event technology and to the event platform
in the categoryPath attribute.
Examples:
<Table name="EVENT_LOOKUP" categoryPath ="COMMON">
...
</Table>
<Table name="MQSERIES_LOOKUP"
categoryPath="/Event/StdHeader/TechName" categoryValues
="MQSERIES">
...
</Table>
<Table name="OS390_LOOKUP" categoryPath=’’
/Event/StdHeader/HostArch/OS’’ categoryValues
="OS390_BATCH,OS390_CICS,OS390_IMS">
...
</Table>

If the categoryPath attribute is missing, the mapping is applicable to all events. Note that
there has to be exactly one XDM mapping with categoryPath = “COMMON” for each
document type.
<Column name="host_id" type="BIGINT" description="Host"
isObject="true">
<Path>/Event/StdHeader/Host/@objectId</Path>
</Column>

Each table mapping consists of several Column definitions that describe which XML value
has to be mapped onto which database table column. The name attribute specifies the
column name, and the type attribute specifies the column type, which can be one of the
following:

• INTEGER

• BIGINT

• FLOAT

• DOUBLE

• DECIMAL

• CHAR

Chapter 11 • The Data Manager

178

• VARCHAR

• DATE

• TIMESTAMP
Both name and type are required. Types CHAR and VARCHAR require an additional
attribute size.
Type DECIMAL requires additional attributes precision and scale.
The unicode attribute specifies that the character column should be generated in the database
with the number of bytes defined for ‘unicode_bytes_per_character’ in Database.properties
for each character. Default value if missing: ‘false’.
The subtype attribute can further refine the type of the column, Currently the only supported
subtype is CURRENCY, which has to include the currency code, e.g.
‘subtype=CURRENCY(USD)’. See 10.3.1 for details on using currency values.
The description attribute specifies the name of the tag containing the value for that column
in the query result document returned by the QueryService. Required.
The isObject attribute for a Column tag in the above XDM file refers to that column being
an identifier for an object in the system model table. This allows to use the object name
instead of the numerical, system generated object id in XDM based queries. Possible values:
‘true/false’. Default value if missing: ‘false’.
The generated attribute for a Column tag means that the column value will be generated by
the DataManager.. Possible values: ‘true/false’. Default value if missing: ‘false’.
The conversionType attribute for a Column tag means that field requires a formatting
conversion after reading from the database. The TypeConvService is called into after
reading that field from the database. This is typically used for writing enumeration fields
(conversionType=’enum’). Refer to the TypeConversionService for more information on
how values are converted.
Additionally, an XDM column definition can be assigned a parameter named decimalFormat
using a Param tag with a value set to a pattern of how to display a numeric value. When this
column is read from the database and conversion is used, it will format a number according
to the pattern given here. This pattern can be any pattern of the form supported by the
java.text.DecimalFormat class. For example:

 <Column name="value" type="DOUBLE" description="Value">
 <Param name="decimalFormat" value="$#.00"/>
 <Path>/Transaction/Value</Path>
 </Column>

The indexed attribute specifies if a database index should be created for this column for
faster query access. Possible values: ‘true/false’. Default value if missing: ‘true.
The complex attribute specifies that the Xalan XPath engine should be used instead of the
built-in one for the document lookup. The built-in XPath search implementation is very
efficient, but supports only a subset of the standard XPath syntax (see section 4.2 for
details). If full XPath support is needed for a certain column, this attribute can be set. Note:
the Xalan XPath implementation is much slower than the internal one and might slow down
the analyzing process. Possible values: ‘true/false’. Default value if missing: ‘false’.

 179

The xml attribute specifies that the XPath is pointing to an XML sub tree. The
XMLDatabaseMapper will store the complete subtree as a full XML document into the
corresponding column. Possible values: ‘true/false’. Default value if missing: ‘false’. Note:
on ORACLE, LOB types are not supported for XDM column types. Use 'VARCHAR' or
'LONGVARCHAR' instead.
<Path> contains the XPath of the document value to write into the table column. The
XMLDatabaseMapper will extract the value form the XML document and insert it into the
database. Note that only XPaths pointing to Text nodes and attribute values are valid. If a
value specified by the XPath does not exist in the XML document, a NULL value is inserted
to the database.
A column can map to multiple XPath expressions as in the sample code below. The XPath
expressions are evaluated in a sequential order and the first value found will get inserted into
the database.
<Column name="msgid" type="CHAR" size="72" description="MessageID">

<Path>/Event/Technology/MQSeries/MQPUT/MQPUTExit/MQMD/MsgId</Path>

<Path>/Event/Technology/MQSeries/MQPUT1/MQPUT1Exit/MQMD/MsgId</Path
>

<Path>/Event/Technology/MQSeries/MQGET/MQGETExit/MQMD/MsgId</Path>
</Column>

In addition to the <Path> element, a column definition can contain a <Join> definition like
in the following example:
<Column name="class_id" type="INTEGER" description="ClassId">
<Path>/Transaction/ClassId</Path>
 <Join documentType="/TransactionClass"</Join>
</Column>

Join definitions offer a way to link two different document types together in order to use
column definitions of both document types in one query. Internally this will generate a
database join between the column of the current table and the primary key of the other table.
It is possible to store multiple values for one event into the database by defining an XDM
table definition with the attribute type=”MultiValueExtension”. The table definition also
requires an attribute basePath that specifies the base XPath for the event values that should
be stored in the table. Let’s take the following event as an example:

<Event>

[..]

 <Data>
 <Chunk>
 <Account number=’1234’>
 <Name>Miller</Name>
 <Value>3340</Value>
 </Account>
 <Account number=’4421’>
 <Name>Smith</Name>
 <Value>19000</Value>
 </Account>
 […]
 </Chunk>
 </Data>

Chapter 11 • The Data Manager

180

</Event>

To store all account numbers for each event , the following XDM mapping has to be created:

<Mapping documentType="/Event">
 <Key name="proginst_id" type="BIGINT"
description="ProgramInstanceId">
 <Path>/Event/EventID/@programInstID</Path>
 </Key>
 <Key name="sequence_no" type="INTEGER"
description="SequenceNumber">
 <Path>/Event/EventID/@sequenceNum</Path>
 </Key>
 <Table name="ACCOUNTS" type="MultiValueExtension"
basePath="/Event/Data/Chunk/Account">
 <Column name="account_number" type="VARCHAR" size="20"
description="Account">
 <Path>/@number</Path>
 </Column>
 </Table>
</Mapping>

This will define a table ‘ACCOUNTS’ into which all account numbers found at the XPath
/Event/Data/Chunk/Account/@number will be stored. The difference to a regular XDM
table is that there can be multiple entries for a certain event in the table, the
proginst_id/sequence_no columns are not a primary key any more.
NOTE: Multi-valued XDM tables are only useful for saving the data into the database
tables, for later retrieval by custom SQL code. The TransactionVision query engine
currently does not support any queries containing columns of multi-valued XDM mappings.
11.3.1. Currency columns
To handle monetary values accurately, it is recommended to use a DECIMAL data type with
subtype CURRENCY in the XDM column definition. The subtype value indicates the
default currency for the monetary column value with the three letter ISO-4217 currency
code, e.g.:
<Column name="amount" type="DECIMAL" precision="15" scale="3"
description="OrderAmount" subType="CURRENCY(USD)">
<Path>/Transaction/OrderAmount</Path>
<Param currencyCodeClassXPath="/TransactionClass/CurrencyCode"/>
<!-- optional -->
 <Param currencyCodeXPath="/Transaction/OrderCurrencyCode"/> <!--
optional -->
</Column>
The currency for the column can be defined in three different ways:

• The currency can be defined by the value of another column in the transaction instance.
This can be specified by using the parameter ‘currencyCodeXPath’ in the column
definition, which points to the XPath of the column containing the currency code for the
transaction instance

• The currency can be defined by the value of a transaction class attribute. This can be
specified by using the parameter ‘currencyCodeClassXPath’ in the column definition,
which points to the transaction class attribute containing the currency code for the
transaction instance. Note that every class has a default “currency_code” attribute which
can be used for this purpose.

 181

• If none of the above definitions exist, the currency code will be taken from the
‘CURRENCY(…)’ value in the column definition

The currency code for a business transaction instance can be used programmatically for the
following purposes:

• if the value of a column with subtype CURRENCY is retrieved via a cursor with
conversion service, the cursor will convert the currency code to the currency symbol (if
available).

• the currency code determined for a transaction instance can be obtained in code (e.g. in a
java action) via

public String getCurrencyCode(String XPath) throws
DataManagerException;

in class XMLTransaction

• The value of a curreny column can automatically be converted from one currency to
another via classification, by using a ‘CurrencyConversionAction’. Here are the setup
steps required for using this feature:

Manually insert up-to-date conversion factors into the table CURRENCY_CONV in schema
TVISION. Each row in this table contains a ‘From’ code, a ‘To’ code, and the factor to
convert from ‘From’ to ‘To’. Note that the factors do not work in reverse, so if you e.g. have
a row (‘USD’, ‘EUR’, 0.79), and you also need conversion from EUR -> USD, you will also
need to enter a row (‘EUR’, ‘USD’, 1.26)
In the Transaction Definition Editor, define a currency action on the transaction attribute
whose value is supposed to get converted, with the following properties:

Action class name:
com.bristol.tvision.services.analysis.actions.CurrencyConversionA
ction

Reason: the 3-letter currency code from which to convert
Now, whenever the attribute value is set during classification, the following will happen:

• The value determined by the value rule will be interpreted to be of the currency defined
in ‘reason’

• The action rule will use the conversion factors in table CURRENCY_CONV to convert
the attribute value into the currency defined by XDM definition (as described above)

• The transaction attribute will be set to the converted value
Example:
A custom ‘OrderAmount’ business transaction attribute has been defined which is supposed
to track monetary values in US dollar. The value will be set from a field in the XML payload
of the event via a classification rule, but this value is based on Euro. A currency conversion
action is used to convert the amount from EUR to USD before the value is stored in the
attribute:
XDM definition:
<Column name="amount" type="DECIMAL" precision="15" scale="3"
description="OrderAmount" subType="CURRENCY(USD)">
<Path>/Transaction/OrderAmount</Path>
<Param currencyCodeClassXPath="/TransactionClass/CurrencyCode"/>
</Column>

Chapter 11 • The Data Manager

182

Attribute rule definition:
<Attribute>
 <Path>/Transaction/OrderAmount</Path>
 <ValueRule>
 <Value type="XPath">/Event/Data/Chunk/Order/Amount</Value>
 </ValueRule>
 </Attribute>

Action rule on attribute ‘OrderAmount’:
Class: com.bristol.tvision.services.analysis.actions.CurrencyConversionAction
Reason: EUR
Contents of the CURRENCY_CONV table:
‘EUR’, ‘USD’, 1.26
Result:
Once the attribute rule for ‘OrderAmount’ fires, the value will be retrieved from
/Event/Data/Chunk/Order/Amount, converted to USD in the action rule by multiplying it
with 1.26, and stored in the ‘amount’ column in the business transaction table.
Note: the table CURRENCY_CONV is only read once at analyzer startup, so the analyzer
needs to be restarted if the table has been updated.
11.3.2. Creating the XDM Database Tables
One important aspect of the XDM framework is that the creation of the underlying database
tables is entirely data-driven. The definitions in the XDM files are not only being used for
updating or querying the XML data, but also as an input to the TransactionVision Table
Manager, which is responsible for creating and dropping the project tables as projects in the
Analyzer GUI get created and deleted. Thus there is no need to issue any SQL DDL calls to
the database. Once the XDM file is placed into the proper directory, and provided the
document type is registered with the Table Manager, the new tables defined in the XDM
mapping get automatically created for a new project. The same holds true if the project
tables get created or dropped by using the command line tool CreateSqlScript.
The registration with the Table Manager is only needed if the XDM mapping uses a new
user defined document type. The only thing to do is to add the new document type to the
following section of the DatabaseDefinition.xml in the
<TVISION_HOME>/config/datamgr directory:
<XDM>

 <DocumentType>/Event</DocumentType>
 <DocumentType>/Transaction</DocumentType>
 <DocumentType>/EventStatistics</DocumentType>
 <DocumentType>/MyNewDocType</DocumentType>
 </XDM>

11.3.3. Properties of the TransactionVision Document Types

The /Event Document Type
Event-based XDM files specify that when an XML event is written to the database by the
DBWrite module in the Analyzer, these fields are extracted and written into the database
columns defined by the XDM mappings. Similarly, when the database is queried to retrieve
event based data in the Analyzer GUI, these XDM files are used to construct the
corresponding SQL query. The XML document for each event gets stored in the database
table EVENT.

 183

The /Transaction Document Type
This mapping is used to write business transaction attributes during the transaction analysis
phase in the Analyzer. One noticeable difference to the event-based mappings is that there is
no XML document inserted into the database, all document values are always mapped to the
database tables. Note that you can define XDM based queries that combine both transaction
and event document types.
The /EventStatistics Document Type
This document type contains XDM mappings for the event statistics data generated during
analyzer processing that is used for the static topology view and other various reports. Note
that it is not possible to link this document type to the event or transaction document types.

11.4. The XMLDatabaseMapper Interface
The XMLDatabaseMapper can be used in 2 different ways: implicitly when writing custom
bean code in the Analyzer bean framework or using the query facilities of the QueryService,
or explicitly by obtaining a reference to an XMLDatabaseMapper instance and calling into
one of the available service methods.
To obtain a reference to an instance, the instance() method has to be called with the
particular schema as an argument, e.g.:

 XMLDatabaseMapper xdm = XMLDatabaseMapper.instance(mySchema);

The interface contains methods for reading, inserting, updating, and deleting XML values.
All methods take a parameter of class XMLDocument, which denotes the XML document
containing the data. The XMLDocument class implements the org.wc3.dom.Document
Interface and can be constructed in several ways: from an existing document using the
constructor XMLDocument(org.w3.dom.Document doc), or entirely bypassing the
generation of any XML objects and creating a ‘lightweight’ XMLDocument instance by
using the constructor XMLDocument(java.util.Map).
The class contains an internal HashMap for caching XPath expressions to the corresponding
values in the XML document. The key of the map entry is an XPath expression, the value of
the map entry is the value in the XML document corresponding to that XPath. If an instance
is created by using the latter constructor, then any value lookup on the document translates
into a simple HashMap lookup, whereas a lookup on an instance created with the first
constructor is performed by executing an XPath search on the XML document (unless the
corresponding XPath is already in the cache). This is implemented transparently for the
caller by the following method of XMLDocument:

 public String getDocumentValue(String xpath) throws XMLException;

If there is a value for the given XPath in the HashMap, the stored value is returned.
Otherwise an XPath search on the document is performed.
With these ‘lightweight’ XML documents it is possible to provide data to the
XMLDatabaseMapper without having to make expensive XML operations. The
XMLTransaction class used in the transaction analysis is one example of such a
‘lightweight’ XML object.

Chapter 11 • The Data Manager

184

Methods
Following is the list of available XMLDatabaseMapper methods.

• read
public void
read(com.bristol.tvision.datamgr.ConnectionInfo conInfo,
 com.bristol.tvision.shared.xml.XMLDocument doc)
 throws
com.bristol.tvision.datamgr.DataManagerException

Reads all lookup table rows for the given key values and store the values in the attribute
map of the XML document. The document passed in only needs to contain the key
values.

Parameters:

con - The database connection to use

doc - The document containing the key values

Throws:

com.bristol.tvision.datamgr.DataManagerException - Error while accessing the
document or reading from the database tables

• write

public void
write(com.bristol.tvision.datamgr.ConnectionInfo conInfo,

com.bristol.tvision.shared.xml.XMLDocument doc)
 throws
com.bristol.tvision.datamgr.DataManagerException

Writes the values of the mapped document elements to the lookup tables. For each
mapped column defined in the xdm files, the value of the corresponding XPath
expression is searched in the xml document and written to the table column defined in
the mapping.

Parameters:

con - The database connection to use

doc - The document to search

Throws:

com.bristol.tvision.datamgr.DataManagerException - Error while accessing the
document or writing to the database tables

• update

public void
update(com.bristol.tvision.datamgr.ConnectionInfo conInfo,

com.bristol.tvision.shared.xml.XMLDocument doc)
 throws
com.bristol.tvision.datamgr.DataManagerException

Updates the values of the mapped document elements in the lookup tables. All columns
that are defined by the document type will get updated. The rows to update are
determined by the key values in the XML document.

 185

Parameters:

con - The database connection to use

doc - The document containing the updated values

Throws:

com.bristol.tvision.datamgr.DataManagerException - Error while accessing the
document or writing to the database tables

• delete
public void
delete(com.bristol.tvision.datamgr.ConnectionInfo conInfo,

com.bristol.tvision.shared.xml.XMLDocument doc)
 throws
com.bristol.tvision.datamgr.DataManagerException

Deletes rows in all lookup tables of the document type for the given key values in the
XML document.

The document passed in only needs to contain the key values.

Parameters:

con - The database connection to use

doc - The document containing the key values

Throws:

com.bristol.tvision.datamgr.DataManagerException - Error while accessing the
document or writing to the database tables

11.5. Extending the /Event Document Type
The XDM mappings of the /Event document type can be easily extended to map additional
XML data to indexed database columns for faster retrieval. First, this can be done for XML
values that are already present in the standard XML event data but which are not included in
the default event based XDM mapping definitions. In this case the mapping for the desired
values can be simply added (with its XPath and database column) to the corresponding
XDM file (event.xdm. mqseries.xdm, etc.).
Second and more important, additional mappings can be defined for XML data that has been
assembled from the contents of the user data buffer by an EventModifierBean (see chapter
3.2). Although this user defined XML data could also be mapped to the existing lookup
tables (by simply modifying one of the existing XDM files), this is not advisable. For this
purpose a new XDM file defining a mapping to a new table should be created. The mapping
definition is required to have the document type /Event and the key columns proginst_id and
sequence_no like all other event based XDM files. The column definitions should include all
XDM values intended for display in the Analyzer GUI or queries through the query services.
For steps to configure the Analyzer GUI to display these new columns see Chapter 3.
The TransactionVision DeleteEvents utility and job use an optimized fast deletion scheme
based on timestamp columns if the –older option is used. To delete data in user-defined
XDM tables, the timestamp column must be present in any additional XDM mapping you
define. Therefore, the following section is mandatory in the XDM file:

Chapter 11 • The Data Manager

186

<Column name="event_time" type="TIMESTAMP" description="EventTime">
 <Path>/Event/EventTimeTS</Path>
</Column>

11.6. Extending the /Transaction Document Type
The /Transaction document type can be extended to add custom business transaction
attributes to the transactional data in TransactionVision. See chapter 3.5.4 for details.
The TransactionVision DeleteEvents utility and job use an optimized fast deletion scheme
based on timestamp columns if the –older option is used. To delete data in user-defined
XDM tables, the timestamp column must be present in any additional XDM mapping you
define. Therefore, the following section is mandatory in the transaction document type:
<Column name="endtime" type="CHAR" size="20" description="EndTime"
conversionType="Date">
 <Path>/Transaction/EndTime</Path>
</Column>

 187

Appendix: EventModifierRules DTD

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT EventModifierRules (RegExp|XPathExp|OneOf)*>
<!ELEMENT RegExp (RegExp|XPathExp|OneOf)*>
<!ATTLIST RegExp
 src CDATA #REQUIRED
 expression CDATA #REQUIRED
 dest CDATA #IMPLIED
 value CDATA #IMPLIED
 action (add_field | delete_event) #IMPLIED
>
<!ELEMENT XPathExp (RegExp|XPathExp|OneOf)*>
<!ATTLIST XPathExp
 expression CDATA #REQUIRED
 dest CDATA #IMPLIED
 value CDATA #IMPLIED
 action (add_field | delete_event) #IMPLIED
>
<!ELEMENT OneOf (RegExp|XPathExp)+>

	HP Business Service Management TransactionVision Advanced Customization Guide
	1. Welcome to This Guide
	1.1. Who Should Read This Guide
	1.2. Transaction Management Documentation
	1.3. Additional Online Resources
	1.4. Documentation Updates

	2. Architecture Overview
	2.1. System Components
	2.2. Database (RDBMS)

	3. Extending the Analyzer
	3.1. About XML Message Data in Events
	3.2. How to Convert Custom Message Data Formats in Events
	3.3. Overview of XDM Files
	3.4. How to Map Custom Message Data Fields to Database Tables
	3.4.1. Step 1: Determine which fields in the XML event document need to be mapped to database columns
	3.4.2. Step 2: Determine the Database Column Names for these Fields
	3.4.3. Step 3: Construct XDM File Entries
	3.4.4. Step 5: Verify that the XDM Mapping works correctly

	3.5. Additional XDM File Examples
	3.6. How to Classify Business Transactions and Map Attributes to Database Tables
	3.6.1. Overview of Transaction Classification
	3.6.2. Task Description
	3.6.3. Implementation

	3.7. How to Perform Custom Correlation of Related Events
	3.7.1. Overview of Custom Event Correlation
	3.7.2. Task Description
	3.7.3. Implementation

	4. Reference - Extending the Analyzer
	4.1. Using the Beans.xml File
	4.1.1. Enabling and Disabling Beans for Specific Events

	4.2. Unmarshalling Message Data
	4.2.1. The Default Modifier Bean
	4.2.2. The Rules-based Event Modifier Bean
	4.2.3. Adding a Message Data Unmarshal Bean
	4.2.4. Disabling CICS Transaction Tracking
	4.2.5. IEventModifier Interface
	4.2.6. XML Related Classes
	4.2.7. Class XMLEvent
	4.2.8. Class XPathSearch
	4.2.9. Class XMLParser
	4.2.10. Other Utility Classes
	4.2.11. Interface DOMElement
	4.2.12. Class EventElement
	4.2.13. Class TextElement
	4.2.14. Class ByteElement
	4.2.15. Class ByteStringElement
	4.2.16. ByteStringElement
	4.2.17. Class IntElement
	4.2.18. Class IntHexElement
	4.2.19. Class LongElement
	4.2.20. Class LongHexElement
	4.2.21. Class StringElement
	4.2.22. Class RawStringElement

	4.3. Trimming Data From an Event
	4.3.1. Interface IDBWriteExit

	4.4. XML-Database mapping Using XDM Files
	4.5. Performing Event Analysis
	4.5.1. Event Analysis Utility Classes and Interface
	4.5.2. Interface Cache
	4.5.3. Class ConnectionInfo
	4.5.4. Class EventID
	4.5.5. Class TechEventID
	4.5.6. Interface IAnalyze
	4.5.7. Class AnalyzeEventCtx
	4.5.8. Class AnalyzeEventBean
	4.5.9. Custom Business Transaction Attributes and Classification

	4.6. Transaction Classification
	4.6.1. Transaction Classification with the Standard Classification Bean
	4.6.2. Classification Action Rules
	4.6.3. The ClassifyTransactionCtx and the IClassifyTransaction Interface
	4.6.4. Writing a Custom Classification Bean
	4.6.5. Logging SLA Violations
	4.6.6. Custom Event Correlation
	4.6.7. Interface IEventCorrelation
	4.6.8. Class CorrelationTechHelperBean
	4.6.9. Class JMSCorrelationData
	4.6.10. Class LookupKey
	4.6.11. Class EventRelation
	4.6.12. Class MQRelationDBService
	4.6.13. Class JMSRelationDBService
	4.6.14. Custom Local Transaction Definition
	4.6.15. LocalTransactionDefinition.xml File
	4.6.16. LocalTransactionType
	4.6.17. LocalTranasctionAttributes
	4.6.18. Sample LocalTransactionDefinition.xml Rule File
	4.6.19. Changes to the Beans.xml File

	4.7. Extending the System Model
	4.7.1. User Events

	5. Using the Query Services
	5.1. The Query Document
	5.2. Sample Usage
	5.3. Class QueryService
	5.4. Class QueryDoc
	5.5. Class QueryDoc.WhereClause
	5.5.1. Example

	5.6. Interface Query
	5.7. Interface Cursor
	5.8. Class DataManagerException

	6. Extending the User Interface
	6.1. Adding Query Pages
	6.2. Adding Columns to the Event List View
	6.2.1. Step 1: Modify DefaultUserColumnData.xml.

	6.3. User Interface Utility Classes
	6.4. Using Job Beans
	6.4.1. JobBean
	6.4.2. IJob Interface
	6.4.3. Example: SQL Job Bean

	7. Java Agent Point Extensions for TransactionVision
	7.1. TV Specific Point Extension
	7.1.1. Point Extension Types
	7.1.2. General Syntax (in auto_detect.points)

	7.2. Extension for Code Snippets
	7.2.1. Overview
	7.2.2. Syntax of Extension
	7.2.3. Example – Points File
	7.2.4. Example – Code Snippet
	7.2.5. Step by Step “Mechanics”
	7.2.6. Example Events
	7.2.7. Enabling Code Snippets for TV

	7.3. TV Callbacks (TV Extension - $callback$)
	7.3.1. Overview
	7.3.2. Syntax of Extension
	7.3.3. Callback Interface
	7.3.4. Core Callbacks
	7.3.5. Custom Callbacks
	7.3.6. Sample Class to Monitor (Where?)

	7.4. Point Expressions (TV Extension - $type$)
	7.4.1. Overview
	7.4.2. Syntax
	7.4.3. Comparison with regular points reviewing content
	7.4.4. Expression Use Cases
	7.4.5. Expression Content Types
	7.4.6. Expression Operators
	7.4.7. Expression Parameters
	7.4.8. Example

	7.5. TV Event Lifecycle
	7.5.1. The Event Lifecycle and Point Extensions

	7.6. Testing TV Agent Point Extensions
	7.6.1. Testing Servlet and JMS Expressions using the Java Agent Web Interface
	7.6.2. Using Tomcat as a Live Test Platform
	7.6.3. Troubleshooting

	7.7. Custom Content Handlers
	7.7.1. Core Content Handlers
	7.7.2. Custom Content Handler Interface

	7.8. Payload Capture For Servlets
	7.8.1. Overview
	7.8.2. Defining “AppServer” specific Implementations for these Interfaces in the auto_detect.points file
	7.8.3. The TV Payload Handling rules (GenericStreamCapture.xml)

	7.9. Payload Capture for Servlets

	8. Generic Events
	8.1. The Generic Event XML Specification
	8.2. Sending Generic Events
	8.2.1. Sending Events Using HTTP Post
	8.2.2. Sending Events Using JMS

	}

	9. Database Schema
	9.1. System model object tables
	9.1.1. Object Types
	9.1.2. Signatures
	9.1.3. System Model Relationships
	9.1.4. System Model Attributes

	9.2. Event Tables
	9.3. Event Relationship Tables
	9.4. Transaction Tables
	9.5. Statistics Tables
	9.5.1. Physical model

	9.6. RUM processing Tables
	9.7. Other internal tables

	10. Event XML Schema
	10.1. Basic Types
	10.2. Event Schema Description

	11. The Data Manager
	11.1. Using the DataManager to Access the Database
	11.2. XML-Database Mapping Using XDM Files
	11.3. The XDM Syntax
	11.3.1. Currency columns
	11.3.2. Creating the XDM Database Tables
	11.3.3. Properties of the TransactionVision Document Types

	11.4. The XMLDatabaseMapper Interface
	11.5. Extending the /Event Document Type
	11.6. Extending the /Transaction Document Type

	Appendix: EventModifierRules DTD

