
HP UFT WPF and Silverlight Add-in
Extensibility
Software Version: 12.00
Windows ® operating systems

Developer Guide

Document Release Date: December 2014
Software Release Date: March 2014

Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained
herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notice
© Copyright 1992 - 2014 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Google™ and Google Maps™ are trademarks of Google Inc.

Intel® and Pentium® are trademarks of Intel Corporation in the U.S. and other countries.

Microsoft®,Windows®,Windows® XP, and Windows Vista ® are U.S. registered trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to:
https://softwaresupport.hp.com/group/softwaresupport/search-result.

This site requires an HP Passport account. If you do not have one, click the Create an account button on the HP Passport Sign in page.

Developer Guide

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 2

https://softwaresupport.hp.com/group/softwaresupport/search-result

Support
Visit the HP Software Support Online web site at:https://softwaresupport.hp.com

This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools
needed to manage your business. As a valued support customer, you can benefit by using the support web site to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HP support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP
Passport ID, go to:https://softwaresupport.hp.com and click Register.

To find more information about access levels, go to:https://softwaresupport.hp.com/web/softwaresupport/access-levels.

HP Software Solutions & Integrations and Best Practices
VisitHP Software Solutions Now athttps://h20230.www2.hp.com/sc/solutions/index.jsp to explore how the products in the HP
Software catalog work together, exchange information, and solve business needs.

Visit the Cross Portfolio Best Practices Library athttps://hpln.hp.com/group/best-practices-hpsw to access a wide variety of best
practice documents and materials.

Developer Guide

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 3

https://softwaresupport.hp.com/
https://softwaresupport.hp.com/
https://softwaresupport.hp.com/web/softwaresupport/access-levels
https://h20230.www2.hp.com/sc/solutions/index.jsp
https://hpln.hp.com/group/best-practices-hpsw

Contents

Welcome to HP UFT WPF and Silverlight Add-in Extensibility 6

About the UFT WPF and Silverlight Add-in Extensibility SDK 6

About the UFT WPF and Silverlight Add-in Extensibility Developer Guide 8

Who Should Read This Guide 10

Additional Online Resources 10

Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit 12

About Developing WPF or Silverlight Add-in Extensibility Toolkit Support Sets 14

The Test Object Configuration XML File 15

Custom Servers 21

Utility Methods and Properties 23

WPF Add-in Extensibility Sample 24

How to Create Support for a Custom WPF or Silverlight Toolkit 25

How to Add Support for a Custom WPF or Silverlight Control 30

How to Develop a Custom Server 32

WPF/Silverlight Custom Server Setup Dialog Box (in Microsoft Visual Studio) 39

Troubleshooting and Limitations - Developing Support 46

Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control 49

Planning Support for the WPF Calendar Control 51

Setting Up the WPF Add-in Extensibility Project for the WPF Calendar Control 55

Designing the Toolkit Configuration File 59

Designing the Test Object Configuration File 60

Deploying and Testing the Preliminary Toolkit Support Set 63

Design the Basic Custom Server 67

Developer Guide

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 4

Implement Support for Retrieving Identification Property Values 68

Deploy and Test Your Basic Custom Server and Identification Property Support 70

Implement Support for Running Test Object Operations 71

Deploy and Test Your Support for Test Object Operations 74

Implement Support for Recording 75

Deploy and Test Your Support for Recording 78

Chapter 3: Deploying the Toolkit Support Set 79

About Deploying the Custom Toolkit Support 80

Deploying the Custom Toolkit Support 81

Setting the DevelopmentMode Attribute 85

Modifying Deployed Support 85

Modifying Identification Property Attributes in a Test Object Configuration File 85

Removing Deployed Support 87

Send Us Feedback 89

Developer Guide

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 5

Welcome to HP UFT WPF and Silverlight
Add-in Extensibility
HP UFT WPF and Silverlight Add-in Extensibility is an SDK (Software Development Kit)
package that enables you to support testing applications that use third-party and
custom WPF or Silverlight controls that are not supported out-of-the-box by the Unified
Functional Testing WPF and Silverlight Add-ins.

You must develop support for WPF and Silverlight controls separately, and use different
APIs. However, creating Silverlight support is very similar to creating WPF support,
therefore both are described together in this guide.

This chapter includes:

About the UFT WPF and Silverlight Add-in Extensibility SDK 6

About the UFT WPF and Silverlight Add-in Extensibility Developer Guide 8

Who Should Read This Guide 10

Additional Online Resources 10

About the UFT WPF and Silverlight Add-in
Extensibility SDK
The UFT WPF and Silverlight Add-in Extensibility SDK installation provides the
following:

l APIs that enable you to extend the Unified Functional Testing WPF or Silverlight
Add-in to support custom WPF or Silverlight controls.

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 6

l WPF and Silverlight Custom Server C# project templates for Microsoft Visual Studio.

Each Custom Server template provides a framework of blank code, some sample
code, and the UFT project references required to build a custom server.

Note: For a list of supported Microsoft Visual Studio versions, see the HP Unified
Functional Testing Product Availability Matrix, available from the UFT help folder
or the HP Support Matrix page (requires an HP passport).

l A Custom Server Setup dialog box in Visual Studio that enables you to customize a
project you are creating based on a Custom Server template.

l The WPF and Silverlight Add-in Extensibility Help, which includes the following:

n A developer guide, including a step-by-step tutorial in which you develop support
for a sample custom control.

n API References.

n A Toolkit Configuration Schema Help.

n The UFT Test Object Schema Help.

The Help is available from Start > All Programs > HP Software > HP Unified
Functional Testing > Extensibility > Documentation

l A printer-friendly Adobe portable document format (PDF) version of the developer
guide (available from Start > All Programs > HP Software > HP Unified Functional
Testing > Extensibility > Documentation and in the <Unified Functional Testing
installation>\help\Extensibility folder).

l A sample WPF Add-in Extensibility support set that extends UFT GUI testing support
for the Microsoft.Windows.Controls.Calendar custom control.

Developer Guide
Welcome to HP UFT WPF and Silverlight Add-in Extensibility

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 7

http://support.openview.hp.com/selfsolve/document/KM438391

Accessing UFT WPF and Silverlight Add-in Extensibility in Windows
8 Operating Systems
UFT files that were accessible from the Startmenu in previous versions of Windows are
accessible in Windows 8 from the Start screen or the Apps screen.

l Applications (.exe files). You can access UFT applications in Windows 8 directly
from the Start screen. For example, to start UFT, double-click the HP Unified
Functional Testing shortcut.

l Non-program files. You can access documentation from the Apps screen.

Note: As in previous versions of Windows, you can access context sensitive help
in UFT by pressing F1, and access complete documentation and external links
from the Help menu.

About the UFT WPF and Silverlight Add-in
Extensibility Developer Guide
This guide explains how to set up WPF or Silverlight Add-in Extensibility and use it to
extend UFT GUI testing support for third-party and custom WPF or Silverlight controls.

This guide assumes you are familiar with UFT functionality, and should be used together
with the following documents, provided in the WPF and Silverlight Add-in Extensibility
Help (Start > All Programs > HP Software > HP Unified Functional Testing >
Extensibility > Documentation > WPF and Silverlight Add-in Extensibility Help):

l API References

l Toolkit Configuration Schema Help

l Test Object Schema Help

Developer Guide
Welcome to HP UFT WPF and Silverlight Add-in Extensibility

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 8

These documents should also be used in conjunction with the following
UFT documentation, available with the UFT installation (Help > HP Unified Functional
Testing Help from the UFT main window):

l HP Unified Functional Testing User Guide

l The WPF or Silverlight section of the HP Unified Functional Testing Add-ins Guide

l HP UFT Object Model Reference for GUI Testing

Note:

The information, examples, and screen captures in this guide focus specifically on
working with UFT GUI tests. However, much of the information in this guide applies
equally to business components.

Business components are part of HP Business Process Testing. For more
information, see the HP Unified Functional Testing User Guide and the HP Business
Process Testing User Guide.

When working in Windows 8, access UFT documentation and other files from the
Apps screen.

To enable you to search this guide more effectively for specific topics or keywords, use
the following options:

l AND, OR, NEAR, and NOT logical operators. Available from the arrow next to the
search box.

l Search previous results. Available from the bottom of the Search tab.

l Match similar words. Available from the bottom of the Search tab.

l Search titles only. Available from the bottom of the Search tab.

Tip: When you open a Help page from the search results, the string for which you
searched may be included in a collapsed section. If you cannot find the string on the
page, expand all the drop-down sections and then use Ctrl-F to search for the
string.

Developer Guide
Welcome to HP UFT WPF and Silverlight Add-in Extensibility

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 9

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to the HP Software Product Manuals Web site
(http://h20230.www2.hp.com/selfsolve/manuals).

Who Should Read This Guide
This guide is intended for programmers, QA engineers, systems analysts, system
designers, and technical managers who want to extend UFT GUI testing support for WPF
or Silverlight custom controls.

To use this guide, you should be familiar with:

l Major UFT features and functionality

l The UFT Object Model

l Unified Functional Testing WPF or Silverlight Add-in

l WPF or Silverlight programming in C#

l XML (basic knowledge)

Additional Online Resources
The following additional online resources are available:

Resource Description

Troubleshooting
& Knowledge
Base

The Troubleshooting page on the HP Software Support Web
site where you can search the Self-solve knowledge base.
The URL for this Web site is
http://h20230.www2.hp.com/troubleshooting.jsp.

Developer Guide
Welcome to HP UFT WPF and Silverlight Add-in Extensibility

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 10

http://h20230.www2.hp.com/selfsolve/manuals
http://h20230.www2.hp.com/troubleshooting.jsp

Resource Description

HP Software
Support

The HP Software Support Web site. This site enables you to
browse the Self-solve knowledge base. You can also post to
and search user discussion forums, submit support requests,
download patches and updated documentation, and more.
The URL for this Web site
www.hp.com/go/hpsoftwaresupport.

l Most of the support areas require that you register as an
HP Passport user and sign in. Many also require a
support contract.

l To find more information about access levels, go to:
http://h20230.www2.hp.com/new_access_levels.jsp

l To register for an HP Passport user ID, go to:
http://h20229.www2.hp.com/passport-registration.html

HP Software
Web site

The HP Software Web site. This site provides you with the
most up-to-date information on HP Software products. This
includes new software releases, seminars and trade shows,
customer support, and more. The URL for this Web site is
www.hp.com/go/software

Developer Guide
Welcome to HP UFT WPF and Silverlight Add-in Extensibility

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 11

http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html
http://www.hp.com/go/software

Chapter 1: Developing UFT Support for a
Custom WPF or Silverlight Toolkit
Many WPF (Windows Presentation Foundation) and Silverlight customer applications
include use of non-Microsoft controls in their UI. UFT represents these controls with the
generic WpfObject or SlvObject test object respectively.

In other cases, UFT recognizes a complex control as a set of low-level controls, instead
of recognizing the functional significance of the high-level control. For example, UFT
might recognize a custom WPF or Silverlight calendar control as several unrelated
buttons and text boxes.

In these cases, the tester cannot run any methods containing logic specific to the
custom control type. Nor can the tester apply any recording logic specific to this control
type.

By creating a toolkit support set using WPF or Silverlight Add-in Extensibility, you
define new test object classes to represent these custom controls. The support set
gives QA engineers the ability to run, record, learn and spy on custom WPF or
Silverlight controls. You must create separate toolkit support sets for WPF and
Silverlight controls, and use different APIs.

This chapter includes:

About Developing WPF or Silverlight Add-in Extensibility Toolkit Support Sets 14

The Test Object Configuration XML File 15

Custom Servers 21

Utility Methods and Properties 23

WPF Add-in Extensibility Sample 24

How to Create Support for a Custom WPF or Silverlight Toolkit 25

How to Add Support for a Custom WPF or Silverlight Control 30

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 12

How to Develop a Custom Server 32

WPF/Silverlight Custom Server Setup Dialog Box (in Microsoft Visual Studio) 39

Troubleshooting and Limitations - Developing Support 46

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 13

About Developing WPF or Silverlight Add-in
Extensibility Toolkit Support Sets
Implement WPF and Silverlight Add-in Extensibility in C# using a supported version of
Microsoft Visual Studio. (For a list of supported Microsoft Visual Studio versions, see the
HP Unified Functional Testing Product Availability Matrix, available from the UFT help
folder or the HP Support Matrix page (requires an HP passport).

l Visual Studio is required only to develop the support set, not to use it.

l To develop Silverlight Add-in Extensibility, you must have the Microsoft Silverlight
Tools for Visual Studio installed.

l UFT is required only to run and test your support set, not to develop it.

A toolkit, or an environment, is a set of controls for which you want to provide support
in one package.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 14

http://support.openview.hp.com/selfsolve/document/KM438391

A toolkit support set consists of:

l A Test Object Configuration XML File. In this file, new test object types are defined.
For details, see "The Test Object Configuration XML File" below.

l A toolkit configuration file. In this file, WPF or Silverlight control types are mapped
to test object types (classes) and to the custom servers that implement their record
and run logic. For details on the structure and syntax of this file, see the Toolkit
Configuration Schema Help (available with the WPF and Silverlight Add-in
Extensibility Help).

l .Net DLLs containing the implementation of custom servers. For details, see
"Custom Servers " on page 21.

l Icon and Help files (Optional).

The icon files contain icons used in UFT to represent your test object classes.
(Supported file types: .ico, .exe, .dll)

The Help files are used for context-sensitive Help for your test object classes and
their methods and properties. (Supported file type: .chm)

The Test Object Configuration XML File
The first stage of developing support for a custom toolkit is to define the test object
classes that you want UFT to use to represent your application controls. You define the
test object classes in a test object configuration XML file. You need to create a test
object class for every type of custom control for which you want to extend or modify
UFT support.

In a test object configuration XML, you define the test object classes (for example, the
test object methods they support, their identification properties, and so on).

You create a ClassInfo element for each test object class that you want to define. In
addition, you define the name of the environment or custom toolkit for which the test
object classes are intended (in the PackageName attribute of the TypeInformation

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 15

element), and the UFT add-in which these test object classes extend (in the AddinName
attribute of the TypeInformation element).

If the relevant add-in is not loaded when UFT opens, UFT does not load the information
in this XML. Similarly, if the name of the environment or custom toolkit is displayed in
the Add-in Manager dialog box and its check box is not selected, the information in this
XML is not loaded.

To ensure the structural correctness of your test object configuration file, you can
validate it against the ClassesDefintions.xsd file. This file is installed with UFT, in the
<UFT installation folder>\dat folder. (For backward compatibility reasons, UFT still
supports certain XML structures that do not pass validation against this XSD.)

The sections below describe the information that you can include in a test object class
definition.

Class Name and Base Class
The name of the new test object class and its attributes, including the base class—the
test object class that the new test object class extends. A new test object class extends
an existing WPF or SilverlightUFT test object class, directly or indirectly. The base class
may be a class delivered with UFT or a class defined using WPF or Silverlight Add-in
Extensibility. (A WPF test object class must extend a WPF test object class and a
Silverlight test object class must extend a Silverlight test object class.)

By default, the base class is WPFObject or SlvObject.

The test object class name must be unique among all of the environments whose
support a UFT user might load simultaneously. For example, when defining a new test
object class, do not use names of test object classes from existing UFT add-ins, such as
WpfButton, WpfEdit,SlvButton and so on.

Note:

l A test object class inherits the base class' test object operations (methods and
properties), generic type, default operation, and icon. Identification properties
are not inherited.

l If you create test object classes that extend test object classes defined in

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 16

another toolkit support set, you create a dependency between the two toolkit
support sets. Whenever you select to load the extending toolkit support set in
the UFT Add-in Manager, you must also select to load the toolkit support set
that it extends.

Generic Type
The generic type for the new test object class, if you want the new test object class to
belong to a different generic type than the one to which its base class belongs. (For
example, if your new test object class extends WpfObject or SlvObject (whose generic
type is object), but you would like UFT to group this test object class with the edit test
object classes.)

Generic types are used when filtering objects (for example, in the Step Generator's
Select Object for Step dialog box and when adding multiple test objects to the object
repository). Generic types are also used when creating documentation strings for the
Documentation column of the Keyword View (if they are not specifically defined in the
test object configuration file).

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 17

Test Object Operations
A list of operations for the test object class, including the following information for each
operation:

l The arguments, including the argument type (for example, String or Integer),
direction (In or Out), whether the argument is mandatory, and, if not, its default
value.

l The operation description (shown in the Object Spy and as a tooltip in the Keyword
View and Step Generator).

l The Documentation string (shown in the Documentation column of the Keyword
View and in the Step Generator).

l The return value type.

l A context-sensitive Help topic to open when F1 is pressed for the test object
operation in the Keyword View or Editor, or when the Operation Help button is
clicked for the operation in the Step Generator. The definition includes the Help file
path and the relevant Help ID within the file.

Default Operation
The test object operation that is selected by default in the Keyword View and Step
Generator when a step is generated for an object of this class.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 18

Identification Properties
A list of identification properties for the test object class. You can also define:

l The identification properties that are used for the object description.

l The identification properties that are used for smart identification. (This
information is relevant only if smart identification is enabled for the test object
class. To enable smart identification, use the Object Identification dialog box in UFT.)

l The identification properties that are available for use in checkpoints and output
values.

l The identification properties that are selected by default for checkpoints (in the UFT
Checkpoint Properties dialog box).

Icon File
The path of the icon file to use for this test object class. (Optional. If not defined, the
base class' icon is used.) The file can be a .dll, .exe, or .ico file.

Help File
A context-sensitive Help topic to open when F1 is pressed for the test object in the
Keyword View or Editor. The definition includes the .chm Help file path and the relevant
Help ID within the file.

For details on the syntax and structure of a test object configuration file, see the
HP UFT Test Object Schema Help (available with the WPF and Silverlight Add-in
Extensibility Help).

Sample Test Object Configuration File
An example of a WPF Add-in Extensibility test object configuration file is shown below.
In a Silverlight Add-in Extensibility test object configuration file, the AddinName
attribute in the TypeInformation element needs to be set to Silverlight.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 19

In addition, in the toolkit name that you provide in the PackageName attribute, you
may want to include an indication as to whether this is a WPF or Silverlight toolkit. This
is recommended because the Add-in Manager in UFT displays both WPF and Silverlight
Add-in Extensibility supported environments as child nodes under the WPF add-in node.

<TypeInformation Load="true" AddinName="WPF"
PackageName="MyWpfToolkit“>

<ClassInfo Name="MyWpfButton" BaseClassInfoName="WpfButton"
ROTypeInfo="false"
GenericTypeID="button"
DefaultOperationName="Click"
FilterLevel="0“>

 <IconInfo
 IconFile="INSTALLDIR\dat\Extensibility\WPF\MyWpfButton_
icon.ico"/>
 <TypeInfo>

<Operation Name="Click“>
<Argument Name="X" IsMandatory="false"

DefaultValue="-9999"
Direction="In“>

<Type VariantType="Integer"/>
</Argument>
<Argument Name="Y" IsMandatory="false"

DefaultValue="-9999"
Direction="In“>

<Type VariantType="Integer"/>
</Argument>
<Argument Name="MouseButton" IsMandatory="false"

DefaultValue="0" Direction="In“>
<Type VariantType="Enumeration"

ListOfValuesName="E_ButtonType"/>
</Argument>

</Operation>
</TypeInfo>
<IdentificationProperties>

<IdentificationProperty Name="devname"
ForDescription="true"/>

<IdentificationProperty Name="enabled"
ForDescription="false"

ForVerification="true"/>

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 20

</IdentificationProperties>
</ClassInfo>

</TypeInformation>

Custom Servers
For each custom control that you want to support, you develop a custom server class,
that derives from the CustomServerBase class. The resulting custom server DLL runs in
the context of the application and interfaces between UFT and the custom control. At
UFT's request, it can retrieve the values of identification properties from the control,
perform operations on the control, determine what steps to record in response to user
activity on the control and so on. You can compile more than one custom server into a
single DLL.

You implement each of these abilities by implementing the relevant interface in the
custom server class. For details on the interface methods and their syntax, see the
Custom Server API References (available with the WPF and Silverlight Add-in
Extensibility Help).

l To support running test object operations, you develop a run interface that contains
the methods that run the operations you defined in the test object configuration file.
You must tag this interface with the RunInterfaceAttribute attribute.

When developing support for a Silverlight control, you must tag each one of the
methods that you design to implement running a test object operation with the
Microsoft Silverlight ScriptableMember attribute.

l To support retrieving identification property values from the control, you develop a
property interface that contains properties that retrieve the values for the
identification properties you defined in the test object configuration file. You must
tag this interface with the CustomPropInterfaceAttribute attribute.

Note: In the test object configuration file, you must define all identification

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 21

properties relevant for your test object class. However, the implementation for
retrieving the property values is inherited from the base class for any properties
that it supports.

l To support table checkpoints and output values, you implement the methods in the
ITableVerify interface.

l To support recording, you implement the IRecord interface.

l To instruct UFT to ignore children of a control (because they are functionally part of
the control, and not independent controls themselves), design the IsKnownPartOf
method in the IComponentDetector interface to return true for those child controls.

For task details, see "How to Develop a Custom Server" on page 32.

When you design your custom server, you can use utility methods and properties
provided by the WPF or Silverlight Add-in Extensibility API.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 22

Utility Methods and Properties
The CustomServerBase class, which your custom server extends, includes a
UtilityObject property that returns an object that provides utility methods and
properties. You can call the following methods and properties in your custom server
implementation.

l AddHandler. Registers an event handler to use when an event occurs on the control.
The handler is added at the beginning of the event handler invocation list for this
event.

l Mouse and Keyboard operation simulation methods. Use these methods in methods
that perform steps on a control.

l GetSettingsValue, GetSettingsXML. Retrieve settings defined for this custom server
in the toolkit configuration file.

l Record. Adds a step to the test and adds a test object to the object repository if it is
not already there. Use this method in an event handler that records a step in a test
after an event occurs on a control.

l ReportStepResult. Adds information about the results of a step to the run results.
Use this method in a method that performs a step on a control.

l ThrowRunError. Throws an exception based on the specified error and sets the step
status to EventStatus.EVENTSTATUS_FAIL.

l ApplicationObject. This property returns the control object with which the custom
server is associated. For example, for a CheckBoxCustomServer associated with a
check box, this property returns a reference to the check box. You can then use this
reference to retrieve information (for example the value of the IsChecked property),
or to perform some activity on the control (for example set its IsChecked property
to true).

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 23

For details, see the IUtilityObject interface in the Mercury.P.WPF.CustomServer or
Mercury.QTP.Slv.CustomServer namespace section in the Custom Server API Reference
(available with the WPF and Silverlight Add-in Extensibility Help).

WPF Add-in Extensibility Sample
When you install the WPF Add-in Extensibility SDK, a custom WPF calendar control and
a sample toolkit support set that extends support for this control are installed in the
<WPF Add-in Extensibility SDK installation folder>\samples\WPFExtCalendarSample
folder. You can study this sample to learn more about how to implement WPF and
Silverlight Add-in Extensibility. You can also experiment with this sample, testing the
control with UFT before and after deploying the sample toolkit support set.

To deploy the sample toolkit support set, place the provided XML and DLL files in the
correct locations on the UFT computer, as described in "Developing UFT Support for a
Custom WPF or Silverlight Toolkit" on page 12.

The files to deploy are:

l <WPF Add-in Extensibility SDK installation folder>\samples\
WPFExtCalendarSample\Support\QtCalendarSrv\MyWpfToolkit.cfg

l <WPF Add-in Extensibility SDK installation folder>\samples\
WPFExtCalendarSample\Support\QtCalendarSrv\MyWpfToolkitTestObjects.xml

l <WPF Add-in Extensibility SDK installation folder>\samples\
WPFExtCalendarSample\Support\QtCalendarSrv\bin\Release\QtCalendarSrv.dll

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 24

How to Create Support for a Custom WPF or
Silverlight Toolkit
This task describes how to create, deploy, and test a toolkit support set to extend UFT's
support for a set of WPF or Silverlight custom controls.

You must create separate support for WPF and Silverlight controls. However, creating
support for Silverlight controls is very similar to creating support for WPF controls,
therefore both are described together in this task.

Tip:

l Start by creating a basic toolkit support set with one test object class and
minimal functionality changes, and testing that UFT recognizes it correctly. Then
gradually add more complex support and more test object classes, and test
those as you add them.

l To create your WPF or Silverlight Add-in Extensibility files, use the UFT WPF
CustomServer or UFT Silverlight CustomServer project template that the WPF
and Silverlight Add-in Extensibility SDK installs on Visual Studio.

Using this template helps set up the XML files and the custom server classes
that you need to develop in your toolkit support set, simplifying the first three
steps in the task described below. For details, see "WPF/Silverlight Custom
Server Setup Dialog Box (in Microsoft Visual Studio)" on page 39.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 25

This task includes the following steps:

l "Define new test object classes for UFT to use for your custom controls" below

l "Map the custom controls to test object classes and custom servers" below

l "Design the custom servers that contain the implementation of your support" on
page 28

l "Deploy the toolkit support set to UFT" on page 28

l "Test the functionality of the support you developed" on page 28

l "Debug your support - Optional" on page 30

1. Define new test object classes for UFT to use for your custom
controls
a. Create a test object configuration XML file named <custom toolkit

name>TestObjects.xml.

After you deploy your support, UFT displays this name in the Add-in Manager as
a child add-in under the WPF add-in. Therefore, you may want the name to
indicate whether this is a WPF or Silverlight toolkit.

b. In the test object configuration XML file, define new test object classes.

o When creating support for WPF controls, create test object classes that
extend existing UFT WPF test object classes (or other WPF Add-in
extensibility test object classes).

o When creating support for Silverlight controls, create test object classes
that extend existing UFT Silverlight test object classes (or other Silverlight
Add-in extensibility test object classes).

For details on the structure and syntax of a test object configuration file, see
"The Test Object Configuration XML File" on page 15.

2. Map the custom controls to test object classes and custom

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 26

servers
In a toolkit configuration XML file, map the custom control types to the test object
classes that should represent them in UFT and to the custom servers that contain
the implementation of your support. Create a Control element for each type of
control you want to support.

Name the file <custom toolkit name>.cfg.

For details on the structure and syntax of a toolkit configuration file, see the
Toolkit Configuration Schema Help (available with the WPF and Silverlight Add-in
Extensibility Help).

WPF Toolkit Configuration File Example:

<?xml version="1.0" encoding="UTF-8"?>
<Controls>
 <Control Type="MyCompany.MyDataGrid" MappedTo="MyWpfTable“>
 <CustomServer>
 <Component>
 <DllName>WpfCustomServers.dll</DllName>
 <TypeName>
 MyCompany.MyWpfDataGridCustServer
 </TypeName>
 </Component>
 </CustomServer>
 </Control>
</Controls>

Silverlight Toolkit Configuration File Example:

<?xml version="1.0" encoding="UTF-8"?>
<Controls>
 <Control Type="MyCompany.MyDataGrid" MappedTo="MySlvTable“>
 <CustomServer>
 <Component>
 <DllName>SlvCustomServers.dll</DllName>
 <TypeName>MyCompany.MySlvDataGridCustServer,
 SlvCustomServers, Version=1.0.0.0,

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 27

 Culture=neutral, PublicKeyToken=null
 </TypeName>
 </Component>
 </CustomServer>
 </Control>
</Controls>

3. Design the custom servers that contain the implementation of
your support
Design one custom server for each type of control that you want to support.

For details, see "How to Develop a Custom Server" on page 32.

4. Deploy the toolkit support set to UFT
a. If you have completed the development and are deploying the support set for

general use, make sure to set the DevelopmentMode attribute of the
TypeInformation element in the test object configuration file to false.

b. Deploy the toolkit support set by copying the files that you created to the
correct locations under the UFT installation folder. For details, see "Developing
UFT Support for a Custom WPF or Silverlight Toolkit" on page 12.

5. Test the functionality of the support you developed
a. Open UFT. Ensure that your custom toolkit name is displayed in the Add-in

Manager dialog box as a child of the WPF Add-in, and select it. (If the Add-in
Manager dialog box does not open when you open UFT, see the HP Unified
Functional Testing Add-ins Guide for instructions.)

Note: If you are working with Silverlight, you must also select the
Silverlight Add-in.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 28

b. Create and run UFT tests on your custom controls, and verify that UFT interacts
with your controls as expected. Make sure that:

o Controls are represented by the expected test object class in the Object Spy
and when learning objects.

o You can successfully create test objects of the classes you defined, using the
Define New Test Object dialog box.

o You can successfully create test steps using your test object classes in the
Keyword View, Editor (using the statement completion functionality), and
Step Generator.

o Operations run correctly. Check the run support exposed by the classes
based on CustomServerBase (Click, DblClick, on so on). Verify that operations
that are not implemented by the custom server are supported by the default
UFT implementation for the base test object type.

o Table checkpoints and output values function correctly (if relevant).

o Identification property values are retrieved correctly. Check that
identification properties not specifically implemented by the custom server
are supported by the base class implementation (when relevant).

o Operations are recorded correctly both when record implementation is based
on Windows messages and when based on events.

If you are developing support for a Silverlight control, check that the correct
messages are passed to the server, according to the Windows message filter
defined by the custom server.

o Your toolkit and its test object classes are properly displayed in the relevant
UFT dialog boxes: Object Identification, Available Keywords (for application
areas), Define New Test Object, and so on.

o Check that elements of WPF or Silverlight that are not part of your support
set have not had their functionality changed by installation of your support
set.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 29

o Verify that low level controls that are part of a high level control, as defined
in the IComponentDetector implementation are not recognized by UFT
during Record, Learn, Spy, and so on.

6. Debug your support - Optional
To use Microsoft Visual Studio debugging tools to debug the support that you
developed, attach Visual Studio to the application that contains the custom WPF or
Silverlight controls, as the custom servers run in the context of this application.

How to Add Support for a Custom WPF or
Silverlight Control
This task describes how to add support for a single type of custom WPF or Silverlight
control to an existing toolkit support set.

For instructions on creating a toolkit support set, see "How to Create Support for a
Custom WPF or Silverlight Toolkit" on page 25.

Tip: To create your WPF or Silverlight Add-in Extensibility files, use the UFT WPF
CustomServer or UFT Silverlight CustomServer project template that the WPF and
Silverlight Add-in Extensibility SDK installs on Visual Studio.

Using this template helps set up the XML data and the custom server class that you
need to develop to support your custom control, simplifying the first three steps in
the task described below. For details, see "WPF/Silverlight Custom Server Setup
Dialog Box (in Microsoft Visual Studio)" on page 39.

If necessary, you can move the XML data and custom server class that you create
using the template into an existing toolkit support set. Copy the information from
the XML files into the XML files of the existing toolkit support set, and copy the
custom server .cs file into the existing Visual Studio WPF or Silverlight Add-in
Extensibility project.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 30

This task includes the following steps:

l "Define the test object class for UFT to use for your custom control - Optional" below

l "Map the custom control type to the relevant test object class and custom server"
below

l "Design the custom servers that contain the implementation for UFT to run" below

l "Deploy and test the toolkit support set on UFT" below

1. Define the test object class for UFT to use for your custom
control - Optional
If your toolkit support set does not contain an appropriate test object class, add a
ClassInfo element to the test object configuration XML file defining a new test
object class.

For details on the structure and syntax of a test object configuration file, see "The
Test Object Configuration XML File" on page 15.

2. Map the custom control type to the relevant test object class
and custom server
In the toolkit configuration XML file, define a Control element for the custom
control. Specify the test object class that UFT should use for the control, and the
custom server that contains the implementation for supporting this control.

For details on the structure and syntax of a toolkit configuration file, see the
Toolkit Configuration Schema Help (available with the WPF and Silverlight Add-in
Extensibility Help).

3. Design the custom servers that contain the implementation for
UFT to run
For details, see "How to Develop a Custom Server" on the next page.

4. Deploy and test the toolkit support set on UFT

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 31

Deploy, test and debug the changes you made as part of the whole toolkit support
set.

For details see, "How to Create Support for a Custom WPF or Silverlight Toolkit" on
page 25.

How to Develop a Custom Server
This task describes how to create a custom server that contains the implementation
UFT needs to run to interact with the custom control.

This task is part of a higher-level task. For details, see "How to Create Support for a
Custom WPF or Silverlight Toolkit" on page 25.

For additional details on the interface methods mentioned in this task, see the Custom
Server API References (available with the WPF and Silverlight Add-in Extensibility
Help).

This task includes the following steps:

l "Set up the Visual Studio project" on the next page

l "Create the custom server class" on page 34

l "Develop support for test object operations" on page 35

l "Develop support for identification properties" on page 36

l "Develop support for table checkpoints and output values" on page 37

l "Develop support for recording steps" on page 38

l "Prepare your custom server for deployment" on page 39

l "How to Develop a Custom Server" above

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 32

1. Set up the Visual Studio project
Do one of the following:

Set up the project using an extensibility template:

In Microsoft Visual Studio, create a new project using the UFT WPF CustomServer
or UFT Silverlight CustomServer project template installed with the WPF and
Silverlight Add-in Extensibility SDK.

This sets up the files, references, and classes that you need to develop your custom
server, simplifying the remainder of the steps in this task. For details, see
"WPF/Silverlight Custom Server Setup Dialog Box (in Microsoft Visual Studio)" on
page 39.

Set up the project manually:

a. Create a C# project in Visual Studio using the Visual C# > Windows > Class
Library template or the Visual C# > Silverlight > Silverlight Class Library
template.

b. Add references to all necessary .NET framework libraries.

For example, PresentationCore, PresentationFramework, and WindowsBase
(when developing in WPF) or .NET Framework Class Library for Silverlight (when
developing in Silverlight).

c. Add references to the libraries that implement the custom control classes. For
example, these may be third party libraries.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 33

d. Add a reference to the DLL file that contains the WPF or Silverlight Add-in
Extensibility API. The file is located in the <WPF and Silverlight Add-in
Extensibility installation folder>\SDK\WpfSlv folder.

o If you are developing support for a WPF control, add a reference to the
Mercury.QTP.WpfAgent.dll file.

o If you are developing support for a Silverlight control, add a reference to the
Mercury.QTP.Slv.CustomServer.dll file.

If you develop your toolkit support set on a computer that does not have the
extensibility SDK installed, copy the DLL from the computer on which you
installed WPF and Silverlight Add-in Extensibility.

e. Add all required references in the Using section.

o To reference the WPF Add-in Extensibility API, add a reference to the
Mercury.QTP.WPF.CustomServer namespace and not the to
Mercury.WpfAgent.

o To reference the Silverlight Add-in Extensibility API, add a reference to the
Mercury.QTP.Slv.CustomServer namespace.

2. Create the custom server class
Create a custom server class for your custom control, extending the
CustomServerBase class.

Note: If you used the UFT WPF/Silverlight CustomServer template to set up
the Visual Studio project, the class declaration is created automatically.

In the next steps, you implement various interfaces in this class, according to the
UFT functionality that you want to support.

For example, your custom server class declaration might look like this:

public class MyCustomSupport:

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 34

CustomServerBase,
IMyCustomSupportRun,
IRecord,
ITableVerify,
IMyCustomSupportCustProp,
IComponentDetector

When designing the support, you can call utility methods from the IUtilityObject
interface implemented by UFT in this base class. For details, see "Utility Methods
and Properties" on page 23.

3. Develop support for test object operations
a. To support running new or modified test object operations that you defined for

your test object class, implement one Run interface in your custom server, and
tag this interface with the RunInterfaceAttribute attribute.

Note: If you used the UFT WPF/Silverlight CustomServer template to set
up the Visual Studio project, and specified that you want to customize
running operations, the Run interface definition is created automatically.

b. In the Run interface, design a method for each test object operation that you
want to support or override. Each method you design must have the same
signature as the test object operation that it implements (as defined in the test
object configuration file).

Note: In the test object configuration file, you can define test object
operations with optional arguments.

When you develop the custom server methods that support running these
test object operations, consider the following:

For WPF: You must use the Optional attribute from the
System.Runtime.InteropServices namespace to specify an optional
parameter. For example, void myMethod(int p1, [optional] int
p2).

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 35

For Silverlight: UFT does not support the use of C# annotations for optional
parameters in these methods. Therefore, instead of designing one instance
of a RunInterface method with a signature that includes optional
parameters, design different instances of the method using the same
method name, but different numbers of parameters.

c. If you are developing support for a Silverlight control, you must tag each one of
the methods that you design to implement running a test object operation with
the ScriptableMember attribute. (This is an existing Microsoft Silverlight
attribute.)

Example:

If the custom server defines an ICheckBoxRun interface with the Set
method to be used by UFT for running a Set operation, tag that interface
with RunInterfaceAttribute.

If this custom server is designed to support a Silverlight check box, tag the
Setmethod with ScriptableMemberAttribute.

4. Develop support for identification properties
Design your custom server to retrieve identification property values from the
control. Do this for any new identification properties you defined for your test
object class, or if you want to override the value retrieval implementation inherited
from the base class.

a. To support retrieval of identification properties values implement one Custom
Properties interface in your custom server and tag this interface with the
CustomPropInterfaceAttribute attribute.

Note: If you used the UFT WPF/Silverlight CustomServer template to set
up the Visual Studio project, and specified that you want to customize
property retrieval, the interface definition is created automatically.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 36

b. In the Custom Properties interface, define a property for each identification
property whose value you want to retrieve from the control. Each property
returns the value relevant for the identification property with the same name.

For example, if the custom server defines an ICheckBoxCustomProp interface
with the MyIsChecked property to be used by UFT for retrieving the custom
MyIsChecked identification property, mark the interface with
CustomPropInterfaceAttribute.

Customizing the test object name (WPF only): If you implement a logical_
name identification property, UFT uses its value as the test object name. This
enables you to provide a functionally logical name for the test object (for
example, the text displayed on the control). Otherwise, UFT generates a default
name for the test object.

Note: In the test object configuration file, you must define all identification
properties relevant for your test object class. However, the implementation
for retrieving the property values is inherited from the base class for any
properties that it supports.

5. Develop support for table checkpoints and output values
To support table verification and output value retrieval, implement all of the
methods in the ITableVerify interface in your custom server.

Note: If you used the UFT WPF/Silverlight CustomServer template to set up
the Visual Studio project, and specified that you want to design support for
table checkpoints, a preliminary implementation of this interface is created
automatically.

6. Specify children of the control that should not be treated as
separate controls

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 37

To instruct UFT that certain child controls are part of a higher-level control,
implement the IComponentDetector interface, and design the IsKnownPartOf
method in the to return true for those child controls.

Example:

A calendar control might be implemented using buttons. To prevent UFT from
learning these buttons as separate objects, or recording steps when the user
clicks each button, the IsKnownPartOf method in the calendar's custom server
returns true for any button that is part of the calendar.

Note: If you used the UFT WPF/Silverlight CustomServer template to set up
the Visual Studio project, and specified that you want to customize child object
handling, a preliminary implementation of this interface is created
automatically.

7. Develop support for recording steps
To support recording, implement the IRecord interface in your custom server class
by overriding the callback methods.

Note: If you used the UFT WPF/Silverlight CustomServer template to set up
the Visual Studio project, and specified that you want to customize recording, a
preliminary implementation of this interface is created automatically.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 38

a. Define and implement the event handlers required by your test object.

b. Define and implement the message handlers required by your test object.

o Implement OnMessage to listen directly to Windows messages.
When developing support for a Silverlight control, the value returned from
OnMessage indicates whether the custom server handled the message, or
whether this message needs to be passed on to other registered event
handlers.

o When developing support for a Silverlight control, implement
GetWndMessageFilter to specify the objects on which to listen to Windows
messages. You can listen to messages on the control itself (and the children
considered and integral part of it), on the control's children, or on all
messages to the application.

See also the limitation about handling Windows messages in
"Troubleshooting and Limitations - Developing Support" on page 46.

c. Implement RecordInit and RecordStop to register and release your handlers.

8. Prepare your custom server for deployment
Compile your custom server to create the DLL.

To enable your custom server to work with 32-bit and 64-bit applications, compile
the custom server DLL with the Platform target option set to Any CPU.

WPF/Silverlight Custom Server Setup Dialog
Box (in Microsoft Visual Studio)
This dialog box opens when you select the UFT WPF or Silverlight Custom Server
template to create a WPF or Silverlight Add-in Extensibility project in Microsoft Visual
Studio.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 39

This dialog box enables you to provide specifications that describe the support that you
want to create. When the extensibility project is created in Visual Studio, its files are
created with the basic content, infrastructure, and references required to create the
support you described.

This image displays a WPF Custom Server Setup dialog box. The options on a Silverlight
Custom Server Setup dialog box are identical to the ones shown below. Only the dialog
box titles and the list of available base classes are different for Silverlight.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 40

To access 1. In Microsoft Visual Studio, select File > New> Project.

2. Select one of the following:

n Visual C# Windows project type and UFT WPF
CustomServer template

n Visual C# Silverlight project type and UFT Silverlight
CustomServer

3. Provide a name and location for your new project, and a name
for the solution (or accept the default values provided).

4. Click OK. The WPF or Silverlight Custom Server Setup dialog
box opens, depending on the template you selected.

The project name is also used as the default value for some of
the fields in the dialog box.

Important
information

To successfully create a project using the UFT Silverlight
CustomServer template, you must have the Microsoft Silverlight
Tools for Visual Studio installed.

Relevant
tasks

"How to Create Support for a CustomWPF or Silverlight Toolkit"
on page 25

See also l "Developing UFT Support for a CustomWPF or Silverlight
Toolkit" on page 12

l "Custom Servers " on page 21

l The Custom Server API Reference, Toolkit Configuration
Schema Help, and Unified Functional Testing Test Object
Schema (available with the WPF and Silverlight Add in
Extensibility Help).

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 41

User interface elements are described below:

UI Elements Description

Custom
server class
name

The name of the custom server class to create in the new project.

Note: By default, this name is used to create the default
values for Run interface name, Property interface name,
and Mapped test object class. If you have not changed
these values, modifying the Custom server class name
modifies them as well.

Customize
running
operations

Indicates that you want to design or override implementation for
running test object operations on the control.

If you select this option, the Run interface that you specify is
defined and tagged with the RunInterfaceAttribute. In the
custom server class, the interface is implemented with a method
stub for an example test object operation. The example test
object operation is also added to the project's test object
configuration file.

Run
interface
name

The name of the interface in which you want to implement
support for the test object operations.

Available only when Customize running operations is
selected.

Customize
recording

Indicates that you want to design support for recording test object
operations on the control.

If you select this option, the custom server class is defined to
implement the IRecord interface and includes method stubs for
the interface's methods.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 42

UI Elements Description

Customize
property
retrieval

Indicates that you want to design or override implementation for
retrieving identification property values from the control.

If you select this option, the Property interface that you specify is
defined and tagged with the CustomPropInterfaceAttribute. In
the custom server class, the interface is implemented with a
method stub for an example identification property. The example
identification property is also added to the project's test object
configuration file.

Property
interface
name

The name of the interface in which you want to implement
support for property value retrieval.

Available only when Customize property retrieval is selected.

Customize
child object
handling

Indicates that you want UFT to treat some of the custom control's
child objects as an integral part of the control and not as
independent objects.

If you select this option, a preliminary implementation of the
IsKnownPartOfmethod in the IComponentDetector interface is
created in the custom server class. Implement the method to
return true for the relevant child objects.

Design
support for
table
checkpoint
s

Indicates that you want the standard checkpoints and output
values that UFT creates on your test object to be table
checkpoints and output values.

If you select this option, a preliminary implementation of the
ItableVerify interface is created in the custom server class.
Implement this interface according to your needs.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 43

UI Elements Description

Toolkit
name

A name for the environment, or set of controls, that you want to
support with this toolkit support set.

You may want the name to indicate whether this is a WPF or
Silverlight toolkit. After you deploy your support, UFT displays
this name in the Add-in Manager as a child node under the WPF
add-in node, enabling the user to specify whether to load support
for this environment.

In the new project created, the toolkit name is used to create the
configuration file names, and entered in the PackageName
attribute of the TypeInformation element in the test object
configuration file (if you select Auto generate the XML
configuration files). It is also used for the root namespace of the
project.

Auto
generate
the XML
configuratio
n files

Indicates that in the new project created, a toolkit configuration
file and test object configuration file should also be created. The
files are created with basic definitions, according to the details
you specify in this dialog box.

In a toolkit support set, the definitions for all of the controls that
you want to support are included in one toolkit configuration file,
and one test object configuration file. On the other hand, you
design a separate custom server for each control you support.
Therefore, if you use the template to create additional custom
servers, you might not want to generate additional XML files.
Alternatively, you can decide to generate the XML configuration
files as well, and then copy the information from these new files to
your main configuration files.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 44

UI Elements Description

Custom
control type

The name of the custom control type for which you want to
develop support.

For Silverlight: A full type name, including namespaces.

For WPF: This can be one of the following:

l A full type name, including namespaces. For example:
Infragistics.Controls.Editors.XamComboEditor

l A full type name and an assembly name. For example:
Infragistics.Controls.Editors.XamComboEditor,
InfragisticsWPF4.Controls.Editors.XamComboEditor.
v12.1

l An assembly qualified name. For example:
Infragistics.Controls.Editors.XamComboEditor,
InfragisticsWPF4.Controls.Editors.XamComboEditor
.v12.1, Version=12.1.20121.1010, Culture=neutral,
PublicKeyToken=7dd5c3163f2cd0cb

Note: In most cases, the full type name is sufficient. You can
use the more complex name when the same control is
included in more than one assembly, for example, when your
application includes different versions of the same control.

Mapped test
object class

The test object class that you want UFT to use to represent the
custom control.

In the new project create, a basic definition for this new test object
class is created in the test object configuration file (if you select
Auto generate the XML configuration files).

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 45

UI Elements Description

Base class
name

The test object class that your new test object classes extends.

Select from the list of built in UFT test object classes, or enter a
name of a test object class that you defined in a WPF or
Silverlight Add-in Extensibility test object configuration file. (WPF
test object classes need to extend other WPF test object classes,
and Silverlight test object classes need to extend other Silverlight
test object classes.)

Default:WpfObject or SlvObject

Troubleshooting and Limitations -
Developing Support
This section describes troubleshooting and limitations for developing support for
custom WPF or Silverlight controls.

l If you define test object operations and the corresponding custom server methods
with OUT or IN/OUT parameters, the test object operation does not run correctly.

Workaround: When designing test object methods to support using WPF or
Silverlight Add-in Extensibility custom servers, use only IN parameters. Instead of an
OUT or IN/OUT (ref) parameter, design the operation to return a value.

l UFT does not handle controls as children of your custom control if they are
implemented as pop-up controls. This means that you cannot implement the
IsKnownPartOf method to instruct UFT to ignore these controls and treat them as
integral parts of the custom control.

UFT will recognize, spy, and learn these controls as independent controls.

You may still be able to implement recording steps on the custom control in
response to events that occur on these controls, by registering event handlers to
listen to events on these controls.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 46

l Relevant for Silverlight only: When the implementation of a test object method in
the custom server includes an operation which blocks until the next step in the test
runs, the test run session will not continue to the next step.

For example: Suppose that clicking a custom button in the application opens a modal
dialog box, and your test includes the following steps:

MySlvButton.Click
SlvDialog.Close

If the implementation of the Clickmethod in the custom server that supports
MySlvButton calls
(UtilityObject.ApplicationObject as UIElement).Click and that Click
method does not return until the modal dialog box is closed, then the test will run
the first step and never continue to the second.

Workaround: Do one of the following:

n Invoke the blocking statement asynchronously using BeginInvoke.

n Use mouse or keyboard operations to implement the test object method (for
example, click the button using UtilityObject.MouseClick).

l Relevant for Silverlight only: In some cases, when you design your support to
receive Windows messages generated for controls other than the custom control
you are supporting, some such Windows messages are still not passed to the custom
server.

The reason for this is that during a recording session, the custom server mapped to
your custom control is only created after some operation takes place on the custom
control itself.

If you design the GetWndMessageFilter method to specify that your custom server
will handle messages that occur on other controls, such messages can only be
handled after the custom server is created.

Therefore, for example, you may have to click on the custom control before the
custom server can receive and process messages generated for other controls in the
application.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 47

Depending on how you implement support for recording on your custom control, you
might want to provide instructions regarding this issue to the UFT users who use
your support set.

Developer Guide
Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 48

Chapter 2: Tutorial: Create UFT Support
for a Custom WPF Control
In this tutorial you manually create support for a WPF Calendar control, learning the
basics of creating a WPF Add-in Extensibility toolkit support set. A toolkit, or an
environment, is a set of controls for which you want to provide support in one package.
In this tutorial, the toolkit is named MyWpfToolkit, and contains only the
Microsoft.Windows.Controls.Calendar control.

To perform this tutorial you must have a supported version of Microsoft Visual Studio
installed, in addition to the WPF and Silverlight Add-in Extensibility SDK (which must be
installed after Visual Studio).

Note: For a list of supported Microsoft Visual Studio versions, see the HP Unified
Functional Testing Product Availability Matrix, available from the UFT help folder or
the HP Support Matrix page (requires an HP passport).

This tutorial uses the UFT WPF CustomServer project template in Visual Studio to set
up the files necessary to create the toolkit support set. When you develop your own
support, if you want to create your toolkit support set files manually, follow the steps
in "How to Create Support for a Custom WPF or Silverlight Toolkit" on page 25.

For details on the classes and interface methods mentioned throughout this tutorial,
see the Custom Server API References (available with the WPF and Silverlight Add-in
Extensibility Help).

Note: You develop support for a Silverlight control in much the same way as you
develop a support for a WPF control. Throughout the tutorial, where modifications
would be necessary if this were a Silverlight toolkit support set, the modifications
are explained.

The WPF Calendar application is installed in: <WPF and Silverlight Add-in Extensibility
SDK installation folder>\samples\WPFExtCalendarSample\Application.

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 49

http://support.openview.hp.com/selfsolve/document/KM438391

The <WPF and Silverlight Add-in Extensibility SDK installation folder>\samples\
WPFExtCalendarSample\Support folder contains the Microsoft Visual Studio solution
and XML files that make up support for this control, similar to the support you create in
this tutorial. You can refer to these files while you perform the tutorial.

This tutorial includes:

Planning Support for the WPF Calendar Control 51

Setting Up the WPF Add-in Extensibility Project for the WPF Calendar Control 55

Designing the Toolkit Configuration File 59

Designing the Test Object Configuration File 60

Deploying and Testing the Preliminary Toolkit Support Set 63

Design the Basic Custom Server 67

Implement Support for Retrieving Identification Property Values 68

Deploy and Test Your Basic Custom Server and Identification Property Support 70

Implement Support for Running Test Object Operations 71

Deploy and Test Your Support for Test Object Operations 74

Implement Support for Recording 75

Deploy and Test Your Support for Recording 78

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 50

Planning Support for the WPF Calendar
Control
In this section, you study the behavior of the control that you want to support and the
way UFT recognizes it and interacts with it. You then determine what you need to
customize in UFT's behavior in order to enable creating test steps that are more
meaningful and easier to maintain.

1. Run the sample WPF Calendar application and study its
behavior
a. Double-click the <WPF and Silverlight Add-in Extensibility SDK installation

folder>\samples\WPFExtCalendarSample\Application\WpfCalendar.exe file.
The Calendar application opens.

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 51

This application contains 3 controls:

o A calendar display area with buttons: Microsoft.Windows.Controls.Calendar

o A text label: System.Windows.Controls.TextBlock

o An edit box displaying the selected date:
System.Windows.Controls.TextBox

b. Study the application's functionality.

o You can click the right and left arrows to go the next or previous month.

o You can select a date in the calendar by clicking on the relevant day of the
month.

o You can view the selected date in the text box.

2. Use the Object Spy in UFT to see how UFT recognizes the
controls in the Calendar application
a. Open UFT, and open a GUI test.

b. Select Record > Record and Run Settings, and make sure that the selections in
the Windows Applications tab enable UFT to record and run tests on the
calendar application.

c. Run the Object Spy and spy on the WPF Calendar.

UFT recognizes the Calendar application as a WpfWindow. Within this window, it
recognizes the Microsoft.Windows.Controls.Calendar control as a generic
WpfObject and the System.Windows.Controls.TextBox as a WpfEdit object.

Additionally, within the in the Microsoft.Windows.Controls.Calendar control,
UFT recognizes the days as independent WpfButtons in the WpfWindow.

UFT ignores other user interface elements contained in the Calendar control,
such as the right and left arrows, and the month and year banner.

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 52

3. Learn the Calendar control using UFT, adding it to an object
repository
a. Open the Object Repository.

b. Click the Add Objects to Local button.

c. Click on an area in the calendar.

d. Add additional objects to the local object repository by clicking the Add Objects
to Local button and then clicking on different areas of the calendar. For
example, click on the days, the text box, the month and year banner, and so on.

UFT learns the application as a WpfWindow. Within this window, it separately
learns the calendar display area as a generic WpfObject and the Selected Date
box as a WpfEdit object.

The days are learned as independent WpfButtons, but other user interface
elements, such as the right and left arrows, and the month and year banner, are
not learned at all.

4. Record a test on the Calendar control

a. Click Record .

b. Click on different areas in the calendar.

When you click on the right or left arrows, or on the month and year banner,
UFT records a generic click on the WpfObject, specifying the coordinates of the
location you clicked.

When you click a day and select it, or when you click in the Selected Date box,
nothing is recorded.

When you click in other areas of the application, UFT records a generic click on
the WpfWindow.

5. Conclusion: Develop a MyWpfCalendar Test Object Class

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 53

n For functional testing purposes, the Microsoft.Windows.Controls.Calendar
control should be represented in UFT by one MyWpfCalendar test object.

n The buttons within the Calendar control should not be treated as separate
controls.

n The Selected Date box is a read-only box, on which no user activity is possible
and no steps are recorded. Therefore, the System.Windows.Controls.TextBox
control does not have to be supported as part of the MyWpfCalendar test object,
and does not need any customization for functional testing.

n The MyWpfCalendar test object class should be based on the existing UFT test
object class, WpfObject, and extend its capabilities.

n The MyWpfCalendar test object class should support calendar-related operations.

In this tutorial you will develop support for the following test object methods:
SetDate (default operation), Next, Previous, and a SelectedDate test object
property.

n User operations performed on the calendar's different user interface elements,
should be interpreted and recorded as high-level operations on the calendar as a
whole. For example: SetDate, Next, Previous, and so on.

n The MyWpfCalendar test object class should support identification properties
relevant for a calendar, such as is_today_highlighted.

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 54

Setting Up the WPF Add-in Extensibility
Project for the WPF Calendar Control
A WPF Add-in Extensibility support set consists of the following mandatory files:

l A Test Object Configuration XML File. In this file, new test object types are defined.
For details, see "The Test Object Configuration XML File" on page 15.

l A toolkit configuration file. In this file WPF control types are mapped to test object
types and to the custom servers implementing their record and run logic. For details
of the schema, see the Toolkit Configuration Schema Help (available with the WPF
and Silverlight Add-in Extensibility Help).

l .Net DLLs containing the implementation of custom servers. For details, see
"Custom Servers " on page 21.

The WPF and Silverlight Add-in Extensibility SDK installs a project template and a setup
dialog box in Microsoft Visual Studio that assist you in setting up the files that you need
to create the toolkit support set.

Use the template for each control you want to support. The template sets up both the
XML files and the Microsoft Visual Studio solution that you need to create the custom
server DLL. When you create support for more than one control in a toolkit, you have to
combine the XML content created for each control into one toolkit configuration file and
one test object configuration file for the toolkit.

In this tutorial, because you are creating a toolkit support for only one control, you can
use the XML files created by the project template, as-is.

Note: The Microsoft Visual Studio dialog box images in this section are taken from
Microsoft Visual Studio 2008. If you use a different version, the dialog boxes may
differ slightly in appearance.

Create a WPF Add-in Extensibility Project in Microsoft Visual Studio

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 55

1. Open Microsoft Visual Studio and click New Project. The New Project dialog box
opens:

2. Select the Visual C# Windows project type and the UFT WPF CustomServer
template, and click OK.

Note: If you were developing support for a Silverlight control, you would select
the Visual C# Silverlight project type and the UFT Silverlight CustomServer
template.

3. Enter CalendarSrv as the project Name, and click OK. The WPF/Silverlight
Custom Server Setup dialog box opens.

4. In this dialog box, you provide specifications that describe the support that you
want to create, and the files required to create this support are created
accordingly.

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 56

In this tutorial:

n You create support for the MyWpfToolkit toolkit.

n Within this toolkit you create support for Microsoft.Windows.Controls.Calendar
WPF controls.

n You create a MyWpfCalendar test object class, based on the standard
UFTWpfObject class, to represent the Calendar controls in UFT.

n You create a CalendarSrv custom server class, to provide support for the
controls. Within the CalendarSrv custom server class, you customize running
operations, retrieving properties, recording, and child object handling.

Specify these details in the WPF Custom Server Setup dialog box, as shown in
the image below, selecting also the options for automatically generating XML
files, comments, and sample code.

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 57

Make sure to enter the Run interface name and the Property interface name
shown below, as this tutorial does not use the default names provided in the dialog
box.

If you want more information on this dialog box, see "WPF/Silverlight Custom
Server Setup Dialog Box (in Microsoft Visual Studio)" on page 39.

5. Click OK.

The CalendarSrv solution is created with the relevant files and references. The solution
includes a toolkit configuration file (MyWpfToolkit.cfg), a test object configuration file
(MyWpfToolkitTestObjects.xml), and the C# file for the custom server class
(CalendarSrv.cs).

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 58

It also includes the reference to the Mercury.QTP.WpfAgent.dll file, that contains the
WPF Add-in Extensibility API.

Note: If you use the UFT Silverlight CustomServer template, the solution created
includes a reference to the Mercury.QTP.Slv.CustomServer.dll file, that contains
the Silverlight Add-in Extensibility API.

Designing the Toolkit Configuration File
The name of the toolkit configuration file informs UFT of the new supported
environment. After you deploy this file to the correct location on a UFT computer, when
UFT opens, it displays the environment in the Add-in Manager, as a child node beneath
the WPF Add-in. If you select the check box for this environment, UFT loads the support
that you provide for it. (If you are working with Silverlight, you must also select the
Silverlight Add-in.)

The configuration file content defines how the controls are supported, which test object
classes and custom servers are used for each custom control and so on.

Open the MyWpfToolkit.cfg file to see its content.

The MyWpfToolkit.cfg file was created automatically based on the specifications you
provided. Therefore, it already has all of the necessary content to support the WPF
Calendar control is the MyWpfToolkit environment.

<?xml version="1.0" encoding="UTF-8"?>
<Controls>
<Control Type="Microsoft.Windows.Controls.Calendar"

MappedTo="MyWpfCalendar“>
 <CustomServer>
 <Component>
 <DllName>CalendarSrv.dll</DllName>
 <TypeName>MyWpfToolkit.CalendarSrv</TypeName>
 </Component>
 </CustomServer>
</Control>

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 59

</Controls>

The Control element's attributes specify that the controls of
TypeMicrosoft.Windows.Controls.Calendar (the full control type name including
namespaces must be specified) is MappedTo the test object class MyWpfCalendar.

The CustomServer > Component element specifies the custom server DLL and type
that provides support for this control type.

Note: The custom server type must be a full type name including namespaces, and
in Silverlight it must include additional information, as described in the Toolkit
Configuration Schema Help.

For more information on the elements and attributes in the toolkit configuration file,
see the Toolkit Configuration Schema Help (available with the WPF and Silverlight Add-
in Extensibility Help).

Designing the Test Object Configuration File
You use the test object configuration file to introduce the MyWpfToolkit environment
and its test object class to UFT.

1. Open the MyWpfToolkitTestObjects.xml file.

The MyWpfToolkitTestObjects.xml file was created with the AddinName attribute
in the TypeInformation element set to WPF and the PackageName attribute set to
MyWpfToolkit. This associates the test object configuration file (and the test
objects defined in it) with the MyWpfToolkit environment under the WPF Add-in. If,
when UFT opens, you do not select the MyWpfToolkit environment, UFT ignores the
test object class definitions in this file.

Note: When developing support for a Silverlight control, the TypeInformation

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 60

element is set to Silverlight.

Based on the information you provided in the WPF Custom Server Setup dialog box,
the ClassInfo element for the MyWpfCalendar test object class was also created,
specifying WpfObject as its base class. This means that the new MyWpfCalendar
test object class you define inherits the WpfObject methods, generic type, Help
file, etc.

2. To extend the test object class and add definitions for the calendar-specific
operations and identification properties, replace the comment lines within
MyWpfToolkitTestObjects.xml so that your test object configuration file contains
the following:

<TypeInformation AddinName="WPF" PackageName="MyWpfToolkit“ >
 <ClassInfo Name="MyWpfCalendar"
 BaseClassInfoName="WpfObject"
 DefaultOperationName="SetDate“>
 <IdentificationProperties>
 <IdentificationProperty Name="devname"
 ForDescription="true" />
 <IdentificationProperty Name="devnamepath"
 ForAssistive="true"
 AssistivePropertyValue="1"/>
 <IdentificationProperty Name="regexpwndtitle"
 ForAssistive="true"
 AssistivePropertyValue="2"/>
 <IdentificationProperty Name="x"
 ForVerification="true" />
 <IdentificationProperty Name="y"
 ForVerification="true" />
 <IdentificationProperty Name="is_today_highlighted"
 ForVerification="true"/>
 </IdentificationProperties>
 <TypeInfo>
 <Operation Name="Next" PropertyType="Method"/>
 <Operation Name="Prev" PropertyType="Method"/>
 <Operation Name="SelectedDate"

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 61

 PropertyType="Property_Get“ >
 <ReturnValueType>
 <Type VariantType="VT_BSTR"/>
 </ReturnValueType>
 </Operation>
 <Operation Name="SetDate" PropertyType="Method“ >
 <Argument Name="Date"
 IsMandatory="true"
 Direction="In“>
 <Type VariantType="VT_BSTR"/>
 </Argument>
 </Operation>
 </TypeInfo>
 </ClassInfo>
</TypeInformation>

You have now defined:

n The Previous, Next, and SetDate test object methods and the SelectedDate
property, including all relevant parameters, return values, and their types.
SetDate is the default operation for this test object class.

n The devname, devnamepath, regexpwndtitle, x, y, and is_today_highlighted
identification properties.

o The first 5 properties are supported by the base class, and the implementation
for retrieving their values is inherited. However, identification property
definitions are not automatically inherited, which is why you must define
them here.

o For each identification property, you specified whether it should be included in
the test object description, used as an assistive property, or available for
verification in checkpoints.

For more information on the elements and attributes in the test object configuration
file, see the HP UFT Test Object Schema Help (available with the WPF and Silverlight
Add-in Extensibility Help).

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 62

Deploying and Testing the Preliminary
Toolkit Support Set
After defining the MyWpfCalendar test object class in the test object configuration file
and mapping the Calendar control to this test object class in the toolkit configuration
file, you can already test the effect of using the toolkit support set with UFT.

Note: When you develop your own toolkit support set, if you modify attributes of
Identification Property elements in the test object configuration file, keep the
DevelopmentMode attribute of the TypeInformation element set to true during
the design stages of the custom toolkit support. Before you deploy the custom
toolkit support set for regular use, be sure to remove this attribute (or set it to
false). This is not required when performing this tutorial lesson. For more
information, see Modifying Identification Property Attributes in a Test Object
Configuration FileShared File: ModifyTO_IDProp_att.

To deploy the toolkit support set:

1. Copy the MyWpfToolkitTestObjects.xml file to <UFT installation
folder>\dat\Extensibility\WPF.

2. In the <UFT installation folder>\dat\Extensibility\WPF folder, create a folder
named MyWpfToolkit.

3. Copy the MyWpfToolkit.cfg file to the <UFT installation
folder>\dat\Extensibility\WPF\MyWpfToolkit folder.

Note: If you were developing support for a Silverlight control, you would replace
WPF in the paths above with Slv.

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 63

To test the toolkit support set:

1. After you deploy the toolkit support set, open UFT and open a GUI test.

Note: UFT reads toolkit support files when it opens. Therefore, if UFT is open,
you must close UFT and open it again.

The Add-in Manager dialog box displays MyWpfToolkit as a child of the WPF
environment in the list of available add-ins. (If the Add-in Manager dialog box does
not open, see the HP Unified Functional Testing Add-ins Guide for instructions.)

2. Select the check box for MyWpfToolkit and click OK. UFT opens and loads the
support you designed.

3. Use the Define New Test Object button in the Object Repository dialog box to
open the Define New Test Object dialog box. The MyWpfToolkit environment is
displayed in the Environment list. When you select the MyWpfToolkit environment
from the list, the MyWpfCalendar test object class that you defined in the test
object configuration file is displayed in the Class list.

4. Select Tools > Object Identification. In the Object Identification dialog box, when
you select the MyWpfToolkit environment in the Environment list, the
identification property definitions for the MyWpfCalendar test object class should
match the definitions in the test object configuration file.

5. Run the sample control by opening the <WPF and Silverlight Add-in Extensibility
SDK installation
folder>\samples\WPFExtCalendarSample\Application\WpfCalendar.exe file.

Note: UFT establishes its connection with an application when the application
opens. Therefore, if the Calendar application is open, you must close it and run
it again.

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 64

6. In UFT, perform the following activities on the Calendar control, to see how UFT
recognizes the control. (For more information on working in UFT, see the HP Unified
Functional Testing User Guide.)

n Use the Object Spy to see how UFT recognizes the Calendar control and to
view its identification properties and test object operations:

o The calendar is represented by a MyWpfCalendar test object class.

o The calendar day numbers are still recognized as separate test objects. Later
in this tutorial you will customize child object handling to prevent that.

o The list of test object operations includes all of the operations (methods and
properties) inherited from the WpfObject base class, as well as all of the
operations that you defined in the MyWpfToolkitTestObjects.xml test object
configuration file.

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 65

o The list of identification properties includes all of the properties that you
defined in the MyWpfToolkitTestObjects.xml test object configuration file.

o The is_today_highlighted identification property has no value, because you
have not yet implemented its retrieval. For all other identification properties,
the value is provided as it would be for a WpfObject (because it is the base
class).

n In the Editor, type MyWpfCalendar("MyCalendar").

When you type the period, UFT's statement completion feature displays all of
the operations available for the MyWpfCalendar test object class. This includes

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 66

operations inherited from WpfObject, and ones that you defined in the test
object configuration file.

Design the Basic Custom Server
For each custom control that you want to support, you develop a custom server class,
that derives from the CustomServerBase class. The resulting custom server DLL runs in
the context of the application and interfaces between UFT and the custom control.

In this section, you design the CalendarSrv custom server class to support the Calendar
control.

1. Open CalendarSrv.cs. The basic framework of the class was created based on the
specifications that you provided in the WPF Custom Server Setup dialog box.

n The class inherits from CustomServerBase.

n In the Using section, the class includes a reference to the
Mercury.QTP.WPF.CustomServer namespace in the WPF Add-in Extensibility
API.

Note: If you use the UFT Silverlight CustomServer template, the class
includes a reference to the Mercury.QTP.Slv.CustomServer namespace in
the Silverlight Add-in Extensibility API.

n The class definition includes the list of interfaces it will implement: IRecord,
ICalendarRun, IComponentDetector, ICalendarProperties.

2. In your project, add a reference to <WPF and Silverlight Add-in Extensibility SDK
installation
folder>\samples\WPFExtCalendarSample\Application\WPFToolkit.dll.

This enables you to access the methods, properties, and events of
Microsoft.Windows.Controls.Calendar, by double-clicking the reference node in

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 67

the Visual Studio Solution Explorer. You need to be familiar with these so that you
can design code that interacts with the Calendar control.

3. In Calendar.cs, add a using Microsoft.Windows.Controls; statement. This
enables Microsoft IntelliSense for the Microsoft.Windows.Controls.Calendar
control type in Visual Studio.

4. In the CalendarSrv class, implement a common helper property that returns a
reference to the custom Calendar object. You can use this throughout your custom
server code to access the custom control's events, methods, and properties:

private Calendar MyCalendar
{
 get

{
 return UtilityObject.ApplicationObject as Calendar;
 }
}

5. You specified, in the WPF Custom Server Setup dialog box, that you want to
customize child object handling. Therefore, a preliminary implementation of the
IsKnownPartOf method in the IComponentDetector interface was created in the
CalendarSrv class.

Modify the IsKnownPartOf method to always return true. This means that UFT will
treat all child objects within the Calendar as part of the calendar and not as
independent objects.

Implement Support for Retrieving
Identification Property Values
In this section, you implement the property value retrieval interface in the CalendarSrv
class to support retrieving the values of identification properties from the Calendar
control.

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 68

You specified, in the WPF Custom Server Setup dialog box, that you want to customize
property retrieval. Therefore, the ICalendarProperties interface that you specified was
defined in the CalendarSrv.cs file, tagged with the CustomPropInterface attribute, and
implemented in the CalendarSrv class for an example property, MyCustomProperty.

1. Locate the ICalendarProperties interface definition in the CalendarSrv.cs file.

[CustomPropInterface()]
 public interface ICalendarProperties

{
 object MyCustomProperty

{
 get;
 }
 }

2. Replace the example object MyCustomProperty with bool is_today_
highlighted to complete the interface definition.

3. Locate the interface implementation in the CalendarSrv class:

public object MyCustomProperty
{
 get

{
 return null;
 }
}

4. Modify the example implementation to retrieve the value for the is_today_
highlighted identification property:

public bool is_today_highlighted
{
 get

{
 return MyCalendar.IsTodayHighlighted;
 }
}

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 69

Deploy and Test Your Basic Custom Server
and Identification Property Support
In this section, you deploy the custom server that you developed to support the
Calendar control and test its effect on UFT.

1. Build your solution and then deploy the custom server by copying the
CalendarSrv.dll file to the <UFT installation
folder>\dat\Extensibility\WPF\MyWpfToolkit folder. You do not need to deploy
the XML files because you did not change them.

2. Run the sample control by opening the <WPF and Silverlight Add-in Extensibility
SDK installation
folder>\samples\WPFExtCalendarSample\Application\WpfCalendar.exe file.

Note: You can use an open instance of UFT because you did not modify
configuration files. However, if the Calendar application is open, you must close
it and run it again.

3. Use the Object Spy to see how UFT recognizes the Calendar control and its
children, and to view its identification properties:

n The calendar is represented by a MyWpfCalendar test object class.

n The day numbers within the calendar are considered part of the Calendar control
and are not represented by separate WpfButton test objects.

n The value of the is_today_highlighted property is displayed.

n The Selected Date box remains external to the Calendar control, and is still
represented by a separate WpfEdit test object, as planned.

4. Use the Add Objects to Local button in the Object Repository dialog box to

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 70

learn the Calendar control. A MyWpfCalendar test object named calendar1 is
added to the object repository.

5. Start a recording session and create a checkpoint that checks the value of the is_
today_highlighted property of the calendar1 test object. Stop the recording
session and run the step to verify that the property value is properly retrieved.

6. In the Keyword View, create a test step with the calendar1 test object. The default
SetDate operation is selected automatically. Enter a date in the Argument column
(in the format: mm/dd/yyyy).

7. Run the test. Because you have not yet implemented support for running test
object methods, a run-time error occurs. In the next section, you implement this
support.

Implement Support for Running Test Object
Operations
In this section, you implement the Run interface in the CalendarSrv class to support
running test object operations on the Calendar control.

You specified, in the WPF Custom Server Setup dialog box, that you want to customize
running operations. Therefore, the ICalendarRun interface that you specified was
defined in the CalendarSrv.cs file, tagged with the RunInterface attribute and
implemented in the CalendarSrv class for an example operation, MyRunMethod.

1. Locate the ICalendarRun interface definition in the CalendarSrv.cs file:

[RunInterface()]
public interface ICalendarRun
{
 void MyRunMethod();
}

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 71

2. Replace the example void MyRunMethod(); with the following lines to complete
the interface definition to include all of the operations you want to support:

void SetDate(string date);
void Prev();
void Next();
string SelectedDate
{
 get;
}

3. Locate the interface implementation in the CalendarSrv class:

public void MyRunMethod()
{
}

4. Replace the MyRunMethod() example with the following implementation of the
Calendar-specific methods and property:

public void SetDate(String date)
{
 MyCalendar.SelectedDate = DateTime.Parse(date);
 MyCalendar.DisplayDate = DateTime.Parse(date);
}

public string SelectedDate
{
 get

{
 return MyCalendar.SelectedDate.Value.ToShortDateString();
 }
}

public void Prev()
{
 Button prev = GetDescendantByName

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 72

(UtilityObject.ApplicationObject, "PART_PreviousButton") as
Button;
 RaiseButtonClickEvent(prev);
}

public void Next()
{
 Button next = GetDescendantByName
(UtilityObject.ApplicationObject, "PART_NextButton") as Button;
 RaiseButtonClickEvent(next);
}

Note: If you were developing support for a Silverlight control, you would tag
each one of these methods with the Microsoft Silverlight ScriptableMember
attribute.

5. Add a using System.Windows.Media; statement to the CalendarSrv.cs file and
then add the following helper functions:

private void RaiseButtonClickEvent(Button button)
{
 if (button != null)

{
 RoutedEvent e = Button.ClickEvent;
 RoutedEventArgs arg = new RoutedEventArgs();
 arg.RoutedEvent = e;
 button.RaiseEvent(arg);
 }
}

private DependencyObject GetDescendantByName(DependencyObject
parent, string name)
{
 if (parent == null)
 return null;
 int count = VisualTreeHelper.GetChildrenCount(parent);
 for (int i = 0; i < count; i++)

{

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 73

 DependencyObject child = VisualTreeHelper.GetChild(parent,
i);
 if (child is FrameworkElement)

{
 if ((child as FrameworkElement).Name == name)
 return child;
 }
 if (child is FrameworkContentElement)

{
 if ((child as FrameworkContentElement).Name == name)
 return child;
 }
 child = GetDescendantByName(child, name);
 if (child != null)
 return child;
 }
 return null;
}

Deploy and Test Your Support for Test
Object Operations
In this section, you deploy the custom server again and test the support that you
designed for running test object operations.

1. Build your solution and then deploy the custom server by copying the
CalendarSrv.dll file to the <UFT installation
folder>\dat\Extensibility\WPF\MyWpfToolkit folder.

2. Run the sample control by opening the <WPF and Silverlight Add-in Extensibility
SDK installation
folder>\samples\WPFExtCalendarSample\Application\WpfCalendar.exe file.

3. Use the Add Objects to Local button in the Object Repository dialog box to

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 74

learn the Calendar control. A MyWpfCalendar test object named calender1 is
added to the object repository.

4. Create test steps with the calendar1 test object, using each of the test object
operations: SetDate (mm/dd/yyyy), SelectedDate, Next, and Prev. (To view the
value returned by the SelectedDate property you can use a msgBox statement.)

5. Run the test and make sure that the operations are carried out correctly.

Implement Support for Recording
In this section, you implement the IRecord interface and write the event and message
handling methods to support recording steps on the custom control.

There are three types of steps that need to be recorded for the WPF custom calendar:
Next, Prev, and SetDate.

l Next and Prev are recorded in response to Windows messages, when a user clicks
the right and left arrows on the Calendar control. This is handled by the OnMessage
method.

l SetDate is recorded in response to a control event—SelectedDatesChanged. This is
handled by an event handler that you design and register to handle the relevant
control event.

To implement support for recording in your custom server class:

1. In the CalendarSrv class, locate the section for the IRecord interface
implementation.

public void OnMessage(DependencyObject src, int msg, int wParam,
int lParam)
{
}
public void RecordInit()

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 75

{
}
public void RecordStop()
{
}

2. Declare your event handler and implement RecordInit to register it to the control.

private EventHandler<SelectionChangedEventArgs> _h;
public void RecordInit()
{
 _h = new EventHandler<SelectionChangedEventArgs>

(OnSelectedDatesChanged);
 UtilityObject.AddHandler(MyCalendar, "SelectedDatesChanged",

_h);
}

Note: When developing support for a Silverlight control, the AddHandler
syntax is different. For details, see the Mercury.QTP.Slv.CustomServer
namespace in the Custom Server API Reference (available with the WPF and
Silverlight Add in Extensibility Help).

3. You do not need to implement RecordStop because you registered the event
handler using the SDK's AddHandler method. This enables UFT to automatically
remove the event handler at the end of a recording session.

4. Add the OnSelectedDatesChanged event handler implementation:

private void OnSelectedDatesChanged(object sender,
System.Windows.Controls.SelectionChangedEventArgs e)
{
 UtilityObject.Record("SetDate",

RecordingMode.RECORD_SEND_LINE,
MyCalendar.SelectedDate.Value.ToShortDateString());
}

This creates a SetDate step with the new date selected by the user during a
recording session.

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 76

5. Implement the OnMessage method as follows, to support recording Prev and Next
operations:

public void OnMessage(DependencyObject o, int msg, int wParam, int
lParam)
{

if(o is Button && msg == 0x201) // WM_LBUTTONDOWN
{

string name = (o as Button).Name;
switch (name)
{

case "PART_NextButton":
base.UtilityObject.Record("Next",
RecordingMode.RECORD_SEND_LINE, null);

break;
case "PART_PreviousButton":

base.UtilityObject.Record("Prev",
RecordingMode.RECORD_SEND_LINE, null);

break;
}

}
}

Note: When developing support for a Silverlight control, the OnMessage
method would return RECORD_HANDLED, indicating that the custom server
handled this message and it does not have to be passed on to any other event
handlers. For more information, see the Mercury.QTP.Slv.CustomServer
namespace in the Custom Server API Reference (available with the WPF and
Silverlight Add in Extensibility Help).

6. This step is necessary only when developing support for Silverlight controls.

Implement the GetWndMessageFilter method to specify the level of Windows
messages to be handled by the custom server.

CTL_MsgFilter GetWndMessageFilter()
{
 return CTL_MsgFilter.CTL_MSGS;

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 77

}

In this tutorial, all children of the control are regarded as part of the control.
Therefore, it is sufficient to return CTL_MSGS, and handle messages intended only
for this control.

If some of the control's children were treated as separate test objects, but you still
wanted the control to handle events that occurred on these children, you could
implement GetWndMessageFilter to return CHILD_MSGS.

Deploy and Test Your Support for Recording
You have now completed the design of the support for the WPF Calendar control.

In this section, you deploy the custom server again and test the support that you
designed for recording operations on the Calendar control.

1. Build your solution and then deploy the custom server by copying the
CalendarSrv.dll file to the <UFT installation
folder>\dat\Extensibility\WPF\MyWpfToolkit folder.

2. Run the sample control by opening the <WPF and Silverlight Add-in Extensibility
SDK installation
folder>\samples\WPFExtCalendarSample\Application\WpfCalendar.exe file.

3. To test that the support you developed for recording is working correctly, start a
recording session, select a day in the calendar, click the right arrow at the top of
the calendar, and click the left arrow at the top of the calendar. SetDate, Next, and
Prev steps should be recorded.

Developer Guide
Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 78

Chapter 3: Deploying the Toolkit Support
Set
The final stage of extending UFT support for a custom toolkit is deploying the toolkit
support set. This means placing all of the files you created in the correct locations on a
computer with UFT installed, enabling UFT to recognize the controls in the toolkit and
run tests on them.

While you are developing the toolkit support set, deploying it to UFT enables you to
test and debug the support that you create. After the toolkit support set is complete,
you can deploy it on any computer with UFT installed, to extend the WPF or Silverlight
Add-in.

This chapter includes:

About Deploying the Custom Toolkit Support 80

Deploying the Custom Toolkit Support 81

Modifying Deployed Support 85

Removing Deployed Support 87

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 79

About Deploying the Custom Toolkit
Support
From the UFT user's perspective, after you deploy the toolkit support set on a
computer on which UFT is installed, the toolkit support set can be used as a UFT add-in.

When UFT opens, it displays the toolkit support set's environment name in the Add-in
Manager, as a child node under the WPF Add-in node. Select the check box for your
environment to instruct UFT to load support for the environment using the toolkit
support set that you developed.

Note: Toolkit support sets that you develop using Silverlight Add-in Extensibility
are dependent on the Silverlight Add-in. Therefore, if you select the environment of
such a toolkit support set, select the Silverlight Add-in as well.

If support for your environment is loaded:

l UFT recognizes the controls in your environment and can run tests on them.

l UFT displays the name of your environment in all of the dialog boxes that display
lists of add-ins or supported environments.

l UFT displays the list of test object classes defined by your toolkit support set in
dialog boxes that display the list of test object classes available for each add-in. (For
example: Define New Test Object dialog box, Object Identification dialog box.)

Developer Guide
Chapter 3: Deploying the Toolkit Support Set

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 80

Deploying the Custom Toolkit Support
To deploy the toolkit support set that you create, you must place the files in specific
locations within the UFT installation folder.

Note: Before you begin, create a folder with the name of your custom toolkit in the
<UFT Installation folder>\dat\Extensibility\WPF (or ...\Slv) folder, if one does not
already exist.

The following table describes the appropriate location for each of the toolkit support
files:

File Name Location

<Custom Toolkit
Name>TestObjects.xml

Note: This is the
recommended file
name convention. You
can have more than
one test object
configuration XML file,
and name them as
you wish.

When deploying support for WPF:

l <UFT Installation folder>\dat\
Extensibility\ WPF

l <UFT Add-in for ALM
Installation folder>\dat\Extensibilit
y\ WPF

(Optional. Required only if UFT Add-in for ALM is
installed)

When deploying support for Silverlight:

l <UFT Installation folder>\dat\
Extensibility\Slv

l <UFT Add-in for ALM Installation
folder>\dat\Extensibility\Slv

(Optional. Required only if UFT Add-in for ALM is
installed)

Developer Guide
Chapter 3: Deploying the Toolkit Support Set

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 81

File Name Location

<Custom Toolkit
Name>.cfg

When deploying support for WPF:

<UFT Installation folder>\dat\
Extensibility\WPF\<custom toolkit name>

When deploying support for Silverlight:

<UFT Installation folder>\dat\
Extensibility\Slv\<custom toolkit name>

Custom Server DLL The .dll file can be located on the computer on
which UFT is installed, or in an accessible network
location.

Specify the location in the DllName element in
<Custom Toolkit Name>.cfg

Icon files for new test
object classes (optional)

The file can be a .dll, .exe, or .ico file, located on the
computer on which UFT is installed, or in an
accessible network location.

Specify the location in <Custom Toolkit
Name>TestObjects.xml

Help files for the test
object classes (optional)

Must be a .chm file, located on the computer on
which UFT is installed.

Specify the location in <Custom Toolkit
Name>TestObjects.xml

Recommended File Locations
You specify the locations of the custom server DLL, Help, and icon files in the toolkit
support set's configuration files. You can specify these locations using relative paths.
For more information, see the Test Object Schema Help and the Toolkit Configuration
Schema Help (available with the WPF and Silverlight Add-in Extensibility Help).

Developer Guide
Chapter 3: Deploying the Toolkit Support Set

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 82

The recommended locations for these files are described in the following table:

Developer Guide
Chapter 3: Deploying the Toolkit Support Set

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 83

File Name Location

Custom Server DLL
files

When deploying support for WPF:

<UFT Installation folder>\dat\Extensibility\
WPF\<custom toolkit name>\CustomServers

When deploying support for Silverlight:

<UFT Installation
folder>\dat\Extensibility\Slv\
<custom toolkit name>\CustomServers

Icon files When deploying support for WPF:

<UFT Installation folder>\dat\Extensibility\
WPF\<custom toolkit name>\Res

When deploying support for Silverlight:

<UFT Installation
folder>\dat\Extensibility\Slv\
<custom toolkit name>\Res

Help files When deploying support for WPF:

<UFT Installation folder>\dat\Extensibility\
WPF\<custom toolkit name>\Help

When deploying support for Silverlight:

<UFT Installation
folder>\dat\Extensibility\Slv\
<custom toolkit name>\Help

Developer Guide
Chapter 3: Deploying the Toolkit Support Set

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 84

Setting the DevelopmentMode Attribute
l If you modify attributes of Identification Property elements in the test object
configuration file, keep the DevelopmentMode attribute of the TypeInformation
element set to true during the design stages of the custom toolkit support. Before
you deploy the custom toolkit support set for regular use, be sure to remove this
attribute (or set it to false). For more information, see "Modifying Identification
Property Attributes in a Test Object Configuration File" below.

Modifying Deployed Support
If you modify a deployed toolkit support set, you must reopen UFT and re-run the WPF
or Silverlight application for the changes to take effect.

If you change the identification property definitions that specify the functionalities for
which the properties are used in UFT, see "Modifying Identification Property Attributes
in a Test Object Configuration File".

Modifying Identification Property Attributes in a
Test Object Configuration File
The following attributes of the Identification Property element in the test object
configuration file specify information that can be modified in UFT (using the Object
Identification dialog box): AssistivePropertyValue, ForAssistive, ForBaseSmartID,
ForDescription, ForOptionalSmartID, and OptionalSmartIDPropertyValue. These
attributes determine the lists of identification properties used for different purposes in
UFT. For more information, see the UFT Test Object Schema Help, available in the UFT
WPF and Silverlight Add-in Extensibility Help.

Developer Guide
Chapter 3: Deploying the Toolkit Support Set

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 85

Therefore, by default, UFT reads the values of these attributes from the XML file only
once, to prevent overwriting any changes a user makes using the Object Identification
dialog box. In this way, UFT provides persistence for the user defined property lists.

If the user clicks the Reset Test Object button in the Object Identification dialog box,
the attributes' values are reloaded from the XML.

If the XML changed since the last time it was loaded (based on the file's modification
date in the system), UFT reads the attributes from the XML. UFT adds identification
properties to the relevant lists (and adjusts their order if necessary) according to the
values of these attributes, but does not remove any existing identification properties
from the lists.

To instruct UFT to completely refresh the identification property lists according to the
attributes defined in the XML each time UFT is opened, set the DevelopmentMode
attribute of the TypeInformation element in this test object configuration file to true.

Developer Guide
Chapter 3: Deploying the Toolkit Support Set

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 86

Considerations When Modifying Identification Properties Attributes

l If you modify attributes of Identification Property elements in the test object
configuration file, keep the DevelopmentMode attribute of the TypeInformation
element set to true during the design stages of the custom toolkit support. This
ensures that UFT uses all of the changes you make to the file.

l Before you deploy the toolkit support set for regular use, be sure to remove the
DevelopmentMode attribute of the TypeInformation element (or set it to false).
Otherwise, every time UFT opens it will refresh the property lists based on the
definitions in the test object configuration file. If UFT users change the property lists
using the Object Identification dialog box, their changes will be lost when they
reopen UFT.

l Though UFT does not remove existing properties from the property lists when
reading a modified test object configuration file (unless the DevelopmentMode
attribute is set to true), it does add properties and adjust the order of the lists
based on the definitions in the file. If UFT users removed properties from the lists or
modified their order using the Object Identification dialog box, those changes will be
lost when a modified file is loaded.

If you provide the custom toolkit support set to a third party, and you deliver an
upgrade that includes a modified test object configuration file, consider informing
the UFT users about such potential changes to their identification property lists.

Removing Deployed Support
When opening UFT, the UFT user can use the Add-in Manager to instruct UFT whether to
load the support provided for any particular environment or toolkit.

If you want to remove support for a custom toolkit from UFT after it is deployed, you
must delete its toolkit configuration file from the custom toolkit's folder under:
UFT Installation folder>\dat\Extensibility\WPF (or ...\Slv)

If none of the test object class definitions in a test object configuration file are used to
represent any custom controls (meaning they are no longer needed), you can delete the

Developer Guide
Chapter 3: Deploying the Toolkit Support Set

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 87

file from: UFT Installation Folder>\dat\Extensibility\WPF (or ...\Slv) and
UFT Add-in for ALM Installation folder>\dat\Extensibility\WPF (or ...\Slv) if relevant.

Developer Guide
Chapter 3: Deploying the Toolkit Support Set

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 88

Send Us Feedback
Can we make this Developer Guide better?

Tell us how: sw-doc@hp.com

HP UFT WPF and Silverlight Add-in Extensibility (12.00) Page 89

mailto:sw-doc@hp.com?subject=Feedback on Developer Guide (UFT WPF and Silverlight Add-in Extensibility 12.00)

	Welcome to HP UFT WPF and Silverlight Add-in Extensibility
	About the UFT WPF and Silverlight Add-in Extensibility SDK
	About the UFT WPF and Silverlight Add-in Extensibility Developer Guide
	Who Should Read This Guide
	Additional Online Resources

	Chapter 1: Developing UFT Support for a Custom WPF or Silverlight Toolkit
	About Developing WPF or Silverlight Add-in Extensibility Toolkit Support Sets
	The Test Object Configuration XML File
	Custom Servers
	Utility Methods and Properties
	WPF Add-in Extensibility Sample
	How to Create Support for a Custom WPF or Silverlight Toolkit
	How to Add Support for a Custom WPF or Silverlight Control
	How to Develop a Custom Server
	WPF/Silverlight Custom Server Setup Dialog Box (in Microsoft Visual Studio)
	Troubleshooting and Limitations - Developing Support

	Chapter 2: Tutorial: Create UFT Support for a Custom WPF Control
	Planning Support for the WPF Calendar Control
	Setting Up the WPF Add-in Extensibility Project for the WPF Calendar Control
	Designing the Toolkit Configuration File
	Designing the Test Object Configuration File
	Deploying and Testing the Preliminary Toolkit Support Set
	Design the Basic Custom Server
	Implement Support for Retrieving Identification Property Values
	Deploy and Test Your Basic Custom Server and Identification Property Support
	Implement Support for Running Test Object Operations
	Deploy and Test Your Support for Test Object Operations
	Implement Support for Recording
	Deploy and Test Your Support for Recording

	Chapter 3: Deploying the Toolkit Support Set
	About Deploying the Custom Toolkit Support
	Deploying the Custom Toolkit Support
	Setting the DevelopmentMode Attribute

	Modifying Deployed Support
	Modifying Identification Property Attributes in a Test Object Configuration File

	Removing Deployed Support

	Send Us Feedback

