
HP UFT .NET Add-in Extensibility
Software Version: 12.00
Windows ® operating systems

Developer Guide

Document Release Date: December 2014
Software Release Date: March 2014

Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained
herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notice
© Copyright 1992 - 2014 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Google™ and Google Maps™ are trademarks of Google Inc.

Intel® and Pentium® are trademarks of Intel Corporation in the U.S. and other countries.

Microsoft®,Windows®,Windows® XP, and Windows Vista ® are U.S. registered trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to:
https://softwaresupport.hp.com/group/softwaresupport/search-result.

This site requires an HP Passport account. If you do not have one, click the Create an account button on the HP Passport Sign in page.

Developer Guide

HP UFT .NET Add-in Extensibility (12.00) Page 2

https://softwaresupport.hp.com/group/softwaresupport/search-result

Support
Visit the HP Software Support Online web site at:https://softwaresupport.hp.com

This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools
needed to manage your business. As a valued support customer, you can benefit by using the support web site to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HP support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP
Passport ID, go to:https://softwaresupport.hp.com and click Register.

To find more information about access levels, go to:https://softwaresupport.hp.com/web/softwaresupport/access-levels.

HP Software Solutions & Integrations and Best Practices
VisitHP Software Solutions Now athttps://h20230.www2.hp.com/sc/solutions/index.jsp to explore how the products in the HP
Software catalog work together, exchange information, and solve business needs.

Visit the Cross Portfolio Best Practices Library athttps://hpln.hp.com/group/best-practices-hpsw to access a wide variety of best
practice documents and materials.

Developer Guide

HP UFT .NET Add-in Extensibility (12.00) Page 3

https://softwaresupport.hp.com/
https://softwaresupport.hp.com/
https://softwaresupport.hp.com/web/softwaresupport/access-levels
https://h20230.www2.hp.com/sc/solutions/index.jsp
https://hpln.hp.com/group/best-practices-hpsw

Contents

Welcome to HP UFT .NET Add-in Extensibility 7

About the UFT .NET Add-in Extensibility SDK 7

About the UFT .NET Add-in Extensibility Developer Guide 9

Who Should Read This Guide 11

Additional Online Resources 12

Chapter 1: Introducing UFT .NET Add-in Extensibility 13

About UFT .NET Add-in Extensibility 14

Deciding When to Use .NET Add-in Extensibility 15

Recognizing Which Elements of UFT Support Can Be Customized 16

Example: Customizing Recording of an Event's Meaningful Behaviors 17

Understanding How to Implement .NET Add-in Extensibility 20

Planning the .NET Add-in Extensibility Support Set 21

Developing the .NET Add-in Extensibility Support Set 21

Deploying the .NET Add-in Extensibility Support Set 26

Testing the .NET Add-in Extensibility Support Set 26

Chapter 2: Installing the HP UFT .NET Add-in Extensibility SDK 27

Before You Install 28

Installing the HP UFT .NET Add-in Extensibility SDK 28

Repairing the HP UFT .NET Add-in Extensibility SDK Installation 32

Uninstalling the HP UFT .NET Add-in Extensibility SDK 33

Chapter 3: Planning Your Support Set 34

About Planning UFT GUI Testing Support for Your .NET Add-in Extensibility Controls 35

Determining Information Related to Your Custom Controls 35

Analyzing the Custom Controls 36

Developer Guide

HP UFT .NET Add-in Extensibility (12.00) Page 4

Selecting the Coding Option for Implementing the Custom Servers 37

.NET DLL: Full Program Development Environment 38

XML Implementation 38

Selecting the Custom Server Run-Time Context Depending on the Test Function 39

Analyzing Custom Controls and Mapping Them to Test Objects 44

Using the .NET Add-in Extensibility Planning Checklist 45

.NET Add-in Extensibility Planning Checklist 47

Where Do You Go from Here? 48

Chapter 4: Developing Your Support Set 49

Understanding the Development Workflow 51

Describing the Test Object Model 51

Benefits of Describing Test Object Models 52

Creating Test Object Configuration Files 52

Understanding the Contents of the Test Object Configuration File 54

Modifying an Existing Test Object Class 55

Make Sure that Test Object Configuration File Information Matches Custom Server
Information 56

Implementing More Than One Test Object Configuration File 57

Understanding How UFT Merges Test Object Configuration Files 57

Example of a Test Object Configuration File 59

Mapping Custom Controls to Test Object Classes 60

Defining How UFT Operates on the Custom Controls 61

Using a .NET DLL to Extend Support for a Custom Control 62

Setting up the .NET Project 63

Implementing Test Record for a Custom Control Using a .NET DLL 71

Implementing Test Run for a Custom Control Using the .NET DLL 76

Implementing Support for Table Checkpoints and Output Values in the .NET DLL Custom
Server 77

Running Code under Application Under Test from the UFT Context 82

Reviewing Commonly-used API Calls 83

Using XML Files to Extend Support for a Custom Control 86

Understanding Control Definition Files 87

Developer Guide

HP UFT .NET Add-in Extensibility (12.00) Page 5

An Example of a Control Definition File 87

Using the .NET Add-in Extensibility Samples 89

Troubleshooting and Limitations - Running the Support You Designed 90

Chapter 5: Configuring and Deploying the Support Set 93

Understanding the Deployment Workflow 94

Configuring UFT to Use the Custom Server 94

Understanding How to Configure UFT Windows Forms Extensibility 95

Copying Configuration Information Generated by the UFT Custom Server Settings Wizard 97

Deploying the Custom Support Set 100

Placing Files in the Correct Locations 101

Modifying Deployed Support 102

Removing Deployed Support 102

Testing the Custom Support Set 103

Testing Basic Functionality of the Support Set 103

Testing Implementation 105

Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms
Control 106

Developing a New Support Set 107

Implementing Test Record Logic 110

Implementing Test Run Logic 111

Checking the TrackBarSrv.cs File 112

Configuring and Deploying the Support Set 114

Testing the Support Set 116

Chapter 7: Learning to Create Support for a Complex Custom .NET Windows
Forms Control 117

SandBar Toolbar Example 118

Understanding the ToolBarSrv.cs File 123

Send Us Feedback 126

Developer Guide

HP UFT .NET Add-in Extensibility (12.00) Page 6

Welcome to HP UFT .NET Add-in
Extensibility
HP UFT .NET Add-in Extensibility is an SDK (Software Development Kit) package that
enables you to support testing applications that use third-party and custom .NET
Windows Forms controls that are not supported out-of-the-box by the UFT .NET Add-in.

This chapter includes:

About the UFT .NET Add-in Extensibility SDK 7

About the UFT .NET Add-in Extensibility Developer Guide 9

Who Should Read This Guide 11

Additional Online Resources 12

About the UFT .NET Add-in Extensibility SDK
The UFT .NET Add-in Extensibility SDK installation provides the following:

l An API that enables you to extend the UFT .NET Add-in to support custom .NET
Windows Forms controls.

l Custom Server C# and Visual Basic project templates for Microsoft Visual Studio.

Each Custom Server template provides a framework of blank code, some sample
code, and the UFT project references required to build a custom server.

Note: For a list of supported Microsoft Visual Studio versions, see the HP Unified
Functional Testing Product Availability Matrix, available from the UFT help folder

HP UFT .NET Add-in Extensibility (12.00) Page 7

or the HP Support Matrix page (requires an HP passport).

l The wizard that runs when the Custom Server template is selected to create a new
project. The wizard simplifies setting up a Microsoft Visual Studio project to create a
Custom Server .NET DLL using .NET Add-in Extensibility. For more information, see
Using a .NET DLL to Extend Support for a Custom Control.

l The .NET Add-in Windows Forms Extensibility Help, which includes the following:

n A developer guide, including a step-by-step tutorial in which you develop support
for a sample custom control.

n An API Reference.

n The .NET Add-in Extensibility Configuration Schema Help.

n The .NET Add-in Extensibility Control Definition Schema Help.

n The UFT Test Object Schema Help.

The Help is available from Start > All Programs > HP Software > HP Unified
Functional Testing > Extensibility > Documentation

l A printer-friendly Adobe portable document format (PDF) version of the developer
guide (available from Start > All Programs > HP Software > HP Unified Functional
Testing > Extensibility > Documentation and in the <Unified Functional Testing
installation>\help\Extensibility folder).

l A sample .NET Add-in Extensibility support set that extends UFT GUI testing support
for the SandBar toolbar custom control.

Developer Guide
Welcome to HP UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.00) Page 8

http://support.openview.hp.com/selfsolve/document/KM438391

Accessing UFT .NET Add-in Extensibility in Windows 8 Operating
Systems
UFT files that were accessible from the Startmenu in previous versions of Windows are
accessible in Windows 8 from the Start screen or the Apps screen.

l Applications (.exe files). You can access UFT applications in Windows 8 directly
from the Start screen. For example, to start UFT, double-click the HP Unified
Functional Testing shortcut.

l Non-program files. You can access documentation from the Apps screen.

Note: As in previous versions of Windows, you can access context sensitive help
in UFT by pressing F1, and access complete documentation and external links
from the Help menu.

About the UFT .NET Add-in Extensibility
Developer Guide
This guide explains how to set up UFT .NET Add-in Extensibility and use it to extend
UFT GUI testing support for third-party and custom .NET Windows Forms controls.

Developer Guide
Welcome to HP UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.00) Page 9

This guide assumes you are familiar with UFT functionality and should be used together
with the following sections of the .NET Add-in Extensibility online Help (Start > All
Programs > HP Software > HP Unified Functional Testing > Extensibility >
Documentation > .NET Add-in Windows Forms Extensibility Help):

l UFT .NET Add-in Extensibility API Reference

l UFT .NET Add-in Extensibility Systems Forms Configuration Schema Help

l UFT .NET Add-in Extensibility Control Definition Schema Help

l HP UFT Test Object Schema Help

These documents should also be used in conjunction with the following
UFT documentation, available with the UFT installation (Help > HP Unified Functional
Testing Help from the UFT main window):

l HP Unified Functional Testing User Guide

l The .NET section of the HP Unified Functional Testing Add-ins Guide

l HP UFT Object Model Reference for GUI Testing

Note:

The information, examples, and screen captures in this guide focus specifically on
working with UFT GUI tests. However, much of the information in this guide applies
equally to business components.

Business components are part of HP Business Process Testing. For more
information, see the HP Unified Functional Testing User Guide and the HP Business
Process Testing User Guide.

When working in Windows 8, access UFT documentation and other files from the
Apps screen.

To enable you to search this guide more effectively for specific topics or keywords, use
the following options:

Developer Guide
Welcome to HP UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.00) Page 10

l AND, OR, NEAR, and NOT logical operators. Available from the arrow next to the
search box.

l Search previous results. Available from the bottom of the Search tab.

l Match similar words. Available from the bottom of the Search tab.

l Search titles only. Available from the bottom of the Search tab.

Tip: When you open a Help page from the search results, the string for which you
searched may be included in a collapsed section. If you cannot find the string on the
page, expand all the drop-down sections and then use Ctrl-F to search for the
string.

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to the HP Software Product Manuals Web site
(http://h20230.www2.hp.com/selfsolve/manuals).

Who Should Read This Guide
This guide is intended for programmers, QA engineers, systems analysts, system
designers, and technical managers who want to extend UFT GUI testing support for .NET
Windows Forms custom controls.

To use this guide, you should be familiar with:

l Major UFT features and functionality

l The UFT Object Model

l UFT .NET Add-in

l .NET programming in C# or Visual Basic

l XML (basic knowledge)

Developer Guide
Welcome to HP UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.00) Page 11

http://h20230.www2.hp.com/selfsolve/manuals

Additional Online Resources
The following additional online resources are available:

Resource Description

Troubleshooting
& Knowledge
Base

The Troubleshooting page on the HP Software Support Web
site where you can search the Self-solve knowledge base.
The URL for this Web site is
http://h20230.www2.hp.com/troubleshooting.jsp.

HP Software
Support

The HP Software Support Web site. This site enables you to
browse the Self-solve knowledge base. You can also post to
and search user discussion forums, submit support requests,
download patches and updated documentation, and more.
The URL for this Web site
www.hp.com/go/hpsoftwaresupport.

l Most of the support areas require that you register as an
HP Passport user and sign in. Many also require a
support contract.

l To find more information about access levels, go to:
http://h20230.www2.hp.com/new_access_levels.jsp

l To register for an HP Passport user ID, go to:
http://h20229.www2.hp.com/passport-registration.html

HP Software
Web site

The HP Software Web site. This site provides you with the
most up-to-date information on HP Software products. This
includes new software releases, seminars and trade shows,
customer support, and more. The URL for this Web site is
www.hp.com/go/software

Developer Guide
Welcome to HP UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.00) Page 12

http://h20230.www2.hp.com/troubleshooting.jsp
http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html
http://www.hp.com/go/software

Chapter 1: Introducing UFT .NET Add-in
Extensibility
UFT .NET Add-in Extensibility enables you to provide high-level support for third-party
and custom .NET Windows Forms controls that are not supported out-of-the-box by the
UFT .NET Add-in.

This chapter includes:

About UFT .NET Add-in Extensibility 14

Deciding When to Use .NET Add-in Extensibility 15

Recognizing Which Elements of UFT Support Can Be Customized 16

Example: Customizing Recording of an Event's Meaningful Behaviors 17

Understanding How to Implement .NET Add-in Extensibility 20

Planning the .NET Add-in Extensibility Support Set 21

Developing the .NET Add-in Extensibility Support Set 21

Deploying the .NET Add-in Extensibility Support Set 26

Testing the .NET Add-in Extensibility Support Set 26

HP UFT .NET Add-in Extensibility (12.00) Page 13

About UFT .NET Add-in Extensibility
The UFT .NET Add-in provides support for a number of commonly used .NET Windows
Forms controls. UFT .NET Add-in Extensibility enables you to support third-party and
custom .NET Windows Forms controls that are not supported out-of-the-box by the
.NET Add-in.

When UFT learns an object in an application, it recognizes the object as belonging to a
specific test object class. This determines the identification properties and test object
methods of the test object that represents the application's object in UFT.

Without extensibility, .NET Windows Forms controls that are not supported out-of-the-
box are represented in UFT GUI tests by a generic SwfObject test object. This generic
test object might be missing characteristics that are specific to the .NET Windows
Forms control you are testing. Therefore, when you try to create test steps with this
test object, the available test object methods might not be sufficient. In addition, when
you record a test on controls that are not supported, the recorded steps reflect the
low-level activities passed as Windows messages, rather than the meaningful behavior
of the controls.

Using UFT .NET Add-in Extensibility, you can teach UFT to recognize custom .NET
Windows Forms controls more specifically. When a custom control is mapped to an
existing UFT test object, you have the full functionality of a UFT test object, including
visibility when using the UFT statement completion feature and the ability to create
more meaningful steps in the test.

Note: If UFT recognizes a .NET control out-of-the-box, and uses a .NET
add-in test object other than SwfObject to represent it, then you cannot map this
control to any other test object type.

The behavior of the existing test object methods might not be appropriate for the
custom control. You can modify the behavior of existing test object methods, or extend
UFT test objects with new methods that represent the meaningful behaviors of the
control.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.00) Page 14

You develop a Custom Server that extends the .NET Add-in interfaces that run methods
on the controls in the application. The Custom Server can override existing methods or
define new ones.

Deciding When to Use .NET Add-in
Extensibility
The UFT .NET Add-in provides a certain level of support for most .NET Windows Forms
controls. Before you extend support for a custom .NET Windows Forms control, analyze
it from a UFT perspective to view the extent of this support and to decide which
elements of support you need to modify.

When you analyze the custom .NET Windows Forms control, use the .NET Windows
Forms Spy, Keyword View, Editor, and the Record option. Make sure you examine each
of the elements described in "Recognizing Which Elements of UFT Support Can Be
Customized" on the next page.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.00) Page 15

If you are not satisfied with the existing object identification or behavior, your .NET
Windows Forms control is a candidate for .NET Add-in Extensibility, as illustrated in the
following situations:

l UFT recognizes your control as a generic SwfObject, but a different test object class
exists with more appropriate behavior for your control. You can use .NET Add-in
Extensibility to map the control to this test object class.

l UFT might recognize the control using a test object that does not fit your needs. You
can use .NET Add-in Extensibility to instruct UFT to change the functionality of the
test object by modifying its methods.

l UFT might identify individual sub-controls within your custom control, but not
properly identify your main control. For example, if your main custom control is a
digital clock with edit boxes containing the hour and minute digits, you might want
changes in the time to be recognized as SetTime operations on the clock control and
not as Set operations on the edit boxes. You can use .NET Add-in Extensibility to set
a message filter to process messages from child controls, and record operations on
the main control in response to events that occur on the controls it contains.

Recognizing Which Elements of UFT
Support Can Be Customized
The following elements comprise UFT GUI testing support. By extending the existing
support of one or more of these elements, you can develop the support you need to
create meaningful and maintainable tests.

Test Object Classes
In UFT, every object in an application is represented by a test object of a specific test
object class. The test object class determines the list of identification properties and
test object methods available in UFT for this test object. You might want to instruct
UFT to use a different test object class to represent your control.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.00) Page 16

Test Object Methods
The test object class used to represent the .NET Windows Forms control determines the
list of test object methods for a test object. However, the same test object method
might operate differently for different .NET Windows Forms controls represented by
test objects from the same test object class. This happens because depending on the
specific type of .NET Windows Forms control, UFT may have to perform the test object
method differently.

Recording Events
One way to create UFT GUI tests is by recording user operations on the application.
When you start a recording session, UFT listens for events that occur on objects in the
application and registers corresponding test steps. The test object class and Custom
Server used to represent a .NET Windows Forms control determines which events UFT
can listen for on the .NET Windows Forms control and what test step to record for each
event that occurs.

Example: Customizing Recording of an
Event's Meaningful Behaviors
A control's meaningful behavior is the behavior that you want to test. For example,
when you click a button in a radio button group in your application, you are interested
in the value of the selection, not in the Click event and the coordinates of the click. The
meaningful behavior of the radio button group is the change in the selection.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.00) Page 17

If you record a test or business component on a custom control without extending
support for the control, you record the low-level behaviors of the control. For example,
the TrackBar control in the sample .NET application shown below is a control that does
not have a corresponding UFT test object.

If you record on the TrackBar without implementing support for the control, the
Keyword View looks like this:

In the Editor, the recorded test looks like this:

SwfWindow("Sample Application").SwfObject("trackBar1").Drag 50,10
SwfWindow("Sample Application").SwfObject("trackBar1").Drop 32,11
SwfWindow("Sample Application").SwfObject("trackBar1").Drag 34,11
SwfWindow("Sample Application").SwfObject("trackBar1").Drop 51,12
SwfWindow("Sample Application").SwfObject("trackBar1").Drag 50,4
SwfWindow("Sample Application").SwfObject("trackBar1").Drop 23,7
SwfWindow("Sample Application").SwfObject("trackBar1").Click 83,10
SwfWindow("Sample Application").SwfObject("trackBar1").Click 91,11
SwfWindow("Sample Application").SwfButton("Close").Click

Note that the Drag, Drop, and Clickmethods—the low-level actions of the TrackBar
control—are recorded at specific coordinates in the control display. These steps are
difficult to understand and modify.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.00) Page 18

If you use .NET Add-in Extensibility to support the TrackBar control, the result is more
meaningful. Below is the Keyword View of a test recorded on the TrackBar with a
Custom Server that implements a customized SetValue method.

In the Editor, the recorded test looks like this:

SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 5
SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 0
SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 10
SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 6
SwfWindow("Sample Application").Close

UFT is now recording a SetValue operation reflecting the new slider position, instead of
the low-level Drag, Drop, and Click operations recorded without the customized test
object. You can understand and modify this test more easily.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.00) Page 19

Understanding How to Implement .NET
Add-in Extensibility
You implement .NET Add-in Extensibility support for a set of custom controls by
developing a .NET Add-in Extensibility support set. Developing a .NET Add-in
Extensibility support set consists of the following stages, each of which is described
below.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.00) Page 20

Planning the .NET Add-in Extensibility Support
Set
Detailed planning of how you want UFT to recognize the custom controls enables you to
correctly build the fundamental elements of the .NET Add-in Extensibility support set.
Generally, to plan the support set, you:

l Determine the .NET Windows Forms controls for which you need to customize
support.

l Plan the test object model by determining which test objects and operations you
want to support based on the controls and business processes you need to test.

l Plan the most appropriate way for implementing the support.

For more information, see "Planning Your Support Set" on page 34.

Developing the .NET Add-in Extensibility Support
Set
To develop a .NET Add-in Extensibility support set, you must:

l Define the test object model.

l Create Custom Servers.

l Map the custom controls to the relevant test object classes.

These activities are described in detail in the following sections:

Define The Test Object Model
Introduce the test object model that you want UFT to use to test your applications and
controls. The test object model is a list of the test object classes that represent custom
controls in your environment, and their test object methods.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.00) Page 21

You define the test object model in a test object configuration XML file. For more
information, see "Describing the Test Object Model " on page 51.

Create Custom Servers
Create a Custom Server (DLLs or control definition XML file) to handle each custom
control. In the Custom Server, you can modify:

l What steps are recorded during a recording session.

l The implementation of test object methods.

l Support for table checkpoints and output values.

The Custom Server mediates between UFT and the .NET application. During a recording
session, the Custom Server listens to events and maps the user activities to meaningful
test object methods. During a test run, the Custom Server performs the test object
methods on the .NET Windows Forms control.

Custom Server Coding Options

The Custom Server can be implemented in one of the following coding options:

l .NET DLL

l XML, based on a schema (which UFT then uses to create a .NET DLL Custom Server
behind the scenes)

For more information, see:

l "Using a .NET DLL to Extend Support for a Custom Control" on page 62

l "Using XML Files to Extend Support for a Custom Control" on page 86

Custom Server Run-time Contexts

Classes supplied by a Custom Server may be instantiated in the following software
processes (run-time contexts):

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.00) Page 22

l Application under test context: An object created in the context of the application
you are testing has direct access to the .NET Windows Forms control's events,
methods, and properties. However, it cannot listen to Windows messages.

l UFT context: An object created in the UFT context can listen to Windows messages.
However, it does not have direct access to the .NET Windows Forms control's events,
methods, and properties.

If the Custom Server is implemented as a .NET DLL, an object created under UFT can
create assistant classes that run under the application you are testing.

For more details on run-time contexts, see "Selecting the Custom Server Run-Time
Context Depending on the Test Function" on page 39.

For more information on assistant classes, see "Using a .NET DLL to Extend Support for
a Custom Control" on page 62 and see the UFT .NET Add-in Extensibility API Reference.

Map the Custom Controls to the Relevant Test Objects
Map test objects using the .NET Add-in Extensibility configuration file (SwfConfig.xml).
This file is located in the <UFT installation path>\dat\ folder and contains:

l The mapping of the custom controls to their corresponding test objects.

l The mapping to corresponding Custom Servers. This mapping provides the full
functionality to UFT test objects.

For more information, see "Mapping Custom Controls to Test Object Classes" on
page 60.

The illustrations below demonstrate how .NET Add-in Extensibility maps custom
controls to their test objects and Custom Servers during recording sessions and run
sessions.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.00) Page 23

How UFT Maps Custom Controls to Test Object Classes During Recording

The following illustration and table explain how UFT maps custom controls to their test
objects, locates the corresponding extended implementation for the custom control,
and records an appropriate test step when recording.

Step Description

1 An event occurs on a type of control that UFT does not recognize, or for
which recording implementation is customized.

2 UFT checks the Type attribute of the Control elements in the
SwfConfig.xml file to locate information for this type of custom control.
UFT then checks the MappedTo attribute, to find the test object class
mapped to this type of control. If no specific test object class is specified,
SwfObject is used.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.00) Page 24

Step Description

3 UFT checks the DLLName element in the SwfConfig.xml file to locate
the Custom Server containing implementation for this type of custom
control, and communicates with the Custom Server.

4 The Custom Server instructs UFT what step to add to the test in response
to the event that occurred.

How UFT Maps Custom Controls to Custom Servers When Running a Test

The following illustration and table explain how UFT maps custom controls to their test
objects, locates the corresponding extended implementation for the custom control,
and performs the appropriate operations on a custom control when running a test.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.00) Page 25

Step Description

1 A test runs. This test includes a test object representing a custom control
whose implementation has been customized.

2 UFT locates the Control element in the SwfConfig.xml file that contains
information for the custom control mapped to this test object.

3 UFT checks the DLLName element in the SwfConfig.xml file to locate
the Custom Server containing implementation for the custom control.

4 UFT runs the test using the correct implementation for the test object
operation as defined by the implementation of the custom control.

Deploying the .NET Add-in Extensibility Support
Set
To deploy your .NET Add-in Extensibility support set and enable UFT to support your
controls, copy the files you created to specific locations within the UFT installation
folder.

For more information, see "Configuring and Deploying the Support Set" on page 93.

Testing the .NET Add-in Extensibility Support Set
After you have created the .NET Add-in Extensibility support for your controls, test your
.NET Add-in Extensibility support set.

You can learn how to develop a .NET Add-in Extensibility support set hands-on, by
performing the lessons in "Learning to Create Support for a Simple Custom .NET
Windows Forms Control" on page 106 and "Learning to Create Support for a Complex
Custom .NET Windows Forms Control" on page 117.

Developer Guide
Chapter 1: Introducing UFT .NET Add-in Extensibility

HP UFT .NET Add-in Extensibility (12.00) Page 26

Chapter 2: Installing the HP UFT .NET
Add-in Extensibility SDK
This chapter describes the installation process for the HP UFT .NET Add-in Extensibility
SDK.

For a list of items that the HP UFT .NET Add-in Extensibility SDK installation provides,
see "About the UFT .NET Add-in Extensibility SDK " on page 7.

This chapter includes:

Before You Install 28

Installing the HP UFT .NET Add-in Extensibility SDK 28

Repairing the HP UFT .NET Add-in Extensibility SDK Installation 32

Uninstalling the HP UFT .NET Add-in Extensibility SDK 33

HP UFT .NET Add-in Extensibility (12.00) Page 27

Before You Install
Before you install the HP UFT .NET Add-in Extensibility SDK, review the following
requirements:

l You must have access to the Unified Functional Testing installation DVD.

l A supported version of Microsoft Visual Studio must be installed on your computer.

Note: For a list of supported Microsoft Visual Studio versions, see the HP Unified
Functional Testing Product Availability Matrix, available from the UFT help folder
or the HP Support Matrix page (requires an HP passport).

Installing the HP UFT .NET Add-in
Extensibility SDK
Use the HP Unified Functional Testing Setup program to install the HP UFT .NET Add-in
Extensibility SDK on your computer.

Note: You must be logged on with Administrator privileges to install the UFT .NET
Add-in Extensibility SDK.

To install the HP UFT .NET Add-in Extensibility SDK:

1. Close all instances of Microsoft Visual Studio.

2. Insert the Unified Functional Testing DVD into the CD-ROM/DVD drive. The Unified
Functional Testing Setup window opens. (If the window does not open, browse to
the DVD and double-click setup.exe from the root folder.)

Developer Guide
Chapter 2: Installing the HP UFT .NET Add-in Extensibility SDK

HP UFT .NET Add-in Extensibility (12.00) Page 28

http://support.openview.hp.com/selfsolve/document/KM438391

3. Click Add-in Extensibility and Web 2.0 Toolkits. The Unified Functional Testing
Add-in Extensibility and Web 2.0 Toolkit Support screen opens.

4. Click UFT .NET Add-in Extensibility SDK Setup. The UFT .NET Add-in Extensibility
SDK Setup wizard opens.

Note: If the wizard screen that enables you to select whether to repair or
remove the SDK installation opens, the UFT .NET Add-in Extensibility SDK is
already installed on your computer. Before you can install a new version, you
must first uninstall the existing one, as described in "Uninstalling the HP UFT
.NET Add-in Extensibility SDK" on page 33.

5. Follow the instructions in the wizard to complete the installation.

6. In the final screen of the Setup wizard, if you select the Show Readme check box,
the UFT .NET Add-in Extensibility Readme file opens after you click Close. The
Readme file contains the latest technical and troubleshooting information. To open
the Readme file at another time, select Start > All Programs > HP Software > HP
Unified Functional Testing > Extensibility > Documentation > .NET Add-in
Extensibility Readme.

Note: When working in Windows 8, access UFT documentation and other files
from the Apps screen.

7. Click Close to exit the Setup wizard.

8. If you use a non-English edition of Visual Studio, do the following to apply the
installed UFT CustomServer project templates to your Visual Studio edition:

Note: The following instructions apply to Visual Studio 2008 installed on a 32-
bit operating system. The folder and file names are slightly different if you are
working with Visual Studio 2010, or on a 64-bit operating system.

a. Copy the QuickTestCustomServerVB.zip file from: %ProgramFiles%\
Microsoft Visual Studio 9.0\Common7\IDE\ProjectTemplates\VisualBasic\
Windows\1033 (English language setting folder) to the folder relevant to the

Developer Guide
Chapter 2: Installing the HP UFT .NET Add-in Extensibility SDK

HP UFT .NET Add-in Extensibility (12.00) Page 29

language you use (for example, use 1036 for French).

b. Run the PostCustomVizard.exe program from the %ProgramFiles%\Microsoft
Visual Studio 9.0\Common7\IDE folder.

c. Repeat this process for the C# template, copying the
QuickTestCustomServer.zip file from:
%ProgramFiles%\Microsoft Visual Studio 9.0\Common7\IDE\
ProjectTemplates\CSharp\Windows\1033

To confirm that the installation was successful:

Note: The Microsoft Visual Studio dialog box illustration and the instructions in this
procedure refer to Microsoft Visual Studio 2008. If you use a different Microsoft
Visual Studio version, the dialog box may differ slightly in appearance and the UFT
CustomServer template may be located in a slightly different node in the tree.

1. Open a supported version of Microsoft Visual Studio.

For a list of supported Microsoft Visual Studio versions, see the HP Unified
Functional Testing Product Availability Matrix, available from the UFT help folder or
the HP Support Matrix page (requires an HP passport).

2. Select File > New > Project to open the New Project dialog box.

3. Select the Visual Basic > Windows node in the Project types tree.

Developer Guide
Chapter 2: Installing the HP UFT .NET Add-in Extensibility SDK

HP UFT .NET Add-in Extensibility (12.00) Page 30

http://support.openview.hp.com/selfsolve/document/KM438391

4. Confirm that the UFT CustomServer template icon is displayed in the Templates
pane:

5. Select the Visual C# > Windows node in the Project types tree.

6. Confirm that the UFT CustomServer template icon is displayed in the Templates
pane.

Note: If you upgrade to a new version of Microsoft Visual Studio, you must
uninstall and reinstall the .NET Add-in Extensibility SDK to be able to access the
UFTCustomServer template.

Developer Guide
Chapter 2: Installing the HP UFT .NET Add-in Extensibility SDK

HP UFT .NET Add-in Extensibility (12.00) Page 31

Repairing the HP UFT .NET Add-in
Extensibility SDK Installation
You can use the Unified Functional Testing Setup program to repair an existing HP UFT
.NET Add-in SDK installation by replacing any missing or damaged files from your
previous installation.

Note:

l You must use the same version of the setup program as you used for the original
installation.

l You must be logged on with Administrator privileges to repair the installation.

l If User Account Control (UAC) is available for your operating system, UAC must
be turned off while you repair the installation.

To repair the HP UFT .NET Add-in Extensibility SDK installation:

1. Insert the Unified Functional Testing DVD into the CD-ROM/DVD drive. The Unified
Functional Testing Setup window opens. (If the window does not open, browse to
the DVD and double-click setup.exe from the root folder.)

2. Click Add-in Extensibility and Web 2.0 Toolkits. The Unified Functional Testing
Add-in Extensibility and Web 2.0 Toolkit Support screen opens.

3. Click UFT .NET Add-in Extensibility SDK Setup. The .NET Add-in Extensibility SDK
Setup wizard opens, enabling you to select whether to repair or remove the SDK
installation.

4. Select Repair and click Finish. The setup program replaces the UFT .NET Add-in
Extensibility SDK files and opens the Installation Complete screen.

5. In the Installation Complete screen, click Close to exit the Setup wizard.

Developer Guide
Chapter 2: Installing the HP UFT .NET Add-in Extensibility SDK

HP UFT .NET Add-in Extensibility (12.00) Page 32

Uninstalling the HP UFT .NET Add-in
Extensibility SDK
You can uninstall the HP UFT .NET Add-in SDK by using Add/Remove Programs as you
would for other installed programs. Alternatively, you can use the Unified Functional
Testing Setup program.

Note:

l You must use the same version of the setup program as you used for the original
installation.

l You must be logged on with Administrator privileges to uninstall the UFT .NET
Add-in Extensibility SDK.

To uninstall the HP UFT .NET Add-in Extensibility SDK:

1. Insert the Unified Functional Testing DVD into the CD-ROM/DVD drive. The Unified
Functional Testing Setup window opens. (If the window does not open, browse to
the DVD and double-click setup.exe from the root folder.)

2. Click Add-in Extensibility and Web 2.0 Toolkits. The Unified Functional Testing
Add-in Extensibility and Web 2.0 Toolkit Support screen opens.

3. Click UFT .NET Add-in Extensibility SDK Setup. The .NET Add-in Extensibility SDK
Setup wizard opens, enabling you to select whether to repair or remove the SDK.

4. Select Remove and click Finish. The setup program removes the UFT .NET Add-in
Extensibility SDK and opens the Installation Complete screen.

5. In the Installation Complete screen, click Close to exit the Setup wizard.

Developer Guide
Chapter 2: Installing the HP UFT .NET Add-in Extensibility SDK

HP UFT .NET Add-in Extensibility (12.00) Page 33

Chapter 3: Planning Your Support Set
Before you begin to create support for custom controls, you must carefully plan the
support. Detailed planning of how you want UFT to recognize the custom controls
enables you to correctly build the fundamental elements of the .NET Add-in
Extensibility support set.

This chapter includes:

About Planning UFT GUI Testing Support for Your .NET Add-in Extensibility
Controls 35

Determining Information Related to Your Custom Controls 35

Analyzing the Custom Controls 36

Selecting the Coding Option for Implementing the Custom Servers 37

.NET DLL: Full Program Development Environment 38

XML Implementation 38

Selecting the Custom Server Run-Time Context Depending on the Test Function 39

Analyzing Custom Controls and Mapping Them to Test Objects 44

Using the .NET Add-in Extensibility Planning Checklist 45

.NET Add-in Extensibility Planning Checklist 47

Where Do You Go from Here? 48

HP UFT .NET Add-in Extensibility (12.00) Page 34

About Planning UFT GUI Testing Support for
Your .NET Add-in Extensibility Controls
Extending the UFT .NET Add-in's support to recognize custom .NET Windows Forms
controls is a process that requires detailed planning. To assist you with this, the
sections in this chapter include sets of questions related to the implementation of
support for your custom controls. When you create your .NET Add-in Extensibility
support set, you implement it based on the answers you provide to these questions.

Determining Information Related to Your
Custom Controls
Decide which controls this support set will support.

Before you begin planning support for custom .NET Windows Forms controls, make sure
you have full access to the controls and understand their behavior.

You must have an application in which you can view the controls in action.

You must also be able to view the source that implements them. You do not need to
modify any of a custom control's sources to support it in UFT, but you do need to be
familiar with them.

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 35

When planning custom support for a specific type of control, carefully consider how you
want UFT to recognize controls of this type—what type of test object you want to
represent the controls in UFT GUI tests, which test object methods you want to use, and
so on. Make these decisions based on the business processes that might be tested using
this type of control and operations that users are expected to perform on these
controls:

l Make sure you know the methods the control supports, what properties it has, the
events for which you can listen, and so on.

l Identify existing test object classes whose functionality is similar to that of the
custom .NET Windows Forms controls.

l Decide what methods need to be written or modified for supporting the controls.

Analyzing the Custom Controls
You can run an application containing the custom control and analyze the control from a
UFT perspective using the .NET Windows Forms Spy, the Keyword View, and the Record
option. This enables you to see how UFT recognizes the control without custom support,
and helps you to determine what you want to change.

Using the .NET Windows Forms Spy

You can use the .NET Windows Forms Spy to help you develop extensibility for .NET
Windows Forms controls. The .NET Windows Forms Spy enables you to:

l View details about selected .NET Windows Forms controls and their run-time object
properties.

l See which events cause your application to change (to facilitate record and run
extensibility implementation) and how the changes manifest themselves in the
control's state.

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 36

You access the .NET Windows Forms Spy by choosing Tools > .NET Windows Forms Spy
in the main UFT window.

Note: To spy on a .NET Windows Forms application, make sure that the application
is running with Full Trust. If the application is not defined to run with Full Trust, you
cannot spy on the application's .NET Windows Forms controls with the .NET
Windows Forms Spy. For information on defining trust levels for .NET applications,
see the relevant Microsoft documentation.

For more information on the .NET Windows Forms Spy, see the HP Unified Functional
Testing Add-ins Guide.

When you plan the support for a specific control, you must ask yourself a series of
questions. You can find a list of these questions in "Using the .NET Add-in Extensibility
Planning Checklist" on page 45. When you are familiar with the questions and you are
designing your own custom support classes, you can use the abbreviated, printable
checklist on page 47.

Selecting the Coding Option for
Implementing the Custom Servers
You can implement custom support for custom .NET Windows Forms controls in the
following ways:

l .NET DLL. Extends support for the control using a .NET Assembly.

l XML. Extends support for the control using an XML file, based on a schema.

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 37

.NET DLL: Full Program Development
Environment
Most Custom Servers are implemented as a .NET DLL. This option is generally preferred
because:

l Development is supported by all the services of the program development
environment, such as syntax checking, debugging, and Microsoft IntelliSense.

l If table checkpoint and output value support is needed, this support is available only
when implementing the Custom Server as a .NET DLL.

l A Custom Server implemented as a .NET DLL can perform part of its Test Record
functions in the UFT context and part in the context of the application being tested.
For more information, see "Using a .NET DLL to Extend Support for a Custom
Control" on page 62, and the UFT .NET Add-in Extensibility API Reference (available in
the UFT .NET Add-in Extensibility online Help.)

For information on run-time contexts, see "Selecting the Custom Server Run-Time
Context Depending on the Test Function" on the next page.

XML Implementation
There are circumstances when it is most practical to implement Custom Servers using
the XML coding method. These circumstances include:

l When the controls are relatively simple and well documented.

l When the controls map well to an existing object, but you need to replace the
implementation during a recording session (Test Record), or replace or add a small
number of test object methods during a run session (Test Run).

l When a full programming environment is not available–implementation using XML
Custom Servers requires only a text editor.

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 38

However, when implementing a custom control with XML:

l You have none of the support provided by a program development environment.

l The XML implementation includes C# programming commands, and runs only in the
Application under test context.

For more information, see "Using XML Files to Extend Support for a Custom Control" on
page 86.

Selecting the Custom Server Run-Time
Context Depending on the Test Function
Each Custom Server may implement the following test functions for each control:

l Test Record

l Test Run

l Table Verification (to support checkpoints and output values)

l A combination of these test functions

Run-time contexts include:

l Application under test: The context of the application which is being tested.

l UFT: The UFT context.

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 39

The following table provides guidelines for determining which test function you can
implement for each run-time context.

Need /
Task

Test
Record

Test
Run

Table
Verification

Run-Time
Context

Explanation

Create
tasks using
keyword-
driven
testing (and
not by
recording
steps on an
application)

Not
applicable

Yes Only for
.NET DLL
Custom
Servers

Either
Application
under test
or UFT

The Test
Record test
function
records the
actions
performed on
the
application
being tested
and the
application's
resulting
behaviors.
The
recording is
then
converted to
a test. If you
plan to create
GUI tests
using
keyword-
driven
testing, and
not by
recording
steps on an
application,
you do not
need to
implement
the Test
Record
function.

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 40

Need /
Task

Test
Record

Test
Run

Table
Verification

Run-Time
Context

Explanation

Implement
the Custom
Server in
the
Application
under test
context

Optional Optional
(usually)

Only for
.NET DLL
Custom
Servers

Application
under test

The Test Run
function tests
if the
application is
performing as
required by
running the
test and
tracking the
results. Test
Run is nearly
always
implemented
in the
Application
under test
context.

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 41

Need /
Task

Test
Record

Test
Run

Table
Verification

Run-Time
Context

Explanation

Listen to
Microsoft
Windows
messages

Yes Only
with
assistant
classes

Only for
.NET DLL
Custom
Servers

UFT If the .NET
DLL Custom
Server must
both listen to
Windows
messages
and access
control
events and
properties,
use assistant
classes. The
Custom
Server
running in the
UFT context
can listen to
events in the
Application
under test
context with
assistant
class objects
that run in the
Application
under test
context.
These
objects also
provide direct
access to
control
properties.

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 42

Need /
Task

Test
Record

Test
Run

Table
Verification

Run-Time
Context

Explanation

Implement
table
checkpoints
and output
values on
custom grid
controls

Optional Optional Only for
.NET DLL
Custom
Servers

Either
Application
under test
or UFT

You can
implement
support for
table
checkpoints
and output
values on
custom grid
controls,
regardless of
the context in
which your
.NET DLL
runs.

Your
application
uses UFT
services
more than it
uses
services of
the custom
control

Yes, but
possibly
less
efficient

Possibly
more
efficient

Possibly
more
efficient

UFT is
preferred

There is no
need to listen
to Windows
messages
during a Test
Run session,
so the UFT
context is not
required.
However, if
your
application
uses UFT
services
more than it
uses services
of the custom
control, it may
be more
efficient to
implement
Test Run in
the UFT
context.

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 43

Analyzing Custom Controls and Mapping
Them to Test Objects
When you develop .NET Add-in Extensibility, you map custom .NET Windows Forms
controls to existing UFT .NET Add-in test object classes and to Custom Servers that you
develop.

The first mapping determines the test object class that UFT uses to represent the
custom control. The second specifies the Custom Server to use. The Custom Server
extends the functionality of the test object that is used for the control to match the
control's functionality.

If UFT recognizes a .NET control out-of-the-box, and uses a .NET add-in test object
other than SwfObject to represent it (for example SwfEdit or SwfList), then you cannot
map this control to any other test object type. However, you can still map it to a
Custom Server and extend the test object functionality.

Mapping Custom Controls to Test Objects
Map the custom controls to test objects by using the MappedTo attribute in the UFT
.NET Add-in Extensibility's System Windows Forms configuration file (SwfConfig.xml).
Map each custom control to a UFT test object class containing behaviors that are
similar to those required to support your control.

If you do not specify a mapping, UFT maps the custom control to the default generic
test object, SwfObject. For more information on SwfConfig.xml, see "Understanding
How to Configure UFT Windows Forms Extensibility" on page 95.

Note: Mapping is sometimes sufficient without any programming. If the existing
UFT test object adequately covers a control, it is sufficient to map the control to
the UFT test object.

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 44

Mapping Custom Controls to Custom Servers
When you map your control to a functionally similar UFT test object, then, in your
Custom Server, you do not need to override test object methods that apply without
change to your custom control. For example, most controls contain a Clickmethod. If
the Clickmethod of the existing test object implements the Clickmethod of the custom
control adequately, you do not need to override the existing object's method.

To cover the Test Run functionality of the custom object that does not exist in the
existing object, add new methods in your Custom Server. To cover functionality that
has the same method name, but a different implementation, override the existing
object's methods.

If the UFT test object adequately covers Test Record, but you need to customize Test
Run, do not implement Test Record. If you do implement Test Record, the
implementation replaces that of the existing object. You must implement all required
Test Record functionality.

In UFT, when you edit a step with the test object that you customized to support the
custom control, the statement completion feature displays the custom properties and
methods that you defined for the test object, in addition to those that exist in UFT. UFT
uses test object configuration files to provide the list of custom test object methods
and properties.

Using the .NET Add-in Extensibility Planning
Checklist
When you plan the support for a specific type of control, you must ask yourself a series
of questions. These are explained below and are available in an abbreviated, printable
checklist on page 47.

1. Make sure you have access to an application that runs the custom control on a
computer with UFT installed.

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 45

2. Choose a .NET Windows Forms test object class to represent the custom control.
(UFT uses SwfObject by default)

3. Does the test object class you selected have to be customized?

a. Specify any test object methods that you want to add to the test object
definition. Specify the method argument types and names, and whether the
method returns a value in addition to the return code.

When you design the .NET Add-in Extensibility support set, you specify this
information in the test object configuration file.

b. Specify any test object methods whose behavior you want to modify or
override.

When you design the .NET Add-in Extensibility Custom Server, you will need to
implement any new test object methods that you add, or any test object
methods whose existing behavior you want to override.

4. Should test objects of this class be displayed in the .NET Windows Forms Spy? (By
default they are.)

5. Are you going to provide support for recording? If so, list the events that should
trigger recording.

6. If you are creating support for a table control, decide whether you want to provide
support for table checkpoints and output values on this control.

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 46

.NET Add-in Extensibility Planning Checklist
Use this checklist to plan the support for your custom control:

Custom Control Support
Planning Checklist

Specify in
Test
Object
Config.
file?

Specify in .NET
Add-in
Extensibility
configuration
file?

Specify
in
Custom
Server?

q The sources for this custom
control are located in:

q Specify the .NET test object class
to map to the control: (Default—
SwfObject)

q Specify the test object methods
you want to add or modify (if
required, include arguments, and
return values):

q Display test objects of this class
in the .NET Windows Forms
Spy?
Yes (default)/No

q Provide support for recording?
Yes/No

If so, list the events that should
trigger recording:

q Provide support for table
checkpoints and output values?
Yes/No

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 47

Where Do You Go from Here?
After you finish planning the custom control support, you create the .NET Add-in
Extensibility support set."Developing Your Support Set" on page 49 explains how to
develop the .NET Add-in Extensibility support set.

Developer Guide
Chapter 3: Planning Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 48

Chapter 4: Developing Your Support Set
This chapter explains how to develop extended support for custom .NET Windows Forms
controls. It explains which files you have to create for a .NET Add-in Extensibility
support set, the structure and content of these files, and how to develop them to
support the different UFT capabilities for your environment.

Note: Before you actually begin to create a support set, you must plan it carefully.
For more information, see "Planning Your Support Set" on page 34.

For information on where the .NET Add-in Extensibility support set files should be
stored to activate the support you design, see "Configuring and Deploying the Support
Set" on page 93.

This chapter includes:

Understanding the Development Workflow 51

Describing the Test Object Model 51

Benefits of Describing Test Object Models 52

Creating Test Object Configuration Files 52

Understanding the Contents of the Test Object Configuration File 54

Modifying an Existing Test Object Class 55

Make Sure that Test Object Configuration File Information Matches Custom
Server Information 56

Implementing More Than One Test Object Configuration File 57

Example of a Test Object Configuration File 59

Mapping Custom Controls to Test Object Classes 60

Defining How UFT Operates on the Custom Controls 61

Using a .NET DLL to Extend Support for a Custom Control 62

HP UFT .NET Add-in Extensibility (12.00) Page 49

Using XML Files to Extend Support for a Custom Control 86

Using the .NET Add-in Extensibility Samples 89

Troubleshooting and Limitations - Running the Support You Designed 90

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 50

Understanding the Development Workflow
Implementing the .NET Add-in Extensibility support set consists of the following stages.
The workflow for developing the support set is described in the following sections.

Describing the Test Object Model
The first stage of developing support for custom controls is to introduce the test object
model that you want UFT to use to test your applications and controls. The test object

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 51

model is a list of the test object classes that represent custom controls in your
environment and the syntax of the test object methods that support the custom
controls.

You define the test object model in a test object configuration file according to a
specific XML schema. For details about how to create test object configuration files, see
"Creating Test Object Configuration Files" below.

Benefits of Describing Test Object Models
Implementation of a test object configuration file is optional. If you choose not to
implement the test object configuration file, the test object methods defined in the
.NET Custom Server DLL or control definition files will work as expected, but the
functionality listed below will be missing.

Describing your custom test object methods in a test object configuration file enables
the following functionality when editing GUI tests in UFT:

l A list of available custom test object methods in the Operations column in the
Keyword view and when using the statement completion feature in the Editor.

l A test object method selected by default in the Keyword View and Step Generator
when a step is generated for a test object of this class.

l Documentation for the custom test object methods in the Documentation column in
the Keyword view.

l Icons and context-sensitive Help (only for new test object methods added to a test
object class).

Creating Test Object Configuration Files
The following steps describe how to create test object configuration files.

To create test object configuration files:

1. Create a copy of the <UFT installation folder>\dat\Extensibility\DotNet\
DotNetCustomServerMethods.xml file to create a new test object configuration

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 52

file in the same folder. (Do not modify the original file.)

2. Edit the new test object configuration file, modifying any test object classes whose
behavior you want to modify. Delete any test object classes that you do not
modify.

3. Save and close the test object configuration file.

For more information, see:

l "Understanding the Contents of the Test Object Configuration File" on the next page

l "Modifying an Existing Test Object Class" on page 55

l " Make Sure that Test Object Configuration File Information Matches Custom Server
Information" on page 56

l " Implementing More Than One Test Object Configuration File" on page 57

l "Example of a Test Object Configuration File" on page 59

l UFT .NET Add-in Extensibility API Reference

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 53

Understanding the Contents of the Test Object
Configuration File
A test object configuration file can include the following:

l The name of the test object class and its attributes.

l The name of the custom control for which this test object class definition is relevant.

l The methods for the test object class, including the following information for each
method:

n The arguments, including the argument type and direction.

n Whether the argument is mandatory, and, if not, its default value.

n The description (shown as a tooltip in the Keyword View, Editor, and Step
Generator).

n The documentation string (shown in the Documentation column of the Keyword
View and in the Step Generator).

n A context-sensitive Help topic to open when F1 is pressed for the test object
method in the Keyword View or Editor, or when the Operation Help button is
clicked for the method in the Step Generator. The definition includes the Help file
path and the relevant Help ID within the file. (Relevant only for new test object
methods added to the test object class.)

n The return value type.

l The test object method that is selected by default in the Keyword View and Step
Generator when a step is generated for a test object of this class.

The following example shows parts of the SwfObject test object class definition in a
test object configuration file. The example shows that the SwfObject is extended by
adding a MyCustomButtonSetmethod. The method has one argument (Percent, which

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 54

defines the percentage to set in the control), and it also has a documentation string
that appears in the Keyword View:

</TypeInformation>
...
 <ClassInfo BaseClassInfoName="SwfObject"
Name="MyCompany.MyButton">
...
 <TypeInfo>
 <Operation Name="MyCustomButtonSet"

PropertyType="Method" ExposureLevel="CommonUsed">
 <Description>Set the percentage in the task
bar</Description>
 <Documentation><![CDATA[Set the %l %t to <Percent>
percent.]]></Documentation>
 <Argument Name="Percent" IsMandatory="true"
Direction="In">
 <Type VariantType="Integer"/>
 <Description>The percentage to set in the task
bar.</Description>
 </Argument>
 </Operation>
 </TypeInfo>
 </ClassInfo>
</TypeInformation>

For information on the structure and syntax of a test object configuration file, see the
HP UFT Test Object Schema Help (available with the UFT .NET Add-in Extensibility
online help).

Modifying an Existing Test Object Class
Identify a test object class that provides partial support for your control, but needs
some modification, for example, additional or modified test object methods.

You can then extend the functionality of this test object by defining and implementing
additional test object methods. In addition, you can override existing test object
methods by providing an alternate implementation for them. You define the new or

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 55

changed methods in the test object configuration file, and design their implementation
using Custom Servers.

Adding Test Object Methods to an Existing Test Object
Class

When you create a test object class definition in the test object configuration file, you
specify the custom control for which this definition is relevant. (In the ClassInfo
element, you specify the test object class in the BaseClassInfoName attribute, and the
name of the custom class in the Name attribute.)

If you then add a custom test object method to the definition of this test object class,
this method is available in UFT only for test objects that represent custom controls of
the type you specified.

For example, if you added a Setmethod to the SwfEditor test object class when used
for MyCompany.MyButton controls, then the method is displayed in the statement
completion list of test object methods in UFT only for objects that represent such
controls. When SwfEditor test objects are used for other types of controls, this method
will not be available.

Make Sure that Test Object Configuration File
Information Matches Custom Server Information
Make sure that the information you define in the test object configuration file exactly
matches the corresponding information defined in the .NET Custom Server DLL or
control definition files. For example, the test object method names must be exactly the
same in both locations. Otherwise, the methods will appear to be available (for
example, when using the statement completion feature) but they will not work, and, if
used, the run session will fail. In addition, the custom control name specified in the test
object configuration file must be the same as the name specified in the .NET Add-in
Extensibility configuration file.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 56

Implementing More Than One Test Object
Configuration File
You can choose to implement one or multiple test object configuration files (or none, if
not needed). For example, you can define custom methods for one test object class in
one test object configuration file, and custom methods for another test object in a
different test object configuration file. You can also choose to define a group of custom
methods for a test object class in one test object configuration file, and another group
of custom methods for the same test object class in a different test object
configuration file.

Each time you open UFT, it reads all of the test object configuration files and merges
the information for each test object class from the different files into a single test
object class definition. This enables you to use the same test object class definitions
when supporting different custom toolkits.

Understanding How UFT Merges Test Object
Configuration Files

Each time you open UFT, it reads all of the test object configuration files located in the
<UFT installation folder>\dat\Extensibility\<UFT add-in name> folders. UFT then
merges the information for each test object class from the different files into a single
test object class definition, according to the priority of each test object configuration
file.

UFT ignores the definitions in a test object configuration file in the following situations:

l The Load attribute of the TypeInformation element is set to false.

l The environment relevant to the test object configuration file is displayed in the
Add-in Manager dialog box, and the UFT user selects not to load the environment.

Define the priority of each test object configuration file using the Priority attribute of
the TypeInformation element.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 57

If the priority of a test object configuration file is higher than the existing class
definitions, it overrides any existing test object class definitions, including built-in UFT
information. For this reason, be aware of any built-in functionality that will be
overridden before you change the priority of a test object configuration file.

When multiple test object class definitions exist, UFT must handle any conflicts that
arise. The following sections describe the process UFT follows when ClassInfo,
ListOfValues, and Operation elements are defined in multiple test object configuration
files. All of the IdentificationProperty elements for a specific test object class must be
defined in only one test object configuration file.

ClassInfo Elements

l If a ClassInfo element is defined in a test object configuration file with a priority
higher than the existing definition, the information is appended to any existing
definition. If a conflict arises between ClassInfo definitions in different files, the
definition in the file with the higher priority overrides (replaces) the information in
the file with the lower priority.

l If a ClassInfo element is defined in a test object configuration file with a priority
that is equal to or lower than the existing definition, the differing information is
appended to the existing definition. If a conflict arises between ClassInfo definitions
in different files, the definition in the file with the lower priority is ignored.

ListOfValues Elements

l If a conflict arises between ListOfValues definitions in different files, the definition
in the file with the higher priority overrides (replaces) the information in the file
with the lower priority (the definitions are not merged).

l If a ListOfValues definition overrides an existing list, the new list is updated for all
arguments of type Enumeration that are defined for operations of classes in the
same test object configuration file.

l If a ListOfValues is defined in a configuration file with a lower priority than the
existing definition, the lower priority definition is ignored.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 58

Operation Elements

l Operation element definitions are either added, ignored, or overridden, depending
on the priority of the test object configuration file.

l If an Operation element is defined in a test object configuration file with a priority
higher than the existing definition, the operation is added to the existing definition
for the class. If a conflict arises between Operation definitions in different files, the
definition in the file with the higher priority overrides (replaces) the definition with
the lower priority (the definitions are not merged).

For more information, see the HP UFT Test Object Schema Help (available with the .NET
Add-in Extensibility SDK Help).

Example of a Test Object Configuration File
The following example shows the definition of the ToolStrip test object:

<ClassInfo Name="System.Windows.Forms.ToolStrip"
aseClassInfoName="SwfToolBar" FilterLevel="1">
 <TypeInfo>
 <Operation Name="Select" PropertyType="Method
ExposureLevel="CommonUsed" SortLevel="-1">
 <Description>Selects a menu item from a SwfToolBar
dropdown menu.
 </Description>
 <Argument Name="Item" Direction="In" IsMandatory="true">
 <Type VariantType="VT_BSTR"/>
 </Argument>
 </Operation>
 <Operation Name="IsItemEnabled" PropertyType="Method"
ExposureLevel="Expert" SortLevel="-1">
 <Description>Indicates whether the toolbar item is
enabled.</Description>
 <Argument Name="Item" Direction="In" IsMandatory="true">
 <Type VariantType="VT_BSTR"/>
 </Argument>

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 59

 <ReturnValueType><Type VariantType="VT_
BOOL"/></ReturnValueType>
 </Operation>
 <Operation Name="ItemExists" PropertyType="Method"
ExposureLevel="Expert" SortLevel="-1">
 <Description>Indicates whether the specified toolbar item
exists.</Description>
 <Argument Name="Item" Direction="In" IsMandatory="true">
 <Type VariantType="VT_BSTR"/>
 </Argument>
 <ReturnValueType> <Type VariantType="VT_
BOOL"/></ReturnValueType>
 </Operation>
 </TypeInfo>
</ClassInfo>

This example shows that the ToolStrip test object class extends the SwfToolBar test
object class. The default test object method for the ToolStrip test object class is Select
(which has one mandatory input parameter: Item).

Mapping Custom Controls to Test Object
Classes
The mapping of custom controls to test object classes is defined in the .NET Add-in
Extensibility configuration file, SwfConfig.xml, in the <UFT installation path>\dat
folder. This XML file describes which test object class represents each custom control
and where UFT can locate the information it needs to interact with each control. For
more information on mapping, see "Configuring UFT to Use the Custom Server" on
page 94.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 60

Defining How UFT Operates on the Custom
Controls
After enabling UFT to recognize the custom controls, you must provide support for
running test object methods. If you try to run a test with steps that run custom test
object methods before providing implementation for these methods, the test fails and a
run-time error occurs.

Custom Servers contain the implementation for how UFT interacts with the custom
controls. Custom Servers can be .DLL files or .XML files (which UFT converts to .DLL
files "behind the scenes" when necessary). For instructions on deciding when it is
appropriate to use each method, see "Planning Your Support Set" on page 34.

l Most implementations are developed using DLL files. For more information, see
"Using a .NET DLL to Extend Support for a Custom Control" on the next page.

l Simpler implementations can be developed using the XML files, by creating a Control
Definition file for each custom control. For more information, see "Using XML Files to
Extend Support for a Custom Control" on page 86.

After creating the Custom Server, configure UFT to use it. For more information, see
"Configuring UFT to Use the Custom Server" on page 94.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 61

Using a .NET DLL to Extend Support for a Custom
Control
You can support a .NET Windows Forms control by creating a Custom Server
implemented as a .NET DLL. Set up a .NET project in Microsoft Visual Studio as a .NET
DLL class library that implements the interfaces for a combination of:

l Test Record (IRecord interface)

l Test Run (Replay interface)

l Table verification (supports checkpoints and output values)

Note: The IRecord interface is provided in the UFT .NET Add-in Extensibility SDK.
When running the UFT Custom Server Settings wizard to create a .NET DLL
Custom Server, the wizard provides code that implements the IRecord interface to
get you started.

The SDK does not provide interfaces for replay and table verification. You must
implement these.

For details, see "Implementing the IRecord Interface" on page 72 and the UFT .NET
Add-in Extensibility API Reference (available in the UFT .NET Add-in Extensibility
online Help.)

To create a .NET DLL Custom Server you need to know how to program a .NET
Assembly. The illustrations and instructions in this section assume that you are using
Microsoft Visual Studio 2008 as your development environment and that the Custom
Server Project Templates are installed. For more information, see "Installing the
HP UFT .NET Add-in Extensibility SDK" on page 27.

Considerations for Working with Custom Server DLLs

l The Custom Server DLL that you design is loaded into the 32-bit UFT application,

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 62

and into the application you are testing. Therefore, to enable your support to work
with 64-bit applications, you must build your custom server DLLs with the Platform
target option set to Any CPU.

l Applications running under .NET Framework version 1.1 cannot use DLLs that were
created using Visual Studio 2005 or above. Therefore you cannot use a Custom
Server that you implemented as a .NET DLL using Visual Studio 2005 or above when
you run the application you are testing under .NET Framework version 1.1.

l UFT loads the Custom Server when you open a test. Therefore, if you implement
your Custom Server as a .NET DLL, any changes you make to the DLL after the
Custom Server is loaded take effect only the next time you open a test.

Designing the Custom Server DLL
Implementing your Custom Server as a .NET DLL involves the following tasks:

l "Setting up the .NET Project" (described on page 63)

l "Implementing Test Record for a Custom Control Using a .NET DLL" (described on
page 71)

l " Implementing Test Run for a Custom Control Using the .NET DLL" (described on
page 76)

l "Implementing Support for Table Checkpoints and Output Values in the .NET DLL
Custom Server" (described on page 77)

l "Running Code under Application Under Test from the UFT Context" (described on
page 82)

Setting up the .NET Project

Set up a .NET project in Microsoft Visual Studio using the Custom Server C# Project
Template or the Custom Server Visual Basic Project Template. (This template is
installed automatically during the installation, as described in "Installing the HP UFT
.NET Add-in Extensibility SDK" on page 27).

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 63

When you set up the .NET project, the Custom Server Project template does the
following:

l Creates the project files necessary for the build of the .DLL file.

l Sets up a C# or Visual Basic file (depending on which template you selected) with
commented code that contains the definitions of methods that you can override
when you implement Test Record or Test Run.

l Provides sample code that demonstrates some Test Record and Test Run
implementation techniques.

l Creates an XML file segment with definitions for the Custom Server that you can
copy into the .NET Add-in Extensibility configuration file (SwfConfig.xml).

To set up a new .NET project:

Caution: To use the Custom Server Project template to create a .NET project, you
must have either administrator privileges or full read and write access to the
following folder and all of its sub-folders: <Microsoft Visual Studio installation
folder>\VC#\VC#Wizards

1. Start Microsoft Visual Studio.

2. Select File > New > Project to open the New Project dialog box, or press CTRL +
SHIFT + N. The New Project dialog box opens.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 64

3. Select the Visual C# > Windows or Visual Basic > Windows node in the Project
types tree.

Note: In Microsoft Visual Studio versions other than 2008, the dialog box may
differ slightly in appearance and the UFT CustomServer template may be
located in a slightly different node in the tree.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 65

4. Select the UFT CustomServer template in the Templates pane. Enter the name of
your new project and the location in which you want to save the project. Click OK.
The UFT Custom Server Settings wizard opens.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 66

5. Determine whether your Custom Server will extend Test Record support, Test Run
support, or both, by making selections in the Application Settings page of the
wizard.

n In the Server class name box, provide a descriptive name for your Custom
Server class.

n Select the Customize Record process check box if you intend to implement the
Test Record process in UFT.

If you select the Customize Record process check box, the wizard creates a
framework of code for the implementation of recording steps.

Do not select this check box if you are going to create the test manually in UFT,
or if you are going to use the Test Record functions of the existing test object to
which this control will be mapped. Your Test Record implementation does not
inherit from the existing test object to which the custom control is mapped. It
replaces the existing object's Test Record implementation entirely. Therefore, if
you need any of the existing object's functionality, code it explicitly.

n Select the Customize Run process check box if you intend to implement Test
Run functions for the custom control (meaning, if you are going to override any
of the existing test object's methods, or extend the test object with new
methods). Enter a name for the replay interface you will create in the Replay
interface name box.

If you select the Customize Run process check box, the wizard creates a
framework of code to implement Test Run support.

n Select the Generate comments and sample code check box if you want the
wizard to add comments and samples in the code that it generates.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 67

6. Click Next. The XML Configuration Settings page of the wizard opens:

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 68

7. Using the XML Configuration Settings page of the wizard, you can generate a
segment of XML code that can be copied into the .NET Add-in Extensibility
configuration file (SwfConfig.xml). This file maps the custom control to the test
object, and provides UFT with the location of the test object's Custom Server. (If
you choose not to generate the XML configuration segment, you can manually edit
the .NET Add-in Extensibility configuration file later.) For instructions on copying
this segment into the SwfConfig.xml file, see "Copying Configuration Information
Generated by the UFT Custom Server Settings Wizard" on page 97.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 69

n Select the Auto-generate the XML configuration segment check box to instruct
the wizard to create the configuration segment, which is saved in the
Configuration.xml file.

n In the Customized Control type box, enter the full type name of the control for
which you are creating the Custom Server, including all wrapping namespaces,
for example, System.Windows.Forms.CustCheckBox.

Note: If you want to specify a control type that is included in more than one
assembly you can include the name of the assembly, or other information
that will fully qualify the type. For example, you could enter values similar to
these:
- System.Windows.Forms.CustCheckBox,
System2.Windows.Forms.v8.5
- System.Windows.Forms.CustCheckBox,
System2.Windows.Forms.v8.5, Version=8.5.20072.1093,
Culture=neutral, PublicKeyToken=8aa4d5436b5ad4cd
This can be useful, for example, if you have different versions of the control
in your application.

n In the Mapped to box, select the test object to which you want to map the
Custom Server. If you select No mapping, the Custom Server is automatically
mapped to the SwfObject test object.

For more information, see "Map the Custom Controls to the Relevant Test
Objects " on page 23.

n Select the run-time context for Test Record and/or Test Run: the context of the
application that is being tested (Application under test) or the context of UFT
(QuickTest).

For more information, see "Create Custom Servers" on page 22.

8. Click Finish. The wizard closes and the new project opens, ready for coding.

When you click Finish in the wizard, the Configuration.xml segment file is created
and added to the project. Update and modify the configuration segment file as
required. For more information about using the segment file, see "Copying

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 70

Configuration Information Generated by the UFT Custom Server Settings Wizard" on
page 97.)

Implementing Test Record for a Custom Control Using a
.NET DLL

Recording a business component or test on a control means listening to the activity of
that control, translating that activity into test object method calls, and writing the
method calls to the test. Listening to the activities on the control is done by listening to
control events, by hooking Windows messages, or both.

Note: If you plan to create GUI tests using keyword-driven testing, and not by
recording steps on an application, you do not need to implement Test Record.

Write the code for Test Record by implementing the methods in the code segment
created by the wizard based on the IRecord interface (provided with the UFT .NET Add-
in Extensibility SDK). Your Test Record implementation does not inherit from the
existing test object to which the custom control is mapped. It replaces the existing
object's Test Record implementation entirely. Therefore, if you need any of the existing
object's functionality, code it explicitly.

Before reading this section, make sure you are familiar with "Create Custom Servers"
on page 22.

This section describes:

l "Implementing the IRecord Interface" on the next page

l "Implementing Test Record for a Custom Control Using a .NET DLL" above

For more information on the interfaces, classes, enumerations, and methods in this
section, see the UFT .NET Add-in Extensibility API Reference (available in the UFT .NET
Add-in Extensibility online Help.)

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 71

Implementing the IRecord Interface

To implement the IRecord interface, override the callback methods described below
and add the details of your implementation in your event handlers or message handler.

The examples provided below for each callback method are written in C#.

InitEventListener Callback Method
CustomServerBase. InitEventListener is called by UFT when your Custom Server is
loaded. Add your event and message handlers using this method.

To add event and message handlers:

1. Implement handlers for the control's events.

A typical handler captures the event and writes a method to the test. This is an
example of a simple event handler:

public void OnMouseDown(object sender, MouseEventArgs e)
{
 // If a button other than the left was clicked, do nothing.
 if(e.Button != System.Windows.Forms.MouseButtons.Left)
 return;
 /*
 For more complex events, here you would get any
 other information you need from the control.
 */
 // Write the test object method to the test
 RecordFunction("MouseDown",
 RecordingMode.RECORD_SEND_LINE,
 e.X,e.Y);
}

For more information, see "Implementing Test Record for a Custom Control Using a
.NET DLL" on the previous page.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 72

2. Add your event handlers in InitEventListener:

public override void InitEventListener()
{

 // Adding OnMouseDown handler.
 Delegate e = new MouseEventHandler(this.OnMouseDown);
 AddHandler("MouseDown", e);

}

Note that if the Test Record implementation will run in the context of the
application being tested, you can use the following syntax:

SourceControl.MouseDown += e;

If you use this syntax, you must release the handler in ReleaseEventListener.

3. Add a remote event listener.

If your Custom Server will run in the UFT context, use a remote event listener to
handle events. Implement a remote listener of type EventListenerBase that
handles the events, and add a call to AddRemoteEventListener in method
InitEventListener.

public class EventsListenerAssist : EventsListenerBase
{
 // class implementation.
}
public override void InitEventListener()
{
 ...
 AddRemoteEventListener(typeof(EventsListenerAssist));
 ...
}

When you implement a remote event listener, you must override
EventListenerBase.InitEventListener and EventListenerBase.ReleaseEventListener
in addition to overriding these callback functions in CustomServerBase. The use of

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 73

these EventListenerBase callbacks is the same as for the CustomServerBase
callbacks. For details, see the EventsListenerBase class in the UFT .NET Add-in
Extensibility API Reference.

When you handle events from the UFT context, the event arguments must be
serialized. For details, see CustomServerBase.AddHandler(String, Delegate, Type)
and the IEventArgsHelper interface in the UFT .NET Add-in Extensibility API
Reference.

To avoid the complications of remote event listeners, run your event handlers in
the Application under test context, as described above.

OnMessage Callback Method
OnMessage is called on any window message hooked by UFT. If Test Record will run in
the UFT context and message handling is required, implement the message handling in
this method.

If Test Record will run in the Application under test context, do not override this
function.

For details, see CustomServerBase.OnMessage in the UFT .NET Add-in Extensibility API
Reference.

GetWndMessageFilter Callback Method
If Test Record will run in the UFT context and listen to windows messages, override this
method to inform UFT whether the Custom Server will handle only messages intended
for the specific custom object, or whether it will handle messages from child objects, as
well.

For details, see IRecord.GetWndMessageFilter in the UFT .NET Add-in ExtensibilityAPI
Reference.

See also:"Troubleshooting and Limitations - Running the Support You Designed" on
page 90.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 74

ReleaseEventListener Callback Method
UFT calls this method at the end of the recording session. In ReleaseEventListener,
unsubscribe from all the events to which the Custom Server was listening. For example,
if you subscribe to OnClick in InitEventListener with this syntax,

SourceControl.Click += new EventHandler(this.OnClick);

you must release it:

public override void ReleaseEventListener()
{

 SourceControl.Click -= new EventHandler(this.OnClick);

}

However, if you subscribe to the event with the AddHandler method, UFT unsubscribes
automatically.

Writing Test Object Methods to the Test

When information about activities of the control is received, whether in the form of
events, Windows messages, or a combination of both, this information must be
processed as appropriate for the application and a step must be written as a test object
method call.

To write a test step, use the RecordFunction method of the CustomServerBase class or
the EventsListenerBase, as appropriate.

Sometimes, it is impossible to know how an activity should be processed until the next
activity occurs. Therefore, there is a mechanism for storing a step and deciding in the
subsequent call to RecordFunction whether to write it to the test. For details, see
RecordingMode Enumeration in the UFT .NET Add-in ExtensibilityAPI Reference.

To determine the argument values for the test object method call, it may be necessary
to retrieve information from the control that is not available in the event arguments or
Windows message. If the Custom Server Test Record implementation is running in the
context of the application being tested, use the SourceControl property of the
CustomServerBase class to obtain direct access to the public members of the control. If

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 75

the control is not thread-safe, use the ControlGetPropertymethod to retrieve control
state information.

Implementing Test Run for a Custom Control Using the
.NET DLL

Defining test object methods for Test Run means specifying the actions to perform on
the custom control when the method is run in a step. Typically, the implementation of a
test object method performs several of the following actions:

l Sets the values of attributes of the custom control

l Calls a method of the custom control

l Makes mouse and keyboard simulation calls

l Reports a step outcome to UFT

l Reports an error to UFT

l Makes calls to another library (to show a message box, write custom log, and so on)

Define custom Test Run methods if you are overriding existing methods of the existing
test object, or if you are extending the existing test object by adding new methods.

Ensure that all test object methods recorded are implemented in Test Run, either by
the existing test object or by this Custom Server.

To define custom Test Run methods, define an interface and instruct UFT to identify it
as the Test Run interface by applying the ReplayInterface attribute to it. Only one
replay interface can be implemented in a Custom Server. If your interface defines
methods with the same names as existing methods of the existing object, the interface
methods override the test object implementation. Any method name that is different
from existing object's method name is added as a new method.

Start a test object method implementation with a call to PrepareForReplay, specify the
activities to perform, and end with a call to ReplayReportStep and/or
ReplayThrowError.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 76

For more information, see the UFT .NET Add-in Extensibility API Reference (available in
the UFT .NET Add-in Extensibility).

Implementing Support for Table Checkpoints and
Output Values in the .NET DLL Custom Server

By adding table checkpoints to a test, UFT users can check the content and properties
of tables displayed in their application. By adding table output value steps to a test, you
can retrieve values from a table, store them, and then use them as input at a different
stage in the run session.

With .NET Add-in Extensibility, you can enable UFT to support table checkpoints and
output values for custom table (grid) controls.

To implement table checkpoint and output value support, add a verification class in
your Custom Server that inherits from the VerificationServerBase class and override
the necessary methods (for more information, see below). In the .NET Add-in
Extensibility configuration file, map each custom table control to an SwfTable test
object, and to the verification class in the relevant Custom Server. For information on
the syntax of the verification class methods, see the UFT .NET Add-in Extensibility API
Reference (available with the .NET Add-in Extensibility SDK online Help).

Note: When creating a Custom Server using the UFT Custom Server Settings wizard,
the source code created by the wizard does not include commented code for table
checkpoint and output value support. Add the implementation manually.

To implement support for table checkpoints and output values on custom table
objects:

1. Map the custom table control to the SwfTable test object class. This instructs UFT
to use an SwfTable test object to represent the custom table control in GUI tests
or components.

In the .NET Add-in Extensibility configuration file, <UFT Installation
folder>\dat\SwfConfig.xml, create a Control element with a Type attribute set to

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 77

the name of the custom table control, and the MappedTo attribute set to
SwfTable.

For more information on the SwfConfig.xml file, see "Understanding How to
Configure UFT Windows Forms Extensibility" on page 95 and the .NET Add-in
Extensibility Configuration Schema Help (available with the .NET Add-in
Extensibility SDK online Help).

2. Specify table verification configuration information for the Custom Server of this
custom table control.

In the same SwfConfig.xml file, define a CustomVerify element. In this element,
specify:

n The run-time context, which for this element must always be AUT.

n The name of the Custom Server (DLL) that contains the implementation of table
checkpoint and output value support for this control.

n The type name for the verification class within the Custom Server (DLL)
including wrapping namespaces.

A sample of the CustomVerify element is provided below:

<Control Type="System.Windows.Forms.DataGridView"
MappedTo="SwfTable">
 <CustomRecord>
 ...
 ...
 </CustomRecord>
 <CustomReplay>
 ...
 ...
 </CustomReplay>
 <CustomVerify>

 <Context>AUT</Context>
 <DllName>C:\MyProducts\Bin\\VfySrv.dll</DllName>
 <TypeName>VfySrv.DataGridCPSrv</TypeName>

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 78

 </CustomVerify>
 <Settings>
</Control>

3. In the verification class, override the following protected methods so that UFT
receives what it requires when supporting table checkpoints and output values.

n GetTableData

UFT calls this method to retrieve table data from the specified range of rows and
returns the data as an array of objects.

When working with a table checkpoint or output value, UFT calls the
GetTableRowRange method before this method so that the first and last rows in
the data range of the table are known to the GetTableDatamethod.

n GetTableRowRange

UFT calls this method to retrieve the number and range of rows in the table that
will be included in the checkpoint or output value.

When working with a table checkpoint or output value, UFT calls this method
before the GetTableDatamethod. The GetTableRowRange method initializes
the values of the first and last rows in the data range of the table, which the
GetTableDatamethod uses as input.

n GetTableColNames

UFT calls this method to retrieve the column names as an array of strings. UFT
displays these column names in the Table Checkpoint Properties and Table
Output Value Properties dialog boxes. If this method is not implemented,
numbers appear instead of column names in these dialog boxes.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 79

The images below shows what the Table Checkpoint Properties dialog box
looks like with and without GetTableColNames implementation:

The following sample (written in C#) demonstrates implementation of the
GetTableData, GetTableColNames, and GetTableRowRange methods.

using System;
using System.Collections.Generic;
using System.Text;
using Mercury.QTP.CustomServer;
using System.Windows.Forms;
namespace VfySrv
{

public class DataGridCPSrv : VerificationServerBase
{
/// GetTableData() is called by UFT to retrieve the data in a

table.
/// The following base class properties are used:
/// SourceControl - Reference to the grid (table) object
/// FirstRow - The (zero-based) row number of the start of
/// the checkpoint or output value
/// LastRow - The (zero-based) row number of the end of
/// the checkpoint or output value
/// Returns a two-dimensional array of objects.
protected override object[,] GetTableData()
{
DataGridView GridView = (DataGridView)(base.SourceControl);

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 80

int TotalRows = GridView.Rows.Count;
int TotalColumns = GridView.Columns.Count;
int FirstRowN = base.FirstRow;
int LastRowN = base.LastRow;
TotalRows = LastRowN - FirstRown + 1;
object[,] Data = new object[TotalRows, TotalColumns];
DataGridViewRowCollection Rows = GridView.Rows;
for (int i = FirstRowN; i <= LastRowN; i++)
{
DataGridViewRow Row = Rows[i];
DataGridViewCellCollection Cells = Row.Cells;
for (int k = 0; k < TotalColumns; k++)
{
Data[i - FirstRown, k] = Cells[k].Value;
}

}
return Data;

}

/// GetTableColNames is called by UFT to
/// retrieve the column names of the table.
/// Returns an array of column names.
protected override string[] GetTableColNames()
{
DataGridView GridView = (DataGridView)(this.SourceControl);
int TotalColumns = GridView.Columns.Count;
string[] ColNames = new string[TotalColumns];
for (int i = 0; i < TotalColumns; i++)
{
ColNames[i] = GridView.Columns[i].HeaderText;

}
return ColNames;

}

/// GetTableRowRange is called by UFT to
/// obtain the number of rows in the table.
protected override void GetTableRowRange

(out int FirstVisible, out int LastVisible, out int
Total)

{
DataGridView GridView = (DataGridView)(this.SourceControl);

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 81

DataGridViewRowCollection Rows = GridView.Rows;
FirstVisible = -1;
LastVisible = Rows.Count -1;
for (int i = 0; i < Rows.Count; i++)
{
if (Rows[i].Visible == false)
continue;

FirstVisible = i;
break;

}
for (int i = FirstVisible + 1; i < Rows.Count; i++)
{
if (Rows[i].Visible)

continue;
LastVisible = i;
break;

}
FirstVisible++;
LastVisible++;
Total = GridView.Rows.Count;

}
}

}

Running Code under Application Under Test from the
UFT Context

When the Custom Server is running in the UFT context, there is no direct access to the
control, which is in a different run-time process. To access the control directly, run part
of the code in the Application under test context. This is done using assistant classes.

To launch code from the UFT context that will run under the Application under test
context, implement an assistant class that inherits from CustomAssistantBase. To
create an instance of an assistant class, call CreateRemoteObject. Before using the
object, attach it to the control with SetTargetControl.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 82

After SetTargetControl is called, you can call methods of the assistant in one of the
following ways:

l If the method can run in any thread of the Application under test process, read and
set control values and call control methods with the simple obj.Member syntax:

int i = oMyAssistant.Add(1,2);

l If the method must run in the control's thread, use the InvokeAssistantmethod:

int i = (int)InvokeAssistant(oMyAssistant, "Add", 1, 2);

Tip: You can use the EventListenerBase, which is an assistant class that supports
listening to control events.

Reviewing Commonly-used API Calls

This section provides a quick reference of the most commonly used API calls. Review
this information before starting to implement methods.

These methods are in CustomServerBase except where indicated.

For more information, see the UFT .NET Add-in Extensibility API Reference (available in
the UFT .NET Add-in Extensibility online Help.)

Test Record Methods

AddHandler Adds an event handler as the first handler of the event.

RecordFunction Records a step in the test.

Test Record Callback Methods

GetWndMessageFilter Called by UFT to set the Windows message filter.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 83

InitEventListener Called by UFT to load event handlers and start listening
for events.

OnMessage Called when UFT hooks the window message.

ReleaseEventListener Stops listening for events.

Test Run Methods

DragAndDrop, KeyDown, KeyUp, MouseClick,
MouseDblClick, MouseDown, MouseMove,
MouseUp, PressKey, PressNKeys, SendKeys,
SendString

Mouse and keyboard
simulation methods.

PrepareForReplay Prepares the control for
an action run.

ReplayReportStep Writes an event to the test
report.

ReplayThrowError Generates an error
message and changes
the reported step status.

ShowError Displays the .NET
warning icon.

TestObjectInvokeMethod Invokes one of the
methods exposed by the
test object's IDispatch
interface.

Cross-Process Methods

AddRemoteEventListener Creates an EventListener instance in the
Application under test process.

CreateRemoteObject Creates an instance of an assistant object in the
Application under test process.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 84

GetEventArgs
(IEventArgsHelper)

Retrieves and deserializes the EventArgs object.

Init (IEventArgsHelper) Initializes the EventArguments helper class with an
EventArgs object.

InvokeAssistant Invokes a method of a CustomAssistantBase class
in the control's thread.

InvokeCustomServer
(EventsListenerBase)

Invokes the Custom Server's methods running in the
UFT process from the Application under test
process.

SetTargetControl
(CustomAssistantBase)

Attaches to the source custom control by the
control's window handle.

General Methods

ControlGetProperty Retrieves a property of a control that is not thread-safe.

ControlInvokeMethod Invokes a method of a control that is not thread-safe.

ControlSetProperty Sets a property of a control that is not thread-safe.

GetSettingsValue Gets a parameter value from the settings of this control in
the configuration file.

GetSettingsXML Returns the settings of this control as entered in the
configuration file.

Table Checkpoint and Output Value Support Methods

GetTableData
(VerificationServerBase)

Called by UFT to retrieve the data in a table.

GetTableRowRange
(VerificationServerBase)

Called by UFT to retrieve the first and last
rows of the table.

GetTableColNames
(VerificationServerBase)

Called by UFT to retrieve the names of the
table columns.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 85

Using XML Files to Extend Support for a Custom
Control
You can implement custom control support without programming a .NET DLL by
entering the appropriate Test Record and Test Run instructions for that custom control
in a control definition file. (Create a separate control definition file for each control you
want to customize.) You can instruct UFT to load the custom control implementation
instructions by specifying each control definition file in the .NET Add-in Extensibility
configuration file, SwfConfig.xml.

Note: When extending support using an XML file, UFT generates an ad hoc .NET DLL
for you based on the XML file. This ad hoc .NET DLL becomes the custom server for
the control.

When using this technique, you do not have the support of the .NET development
environment—the object browser and the debugger— or the ability to create table
checkpoints or output values. However, by enabling the implementation of custom
control support without the .NET development environment, this technique enables
relatively rapid implementation, even in the field.

This feature is most practical either with relatively simple, well documented controls,
or with controls that map well to an existing object but for which you need to replace
the Test Record definitions, or replace or add a small number of test object Test Run
methods.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 86

Understanding Control Definition Files

The control definition file can contain a Record element in which you define the
customized recording for the control and a Replay element in which you define the
customized test object methods.

l The Record element specifies the control events for which you want UFT to add
steps to the test (or component) during a recording session. The steps are calls to
test object methods of the custom control's test object.

l The Replay element specifies the operations that UFT should perform on the control
for each test object method during a run session.

You do not always need to enter both a Record and a Replay element:

l If the Test Record implementation for the custom test object should be different
than the one defined for the existing test object, create a Record element in the
control definition file for the custom control.

l Similarly, if the Test Run implementation for the custom test object should be
different than the one defined for the existing test object, create a Replay element
in the control definition file for the custom control.

If you create a Record element, the definitions replace the Test Record implementation
of the existing test object entirely. If you create a Replay element, it inherits the Test
Run implementation of the existing object and extends it. For more information on test
object mapping options, see "Map the Custom Controls to the Relevant Test Objects " on
page 23.

For information on the elements in a control definition XML file, see the .NET Add-in
Extensibility Control Definition Schema Help (available with the .NET Add-in
Extensibility SDK online Help).

An Example of a Control Definition File

The following example shows the handling of an object whose value changes at each
MouseUp event. The value is in the Value property of the object. The MouseUp event

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 87

handler has Button, Clicks, Delta, X, and Y event arguments.

The Record element describes the conversion of the MouseUp event to a SetValue
command. The Replay element defines the SetValue command as setting the value of
the object to the recorded Value and displaying the position of the mouse pointer for
debugging purposes:

<?xml version="1.0" encoding="UTF-8"?>
<Customization>
 <Record>
 <Events>
 <Event name="MouseUp" enabled="true">
 <RecordedCommand name="SetValue">
 <Parameter>
 Sender.Value
 </Parameter>
 <Parameter lang="C#">
 String xy;
 xy = EventArgs.X + ";" + EventArgs.Y;
 Parameter = xy;
 </Parameter>
 </RecordedCommand>
 </Event>
 </Events>
 </Record>
 <Replay>
 <Methods>
 <Method name="SetValue">
 <Parameters>
 <Parameter type="int" name="Value"/>
 <Parameter type="String" name="MousePosition"/>
 </Parameters>
 <MethodBody>
 RtObject.Value = Value;
 System.Windows.Forms.MessageBox.Show
(MousePosition, "Mouse Position at Record Time");
 </MethodBody>
 </Method>
 </Methods>
 </Replay>
</Customization>

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 88

Using the .NET Add-in Extensibility Samples
The .NET Add-in Extensibility SDK provides a sample support set to help you learn about
.NET Add-in Extensibility. The toolkit support set files are installed in the <UFT .NET
Add-in Extensibility SDK installation folder>\samples\WinFormsExtSample folder.
You can study the content of these files to gain a better understanding of how to
develop your own toolkit support sets.

The sample support set extends UFT support for the SandBar custom .NET Windows
Forms control. The custom server provided in this sample is similar to the one you
create in "Learning to Create Support for a Complex Custom .NET Windows Forms
Control" on page 117.

The SandbarSample.sln solution file located in the WinFormsExtSample folder includes
a configuration file and a fully implemented custom server that supports the SandBar
control. The SandBarCustomServer implementation is provided in C# and in Visual
Basic, in separate projects within the solution (SandbarCustomServer and
VBSandbarCustomServer). In addition, the SandbarSample solution includes a sample
.NET Windows Forms application that uses the SandBar toolbar control
(SandbarTestApp).

To learn how extensibility can affect UFT's interaction with custom controls, create and
run a UFT GUI test on the sample application before and after deploying the sample
toolkit support set to UFT.

Considerations for Working with the SandBar Support Sample

l To open the SandbarSample solution, use Microsoft Visual Studio 2005 or later.

l Before you build the SandbarSample solution, ensure that the following items are
installed on your computer:

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 89

n The UFT .NET Add-in Extensibility SDK

n SandBar for .NET 2.0/3.x (can be downloaded from
http://www.divil.co.uk/net/download.aspx?product=2&license=5)

l After successfully building the SandbarSample solution, deploy the C# or Visual Basic
custom server it creates as described in "Configuring and Deploying the Support Set"
on page 93.

l Before you update the SwfConfig.xml file according to the information in
Configuration.xml, consider the following: The Configuration.xml file in the
SandbarSample solution is set up to use the DLL generated by the C# project and
located in <UFT .NET Add-in Extensibility installation folder>\samples\
WinFormsExtSample\Bin.

n To use VBCustomSandBarSrv.dll, replace all appearances of
SandbarCustomServer in with VBCustomSandBarSrv.dll.

n If your DLL file is located in a different location, update the path in the DllName
element accordingly.

Troubleshooting and Limitations - Running
the Support You Designed
This section describes troubleshooting and limitations for developing your support set.

The custom server is not receiving some Windows messages
During a recording session, the custom server mapped to your custom control is only
created after some operation takes place on the custom control itself.

If you design the GetWndMessageFilter method to specify that your custom server will
handle messages that occur on other controls, such messages can only be handled after
the custom server is created.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 90

http://www.divil.co.uk/net/download.aspx?product=2& license=5

Therefore, for example, you may have to click on the custom control before the custom
server can receive and process messages on other controls in the application.

Depending on how you implement support for recording on your custom control, you
might want to provide instructions regarding this issue to the UFT users who use your
support set.

A General Run Error occurs while running the test in UFT
When using the .NET Add-in Extensibility API with Microsoft .NET Framework 1.1, a
General Run Error may occur while running your test. This is caused by an Execution
Engine Exception error in the application under test (AUT).

Workaround: Install Service Pack 1 (or later) for Microsoft .NET Framework 1.1.

A run-time error occurs while running the test in UFT
When using an XML-based Custom Server, if you have more than one version of
Microsoft .NET Framework installed, a run-time error might occur during the run
session. The error message in the log file indicates that the configuration file contains a
compilation error. This is because assemblies compiled with Microsoft .NET Framework
version 2.0 and later are not recognized by earlier versions of Microsoft .NET
Framework.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 91

Workaround: Perform one of the following:

l Solution 1: In the Registry, in the following key HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\.NETFrameworkadd the following DWORD Value
"OnlyUseLatestCLR"=dword:00000001

l Solution 2: If the .NET application you are testing has a configuration file, add the
following information to the file:

<configuration>
<startup>

<supportedRuntime version="v2.0.50727"/>
</startup>

</configuration>

The configuration file must be named <executable_name>.exe.Config and be located
in the same folder as the executable of the .NET application you are testing.

Developer Guide
Chapter 4: Developing Your Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 92

Chapter 5: Configuring and Deploying the
Support Set
After developing the implementation for your Custom Server, the UFT .NET Add-in
Extensibility Support Set is ready for configuration and deployment.

This chapter includes:

Understanding the Deployment Workflow 94

Configuring UFT to Use the Custom Server 94

Understanding How to Configure UFT Windows Forms Extensibility 95

Copying Configuration Information Generated by the UFT Custom Server
Settings Wizard 97

Deploying the Custom Support Set 100

Placing Files in the Correct Locations 101

Modifying Deployed Support 102

Removing Deployed Support 102

Testing the Custom Support Set 103

Testing Basic Functionality of the Support Set 103

Testing Implementation 105

HP UFT .NET Add-in Extensibility (12.00) Page 93

Understanding the Deployment Workflow
The workflow for deploying a .NET Add-in Extensibility support set consists of the
stages shown in the highlighted area of the image. These stages are described in detail
in the sections below.

Configuring UFT to Use the Custom Server
The .NET Add-in Extensibility configuration file (SwfConfig.xml) provides UFT with the
configuration information it needs to load your Custom Servers.

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 94

Understanding How to Configure UFT Windows
Forms Extensibility
To instruct UFT to load Custom Servers according to the appropriate configuration,
enter the information in the .NET Add-in Extensibility configuration file. This file,
SwfConfig.xml, is located in the <UFT installation folder>\dat folder.

Enter configuration information into the SwfConfig.xml file in one of the following
ways:

l Manually edit the file using any text editor.

l Copy information from configuration.xml files generated by the UFT Custom Server
Settings wizard.

For more information about the wizard, see "Using a .NET DLL to Extend Support for
a Custom Control" on page 62.

For instructions on how to copy information from configuration.xml files, see
"Copying Configuration Information Generated by the UFT Custom Server Settings
Wizard" on page 97.

When configuring UFT Windows Forms extensibility, define elements according to the
coding option you selected for implementing your Custom Server:

l "When Using a .NET DLL Custom Server" on the next page

l "When Using an XML Custom Server" on page 97

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 95

When Using a .NET DLL Custom Server
In the SwfConfig.xml file, for each custom .NET control that you will implement using a
.NET DLL Custom Server, you can define:

l A MappedTo attribute, if you want the custom control to correspond to a test object
other than the default generic test object SwfObject.

l A CustomRecord element if you want to customize recording on the control.

l A CustomReplay element if you want to customize how test steps are run on a
custom control.

l A CustomVerify element if you want to add table checkpoint and output value
support for custom table controls.

l A Settings element, in which you can use the Parameter element to pass values to
the Custom Server at run-time.

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 96

When Using an XML Custom Server
In the SwfConfig.xml file, for each custom .NET control that you will implement using
an XML Custom Server, you define:

l A MappedTo attribute, if you want the custom control to correspond to a test object
other than the default test grid object SwfTable.

l The Context attribute of a CustomRecord element if you want to customize
recording on the control.

l The Context attribute of a CustomReplay element if you want to customize how
test steps are run on a custom control.

l A Settings element, in which you can use the Parameter element to pass values to
the Custom Server at run-time.

Note: UFT loads the Custom Server when you open a test. Therefore, if you
implement your Custom Server as a .NET DLL, any changes you make to the DLL
after the Custom Server is loaded take effect only the next time you open a test.

For information on the elements in the .NET Add-in Extensibility configuration file
(SwfConfig.xml), see the .NET Add-in Extensibility Configuration Schema Help
(available with the .NET Add-in Extensibility SDK online Help).

Copying Configuration Information Generated by
the UFT Custom Server Settings Wizard
When running the UFT Custom Server Settings wizard to create a Custom Server, the
wizard creates an XML configuration segment. The wizard outputs this segment to help
you enter the configuration information in the .NET Add-in Extensibility configuration
file.

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 97

To incorporate the contents of the XML configuration segment before deploying the
Custom Server:

1. Edit the Configuration.xml segment file in the project to ensure that the
information is correct. Set the DllName element value to the location to which you
will deploy the Custom Server. If Test Record and/or Test Run are to be loaded in
different run-time contexts, edit the Context value accordingly.

2. Copy the entire <Control>...</Control> node. Do not include the enclosing
<Controls> tags.

3. Open the .NET Add-in Extensibility configuration file, <UFT installation
folder>\dat\SwfConfig.xml. Paste the Control node from Configuration.xml at
the end of the file, before the closing </Controls> tag.

4. Save the file. If UFT was open, you must close and reopen it for the SwfConfig.xml
changes to take effect.

Note: You can validate the configuration file you design against the <UFT
installation folder>\dat\SwfConfig.xsd file.

Example of a .NET Add-in Extensibility Configuration File
Following is an example of a file that configures UFT to recognize the following controls:

l Support for the MyCompany.WinControls.MyListView control is implemented in the
CustomMyListView.CustListView .NET DLL Custom Server. The Custom Server is not
installed in the GAC, so the DLL name is specified as a path and file name (and is not
passed as a type name according to GAC standard syntax).

MyListView is mapped to the SwfListView test object, and runs in the context of the
application being tested.

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 98

l Support for the mySmileyControls.SmileyControl2 control is implemented in an
XML file. Therefore, the path and file name for the Control Definition file that
contains its implementation is passed to UFT during run-time using the Parameter
element.

The SmileyControl2 control is not explicitly mapped to any test object in the
SwfConfig.xml file, so UFT maps it to the default generic test object, SwfObject.

l Customized record and run support for the System.Windows.Forms.DataGridView
control is implemented in a .NET DLL Custom Server called CustomMyTable.dll.
Table checkpoint and output value support for the
System.Windows.Forms.DataGridView control is implemented in a .NET DLL Custom
Server called VfySrv.dll.

DataGridViewmust be mapped to the SwfTable test object (according to the
restrictions imposed by the TableElement complex type element in the schema),
and, because the customized support includes table checkpoints and output values,
must run in the context of the application being tested.

<?xml version="1.0" encoding="UTF-8"?>
<Controls>

<Control Type="MyCompany.WinControls.MyListView" MappedTo="SwfListView" >
<CustomRecord>

<Component>
<Context>AUT</Context>
<DllName>C:\MyProducts\Bin\CustomMyList View.dll</DllName>
<TypeName>CustomMyListView.CustListView</TypeName>

</Component>
</CustomRecord>
<CustomReplay>

<Component>
<Context>AUT</Context>
<DllName>C:\MyProducts\Bin\CustomMyList View.dll</DllName>
<TypeName>CustomMyListView.CustListView</TypeName>

</Component>
</CustomReplay>
<Settings>

<Parameter Name="sample name">sample value</Parameter>
<Parameter Name="ConfigPath">C:\Program Files\HP\Unified Functional

Testing\dat\Extensibility\dotNET\MyContrSIM.xml</Parameter>
</Settings>

</Control>

<Control Type="mySmileyControls.SmileyControl2">
<Settings>

<Parameter Name="ConfigPath">d:\UFT\bin\ConfigSmiley.xml
</Parameter>

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 99

</Settings>
<CustomRecord>

<Component>
<Context>AUT-XML</Context>

</Component>
</CustomRecord>
<CustomReplay>

<Component>
<Context>AUT-XML</Context>

</Component>
</CustomReplay>

</Control>

<Control Type="System.Windows.Forms.DataGridView"
MappedTo="SwfTable">

<CustomRecord>
<Component>

<Context>QTP</Context>
<DllName>C:\MyProducts\Bin\CustomMyTable.dll</DllName>
<TypeName>CustomMyTable.CustTableView</TypeName>

</Component>
</CustomRecord>
<CustomReplay>

<Component>
<Context>AUT-XML</Context>

</Component>
</CustomReplay>
<CustomVerify>

<Context>AUT</Context>
<DllName>C:\MyProducts\Bin\VfySrv.dll</DllName>
<TypeName>VfySrv.DataGridCPSrv</TypeName>

</CustomVerify>
<Settings>

<Parameter Name="sample name">sample value</Parameter>
</Settings>

</Control>

</Controls>

Deploying the Custom Support Set
The next stage of extending UFT GUI testing support for custom controls is deployment.
This means placing all files you created in the correct locations, so that the custom
support is available to UFT.

After you deploy the custom support, if you run an application that contains the custom
controls and perform UFT operations on the application, you can see the effects of the
support you designed.

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 100

Placing Files in the Correct Locations
To deploy the support set that you create, place the files in the locations described in
the following table. Make sure that UFT is closed before placing the files in their
appropriate locations.

File Name Location

SwfConfig.xml <UFT installation path>\dat

<Test Object Configuration
File Name>.xml

Note: You can have more
than one test object
configuration file (if any),
and name them as you
wish.

l <UFT installation
path>\dat\Extensibility\DotNet

l <UFT Add-in for ALM
Installation Path>\dat\Extensibility\DotNet

(Optional. Required only if UFT Add-in for
ALM is installed)

<Control Definition File
Name>.xml>

Note: The Control
Definition file is used when
creating a Custom Server
using the XML coding
option. You can have more
than one control definition
file (one for each custom
control).

l <UFT installation
path>\dat\Extensibility\DotNet

l <UFT Add-in for ALM
Installation Path>\dat\Extensibility\DotNe
t\

(Optional. Required only if UFT Add-in for
ALM is installed)

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 101

File Name Location

<Custom Server File
Name>.dll

Note: This type of Custom
Server is used when
creating a Custom Server
using the .NET DLL coding
option. You can have more
than one custom server for
each custom control.

Specify the location of your compiled Custom
Servers (DLLs) in the SwfConfig.xml file.

Modifying Deployed Support
If you modify a support set that was previously deployed to UFT, the actions you must
perform depend on the type of change you make, as follows:

l If you modify the .NET Add-in Extensibility configuration file or a test object
configuration file, you must deploy the support.

l If you modify a test object configuration file, you must reopen UFT and open a GUI
test after deploying the support.

Removing Deployed Support
To remove support for a custom control from UFT after it is deployed, you must delete
the corresponding section in the SwfConfig.xml file from <UFT installation path>\dat
and remove the corresponding test object configuration file from <UFT installation
path>\dat\Extensibility\DotNet.

If you remove support for a new test object method that you added in a test object
configuration file, you should remove the method definition (or the whole file, if
appropriate) so that UFT users do not create test steps that call that method. Modify or
remove the test object configuration file in: <UFT Installation

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 102

Path>\Dat\Extensibility\DotNet (and <UFT Add-in for ALM
Installation Path>\Dat\Extensibility\DotNet if relevant).

Testing the Custom Support Set
We recommend that you test the custom support using an incremental approach. First,
test the basic functionality of the support set. Then, test its implementation.

l "Testing Basic Functionality of the Support Set" below

l " Testing Implementation" on page 105

Testing Basic Functionality of the Support Set
After you define a basic .NET Windows Forms configuration file enabling UFT to identify
which test object classes to use for the different controls, and (optionally) define your
test object model in the test object configuration file, you can test the existing
functionality of the support set. To do this, you deploy the support set and test how UFT
interacts with the controls in your environment.

To test your support set after defining the test object classes and mapping them to
custom .NET Windows Forms controls:

1. In the test object configuration file, set the TypeInformation\DevelopmentMode
attribute to true, to ensure that UFT reads all of the test object class information
from the file each time it opens. When you complete the development of the
support set, make sure to set this attribute to false.

2. Deploy the support set on a UFT computer by copying the files of the support set to
the correct locations in the UFT installation folder, as described in "Placing Files in
the Correct Locations" on page 101.

3. Open UFT, load the .NET Add-in, and open a GUI test. (If the Add-in Manager dialog
box does not open when you open UFT, see the HP Unified Functional Testing Add-

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 103

ins Guide for instructions.)

4. Open an application with your custom controls.

5. Based on the mapping definitions you created, UFT can already recognize and learn
your controls.

Use the Add Objects to Local button in the Object Repository dialog box to
learn your controls.

6. If you created a test object configuration file, you can already see its effect on UFT:

a. If you added a test object method to a test object class, you can view it using

the Object Spy .

b. You can create test steps that use the test object method that you added. (If
you have not yet implemented the custom server that supports this test object
method, running a such a test step will cause a run-time error.)

In the Keyword View:

Create a test step with a test object from a class that you modified.

o If you added a test object method to a test object class, the method appears
in the list of available operations in the Operation column.

o After you choose an operation, the Value cell is partitioned according to the
number of arguments of the selected operation, and if you defined possible
values for the operation (in the ListOfValues element), they are displayed in
a list.

o The descriptions and documentation strings you defined for the test object
methods are displayed in tooltips and in the Documentation column,
respectively.

In the Editor:

Create a test step with a test object from a class that you modified. The
statement completion feature displays all of the operations available for the

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 104

test object, and possible input values for these operations, if relevant, based on
the definitions in the test object configuration file.

In the Step Generator:

Create a test step with a test object from a class that you modified. The
operations that you defined in the test object configuration file are displayed in
the Operation list, and the descriptions you defined for the operations are
displayed as tooltips.

Note: For more information on working with these options in UFT, see the
HP Unified Functional Testing User Guide.

Testing Implementation
After you complete additional stages of developing support for your environment, you
can deploy the support set again and test additional areas of interaction between UFT
and your controls (for example, running and recording GUI tests).

To test your support set after developing support for additional UFT functionality:

1. Follow the steps in "Testing Basic Functionality of the Support Set" on page 103 to
deploy the support set, open UFT, load the support and run an application with
controls from your environment.

2. Depending on the UFT functionality for which you are developing support, perform
the relevant UFT operations on the application to test that support. For example,
run a test on the application, record test steps on the application and so on.

Developer Guide
Chapter 5: Configuring and Deploying the Support Set

HP UFT .NET Add-in Extensibility (12.00) Page 105

Chapter 6: Learning to Create Support
for a Simple Custom .NET Windows
Forms Control
In this tutorial, you will learn how to build a Custom Server for a Microsoft TrackBar
control that enables UFT to record and run a SetValue operation on the control. You will
implement the Custom Server in C#. A Custom Server can be similarly implemented in
Visual Basic.

This tutorial refers to Microsoft Visual Studio 2008. However, you can use other
supported versions of Visual Studio to build the Custom Server as described in this
tutorial.

Note: The Microsoft Visual Studio dialog box images and the instructions in this
chapter refer to Microsoft Visual Studio 2008. If you use a different Microsoft Visual
Studio version, the dialog boxes may differ slightly in appearance and the UFT
CustomServer template may be located in a slightly different node in the tree.

This chapter includes:

Developing a New Support Set 107

Implementing Test Record Logic 110

Implementing Test Run Logic 111

Checking the TrackBarSrv.cs File 112

Configuring and Deploying the Support Set 114

Testing the Support Set 116

HP UFT .NET Add-in Extensibility (12.00) Page 106

Developing a New Support Set
The first step in creating support for a custom control is to create a new Custom Server
project. This project will create support for the TrackBar control.

To create a new Custom Server project:

1. Open Microsoft Visual Studio.

2. Select File > New > Project. The New Project dialog box opens.

HP UFT .NET Add-in Extensibility (12.00) Page 107

3. Specify the following settings:

n Select the Visual C# > Windows node in the Project types tree. (In Microsoft
Visual Studio versions other than 2008, the UFT CustomServer template may be
located in a slightly different node in the tree.)

n Select UFT CustomServer in the Templates pane.

n In the Name box, specify the project name UFTCustServer.

n Accept the rest of the default settings.

4. Click OK. The UFT Custom Server Settings wizard opens.

Developer Guide
Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.00) Page 108

5. In the Application Settings page, specify the following settings:

n In the Server class name box, enter TrackBarSrv.

n Select the Customize Record process check box.

n Select the Customize Run process check box.

n Accept the rest of the default settings.

6. Click Next. The XML Configuration Settings page opens.

Developer Guide
Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.00) Page 109

7. In the XML Configuration Settings page, specify the following settings:

n Make sure the Auto-generate the XML configuration segment check box is
selected.

n In the Customized Control type box, enter
System.Windows.Forms.TrackBar.

n Accept the rest of the default settings.

8. Click Finish. In the Class View window, you can see that the wizard created a
TrackBarSrv class derived from the CustomServerBase class and
ITrackBarSrvReplay interface.

Implementing Test Record Logic
You will now implement the logic that records a SetValue(X) command when a
ValueChanged event occurs, using an event handler function.

To implement the Test Record logic:

1. In the TrackBarSrv class, locate an appropriate place to add a new method,
OnValueChanged. For example, you might want to add it after other event handler

Developer Guide
Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.00) Page 110

methods, such as OnMessage, in the IRecord override Methods region.

2. Add the new method with the following signature to the TrackBarSrv class:

public void OnValueChanged(object sender, EventArgs e) { }

Note: You can add the new method manually or use the wizard that Visual
Studio provides for adding methods and functions to a class.

3. Add the following implementation to the function you just added (if copying and
pasting, remove the redundant line breaks):

public void OnValueChanged(object sender, EventArgs e)
{
System.Windows.Forms.TrackBar trackBar =
(System.Windows.Forms.TrackBar)sender;
// get the new value
int newValue = trackBar.Value;
// Record SetValue command to the test
RecordFunction("SetValue", RecordingMode.RECORD_SEND_LINE,
newValue);
}

4. Register the OnValueChanged event handler for the ValueChanged event, by adding
the following code to the InitEventListener method:

public override void InitEventListener()
{
Delegate e = new System.EventHandler(this.OnValueChanged);
AddHandler("ValueChanged", e);

}

Implementing Test Run Logic
You will now implement a SetValue method for the test Test Run.

Developer Guide
Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.00) Page 111

To implement the Test Run logic:

1. Add the following method definition to the ITrackBarSrvReplay interface:

[ReplayInterface]
public interface ITrackBarSrvReplay
{

void SetValue(int newValue);
}

2. Add the following method implementation to the TrackBarSrv class in the Replay
interface implementation region (if copying and pasting, remove the redundant
line breaks):

public void SetValue(int newValue)
{
System.Windows.Forms.TrackBar trackBar =
(System.Windows.Forms.TrackBar)SourceControl;
trackBar.Value = newValue;
}

3. Build your project.

Checking the TrackBarSrv.cs File
Following is the full source code for the TrackBarSrv class. Check that the contents of
your TrackBarSrv.cs file is similar to the one illustrated below.

using System;
using Mercury.QTP.CustomServer;
namespace UFTCustServer
{

[ReplayInterface]
 public interface ITrackBarSrvReplay

{
 void SetValue(int newValue);
 }
 public class TrackBarSrv:

Developer Guide
Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.00) Page 112

 CustomServerBase,
 ITrackBarSrvReplay

{
 public TrackBarSrv()

{
 }
 public override void InitEventListener()

{
 Delegate e = new System.EventHandler
(this.OnValueChanged);
 AddHandler("ValueChanged", e);
 }
 public override void ReleaseEventListener()

{
 }
 public void OnValueChanged(object sender, EventArgs e)

{
 System.Windows.Forms.TrackBar trackBar =

(System.Windows.Forms.TrackBar)sender;
 int newValue = trackBar.Value;
 RecordFunction("SetValue",
 RecordingMode.RECORD_SEND_LINE,
 newValue);
 }
 public void SetValue(int newValue)

{
 System.Windows.Forms.TrackBar trackBar =

(System.Windows.Forms.TrackBar)
SourceControl;
 trackBar.Value = newValue;
 }
 }
}

Developer Guide
Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.00) Page 113

Configuring and Deploying the Support Set
Now that you created the UFT Custom Server, you need to configure UFT to use this
Custom Server when recording and running GUI tests on the TrackBar control.

To configure UFT to use the Custom Server:

1. In the Solution Explorer window, double-click the Configuration.XML file.

The following content should be displayed:

<!-- Merge this XML content into file "<UFT installation
folder>\dat\SwfConfig.xml". -->
<Control Type="System.Windows.Forms.TrackBar">
 <CustomRecord>
 <Component>
 <Context>AUT</Context>

 <DllName>D:\Projects\UFTCustServer\Bin\UFTCustServer.d
ll</DllName>

Developer Guide
Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.00) Page 114

 <TypeName>UFTCustServer.TrackBarSrv</TypeName>
 </Component>
 </CustomRecord>
 <CustomReplay>
 <Component>
 <Context>AUT</Context>

 <DllName>D:\Projects\UFTCustServer\Bin\UFTCustServer.d
ll</DllName>
 <TypeName>UFTCustServer.TrackBarSrv</TypeName>
 </Component>
 </CustomReplay>
 <!--<Settings>

<Parameter Name="sample name">sample value</Parameter>
 </Settings> -->
</Control>

2. Select the <Control>...</Control> segment and select Edit > Copy from the menu.

3. Open the SwfConfig.xml file located in <UFT installation folder>\dat.

4. Paste the <Control>...</Control> segment you copied from Configuration.xml
into SwfConfig.xml, under the <Controls> tag in SwfConfig.xml. After you paste
the segment, the SwfConfig.xml file should look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Controls>
 <Control Type="System.Windows.Forms.TrackBar">
 <CustomRecord>
 <Component>
 <Context>AUT</Context>

 <DllName>D:\Projects\UFTCustServer\Bin\UFTCustServ
er.dll</DllName>
 <TypeName>UFTCustServer.TrackBarSrv</TypeName>
 </Component>
 </CustomRecord>
 <CustomReplay>

Developer Guide
Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.00) Page 115

 <Component>
 <Context>AUT</Context>

 <DllName>D:\Projects\UFTCustServer\Bin\UFTCustServ
er.dll</DllName>
 <TypeName>UFTCustServer.TrackBarSrv</TypeName>
 </Component>
 </CustomReplay>
 </Control>
</Controls>

5. Make sure that the <DllName> elements contain the correct path to your Custom
Server DLL.

6. Save the SwfConfig.xml file.

Testing the Support Set
You can now verify that UFT records and runs GUI tests as expected on the custom
TrackBar control by testing the Custom Server.

To test the Custom Server:

1. Open UFT with the .NET Add-in loaded, and open a GUI test.

2. Start recording on a .NET application with a System.Windows.Forms.TrackBar
control.

3. Click the TrackBar control. UFT should record commands such as:

SwfWindow("Form1").SwfObject("trackBar1").SetValue 2

4. Run the test. The TrackBar control should receive the correct values.

Developer Guide
Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.00) Page 116

Chapter 7: Learning to Create Support
for a Complex Custom .NET Windows
Forms Control
In this tutorial, you will learn how to build a Custom Server for controls that require
more complex implementation solutions, so that UFT can record and run operations on
these controls. You will implement the Custom Server in C#. A Custom Server can be
similarly implemented in Visual Basic.

The explanations in this chapter assume that you are familiar with .NET Add-in
Extensibility concepts and already know how to implement a Custom Server.

This chapter includes:

SandBar Toolbar Example 118

Understanding the ToolBarSrv.cs File 123

HP UFT .NET Add-in Extensibility (12.00) Page 117

SandBar Toolbar Example
This example demonstrates how to implement .NET Add-in Extensibility for the
Divelements Limited TD.SandBar.Toolbar control.

You can view the full source code of the final ToolBarSrv.cs class implementation in
"Understanding the ToolBarSrv.cs File" on page 123.

A complete support set for the SandBar control, implemented both in C# and in Visual
Basic, is located in <UFT .NET Add-in Extensibility SDK installation
folder>\samples\WinFormsExtSample. You can use the files in this sample as an
additional reference when performing this tutorial. For more information, see "Using
the .NET Add-in Extensibility Samples" on page 89.

Tip: You can download an evaluation copy of the TD.SandBar.Toolbar control from:
http://www.divil.co.uk/net/download.aspx?product=2&license=5.

The Toolbar control appears as follows:

The Toolbar control is comprised of a variety of objects, such as:

l ButtonItem objects, which represent buttons in the toolbar. ButtonItem objects
contain images and no text. Each ButtonItem object has a unique tooltip.

l DropDownMenuItem objects, which represent drop-down menus in the toolbar.

Both the ButtonItem object and the DropDownMenuItem object are derived from the
ToolbarItemBase object.

When you implement a Custom Server for a custom control, you want UFT to support
recording and running the user's actions on the custom controls. When recording the
test, your Custom Server listens to the control's events and handles the events to

Developer Guide
Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.00) Page 118

http://www.divil.co.uk/net/download.aspx?product=2& license=5

perform certain actions to add steps to the UFT GUI test. When running the test, you
simulate (replay) the same actions the user performed on that control.

For example, suppose you want to implement a user pressing a button on a custom
toolbar. Before doing so, you must understand the toolbar control, its properties and
methods, and understand how you can use them to implement the Custom Server.

Following are some of the SandBar ToolBar object's properties and events (methods
are not visible in this image) as displayed in the Object Browser in Visual Studio:

As you can see in the image above, the ToolBar object has a property called Items that
retrieves the collection of ToolbarItemBase objects assigned to the ToolBar control.
You can also see that the ToolBar control has an event called ButtonClick. Your Custom
Server can listen to the ButtonClick event to know when a button in the toolbar is
clicked. However, this event does not indicate which specific button in the toolbar is
clicked.

Developer Guide
Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.00) Page 119

Now expand the ButtonItem object and review its properties, methods, and events:

As shown in the image above, the ButtonItem object is derived from the
ToolbarItemBase object. You can see that the ToolbarItemBase object contains a
ToolTipText property, but does not contain a Click event or method.

When you look at the custom toolbar object, the following possible implementation
issues arise:

1. When handling a ButtonClick event during recording, how can
you tell which button in the toolbar was clicked?

Developer Guide
Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.00) Page 120

Solution: All of the ToolBar object's events are ToolBarItemEventArgs events
that are derived from the EventArgs object:

The Item property indicates which toolbar item (button) raised the event. You can
use that toolbar item's unique ToolTipText property to recognize which button was
clicked and add that to the UFT GUI test.

To do this, enter the following code in the Record events handlers section of the
ToolBarSrv.cs file:

#region Record events handlers
private void oControl_ButtonClick(object sender,
TD.SandBar.ToolBarItemEventArgs e)
{
 TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)
SourceControl;
 // Add a step in the test for the test object with the
 // ClickButton method and the tooltip text as an argument
 base.RecordFunction("ClickButton", RecordingMode.RECORD_SEND_
LINE, e.Item.ToolTipText);

Developer Guide
Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.00) Page 121

}
#endregion

Now, each time you record a click on a button in the toolbar, a step is added to the
test for the toolbar test object with the ClickButton method and the tooltip text of
the button as its argument. For example:

SwfToolbar("MySandBar").ClickButton "Spelling and Grammar"

2. When running a test, how do you perform a ClickButton
method, when the ButtonItem object does not contain a Click
method or event, and you know only the ButtonItem object's
tooltip text?
Solution: The ToolbarItemBase object has a property called ButtonBounds:

You can loop through all of the ToolbarItemBase objects until you find a
ToolbarItemBase objects that has the same tooltip text as the ButtonItem object,
find that ToolbarItemBase object's rectangle boundaries, calculate the middle of
its boundaries, and click that point.

Developer Guide
Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.00) Page 122

To do this, enter the following code in the Replay interface implementation
section of the ToolBarSrv.cs file:

#region Replay interface implementation
public void ClickButton(string text)
{
TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;
 //Find the correct item in the toolbar according to
 // its tooltip text.
 for(int i=0; i<oControl.Items.Count; i++)

{
 //Found the correct ButtonItem
 if(oControl.Items[i].ToolTipText == text)

{
 //Retrieve the rectangle of the button's boundaries
 // and locate its center
 System.Drawing.Rectangle oRect = oControl.Items
[i].ButtonBounds;
 int x = oRect.X + oRect.Width/2;
 int y = oRect.Y + oRect.Height/2;
 //Click the middle of the button item
 base.MouseClick(x, y, MOUSE_BUTTON.LEFT_MOUSE_BUTTON);
 break;
 }
 }
 //Add the step to the report
 base.ReplayReportStep("ClickButton", EventStatus.EVENTSTATUS_
GENERAL, text);
}
#endregion

Understanding the ToolBarSrv.cs File
Following is the full source code for the ToolBarSrv.cs class, used to implement UFT
record and run support for the TD.SandBar.Toolbar control:

using System;

Developer Guide
Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.00) Page 123

using Mercury.QTP.CustomServer;
//using TD.SandBar;

namespace ToolBar
{

[ReplayInterface]
public interface IToolBarSrvReplay
{

void ClickButton(string text);
}
/// <summary>
/// Summary description for ToolBarSrv.
/// </summary>
public class ToolBarSrv:

CustomServerBase,
IToolBarSrvReplay

{
// You shouldn't call Base class methods/properties at the constructor
// since its services are not initialized yet.
public ToolBarSrv()
{

//
// TODO: Add constructor logic here
//

}
#region IRecord override Methods
#region Wizard generated sample code (commented)
/// <summary>
/// To change Window messages filter, implement this method.
/// The default implementation is to get only the control's
/// Windows messages.
/// </summary>
public override WND_MsgFilter GetWndMessageFilter()
{

return(WND_MsgFilter.WND_MSGS);
}

/*
/// <summary>
/// To catch Windows messages, you should implement this method.
/// Note that this method is called only if the CustomServer is running
/// under UFT process.
/// </summary>
public override RecordStatus OnMessage(ref Message tMsg)
{

// TODO: Add OnMessage implementation.
return RecordStatus.RECORD_HANDLED;

}
*/
#endregion

/// <summary>
/// If you are extending the Record process, you should add your event
/// handlers to listen to the control's events.
/// </summary>
public override void InitEventListener()
{

TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;
oControl.ButtonClick += new

Developer Guide
Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.00) Page 124

TD.SandBar.ToolBar.ButtonClickEventHandler(oControl_ButtonClick);
//AddHandler("ButtonClick", new
//TD.SandBar.ToolBar.ButtonClickEventHandler(oControl_ButtonClick));

}

/// <summary>
/// At the end of the Record process, this method is called by UFT to
/// release all the handlers the user added in the InitEventListener method.
/// Note that handlers added via UFT methods are released by
/// the UFT infrastructure.
/// </summary>
public override void ReleaseEventListener()
{

TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;
oControl.ButtonClick -= new
TD.SandBar.ToolBar.ButtonClickEventHandler(oControl_ButtonClick);

}
#endregion

#region Record events handlers
private void oControl_ButtonClick(object sender,

TD.SandBar.ToolBarItemEventArgs e)
{

TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;
// Add a step in the test for the test object with the ClickButton method
// and the tooltip text as an argument
base.RecordFunction("ClickButton",

RecordingMode.RECORD_SEND_LINE, e.Item.ToolTipText);
}
#endregion
#region Replay interface implementation
public void ClickButton(string text)
{
TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;
//Find the correct item in the toolbar according to its tooltip text.
for(int i=0; i<oControl.Items.Count; i++)
{

//Found the correct ButtonItem
if(oControl.Items[i].ToolTipText == text)
{
// Retrieve the rectangle of the button's boundaries and
// locate its center
System.Drawing.Rectangle oRect=oControl.Items[i].ButtonBounds;
int x = oRect.X + oRect.Width/2;
int y = oRect.Y + oRect.Height/2;
//Click the middle of the button item
base.MouseClick(x, y, MOUSE_BUTTON.LEFT_MOUSE_BUTTON);
break;
}

}
//Add the step to the report
base.ReplayReportStep("ClickButton",

EventStatus.EVENTSTATUS_GENERAL, text);
}
#endregion

}
}

Developer Guide
Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms Control

HP UFT .NET Add-in Extensibility (12.00) Page 125

Send Us Feedback
Can we make this Developer Guide better?

Tell us how: sw-doc@hp.com

HP UFT .NET Add-in Extensibility (12.00) Page 126

mailto:sw-doc@hp.com?subject=Feedback on Developer Guide (UFT .NET Add-in Extensibility 12.00)

	Welcome to HP UFT .NET Add-in Extensibility
	About the UFT .NET Add-in Extensibility SDK
	About the UFT .NET Add-in Extensibility Developer Guide
	Who Should Read This Guide
	Additional Online Resources

	Chapter 1: Introducing UFT .NET Add-in Extensibility
	About UFT .NET Add-in Extensibility
	Deciding When to Use .NET Add-in Extensibility
	Recognizing Which Elements of UFT Support Can Be Customized
	Example: Customizing Recording of an Event's Meaningful Behaviors
	Understanding How to Implement .NET Add-in Extensibility
	Planning the .NET Add-in Extensibility Support Set
	Developing the .NET Add-in Extensibility Support Set
	Deploying the .NET Add-in Extensibility Support Set
	Testing the .NET Add-in Extensibility Support Set

	Chapter 2: Installing the HP UFT .NET Add-in Extensibility SDK
	Before You Install
	Installing the HP UFT .NET Add-in Extensibility SDK
	Repairing the HP UFT .NET Add-in Extensibility SDK Installation
	Uninstalling the HP UFT .NET Add-in Extensibility SDK

	Chapter 3: Planning Your Support Set
	About Planning UFT GUI Testing Support for Your .NET Add-in Extensibility Con...
	Determining Information Related to Your Custom Controls
	Analyzing the Custom Controls

	Selecting the Coding Option for Implementing the Custom Servers
	.NET DLL: Full Program Development Environment
	XML Implementation

	Selecting the Custom Server Run-Time Context Depending on the Test Function
	Analyzing Custom Controls and Mapping Them to Test Objects
	Using the .NET Add-in Extensibility Planning Checklist
	.NET Add-in Extensibility Planning Checklist

	Where Do You Go from Here?

	Chapter 4: Developing Your Support Set
	Understanding the Development Workflow
	Describing the Test Object Model
	Benefits of Describing Test Object Models
	Creating Test Object Configuration Files
	Understanding the Contents of the Test Object Configuration File
	Modifying an Existing Test Object Class
	Make Sure that Test Object Configuration File Information Matches Custom Serv...
	Implementing More Than One Test Object Configuration File
	Understanding How UFT Merges Test Object Configuration Files

	Example of a Test Object Configuration File

	Mapping Custom Controls to Test Object Classes
	Defining How UFT Operates on the Custom Controls
	Using a .NET DLL to Extend Support for a Custom Control
	Setting up the .NET Project
	Implementing Test Record for a Custom Control Using a .NET DLL
	Implementing Test Run for a Custom Control Using the .NET DLL
	Implementing Support for Table Checkpoints and Output Values in the .NET DLL ...
	Running Code under Application Under Test from the UFT Context
	Reviewing Commonly-used API Calls

	Using XML Files to Extend Support for a Custom Control
	Understanding Control Definition Files
	An Example of a Control Definition File

	Using the .NET Add-in Extensibility Samples
	Troubleshooting and Limitations - Running the Support You Designed

	Chapter 5: Configuring and Deploying the Support Set
	Understanding the Deployment Workflow
	Configuring UFT to Use the Custom Server
	Understanding How to Configure UFT Windows Forms Extensibility
	Copying Configuration Information Generated by the UFT Custom Server Settings...

	Deploying the Custom Support Set
	Placing Files in the Correct Locations
	Modifying Deployed Support
	Removing Deployed Support

	Testing the Custom Support Set
	Testing Basic Functionality of the Support Set
	Testing Implementation

	Chapter 6: Learning to Create Support for a Simple Custom .NET Windows Forms Control
	Developing a New Support Set
	Implementing Test Record Logic
	Implementing Test Run Logic
	Checking the TrackBarSrv.cs File

	Configuring and Deploying the Support Set
	Testing the Support Set

	Chapter 7: Learning to Create Support for a Complex Custom .NET Windows Forms Control
	SandBar Toolbar Example
	Understanding the ToolBarSrv.cs File

	Send Us Feedback

