/

HP UFT Java Add-in Extensibility

Software Version: 12.00
Windows ® operating systems

Developer Guide

Document Release Date: December 2014
Software Release Date: March 2014

Developer Guide

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained
herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial ltems are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notice

© Copyright 1992 - 2014 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Google™ and Google Maps™ are trademarks of Google Inc.

Intel® and Pentium® are trademarks of Intel Corporation in the U.S. and other countries.

Microsoft®, Windows®, Windows® XP, and Windows Vista © are U.S. registered trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Documentation Updates

The title page of this document contains the following identifying information:

« Software Version number, which indicates the software version.
« Document Release Date, which changes each time the document is updated.
« Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to:
https://softwaresupport.hp.com/group/softwaresupport/search-result.

This site requires an HP Passport account. If you do not have one, click the Create an account button on the HP Passport Sign in page.

HP UFT Java Add-in Extensibility (12.00) Page 2

https://softwaresupport.hp.com/group/softwaresupport/search-result

Developer Guide

Support

Visit the HP Software Support Online web site at: https://softwaresupport.hp.com
This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools
needed to manage your business. As a valued support customer, you can benefit by using the support web site to:

o Search for knowledge documents of interest

e Submit and track support cases and enhancement requests
« Download software patches

« Manage support contracts

o Look up HP support contacts

« Review information about available services

« Enterinto discussions with other software customers

« Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP
Passport ID, go to: https://softwaresupport.hp.com and click Register.

To find more information about access levels, go to: https://softwaresupport.hp.com/web/softwaresupport/access-levels.

HP Software Solutions & Integrations and Best Practices

Visit HP Software Solutions Now at https://h20230.www2.hp.com/sc/solutions/index.jsp to explore how the products in the HP
Software catalog work together, exchange information, and solve business needs.

Visit the Cross Portfolio Best Practices Libraryat https://hpln.hp.com/group/best-practices-hpsw to access a wide variety of best
practice documents and materials.

HP UFT Java Add-in Extensibility (12.00) Page 3

https://softwaresupport.hp.com/
https://softwaresupport.hp.com/
https://softwaresupport.hp.com/web/softwaresupport/access-levels
https://h20230.www2.hp.com/sc/solutions/index.jsp
https://hpln.hp.com/group/best-practices-hpsw

Developer Guide

Contents

Welcome to HP UFT Java Add-in Extensibility 8
About the UFT Java Add-in Extensibility SDK . .. 8
About the UFT Java Add-in Extensibility Developer Guide 10
Who Should Read This GuUide 12
Additional Online ReSOUICeS o L 12

Part 1: Working with Java Add-in Extensibility 14
Chapter 1: Introducing UFT Java Add-in Extensibility 15

About UFT Java Add-in Extensibility _ 16
Identifying the Building Blocks of Java Add-in Extensibility 16
Deciding When to Use Java Add-in Extensibility 18
Analyzing the Default UFT Support and Extensibility Options for a Sample Custom
(00311 o] R 20
Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit .___......... 24
About Installing the HP UFT Java Add-in Extensibility SDK _ 25
Pre-Installation Requirements 27
Installing the HP UFT Java Add-in Extensibility SDK 28
Uninstalling the HP UFT Java Add-in Extensibility SDK 32
Troubleshooting and Limitations - Java Add-in Extensibility Eclipse Plug-in .___............_.. 33
Chapter 3: Implementing Custom Toolkit Support 34
About Custom ToolKit SUPPOIt 35
Introducing Java Add-in Extensibility Terminology il.. 36
Preparing to Create Support for a Custom Toolkit 37
Creating a Custom Toolkit Support Setl 38
Understanding the Toolkit Support Class 41
Understanding the Toolkit Configuration File 42
Understanding the Test Object ConfigurationFile 44
How UFT Loads the Test Object Configuration XML 50
Understanding How UFT Merges Test Object ConfigurationFiles_.............. 51

HP UFT Java Add-in Extensibility (12.00) Page 4

Developer Guide

Understanding Custom Support Classes 53
Determining the Inheritance Hierarchy for a Support Class 55
Mapping a Custom Controlto a Test Object Class 58
Supporting Identification Properties 59
Supporting Test Object Methods 63
Supporting the Record Option 65
Supporting Top-Level Objects 68
Supporting Wrapper Controls 69
SuppPOrt Class SUMIMaAIY . 75
Using Methods from MicAPl . 76

Deploying and Running the Custom Toolkit Support 77
About Deploying the Custom Toolkit Support 77
Deploying the Custom Toolkit Support 78
Modifying Deployed SUPPOIt 82

Modifying Identification Property Attributes in a Test Object Configuration File _...... 83
Removing Deployed SUPPOIt 84
Logging and Debugging the Custom Support Class 86
Workflow for Implementing Java Add-in Extensibility 88
Chapter 4: Planning Custom Toolkit SUPPOrt 90

About Planning Custom Toolkit SUpport 91

Determining the Custom Toolkit Related Information 91

Determining the Support Information for Each Custom Class 92
Understanding the Custom Class Support Planning Checklist__........................ 93
Custom Class Support Planning Checklist 95

Where Do You Go from Here? ... 96

Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In 97

About the UFT Java Add-in Extensibility Eclipse Plug-In 98

New UFT Java Add-in Extensibility Project Wizard 99
UFT Java Add-in Extensibility Project Screen 101
Custom Toolkit Details Screen 103
Project SUMmMary SCreen 108

Modifying UFT Java Add-in Extensibility Project Properties 109

New UFT Custom Support Class Wizard 110
Custom Class Selection Screen 112

HP UFT Java Add-in Extensibility (12.00) Page 5

Developer Guide

Test Object Class Selection Screen 117
Custom Support Test Object Identification Properties Screen 120
Custom Support Test Object Methods Screen 124
Understanding the Test Object Method Dialog Box 127
Custom Control Recording Support Screen 132
New Test Object Class Details Screen 137
Custom Control Support Class Summary Screen 140
New UFT Custom Static-Text Support Class Wizard 142
Custom Static-Text Class Selection Screen oo, 144
Custom Static-Text Support Class Summary Screen 145
Working with UFT Commands in Eclipse o 147
Part 2: Tutorial: Learning to Create Java Custom Toolkit Support 157
Chapter 5: Using the UFT Java Add-in Extensibility Tutorial .. 158
Understanding the Tutorial Lesson Structure 159
Checking Tutorial Prerequisites o . 160
Chapter 6: Learning to Support a Simple Control 163
Preparing for This LeSSON L 164
Modifying the Sample Application to Run From Another Location_..... 166
Planning Support for the ImageButton Control 167
Custom Class Support Planning Checklist 171
Creating a New UFT Java Add-in Extensibility Project 172
Understanding Your New Custom Toolkit Support Set __ 178
Creating a New UFT Custom Support Class 181
Understanding the New Custom Support 191
Understanding the Basics of the ImageButtonCS Class 192
Understanding Identification Property and Test Object Method Support 193
Understanding Event Recording SUppoOrt 194
Deploying and Testing the New Custom Toolkit Support 195
Changing the Name of the Test Object 197
Implementing Support for a Test Object Method 199
Implementing Event Handler Methods to Support Recording 202
LSS ON SUMIMIAIY | . 203
Where Do You Go from Here? ... 204

HP UFT Java Add-in Extensibility (12.00) Page 6

Developer Guide

Chapter 7: Learning to Support a Custom Static-Text Control 205
Preparing for This LeSSON L 206
Planning Support for the ImageLabel Control 206

Custom Class Support Planning Checklist 211
Creating the UFT Custom Static-Text Support Class oo, 212
Understanding the New Custom Static-Text Support Class 216
Deploying and Testing the New Custom Static-Text Support Class 217
Completing the Support for the Static-Text Control 219
Optimizing the ImageControls Toolkit Support 223

Creating Support for the ImageControl Custom Class 224

Modifying the ImageControls Toolkit Support Hierarchy 232

Deploying and Testing the New ImageControls Toolkit Support 233
LSS ON SUMIMIAIY 234

Where Do You Go from Here? . . . i 235

Chapter 8: Learning to Support a Complex Control 236
Preparing for This Lesson 237
Planning Support for the AllLights Control 239

Custom Class Support Planning Checklist 244
Creating the UFT Java Add-in Extensibility Project 245
Creating the New UFT Custom Support Class 251
Understanding the New Custom Support Files 266

Understanding the AllLightsCS Custom Support Class 267

Understanding the Javaboutique Test Object ConfigurationFile_........ 268
Deploying and Testing the New Custom Toolkit Support 269
Implementing Support for the AllLights Control 272

Implementing Support for New Identification Properties 272

Implementing Support for New Test Object Methods 274

Implementing Support for Recording 275

Testing the Completed SUPPOIt 277
LSS ON SUMIMIAIY | . 278

Where Do You Go from Here? .. e 279

Send Us Feedback 280

HP UFT Java Add-in Extensibility (12.00) Page 7

Welcome to HP UFT Java Add-in
Extensibility

HP UFT Java Add-in Extensibility is an SDK (Software Development Kit) package that
enables you to support testing applications that use third-party and custom Java
controls that are not supported out-of-the-box by the UFT Java Add-in.

This chapter includes:

About the UFT Java Add-in Extensibility SDK 8
About the UFT Java Add-in Extensibility Developer Guide 10
Who Should Read This Guide 12
Additional Online ResoUrCes 12

About the UFT Java Add-in Extensibility SDK

The UFT Java Add-in Extensibility SDK installation provides the following:

o An API that enables you to extend the UFT Java Add-in to support custom Java
controls.

o A plug-in for the Eclipse Java development environment, which provides wizards and
commands that help you create and edit custom toolkit support sets.

o The Java Add-in Extensibility Help, which includes the following:

m A developer quide, including a step-by-step tutorial in which you develop support
for a sample custom control.

m An API Reference.

HP UFT Java Add-in Extensibility (12.00) Page 8

m A Toolkit Configuration Schema Help.
m The UFT Test Object Schema Help.

The Help is available from Start > All Programs > HP Software > HP Unified
Functional Testing > Extensibility > Documentation

« A printer-friendly Adobe portable document format (PDF) version of the developer
guide (available from Start > All Programs > HP Software > HP Unified Functional
Testing > Extensibility > Documentation and in the <Unified Functional Testing
installation>\help\Extensibility folder).

o A set of sample applications and completed Java Add-in Extensibility projects that
extend support for these applications.

Accessing UFT Java Add-in Extensibility in Windows 8 Operating
Systems

UFT files that were accessible from the Start menu in previous versions of Windows are
accessible in Windows 8 from the Start screen or the Apps screen.

« Applications (.exe files). You can access UFT applications in Windows 8 directly
from the Start screen. For example, to start UFT, double-click the HP Unified
Functional Testing shortcut.

o Non-program files. You can access documentation from the Apps screen.

Note: As in previous versions of Windows, you can access context sensitive help
in UFT by pressing F1, and access complete documentation and external links
from the Help menu.

HP UFT Java Add-in Extensibility (12.00) Page 9

About the UFT Java Add-in Extensibility
Developer Guide

This guide explains how to set up UFT Java Add-in Extensibility and use it to extend
UFT GUI testing support for third-party and custom Java controls.

This guide assumes you are familiar with UFT functionality, and should be used together
with the following documents, provided in the Java Add-in Extensibility Help (Start > All
Programs > HP Software > HP Unified Functional Testing > Extensibility >
Documentation > Java Add-in Extensibility Help):

o API References
o Toolkit Configuration Schema Help
o Test Object Schema Help

These documents should also be used in conjunction with the following
UFT documentation, available with the UFT installation (Help > HP Unified Functional
Testing Help from the UFT main window):

o HP Unified Functional Testing User Guide
« The Java section of the HP Unified Functional Testing Add-ins Guide

e HP UFT Object Model Reference for GUI Testing

HP UFT Java Add-in Extensibility (12.00) Page 10

Note:

The information, examples, and screen captures in this guide focus specifically on
working with UFT GUI tests. However, much of the information in this guide applies
equally to business components.

Business components are part of HP Business Process Testing. For more
information, see the HP Unified Functional Testing User Guide and the HP Business
Process Testing User Guide.

When working in Windows 8, access UFT documentation and other files from the
Apps screen.

To enable you to search this guide more effectively for specific topics or keywords, use
the following options:

o AND, OR, NEAR, and NOT logical operators. Available from the arrow next to the
search box.

« Search previous results. Available from the bottom of the Search tab.
« Match similar words. Available from the bottom of the Search tab.

« Search titles only. Available from the bottom of the Search tab.

Tip: When you open a Help page from the search results, the string for which you
searched may be included in a collapsed section. If you cannot find the string on the
page, expand all the drop-down sections and then use Ctrl-F to search for the
string.

To check for recent updates, or to verify that you are using the most recent edition of a

document, go to the HP Software Product Manuals Web site
(http://h20230.www?2.hp.com/selfsolve/manuals).

HP UFT Java Add-in Extensibility (12.00) Page 11

http://h20230.www2.hp.com/selfsolve/manuals

Who Should Read This Guide

This guide is intended for programmers, QA engineers, systems analysts, system
designers, and technical managers who want to extend UFT GUI testing support for Java
custom controls.

To use this guide, you should be familiar with:

Major UFT features and functionality

o The UFT Object Model

UFT Java Add-in

Java programming

XML (basic knowledge)

Additional Online Resources

The following additional online resources are available:

Resource Description

Troubleshooting The Troubleshooting page on the HP Software Support Web

& Knowledge site where you can search the Self-solve knowledge base.

Base The URL for this Web site is
http://h20230.www2.hp.com/troubleshooting.jsp.

HP UFT Java Add-in Extensibility (12.00) Page 12

http://h20230.www2.hp.com/troubleshooting.jsp

Resource Description

HP Software The HP Software Support Web site. This site enables you to

Support browse the Self-solve knowledge base. You can also post to
and search user discussion forums, submit support requests,
download patches and updated documentation, and more.
The URL for this Web site
www.hp.com/go/hpsoftwaresupport.

« Most of the support areas require that you register as an
HP Passport user and sign in. Many also require a
support contract.

« To find more information about access levels, go to:
http://h20230.www2.hp.com/new_access_levels.jsp

« Toregister foran HP Passport user ID, go to:
http://h20229.www2.hp.com/passport-registration.html

HP Software The HP Software Web site. This site provides you with the

Web site most up-to-date information on HP Software products. This
includes new software releases, seminars and trade shows,
customer support, and more. The URL for this Web site is
www.hp.com/go/software

HP UFT Java Add-in Extensibility (12.00) Page 13

http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html
http://www.hp.com/go/software

Part 1: Working with Java Add-in
Extensibility

HP UFT Java Add-in Extensibility (12.00) Page 14

Chapter 1: Introducing UFT Java Add-in
Extensibility

Welcome to UFT Java Add-in Extensibility.

UFT Java Add-in Extensibility enables you to provide high-level support for third-party
and custom Java controls that are not supported out-of-the-box by the UFT Java Add-
in.

This chapter includes:

About UFT Java Add-in Extensibility 16
Identifying the Building Blocks of Java Add-in Extensibility 16
Deciding When to Use Java Add-in Extensibility 18

HP UFT Java Add-in Extensibility (12.00) Page 15

Developer Guide
Chapter 1: Introducing UFT Java Add-in Extensibility

About UFT Java Add-in Extensibility

The UFT Java Add-in provides built-in support for a number of commonly used Java
objects. You use UFT Java Add-in Extensibility to extend that support and enable UFT to
recognize additional Java controls.

When UFT learns an object in the application, it recognizes the control as belonging to a
specific test object class. This determines the identification properties and test object
methods of the test object that represents the application's object in UFT.

UFT can learn Java controls that are not supported out-of-the-box by the Java Add-in
without using Extensibility. However, when UFT learns a Java control that is not
supported, it recognizes the control as a generic Java test object. This type of Java test
object might not have certain characteristics that are specific to the Java control.
Therefore, when you try to create test steps with this test object, the available
identification properties and test object methods might not be sufficient.

For example, consider a custom control that is a special type of button that UFT
recognizes as a plain JavaObject. JavaObject test objects do not support simple Click
operations. The JavaObject.Click method requires the coordinates of the click as
arguments. To create a test step that clicks this custom control, you would have to
calculate the button's location and provide the coordinates for the click.

By creating support for a Java control using Java Add-in Extensibility, you can direct
UFT to recognize the control as belonging to a specific test object class, and you can
specify the behavior of the test object. You can also extend the list of available test
object classes that UFT is able to recognize. This enables you to create tests that fully
support the specific behavior of your custom Java controls.

Identifying the Building Blocks of Java Add-in
Extensibility

The sections below describe the main elements that comprise UFT object support.
These elements are the building blocks of Java Add-in Extensibility. By extending the

HP UFT Java Add-in Extensibility (12.00) Page 16

Developer Guide
Chapter 1: Introducing UFT Java Add-in Extensibility

existing support of one or more of these elements, you can create the support you need
to create meaningful and maintainable tests.

Test Object Classes

In UFT, every object in an application is represented by a test object of a specific test
object class. The Java Add-in maps each supported class to a specific test object class.
UFT determines which test object class to use according to this mapping.

When UFT learns a control of a Java class that is not yet supported (a custom class), it
selects the test object class to represent the control based on the class inheritance
hierarchy. UFT searches for the closest ancestor of the class that is supported, and uses
the test object class mapped to this class. For example, if the custom class extends
java.awt.Applet, UFT recognizes the control as a JavaApplet test object. If the custom
class extends the java.awt.Canvas, UFT recognizes the control as a JavaObject test
object.

The icon that is used to represent this type of object in UFT, for example in the
Keyword View and Object Repository, is also determined by the test object class.

Test Object Names

When UFT learns an object, it uses data from the object to generate a name for the test
object. A descriptive test object name enables you distinguish between test objects of
the same class and makes it easier to identify them in your object repository and in
tests.

When UFT learns a control of a Java class that is not yet supported and therefore uses a
test object class mapped to one of its ancestors, the test object name is based on the
rules defined for that test object class. In many cases, this is not the ideal name for the
custom control.

Test Object Identification Properties

The test object class that is mapped to the Java class determines the list of
identification properties for a test object. It also determines which of these
identification properties are used to uniquely identify the object, which identification
properties are available for checkpoints (in the Checkpoint Properties dialog box), and

HP UFT Java Add-in Extensibility (12.00) Page 17

Developer Guide
Chapter 1: Introducing UFT Java Add-in Extensibility

which are selected by default for checkpoints. However, the actual values of the
identification properties are derived from the definition of the custom class. Therefore,
several custom classes that are mapped to the same test object may have different
definitions for the same identification property.

Test Object Methods

The test object class that is mapped to the Java class determines the list of test object
methods for a test object. However, the actual behavior of the test object method
depends on the definition of the specific custom support class. This means that the
same test object method may operate differently for different custom classes that are
mapped to the same test object class.

Recording Events

One way to create UFT GUI tests is by recording user operations on the application.
When you start a recording session, UFT listens for events that occur on objects in the
application and registers corresponding test steps. Each Java object class defines which
events UFT can listen for. The Java Add-in determines what test step to record for each
event that occurs.

Deciding When to Use Java Add-in Extensibility

The UFT Java Add-in provides a certain level of support for every Java control. Before
you extend support for a custom Java control, analyze it from a UFT perspective to
view the extent of this support and to decide which elements of support you need to
modify.

When you analyze the custom control, use the Object Spy, Keyword View, Editor, and
the Record option. Make sure you examine each of the elements described in "
Identifying the Building Blocks of Java Add-in Extensibility" on page 16.

HP UFT Java Add-in Extensibility (12.00) Page 18

Developer Guide
Chapter 1: Introducing UFT Java Add-in Extensibility

If you are not satisfied with the existing object identification or behavior, your control
is a candidate for Java Add-in Extensibility, as illustrated in the following situations:

« UFT might recognize the control using a test object class that does not fit your
needs. You can use Java Add-in Extensibility to map the custom class to another
existing test object class or to a new test object class that you create.

« The test object class mapped to the control might be satisfactory, but you would like
to customize the behavior of certain test object methods or identification
properties. You can use Java Add-in Extensibility to override the default
implementation of these properties and methods with your own custom
implementation.

« You may find that the test object names UFT generates for all controls of a certain
Java class are identical (except for a unique counter) or that the name used for the
control does not clearly indicate the object it represents. You can use Java Add-in
Extensibility to modify how UFT names test objects for that Java class.

o UFT may identify individual sub-controls within your custom control, but not
properly identify your main control. For example, if your main custom control is a
digital clock with edit boxes containing the hour and minute digits, you might want
changes in the time to be recognized as SetTime operations on the clock control and
not as Set operations on the edit boxes. You can use Java Add-in Extensibility to
treat a custom control as a wrapper object for the controls it contains. UFT does not
learn the individual controls contained in a wrapper object.

« During a record session, when you perform operations or trigger events on your
control, UFT may not record a step at all, or it may record steps that are not specific
to the control's behavior. Alternatively, UFT may record many steps for an event
that should be considered a single operation, or it may record a step when no step
should be recorded. You can use Java Add-in Extensibility to modify the events to
listen for and the test steps to record for specific events.

HP UFT Java Add-in Extensibility (12.00) Page 19

Developer Guide
Chapter 1: Introducing UFT Java Add-in Extensibility

Analyzing the Default UFT Support and Extensibility
Options for a Sample Custom Control

The following example illustrates how you can use Java Add-in Extensibility to improve
the UFT support of a custom control.

The AllLights control shown below is a game application that is not specifically
supported on UFT.

& Applet Viewer: org.boutique.toolki... [M[=] E3

Applet started.

This application operates as follows:

o Clicking in the grid area turns different lights on (or off), according to an internal set
of rules, and updates the LightOn and LightOff counters.

o Clicking the RESTART button turns off all of the lights. The LightOn and LightOff
counters are updated accordingly.

o Clicking in other areas has no effect.

« The object of the game is to turn on all of the lights, at which point a congratulatory
message is displayed.

HP UFT Java Add-in Extensibility (12.00) Page 20

Developer Guide
Chapter 1: Introducing UFT Java Add-in Extensibility

If you point to this control using the Object Spy, UFT recognizes it as a generic
JavaApplet named AllLights (the name of the custom class). The icon shown is the
standard JavaApplet class icon.

& Object spy <
ERE=R m

Object higrarchy:

Properties I:Iperatil:lnsl

@ Mative () Identification
Properties Yalues =
o Clazs Name Javahpplet —
Wy abs x 1020
ey abs v 171
1o attached test
= background vahite
W class description windo
Wy class_path sun. applet Appleffiewer jave
o developer name framel ﬂ
Selection:
Clazs Mame
Drescription:

Descriptions are available only far test object aperations.

Cloze

If you record on the AllLights control without implementing support for it, the Keyword
View looks like this:

Item Cperation | Yalle Documentation
w0 Artionl
v [AllLights
ik Alllights iClick 142,144, "LEFT"iClick the "allLights" applet with the "LEFT" mouse button.
Lk alllights iClick 16,188,"LEFT" Click the "allLights" applet with the "LEFT" mouse button,

ik :-:1'-:||Li_g}'|t:5: Click 211,35, "LEFT" Click the "

HP UFT Java Add-in Extensibility (12.00) Page 21

Developer Guide
Chapter 1: Introducing UFT Java Add-in Extensibility

In the Editor, the recorded test looks like this:

JavaApplet("AllLights"). Click 59,50, "LEFT"
Javaspplet"AllLights"). Click 76,31, "LEFT"
Jawvaspplet("AllLights"). Click 147,20,"LEFT"

Note that only generic Click steps are recorded, with arguments indicating the low-
level recording details (x- and y-coordinates and the mouse button that performed the
click). These steps are difficult to understand and modify.

If you use Java Add-in Extensibility to support the AllLights control, the result is more
meaningful. UFT recognizes the control as an AllLights test object named Lights and
uses a customized icon. The identification properties include relevant information, such
as oncount and onlist, which provide the total number of all lights that are on at a
given moment and their ordinal locations in the grid.

o

iy En)
(& e

Object higrarchy:

Properties I:Iperatil:lnsl

() Mative @ |dentification
Properties Values -

o :

Ef,: I;I:ugl Lights L

o list_item_name

Y~ logical _location

1= logical_name Lights

Y1 objects_court

e oncourt 9

UL onist EREPAERREPiF7I
- Uy opague 0 X
Selection:

351012131618 21 22

Drescription:
Descriptions are available only far test object aperations.

Cloze

HP UFT Java Add-in Extensibility (12.00) Page 22

Developer Guide

Chapter 1: Introducing UFT Java Add-in Extensibility

When you are ready to create a test on the control, the ClickLight and Restart methods
are supported. These methods can be recorded or you can select them manually in the
Operation column of the Keyword View. You can also create a checkpoint to check the
value of identification properties, for example, gameover (that indicates whether all

lights are on, meaning that you won the game).

In the Keyword View, a test may look like this:

[kem Operation | % alue

Comment

Dlocumentation

Q Lights ClickLight :"4","4"
Q Lights ClickLight :"1","2"
Q Lights Check iCheckPaint("Lights"]
Q Lights Restart

Click. the light in row 4" calumn 4"

Click the light i rove 1" column 2",

Check whether the "Lights" object haz the proper value
Click the RESTART button.

In the Editor, the test looks like this:

AllLights("Lights"

(ClickLight "4","4"
AllLights{"Lights"
(
(

LlickLight "1"2"
AllLights("Lights"
AllLights("Lights"

e e e

Festart

Check CheckFoint("Lights")

This test is easier to understand and modify.

HP UFT Java Add-in Extensibility (12.00)

Page 23

Chapter 2: Installing the HP UFT Java Add-in
Extensibility Software Development Kit

This chapter lists the pre-installation requirements and explains how to install the
HP UFT Java Add-in Extensibility SDK.

This chapter includes:

About Installing the HP UFT Java Add-in Extensibility SDK ._............................. 25
Pre-Installation Requirements 27
Installing the HP UFT Java Add-in Extensibility SDK 28
Uninstalling the HP UFT Java Add-in Extensibility SDK 32
Troubleshooting and Limitations - Java Add-in Extensibility Eclipse Plug-in .._......_. 33

HP UFT Java Add-in Extensibility (12.00) Page 24

Developer Guide
Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit

About Installing the HP UFT Java Add-in
Extensibility SDK

The HP UFT Java Add-in Extensibility SDK enables you to design UFT support for custom
Java controls. The SDK installation includes:

o An API that you can use to create support for custom Java controls

« A plug-in for the Eclipse IDE (integrated development environment) for Java
developers that provides:

m Wizards that guide you through the process of creating custom toolkit support sets

The Java Add-in Extensibility wizards in Eclipse create all of the required files,
classes, and methods. These wizards also provide method stubs for methods that
you may need to implement.

m Commands for editing the files after they are created

o A set of sample applications and completed Java Add-in Extensibility projects that
extend support for these applications. (The sample applications and their support
sets are installed in the <Java Add-in Extensibility SDK installation
folder>\samples folder.)

Using the UFT Java Add-in Extensibility Samples

You can use the samples provided as part of the Java Add-in Extensibility SDK to learn
more about designing Java Add-in Extensibility support sets.

The samples assume that the SDK is installed in the %ProgramFiles%\HP\Unified
Functional Testing folder, on a 32-bit operating system.

If this is not the case, you need to make the following adjustments in the sample toolkit
support sets before you can use them on UFT.

HP UFT Java Add-in Extensibility (12.00) Page 25

Developer Guide
Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit

If your SDK is not installed in %ProgramFiles%\HP\Unified Functional Testing:

1. For each sample, in the toolkit configuration XML file located in the Configuration
folder (in the <Java Add-in Extensibility SDK installation
folder>\samples\<SampleName>Support folder), update the SupportClassPath
property with the current UFT installation path.

2. For each sample, in the .classpath file located in the <Java Add-in Extensibility
SDK installation folder>\samples\<SampleName>Support folder, update all
relevant file paths according to the current UFT installation path.

If your SDK is installed on a 64-bit operating system, make the following additional
change for each sample: In the .classpath file, modify the path to the mic.jar file
from C:/Program Files/HP/Unified Functional Testing/bin/java/classes/mic.jar to
<Java Add-in Extensibility SDK installation folder>/bin/java/classes64/mic.jar.

HP UFT Java Add-in Extensibility (12.00) Page 26

Developer Guide
Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit

Pre-Installation Requirements

Before you install the UFT Java Add-in Extensibility SDK, do the following:

o Make sure that the Eclipse IDE for Java developers is installed on your computer if
you plan to work with the Java Add-in Extensibility Eclipse plug-in. You can download
the Eclipse IDE, free of charge, from http://www.eclipse.org/downloads. For a list of
supported Eclipse versions, see the HP Unified Functional Testing Product
Availability Matrix, available from the UFT help folder or the HP Support Matrix page
(requires an HP passport).

When you install the Eclipse IDE, make sure to note the installation location on your
computer. You need to enter this information when installing the Java Add-in
Extensibility SDK.

Note: The Java Add-in Extensibility Eclipse plug-in is required to perform the
tutorial described in "Tutorial: Learning to Create Java Custom Toolkit Support”
on page 157. Additionally, it is recommended to use this plug-in to design at
least the skeleton of your toolkit support.

« (Optional) Make sure that UFT with the Java Add-in is installed on the same
computer. This enables the Java Add-in Extensibility Eclipse plug-in to interact with
UFT, enabling you to work more efficiently when debugging and testing your custom
toolkit support. For example, if you use the Java Add-in Extensibility Eclipse plug-in
on a UFT computer, you can deploy the toolkit support to UFT for debugging by
simply clicking a button.

Note: If you do not install UFT and the Java Add-in before you install the UFT
Java Add-in Extensibility SDK, any Java Add-in Extensibility Eclipse plug-in
functionality that requires interaction with UFT will not be available.

HP UFT Java Add-in Extensibility (12.00) Page 27

http://www.eclipse.org/downloads
http://support.openview.hp.com/selfsolve/document/KM438391

Developer Guide
Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit

Installing the HP UFT Java Add-in Extensibility
SDK

Use the Unified Functional Testing Setup program to install the HP UFT Java Add-in
Extensibility SDK on your computer.

To install the UFT Java Add-in Extensibility SDK:
1. Close all instances of Eclipse and UFT.

2. Insert the Unified Functional Testing DVD into the CD-ROM/DVD drive. The Unified
Functional Testing Setup window opens. (If the window does not open, browse to
the DVD and double-click setup.exe from the root folder.)

3. Click Add-in Extensibility and Web 2.0 Toolkits. The Unified Functional Testing
Add-in Extensibility and Web 2.0 Toolkit Support screen opens.

4. Click HP UFT Java Add-in Extensibility SDK Setup.

The Welcome screen of the HP UFT Java Add-in Extensibility SDK Setup Wizard
opens.

5. Click Next. The End-User License Agreement screen opens.
Note: If the Modify, Repair, or Remove Installation screen opens, the SDK is
already installed on your computer. Before you can install a new version, you

must first uninstall the existing one, as described in "Uninstalling the HP UFT
Java Add-in Extensibility SDK" on page 32.

Read the license agreement and select | accept the terms in the License
Agreement.

HP UFT Java Add-in Extensibility (12.00) Page 28

Developer Guide

Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit

6. Click Next. The Custom Setup screen opens.

Custom Setup

%) HP UFT Java Add-in Extensibility SDK

Eclipse Plug-ins
Documentation
Samples

This feature requires 228KE on wour
hard drive.

Location: Z:\Program Files {x36\HP\Unified Functional Testing!,

Browse. ..

I Reset

I I Disk. Usage I

I Back “ Mext J I Cancel

)

HP UFT Java Add-in Extensibility (12.00)

Page 29

Developer Guide
Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit

m All of the features displayed in the Custom Setup screen are installed
automatically during the setup.

m This screen displays the location in which the UFT Java Add-in Extensibility SDK
will be installed.

If you install the UFT Java Add-in Extensibility SDK on a computer on which UFT
is installed, the UFT installation folder is selected by default.

You can select a different location for the installation by clicking Browse,
choosing a folder, and then clicking OK.

m [f you click Disk Usage, a window opens displaying the amount of free disk space
on your computer and the amount required for this installation. The space
required for the installation includes space required for the UFT Java Add-in
Extensibility SDK files and folders (on the disk that you select for this
installation) and additional space required on the system disk (the disk on which
the operation system is installed), which is used only during the installation
process.

7. Click Next. The Ready to Install screen opens.

8. Click Install. The Setup program installs the UFT Java Add-in Extensibility SDK and
displays a dialog box in which you specify the location of the Eclipse installation on
your computer.

HP UFT Java Add-in Extensibility SDK

If wau wank ko wark with the Java Add-in Extensibility Eclipse plug-in, enter the Folder where
Eclipse is installed.

Eclipse installation Folder:

Browse, ..,

If wou click Cancel, the plug-in will not be installed.

| Zancel

HP UFT Java Add-in Extensibility (12.00) Page 30

Developer Guide
Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit

The Java Add-in Extensibility Eclipse plug-in is installed on Eclipse according to the
location you specify.

Note: You can install the Java Add-in Extensibility Eclipse plug-in on additional
Eclipse installations after you finish the UFT Java Add-in Extensibility SDK
installation process. To do this, browse to the <UFT Java Add-in Extensibility
SDK installation folder>\eclipse folder, and run deploysdkplugins.exe. Enter
an Eclipse installation folder in the dialog box that opens, and click OK.

If you do not plan to use this plug-in, click Cancel and proceed to the next step.
Otherwise, click Browse, navigate to the Eclipse installation folder, and select the
root eclipse folder. Click OK. Then click OK to accept the Eclipse installation
location.

9. In the final screen, if you select the Show Readme check box, the UFT Java Add-in
Extensibility Readme file opens after you click Finish. The Readme file contains the
latest technical and troubleshooting information. To open the Readme file at
another time, select Start > All Programs > HP Software > HP Unified Functional
Testing > Extensibility > Documentation > Java Add-in Extensibility Readme.

Click Finish to exit the Setup Wizard.
Tip: If you do not see the UFT menu or toolbar in Eclipse after the installation,
run the command line <Eclipse installation folder>\eclipse -

clean on your computer to refresh the Eclipse plug-in configuration, and then
reopen Eclipse.

Note: When working in Windows 8, access UFT documentation and other files
from the Apps screen.

HP UFT Java Add-in Extensibility (12.00) Page 31

Developer Guide
Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit

Uninstalling the HP UFT Java Add-in Extensibility
SDK

You can uninstall the HP UFT Java Add-in Extensibility SDK by using Add/Remove
Programs as you would for other installed programs. Alternatively, you can use the
Unified Functional Testing Setup program.

Considerations when uninstalling the SDK:

When you uninstall the HP UFT Java Add-in Extensibility SDK, the Java Add-in
Extensibility Eclipse plug-in is removed from all Eclipse installations.

If you still see the UFT menu or toolbar in Eclipse after uninstalling, run the
command line <Eclipse installation folder>\eclipse -clean onyour
computer to refresh the Eclipse plug-in configuration, and then reopen Eclipse.

If you use the setup program to uninstall the SDK, you must use the same version of
the setup program as you used for the original installation.

You must be logged on with Administrator privileges to uninstall the UFT Java Add-in
Extensibility SDK.

To uninstall the HP UFT Java Add-in Extensibility SDK:

1.

2.

Close all instances of Eclipse and UFT.

Insert the Unified Functional Testing DVD into the CD-ROM/DVD drive. The Unified
Functional Testing Setup window opens. (If the window does not open, browse to
the DVD and double-click setup.exe from the root folder.)

Click Add-in Extensibility and Web 2.0 Toolkits. The Unified Functional Testing
Add-in Extensibility and Web 2.0 Toolkit Support screen opens.

HP UFT Java Add-in Extensibility (12.00) Page 32

Developer Guide
Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit

4. Click HP UFT Java Add-in Extensibility SDK Setup. The Welcome screen of the HP
UFT Java Add-in Extensibility SDK Setup Wizard opens.

Note: If you have a previous version of the SDK installed, the HP QuickTest
Professional Java Add-in Extensibility SDK Setup wizard opens. Using this
wizard, follow the instructions below to uninstall the old SDK version.

5. Click Next. The Modify, Repair, or Remove Installation screen opens.

6. Follow the instructions in the wizard to remove the HP UFT Java Add-in
Extensibility SDK.

Troubleshooting and Limitations - Java Add-in
Extensibility Eclipse Plug-in

This section describes troubleshooting and limitations when working with the UFT Java
Add-in Extensibility.

When the Java Add-in Extensibility plug-in is installed on Eclipse 3.3, using the software
update options in the Eclipse Help menu may fail.

Workaround: Save the eclipse\features\com.mercury.qtjext.PluginFeature_
1.0.0\feature.xml file in UTF-8 format instead of ANSI format.

HP UFT Java Add-in Extensibility (12.00) Page 33

Chapter 3: Implementing Custom Toolkit
Support

You implement Java Add-in Extensibility by creating a custom toolkit support set for
each Java toolkit you want to support. The custom toolkit support set is comprised of
Java classes and XML configuration files. The Java classes you create extend existing
Java Add-in classes and the support they provide, by overriding their methods and
defining new ones.

This chapter explains how to create support for a custom toolkit. It explains what files
you have to create for the custom toolkit support set, the structure and content of
these files, and where they should be stored.

This chapter includes:

About Custom Toolkit SUPPOIt 35
Introducing Java Add-in Extensibility Terminology ... 36
Preparing to Create Support for a Custom Toolkit 37
Creating a Custom Toolkit Support Set 38
Understanding the Toolkit Support Class ... 41
Understanding the Toolkit ConfigurationFile 42
Understanding the Test Object Configuration File 44
Understanding Custom Support Classes 53
Deploying and Running the Custom Toolkit Support 77
Logging and Debugging the Custom Support Class 86
Workflow for Implementing Java Add-in Extensibility 88

HP UFT Java Add-in Extensibility (12.00) Page 34

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

About Custom Toolkit Support

When you extend UFT support of a custom toolkit, you create an API that is based on
the existing UFT Java Add-in and supplements it. This API, or custom toolkit support

set, is composed of Java classes and XML configuration files. It provides an interface

between UFT and the Java application being tested, enabling UFT to identify the Java
controls in the application and correctly perform operations on those controls.

This chapter describes the different files, classes, methods, and definitions that you
must include in a custom toolkit support set. For more information, see the UFT Java
Add-in Extensibility APl Reference (available with the Java Add-in ExtensibilitySDK
Help).

Before you begin to create a custom toolkit support set, you must plan it carefully. For
more information, see "Planning Custom Toolkit Support" on page 90.

The UFT Java Add-in Extensibility SDK provides a plug-in for the Eclipse Java
development environment, which provides wizards that help you create custom toolkit
support sets. This plug-in also provides a set of commands that you can use to edit the
files after they are created.

When you use the Java Add-in Extensibility wizards to create the custom toolkit
support, the wizards create all of the required files, classes, and basic methods. They
also provide method stubs for additional methods that you may need to implement.

To gain a better understanding of designing custom toolkit support sets before you
begin to design your own, perform the lessons in "Tutorial: Learning to Create Java
Custom Toolkit Support” on page 157. In these lessons you use the Java Add-in
Extensibility wizards in Eclipse to create custom support for sample custom controls.

Even if you do not regularly use Eclipse to develop Java software, it is recommended
that you use it for Java Add-in Extensibility, at least for performing the tutorial. It is
generally simpler to create the skeleton of the custom toolkit support with the help of
the Java Add-in Extensibility wizards than to do it manually. After you have completed
this initial stage, you can continue the design of the toolkit support in the development
environment of your choice.

HP UFT Java Add-in Extensibility (12.00) Page 35

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

For information on setting up Eclipse and the UFT Java Add-in Extensibility Eclipse plug-
in, as well as using the plug-in, see "Installing the HP UFT Java Add-in Extensibility
Software Development Kit" on page 24.

If you choose not use the Java Add-in Extensibility wizards in Eclipse, you can still
extend full support for the custom toolkit manually by using the information in this
chapter.

Introducing Java Add-in Extensibility
Terminology

The following terminology, specific to UFT Java Add-in Extensibility, is used in this
guide:

« Basic user interface component:
m In the AWT toolkit: java.awt.Component
m In the SWT toolkit: org.eclipse.swt.widgets.Widget

o Custom class. A Java class that extends java.awt.Component or
org.eclipse.swt.widgets.Widget for which you create UFT support.

o Custom toolkit. A set of classes, all extending the basic user interface component of
the same native toolkit.

o Custom toolkit support. Extends UFT ability to recognize controls in a custom
toolkit as test objects, view and check their properties, and run tests on them. (In
this guide, custom toolkit support is also referred to as custom support or toolkit
support.)

« Native toolkit. A toolkit that implements drawing using native API.

m Abstract Windows Toolkit (AWT) and Standard Widgets Toolkit (SWT) are native
toolkits.

m Java Foundation Classes (JFC) is not a native toolkit, as it extends AWT.

HP UFT Java Add-in Extensibility (12.00) Page 36

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Preparing to Create Support for a Custom
Toolkit

You can extend UFT support for any toolkit containing classes that extend
java.awt.Component or org.eclipse.swt.widgets.Widget.

When you create a custom toolkit support set for each custom toolkit, the first step is
to determine the set of classes that comprise your custom toolkit. For the purpose of
Extensibility, a custom toolkit is a set of classes that extend the basic user interface
component of the same native toolkit.

This does not prevent you from creating support for a toolkit containing classes that
extend java.awt.Component, as well as those that extend
org.eclipse.swt.widgets.Widget. Such a toolkit is simply seen as two separate custom
toolkits, and you must create support separately for each set of classes.

Similarly, if you have user interface control classes that extend the basic user interface
component of the same native toolkit, and are packaged in separate Java archives or
class folders, you can treat them as one custom toolkit. This means you can create a
single custom toolkit support set for all those classes.

Within a custom toolkit, you extend UFT support for each control (or group of similar
controls) separately. You do this by creating custom support classes for the different
custom control classes in the toolkit. (In this guide, custom support classes are also
referred to as support classes.)

Before you extend UFT support for a custom control make sure you have full access to
the control and understand its behavior. You must have an application in which you can
view the control in action, and also have access to the class that implements it.

You do not need to modify any of the custom control's sources to support it in UFT, but
you do need to be familiar with them. Make sure you know which members (fields and
methods) you can access externally, the events for which you can listen, and so forth.
You use this information when you design the support class. To implement the interface
between UFT and the custom class, the support class uses custom class members. The
support class can only access the members of the custom class that are defined as
public.

HP UFT Java Add-in Extensibility (12.00) Page 37

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

In addition, you need access to the compiled classes in a Java archive or class folder
because you add them to the classpath when compiling the support classes.

Creating a Custom Toolkit Support Set

After you determine the set of custom classes for which you want to extend UFT
support, you create the custom toolkit support set.

A Java Add-in Extensibility custom toolkit support set comprises the following java
classes and XML configuration files:

o One toolkit support class, described on page 41.
o One toolkit configuration file, described on page 42.

« One or more test object configuration classes (if this support set introduces new test
object classes or extends existing ones), described on page 44.

o Custom support classes (mapped to the custom classes), described on page 53.

The Java classes of the custom toolkit support set are packaged in a toolkit root
package named com.mercury.ftjadin.qtsupport.<Custom Toolkit Name>. Within this
package, the custom support classes are stored in a sub-package named
com.mercury.ftjadin.qtsupport.<Custom Toolkit Name>.cs. The configuration files
are stored under the UFT installation folder and reference the java packages. For more
information, see "Deploying and Running the Custom Toolkit Support" on page 77.

To create a custom toolkit support set:
1. Choose a unique name to represent the custom toolkit.

You use the custom toolkit name to compose the name of the toolkit support class
and its packaging. The name must start with a letter and can contain only
alphanumeric characters and underscores.

After you develop the support and deploy it to UFT, UFT displays the custom toolkit
name in all of the dialog boxes that display lists of add-ins or supported
environments. For example, when UFT opens, it displays the custom toolkit name

HP UFT Java Add-in Extensibility (12.00) Page 38

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

as a child of the Java Add-in in the Add-in Manager dialog box and the UFT user can
specify whether to load support for that toolkit.

Providing unique toolkit names allows a single UFT installation to support
numerous custom toolkit support sets simultaneously. For this reason, a name such
as MyToolkit is not recommended.

2. Create the toolkit root package:
com.mercury.ftjadin.qtsupport.<Custom Toolkit Name>.

3. Create the toolkit support class in the toolkit root package. Name the class
<Custom Toolkit Name>Support.java.
For information on the content of this class, see "Understanding the Toolkit Support
Class" on page 41.

4. Create the toolkit configuration file. Name the file: <Custom Toolkit Name>.xml.
For information on the content of this file, see "Understanding the Toolkit
Configuration File" on page 42.

Note: The custom toolkit name that UFT displays (in the Add-in Manager and
other dialog boxes) is derived from this file name.

5. Consider the behavior (fields and methods) of the custom controls, and map the
custom controls to a UFT test object class. For more information, see "Mapping a
Custom Control to a Test Object Class" on page 58.

If you require any new UFT test object classes to map to controls in the custom
toolkit, create the test object configuration file. Name the file
<Custom Toolkit Name>TestObjects.xml.

For information on the content of this file and the locations in which to store it, see
"Understanding the Test Object Configuration File" on page 44.

Note: In most cases, a custom toolkit support set has only one test object
configuration file, named <Custom Toolkit Name>TestObjects.xml. However,
you could store the definitions for different test object classes in different test

HP UFT Java Add-in Extensibility (12.00) Page 39

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

object configuration files. You create all of the test object configuration file
according to the HP UFT Test Object Schema Help (available with the Java Add-
in ExtensibilitySDKHelp). All of the test object configuration files must be
located in the same folders, specified in "Deploying and Running the Custom
Toolkit Support” on page 77.

When UFT opens, the UFT user can select (in the Add-in Manager dialog box) the
environments or custom toolkits for which to load support. UFT then loads the
test object class definitions (from the test object configuration files) for all
custom Java toolkits whose support is loaded. This enables you to use the same
test object class definitions when supporting different custom Java toolkits.

6. Create the com.mercury.ftjadin.qtsupport.<Custom Toolkit Name>.cs support
class sub-package.

7. In the support class sub-package, create the custom support classes for the classes
you want to support.

In most cases, you name the custom support class <Custom Class Name>CS. If your
custom toolkit contains classes from different packages, you might have custom
classes with the same name. In this case, you must provide different names for the
custom support classes, because they are stored in one package. For information
on the content of support classes, see "Understanding Custom Support Classes" on
page 53.

The following example illustrates the structure of the java classes in the custom
toolkit support set for the custom toolkit named javaboutique. Within this toolkit,
two custom classes are supported: AllLights and AwtCalc:

B sr
E|EE,l com.mercury. fhjadin. gtsupport. javaboutique
|l| JawaboutiqueSupport. java
= M8 com.mercury.frjadingtsuppart. javaboutique . cs
- 1] AllightsCs. java
- L] AwtCalcCs. java

HP UFT Java Add-in Extensibility (12.00) Page 40

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

8. If you develop the custom support using the Java Add-in Extensibility wizard, the
wizard defines the required environment variables. If you do not use the wizard,
you must add the following items to the build path (the classpath used by the
compiler):

= <Java Add-in Extensibility SDK installation folder>\bin\Java\sdk\
eclipse\plugins\com.mercury.java.ext.lib_1.0.0\mic.jar

m <Java Add-in Extensibility SDK installation folder>\bin\Java\sdk\
eclipse\plugins\com.mercury.java.ext.lib_1.0.0\jacob.jar

m The locations of the compiled custom classes (these locations can be class folders
or Java archives)

Note:

o The build path must also include the locations of all parent classes of the
custom classes. Add these locations manually to the build path if any
custom classes are not derived directly from SWT, AWT, or JFC (Swing) and
the parent classes are not located in the same location as the custom
classes.

o If, at any time, the custom controls are modified in a way that might affect
the support, you must recompile the support classes, adjusting them if
necessary.

Understanding the Toolkit Support Class

When all of the classes in a custom toolkit extend the basic user interface class of
another toolkit (for example java.awt.Component) we say the custom toolkit extends
that toolkit (in this example: AWT). Every custom toolkit support set has one toolkit
support class that indicates the native toolkit that the custom toolkit extends.

By extending the custom toolkit support class from the correct native toolkit support
set, you ensure that your toolkit inherits all of the necessary utility methods for basic
functionality (such as event handling and dispatching).

HP UFT Java Add-in Extensibility (12.00) Page 41

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

The UFT Java Add-in provides custom toolkit support classes for AWT, SWT, and JFC
(Swing). When you create new Java Add-in Extensibility custom toolkit support classes
you extend one of these, or the custom toolkit support class of other existing
Extensibility custom toolkit support sets.

The inheritance hierarchy of toolkit support classes reflects the hierarchy of the custom
toolkits. For example, the JFCSupport class extends the class AWTSupport. A toolkit
support class of a toolkit that extends JFC will extend JFCSupport thereby inheriting
AWTSupport functionality. No further implementation is required in this class.

For example, this is the toolkit support class for the Javaboutique custom toolkit,
which extends the AWT native toolkit:

package com.mercury.ftjadin.qgtsupport.javaboutique;
import com.mercury.ftjadin.support.awt.AwtSupport;
public class JavaboutiqueSupport extends AwtSupport {}

The following table shows which toolkit support class to extend, if you want to extend
the toolkit support classes provided for AWT, SWT, or JFC:

To extend the toolkit support Extend:

class for:

AWT com.mercury.ftjadin.support.awt. AwtSupport
JFC11 (Swing) com.mercury.ftjadin.support.jfc.JFCSupport

SWT com.mercury.ftjadin.support.swt.SwtSupport

Understanding the Toolkit Configuration File

Every custom toolkit support set has one toolkit configuration file named

<Custom Toolkit Name>.xml, which is stored under the UFT installation folder. This file
provides the information that UFT needs to find the classes of the custom toolkit
support set.

HP UFT Java Add-in Extensibility (12.00) Page 42

Developer Guide

Chap

ter 3: Implementing Custom Toolkit Support

The toolkit configuration file specifies:

The location of the toolkit support class
The location of the compiled support classes (a class folder or Java archive)

UFT adds this location to the Java application classpath when the application runs,
enabling the application to find the required support classes.

The support toolkit description

UFT displays the description in the Add-in Manager when a user selects the custom
toolkit's name in the list of available add-ins. If you are developing this toolkit
support set for distribution, include a Provided by clause in this description,
specifying the relevant person or company.

A mapping of each custom class to its custom support class

A single custom support class can be mapped to more than one custom class, but
each custom class can be mapped to only one custom support class.

The following example illustrates the configuration file of the javaboutique toolkit
support, with one supported custom class—AwtCalc:

<?xml version="1.0" encoding="UTF-8"?>
<Controls
class="com.mercury.ftjadin.qtsupport.javaboutique.
javaboutiqueSupport"
SupportClasspath="C:\JE\workspace\javaboutiqueSupport\bin"
description="3Javaboutique toolkit support.">
<Control Type="org.boutique.toolkit.AwtCalc">
<CustomRecordReplay>
<ImplementationClass>
com.mercury.ftjadin.qtsupport. javaboutique.cs.AwtCalcCS
</ImplementationClass>
</CustomRecordReplay>
</Control>
</Controls>

You can validate your toolkit configuration file against:
<UFT installation folder>\bin\java\sdk\eclipse\plugins\
com.mercury.qtjext.plugin.QTJavaExt_1.0.0\ToolkitSchema.xsd

HP U

FT Java Add-in Extensibility (12.00) Page 43

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

For information on the structure and syntax of the toolkit configuration file, see the
UFT Java Add-in Extensibility Toolkit Configuration Schema Help (available with the
Java Add-in ExtensibilitySDK Help).

For information on where to store the toolkit configuration file, see "Deploying and
Running the Custom Toolkit Support" on page 77.

Understanding the Test Object Configuration File

If you map custom controls to new (or modified) test object classes, you must create
one or more test object configuration files in the custom toolkit support set. For more
information, see "Mapping a Custom Control to a Test Object Class" on page 58.

In a test object configuration XML, you define the test object classes (for example, the
test object methods they support, their identification properties, and so on).

You can also create a definition for an existing test object class in the test object
configuration XML. This definition is added to the existing definition of this test object
class, affecting all test objects of this class. It is therefore not recommended to modify
existing test object classes in this way. For example:

« If you add a test object method, it appears in the list of test object methods in UFT,
but if you use the test object method in a test, and it is not implemented for the
specific object, a run-time error occurs.

If you add test object methods to existing test object classes, you might add a prefix
to the method name that indicates the toolkit support for which you added the
method (for example, CustomButtonClick, CustomEditSet). This enables test
designers to easily identify the custom methods and use them in test steps only if
they know that the custom method is supported for the specific object.

« If you add an identification property, it appears in UFT in the list of properties for all
test objects of this class, but has no value unless it is implemented for the specific
supported object.

In the test object configuration XML file, you create a Classinfo element for each test
object class that you want to define. In addition, you define the name of the
environment or custom toolkit for which the test object classes are intended (in the

HP UFT Java Add-in Extensibility (12.00) Page 44

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

PackageName attribute of the Typelnformation element), and the UFT add-in which
these test object classes extend (in the AddinName attribute of the Typelnformation
element).

If the relevant add-in is not loaded when UFT opens, UFT does not load the information
in this XML. Similarly, if the name of the environment or custom toolkit is displayed in

the Add-in Manager dialog box and its check box is not selected, the information in this
XML is not loaded.

For more information, see "How UFT Loads the Test Object Configuration XML " on
page 50.

The sections below describe the information that you can include in a test object class
definition.

Class Name and Base Class

The name of the test object class and its attributes, including the base class—the test
object class that the new test object class extends (relevant only when defining new
test object classes). A new test object class extends an existing JavaUFT test object
class, directly or indirectly. The base class may be a class delivered with UFT or a class
defined using Java Add-in Extensibility.

By default, the base class is JavaObject.

The test object class name must be unique among all of the environments whose
support a UFT user might load simultaneously. For example, when defining a new test
object class, do not use names of test object classes from existing UFT add-ins, such as
JavaButton, JavaEdit, and so on.

Note:

« A test object class inherits the base class' test object operations (methods and
properties), generic type, default operation, and icon. Identification properties
are not inherited.

« If you create test object classes that extend test object classes defined in
another toolkit support set, you create a dependency between the two toolkit
support sets. Whenever you select to load the extending toolkit support set in

HP UFT Java Add-in Extensibility (12.00) Page 45

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

the UFT Add-in Manager, you must also select to load the toolkit support set
that it extends.

Generic Type

The generic type for the test object class, if you are defining a new test object class and
you want the new test object class to belong to a different generic type than the one to
which its base class belongs. (For example, if your new test object class extends
JavaObject (whose generic type is object), but you would like UFT to group this test
object class with the edit test object classes.)

Generic types are used when filtering objects (for example, in the Step Generator's
Select Object for Step dialog box and when adding multiple test objects to the object
repository). Generic types are also used when creating documentation strings for the
Documentation column of the Keyword View (if they are not specifically defined in the
test object configuration file).

HP UFT Java Add-in Extensibility (12.00) Page 46

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Test Object Operations

A list of operations for the test object class, including the following information for each
operation:

« The arguments, including the argument type (for example, String or Integer),
direction (In or Out), whether the argument is mandatory, and, if not, its default
value.

« The operation description (shown in the Object Spy and as a tooltip in the Keyword
View and Step Generator).

« The Documentation string (shown in the Documentation column of the Keyword
View and in the Step Generator).

o The return value type.

o A context-sensitive Help topic to open when F1 is pressed for the test object
operation in the Keyword View or Editor, or when the Operation Help button is
clicked for the operation in the Step Generator. The definition includes the Help file
path and the relevant Help ID within the file.

Default Operation

The test object operation that is selected by default in the Keyword View and Step
Generator when a step is generated for an object of this class.

HP UFT Java Add-in Extensibility (12.00) Page 47

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Identification Properties

A list of identification properties for the test object class. You can also define:
« The identification properties that are used for the object description.

« The identification properties that are used for smart identification. (This
information is relevant only if smart identification is enabled for the test object
class. To enable smart identification, use the Object Identification dialog box in UFT.)

« The identification properties that are available for use in checkpoints and output
values.

« The identification properties that are selected by default for checkpoints (in the UFT
Checkpoint Properties dialog box).

Icon File

The path of the icon file to use for this test object class. (Optional. If not defined, the
base class' icon is used.) The file can be a .dll, .exe, or .ico file.

Help File

A context-sensitive Help topic to open when F1 is pressed for the test object in the
Keyword View or Editor. The definition includes the .chm Help file path and the relevant
Help ID within the file.

Note: When you modify a test object configuration file, the changes take effect only
after you restart UFT.

You can practice creating support for a custom control that is mapped to a new test
object class in the tutorial lesson "Learning to Support a Complex Control" on page 236.

You can validate your test object configuration file against:
<UFT installation folder>\bin\java\sdk\eclipse\plugins\
com.mercury.qtjext.plugin.QTJavaExt_1.0.0\ClassesDefintions.xsd

HP UFT Java Add-in Extensibility (12.00) Page 48

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

For information on the structure and syntax of a test object configuration file, see the
HP UFT Test Object Schema Help (available with the Java Add-in Extensibility
SDKHelp).

For information on the location in which to store the test object configuration file, see
"Deploying and Running the Custom Toolkit Support" on page 77.

Test Object Configuration File Example

The following example shows parts of the test object configuration file that defines the
Calculator test object class definition for the javaboutique custom toolkit:

<TypeInformation Load="true" PackageName="javaboutique"
AddinName="Java">
<ClassInfo BaseClassInfoName="JavaApplet"
DefaultOperationName="Calculate" Name="Calculator">
<IconInfo
IconFile="C:\Program Files\HP\Unified Functional
Testing\samples\Javaboutique\Calculator_3D.ico"/>
<TypeInfo>
<Operation Exposurelevel="CommonUsed" Name="Calculate"
PropertyType="Method" >
<Description>Builds the whole calculation
process</Description>
<Documentation><![CDATA[Perform %al operation with
%a2 and %a3 numbers]]></Documentation>
<Argument Direction="In" IsMandatory="true"
Name="operator">
<Type VariantType="Variant"/>
</Argument>
<Argument Direction="In" IsMandatory="true"
Name="num1">
<Type VariantType="Variant"/>
</Argument>
<Argument Direction="In" IsMandatory="true"
Name="num2" >
<Type VariantType="Variant"/>
</Argument>
</Operation>

HP UFT Java Add-in Extensibility (12.00) Page 49

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

</TypeInfo>
<IdentificationProperties>
<IdentificationProperty ForVerification="true"
ForDefaultVerification="true "Name="value"/>
<IdentificationProperty ForVerification="true"
Name="objects count"/>
<IdentificationProperty Name="width"/>
<IdentificationProperty ForDescription="true"
Name="toolkit class"/>

</IdentificationProperties>
</ClassInfo>
</TypeInformation>

This example shows that the Calculator test object class extends the JavaApplet test
object class. It uses the Calculator_3D.ico icon file, and its default test object method
is Calculate (which has three mandatory input parameter of type Variant:operator,
num1 and num2).

The PackageName attribute in the Typelnformation element indicates that the
Calculator test object class is created for the javaboutique toolkit support.

The following identification properties are defined for the Calculator test object class:

« value. Available for checkpoints and selected by default in the Checkpoint Properties
dialog box in UFT.

« objects count. Available for checkpoints but not selected by default.

« toolkit class. Used for the test object description but not available for checkpoints.

How UFT Loads the Test Object Configuration XML

Each time you run UFT, it reads all of the test object configuration files and merges the
information for each test object class from the different files into one test object class
definition. For more information, see "Understanding How UFT Merges Test Object
Configuration Files" on the next page.

The following attributes of the Identification Property element in the test object
configuration file specify information that can be modified in UFT (using the Object

HP UFT Java Add-in Extensibility (12.00) Page 50

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Identification dialog box): AssistivePropertyValue, ForAssistive, ForBaseSmartiD,
ForDescription, ForOptionalSmartiD, and OptionalSmartiDPropertyValue. These
attributes determine the lists of identification properties used for different purposes in
UFT.

Therefore, by default, UFT reads the values of these attributes from the XML only once,
to prevent overwriting any changes a user makes using the Object Identification dialog
box. In this way, UFT provides persistence for the user defined property lists. For more
information, see "Modifying Identification Property Attributes in a Test Object
Configuration File" on page 83.

Understanding How UFT Merges Test Object Configuration Files

Each time you open UFT, it reads all of the test object configuration files located in the
<UFT installation folder>\dat\Extensibility\<UFT add-in name> folders. UFT then
merges the information for each test object class from the different files into a single
test object class definition, according to the priority of each test object configuration
file.

UFT ignores the definitions in a test object configuration file in the following situations:
o The Load attribute of the Typelnformation element is set to false.

« The environment relevant to the test object configuration file is displayed in the
Add-in Manager dialog box, and the UFT user selects not to load the environment.

Define the priority of each test object configuration file using the Priority attribute of
the Typelnformation element.

If the priority of a test object configuration file is higher than the existing class
definitions, it overrides any existing test object class definitions, including built-in UFT
information. For this reason, be aware of any built-in functionality that will be
overridden before you change the priority of a test object configuration file.

When multiple test object class definitions exist, UFT must handle any conflicts that
arise. The following sections describe the process UFT follows when Classinfo,
ListOfValues, and Operation elements are defined in multiple test object configuration
files. All of the IdentificationProperty elements for a specific test object class must be
defined in only one test object configuration file.

HP UFT Java Add-in Extensibility (12.00) Page 51

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Classinfo Elements

« If a Classinfo element is defined in a test object configuration file with a priority
higher than the existing definition, the information is appended to any existing
definition. If a conflict arises between Classinfo definitions in different files, the
definition in the file with the higher priority overrides (replaces) the information in
the file with the lower priority.

« If a Classinfo element is defined in a test object configuration file with a priority
that is equal to or lower than the existing definition, the differing information is
appended to the existing definition. If a conflict arises between Classinfo definitions
in different files, the definition in the file with the lower priority is ignored.

ListOfValues Elements

« If a conflict arises between ListOfValues definitions in different files, the definition
in the file with the higher priority overrides (replaces) the information in the file
with the lower priority (the definitions are not merged).

« If a ListOfValues definition overrides an existing list, the new list is updated for all
arguments of type Enumeration that are defined for operations of classes in the
same test object configuration file.

« If a ListOfValues is defined in a configuration file with a lower priority than the
existing definition, the lower priority definition is ignored.
Operation Elements

« Operation element definitions are either added, ignored, or overridden, depending
on the priority of the test object configuration file.

« If an Operation element is defined in a test object configuration file with a priority
higher than the existing definition, the operation is added to the existing definition
for the class. If a conflict arises between Operation definitions in different files, the
definition in the file with the higher priority overrides (replaces) the definition with

HP UFT Java Add-in Extensibility (12.00) Page 52

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

the lower priority (the definitions are not merged).

For more information, see the HP UFT Test Object Schema Help (available with the Java
Add-in Extensibility SDK Help).

Understanding Custom Support Classes

In a custom toolkit support set, there is a custom support class for each supported
custom class. The custom support class provides the actual interface between the

custom class methods and the UFT capabilities, thus providing the UFT Java Add-in
Extensibility.

A single custom support class can provide support for more than one custom class. The
support class can be mapped (in the toolkit configuration file described on page 42) to
more than one custom class. This support class then provides support for the custom
classes that are mapped to it, and for their descendants.

The first step in creating the support classes is determining the class inheritance
hierarchy. This includes deciding the order in which you create support for classes
within the custom toolkit, and determining which existing support class the new
support class must extend. For more information, see "Determining the Inheritance
Hierarchy for a Support Class" on page 55.

The second step is deciding what test object class to map to the custom control. For
more information, see "Mapping a Custom Control to a Test Object Class" on page 58.

After you make the preliminary decisions regarding hierarchy and test object class, you
are ready to write the main part of the UFT Java Add-in Extensibility—the custom
support class.

Each custom support class determines what test object class is mapped to the custom
control it supports and how the identification properties and test object methods are
implemented.

HP UFT Java Add-in Extensibility (12.00) Page 53

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

The custom support class inherits the methods of its superclass. You can use the super
implementation, override the methods, or add new ones, as needed. In support classes,
you use the following types of methods:

« ldentification property support methods. Used to support identification
properties. For more information, see "Supporting Identification Properties" on
page 59.

o Replay methods. Used to support test object methods. For more information, see
"Supporting Test Object Methods" on page 63.

o Event handler methods. Used to provide support for recording on the custom
control. This part of the Extensibility is optional. Even if you do not implement
support for recording, you still have full support for the basic UFT capabilities on the
custom control (for example, learning the object, running tests on it, checking
properties and values, and so forth).

If the custom class extends SWT, you cannot create support for the UFT recording
capability. For more information, see "Supporting the Record Option" on page 65.

« Utility methods. Used to control the Extensibility. These methods do not support
the specific functionality of the custom class; they control the interface between
UFT and the custom application. Different utility methods are used for different
purposes.

You can find a list of the available utility methods in the "Support Class Summary" on
page 75. The methods are described in detail, in the following sections: "Supporting
the Record Option", " Supporting Top-Level Objects" on page 68, and "Supporting
Wrapper Controls" on page 69.

When you implement these methods in the custom support class, you can use different
methods supplied in the MicAPI. For more information, see "Using Methods from
MicAPI" on page 76 and the UFT Java Add-in Extensibility APl Reference (available with
the Java Add-in Extensibility SDKHelp).

For a short summary of the types of methods a custom class contains, see "Support
Class Summary" on page 75.

HP UFT Java Add-in Extensibility (12.00) Page 54

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Determining the Inheritance Hierarchy for a Support
Class

Within the custom toolkit for which you create UFT support, you must decide:

o Which custom classes must have matching support classes, and which can be
supported by the support classes of their superclasses.

« Which existing support class each new support class extends.
(This also determines the order in which support classes must be created.)

Understanding the Hierarchy of Support Classes

The hierarchy of the support classes must reflect the hierarchy of the custom classes.

The following example illustrates the hierarchy of the TextField class support. The
column on the left illustrates the hierarchy of the TextField support class, TextFieldCS.
The column on the right illustrates the hierarchy of the TextField class in the AWT
toolkit:

com.mercury ftjadin.gtsupport.awt. cs TextFieldCS java.awt TextField
com.mercury fijadin.gtsu ppo?rt.awt.cs.Te}(tComponentCS jawa.am.TexftCompon ent
com.mercury fijadin.gtsu pInort.aM.ca.ComponentCS jawa.awt.gompon ent
com.mercury fadin Tnfra.abstr.o biectCs java.lang.Obj ect

In this example, a support class exists for every custom class, but this is not
mandatory.

When UFT learns an object, it can always identify the class name of the object.
According to the class, UFT determines the inheritance hierarchy of this class. UFT then
searches the toolkit configuration files for the support class that is mapped to that
class. If no support class is found, UFT searches for a support class that is mapped to
the support class' immediate superclass, and so on, until a matching support class is
found. Support classes can be provided by HP or any other vendor. If no other support

HP UFT Java Add-in Extensibility (12.00) Page 55

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

class is found, AWT objects are supported by the Component(S class; SWT objects are
supported by the WidgetCS class.

The following example illustrates the hierarchy of the ImageButton class support. The
column on the left illustrates the hierarchy of the ImageButton support class,
ImageButtonCS. The column on the right illustrates the hierarchy of the ImageButton
class in the AWT toolkit:

com.mercury ftjadin.gtsupport custom cs.imageButtonCS com.demo ImageButton

}

com.demao lmageControl

}

com.mercury fijadin.gtsupport. awt .cs. CanvasCs java.awt. Canvas
com . mercury fijadin gtsupport awt.cs ComponentCs java . awt. Component
com.mercury fijadin infra.abstr ObjectCS java lang. Object

No support class is mapped to the superclass of ImageButton, ImageControl.
Therefore, the support class for ImageButton extends the support class mapped to the
higher level—CanvasCS.

Determining Which Support Classes to Create

When determining which custom classes require support classes, you must consider the
functionality and hierarchy of the custom classes.

If the support provided for a custom class' superclass is sufficient to support this
custom class (meaning the custom class has no specific behavior that needs to be
specifically supported), there is no need to create a support class for it.

Otherwise, you must create a new support class that extends the superclass' support
class and map it to the custom class (in the toolkit configuration file described on page
4?2). In the new support class you need to implement only those elements of support
that are not sufficiently supported by the superclass' support class.

If more than one custom class extends the same superclass, and they share an
identification property or test object method that requires the same support, provide

HP UFT Java Add-in Extensibility (12.00) Page 56

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

this support in a support class for the superclass, and not separately in each class'
support class.

Determining Which Classes the New Support Classes Extend

To determine the existing support class that your new support class needs to extend,
you examine the hierarchy of the custom class and check which support classes are
mapped to its superclasses.

When you use the Java Add-in Extensibility wizards to create the custom toolkit
support, the New Custom Support Class wizard determines which class to extend for
each support class you create. It displays the custom class hierarchy and informs you
which existing support class is the base (superclass) for the new support class. For
more information, see "Custom Class Selection Screen” on page 112.

To determine the support class inheritance without the help of the Java Add-in
Extensibility wizard:

1. Determine the inheritance hierarchy of the custom class.

2. Search the toolkit configuration files for a support class that is already mapped to a
superclass of the custom class.

You must search the toolkit configuration files that are part of the UFT Java Add-in,
as well as in those that are part of Extensibility custom toolkit support. These files
are located in <UFT Installation Folder> bin\java\classes\builtin and in <UFT
Installation Folder> bin\java\classes\extension, respectively.

3. Create the support class for the custom class, extending the support class that you
found mapped to its closest superclass.

Note: If the closest support class you found is part of the UFT Java Add-in, it is
located in the com.mercury.ftjadin.support package. In this case, instead of
extending it directly, you must extend the class with the same name provided in
the com.mercury.ftjadin.qtsupport package.

The example below uses the ImageButton custom control to illustrate the process
of determining the hierarchy of a support class.

HP UFT Java Add-in Extensibility (12.00) Page 57

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

This is the hierarchy of the ImageButton class:

java. lang. Object
Ljava.awt.Compon ent
Ljava.awt.Canvaa
L com demo ImageControl
L com demo mageButton

ImageButton's nearest superclass, com.demo.lmageControl, is not mapped to a
support class. The next superclass, java.awt.Canvas is mapped to
com.mercury.ftjadin.support.awt.cs.CanvasCS. This is part of the UFT Java Add-in,
so ImageButtonCS will extend the CanvasCS class in the qtsupport package:
com.mercury.ftjadin.qtsupport.awt.cs.Canvas(S. This is the ImageButtonCS class
definition:

package com.mercury.ftjadin.qtsupport.imagecontrols.cs;
import com.mercury.ftjadin.qgtsupport.awt.cs.CanvasCS;

public class ImageButtonCS extends CanvasCS {};

Note: If you design your support classes to extend support classes from another
toolkit support set, you create a dependency between the two toolkit support
sets. Whenever you select to load the extending toolkit support set in the UFT
Add-in Manager, you must also select to load the toolkit support set that it
extends.

Mapping a Custom Control to a Test Object Class

The test object class that is mapped to a custom control determines the identification
properties and test object methods that UFT uses for the control. The values and
behavior of these properties and methods are determined by support methods
implemented in the custom control's support class.

You can map the custom control to an existing test object class that has all of the
identification properties and test object methods relevant to the custom control.

HP UFT Java Add-in Extensibility (12.00) Page 58

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Alternatively, you can create a new test object class definition (in a test object
configuration file) and map the custom control to the new test object class.

Each new test object class is based on an existing one, extending its set of
identification properties and test object methods. All test object classes extend the
JavaObject class. If an existing test object class definition includes some, but not all, of
the identification properties and test object methods that you need, create a new test
object class that extends it. (It is not recommended to add identification properties and
test object methods to an existing test object class because that would affect all of the
test objects of this class.)

You map the custom control to a test object class by implementing the to_class_attr
method in the support class, to return the name of the relevant test object class. If the
test object class returned by the inherited to_class_attr method is appropriate for the
custom control, you do not have to override the to_class_attr method in the new
support class.

The to_class_attr method provides the value for the Class Name identification
property. When UFT learns an object, it finds the support class to use for this object, as
described in "Understanding the Hierarchy of Support Classes" on page 55. UFT then
uses the Class Name identification property to determine which test object class is
mapped to this control. UFT then uses this test object class name to find the test object
definition, which can be taken from either an existing UFT test object, or from a new
test object configuration file that you create.

For more information, see "Understanding the Test Object Configuration File" on
page 44.

Supporting Identification Properties

The identification properties of a custom control are defined in the test object class.
This can be an existing UFT test object class or one you define in a test object
configuration file.

Support for the identification properties is provided in the support class by
implementing a method with the following signature for each identification property:

public String <identification property name>_attr(Object obj)

HP UFT Java Add-in Extensibility (12.00) Page 59

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

The method name must contain only lowercase letters (even if the property name in
the test object configuration file contains uppercase letters). The obj argument is the
object that represents the custom control.

Within the method, you return the value of the required property by using the custom
class's public members. (Note that the support class can access only those custom class
members that are defined as public.)

For example, the width_attr method implements support for a width identification
property:

public String width_attr(Object obj) {
return Integer.toString(((Component) obj).getBounds().width);
}

When your support class extends the support class of a functionally similar control, you
do not have to implement support for those identification properties that apply without
change to the custom control. For example, many controls have a label property. If the
implemented support of the label property adequately supports the custom control,
you do not need to override the parent's method.

You might inherit (or create) support methods for identification properties that are not
included in the test object class definition. These identification properties are not
displayed in UFT in the Object Spy or in the Checkpoint Properties dialog box. You can
access these identification properties by using the GetROProperty method. For more
information on the GetROProperty method, see the HP UFT Object Model Reference for
GUI Testing.

To support identification properties of the custom control that are not supported by the
parent support class, add new methods in your support class. To support identification
properties that have the same name as supported ones, but a different
implementation, override the parent methods.

HP UFT Java Add-in Extensibility (12.00) Page 60

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Reserved Identification Properties

UFT uses a number of identification properties internally and expects them to have a
specific implementation:

o UFT supports the following identification properties for every test object class and
uses these properties to retrieve specific information about the object. Do not
override UFT's implementation of these identification properties in your toolkit
support set: index (or class_index), class (or class_name), to_class, toolkit_class.

« InJavaTree and Javalist test objects, there are identification properties named
tree_content and list_content (respectively) that are used in checkpoints. UFT
calculates these properties based on the count identification property and the
Getltem test object method, as follows: UFT retrieves the count identification
property, and calls the Getltem test object method for each item in the tree or list
(from zero to count-1).

If you override the implementation of count_attr or Getltem_replayMethod, you
must make sure that they return the type of information that UFT expects. For
example, count_attr must return a numeric value and Getltem_replayMethod must
return an item for each index from zero to count-1.

If you map a custom control to the JavaTree or JavalList test object classes, and the
custom support class does not inherit the count_attr and Getltem_replayMethod
methods, you must implement them to return the information that UFT expects.

Common ldentification Property Support Methods

The following basic identification property support methods are commonly used when
creating support classes. In "Tutorial: Learning to Create Java Custom Toolkit Support”
on page 157, you can practice using some of these methods:

o The to_class_attr method (described in "Mapping a Custom Control to a Test Object
Class" on page 58) supports the Class Name identification property. It provides the
mapping of the custom control to a test object class, by returning the name of the
relevant test object class. UFT uses this property to determine which test object
class is mapped to the custom control.

HP UFT Java Add-in Extensibility (12.00) Page 61

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

o The name of a test object is determined by its tag property. All AWT support classes
extend ObjectCS. ObjectCS implements the tag_attr method to check a set of
properties in a specified order and to return the first valid value it finds. A valid
value is one that is not empty and does not contain spaces.

In the ObjectCS class, the tag_attr method checks the following properties (in the
order in which they are listed):

m label
m attached_text (for more details, see below)
m unqualified custom class (the name of the class without the package name)

To change the name of a custom control test object, do not override the tag_attr
method in the support class. Instead, make use of its existing implementation and
override the method label_attr.

o ObjectCS, which all AWT support classes extend, also implements the attached_
text_attr method. It searches for adjacent static-text objects close to the custom
control and returns their text. This mechanism is useful for controls such as edit
boxes and list boxes, which do not have their own descriptive text, but are
accompanied by a label.

You can create support for a custom static-text control to enable UFT to use its
label property as the attached text for an adjacent control. For more information,
see "New UFT Custom Static-Text Support Class Wizard" on page 142.

« The class_attr method returns the name of the test object's generic type (object,
button, edit, menu, static_text, and so forth). This is not the specific test object
class mapped to the object, but the general type of test object class. If you are
creating a support class for a static-text control, you must implement the class_attr
method to return the string static_text. Otherwise, do not override it.

o The value_attr method is not mandatory, but it implements the value identification
property, which is commonly used to represent the current state of the control. For
example, the value_attr method may return the name of the currently selected tab
in a tab control, the path of the currently selected item in a tree, the currently

HP UFT Java Add-in Extensibility (12.00) Page 62

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

displayed item in a menu, and so forth. If you are creating a new test object class,
and the term current state is relevant, implement support for a value identification
property. If your support class inherits a value_attr method, verify that its
implementation is correct for the supported control.

Supporting Test Object Methods

The test object methods of a custom control are defined in the test object class. This
can be an existing UFT test object class or one you define in a test object configuration
file.

Support for the test object methods is provided in the support class by implementing a
replay method with the following signature for each test object method:

public Retval <test object method name> replayMethod(Object obj, <...
list of String arguments>)

The obj argument is the object that represents the custom control.

Replay methods accept only strings as arguments, and UFT passes all arguments to
them in a string format. To use the boolean or numeric value of the argument, use
MicAPl.string2int.

Within the replay method, you carry out the required operation on the custom control
by using the custom class public methods or by dispatching low-level events using
MicAPIl methods. (Note that the support class can access only those custom class
methods that are defined as public.) For more information, see the UFT Java Add-in
Extensibility APl Reference (available with the Java Add-in Extensibility SDK Help).

For example, Click_replayMethod (in the ImageButtonCS class), supports the Click test
object method on an ImageButton custom control:

public Retval Click replayMethod(Object obj) {
ImageButton button = (ImageButton) obj;
MicAPI.mouseClick((Object) button, button.getWidth() / 2,
button.getHeight() / 2);
Return Retval.OK;

HP UFT Java Add-in Extensibility (12.00) Page 63

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

All replay methods must return a MicAPl.Retval value. The Retval value always
includes a return code, and can also include a string return value. The return code
provides information to UFT about the success or failure of the test object method. The
return value can be retrieved and used in later steps of a UFT GUI test.

For example, the GetItem_replayMethod in the SearchBoxCS class (that supports
the SearchBox custom control) returns the name of a specified item in addition to the
return code OK:

public Retval GetItem replayMethod(Object obj, String Index) {
SearchBox sb = (SearchBox) obj;
int indexint;
String item;
indexint = MicAPI.string2int(Index);
if (indexint == MicAPI.BAD_STRING) {
return Retval.ILLEGAL PARAMETER;

}
if (indexint < @ || indexint > sb.getItemCount() - 1) {

return Retval.OUT_OF_ RANGE; }
item = sb.getItem(indexint);
return new Retval(RError.E_OK, item);

}

For more information on the MicAPl.Retval values recognized by UFT, see the UFT Java
Add-in Extensibility APl Reference (available with the Java Add-in Extensibility SDK
Help).

When your support class extends the support class of a functionally similar control, you
do not have to implement support for those test object methods that apply without
change to the custom control. For example, many controls have a Click test object
method. If the implemented support of the Click test object method adequately
supports the custom control, you do not need to override the parent's method.

To support test object methods of the custom control that are not supported by the
parent support class, add new methods in your support class. To support test object
methods that have the same name as supported ones, but a different implementation,
override the parent methods.

HP UFT Java Add-in Extensibility (12.00) Page 64

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Do not override the implementation of fundamental UFT methods, such as:
CheckProperty, FireEvent, GetRoProperty, GetTOProperty, SetTOProperty, and
WaitProperty.

Note: When supporting JavaTree and Javalist test objects, you must make sure
that the count_attr and Getltem_replayMethod methods return the type of
information that UFT expects. For more information, see "Reserved Identification
Properties" on page 61.

Supporting the Record Option

You can extend UFT support of the recording option only for controls that extend AWT.

If you do not implement support for recording, you still have full support for all of the
other UFT capabilities on the custom control, for example, learning the object, running
tests on it, checking properties and values, and so forth.

To support recording on a custom control, the custom support class must:
o Implement listeners for the events that you want to trigger recording.
o Register the listeners on the custom controls when the are created.

« Send Record events to UFT when the relevant events occur.

o Override low-level recording if you want to record more complex operations. For
example, if you want to record a JavaEdit.Set operation, you must override the
recording of individual keyboard inputs. If you want to record selecting an optionin a
menu, you must override recording of mouse clicks.

In "Tutorial: Learning to Create Java Custom Toolkit Support” on page 157, you can
practice creating support for recording on custom controls.

To add support for recording to a custom support class:

1. Include the listeners in the support class signature. For example, the ImageButton
support class ImageButtonCS listens for Action events:

HP UFT Java Add-in Extensibility (12.00) Page 65

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

public class ImageButtonCS extends CanvasCS implements
ActionListener {}

2. Use a constructor for the support class to generate a list containing all of the
listeners that you want to register on the custom control, and the methods used to
add and remove these listeners.

You do this by calling the utility method addSimpleListener for each listener. This
method accepts three arguments of type String: The name of the listener, the
name of the registration method, and the name of the method used to remove the
listener.

In the example below, the Action listener is listed for registration on ImageButton
custom controls:

public ImageButtonCS() {
addSimpleListener("ActionListener"”, "addActionListener",
"removeActionListener");

}

The first time UFT identifies the custom control, it creates an instance of the
support class for this custom control. This instance of the support class is used to
support all subsequent controls of this custom class. Whenever a custom class
instance is created, the support class registers the required listeners on the object
using the registration methods you specified.

3. Override low-level recording (optional):

To override recording of low-level mouse events:

protected Object mouseRecordTarget(MouseEvent e) {
return null;

}

To override recording of low-level keyboard events:

protected Object keyboardRecordTarget(KeyEvent e) {

HP UFT Java Add-in Extensibility (12.00) Page 66

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

4.

return null;

}

Implement the relevant event handler methods from the listener interface, to send
record messages to UFT, using the MicAPl.record methods.

For information on how to use MicAPl.record, see the UFT Java Add-in Extensibility
API Reference (available with the Java Add-in Extensibility SDK Help).

For example, the following event handler method is implemented in
ImageButtonCS, the support class for ImageButton:

public void actionPerformed(ActionEvent e)

{
try {
if (!isInRecord())
return;
MicAPI.record(e.getSource(), "Click");
} catch(Throwable tr)
{ tr.printStackTrace();
¥
}

When an Action event occurs on an ImageButton, UFT records a Click operation on
the ImageButton.

The try ... catch block prevents unnecessary activity if this code is reached when
the Java application is running while UFT is idle. The stack trace is printed to the
same log file as other Java Add-in Extensibility log messages, enabling you to
determine when this method was called inadvertently. For more information, see
"Logging and Debugging the Custom Support Class" on page 86.

For information on recording on wrapper controls, see "Supporting Wrapper
Controls" on page 69.

Note: If MicAPl.record is called when there is no active UFT recording session,
nothing happens. If you perform additional calculations or assignments before
calling MicAPl.record, make sure that you first call isinRecord to determine

HP UFT Java Add-in Extensibility (12.00) Page 67

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

whether a recording session is active. If no recording session is active, you may
want to avoid certain operations.

Supporting Top-Level Objects

If you want UFT to recognize the custom control as the highest Java object in the test
object hierarchy, you need to inform UFT that this Java control is a top-level object. You
do this by overriding the utility method isWindow(Object obj) in the support class to
return true. In the following example, the JavaApplet AllLights is a top-level Java
object.

= /&) Browser : FT_G& Portal
B[Page: FT_OA Portal
=0 Frame : MaIN
ek awatpplet : AllLights

Only a container object can be a top-level object. A container object is one that extends
java.awt.container if it is AWT-based, or org.eclipse.swt.widgets.Composite if it is
SWT-based.

If the control is a top-level object only in some situations, you can implement the
isWindow method to return true in some situations and false in others. For example,
an applet can be a standalone application or an object within a Web browser.

HP UFT Java Add-in Extensibility (12.00) Page 68

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Supporting Wrapper Controls

A wrapper control is a container control that groups the controls within it and
represents them as a single control. An example of wrapper control is the AwtCalc
calculator control.

& Applet Viewer: org boutique____ [j[=]

..... _'|_ | 5 | 5 | n | > |
4 3 | f | X | £ |
|Ze] [L]

C 1] o | =

Applet started.

When UFT learns a wrapper control, it does not learn the controls within it separately
as descendants. If you record a test on a wrapper control, events that occur on the
controls within it are recorded as operations on the wrapper control.

Note: Only AWT-based controls can be supported on UFT as wrapper controls. If the
custom control is SWT-based, it is always learned with all of its descendants.

For example, the AwtCalc calculator control contains simple buttons for digits and
operators. In a recording session on this control, you might want simple Click
operations to be interpreted as more meaningful calculator-oriented operations. You
can use Java Add-in Extensibility to instruct UFT to record clicks on digit buttons as
Calculator.SetValue steps, and clicks on operator buttons as Calculator.SetOperator
steps.

Understanding How UFT Handles Wrapper Controls

Wrapper controls must register themselves as wrappers for the types of controls that
they wrap.

HP UFT Java Add-in Extensibility (12.00) Page 69

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Before UFT learns a control as a descendant, UFT checks if any wrappers are registered
for this type of control. If there are registered wrappers, UFT searches for the one to
which this particular control belongs. UFT performs this search by calling the
checkWrappedObject method of each registered wrapper. If UFT finds a relevant
wrapper, UFT does not learn the descendant control. If no relevant wrapper is found,
UFT learns the descendant control.

When a control is learned separately (by clicking on the specific control), UFT does not
check for wrappers.

Similarly, before UFT records an operation on a control, UFT checks if any wrappers are
registered for this type of control. If there are registered wrappers, UFT searches for
the one to which this particular control belongs. If UFT finds a relevant wrapper, UFT
passes the record message to the wrapper control before adding a step to the test. If
no relevant wrapper is found, the operation is recorded as is.

When the wrapper receives a record message (triggered by an operation performed on
one of its wrapped objects), it can do one of the following:

« Discard the message to prevent the recording of the operation.
« Modify the message to record a different operation.
o Leave the message as is to record the operation without intervention.

The following section describes how this mechanism is implemented, using the AwtCalc
wrapper control as an example. After support for the AwtCalc control is implemented, a
test recorded on the control could look like this:

Operation | Walue Documentation

chion}
g AwtCalculator Reset Rezet the calculator walue

i SwtCaloulator Sefalue M2" Set 2" value into “twwtCalculator object
i SutCaloulator Set0perator: "+ Set "'+ pperation to calculate
w g AwtCalculator Seffalue U2 Set 2" value into “twtCalculator object
& ETextField Clizhk. 825,"LEFT" Click the "ETextField" abject with the "LEFT"' mouse button.
0] AwWT Caloulatarfst): Click 40,8."LEFT" i Click the "&WT Calculatorst] text label with the "LEFT"' mouse buttan.
g AwtCalculator Enter Calculate the incoming data

HP UFT Java Add-in Extensibility (12.00) Page 70

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Implementing Support for Wrapper Controls

If you want to support a wrapper control, you must implement the
com.mercury.ftjadin.infra.abstr.RecordWrapper interface in MicAPI. This interface
includes the following methods:

public void registerWrapperinspector()

public Object checkWrappedObject(Object obj)

public RecordMessage wrapperRecordMessage(RecordMessage message, Object
wrapper)

public boolean blockWrappedObjectRecord()

The sections below describe each of these methods in detail.

public void registerWrapperinspector()

The registerWrapperinspector method is used to register as a wrapper for the relevant
types of controls.

For example, the AwtCalcCS support class registers itself as a wrapper of Button:

public void registerWrapperInspector()
{ MicAPI.registerWrapperInspector(Button.class, this);}

The AwtCalcCS is registered as a wrapper for Button controls only, therefore operations
on the AWT Calculator label or on the edit box will be recorded without any wrapper
intervention. In addition, when the AwtCalc control is learned, the label and edit box are
learned as its descendants.

public Object checkWrappedObject(Object obj)

UFT calls the checkWrappedObject method to check whether a specific object belongs
to the custom control. The support class implements this method to return the specific
wrapper instance if obj is wrapped by the custom control. Otherwise, it returns null.

HP UFT Java Add-in Extensibility (12.00) Page 71

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

For example, the checkWrappedObject method in AwtCalcCS is implemented, as
follows:

public Object checkWrappedObject(Object obj) {
Component comp = (Component)obj;
if (comp.getParent().getClass().getName().equals
("org.boutique.toolkit.AwtCalc"))

return comp.getParent();
return null;

}

public RecordMessage wrapperRecordMessage(RecordMessage
message, Object wrapper)

UFT calls the wrapperRecordMessage method during a recording session when a
wrapped object sends a record message. UFT passes the record message to the
wrapper control before adding a step to the test.

This method returns one of the following:

o null, indicating that this message should be ignored and no step should be recorded
« a modified record message to be sent instead of the original one

« the original record message

For example, in the wrapperRecordMessage method in AwtCalcCS, if the operation to
record is on a button, the method replaces it with the appropriate operation to
record—Reset, Enter, SetOperator or SetValue (with the appropriate parameters). If
the operation in the record message is on a label or text field, AwtCalc does not
interfere with the recording.

public RecordMessage wrapperRecordMessage(RecordMessage message,
Object wrapper) {

Object subject = message.getSubject();

if (subject instanceof Button) {

// Get the label of the button

HP UFT Java Add-in Extensibility (12.00) Page 72

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

String value = ((Button) subject).getLabel().trim();
String operation;

// Select what method will be recorded and with what
parameters

if (value.equals("=")) {

return RecordMessage.getRecordMessageInstance
(wrapper, "Enter");

}
if (value.equals("C")) {

return RecordMessage.getRecordMessageInstance
(wrapper, "Reset");

} else {
if (value.equals("+") || value.equals("-") || value.equals
("x")
|| value.equals("/") || value.equals(""")
|| value.equals("sqrt"))
operation = "SetOperator";
else
operation = "SetValue";
}

String params[] = new String[1];
params[@] = value;

RecordMessage res =
RecordMessage.getRecordMessageInstance(wrapper, operation,
params, AgentRecordMode.NORMAL_RECORD);

return res;

}

// AwtCalc does not interfere if the message is not from a button

return message;

HP UFT Java Add-in Extensibility (12.00) Page 73

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

boolean blockWrappedObjectRecord()

When the blockWrappedObjectRecord method returns false, the controls contained in
the wrapper generate record messages in response to events as if they were
independent controls. UFT then calls wrapperRecordMessage to pass the record
messages it receives from wrapped controls to the wrapper. The wrapper can then
decide whether to discard the message, modify it, or record the operation as is.

When the blockWrappedObjectRecord method returns true, it causes all of the
controls contained in the wrapper to ignore all events. The wrapped controls do not
send any record messages to UFT, and wrapperRecordMessage is never called.

If blockWrappedObjectRecord returns null, and you want the wrapper to record events
that occur on the objects it contains, the wrapper itself must register new event
listeners on the wrapped objects. Then it must handle the events to generate the
appropriate test steps (using MicAPl.record) during a recording session.

HP UFT Java Add-in Extensibility (12.00) Page 74

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Support Class Summary

The following table summarizes the types of methods you use in a custom support
class. For more information, see the UFT Java Add-in Extensibility APl Reference
(available with the Java Add-in Extensibility SDK Help).

Method Syntax Common Methods
Type
Identification public String <identification to_class_attr
property property name>_attr(Object obj)
methods tag_attr

label attr

attached_text_
attr

class_attr
value_attr

Test Object public Retval <test object

Methods method name>_replayMethod(Object

obj, <... list of String

arguments>)
Event Dependent on the listener that is being Call
Handling implemented. MicAPI.record
methods from the event

handler methods.

Utility protected void addSimplelListener(String
methodsto listenerName, String addMethodName, String
use removeMethodName)

public static final boolean isInRecord()

HP UFT Java Add-in Extensibility (12.00) Page 75

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Method Syntax Common Methods
Type

Utility public boolean isWindow(Object obj)

methods to .

override protected Object mouseRecordTarget(MouseEvent e)

protected Object keyboardRecordTarget(KeyEvent e)
public boolean blockWrappedObjectRecord()

public void registerWrapperInspector()

public Object checkWrappedObject(Object obj)

public RecordMessage wrapperRecordMessage
(RecordMessage message, Object wrapper)

Using Methods from MicAPI

MicAPI contains several sets of methods that you can use in the custom support classes
to provide the following types of functionality:

o Dispatching low-level events. These methods include MouseClick, KeyType, and
postEvent. These methods are commonly used in replay methods.

o Recording custom control operations on UFT. These methods are commonly used in
event handler methods.

« Logging messages and errors from the support classes. These methods are used
throughout the custom support class, to print log and error messages. For more
information, see "Logging and Debugging the Custom Support Class" on page 86.

To use the methods provided in MicAPI, add an import
com.mercury.ftjadin.custom.MicAPI; statement in your code. For details on
these methods, see the UFT Java Add-in Extensibility APl Reference (available with the
Java Add-in Extensibility SDK Help).

HP UFT Java Add-in Extensibility (12.00) Page 76

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Deploying and Running the Custom Toolkit
Support

The final stage of extending UFT support for a custom toolkit is deployment. This
means placing all of the files you created in the correct locations, so that the custom
toolkit support is available to UFT.

You can also deploy the toolkit support during the development stages, to test how it
affects UFT and debug the custom toolkit support set that you are creating.

About Deploying the Custom Toolkit Support

From the UFT user's perspective, after you deploy the toolkit support set on a
computer on which UFT is installed, the toolkit support set can be used as a UFT add-in.

When UFT opens, it displays the custom toolkit name in the Add-in Manager, as a child
node under the Java Add-in node. Select the check box for your custom toolkit to
instruct UFT to load support for the toolkit using the toolkit support set that you
developed.

Note: Only applications that are opened after loading or unloading support for the
custom toolkit are affected.

If you do not load the support for your custom toolkit, the code that you designed in
your toolkit support set does not run.

HP UFT Java Add-in Extensibility (12.00) Page 77

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

If you load support for your custom toolkit:
o UFT recognizes the controls in your custom toolkit and can run test steps on them.

o UFT displays the name of your custom toolkit in the Environment list in all of the
dialog boxes that display lists of add-ins or supported environments.

o UFT displays the list of test object classes defined by your toolkit support set in
dialog boxes that display the list of test object classes available for each add-in or
environment. (For example: Define New Test Object dialog box, Object Identification
dialog box.)

Note: Test object classes defined in a toolkit support set that was developed
using a Java Add-in Extensibility SDK version earlier than 10.00 are displayed in
the UFT dialog boxes as Java test object classes. To cause UFT to display these
test object classes under the correct environment name, change the
PackageName attribute in the test object configuration file to the name of the
custom toolkit, as it appears in the Add-in Manager. Additionally, if an index
identification property is implemented for any test object classes in the toolkit
support set, remove this implementation to enable the use of the Generate
Scripts button in the Object Identification dialog box.

Deploying the Custom Toolkit Support

The following table describes the appropriate location for each of the toolkit support
files:

File Name Location

<Custom Toolkit Name>.xml <UFT Installation
Folder>\bin\java\classes\extension

HP UFT Java Add-in Extensibility (12.00) Page 78

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

File Name Location

<Custom Toolkit o <UFT Installation

Name>TestObjects.xml Folder>\Dat\Extensibility\Java

Optional. Required only if mapping

custom classes to new test object « <Unified Functional Testing Add-

classes. in for ALM Installation Folder>\Dat\
Extensibility\Java

Note: This file name convention is (Optional. Required only if Unified

used by the Java Add-in Extensibility Functional Testing Add-in for ALM is

wizard. You can have more than one installed.)

test object configuration file, and name
them as you wish.

<Custom Toolkit All of the compiled Java support

Name>Support.class classes can be packaged in class
folders or Java archives on the
computer on which UFT is installed, or

in an accessible network location.
<CustomClass>CS.class

Specify the location in <Custom
Toolkit Name>.xml.

Icon files for new test object classes The file can be a .dll or .ico file, located

(optional) on the computer on which UFT is
installed, or in an accessible network
location.

Specify the location in <Custom
Toolkit Name>TestObjects.xml.

HP UFT Java Add-in Extensibility (12.00) Page 79

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Deploying Custom Support During the Development Stage

During the design stages of the custom toolkit support, the support class files can
remain in your workspace. You deploy the custom toolkit support by placing the toolkit
configuration files (including the test object configuration file) in the correct locations,
and by specifying the location of the compiled support classes in the toolkit
configuration (XML) file. In addition, if your new test object classes use specific icons,
specify their locations in the test object configuration file.

Note: Compile the support classes before deploying and check for compilation
errors, to avoid run-time failure.

If you modify attributes of ldentification Property elements in the test object
configuration file, it is recommended to keep the DevelopmentMode attribute of the
Typelnformation element set to true during the design stages of the custom toolkit
support. For more information, see "Modifying Identification Property Attributes in a
Test Object Configuration File" on page 83.

If you develop custom toolkit support using the UFT Java Add-in Extensibility plug-in in
Eclipse, and UFT is installed on your computer, you deploy toolkit support by clicking

the Deploy Toolkit Support @ Eclipse toolbar button, or by choosing UFT > Deploy
Toolkit Support. The XML configuration files are copied to the correct UFT locations,
while the Java class files remain in the Eclipse workspace. (The actual locations of the
toolkit support class and the custom support classes are listed in the toolkit
configuration file.) For details on deploying support using the Eclipse plug-in, see
"Deploy Toolkit Support " on page 148.

If you do not use the UFT Java Add-in Extensibility plug-in in Eclipse, or if UFT is
installed on another computer, you must perform the deployment manually, according
to the information in the table on page 77.

To deploy custom support manually during the development stages:

1. Make sure that the compiled support classes (toolkit support class and custom
support classes) are in a location that can be accessed by UFT.

2. Update the configuration files with the correct locations of the compiled support

HP UFT Java Add-in Extensibility (12.00) Page 80

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

classes and icon files (if relevant).

3. Copy the configuration files to the appropriate folders, as described in the table on
page 77.

Deploying Custom Support After the Design is Completed

When the custom toolkit support is fully designed, you can deploy it to any computer on
which UFT is installed.

If you set the DevelopmentMode attribute of the Typelnformation element in the test
object configuration file to true while developing the custom toolkit support, make
sure to remove this attribute (or set it to false) before deploying the custom support
for regular use. For more information, see "Modifying Identification Property Attributes
in a Test Object Configuration File" on page 83.

To deploy custom support after the design is completed:

1. Place the compiled support classes (toolkit support class and custom support
classes) in their permanent location. The classes can be in class folders or in a Java
archive, in a location that can be accessed by UFT.

In addition, if you have new test object classes using specific icons, place the icon
files in a location that can be accessed by UFT.

2. Update the toolkit configuration file with the correct location of the compiled
support classes.

If necessary, update the test object configuration file with the correct location of
the icon files.

3. Copy the configuration files to the appropriate folders, as described in the table on
page 77.

Running an Application with Supported Custom Controls

After you deploy the custom toolkit support, you can perform UFT operations on an
application that contains the supported custom controls to test the effects of the

support.

HP UFT Java Add-in Extensibility (12.00) Page 81

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

You can run the application in any way you choose.

If you run an SWT application from Eclipse using a version earlier than 3.3, Eclipse
overrides the Java library path to add the SWT dll. Therefore, you must add the
jvmhook.dll path (required by the Java Add-in) to the library path manually.

To add the jymhook.dll path to the library path (when working with Eclipse versions
earlier than 3.3):

1. Right-click the application file in the Eclipse Package Explorer. Select Run As >
SWT Application.

N

. Inthe Eclipse toolbar, select Run > Run. The Run dialog box opens.

w

. Select the SWT application in the Configurations list.

D

. Click the Arguments tab.
5. Inthe VM arguments area, enter:

-Djava.library.path=<System Folder>\system32
(For example: -Djava.library.path=c:\WINNT\system32)

6. Close the application and run the application again. (Right-click the application file
in the Eclipse Package Explorer and select Run As > SWT Application).

Modifying Deployed Support

If you modify a toolkit support set that was previously deployed to UFT, the actions you
must perform depend on the type of change you make, as follows:

« If you modify the toolkit configuration file or a test object configuration file, you
must deploy the support.

« If you modify a test object configuration file, you must reopen UFT after deploying
the support.

o Whether you modify the configuration files or only the Java support classes, you
must re-run the Java application for the changes to take effect.

HP UFT Java Add-in Extensibility (12.00) Page 82

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Modifying Identification Property Attributes in a Test Object
Configuration File

The following attributes of the Identification Property element in the test object
configuration file specify information that can be modified in UFT (using the Object
Identification dialog box): AssistivePropertyValue, ForAssistive, ForBaseSmartiD,
ForDescription, ForOptionalSmartiD, and OptionalSmartiDPropertyValue. These
attributes determine the lists of identification properties used for different purposes in
UFT. For more information, see the UFT Test Object Schema Help, available in the UFT
Java Add-in Extensibility Help.

Therefore, by default, UFT reads the values of these attributes from the XML file only
once, to prevent overwriting any changes a user makes using the Object Identification
dialog box. In this way, UFT provides persistence for the user defined property lists.

If the user clicks the Reset Test Object button in the Object Identification dialog box,
the attributes' values are reloaded from the XML.

If the XML changed since the last time it was loaded (based on the file's modification
date in the system), UFT reads the attributes from the XML. UFT adds identification
properties to the relevant lists (and adjusts their order if necessary) according to the
values of these attributes, but does not remove any existing identification properties
from the lists.

To instruct UFT to completely refresh the identification property lists according to the
attributes defined in the XML each time UFT is opened, set the DevelopmentMode
attribute of the Typelnformation element in this test object configuration file to true.

HP UFT Java Add-in Extensibility (12.00) Page 83

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Considerations When Modifying Identification Properties Attributes

« If you modify attributes of Identification Property elements in the test object
configuration file, keep the DevelopmentMode attribute of the Typelnformation
element set to true during the design stages of the custom toolkit support. This
ensures that UFT uses all of the changes you make to the file.

« Before you deploy the toolkit support set for regular use, be sure to remove the
DevelopmentMode attribute of the Typelnformation element (or set it to false).
Otherwise, every time UFT opens it will refresh the property lists based on the
definitions in the test object configuration file. If UFT users change the property lists
using the Object Identification dialog box, their changes will be lost when they
reopen UFT.

o Though UFT does not remove existing properties from the property lists when
reading a modified test object configuration file (unless the DevelopmentMode
attribute is set to true), it does add properties and adjust the order of the lists
based on the definitions in the file. If UFT users removed properties from the lists or
modified their order using the Object Identification dialog box, those changes will be
lost when a modified file is loaded.

If you provide the custom toolkit support set to a third party, and you deliver an
upgrade that includes a modified test object configuration file, consider informing
the UFT users about such potential changes to their identification property lists.

Removing Deployed Support

When opening UFT, the UFT user can use the Add-in Manager to instruct UFT whether to
load the support provided for any particular toolkit. If the support for your custom
toolkit is not loaded, the code that you designed in your toolkit support set does not
run, and the test object classes that you defined in the test object configuration file are
not available in UFT.

« If you want to remove support for a custom toolkit from UFT after it is deployed, you
must delete its toolkit configuration file from: <UFT Installation Folder>
bin\java\classes\extension

HP UFT Java Add-in Extensibility (12.00) Page 84

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

« If none of the test object class definitions in a test object configuration file are
mapped to any custom controls (meaning they are no longer needed), you can delete
the file from:
<UFT Installation Folder>\Dat\Extensibility\Java (and <Unified Functional
Testing Add-in for ALM Installation Folder>\Dat\Extensibility\Java if relevant).

« If you want to remove only parts of the custom toolkit support that you created,
consider the following:

m To remove support for a specific custom class, delete its custom support class,
and remove the references to this support class from the toolkit configuration
file.

Before you delete a custom support class, make sure that no other custom
support classes extend it.

m To remove a new test object class that you defined, remove its definition from
the test object configuration file.

Before you remove the definition of a test object class, make sure that no custom
classes are mapped to this test object class and that no other test object classes
extend it.

m To remove support for test object methods or identification properties that you
added, remove the relevant support methods from your custom support class.

Removing support for test object methods or identification properties from the
support class does not remove them from the test object class definition. They
are available in UFT when editing tests but are not supported for this custom
class.

m To remove your custom support for test object methods or identification
properties whose implementation you overrode, remove the relevant support
methods from your custom support class.

m Toremove test object methods or identification properties from the test object
class definition, remove them from the test object configuration file.

HP UFT Java Add-in Extensibility (12.00) Page 85

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Logging and Debugging the Custom Support
Class

When you design your support classes, it is recommended to include writing messages
to a log file, to assist in debugging any problems that may arise.

Use the MicAPl.logLine method to send messages to the log file. For more information,
see UFT Java Add-in Extensibility APl Reference (available with the Java Add-in
Extensibility SDK Help).

To control the printing of the log messages (to prevent all messages from being printed
at all times), you create debug flags in each support class. When you call
MicAPl.logline, you provide the appropriate debug flag as the first argument.
MicAPl.loglLine prints the log messages only when the debug flag that you specified is
on.

The following example illustrates how to print log messages in a support class:

private static final String DEBUG_ALLLIGHTSCS = "DEBUG_ALLLIGHTSCS";
public String light _on_positions_attr(Object obj) {
AllLights lights = (AllLights) obj;

for (int i = 0; i < 5; i++) {
for (int j =0; j < 5; j++) {
if(lights.isSet(j, i)) {
MicAPI.loglLine(DEBUG_ALLLIGHTSCS, “Light "+i+":"+j+"
is set");

HP UFT Java Add-in Extensibility (12.00) Page 86

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

In UFT, you create a test with the following two lines and run it to control the logging.
Within the test, list the flags to turn on and the file to which the messages should be
written:

javautil.SetAUTVar "sections_to debug", "DEBUG ALLLIGHTSCS"
javautil.SetAUTVar "debug file name",
"C:\JavaExtensibility\Javalog.txt"

If you want to turn on more than one flag simultaneously, enter all of the flag strings
consecutively in the second argument (separated by spaces), as in the following
example:

javautil.SetAUTVar "sections_to_debug", "DEBUG_ALLLIGHTSCS DEBUG
AWTCALC™

The messages printed by MicAPl.logLine, according to the flags you set, are printed to
the specified file when the support class runs. To change the flags controlling the log
printing, or to change the file to which they are written, run the UFT GUI test again with
the appropriate arguments.

Debugging Your Custom Toolkit Support

The Java support classes run in the context of the application you are testing.
Therefore, if you want to debug your support classes, you can do so in the same way as
you would debug the application itself.

To begin debugging, place breakpoints within the support classes, run the application as
though you were debugging it, and perform different UFT operations on the application
to reach the different parts of the support classes.

If the application code is stored in Eclipse, you can run it in debug mode from Eclipse.
(Right-click the application file and select Debug As > Java Applet (or Application) or
Debug As > SWT Application.)

If the application code is not stored in Eclipse, use remote debugging on the application
to debug the support classes. For information on remote debugging, see the Eclipse
Help.

HP UFT Java Add-in Extensibility (12.00) Page 87

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

Workflow for Implementing Java Add-in
Extensibility

The following workflow summarizes the steps you need to perform to create UFT Java
Add-in Extensibility support for a custom toolkit, and the order in which you need to
perform them. Follow these steps for each custom toolkit you want to support:

Plan the custom toolkit support

¥

Create the UFT Java Add-in Extensihility project

¥
Repeat the following steps for each custam class in the custom
toolkit

Create the UFT custom support class ©

¥

Implement the necess ary methods in the custom support
class

¥

Deploy the toolkit support (for debug ging)
v

Debug the toolkit support by testing it in UFT

v

Deploy the toolkit support to its final location

*You can use the wizards in the UFT Java Add-in Extensibility Eclipse plug-in to create
the custom toolkit support project, the custom classes, and all of the required files.
Alternatively, if you choose not to use the wizards, you must create the necessary
packages and files manually, as described in "Creating a Custom Toolkit Support Set" on

HP UFT Java Add-in Extensibility (12.00) Page 88

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

page 38. In addition, if you then decide to map custom classes to new test object
classes, you must define the new test object classes in a test object configuration file.

HP UFT Java Add-in Extensibility (12.00) Page 89

Chapter 4: Planning Custom Toolkit Support

Before you begin to create support for a custom toolkit, you must carefully plan the
support. Detailed planning of how you want UFT to recognize the custom controls
enables you to correctly build the fundamental elements of the custom toolkit support.
It is important to plan all of the details before you begin. Making certain changes at a
later stage might require intricate manual changes, or even require you to recreate the
custom support.

Note: This chapter assumes familiarity with the concepts presented in
"Implementing Custom Toolkit Support” on page 34.

This chapter includes:

About Planning Custom Toolkit SUppoOrt ... 91
Determining the Custom Toolkit Related Information 91
Determining the Support Information for Each Custom Class 92
Where Do You Go from Here? . . 96

HP UFT Java Add-in Extensibility (12.00) Page 90

Developer Guide
Chapter 4: Planning Custom Toolkit Support

About Planning Custom Toolkit Support

Creating custom toolkit support is a process that requires detailed planning. To assist
you with this, the sections in this chapter include sets of questions related to the
implementation of support for your custom toolkit and its controls. When you are ready
to create your custom toolkit support, you will be implementing support for it based on
the answers you provide to these questions.

The first step is determining general information related to your custom toolkit, after
which you will define the specific information related to each custom class you want to
support.

Determining the Custom Toolkit Related
Information

To plan the details related to the custom toolkit answer the following questions:
o What is the name of the custom toolkit?

Provide a unique name for the custom toolkit. After you develop the support and
deploy it to UFT, UFT displays the custom toolkit name in all of the dialog boxes that
display lists of add-ins or supported environments. For example, when UFT opens, it
displays the custom toolkit name as a child of the Java Add-in in the Add-in Manager
dialog box and the UFT user can specify whether to load support for that toolkit.

o What custom classes are included in the custom toolkit?

List the locations of the custom classes. The locations can be Eclipse projects, Java
archive files or class folders.

For the rules on grouping custom classes into toolkits you can support, see "
Preparing to Create Support for a Custom Toolkit" on page 37.

« What native toolkit (or existing supported toolkit) does the custom toolkit extend?

HP UFT Java Add-in Extensibility (12.00) Page 91

Developer Guide
Chapter 4: Planning Custom Toolkit Support

Note: When all of the classes in a custom toolkit extend the basic user interface
class of another toolkit (for example java.awt.Component) we say the custom
toolkit extends that toolkit (in this example: AWT).

« In what order do you want to create support for the different classes within the
toolkit?

For information on how to answer this question, see "Determining the Inheritance
Hierarchy for a Support Class" on page 55.

Determining the Support Information for Each
Custom Class

Before you begin planning the support for a custom class, make sure you have full
access to the control and understand its behavior. You must have an application in
which you can view the control in action, and also have access to the custom class that
implements it.

You do not need to modify any of the custom control's sources to support it in UFT, but
you do need to be familiar with them. Make sure you know which members (fields and
methods) you can access externally, the events for which you can listen, and so forth.

When planning custom support for a specific class, carefully consider how you want UFT
to recognize controls of this class—what type of test object you want to represent the
controls in UFT GUI tests, which identification properties and test object methods you
want to use, and so forth. The best way to do this is to run the application containing
the custom control and to analyze the control from a UFT perspective using the Object
Spy, the Keyword View, and the Record option. This enables you to see how UFT
recognizes the control without custom support, and helps you to determine what you
want to change.

To view an example of analyzing a custom control using UFT, see "Analyzing the Default
UFT Support and Extensibility Options for a Sample Custom Control" on page 20.

HP UFT Java Add-in Extensibility (12.00) Page 92

Developer Guide
Chapter 4: Planning Custom Toolkit Support

Understanding the Custom Class Support Planning
Checklist

When you plan your custom support for a specific class, you must ask yourself a series
of questions. These are explained below and are available in an abbreviated, printable
checklist on page 95.

Note: Questions 1, 4, and 5 are fundamental to the design of the custom toolkit
support. Changing the answers to these questions after creating support may
require you to make complex manual changes, or even to recreate the custom
support.

1. Make sure you select the correct custom class to support:

a. Does the custom class have a superclass for which UFT custom support is not
yet available?

b. Does the custom control have identification properties or test object methods
that require the same UFT support as other controls that extend the same
superclass?

If so, consider creating support for the superclass first.

2. Make sure you have access to custom class sources and to an application that runs
the custom control on a computer with UFT installed.

3. Make sure you have access to the compiled custom class on the computer on which
you are programming. The classes can be in class folders, a Java archive, or an
Eclipse project.

4. Is there an existing Java test object class which adequately represents the custom
control? If so, which one?

HP UFT Java Add-in Extensibility (12.00) Page 93

Developer Guide
Chapter 4: Planning Custom Toolkit Support

5. If not, you need to create a new test object class:

a. Is there an existing Java object class which can be extended to represent the
custom control? If so, which one? If not, your new test object class needs to
extend the JavaObject class.

Note: If you create test object classes that extend test object classes
defined in another toolkit support set, you create a dependency between
the two toolkit support sets. Whenever you select to load the extending
toolkit support set in the UFT Add-in Manager, you must also select to load
the toolkit support set that it extends.

b. Do you want UFT to use a different icon for the new test object?
If so, make sure the icon file is available in an uncompressed .ico format.

c. Specify one or more identification properties that can be used to uniquely
identify the control (in addition to the test object class and the fully qualified
Java class name of the control).

d. Specify the default test object method to be displayed in the Keyword View and
Step Generator when a step is generated for an object of this class.

6. Do you want UFT to recognize the custom control as a top-level Java test object?

7. Does the custom control contain objects that are significant only in the context of
this control (meaning, is it a wrapper)? (For example, a Calculator object is a
wrapper for the calculator button objects.)

8. Specify the basis for naming the test object that represents the control.
9. List the identification properties you want to support.

If you are creating a new test object class, also decide which properties should be
selected by default in the Checkpoint Properties dialog box in UFT.

10. List the test object methods you want to support. Specify the method argument
types and names, and whether it returns a value in addition to the return code.

11. If the custom control is AWT-based, do you want to provide support for creating

HP UFT Java Add-in Extensibility (12.00) Page 94

Developer Guide
Chapter 4: Planning Custom Toolkit Support

UFT GUI tests by using the Record option?

If so, list the events you want to record on the custom control during a UFT
recording session.

Custom Class Support Planning Checklist

Use this checklist to plan your custom class toolkit support.

[l Custom Class Support Planning Checklist

O Does the custom class have a superclass for which UFT custom supportis
not yet available? Yes/No

Q If so, should I first extend support for a control higher in the hierarchy? Yes
INo

O Do | have an application that runs the custom control on a computer with
UFT installed? Yes/No

O The sources for this custom control class are located in:

O Which existing Java test object matches the custom control?
Q Ifnone, create a new Java test object class named:

« New test object class extends: (Default—JavaObject)

« Icon file location (optional):

« Identification property for description:

« Default test object method:

O Should UFT recognize the custom control as a top-level Java test
object? Yes/No

O Is the custom control a wrapper? Yes /INo

O Specify the basis for naming the test object:

HP UFT Java Add-in Extensibility (12.00) Page 95

Developer Guide
Chapter 4: Planning Custom Toolkit Support

Custom Class Support Planning Checklist

O Listthe identification properties to support, and mark default checkpoint
properties:

O List the test object methods to support (include arguments and return values
if required):

O Provide support for recording? (AWT-based only) Yes /No

O Ifso, list the events that should trigger recording:

Where Do You Go from Here?

After you finish planning the custom toolkit support, you create the custom toolkit
support set to support the custom toolkit as per your plan. You can create all of the
required files, classes, and basic methods using the UFT Java Add-in Extensibility
wizards in Eclipse. The wizards also provide method stubs for additional methods that
you may need to implement. For more information, see "Using the UFT Java Add-in
Extensibility Eclipse Plug-In" on page 97.

If you choose not to use the Java Add-in Extensibility wizard in Eclipse, you can still
extend full support for the custom toolkit manually using the information in
"Implementing Custom Toolkit Support" on page 34.

HP UFT Java Add-in Extensibility (12.00) Page 96

Chapter 5: Using the UFT Java Add-in
Extensibility Eclipse Plug-In

The UFT Java Add-in Extensibility SDK includes a plug-in for the Eclipse Java

development environment. This plug-in provides wizards that you can use to create
custom toolkit support sets and commands for editing the files after they are created.

If you choose not use the Java Add-in Extensibility wizards, you can skip this chapter. In
this case, you can extend full support for the custom toolkit manually, as described in

"Implementing Custom Toolkit Support” on page 34.

This chapter includes:

About the UFT Java Add-in Extensibility Eclipse Plug-In
New UFT Java Add-in Extensibility Project Wizard
Modifying UFT Java Add-in Extensibility Project Properties
New UFT Custom Support Class Wizard
New UFT Custom Static-Text Support Class Wizard

Working with UFT Commands in Eclipse

HP UFT Java Add-in Extensibility (12.00)

Page 97

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

About the UFT Java Add-in Extensibility Eclipse
Plug-In

When you install the UFT Java Add-in Extensibility SDK, the UFT Java Add-in
Extensibility plug-in is added to Eclipse. This plug-in provides wizards that you can use
to create custom toolkit support sets and commands for editing the files after they are
created. For information on installing and uninstalling the Java Add-in Extensibility SDK,
see "Installing the HP UFT Java Add-in Extensibility Software Development Kit" on

page 24.

You can use the wizards supplied by the UFT Java Add-in Extensibility plug-in in Eclipse
to create and deploy custom toolkit support. The wizards create all of the necessary
files, classes, and methods, based on details you specify about the custom classes and
the required support. The wizards also provide method stubs for the additional methods
you may need to implement.

This chapter assumes that you have read the "Implementing Custom Toolkit
Support”chapter of this guide (on page 34), which explains the elements that comprise
custom toolkit support and the workflow for creating this support.

When you create support for a custom toolkit, you first use the New Project Wizard to
create an Eclipse project containing the packages and files for the custom toolkit
support.

Then you create support classes for the relevant custom classes using the New Custom
Support Class Wizard (described on page 110). To create a support class for a custom
static-text class, you use the New Custom Static Text Support Class Wizard (described
on page 142).

After the wizard creates the support class according to your specifications, you must
complete the design of the custom support. To do this, you implement the method
stubs created by the wizard to match the needs of the custom control.

HP UFT Java Add-in Extensibility (12.00) Page 98

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

The UFT Java Add-in Extensibility Eclipse plug-in also provides commands that you can
use to edit the support you are designing, and to deploy it to UFT for debugging. These
commands are described in "Working with UFT Commands in Eclipse” on page 147.

Caution: While you are working with the wizard, do not rename or delete any of the
files that the wizard creates. When the wizard performs the commands you specify,
it searches for the files according to the names it created. When the custom toolkit
support set is complete and you are performing the final deployment, you can
rename the configuration files. In the final deployment stage, you can also divide
the test object configuration file into more than one file. Place the custom toolkit
support set files in the appropriate folders, as specified in "Deploying Custom
Support After the Design is Completed" on page 81.

New UFT Java Add-in Extensibility Project Wizard

You use the New UFT Java Add-in Extensibility Project wizard to create a new project in
Eclipse containing the files that comprise the support set for a specific custom toolkit.
After you specify the details of the custom toolkit, the wizard creates the necessary
toolkit support files.

After you create the New UFT Java Add-in Extensibility project, you can create support
for each of the custom toolkit classes. To do this, you use the New Custom Support
Class Wizard, described on page 110 (or the New Custom Static Text Support Class
Wizard, described on page 142).

To open the New UFT Java Add-in Extensibility Project wizard in Eclipse:
1. Select File > New > Project. The New Project dialog box opens.

2. Expand the Unified Functional Testing folder and select UFT Java Add-in
Extensibility Project.

3. Click Next. The New Project Screen opens (described on page 101).

Tip: You can shorten this process by customizing Eclipse to provide UFT Java
Add-in Extensibility Project as an option in the New menu. To do this, perform

HP UFT Java Add-in Extensibility (12.00) Page 99

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

the following: Select Window > Customize Perspective. In the Shortcuts tab in
the dialog box that opens, select the Unified Functional Testing and UFT Java
Add-in Extensibility Project check boxes. Click OK.

HP UFT Java Add-in Extensibility (12.00) Page 100

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

UFT Java Add-in Extensibility Project Screen

In the UFT Java Add-in Extensibility Project screen, you can create a UFT Java Add-in
Extensibility project and define the project layout. The details on this screen may vary,
depending on the version of Eclipse that you are using.

= Mew UFT Java Add-in Extenzibility Project

UFT Java Add-in Extensibility Project

Enter a project name,

i RN SN |_’

HP UFT Java Add-in Extensibility (12.00) Page 101

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Perform the following:
1. Inthe Project name box, enter a name for the project.

2. In the Project Layout area, select Create separate folders for sources and class
files. (In earlier Eclipse versions this option is named Create separate source and
output folders.)

3. Click Next to continue to the Custom Toolkit Details Screen (described on page
103).

For information on the options available in this Eclipse wizard screen, see the Eclipse
Help.

HP UFT Java Add-in Extensibility (12.00) Page 102

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Custom Toolkit Details Screen

In the Custom Toolkit Details screen, you provide the details of the custom toolkit so
that the wizard can generate a corresponding custom toolkit support set. When you
click Finish the Project Summary screen described on page 108 opens.

= Mew UFT Java Add-in Extenzibility Project

Custom Toolkit Details

Enter the details For the custom toolkit wou want bo support,
The support boolkit and iks name are created based on these details,

HP UFT Java Add-in Extensibility (12.00) Page 103

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

In this wizard screen you specify the following details:

« Unique custom toolkit name. A name that uniquely represents the custom toolkit
for which you are creating support. UFT displays this name in all of the dialog boxes
that display lists of add-ins or supported environments. Providing unique toolkit
names enables a single UFT installation to support numerous custom toolkit support
sets simultaneously.

The name must begin with an English letter and contain only alphanumeric
characters and underscores.

The wizard uses this name when it creates the new toolkit support set. For example:
m The toolkit support class is named <custom toolkit name>Support.

m The toolkit configuration file is named <custom toolkit name>.xml. (The
custom toolkit name that UFT displays in the Add-in Manager and other dialog
boxes is derived from the name of this file.)

m [f the wizard creates a test object configuration file, it enters the custom toolkit
name in the PackageName attribute of the Typelnformation element. This
enables UFT to associate the new test object classes to the correct custom
toolkit.

You cannot specify the name of a custom toolkit whose support is already
deployed to UFT. If you want to create a new project using the wizard, and use
this project to replace existing custom toolkit support, you must first manually
delete the existing support. To do this, browse to <UFT Installation Folder>
bin\java\classes\extension, delete the toolkit configuration file, and then use the
Reload Support Configuration command described on page 149.

o Support toolkit description. A sentence describing the support toolkit. The
description is stored in the toolkit configuration file.

« Base toolkit. The toolkit that the custom toolkit extends. A toolkit can be
considered the base toolkit of a custom toolkit if all of the custom controls in the
custom toolkit extend controls in the base toolkit.

The Base toolkit list contains a list of toolkits for which UFT support already exists.
After you create and deploy support for your own toolkits, they are displayed in the

HP UFT Java Add-in Extensibility (12.00) Page 104

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

list as well.

When the wizard creates the new custom toolkit support set, it creates a new toolkit
support class. This new toolkit support class extends the toolkit support class of the
base toolkit you select. As a result, the new custom toolkit support inherits all of the
necessary utility methods for basic functionality (for example, event handling and
dispatching) from the base toolkit support.

Custom toolkit class locations. A list of the locations of the custom classes you want
to support in this project. You can specify Eclipse projects, .jar files, and Java class
folders (the file system folders containing the compiled Java classes).

When the new Java Add-in Extensibility project is built, these locations are added to the
project build path.

The build path must also include the locations of all parent classes of the custom
classes. Add these locations manually to the build path in your project if any custom
classes are not derived directly from SWT, AWT, or JFC (Swing) and the parent classes
are not located in the same location as the custom classes.

o The "Custom Class Selection Screen” on page 112 in the "New UFT Custom
Support Class Wizard" on page 110 (shown on page 112) displays the custom
classes from the locations you list in this box. This enables you to select the
required custom class when creating a custom support class. (You create custom
support classes after the new Java Add-in Extensibility project is built.)

« To add or remove custom class locations in a Java Add-in Extensibility project
after it is created, use the Properties dialog box for UFT Java Add-in
Extensibility projects described on page 109.

To add custom toolkit class locations to the list:

Add the locations of the custom toolkit classes using one or more of the following
options:

o Click Add project to select an Eclipse project. The Select Project dialog box opens
and displays the projects in the current Eclipse workspace:

HP UFT Java Add-in Extensibility (12.00) Page 105

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

& Select Project

O '= ImageContrals

Select the check box for the appropriate project and click OK to add it to the Custom
toolkit class locations box.

o Click Add Jar to add a Java archive (.jar) file. The Open dialog box opens.

E

by Documents

=

tdy Computer

Browse to the appropriate Java archive file, select it, and click OK to add it to the
Custom toolkit class locations box.

HP UFT Java Add-in Extensibility (12.00) Page 106

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

« Click Add Class Folder to add a class folder. The Select Folder dialog box opens.

Select Folder

ETF Desktop
24 by Documents
My Compuker
t My Mebwork Places
{:I Diocumentation References

’— [’7 4

Browse to the appropriate folder, select it, and click OK to add it to the Custom
toolkit class locations box.

Note: Select the root folder that contains the compiled class packages. For
example, the file ImageButton.java defines the class com.demo.ImageButton.
When you compile this class and store the result in the bin folder, the class file
ImageButton.class location is: bin\com\demo\ImageButton.class. If you want
to select the location of this class for the Custom toolkit class locations, select
the bin folder.

To remove custom toolkit class locations from the list:

Select the location in the Custom toolkit class locations box and click Remove.

HP UFT Java Add-in Extensibility (12.00) Page 107

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Project Summary Screen

Before the wizard creates the custom toolkit support files, the Project Summary screen
summarizes the specifications you provided for the new Java Add-in Extensibility
project.

& Hew UFT Java Add-in Extenszibility Project

Project Summary

Review and confirm the project properties.

Project Information

Project name: ImageControlzSupport

Location: C: MavaExtensibilityorkspace_final

Project JRE Compliance: Default Compiler Compliance (1.4)
Source root folder: sre

Clazs roat folder: bin

Toolkit Information

Custom toolkit name: ImageControls

Support toolkit description: ImageContrals toolkit support.
Basze toolkit Mame: 20T

Review the information. If you want to change any of the data, click Cancel to return to
the "Custom Toolkit Details Screen" on page 103 (described on page 103). Use the Back
and Next buttons to open the relevant screens and make the required changes.

HP UFT Java Add-in Extensibility (12.00) Page 108

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

If you are satisfied with the definitions, click OK. The wizard creates new UFT Java Add-
in Extensibility project, containing the following items:

o The toolkit root package: com.mercury.ftjadin.qtsupport.<Custom Toolkit Name>
containing:

m The toolkit support class in the toolkit root package:
<Custom Toolkit Name>Support.java

For information on the content of this class, see "Understanding the Toolkit Support
Class" on page 41.

m The support class sub-package:
com.mercury.ftjadin.qtsupport.<Custom Toolkit Name>.cs

« A folder for configuration files named Configuration. It contains:

m The <Custom Toolkit Name>.xml toolkit configuration file. For information on the
content of this file, see "Understanding the Toolkit Configuration File" on page 42.

m The TestObjects folder for test object configuration files.

Note: If you have more than one Java Run-time Environment (JRE) installed on
your computer, and one or more of the custom toolkit class locations you
specified were Eclipse projects, make sure that the custom toolkit projects and
the new Java Add-in Extensibility project are using the same JRE. If they are not,
modify the JRE for one or more of the projects so that all of the projects use the
same JRE.

Modifying UFT Java Add-in Extensibility Project
Properties

In the Eclipse menu bar, select Project > Properties. The Properties dialog box opens. In
the left pane, select UFT Support from the list of property types. (The items in this list
may vary, depending on the version of Eclipse that you are using.) The UFT Support
properties are displayed in the right pane.

HP UFT Java Add-in Extensibility (12.00) Page 109

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

& Properties for ImageControlzSupport

|t3-'|:ue filker text |

- Resource

-~ Buildsrs [(= e = =
- Java Build Path
ImageZontrols toolkit support.,

- Java Code Skvle

[Java Compiler o
E]- Java Editar El=p el = e e A e e el e = e e J

- Javador Location

- Project References
- Refactoring History
- Run/Debug Settings

== ImageControls

For information on the options in this dialog box, see "Custom Toolkit Details Screen”
on page 103.

After the Java Add-in Extensibility project is created, you cannot change the Unique
custom toolkit name or the Base toolkit.

You can change the Support toolkit description. You can also add or remove locations
in the Custom toolkit class locations list. When you modify this list, you must modify
the project's build path accordingly.

You can click the Restore button to restore the settings in this dialog box to the most
recently saved values.

New UFT Custom Support Class Wizard

You use the New UFT Custom Support Class wizard to create each support class within a
Java Add-in Extensibility project. After you specify the details of the custom class and
the required UFT support, the wizard creates the support class and all of the necessary

HP UFT Java Add-in Extensibility (12.00) Page 110

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

methods, accordingly. The wizard also provides method stubs for any additional
methods you need to implement.

To open the New UFT Custom Support Class wizard in Eclipse:

1. Inthe Eclipse Package Explorer tab, select a UFT Java Add-in Extensibility project.
Then select File > New > Other. The New dialog box opens.

Select a wizard

&3 Interface
134 Java Project
8 Java Project from Existing Ant Buildfile
12 Plug-in Project
=i Product Configuration
H-[22 CYS
+H-[= Java
+-[= Plug-in Developrient
== Unified Functional Testing
- BE| UFT Test Cuskom Static-Text Support Class
Eﬁ'- UFT Cuskom Support Class
E UFT 1ava Add-in Extensibility Project
+]-[= Simple

2. Expand the Unified Functional Testing folder and select UFT Custom Support
Class.

3. Click Next. The Custom Class Selection Screen opens.

Tip: You can shorten this process by customizing Eclipse to provide UFT

HP UFT Java Add-in Extensibility (12.00) Page 111

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Custom Support Class as an option in the New menu. To do this, perform the
following: Select Window > Customize Perspective. In the Shortcuts tab in the
dialog box that opens, select the Unified Functional Testing and UFT Custom
Support Class check boxes. Click OK.

Custom Class Selection Screen

The Custom Class Selection screen is the first screen in the New UFT Custom Support
Class wizard. In this screen, you select the custom class you want to support and set
the relevant options. The wizard automatically determines which existing support class
the new support class must extend, based on the custom class inheritance hierarchy.

When you click Next, the Test Object Class Selection Screen described on page 117

opens.

Note: Selecting the class to support is fundamental to creating a custom support
class. If you make changes in later screens and then return to this screen and select
a different class, those changes will be discarded.

HP UFT Java Add-in Extensibility (12.00) Page 112

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

= Mew UFT Custom Support Class

Custom Class Selection

Select the custom class wou want bo support, and set the relevant options For the l??
corresponding support class.

B com.dema

-]

J] ImageCantral IS

E-[J] Imagelabel - can.dema. ImageCantral

B com.sample e corn, demo, InageBukbon

Tt o S T el e FE s et Ll B e el s

|

The main area of this screen contains the following options:

o Custom toolkit tree. Displays all of the classes in the custom toolkit that are
candidates for support (taken from the custom toolkit class locations you listed in
the New UFT Java Add-in Extensibility Project wizard). Use the expand (+) and
collapse (-) signs to expand and collapse the tree, and to view its packages and
classes.

Only classes that fulfill the following conditions are displayed:
m (lasses that extend java.awt.Component or org.eclipse.swt.widgets.Widget.

m (Classes for which UFT support has not yet been extended. If support for a custom
class was previously deployed to UFT, or if support for a custom class is being
developed in the current Eclipse project, the custom class does not appear in this
tree.

HP UFT Java Add-in Extensibility (12.00) Page 113

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Note: If you think a certain class meets all of the requirements above, but it
still does not appear in the tree, try to update your environment by using the
Reload Support Configuration command (described on page 149).

For example, if you delete custom support in an Eclipse Java Add-in
Extensibility project to create new support for the same custom control, you
must reload the support configuration. This enables the custom class to
appear in the Custom toolkit tree.

« Custom class inheritance hierarchy. Displays the inheritance hierarchy of the class
selected in the Custom toolkit tree. Gray nodes indicate classes that are not
included in this toolkit. Black nodes indicate classes that are part of the custom
toolkit.

You can select the custom class you want to extend in the Custom toolkit tree or
the Custom class inheritance hierarchy. (In the Custom class inheritance hierarchy
you can select only black nodes, and only classes that do not have UFT support.)

« Base support class. The support class that the new support class must extend. You
cannot modify this information. The wizard selects the support class of the closest
ancestor in the hierarchy that has UFT support. (If support for a custom class was
previously deployed to UFT, or if support for a custom class is being developed in the
current Eclipse project, the wizard recognizes the custom class as having UFT
support.)

When UFT recognizes a Java object that is not mapped to a specific support class, it
uses the support class mapped to the object's closest ancestor. Therefore, the base
support class is the class that would provide support for the custom control if it
were not mapped to a specific support class. In the new custom support class, you
need to implement (or override) only the support that the base support class does
not adequately provide.

HP UFT Java Add-in Extensibility (12.00) Page 114

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

You can use the information displayed in the Custom class inheritance hierarchy
and Base support class to help you decide whether you should first extend support
for another custom class, higher in the hierarchy. Before you decide, consider the
following:

m |s there a custom class higher in hierarchy that does not have UFT support?

m If so, does the custom class have elements that need to be supported in a similar
manner for more than one of its descendants?

If you answered "yes" to the above, consider creating support for the higher class
first. This will enable its support class to be used as the Base support class. If the
class is displayed as a black node in the hierarchy, you can select it in this screen
and create support for it in this session of the wizard. If the class appears as a gray
node, it is not part of this toolkit, and you cannot create support for it within the
current UFT Java Add-in Extensibility project.

If the higher class extends the base toolkit of the current support project, you can
add it to the scope of this project by adding it to the custom toolkit. For information
on base toolkits, see "Custom Toolkit Details Screen" on page 103. For information
on adding a custom class to an existing support project, see " Modifying UFT Java
Add-in Extensibility Project Properties" on page 109.

Otherwise, if you want to create support for the higher class first and then use its
support class as a base support class, you must perform the procedure described on
page 116.

HP UFT Java Add-in Extensibility (12.00) Page 115

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

The bottom of the Custom Class Selection screen contains the following options:

« Controls of this class represent top-level objects. Enables you to specify that UFT
may be expected to recognize the control as the highest Java object in the test
object hierarchy. For more information see, " Supporting Top-Level Objects" on
page 68.

If you select this check box, the wizard implements the isWindow method in the new
custom support class. This method returns true.

This option is available only if the class you selected to support is a container class,
meaning that it extends java.awt.container or org.eclipse.swt.widgets.Composite.
The check box is selected by default if the new support class extends one of the
following support classes: ShellCS (SWT), WindowCS (AWT), AppletCS (AWT).

« Change custom support class name. Enables you to modify the default name the
wizard provided for the support class, if needed.

By default, the name for a support class is <custom class name>(S. In most cases,
there is no need to change the default name. However, if your custom toolkit
contains classes from different packages, you might have more than one custom
class with the same name. In this case, you must provide different names for the
custom support classes because they are stored in one package.

To modify the custom support class name, select the Change custom support class
name check box and then enter the new name.

Note: The options in the Custom Class Selection screen are identical to the options
available in the Custom Static-Text Class Selection screen in the "New UFT
Custom Static-Text Support Class Wizard" on page 142 (described on page 142).

To create support for a higher class that is not part of this custom toolkit and use
this support as a base support class:

1. Create support for the higher class in another UFT Java Add-in Extensibility project.

2. Deploy the support to UFT.

HP UFT Java Add-in Extensibility (12.00) Page 116

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

3. Reopen the original UFT Java Add-in Extensibility project. Select UFT > Reload
Support Configuration or click the Reload Support Configuration @ button.

4. Open the "New UFT Custom Support Class Wizard" on page 110 (described on page
110). The wizard now selects the new support class you created as the Base
support class.

Test Object Class Selection Screen

In the Test Object Class Selection screen, you map the custom class to a test object
class. In UFT GUI tests, the custom class controls are represented by test objects of the
selected test object class. In the custom support class, the wizard adds a to_class_attr
property method that is implemented to return the test object class you select in this
screen. This enables the support class to inform UFT what test object class is mapped
to the custom class.

When you click Next, the Custom Support Test Object Identification Properties Screen
described on page 120 opens.

Note: Selecting the test object class to map to the custom class is fundamental to
creating a custom support class. If you make changes in later screens and then
return to this screen and select a different test object class, those changes will be
discarded.

HP UFT Java Add-in Extensibility (12.00) Page 117

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

= Mew UFT Custom Support Class

Test Object Class Selection

Map the custom class to a UFT kest object class,

JavaOhiject |_

e s Existing Fest ety |_’

In this wizard screen you select one of the following options:

« Same as base support class. Maps the custom class to the test object class
returned by the to_class_attr property method of the base support class. (If you
select this option, the wizard does not add a to_class_attr method to the new
support class that it creates. The new support class inherits the base support class'
method.)

In the Custom Class Selection Screen (described on page 112), you determined the
base support class, which is the support class that the new support class extends.
The custom class supported by the base support class is mapped to a specific test
object class. If this test object class is also a logical test object for your custom
class, select the Same as base support class option.

The following examples illustrate when to select the Same as base support class
option:

= You want to support a custom control that is similar to the one supported by the
base support class. Controls are considered similar if they have the same set of
identification properties and test object methods, but the properties and methods

HP UFT Java Add-in Extensibility (12.00) Page 118

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

are implemented differently. In this case, the test object class returned by the
to_class_attr property method of the base support class is appropriate for your
custom control.

m You are creating a support class for other support classes to extend—not to
support actual controls. In this case, you can select this option because it is not
important which test object class you map to the custom class. To view an
example of this type, see "Creating Support for the ImageControl Custom Class"
on page 224.

« Existing test object class. Enables you to map the custom class to an existing test
object class that is already supported by UFT. This list contains all of the Java object
types that UFT supports. If you define new test object classes for custom support,
they are also included in the list.

If you defined new test object classes in the current Eclipse workspace, they are
displayed in this list immediately. Otherwise, new test object classes are displayed
in the list only after they are deployed to UFT and you reload the configuration (for
more information, see "Reload Support Configuration" on page 149).

If you select a test object class that is not defined within your project, its test object
class definition must also be deployed to UFT for your support to function properly.

When you select this Existing test object class option, you must also select the
appropriate existing test object class from the list.

Tip: Select this option only if this test object class includes all of the
identification properties and test object methods of the custom control. If you
need to add additional properties or methods, select New test object class.

o New test object class. Enables you to map the custom control to a new test object
class that you create. Select this option if none of the existing test object classes
include all of the identification properties and test object methods of the custom
control. Then enter a name for the new test object class. The test object class name
must begin with a letter and contain only alphanumeric characters and underscores.

If you select this option, the Extends existing test object option is enabled.

HP UFT Java Add-in Extensibility (12.00) Page 119

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Extends existing test object. Each new test object class is based on an existing one,
extending its set of identification properties and test object methods. All test object
classes extend the JavaObject class. You can choose a more specific existing test
object class to extend by selecting it from the list. This list is identical to the list of
existing test object classes provided for the Existing test object class option.

If you select the New test object class option, you define additional details about the
new test object class in the New Test Object Class Details Screen (described on page
137). The wizard then adds the definition of the new test object class to the test
object configuration file. For information on the structure and content of this file,
see the HP UFT Test Object Schema Help(available with the Java Add-in Extensibility
SDK Help).

Custom Support Test Object Identification Properties
Screen

The Custom Support Test Object Identification Properties screen displays the
identification properties supported by the base support class you are extending, as well
as additional properties that are defined in the test object class you selected, but are
not yet supported. It enables you to select properties whose support you want to
implement or override with new functionality. It also enables you to add new
properties.

HP UFT Java Add-in Extensibility (12.00) Page 120

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

When you click Next, the Custom Support Test Object Methods Screen described on
page 124 opens:

& Mew UFT Custom Support Class

Custom Support Test Object Identification Properties

Determine the set of test object identification properties that wou want o support For wour cuskom control,

O &' abs_x

O &fabs_y

O @] attached_text
O &' background
O &' dass_path
O @] displayable
O &' displayed
O &' enabled
O &) focusable
O & focused
O & foreground
O &' handle

O &' height

Properties Inherited from Base Support Class

The left pane displays all of the identification properties implemented by the base
support class. These are the identification properties that will be inherited by the
support class you are creating. You can select any identification properties whose
support you want to override with a different implementation.

Note: Some of these identification properties are not included in the test object
class definition. Therefore, they are not displayed in UFT in the Object Spy or in the
Checkpoint Properties dialog box. You can access those identification properties by
using the GetROProperty method. For more information on the GetROProperty
method, see the HP UFT Object Model Reference for GUI Testing.

When the wizard creates the support class file, it adds a support method stub, named

<identification property name>_attr, for each of the identification properties you
select. The support method stubs return the same values as the support methods in the

HP UFT Java Add-in Extensibility (12.00) Page 121

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

base support class. You can implement the new support methods to match the needs of
your custom control.

Additional Properties Required for Test Object Class

The right pane displays the identification properties that are defined in the test object
class you selected, but are not supported by the base support class. You can modify this
list using the Add, Remove, and Modify buttons.

For each of the identification properties in this pane, the wizard adds a support method
stub to the support class it creates. The support method stubs return null until you
implement them to match the needs of your custom control.

If you add identification properties to this list, the wizard adds them to the test object
class definition in the test object configuration file. For information on the structure
and content of this file, see the HP UFT Test Object Schema Help (available with the
Java Add-in Extensibility SDK Help).

Note: If you selected the Same as base support class option in the Test Object
Class Selection Screen (on page 117), the wizard does not know which test object
class is mapped to the custom control. As a result, no identification properties are
displayed in the right pane. If you add an identification property, the wizard adds
the appropriate support method stub to the support class it creates. However, the
identification property is not added to any test object class definition.

HP UFT Java Add-in Extensibility (12.00) Page 122

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Considerations for Adding and Removing Properties from the List

« If you add identification properties to this list, they are added to the test object
class definition. This means that the new properties appear in the list of
identification properties in UFT for all test objects of this class.

Therefore, if you plan to add properties, it is recommended to create a new test
object class based on the existing one, instead of using the existing test object class.

« If youremove an identification property from the list, it is no longer supported for
this custom class. However, it is still part of the test object class definition.
Therefore, although it still appears in the list of identification properties shown in
the UFT Object Spy, it will have no value.

« Modifying an identification property is equivalent to removing it and adding a new
one.

Managing the List of Identification Properties

The procedures below describe how to add, remove, and modify identification
properties in the list of additional properties required for the test object class.

To add an identification property:

1. In the Additional properties required for test object class pane, click Add. The
Identification Property dialog box opens.

& |dentification Property |

Marme:

I I Zancel |

2. Enter a name for the new identification property and click OK. (The identification
property name must begin with a letter and contain only alphanumeric characters
and underscores.)

HP UFT Java Add-in Extensibility (12.00) Page 123

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

To remove an identification property:

1. In the Additional properties required for test object class pane, select the
property you want to remove.

2. Click Remove. Then click Yes to confirm.
To modify an identification property:

1. In the Additional properties required for test object class pane, select the
property you want to rename.

2. Click Modify. The Identification Property dialog box opens.

& |dentification Property

3. Modify the identification property name and click OK.

Tip: To add identification properties after the support class is created, use the

Add Identification Property 1l button or select UFT > Add Identification
Property in Eclipse.

Custom Support Test Object Methods Screen

The Custom Support Test Object Methods screen displays the test object methods
defined for the test object class you mapped to the custom control. You use this screen
to select test object methods whose support you want to implement or override with
new functionality and to add new test object methods.

HP UFT Java Add-in Extensibility (12.00) Page 124

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

When you click Next, one of the following screens open:

« If you are creating support for an AWT-based custom control, the Custom Control
Recording Support Screen (described on page 132) opens.

« If you are creating support for an SWT-based custom control, and you mapped a new
test object class to the custom control, the New Test Object Class Details Screen
(described on page 137) opens.

« If neither of the previous conditions is met, the Custom Control Support Class
Summary Screen (described on page 140) opens.

& New UFT Custom Support Class

Custom Support Test Object Methods

Determine the set of test object methods that you want ko support For sour custom contral.

DE DhIClick {Object arg0, String argl, String arge, String arg3) EI Click {Object obj, String button)
DE MouseDrag (Object argl, String argl, String argz, String arg3,
DE Type (Object argd, String argl)

Methods Inherited from Base Support Class

The left pane displays all of the test object methods that are defined for the test object
class you selected and are implemented by the base support class. These are the test
object methods that will be inherited by the support class you are creating. You select
any test object methods whose support you want to override with a different
implementation.

HP UFT Java Add-in Extensibility (12.00) Page 125

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

When the wizard creates the support class file, it adds a support method stub, named
<test object method name>_replayMethod, for each test object method you selected.
The support method stubs return the same values as the support methods in the base
support class. You can implement the new support methods to match the needs of your
custom control.

Note: If you selected the Same as base support class option in the "Test Object
Class Selection Screen” (on page 117), the wizard does not know which test object
class is mapped to the custom control. As a result, no test object methods are
displayed in the left pane. After the wizard creates the new support class, you can
override any of the replay methods that it inherits from the base support class by
adding them to the class manually.

Additional Methods Required for Test Object Class

The right pane displays the test object methods that are defined in the test object class
you selected, but are not supported by the base support class.

You can modify the list in this pane using the Add, Remove, and Modify buttons.

Note that modifying the name of a method is equivalent to removing the method and
adding a new one. For more information, see "Understanding the Test Object Method
Dialog Box" on the next page.

Tip: To add test object methods after the support class is created, use the Add Test
Object Method ﬂ button or select UFT > Add Test Object Method in Eclipse.

For each of the test object methods in this pane, the wizard adds support method stubs
to the support class it creates. The support method stubs return the error value
Retval.NOT_IMPLEMENTED until you implement them to match the needs of your
custom control.

HP UFT Java Add-in Extensibility (12.00) Page 126

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

If you add test object methods to this list, the wizard adds them to the test object class
definition in the test object configuration file. For information on the structure and
content of this file, see the HP UFT Test Object Schema Help (available with the Java
Add-in Extensibility SDK Help).

Note: If you selected the Same as base support class option in the "Test Object
Class Selection Screen” (on page 117), the wizard does not know which test object
class is mapped to the custom control. As a result, no test object methods are
displayed in the right pane. If you add a test object method, the wizard adds the
appropriate replay method stub to the support class it creates. However, the test
object method is not added to any test object class definition.

Considerations for Adding and Removing Test Object Methods to the List

« If you add test object methods to this list, they are added to the existing test object
class. This means that the new methods appear in UFT for all test objects of this
class, regardless of whether or not they are supported for these objects. Ina
UFT GUI test, if you call a test object method for an object, and that method is not
supported, a run-time error occurs.

Therefore, if you plan to add test object methods to support a custom control, it is
recommended to create a new test object class based on the existing one, instead of
using the existing test object class.

« If youremove a test object method from this list, it is no longer supported for this
custom class. However, it is still part of the test object class definition. Therefore, it
still appears in the list of test object methods in UFT.

If you use this test object method on a custom control in UFTGUI tests, a run-time
error occurs. For example, although a drop-down-list control is supported as a List
test object, if you select the select_range test object method for a drop-down-list
control, and it is not supported, a run-time error occurs.

Understanding the Test Object Method Dialog Box

When you click Add or Modify in the Custom Support Test Object Methods
Screen"Custom Support Test Object Methods Screen” (described on page 124), the Test

HP UFT Java Add-in Extensibility (12.00) Page 127

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Object Method dialog box opens.

The Test Object Method dialog box enables you to specify details for the test object
methods listed in the Additional methods required for test object class pane in the
Custom Support Test Object Methods screen.

& Test Object Method

HP UFT Java Add-in Extensibility (12.00) Page 128

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

The Test Object Method dialog box contains the following items:

Option Description

Method name The name of the test object method as it appears in UFT GUI
tests. The name should clearly indicate what the test object
method does so that a user can select it from the Step
Generator or in the Keyword View. Method names cannot
contain non-English letters or characters. In addition, method
names must begin with a letter and cannot contain spaces or
any of the following characters:
te#$%~&* ()+=[1\N{} 1| "=+",/«

> ?

Note:
« Modifying the name of a method is equivalent to
removing the method and adding a new one.

Arguments A list of the test object method arguments and their types.

Use the following buttons to modify the list:
« Remove. Removes the selected argument from the list.
« Up. Moves the selected argument up in the list.

« Down. Moves the selected argument down in the list.

Note:

« The first argument of every test object method must be
obj (Object). You cannot remove, modify, or move this
argument.

HP UFT Java Add-in Extensibility (12.00) Page 129

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Option Description

Method returns Indicates that this test object method returns a string value in
a string value addition to the return code. (The return value can be retrieved
and used in later steps of a UFT GUI test.)

If you select this check box:

« the wizard adds the ReturnValueType element to the test
object method definition that it creates in the test object
configuration file.

« the method stub that the wizard creates in the new support
class, returns the object Retval(""), which includes the
return code OK and an empty string.

When you implement the replay method for this test object
method, you can use different types of Retval. If the method
succeeds, return OK and an appropriate string value.
Otherwise, return only the relevant error code. For more
information, see the UFT Java Add-in Extensibility API
Reference (available with the Java Add-in Extensibility
SDK Help).

Description The tooltip that is displayed when the cursor is positioned
over the test object method in the Step Generator, in the
Keyword View, and when using the statement completion
functionality in the Editor.

Documentation A sentence that describes what the step that includes the test
object method actually does. This sentence is displayed in the
Step documentation box in the Step Generator and in the
Documentation column of the Keyword View.

You can insert arguments in the Documentation text by

clicking ﬂ and selecting the relevant argument. The
arguments are then replaced dynamically by the relevant
values.

HP UFT Java Add-in Extensibility (12.00) Page 130

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Adding or Modifying an Argument for a Test Object Method

When you click Add or Modify in the Test Object Method dialog box, the Test Object
Method Argument dialog box opens. The Test Object Method Argument dialog box
enables you to specify the details for each of the arguments you list in the Test Object
Method dialog box:

& Test Object Method Argument | x|

]

e En ba e

The Test Object Method Argument dialog box contains the following items:

Option Description

Name The name of the argument as it appears in UFT GUI tests. The
argument name should clearly indicate the value that needs to be
entered for the argument. Argument names must contain only
alphanumeric characters. In addition, argument names must begin
with a letter and cannot contain spaces or any of the following
characters:

'l@#$ %" & () +=[1\{}];":",/<>7

HP UFT Java Add-in Extensibility (12.00) Page 131

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Option Description
Type Instructs UFT to do one of the following:

« Require String values for this argument in test steps with this
test object method

o Allow Variant values

Even if you define the Type as Variant, all arguments are passed
to the replay methods as strings. In addition, when you record test
steps, the arguments are always registered as strings.

Note: If you want to define a list of possible values for an
argument, you must do so manually. In the test object
configuration file, define the list of values and change the
argument's type to ListOfValues.

For more information, see the HP UFT Test Object Schema Help
(available with the Java Add-in Extensibility SDK Help).

Mandatory Instructs UFT whether to require the person writing the test to
argument supply a value for the argument.

In the list of arguments, mandatory arguments cannot follow
optional arguments.

Default If an argument is optional, you can provide a default value that UFT
value uses if no other value is defined.

This option is not available for mandatory arguments.

Custom Control Recording Support Screen

Note: The Custom Control Recording Support screen does not open if you are
creating a support class for an SWT-based custom class.

To support recording on a custom control, the support class must implement listeners
for the events that trigger recording.

HP UFT Java Add-in Extensibility (12.00) Page 132

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

The Custom Control Recording Support screen displays the event handler methods
implemented by the support class you selected to extend.

The Custom Control Recording Support screen enables you to:

o Select methods whose implementation you want to override with new functionality
o Add new event listeners to implement

« Set recording-related options

For information on how the wizard implements the details you specify in this screen,
see "Understanding What the Wizard Adds to the Support Class" on page 136.

After you complete the recording-related support information:

« If you mapped a new test object class to the custom control, click Next to continue
to the "New Test Object Class Details Screen” (described on page 137).

o Otherwise, click Finish to continue to the "Custom Control Support Class Summary
Screen” (described on page 140).

& MNew UFT Custom Support Class

Custom Control Recording Support

Determine the set of events that trigger recarding.

DgfocusGained {FocusEvent argd)
Dgfocusmst (FocusEvent argd)
ngeypressed (KeyEwvent argd)
DEk&yReleased (KeyEwent argl)

DEkeyTyped {KevEvent argd)

TrEat Eontrals o b Class as wrapEE R canthels)

HP UFT Java Add-in Extensibility (12.00) Page 133

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Methods Inherited from Base Support Class

The left pane displays the event handler methods implemented by the base support
class. You can select the methods you want to override.

Additional Methods Required for Test Object Class

In the right pane, you specify the listeners you want to add for the new support class.
Each listener you select implies a set of event handler methods you can implement.

To add a listener to the list:

1. Click Add and select the appropriate listener from the Listener dialog box that
opens.

& Listener

B TE LA |_’

The list contains the listeners that can be registered on the custom control. The
wizard compiles this list by identifying listener registration methods in the custom
class and its superclasses. The wizard identifies as registration methods, only
methods named add<XXX>Listener whose first argument extends
java.util.EventListener.

If your custom class uses a registration method that does not comply with this
definition, you cannot add the corresponding listener using the wizard. You can
implement the required support manually after the wizard creates the new custom
support class.

2. If the selected listener has more than one registration method, select a method
from the Registration method list.

3. Click OK. The listener you selected and all of the event handler methods it includes

HP UFT Java Add-in Extensibility (12.00) Page 134

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

are added to the list.

To remove a listener from the list:

Select a listener or one of its event handler methods and click Remove.

Tip: To add event handlers after the support class is created, use the Add Event

Handler % button or select UFT > Add Event Handler in Eclipse.

Custom Control Recording Support Screen Options

The Custom Control Recording Support screen contains the following options:

Option

Treat controls
of this class as
wrapper
controls

Override low-
level mouse
event recording

Override low-
level keyboard
event recording

HP UFT Java Add-in Extensibility (12.00)

Description

Instructs the wizard to implement the
com.mercury.ftjadin.infra.abstr.RecordWrapper interface
in the new support class.

If the custom control extends java.awt.container, this check
box is selected by default. Otherwise, itis not available.

For more information, see "Wrapper Implementation in the
Support Class" on page 137.

Instructs the wizard to implement the mouseRecordTarget
method in the new support class so that it returns null.

This instructs UFT not to record low-level mouse events
(coordinate-based operations), so you can record more
complex operations, such as, selecting an option in a menu.

Instructs the wizard to implement the
keyboardRecordTarget method in the new support class, so
that it returns null.

This instructs UFT not to record low-level keyboard events,
enabling you to record more complex events, such as, setting
a value in an edit box.

Page 135

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

The options listed in the table above are available only in the wizard (and not in the
Eclipse UFT commands that you can use to edit a support class after it is created). If
you do not select these options when you create the support class, and you want to
implement them later, you will have to do so manually.

Understanding What the Wizard Adds to the Support Class

The following sections describe the methods that the wizard adds to the support class it
creates, based on the definitions in Custom Control Recording Support screen:

Listener Implementation in the Support Class

In the support class file it creates, the wizard implements the listeners and options you
specified, as follows:

o The implemented listener interfaces are added to the support class signature.

o A constructor is added to the support class, listing all of the listeners that need to be
registered on the custom control. It also lists the methods used to add and remove
the listeners. This is done by calling addSimpleListener for each listener.

« A method stub is added to the support class for each of the event handler methods
you selected in the left pane. The method stubs call the corresponding event handler
methods in the base support class. You can implement the new event handler
methods to match the needs of your custom control.

Some of the event handler methods are implemented in existing support classes as
final methods, which cannot be overridden. If you select one of these methods in the
left pane, the wizard adds an underscore at the beginning of the method name in the
method stub that it creates. For example, if you select focusGained, focusLost,
keyTyped, keyPressed, or keyReleased, the wizard creates _focusGained, _
focusLost, _keyTyped, _keyPressed, or _keyReleased, respectively. Each one of the
final methods is implemented to call _<method name> after performing its basic
functionality. Therefore, you can override the _<method name> methods to add
functionality to these final methods.

« A method stub is added to the support class for each of the event handlers listed in
the right pane. You must implement the event handler methods to call

HP UFT Java Add-in Extensibility (12.00) Page 136

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

MicAPl.record. (Each method stub includes a comment to remind you to do this, and
a basic skeleton which provides a recommendation for the method's structure.) For
more information, see "Supporting the Record Option" on page 65.

Wrapper Implementation in the Support Class

You select the Treat controls of this class as wrapper controls check box if you are
creating support for a container control that groups the controls within it and
represents them as a single control. If you select this check box, the wizard adds the
following method stubs to the support class:

« blockWrappedObjectRecord. (Returns False.)

« registerWrapperinspector. (A comment is added to remind you to implement this
method to register this class as a wrapper of specific control types.)

« checkWrappedObject. (Returns null.)

« wrapperRecordMessage. (Returns the record message sent by the wrapped control
without performing any intervention.)

You can implement these methods to achieve the required wrapping functionality. For
more information, see "Supporting Wrapper Controls" on page 69.

New Test Object Class Details Screen

If you mapped a new test object class to the custom control, you define additional
details about the new test object class in the New Test Object Class Details screen.

HP UFT Java Add-in Extensibility (12.00) Page 137

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

When you click Finish, the "Custom Control Support Class Summary Screen" described
on page 140 opens.

= Mew UFT Custom Support Class

Hew Test Object Class Details
Specify the details for the new test object dass AllLights.

abs_x
abs_vy
attached_text
background
dass_path
displayable
displayed
enabled
focusable
focused
foreground
handle
height

&
2
&
&
&
o
o
&
&
2
&
&

HP UFT Java Add-in Extensibility (12.00) Page 138

Developer Guide

Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

The New Test Object Class Details screen contains the following options:

Option

Test object icon

Identification
property for
unique
description

Default test
object method

Default
checkpoint
properties

Description

The path of the icon file to use in the Keyword view for this
test object class. The icon file must be in an uncompressed
.ico format.

This is optional. If you do not define an icon file, the
JavaObjecticon is used.

Specifies the identification property that UFT uses to
uniquely identify the control (in addition to the toolkit_class
and index properties).

You can select an identification property from the list or
leave the property the wizard selected by default.

Specifies the default test object method displayed in the
Keyword View and Step Generator when a step is
generated for an object of this class.

Select a test object method from the list.

Specifies the identification properties that are selected by
default when you create a checkpoint for an object of this
class.

Select the check boxes for the appropriate properties. Click
Select All or Clear All to select or clear all of the check
boxes.

When the wizard creates the new support class, it adds the new test object type to the
test object configuration file. The options you specify in the New Test Object Class
Details screen are recorded in this file. For information on the structure of this file, see
the HP UFT Test Object Schema Help (available with the Java Add-in Extensibility SDK

Help).

If you want UFT to include additional identification properties in the test object

description, you must manually specify this in the test object configuration file. The
wizard adds the test object class definition to the test object configuration file. For
each property that you want to add to the test object description, find the line that

HP UFT Java Add-in Extensibility (12.00) Page 139

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

describes it in the file. Between the words Property and Name, add the words
ForDescription="true".

The list of identification properties in the test object description can be modified in UFT
using the Object Identification dialog box. Therefore, by default, UFT reads this
information from the test object configuration file only once, to prevent overwriting
any changes a user makes in UFT. For information on how to ensure UFT reads
modifications you make to the ForDescription attribute, see "Modifying
Identification Property Attributes in a Test Object Configuration File" on page 83.

Custom Control Support Class Summary Screen

Before the wizard creates the custom support class file, the Custom Support Class
Summary screen summarizes the specifications you provided for the new support class:

&= New UFT Custom Suppornt Class |

Custom Support Class Summary

Revigw and confirm the structure of the custom support class, ﬁaj

5]

General -
Custom clazs: com.demo ImageButton

Support class: ImageButtonCs

Baze support class: com.mercury ftiadin.gtsupport.awt .cs CanvasCs

Test Object Identification Properties to Override
lahel

Additional Test Object Identification Properties to Implement
Test Object Methods to Override

Additional Test Object Methods to Implement
Click (Ohject obj, String hutton)

Event Handler Methods to Override

Additional Event Handler Methods to Implement

java.awt event ActionListener _Ij
Kl ¢

(7] oK I Cancel |

HP UFT Java Add-in Extensibility (12.00) Page 140

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

If you want to change any of the data, click Cancel to return to the previous wizard
screen. Use the Back and Next buttons to open the relevant screens and make the
required changes.

If you are satisfied with the definitions, click OK. The wizard creates the new support
class with all of the required methods, according to your specifications.

In addition, the wizard adds the test object class definition to the test object
configuration file if one of the following conditions is met:

« You mapped a new test object class to the custom control.

« You added identification properties or test object methods to an existing test object
class.

Note: If the test object configuration file does not exist, the wizard creates it at
this time. For information on the structure of the test object configuration file,
see the HP UFT Test Object Schema Help (available with the Java Add-in
Extensibility SDK Help).

Completing the Custom Class Support

After you finish creating a custom support class (using the "New UFT Custom Support
Class Wizard"), you need to perform the following additional steps:

¢ Save the class.

In Eclipse, the new class file is opened and displayed in a tab in the right pane. Until
you save the class, an asterisk (*) is displayed in the tab next to the support class
file name. The changes made by the wizard are codependent and need to be saved to
prevent discrepancies.

HP UFT Java Add-in Extensibility (12.00) Page 141

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

o Implement any method stubs that the wizard created in the new custom support
class. For more information, see "Understanding the Toolkit Support Class" on
page 41.

If you added new test object methods or identification properties to the test object
class, the wizard adds them to the test object class definition in the test object
configuration file.

If you remove (or do not implement) the support methods that the wizard created in
the support class, the test object methods or identification properties remain part of
the test object class definition. They are available in UFT when editing tests but are
not supported for this custom class.

« Deploy the toolkit support to UFT to enable the support to be available. For more
information, see "Deploying and Running the Custom Toolkit Support” on page 77.

New UFT Custom Static-Text Support Class
Wizard

You use the New UFT Custom Static-Text Support Class wizard to create a support class
for a custom static-text class within a Java Add-in Extensibility project. Supporting a
static-text class enables UFT to use its label property as the attached text for an
adjacent control.

The only thing that you need to specify in this wizard is which custom class you want to
support as a static-text class (and the controls of this class represent top-level
objects, if relevant). The wizard creates the new support class with the methods
required for the support of static-text objects. These methods are described in "Custom
Static-Text Support Class Summary Screen" on page 145.

After the wizard creates the new support class, you complete its implementation as
described in "Completing the Custom Static-Text Class Support" on page 147.

In most cases, it is not necessary to support any additional identification properties or
test object methods for a static-text control. However, after the wizard creates the
new support class, you can add additional methods to the class, providing support for

HP UFT Java Add-in Extensibility (12.00) Page 142

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

additional identification properties or test object methods, or for recording. You can add
these methods manually, or by using the commands described in "Working with UFT
Commands in Eclipse” on page 147.

To open the New UFT Custom Static-Text Support Class wizard in Eclipse:

1. Inthe Eclipse Package Explorer tab, select a UFT Java Add-in Extensibility project.
Then select File > New > Other. The New dialog box opens.

2. Expand the Unified Functional Testing folder and select UFT Custom Static-Text
Support Class.

3. Click Next. The Custom Static Text Class Selection Screen opens.

Tip: You can shorten this process by customizing Eclipse to provide UFT Custom
Static-Text Support Class as an option in the New menu. To do this, perform the
following: Select Window > Customize Perspective. In the Shortcuts tab in the
dialog box that opens, select the Unified Functional Testing and UFT Custom
Static-Text Support Class check boxes. Click OK.

HP UFT Java Add-in Extensibility (12.00) Page 143

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Custom Static-Text Class Selection Screen

The options in the Custom Static-Text Class Selection screen are identical to the
options in the "Custom Class Selection Screen” (described on page 112). When you click
Finish, the "Custom Static-Text Support Class Summary Screen” (described on page
145) opens.

& Mew UFT Custom Static-Text Support Class

Custom Static-Text Class Selection

Select the custom class you want QuickTest to recognize as a Jawa Static-Text I?T
class, and set the relevant options for the corresponding support class,

=8 com.demo Bl java.lang. Object

E m ImageContral Iél--java.awt.l:cumpnnent

-] Bl java, awt. Canvas

H} com.sample E--cum.demn.lmagetnntrnl
com.demo, Imagelabel

™| Gonitrals R s lass HERRESENE bl e

|

Select the custom class you want UFT to recognize as static-text and set the relevant
options.

Static-text controls do not normally have any identification properties or test object
methods that are relevant for UFT GUI tests. Therefore, no additional specifications are
required in this wizard.

HP UFT Java Add-in Extensibility (12.00) Page 144

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Custom Static-Text Support Class Summary Screen

Before the wizard creates the custom support class file, the Custom Static-Text
Support Class Summary screen summarizes the specifications you provided for the new
support class.

&= MHew UFT Custom Static-Text Support Class

Custom Static-Text Support Class Summary
Rewview and confirm the structure of the custom support class, E?

General

Custom class: com.demo Imagelabel

Support clazs: ImagelabelCs

Base support clazs: com.mercury fjadin gtzupport awt.cs CanvazCs

If you want to change any of the data, click Cancel to return to the "Custom Static-Text
Class Selection Screen”, described above.

HP UFT Java Add-in Extensibility (12.00) Page 145

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

If you are satisfied with the definitions, click OK. The wizard creates the new support
class with the following methods, which are required for the support of static-text
objects:

« class_attr. Returns the string static_text, enabling UFT to recognize objects of
this class as static-text controls.

« label_attr. Returns the label property of the superclass.

When the label property for a Java control is empty, UFT looks for an adjacent
static-text control and uses its label property for the test object name. Therefore
you may want to implement the label_attr method to return the appropriate name,
for example, the string displayed by the static-text control.

« tag_attr. Returns the tag property of the superclass (which returns the label
property value) with the suffix (st). This method provides the test object name for
the static-text control itself, while the label_attr method provides the name used
for adjacent controls.

For example, if you implement the label_attr method to return MyButton, the tag_
attr method returns MyButton(st).

For more information, see "Common Identification Property Support Methods" on
page 61.

o value_attr. Returns the label property.

The value property represents a control's test object state. For static-text controls,
the label property adequately represents this state.

You can practice creating support for a custom static-text control in the tutorial lesson
"Learning to Support a Custom Static-Text Control" on page 205.

HP UFT Java Add-in Extensibility (12.00) Page 146

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Completing the Custom Static-Text Class Support

After you finish creating a custom support class for a custom static-text class (using
the "New UFT Custom Static-Text Support Class Wizard"), you need to perform the
following additional steps:

o Save the class.

In Eclipse, the new class file is opened and displayed in a tab in the right pane. Until
you save the class, an asterisk (*) is displayed in the tab next to the support class
file name. The changes made by the wizard are codependent and need to be saved to
prevent discrepancies.

« Implement the label_attr method, if needed.

o Deploy the toolkit support to UFT to enable the support to be available. For more
information, see "Deploying and Running the Custom Toolkit Support” on page 77.

Working with UFT Commands in Eclipse

After you install the UFT Java Add-in Extensibility SDK, which includes the Java Add-in
Extensibility Eclipse Plug-in, a toolbar with the following buttons is added to Eclipse:

Button Definition Button @ Definition

Deploy Toolkit Support ﬂ Add Identification Property
Reload Support Configuration E Add Test Object Method

= Delete Custom Support o Add Event Handler

==

B E E

A new UFT menu is also added to Eclipse, with these same commands. The commands
are described in detail in the following sections.

HP UFT Java Add-in Extensibility (12.00) Page 147

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Deploy Toolkit Support

The Deploy Toolkit Support ﬂ command is available in Eclipse when you select a UFT
Java Add-in Extensibility project (or elements within it) in the Eclipse Package Explorer
tab.

Note: The Deploy Toolkit Support command is not available if you installed the
UFT Java Add-in Extensibility SDK before installing UFT and the Java Add-in. To
solve this problem, uninstall the UFT Java Add-in Extensibility SDK and install it
again. For more information, see "Installing the HP UFT Java Add-in Extensibility
Software Development Kit" on page 24.

You use the Deploy Toolkit Support command to deploy the toolkit support during the
development stages. To use this command, UFT and the UFT Java Add-in Extensibility
Eclipse Plug-in must be installed on the same computer.

This command copies the toolkit configuration file and the test object configuration file
to the appropriate UFT folders. In the toolkit configuration file, the location specified for
the compiled support classes is the Eclipse workspace. The next time you run the Java
application, the support you developed is available on UFT. For more information, see
"Deploying and Running the Custom Toolkit Support” on page 77.

Note: The deploy command compiles the Java classes before deploying, but does
not validate compilation results. Save the support classes before deploying and
check for compilation errors, to avoid run-time failure.

The Deploy Toolkit Support command copies only the test object configuration file
that is named <Custom Toolkit Name>TestObjects.xml. If you create additional test
object configuration files you must copy them to the appropriate folders, specified in
"Deploying and Running the Custom Toolkit Support” on page 77.

The Deploy Toolkit Support command validates the configuration files against their
corresponding XSD files, and only deploys them if their format meets the requirements
(or you specify that you want to deploy in spite of the displayed discrepancies). For
information on the structure of the configuration files, see the UFT Java Add-in

HP UFT Java Add-in Extensibility (12.00) Page 148

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Extensibility Toolkit Configuration Schema Help and the HP UFT Test Object Schema
Help (both available with the Java Add-in Extensibility SDK Help).

The toolkit configuration file is validated against:
<UFT installation folder>\bin\java\sdk\eclipse\plugins\
com.mercury.qtjext.plugin.QTJavaExt_1.0.0\ToolkitSchema.xsd

The test object configuration file is validated against:
<UFT installation folder>\bin\java\sdk\eclipse\plugins\
com.mercury.qtjext.plugin.QTJavaExt_1.0.0\ClassesDefintions.xsd

Reload Support Configuration

The Reload Support Configuration ﬂ command is available in Eclipse when you
select a UFT Java Add-in Extensibility project (or elements within it) in the Eclipse
Package Explorer tab.

Note: The Reload Support Configuration command is not available if you installed
the UFT Java Add-in Extensibility SDK before installing UFT and the Java Add-in. To
solve this problem, uninstall the UFT Java Add-in Extensibility SDK and install it
again. For more information, see "Installing the HP UFT Java Add-in Extensibility
Software Development Kit" on page 24.

The Reload Support Configuration command instructs the UFT Java Add-in
Extensibility Eclipse plug-in to update the plug-in's list of supported Java classes and
test object classes by reloading:

« the selected project's configuration files and support classes

« all of the toolkit configuration files and test object configuration files from the UFT
installation folder

The Reload Support Configuration command affects the following items in the New
UFT Custom Support Class wizard:

HP UFT Java Add-in Extensibility (12.00) Page 149

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

« The list of custom classes displayed in the custom toolkit tree in the "Custom Class
Selection Screen" (described on page 112).

o The wizard's selection of the base support class in the "Custom Class Selection
Screen" (described on page 112).

« The list of existing test object classes displayed in the "Test Object Class Selection
Screen” (described on page 117).

The following examples demonstrate situations that require reloading the support
configuration:

« You modified the test object configuration file in the UFT Java Add-in Extensibility
project, adding or removing test object classes. You now want the wizard's list of
existing test object methods to reflect these changes.

o You manually deployed support of a custom toolkit to UFT, and you want the wizard
to recognize that the classes are supported.

o You manually deleted support for some classes from UFT, and you want these
classes to be removed from the list of supported classes in the Eclipse plug-in.

« You created a custom toolkit support set (named Support Set A) inone Eclipse
project and deployed it. You are now creating a custom toolkit support set (named
Support Set B) for another custom toolkit in a different Eclipse project. You want
to use a support class from Support Set A as the base support class for a support
classin Support Set B.

Delete Custom Support

The Delete Custom Support ﬁ command is available in Eclipse when you select a UFT
Java Add-in Extensibility custom support class in the Eclipse Package Explorer tab.

Note: The command is available only if this class was created as a UFT Java Add-in
Extensibility custom support class in this Eclipse workspace.

HP UFT Java Add-in Extensibility (12.00) Page 150

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

You use this command to delete support for a specific custom class. The support class is
deleted, as well as its listing in the toolkit configuration file. If you created a new test
object class for this support class, it is not deleted from the test object configuration
file because other support classes can use it.

If you delete the support class using the Eclipse Delete command, instead of the Delete
Custom Support, you must manually remove the mapping of the custom control to this
support class in the toolkit configuration file.

Tip: If you want to delete a support class you have just created, make sure you
save the support class first.

After deleting a support class, if you previously deployed support for this custom class
to UFT, you must re-deploy the toolkit support. This replaces the toolkit configuration
file with the updated one, removing the support for this custom class from UFT as well.

If you delete a support class that serves as the base support class for another, you
must manually change the inheritance of this other class. For example: InheritedCS
extends ToDeleteCS that extends BuiltInCS. If you delete ToDeleteCS, you must
manually change InheritedCS to extend BuiltInCS.

You cannot remove support of a complete toolkit using the UFT Java Add-in
Extensibility Eclipse Plug-in commands. To do this you have to manually delete the
toolkit configuration files from their locations in the UFT folders. For more information,
see "Deploying and Running the Custom Toolkit Support" on page 77.

Add Identification Property

The Add Identification Property ﬁ command is available in Eclipse when you select a
UFT Java Add-in Extensibility custom support class in the Eclipse Package Explorer tab.

Note: This command is available only if this class was created as a UFT Java Add-in
Extensibility custom support class in this Eclipse workspace.

You use this command to add an identification property after the support class is
created.

HP UFT Java Add-in Extensibility (12.00) Page 151

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

You must deploy the toolkit support for the changes to take effect on UFT.

If you add an identification property to the test object class definition, it appears in the
list of identification properties in UFT for all test objects of this class. It is for this
reason that, if you plan to add properties, you create a new test object class based on
the existing one, instead of modifying an existing test object class.

To add an identification property:

1. Click the Add Identification Property ﬂ button in the UFT toolbar in Eclipse. The
Identification Property dialog box opens.

& |dentification Property |

Mane:

: I Cancel

2. Enter a name for the new identification property and click OK.

3. A confirmation box opens notifying you that in addition to adding the new
identification property to the support class, the property will also be added to the
definition of the test object class mapped to the supported control. This
identification property will then appear in the list of identification properties in UFT
for all test objects of this class.

Click Yes if you want to continue. (If you click No, the new identification property is
discarded.)

A support method stub for the identification property you defined, named
<identification property name>_attr, is added to the support class. The method
stub returns null until you implement the method to match the needs of your
custom control.

4. Another message box prompts you to select whether you want the new
identification property to be selected by default in checkpoints.

HP UFT Java Add-in Extensibility (12.00) Page 152

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

After you make your selection, the new identification property is added to the test
object class definition in the test object configuration file.

If you clicked Yes, the ForDefaultVerification attribute is added to the
identification property definition and set to true. Otherwise, the
ForDefaultVerification is not added. (In both cases, the ForVerification attribute is
added and set to true, so that the new identification property is always available
for checkpoints.)

If you add an identification property that you want to be part of the unique test
object description, you have to manually define this in the test object configuration
file. In the row for this identification property, between the words Property and
Name add the words ForDescription="true". This adds the ForDescription
attribute to the Property element and sets it to true.

For more information, see the HP UFT Test Object Schema Help (available with the
Java Add-in ExtensibilitySDKHelp).

Add Test Object Method

The Add Test Object Method E command is available in Eclipse when you select a
UFT Java Add-in Extensibility custom support class in the Eclipse Package Explorer tab.

Note: This command is available only if this class was created as a UFT Java Add-in
Extensibility custom support class in this Eclipse workspace.
You use this command to add a test object method after the support class is created.
You must deploy the toolkit support for the changes to take effect on UFT.

If you add a test object method to an existing test object class, the new methods
appear in UFT for all test objects of this class, regardless of whether or not they are
supported for these objects. In a UFT GUI test, if you call a test object method for an
object, and that method is not supported, a run-time error occurs.

HP UFT Java Add-in Extensibility (12.00) Page 153

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Therefore, if you plan to add test object methods to support a custom control, it is
recommended to create a new test object class based on the existing one, instead of
modifying an existing test object class.

To add a test object method:

1. Click the Add Test Object Method ﬂ button in the UFT toolbar in Eclipse. The Test
Object Method Dialog box opens.

2. Define the details of the test object method you want to add, and click OK. For
more information, see "Understanding the Test Object Method Dialog Box" on
page 127.

3. A confirmation box opens notifying you that in addition to adding new test object
method to the support class, the test object method will also be added to the
definition of the test object class mapped to the supported control. The test object
method will then appear in UFT for all test objects of this class.

Click Yes if you want to continue. (If you click No, the new test object method is
discarded.)

A support method stub for the test object method you defined, named <test object
method name>_replayMethod, is added to the support class. This method stub
returns the error value Retval.NOT_IMPLEMENTED until you implement it to match
the needs of your custom control.

In addition, the test object method is added to the test object class definition in the
test object configuration file. For information on the structure and content of this
file, see the HP UFT Test Object Schema Help (available with the Java Add-in
ExtensibilitySDKHelp).

HP UFT Java Add-in Extensibility (12.00) Page 154

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

Add Event Handler

The Add Event Handler command is available in Eclipse when you select an AWT-
based UFT Java Add-in Extensibility custom support class in the Eclipse Package
Explorer tab.

Note: This command is available only if this class was created as a UFT Java Add-in
Extensibility custom support class in this Eclipse workspace.

You use this command to add an event handler to the support class after it is created.

The following options are available in the Custom Control Recording Support wizard
screen when you create a new support class:

« Treat controls of this class as wrapper controls
o Override low-level mouse event recording
o Override low-level keyboard event recording

If you did not select them when you created the support class, and you want to
implement them, you have to do so manually. For information on how to do this, see
"Supporting the Record Option" on page 65.

To add event handler methods:

1. Click the Add Event Handler button in the UFT toolbar in Eclipse. The Listener
dialog box opens:

&= Listener

va.awt.event, ActionListener

HEQELR AL e |_,

2. Select a listener from the list.

HP UFT Java Add-in Extensibility (12.00) Page 155

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

If the selected listener has more than one registration method, select a method
from the Registration method list.

3. Click OK.
The listener you selected is added to the signature of the support class.

A constructor is added to the support class (or modified, if it already exists) to call
the addSimpleListener method for the listener you selected. This adds the listener
to the list of listeners that need to be registered on the custom control, and
specifies the methods used to register and remove it.

Method stubs for all of the event handler methods that comprise the listener you
selected are added to the support class. A comment is added to each method stub,
reminding you to implement the event handler to call MicAPl.record to send a
record message to UFT. For more information, see "Supporting the Record Option"
on page 65.

HP UFT Java Add-in Extensibility (12.00) Page 156

Part 2: Tutorial: Learning to Create Java
Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 157

Chapter 5: Using the UFT Java Add-in
Extensibility Tutorial

The UFT Java Add-in Extensibility tutorial comprises lessons that will familiarize you
with the process of creating, testing, and deploying custom toolkit support. After
completing the tutorial, you can apply the skills you learn to create UFT support for
your own custom toolkits and controls.

This chapter includes:

Understanding the Tutorial Lesson Structure 159

Checking Tutorial Prerequisites ... 160

HP UFT Java Add-in Extensibility (12.00) Page 158

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Tutorial

Understanding the Tutorial Lesson Structure

This tutorial is divided into lessons. Each lesson assumes that you have already
performed the previous lessons or have an equivalent level of experience. In each
lesson, you learn more about the capabilities and techniques available with UFT Java
Add-in Extensibility. It is recommended to perform the lessons in order.

In each lesson in this tutorial, you extend UFT support for a different custom control,
using the UFT Java Add-in Extensibility Eclipse plug-in. The custom controls are
provided in sample custom toolkits that you can find in the <Java Add-in Extensibility
SDK installation folder>\samples folder.

This folder also contains the custom toolkit support sets required to support these
custom controls and additional examples of custom toolkits and their support. If you
deploy the sample custom toolkit support sets manually, you must compile the Java
classes before deploying.

Each lesson in the tutorial explains the Java Add-in Extensibility wizard options that
you need to use in that specific lesson. For more information on these wizards, see
"Using the UFT Java Add-in Extensibility Eclipse Plug-In" on page 97.

About Learning to Support a Simple Control

The lesson, "Learning to Support a Simple Control” on page 163, uses a basic custom
Java control named ImageButton to teach you the fundamental elements of custom
support. This lesson guides you through the steps required to create a custom toolkit
support project containing one custom support class. Through this lesson, you will learn
to recognize and understand the files and methods that comprise custom support.

In this lesson, you use two of the wizards provided by the UFT Java Add-in Extensibility
Eclipse plug-in: the New UFT Java Add-in Extensibility Project wizard and the New UFT
Custom Support Class wizard.

About Learning to Support a Custom Static-Text Control

The lesson, "Learning to Support a Custom Static-Text Control" on page 205, uses the

HP UFT Java Add-in Extensibility (12.00) Page 159

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Tutorial

ImageLabel control to teach you how to support a static-text control. This lesson guides
you through the steps required to create a support class for a static-text control in an
existing custom toolkit support project. (The ImageLabel control belongs to the same
custom toolkit as the ImageButton control that you used in the previous lesson.)
Through this lesson, you will learn about the basic methods that are required in a
support class for a static-text control.

In this lesson, you use the New UFT Custom Static-Text Support Class wizard provided
by the UFT Java Add-in Extensibility Eclipse plug-in.

About Learning to Support a Complex Control

The lesson, "Learning to Support a Complex Control" on page 236, uses the custom Java
control AllLights to teach you more about custom support. AllLights is a complex
control with unique behavior that requires a new test object class definition. The lesson
guides you through the steps of creating a custom support class containing new
identification properties and test object methods that did not exist in the parent
support class. You will also learn to understand the test object configuration file.

Checking Tutorial Prerequisites

Before you begin to perform the lessons in this tutorial, make sure that the
requirements described in this section are met.

System Requirements

You must have the following items installed on a computer on which support has not
yet been implemented for the custom toolkits and controls in this tutorial. If such
support has already been implemented, remove the support as described in "Deploying
and Running the Custom Toolkit Support" on page 77.

Eclipse

For a list of supported Eclipse versions, see the HP Unified Functional Testing Product
Availability Matrix, available from the UFT help folder or the HP Support Matrix page

HP UFT Java Add-in Extensibility (12.00) Page 160

http://support.openview.hp.com/selfsolve/document/KM438391

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Tutorial

(requires an HP passport).

Java Add-in Extensibility SDK

For information on installing Eclipse or the Java Add-in Extensibility SDK see "Installing
the HP UFT Java Add-in Extensibility Software Development Kit" on page 24.

Unified Functional Testing, including the Java Add-in

For information on installing Unified Functional Testing (UFT), see the HP Unified
Functional Testing Installation Guide.

If your UFT installation is not on the same computer as Eclipse, you can still perform
the lessons in this tutorial. However, when you are instructed to deploy the toolkit
support to UFT, you must manually transfer the custom support class files and
configuration files to the correct folders on the UFT computer as described in
"Deploying and Running the Custom Toolkit Support” on page 77.

Knowledge Requirements

The lessons in this tutorial assume you have the background knowledge described
below:

Familiarity with major UFT features and functionality

You should have a thorough understanding of the following: test objects, object
repository, Object Spy, Keyword View, and Editor. You should also have experience
recording, editing, and running tests. For more information, see the HP Unified
Functional Testing User Guide.

Experience with Java programming

You should be familiar with the concepts related to Java programming (class, package,
interface, inheritance, and so on) and know how to write and compile Java classes.

HP UFT Java Add-in Extensibility (12.00) Page 161

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Tutorial

Familiarity with XML

You should be familiar with the concepts of elements and attributes and feel
comfortable working with schemas and editing XML files.

A basic understanding of the concepts described in the
Implementing Custom Toolkit Support chapter

This tutorial assumes familiarity with the concepts described in "Implementing Custom
Toolkit Support" (beginning on page 34).

HP UFT Java Add-in Extensibility (12.00) Page 162

Chapter 6: Learning to Support a Simple
Control

In this lesson you create support for the ImageButton control within the ImageControls
toolkit. Adding support for the ImageButton control requires only minimal
customization, allowing you to learn the basics of creating a custom toolkit support set.

Before you perform this lesson, ensure that you have read the "Implementing Custom
Toolkit Support" and "Planning Custom Toolkit Support"chapters in this guide and that
you meet the tutorial prerequisites as described in "Using the UFT Java Add-in
Extensibility Tutorial" on page 158.

This lesson guides you through the following stages:

Preparing for This Lessono 164
Planning Support for the ImageButton Control 167
Creating a New UFT Java Add-in Extensibility Project 172
Creating @ New UFT Custom Support Class ... 181
Understanding the New Custom Support 191
Deploying and Testing the New Custom Toolkit Support 195
Changing the Name of the Test Object 197
Implementing Support for a Test Object Method 199
Implementing Event Handler Methods to Support Recording 202
LeSSON SUMMIAIY 203

HP UFT Java Add-in Extensibility (12.00) Page 163

Developer Guide
Chapter 6: Learning to Support a Simple Control

Preparing for This Lesson

Before you extend UFT support for a custom control, you must:

« Make sure you have full access to the control.

« Understand its behavior and what functionality needs to be tested.
« Have an application in which you can see and operate the control.

« Have access to the class that implements it. (Although you do not modify any of the
custom control classes when creating your custom support, you reference the
compiled classes, and rely on information you can gain from the source files.)

Perform the following procedure to create an Eclipse project containing the
ImageControls custom toolkit classes and a sample application containing the custom
controls.

Note: The sample application is designed to run from the default <UFT Java Add-in
Extensibility SDK installation>\samples folder. If you install the SDK to another
location, you need to modify the sample application slightly before you begin this
lesson. For information, see "Modifying the Sample Application to Run From Another
Location" on page 166.

To create a new Java project with the ImageControls sample in Eclipse:

—

. Run Eclipse and select File > New > Project. The New Project dialog box opens.
2. Select Java Project and click Next. The New Java Project dialog box opens.

3. Enter ImageControls in the Project name box.

4. Select the Create project from existing source option.

5. Click the Browse button and browse to the <UFT Java Add-in Extensibility SDK
installation folder>\samples\ImageControls\src folder. Click OK to return to the
New Java Project dialog box.

HP UFT Java Add-in Extensibility (12.00) Page 164

Developer Guide
Chapter 6: Learning to Support a Simple Control

6. Click Finish. A new Java project is created with the ImageControls sample source
files. The new project, named ImageControls, is displayed in the Package Explorer
tab.

Note: The steps for creating a new project in Eclipse may vary, depending on the
Eclipse version that you use.

Expand the ImageControls project to view its content. The ImageControls\src package
folder contains two packages:

o The com.sample package contains the sample application: SampleApp.

o The com.demo package contains three custom controls: ImageButton,
ImageControl and ImageLabel.

The following diagram shows the inheritance hierarchy of the classes in the com.demo
package.

Java.ant. Canvas

r

com.demo lmageControl

—

com.demo. lmageButton com.demo lmagelabel

HP UFT Java Add-in Extensibility (12.00) Page 165

Developer Guide
Chapter 6: Learning to Support a Simple Control

The functionality provided by the classes in this package is as follows:

« ImageControl. This class extends the Canvas class, and displays an image on the
control.

« Imagelabel. This class extends the ImageControl class, and allows writing
additional text over the image displayed on the control.

« ImageButton. This class extends the ImageControl class, and draws a button-like
rectangle around the control. It listens for low-level events on the control, and
triggers an Action event when the button is clicked.

Modifying the Sample Application to Run From Another
Location

If the UFT Java Add-in Extensibility SDK is installed under a folder other than
C:/Program Files/HP/Unified Functional Testing, you must modify the sample
application before performing this lesson.

To modify the sample application:

1. After you copy the ImageControls source files into Eclipse, browse to the package
ImageControls\src\com.sample in Eclipse and open the SampleApp.java file.

2. Locate the code containing the image file paths:

C:/Program Files/HP/Unified Functional
Testing/samples/ImageControls/images/
mercury.gif

C:/Program Files/HP/Unified Functional
Testing/samples/ImageControls/images/
JavakExtl.gif

3. Replace C:/Program Files/HP/Unified Functional Testing in these
paths with the actual installation folder to enable the sample application to
function properly.

HP UFT Java Add-in Extensibility (12.00) Page 166

Developer Guide
Chapter 6: Learning to Support a Simple Control

Planning Support for the ImageButton Control

In this section, you analyze the current UFT support of the ImageButton control,
determine the answers to the questions in the "Understanding the Custom Class
Support Planning Checklist" on page 93, and fill in the "Custom Class Support Planning
Checklist " on page 171, accordingly.

The best way to do this is to run the application containing the custom control, and
analyze it from a UFT perspective using the Object Spy, Keyword View, and Record
option.

1. Run the SampleApp application and open UFT.

a. Inthe Eclipse Package Explorer tab, right-click SampleApp. Select
Run As > Java Application. The SampleApp application opens.

Lo]

MERCURY " <

b. Open UFT and load the Java Add-in.

2. Use the Object Spy to view the ImageButton properties.

a. InUFT, open a GUI test and select Tools > Object Spy or click the Object Spy
toolbar button] to open the Object Spy dialog box. Click the Properties tab.

b. In the Object Spy dialog box, click the pointing hand , then click the
button in the SampleApp application.

HP UFT Java Add-in Extensibility (12.00) Page 167

Developer Guide
Chapter 6: Learning to Support a Simple Control

The ImageButton control is based on a custom class that UFT does not
recognize. Therefore, it recognizes the button as a generic JavaObject named
ImageButton, and the icon shown is the standard JavaObject class icon.

P y

2 Object Spy [5| el
[& S

Object hierarchy:
E-a Javawindow : Sampledpn Y
=& JavaObject : JRootPane
-d Javalbject : JLayeredPane
=-& JavaObject : JPanel
- JavaObject : Box
_—'& Javalbject : Box

Properties | Operations |

7 Mative @ |dentification
Properties Yalues -
Uy Class Mame Javalhbject |
Uy ahs w o4
i abs y 25
Uy attached test
W background EREEEE
W=y class description object
Yo class_path cam.demo.lImageButton;cao
Ty developer name X
Selection:
Clazs Mame
Dezcrphion:

Descriptions are available only for kest object operations.

Cloze

c. Close the Object Spy.
3. Record an operation on the ImageButton control.

a. In UFT select Record > Record and Run Settings to open the Record and Run
Settings dialog box. In the Java tab, select Record and run test on any open
Java application. If the Web Add-in is also loaded, click the Web tab and select
Record and run test on any open browser. Click OK.

HP UFT Java Add-in Extensibility (12.00) Page 168

Developer Guide
Chapter 6: Learning to Support a Simple Control

b. Click the Record button or select Record > Record. Click the button in the
SampleApp application. The counter value in the edit box increases by one.

A new step is added to the test.

Item Operation | Yalue Documentation

v ‘ Actionl

+[sa mplespp

&5 ImageButton Click 30,26,"LEFT" Click the "ImageButton” object with the "LEFT" mouse buttan,

c. Click the Stop button or select Record > Stop to end the recording session.

The Click operation recorded on the ImageButton JavaObject is a generic click,
with arguments indicating the low-level recording details (x and y coordinates
and the mouse button that performed the click).

4. Determine the custom toolkit to which the ImageButton control belongs.

When you extend UFT support for a control you always do so in the context of a
toolkit. For the purpose of this tutorial, three classes that share the same ancestor,
java.awt.Canvas, are grouped to form the custom toolkit named ImageControls:
ImageButton, ImagelLabel, and their superclass ImageControl.

In this lesson you create support for the ImageControls toolkit, initially supporting
only the ImageButton class.

5. Complete the custom class support planning checklist.

You want UFT to treat the ImageButton as a special kind of button and you want it
to support the operation it performs. Therefore it makes sense to create
Extensibility support for this control.

The custom class ImageButton extends another custom class, ImageControl, for
which UFT also does not provide support. At this point, there does not seem to be
any functionality requiring special UFT support, which ImageButton shares with
other classes that extend ImageControl. Therefore it is sufficient to extend support
directly to the ImageButton class.

When fully supported, UFT should recognize the ImageButton control as a
JavaButton test object. You want JavaButton test objects representing controls of

HP UFT Java Add-in Extensibility (12.00) Page 169

Developer Guide
Chapter 6: Learning to Support a Simple Control

this type to be named according to the name of the image file that the control
displays.

The custom support should also include support for the simple Click-on-the-button
operation. (Note that in UFT, the simple JavaButton Click operation has an optional
argument that specifies which mouse button performed the click.) The ImageButton
custom class listens for low-level mouse events and substitutes them with events
that are more relevant to button behavior, in this case an Action event. Therefore,
to record mouse clicks, the support class must listen for Action events.

On the next page, you can see the checklist, completed based on the information
above.

HP UFT Java Add-in Extensibility (12.00) Page 170

Custom Class Support Planning Checklist

E

Custom Class Support Planning Checklist

1 Does the custom class have a superclass for which UFT custom support is
not yet available? No

E

If so, should I first extend support for a control higher in the hierarchy? N/A

1 Do I have an application that runs the custom control on a computer with
UFT installed? Yes

1 The sources for this custom control class are located in:
an Eclipse project called ImageControls

E

Which existing Java test object matches the custom control? JavaButton
4 Ifnone, create a new Java test object class named: N/A

« New test object class extends: (Default—JavaObject)

« Icon file location (optional):

« Identification property for description:

« Default test object method:

Is the custom control a top-level object? No

Is the custom control a wrapper? No

Specify the basis for naming the test object: its image file name

E B B B

List the identification properties to support, and mark default checkpoint
properties:

nothing special

4 List the test object methods to support (include arguments and return values
if required):

Click(button)

B4 Provide support for recording? (AWT-based only) Yes

HP UFT Java Add-in Extensibility (12.00) Page 171

Developer Guide
Chapter 6: Learning to Support a Simple Control

[Custom Class Support Planning Checklist

4 If so, list the events that should trigger recording:

ActionEvents

Creating a New UFT Java Add-in Extensibility
Project

In this section you create a new project for the ImageControls toolkit support. To do
this, you use one of the wizards provided by the UFT Java Add-in Extensibility plug-in in
Eclipse.

1. Open the New UFT Java Add-in Extensibility Project wizard.

a. In Eclipse, select File > New > Project. The New Project dialog box opens. Expand
the Unified Functional Testing folder and select UFT Java Add-in Extensibility
Project.

HP UFT Java Add-in Extensibility (12.00) Page 172

Developer Guide
Chapter 6: Learning to Support a Simple Control

&= New Project

Select a wizard

g J@ Java Project

£ Java Project from Existing Ant Buildfile
.&,L}' Plug-in Project

-2 Y5

E-(= Java

[;:"5- Plug-in Developrment

El[;:"b Unified Functional Tesking

E UFT lava Add-in Extensibility Project

[;:"5- Simple

b. Click Next. The UFT Java Add-in Extensibility Project screen opens. The details
on this screen may vary, depending on the version of Eclipse that you are using.

2. Enter the UFT Java Add-in Extensibility project details.

a. Inthe Project name box, enter ImageControlsSupport. Select Create
separate folders for sources and class files. (In earlier Eclipse versions this
option is named Create separate source and output folders.) For more
information on this dialog box, see the Eclipse Help.

HP UFT Java Add-in Extensibility (12.00) Page 173

Developer Guide
Chapter 6: Learning to Support a Simple Control

= New UFT Java Add-in Extensibility Project

UFT Java Add-in Extensibility Project

Create a UFT Java Add-in Extensibility project in the workspace or in an external
location,

ImageContralsSuppark

o I | SELE |_-’

b. Click Next. The Custom Toolkit Details screen opens.

3. Enter the custom toolkit details.

HP UFT Java Add-in Extensibility (12.00) Page 174

Developer Guide
Chapter 6: Learning to Support a Simple Control

In this screen, you provide the details of the ImageControls toolkit so that the
wizard can generate a corresponding custom toolkit support set.

&= Mew UFT Java Add-in Extenszibility Project

Custom Toolkit Details

Enter the details For the cuskom toalkit wou want to support.
The support toolkit and its name are created based on these details,

a. Define the following information:

o In the Unique custom toolkit name box, you enter a name that uniquely
represents the custom toolkit for which you are creating support. The new
toolkit support class is given this name plus the suffix-word Support.

HP UFT Java Add-in Extensibility (12.00) Page 175

Developer Guide
Chapter 6: Learning to Support a Simple Control

Providing unique toolkit names allows a single UFT installation to support
numerous custom toolkit support sets simultaneously.

After you develop the support and deploy it to UFT, UFT displays the custom
toolkit name in all of the dialog boxes that display lists of add-ins or
supported environments.

Enter the name ImageControls.

o In the Support toolkit description box enter: ImageControls toolkit
support.

o The Base toolkit list contains a list of toolkits for which UFT support already
exists. After you create support for your own toolkits, they are displayed in
the list as well.

The ImageButton custom class extends an AWT component, so keep the
default selection AWT as the Base toolkit.

o You must specify the location of the custom classes you want to support in
this toolkit. When the new Java Add-in Extensibility project is built, these
classes are added to the project build path. You can specify .jar files or file
system folders for the class location.

HP UFT Java Add-in Extensibility (12.00) Page 176

Developer Guide
Chapter 6: Learning to Support a Simple Control

In the Custom toolkit class locations area, click Add project to select the
Eclipse Java project containing the custom classes for the ImageControls
toolkit. The Select Project dialog box opens and displays the projects in the
current Eclipse workspace.

&= Select Project

= ImageContrals

b. Select the ImageControls check box. Click OK. The ImageControls project is
added in the Custom toolkit class locations box.

c. Click Finish. The Project Summary screen opens.

4. View the Project Summary wizard screen.

HP UFT Java Add-in Extensibility (12.00) Page 177

Developer Guide
Chapter 6: Learning to Support a Simple Control

Review the details of the project and click OK.

& Hew UFT Java Add-in Extensibility Project

Project Summary

Rewview and confirm the project properties. 'f.f%

Project Information :l
Project name; ImageCortralsZupport

Location: C:MavaExtensibiltyiorkspace_final

Project JRE Compliance: Default Compiler Compliance (1.4

Source root folder: sro

Clazs root folder: hin

Toolkit Information

Custom toolkit name: ImageCaontrols

Support toolkit description; ImageContrals toolkit support.
Base toolkit Mame: LT

" o

(7] (04 I Cancel |

The wizard creates a new Java Add-in Extensibility project named
ImageControlsSupport, containing the basic files required for custom toolkit support.

Understanding Your New Custom Toolkit Support Set

Your new Java Add-in Extensibility project is displayed in the Package Explorer tab.

Note: If you have more than one JRE installed on your computer, make sure that
the ImageControls project and the ImageControlsSupport project are using the
same JRE version. If they are not, modify the JRE for one of the projects so that
they use the same version.

HP UFT Java Add-in Extensibility (12.00) Page 178

Developer Guide
Chapter 6: Learning to Support a Simple Control

Expand the ImageControlsSupport project to view its content.

-,
V:E

Package Explorer X Hiet atchy = q:b

F-%= ImageContrals
EID‘J- ImageCaontrolsSuppaort
-2, IRE System Library [izrel.4.2]
=1 src
|_——_|EE com.mercury . frjadin gtsupport. imagecontrals
El m ImageControlsSuppart, java
EG’ ImageConkralsSuppark
----- @ ImageControlsSuppark()
o @ ImageControlsSuppark] Skring)
----- B com.mercury.frjadin,qtsupport.imagecontrols. cs
g mic.jar - CiProgram FilesiMercury Interactivel QuickTest Professionalibintjavalcasses
== Configuration
----- [-= TestObjects
----- |Z| ImageContrals.xml

The src folder contains the following packages:
o com.mercury.ftjadin.qtsupport.imagecontrols

This package contains the new toolkit support class file,
ImageControlsSupport.java, which defines the new toolkit support class,
ImageControlsSupport:

public class ImageControlsSupport extends AwtSupport {
}

The ImageControls toolkit for which you are creating support extends AWT.
Therefore, the ImageControls toolkit support class extends the built-in
UFTAwtSupport. No additional implementation is needed in this class.

o com.mercury.ftjadin.qtsupport.imagecontrols.cs

This package is currently empty. When you create the individual custom control
support classes, they are stored in this package.

HP UFT Java Add-in Extensibility (12.00) Page 179

Developer Guide
Chapter 6: Learning to Support a Simple Control

The Configuration folder contains the following items:
o The TestObjects folder.

This folder is currently empty. If you create new test object classes to represent the
custom controls in your toolkit, a test object configuration file is created in this
folder. This is not relevant for this lesson.

« The toolkit configuration file: ImageControls.xml.

Open the file to view its content.

<Controls
class="com.mercury.ftjadin.qgtsupport.imagecontrols.
ImageControlsSupport"

SupportClasspath="C:\JavaExtensibility\Workspace final\
ImageControlsSupport\bin"

description="ImageControls toolkit support.">
</Controls>

At this point, the XML file contains a single Controls element that declares the
toolkit support class by providing values for the class, SupportClasspath, and
description attributes.

When you create the individual custom control support classes, the mapping of each
custom control to its support class is added to this configuration file.

Notice that the support class location is currently in your Eclipse workspace. This is
appropriate for the development phase of the custom support. When the support is
fully implemented and tested, you store the support classes in a more permanent
location on a UFT computer and update the values in the toolkit configuration file
appropriately. For more information, see "Deploying and Running the Custom Toolkit
Support" on page 77.

For a complete understanding of the structure of this file, see the UFT Java Add-in
ExtensibilityToolkit Configuration Schema Help(available with the Java Add-in
Extensibility SDK Help).

HP UFT Java Add-in Extensibility (12.00) Page 180

Developer Guide
Chapter 6: Learning to Support a Simple Control

Creating @ New UFT Custom Support Class

In this section you create a custom support class for the ImageButton control, as part
of the ImageControls toolkit support. To do this, you use one of the wizards provided by
the UFT Java Add-in Extensibility plug-in in Eclipse. The details you specify in each
wizard screen reflect the decisions you made when planning the custom support. In the
subsequent sections you implement the methods that the wizard creates in this class.

Note: The following sections describe only the options in the wizard screens that
are relevant to this lesson. For a complete description of all options available in the
wizard screens, see "Using the UFT Java Add-in Extensibility Eclipse Plug-In" on
page 97.

1. Open the New UFT Custom Support Class wizard.

a. Inthe Eclipse Package Explorer tab, select the new UFT Java Add-in
Extensibility project, ImageControlsSupport. Select File > New > Other. The
New dialog box opens.

HP UFT Java Add-in Extensibility (12.00) Page 181

Developer Guide
Chapter 6: Learning to Support a Simple Control

b. Expand the Unified Functional Testing folder and select UFT Custom Support
Class.

Select a wizard

&3 Interface
134 Java Project
8 Java Project from Existing Ant Buildfile
12 Plug-in Project
=i Product Configuration
e
H-[22 Jawa
#]-[Plug-in Development
=l Unified Functional Testing
- BE| UFT Test Cuskom Static-Text Support Class
E_".-l'- UFT Cuskom Support Class
E UFT 1ava Add-in Extensibility Project
+-[= Simple

c. Click Next. The Custom Class Selection screen opens.

2. Select the custom class to support, and set the options for the support class.

HP UFT Java Add-in Extensibility (12.00) Page 182

Developer Guide
Chapter 6: Learning to Support a Simple Control

a. Expand the com.demo package and select the ImageButton class.

& Mew UFT Custom Support Class

Custom Class Selection

Select the custom class you want to support, and sek the relevant options for the E?
corresponding suppart class,

com.demo

m IrmageButkon

£] ImageCantral 1

f-[J] ImageLabel - corn.dermio, ImageCantral
com.sample cor.demo. ImageButtan

I™ | Gonitrals of Eis class FERFESENTE HOEEEVE] HErhs

| |

In the Custom toolkit tree pane, you can see the structure of the ImageControls
project, which you selected for the custom toolkit class location, in "Creating a
New UFT Java Add-in Extensibility Project” on page 172. The com.demo
package contains the ImageControls custom toolkit, with its custom classes, as
described in "Preparing for This Lesson" on page 164.

Note: The com.sample package is included in the ImageControls sample
project, only to provide convenient access for running the sample
application. The main content of the ImageControls project is the
ImageControls custom toolkit, contained in com.demo package.

HP UFT Java Add-in Extensibility (12.00) Page 183

Developer Guide
Chapter 6: Learning to Support a Simple Control

In the Custom class inheritance hierarchy pane, you can see the hierarchy of
the ImageButton class you have selected. It extends the ImageControl class,
which is part of the same toolkit, and is therefore shown in black.

The ImageControl custom class is not supported, but the Canvas class does
have a matching support class, provided in the
com.mercury.ftjadin.support.awt.cs package. Therefore the Base support
class for the ImageButton support class you are creating is CanvasCS. This is
the class that your new support class extends.

The Controls of this class represent top-level objects option is disabled
because the ImageButton class is not a container class.

The name for the ImageButton support class is, by default, ImageButtonCS. It
is recommended to keep the default name.

b. Click Next. The Test Object Class Selection screen opens.

HP UFT Java Add-in Extensibility (12.00) Page 184

Developer Guide
Chapter 6: Learning to Support a Simple Control

3. Select a test object class to represent the custom control.

In this screen, you map the custom control to a test object class. In UFT tests, the
custom class controls are represented by test objects of this test object class. This
is the first and most important decision you make when creating a custom support
class.

&= Mew UFT Custom Support Class

Test Object Class Selection

Map the custom class ko a UFT kest object class,

lavadhbject |_

ErebEn & EXiE L LS Gl Ech |_’

In the previous screen, you determined the support class that the new support
class extends. When the test object mapped to the class whose support you are
extending is also a logical test object for the custom class, you select Same as base
support class. The ImageButtonCS class extends Canvas(S, whose test object class
does not adequately represent ImageButton controls.

The existing JavaButton test object does answer the needs of your custom support.

a. Select the Existing test object class option and select JavaButton from the list.
The list of existing test objects contains all of the Java objects that UFT
currently supports. If you define new test objects for custom support, they are
included in the list as well.

HP UFT Java Add-in Extensibility (12.00) Page 185

Developer Guide
Chapter 6: Learning to Support a Simple Control

b. Click Next. The Custom Support Test Object Identification Properties screen
opens.

4. Determine the set of test object identification properties to implement in
ImageButton(CS.

This screen displays the identification properties supported by the base support
class you are extending, as well as additional properties that are defined in the test
object class you selected, but are not yet supported. It enables you to select
properties whose support you want to implement or override with new
functionality and to add new properties.

& New UFT Custom Support Class

Custom Support Test Object Identification Properties

Deterrine the set of test object identification properties that wou want to suppott For your custarn contral,

abs_x
abs_y
attached_text
background
dlass_path
displayable
displayed
enabled
focusable
focused
foreground
handle
height

Oz
Oz
[e
Oz
Oz
[e
Oz
Oz
Oz
O
Oz
Oz
0=

The left pane shows all of the identification properties whose support is
implemented by CanvasC(S, and therefore inherited by the new ImageButtonCS
support class. For most of the properties in this list, the default implementation is
sufficient.

a. Select the label property by clicking the check box. After you finish generating
the support files using the wizard, you will override the existing support for this
property with a custom implementation that matches the needs of the custom

HP UFT Java Add-in Extensibility (12.00) Page 186

Developer Guide
Chapter 6: Learning to Support a Simple Control

control.
b. Click Next. The Custom Support Test Object Methods screen opens.
5. Determine the set of test object methods to implement in ImageButton(S.

This screen displays the test object methods defined in the test object class you
selected. It enables you to select methods whose support you want to implement
or override with new functionality and to add new methods.

& Mew UFT Custom Support Class

Custom Support Test Object Methods

Determing the set of test obhject methods that you wank bo support For your custom contral,

D DhlClick {Object arg, String argl, String argZ, String arg3) Click {Object obj, String bukton)
Dg MouseDrag (Object argd, String argl, String argz, String arg3,
DEI Twpe (Object argl, String argl)

The left pane shows all of the test object methods (defined in the test object class
you selected) whose support is implemented by CanvasCS, and therefore inherited
by ImageButtonCS. This existing implementation is sufficient for ImageButton so
there is no need to select any methods to override.

In the right pane, you can see the test object methods that are defined for the
JavaButton test object class, but are not supported by CanvasCS.

a. Note that there is only one such method—Click(Object obj, String button).
After you finish generating the support files using the wizard, you will

HP UFT Java Add-in Extensibility (12.00) Page 187

Developer Guide
Chapter 6: Learning to Support a Simple Control

implement the ImageButton support for this method.
b. Click Next. The Custom Control Recording Support wizard screen opens.

6. Determine the set of events for which to listen, to support recording on the
ImageButton control.

This screen displays the event listeners implemented by the support class you are
extending. It enables you to select event handler methods whose implementation
you want to override with new functionality and to add new event listeners to
implement.

& Mew UFT Custom Support Class

Custom Control Recording Support

Determine the set of events that krigger recording.

DEFD:usGained (FocusEvent argd)
Dgfocusmst {FocusEvent argl)
O E kevPressed (KeyEvent argd)
ngevReleased (keyEvent argd)

& keyTyped (KeyEvent argd)

[JHE St Conibre) 5 O LS Gl s s R E

In the left pane, you can see the listeners implemented by CanvasCS. You do not
have to override any of these for the ImageButtonCS custom support class.

In the right pane, you specify the listeners you want to add for ImageButtonCS.
Each listener you select implies a set of event handler methods that the wizard
adds to the support class.

HP UFT Java Add-in Extensibility (12.00) Page 188

Developer Guide
Chapter 6: Learning to Support a Simple Control

Perform the following:
a. Click Add to add the ActionListener.
The Listener dialog box opens.

&= Listener

java.awt.event, ActionListener

HEQTELR AL TEn

b. Ifitis not already selected, select java.awt.event.ActionListener from the
Listener list. If the selected listener had more than one registration method,
you would also select a method from the Registration method list.

c. Click OK. The Listener dialog box closes and the ActionListener, and all of the
event handler methods it includes, are added to the list in the right pane of the
wizard screen.

d. On the Custom Control Recording Support screen, select the Override low-level
mouse event recording check box to prevent low-level events (coordinate-
based operations) from being recorded instead of the events you want to
record. For more details on this option, see "Understanding Event Recording
Support” on page 194.

e. Click Finish. The Custom Control Support Class Summary screen opens.

HP UFT Java Add-in Extensibility (12.00) Page 189

Developer Guide
Chapter 6: Learning to Support a Simple Control

7. View the custom control support class summary.
Review the planned content of the custom support class, and click OK.

&= Mew UFT Custom Support Class |

Custom Support Class Summary

Feview and canfirm the skruckure of the cuskam support class, ﬁa;

]

General s
Custom class: com.demo mageButton

Support clazs: ImageButtonCs

Baze zuppott class: commercury ftjadin.gtzupport awt.cs Canvascs

Test Object Identification Properties to Override
[zkel

Additional Test Object Identification Properties to Implement
Test Object Methods to Override

Additional Test Object Methods to Implement
Click (Okject abj, String buttom)

Event Handler Method=s to Override

Additional Event Handler Methods to Implement

java.awt event ActionListener _ILI
Kl -

(7] (04 I Cancel |

The following changes are made in the ImageControlsSupport project:

m A new UFT custom support class, ImageButtonCs, is created in the
com.mercury.ftjadin.qtsupport.imagecontrols.cs package. The file is opened
and displayed in a tab in the right pane.

= A new ImageControlsTestObjects.xml file is created in the
Configuration\TestObjects folder.

= The ImageControls.xml file is modified.

For a detailed explanation of these changes, see "Understanding the New Custom
Support” on the next page.

HP UFT Java Add-in Extensibility (12.00) Page 190

Developer Guide
Chapter 6: Learning to Support a Simple Control

The asterisk (*) next to the ImageButtonCS file name (in the ImageButtonCS tab)
indicates that it has not been saved. The changes made by the wizard are
codependent, and must be saved to prevent discrepancies. Select File > Save, or
click the Save button.

Understanding the New Custom Support

Your new UFT Java Add-in Extensibility custom toolkit support set is composed of:

o One toolkit support class: ImageControlsSupport, which is created by the wizard
when the ImageControlsSupport project is created, and not changed.

o One toolkit configuration file: ImageControls.xml. This file is created by the wizard
when the ImageControlsSupport project is created. It is updated with each support
class you add for this toolkit.

The ImageControls.xml file is now updated to map the com.demo.ImageButton
custom control, to its support class,
com.mercury.ftjadin.gtsupport.imagecontrols.cs.ImageButtonCS.

« One test object configuration file: ImageControlsTestObjects.xml. Since you did not
add any identification properties or test object methods to this the JavaButton test
object class, this file does not currently contain any significant information.

For a complete understanding of the structure of this file, see the HP UFT Test
Object Schema Help(available with the Java Add-in ExtensibilitySDKHelp).

o Custom support classes, one per custom class. In this case, you created one custom
support class: ImageButtonCS.

The following sections explain the elements that the wizard creates in the
ImageButtonCS class.

HP UFT Java Add-in Extensibility (12.00) Page 191

Developer Guide
Chapter 6: Learning to Support a Simple Control

Understanding the Basics of the ImageButtonCS Class

The UFT Java Add-in Extensibility wizard creates the custom support class based on the
specifications you entered, and registers it in the toolkit support configuration file.

The two most basic characteristics of a support class are:
o The support class it extends
o The test object class mapped to the custom control

Open ImageButton(S.java to review the support class that the wizard created for
ImageButton.

The first declaration reflects your selection in the wizard to extend the CanvasCS class:

public class ImageButtonCS extends CanvasCS implements ActionlListener

{
private static final String DEBUG_IMAGEBUTTONCS = "DEBUG_

IMAGEBUTTONCS" ;
}

Note: DEBUG_IMAGEBUTTONCS is defined to control printing log messages. For
more information, see "Logging and Debugging the Custom Support Class" on
page 86.

The to_class property, implemented by the to_class_attr method, defines the test
object class selected to represent this custom control. UFT decides the set of
identification properties and test object methods for the test object based on this

mapping.

public String to_class_attr(Object obj) {
return "JavaButton";

}

This implementation is sufficient to provide initial recognition of the custom control in
UFT.

HP UFT Java Add-in Extensibility (12.00) Page 192

Developer Guide
Chapter 6: Learning to Support a Simple Control

Understanding Identification Property and Test Object
Method Support

Each identification property that can be learned for a particular custom control is
represented in the support class, by a method called <property name>_attr. Each test
object method that can be supported for the control is represented by a method called
<test object method name>_replayMethod.

When the wizard creates the support class, it inserts stubs for the required methods,
according to the identification properties and test object methods that you selected to
implement.

The following method stub was added because you selected to override the label
identification property, inherited from Canvas(S, in "Creating a New UFT Custom
Support Class" on page 181:

public String label attr(Object argd) {
return super.label attr(argo);

}

The following method stub was added because you selected to implement the Click
(Object obj) test object method, in "Creating a New UFT Custom Support Class" on
page 181:

public Retval Click replayMethod(Object obj, String button) {
return Retval.NOT_IMPLEMENTED;

¥

HP UFT Java Add-in Extensibility (12.00) Page 193

Developer Guide
Chapter 6: Learning to Support a Simple Control

Understanding Event Recording Support

In the ImageButtonCS class, the following elements provide the basis for event
recording:

« Low-level recording override (enables recording of higher-level events):

protected Object mouseRecordTarget(MouseEvent e) {
return null;

}

This method is added because you selected the Override low-level mouse event
recording check box in "Creating a New UFT Custom Support Class" on page 181.

« Listing ActionListener for registration on the ImageButton control:

public ImageButtonCS() {
addSimpleListener("ActionListener"”, "addActionListener",
"removeActionListener");

}

This constructor method is added because in "Creating a New UFT Custom Support
Class" on page 181, you added the ActionListener to the list of listeners you want to
implement.

The constructor calls the addSimpleListener method to add the ActionListener to
the list of listeners that need to be registered on the custom control.

HP UFT Java Add-in Extensibility (12.00) Page 194

Developer Guide
Chapter 6: Learning to Support a Simple Control

o Action event handler implementation:

public void actionPerformed(ActionEvent arg@) {

try {
if (!isInRecord())

return;
// TODO: Uncomment and edit the call to MicAPI.record
// MicAPI.record(argd.getSource(), <Operation>, new
// String[]{<Parameters>});
} catch (Throwable th) {

}

The wizard creates this method stub without any actual implementation. You
implement it when you get to the step for "Implementing Event Handler Methods to
Support Recording” on page 202. The method stub contains the try ... catch block
and the isInRecord check, providing a recommendation for this method's structure.
For more information, see "Supporting the Record Option" on page 65.

Deploying and Testing the New Custom Toolkit
Support

In this part of the lesson, you use the UFTDeploy Toolkit Support command in Eclipse
to deploy the ImageControls toolkit support to UFT. Currently only one control in this
toolkit, the ImageButton control, is supported. The toolkit support is not yet complete,
but you can already test the support created up to this point.

1. Deploy the ImageControls toolkit support to UFT.

In the Eclipse Package Explorer tab, select the ImageControlsSupport project.

Click the Deploy Toolkit Support ﬁ button, or select
UFT > Deploy Toolkit Support. In the confirmation messages that open, click Yes
and then OK.

HP UFT Java Add-in Extensibility (12.00) Page 195

Developer Guide
Chapter 6: Learning to Support a Simple Control

The toolkit configuration file and the test object configuration file are copied to the
relevant folders in your UFT installation folder. The custom support will be
available the next time you open UFT and start the custom application.

For more information on deploying custom toolkit support, see "Deploying and
Running the Custom Toolkit Support” on page 77.

2. Open UFT and load the Java Add-in and the custom toolkit support.

Open UFT. The Add-in Manager dialog box displays ImageControls as a child of the
Java Add-in in the list of available add-ins. (If the Add-in Manager dialog box does
not open, see the HP Unified Functional Testing Add-ins Guide for instructions.)

Select the check box for ImageControls and click OK. UFT opens and loads the
support you designed.

3. Run the SampleApp application.

UFT establishes its connection with an application when the application opens.
Therefore, if the SampleApp application is open, you must close and re-run it.

In the Eclipse Package Explorer tab, right-click SampleApp. Select Run As > Java
Application. The SampleApp application opens.

4. Test the new custom support.

View the ImageButton control with the UFT Object Spy and try to record a Click
operation on it. For details, see the steps in "Planning Support for the ImageButton
Control" on page 167.

HP UFT Java Add-in Extensibility (12.00) Page 196

Developer Guide
Chapter 6: Learning to Support a Simple Control

m UFT recognizes the ImageButton as a JavaButton named ImageButton.

m The new support class (ImageButtonCS) inherited some identification properties
from the base support class (Canvas(S) that are not included in the JavaButton
test object class definition. These properties are displayed in the Custom
Support Test Object Identification Properties screen (described on page 186),
but they are not displayed in UFT in the Object Spy or in the Checkpoint
Properties dialog box. You can access these identification properties by using the
GetROProperty method. For more information on the GetROProperty method,
see the HP UFT Object Model Reference for GUI Testing.

m Because you have overridden the low-level recording, but have not yet
implemented the actionPerformed(ActionEvent arg0) event handler method,
UFT currently does not record anything when you click the button.

Changing the Name of the Test Object

In this part of the lesson, you extend UFT support of the ImageButton control to
recognize its name as per your plan ("Planning Support for the ImageButton Control" on
page 167). To do this, you will learn about the special property methods implemented
in Object(CS: tag_attr and attached_text_attr.

The name of a test object is determined by its tag property. All AWT support classes
extend ObjectCS. ObjectCS implements the tag_attr method to check a set of
properties in a specified order, and return the first valid value it finds. A valid value is
one that is not empty, and does not contain spaces.

In the tag_attr method in the ObjectCS class, the following properties are checked, in
the order in which they are listed:

« label
« attached_text (for more detail see below).

« unqualified custom class

HP UFT Java Add-in Extensibility (12.00) Page 197

Developer Guide
Chapter 6: Learning to Support a Simple Control

The label property is implemented in the custom support class with the label_attr
method. In ImageButtonCS, this method currently returns null, as does its superclass,
CanvasCS.

The attached_text_attr method is also implemented by ObjectCS. It searches for
adjacent static-text objects near the object, and returns their text. This mechanism is
useful for controls like edit boxes and list boxes, which do not have their own
descriptive text, but are accompanied by a label.

Note: You can teach UFT to recognize custom static-text objects using the UFT
Custom Static-Text Support Class Wizard, which you access from the Eclipse New
dialog box. For more information, see "Learning to Support a Custom Static-Text
Control" on page 205.

In ImageButton, the attached_text property is empty, so UFT must use a fallback
mechanism. It uses the unqualified custom class, which is the name of the class,
without the package name. In this case, the custom class: com.demo.ImageButton
resulted in the name ImageButton for test object.

To change the name of a custom control test object, do not override the tag_attr
method in the support class. Instead, make use of its existing implementation, and
override the method label_attr.

1. Override the label_attr method in the ImageButton(CS class.

a. In Eclipse, in the ImageButtonCS.java file, in the label_attr method stub,
replace return super.label attr(argd); with the following code, so
that it returns the name of the image file used for the ImageButton (without
the full path):

ImageButton ib = (ImageButton)argo;
String res = ib.getImageString();
if(res == null || res.length() == @)
return null;
int last = res.lastIndexOf('/");
if(last == -1)
return res;

HP UFT Java Add-in Extensibility (12.00) Page 198

Developer Guide
Chapter 6: Learning to Support a Simple Control

return res.substring(last+1);
b. Click the Save button, or select File > Save to save your changes.

Note: You do not have to deploy the toolkit support to UFT again because
you changed only Java class files and not configuration files.

2. Test the new custom support.
Run the application and view the ImageButton control with the UFT Object Spy, as

described in "Planning Support for the ImageButton Control" on page 167.

Note: You can use an open UFT session (running with the ImageControls custom
toolkit support loaded), but you must close the SampleApp application, and run
it again, for the changes you made in the custom support to take effect.

UFT now recognizes the ImageButton as a JavaButton named JavaExt1.gif.

Implementing Support for a Test Object Method

In this section you extend UFT support of the ImageButton, to support a Click-the-
button test object method. To do this, you must implement the Click_replayMethod in
the custom support class, to call the appropriate MicAPI function.

1. Test the current functionality of the Click method on an ImageButton.

a. In UFT, create a new GUI test, add the JavaExt1.gif button to the object
repository, and add a step with this object. For instructions on how to do this,
see the HP Unified Functional Testing User Guide.

HP UFT Java Add-in Extensibility (12.00) Page 199

Developer Guide
Chapter 6: Learning to Support a Simple Control

The ImageButton is recognized as a JavaButton item (note the icon used) named
JavaExt1.gif. The Click operation is the default operation for this item, as it is
for all JavaButton items.

DT T SO ey ~ |Operation |(Vaue |Documentation
w & Actionl
»-[] Samplepp

W JavaExtl.gif Click Click the "JavaBxtl.gif" buthon,

b. Click the Run button or select Run > Run. The Run dialog box opens.
c. Select New run results folder. Accept the default results folder name.
d. Click OK to close the Run dialog box.

UFT runs the test, and an error message is displayed. Click Details on the
message box. The following information is displayed:

Run Error

X

The reason for this error is that to run the Click operation, the UFT calls Click_
replayMethod, which is currently implemented in the ImageButtonCS to return
the error code NOT_IMPLEMENTED.

e. Click Stop, to stop running the test.
2. Implement the Click_replayMethod method in ImageButtonCS.

a. Replace the Click_replayMethod method stub, with the following code:

public Retval Click_replayMethod(Object obj, String button) {

HP UFT Java Add-in Extensibility (12.00) Page 200

Developer Guide
Chapter 6: Learning to Support a Simple Control

ImageButton ib = (ImageButton) obj;

MicAPI.mouseClick((Object) ib, ib.getWidth() / 2,
ib.getHeight() / 2);

return Retval.OK;

Note: When the wizard created the ImageButtonCS.java file, it
automatically added the
importcom.mercury.ftjadin.custom.MicAPI, required to support
this code.

b. Click the Save button, or select File > Save.

Note: This implementation ignores the button argument. For an
implementation that takes this argument into account, you could call a
different MicAPl.mouseClick method. For more information, see the UFT
Java Add-in Extensibility APl Reference (available with the Java Add-in
Extensibility SDK Help).

3. Test the new custom support.

Note: You do not have to deploy the toolkit support to UFT again because you
changed only Java class files and not configuration files.
a. Close the SampleApp application and run it again.

b. In UFT, run the test you created above. The test run completes successfully. As
you can see, the click counter in the edit box is increased when the test
executes the Click operation.

HP UFT Java Add-in Extensibility (12.00) Page 201

Developer Guide
Chapter 6: Learning to Support a Simple Control

Implementing Event Handler Methods to Support
Recording

Because you planned to support recording on the ImageButton control, you suppressed
low-level recording on this object, and registered to listen for Action events on this
control.

In this section, you implement the actionPerformed listener method, to call
MicAPl.record, and record the Click operation on the ImageButton object.

1. Implement the actionPerformed listener method to record Click operations.

a. In Eclipse, in the ImageButton(S.java file, in the actionPerformed listener
method stub, modify the code to look like this:

public void actionPerformed(ActionEvent arg®)

{
try {
if (!isInRecord())
return;
MicAPI.record(arge.getSource(), "Click");
} catch (Throwable th)
{
MicAPI.logStackTrace(th);
}
¥

The MicAPl.logStackTrace method prints a stack trace to the log file containing
all of the other Java Add-in Extensibility log messages, and allows you to
determine when the actionPerformed method was called inadvertently. For
more information, see "Logging and Debugging the Custom Support Class" on
page 86.

HP UFT Java Add-in Extensibility (12.00) Page 202

Developer Guide
Chapter 6: Learning to Support a Simple Control

b. Click the Save button, or select File > Save.

Note: You do not have to deploy the toolkit support to UFT again because
you changed only Java class files and not configuration files.

2. Test the new custom support.
a. Close the SampleApp application and run it again.

b. Create a new GUI test and click the Record button or select Record > Record. If
the Record and Run Settings dialog box opens, make sure the Record and run
test on any open Java application option is selected, and click OK. Click the
button in the SampleApp application.

A simple Click operation is recorded on the JavaExt1.gif JavaButton.

Item Operation YYalue Documentation
v & Arctionl

+[sa mplespp

M JavaExtlgif Click : Click the "JawaExtl.gif" button,

The ImageButton custom control is now fully supported, according to the specifications
you decided on when planning your custom support.

Lesson Summary

In this lesson you created support for the ImageButton control, allowing UFT to
recognize it as a JavaButton test object. You modified the object name, and supported
the Click operation.

o You learned how to create a toolkit support project, with one custom support class.

 You learned to recognize and understand the files that make up the toolkit support.

HP UFT Java Add-in Extensibility (12.00) Page 203

Developer Guide
Chapter 6: Learning to Support a Simple Control

« You learned to use the following identification property support methods:
m to_class_attr
m tag_attr
n label_attr
m attached_text_attr
« You made use of the following functions:
= addSimpleListener
= mouseRecordTarget
= MicAPl.mouseClick

= MicApi.record

Where Do You Go from Here?

For more information on the structure and content of a custom toolkit support set, see
"Implementing Custom Toolkit Support” on page 34.

For more information on the toolkit configuration file, see the UFT Java Add-in
Extensibility Toolkit Configuration Schema Help (available with the Java Add-in
Extensibility SDK Help).

For more information on the MicAPI methods, see the UFT Java Add-in Extensibility API
Reference (available with the Java Add-in Extensibility SDK Help).

In the next lesson you learn how to create support for a static-text custom control.
Static-text controls normally do not have to support any specific operations; they
simply provide a label for adjacent controls. In the support class for a static-text
control, simply implementing a set of specific methods provides the necessary support.
The "New UFT Custom Static-Text Support Class Wizard" is specifically dedicated to
creating custom support for static-text custom controls.

HP UFT Java Add-in Extensibility (12.00) Page 204

Chapter 7: Learning to Support a Custom
Static-Text Control

In this lesson you create support for the ImageLabel control within the ImageControls
toolkit. The ImageLabel control does not have any specific identification properties or
test object methods that need to be supported. Its main purpose is to serve as a label.
Therefore, you create support for the ImageLabel as a static-text object.

This lesson assumes that you already performed the lesson "Learning to Support a
Simple Control" on page 163, in which you created the custom toolkit support set for
the custom toolkit ImageControls. In this lesson, you create another support class in
the same custom toolkit support set.

This lesson guides you through the following stages:

Preparing for This LesSOn o 206
Planning Support for the ImageLabel Control 206
Creating the UFT Custom Static-Text Support Class 212
Understanding the New Custom Static-Text Support Class 216
Deploying and Testing the New Custom Static-Text Support Class 217
Completing the Support for the Static-Text Control 219
Optimizing the ImageControls Toolkit Support 223
LeSSON SUMMIAIY 234

HP UFT Java Add-in Extensibility (12.00) Page 205

Preparing for This Lesson

The ImageControls Java project that you created in Eclipse when you prepared for the
lesson "Learning to Support a Simple Control" on page 163, contains the ImageLabel
class. The sample application that you ran in that lesson displays the ImageLabel
control (to the left of the ImageButton). The purpose of the ImageLabel control in this
application is to provide a label for the text box below it, which does not have a label
identification property of its own.

Open Eclipse and locate the ImageControls Java project.

Planning Support for the ImageLabel Control

In this section, you analyze the current UFT support of the ImageLabel control and the
adjacent text box, determine how you want UFT to recognize the controls, and fill in the
"Custom Class Support Planning Checklist" on page 211, accordingly.

1. Open UFT and load the Java Add-in and the custom toolkit support.

a. Open UFT. The Add-in Manager dialog box displays ImageControls (for which
you created support in the previous lesson) as a child of the Java Add-in in the
list of available add-ins. (If the Add-in Manager dialog box does not open, see
the HP Unified Functional Testing Add-ins Guide for instructions.)

b. Make sure that the check boxes for both Java and ImageControls are selected,
and click OK.

2. Run the SampleApp application.

HP UFT Java Add-in Extensibility (12.00) Page 206

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

In the Eclipse Package Explorer tab, right-click SampleApp. Select
Run As > Java Application. The SampleApp application opens:

EX =i

ClickTest Java
MERCURY " ==

3. Use the Object Spy to view the ImagelLabel properties.

a. InUFT, open a GUI test and select Tools > Object Spy or click the Object Spy
toolbar button - to open the Object Spy dialog box. Click the Properties tab.

b. In the Object Spy dialog box, click the pointing hand , then click the
image on the left in the SampleApp application.

HP UFT Java Add-in Extensibility (12.00) Page 207

Developer Guide

Chapter 7: Learning to Support a Custom Static-Text Control

The ImageLabel control is based on a custom class that UFT does not recognize.
Therefore, it recognizes the button as a generic JavaObject object named
ImagelLabel, and the icon shown is the standard JavaObject class icon. The label

identification property is empty:

o Ohbject Spy

VRO

Ohject hierarchy:

-7l

=4 Javalbject ; JRootPane
=4 JavaObject : JLayeredPane
-4 JavaObject : JPanel
E-4 JavaObject : Box
-4 JavaObject: Box

Properties Dperatinns]

‘. JavaObject : ImageLabel

1 Mative @ |dentification
Properties Yalues -
Y= dizgplayed 1
U= enabled 1
Uy focused 1
o fareground 332233
U= height a0
W index
é@ labe]
U labeled containers path o

Selection:
label

D escription:;

Dezcriptions are available only for test object operations.

Cloze

4. Use the Object Spy to view the text box properties.

a. In the Object Spy dialog box, click the pointing hand , then click the text

box in the SampleApp application.

HP UFT Java Add-in Extensibility (12.00)

Page 208

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

The text box is based on a standard TextField class; therefore UFT recognizes it
as a JavaEdit test object. However, the label identification property is empty
and UFT does not recognize any adjacent controls as static-text controls.
Therefore, the JavaEdit test object is named according to its class name—

TextField:
£ Object Spy (-5] mESa]
(& |EeE B
Object hierarchy:

El---E Javawindow : Sampledpp
E-& JavaObject : JRootPane
B JavalObject : JLaveredPane
=-d Javalbject : JPanel
=14 JavaObject : Bax

------ <7 JavaEdit: TextField

Properties | Dperatinns]

) Mative @ |dentification
Properhies Yalues -
U= end_selection 1] il
U= focuzed 1] i
e fareground 333333
U=t hieight 24
U= index
T label
W labeled_containers_patk
W= logical_location
T path TestField:B ox:Panel. L aver -
Selection:
Clazs Mame
D ezcription:

Descriptions are available only for test object operations.

Cloze

b. Close the Object Spy.

HP UFT Java Add-in Extensibility (12.00) Page 209

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

5. Complete the custom class support planning checklist.

The ImageLabel control is a static-text control. You want UFT to recognize this fact,
and use the ImagelLabel's label property as attached text for adjacent controls
that do not have their own label property.

The ImageLabel displays an image file optionally accompanied by additional text.
When the control does not display any text, the name of the test object that
represents the control can be based on the name of the image file that the control
displays.

The ImageLabel itself does not have any additional identification properties or test
object methods that need to be identified in UFTGUI tests. In addition, there is no
need to record any operations on the ImageLabel control.

On the next page, you can see the checklist, completed based on the information
above.

HP UFT Java Add-in Extensibility (12.00) Page 210

Custom Class Support Planning Checklist

E

Custom Class Support Planning Checklist

1 Does the custom class have a superclass for which UFT custom support is
not yet available? No

E

If so, should I first extend support for a control higher in the hierarchy? N/A

1 Do I have an application that runs the custom control on a computer with
UFT installed? Yes

1 The sources for this custom control class are located in:
an Eclipse project called ImageControls

4 Which existing Java test object matches the custom control?
JavaStaticText

1 If none, create a new Java test objectclass named: N/A
« New test object class extends: (Default—JavaObject)
« Icon file location (optional):
« Identification property for description:

« Default test object method:

=

Is the custom control a top-level object? No

=

Is the custom control a wrapper? No

[41 Specify the basis for naming the testobject: its text or (if there
is no text) its image file name

4 List the identification properties to support, and mark default checkpoint
properties:

nothing special

HP UFT Java Add-in Extensibility (12.00) Page 211

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

=

Custom Class Support Planning Checklist

4 List the test object methods to support (include arguments and return values
if required):

nothing special

=

Provide support for recording? (AWT-based only) No

B4 Ifso, list the events that should trigger recording: N/A

Creating the UFT Custom Static-Text Support
Class

In the lesson "Learning to Support a Simple Control”, you created the
ImageControlsSupport UFT Java Add-in Extensibility project (as described on page 172).
In that project, you created the custom support class for the ImageButton control.

In this section you create another custom support class in the same project to support
the ImageLabel control.

In most cases, static-text controls do not have identification properties or test object
methods that need to be identified in UFT tests. In addition, there is usually no need to
record any operations on a static-text control. Therefore, the UFT Java Add-in
Extensibility Eclipse plug-in provides a special wizard for creating support classes for
static-text controls.

In this wizard, all you have to do is select the ImageLabel class to be supported as a
static-text control. The wizard creates the new support class with all the required
methods. After the wizard creates the new support class, you modify the methods that
the wizard creates to complete the support.

1. Open the New UFT Custom Static-Text Support Class wizard.

a. Inthe Eclipse Package Explorer tab, select the UFT Java Add-in Extensibility
project, ImageControlsSupport. Select File > New > Other. The New dialog box

HP UFT Java Add-in Extensibility (12.00) Page 212

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

opens.

b. Expand the Unified Functional Testing folder and select UFT Custom Static-
Text Support Class.

Select a wizard

€5 Interface
@ Java Praoject
& Jawa Project from Existing Ant Buildfile
‘f.t..:ﬁ}-' Plug-in Project
ﬁ Product Configuration
+-[2 Java
#]-[= Plug-in Development
== Unified Functional Testing
) UFT Cuskom Static-Text Suppork Class
E_"ﬂ'- UFT Custom Support Class
a UFT 1ava add-in Extensibility Project
+-[= Simple

c. Click Next. The Custom Class Selection screen opens.

HP UFT Java Add-in Extensibility (12.00) Page 213

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

2. Select the custom class to support, and set the options for the support class.
a. Expand the com.demo package and select the ImageLabel class.

&= Mew UFT Custom Static-Text Support Class

Custom Static-Text Class Selection

Select the custom class you want QuickTest to recognize as a Java Stakic-Text 'E.T
class, and set the relevant options For the corresponding support class,

= com.demo
E m TmageCantrol
ST 1rvageL abel
H} com.sample Iél--cnm.demn.lmageCnntrnl
com.demo. ImageLabel

I™ | Gontrafs of Eiis class FEprEsEnt bapEEyE ahects

[

Since you are creating support for a class in the ImageControls custom toolkit,
the Custom toolkit tree pane looks similar to the one in the lesson "Learning to
Support a Simple Control", as shown in "Creating a New UFT Custom Support
Class". The Custom toolkit tree represents the list of classes that you can
select to support. The ImageButton class does not appear in this list because
you already created support for it.

In the Custom class inheritance hierarchy pane, you can see the hierarchy of
the ImageLabel class you have selected. It extends the ImageControl class,
which is part of the same toolkit, and is therefore shown in black.

HP UFT Java Add-in Extensibility (12.00) Page 214

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

The ImageControl custom class is not supported, but the Canvas class does
have a matching support class, provided in the
com.mercury.ftjadin.support.awt.cs package. Therefore the Base support
class for the ImagelLabel support class you are creating is CanvasCS. This is the
class that your new support class extends.

The Controls of this class represent top-level objects option is disabled
because the ImagelLabel class is not a container class.

The name for the ImageLabel support class is, by default, ImageLabelCS. It is
recommended to keep the default name.

b. Click Finish. The Custom Static-Text Support Class Summary screen opens.
3. View the custom static-text control support class summary.
Review the planned content of the custom static-text support class, and click OK.

& MNew UFT Custom Static-Text Support Class |

Custom Static-Text Support Class Summary

i ' T
Review and corfirm the struckure of the custom support class, |8

[}

General :l
Custom class: com.demolmagelabel

Support class: ImagelabelCs

Baze zupport clazs: com.mercury ftjadin.gtzupport awt.cs Canvascs

" Ne

(7] (04 I Cancel |

HP UFT Java Add-in Extensibility (12.00) Page 215

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

The following changes are made in the ImageControlsSupport project:

m The ImageControls.xml file is modified to map the ImageLabel custom class to
its support class—ImageLabelCS.

m A new UFT custom support class, ImageLabel(S, is created in the
ImageLabelCS.java file in the
com.mercury.ftjadin.qtsupport.imagecontrols.cs package. The file is opened
and displayed in a tab in the right pane.

For a detailed explanation of the content of the ImageLabelCS class, see
"Understanding the New Custom Static-Text Support Class" below.

The asterisk (*) next to the ImageLabelCS file name (in the ImageLabelCS tab)
indicates that it has not been saved. The changes made by the wizard are
codependent, and must be saved to prevent discrepancies. Select File > Save, or
click the Save button.

Understanding the New Custom Static-Text
Support Class

Examine the contents of the new ImageLabelCS.java file. The ImageLabelCS custom
static-text support class extends CanvasCS.

HP UFT Java Add-in Extensibility (12.00) Page 216

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

In the new support class, the wizard created stubs for the following methods:
« class_attr. Returns the string static_text.

This informs UFT that the ImageLabel control is a JavaStaticText object. This means
that the UFT mechanism that searches for attached text can use the ImageLabel's
label property as attached text for adjacent controls.

« label_attr. Returns the label property of the superclass (in this case CanvasCS).

This method defines ImageLabel's label identification property. The text in this
identification property is used for adjacent controls' attached text. The wizard
includes a comment in this method stub, reminding you to implement it to return
the appropriate text.

« tag_attr. This method supports the tag property, which represents the name of the
static-text test object.

In the lesson "Learning to Support a Simple Control", in the section "Changing the
Name of the Test Object"”, you learned how the tag property is implemented. The
tag_attr method in the support class that the wizard creates returns super.tag
attr(obj) with the added suffix (st). This means that the name for the static-
text test object is derived by using the same logic as for reqular test objects (label,
attached text or unqualified class name), and adding (st) at the end.

o value_attr. Returns the label property.

The value property represents a control's test object state. For static-text controls,
the label property adequately represents this state.

For more information on these special identification properties, see "Common
Identification Property Support Methods" on page 61.

Deploying and Testing the New Custom Static-
Text Support Class

In this section, you use the UFT Deploy Toolkit Support command in Eclipse to deploy
the ImageControls toolkit support to UFT. This adds the ImageLabel support to UFT, in

HP UFT Java Add-in Extensibility (12.00) Page 217

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

addition to the ImageButton control whose support you deployed previously. The
ImageLabel support is not yet complete, but you can already test the support created
up to this point.

1. Deploy the ImageControls toolkit support to UFT.

In the Eclipse Package Explorer tab, select the ImageControlsSupport project.

Click the Deploy Toolkit Support ﬁ button, or select
UFT > Deploy Toolkit Support. In the confirmation messages that open, click Yes
and then OK.

The toolkit configuration file and the test object configuration file are copied to the
relevant folders in your UFT installation folder. The custom support will be
available the next time you start the custom application. (The test object
configuration file was not modified. Therefore, it is not necessary to reopen UFT.)

For more information on deploying custom toolkit support, see "Deploying and
Running the Custom Toolkit Support" on page 77.

2. Test the new custom support.

Run the application and view the ImagelLabel control and text box with the UFT
Object Spy, as described in "Planning Support for the ImageLabel Control" on
page 206.

Note: UFT establishes its connection with an application when the application
opens. Therefore, although you can use an open UFT session (running with the
ImageControls toolkit support loaded) to test the changes, you must close the
SampleApp application, and run it again.

UFT recognizes the ImageLabel as a JavaStaticText object named ImageLabel(st).

- Javalbject : JRootPane
=-d JavaObject : JLayeredPane
- JavaObject : JPanel
E-4 JavaObject : Box
- JavaObject : Box

------ Bl | =vaStaticT ext : Imagelabel(st)

HP UFT Java Add-in Extensibility (12.00) Page 218

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

CanvasCS, which ImageLabelCS extends, does not provide support for the label
identification property. Therefore, ImageLabel's label property is empty (as is its
attached text property). As a result, the superclass tag property returns
ImageLabel's class name, and ImageLabel's tag property is ImageLabel(st).

UFT still identifies the text box as a JavaEdit test object named TextField (its class
name) because the label property of the adjacent static-text object, ImageLabel,
is still empty.

ElD Javawindow : Sampledpp
=& JavaObject : JRootPane
=l-dp Javal bject : JLaperedFPane
=& Javalbject : JPanel
=& JavaObject : Box
e ? JavaEdit: TestField

Completing the Support for the Static-Text
Control

In this part of the lesson, you implement the label_attr method in the ImageLabelCS
class to return the name of the image file used for the ImageLabel. This enables UFT to
use the ImagelLabel's label property as attached text for adjacent controls. In addition,
implementing the ImageLabel's label property provides the ImageLabel test object
with a more specific name.

1. Implement the label_attr method in the ImagelLabelCS class.

a. In Eclipse, in the ImageLabelCS.java file, in the label_attr method stub, replace
return super.label attr(obj); with the following code:

ImagelLabel il = (ImagelLabel)obj;

String res = il.getText();

if(res != null && res.length() > 0)
return res;

res = il.getImageString();

HP UFT Java Add-in Extensibility (12.00) Page 219

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

if(res == null || res.length() == @)
return null;
int last = res.lastIndexOf('/");
if(last == -1)
return res;
return res.substring(last+1);

The label identification property returns the text on the label (if it exists) or the
name of the image file used for the ImageLabel (without the full path).

b. Click the Save button, or select File > Save to save your changes.

Note: You do not have to deploy the toolkit support to UFT again because
you changed only Java class files and not configuration files.

2. Test the new custom support.

Run the application and view the ImagelLabel control and the text box with the UFT
Object Spy, as described in "Planning Support for the ImageLabel Control" on
page 206.

Note: You did not modify the test object configuration file. Therefore, you can
use an open UFT session (running with the ImageControls custom toolkit
support loaded). However, you must close the SampleApp application and run it
again, for the changes you made in the custom support to take effect.

HP UFT Java Add-in Extensibility (12.00) Page 220

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

UFT now recognizes the ImageLabel as a JavaStaticText test object named UFT

Java(st), with the label property UFT Java.

r.:

2 Object Spy [5] Sl
(& SR G
Object hierarchy:

=4 Javalbject - JRoatPane
=-dp JavalObject : JLaveredPane
-4 Javalbject : JPanel
-4 Javalbject - Bax
=4 Javalbject : Baox

Properties Dperatinns]

(7 Mative @ |dentification
Properties Yalues -
W focuzed 0 7
Ul fareground 332233 e
it height 0]
il index
ﬁ label | UFT Java
Ul labeled_containers_path
41 logical_location
BT path Imanel abel:Box:B ox] Panel L
Selection:
label
Drescription:

Dezcnptionz are available only for test object operations.

Cloze

HP UFT Java Add-in Extensibility (12.00)

Page 221

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

UFT now recognizes the text box as a JavaEdit test object named UFT Java. The
label property of the JavaEdit test object is empty. The ImageLabel's label
property provides the text for the JavaEdit's attached text property, which is used
as the test object name:

i e

2 Object Spy @
(& JM&R

Object hierarchy:
E||:| JavaWindow : Samplefpp
El- & JavaObject : JRootPane
- & JavaObiject : JLayeredPane
- #k JavaObject : JPanel
=14 JavaObject : Box

Properties | Operations |

(7 Mative @ |dertification
Properties Yalues -

Ul Class Mame JavaEdit

4l abs x 3

v abs v 72

Ul attached texd QuickTest Java

Ul background white

4T caret_position 0

9T class description edit

U1y class path jgva.awt. TextFieldjava.ant. | 7
Selection:

QuickTest Java

Dezcrnption:

Dezcriptions are available only for test object operations.

Cloze

Note: If you modify the SampleApp application and remove the line
imagelb.setText("QuickTest Java");, the ImageLabel will not display any
text. UFT will then recognize the ImageLabel as a JavaStaticText test object named
mercury.gif(st), with the label property mercury.gif. UFT will recognize the text
box as a JavaEdit test object named mercury.gif.

HP UFT Java Add-in Extensibility (12.00) Page 222

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

The ImageLabel static-text custom control is now fully supported, according to the
specifications you determined when planning your custom support. The support for the
ImageControls toolkit is now complete. You can find a ready-made example of this
support in the

<UFT Java Add-in Extensibility SDK installation
folder>\samples\ImageControlsSupport folder. (If you deploy this example manually,
you must compile the Java classes before deploying.)

Optimizing the ImageControls Toolkit Support

Note that the implementation you used for the label identification property in the
ImageLabel class is very similar to the implementation of the label identification
property in the ImageButton class. Since both of these classes extend the ImageControl
class, it might have been preferable to implement support for the label identification
property in a support class for the ImageControl (ImageControlCS).

This means that when planning support for the ImageButton and ImageLabel controls,
the answer to the second question in the "Custom Class Support Planning Checklist" on
page 211 would have been Yes (I should first extend support for a control higher in the
hierarchy). ImageButtonCS and ImageLabelCS would then extend ImageControlCS, and
in ImageLabelCS you would fine-tune the label property by overriding the inherited
label_attr method.

In the following sections you modify the ImageControls toolkit support set to prevent
the duplicate implementation of the label_attr method. The changes do not affect the
functionality of the support. You create the ImageControlCS support class and modify
ImageButtonCS and ImageLabelCS to extend ImageControlCS.

HP UFT Java Add-in Extensibility (12.00) Page 223

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

Creating Support for the ImageControl Custom Class

In this section, you create a custom support class for the ImageControl class in the
ImageControlsSupport project.

1. Open the New UFT Custom Support Class wizard.

a. Inthe Eclipse Package Explorer tab, select the new UFT Java Add-in
Extensibility project, ImageControlsSupport. Select File > New > Other. The
New dialog box opens.

b. Expand the Unified Functional Testing folder, select UFT Custom Support
Class and click Next. The Custom Class Selection screen opens.

HP UFT Java Add-in Extensibility (12.00) Page 224

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

2. Select the custom class to support, and set the options for the support class.

a. Expand the com.demo package and select the ImageControl class:

Mew UFT Custom Support Clazs

Custom Class Selection

Select the custom class you wank to support, and sek the relevant options for the 'E.T
corresponding suppart class,

= com.demo
m IrnageControl
- fF com.sample
com.demao, InageConkrol

I™ | Gontrafs of Eiis class FEprEsEnt bapEEyE ahects

| S|

In the Custom toolkit tree pane, you can see that the ImageControl class is the
only class in the com.demo package that is not yet supported.

In the Custom class inheritance hierarchy pane, you can see the hierarchy of
the ImageControl class you have selected. The ImageControl class extends
java.awt.Canvas, therefore the Base support class for the ImageControl
support class you are creating is Canvas(S.

Leave the default name, ImageControlCS, for the ImageControl support class.
b. Click Next. The Test Object Class Selection screen opens.

3. Select a test object class to represent the custom control.

HP UFT Java Add-in Extensibility (12.00) Page 225

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

You are creating the ImageControlCS support class only to use it as a base support
class for other support classes, not to support actual controls. Therefore, it is not
important to which test object class you map the ImageControl custom class.

& Mew UFT Custom Support Clazs

Test Object Class Selection

Map the custom class to a UFT test object class.

Jawalbject |_

ERebEnIN & s LS e |_"

Perform the following:

a. Select Same as base support class. This maps the ImageControl custom class
to whichever test object class is mapped to java.awt.Canvas. No direct mapping
takes place. The new support class does not implement a to_class_attr method,
but inherits it from the base support class.

b. Click Next. The Custom Support Test Object Identification Properties screen
opens.

4. Determine the set of test object identification properties to implement in
ImageControlCS.

HP UFT Java Add-in Extensibility (12.00) Page 226

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

This screen displays the identification properties supported by the base support
class you are extending, as well as additional properties that are defined in the test
object class you selected, but are not yet supported.

& MNew UFT Custom Support Class

Custom Support Test Object Identification Properties

Determine the set of test object identification properties that you wank to support for your custom contraol,

abs_x
abs_y
attached_text

background
dass_path
displayable
displayed
enabled
focusable
focused
foreground
handle

O
O&
0=
0=
O
O&
0=
0=
O
O&
0=
0=
O Eihei

The left pane displays all of the identification properties whose support is
implemented by CanvasC(S, and therefore inherited by the new ImageControlCS
support class. It enables you to select properties whose support you want to
override with new functionality.

In the Test Object Class Selection screen (on page 226), you did not select a specific
test object class. Therefore, the wizard does not know which test object class is
mapped to the ImageControl custom control. As a result, no identification
properties are displayed in the right pane.

a. Select the label property by clicking its check box. After you finish generating
the support files using the wizard, you will override the existing support for this
property with a custom implementation that matches the needs of the custom

HP UFT Java Add-in Extensibility (12.00) Page 227

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

control.
b. Click Next. The Custom Support Test Object Methods screen opens.
5. Determine the set of test object methods to implement in ImageControlCS.

This screen displays the test object methods defined in the test object class you
selected.

& Mew UFT Custom Support Class

Custom Support Test Object Methods

Determine the set of test object methods that vou want ko support For vour custom conkrol,

=
’ifﬁ
Ii
li
li

In the Test Object Class Selection screen (on page 226), you did not select a specific
test object class. Therefore, the wizard does not know which test object class is
mapped to the ImageControl custom control. As a result, no test object methods
are displayed in this screen.

a. Consider that the ImageControl custom control does not have any test object
methods that need to be supported.

b. Click Next. The Custom Control Recording Support wizard screen opens.

HP UFT Java Add-in Extensibility (12.00) Page 228

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

6. Determine the set of events for which to listen, to support recording on the
ImageControl control.

This screen displays the event listeners implemented by the support class you are
extending. It enables you to select event handler methods whose implementation
you want to override with new functionality and to add new event listeners to
implement.

& New UFT Custom Support Class

Custom Control Recording Support

Determine the set of events that trigger recording.

Dgfocus(}ained (FocusEvent arg0)
Dgfocusmst {FocusEvent argl)
ngeyPressed (KeyEvent argd)
O E kevReleased (keyEvent argl)

O & keyTyped (KeyEvent argl)

In the left pane, you can see the listeners implemented by CanvasCS. You do not
have to override any of these for the ImageControlCS custom support class.

a. Consider that you are creating the ImageControlCS support class only to use it
as a base support class for other support classes, not to support actual controls.
Therefore, it is not necessary to support recording on ImageControl controls.

b. Click Finish. The Custom Control Support Class Summary screen opens.

HP UFT Java Add-in Extensibility (12.00) Page 229

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

7. View the custom control support class summary.
Review the planned content of the custom support class, and click OK.

I

Mew UFT Custom Support Class

Custom Support Class Summary
Feview and canfirm the skruckure of the cuskam support class, E?

General

Custom class: com.demo ImageControl

Support clazs: ImageControlZs

Baze zuppott class: commercury ftjadin.gtzupport awt.cs Canvascs

Test Object Identification Properties to Override
[zkel

Additional Test Object Identification Properties to Implement
Test Object Methods to Override

Additional Test Object Methods to Implement

Event Handler Methods to Override

Additional Event Handler Methods to Implement

Selected Optiong

HP UFT Java Add-in Extensibility (12.00) Page 230

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

The following changes are made in the ImageControlsSupport project:

m The ImageControls.xml file is modified to map the ImageControl custom class
to its support class—ImageControlCS.

m A new UFT custom support class, ImageControlCS, is created in the
ImageControlCS.java file in the
com.mercury.ftjadin.qtsupport.imagecontrols.cs package. The file is opened
and displayed in a tab in the right pane.

The ImageControlCS class extends Canvas(S and contains only one method
stub—label_attr.

The asterisk (*) next to the ImageControlCS file name (in the ImageControlCS tab)
indicates that it has not been saved. The changes made by the wizard are
codependent, and must be saved to prevent discrepancies. Select File > Save, or
click the Save button.

8. Implement the label_attr method in the ImageControlCS class.

a. In Eclipse, in the ImageControlCS.java file, in the label_attr method stub,
replace return super.label attr(obj); with the following code, so that
it returns the name of the image file used for the ImageControl (without the full
path):

ImageControl ic = (ImageControl)arge;
String res = ic.getImageString();
if(res == null || res.length() == @)
return null;
int last = res.lastIndexOf('/");
if(last == -1)
return res;
return res.substring(last+1);

b. Click the Save button, or select File > Save to save your changes.

HP UFT Java Add-in Extensibility (12.00) Page 231

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

Modifying the ImageControls Toolkit Support Hierarchy

The hierarchy of the support classes must match the hierarchy of the custom classes.
Now that the ImageControl class is mapped to the support class ImageControlCS, the
support classes for the ImageControl descendants must extend ImageControlCS.

Both ImageButtonCS and ImageLabelCS inherit label_attr method. ImageLabelCS needs
to override this method to fine-tune its support of the label property.

1. Modify the ImageButtonCS class to extend ImageControlCS.

a. Open the ImageButton(S.java file in the ImageControlsSupport project in
Eclipse, and locate the ImageButtonCS class signature:

public class ImageButtonCS extends CanvasCS implements
ActionListener

b. Modify the signature so that ImageButtonCS extends ImageControlCS:
public class ImageButtonCS extends ImageControlCS implements

ActionListener

c. Remove the label_attr method from the ImageButtonCS class.
d. Save the ImageButtonCS.java file.
2. Modify the ImageLabelCS class to extend ImageControlCS.

a. Inthe ImageLabelCS.java file, replace public class ImagelLabelCS
extends CanvasCS with public class ImagelLabelCS extends
ImageControlcCsS.

b. Replace the following lines in the label_attr method in the ImageLabelCS class:

ImagelLabel il = (Imagelabel)obj;

res = il.getImageString();

if(res == null || res.length() == @)
return null;

HP UFT Java Add-in Extensibility (12.00) Page 232

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

int last = res.lastIndexOf('/");
if(last == -1)

return res;
return res.substring(last+1);

with:

return super.label attr(obj);

c. Save the changes.

Deploying and Testing the New ImageControls Toolkit
Support

When you created the new ImageControlCS support class, the wizard modified the
ImageControls.xml file to map the ImageControl class to the ImageControlCS support
class. Therefore, you must redeploy the ImageControls toolkit support for your changes
to take effect.

1. Deploy the ImageControls toolkit support to UFT.

In the Eclipse Package Explorer tab, select the ImageControlsSupport project.

Click the Deploy Toolkit Support ﬁ button, or select
UFT > Deploy Toolkit Support. In the confirmation messages that open, click Yes
and then OK.

2. Test the modified custom support.

Repeat the procedures in "Planning Support for the ImageButton Control" on

page 167 and "Planning Support for the ImageLabel Control" on page 206, to re-run
the SampleApp application and to ensure that the support for ImageButton and
ImageLabel is functioning properly.

Note: You did not change any test object configuration files, therefore you can
use an open session of UFT (running with the ImageControls custom toolkit

HP UFT Java Add-in Extensibility (12.00) Page 233

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

support loaded).

The changes you made to the custom toolkit support set do not affect the way UFT
recognizes and tests the ImageLabel and ImageButton controls. However, the
support for the label identification property for both of these controls is now
inherited from the ImageControlCS class. If additional custom classes that extend
ImageControl are created, their label property will be similarly supported on UFT
with no additional effort required.

You can find a ready-made example of the improved support for the ImageControls
toolkit in the

<UFT Java Add-in Extensibility SDK installation
folder>\samples\ImageControlsSupportAdvanced folder. (If you deploy this example
manually, you must compile the Java classes before deploying.)

Lesson Summary

In this lesson you created support for the ImageLabel control, allowing UFT to recognize
it as a static-text object and use its label property as attached text for adjacent
controls.

HP UFT Java Add-in Extensibility (12.00) Page 234

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

You then created support for the ImageControl class to improve the flexibility of the
toolkit support, and modified the hierarchy of the ImageControls toolkit support set
accordingly.

« You learned how to create a support class for a custom static-text control, using the
following identification property support methods:

m class_attr
m tag_attr

= label_attr
= value_attr

o You used the Same as base support class option in the Test Object Class Selection
screen, and learned about the effects of that selection.

Where Do You Go from Here?
For more information on the identification properties that you used in this lesson, see
"Common Identification Property Support Methods" on page 61.

In the next lesson you learn how to create support for a custom control that needs to
be mapped to a new test object class. You will define special identification properties
and test object methods for the new test object class, and implement support for them.

HP UFT Java Add-in Extensibility (12.00) Page 235

Chapter 8: Learning to Support a Complex
Control

In this lesson you create support for the AllLights control within the Javaboutique

toolkit. This is a complex control, with unique behavior, that requires a new test object

class definition.

In the lesson "Learning to Support a Simple Control" on page 163, you learned to create
support for a simple custom control. You are now familiar with the basics of Java Add-in

Extensibility, therefore this lesson explains only the more advanced information.

This lesson guides you through the following stages:

Preparing for This Lesson
Planning Support for the AllLights Control
Creating the UFT Java Add-in Extensibility Project
Creating the New UFT Custom Support Class
Understanding the New Custom Support Files
Deploying and Testing the New Custom Toolkit Support
Implementing Support for the AllLights Control

LeSSON SUMMIAIY

HP UFT Java Add-in Extensibility (12.00) Page 236

Preparing for This Lesson

Before you extend UFT support for a custom control, you must have access to its class
and an application that runs it.

In this section, you create an Eclipse project containing the Javaboutique custom toolkit
classes. The AllLights class can run as an Applet, so there is no need for an additional
application containing the custom control.

To create a new Java project with the Javaboutique sample in Eclipse:

—

. Run Eclipse and select File > New > Project. The New Project dialog box opens.
2. Select Java Project and click Next. The New Java Project dialog box opens.

3. Enter Javaboutique in the Project name box.

4. Select the Create project from existing source option.

5. Click the Browse button and browse to the <UFT Java Add-in Extensibility SDK
installation folder>\samples\Javaboutique\src folder. Click OK to return to the
New Java Project dialog box.

6. Click Finish. A new Java project is created with the Javaboutique sample source
files. The new project, named Javaboutique, is displayed in the Package Explorer
tab.

Note: The steps for creating a new project in Eclipse may vary, depending on the
Eclipse version that you use.

After you create the Javaboutique project, expand the project to view its content. The
Javaboutique\src package folder contains the org.boutique.toolkit package. This
package contains three custom controls: AllLights, AwtCalc and ETextField.

In this lesson, you create the UFT Java Add-in Extensibility project for the Javaboutique
custom toolkit and the support class for AllLights.

HP UFT Java Add-in Extensibility (12.00) Page 237

Developer Guide
Chapter 8: Learning to Support a Complex Control

You can find a ready-made example of the support for AllLights and for AwtCalc in the
<UFT Java Add-in Extensibility SDK installation
folder>\samples\JavaboutiqueSupport folder. (If you deploy this example manually,
you must compile the Java classes before deploying.)

Run the AllLights application to become familiar with the behavior of the AllLights
control:

In the Eclipse Package Explorer tab, right-click the Allights.java class in the
org.boutique.toolkit package and select Run As > Java Applet. The AllLights
application opens:

& Applet Viewer: org.boutique.toolki... [M[=] E3

Applet started.

Click different locations in the frame:

o Clicking in different parts of the grid area turns different lights on (or off), according
to an internal set of rules, updating the LightOn and LightOff counters.

o Clicking the RESTART button turns off all of the lights. The LightOn and LightOff
counters are updated accordingly.

o Clicking in other areas has no effect.

« The object of the game is to turn on all of the lights, at which point a congratulation
message is displayed.

HP UFT Java Add-in Extensibility (12.00) Page 238

Developer Guide
Chapter 8: Learning to Support a Complex Control

Planning Support for the AllLights Control

In this section, you analyze the current UFT support of the AllLights control, determine
the answers to the questions in the "Understanding the Custom Class Support Planning
Checklist" on page 93, and fill in the "Custom Class Support Planning Checklist " on
page 244, accordingly.

The best way to do this is to run the application containing the custom control, and
analyze it from a UFT perspective using the Object Spy, Keyword View, and Record
option:

1. Run the AllLights application and open UFT.

a. If the AllLights application is already running, select Applet > Restart from the
application toolbar so the application looks like the image shown above.
Otherwise, right-click AllLights.Java in the Eclipse Package Explorer tab, and
select Run As > Java Applet to runiit.

b. Open UFT and load the Java Add-in.
2. Use the Object Spy to view the AllLights properties and methods.

a. InUFT, open a GUI test and select Tools > Object Spy or click the Object Spy
toolbar button = to open the Object Spy dialog box. Click the Properties tab.

b. In the Object Spy dialog box, click the pointing hand , then click the
AllLights application.

HP UFT Java Add-in Extensibility (12.00) Page 239

Developer Guide
Chapter 8: Learning to Support a Complex Control

The AllLights control extends JavaApplet, for which UFT support is built in,
therefore it recognizes the application as a JavaApplet, named AllLights. The
icon shown is the standard JavaApplet class icon:

2 Object Spy

HVRICI

Object hierarchy:

R =

-1 1 Javafpplet : Mlllights

Properties Dperatinns]

T class_path

@ Mative 1 ldentification
Properties Yalues =
W=y Clasz Mame Javahpplet —
Yo absz_w 1030
Wy abs o 171
Wy attached test
W= background wihite
Y1 clazz description windaw
i
Iz
0

sun. applet Appletyiewesr jave

Uy developer name frarmell ;I
Selection:
Clazz Mame
Dezcrnption:
Dezcriptions are available only for test object operations.
Cloze

c. Close the Object Spy.

a.

3. Record operations on the AllLights control.

In UFT, select Record > Record and Run Settings to open the Record and Run

Settings dialog box. In the Java tab, select Record and run test on any open
Java application. If the Web Add-in is also loaded, click the Web tab and select

Record and run test on any open browser. Click OK.

HP UFT Java Add-in Extensibility (12.00)

Page 240

Developer Guide
Chapter 8: Learning to Support a Complex Control

b. Click the Record button or select Record > Record. Click on different locations
in the AllLights application: the grid, the RESTART button, and one of the
counters.

With each click, a new step is added to the test:

Item Ciperation | Yalue Documentation
v & Actionl
v [alLights
i AlllightsiClick 142,144, "LEFT "iClick the "AllLights" applet with the "LEFT" mouse button,
iL# alllights iClick 16,188,"LEFT" :Click the "AllLights" applet with the "LEFT" mouse button,

R allLights Click

c. Click the Stop button or select Record > Stop to end the recording session.

The Click operation on the AllLights JavaApplet is a generic click, with
arguments indicating the low-level recording details (x and y coordinates and
the mouse button that performed the click).

4. Determine the custom toolkit to which the AllLights control belongs.

When you extend UFT support for a control you always do so in the context of a
toolkit. For the purpose of this tutorial, three classes that extend AWT are grouped
to form the custom toolkit named Javaboutique: AllLights, AwtCalc, and ETextField.

In this lesson you create support for the Javaboutique toolkit, initially supporting
only the AllLights class.

5. Complete the custom class support planning checklist.

In this step you plan the required support for the AllLights control and summarize
the information in the support planning checklist.

a. Decide which custom class to support:

The AllLights custom class extends the Applet class, supported on UFT by
Applet(S.

HP UFT Java Add-in Extensibility (12.00) Page 241

Developer Guide
Chapter 8: Learning to Support a Complex Control

You want UFT to treat the AllLights as a special kind of Applet. You want it to
support the special operations it performs, and to recognize its properties.
Therefore it makes sense to create Extensibility support for this control.

b. Map a test object class to the custom control:

The JavaApplet test object class provides basic support for the AllLights control,
but does not support all of the necessary identification properties and test
object methods. Therefore you create a new test object class extending
JavaApplet, named AllLights and map it to the AllLights custom control.

c. Decide the details for the new test object class:

o The new test object class is represented by the icon file:
<UFT Java Add-in Extensibility SDK Installation
folder>\samples\Javaboutique\AllLights_icon.ico

o The identification properties used by default to uniquely define the test
object (label, class, and index) are sufficient.

o The default test object method is ClickLight.

o The new identification properties to support are: OnCount, OnList, and
GameOver. They should all be selected by default in the UFT Checkpoint
Properties dialog box.

d. Determine whether the control is a top-level object or a wrapper, and decide
how to name the test objects:

o AllLights controls are top-level objects, but not wrappers.
o The name of the test object itself should be Lights.

e. Determine the identification properties that need to be supported:

HP UFT Java Add-in Extensibility (12.00) Page 242

Developer Guide
Chapter 8: Learning to Support a Complex Control

o OnCount. Specifies the number of lights that are on, at the given moment.

o OnList. Lists the location of the lights that are on, at the given moment. The
lights are numbered 0 through 24, starting from the upper left corner and
numbering row by row. The list contains the numbers of the lights that are
on, each preceded by a space.

o GameOver. A Yes or No string, indicating whether all lights are on or not.
f. Determine the test object methods that need to be supported:

o ClickLight. Simulates clicking a specific light in the grid. This method
requires two arguments, Row and Column, specifying the location of the
light to click.

o Restart. Simulates clicking the Restart button.
g. Determine how to support recording:
o Override low-level mouse event recording.

o Listen for mouse events. Based on the location of the click, send a record
message to record ClickLight or Restart operations.

On the next page you can see the checklist, completed based on the information above.

HP UFT Java Add-in Extensibility (12.00) Page 243

Custom Class Support Planning Checklist

Custom Class Support Planning Checklist

4

1 Does the custom class have a superclass for which UFT custom support is
not yet available? No

4 ifso, should | first extend support for a control higher in the hierarchy? N/A

1 Do | have an application that runs the custom control on a computer with
UFT installed? Yes

1 The sources for this custom control class are located in:
an Eclipse project called Javaboutique

E

Which existing Java test object matches the custom control? None
[1 ifnone, create a new Java test object class named: AllLights
« New test object class extends: (Default—JavaObject) JavaApplet

« Icon file location (optional): <UFT Java Add-in Extensibility SDK
Installation folder>\samples\Javaboutique\AllLights_
icon.ico

« Identification property for description: label

o Default test object method: ClickLight

4 |s the custom control a top-level object? Yes

4 |s the custom control a wrapper? No

4 Specify the basis for naming the test object: Use the name: "Lights"

4 List the identification properties to support, and mark default checkpoint
properties:
OnCount, OnList, GameOver (all selected by default in
checkpoints)

HP UFT Java Add-in Extensibility (12.00) Page 244

Developer Guide
Chapter 8: Learning to Support a Complex Control

Custom Class Support Planning Checklist

4

1 List the test object methods to support (include arguments and return values
if required):
ClickLight(Variant Row, Variant Column)
Restart (no arguments)

B4 Provide support for recording? (AWT-based only) Yes

4 If so, list the events that should trigger recording:

MouseEvents

Creating the UFT Java Add-in Extensibility Project

In this section you create a new project for the Javaboutique toolkit support. Do this
using one of the wizards provided by the UFT Java Add-in Extensibility plug-in in
Eclipse:

1. Open the New UFT Java Add-in Extensibility Project wizard.

a. InEclipse, select File > New > Project. The New Project dialog box opens.
Expand the Unified Functional Testing folder and select UFT Java Add-in
Extensibility Project.

HP UFT Java Add-in Extensibility (12.00) Page 245

Developer Guide
Chapter 8: Learning to Support a Complex Control

= New Project

Select a wizard

g @ Java Project

& Java Project from Existing Ant Buildfile
@ Plug-in Project

E, s

F-(= Java

IE? Plug-in Developrment:

EE? Unified Functional Testing

IR UFT Java Add-in Extensibility Project

IE? Simple

b. Click Next. The UFT Java Add-in Extensibility Project screen opens. The details
on this screen may vary, depending on the version of Eclipse that you are using.

2. Enter the UFT Java Add-in Extensibility project details.

a. Inthe Project name box, enter JavaboutiqueSupport. Select Create
separate folders for sources and class files. (In earlier Eclipse versions this
option is named Create separate source and output folders.) For more
information on this dialog box, see the Eclipse Help.

HP UFT Java Add-in Extensibility (12.00) Page 246

Developer Guide
Chapter 8: Learning to Support a Complex Control

Mew UFT Java Add-in Extensibility Project

UFT lava Add-in Extensibility Project
Create a lUFT Java &dd-in Extensibility project in the workspace or in an external ﬁ
location.

JavaboutiqueSupport

b. Click Next. The Custom Toolkit Details screen opens.

HP UFT Java Add-in Extensibility (12.00) Page 247

Developer Guide
Chapter 8: Learning to Support a Complex Control

3. Enter the custom toolkit details.

In this screen, you provide the details of the Javaboutique toolkit so that the wizard
can generate a corresponding custom toolkit support set.

&= Mew UFT Java Add-in Extenzibility Project

Custom Toolkit Details

Enter the details For the custom kaalkit wou want ko suppart,
The support toolkit and its name are created based on these details,

HP UFT Java Add-in Extensibility (12.00) Page 248

Developer Guide
Chapter 8: Learning to Support a Complex Control

Enter the following details:
a. Inthe Unique custom toolkit name enter Javaboutique.

b. Inthe Support toolkit description box enter: Javaboutique toolkit
support.

c. The AllLights custom class extends an AWT component, so keep the default
selection AWT as the Base toolkit.

d. Inthe Custom toolkit class locations area, click Add project to select the
Eclipse Java project containing the custom classes for the Javaboutique toolkit.
The Select Project dialog box opens and displays the projects in the current
Eclipse workspace:

& Select Project

O '= ImageContrals
D EImageCnntmlsSuppnrt
O 1= 1avaboutique

e. Select the Javaboutique check box. Click OK. The Javaboutique project is added
in the Custom toolkit class locations box. Click Finish. The Project Summary
screen opens.

HP UFT Java Add-in Extensibility (12.00) Page 249

Developer Guide
Chapter 8: Learning to Support a Complex Control

4. View the Project Summary wizard screen.

Review the details of the project and click OK.

£ New UFT Java Add-in Extensibility Project |
Project Summary
Review and confirm the project properties. @
]
Project Information ;I

Project name: Javaboutique=upport

Location: CillavaExtensikiltysvorkspace_final

Project JRE Compliance: Default Compiler Compliance (1.4
Source root falder: src

Clazs root folder: bin

Toolkit Information

Custom toolkit name: Javaboutique

Support toolkit description: Javaboutigque toolkit support.
Baze toalkit Mame: AT

4 Ne

(7] (04 I Cancel |

The New UFT Java Add-in Extensibility project JavaboutiqueSupport is created, with
the basic packages and files of the custom toolkit support set:

m The package com.mercury.ftjadin.qtsupport.javaboutique, containing the new
toolkit support class file, JavaboutiqueSupport.java

m The package com.mercury.ftjadin.qtsupport.javaboutique.cs

m The Configuration folder, containing the TestObjects folder and the new toolkit
configuration file: Javaboutique.xml

Note: If you have more than one JRE installed on your computer, make sure that

HP UFT Java Add-in Extensibility (12.00) Page 250

Developer Guide
Chapter 8: Learning to Support a Complex Control

the Javaboutique project and the JavaboutiqueSupport project are using the
same JRE version. If they are not, modify the JRE for one of the projects so that
they use the same version.

Creating the New UFT Custom Support Class

In this section you create a custom support class for the AllLights control, as part of the
Javaboutique toolkit support. To do this, you use one of the wizards provided by the
UFT Java Add-in Extensibility plug-in in Eclipse. The details you specify in each wizard
screen reflect the decisions you made when planning the custom support. In the
subsequent sections you implement the methods that the wizard creates in this class.

Note: The following sections describe only the options in the wizard screens that
are relevant to this lesson. For a complete description of all options available in the
wizard screens, see "Using the UFT Java Add-in Extensibility Eclipse Plug-In" on
page 97.

1. Open the New UFT Custom Support Class wizard.

a. Inthe Eclipse Package Explorer tab, select the new UFT Java Add-in
Extensibility project, JavaboutiqueSupport. Select File > New > Other. The
New dialog box opens.

HP UFT Java Add-in Extensibility (12.00) Page 251

Developer Guide
Chapter 8: Learning to Support a Complex Control

Select a wizard

€5 Interface
@ Jawa Project
& Java Project from Existing Ant Buildfile
"E,:S\’-” Plug-in Project
= Product Configuration
(= C¥S
= lava
[

+]-[= Plug-in Developrment

== Unified Functional Testing

L] UFT Test Cuskom Static-Text Support Class
E-I'- UFT Cusktom Support Class

E UFT Java Add-in Extensibility Project
+-[= Simple

b. Expand the Unified Functional Testing folder and select UFT Custom Support
Class.

c. Click Next. The Custom Class Selection screen opens.

HP UFT Java Add-in Extensibility (12.00) Page 252

Developer Guide
Chapter 8: Learning to Support a Complex Control

2. Select the custom class to support, and set the options for the support class.
a. Select the AllLights class in the org.boutique.toolkit package.

& MNew UFT Custom Support Class

Custom Class Selection

Select the custom class vou want to suppart, and set the relevant options for the corresponding ,?T
support class,

EE} org, boutique, Eoolkit

o
- [J] ETextField
[J] Awrcalc

org, boutique, taalkit, AllLights

[Aighescs

The AllLights custom class extends java.applet.Applet, which is supported on
UFT. The AllLights support class therefore extends the Base support class:
com.mercury.ftjadin.qtsupport.awt.cs.AppletCS. As a result, the Controls of
this class represent top-level objects check box is selected by default.

b. Leave this check box selected, because you want UFT to recognize the AllLights
controls as the highest Java test objects in the test object hierarchy.

¢. Keep the default custom support class name: A11LightsCS.

d. Click Next. The Test Object Selection screen opens.

HP UFT Java Add-in Extensibility (12.00) Page 253

Developer Guide
Chapter 8: Learning to Support a Complex Control

3. Select a test object class to represent the custom control.

In this screen, you map the custom control to a test object class. In UFT GUI tests,
the custom class controls are represented by test objects of this test object class.

&= Mew UFT Custom Support Clazs

Test Object Class Selection

Map the custom class ko a UFT kest object class,

Javwalbject |_

ERebEI & BRI LS e |_’

In "Planning Support for the AllLights Control" on page 239, you decided to map the
AllLights custom control to a new test object class, AllLights, that extends
JavaApplet.

a. Select the New test object class option and enter A11Lights as the name for
the test object class.

b. In the Extends existing test object list, select JavaApplet. This list contains all
of the Java objects that UFT currently supports. If you define new test objects
for custom support, they are included in the list as well.

c. Click Next. The Custom Support Test Object Identification Properties screen
opens.

HP UFT Java Add-in Extensibility (12.00) Page 254

Developer Guide
Chapter 8: Learning to Support a Complex Control

4. Determine the set of test object identification properties to implement in
AllLightsCS.

This screen displays the identification properties supported by the base support
class you are extending, as well as additional properties that are defined in the test
object class you selected, but are not yet supported. It enables you to select
properties whose support you want to implement or override with new
functionality and to add new properties.

& Mew UFT Cuztom Support Clazs

Custom Support Test Object Identification Properties

Determine the set of test abject identification properties that vou wank to support For your custom conkral,

@ raximizable
@ maximized
attached_text @ mic_if _handles_windows
badkground £ minimizable
dass_path = minimized
displayable @] resizable
displayed
enabled
focusable
focused
foreground
handle

a. The left pane shows all of the identification properties whose support is
implemented by AppletCS, and therefore inherited by the new AllLightsCS
support class. For most of the properties in this list, the default implementation
is sufficient.

Select the label check box. After you finish generating the support files using
the wizard, you will override the existing support for this property with a
custom implementation that matches the needs of your custom control.

b. The identification properties displayed in the right pane are JavaApplet

HP UFT Java Add-in Extensibility (12.00) Page 255

Developer Guide
Chapter 8: Learning to Support a Complex Control

properties that are not supported by AppletCS. These properties are not
required for the AllLights support. Select them, click Remove, and then click
Yes to confirm.

These identification properties are part of the AllLights test object class
definition that is created based on the JavaApplet test object class. Removing
the properties from this list means that they are not supported for AllLights
controls. They will still appear in the list of identification properties shown in
the UFT Object Spy, but will have no value.

c. In"Planning Support for the AllLights Control” on page 239, you decided to
support new identification properties on AllLights test objects. In the next step
you add these properties to the list of additional properties required for the
test object class. After you finish generating the support files using the wizard,
you will implement support for these properties.

The identification properties are added to the test object class definition. This
means that the new properties appear in the list of identification properties in
UFT for all test objects of this class. This is the reason you are creating the new
AllLights test object class.

5. Add the new test object identification properties you want to implement in
AllLightsCS.

a. Click Add in the Additional properties required for test object class pane. The
Identification Property dialog box opens.

& ldentification Property |

Mame:

i I Cancel

b. In the Name box, enter OnCount. Click OK to add the new Identification
Property to the list.

HP UFT Java Add-in Extensibility (12.00) Page 256

Developer Guide
Chapter 8: Learning to Support a Complex Control

C. Repeat this procedure to add the properties OnList and GameQver.
d. Click Next. The Custom Support Test Object Methods screen opens.
6. Determine the set of test object methods to implement in AllLightsCS.

This screen displays the test object methods defined in the test object class you
selected. It enables you to select methods whose support you want to implement
or override with new functionality, and to add new methods.

& New UFT Custom Support Class
Custom Support Test Object Methods

Determine the set of kest object methods that vou want to support For your custom control,

5
=%
DEI Click {Object arg, String argl, String argZ, String args)

|:||§| DblClick {Object arg0, String argl, String argz, String arga) Ii
|:||§| MouseDrag (Object arg0, String argl, String argz, String arg3,

Dgl Twpe (Object argQ, String argl)

The left pane shows all of the test object methods (defined in the test object class
you selected) whose support is implemented by AppletCS, and therefore inherited
by AllLightsCS. There is no need to select any methods to override.

The right pane displays the test object methods that are defined for the AllLights
test object class, but are not supported by AppletCS. There are no such methods
currently defined.

In "Planning Support for the AllLights Control" on page 239, you decided to support
new test object methods on AllLights test objects. You now need to add these

HP UFT Java Add-in Extensibility (12.00) Page 257

Developer Guide
Chapter 8: Learning to Support a Complex Control

methods to the list of additional test object methods required for the test object
class. After you finish generating the support files using the wizard, you will
implement support for the methods you add.

The test object methods are added to the existing test object class. This means
that the new methods appear in UFT for all test objects of this class, regardless of
whether or not they are supported for these objects. In a UFT GUI test, if you call a
test object method for an object, and that method is not supported, a run-time
error occurs. This is the reason you are creating the new AllLights test object class.

a. Click Add in the Additional test object methods required for test object class
pane. The Test Object Method dialog box opens.

& Test Object Method

filelelifs

HP UFT Java Add-in Extensibility (12.00) Page 258

Developer Guide
Chapter 8: Learning to Support a Complex Control

o In the Method Name box, enter: Restart. The Restart test object method
does not require any arguments other than the mandatory obj (Object) that
represents the custom control.

o Leave the Method returns a string value check box cleared. This method
returns only a return code.

o In the Description box, enter: Clicks the RESTART button.
o In the Documentation box, enter: Click the RESTART button.

o Click OK to close the Test Object Method dialog box and add the Restart
method to the list.

b. Add another test object method by clicking Add once again. In the Test Object
Method dialog box that opens, perform the following:

HP UFT Java Add-in Extensibility (12.00) Page 259

Developer Guide
Chapter 8: Learning to Support a Complex Control

o Inthe Method Name box, enter: ClickLight.
o Add the Row and Column arguments to the ClickLight method:

o In the Arguments area, click Add. The Test Object Method Argument dialog
box opens.

& Teszt Object Method Argument Ed

]

e E sl e

In the Name box, enter: Row.

In the Type box, select Variant. (If you select String, then when you add
steps in UFTGUI tests with the ClickLight method, you have to enclose the
row number argument in quotes.)

Leave the Mandatory argument check box selected.

Click OK to close the Test Object Method Argument dialog box and add the
Row argument to the list of arguments for the ClickLight test object method.

o Repeat this procedure to add the Column argument to the list.
o Leave the Method returns a string value check box cleared.
o In the Description box, enter: Clicks the specified light.

o In the Documentation box, enter: Click the light in row <Row>
column <Column>. Enter the <Row> and <Column> arguments in the

sentence by clicking . and selecting the relevant argument. The final text
in the Documentation box will be: Click the light in row %al
column %a2.

HP UFT Java Add-in Extensibility (12.00) Page 260

Developer Guide
Chapter 8: Learning to Support a Complex Control

o Click OK to close the Test Object Method dialog box and add the ClickLight
method to the list.

c. Click Next. The Custom Control Recording Support wizard screen opens.

7. Determine the set of events for which to listen, to support recording on the
AllLights control.

This screen displays the event listeners supported by the support class you
selected to extend. It enables you to select listeners whose implementation you
want to override with new functionality and to add new event listeners to

implement:

& New UFT Custom Support Class

Custom Control Recording Support

Determine the set of events that trigger recording,

DgcomponentHidden {ComponentEvent argl)
Dgcomponentrﬂoved {ComponentEvent argl)
DEcomponentResized (ComponentEvent argd)
D{ElcomponentShown {ComponentEvent argl)
Dgfocus(}ained ({FocusEvent argl)
D{Elfocusmst ({FocusEvent argd)
DEkﬁyPressed ({KeyEvent argl)
DEkﬁyReleased (KkevEvent argl)
DEkﬁyTyped (KeyEvent argd)

In the left pane, you can see the listeners implemented by AppletCS. You do not
have to override any of these for the AllLightsCS custom support class.

In the right pane, you specify the listeners you want to add for AllLightsCS. Each
listener you select implies a set of event handler methods you add to the custom

support class.

HP UFT Java Add-in Extensibility (12.00) Page 261

Developer Guide
Chapter 8: Learning to Support a Complex Control

a. Click Add to add the MouseListener.
The Listener dialog box opens:

& Listener

a.awt.event.ContainerListener

HEQiEthabiEn et P |_’

Select java.awt.event.MouselListener from the Listener list and click OK. The
Listener dialog box closes and the MouseListener, and all of the event handler
methods it includes, are added to the list in the right pane of the wizard screen.

b. On the Custom Control Recording Support screen:

o Clear the Treat controls of this class as wrapper controls check box. It is
selected, by default, because the AllLights class extends java.awt.container.

o Select the Override low-level mouse event recording check box to prevent
low-level events (coordinate-based operations) from being recorded instead
of the events you want to record.

c. Click Next. The New Test Object Class Details screen opens.

HP UFT Java Add-in Extensibility (12.00) Page 262

Developer Guide
Chapter 8: Learning to Support a Complex Control

8. Define the details for the new test object class AllLights.

In this screen you define the details of the new test object class you are creating to
map to the custom control.

&= Mew UFT Custom Support Clazs

Hew Test Object Class Details
Specify the details for the new test object dass AllLights.

O & abs_x

O & abs_y
O & attached_text
O @ background
O @dass _path
O & displayable
O 1= displayed
@ enabled
O =) focusable
= focused
O £ foreground
O &' handle
O &' height

A hwnd

HP UFT Java Add-in Extensibility (12.00) Page 263

Developer Guide
Chapter 8: Learning to Support a Complex Control

Perform the following:

a. For the Test object icon, click Browse, locate the <UFT Java Add-in
Extensibility SDK Installation folder>\samples\Javaboutique folder, and
select the AllLights_icon.ico file.

b. Inthe Identification property for unique description box, leave the selected
label property.

Note: If you wanted to include additional identification properties in the
test object description, you would have to manually specify this in the test
object configuration file. For more information, see "New Test Object Class
Details Screen" on page 137.

c. Inthe Default test object method list, select ClickLight.

d. In the Default checkpoint properties box, leave the selected properties and
select also the GameOver, OnCount, and OnList check boxes.

e. Click Finish. The Custom Control Support Class Summary screen opens.

HP UFT Java Add-in Extensibility (12.00) Page 264

Developer Guide
Chapter 8: Learning to Support a Complex Control

9. View the custom control support class summary.
Review the planned content of the custom support class, and click OK.

I

Mew UFT Custom Support Clazs

Custom Support Class Summary
Feview and canfirm the skruckure of the cuskam support class, E?

General

Custom class: org boutigue toolkit AllLight=s

Support clazs: AllLight=zcs

Baze zupport clazss comuomercury fjadin.gtzupport awt.cs AppletCs

Test Object Identification Properties to Override
[zkel

Additional Test Object Identification Properties to Implement

Test Object Methods to Override

Additional Test Object Methods to Implement
ClickLight (Okject ok, Yariant Row, Yariant Column)
Restart (Object okj)

HP UFT Java Add-in Extensibility (12.00) Page 265

Developer Guide
Chapter 8: Learning to Support a Complex Control

The following changes are made in the JavaboutiqueSupport project:

m A new UFT custom support class, AllLightsCS, is created in the
com.mercury.ftjadin.qtsupport.Javaboutique.cs package. The file is opened
and displayed in a tab in the right pane.

= A new JavaboutiqueTestObjects.xml file is created in the
Configuration\TestObjects folder.

m The Javaboutique.xml file is modified. An element is added to the file, mapping
the AllLights custom class to the AllLightCS support class. For information on
the structure of this file, see the UFT Java Add-in Extensibility Toolkit
Configuration Schema Help(available with the Java Add-in Extensibility SDK
Help).

For a detailed explanation of the AllLightsCS class and the
JavaboutiqueTestObjects.xml file, see "Understanding the New Custom Support
Files" below.

The asterisk (*) next to the AllLightsCS file name (in the AllLightsCS tab) indicates
that it has not been saved. The changes made by the wizard are codependent, and
must be saved to prevent discrepancies. Select File > Save, or click the Save
button.

Understanding the New Custom Support Files

When you completed the process of the New UFT Custom Support Class, the wizard
registered the new class in the toolkit configuration file, and created the following files:

« AllLightsCS.java. This file contains the new AllLightsCS support class.

« JavaboutiqueTestObject.xml. This file contains the new test object classes defined
for the Javaboutique toolkit support. At this point, there is only one such test object
class: AllLights.

The following sections explain the content that the wizards created in these files.

HP UFT Java Add-in Extensibility (12.00) Page 266

Developer Guide
Chapter 8: Learning to Support a Complex Control

Understanding the AllLightsCS Custom Support Class

After having performed the lesson "Learning to Support a Simple Control" on page 163,
you are familiar with the basic elements that the wizard creates in a new custom
support class. Examine the contents of the new AllLightsCS.java file, and locate the
following methods and declarations:

o The declaration of the AllLightsCS support class, which indicates that it extends the
AppletCS support class and implements the MouseListener interface.

« The declaration of the DEBUG_ALLLIGHTSCS flag, which can be used to control
printing log messages.

« The AllLightsCS constructor method, which calls addSimpleListener to add
Mouselistener to the list of listeners that need to be registered on the AllLights
control.

« The to_class_attr method, which returns the new test object class name: AllLights.

o A method stub for label_attr returning super.label_attr, which you can replace with
a more specific label.

o Method stubs for the oncount_attr, onlist_attr, and gameover_attr methods, which
you must implement to support the identification properties you added. Until you do
so, these methods return null, because these are new methods that you added and
they are not implemented in the superclasses that AllLightsCS extends.

Note: You can use uppercase letters in the identification property names that
you provide in the wizard screen. These names are written as is in the test
object configuration file. However, in the names of the support methods for
these identification properties, the wizard replaces uppercase letters with
lowercase ones. In UFT, the identification property names are displayed in
lowercase letters only.

o Method stubs for the Restart_replayMethod and ClickLight_replayMethod
methods, which you must implement to support the test object methods you added.

HP UFT Java Add-in Extensibility (12.00) Page 267

Developer Guide
Chapter 8: Learning to Support a Complex Control

Until you do so, these methods return the error code NOT_IMPLEMENTED.

o The mouseRecordTarget method, which returns null to override recording of low-
level mouse events.

o Method stubs for the event handler methods defined by the MouseListener
interface: mouseClicked, mouseEntered, mouseExited, mousePressed, and
mouseReleased. These method stubs contain comments reminding you to
implement them as necessary, calling MicAPl.record to send record messages to
UFT.

o The isWindow method, returning true, was added to the AllLightsCS support class
because you selected the Controls of this class represent top-level objects check
box, on the Custom Class Selection screen. When learning the test object, UFT calls
the isWindow method to determine whether to look for a parent object or view this
object as the highest Java object in the hierarchy.

Understanding the Javaboutique Test Object
Configuration File

The wizard builds the test object class definition in the test object configuration file
based on the details you specify.

Open the new JavaboutiqueTestObject.xml file and examine its contents. For
information on the structure of this file, see the UFT Test Object Schema Help
(available with the Java Add-in Extensibility SDK Help).

HP UFT Java Add-in Extensibility (12.00) Page 268

Developer Guide
Chapter 8: Learning to Support a Complex Control

Locate the following elements in the test object configuration file:

o The names of the custom toolkit and the add-in to which the test object classes in
this file belong (in the Typelnformation element):

PackageName="Javaboutique" AddinName="Java"

« The test object class that the new test object class extends (in the Classinfo
element):

BaseClassInfoName="JavaApplet"

« The name of the new test object class and its default test object method (in the
Classinfo element):

DefaultOperationName="ClickLight" Name="AllLights"

« The location of the icon file (in the Iconinfo element):
IconFile="<UFT Java Add-in Extensibility SDK Installation
folder>\samples\Javaboutique\AllLights icon.ico"

« The definition of the new test object methods you added, and their description,
documentation, and arguments (in the <TypeInfo> element).

« The definition of the identification properties for this test object class (in the
<IdentificationProperties> element). Note the identification properties
marked ForVerification, ForDefaultVerification, and ForDescription.

Deploying and Testing the New Custom Toolkit
Support

In this part of the lesson, you use the UFT Deploy Toolkit Support command in Eclipse
to deploy the Javaboutique toolkit support to UFT. Currently only one control in this
toolkit, the AllLights control, is supported. The toolkit support is not yet complete, but
you can already test the support created up to this point.

HP UFT Java Add-in Extensibility (12.00) Page 269

Developer Guide
Chapter 8: Learning to Support a Complex Control

1. Deploy the Javaboutique toolkit support to UFT.

a.

In the Eclipse Package Explorer tab, select the JavaboutiqueSupport project.

b. Click the Deploy Toolkit Support E button, or select

UFT > Deploy Toolkit Support. In the confirmation messages that open, click
Yes and then OK.

The toolkit configuration file and the test object configuration file are copied to
the relevant folders in your UFT installation folder. The custom support will be
available the next time you open UFT and start the custom application.

For more information on deploying custom toolkit support, see "Deploying and
Running the Custom Toolkit Support" on page 77.

2. Open UFT and load the Java Add-in and the custom toolkit support.

a. Open UFT. The Add-in Manager dialog box displays Javaboutique as a child of

the Java Add-in in the list of available add-ins. (If the Add-in Manager dialog box
does not open, see the HP Unified Functional Testing Add-ins Guide for
instructions.)

Select the check box for Javaboutique and click OK. UFT opens and loads the
support you designed.

3. Test the new custom support.

Repeat the steps in "Planning Support for the AllLights Control" on page 239 to
perform the following:

Run the application. (UFT establishes its connection with an application when the
application opens. Therefore, you must close the SampleApp application, and run
it again.)

View the AllLights control with the UFT Object Spy.

Try to record a Click operation on the AllLights control.

HP UFT Java Add-in Extensibility (12.00) Page 270

Developer Guide
Chapter 8: Learning to Support a Complex Control

UFT recognizes the AllLights control as an AllLights test object (according to the
to_class_attr method) named AllLights (the name of the custom class). The Object
Spy displays the icon you specified in the wizard for this test object class:

P

2 Object Spy [B 3]
(& &

Object hierarchy:

Properties Dperatinns]

(7 Mative @ |dertification
Properties Yalues [
U~ Class Mame AllLights Tl
U= abs x 4 =
Bimabs v 47
Ul attached test
Ul background white
U= class path org boutique toolkit. AllLights j
Y1 developer_name
o7 disolavable 0 =
Selection:
Class Name
Dezcrnption:

Descriptions are available only for kest object operations.

Cloze

Because you have overridden the low-level recording, but have not yet
implemented the mouseClicked (MouseEvent arg0) event handler method, UFT
currently does not record anything when you click in the application frame.

HP UFT Java Add-in Extensibility (12.00) Page 271

Developer Guide
Chapter 8: Learning to Support a Complex Control

In UFT, add the AllLights object to the object repository, and create a test step with
this object in the Keyword View:

b Operation | % alue Comment | Documentation
w @ Action]

® AllLights EElilZ:FLLiQPltE Clicks a zpecific ight

The ClickLight test object method is selected, by default, as the step Operation. If

you provide the required arguments for this method and run the test with this step,

a run-time error occurs, because the ClickLight_replayMethod method returns
.NOT_IMPLEMENTED.

Implementing Support for the AllLights Control

In this part of the lesson, you modify the AllLightsCS class to extend UFT support of the
AllLights control, as per your plan ("Planning Support for the AllLights Control" on
page 239).

Open the AllLightsCS.java file. In the label_attr method, replace the code: return
super.label attr(obj); withthe code: return "Lights"; to change the name
of the test object. Then perform the following procedures:

" Implementing Support for New Identification Properties" (described on page 272)

« "Implementing Support for New Test Object Methods" (described on page 274)
« "Implementing Support for Recording” (described on page 275)

o " Testing the Completed Support" (described on page 277)

Implementing Support for New Identification Properties

In this section, you implement the methods that support the new identification
properties you defined for the AllLights test object class.

Analyze the AllLights custom class to see the properties it supports. Determine which
properties you can access from the new support class to provide the relevant
identification properties to UFT.

HP UFT Java Add-in Extensibility (12.00) Page 272

Developer Guide
Chapter 8: Learning to Support a Complex Control

Notice the public methods GetcounterOn, which allows you to check how many lights
are on at a given time, and isSet, which tells you the status of a particular light.

1.

Implement the oncount_attr method.

In the oncount_attr method, replace the code return null; with
return String.valueOf(((AllLights)obj).GetcounterOn());

This implementation retrieves the counter from the AllLights custom class and
returns it to UFT.

. Implement the onlist_attr method.

In the onlist_attr method, delete the code return null; and implement the
method as follows to scan all of the lights and create a list of all the lights that are
on:

public String onlist_attr (Object obj) {
AllLights lights = (AllLights) obj;
StringBuffer buffer = new StringBuffer();
for (int i=0; i<5; i++)
for (int j=0;3j<5;j++)
if (lights.isSet(j,i)) {
buffer.append (" ");
buffer.append (i*5+j+1);
}
return buffer.toString();

}

Implement the gameover_attr method.

In the gameover_attr method, delete the code return null; and implement the
method as follows to return Yes or No depending on whether or not all of the lights
are on:

public String gameover_attr(Object obj) {
if (((AllLights) obj).GetcounterOn() == 25)
return "Yes";
return "No";

HP UFT Java Add-in Extensibility (12.00) Page 273

Developer Guide
Chapter 8: Learning to Support a Complex Control

}

Select File > Save or click the Save button to save the AllLightsCS.java file.

Implementing Support for New Test Object Methods

In this section, you implement the methods that support the new test object methods
you defined for the AllLights test object class.

Analyze the AllLights custom class methods to determine what actions the class
performs when a user clicks the Restart button or a light in the grid. You want to
simulate these actions when UFT runs the test object methods.

1. Implement the Restart_replayMethod method.

When a user clicks within the borders of the RESTART button, the AllLights custom
class calls init and update(lights.getGraphics()) to initialize and redraw the
application. The Restart_replayMethod method needs to simulate this behavior by
calling the same methods.

To do this, delete the code: return Retval.NOT_IMPLEMENTED; and implement
the method as follows:

public Retval Restart_replayMethod (Object obj){
AllLights lights = (AllLights) obj;
lights.init();
lights.update(lights.getGraphics());
return Retval.OK;

}

2. Implement the ClickLight_replayMethod method.

The AllLights custom class performs the algorithm of turning lights on or off in
response to a click, when it receives a mouseUp event. Therefore, when UFT runs
the ClickLight_replayMethod, and you want to simulate a click on a specific light,
you can simply send the AllLights object a mouseUp event with the appropriate
coordinates.

HP UFT Java Add-in Extensibility (12.00) Page 274

Developer Guide
Chapter 8: Learning to Support a Complex Control

In the method ClickLight_replayMethod, delete the code return Retval.NOT_
IMPLEMENTED; and implement the method as follows:

public Retval ClickLight_replayMethod(Object obj, String Row,
String Column) {

AllLights lights = (AllLights) obj;

int col num = Integer.valueOf(Column).intValue();

int row_num = Integer.valueOf(Row).intValue();

/* Row and column are 40 pixels wide*/

Event event = new Event (lights, System.currentTimeMillis(),
Event.MOUSE_UP, col num *40, row_num *40, 0, 0);

lights.mouseUp(event, col_num *40, row_num *40);

return Retval.OK;

Note: To support this code, import java.awt.Event in AllLightsCS.java.

Select File > Save or click the Save button to save the AllLightsCS.java file.

Implementing Support for Recording

Because you planned to support recording on the AllLights control, you suppressed low-
level recording on this object, and registered to listen for mouse events on this control.

The only mouse event that you want to trigger recording on the AllLights control is a
mouse click. Therefore, in this section, you implement only the mouseClicked
(MouseEvent arg0) event handler method and leave the other mouse event handler
methods empty.

Implement the mouseClicked method as follows and save the AllLightsCS.java file:

public void mouseClicked(MouseEvent argd) {
AllLights lights = (AllLights) arg@.getSource();
int x = argd.getX();
int y = argo.getY();
try{
if (!isInRecord())
return;

HP UFT Java Add-in Extensibility (12.00) Page 275

Developer Guide
Chapter 8: Learning to Support a Complex Control

/* If click is within the Restart button borders*/
if ((x > 210) && (x < 270) & (y > 165) && (y < 185)) {
MicAPI.loglLine(DEBUG_ALLLIGHTSCS, "Record Restart
operation");
MicAPI.record(lights, "Restart");

}

/* If click is within the borders of the grid, record
ClickLights*/
if ((x >=0) & & (x < 200) && (y >= 0) && (y < 200)) {
MicAPI.loglLine(DEBUG_ALLLIGHTSCS, "Record ClickLight
operation");
MicAPI.record(lights, "ClickLight", new String[]
{String.valueOf(y/40), String.valueOf(x/40)});

}
} catch (Throwable th) { MicAPI.logStackTrace(th);}

Note: When the wizard created the AllLightsCS.java file, it automatically added the
importcom.mercury.ftjadin.custom.MicAPI, required to support this code.

In this event handler method, you call MicAPlL.record in different ways. To record the
Restart operation you provide only the object and the operation name. To record the
ClickLight operation you provide additional arguments as well, specifying the
coordinates of the clicked light.

The islnRecord method is called avoid carrying out any unnecessary operations if UFT
is not currently recording.

The MicAPl.logLine method prints the message to the log file only when the DEBUG_
ALLLIGHTSCS flag is on. For more information, see "Logging and Debugging the Custom
Support Class" on page 86.

The try ... catch block prevents unnecessary activity if this code is reached when the
Java application is running while UFT is idle. The MicAPl.logStackTrace method prints a
stack trace to the same log file as other Java Add-in Extensibility log messages,
enabling you to determine when this mouseClicked method was called inadvertently.

HP UFT Java Add-in Extensibility (12.00) Page 276

Developer Guide
Chapter 8: Learning to Support a Complex Control

Testing the Completed Support

In this section you test the Javaboutique toolkit support you have just completed. You
do this by analyzing its effect on how UFT views the AllLights control.

You do not have to deploy the toolkit support to UFT again to test it because you
changed only Java class files and not configuration files. You can use an open UFT
session (running with the Javaboutique toolkit support loaded), but you must close the
AllLights application, and run it again, for the changes you made in the custom support
to take effect.

1. Test the new custom support in the Object Spy.
a. Close the AllLights application and run it again.
b. Open UFT and load the Java Add-in and the Javaboutique toolkit support.

c. Open a GUI test and use the Object Spy to view the AllLights properties and
methods. The AllLights test object is now named Lights.

d. Close the Object Spy.
2. Create and run a UFT test on the AllLights control.
a. Add the AllLights control to the test object repository.

b. Create a test that clicks in two locations in the grid, checks that the game is not
over, and clicks Restart.

The test you create looks something like this:

Item Operation | Walues Comment | Documentation
w @ Actioni
Q Lights ClickLight : 4" "'4" Click. the light in row 4" column '4".
Q Lightz ClickLight 1" ,"2" Click the light in raw 1" column 2"
Q Lights Check. CheckPoint['Lights"'] Check whether the "Lights" object has the proper value
Q Lightz Fiexztart Click the RESTART buttan.

Note: The ClickLight_replayMethod, does not check the argument values to

HP UFT Java Add-in Extensibility (12.00) Page 277

Developer Guide
Chapter 8: Learning to Support a Complex Control

C.

make sure they are valid. If you provide arguments that are out of bounds
(column or row higher than 4) a run-time error will occur.

Run the test and see that it operates correctly (if you defined the checkpoint to
check only that the game is not over—it succeeds).

3. Record operations on the AllLights control.

a.

In UFT, create a new GUI test and select Record > Record and Run Settings to
open the Record and Run Settings dialog box. In the Java tab, select Record and
run test on any open Java application. If the Web Add-in is also loaded, click
the Web tab and select Record and run test on any open browser. Click OK.

Click the Record button or select Record > Record. Click on different locations
in the AllLights application: the grid, the RESTART button, and one of the
counters.

When you click in the grid, a ClickLight step is added to the test, with the
relevant arguments. When you click the RESTART button, a Restart step is
added. When you click anywhere else, no operation is recorded (because you
disabled low-level mouse event recording). The recorded test looks something
like this:

[term Cperation | % alue Comment | Documentation
w @ Action

Q Lightz ClickLight {"2""2" Click the light ir row 2" column 2"
‘@ Lights Festart Click the RESTART buttan

c. Click the Stop button or select Record > Stop to end the recording session.

The AllLights custom control is now fully supported, according to the specifications you
decided on when planning your custom support.

Lesson Summary

In this lesson you created a new test object class, AllLights, defining its identification
properties and test object methods. You created support for the AllLights control,

HP UFT Java Add-in Extensibility (12.00) Page 278

Developer Guide
Chapter 8: Learning to Support a Complex Control

allowing UFT to recognize it as an AllLights test object.
« You learned to understand the test object configuration file.

« You learned to support new identification properties and test object methods in the
custom support class.

« You made use of the isWindow utility method, and called the MicAPl.record method
with additional parameters.

Where Do You Go from Here?

Now that you have performed the lessons in this tutorial, you are ready to apply the
Java Add-in Extensibility concepts and the skills you learned to creating your own
custom toolkit support.

For more information on the structure and content of a custom toolkit support set, see
"Implementing Custom Toolkit Support” on page 34.

For more information on the structure and content of the test object configuration file,
see the HP UFT Test Object Schema Help (available with the Java Add-in Extensibility
SDK Help).

HP UFT Java Add-in Extensibility (12.00) Page 279

Send Us Feedback
~ @

1 Can we make this Developer Guide better?

Tell us how: sw-doc@hp.com

HP UFT Java Add-in Extensibility (12.00) Page 280

mailto:sw-doc@hp.com?subject=Feedback on Developer Guide (UFT Java Add-in Extensibility 12.00)

	Welcome to HP UFT Java Add-in Extensibility
	About the UFT Java Add-in Extensibility SDK
	About the UFT Java Add-in Extensibility Developer Guide
	Who Should Read This Guide
	Additional Online Resources

	Part 1: Working with Java Add-in Extensibility
	Chapter 1: Introducing UFT Java Add-in Extensibility
	About UFT Java Add-in Extensibility
	Identifying the Building Blocks of Java Add-in Extensibility
	Deciding When to Use Java Add-in Extensibility
	Analyzing the Default UFT Support and Extensibility Options for a Sample Cust...

	Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit
	About Installing the HP UFT Java Add-in Extensibility SDK
	Pre-Installation Requirements
	Installing the HP UFT Java Add-in Extensibility SDK
	Uninstalling the HP UFT Java Add-in Extensibility SDK
	Troubleshooting and Limitations - Java Add-in Extensibility Eclipse Plug-in

	Chapter 3: Implementing Custom Toolkit Support
	About Custom Toolkit Support
	Introducing Java Add-in Extensibility Terminology
	Preparing to Create Support for a Custom Toolkit
	Creating a Custom Toolkit Support Set
	Understanding the Toolkit Support Class
	Understanding the Toolkit Configuration File
	Understanding the Test Object Configuration File
	How UFT Loads the Test Object Configuration XML
	Understanding How UFT Merges Test Object Configuration Files

	Understanding Custom Support Classes
	Determining the Inheritance Hierarchy for a Support Class
	Mapping a Custom Control to a Test Object Class
	Supporting Identification Properties
	Supporting Test Object Methods
	Supporting the Record Option
	Supporting Top-Level Objects
	Supporting Wrapper Controls
	Support Class Summary
	Using Methods from MicAPI

	Deploying and Running the Custom Toolkit Support
	About Deploying the Custom Toolkit Support
	Deploying the Custom Toolkit Support
	Modifying Deployed Support
	Modifying Identification Property Attributes in a Test Object Configuration File

	Removing Deployed Support

	Logging and Debugging the Custom Support Class
	Workflow for Implementing Java Add-in Extensibility

	Chapter 4: Planning Custom Toolkit Support
	About Planning Custom Toolkit Support
	Determining the Custom Toolkit Related Information
	Determining the Support Information for Each Custom Class
	Understanding the Custom Class Support Planning Checklist
	Custom Class Support Planning Checklist

	Where Do You Go from Here?

	Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In
	About the UFT Java Add-in Extensibility Eclipse Plug-In
	New UFT Java Add-in Extensibility Project Wizard
	UFT Java Add-in Extensibility Project Screen
	Custom Toolkit Details Screen
	Project Summary Screen

	Modifying UFT Java Add-in Extensibility Project Properties
	New UFT Custom Support Class Wizard
	Custom Class Selection Screen
	Test Object Class Selection Screen
	Custom Support Test Object Identification Properties Screen
	Custom Support Test Object Methods Screen
	Understanding the Test Object Method Dialog Box
	Custom Control Recording Support Screen
	New Test Object Class Details Screen
	Custom Control Support Class Summary Screen

	New UFT Custom Static-Text Support Class Wizard
	Custom Static-Text Class Selection Screen
	Custom Static-Text Support Class Summary Screen

	Working with UFT Commands in Eclipse

	Part 2: Tutorial: Learning to Create Java Custom Toolkit Support
	Chapter 5: Using the UFT Java Add-in Extensibility Tutorial
	Understanding the Tutorial Lesson Structure
	Checking Tutorial Prerequisites

	Chapter 6: Learning to Support a Simple Control
	Preparing for This Lesson
	Modifying the Sample Application to Run From Another Location

	Planning Support for the ImageButton Control
	Custom Class Support Planning Checklist

	Creating a New UFT Java Add-in Extensibility Project
	Understanding Your New Custom Toolkit Support Set

	Creating a New UFT Custom Support Class
	Understanding the New Custom Support
	Understanding the Basics of the ImageButtonCS Class
	Understanding Identification Property and Test Object Method Support
	Understanding Event Recording Support

	Deploying and Testing the New Custom Toolkit Support
	Changing the Name of the Test Object
	Implementing Support for a Test Object Method
	Implementing Event Handler Methods to Support Recording
	Lesson Summary
	Where Do You Go from Here?

	Chapter 7: Learning to Support a Custom Static-Text Control
	Preparing for This Lesson
	Planning Support for the ImageLabel Control
	Custom Class Support Planning Checklist

	Creating the UFT Custom Static-Text Support Class
	Understanding the New Custom Static-Text Support Class
	Deploying and Testing the New Custom Static-Text Support Class
	Completing the Support for the Static-Text Control
	Optimizing the ImageControls Toolkit Support
	Creating Support for the ImageControl Custom Class
	Modifying the ImageControls Toolkit Support Hierarchy
	Deploying and Testing the New ImageControls Toolkit Support

	Lesson Summary
	Where Do You Go from Here?

	Chapter 8: Learning to Support a Complex Control
	Preparing for This Lesson
	Planning Support for the AllLights Control
	Custom Class Support Planning Checklist

	Creating the UFT Java Add-in Extensibility Project
	Creating the New UFT Custom Support Class
	Understanding the New Custom Support Files
	Understanding the AllLightsCS Custom Support Class
	Understanding the Javaboutique Test Object Configuration File

	Deploying and Testing the New Custom Toolkit Support
	Implementing Support for the AllLights Control
	Implementing Support for New Identification Properties
	Implementing Support for New Test Object Methods
	Implementing Support for Recording
	Testing the Completed Support

	Lesson Summary
	Where Do You Go from Here?

	Send Us Feedback

