HP UCA Automation

W

Version 1.1

Integrator's Guide
for Linux RHEL 6.4

Edition: 1.0

October 2014

© Copyright 2014 Hewlett-Packard Development Company, L.P.

Legal notices

Warranty

The information contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright notices
© Copyright 2014 Hewlett-Packard Development Company, L.P.

Trademark notices
Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit
configurations) on all HP 9000 computers are Open Group UNIX 95 branded products.

Java™ is a trademark of Oracle and/or its affiliates.

Microsoft®, Internet Explorer, Windows®, Windows Server®, and Windows NT® are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

Firefox® is a registered trademark of the Mozilla Foundation.

Google Chrome® is a trademark of Google Inc.

Oracle®is aregistered U.S. trademark of Oracle Corporation, Redwood City, California.
EnterpriseDB® is a registered trademark of EnterpriseDB.

Postgres Plus® is a registered U.S. trademark of EnterpriseDB, Bedford, MA.

UNIX® s a registered trademark of The Open Group.

X/0pen®is a registered trademark, and the X device is a trademark of X/Open Company Ltd.
in the UK and other countries.

Red Hat® is a registered trademark of the Red Hat Company.
Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

Neodj is a trademark of Neo Technology.

Contents

Legal notices 2
Contents 3
Figures q
Tables 5
Preface 6
Intended QUAIENCEcoveeceeeereeeeeeeereerre et nee .6
SOTEWAIE VEISIONS ...eeveeueeeeeeeeteeieeeteeteeseseeesesstessessseesessaessassaessesssassasssessesssensessssssesnsessessssssessensesssnssssnsen 6
TyPOGraphiCal CONVENTIONS.......co.coueriiirieereeeetertet ettt ettt s e sttt e st e s e e s e saesne st e e s e enas 6
Reference DOCUMENLS........ccueievereeeeeeeeteceecte e e e seeeenens 7
LY U]] o TSN 7
Chapter 1 8
Introduction 8
1.1 Design theory ...t 9
1.2 PrerequISItescoeeeceeecreeeeeeeeeeeeeereeeereecreeeeeeeneeeaeees 9
1.3 IMplementation.........eecveeceeeeeeceecee e 10
Chapter 2 1
Integrate with UCA Automation Foundation value pack 11
2.1 Integrate PD value pack with UCA Foundation pack 12
2.2 Integrate Evaluate value pack with UCA Foundation pack 14
Chapter3 17
Integrate with HPSA UCA Automation Controller 17
3.1.1 Workflow of a task requestcceeeevereeeeeecnens 17
3.1.2 Status codes......coeeeerevercerreeererereeeene 20
3.1.3 Support for internationalization 20
3.2 Using HPSA UCA Automation parser 21
Chapter 4 23
UCA Automation demo scenario 23
4.1 Performing the demo scenario........cceceeeveeveereennenne .23

Figures

FIGUIre T UCA AULOMALION.......eeceeeeeeeceeceeeeteeeeesceesteeeeeestesessessseeesee s ssesssesessasssssessesssassaesssessssessseensasensessssesssenssrnns 8
Figure 2 UCA Automation Workflowcocceeeeeieviniinnnceeeeeeee e 9
Figure 3 Multi Domain SOLUtioNceeeeeeeeeeeeeeeeeeeeee et 18

Tables

Table 1 calculateProblemAlarmOtherAttribute attribULESeeeeeeeeeeeeeeee e 12
Table 2 UCAController parameters..........ccceceveeevceveeeneereeennes 19
Table 3 Parameters of the ResourceBundleReader node 21
TabLle 4 Parser PArameELerSottt ettt ettt st et s e e s et et et et st e e s s e e ae b et et et et e e neesanaeas 22

Preface

This guide provides an overview of the UCA Automation product and describes how to create

value packs for specific domain specializations and integrate them with the UCA Automation
product.

Product Name: UCA Automation
Product Version: 1.1

Read this document before installing or using this software.

Intended audience

This guide is intended for system integrators, solution developers, and software
development engineers.

Software versions

The term UNIX is used as a generic reference to the operating system, unless otherwise
specified.

The software versions referred to in this document are as follows:

Product Version Supported Operating systems
UCA Automation 1.1 Linux Red Hat Enterprise Linux Server release RHEL
6.4

Typographical conventions

Courier Font:

e Source code and examples of file contents.

¢ Commands that you enter on the screen.

e Pathnames

e Keyboard key names

Italic Text:

o Filenames, programs and parameters.

o The names of other documents referenced in this manual.
Bold Text:

e Tointroduce new terms and to emphasize important words.

Reference Documents

e UCA Automation Installation Guide

o UCA Automation Administrator and User Interface Guide

e UCAEBC Problem Detection Installation Administration and Dev Guide
e UCA for Event Based Correlation Value Pack Development Guide

e HP Service Activator Overview Guide

e HP Service Activator PuttingServiceActivatorToWork Guide

e HP Service Activator Plug-ins Guide

Support

You can visit the HP software support online web site at www.hp.com/go/hpsoftwaresupport
for contact information, and details about HP Software products, services, and support.

The software support area of the software web site includes the following:
e Downloadable documentation

e Troubleshooting information

e Patches and updates

e Problem reporting

e Training information

e Support program information

http://www.hp.com/go/hpsoftwaresupport

Chapter 1

Introduction

The UCA Automation system is a platform for building value added resolution automations
based on a combination of business rules and workflow rules. UCA Automation isolates
network related issues and automates the corresponding resolutions.

The UCA Automation software is a combination of business rules engine and workflows
engine. The system combines HP Unified Correlation Analyzer for Event Based Correlation
(UCA EBC) system, which provides the business rules capability with HP Service Activator

(HPSA), which provides the activation capability, through the enterprise service bus called
NGOSS Open Mediation (NOM).

The following diagram shows the architecture of the UCA Automation system.

Network Specific Evaluate VP
Upload actions T l
Hl o
topology - XML Automation Console: Action request
«Controls & Monitors diagnostics N B | um'EBE,d'ig"O“'“
Make the activity [UCA-EBC VPs/ Manuall - foundation value pack .
Set test —— . R P i - " Navigatestest decision graph & 2
results l l dispatch Graphical display of decision free |\AVCresponse oot nec test requests to
decision «5tores test results in Graph DB diagnostics console
_———— B] —— 2
— T — — Network Specific Extension
I | PD-VPs N
i/
Graph DB UCAEBC 4
4] 13
IE l I“
z
| Task Uuca X UCA-EBC CA
Request Automation CA
15
Iy : “NOM BUS T I

HPSACA

Task
W S — -~ TeMIPCA

Service and Resource

R it Symptom
1 Asynchronous responses epository V||, Aarms
g
2
HPSA Diagnostics HPSM «— FEe— TeMIP /TWS
h g =
Foundation Value Pack Actions topology Postgres/Oracle E
Vendorindependent tests, recovery and . X ————— TeMIP Client Plug-in |
rollback. Expansion of logical commands | Creation/ retrievalme
to physical commands. o .
Service Instances Resource Instances TeMIP Client
CERITEET e Integration point ——» Alarms
HPSA Network /

— Problem alarm
Infrastructure J Developed by HP

Actions Actions response

Existing Task Request Task Response

Figure 1 UCA Automation

The grey blocks are the Network Specific Extension Value Packs, optionally Network Specific
Evaluate Value Pack, and HPSA Network Specific Extension Value Packs should be
implemented to create and integrate custom automations.

1.1 Design theory

Two key functions are performed by UCA Automation; the problem isolation and problem
resolution.

Problem isolation is the responsibility of UCA EBC Problem Diagnosis value pack, which can
eliminate event storms, false positives, false negatives, and deduce a single meaningful
problem alarm.

This information is then passed to the decide-and-act engine, which identifies the action to
be taken for a specific problem. After the action, the evolved knowledge is sent back to the
decide-and-act engine for further resolution based on the decision tree or evaluate value-
pack optionally, to perform predictive and proactive automation. In addition, diagnostic
information is gathered automatically to reduce the MTTR (mean time to resolve).

The UCA Automation system works in the way depicted by the following diagram. It starts
with the original problem, performs tests after tests as per the decision tree design, and then
either resolves the problem or enriches the problem alarm with complete diagnosis, or can
even create a trouble ticket automatically.

In case of manual resolution, the operator is presented with a set of problems, the
associated services, and a list of the types of devices which can support such services. Once
the above triplet is chosen, the corresponding resolutions are displayed, which can be
invoked manually.

In UCA Automation System, the process of problem resolution happens in the way depicted
by the following diagram. The administrator or integrator of the system has the option to
easily configure the decision tree without the need for any kind of programming. The decide
and act subsystems work based on this configuration. In case the administrator needs to
make advanced decisions based on the results of the previous tests, the platform allows him
to write his own rules in the evaluate block.

Trigger
— Symptoms

&)
W

Decide
what to perform
based on
avalable info

Repeat as required

W ' »
Resolved Escalate Act Evaluate
Record info for algilnufsglzg:tidnt Perform task that Getinfo from
problem can produce more results of the
management IE:P&%F;&LEETE info or recovery actions

Figure 2 UCA Automation workflow

1.2 Prerequisites

The following are the prerequisites for implementing UCA Automation. Determine the
following components before implementing.

e The domain or the service to be automated.
For example, mobile services, MPLS, ADSL, LTE, ATM, and so on.

o ldentify the service for which the custom automation should be created.

o ldentify network resources which should be associated with these services.
e All problems in that domain and the resolution mechanisms, including:

o The problem scenario, the characteristics of the root problem, and the filter to
be used to isolate this problem.

o The specific problem/resolution tree for any of the root problems.
o Allresolution actions required for each sub-problem in the problem tree.
o Theinput and output parameters for all actions.

o The method of deducing the output parameters from the raw output using the
regex/XML parser.

o All possible outcomes for the actions.
Note whether the outcomes are binary or not.

o Make a differentiation between the primary problems and the results of the
actions.

e The decision tree to be built using these problems, actions, and outcomes.

1.3 Implementation

Use the following procedure to implement UCA Automation.
1. Create the domain or service to be automated.
For example, mobile services, MPLS, ADSL, LTE, ATM, and so on.
o Create the service according to [R2] chapter 7.
o Create the network resources according to [R2] chapter 7.

2. Create all the possible problems in that domain and the resolution mechanisms,
including the following:

o AUCAEBCPD value-pack depicting the identified problem scenario with
appropriate filters and time-window according to [R3].

Integrate this value-pack with UCA Automation Foundation value-pack as
described in Chapter 2.

o Allresolution actions identified to handle each problem and the outcome of
actions. For more details, refer [R2] chapter 7.

o Appropriate input and output parameters for all actions.
o Select the appropriate output parameters and their respective parsers.
o Integrate with the UCA Automation as per Chapter 3.

o Allthe primary and secondary problems and associating them with
appropriate actions.

3. Create a decision tree with these problems, actions, and outcomes according to the
instructions in [R2] Chapter 8.

10

Chapter 2

Integrate with UCA Automation
Foundation value pack

HP UCA Automation Foundation value pack provides the capability to determine the next
resolution action based on a reported problem.

The domain specific PD value pack determines and isolates the problem, and delegates the
alarm object to the UCA Automation Foundation Value-Pack. After receiving the alarm object
with appropriate problem qualification from the network specific PD value pack, the system
searches for the resolution in the decision tree available in the Neo4J database and picks an
appropriate action.

Based on the action, the foundation value-pack sends out the following XML request to UCA
Automaton console for applying the resolution:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<msg xmlns="http://types.ws.ucaautomation.hp.com/">
<header>
<ActionRequest Originator="alarm" OpenLoop="true"
Mode="demo">
<ActionId>100</ActionId>
<Operation>test bsc interface</Operation>
<OrignatorId>operation context uca pbalarm
alarm object 4</OrignatorId>
<Sourceldentifier>TeMIP EMS</Sourceldentifier>
<OriginatingManagedEntity>osi system
site sitel</OriginatingManagedEntity>
<Problem>bsc interface down</Problem>
<ActionPreset>false</ActionPreset>

</ActionRequest>
</header>
<body>
<Parameters>
<Parameter>
<attribute>null</attribute>
<value></value>
</Parameter>
<Parameter>

<attribute>OutputParam:packet loss</attribute>
<value></value>

</Parameter>

</Parameters>

<Service>
<serviceTypeID>MobileServices</serviceTypelD>
<serviceInstanceID></serviceInstanceID>

</Service>

<Resource>
<resourceTypeID>C3600</resourceTypeID>

11

2.1

<resourceInstanceID>C3600.ind.hp.com|Ethernetl/0</resourcel
nstanceID>
</Resource>
</body>
</msg>

Integrate PD value pack with UCA Foundation

pack

After you create the PD value pack with the appropriate problem scenario, the PD value pack
provides a complete problem qualification to the UCA Foundation value pack. To provide the
problem qualification, use the following procedure.

1.

Set the values of the following attributes, for the to be generated Problem Alarm in the
calculateProblemAlarmOtherAttribute method.

Attribute Description

Problem A predefined Problem Name as defined in the
decision tree. The format should be
<ServiceType>:<Problem>

Resourceinstance Resource instance based on how the resource is
understood by the activation engine.

Evp Evaluate Value Pack Name

You have to create a network specific evaluate pack
if the integrator wants to perform a complex
integration and mechanism to determine the next
possible problem.

After receiving the response for an action, the
Foundation value pack intercepts and delegates to a
network specific evaluate value pack for further
deduction of the problem.

Evpscenario Evaluate Value Pack scenario

The specific scenario to which the system delegates
the response.

Table 1 calculateProblemAlarmOtherAttribute attributes

Following is a sample code describing the way to override the
calculateProblemAlarmOtherAttribute method.

public void calculateProblemAlarmOtherAttribute (Group
group, Action action)
throws Exception {

if (LOG.isTraceEnabled()) {
LogHelper.enter (LOG,
"Problem Site.calculateProblemAlarmOtherAttribute()");
}

12

action.addCommand ("Resourceinstance",
"C3600.ind.hp.com|Ethernetl/0:C3600") ;
action.addCommand ("Evp", "UCA Automation DomainExample UC
A EV");
action.addCommand ("Evpscenario", "evaluate") ;
action.addCommand ("Problem",
"MobileServices:bsc interface down");
action.addCommand ("Resourcetype", "c3620") ;

if (LOG.isTraceEnabled()) {
LogHelper.exit (LOG,
"Problem Site.calculateProblemAlarmOtherAttribute()",action
.toFormattedString()) ;
}
}

The format of the “Resourceinstance” updated in the Problem Alarm must be as follows
<Resource Instance>:<Resource Type>

If the Resource Type is not applicable then specify the value as None. The format
should be maintained in case the “Resouceinstance” is modified in the Evaluate value
pack

The Resource type is optionally used by the workflow’s in HPSA Network Specific value
pack to parse diagnostic results using regular expressions

To provide a complete problem qualification to the UCA Foundation value pack, perform
one of the following:

o (Optional) If the source of the alarms is TeMIP, configure the PD value pack to
create the Problem Alarm in a separate Operation Context called
uca pbalarm.

Configure it in the ProblemXMLConfig.xml file. Following is snippet of
this file.

<actions>

<defaultActionScriptReference>Exec localhost</defaultAct
ionScriptReference>

<action name="TeMIP EMS">

<actionReference>TeMIP AO Directives localhost</actionRe
ference>

<actionClass>com.hp.uca.expert.vp.pd.actions.TeMIPAction
sFactoryExt</actionClass>

<attributeUsedForKeyDuringRecognition>userText</attribut
eUsedForKeyDuringRecognition>

<attributeUsedForKeyPbAlarmCreation>User Text</attribute
UsedForKeyPbAlarmCreation>
<strings>
<string
key="ocName"><value>uca pbalarm</value></string>
</strings>
</action>
</actions>

o If the source of alarms is not TeMIP, delegate the Problem alarm to the UCA
Foundation value pack using the delegateEventToScenario() or
applyOrchestration() API.

For more details, refer to the UCA-EBC APl documents.

13

2.2

Integrate Evaluate value pack with UCA
Foundation pack

Creating and integrating the network specific evaluate value pack is optional.

Create and integrate the network specific evaluate value pack when you want to interpret the

resultant output in very specific ways other than a test passed or test failed criterion.

You can use this value pack to analyze the output from the previous action and can

determine the next step or problem to be passed to the foundation value pack. This value
pack can contain several scenarios to interpret different outputs from different PD scenarios.
It can also contain 1 * n relationships between number of domain specific PD value packs,
which represent one scenario each, and evaluate value pack, which represents n scenarios.

You should have EBC rules skill to write this value pack. The following snippet shows a
scenario where an action response with some parameters is intercepted, the next problem is
deduced, and alarm attributes updated in TeMIP are picked up by the foundation value pack

for further processing. The output parameters are in the following format
packet loss,100,String:packets sent, 4, String

rule "Evaluate Action response Rule"
no-loop

when

Salarm : EvaluateActionResponse (justInserted == true)
then

LogHelper.enter (theScenario.getLogger (),
drools.getRule () .getName ()) ;

ESPONSE RULE HAS FIRED CORRECTLY.getMessage (new

Object[]{S$Salarm.toFormattedString()}));
Salarm.setJustInserted (false);
Salarm.setScenario (theScenario) ;
Salarm.evaluateOutputParams () ;

RM FROM EVALUATE ACTION RESPONSE RULE.getMessage()) ;
theScenario.getSession () .retract (Salarm) ;

LogHelper.exit (theScenario.getlLogger (),
drools.getRule () .getName ()) ;
end

theScenario.getlLogger () .trace (Messages.EVALUATE ACTION R

theScenario.getLogger () .info (Messages.RETRACTING THE ALA

public void evaluateOutputParams ()
{
if (this.getCustomFieldValue ("action")
!'= null && this.getCustomFieldValue ("problem")

!'= null &&
this.getCustomFieldValue ("problem") .contains ("MobileServ
ices"))
{
if (this.getCustomFieldValue ("outputparameters") != "")

String actionOutParams =
this.getCustomFieldValue ("outputparameters") ;

try {
this.getDomainProblemInfo () ;
this.getActionIdListfromAlarm() ;

14

if (actionOutParams.contains ("packet loss")) {

this.evaluatePacketlLossParam (actionOutParams) ;

else if
(actionOutParams.contains ("available interface name"))

{
this.evaluateAvailInterfParam(actionOutParams) ;
}
else
{
LOG.info ("Alarm outputParameters doesn't have the
required output parameters to process");

}

catch (Exception e)

{

LOG.error ("Exception occurred : " + e.getMessage());

this.getScenario () .setStatus ("Exception occurred:
"+e.getMessage (), ScenarioStatus.Degraded) ;
}
}
else if
(this.getCustomFieldValue ("outputparameters") == "")

{

//append the custom attribute actionidlist with
action+" "+actionstatus
String actionStatus =

this.getCustomFieldValue ("actionstatus") ;

LogHelper.method (LOG,

"EvaluateActionResponse.evaluateOutputParams ()"," Alarm
is enriched with new Action Outcome name based on the
action and actionStatus");

String action = this.getCustomFieldValue ("action");
String actionOutcome = action + " " + actionStatus;
String actionIdLists
this.getCustomFieldValue ("actionidlist") ;
this.updateAlarmCustomAttr ("Actionidlist",
"actionidlist", actionIdLists+actionOutcome) ;

LogHelper.method (LOG,
"EvaluateActionResponse.evaluateOutputParams () "," New
Action Outcome: " + actionOutcome) ;

}

}

public void evaluatePacketLossParam(String actionOutParams)
throws Exception {

List<ActionParameter> actionParameterlList =
ParseActionOutParameters

.parseOutputParameters (actionOutParams) ;

//from the outputparameters get the packet loss

//format packet loss,100,String

ActionParameter actionParameter =

15

ParseActionOutParameters
.getActionParameter (actionParameterlList,
Constants.PACKET LOSS) ;

String packetLossValue = actionParameter.getValue () ;

//In temip the custom attribute actionidlist is
Actionidlist, but in the working memory it is actionidlist

//In temip the custom attribute actionstatus is
Actionstatus, but in the working memory it is actionstatus

if (packetLossValue == null |
packetLossValue.equalsIgnoreCase ("null")

| | packetLossValue.equals ("")) {

updateAlarmCustomAttr ("Actionidlist", "actionidlist",
actionIdList+"test bsc interface failed"):;

updateAlarmCustomAttr ("Actionstatus", "actionstatus",
Constants.STATUS FAILED) ;

}

else if

(Integer.parselnt (packetLossValue) > 60)

{

//Packetloss is greater than 60, override the
actionstatus from passed to failed

updateAlarmCustomAttr ("Actionidlist", "actionidlist",
actionIdList+"test bsc interface failed");

if

(this.getCustomFieldValue ("actionstatus") .equalsIgnoreCa
se ("PASSED"))

{

updateAlarmCustomAttr ("Actionstatus", "actionstatus",
"FAILED") ;

}
updateAlarmServiceData () ;
} else

//Packetloss is less than 60. override the actionstatus
from failed to passed

updateAlarmCustomAttr ("Actionidlist", "actionidlist",
actionIdList+"test bsc interface passed");

if
('this.getCustomFieldValue ("actionstatus") .equalsIgnoreC
ase ("PASSED")) {
updateAlarmCustomAttr ("Actionstatus", "actionstatus",
"FAILED") ;
}

16

Chapter 3

Integrate with HPSA UCA Automation
Controller

The HPSA framework handles the how part of the resolution action, which is required for
developing new value packs for custom automation. To have an integrated view, the UCA
Automation provides a controller workflow with which all the domain specific workflows are
integrated.

The task request with the dispatch type as HPSA from UCA Automation Console invokes the
UCA Controller workflow of the HPSA Foundation Value Pack. Hence, the point of entry for
the task request and point of exit for the task response is the UCA Controller workflow. All
domain specific workflows are invoked from this workflow.

1.
2.

Select UCA/Parameter -> Workflow Templates view in the HPSA inventory.
Create the mapping to the child domain specific workflows.

Create a mapping of a combination of ServiceType and ActionName with the child
domain specific workflow, which is designed to handle such scenarios.

3.1.1 Workflow of a task request

When a task request from the UCA Automation Console invokes the UCA Controller
workflow, the Workflow Template is searched automatically to fetch the corresponding
child workflow based on the ServiceType and ActionName provided in the task request
XML message.

The following snippet shows the Task Request message.

<m:msg xmlns:m="http://types.ws.ucaautomation.hp.com/">
<m:header>
<m:TaskRequest Mode="real" OpenLoop="true"
Originator="alarm">
<m:ActionId>100</m:ActionId>
<m:ActionName>test bsc interface</m:ActionName>
<m:ActionType>test</m:ActionType>
<m:Operation>Start</m:Operation>
<m:TaskId>110</m:TaskId>
<m:0OriginatorId>operation context uca pbalarm
alarm object 4</m:OriginatorId>
<m:Problem>bsc interface down</m:Problem>
</m:TaskRequest>
</m:header>
<m:body>
<m:Parameters>
<m:Parameter>
<m:attribute>interface ip address</m:attribute>
<m:value>10.20.30.40</m:value>
</m:Parameter>
</m:Parameters>

<m:Service>

17

<m:serviceTypeID>MobileServices</m:serviceTypelD>
<m:serviceInstanceID/>
</m:Service>
<m:Resource>
<m:resourceTypeID>C3600</m:resourceTypelD>
<m:resourcelnstanceID>C3600.ind.hp.com|Ethernetl/0</m:re
sourcelnstanceID>
</m:Resource>
</m:body>
</m:msg>

Note

You should have controllers for each domain as shown in the Multi Domain Solution image.

UCA Controller
Domain Controller 1 Domain Controller 2 Domain Controller n

Controller workflows for
each domain

Child waorkflows for each domain

Figure 3 Multi Domain Solution

The following table shows the list of parameters parsed by the UCAController workflow when
the domain workflow is invoked. It also shows the expected output case packet variables
from the child workflow.

Parameter Input/Output Description

message_data Input Task request message received from the UCA Automation
Console.

problem_name Input Name of the problem.

action_name Input Name of the diagnostic action.

major_code Output Status code for running the child workflow.

minor_code Output Status code with information on the execution status of the child
workflows.

major_description Output Status message of the execution of the child workflow.

minor_description Output Status message with information on the execution of the child
workflows.

18

Parameter Input/Output | Description

Diagnostics Output The raw result of the application of the action.

response_string Output The output parameter and parsed values are concatenated in a
format defined by UCA-EBC. These values are sent as a value in
the outputparameters tag of the response to UCA-EBC. The
format of the string is

<action name,value, type>,<action name,value, t

ype>..... .<action name,value, type>

Table 2 UCAController parameters

The following snippet shows the Task Response message.
<resp msg xmlns="http://types.ws.ucaautomation.hp.com/">
<header>
<ActionId>100</ActionId>
<TaskId>100</TaskId>
<ActionInstanceId>1</ActionInstanceId>
<OrignatorId>operation context uca pbalarm
alarm object 4</OrignatorId>
</header>
<body>
<TaskResponse>
<MajorCode>
<Code>501</Code>
<Description>The test execution failed
</Description>
</MajorCode>
<MinorCode>
<Code></Code>
<Description></Description>
</MinorCode>
<TaskStatus>FAILED</TaskStatus>
<Diagnostics>PING 10.20.30.40 (10.20.30.40)
56 (84) bytes of data.
--- 10.20.30.40 ping statistics
--— 5 packets transmitted, 0 received, 100% packet
loss, time 13999ms
</Diagnostics>
<Parameters>
<Parameter>
<attribute>outputparameters</attribute>
<value>packet loss,100,String</value>
</Parameter>
</Parameters>
</TaskResponse>
</body>
</resp_msg>

Following is a snippet of the HPSA Domain Workflow synchronizing with the UCAController.
<End-Handler>
<Name>SyncHandler</Name>
<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.SyncHandler
</Class-Name>
<Param name="job id" value="parent job id"/>
<Param name='"queue"
value="constant:controller queue"/>
<Param name="destinationO" value="major code"/>
<Param name="variable(Q" value="major code"/>
<Param name="destinationl" value="minor code"/>
<Param name="variablel" value="minor code"/>

19

<Param name="destination2"

value="major description"/>
<Param name="variable2" value="major description"/>
<Param name="destination3"

value="minor description"/>
<Param name="variable3" value="minor description"/>
<Param name="destination4" value="diagnostics"/>
<Param name="variable4" value="raw result"/>
<Param name="variable5" value="response string"/>

</End-Handler>

3.1.2 Status codes

Two sets of status codes are used when implementing domain value packs in HPSA. The
status code bundles are located at $ { SOLUTION ETC}/etc/config/messages inthe
HPSA Foundation value pack.

e Major code—The major code gives high level information on the execution status and
drives the state engine in the UCA Automation Console.

A sample of major codes and description in messages.properties file is as follows.

200=The test was successfully executed
201=The test was partially executed
210=Workflow execution success
300=Request received

400=Bad request, syntax error
401=Invalid request

500=Internal error

501=The test execution failed

e Minor code—The minor code and description are secondary codes, which give more
information on the status of the execution.

A sample of minor codes and description in messages.properties file is as follows.

402=Parameter: {0} cannot be null/empty
403={0}: {1} was not found in inventory
510={0}: {1} Not Found

511={0} has exceeded the threshold wvalue {1}
512=Free {0} is not available

Follow the major code standard according to the HPSA Foundation value pack, as it drives the
state engine in the UCA Automation Console.

You should maintain the major and minor code message bundles in a similar way. The
domain specific major code message bundle contains all the codes defined in the HPSA
Foundation value pack. The minor code message bundle can be defined as per the
requirement.

3.1.3 Support for internationalization

The message bundles support internationalization with the help of the custom node. The
ResourceBundleReader custom node is available with the Foundation value pack.

Change the file name of the bundle according to the national standards. For example, for
French regional setting, the file name ismessage fr.properties. By default the
message.properties bundleis picked by the node.

20

Parameters Input/Output | Description

bundle_path Input The path to the message bundle.

In the foundation value pack, the bundle path tothe
major code messages

is $SOLUTION ETC%/config/messages/majorco
des

resource_label | Input Label of the message bundle.

The label in the foundation value pack is messages.

Key Input Key in the resource bundle.
Set the key to 500 if you want the description for this
major code.
output_var Output Variable in which the fetched string should be stored.
param0..n Input This value replaces the constant/variable in the string

fetched from the message bundle.

paramO replaces the occurrence of {0} in the text.
paraml replaces the occurrence of {1} inthe text

Table 3 Parameters of the ResourceBundleReader node

3.2 Using HPSA UCA Automation parser

The parser workflow provides a framework for parsing the diagnostic raw result received
from the network resources after applying an action.

Both regular expression and Xpath based parsing are supported.

1.
2.

Define the parser type when defining an action as the UCA Automation inventory.

Create the following directory structure in the solution where <element type>is
various types of the device.

S{SOLUTION ETC}/config/parser/regex/<elementype>/test bsc i
nterface/parser.properties

This structure is an example for parsing the output result of a PING action using the
regular expression parser.

The parsing information is maintained in the properties files in the $ { SOLUTION ETC}
directory. The properties file contains the mapping of the expected output parameters
defined in the inventory for each diagnostic action to its respective regular expression

or Xpath expression.

Asample of the parser.propertiesfileis as follows.

#REGEX mapping for Action: execute test on bsc

#DOMAIN NAME = com.hp.ov.ucaautomation (Constant)

#Key -- > DOMAIN NAME + "." + <ACTION NAME> + "." +
<PARAMETER>

#ACTION NAME corresponds to the ACTION ID of

AUTOMATION ACTION table in inventory

#Each ACTION ID has a list of PARAMETERS in the PARAMETERS
table in inventory

#

#A11 '\' characters in the regex must be escaped for JAVA
#e.g regex pattern for packetloss

Lost\s=\s\d*\s\ ((\d*%) \sloss\) ---
- > Lost\s=\s\d*\s\ ((\d*%) \sloss\)

21

#group id is used to return the input subsequence captured
during the match operation

#Key for group id -- > DOMAIN NAME + "." + <ACTION NAME> +
"." 4 <PARAMETER> + "." + groupid

com.hp.ucaautomation.test bsc interface.packet loss =

(\d*) $\spacket 1loss,
com.hp.ucaautomation.test bsc interface.packet loss.groupid
=1

com.hp.ucaautomation.test bsc interface.min time =
\s*Minimum\s=\s (\d*\w*)

com.hp.ucaautomation.test bsc interface.min time.groupid =
1

3. Enter the values for the following parameters when invoking the Parser workflow.

Parameter Input/Output | Description

parser_bundle_l | Input The name of the parser bundle.

abel In the example in Step 2, the bundle nameis parser.
parser_bundle_ | Input The path where parser bundles are available.

path

In the example, the path is
S{SOLUTION ETC}/config/parser/regex/<ele
mentype>/test bsc interface.

parser_type Input The type of the parser (regex or xpath).

In the previous, the value is regex.

action_name Input Name of the diagnostic action defined in inventory.

In the example, the action name is
test bsc interface.

raw_result Input This parameter is the case packet variable which contains
the raw information. The raw information is parsed and the
data is extracted.

message_data Input The request message that was received from the UCA
Automation Console.

parameter_map | Output This map variable contains the mapping of each output
parameter of the action to its corresponding parsed
values.

minor_code Output Status of the workflow execution.

Avalue of 210 represents a successful execution.

minor_descripti | Output Diagnostic information of the workflow execution.
on
response_string | Output The output parameter and parsed values are concatenated

in a format defined by UCA-EBC.

This value is sent as avalue in the outputparameters

tag of the response to UCA-EBC. The format of the string is
<action name,value, type>,<action name,va

lue, type>.... .<action name,value, type>

Table 4 Parser parameters

Chapter 4

UCA Automation demo scenario

The UCA Automation kit contains a demo of the automation in the following scenario:

A series of cell down alarms are generated.
This storm of alarms is interpreted and the problem is isolated as the BSC is down.

UCA Automation performs a test to verify whether the BSC is not working or is a false
positive.

If the BSC is down, the system performs a test to check all the available free interfaces.

Later, the system triggers an action to recover the service, switching it to an available
interface.

After a successful recovery, the alarm is updated with recovery information and all open
trouble tickets are closed.

After a failure from recovery, the alarm is updated with diagnostic information and a
trouble ticket is opened.

4.1 Performing the demo scenario

Follow the procedure to run the UCA Automation demo scenario.

1.

Deploy the HPSA demo value pack UCA HPSA DomainExample VP-V11-1A.zip
available under /opt /UCA Automation/UCA Automation HPSA VPs after
installation.

Deploy the UCA demo value packs UCA Automation DomainExample UCA PD-
vp-V1.1-1A.zip and demo evaluate value pack
UCA Automation DomainExample UCA EV-vp-V1.1-1A.zip.

These value packs are available at
/opt/UCA Automation/UCA Automation UCA VPs.

Database configuration file for the UCA demo value pack.

Modify the DBConfiguration.xmlin /var/opt/UCA-
EBC/instances/default/deploy/UCA Automation DomainExample UC
A EV-V1.1-1A/conf.

The contents of the file are as follows. Specify the database name, URL, username, and
password.

#contains the Inventory database access parameters

<DBConfiguration>
<database>postgres</database>
<postgressUrl>jdbc:postgresqgl://localhost:5444/postgres
</postgressUrl>
<oracleUrl>

jdbc:oracle:thin:@localhost:1521:hpsadb

23

</oracleUrl>
<username>hpsab6l</username>
<password>hpsa6l</password>
</DBConfiguration>

Upload the example Decision Tree
/opt/UCA_ Automation/Utilities/DecisionTree/etc/DomainEx/Doma
inEx.xml usingthe command line Decision Tree utility

Edit the ${UCA_EBC_INSTANCES}/conf/OrchestraConfiguration.xml file and add the
following route configuration

<Routes>
<Route name="Copy from UCA Automation Foundation VP to
from UCA Automation EV VP ">
<COPY>
<Source>
<ValuePackNameVersion>UCA Automation Foundation UCA-
V1.1-1A</ValuePackNameVersion>

<ScenarioName>UCA Automation Foundation UCA.requestrespo
nse</ScenarioName>
</Source>
<Destinations>
<Destination>
<Target>

<ValuePackNameVersion>UCA Automation DomainExample UCA EV-
V1.1-1A</ValuePackNameVersion>

<ScenarioName>UCA Automation DomainExample UCA EV.evaluate<
/ScenarioName>
</Target>
</Destination>
</Destinations>
</COPY>
</Route>
</Routes>

Generate alarms from TeMIP, which match the pattern present inside the PD value pack
UCA Automation DomainExample UCA PD-vp-V1.1-1A.=zip.Ensurethat
the TeMIP operation contexts uca_network and uca_pbalarm are created. Refer the UCA
Automation Installation guide for more details. Run the sample alarm generation utility
script provided with the Domain example PD value pack in the bin folder.

Interact with the Tasks from the UCA Automation console.

24

	Legal notices
	Contents
	Figures
	Tables
	Preface
	Intended audience
	Software versions
	Typographical conventions
	Reference Documents
	Support

	Chapter 1
	Introduction
	1.1 Design theory
	1.2 Prerequisites
	1.3 Implementation

	Chapter 2
	Integrate with UCA Automation Foundation value pack
	2.1 Integrate PD value pack with UCA Foundation pack
	2.2 Integrate Evaluate value pack with UCA Foundation pack

	Chapter 3
	Integrate with HPSA UCA Automation Controller
	3.1.1 Workflow of a task request
	3.1.2 Status codes
	3.1.3 Support for internationalization
	3.2 Using HPSA UCA Automation parser

	Chapter 4
	UCA Automation demo scenario
	4.1 Performing the demo scenario

