
HP Operations Orchestration
Software Version: 10.20
Windows, OS X, and Linux Operating Systems

PowerShell Wizard Guide

Document Release Date: November 2014
Software Release Date: November 2014

Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notice
© Copyright 2014 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® andWindows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of TheOpenGroup.

This product includes an interface of the 'zlib' general purpose compression library, which is Copyright © 1995-2002 Jean-loupGailly andMark Adler.

Support
Visit the HP Software Support Online web site at: http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed tomanage your
business. As a valued support customer, you can benefit by using the support web site to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HP support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To findmore information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

HP Software Solutions Now accesses the HPSW Solution and Integration Portal Web site. This site enables you to explore HP Product Solutions tomeet your business
needs, includes a full list of Integrations between HP Products, as well as a listing of ITIL Processes. The URL for this Web site is
http://h20230.www2.hp.com/sc/solutions/index.jsp

PowerShell Wizard Guide

HP Operations Orchestration (10.20) Page 2 of 56

Contents

Introduction 5

Purpose of the PowerShell Wizard Integration 5

Supported Versions 5

Supported Languages 6

Getting Started with the PowerShell Wizard Integration 7

Downloading the PowerShell Wizard 7

Starting the PowerShell Wizard 7

Configuring Logging Settings 8

Uninstalling the PowerShell Wizard 8

PowerShell Wizard Requirements 8

PowerShell Wizard Enhancements from 9.x 9

PowerShell Wizard Steps 10

Step 1. Selecting the Repository 10

Step 2. Configuring the PowerShell Connection 11

Step 3. Selecting theModules 12

Step 4. Selecting Operations (Cmdlets) 13

Using the PowerShell Wizard – OO Integration 14

PowerShell Wizard Integration Operations and Flows 14

PowerShell Script Operation 16

Connection Inputs 17

Additional Modules and Snapins 19

PowerShell Script and cmdlet Inputs 20

Formatting the Result 20

Running a PowerShell Script on a Localhost 21

Running PowerShell Scripts from a File 23

Loading PowerShell Functions from Files 24

Running a PowerShell Script on a Remote Host 25

PowerShell Wizard Guide

HP Operations Orchestration (10.20) Page 3 of 56

Formatting the Result 26

RunningMultiple PowerShell Cmdlets Scripts in the Same PowerShell Session 29

Assigning the Result of One Cmdlet as a Parameter to Another Cmdlet 33

Solution 1: Create a New PowerShell Script Step 38

Solution 2: Run a PowerShell Script in the Generated Flow Context 41

Solution 3: UseGenerated Flows Only andMinimize the User Effort 43

PowerShell Remoting 44

Overview 44

Enabling Remoting Using GPO (Group Policy Objects) 44

Group Policy Configuration for a Group of Servers 46

Enabling Remoting for Non-Administrative Users 49

Authentication Types 50

Troubleshooting 54

Could not connect to the host 54

The wizard fails to loadmodules on a x64 localhost. 54

The user has exceeded themaximum allowed number of remote shells 55

PowerShell Wizard Guide

HP Operations Orchestration (10.20) Page 4 of 56

Introduction
Purpose of the PowerShell Wizard Integration 5

Supported Versions 5

Supported Languages 6

Purpose of the PowerShell Wizard Integration
With this integration, users can generate HP OO flows from the selected PowerShell cmdlets found in
a list of modules/snapins.

Its main advantages are:

l Automation. Avoid having to repeat the same time-consuming process of creating flows which
execute PowerShell cmdlets. Perform the following steps as an alternative to using the PowerShell
Wizard (multiply by the number of cmdlets):

n Create an empty flow

n Drag and drop the PowerShell Script operation

n Search for the cmdlet description

n Set the required input values

n Set the description of the flow. The step inherits its description from the PowerShell Script
operation, but this is not available for the flow.

l Authoring ease. The description of each flow contains the default description of the corresponding
cmdlet which it executes. Therefore, the user is not forced to open the cmdlet description in a
browser and switch between HP OO and the Internet.

l Module and cmdlet discovery. The wizard discovers the available modules and cmdlets from a
target host.

Supported Versions
HP Operations Orchestration Version PowerShell Wizard Version

HP OO 10.x with Base Content Pack 10.x

PowerShell Wizard Guide
Introduction

HP Operations Orchestration (10.20) Page 5 of 56

Supported Languages
This release supports the following languages:

l en - English

l fr - French

l de - German

l ja - Japanese

l es - Spanish

l zh_CN - Simplified Chinese

PowerShell Wizard Guide
Introduction

HP Operations Orchestration (10.20) Page 6 of 56

Getting Started with the PowerShell Wizard
Integration

Downloading the PowerShell Wizard 7

Starting the PowerShell Wizard 7

Configuring Logging Settings 8

Uninstalling the PowerShell Wizard 8

PowerShell Wizard Requirements 8

PowerShell Wizard Enhancements from 9.x 9

Downloading the PowerShell Wizard
The PowerShell Wizard Installer is an executable file that can be downloaded from the HP Live
Network page.

1. From https://hpln.hp.com, click Operations Orchestration Community and log in. The
Operations Orchestration Community page contains links to announcements, discussions,
downloads, documentation, help, and support.

2. On the left-hand side, click Operations Orchestration Content Packs.

3. In the Operations Orchestration Content Packs box, click Content. The HP Passport and sign-in
page appears.

4. Enter your user ID and Password to access to continue.

5. Click HP Operations Orchestration 10.x, and then select the items that you want to download.

Starting the PowerShell Wizard
If Studio is selected from theOperation Orchestration installer, the wizard is located under
<installation folder>\studio\tools.

Double-click the ps-wizard.bat file under<installation folder>\studio\tools.

PowerShell Wizard Guide
Getting Started with the PowerShell Wizard Integration

HP Operations Orchestration (10.20) Page 7 of 56

Configuring Logging Settings
The configure logging settings are no longer supported in the 10.x wizard.

Uninstalling the PowerShell Wizard
The wizard is uninstalled when Studio is uninstalled.

PowerShell Wizard Requirements
Theminimum software requirements for systems running the PowerShell Wizard for HP Operations
Orchestration are:

l Java SE Runtime Environment (also known as JRE) 7

l .NET Framework 2 or a later version

Target Host:

l PowerShell with remoting enabled.

l For the products providing PowerShell cmdlets, the target host must have themodules and snapins
available. Run one of the following cmdlets to list the requiredmodules and snapins. Otherwise, it
means that the host does not have the cmdlets provided for that product.

PowerShell Wizard Guide
Getting Started with the PowerShell Wizard Integration

HP Operations Orchestration (10.20) Page 8 of 56

Figure 1: How to list themodules and snapins in the PowerShell console

PowerShell Wizard Enhancements from 9.x
l The wizard now has the version (10.x) displayed in the title.

l The wizard now appears in the task bar and can be closed, minimized or brought to the front.

PowerShell Wizard Guide
Getting Started with the PowerShell Wizard Integration

HP Operations Orchestration (10.20) Page 9 of 56

PowerShell Wizard Steps
The PowerShell Wizard contains only a few steps. TheWelcome page contains a short summary of
the wizard. This section describes the steps that you have to perform.

Step 1. Selecting the Repository
In theEnter the location field, type the required project path or click Browse to locate the project
location.

The wizard generates a 10.x studio project, but not a content pack or a repository. The project has a
default location: C:\Users\[username]\.oo\Workspace\New Project.

Figure 2: PowerShell Wizard: Select repository page

PowerShell Wizard Guide
PowerShell Wizard Steps

HP Operations Orchestration (10.20) Page 10 of 56

Step 2. Configuring the PowerShell Connection

Figure 3: PowerShell Wizard: Connection settings page

Host - Type the name of the host that you want to connect to. If you leave theHost field empty, the
PowerShell Wizard uses localhost as the default.

Note: If Host is empty then the authentication type will beNegotiateWithImplicitCredential. If
the host has been defined, the wizard considers the host definition provided by the user.

Username - Enter the user name to connect to the target host..

Password - Enter the password.

Port - The port values can be in the range of 1- 65535. If you set the port value to 0, the wizard ignores it
and uses the default port values. The default port values are: 5985 (HTTP) and 5986 (HTTPS).

PowerShell Wizard Guide
PowerShell Wizard Steps

HP Operations Orchestration (10.20) Page 11 of 56

Step 3. Selecting the Modules

Figure 4: PowerShell Wizard: Select modules and snapins page

The wizard detects all the available modules/snapins on the target host and displays them in a list as
shown above. You can select/deselect any module and the wizard retrieves only those cmdlets
contained in the selectedmodules.

Cmdlets such as Get-Process andGet-Service are not contained in the list of available modules.
These are cmdlets which are available by default in PowerShell. To retrieve the list of default cmdlets,
select theAdd default PowerShell cmdlets check box .

Note: If you select theAdd default PowerShell cmdlets check box, the lists are disabled.

PowerShell Wizard Guide
PowerShell Wizard Steps

HP Operations Orchestration (10.20) Page 12 of 56

Step 4. Selecting Operations (Cmdlets)

Figure 5: PowerShell Wizard: Select cmdlets page

The selectedmodules are loaded to the PowerShell runspace, and the wizard retrieves the names of
the cmdlets from thosemodules.

You canmove the cmdlets from left to right or right to left. Use the search text box if the list is very
large, and you have difficulties finding the required cmdlet. The wizard searches the list for the cmdlets
with names containing the search text. In addition, the wizard updates the list while you are typing.

PowerShell Wizard Guide
PowerShell Wizard Steps

HP Operations Orchestration (10.20) Page 13 of 56

Using the PowerShell Wizard – OO Integration

PowerShell Wizard Integration Operations and Flows
This section describes the operations and flows in the PowerShell integration.

Generated Flows

Figure 6: Example of a generated flow

The PowerShell wizard generates one flow for each selected cmdlet unless the project already
contains the flow. For example, if the flow was generated in a previous run of the wizard.

The name of the flow is obtained from the name of the cmdlet by applying the following rule:

l Replace "-" with " ".

For example, the name of the flow for the cmdlet Get-IScsiHbaTarget is changed toGet IScsi Hba
Target.

Inputs

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 14 of 56

Figure 7: Inputs of a generated flow

Each flow has the following inputs:

l Common inputs. All the inputs of the PowerShell Script operation

Descriptions

Figure 8: Description of a generated flow

The description of each generated flow contains the following items:

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 15 of 56

l A description of the cmdlet as found in its native documentation

l A link where the user can find a detailed description of the cmdlet written by the provider of the
module

l The description of the common inputs copied from the PowerShell Script operation’s description.

l The description of the common results

Most of the information included in the description can be obtained from the PowerShell console as
shown below:

Figure 9: Obtaining the description from the PowerShell console

PowerShell Script Operation
The operation is used to execute a PowerShell script or cmdlet on a target host, either local or remote.
If the operation executes a single cmdlet, the parameters of the cmdlet should be passed to the
operation inputs.

Inputs

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 16 of 56

Figure 10: Inputs of the PowerShell Script operation

Connection Inputs
host

The hostname or IP address of the PowerShell host. This input is mutual exclusive with URI and
shellURI

Default value: localhost

URI

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 17 of 56

Specifies a Uniform Resource Identifier (URI) that defines the connection endpoint for the interactive
session.

Value format: <Transport>://<ComputerName>:<Port>/<ApplicationName>

Example: http://exch2010CAS1/Powershell?serializationLevel=Full

shellURI

Gets the Uniform Resource Identifier (URI) of the shell that is launched when the connection is made.
This input is mutual exclusive with host.

Example: http://schemas.microsoft.com/powershell/Microsoft.Exchange

Username

The usern ame to use when connecting to the server.

Value format: username@domain or domain\username

password

The password to use when connecting to the server

authType

Specifies themechanism that is used to authenticate the user's credentials. Valid values: Default,
Basic, Credssp, Digest, Kerberos, Negotiate, NegotiateWithImplicitCredential (case-insensitive).

Default value: Default

useSSL

If true, the operation uses the Secure Sockets Layer (SSL) protocol to establish a connection to the
remote computer. By default, SSL is not used. WS-Management encrypts all Windows PowerShell
content transmitted over the network. UseSSL is an additional protection that sends the data across an
HTTPS connection instead of an HTTP connection.

Default port for SSL: 5986.

Default value: false

skipCACheck

Indicates when connecting over HTTPS that the client does not validate that the server certificate is
signed by a trusted certificate authority (CA).

Default value: true

skipCNCheck

Indicates whether the certificate common name (CN) of the server and the hostname of the server are
not checked for being the same.

Default value: true

port

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 18 of 56

Specifies the network port on the remote computer that is used for this connection. To connect to a
remote computer, the remote computer must be listening on the port that the connection uses. The
default ports are 5985 (theWinRM port for HTTP) and 5986 (theWinRM port for HTTPS).

Session and Piping Inputs

keepSessionAlive

If true, the operation will not close the PowerShell runspace (i.e. the PSSession in case of remote
connections) created during the execution and returns the runspaceID as the result of the operation.
Actually the PowerShell runspace is saved in the OO session and can be used in other operations
using the runspaceID result of previous operation.

Default value: false

enablePiping

If true, the operation enables piping the way PowerShell does. This input should be used only when
keepSessionAlive input is true. First time the piped objects are null and the scope is to save the objects
resulted from the PowerShell script execution. Next time the piped objects can be referred in the script
as "$_" objects.

Default value: false

Example: First, run "Get-Service" script with enablePiping=true and keepSessionAlive=true, then run
the script "Select-Object -property name,displayname,status|where-object {$_.Name -lt "C"}" with
enablePiping=true keepSessionAlive=true. Observe the use of "$_".

runspaceID

If this is not empty, the operation searches the OO session for keys which equal the runspaceID. If the
operation finds the runspace specified by the runspaceID it tries to use it and does not create another
PowerShell runspace with provided inputs. If the runspace exists but is broken or unavailable the
operation uses its authentication parameters and tries to reconnect and recreate the PowerShell
runspace.

Note: The operation uses the connection parameters of the runspace identified by runspaceID, not
the values provided as user inputs. The operation processes the connection inputs, for example,
host, username, password, authType, useSSL that is provided by the user only if the runspaceID
does not exist in the OO session.

Additional Modules and Snapins
Modules

A list of PowerShell modules that is loaded after the PowerShell connection is established. Each value
from the list specifies the name of themodule to import. Enter the name of themodule or the name of a
file in themodule, such as a .psd1, .psm1, .dll, or ps1 file. File paths are optional. Wildcards are not
permitted. Specify only themodule namewhenever possible. When you specify a file name, only the
members that are implemented in that file are imported. If themodule contains other files, they are not

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 19 of 56

imported, and youmight bemissing important members of themodule. The list of modules should be
separated by the comma "," delimiter.

Example: FailoverClusters

Snapins

A list of PowerShell snapins loaded after the PowerShell connection is established. Each value from
the list specifies the name of a registered snapin, for example, the Name, not the AssemblyName or
ModuleName.

Example: Microsoft.Exchange.Management.PowerShell.E2010

PowerShell Script and cmdlet Inputs
script

The script to execute on the PowerShell host. If you want to execute a script from a file just provide the
file path.

Example:

C:\PowerShellScripts\GetHost.ps1

Cmdlet

The name of the PowerShell cmdlet to invoke. If the cmdlet has additional parameters, please provide
them as inputs to the operation. If the parameter has the same name as one of the operation's inputs
just prefix it with "_". This input is intended to be used together with the PowerShell wizard so please
use the script input whenever possible.

Formatting the Result
returnTable

If true, the operation will return a table containing a row for each PSObject that the script emits. The
table's columns represent the properties of these PSObjects, in the
propertyName<delimiter>propertyValue format. If false the operation returns a string representation of
the result similar to the output from the PowerShell console.

Default value: false.

delimiter

The delimiter used to separate each property name from the property value in the output table.

Default value: ":".

colDelimiter

The delimiter used to separate columns in the output table.

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 20 of 56

Default value: ",".

rowDelimiter

The delimiter used to separate rows in the output table.

Default value: newline.

Running a PowerShell Script on a Localhost
The only setting required to execute the PowerShell scripts on the localhost is that the ExecutionPolicy
must be RemoteSigned. UseGet-ExecutionPolicy to display the current execution policy and Set-
ExecutionPolicy to set the execution policy.

In addition, the required input is the script input.

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 21 of 56

Figure 11: Running the PowerShell script operation on localhost

If one script requires elevated rights, enter a user name and a password.

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 22 of 56

Running PowerShell Scripts from a File

Figure 12: Running the PowerShell script operation from a file

To run scripts from a file, just provide the path to that file. This should work in most of the cases, when
the path to the file contains white spaces, the operation fails. To fix this provide the path to that file like
in the picture above.

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 23 of 56

Loading PowerShell Functions from Files

Figure 13: Using a script to enable all functions from a local file

In certain cases, a PowerShell script depends on functions from other file from the disk. The script from
the picture abovemight help to load this file and enable all functions and cmdlets from it. Get-Parameter
cmdlet is defined in the file namedGet-Parameter.ps1.

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 24 of 56

Running a PowerShell Script on a Remote Host

Figure 14: Running the PowerShell script operation on a remote host

First, execute the script providing only the required inputs: host, user name, password and the script.

Negotiate is the default authentication type if the host is provided as an IP address and Kerberos for
host names. See PowerShell Remoting and Authentication Types if the connection fails.

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 25 of 56

Formatting the Result
The result can be formatted as a table or the sameway it will be displayed in the PowerShell console.
The format is decided by the returnTable input described above. If returnTable is set to false the
operation will return the result as in the PowerShell console and like the old operation.

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 26 of 56

Figure 15: The result if returnTable=false

The result is human readable, but the problem is that it is very difficult to parse, and does not contain
properties which could not be displayed on the screen.

The result can be displayed as a table.

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 27 of 56

PowerShell session considerations results are displayed as a table. Each PowerShell object (in this
case each service) is displayed by default on a line. Each line contains different properties of the
service (default delimiter is “,”) and the key-value pairs are delimited by “:”. All these delimiters can be
changed, refer to the Inputs section for more information.

For example Get-Service returns the following result:

Figure 16: Raw result of the Get-Service flow

The result contains a full list of properties without any additional PowerShell script, for example, Get-
Service|fl, Get-Service|Select-Object Status). Therefore, the status of the services appears and can
be parsed by writing two types filters on the result.

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 28 of 56

Figure 17: Filtering the results

Running Multiple PowerShell Cmdlets Scripts in the
Same PowerShell Session
This section explains how to runmultiple PowerShell Script steps in the same PowerShell session.
When the PowerShell Script has to execute a single script on a remote server keeping the sessions
alive is not necessary. The PowerShell Script connects to the remote host, creates a new PowerShell
Runspace, for example, a new PowerShell session, runs the full script on the target and closes the
runspace and the connection.

If you want to use the PowerShell Wizard and run the generated flows in a different sequence, you need
to consider how much effort is required from the user and whether additional PowerShell Scripts need
to be created in order to general flows. However, there are situations when you want to keep the
PowerShell session alive.

For example, one uses the PowerShell Wizard, connects to a host which has PowerCLI installed on it
and follows the wizard steps to generate HP OO flows for the PowerShell cmdlets to execute VMWare

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 29 of 56

tasks. Suppose that after the wizard finishes, the user wants to execute one simple cmdlet like Get
VM.

To run cmdlets and keep the sessions alive:

1. Run theOOTB Get Datacenter flow generated with the PowerShell Wizard.

Note: This cmdlet does not have any required inputs, however the flow fails to run as you
need to run the Connect VIServer cmdlet. The PowerShell Wizard generates this flow to
solve this problem.

2. Create a flow sequence as shown below.

Do not modify the generated flow.

The flow tries to execute Connect VIServer before Get VM.

In the flow below, the parameters specific to the cmdlet were added as flow inputs. The names
appear in capital letters.

Figure 18: Adding values to specific parameters of the cmdlet

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 30 of 56

The user runs the flow and provides inputs for the server, user name and password (Connect
VIServer). No inputs are required for the Get Datacenter. The Connect VIServer succeeds,
however, the Get Datacenter fails.

TheGet Datacenter fails for the following reasons:

n Connect VIServer passes successfully and the connection to the VMWare server was
established.

n Connect VIServer created a new PowerShell runspace, for example, PowerShell session and
executed the cmdlet which established a valid connection to the server, however the runspace
is closed after the flow runs and the connection is lost.

n Get Datacenter flow creates another PowerShell runspace which is different from the one
created by Connect VIServer flow. Therefore, Get-Datacenter cmdlet fails.

3. The solution to the previous step is to keep the session alive during the execution of the two
cmdlets.

To do this:

keepSessionAlive=true for the first flow which is Connect VIServer; the runspaceID must be
added to the results of the Connect VIServer flow:

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 31 of 56

Figure 19: Adding a result to the Connect VIServer flow

4. The runspaceID of the Get Datacenter flow must get its value from the result of the Connect
VIServer. This happens automatically because runspaceID input assigns its value from the flow
variable.

At this point the flow completes successfully.

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 32 of 56

Figure 20: The execution of the PSWizard VMWare sample flow

Assigning the Result of One Cmdlet as a Parameter to
Another Cmdlet
Most of the “get” flows generated through the PowerShell Wizard should work OOTB with minimum
effort from the user. But there are some cmdlets, probably the “new” cmdlets, which require as
parameters the result of another cmdlet. For example, one would like to create a new virtual machine
using the generated flow New VM.

Even if the user follows all the steps described in the previous section, the flow can not be executed.
The PowerShell Wizard generates the flow, but the user can runOOTB flows only if their parameters

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 33 of 56

have a built-in type (for example, strings or integers). In case of cmdlets like Get-Help the parameters
can be passed as strings (for example, the name of the cmdlet to search for help information). The New
VM flow parameters are below:

Figure 21: The inputs of the New VM flow

The New VM flow has an input named VMHost. What is the type of this parameter?

The description of the generated flows contains information about the PowerShell cmdlet, but from size
reasons and other considerations we could not include the full description of the cmdlet as it is
displayed when someone executes Get-Help New-VM –full. The description of the operation contains
the original link where the user can find detailed information about the cmdlet.

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 34 of 56

Figure 22: The description of the New VM flow

If the user opens the link in a browser he can observe the types of the cmdlet parameters. In our case,
VMHost is of the same type as the name suggests.

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 35 of 56

Figure 23: The VMHost object: parameters

The problem is that VMHost is an object, not a built-in type which can be resolved as a string. Following
the link provided for the VMHost type the user can find which cmdlets return VMHost objects as it can
be observed below. In our case the type suggests that a cmdlet like Get-VMHost would return this kind
of objects.

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 36 of 56

Figure 24: The VMHost object : additional information

In the previous section, we explained how to execute in the same PowerShell sessionmultiple HP OO
flows generated with the PowerShell wizard. At this point we can imagine the following chain of
cmdlets which need to be executed to create a new vm:

l Connect-VIServer – this must be executed before any VMWare cmdlet;

l Get-VMHost – we need the result of this cmdlet as parameter for the next cmdlet;

l New-VM – this cmdlet actually creates a new virtual machine.

New VM has other parameters beside VMHost which are not built-in, but we are going to explain how to
solve the VMHost parameter, because the process is the same for the other parameters, too.

You need to execute three cmdlets in the same PowerShell session. You have generated flows for
each of the cmdlets and executed them in the same session. The next step is to take the result of the
Get-VMHost cmdlet and pass it to theNew-VM cmdlet? Select from one of the following solutions:

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 37 of 56

Solution 1: Create a New PowerShell Script Step

Figure 25: Add a PowerShell script step to the flow

Create a new PowerShell script in addition to the generated flow that you want to run. If you keep the
session alive during the execution of the 2 PowerShell script steps, you can use the PowerShell script
variables defined in the first step to pass them in the script of the second step or as parameters for the
generated flow. In this case, you are not using the generated flows forConnect-VIServer andGet-
VMHost; however, you need to write the script.

1. Execute the following script, then save the result of theGet-VMHost cmdlet in the PowerShell
variable named $vmHost.

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 38 of 56

Figure 26: Use a variable to save the result of the step

2. The next step is to assign the value of the VMHost input from the $vmHost variable.

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 39 of 56

Figure 27: Assign the variable to the VMHost input of the flow

This way wemanaged to pass PowerShell cmdlets results between HP OO flows generated with the
PowerShell wizard.

Note: The $var refers to PowerShell variables and ${var} refers to HP OO flow variables.

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 40 of 56

Solution 2: Run a PowerShell Script in the Generated
Flow Context

Figure 28: The NewVM Flow

The second solution is to execute the previous defined script in the context of the generated flow. The
PowerShell script operation has two inputs which build the script that is going to be executed:

l Script – a PowerShell script to execute on target host;

l Cmdlet – the PowerShell cmdlet name. If the script input is not empty, than the PowerShell script
defined by this input is going to be executed before the cmdlet. Although the script is executed in
the same PowerShell runspace with no extra settings.

The solution is shown in the following flow:

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 41 of 56

Figure 29: Add a script to the input of the flow

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 42 of 56

Solution 3: Use Generated Flows Only and Minimize
the User Effort

Figure 30: Using only generated flows

The result of each PowerShell cmdlet executed from a generated flow is saved in a PowerShell variable
with the same name as the cmdlet, for example, forGet-VMHost the variable is $GetVMHost.

Without writing any PowerShell script, the user can executeGet VMHost generated flow and know
that the result of this cmdlet is saved in the $GetVMHost variable. Pass the variable to theVMHost
input of theNew VM flow.

PowerShell Wizard Guide
Using the PowerShell Wizard –OO Integration

HP Operations Orchestration (10.20) Page 43 of 56

PowerShell Remoting

Overview
Enable PowerShell remoting, by running the following cmdlet: Enable-PSRemoting.

In workgroup environments, enable classic mode authentication for network logon:

1. Open Local Security Policy from the Control Panel and select Administrative Tools.

2. Navigate to Local Policies \ Security Options.

3. Double-click Network Access: Sharing and Security Model for local accounts and set it to
classic.

Modify theWSMan trusted hosts setting, by adding the IP addresses of all remote clients to the list of
trusted hosts. This can be done using one of the following commands:

l Set-item wsman:localhost\client\trustedhosts -value * (adds all computers as trusted
hosts)

l Set-item wsman:localhost\client\trustedhosts -value Computer (only adds Computer to
the trusted hosts)

l Set-item wsman:localhost\client\trustedhosts -value *.domain.com (adds all computers
in the specified domain)

l Set-item wsman:localhost\client\trustedhosts -value 10.10.10.1 (adds the remote
computer with the IP address 10.10.10.1 to the trusted hosts list).

Enabling Remoting Using GPO (Group Policy Objects)
While remoting can be enabledmanually usingEnable-PSRemoting, it is recommended to useGPO
management tools whenever it is possible. UseGPO to apply policies on a single host (for example,
the target PowerShell host) or a group of servers.

Group Policy Configuration for a Single Host

To enable PowerShell remoting for a single host:

1. Open theGroup Policy Management console. For example, gpedit.msc.

2. Go to Local Computer Policy > Computer Configuration > Administrative Templates >

PowerShell Wizard Guide
PowerShell Remoting

HP Operations Orchestration (10.20) Page 44 of 56

Windows Components.

Figure 31: Group Policy Configuration : Windows components section

3. From theWindows Components listed in the right pane, we are interested in two of them. The first
one is Windows RemoteManagement (WinRM) and the second one is Windows Remote Shell.
The next step will refer to the first one, therefore browse the components and openWindows
RemoteManagement (WinRM).

Figure 32: Group Policy Configuration: WinRM Service section

PowerShell Wizard Guide
PowerShell Remoting

HP Operations Orchestration (10.20) Page 45 of 56

4. WinRM is the service that PowerShell uses for remote sessions. WinRM can be configured as
client or service, depending on the role the host is going to have in a PowerShell connection (for
example, request access to execute scripts on other hosts or allow other hosts to execute scripts
on the current host). At this point, you can enable different authentication types, specify the
trusted hosts, enable HTTP or HTTPS listeners, and so on.

5. There are some other default settings the user might want to change in a production environment.
These settings can be found inWindows Remote Shell as shown below:

Figure 33: Group Policy Configuration : Windows Remote Shell section

6. You can specify themaximum number of remote shells per user (default is 2) or themaximum
amount of memory in MB for shell (the default is 150).

7. After configuring the GPO, youmight need to restart the computer in order to apply the policies or
try to run the command gpupdate.

Group Policy Configuration for a Group of Servers
Sometimes the GPO policies must be applied onmultiple server hosts and repeating the above steps
on every server might not be the best solution. Therefore, you can create a new GPO policy, configure
it and apply it on a list of servers.

1. Go to the domain controller or on a server where gpmc.msc is available and open it.

2. Right-click theGroup Policy Object item as in the following image and chooseNew. Enter the
name for the new GPO and select the policy to inherit from, and then go to the next step.

PowerShell Wizard Guide
PowerShell Remoting

HP Operations Orchestration (10.20) Page 46 of 56

Figure 34: Using Group Policy Objects - step 1

3. Right-click the new GPO and select Edit.

PowerShell Wizard Guide
PowerShell Remoting

HP Operations Orchestration (10.20) Page 47 of 56

Figure 35: Using Group Policy Objects - step 2

4. Configure the GPO sameway as for single hosts.

5. Now that there is a new GPO, you can apply it to a group of servers. The following example shows
you how to link it on an existing OU from AD; however, this can be applied to other groups as well.
TheGPO interface displays the existing OUs from the domain controller AD.

To link a GPO to anOU, go to that OU, right click it and select Link an Existing GPO.

PowerShell Wizard Guide
PowerShell Remoting

HP Operations Orchestration (10.20) Page 48 of 56

Figure 36: Using Group Policy Objects - step 3

TheGPO settings will be applied to all servers contained in the selected OU. Although aGPO
updatemight be required and also a reboot for the servers before the policies are actually applied.

Note: Local policies overwrite domain policies.

Enabling Remoting for Non-Administrative Users
To establish a PSSession or run a command on a remote computer, youmust have permission to use
the session configurations on the remote computer.

By default, only members of the Administrators group on a computer have permission to use the default
session configurations. Therefore, only members of the Administrators group can connect to the
computer remotely.

To allow other users to connect to the local computer, give the user Execute permissions to the default
session configurations on the local computer.

The following command opens a property sheet that lets you change the security descriptor of the
default Microsoft.PowerShell session configuration on the local computer.

Set-PSSessionConfiguration Microsoft.Powershell –ShowSecurityDescriptorUI

PowerShell Wizard Guide
PowerShell Remoting

HP Operations Orchestration (10.20) Page 49 of 56

Figure 37: Adding a user to the PowerShell session configuration

Authentication Types
Basic

Client side steps:

l Allow unencrypted communication for the client, by running the following PowerShell command:

set-item wsman:\localhost\client\AllowUnencrypted -value true

l Enable Basic authentication for the client, by running the following PowerShell command:

set-item wsman:\localhost\client\auth\Basic -value true

Server side steps:

PowerShell Wizard Guide
PowerShell Remoting

HP Operations Orchestration (10.20) Page 50 of 56

l Turn off encryption for theWinRM service, by running the following PowerShell command:

set-item wsman:\localhost\service\AllowUnencrypted -value true

l Enable Basic authentication for the service, by running the following PowerShell command:

set-item wsman:\localhost\service\auth\Basic -value true

l The client and server can be in different domains.

l When using Basic authentication, a local user account must be provided for authentication on
the remote host.

l Basic can be used when the destination is an IP address.

l Basic can be used when the destination is one of the following: localhost, 127.0.0.1, [::1].

l The cluster name, as well as the hostnames of the cluster nodes can be used for the
destination host.

CredSSP

Client side steps:

l Enable CredSSP authentication for the client, by running the command:

Enable-WSManCredSSP -Role Client -DelegateComputer WSMAN/*.

l Allow delegating fresh credentials by performing the following steps.

a. Open gpedit.msc.

b. Go toComputer Configuration > Administrative Templates > System > Credentials
Delegation.

c. EnableAllow Delegating Fresh Credentials and add the wsman hosts to the server list.

d. Run gpupdate /force from command line to force policy update.

Server side steps:

l Enable CredSSP authentication, by running the following PowerShell command:

Enable-WSManCredSSP -Role Server

l Create a new https listener by using the following commad:

winrm create winrm/config/Listener?Address=*+Transport=HTTPS.

Domain Controller side steps:

PowerShell Wizard Guide
PowerShell Remoting

HP Operations Orchestration (10.20) Page 51 of 56

l If the NETWORK SERVICE doesn't have "Validated write to service principal name", do one of the
following:

n Try running the following command:

dsacls "CN=AdminSDHolder,CN=System,DC=domain,DC=com" /G "Sn-1-5-
20:WS;Validated write to service principal name"

n Open ADUC, go toComputers > DC object > Security, select Network Service and give it
Validated write to SPN.

Default

WhenDefault authentication is used, the following situations can occur:

l Kerberos is themethod of authentication used if the client is in the same domain as the destination
host, and the value specified for that host is not one of the following: localhost, 127.0.0.1, [::1].

l Negotiate is themethod of authentication used if the client is not in the same domain as the
destination host, or the value specified for that host is one of the following: localhost, 127.0.0.1,
[::1].

Digest

Digest authentication is not supported for remote connections. It cannot be configured for theWinRM
server component.

Kerberos

Client side steps:

l Enable Kerberos authentication for the client, by running the following PowerShell command:

set-item wsman:\localhost\client\auth\Kerberos -value true

Server side steps:

l Enable Kerberos authentication for the service, by running the following PowerShell command:

set-item wsman:\localhost\service\auth\Kerberos -value true

l The client and server must be in the same domain.

l Either a local or a domain user account can be provided for authentication on the server host.

l Kerberos cannot be used when the destination is an IP address.

l Kerberos cannot be used when the destination is one of the following: localhost, 127.0.0.1,
[::1].

PowerShell Wizard Guide
PowerShell Remoting

HP Operations Orchestration (10.20) Page 52 of 56

l The cluster name cannot be used to specify the host. Only the hostnames of the cluster nodes
can be used for the destination host.

Negotiate

Client side steps:

l EnableNegotiate authentication for the client, by running the following PowerShell command:

set-item wsman:\localhost\client\auth\Negotiate -value true

Server side steps:

l EnableNegotiate authentication for the service, by running the following PowerShell command:

set-item wsman:\localhost\service\auth\Negotiate -value true

l The client and server can be in different domains.

l Either a local or a domain user account can be provided for authentication on the server host.
Local accounts can only be provided when connecting to the localhost.

l Negotiate can be used when the destination is an IP address.

l Negotiate can be used when the destination is one of the following: localhost, 127.0.0.1, [::1].

l The cluster name, as well as the host names of the cluster nodes can be used for the
destination host.

NegotiateWithImplicitCredential

l When usingNegotiateWithImplicitCredentials, no credentials should be provided. The
current logged-on user account will be used for authentication. This can either be a local or a
domain user account.

l NegotiateWithImplicitCredential can only be used when the destination is one of the
following: localhost, 127.0.0.1, [::1].

PowerShell Wizard Guide
PowerShell Remoting

HP Operations Orchestration (10.20) Page 53 of 56

Troubleshooting
Could not connect to the host 54

The wizard fails to loadmodules on a x64 localhost. 54

The user has exceeded themaximum allowed number of remote shells 55

This section provides troubleshooting procedures that you can use to solve problems youmay
encounter while using the wizard. It also includes an error message youmay receive while using the
integration and offers descriptions and possible fixes for the error.

Could not connect to the host
The possible reasons are:

l The user credentials are not correct.

l The user does not have permission to execute PowerShell scripts on the target host. Make sure the
user has admin rights or see the section Enable Remoting for Non-Administrative Users.

l Authentication problems (most common). See "Run a PowerShell Script on a Remote Host" in
"Using the PowerShell Wizard –OO Integration" on page 14.

l TheWinRM service is stopped on the target host.

l WinRM default ports (5985 and 5986) were changed. You need to provide the correct port in the
connection page of the wizard.

The wizard fails to load modules on a x64 localhost.
Somemodules cannot be loaded using the wizard, but they are loaded from the PowerShell console.
By default, the wizard runs in a x32 process (depends on the HP OO jre), which ends up calling x32
PowerShell. The x32 version of PowerShell cannot load somemodules (for example,
FailoverClusters); therefore, the wizard fails.

In order to fix this, do not leave the host input empty. Instead, you need to provide the “localhost”. This
way, the wizard will try to authenticate the localhost like any other remote host. Note that remoting
rules should be satisfied for localhost in this case. If user is left empty, the wizard will connect using
theNegotiateWithImplicitCredential. Otherwise, you need to provide user credentials and
authentication type as for any other remote host.

PowerShell Wizard Guide
Troubleshooting

HP Operations Orchestration (10.20) Page 54 of 56

The user has exceeded themaximum allowed number
of remote shells
The user has exceeded themaximum allowed number of remote shells. This error would probably occur
if the user stresses the wizard with toomany “back and next” actions without running the wizard from
start to end. See the "Enable Remoting Using GPO (Group Policy Objects)" section in "PowerShell
Remoting" on page 44 in order to increase the allowed number of remote shells per user.

Figure 38: Connection Error - number of remote shells has been exceeded.

PowerShell Wizard Guide
Troubleshooting

HP Operations Orchestration (10.20) Page 55 of 56

	Introduction
	Purpose of the PowerShell Wizard Integration
	Supported Versions
	Supported Languages

	Getting Started with the PowerShell Wizard Integration
	Downloading the PowerShell Wizard
	Starting the PowerShell Wizard
	Configuring Logging Settings
	Uninstalling the PowerShell Wizard
	PowerShell Wizard Requirements
	PowerShell Wizard Enhancements from 9.x

	PowerShell Wizard Steps
	Step 1. Selecting the Repository
	Step 2. Configuring the PowerShell Connection
	Step 3. Selecting the Modules
	Step 4. Selecting Operations (Cmdlets)

	Using the PowerShell Wizard – OO Integration
	PowerShell Wizard Integration Operations and Flows
	PowerShell Script Operation
	Connection Inputs
	Additional Modules and Snapins
	PowerShell Script and cmdlet Inputs
	Formatting the Result
	Running a PowerShell Script on a Localhost
	Running PowerShell Scripts from a File
	Loading PowerShell Functions from Files
	Running a PowerShell Script on a Remote Host
	Formatting the Result
	Running Multiple PowerShell Cmdlets Scripts in the Same PowerShell Session
	Assigning the Result of One Cmdlet as a Parameter to Another Cmdlet
	Solution 1: Create a New PowerShell Script Step
	Solution 2: Run a PowerShell Script in the Generated Flow Context
	Solution 3: Use Generated Flows Only and Minimize the User Effort

	PowerShell Remoting
	Overview
	Enabling Remoting Using GPO (Group Policy Objects)
	Group Policy Configuration for a Group of Servers
	Enabling Remoting for Non-Administrative Users
	Authentication Types

	Troubleshooting
	Could not connect to the host
	The wizard fails to load modules on a x64 localhost.
	The user has exceeded the maximum allowed number of remote shells

