
Technical white paper

AQL Developer Guide
Operations Analytics 2.20

Document Release Date: December 2014

Software Release Date: May 2015

AQL Developer Guide

HP Operations Analytics 2.20 Page 2 of 30

Contents

What is AQL ...3

Analytics Query Language Syntax, Intrinsics and Examples....................................4

AQL Syntax ...4

Intrinsic Statistical Functions in AQL ...5

AQL Query Examples ..7

Analytics Query Language Functions and Expressions.. 12

Collection-Specific AQL Functions .. 12

Generic AQL functions ... 13

Bucket Functions .. 13

AQL Expressions ... 14

AQL Modules: Importing Analytic Query Language Functions 16

Analytics Query Language for Log Data .. 18

Using the aqlrawlog Function to Search for Text Strings 18

Use the aqlrawlogcount Function to Count the Number of Log
File Entries ... 19

Use the aqlrawlogarbitrary Function to Enter a Query
Supported by HP ArcSight Logger .. 21

Using R with AQL... 23

Setting up the R Language Pack from Vertica ... 23

Creating the R Functions that Integrate with Operations Analytics 24

Registering an R Function .. 26

Using your R Function in an Operations Analytics Dashboard 28

Limitations ... 29

Legal Notices ... 30

Documentation Updates ... 30

Support ... 30

AQL Developer Guide

HP Operations Analytics 2.20 Page 3 of 30

What is AQL

The primary objective of the Analytics Query Language (AQL) is to simplify your ad hoc query experience.
This applies to the process of building custom dashboards as well as troubleshooting problems using
statistical algorithms.

AQL is a hierarchical language that provides layers of abstraction on analytic queries. The idea here is that
the more abstract, the easier it is for you to write AQL in an ad hoc fashion. The layers of abstraction in AQL
are:

 Built-in analytics are defined as functions that become intrinsic in AQL

 A query language to provide SQL-like access to all collections

 Functions and expressions as abstractions of queries

 As an example of the layers of abstraction consider the following query:

from i in (oa_sysperf_global)

let interval=300

let analytic_interval=between($starttime,$endtime)

 where (i.host_name like “myhost”)

 select moving_avg(i.cpu_util)

This query assumes a collection of system metrics (oa_sysperf_global) and will calculate a time series
of the moving average of the CPU utilization for the system call “myhost”. The time series data is every 300
seconds (5 minutes) and the time range is specified by the internal macros $starttime and $endtime.
Note that ‘moving_avg’ is a built-in analytic that significantly simplifies this transformation over standard
SQL.

It is clear that this query pattern is quite useful for all sorts of metrics. Suppose you have other metrics and
other functions and want to calculate the time series of a particular metric using a particular function r for a
particular host or hosts. You would clearly use a query pattern as above.

Operations Analytics AQL allows useful query patterns to be abstracted into AQL functions. Using the above
example, suppose you want to generalize the query to generate a time series of any metric in
oa_sysperf_global using any function for any set of hosts. Then you can define an AQL function as
follows:

/* Returns the moving analytic of a specific HP Operations Agent metric

by host. Input parameters are the host filter, metric name, and moving

analytic function name. */

define oaSysperfMovingMetric(hostFilter, metric, function) =

 from i in (oa_sysperf_global)

 let analytic_interval = between($starttime,$endtime)

 let interval = $interval

 where i.host_name like hostFilter

 group by i.host_name

 select function(i.metric)

With this function defined, the following AQL expression:

[oaSysperfMovingMetric(“myhost”, cpu_util, moving_avg)]

is identical to the above AQL query.

Furthermore the following expression:

AQL Developer Guide

HP Operations Analytics 2.20 Page 4 of 30

[oaSysperfMovingMetric(“myhost”, swap_util, moving_max)]

Would give you the time series of the moving maximum swap utilization on host “myhost”.

Clearly the ability to define apecialized AQL provides a significant ‘ease-of-use’ factor in using Operations
Analytics to do ad hoc analytics. As further examples, Operations Analytics includes several packages of
useful AQL functions that can be seen by using the Operations Analytics console.

Analytics Query Language Syntax, Intrinsics and Examples

AQL Syntax

The basic structure of an AQL query is very similar to the standard ‘Structured Query Language’. An AQL
query is a sequence of clauses. The clauses you include depend on the type, organization, and order of the
information you want Operations Analtyics to return. It also depends on the time range and type of analysis
you want Operations Analytics to apply to the data.

The types of clauses supported by AQL are as follows:

 from <row variable> in <collection>

 where <relational expression>

 let <name> = <value>

 order <expression> <ascending | descending>

 group by <list of columns>

 select <select expression>

When positioning the clauses in an AQL query, note the following:

1. The from and select clauses are mandatory. The from clause must be the first clause and the

select clause must be the last clause in the query.

2. All other clauses in the query may be in any order between the from and the select clauses. The
following clauses filter and group the identified collection of metrics and attributes.

From Clause

The from clause defines the row variable and specifies the collection from which the rows will be selected.
For example:

from i in (oa_sysperf_global)

defines the row variable to be i and the collection (table) to select from as oa_sysperf_global.

Where Clause

The where clause is any arbitrary relational expression. The where clause specifies the criteria for which
rows are selected from the collection. The following is an example:

where ((i.hostinfo_dnsname like “myhost”)

 && ((i.severity ilike ”CRITICAL”)||(i.severity ilike “WARNING”)

))

This where clause is restricting the selected rows to be only those events for host “myhost” with severity
of either CRITICAL or WARNING.

AQL Developer Guide

HP Operations Analytics 2.20 Page 5 of 30

Let Clause

The let clause is used to define a value for a specific control variable for the query. For example, to control

the time interval of the query, use the let clause to define a value for the global control variable
analytic_interval (for example, analytic_interval=between($starttime,

$endtime) is where $starttime and $endtime are UI parameters.

The let clause can also be used to override dashboard pane parameters. For example it can override the

limit setting that controls the number of results. The default for Limit is 100 and let Limit = 50
would override the Limit dashboard pane parameter that is set to to return just 50 results.

Group By

The group by clause organizes the results in the query based on the column or columns specified in the

group by clause. For example group by i.hostname displays the results of the query in distinct
groups by the host name attribute.

You can specify multiple columns in the group by clause, meaning the results will be organized primarily
by the first column then by the second column, and so forth.

Order Clause

The order clause sorts the results in the query based on the expression specified in the order clause. For

example order i.utilization ascending displays the results of the query sorted by the
utilization column in ascending order. Order can also sort by descending by using that keyword following
the order expression.

You can specify multiple columns in the group by clause, meaning the results will be organized primarily
by the first column then by the second column, and so forth.

Select Clause

The select clause explicitly specifies the values to be selected for the query results. If you specify just the
row variable, all columns are selected by the query.

Examples: select i
Selects all columns in the table.

select i.hostname, i.timestamp, i.state, i.category, i.title

Selects only the hostname, timestamp, state, category, and title attributes from the table.

You can specify multiple columns in the group by clause, meaning the results will be organized primarily
by the first column then by the second column, and so forth.

Intrinsic Statistical Functions in AQL

Operations Analytics provides a set of analytic functions to analyze the metrics, topology, inventory, event,
and log file data that it collects.

Overall Aggregate (Summary) Functions Provided by Operations Analytics

The following table shows descriptions of the overall aggregate (summary) analytic functions provided by
Operations Analytics.

Analytic Function Type Description

aggregate_avg Identifies the average value for the metric or metrics selected.

aggregate_min Identifies the minimum value for the metric or metrics selected.

AQL Developer Guide

HP Operations Analytics 2.20 Page 6 of 30

aggregate_max Identifies the maximum value for the metric or metrics
selected.

aggregate_total Identifies the total value or cumulative sum for the metric or
metrics selected.

aggregate_count Computes the total count of rows with values of an attribute or
total count of all rows in a collection table.

aggregate_distinct_count Computes the total count of distinct values of an attribute.

Moving Aggregates (Time Series) Functions Provided by Operations Analytics

See the following table for descriptions of the moving aggregate (time series) functions provided by
Operations Analytics.

Function Description

moving_avg Computes the average values at each time interval within the
specified time window for one or more metrics.

moving_min Computes the minimum values at each time interval within the
specified time window for one or more metrics.

moving_max Computes the maximum values at each time interval within the
specified time window for one or more metrics.

moving_total Computes the totals at each time interval within the specified
time window for one or more metrics.

moving_count Computes the total counts of rows with values of an attribute or
total count of all rows within a collection table at each time
interval within the specified time window.

moving_distinct_count Computes the total counts of distinct values of an attribute at
each time interval within the specified time window.

Analytic Statistical Functions applied to Overall Aggregate and Moving Aggregate Functions

The following table describes the analytic statistical functions provided by Operations Analytics.

bottomN Computes the lowest N values in the expressions; returns the
bottomN values with their associated rank.

inverse_pctile Calculates the inverse percentile distribution values for the set
of values in the expression.

For example, if you specify 50 as the <pctile> value,

inverse_pctile finds the 50th percentile value (or median
value) for the data in the expression.

pctile Calculates the percentile rank value for the values in the
expressions

AQL Developer Guide

HP Operations Analytics 2.20 Page 7 of 30

For example, if you specify 75 as the <pctile> value,

pctile returns all values greater than the 75th percentile
value for the data in the expression.

rank Calculates the overall rank for all values in the expression,
where the results include an integer (indiciating rank) for each
value along with the value itself.

topN Uses the rank (descending order) analytic function to identify
the highest N values.

Operations Analytics returns the top N values with their
associated rank.

Note the following:

 If you do not specify an N value in the AQL query,
Operations Analytics displays the top five values.

 The topN analytic function is not permitted in the
where clause.

AQL Query Examples

Return the average CPU utilization and CPU run queue size

The following AQL query returns the average CPU utilization and CPU run queue size for each host matching
the filter criteria.

from i in (oa_sysperf_global)

let analytic_interval= between($starttime,$endtime)

where (i.host_name like “*.mydomain.com”) group by i.host_name

select aggregate_avg(i.cpu_util), aggregate_avg(i.cpu_run_queue)

Return the average for each of the metrics collected by the oa_sysperf_global collection

The following AQL query returns the average for each of the metrics collected by the
oa_sysperf_global collection for each host matching the filter criteria:

from i in (oa_sysperf_global)

let analytic_interval= between($starttime,$endtime)

where (i.host_name like “*.mydomain.com”) group by i.host_name

select aggregate_avg(i)

Return the maximum, minimum, and average values for CPU utilization and CPU run queue size

The following AQL query returns the maximum, minimum, average for CPU utilization and CPU run queue
size for each host matching the filter criteria:

from i in (oa_sysperf_global)

let analytic_interval= between($starttime,$endtime)

where (i.host_name like “*.mydomain.com”) group by i.host_name

select aggregate_min(i.cpu_util), aggregate_max(i.cpu_util),

aggregate_max(i.cpu_util),

aggregate_min(i.cpu_run_queue), aggregate_max(i.cpu_run_queue),

aggregate_avg(i.cpu_run_queue)

Return the minimum, maximum, and average for each of the metrics collected by the oa_sysperf_global
collection

AQL Developer Guide

HP Operations Analytics 2.20 Page 8 of 30

The following AQL query returns the minimum, maximum and average for each of the metrics collected by
the oa_sysperf_global collection for each host matching the filter criteria:

from i in (oa_sysperf_global)

let analytic_interval= between($starttime,$endtime)

where (i.host_name like “*.mydomain.com”) group by i.host_name

select aggregate_min(i), aggregate_max(i), aggregate_avg(i)

Return Summary Information on Events (Example AQL Queries)

Note: Each of the examples queries data from the omi_events_omievents collection. This collection
uses HP Operations Manager i (OMi) to collect OMi events. Each example queries data for only the hosts in
the mydomain.com domain.

Return the total count of OMi events for a specified host and severity combination

The following AQL query calculates the total count of OMi events for each host and severity combinations
matching the filter criteria:

from i in (omi_events_omievents)

let analytic_interval= between($starttime, $endtime)

where ((i.hostinfo_dnsname like “*mydomain.com”) && ((i.severity

ilike ”CRITI*”) || (i.severity

ilike “WARN*”)))

group by i.hostinfo_dnsname, i.severity select aggregate_count(i)

Return the total count of OMi events for a specified host and severity

combination and for which the event count exceeds 100

The following AQL query does the same as the previous AQL query, but returns the counts for only those
host name and severity combinations for which the event count exceeds 100

from i in (omi_events_omievents)

let analytic_interval= between($starttime, $endtime)

where ((i.hostinfo_dnsname like “*mydomain.com”) && ((i.severity ilike

”CRITI*”) || (i.severity

ilike “WARN*”)) && (aggregate_count(i) > 100))

group by i.hostinfo_dnsname, i.severity select aggregate_count(i)

Return the number of distinct applications monitored by HP Business Process Monitor (BPM) per location

Note: The following AQL query uses the bpm_application_performance collection. This collection
uses HP Business Process Monitor (BPM) to gather application performance information.

The following AQL query calculates the number of distinct applications monitored by BPM on a location by
location basis.

from i in (bpm_application_performance)

let analytic_interval = between($starttime, $endtime)

group by i.location

select aggregate_distinct_count(i.application)

Return the total count of distinct database instances reporting oracle metrics

Note: The following AQL query uses the oa_oraperf_graph collection. The oa_oraperf_graph
collection uses HP Operations Smart Plug-in for Oracle to gather Oracle performance information.

The following AQL query returns a distinct counts of database instances reporting oracle metrics:

from i in (oa_oraperf_graph)

let analytic_interval= between($starttime,$endtime)

where (i.host_name like “*mydomain.com”)

group by i.host_name select aggregate_distinct_count(i.db_instance_name)

Return the moving average CPU utilization and CPU run queue size

AQL Developer Guide

HP Operations Analytics 2.20 Page 9 of 30

Note: Each of the examples queries data from the oa_sysperf_global collection. This collection uses
HP Performance Agent to collect system metrics. Each example queries data for only the hosts in the
mydomain.com domain.

The following AQL query returns the moving average CPU utilization and CPU run queue size for each host
matching the filter criteria.

from i in (oa_sysperf_global)

let analytic_interval= between($starttime,$endtime) let interval=$interval

where (i.host_name like “*.mydomain.com”) group by i.host_name

select moving_avg(i.cpu_util), moving_avg(i.cpu_run_queue)

Return the moving average for each of the metrics collected by the oa_sysperf_global collection

The following AQL query returns the moving average for each of the metrics collected by the
oa_sysperf_global collection for each host matching the filter criteria:

from i in (oa_sysperf_global)

let analytic_interval= between($starttime,$endtime) let interval=$interval

where (i.host_name like “*.mydomain.com”) group by i.host_name

select moving_avg(i)

Return the moving maximum, minimum, and average values for CPU utilization and CPU run queue size

The following AQL query returns the moving maximum, minimum, and average for CPU utilization and CPU
run queue size for each host matching the filter criteria:

from i in (oa_sysperf_global)

let analytic_interval= between($starttime,$endtime) let interval=$interval

where (i.host_name like “*.mydomain.com”) group by i.host_name

select moving_min(i.cpu_util), moving_max(i.cpu_util),

moving_max(i.cpu_util), moving_min

(i.cpu_run_queue), moving_max(i.cpu_run_queue),

moving_avg(i.cpu_run_queue)

Return the moving minimum, maximum, and average for each of the metrics collected by the
oa_sysperf_global collection

The following AQL query returns the moving minimum, maximum and average for each of the metrics
collected by the oa_sysperf_global collection for each host matching the filter criteria:

from i in (oa_sysperf_global)

let analytic_interval= between($starttime,$endtime) let interval=$interval

where (i.host_name like “*.mydomain.com”) group by i.host_name

select moving_min(i), moving_max(i), moving_avg(i)

Note: Each of the following examples queries data from the omi_events_omievents collection. This
collection uses HP Operations Manager i (OMi) to collect OMi events. Each example queries data for only the
hosts in the mydomain.com domain.

Return the moving total count of OMi events for a specified host and severity combination

The following AQL query calculates the moving total count of OMi events for each host and severity
combinations matching the filter criteria:

from i in (omi_events_omievents)

let analytic_interval=between($starttime,$endtime) let interval=$interval

where ((i.hostinfo_dnsname like “*mydomain.com”) && ((i.severity ilike

”CRITI*”) || (i.severity

ilike “WARN*”)))

group by i.hostinfo_dnsname, i.severity select moving_count(i)

Return the moving total count of OMi events for a specified host and severity combination and for which
the event count exceeds 100

AQL Developer Guide

HP Operations Analytics 2.20 Page 10 of 30

The following AQL query does the same as the previous AQL query, but returns the moving counts for only
those host name and severity combinations at only those intervals at which the event count exceeds 100:

from i in (omi_events_omievents)

let analytic_interval=between($starttime,$endtime) let interval=$interval

where ((i.hostinfo_dnsname like “*mydomain.com”) && ((i.severity ilike

”CRITI*”) || (i.severity

ilike “WARN*”)) && (moving_count(i) > 100))

group by i.hostinfo_dnsname, i.severity select moving_count(i)

Return the moving number of distinct applications monitored by HP Business Process Monitor (BPM) per
location.

Note: The following AQL query uses the bpm_application_performance collection. This collection
uses HP Business Process Monitor (BPM) to gather application performance information.

The following AQL query calculates the moving number of distinct applications monitored by BPM on a
location by location basis.

from i in (bpm_application_performance)

let analytic_interval = between($starttime, $endtime) let interval =

$interval

group by i.location

select moving_distinct_count(i.application)

Return the moving total count of distinct database instances reporting Oracle metrics.

Note: The following AQL query uses the oa_oraperf_graph collection. The oa_oraperf_graph
collection uses HP Operations Smart Plug-in for Oracle to gather Oracle performance information.

The following AQL query returns moving total counts of the distinct database instances reporting Oracle
metrics:

from i in (oa_oraperf_graph)

let analytic_interval= between($starttime,$endtime) let interval =

$interval where (i.host_name like“*mydomain.com”)

group by i.host_name

select moving_distinct_count(i.db_instance_name)

Returns the percentile distribution of overall cpu utilization by host

The following AQL query determines the hosts and their overall aggregate average values of CPU utilization
along with the percentile rank for the value among the overall aggregate average values for all hosts
matching the filter criteria:

from i in (oa_sysperf_global)

let analytic_interval= between($starttime,$endtime)

where(i.host_name like “*.mydomain.com”)

group by i.host_name select pctile(aggregate_avg(i.cpu_util))

Note: The following example queries data from the omi_events_omievents collection. This collection
uses HP Operations Manager i (OMi) to collect OMi events. Each example queries data for only the hosts in
the mydomain.com domain.

Returns the percentile distribution of event count by host

The following AQL query determines the hosts and their overall aggregate count of events along with
percentile ranks of the overall aggregate event count values for all hosts matching the filter criteria:

from i in (omi_events_omievents)

let analytic_interval= between($starttime,$endtime)

where(i.hostinfo_dnsname like “*.mydomain.com”)

group by i.hostinfo_dnsname

select pctile(aggregate_count(i))

AQL Developer Guide

HP Operations Analytics 2.20 Page 11 of 30

Note: The following example queries data from the bpm_application_performance collection. This
collection uses HP Business Process Monitor (BPM) to gather application performance information.

Return the Top N Values (Example AQL Queries)

Tip: Also use these examples to assist you in constructing AQL queries that use the bottomN analytic
function.

The following examples use the topN analytic function to return the top n values for sets of data returned
by the overall aggregate and moving aggregate analytic functions.

Note: The following examples query data from the oa_sysperf_global collection. This collection uses
HP Operations Agent to collect system metrics. Each example queries data for only the hosts in the
mydomain.com domain.

Return the top five hosts and their overall aggregate average values of CPU utilization. This query also
returns the associated relative ranks.

The following AQL query determines the top five hosts and their overall aggregate average values of CPU
utilization among the overall aggregate average values and relative ranks for all hosts matching the filter
criteria:
from i in (oa_sysperf_global)

let analytic_interval= between($starttime,$endtime)

where (i.host_name like “*.mydomain.com”)

group by i.host_name

select topN(aggregate_avg(i.cpu_util),5)

Return the top 10 hosts with the highest overall aggregate count of events

The following AQL query determines the top 10 hosts with the highest overall aggregate count of events
among the overall aggregate event count values for all hosts matching the filter criteria:

from i in (omi_events_omievents)

let analytic_interval= between($starttime,$endtime)

where (i.hostinfo_dnsname like “*.mydomain.com”)

group by i.hostinfo_dnsname

select topN(aggregate_count(i), 10)

AQL Developer Guide

HP Operations Analytics 2.20 Page 12 of 30

Analytics Query Language Functions and Expressions

You have seen in the first section, Analytics Query Language Syntax, Intrinsics and Examples, how to define an
AQL function. This section explains how AQL functions are used and the style of AQL functions that are
expected to be written.

Collection-Specific AQL Functions

Operations Analytics has a notion of a content package which is how additional functionality is added to the
product. Basically, a content pack consists of the following:

 A collection or collections.

 AQL functions to analyze the new collection(s).

 Dashboards to present the analytics for the new collection or collections.

AQL functions that are specific to a particular collection are usually specialized to certain types of metrics
and analytics. They provide a very easy way for the user to ad –hoc analysis on the data. The following
examples show Oracle-specific AQL funtions.

/* Returns the top N of an aggregate analytic on an HP Operations Oracle

SPI metric. Input parameters are the host filter, database instance

filter, metric name, aggregate analytic, and N. */

define oaOraperfTopNAggregateMetric

(hostFilter,instanceFilter,metric,aggregate_analytic,N) =

from i in (oa_oraperf_graph)

let analytic_interval = between($starttime, $endtime)

let interval=$interval

let aggregate_playback=$aggregate_playback_flag

where ((i.host_name like hostFilter) && (i.db_instance_name like

instanceFilter))

group by i.host_name, i.db_instance_name

select topN(aggregate_analytic(i.metric), N);

/* Returns the aggregate analytic above a specified threshold on an HP

Operations Oracle SPI metric. Input parameters are the host filter,

database instance filter, metric name, aggregate analytic, and threshold

percentage. */

define oaOraperfAggregateMetricAbovePctile

(hostFilter,instanceFilter,metric,aggregate_analytic,upper_limit_pctile) =

from i in (oa_oraperf_graph)

let analytic_interval = between($starttime, $endtime)

let interval=$interval let aggregate_playback=$aggregate_playback_flag

where (((i.host_name like hostFilter) && (i.db_instance_name like

instanceFilter)) && (aggregate_analytic(i.metric) >

inverse_pctile(aggregate_analytic(i.metric), upper_limit_pctile)))

group by i.host_name, i.db_instance_name

select aggregate_analytic(i.metric);

AQL Developer Guide

HP Operations Analytics 2.20 Page 13 of 30

Generic AQL functions

Generic functions are more generalized and can be used on any type of collection. There are two primary
generic functions:

 metricQuery

 attributeQuery

The generic functions are mostly a template or shorthand for composing a complete query. These functions
are used by PQL in the process of generating the AQL for dashboard panes. Because of their succinctness
they are also frequently used in the out-of-box dashboards.

 metricQuery takes four parameters using the following syntax:

 metricQuery(<table name>, {<where clause>), {<group by>}, {<select>})

metricQuery (as the name suggests) is intended as a generalized approach to formulate a query on
metrics that yields either time series metric data or aggregated metric data. Note the ‘{‘ delimeters are used
instead of normal ‘(‘ to group the clauses. An example AQL expression use of metricQuery is:

 [metricQuery(oa_sysperf_global, {(i.host_name ilike "*")}, {i.host_name},

{moving_avg(i.active_processes), moving_avg(i.cpu_util)}]

(that is, select time series data of active_processes and cpu_utilization for all hosts in the
oa_sysperf_global collection).

attributeQuery takes three parameters using the following syntax:

 metricQuery(<table name>, {<where clause>), {<select>})

attributeQuery is intended as a generalized approach to formulate a query on attributes that yields
single or aggregated attribute data. Note the ‘{‘ delimeters are used instead of normal ‘(‘ to group the
clauses. An example AQL expression use of attributeQuery is:

 [attributeQuery(oneview_rest_inventory, {(i.category_name ==

"enclosures")}, {i.name}]

(that is, select the name of all enclosures from the oneview_rest_inventory collection).

Bucket Functions

The bucket function is used to group the counts of items in a data set that fall into various partitions. An
example use scenario is that given the overall cpu_utilization of a set of hosts we’d like to see how many fall
into the 0-10 percent, 10-20 percent, and so forth.

The parameters to the bucket function are:

 AQL expression – This is the aql query that yields the data set to

partition.

 numbuckets (optional) – This is an integer to define the number of

partitions.

 min & max (optional) – These two numbers specify the range of values

to partition.

 aliasforbucketmemberscount (optional) – This is a label to provide a

meaningful name for the count of items in each partition.

AQL Developer Guide

HP Operations Analytics 2.20 Page 14 of 30

Consider the following example use case of the bucket function:

[bucket[metricQuery(oneview_rabbitmq_metrics,{i.category=="server-

hardware"},{i.resource_uri},{aggregate_avg(i.cpu_utilization)})](numbucket

s=5,min=0,max=100,aliasforbucketmemberscount="Number Of Servers")]

 numbuckets: Change the value of this parameter to the number of partitions you want to display.
The default value is 5 if you do not assign a value.

 min: Change the value of this optional parameter to the minimum data value you want partitioned.
min is an optional parameter. If f you use it, you must use it along with the max parameter for this
parameter to function correctly.

 max: Change the value of this optional parameter to the maximum data value you want partitioned.

max is an optional parameter. Iif you use it, you must use it along with the min parameter for this
parameter to function correctly.
 Note: If you do not specify the min and max parameters, the range (min/max) is automatically
calculated and the entire range of values are partitioned into buckets.

 Aliasforbucketmemberscount: Change the value of this optional parameter if you need a
meaningful name for the count of items in each partition. If this parameter is not specified, then the
“bucketmemberscount” string is used as the label.

AQL Expressions

AQL expressions include multiple AQL functions. Use AQL expressions when you want the results of multiple
queries to be combined into a single query pane in a dashboard.

You can use AQL functions in an AQL expression in any of the following ways:

Use a single AQL function

Syntax: [<aql_function_invocation>]

Concatenate multiple AQL functions

Concatenating multiple AQL functions enables you to concatenate the results from each AQL function as if
they were run individually.

Syntax: [<aql_function1>,<aql_function2>, ….<aql_functionn>]

The following AQL function returns the concatenation of the results from the following:

 moving averages of CPU utilization

 outlier values for the data set of moving averages of CPU utilization

[oaSysperfMovingMetric(“*.mydomain.com”, cpu_util, moving_avg),

oaSysperfOutlierMovingMetric(“*.mydomain.com”, cpu_util, moving_avg)]

/* Returns the moving aggregation analytic function results for the

specified metric. Input parameters are host filter, metric, and analytic

function. */

define oaSysperfMovingMetric(hostFilter, metric, moving_analytic) =

from i in (oa_sysperf_global)

let analytic_interval = between($starttime, $endtime) let interval =

$interval

where i.host_name like hostFilter

group by i.host_name

select moving_analytic(i.metric);

AQL Developer Guide

HP Operations Analytics 2.20 Page 15 of 30

/* Returns the outlier values for the results from a moving aggregate

analytic function on a metric. Input parameters are host filter, metric, &

analytic. */

define oaSysperfOutlierMovingMetric(hostFilter, metric, moving_analytic) =

from i in (oa_sysperf_global)

let analytic_interval = between($starttime, $endtime)

let interval = $interval where i.host_name like hostFilter group by

i.host_name

select outlier(moving_analytic(i.metric));

Use multiple AQL functions so that the results from one AQL function is an input filter for another AQL
function
This type of AQL expression is known as an AQL composition.
Syntax: [do <target_function> filter by <filter_function> with
<filter_criteria>]

<target_function> is the AQL function to execute.

<filter_function> is the AQL function used to filter the results.
<filter_criteria> is the criteria to use for filtering the results of target function. The syntax of

<filter_criteria> is:
(<filter_criteria_element1>, <filter_criteria_element2>, ….)

Each <filter_criteria_element> specifies a metric or attribute column name with its associated

collection. Values for the column name specified must be returned in the target_function and
filter_Function results.

Note: All of the filter criteria elements must be met to successfully filter the target function results.

The syntax for any filter criteria element is:

<target_function_name>.<target_function_resultcolumn> ==

<filter_function_name>.<filter_function_resultcolumn>

The <target_function_resultcolumn> can be any of the expected result columns from the results
of <target_function>.

<target_function_name> is the name of the target function.

Similarly, <filter_function_resultcolumn> can be any of the expected result columns from the
results of <filter_function>. The <filter_function_name> is the name of the filter function.

The following example AQL expression returns the moving_avg, moving_max, and moving min of CPU

utilization for the top five hosts with the highest aggregate_avg cpu_util values.

[do oaSysperfMovingMetricAvgMaxMin(“*”, cpu_util) filter by

oaSysperfTopNAggregateMetric (“*.mydomain.com”,cpu_util,aggregate_avg,5)

with (oaSysperfMovingMetricAvgMaxMin.host_name==

oaSysperfTopNAggregateMetric.host_name)]

/* Returns the moving average, maximum, and minimum values of a specific

metric by host. Input parameters are the host filter and the metric. */

define oaSysperfMovingMetricAvgMaxMin(hostFilter, metric) =

from i in (oa_sysperf_global)

let analytic_interval = between($starttime,$endtime) let interval =

$interval

where i.host_name like hostFilter

AQL Developer Guide

HP Operations Analytics 2.20 Page 16 of 30

group by i.host_name

select moving_avg(i.metric), moving_max(i.metric), moving_min(i.metric);

/* Returns the topN of a moving aggregate analytic function on a metric.

Input parameters are the host filter, metric, moving aggregate analytic

function, and N. */

define oaSysperfTopNMovingMetric(hostFilter, metric, moving_analytic, N) =

from i in (oa_sysperf_global)

let analytic_interval = between($starttime, $endtime) let interval =

$interval

where i.host_name like hostFilter group by i.host_name

select topN(moving_analytic(i.metric), N);

The following AQL expression returns the aggregate_avg CPU utilization for all server nodes in the
Operations Analytics topology. These servers include the database server nodes. This example uses
topology data to filter and return metric analysis for important entities in your topology:

[do oaSysperfAggregateMetric(“*”,cpu_util,aggregate_avg) filter by

opsaNodes()

with (

oaSysperfAggregateMetric.host_name== opsaNodes.opsa_server_name,

oaSysperfAggregateMetric.host_name== opsaNodes.collector_server_name,

oaSysperfAggregateMetric.host_name== opsaNodes.logger_server_name,

oaSysperfAggregateMetric.host_name== opsaNodes.vertica_node

)]

/* Returns the results of the overall aggregate analytic function applied

to the specified metric. Input parameters are host filter, metric, and

overall aggregate analytic function. */

define oaSysperfAggregateMetric(hostFilter,metric,aggregate_analytic) =

from i in (oa_sysperf_global) let analytic_interval = between($starttime,

$endtime)

where i.host_name like hostFilter

group by i.host_name

select aggregate_analytic(i.metric);

/* Returns the host names of Operations Analytics application servers,

logger servers, collector servers, and vertica nodes in an Operations

Analytics deployment */

define opsaNodes() = from i in (opsa_topology) select i.opsa_server_name,

i.logger_server_name, i.collector_server_name, i.vertica_node;

AQL Modules: Importing Analytic Query Language Functions

By default, Operations Analytics provides several AQL functions to assist you with creating AQL queries, AQL
functions, and associated dashboards. The concepts in this manual help you write your own AQL functions
using a text editor.

Once you write your AQL functions, you can import these functions into Operations Analytics. Each text file
you create can contain any number of AQL functions. A set of AQL functions that reside in a single file are
known as an AQL module.

Tip: Tip: Use the bpm_functions.aql module as an example. This AQL module contains several AQL
functions that can be used as a template for creating your own. They reside in the
$OPSA_HOME/inventory/lib/hp/aql directory.

You can also view these AQL functions when you use the Add A Query Pane option from an

AQL Developer Guide

HP Operations Analytics 2.20 Page 17 of 30

Operations Analytics dashboard. See Dashboards and Query Panes in the Operations Analytics Help for more
information.

Note: To view the AQL query associated with each AQL function provided by Operations Analytics, look at the
.aql files in $OPSA_HOME/inventory/lib/hp/aql or use the opsa-aqlmodule- manager.sh
command.

When creating AQL functions to be imported, note the following:

 The comment preceding each AQL function is displayed as the description for the AQL function
selected as shown in the following example:

 As a best practice, name your file using an .aql extension.

 As a best practice, use the validate option in the opsa-aql-module-manager.sh script to
ensure your module will import.

 As a best practice, place your file in the $OPSA_HOME/inventory/lib/user/aql directory
before it is imported. This helps to ensure that the file is not overwritten when upgrading to a new
Operations Analytics version.

 To make your AQL functions available to your user community, use the opsa-aql-

modulemanager.sh script. This script imports the AQL functions defined in your module into
the Operations Analytics database and makes them available to your user community by default.

By default, Operations Analytics provides several AQL functions to assist you with creating AQL queries, AQL
functions, and associated dashboards.

You can write your own AQL functions using a text editor and then import these functions into Operations
Analytics. Each text file you create can contain any number of AQL functions. Each set of AQL functions
contained in a single file is known as a module.

Use the opsa-aql-module-manager.sh script to manage the AQL functions that you create. When
using the opsa-aql-module-manager.sh script, note the following:

 You must specify the tenant name for which the AQL functions should be available.

 Use file names that identify the types of AQL functions contained in each file.

 You define the <module_name> in the first line of each file; for example:
module <my_new_module>;

 You validate, list, and delete modules using the module name.

Use the opsa-aql-module-manager.sh script to perform the following tasks:

Validate the AQL functions included in n module file

AQL Developer Guide

HP Operations Analytics 2.20 Page 18 of 30

Run the following command: opsa-aql-module-manager.sh -t <tenant_name> -v
<file_name>

Note: The opsa-aql-module-manager.sh script does not currently detect some syntax errors, such as
unbound variables referenced within the body of an AQL function. Take extra care when creating and editing
your AQL functions.

Import an AQL Module

Enter the following command: opsa-aql-module-manager.sh -t <tenant_name> -i
<file_name>

When importing AQL functions, note the following:

 After importing your AQL functions, all functions are available to the user community in the
specified tenant.

 To replace or redefine AQL functions, you must make the appropriate changes to the .aql module,
then re-import the file.

List all AQL modules that have been imported into Operations Analytics

Run the following command: opsa-aql-module-manager.sh -t <tenant_name> -l modules

List the AQL functions contained in a module that has been imported into Operations Analytics

Run the following command: opsa-aql-module-manager.sh -t <tenant_name> -l
<module_name>

See opsa-aql-module-manager.sh reference page (or the Linux manpage) for more information.

Analytics Query Language for Log Data

The information in this section explains how to use AQL functions to search log file information. Examples in
this topic use AQL to return the information collected by log files configured using HP ArcSight Logger.

Note: The queries in this section do not apply to structured log files. Structured log files are fragments of log
file data that are stored as collections in HP Operations Analytics. Structured logs are log files that are
configured as collections. These collections are created so that users can perform analytics on the log file
contents. For example, you might want to query for all outliers by host name and application for a particular
time range.

You can use three types of AQL functions to search log file information:

o To search for text strings use the aqlrawlog function.

o To count the number of log file entries, use the aqlrawlogcount function.

o To enter a query supported by HP ArcSight Logger, use the aqlrawlogarbitrary function.

Using the aqlrawlog Function to Search for Text Strings

Use the aqlrawlog function to search the log file entries stored in HP ArcSight Logger servers.

The aqlrawlog query returns the following attributes for each matching log file message entry:
timestamp, message text, host name, and source host name.

Syntax: aqlrawlog(<aqllit><text_to_search></aqllit>,
<starttime_as_seconds_since_epoch>, <end_time_as_seconds_since_epoch>,

“”|”<comma_separated_list_of_logger_host_names>”[,<limit>])

aqlrawlog arguments

[let timeout=<timeout_in_seconds>]

[let limit=<limit>]
<text_to_search> is the text string that must match in the log file entries.

AQL Developer Guide

HP Operations Analytics 2.20 Page 19 of 30

Note: The <text_to_search> argument must be enclosed by the <aqllit> keyword. For example
<aqllit>severity</aqllit>.

<starttime_as_seconds_since_epoch> is the start time of the time window within which to look
for matching log file entries.

Note: To use the value selected in the Operations Analytics console, enter $starttime as the value for
this argument.

<endtime_as_seconds_since_epoch> is the end time of the time window within which to look for
log file entries.

Note: To use the value selected in the Operations Analytics console, enter $endtime as the value for this
argument.

<comma_separated_list_of_logger_host_names> is a comma separated list of host names that
identify the HP ArcSight Logger servers to query.

Tip: To query all of the HP ArcSight Logger servers configured for the current tenant, specify “” as this
parameter value.

<limit> is an optional parameter that overrides the default maximum number of log file entries to return.

Note: If you do not use this parameter or the optional let limit=<limit> clause, Operations Analytics

returns up to a maximum of 2000 log file messages matching the search text. You can also specify $limit
for this value.

<timeout_in_seconds> is the timeout for the search operation. This parameter is specified when using
the optional let timeout=… clause.

Note: If you do not specify this parameter, Operations Analytics uses the default timeout value.

Examples:

/* Returns a maximum of 500 log file entries that include "error" */

aqlrawlog(<aqllit>error</aqllit>, $starttime, $endtime, “”, 500)

/*Returns the default maximum number of log file entries that include

"error". This query searches log file entries only on the following

servers: mylogger1.mydomain.com and mylogger2.mydomain.com logger

servers*/

aqlrawlog(<aqllit>error</aqllit>, $starttime, $endtime,

“mylogger1.mydomain.com,mylogger2.mydomain.com”)

/* Returns the default maximum number of log file entries that include

"error". It uses the timeout value of 5 minutes */

aqlrawlog(<aqllit>error</aqllit>, $starttime, $endtime, “”) let

timeout=300

/* Returns a maximum number of 500 log file entries that include "error".

It uses the timeout value of 5 minutes */

aqlrawlog(<aqllit>error</aqllit>, $starttime, $endtime, “”) let

timeout=300 let limit=500

Use the aqlrawlogcount Function to Count the Number of Log File Entries

Use the aqlrawlogcount function to count the log file entries stored in HP ArcSight Logger servers that
contain the search text string.

Syntax: aqlrawlogcount(<aqllit><text_to_search></aqllit>,
<starttime_as_seconds_since_epoch>, <end_time_as_seconds_since_epoch>, “”

AQL Developer Guide

HP Operations Analytics 2.20 Page 20 of 30

| ”<comma_separated_list_of_logger_host_names>”,”” |

”<comma_separated_list_of_group_by_fields>” [,<granularity_in_seconds>])

Description of each of the aqlrawlogcount arguments

[let timeout=<timeout_in_seconds>]

[let limit=<limit>]

<text_to_search> is the text string that must match in each log file entry returned.

Note: The <text_to_search> argument must be enclosed by the <aqllit> keyword, for example
<aqllit>severity</aqllit>.

<starttime_as_seconds_since_epoch> is the start time of the time window within which to look
for matching log file entries.

Note: To use the value selected in the Operations Analytics console, enter $starttime as the value for
this argument.

<endtime_as_seconds_since_epoch> is the end time of the time window within which to look for
matching log file entries.

Note: To use the value selected in the Operations Analytics console, enter $endtime as the value for this
argument.

<comma_separated_list_of_logger_host_names> is a comma separated list of host names that
identify the HP ArcSight Logger servers to query.

Tip: To query all of the HP ArcSight Logger servers configured for the current tenant, specify “” as this
parameter value.

<limit> is an optional parameter that overrides the default maximum number of log file entries to return.

Note: If you do not use this parameter or the optional let limit=<limit> clause, Operations Analytics
returns up to a maximum of 2000 log file messages matching the search text. You can also specify $limit
as the value.

<timeout_in_seconds> is the timeout for the search operation specified using the optional let

timeout=… clause.

Note: If you do not specify this parameter, Operations Analytics uses the default timeout value.

The aqlrawlog query returns the following attributes for each matching log file entry: timestamp,

message text, host name, and source host name.

<comma_separated_list_of_group_by_fields> is a comma separated list of the HP ArcSight
Logger attributes in which to group the results.

Tip: If you do not want Operations Analytics to group the results, specify “” as the parameter value.

Note: If you specify “” as this parameter and do not specify <granularity_in_seconds>,
Operations Analytics computes the moving counts without any group by criteria.

The window of time between <starttime_as_seconds_since_epoch> and
<endtime_as_seconds_ since_epoch> is divided into multiple intervals. Operations Analytics
calculates counts at each of these intervals. Operations Analytics automatically computes the optimal
length of time for each interval.

<time_interval_in_seconds> specifies the value Operations Analytics should use to subdivide the

window of time between <starttime_as_seconds_since_epoch> and
<endtime_as_seconds_since_epoch>. Operations Analytics computes the moving counts at each
of these intervals.

AQL Developer Guide

HP Operations Analytics 2.20 Page 21 of 30

Note: To use the value selected in the Operations Analytics console, enter $interval as the value for this
argument. See Dashboards and Query Panes in the Operations Analytics Help for more information about
how to specify the $interval parameter value in the Operations Analytics console.

<limit> is an optional parameter that overrides the default maximum number of log file entries to return.

Note: If you do not use this parameter or the optional let limit=<limit> clause, Operations Analytics

returns up to a maximum of 2000 log file messages matching the search text. You can also specify $limit
as the value.

<timeout_in_seconds> is the timeout for the search operation specified using the optional let
timeout=… clause.

Note: If you do not specify this parameter, Operations Analytics uses the default timeout value.

Examples

/* Returns the time series counts of log file entries that contain "error"

at 5 minuteintervals*/

aqlrawlogcount(<aqllit>error</aqllit>, $starttime, $endtime, “”, “”, 300)

/*Returns the time series counts of log file entries that contain "error"

for each combination of deviceHostName and agentSeverity at 5 minute

intervals. The function queries only the mylogger1.mydomain.com server*/

aqlrawlogcount(<aqllit>error</aqllit>, $starttime, $endtime,

“mylogger1.mydomain.com”, ”deviceHostName,agentSeverity”, 300)

/*Returns overall aggregate counts of log file entries that contain

"error" for each combination of deviceHostName and agentSeverity. This AQL

function queries only themylogger1.mydomain.com server*/

aqlrawlogcount(<aqllit>error</aqllit>, $starttime, $endtime,

“mylogger1.mydomain.com”, ”deviceHostName,agentSeverity”)

/*Returns the time series of counts of log file entries that contain

"error" for each combination of deviceHostName and agentSeverity at 5

minute intervals. This AQL function queries only mylogger1.mydomain.com,

uses the timeout value of 10 minutes, and queries a maximum of 1000

entries */

aqlrawlogcount(<aqllit>error</aqllit>, $starttime, $endtime,

“mylogger1.mydomain.com”, ”deviceHostName,agentSeverity”, 300) let

timeout=600 let limit=1000

Use the aqlrawlogarbitrary Function to Enter a Query Supported by HP ArcSight Logger

Note: A supported query is any query that is configured for use on an HP ArcSight Logger server.

Use the aqlrawlogarbitrary function to run any other query supported by your HP ArcSight Logger
server.

Operations Analytics displays the aqlrawlogarbitrary results table format.

Syntax: aqlrawlogarbitrary(<aqllit><query_string></aqllit>,

<starttime_as_seconds_since_epoch>, <end_time_as_seconds_since_epoch>,

“”|”<comma_separated_list_of_logger_host_names>” [,<limit>])

Description of each of the aqlrawlogarbitrary function arguments.

[let timeout=<timeout_in_seconds>]

[let limit=<limit>]

<query_string> is the query string that is supported by your HP ArcSight Logger server.

AQL Developer Guide

HP Operations Analytics 2.20 Page 22 of 30

Note: The <query_string> argument must be enclosed by the <aqllit> keyword, for example:
<aqllit>severity</aqllit>.

<starttime_as_seconds_since_epoch> is the start time of the time window within which to look
for matching log file entries.

Note: To use the value selected in the Operations Analytics console, enter $starttime as the value for
this argument.

<endtime_as_seconds_since_epoch> is the end time of the time window within which to look for
matching log file entries.

Note: To use the value selected in the Operations Analytics console, enter $endtime as the value for this
argument.

<comma_separated_list_of_logger_host_names> is a comma separated list of host names of
the HP ArcSight Logger servers to query.

Tip: To query all of the HP ArcSight Logger servers configured for the current tenant, specify “” as this
parameter value.

<limit> is optional parameter and if specified it overrides the default maximum rows of information
returned by logger to consider for returning back to the Operations Analytics console.

Note: If you do not use this parameter or the optional let limit=<limit> clause, Operations Analytics
returns up to a maximum of 2000 log file messages matching the search text. You can also specify $limit
for this value.

<timeout_in_seconds> is the timeout for the search operation specified using the optional let

timeout=… clause.

Note: If you do not specify this parameter, Operations Analytics uses the default timeout value.

Examples

/* Returns a maximum of 500 log file entries that contain the text string

"error" */

aqlrawlogarbitrary(<aqllit>error</aqllit>, $starttime, $endtime, “”, 500)

/*Returns up to the default maximum number of log file entries that contain the text string "error". This AQL
function queries only the mylogger1.mydomain.com and mylogger2.mydomain.com logger servers*/

aqlrawlogarbitrary(<aqllit>error</aqllit>, $starttime, $endtime,

“mylogger1.mydomain.com,mylogger2.mydomain.com”)

/* Returns the default maximum number of log file entries that contain

"error". This AQL function uses a timeout value of 5 minutes */

aqlrawlogarbitrary(<aqllit>error</aqllit>, $starttime, $endtime, “”) let

timeout=300

/* Returns a maximum of 500 log file entries that contain "error". This

AQL function uses a timeout value of 5 minutes */

aqlrawlogarbitrary(<aqllit>error</aqllit>, $starttime, $endtime, “”) let

timeout=300 let limit=500

You can add a let clause to your aqlrawlog, aqlrawlogcount, or aqlrawlogarbitrary query to
define a variable that contains a list of entities returned from an AQL function. The variable can then be used
in the <aqllit><text_to_search></aqllit> string. This feature is useful when you want to search
for a set of entities, such as hosts, applications, Business Service Management transactions, or database
instances without needing to enter the entire list of values.

 To add a let clause to your aqlrawlog, aqlrawlogcount or aqlrawlogarbitrary query, use the
following syntax:

AQL Developer Guide

HP Operations Analytics 2.20 Page 23 of 30

let <variable_name>=<AQL_function>

For example, you could define the variable $myhosts to contain the list of servers returned from

the AQL function named oaSysperfHosts. The oaSysperfHosts AQL function uses the
following arguments to return hosts that have performance metrics collected:
oaSysperfHosts (hostFilter, numHostsLimit)

To define a variable to store the results returned from the oaSysperfHosts AQL function, use the
following syntax:
let <variable_name>=oaSysperfHosts (hostFilter, numHostsLimit)

For example, to pass the first 50 hosts that have performance metrics collected in the
enterprise.com domain to the myhosts variable, add the following let clause to your aqlrawlog,

aqlrawlogcount, or aqlrawlogarbitrary query:
let myhosts=oaSysperfHosts ("*enterprise.com", 50)

 The variable you define using the let clause can be used in a text search or with a Common Event
Field (CEF) field that was configured using the Operations Analytics Log File Connector for ArcSight
Logger. See Configuring the Operations Analytics Log File Connector for ArcSight Logger in the HP
Operations Analytics Configuration Guide for more information.

 To use the variable in a text search, use the following syntax:
<aqllit><$variable></aqllit>
For example:
<aqllit><$myhosts></aqllit>

 To use the variable with a CEF, use the following syntax in place of
<aqllit><$variable></aqllit>:
<aqllit><CEF> in [$<variable_name>]</aqllit>
For example: sourcehostName in [$myhosts]

The previous example searches for all log file messages that contain any of the host names stored
in the $myhosts variable. These host names would be the first 50 hosts that have performance
metrics collected in the enterprise.com domain.

Using R with AQL

Setting up the R Language Pack from Vertica

The purpose of this section is to document the steps that custom analytics developers can take to register

custom analytics written using R and make use of them on data being collected by Operations Analytics.

Using Operations Analytics 2.10 or newer, Operations Analytics users can execute R functions on top of an

Analytics Query Language (AQL) function that fetches entities and some measurements done for them based

on data collected by Operations Analytics.

Operations Analytics uses Vertica’s R language runtime environment as the runtime environment for any R
function you register with both Operations Analytics and Vertica. It is mandatory that you have the Vertica R
Language Pack set up on each node of the Vertica cluster used by your Operations Analytics deployment.
You must install the following packages on each node of the Vertica cluster in order to set up the Vertica R
language pack:

compat-libgfortran-41-4.1.2- 52.el5_8.1.x86_64.rpm

AQL Developer Guide

HP Operations Analytics 2.20 Page 24 of 30

vertica-R-lang- 6.1.3-12.x86_64.RHEL5.rpm

The former is a pre-requisite for the latter.

Complete the instructions shown in the Use an Existing Vertica Installation and use the R Language Pack
from Vertica section of the Operations Analytics Installation Guide.

Creating the R Functions that Integrate with Operations Analytics

Operations Analytics expects all R functions to conform to the Vertica R UDX framework (R UDX). In order to
have a valid R UDX, Vertica expects the following:

1. R functions must have a corresponding UDX factory function written in R. This function must
capture input, output frame descriptions, and descriptions of optional input parameters to the core
R function.

2. If an R function’s output frame does not contain a fixed number of columns with fixed types, then
the factory function needs to specify an output type callback R function that is written by the user.
The output callback function describes the output frame structure to Vertica at runtime.

3. If an R function expects parameters for configuring the behavior of the computation done in the
core R function in question, then those parameters need to be described using a parameter callback
R function and the factory function must specify the same parameters.

4. It is expected that the core R function, the UDX factory R function, any optional output callback R
function and any optional parameter callback R function must all be present in a single .R file that is
used for registering the R function as a valid Vertica R UDX.

Identifying the Statistical Random Variables in an Input Frame for an R function

An R function’s integration with Operations Analytics currently assumes that the R function is written so that
it identifies the statistical random variables in the Operations Analytics domain from the input data frame
that is fed to the R function at runtime. The following information helps you better understand the concept
of Operations Analytics random variables and how to write R code to identify these variables in the input
frames.

As noted earlier, one can use Operations Analytics dashboard panes to invoke R functions on an AQL function
that results in Operations Analytics timeseries data.

At runtime, an AQL function is translated to a Vertica SQL. In addition, Operations Analytic’s AQL wraps the
Vertica SQL inside of another Vertica SQL involving the registered R UDX invocation.

The Vertica SQL translated from the AQL function represents the query that Vertica would run to supply the
results as an input data frame to the R function.

AQL also supplies three internal parameters to an R function call in the outer SQL involving the invocation of
the R function: numentityparts, entitypart1columnindex, and timestampcolumnindex. These parameters
should permit R function writers to identify the entities, measurement names combinations, and their
corresponding timeseries data. Once entity, measurements, and their corresponding timeseries data are
identified, each entity, measurement combination could be considered a valid random variable backed by
the timeseries data for itself being the observations for the random variable.

Operations Analytics provides some example .R files containing core R functions, their UDX factory R
functions, output callback functions, and parameter callback functions, in the following location:
/opt/HP/opsa/inventory/lib/hp/r-udx-examples

See the example named MVCorr.R that attempts to do statistical correlation between pairs of such
random variables.
Note: You must provide a parametertypecallback R function in your .R file in order to achieve

smooth passing of these parameters to the R function at runtime. The parametertypecallback R
function is recognized by Vertica UDX framework as an optional function that allows specifying the

http://support.openview.hp.com/selfsolve/document/KM01153664/binary/OpsA2.20_Installation.pdf

AQL Developer Guide

HP Operations Analytics 2.20 Page 25 of 30

description of parameters to UDX framework. For integration with Operations Analytics, this callback is
mandatory.

The following snippet from MVCorr.R example, demonstrates the boiler plate code that needs to be written
for the parametertypecallback R function. This snippet also demonstrate how to specify the
parametertypecallback function (in this example the function named mvCorrParamType) in the

UDX factory function (in this example its function named mvCorrFactory).

mvCorrParamType<-function(){

 params <- data.frame(datatype=rep(NA, 3), length=rep(NA,3),

scale=rep(NA,3),name=rep(NA,3))

 params[1,1] = "int"

 params[1,4] = "numentityparts"

 params[2,1] = "int"

 params[2,4] = "entitypart1columnindex"

 params[3,1] = "int"

 params[3,4] = "timestampcolumnindex"

 params

}

mvCorrFactory<-function()

{

 list(name=mvCorr,udxtype=c("transform"),intype=c("any"),

outtype=c("any"),

outtypecallback=mvCorrOutType,parametertypecallback=mvCorrParamType)

}

The various other helper methods in MVCorr.R also illustrates one could write code to identify the random
variables in the input frame based on the parameters passed by AQL.

Take a look at the optional Vertica R UDX framework recognized outtypecallback R function that
attempts to establish the contract with Vertica for the outgoing result or output frame columns. If you want
the frame columns output by specific names or want to specify specialized types for some of these columns,
then you must code the outtypecallback R function and register the same in UDX factory R function.

mvCorrOutType<-function(x,y){

 entityStartIndex<-y[['entitypart1columnindex']]

 numEntityParts<-y[['numentityparts']]

AQL Developer Guide

HP Operations Analytics 2.20 Page 26 of 30

 ret <-
data.frame(datatype=rep(NA,(numEntityParts*2+2+1)),lenth=rep(NA,(numEntityParts*2+2+1)),scale=rep(NA,(n
umEntityParts*2+2+1)),name=rep(NA,(numEntityParts*2+2+1)))

 for (i in 0: numEntityParts){

 ret[i+1, 1]="varchar"

 ret[i+1, 4]=paste("rv1",x[entityStartIndex+i, 4],sep="_")

 }

 ret[numEntityParts+1, 1]="varchar"

 ret[numEntityParts+1, 4]="rv1_metric"

 for (i in 0: numEntityParts){

 ret[i + numEntityParts + 2, 1]="varchar"

 ret[i + numEntityParts + 2, 4]=paste("rv2",x[entityStartIndex+i,4],sep="_")

 }

 ret[numEntityParts*2+2, 1]="varchar"

 ret[numEntityParts*2+2, 4]="rv2_metric"

 ret[numEntityParts*2+2+1, 1]="float"

 ret[numEntityParts*2+2+1, 4]="correlation_coeff"

 ret

}

Note: Notice how the input parameters are used by the mvCorrOutType callback function to describe the
output column names and types.

The names used above in the outtypecallback function are directly processed by AQL in its result
processing and sent to the dashboard pane in the Operations Analytics console.

Registering an R Function

You must register a newly created R Function with both Vertica and Operations Analytics.

Registering your R function with Vertica

1. Prepare the .R file so that it contains the following:

 The core R function implementing your custom analytics logic.

 The Vertica R UDX factory function.

 The parameter type callback R function.

 Any optional output type callback R function.

AQL Developer Guide

HP Operations Analytics 2.20 Page 27 of 30

 Any other helper R functions used by the core R function.

2. Run the Vertica R UDX load commands to load the R function into Vertica. At this stage the R
function becomes available as a valid UDX that can be invoked from Vertica SQL.
Note: You must complete these steps as a valid Vertica database user who has the privileges to run
SQL commands and who can create UDX functions in the Vertica database system.

The following are example Vertica SQL commands that load the example R UDX provided by
MVCorr.R:

create library mvCorrLib as '/home/dbadmin/functions/MVCorr.R'

language 'R';

create transform function mvCorr as language 'R' name

'mvCorrFactory' library mvCorrLib;

You can also review Vertica documentation on how to load Vertica R UDX functions.

Registering your R function with Operations Analytics

Once the R function is loaded and available in Vertica, you need to tell Operations Analytics about it by
registering an R function module into Operations Analtyics.

1. Create an R module specification file. The following example shows the contents of one such
module definition file that defines the R module for the multi-variate correlation R UDX function
example from the /opt/HP/opsa/inventory/lib/hp/r-udx-examples/mvCorr.R
file.

module MultiVariate;

/* Does multivariate correlation */

define mvCorr input(any, integer, integer) output(any);

Save the content in a text file. For example, see
/opt/HP/opsa/inventory/lib/hp/r/multivariate.rpsec

2. Load the R module specification into OPERATIONS ANALYTICS by running the following command:

/opt/HP/opsa/bin/opsa-rspec-module-manager.sh -?

 You should see an output similar to the following:

OPSA_HOME is set to /opt/HP/opsa

-t <tenant name> Name of Tenant (mandatory argument except when using –v

option)

-v <file> Validate File

-l modules List Summary of Loaded Modules

-l all List Contents of All Loaded Modules

-l <modulename> List Contents of Module

-i <file> Import File

-a <authorname> Specify Author for Import File

-d <modulename> Delete Module

-? This help message

AQL Developer Guide

HP Operations Analytics 2.20 Page 28 of 30

For example, you could load the R module named MultiVariate previously defined in the
/opt/HP/opsa/inventory/lib/hp/r/multivariate.rpsec file by running the following
command:

/opt/HP/opsa/bin/opsa-rspec-module-manager.sh – t opsa_default -i

/opt/HP/opsa/inventory/lib/hp/r/multivariate.rpsec

Using your R Function in an Operations Analytics Dashboard

You can create your AQL function that returns time series data that you can visualize using an Operations
Analytics line chart, heatmap chart, or bar chart UI elements.

In a dashboard pane, you can visualize the results of the AQL function by using it in the query edit box for the
pane as shown below:

Now surround the AQL function call with a call to an R function as shown below to trigger the invocation of
the registered R function:

AQL Developer Guide

HP Operations Analytics 2.20 Page 29 of 30

Limitations

Only a table visualization of the invoked R function is supported in Operations Analytics 2.20.

AQL Developer Guide

HP Operations Analytics 2.20 Page 30 of 30

Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein

should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer

Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard

commercial license.

Copyright Notice
© Copyright 2013-2014 Hewlett-Packard Development Company, L.P.

Trademark Notices
Microsoft and Windows are trademarks of the Microsoft group of companies.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

UNIX® is a registered trademark of The Open Group.

Documentation Updates

The title page of this document contains the following identifying information:

 Software Version number, which indicates the software version.

 Document Release Date, which changes each time the document is updated.

 Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to:

https://softwaresupport.hp.com/group/softwaresupport/search-result?keyword=

This site requires an HP Passport account. If you do not have one, click the Create an account button on the HP Passport Sign in page.

Support

Visit the HP Software Support Online web site at: https://softwaresupport.hp.com

This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software Support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed to manage

your business. As a valued support customer, you can benefit by using the support web site to:

 Search for knowledge documents of interest

 Submit and track support cases and enhancement requests

 Download software patches

 Manage support contracts

 Look up HP support contacts

 Review information about available services

 Enter into discussions with other software customers

 Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP Passport ID,

go to https://softwaresupport.hp.com and click Register.

To find more information about access levels, go to: https://softwaresupport.hp.com/web/softwaresupport/access-levels

https://softwaresupport.hp.com/group/softwaresupport/search-result?keyword
https://softwaresupport.hp.com/
https://softwaresupport.hp.com/
https://softwaresupport.hp.com/web/softwaresupport/access-levels

	Contents
	What is AQL
	Analytics Query Language Syntax, Intrinsics and Examples
	AQL Syntax
	From Clause
	Where Clause
	Let Clause
	Group By
	Order Clause
	Select Clause

	Intrinsic Statistical Functions in AQL
	Overall Aggregate (Summary) Functions Provided by Operations Analytics
	Moving Aggregates (Time Series) Functions Provided by Operations Analytics
	Analytic Statistical Functions applied to Overall Aggregate and Moving Aggregate Functions

	AQL Query Examples
	Return Summary Information on Events (Example AQL Queries)
	Return the Top N Values (Example AQL Queries)

	Analytics Query Language Functions and Expressions
	Collection-Specific AQL Functions
	Generic AQL functions
	Bucket Functions
	AQL Expressions
	AQL Modules: Importing Analytic Query Language Functions

	Analytics Query Language for Log Data
	Using the aqlrawlog Function to Search for Text Strings
	Use the aqlrawlogcount Function to Count the Number of Log File Entries
	Use the aqlrawlogarbitrary Function to Enter a Query Supported by HP ArcSight Logger

	Using R with AQL
	Setting up the R Language Pack from Vertica
	Creating the R Functions that Integrate with Operations Analytics
	Identifying the Statistical Random Variables in an Input Frame for an R function

	Registering an R Function
	Registering your R function with Vertica
	Registering your R function with Operations Analytics

	Using your R Function in an Operations Analytics Dashboard
	Limitations

	Legal Notices
	Documentation Updates
	Support

