
HP Service Manager
Software Version: 9.34
For the supported Windows® and UNIX® operating systems

Web Services Guide

Document Release Date: July 2014
Software Release Date: July 2014

Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notice
© Copyright 1994-2014 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe® is a trademark of Adobe Systems Incorporated.

Java is a registered trademark of Oracle and/or its affiliates.

Microsoft® andWindows® are U.S. registered trademarks of Microsoft Corporation.

Oracle® is a registered US trademark of Oracle Corporation, Redwood City, California.

UNIX® is a registered trademark of TheOpenGroup.

For a complete list of open source and third party acknowledgements, visit the HP Software Support Online web site and search for the product manual called HP Service
Manager Open Source and Third Party License Agreements.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using themost recent edition of a document, go to: http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, go to: http://h20229.www2.hp.com/passport-registration.html

Or click theNew users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HP sales representative for details.

Support
Visit the HP Software Support Online web site at: http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed tomanage your
business. As a valued support customer, you can benefit by using the support web site to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HP support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

WebServices Guide

HP ServiceManager (9.34) Page 2 of 179

To findmore information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

HP Software Solutions Now accesses the HPSW Solution and Integration Portal Web site. This site enables you to explore HP Product Solutions tomeet your business
needs, includes a full list of Integrations between HP Products, as well as a listing of ITIL Processes. The URL for this Web site is
http://h20230.www2.hp.com/sc/solutions/index.jsp

About this PDF Version of Online Help
This document is a PDF version of the online help. This PDF file is provided so you can easily print multiple topics from the help information or read the online help in PDF
format. Because this content was originally created to be viewed as online help in a web browser, some topics may not be formatted properly. Some interactive topics may not
be present in this PDF version. Those topics can be successfully printed from within the online help.

WebServices Guide

HP ServiceManager (9.34) Page 3 of 179

Contents

Service Manager Web Services 10

Introduction to theWeb Service guide 10

What is aWeb Service? 10
Understanding the ServiceManagerWeb Services 11
Web Services basics 11
Adding or changingWeb Services 11

Introduction toWeb Services in ServiceManager 12
Web Services and ServiceManager 13
Web Services naming conventions for SOAP 14
Web Services security considerations 14
Valid URLs for ServiceManager 14
ServiceManagerWeb Services URLs 15
Configure theWeb Service field definitions 15

Allowed Actions tab field definitions 16
Expressions tab field definitions 17
Fields tab definitions 17
RESTful tab field definitions 17

Publishing Service Manager data using WS API 19

Things to consider prior to publishing data 19
Publishing ServiceManager applications as Web Services 19
When to useWeb Services 19
Can I use the out-of-box Web Services? 20
What items do I need to expose? 20

Publish a Document Engine display action in theWeb Services API 20
Publish a ServiceManager field in theWeb Services API 21

What data types should I use for SOAP? 22
What methods do I need? 24
Managing records withWeb Services requests 24

Create only 24
Update only 24
Merge 25

Are there any security considerations? 25
What are releasedWeb Services? 25
Enable SSL encryption for publishedWeb Services 25

Web Services Guide

HP ServiceManager (9.34) Page 4 of 179

Example: Publishing request processes for integration 26
Create the display option 26
Set up the Request Management category 28
Create the new Process 28
Set up the State record 29
Update the format control record 29
Set up the extaccess record 29

List: Web Services available in the ServiceManagerWeb Services API 32

Field names in the extaccess record 33

Create dedicatedWeb Services listeners 34

Data conversion between ServiceManager and SOAPWeb Services 35

Example: Publishing the Terminate Change functionality viaWeb Services 36
Create a display option 36
Create a new process 37
Set up a State record 39
Set up an extaccess record 39
Execute a request via SOAPWeb Services 40
Response to a request via SOAPWeb Services 45
Execute a request via RESTful Web Services 46
Response to a request via RESTful Web Services 47

Publish a table as aWeb service 48

Expose a table with more than oneWeb service 49

Remove a Document Engine display action from aWeb service 50

Remove a ServiceManager field from aWeb service 51

Sample client for SOAPWeb Services SM7URL 51

Command line arguments for the Axis2 sample application 53

Add an external access action to theWeb Services 55

SOAP API 57

WebServices Description Language (WSDL) 57
Basic operations inWSDL files 57
ServiceManagerWSDL files 58
Types of Web Services in ServiceManager 59
WSDL document structure 59

XML header 60
Namespace definitions 60
Operation section 60

Web Services Guide

HP ServiceManager (9.34) Page 5 of 179

Messages section 61
Types section 61

Nillable attribute 63
Port type 63
Binding section 63
Service section 64
Port section 64

Change example to use the cookie 64
Verify theWSDL to JS output 66
Example using Keep-Alive with .Net Web Services Studio 66

First execution of .Net Web Services Studio 67
Second execution of .Net Web Services Studio 68

Consuming a ServiceManagerWeb Service 69
Dynamic and static Web Services clients 70

What happens if an exposed table is changed? 70
Updating ServiceManager tables 70
Requirements for developing customWeb Services clients 71
Checklist: Creating a customWeb Services client 71

Technical support for customWeb Services clients 72
SampleWeb Services client for sc62server PWS URL 73
Command line arguments for the .NET samples 75
Command line arguments for the Axis sample application 76

ConfigurationManagement 76
Incident Management 76

Using query syntax 77
The request 77
The response 79

Retrieving data from ServiceManager 81
Example: Retreiving data from ServiceManager via aWeb service 82

The request 82
The response 84

Retrieve data from ServiceManager using Pagination 86
Example: UseWeb Service with pagination to retrieve data from ServiceManager 86
Request with pagination 87
Response with pagination 89
Next pagination request 90
Next pagination response 93

Retrieve data from ServiceManager for Optimistic Locking 93
Request with updatecounter 94

Web Services Guide

HP ServiceManager (9.34) Page 6 of 179

Response with updatecounter 94
Web Services examples in the RUN directory 95

Example: Retrieving ServiceManager ReleaseManagement changes into a text file
using Connect-It 96
Example: Getting change information from another ServiceManager system 98
Example to close an existing incident record 104

Special considerations for using Keep-Alive with ServiceManager 105
Keep-Alive example for ServiceManager 105

Use SSL to consume ServiceManagerWeb Services 106
Attachment handling 106

ServiceManager allows requests with no href or content-id 107
Sample script to send a ticket with attachments within ServiceManager 108

Consume an external Web Service 110
Use theWSDL2JS utility 111
Best practices for writing a JavaScript to consume aWeb service 112
Date/Time handling 112
Example: Interface to another system 113

Generated JavaScript interfaces 113
Create a request for a new project 114
The structure of the request 114
Request object 116
Simple fields 117
Check the xs_string() function 117
Check expected parameters in invoke() function 117
Check the syntax for the Response function 118
Use getValue 118
Write the invoking JavaScript code 118
Determine the structure of the request and response 121
PPM request 130
PPM response 132

Web Services with a proxy server 133
Connecting to a secureWeb service 133
Use SSL connections to connect to an external Web service 135
Web Services connections through a firewall 136

RESTful API 138

Service Document 138

Consuming ServiceManager RESTful API 139
RESTful Syntax 139

Web Services Guide

HP ServiceManager (9.34) Page 7 of 179

Resource Types 139
RESTful Authentication 141
RESTful Commands 142
RESTful Queries 143
Resource Representations 144

Media Types for an Individual Resource 144
Resource CollectionMedia Types 145
Media Types for an individual attachment 145
Resource CollectionMedia Types 145

Enable a Resource for REST 146
RESTful Capability Word 147
HTTP Header 147
HTTP Response Codes 148

See Also 148
OOB Resource Reference Example 148

Web Service: Incident 148

Troubleshooting 152

Understanding the return codes provided by Web Services 152
Example of a failure return code andmessage 155
Detailed return codes from Document Engine 155

Troubleshooting SOAP API 156
Debugging 156

The debughttp parameter 156
Interpreting the http.log 158
RTM:3 and debugdbquery:999 159
The allowwsdlretrieval parameter 159

Error messages 159
Failure of theWSDL2JS utility 161
Testing yourWSDLwith a SOAP UI 161
RunningWeb Services on a dedicated port (servlet) 161
Troubleshooting aWeb service that is behind a closed firewall 162

Step 1: Test theWSDL2JS 162
Step 2: Test the request 163
Step 3: Test the response 165

Max sessions exceeded inWeb Services 167
Troubleshooting HTTP socket connections 168

Redirected ports 168
TCP ECONNRESETmessages 168

Web Services Guide

HP ServiceManager (9.34) Page 8 of 179

Debugging SOAP errors 169
SOAP messages: Debugging HTTP traffic problems 170
SOAP messages: Debugging problems with RAD applications 170

Web Services client unable to connect 171
Calling external web services with SSL fails after JRE 7 upgrade 171

Troubleshooting RESTful API 173
Debugging 173

The debugrest parameter 173
The dao_threadsperprocess parameter 173
The dao_sessiontimeout parameter 174

Syntax for entity references in xml 175

Definitions, acronyms, and abbreviations 176

Web Services resources 177

Send Documentation Feedback 178

WebServices Guide

HP ServiceManager (9.34) Page 9 of 179

Service Manager Web Services
ServiceManagerWeb Services provide the ability to communicate and integrate with applications in an
open and efficient manner. Web Services provide the ability to use a third-party application inside
ServiceManager, manipulate ServiceManager data inside your custom application, or transfer data
among separate ServiceManager systems.

Introduction to theWeb Service guide
This document provides guidance for users who wish to publish or consumeWeb Services using
ServiceManager. It includes examples that can be used as templates.

Web Services and their clients can be written in any programming language and for any platform.
ServiceManagerWeb Services ships with examples using both the Java™ and Visual C++®
programming languages.

What is a Web Service?
The formal definition (according to www.w3c.org) is that aWeb service is a software application
identified by a Uniform Resource Identifier (URI), whose interfaces and binding are capable of being
defined, described, and discovered by XML artifacts and supports direct interactions with other
software applications using XML-basedmessages via Internet-based protocols.

A Web service is a software system designed to support interoperable application to application
interaction over a network. It has an interface described in amachine-processable format (specifically
WSDL). Other systems interact withWeb Services in amanner prescribed by its description using
SOAP messages, typically conveyed using HTTP with an XML serialization in conjunction with other
Web-related standards.

There are twomajor classes of Web Services:

l REST-compliant Web Services: The primary purpose of the service is to manipulate XML
representations of Web resources using a uniform set of "stateless" operations.

l Arbitrary Web Services: The servicemay expose an arbitrary set of operations.

Both theseWeb Services use URIs to identify resources and useWeb protocols (such as HTTP and
SOAP) and XML data formats for messaging.

HP ServiceManager (9.34) Page 10 of 179

Understanding the Service Manager Web Services
Every Web service published by ServiceManager is a document-literal service. The documents which
are used for the requests and replies are derived from the dbdict definition of a single ServiceManager
file and published via the fields section of the extaccess record.

Each field in the ServiceManager datamodel must be understood in the context of the business logic
for the application that defines the data. Before approaching any Web Services consumption project, it
is important to understand the datamodel that is implemented within the ServiceManager instance you
are targeting. Because ServiceManager allows you to add new fields, change the validation of fields or
make fields mandatory, every ServiceManager implementation will have a slightly different datamodel
and business logic, and each difference has to be reflected in the publishedWeb Service to ensure
successful processing.

Web service definitions aremaintained in theWeb Service Configuration Utility. In this utility you can
see how file names such as probsummary are aliased to Incident, how fields within files can be
exposed for purposes of Web Services; and how they are aliased tomore appropriate names. Finally,
theWeb Service Configuration Utility is where XML schema data types such as dateTime can be
applied to individual fields. The default type is string, but ServiceManager fields can bemapped to
various XML schema types if needed.

Web Services basics
The basic Web Services architecture includes the following:

l Publishing - Publishing aWeb Servicemeans enabling aWeb Service user (consumer) to locate the
service description and instructing the consumer how they should interact with theWeb Service.

l Consuming (client) - A client is software that is able to use (consume) aWeb Service. A service
consumer issues one or more queries to the directory to locate a service and determine how to
communicate with that service.

l Service - A collection of EndPoints that provides the servicing of the consumers request.

l EndPoint (port) - An EndPoint indicates a specific location for accessing aWeb Service using a
specific protocol and data format.

Adding or changing Web Services
1. Modify an existing extaccess record if theWeb Service connecting through it needs to get

additional information or add a new extaccess record if you want to expose a table to a new Web

Web Services Guide
ServiceManagerWeb Services

HP ServiceManager (9.34) Page 11 of 179

Service and do not want to interfere with existingWeb Service applications.

Note:Writing expressions in extaccess: The extaccess tool uses the same file variables as the
Document Engine. For example, a file variable that holds the current record is $L.file, and the copy
of the record beforemodifications is $L.file.save.

2. For SOAP, rebuild or build the Service Object by re-runningWSDL2JS if ServiceManager is the
consumer.

3. Modify the calling applications if actions, field names, or object name have changed, and a calling
application refers to them.

Introduction to Web Services in Service Manager
The published out-of-box ITIL®-based processes forWeb Services are:

l Service Desk

l Incident Management

l ProblemManagement

l KnowledgeManagement

l ConfigurationManagement

l ChangeManagement

l Service Catalog

l Service Level Management

Note: Table-basedWeb services are still available in ServiceManager when needed. EachWeb
Service application can have a “different view” of the defined services, but the underneath logical flow
is still controlled by same ServiceManager applications. To avoid validation failure, make sure all the
required fields are always exposed.

To publish a ServiceManagerWeb Service, you create one extaccess record per table that you want
to publish in that service. EachWeb Service application can have a different view of the defined
services but the underneath logical flow is still controlled by same ServiceManager applications. To
avoid validation failure, make sure all the required fields are always exposed on all extaccess records
for the table. To add or modify an extaccess record:

Click Tailoring > Web Services > Web Service Configuration.

For SOAP, youmay need the allowwsdlretrieval parameter in the sm.ini to be able to view
ServiceManagerWSDL.

Important:Changes to a specific extaccess record affect any client that is currently consuming the
Web Service created by that record. If youmodify this configuration, make sure to test all other

Web Services Guide
ServiceManagerWeb Services

HP ServiceManager (9.34) Page 12 of 179

applications that consume the sameWeb Service and address possible issues immediately. To avoid
issues stemming from different applications using the sameWeb Service, create a unique extaccess
record for eachWeb Service application, so that each application has a uniqueWeb Service to
consume. A single table can be represented inmultiple extaccess records.

Web Services and Service Manager
AWeb Service enables one application to access the functionality of another application using SOAP
operations (XML-based transactions) or RESTful operations, regardless of differences in their operating
system platform, application language, or tool set. HP ServiceManager supports two types of Web
Services features:

l Connecting to and consuming external Web Services

l Publishing ServiceManager fields andmethods as Web Services

For SOAP, the ServiceManager server now offers out-of-box functionality to connect to and consume
external Web Services. When you connect to an external Web service, ServiceManager retrieves the
Web Service Description Language (WSDL) for the service. You can then write custom JavaScript to
use JavaScript functions generated by Web Services and send and receivemessages to the remote
Web Services. For example, youmight query external Web Services to:

l Validate an email address or a phone number when updating a contact record.

l Automatically fill in the time zone of a contact in a Service Desk interaction based on the location
given.

l Automatically perform a search for solutions using the brief description of the Service Desk
interaction.

The out-of-box ServiceManager includes a bundle of published tables, fields, and display actions
collectively known as the ServiceManagerWeb Services. The ServiceManagerWeb Services
includes Web Services for all the applications and uses an ITIL-compliant naming convention to refer to
theWeb Service object. The use of ITIL-compliant service and object names allows Web Services
developers to create customWeb Services without needing to be familiar with the ServiceManager
database layer. To consume ServiceManager tables, fields, and display actions, youmust grant an
operator the SOAP API or RESTful API capability word.

You can use the ServiceManagerWeb Services to integrate applications and automate transactions.
For example, youmight want to publish aWeb Service that enables another application or process to:

l Automatically open, update, escalate, resolve, or close ServiceManager incidents.

l Automatically add or update a configuration item.

In addition to the tables, fields, and display actions available though the ServiceManagerWeb
Services, you can customize theWeb Services available from ServiceManager by adding, changing,
or removing your own tables, fields, and display actions. When you customize theWeb Services,
ServiceManager creates a new version of the ServiceManagerWeb Services. Afterwards, any
customWeb Services clients you create access this new version of theWeb Service.

Web Services Guide
ServiceManagerWeb Services

HP ServiceManager (9.34) Page 13 of 179

Web Services naming conventions for SOAP
The request and response names use the literal strings of the Action Name andObject Name defined in
the extaccess record. The name of the Request and Responsemethods within ServiceManager’s
Web Services are constructed by combining the Action Namewith the Object Name and Request or
Response.

Note: These names are case sensitive.

For example, themethod to add a new incident to the system is:

Action Name Object Name Request Response

Create Incident CreateIncidentRequest CreateIncidentResponse

If your Object Name for the Incident object starts with a lower case “i” (incident) the request is
CreateincidentRequest and the response is CreateincidentResponse.

Web Services security considerations
The ServiceManager server requires that eachWeb Service request provide a valid operator name and
password combination. Thesemust be supplied in a standard HTTP Basic Authorization header. The
Web Service toolkits universally support this authenticationmechanism. Use SSL if you are concerned
about the possibility of someone using a network monitoring tool to discover passwords. Basic
Authorization by itself does not encrypt the password; it simply encodes it using Base 64.

Note: Only ASCII operator names are supported in ServiceManagerWeb Service integrations. When
ServiceManager is handling an incomingWeb Service request, the authorization string is decoded by
BASE64Decoder. ServiceManager uses the decoded string value to construct a UTF-8 string that is
used in the RTE. However, the authorization string is in the header and ServiceManager does not
know the charset or encoding of the underling string value, which is BASE64 encoded. Therefore, if the
underlying string value is not UTF-8, Web Service clients will fail to connect to ServiceManager. In
ServiceManager, when fetching an operator from the database, nomatter what collation the database
uses, the operator finally will get a UTF-8 operator value. However, even if users put the same value in
the authorization header, the operator namemay differ because of the charset/encoding issue.

In addition to having a valid login, the operator must have the SOAP API or RESTful API capability
word to access theWeb Services. If theWeb Service request does not contain valid authorization
information, then the server sends a responsemessage containing “401 (Unauthorized).” If the
request is valid, then the server sends a responsemessage containing the results of yourWeb
Services operation. The responsemessage contains only the information the operator is allowed to
see. The security settings of the user's profile, Mandanten security settings, and conditions defined in
the Document Engine aremaintained by all Web Services.

Valid URLs for Service Manager
The ServiceManager publishes two different URLs for SOAP:

Web Services Guide
ServiceManagerWeb Services

HP ServiceManager (9.34) Page 14 of 179

http://<server>:<port>/SM/7

This URL contains similar functionality as sc62server/PWS, except that it uses MTOM
attachments.

http://<server>:<port>/sc62server/PWS

This URL provides complete functionality and despite the name sc62server, it is a fully implemented
ServiceManager7Web Services interface usingMIME attachments.

The ServiceManager also publishes one URLs for REST:

http://<server>:<port>/SM/9/rest

Service Manager Web Services URLs
HP ServiceManager support theWeb Services at both URLs for SOAP API. If you already use the
SC62 server , continue to use it. If you are starting to create a new Web service, use the SM/7 server.
You can continue to use themethods, which are still applicable other than the following.

l Any new objects added to ServiceManager 9.34, such as the new required fields in Incident
Management, will not be available to existingWeb Services.

l If you have an SOA broker application, BPEL orchestration engine, orWeb Services middleware
application cofigured between the deployed SOAP client application and ServiceCenter or Service
Manager application. If so, the orchestration scenario or middleware can bemodified to work as a
mediator between the old and the new version of the IncidentManagement WSDL.

l MIME – If you use the legacy Web Services URL, then the server uses MIME to encode
attachments.

l MTOM/XOP – If you use the ServiceManagerWeb Services URL, then the server uses
MTOM/XOP to encode attachments.

HP ServiceManager also supports one URL for RESTful API.

Configure the Web Service field definitions
Use theWeb Service Configuration Utility to define the fields that will be passed from HP Service
Manager to theWeb Service. The ServiceManager fields are taken directly from the database
dictionary.

Web Services Guide
ServiceManagerWeb Services

HP ServiceManager (9.34) Page 15 of 179

Field Description

Service
Name

The name of theWeb Service you want to use to publish theServiceManager table.
You can reuse the sameWeb Service name to publishmultiple tables. Since this
name becomes part of a URL, the namemust consist of alphanumeric characters
valid for URLs. The name cannot consist of URL reserved characters such as spaces,
slashes, or colons.

Released You should consider any web service with the Released option selected as the
supported version of theWeb Service in ServiceManager. While it is possible to clear
the Released option and edit or delete theWeb Service, HP recommends that you
assign the service a different name and work on that copy of the web service instead.
When the Released option is selected, the external access definition remains read-
only.

Name The name of the ServiceManager table that will be published as aWeb Service.

Deprecated Web Services marked as deprecated are not supported.

Object
Name

The name you want to use to identify the ServiceManager table in theWeb service.
Since this name becomes part of theWSDL, the namemust consist of alphanumeric
characters valid for XML. The name cannot consist of XML reserved characters such
as brackets (<) and (>), colons (:), or quotationmarks (").

Allowed Actions tab field definitions

Use this tab to enter the HP ServiceManager Document Engine display actions you want to globally
enable for this table.

Field Description

Allowed
Actions

Click to see the list of allowable display actions for the ServiceManager table you have
selected for theWeb Service.

Action
Names

The name used to identify the display action in theWeb service as an operation. Since
this name becomes part of theWSDL, the namemust consist of alphanumeric characters
valid for XML. The name cannot consist of XML reserved characters such as brackets (<)
and (>), colons (:), or quotationmarks (").

Web Services Guide
ServiceManagerWeb Services

HP ServiceManager (9.34) Page 16 of 179

Field Description

Action
Type

The type for each of the Document Engine display actions that are defined for this table.
Click the drop-down icon to see a list of valid type values.

l Create only actions will only create new records.

l Update only actions will only update existing records.

l Merge actions will update the record if it exists and create it if it does not exist.

l Application Pass Through actions will perform custom actions defined in External
Access Actions.

Custom
Action
To...

Create a custom action for the ServiceManager table you have selected for theWeb
Service.

Expressions tab field definitions

Use this tab to enter system language expressions that run before the display action that runs as part of
theWeb Service.

Field Description

Expressions Call a custom action created in External Access Actions.

Fields tab definitions

Use this tab to set the fields, captions, and field types.

Field Description

Field The HP ServiceManager field name that is published by theWeb Services Configuration
Utility.

Caption The name that ServiceManager displays for the associated Field in theWeb Service.

Type The data type that theWeb Services API will convert field data to forWeb Services
access.

RESTful tab field definitions

Use this tab to enter the RESTful API related configurations.

Web Services Guide
ServiceManagerWeb Services

HP ServiceManager (9.34) Page 17 of 179

Field Description

RESTful
Enabled

If it is selected, RESTful API is available for this service. If it is not selected,
RESTful API is unavailable for this service.

Attachment
Enabled

If it is selected, attachment is supported by RESTFful API for this service. If it is not
selected, attachment is not supported by RESTful API for this service.

Resource
Collection
Name

This is the name of the Resource Collection. For example, youmay specify the
group of incidents from the probsummary table as "incidents".

Resource
Name

This is the name of the individual Resource. For example, youmay specify that any
individual incident from the probsummary table be referred to as an "Incident".

Unique Keys This field specifies one or more fields that will function as a unique identifier for a
Resource from the Resource Collection. For example, {ID} in single resource query
URI, http://<server>:<port>/SM/9/rest/incidents/{ID}

Max
Records
Returned in
Query

This is themax number of records returned in every single query when the number of
records is huge. By default, the value is 1000.

Query
Authorization

This is the query privilege for this service.

Resource
Collection
Action

This field represents the default action for resource collection.

Resource
Actions

This field specifies the action to take when an individual resource is part of a
POST, PUT, DELETE command. These actions are specified in theAllowed
Actions tab of theExternal Access Definition.

Web Services Guide
ServiceManagerWeb Services

HP ServiceManager (9.34) Page 18 of 179

Publishing Service Manager data using WS API
To publish ServiceManager data viaWeb Services, use theWeb Service Configuration tool to expose
files andmethods to add, update, or delete ServiceManager records. The consumer of this data can be
a custom C# or Java program or an interface program such as Connect-It as well as another Service
Manager system.

To expose a set of ServiceManager tables as aWeb Service, click Tailoring > Web Services >
External Access Actions and create or update the related extaccess record for each of the tables.

Things to consider prior to publishing data
Before publishing ServiceManager data via aWeb Service, there are several things to consider. When
investigated thoroughly, each of the following items will serve to improve the organization and
performance of theWeb Services.

Publishing Service Manager applications as Web Services
You can publish HP ServiceManager applications as Web Services and create new integration points
between the ServiceManager server and external applications.

You can customize theWeb Services that ServiceManager publishes by adding or removing tables,
fields, and display options, from the list of objects available to theWeb Services. In addition, you can
create alias names for each of these options that only appear in theWeb Services but HP recommends
that you do not do this. You can also specify the XML schema data type you want the ServiceManager
server to use when publishing data to a SOAPWeb service.

For your customWeb Services client to access ServiceManagerWeb Services, it must present a valid
operator record name and password with each request. Furthermore, the operator must have the SOAP
API or RESTful API capability word as part of his or her security profile.

When to use Web Services
WebServices enable user-driven integrations with any application that supports Web Services.

l WebServices can be used for any table and external applications that support the technology.

l WebServices can be used to view data from an external source or copy data from one system to
another.

HP ServiceManager (9.34) Page 19 of 179

Can I use the out-of-box Web Services?
The ITIL-standardWeb Services provided with ServiceManager should be used whenever possible.
They have been tested extensively and are well documented, whichmakes them easier to use. If you
are interested in using one of theseWeb Services, HP recommends that do not modify the out-of-box
extaccess records. Instead, always create your own copy if you need to add actions or fields. If the
changes are unique, create a copy of the extaccess record(s) involved first and name the service
differently; for example, IncidentManagementForPortal rather than just IncidentManagement, and
make your changes against the new set of extaccess records.

What items do I need to expose?
Only expose required fields and fields that are necessary for the actions exposed. Expose only those
actions that are required for the consumer to perform their duty. All actions that are exposed need to be
able to run in background without user interaction.

Though an entire table and even an entire system can be exposed viaWeb Services, doing so would
affect performance and confuse users. Only the data that is needed by a client should be exposed. This
prevents excess traffic and decreases the amount of storage that your client may need to use.

Publish a Document Engine display action in the Web Services API

Youmust have the SysAdmin capability words to use this procedure.

The ServiceManagerWeb Services API allows you to publish any Document Engine display action as
part of aWeb Service.

1. Log on to ServiceManager as a System Administrator.

2. Click Tailoring > Web Services > Web Service Configuration. ServiceManager displays the
External Access Definition form.

3. In the Name field, type the name of the ServiceManager table or join file whose display actions
you want to publish.

4. Click Search. The External Access Definition record for the table opens.

5. Double-click the applicable object name entry. The External Access Definition form opens.

6. Click an empty cell from the Allowed Actions array and select the Document Engine display action
you want to publish from the list.

Note: If a join file is chosen, the allowed actions for the join file are controlled by the initialization
expressions in the ext.init Process record (click Tailoring > Document Engine > Processes).

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 20 of 179

Note: Youmust first have created the necessary Document Engine records, states, objects, and
display actions, for a custom display action to appear in this list.

7. In the Action Names field next to the allowed action, type the name you want ServiceManager to
display for the action in theWeb Services API.

Note: The name you type for this field becomes the alias name for the display action and becomes
part of theWeb ServiceWSDL. For example, if you type Create for the add action of the Incident
object, then theWSDL operation becomes CreateIncident and theWSDLmessages are
CreateIncidentRequest and CreateIncidentResponse.

Caution: Since this name becomes part of theWSDL, the namemust consist of alphanumeric
characters valid for XML. The name cannot include XML-reserved characters such as brackets (<
& >), colons (:), or quotationmarks (" & ").

8. In the Action Type field, select the conditions where this action will be valid.
n To limit the action to new records, select the Create only type.

n To limit the action to existing records, select the Update only type.

n Tomake the action available for both new and existing records, select theMerge type.

9. Click Save.

Publish a Service Manager field in the Web Services API

Youmust have the SysAdmin capability words to use this procedure.

1. Log in to ServiceManager as a System Administrator.

2. Click Tailoring > Web Services > Web Service Configuration. ServiceManager displays the
External Access Definition form.

3. In the Service Name field, select the name of the ServiceManager table or join file in which you
want to rename fields.

Note: If a join file is chosen, the Fields tab lists all of the fields for all of the files in the join file.

4. Click Search. The web services record for that table opens.

5. Click the Fields tab.

6. In the Field field, type the name of field for which you want to create an alias.

Note: To specify a compound field type such as an array of structure or an array of characters, you
must use a special syntax.

7. In the Caption field, type the name (alias) you want the field to have in theWeb Services API.

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 21 of 179

Caution: Since this name becomes part of theWSDL the namemust consist of alphanumeric
characters valid for XML. The name cannot consist of XML reserved characters such as brackets
(< & >), colons (:), or quotationmarks (“ & ”).

8. In the Type column, select a data type override, if any, you want the field to have in theWeb
Services API.

Note: If you leave the Type field blank, ServiceManager uses the default mapping to determine
the data type. Any data type you select overrides the default mapping. The default is StringType.

9. Click Save.

What data types should I use for SOAP?
HP ServiceManager has amore lenient data typing policy than the XML schema data typing policy
used forWeb Services. Certain field types in ServiceManager can correspond tomultiple data types in
the XML schema data type policy. For example, the ServiceManager data type decimal could be a
decimal, a floating number, or an integer in the XML schema data type policy.

In addition, the actual formatting of data varies between ServiceManager and XML schema data types.
This is especially true of ServiceManager date/time fields that use a different order than XML schema
dates. Because someWeb Services may require changes to field data format, you can now define the
XMLSchema data type you want ServiceManager to convert the field's data to when you publish the
field as part of a web service.

For outbound data, the ServiceManager server automatically converts ServiceManager data to the
format you select in the data policy record for the ServiceManager field. For inbound data, the Service
Manager server automatically converts the XML schema data to the ServiceManager field's listed data
type format.

The services, objects, and fields published in the ServiceManagerWeb Services API already have the
proper XML schema datamappings listed in theWeb Services definition (extaccess record). If the
extaccess record does not list a data typemapping, then theWeb Services API treats the field data as
a string.

The following table lists the available SOAP API data types and their ServiceManager equivalents.

SOAP API Data Type Service Manager Data Type

Base64Type used for binary data

BooleanType Boolean

ByteType Decimal

DateTimeType Date/Time

DateType Date/Time

TimeType Date/Time

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 22 of 179

SOAP API Data Type Service Manager Data Type

DurationType Date/Time

DecimalType Decimal

DoubleType Decimal

IntType Decimal

LongType Decimal

ShortType Decimal

FloatType Decimal

StringType Text

Caution: Always map ServiceManager date/time fields to the XML schema dateTime or to one of
the related XML schema date or time types. Otherwise these fields will cause errors when you
consume the service.

Caution:When integrating with ServiceManager, array data should be broken intomulti elements
by separator "\r." This is because ServiceManager uses "\r" as the separator between array
elements. When a string that contains "\r" is retrieved from the ServiceManager system, it is
decoded as an array with multiple elements separated by "\r". For this reason, when integrating
other applications (for example, UCMDB) with ServiceManager through web services, array data
should be broken intomulti elements by separator "\r" before the data is encoded and sent to the
ServiceManager system. For example, if an array contains elements "aabb" and "ccdd", it should
be sent to ServiceManager as the following:

<ns:Comments type=\"Array\">

<ns:Comments mandatory=\"\" readonly=\"\">aabb</ns:Comments>

<ns:Comments mandatory=\"\" readonly=\"\">ccdd</ns:Comments>

</ns:Comments>

You can define the data type you want ServiceManager to convert field data to when publishing it as a
Web Service. These data types are consistent with XML schema data types.

1. Click Tailoring > Database Manager.

2. In the Table field, type extaccess and click Search. The External Access Definition record opens.

3. In the Name field, select the name of the ServiceManager table whose exposed field you want to
define datatypes for.

4. Click Search. The External Access Definition record for the table opens.

5. On the Fields tab, find the field that you want to define the data type for.

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 23 of 179

6. In the Type column for that field, either type the data type or select a data type from the predefined
list in the drop-down list.

Note: The data type you select for this field becomes an XML schema data type in the web
services WSDL.

Caution: Youmust also specify a Field name in API value when you set a data type value.
Data type validation depends upon the existence of an alias name.

7. Click Save.

What methods do I need?
By default, any operation that is a part of the Document Engine for a table can bemade available in the
table’s Web service. If you need additional methods, add them to the Document Engine first so that
ServiceManager has a process to follow when performing them. If you havemethods in the Document
Engine that you do not want exposed, delete them from the allowed actions array in the extaccess
table.

Note:All actions performed fromWeb Services have to run without user interaction in Service
Manager. It is not possible to prompt the user for more information when that user is aWeb Services
consumer.

Managing records with Web Services requests
An implementer can send aWeb Services request to HP ServiceManager that will create a new
record, update an existing record, or merge two records. These actions are defined by selecting a value
in the Action Type field on the Allowed Actions tab of the extaccess record. The following is a
description of the expected behavior for each of the values in the drop-down list.

Create only

The server uses Create Semantics to initialize the file variable, fill it with the data from theWeb
Services request, and pass it to the se.external.action RAD application.

Update only

The server uses Update Semantics to select thematching record before calling the se.external.action
RAD application. The server returns an error if it does not find amatching record.

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 24 of 179

Merge

The server attempts to select the record. If it finds the record, it changes the action to Update and calls
the se.external.action RAD application. If the server fails to find the record, it changes the action to
Create and calls the se.external.action RAD application. If either the Update or Create action is
missing, the se.external.action returns a 70 – invalid action error message.

If there is no value specified in the Action Type field, the server uses Update Semantics. The only
exception is when the Action Name specified is Create, in which case the server uses Create
Semantics.

Are there any security considerations?
After you have exposed data viaWeb Services, any client consuming theWeb Service you are
publishing has access to that data. If there are certain fields that you want to restrict from specific
clients, create a different Web Service with those fields removed and have these clients consume that
data.

What are released Web Services?
TheWeb Services delivered out-of-box with ServiceManager are read-only andmarked with the
released option in the external access definition form. You should consider any Web Service with the
released option selected as the supported version of theWeb Service in ServiceManager. While it is
possible to clear the released option and edit or delete theWeb Service, HP recommends that you
instead work on a copy of theWeb Service that you give it a different name. While the released option
is selected the external access definition remains read-only.

Enable SSL encryption for published Web Services
If you want external Web Services clients to use an SSL connection with the ServiceManager server,
youmust provide them with the CA certificate for the ServiceManager server. If you purchased a
server certificate, copy the CA certificate from the CA certificate keystore provided with your
purchased certificate. If you generated your own server certificate by using a self-signed private CA
certificate, copy the CA certificate from your private CA certificate keystore instead.

Note: HP recommends you do not use the ServiceManager sample server CA certificate because the
sample certificate uses a common name (CN) for the server which will not match your actual server
name. The best practice is to purchase or create a valid certificate for the ServiceManager server in
order to establish an SSL-encrypted connection with external web service clients.

1. Copy the keystore that contains the CA certificate that signed your server's certificate and send it
to the systems running the external Web Services clients. Out-of-box, ServiceManager uses a

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 25 of 179

sample CA certificates keystore as part of theWeb tier.

Note:HP recommends using a CA certificate that you created or purchased instead of the default
ServiceManager CA certificate.

2. Import the CA certificate of the ServiceManager system into the CA certificate keystore of the
external Web Services client. Youmay use a tool like keytool to import the ServiceManager CA
certificate.

3. Configure the external Web Services client to use the updated CA certificate keystore. Follow the
instructions for yourWeb Services client to set the path to the CA certificate keystore.

4. Update the endpoint URL that the external Web Services client uses to include the HTTPS
protocol.

For example, https://myserver.mydomain.com:13443/SM/7/ws for SOAP and
https://myserver.mydomain.com:13443/SM/9/rest for RESTful.

Follow the instructions for yourWeb Service client to update the endpoint URL.

Note: The endpoint URLmust use the ServiceManager server's common name (CN) as defined
in the server certificate. For example, if the server certificate uses the name
myserver.mydomain.com, then the endpoint URLmust also use the name
myserver.mydomain.com.

Note: If you want external Web Services clients to download the ServiceManagerWeb Services
WSDL, point them to a URL using the following format:
https://myserver.mydomain.com:13443/SM/7/<Service Name>.wsdl

Example: Publishing request processes for integration
In this example, we prepare the data from the ocmq file to integrate to Project and Portfolio
Management (PPM) viaWeb Services. Wewill assume that as part of a project, a new employee
needs to be hired and the hiring process (approvals and workflow) will be done within the Service
Manager Request Management Module.

Since Request Management is not published as aWeb Service, we will need to start by creating some
customized Display options and Processes. Once these work in theWindows client, we will include
them in the newly-created extaccess record.

Since the goal is to publish just the possibility to start the new hire process, a lot of the required
information will be hard-coded in the request creation, to minimize overhead.

Create the display option
To create the display option:

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 26 of 179

1. Log in to ServiceManageras a System Administrator.

2. Click Tailoring > Database Manager and open the displayoption table.

3. Search for an available display option for the rmq.main.display display screen in the range from
200 – 2000.

4. Create a new display option with the following values:

Field Value

Screen ID rmq.main.display

Action CreateNewHire

Unique ID rmq.main.display_CreateNewHire

GUI option 500

Text Option 500

Default Label Create New Hire Request

Bank 3

Condition true

5. Add the new record.

Field Value

Screen ID rmq.main.display

Action CreateNewHire

Unique ID rmq.main.display_CreateNewHire

GUI option 500

Text Option 500

Default Label Create New Hire Request

Bank 3

Condition true

5. Add the new record.

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 27 of 179

Set up the Request Management category
For the background processing to work correctly, the category has to have Assign Number Before
Commit selected, so the flag is set to true.

Note: For this example, set the hr category flag to true.

Field Value

Name hr

Description HumanResources

Availability true

Assign Number Before Commit? Select this option

Phases - Phase Name Condition

Initial Quote true

Quote Approval true

Working true

Customer follow-up true

Create the new Process
The new rmq.open.newhire Process will first prepare the ocmcowork record, and then open the new
quote with a single line item for the New Employee bundle.

The new Process will need the following Initial JavaScript:

system.vars.$L_work=new SCFile("ocmcowork");

On the RAD tab, enter the following information:

Expressions before 1st RAD:

$L.part.no={100};$L.quantities={1};$L.item.quantity=1

1st RAD:

– svcCat.build.work.file.sub – Condition: true

– names – $L.part.no
– record – $L.work

WebServices Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 28 of 179

– numbers – $L.quantities
– number1 – $L.item.quantity

Expressions before 2nd RAD:

if (filename($L.file)="ocmq") then ($fileq=$L.file)

2nd RAD:

– rmq.open – Condition: true
– file – $L.file
– second.file – $L.object
– text – $L.exit
– boolean1 – true
– cond.input – false
– record – $L.work

Set up the State record
The rmq.view State record has to link the new display option to the new Process record. Add the
following line:

– CreateNewHire – rmq.open.newhire – true –false

Update the format control record
Disable the ocml.bld.smry subroutine call on the ocmq format control record that runs on display.

Set up the extaccess record
In the default ServiceManager system, Request Management tables are not published as aWeb
Service.

Note: Enter all fields that need to be exposed, and then create field captions for those fields. The field
captions cannot be XML-reserved characters and cannot contain spaces. Use of mixed case is
supported.

To create a new Web Service, do the following:

1. Log in to ServiceManageras a System Administrator.

2. Click Tailoring > Web Services > Web Service Configuration.

3. To publish Request Management Quotes, create a new record with the following information:

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 29 of 179

Field Value

Service
Name

RequestManagement

Note: Type the name of the web service that you want to use to publish
this table may be comprised of multiple ServiceManager tables. The
name you type in this field becomes the alias name for the service and it
becomes part of the web service URL. For example, when you type
RequestManagement as the service name, then theWSDL you publish
will be called RequestManagement.wsdl. The name cannot contain URL-
reserved characters, such as spaces, slashes, or colons.

Name ocmq

Object Name Quote

Note: Type the name you want to use to identify the table. This name
becomes the alias name for the table, and then becomes part of the web
serviceWSDL. For example, when you typeQuote as the object name,
then the SOAP operations for this table includeQuote as part of the
WSDL element, such as UpdateQuote, CreateQuote, and DeleteQuote.

The name cannot consist of XML-reserved characters, such as brackets
(< and >), colons (:), or quotationmarks (" and '). Never use "CamelCase"
(mixed case) notation in the Object name, as this creates an incorrect or
missing filenamewhen calling the web service via ServiceManager. As a
workaround, you can use a tool that lets youmodify the XML to include the
filename in the SOAP body request. However, ServiceManager and some
other tools do not allow modifications.

Allowed
Actions

The Allowed Actions have tomatch the action field in the Display Option,
and in the display action field in the State record. Only options that have a
true condition will be available through the web service interface. Operator
privileges will be checked to ensure security.

1st entry save

2nd entry GenNewHire

Action
Names

Type the name you want to use in theWeb Services application program
interface (API) to identify the Document Engine display actions for this
table. The name you type for this field becomes the alias name for the
display action, and then becomes part of the web serviceWSDL. The only
action that can be used to add a record to a ServiceManager table is
Create. Updating actions can be named to fit the action. Foe example, if
you type Create for the add action of the Quote object, then the
WSDL operation becomes CreateQuote and theWSDLmessage is
CreateQuoteRequest. The name cannot consisit of XML-reserved
characters, such as brackets(< and >), colons (:), or quotationmarks ("
and ').

1st entry Update

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 30 of 179

Field Value

2nd entry Create

Action Type

1st entry Merge

2nd entry Create only

Expressions
tab

if null(number in $L.file) then ($L.mode="add")

4. On the Fields tab, type the following:

Field Caption Type

priority Priority StringType

requested.for Requestor StringType

requestor.dept RequestingDepartment StringType

reason Reason StringType

location Location StringType

hire.type HireType StringType

requested.date StartDate DateTimeType

requestor.fname NewEmployeeFirstName StringType

requestor.lname NewEmployeeLastName StringType

category Category StringType

current.phase Phase StringType

number Number StringType

5. If you want to use RESTful API, on theRESTful tab, type the following:

Field Value

RESTful Enabled Checked

Attachment Enabled Checked if you want to use attachment later.

Resource Collection Name quotes

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 31 of 179

Field Value

Resource Name Quote

Unique Keys number

Max Records Returned in Query 1000

Query Authorization true

Resource Collection Actions: POST Create

Resource Actions:POST Update

Resource Actions: PUT Update

When yourWeb service is set up, it is ready to be consumed by a custom client. Windows andWeb
clients are unaffected by changes youmake to the extaccess table. The operator's application profile is
used to determine which tables the user can access, and which actions the user can perform.

List: Web Services available in the Service Manager
Web Services API
The ServiceManagerWeb Services includes ITIL-compliant Web Services. The following table lists
some of those web services. To see all theWeb Services that are ITIL-compliant, useWeb Service
Configuration in Tailoring (Tailoring > Web Services > Web Service Configuration) and then do a
true search. This will list all of the out-of-box services.

Note: This is the out-of-box list for SOAP.

Web Service URL to access WSDL
Service Manager objects (tables)
published

Change
Management

ChangeManagement.wsdl Change (cm3r), ChangeTask (cm3t)

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 32 of 179

Web Service URL to access WSDL
Service Manager objects (tables)
published

Configuration
Management

ConfigurationManagement.wsdl Company (company), Contact
(contacts), Department (dept),
Device (device), DeviceParent
(deviceparent), Computer
(joincomputer), DisplayDevice
(joindisplaydevice), Furnishing
(joinfurnishings), HandHeldDevice
(joinhandhelds), MainFrame
(joinmainframe), NetworkDevice
(joinnetworkcomponents),
OfficeElectronic
(joinofficeelectronics),
SoftwareLicense
(joinsoftwarelicense),
StorageDevice (joinstorage),
TelecommunicationDevice
(jointelecom), Location (location),
Model (model), InstalledSoftware
(pcsoftware), Vendor (vendor)

Incident
Management

IncidentManagement.wsdl Incident (probsummary)

Problem
Management

ProblemManagement.wsdl Problem (rootcause)

Service Desk ServiceDesk.wsdl Call (incidents)

Service Level
Management

ServiceLevelManagement.wsdl ServiceEntry (serviceent), SLA
(sla), ActiveSLA (slaactive),
AssignedSLA (slaassigned), SLA
Control (slacontrol), MonthlySLA
(slamonthly), MonthlySLALag
(slamonthlylag), SLAResponse
(slaresponse)

For RESTful, you can find the out-of-box list from the Service Document,
http://<server>:<port>/SM/9/rest.

Field names in the extaccess record
Implementers can change the field name and data type of a ServiceManager field when they publish
the field as part of aWeb Service. To change the field name and data type of a ServiceManager field,
the implementer must specify the ServiceManager field in the extaccess record using one of the
formats listed in the following table.

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 33 of 179

Type of Service
Manager field Format required to specify field

Example field listing
fromthe Web Services API

All primitive
fields

field.name initial.impact

array

field field.name misc.array1

structure

field 1

field 2

field 3

structure.name,field.name.1

structure.name,field.name.2

structure.name,field.name.3

header,agreement.id

header,approval.status

header,assigned.to

array

structure

field 1

field 2

field 3

array.name[field.name.1]

array.name[field.name.2]

array.name[field.name.3]

affected.ci[ci.assign.group]

affected.ci[ci.device.name]

affected.ci[ci.device.type]

structure1

structure2

field 1

field 2

field 3

structure.name.1,structure.name.2,field.name.1

structure.name.1,structure.name.2,field.name.2

structure.name.1,structure.name.2,field.name.3

<no example available>

structure 1

array

structure 2

field 1

field 2

field 3

structure.name.1,array.name[field.name.1]

structure.name.1,array.name[field.name.2]

structure.name.1,array.name[field.name.3]

<no example available>

Create dedicated Web Services listeners
AnHP ServiceManager system configured for vertical or horizontal scaling uses a Load Balancer to
redirect client connection requests to an available ServiceManager process. A system that also has
many Web Services may need a Load Balancer for multiple nodes. ServiceManager's Web Services

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 34 of 179

do not support http redirect, and will fail to clean up the resources on the ServiceManager loadBalancer
process, if the loadBalancer port is used as the endpoint URL. For this reason, HP recommends
creating one or more ServiceManager processes dedicated toWeb Services requests. You can then
configure any external Web service clients to connect directly to the dedicated ServiceManager
processes. If your system needs a load balancer, use a hardware load balancer to balance between a
set of servlets with the debugnode parameter.

1. Log in to the host running ServiceManager with an administrator account.

2. Stop the ServiceManager server.
Note: It is not necessary to stop and start the ServiceManager server to add a new port. You can
add the line to the sm.cfg file while the system is running and start that same port from a
command prompt manually.

3. Open the sm.cfg file, and create a dedicated ServiceManager process to listen forWeb Services
requests using the -debugnode parameter. For example, the following entries create a dedicated
process listening on ports 13085 and 13445.

sm -httpPort:13080 -loadbalancer
sm -httpPort:13081 -httpsPort:13443
sm -httpPort:13083 -httpsPort:13444
sm -httpPort:13085 -httpsPort:13445 -debugnode

Note: The debugnode parameter tells the ServiceManager Load Balancer not to forward any
client connection requests to this ServiceManager process. Only clients that directly connect to
the process can access it.

4. Restart the ServiceManager server.

5. Configure any external web service clients to connect directly to the ServiceManager processes
running in debugnode. For example, set the endpoint URL to http://<fully qualified
host name>:13085/SM/7/<Service Name> for normal connections and set the URL to
https://<fully qualified host name>:13445/SM/7/<Service Name> for SSL-
encrypted connections.

Data conversion between Service Manager and SOAP
Web Services
HP ServiceManager has amore lenient data typing policy than the XML schema data typing policy
used forWeb Services. Certain field types in ServiceManager can correspond tomultiple data types in
the XML schema data type policy. For example, the ServiceManager data type decimal could be a
decimal, a floating number, or an integer in the XML schema data type policy.

In addition, the actual formatting of data varies between ServiceManager and XML schema data types.
This is especially true of ServiceManager date/time fields that use a different order than XML schema
dates. Because someWeb Services may require changes to field data format, you can now define the

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 35 of 179

XMLSchema data type you want ServiceManager to convert the field's data to when you publish the
field as part of a web service.

For outbound data, the ServiceManager server automatically converts ServiceManager data to the
format you select in the data policy record for the ServiceManager field. For inbound data, the Service
Manager server automatically converts the XML schema data to the ServiceManager field's listed data
type format.

For example, the ServiceManagerWeb Services API publishes the ServiceManager field closed.time
as ClosedTime in the IncidentManagement service. TheWeb Services API converts the outbound
ServiceManager data into the appropriate ISO 8601 date format for XML schema. When theWeb
Service responds, theWeb Service API converts the ISO-formatted date back into a ServiceManager
date format. Here is an example: the conversion between 1994-11-05T08:15:30-05:00 and
November 5, 1994, 8:15:30 am, US Eastern Standard Time by theWeb Services API.

The services, objects, and fields published in the ServiceManagerWeb Services API already have the
proper XML schema datamappings listed in theWeb Services definition (extaccess record). If the
extaccess record does not list a data typemapping, then theWeb Services API treats the field data as
a string field. Typically, you only need to add or change aWeb Services API data typemapping to
publish custom fields you have added to ServiceManager as Web Services objects.

Warning: Changing theWeb Services API data typemappings for existing fields in the Service
ManagerWeb Services API may result in datamismatch errors.

Example: Publishing the Terminate Change
functionality via Web Services
In the default ServiceManager system, the Terminate Change functionality is not published viaWeb
Services.

To publish the Terminate Change functionality, follow the steps described in this section.

Create a display option
Add a Display Option record to eliminate the prompt for a closure code and closing comments.

Field Value

Screen ID cm.view.display

Modifies
Record

Leave blank

Action terminatebg

Unique ID cm.view.display_terminatebg

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 36 of 179

Field Value

GUI option 6

Balloon
Help (If
Option <
200)

Terminate Change

Text Option 6

Default
Label

Terminate Background

Bank 1

Text
Alternative

Leave blank

Condition evaluate($L.tableAccess.close) and open in $L.file=true and nullsub
($G.ess, false)=false and (category in $L.file="Release Management"
and ($phasepntr=3 or $phasepntr=2 or $phasepntr=1))

User
Condition

$G.bg=true

RAD tab

PreRad
Expressions
subtab

$terminate.release=true

Create a new process
Enter the following values in the Process Definition record to create the terminate.release.bg
Process record.

Field Value

Process Name terminate.release.bg

Run inWindow? Select this option

RAD tab

Expressions evaluated before RAD call

WebServices Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 37 of 179

Field Value

$L.file.vars={$L.category, $L.phase, $L.fc,
$L.fc.master}

if (index(current.phase in $L.file, phases in
$L.category)=lng(denull(phases in $L.category))) then
($L.last=true) else ($L.last=false)

RAD Application sla.confirm.outage

Condition $L.last and enable
in$G.sla.environment

Parameter Names file

Parameter Values $L.file

Expressions evaluated before RAD call

$L.terminated.parent.name=number in
$L.file;$terminate.ok=true;$terminate.
release=true

RAD Application cm3.close.child.tasks

Condition true

Parameter Names name

Parameter Values $L.terminated.parent.name

Expressions evaluated beforeRAD call

$phasepnt=7;current.phase in $L.file="Verification"

status in $file="terminated"

RAD Application cm.close

Condition true

Parameter Names record

second.file

boolean.1

prompt

Parameter Values $L.file

$L.object

$L.bg

$L.exit

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 38 of 179

Set up a State record
Add the following entries to the cm.view State record.

l Display Action: terminatebg

l Process Name: terminate.release.bg

l Condition: true

l Save First: (leave blank)

Set up an extaccess record
1. Update the extaccess record to expose this function. Select the extaccess record with Name =

cm3r. Type TerminateChange inObject Name and click Add.

2. Add the following entries to the extaccess record:

n Allowed Actions: terminatebg

n Actions: Terminate

n Action Type(Leave Blank)

3. If you want to use RESTful API, on RESTful tab, type the following:

Field Value

RESTful
Enabled

Checked

Attachment
Enabled

Checked if you want to use attachment later.

Resource
Collection Name

terminatechanges

Resource Name TerminateChange

Unique Keys header,number

Max Records
Returned in
Query

1,000

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 39 of 179

Field Value

Query
Authorization

lioption("ChangeManagement") and (index("SysAdmin", $lo.ucapex)>0 or
index("ChMAdmin", $lo.ucapex)>0 or index("change request", $lo.ucapex)
>0)

Resource
Collection
Actions: POST

Create

Resource
Actions:POST

Update

Resource
Actions:PUT

Update

Execute a request via SOAP Web Services
Execute the following request via SOAPWeb Services.

Note: The change number has to be a change of the ReleaseManagement category.
ClosingComments and ClosureCode are required fields for terminating a ReleaseManagement
change.

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:pws="http://servicecenter.peregrine.com/PWS"
xmlns:com="http://servicecenter.peregrine.com/PWS/Common">

<soapenv:Header/>
<soapenv:Body>

<pws:TerminateChangeRequest attachmentInfo="?" attachmentData="?"
ignoreEmptyElements="true">

<pws:model query="">
<pws:keys query="">

<!--Optional:-->
<pws:ChangeNumber type="String" mandatory="?"

readonly="?">C10027</pws:ChangeNumber>
</pws:keys>
<pws:instance query="" uniquequery="?" recordid="?">

<pws:header type="Structure">
<!--Optional:-->
<pws:ChangeNumber type="String" mandatory="?"

readonly="?"></pws:ChangeNumber>
<!--Optional:-->
<pws:Category type="String" mandatory="?"

readonly="?"></pws:Category>
<!--Optional:-->

WebServices Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 40 of 179

<pws:Status type="String" mandatory="?"
readonly="?">terminated</pws:Status>

<!--Optional:-->
<pws:ApprovalStatus type="String" mandatory="?"

readonly="?"></pws:ApprovalStatus>
<!--Optional:-->
<pws:RequestedBy type="String" mandatory="?"

readonly="?"></pws:RequestedBy>
<!--Optional:-->
<pws:AssignedTo type="String" mandatory="?"

readonly="?"></pws:AssignedTo>
<!--Optional:-->
<pws:Coordinator type="String" mandatory="?"

readonly="?"></pws:Coordinator>
<!--Optional:-->
<pws:CoordinatorPhone type="String" mandatory="?"

readonly="?"></pws:CoordinatorPhone>
<!--Optional:-->
<pws:PlannedStartDate type="DateTime" mandatory="?"

readonly="?"></pws:PlannedStartDate>
<!--Optional:-->
<pws:PlannedEndDate type="DateTime" mandatory="?"

readonly="?"></pws:PlannedEndDate>
<!--Optional:-->
<pws:Reason type="String" mandatory="?"

readonly="?"></pws:Reason>
<!--Optional:-->
<pws:CurrentPhase type="String" mandatory="?"

readonly="?"></pws:CurrentPhase>
<!--Optional:-->
<pws:RiskAssessment type="String" mandatory="?"

readonly="?"></pws:RiskAssessment>
<!--Optional:-->
<pws:Priority type="String" mandatory="?"

readonly="?"></pws:Priority>
<!--Optional:-->
<pws:DateEntered type="DateTime" mandatory="?"

readonly="?"></pws:DateEntered>
<!--Optional:-->
<pws:Open type="Boolean" mandatory="?"

readonly="?"></pws:Open>
<!--Optional:-->
<pws:BackoutDuration type="Duration" mandatory="?"

readonly="?"></pws:BackoutDuration>
<!--Optional:-->
<pws:CloseTime type="DateTime" mandatory="?"

readonly="?"></pws:CloseTime>
<!--Optional:-->
<pws:ForeignID type="String" mandatory="?"

WebServices Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 41 of 179

readonly="?"></pws:ForeignID>
<!--Optional:-->
<pws:RFCType2 type="String" mandatory="?"

readonly="?"></pws:RFCType2>
<!--Optional:-->
<pws:Company type="String" mandatory="?"

readonly="?"></pws:Company>
<!--Optional:-->
<pws:BriefDescription type="String" mandatory="?"

readonly="?"></pws:BriefDescription>
<!--Optional:-->
<pws:Subcategory type="String" mandatory="?"

readonly="?"></pws:Subcategory>
<!--Optional:-->
<pws:SLAAgreementID type="Int" mandatory="?"

readonly="?"></pws:SLAAgreementID>
</pws:header>
<pws:description.structure type="Structure">

<!--Optional:-->
<pws:Description type="Array">

<!--Zero or more repetitions:-->
<pws:Description type="String" mandatory="?"

readonly="?"></pws:Description>
</pws:Description>
<!--Optional:-->
<pws:Justification type="Array">

<!--Zero or more repetitions:-->
<pws:Justification type="String" mandatory="?"

readonly="?"></pws:Justification>
</pws:Justification>
<!--Optional:-->
<pws:BackoutMethod type="Array">

<!--Zero or more repetitions:-->
<pws:BackoutMethod type="String" mandatory="?"

readonly="?"></pws:BackoutMethod>
</pws:BackoutMethod>

</pws:description.structure>
<pws:middle type="Structure">

<!--Optional:-->
<pws:ConfigurationItem type="String" mandatory="?"

readonly="?"></pws:ConfigurationItem>
<!--Optional:-->
<pws:Location type="String" mandatory="?"

readonly="?"></pws:Location>
<!--Optional:-->
<pws:Misc1 type="String" mandatory="?"

readonly="?"></pws:Misc1>
<!--Optional:-->
<pws:Misc2 type="String" mandatory="?"

WebServices Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 42 of 179

readonly="?">pass</pws:Misc2>
<!--Optional:-->
<pws:Misc3 type="String" mandatory="?"

readonly="?"></pws:Misc3>
<!--Optional:-->
<pws:Misc4 type="String" mandatory="?"

readonly="?"></pws:Misc4>
<!--Optional:-->
<pws:Misc5 type="String" mandatory="?"

readonly="?"></pws:Misc5>
<!--Optional:-->
<pws:Misc6 type="String" mandatory="?"

readonly="?"></pws:Misc6>
<!--Optional:-->
<pws:Misc7 type="String" mandatory="?"

readonly="?"></pws:Misc7>
<!--Optional:-->
<pws:Misc8 type="String" mandatory="?"

readonly="?"></pws:Misc8>
<!--Optional:-->
<pws:Misc9 type="String" mandatory="?"

readonly="?"></pws:Misc9>
<!--Optional:-->
<pws:Misc10 type="String" mandatory="?"

readonly="?"></pws:Misc10>
<!--Optional:-->
<pws:OutageStart type="DateTime" mandatory="?"

readonly="?"></pws:OutageStart>
<!--Optional:-->
<pws:OutageEnd type="DateTime" mandatory="?"

readonly="?"></pws:OutageEnd>
<!--Optional:-->
<pws:ScheduledOutageStart type="DateTime" mandatory="?"

readonly="?"></pws:ScheduledOutageStart>
<!--Optional:-->
<pws:ScheduledOutageEnd type="DateTime" mandatory="?"

readonly="?"></pws:ScheduledOutageEnd>
<!--Optional:-->
<pws:ActualOutageStart type="DateTime" mandatory="?"

readonly="?"></pws:ActualOutageStart>
<!--Optional:-->
<pws:ActualOutageEnd type="DateTime" mandatory="?"

readonly="?"></pws:ActualOutageEnd>
<!--Optional:-->
<pws:MiscArray1 type="Array">

<!--Zero or more repetitions:-->
<pws:MiscArray1 type="String" mandatory="?"

readonly="?"></pws:MiscArray1>
</pws:MiscArray1>

WebServices Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 43 of 179

<!--Optional:-->
<pws:MiscArray2 type="Array">

<!--Zero or more repetitions:-->
<pws:MiscArray2 type="String" mandatory="?"

readonly="?"></pws:MiscArray2>
</pws:MiscArray2>
<!--Optional:-->
<pws:MiscArray3 type="Array">

<!--Zero or more repetitions:-->
<pws:MiscArray3 type="String" mandatory="?"

readonly="?">test passed</pws:MiscArray3>
</pws:MiscArray3>
<!--Optional:-->
<pws:Assets type="Array">

<!--Zero or more repetitions:-->
<pws:Assets type="String" mandatory="?"

readonly="?"></pws:Assets>
</pws:Assets>
<!--Optional:-->
<pws:EstimateDescription type="String" mandatory="?"

readonly="?"></pws:EstimateDescription>
<!--Optional:-->
<pws:EstimatePrice type="String" mandatory="?"

readonly="?"></pws:EstimatePrice>
<!--Optional:-->
<pws:ActualCost type="String" mandatory="?"

readonly="?"></pws:ActualCost>
<!--Optional:-->
<pws:ActualPrice type="String" mandatory="?"

readonly="?"></pws:ActualPrice>
</pws:middle>
<pws:close type="Structure">

<!--Optional:-->
<pws:CompletionCode type="Decimal" mandatory="?"

readonly="?">1</pws:CompletionCode>
<!--Optional:-->
<pws:ClosingComments type="Array">

<!--Zero or more repetitions:-->
<pws:ClosingComments type="String" mandatory="?"

readonly="?">Terminating Change</pws:ClosingComments>
</pws:ClosingComments>

</pws:close>
<!--Optional:-->
<pws:Urgency type="String" mandatory="?"

readonly="?"></pws:Urgency>
<!--Optional:-->
<pws:InitialAssessment type="String" mandatory="?"

readonly="?"></pws:InitialAssessment>
<!--Optional:-->

WebServices Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 44 of 179

<pws:attachments>
<!--Zero or more repetitions:-->
<com:attachment href="?" contentId="?" action=""

name="?" type="?" len="?" charset="?" attachmentType="?"/>
</pws:attachments>

</pws:instance>
<!--Optional:-->
<pws:messages>

<!--1 or more repetitions:-->
<com:message type="String" mandatory="?" readonly="?"

severity="?" module="?"></com:message>
</pws:messages>

</pws:model>
</pws:TerminateChangeRequest>

</soapenv:Body>
</soapenv:Envelope>

Response to a request via SOAP Web Services
The response to a request via SOAPWeb Services is as follows:

<SOAP-ENV:Envelope xmlns:SOAP
-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<TerminateChangeResponse message="Success" returnCode="0"

schemaRevisionDate="2008-05-21" schemaRevisionLevel="5" status="SUCCESS"
xsi:schemaLocation="http://servicecenter.peregrine.com/PWS http://<sm
server>.americas.hpqcorp.net:13701/sc62server/ws/Change.xsd"
xmlns="http://servicecenter.peregrine.com/PWS"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<model>
<keys>

<ChangeNumber type="String">C10027</ChangeNumber>
</keys>
<instance recordid="C10027 - test"

uniquequery="header,number="C10027"">
<header type="Structure">

<ChangeNumber type="String">C10027</ChangeNumber>
<Category type="String">Release Management</Category>
<Status type="String">terminated</Status>
<ApprovalStatus type="String">approved</ApprovalStatus>
<RequestedBy type="String">ALSTON, LOU</RequestedBy>
<Coordinator type="String">CM 3</Coordinator>
<Reason type="String">problem</Reason>
<CurrentPhase type="String">Verification</CurrentPhase>

WebServices Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 45 of 179

<Priority type="String">1</Priority>
<DateEntered type="DateTime">2008-05-

27T16:34:26+00:00</DateEntered>
<Open type="Boolean">false</Open>
<BackoutDuration

type="Duration">P0DT0H0M0S</BackoutDuration>
<CloseTime type="DateTime">2008-05-

27T16:34:26+00:00</CloseTime>
<Company type="String">advantage</Company>
<BriefDescription type="String">test</BriefDescription>

</header>
<description.structure type="Structure">

<Description type="Array">
<Description type="String">test</Description>

</Description>
</description.structure>
<middle type="Structure">

<Location type="String">North America</Location>
<Misc2 type="String">pass</Misc2>
<MiscArray3 type="Array">

<MiscArray3 type="String">test passed</MiscArray3>
</MiscArray3>

</middle>
<close type="Structure">

<CompletionCode type="Decimal">1</CompletionCode>
<ClosingComments type="Array">

<ClosingComments type="String">Terminating
Change</ClosingComments>

</ClosingComments>
</close>
<Urgency type="String">1</Urgency>
<InitialAssessment type="String">1</InitialAssessment>

</instance>
</model>
<messages>

<cmn:message type="String">Audit Record successfully recorded
and added.</cmn:message>

<cmn:message type="String">Change C10027 Phase Verification
Closed by System Administrator.</cmn:message>

</messages>
</TerminateChangeResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>END

Execute a request via RESTful Web Services
Execute the following request via RESTful Web Services.

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 46 of 179

Note: The change numbermust be a change of the ReleaseManagement category.
ClosingComments andClosureCode are required fields for terminating a ReleaseManagement
change.

POST an action terminate to a change which is inEvaluation & Change Closure phase. The json
data resembles:

{ "TerminateChange": {
"close":{

"ClosingComments":"closureComments tested",
"ClosureCode":"1"

}
}

}

Response to a request via RESTful Web Services
The response to a request via RESTful Web Services resembles:

{
"Messages": [],
"ReturnCode": 0,
"TerminateChange": {

"Impact": "4",
"RequestedEndDate": "2007-10-23T21:06:00+00:00",
"Service": "Applications",
"Urgency": "1",
"close": {

"ClosingComments": ["closureComments tested"],
"ClosureCode": 1

},
"description.structure": {"Description": ["Check and clean system on

virusses."]},
"header": {

"ApprovalStatus": "approved",
"AssignmentGroup": "Application",
"BackoutDuration": "P0DT0H0M0S",
"Category": "Maintenance",
"ChangeCoordinator": "Change.Coordinator",
"ChangeID": "C10019",
"Company": "advantage",
"DateEntered": "2013-07-02T09:16:29+00:00",
"InitiatedBy": "BERRY, ELLIS",
"Open": true,
"Phase": "Evaluation & Change Closure",
"PlannedEnd": "2008-10-19T18:00:00+00:00",
"PlannedStart": "2008-10-12T18:00:00+00:00",
"Priority": "2",
"RiskAssessment": "5",

WebServices Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 47 of 179

"Status": "initial",
"Subcategory": "Maintenance",
"Title": "Multiple virusses"

},
"middle": {

"Assets": ["Norton Anti-Virus"],
"ConfigurationItem": "Norton Anti-Virus",
"Location": "North America"

}
}

}

Publish a table as a Web service
Youmust have the SysAdmin capability words to use this procedure.

1. Login to ServiceManager as a System Administrator.

2. Click Tailoring > Database Manager.

3. In the Table field, type extaccess.

4. Click Search.

5. In the Name field, select the name of the ServiceManager table or join file you want to publish as a
web service.

Important: Type the name of the table as it is defined in the database dictionary.

Note: Only valid ServiceManager table names appear in the list. This list includes the names of
tables that do not physically reside in the database, but are defined inmemory at run time based
on join definitions and relationship information in joindef and erddef records respectively.

6. In the Service Name field, type the name of theWeb service you want to use to publish this table.
You can reuse the sameweb service name to publishmultiple tables, as long the combination of
Service Name andObject Name is unique.

Important: Since this name becomes part of a URL, the namemust consist of alphanumeric
characters that are valid for URLs. The name cannot consist of URL reserved characters such as
spaces, slashes, or colons.

Note: The name you type in this field becomes the alias name for service and becomes part of the
Web service URL. For example, if you type IncidentManagement for the service name, then
SOAP applications must include IncidentManagement.wsdl in the URL to access this service.

7. In the Object Name field, type the name you want to use to identify this table.

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 48 of 179

Note: The name is unique and cannot be used by otherWeb Services definitions.

Note: The name you type in this field becomes the alias name for the table and becomes part of
theWeb serviceWSDL. For example, if you type Incident for the object name, then the SOAP
operations for this table include Incident as part of theWSDL element (such as RetrieveIncident,
CreateIncident, and ResolveIncident).

Important: Since this name becomes part of theWSDL, the namemust consist of alphanumeric
characters valid for XML. The name cannot consist of XML reserved characters such as brackets
(< & >), colons (:), or quotationmarks (" & ’).

8. In the Allowed Actions array, select the ServiceManager Document Engine display actions you
want to globally enable for this table.

Note: Each table has its own set of display actions allowed as defined in the ServiceManager
Document Engine. Enabling or disabling the display actions from this field only determines
whether the display action is available through theWeb Services API. ServiceManager still
validates the operator credentials supplied with eachWeb service request to ensure that the
operator has sufficient privileges to perform the display action. Click the array field to see a list of
allowable display actions for the table you select.

Note: If a join file is chosen, the allowed actions for the join file come from the primary table of the
join.

9. In the Action Names field, type the name you want to use in theWeb Services API to identify the
Document Engine display actions for this table.

Note: The name you type for this field becomes the alias name for the display action and becomes
part of theWeb serviceWSDL. For example, if you type Create for the add action of the Incident
object, then theWSDL operation becomes CreateIncident and theWSDLmessages are
CreateIncidentRequest and CreateIncidentResponse.

Important: Since this name becomes part of theWSDL, the namemust consist of alphanumeric
characters valid for XML. The name cannot consist of XML reserved characters such as brackets
(< & >), colons (:), or quotationmarks (" & ’).

10. If you want to use RESTful API, you need to configure RESTful tab field too. Type the name of
Resource Collection and Resource you want to use, and set the Unique Key and default actions.

11. Click Add.

Users can now access this ServiceManager table from a custom or third-party Web Service client and
use the actions you have enabled.

Expose a table with more than oneWeb service
User role: System Administrator

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 49 of 179

An implementer can definemultipleWeb service definition records with different names for a given
table or join file, and have different fields and actions exposed for each.

1. Click Tailoring > Web Services > Web Service Configuration Utility.

2. In the Table field, type extaccess, and then click Search. The External Access Definition form
opens.

3. In the Name field, select or type the name of the table or join file for which you want to create a
copy of the extaccess record, and then click Search. The record opens.

4. Change the Service Name to the name of the web service you want to use to publish the Service
Manager table.

Important Note: The combination of Service Name andObject Namemust be unique to this
record. The combination cannot exist anywhere else in the system.

5. Change theObject Name to the name you want to use to identify the ServiceManager table in the
Web Services API.

6. On the Fields tab, change the fields that are exposed andmodify the Caption and Type
information, if necessary.

Note: If a join file is chosen, the Fields tab lists all the fields for all the files in that join file.

7. On the Allowed Actions tab, change the actions, if necessary.

8. On the Expressions tab, add expressions, if necessary.

9. On the RESTful tab, add RESTful API configurations, if necessary.

10. Click Add.

The new extaccess record is added to the system. When you view the exposedObject (for example,
WSDL for SOAP) for both web services, they should display with the applicable actions and fields, as
defined in each extaccess record.

Remove a Document Engine display action from a
Web service
Youmust have the SysAdmin capability word to use this procedure.

The ServiceManagerWeb Services Configuration Utility allows you to remove any Document Engine
display action you published as part of aWeb service.

1. Click Tailoring > Web Services > Web Service Configuration.

2. In Service Name, type the name of the service.

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 50 of 179

3. In the Name field, type the name of the ServiceManager table whose display actions you want to
remove.

4. From the Allowed Actions array, select the Document Engine display action you want to remove
from the list.

5. Clear the Allowed Actions field with the Backspace key.

6. Click Save.

Remove a Service Manager field from aWeb service
Youmust have the SysAdmin capability words to use this procedure.

1. Click Tailoring > Web Services > Web Service Configuration Utility.

2. In the Table field, type extaccess and click Search. The External Access Definition record opens.

3. In the Name field, select the name of the ServiceManager table in which you want to remove
fields.

4. Click Search. TheWeb Services record for that table opens.

5. On the Fields tab, find the fields you want to remove andmake the value that is currently there
NULL.

6. In the Caption column, make the value NULL for the field you want to remove.

7. In the Type column, make the value NULL for the field you want to remove.

8. Click Save.

Sample client for SOAP Web Services SM7 URL
The HP ServiceManager server includes a sampleWeb Services client application for the
http://servername:port_number/SM/7/service_name.wsdl. The sample application was
created for Apache™Axis2 (version 2.1.4). If you have Axis 2.1.4 and Apache™Ant installed, you can
review and update the source code of the sample application as well as generate updated proxy code to
test the ServiceManagerWeb Services functionality. The Apache Axis2 sample is written in Java. The
sample client application is included with the server installation in the following folder:

<Service Manager server installation folder>

\webservices\sample\sm7webservice

The sample includes the source code for the client applications as well as support files for theWeb
Services development environment. The Apache Axis2 jar files are included and they are located under

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 51 of 179

the "lib" folder. A set of the batch files that you can use to run each class are located under the "bin"
folder and you can run each class from theWindows command prompt after you have compiled the
sample Java. You can use the sample application as an example of how to create your own custom
Web Services client applications.

Note: All the sample applications use a command line interface. To see the usage information for the
command line interface, change to "bin" folder, type xxxSamplewhere xxxSample is the batch file
name of the sample application.

The Apache Axis2 sample client application assumes that you have a ServiceManager server instance
running from the local host. If this is not the case, you can change the server host name and port
number using the sample's command line interface.

Each of the sample folders includes a readme file that contains valuable information about using the
sample application found in each of the sample folder.

The sample client application contains examples of how to send theMTOM attachments to the Service
Manager server.

Configuration Management sample

The sample client applications contain the following classes for ConfigurationManagement. Refer to
the sample application source code for comments on the usage of each class.

Field Description

ConfigurationManagementServiceUtility l Provides the CreateServicemethod to initialize an
object for the service.

l Provides the InitServiceAuthenticationmethod to
send the host name, communications port, operator
name, and operator password with each SOAP
request.

CreateContactSample Creates a contact record with the supplied parameters.

DeleteContactSample Deletes the contact record listed in the supplied
parameters.

RetrieveContactSample Retrieves a single contact recordmatching the supplied
parameters.

UpdateContactSample Updates a contact record with the supplied parameters.

Incident Management sample

The sample client applications contain the following classes for Incident Management. Refer to the
sample application source code for comments on the usage of each class.

Class Description

CloseIncidentSample Closes an incident record with the supplied parameters.

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 52 of 179

Class Description

CreateIncidentSample Creates an incident record with the supplied parameters.

IncidentManagementServiceUtility l Provides the CreateServicemethod to initialize an object
for the service.

l Provides the InitServiceAuthenticationmethod to send the
host name, communications port, operator name, and
operator password with each SOAP request.

ResolveIncidentSample Resolves an incident recordmatching the supplied parameters.

RetrieveIncidentListSample Retrieves multiple incident records matching the supplied
parameters.

RetrieveIncidentSample Retrieves a single incident recordmatching the supplied
parameters.

UpdateIncidentSample Updates an incident record with the supplied parameters.

Command line arguments for the Axis2 sample
application
The Axis2 sample application runs from the command prompt using Java. After you have compiled the
Axis2 sample into an executable class files, you can perform configuration and incident management
tasks with the following arguments.

Note: To see the usage information for the Axis2 sample application, type: ClassNamewhere
ClassName is the name of a sample application class.

Configuration Management

The following commands invoke ConfigurationManagement functionality. These examples assume
you are using the batch files provided with the Axis2 sample application to automatically set the class
path and call the proper executable class.

Operation Command-line example

Create
contact

CreateContactSample -name "FALCON, MERLINE2" -fullname "MERLINE2
FALCON"

Delete
contact

DeleteContactSample DeleteContactSample -name "FALCON, MERLINE2"

Retrieve
contact

RetrieveContactSample RetrieveContactSample -name "FALCON, MERLINE2"

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 53 of 179

Operation Command-line example

Update
Contact

UpdateContactSample UpdateContactSample -name "FALCON, MERLINE2" -email
"fmerline2@hp.com"

Incident Management

The following commands invoke Incident Management functionality. These examples assume you are
using the batch files provided with the Axis2 sample application to automatically set the class path and
call the proper executable class.

Operation Command-line example

Close
incident

CloseIncidentSample -incidentId IM10001 -closeCode "User Closer" -resolution
"Problem disappeared"

Create
incident

CreateIncidentSample -briefDescription "Java sample brief description" -category
incident -incidentDescription "This is a description" -severity 1 -subCategory hardware
-productType "missing or stolen" -initialImpact 1 -service Applications -
primaryAssignmentGroup Networks

Create
incident
with
attachment
(s)

CreateIncidentSample -briefDescription "Java sample brief description" -category
incident -incidentDescription "This is a description" -severity 1 -subCategory hardware
-productType "missing or stolen" -initialImpact 1 -service Applications -
primaryAssignmentGroup Network -attachment 101.jpg:README.txt

Resolve
incident

ResolveIncidentSample -incidentId IM10006 -resolution "Problem disappeared"

Retrieve
incident list

RetrieveIncidentListSample -incidentId IM10001:IM10002

Retrieve
incident

RetrieveIncidentSample -incidentId IM1001

Update
incident

UpdateIncidentSample -incidentId IM10006 -journalUpdates "User providedmore
information"

The CreateIncicentSample and UpdateIncidentSample classes can sendMTOM attachments to
ServiceManager server. The command line argument is -attachment file_01:file_02. You can send
more than one attachment to ServiceManager server. Be sure to place the attachments in the <SM_
installation_
directory>\webservices\sample\sm7webservices\Axis2Sample\bin\resources
directory.

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 54 of 179

Add an external access action to theWeb Services
Youmust have the SysAdmin capability words to use this procedure.

1. Click Tailoring > Web Services > External Access Actions. ServiceManager displays the
External Access Actions form.

2. In External Action ID, type a unique ID name.

3. In RAD/ScriptLibrary.function, type the name of the RAD or JavaScript function you want to make
available as a custom action in theWeb Services API.

Note: To specify a script from the Script Library, use the following format:
<script name>.<function name>
For example, Approval.buildAllStatus.

4. In Type, select RAD to if your custom action is a RAD function or select JavaScript if your custom
action is a JavaScript.

5. In Description, type the name you want custom action to have.

Note: ServiceManager displays the name you type here as the Custom Action to Perform in the
External Access Defintion form.

The type you select determines what Parameters array ServiceManager displays. If you select
RAD, ServiceManager displays an array with Parameter Names and Parameter Values fields. If
you select JavaScript, ServiceManager displays an array with only the Parameter Values field.

6. Type any required input parameters of the RAD function or JavaScript in the parameters array.

RAD functions require values in both the Parameter Names and Parameter Values fields. Each
RAD function has its own list of required RAD parameters names. RAD parameter values are
typically system variables such as $L.file or$L.exit. You can type RAD function parameters in any
order.

JavaScript parameters only require the Parameter Values field, but require you to type them in the
same order as the JavaScript function expects them. For example, the buildAllStatus function of
the Approval script expects the following parameters in the following order:
a. record

b. fApprovalDef

c. keepRoleOld

d. keepRoleNew

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 55 of 179

e. tokens

f. tokenToDescription

7. Click Add to create your customWeb Services action.

Web Services Guide
Publishing ServiceManager data usingWS API

HP ServiceManager (9.34) Page 56 of 179

SOAP API
This chapter introduces the SOAP API used in ServiceManager.

Web Services Description Language (WSDL)
TheW3C describes WSDL in theW3C Note 15March 2001 as "WSDL is an XML format for describing
network services as a set of endpoints operating onmessages containing either document-oriented or
procedure-oriented information. The operations andmessages are described abstractly, and then
bound to a concrete network protocol andmessage format to define an endpoint. Related concrete
endpoints are combined into abstract endpoints (services). WSDL is extensible to allow description of
endpoints and their messages regardless of what message formats or network protocols are used to
communicate, however, the only bindings described in this document describe how to useWSDL in
conjunction with SOAP 1.1, HTTP GET/POST, andMIME." In other words, theWSDL defines a URL
endpoint that publishes objects andmethods usable against the publishing application. These objects
andmethods can then be used to communicate to that application.

Basic operations in WSDL files
EachWeb Service that HP ServiceManager publishes has a set of valid operations that an
administrator can enable or disable for customWeb Services clients. The list of validWeb Service
operations comes from two sources:

l The Document Engine display actions defined for each ServiceManager table

l The common operations available to all Web Services

The <Operation Name> is the alias name of the ServiceManager display option as defined in the
Web Services Configuration Utility. The <Object Name> is the alias name of the ServiceManager
table as published in theWeb Service. Use a Request message to send SOAP operations to the
ServiceManager server. The ServiceManager server uses a Responsemessage to send its reply to
the SOAP operation.

You can see the list of available Document Engine display actions for each table in the extaccess
table. The ServiceManager server converts each published display action into a separate
<operation> element in theWeb Services Definition Language (WSDL).

For example, the Resolve operation for the Incident object translates to the ResolveIncidentRequest
SOAP message. The ServiceManager server replies with a ResolveIncidentResponse SOAP
message. Any customWeb Services client you createmust be able to generate these SOAP message
requests and understand the SOAP message response.

In addition to application-specific display actions, there are common operations available to all Service
ManagerWeb Services objects. Just as with display options, the ServiceManager server converts

HP ServiceManager (9.34) Page 57 of 179

each common operation into a separate <operation> element in theWeb Services Definition
Language (WSDL). The following commonmessages are always available.

l Retrieve<Object>Request – retrieves a single record detail matching the value of the <keys>
element or query attribute, for example an Incident record.

l Retrieve<Object>KeysList – retrieves a list of keys matching the value of query attribute.

l Retrieve<Object>List – retrieves a list of objects matching the value of query attribute.

The following commonmessages but are not always available.

l Update<Object>Request – updates a single recordmatching the value of the <keys> element or
query attribute with the new values defined in the <instance> element

l Delete<Object>Request * – deletes a single recordmatching the value of the <keys> element

l Create<Object>Request – adds a single record with the values defined in the <instance>
element

* The IncidentManagement Web Service does not offer the delete operation. To retrieve a single
incident record, you can use the RetrieveIncident operation.

For more information about Web Services andWSDL, see theW3C Web site.

Service Manager WSDL files
You can view theWeb Services Description Language (WSDL) for any ServiceManagerWeb Service
by navigating to one of the following URLs:

Version URL Supports

Backwards compatibility
for
HP ServiceCenter 6.2
servlet mode

http://<servername>:<port_
number>/sc62server/PWS/<service_name>.wsdl

MIME
attachments

ServiceManager http://<servername>:<port_number>/SM/7/<service_
name>.wsdl

MTOM
attachments

For example, type http://myserver:13080/SM/7/IncidentManagement.wsdl to view the
Incident Management serviceWSDL frommyserver.

The server also responds to requests with ?WSDL as the file extension. For example,
http://myserver:13080/SM/7/IncidentManagement?wsdl

The ServiceManager server automatically generates aWSDLwhenever it receives an HTTP get
request forWSDL. ServiceManagerWSDLs use XMLSchema definitions to describe literal Web
Services. ServiceManager is able to serve two different versions of theWSDL for a given service:

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 58 of 179

l HP ServiceCenter 6.2WSDL files for backwards compatibility. The API described in theseWSDL
files is deprecated. See the HP ServiceCenter 6.2 documentation for more information.

l ServiceManagerWSDL . New applications should use this WSDL.

Note: To avoid receiving the "Invalid XML schema: Element <xs:import> is not allowed at this location
under element <xs:schema>" error when viewing any multiple object WSDL (for example,
ConfigurationManagement.wsdl), disable the validation in the SOAP tool you are using before loading
theWSDL and creating aWeb Service request.

The XML document which describes a particular ServiceManager record (such as a Change or
Incident) is wrapped in an outer document called a "model". Themodel is nothingmore than a container
for separating the actual data (the “instance” part) from the "keys" part, which is metadata about the
fields that make up the primary key of the object.

Types of Web Services in Service Manager
The types of Web Services supported by ServiceManager are as follows:

l ServiceManager 7.x URL supporting theW3C Message Transmission OptimizationMechanism
(MTOM) attachments, which is amethod of efficiently sending binary data to and fromWeb
Services. MTOM is usually used with XML-binary Optimized Packaging (XOP).

http://<SM Server>:<SM port>/SM/7/<service name>.wsdl

Note: AXIS2 supports MTOM.

l ServiceManager 7.x URL supportingMultipurpose Internet Mail Extensions (MIME), which is an
Internet standard that extends the format of email to support MIME attachments. MIME's use has
grown beyond describing the content of email to describing content type in general, including for the
Web.

http://<SM Server>:<SM port>/sc62server/PWS/<service name>.wsdl

Which URL to use depends on the consumer side. You also need to consider whether it supports
MTOM orMIME. For example, Microsoft applications tend to support MIME.

WSDL document structure
AWSDL document is simply a set of definitions. There is a definitions element at the root and
definitions inside. A WSDL document defines services as collections of network endpoints or ports. In
aWSDL document, the abstract definition of endpoints andmessages is separated from their concrete
network deployment or data format bindings. This allows the reuse of abstract definitions:messages,
which are abstract descriptions of the data being exchanged, and port typeswhich are abstract
collections of operations. The concrete protocol and data format specifications for a particular port

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 59 of 179

type constitutes a reusable binding. A port is defined by associating a network address with a
reusable binding. A collection of ports defines a service.

A WSDL document uses the following elements in the definition of network services:

l Types– a container for data type definitions using some type system (such as XSD).

l Message– an abstract, typed definition of the data being communicated.

l Operation– an abstract description of an action supported by the service.

l Port Type–an abstract set of operations supported by one or more endpoints.

l Binding– a concrete protocol and data format specification for a particular port type.

l Port– a single endpoint defined as a combination of a binding and a network address.

l Service– a collection of related endpoints.

XML header

The XML header specifies the XML version number, and optionally the character encodings, as part of
a grammar document's XML declaration on the first line of the document.

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

Namespace definitions

XML namespaces are used for providing uniquely named elements and attributes in an XML document

The following section of the ServiceManager IncidentManagement wsdl shows the namespace
definitions.

- <definitions targetNamespace="http://servicecenter.peregrine.com/PWS"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:ns="http://servicecenter.peregrine.com/PWS"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.xmlsoap.org/wsdl/

http://schemas.xmlsoap.org/wsdl/">

Operation section

The following section of the example ServiceManager IncidentManagement wsdl shows the operation
section used to define each individual action supported by the service.

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 60 of 179

http://en.wikipedia.org/wiki/XML

- <operation name="RetrieveIncident">
<documentation />
<input message="ns:RetrieveIncidentRequest" />
<output message="ns:RetrieveIncidentResponse" />
</operation>
</portType>

Messages section

The following section of the example ServiceManager IncidentManagement wsdl shows the
messages section used to define the data being communicated.

- <message name="RetrieveIncidentRequest">
<part element="ns:RetrieveIncidentRequest"
name="RetrieveIncidentRequest" />

</message>
- <message name="RetrieveIncidentResponse">

<part element="ns:RetrieveIncidentResponse"
name="RetrieveIncidentResponse" />

</message>
</message>

Types section

The following section of the example ServiceManager IncidentManagement wsdl shows the definition
of the data, including data types, that is being communicated between the consumer and Service
Manager.

- <types>
- <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="http://servicecenter.peregrine.com/PWS"
version="2007-04-14 Rev 1"

xmlns="http://servicecenter.peregrine.com/PWS"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common">

<xs:import namespace="http://servicecenter.peregrine.com/PWS/Common"
schemaLocation="http://server:13080/sc62server/PWS/Common.xsd" />

- <xs:complexType name="IncidentKeysType">
- <xs:sequence>

<xs:element minOccurs="0" name="IncidentID" nillable="true"
type="cmn:StringType" />
</xs:sequence>
<xs:attribute name="query" type="xs:string" use="optional" />
</xs:complexType>

- <xs:complexType name="IncidentInstanceType">
- <xs:sequence>

<xs:element minOccurs="0" name="IncidentID" nillable="true"
type="cmn:StringType" />

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 61 of 179

- <xs:element minOccurs="0" name="IncidentDescription">
- <xs:complexType>
- <xs:complexContent>
- <xs:extension base="cmn:ArrayType">
- <xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0"
name="IncidentDescription" type="cmn:StringType" />

</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

- <xs:complexType name="IncidentModelType">
- <xs:sequence>

<xs:element name="keys" type="IncidentKeysType" />
<xs:element name="instance" type="IncidentInstanceType" />
<xs:element minOccurs="0" name="messages" type="cmn:MessagesType" />
</xs:sequence>
<xs:attribute name="query" type="xs:string" use="optional" />
</xs:complexType>

- <xs:element name="RetrieveIncidentRequest">
- <xs:complexType>
- <xs:sequence>

<xs:element name="model" type="IncidentModelType" />
</xs:sequence>
<xs:attribute name="attachmentInfo" type="xs:boolean" use="optional" />
<xs:attribute name="attachmentData" type="xs:boolean" use="optional" />
<xs:attribute default="true" name="ignoreEmptyElements" type="xs:boolean"

use="optional" />
</xs:complexType>
</xs:element>

- <xs:element name="RetrieveIncidentResponse">
- <xs:complexType>
- <xs:sequence>

<xs:element name="model" type="IncidentModelType" />
<xs:element minOccurs="0" name="messages" type="cmn:MessagesType" />
</xs:sequence>
<xs:attribute name="status" type="cmn:StatusType" use="required" />
<xs:attribute name="message" type="xs:string" use="required" />
<xs:attribute name="schemaRevisionDate" type="xs:date" use="required" />
<xs:attribute name="schemaRevisionLevel" type="xs:int" use="required" />
<xs:attribute name="returnCode" type="xs:decimal" use="optional" />
<xs:attribute name="query" type="xs:string" use="optional" />
</xs:complexType>
</xs:element>
</types>

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 62 of 179

Nillable attribute

The nillable attribute specifies whether or not an explicit NULL value can be assigned to the element.
True enables an instance of the element to have the NULL attribute set to true. The NULL attribute is
defined as part of the XMLSchema namespace for instances. The default is false. This attribute is
optional.

The nillable attribute is analogous to the SQL concept of NULL and is useful for dealing with the
ambiguity that may otherwise surround an empty XML element value. With SQL there is a difference
between a NULL value and a column containing a varchar of length zero. Similarly, in an XML schema
there is a difference between an XML element containing no text value and one which is explicitly
marked with xsi:nil=”true”.

Unless the XML schema indicates that an XML element is nillable, you cannot specify the nillable
attribute for the element.

The following sample code with the nillable attribute can be found in the schema definition section:

<xs:element minOccurs="0" name="IncidentID" nillable="true"
type="cmn:StringType" />

Port type

The port defines the connection point to aWeb Service. The follow section of the example Service
Manager IncidentManagement WSDL shows the port type section, which includes the set of
operations allowed by the endpoint.

- <portType name="IncidentManagement">

Binding section

The following section of the example ServiceManager IncidentManagement WSDL shows the binding
section used to define a protocol and defined data formats for a particular port type.

- <binding name="IncidentManagement" type="ns:IncidentManagement">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />

- <operation name="RetrieveIncident">
<soap:operation soapAction="Retrieve" style="document" />

- <input>
<soap:body use="literal" />
</input>

- <output>
<soap:body use="literal" />
</output>
</operation>

- <operation name="RetrieveIncidentKeysList">
<soap:operation soapAction="RetrieveKeysList" style="document" />

- <input>

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 63 of 179

<soap:body use="literal" />
</input>

- <output>
<soap:body use="literal" />
</output>
</operation>
</binding>

Service section

The Service section describes one or more concrete endpoints where the functionality of the service
can be found.

The follow section of the example ServiceManager IncidentManagement WSDL shows the service
section, which is a collection of endpoints (In this example, just IncidentManagement).

- <service name="IncidentManagement">

Port section

The following section of the example ServiceManager IncidentManagement WSDL shows the port
section, which is a single endpoint defined as a combination of a binding and a network address.

- <port binding="ns:IncidentManagement" name="IncidentManagement">
<soap:address location="http://server:13080/sc62server/ws" />
</port>
</service>
</definitions>

Change example to use the cookie
To change the Keep-Alive example to use the cookie you canmodify the followingmethods.

Themethod createService () in IncidentManagementServiceUtility.java file:

public static IncidentManagementStub createService(Map arguments)
throws Exception

{
String host = (String) arguments.get(ARGUMENT_HOST);
String port = (String) arguments.get(ARGUMENT_PORT);
String address = "http://" + host + ":" + port + "/SM/7/ws";
IncidentManagementStub stub = new IncidentManagementStub(address);

stub._getServiceClient().getOptions().setManageSession(true);
stub._getServiceClient().getOptions().setProperty

(HTTPConstants.REUSE_HTTP_CLIENT,true);
// set connection: close
//Header hdr = new Header(HTTPConstants.HEADER_CONNECTION,

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 64 of 179

HTTPConstants.HEADER_CONNECTION_CLOSE);
//ArrayList<Header> headers = new ArrayList<Header>();
//headers.add(hdr);
//stub._getServiceClient().getOptions().setProperty

(HTTPConstants.HTTP_HEADERS, headers);
stub._getServiceClient().getOptions().setProperty

(Constants.Configuration.ENABLE_MTOM,
Constants.VALUE_TRUE);

ServiceUtility.initServiceAuthentication(stub, arguments);

return stub;
}

Themethod createIncidents() in CreateIncidentSample.java file:

public void createIncidents() throws Exception, IOException
{

/* Open a port to the Incident Management Web Service */
IncidentManagementStub stub =

IncidentManagementServiceUtility.createService(arguments);
int totalIM = 10;

/* Create details about the new incident */
for (int i = 1; i <= totalIM; i++)
{

if (i == totalIM)
{

// close the connection if this is the last request
Header hdr = new Header(HTTPConstants.HEADER_CONNECTION,

HTTPConstants.HEADER_CONNECTION_CLOSE);
ArrayList<Header> headers = new ArrayList<Header>();
headers.add(hdr);
stub._getServiceClient().getOptions().setProperty

(HTTPConstants.HTTP_HEADERS, headers);
}

createIncident(stub);
}

return;
}

The client is responsible for echoing back this value in a Cookie header in all subsequent POST
requests. If the client fails to do this, the servlet container will quickly run out of sessions.

If a client request causes any ServiceManager Server error or exception then this session will be
terminated by the ServiceManager Server. Once this happens the current JSESSIONID becomes
invalid and a new JSESSIONID will be returned on the following client request. The SOAP client
should echo back the new JSESSIONID for the subsequent requests to avoid the user login/logout
overhead and dangling sessions saturation.

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 65 of 179

Verify the WSDL to JS output
Generated JavaScript must end with

// Ensure that material in lib.SOAP is available

lib.SOAP.init();

/// End ----------------

All defined types and operations must be represented by a function such as

this.SOAPOperations["UpdateIncident"] = new soap_Operation("UpdateIncident",
"Update", "document", "UpdateIncidentRequest", "UpdateIncidentResponse");

function UpdateIncidentRequest()

Or -

this.ProductType= new StringType();

•functionStringType(val)

If any of these definitions aremissing, report this to customer support with an unload of the generated
JavaScript, theWSDL in text format, and all imported xsd files.

Example using Keep-Alive with .Net Web Services Studio
To use Keep-Alive with .Net Web Services Studio, perform the following actions.

First set the following:
l set "AllowWriteStreamBuffering" to True

l set "BasicAuthUsername" to falcon

l set "KeepAlive" to True

l set "UserCookieContainer" to True

Execute a RetrieveIncident action and search for the incident with the number IM1001.
l When you click Send, the "Set-Cookie" and "Connection" headers can be seen in the response
window.

l Click Send again, only the "Connection" header can be seen in the response.

In the sm.log, these two requests (one per send) will belong to one session, meaning they have the
same Process ID (Thread ID) combination.

2052(6096) 05/05/2008 15:30:31 RTE I Using "utalloc" memory manager
2052(6096) 05/05/2008 15:30:31 RTE I Process sm 7.01.048

System: 13080 (0x784dfb00) on PC running Windows

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 66 of 179

XP Professional (5.1 Build 2600) from server (127.0.0.1)
2052(6096) 05/05/2008 15:30:31 RTE I Connected to SOAP client

at 127.0.0.1
2052(6096) 05/05/2008 15:30:31

RTE I Attaching to resources with key 0x784dfb00
2052(6096) 05/05/2008 15:30:31

RTE I Info: SQL State: 01000-5701
Message: [Microsoft][SQL Native Client][SQL Server]Changed database
context to 'sm701'.

2052(6096) 05/05/2008 15:30:31 RTE I Info: SQL State: 01000-5703
Message: [Microsoft][SQL Native Client][SQL Server]Changed language setting
to us_english.

2052(6096) 05/05/2008 15:30:31 RTE I sqmssqlExec info statement= SQL CONNECT
2052(6096) 05/05/2008 15:30:31 RTE I Connection established to

dbtype 'sqlserver' database 'sm701' user 'sm7'
2052(6096) 05/05/2008 15:30:31 RTE I Connected to Data source

'sm701' SQL server 'server\SQLEXPRESS' version: 9.0.3042
Using database 'sm701' as user 'sm7'

2052(6096) 05/05/2008 15:30:31 RTE I MS SQL Server collation
'Latin1_General_BIN', varchar codepage 1252, comparison 0:
case sensitive, accent sensitive

2052(6096) 05/05/2008 15:30:31 RTE I Thread
912DAAD51D1B0A53B251147F6665B7EE initialization done.

First execution of .Net Web Services Studio

The following code shows an example of the first execution of code when using Keep-Alive with .Net
Web Services Studio.

2052(6096) 05/05/2008 15:30:31 RTE D Parsing request document:
<?xml version="1.0" encoding="utf-8"?><soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soap:Body>
<RetrieveIncidentRequest

xmlns="http://servicecenter.peregrine.com/PWS">
<model query="">

<keys query="">
<IncidentID/>

</keys>
<instance query="" recordid="" uniquequery="">

<IncidentID>IM1001</IncidentID>
</instance>
<messages>

<message xmlns="http://sc62server/PWS/Common"
module=""/>

</messages>
</model>

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 67 of 179

</RetrieveIncidentRequest>
</soap:Body>

</soap:Envelope>
2052(6096) 05/05/2008 15:30:31 RTE D Done parsing request document
2052(6096) 05/05/2008 15:30:31 RTE D doCardinalOperation entered for

SOA Mode 2 operation 1 - Retrieve
2052(6096) 05/05/2008 15:30:31 RTE D Calling loginAuthenticate

with user=falcon and password=########
2052(6096) 05/05/2008 15:30:31 RTE D Authentication succeeded
2052(6096) 05/05/2008 15:30:31 RTE D Calling agend()
2052(6096) 05/05/2008 15:30:31 RTE D Calling agstart()
2052(6096) 05/05/2008 15:30:31 RTE D Calling login with user=falcon

and password=########
2052(6096) 05/05/2008 15:30:32 RTE I User falcon logged in.

Already licensed
2052(6096) 05/05/2008 15:30:32 RTE D Login succeeded
2052(6096) 05/05/2008 15:30:32 RTE D Setting uname to falcon
2052(6096) 05/05/2008 15:30:32 RTE D Operation will be carried out on

file probsummary
2052(6096) 05/05/2008 15:30:32 RTE D doQuery using query string

number="IM1001"
2052(6096) 05/05/2008 15:30:33 RTE D doGet query returned 1
2052(6096) 05/05/2008 15:30:33 RTE D SOA revision time is 2005-03-15
2052(6096) 05/05/2008 15:30:33 RTE D SOA revision level is 0

Second execution of .Net Web Services Studio

The following code shows an example of the second execution of code when using Keep-Alive with
.Net Web Services Studio.

2052(6096) 05/05/2008 15:33:40 RTE D Parsing request document:
<?xml version="1.0" encoding="utf-8"?><soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soap:Body>
<RetrieveIncidentRequest

xmlns="http://servicecenter.peregrine.com/PWS">
<model query="">

<keys query="">
<IncidentID/>

</keys>
<instance query="" recordid="" uniquequery="">

<IncidentID>IM1001</IncidentID>
</instance>
<messages>

<message xmlns="http://servicecenter.peregrine.com/PWS/Common"
module=""/>

</messages>

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 68 of 179

</model>
</RetrieveIncidentRequest>

</soap:Body>
</soap:Envelope>

2052(6096) 05/05/2008 15:33:40 RTE D Done parsing request document
2052(6096) 05/05/2008 15:33:40 RTE D doCardinalOperation entered for

SOA Mode 2 operation 1 - Retrieve
2052(6096) 05/05/2008 15:33:40 RTE D User falcon is already logged

in for this process - skipping login processing
2052(6096) 05/05/2008 15:33:40 RTE D Operation will be carried out

on file probsummary
2052(6096) 05/05/2008 15:33:40 RTE D doQuery using query string

number="IM1001"
2052(6096) 05/05/2008 15:33:40 RTE D doGet query returned 1
2052(6096) 05/05/2008 15:33:41 RTE D SOA revision time is 2005-03-15
2052(6096) 05/05/2008 15:33:41 RTE D SOA revision level is 0

Consuming a Service Manager Web Service
A ServiceManagerWeb service can be consumed by a custom client or by an application that directly
consumes Web Services, such as ServiceManager or Connect-It.

General Information

AWeb Service development tool kit that can generate a completeWeb service application from a
.wsdl file is required to create a custom client that can access the ServiceManagerWeb service. A
good understanding of Web Services and SOAP versions 1.1 or 1.2 is also recommended.

Note:ServiceManager users and application designers can choose any third-party Web Services
development tool kit. However, ServiceManager publishes only theWSDL files for theWeb Service.
Troubleshooting the client application is the responsibility of the application developer, and outside the
scope of ServiceManager Customer Support.

Use the steps below as a guide to create your customWeb Service client.

1. Publish the ServiceManager tables that you want your client to access. You can use the Service
ManagerWeb Services out-of-the-box or customize the extaccess records tomeet your needs.

2. Obtain aWeb Services client development tool that can create a completeWeb Service
application, such as Microsoft .NET or Apache Axis, or obtain a tool that generates a complete
Web Service application by evaluating the target WSDL file.

3. Browse to the URL of your ServiceManager server and download theWSDL files for the services
you want your custom clients to use. Use yourWeb Services client development tool to browse
theWSDL and determine which features you want your custom client to use. The URL of your
server must include the port and theWeb service name.
For example:
http://<ServiceManager server>:<httpPort (use a dedicated port, do not use loadBalancer port)

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 69 of 179

>/SM/7/PWS/IncidentManagement.wsdl connects to the ServiceManager server host on the
specified port and requests the IncidentManagement WSDL.

4. Use yourWeb Services client development tool to generate the programming language client code
(classes) that will invoke the ServiceManagerWeb services. Tools such as .NET wsdl.exe or Axis
wsdl2java generate client code that can be used to invoke the ServiceManagerWeb service from the
WSDL. Your customWeb Services client invokes the client code rather than theWSDL directly.

5. Write a client application in the appropriate language of your client development tool. For example,
.NET requires either Microsoft Visual C# or Visual Basic®, and Axis requires Java.

Dynamic and static Web Services clients
Tools such as Visual Studio or .NET allow for simple creation of Web Service clients from aWSDL.
These clients are static Web Service consumers and have to be rebuilt every time theWSDL changes.
To get around the tedious work of rebuilding the client code for every WSDL change (new fields, new
methods, new objects), you can create dynamic Web Services clients. These clients read theWSDL
each time they use it and dynamically refer to the objects andmethods within.

When an external client consumes ServiceManager data, the client code can be written for dynamic or
static WSDL consumption. When ServiceManager consumes external data, it uses static
consumption always.

What happens if an exposed table is changed?

TheWSDL for a service does not change automatically as a result of making tailoring changes such as
adding a new field to a table. Only if you include the new field in theWeb Services API by adding it to
the extaccess record will the new field be exposed.

If you change the caption (alias name) by which a field is exposed in aWeb Service, you are going to
have tomodify and recompile any SOAP client applications which reference this field. You can rename
the internal ServiceManager field names, even for fields which are exposed viaWeb Services, without
impacting deployedWeb Services, as long as you do not change the alias name by which the field is
known toWeb Services.

Finally, if you add a new field, make the new field a required field and you have previously deployed
Web Services applications which do not populate this field, youmust provide tailoring in the server to
generate a valid default value for the field when a value is not provided. Otherwise, inserts and updates
viaWeb Services will fail because the new field has not been populated when the record goes through
validation.

Updating Service Manager tables
By design, the ServiceManager server expects that the client application will specify only those fields
to be updated. It ignores missing or empty elements in the update request. If you specify a new value to

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 70 of 179

update a field and that field is an array, ensure that youmatch the number of new values for the array
elements to the number of existing array elements; otherwise, the number of elements in the array will
dynamically resize to contain only the new values.

You can code a global attribute on the request element called ignoreEmptyElements and set it to true or
false. If you specify ignoreEmptyElements=false, any missing or empty element in the update request
causes the named field to be cleared to null values.

If you want to clear a specific field, specify xsi:nil=true as an element attribute.

Requirements for developing custom Web Services clients
You can create customWeb Services clients to access the HP ServiceManagerWeb Services API. If
you choose to create a customWeb Services client, ensure that you review the statement of technical
support for customWeb Services clients, and that you have the following skills and tools:

l A good understanding of theW3C recommendation for SOAP version 1.1 or 1.2. ServiceManager
supports both versions, but recommends SOAP version 1.2.

l AWeb Service development tool kit that can generate a completeWeb service application from a
.wsdl file.

l Familiarity with the debughttp server parameter and the HTTP.LOG it generates.

Note: There are several Web services development tool kits that you can use to develop custom
Web Services clients, such as Microsoft Visual Studio .NET™, Systinet WASP™, Glue™, Apache
Axis™, or SunWeb Services Developer Pack™.

In order to support customWeb Services client connections to ServiceManager you need:

l An installed ServiceManager server instance (Your customWeb services clients can connect to
the normal server listener port)

l A list of the ServiceManager tables and actions you want to permit access to (you can grant or
deny access from the extaccess table)

Checklist: Creating a custom Web Services client
You can create customWeb Services client applications to connect and conduct transactions with the
HP ServiceManagerWeb service. Any custom clients you createmust be able to send and receive
from the ServiceManager server valid SOAP messages.

1. Publish the ServiceManager tables to which you want the custom client to connect as Web
Services. You can use ServiceManagerWeb Services API out-of-the-box, or customize theWeb
Services tomeet your business needs.

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 71 of 179

2. Obtain aWeb Services client development tool that can create a completeWeb service
application, such as Microsoft .NET™or Apache Axis™, or obtain a tool that generates a
completeWeb Service application by evaluating the target WSDL file, such as GotDotNet™
WebServiceStudio™.

3. Browse to the URL of your ServiceManager server and download theWSDL files for the services
you want your custom clients to use. Use yourWeb Services client development tool to browse
theWSDL and determine which features you want your custom client to use.

Note: The URL of your server must include the listener port and theWeb service name. For
example, http://smserver:13081/IncidentManagement.wsdl connects to the smserver host on port
13081 and requests the IncidentManagement WSDL.

Important: Do not use the Load Balancer listener port for all incomingWeb Services requests.
Instead, dedicate one or more ServiceManager server processes to serveWeb Services requests
by adding the "debugnode" parameter to the process you wish to dedicate to serveWeb Services
requests.

4. Use yourWeb Services client development tool to generate the programming language client code
that invokes the ServiceManagerWeb Services for the ServiceManagerWeb Services. Tools
such as .NET wsdl.exe or Axis wsdl2java can generate client code that can be used to invoke the
ServiceManagerWeb Service from theWSDL.

5. Write a client application in the appropriate language of your client development tool. For example,
.NET requires Microsoft C#™ or Visual Basic™; Axis requires Java.

Tip: The HP ServiceManager installation DVD contains source code for several sampleWeb
Services client applications you can use as templates for your own custom clients. The source
code includes Axis and .NET examples.

Note: There aremany Web Service application development tools available such as Microsoft
Visual Studio .NET™, Systinet WASP™, Glue™, Apache Axis™, or SunWeb Services
Developer Pack™. ServiceManager users and application designers can choose any third-party
tool with the understanding that HP publishes only theWSDL files for the web service.
Troubleshooting the client application is the responsibility of the application developer, and outside
the scope of ServiceManager Customer Support.

Technical support for customWeb Services clients

CustomWeb Services clients and any code or scripting that you add to interface with the HP Service
Manager products are outside the scope of the HP product suite and are not covered under
maintenance and support contracts. Ensure that you have full access to the appropriate resources to
assist you with training, debugging, andmaintaining any code that you add to your ServiceManager
environment.

HP provides a working example database and several sampleWeb Services clients that can help you
troubleshoot your custom clients and determine where errors occur.

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 72 of 179

Sample Web Services client for sc62server PWS URL
The HP ServiceManager server includes two sampleWeb Services client applications for the
http://servername:port_number/sc62server/PWS/service_name.wsdl. Onewas
created for Apache™Axis and the other for Microsoft™ Visual Studio .NET. If you have one of these
twoWeb Services development tools installed, you can review and update the source code of the
sample applications as well as generate updated proxy code to test the ServiceManagerWeb Services
functionality. The Apache Axis samples are written in Java while theMicrosoft .NET samples are
written in C#. The sample client applications are included with the server installation in the following
folders:

l <Service Manager server installation
folder>\webservices\sample\sc62webservices
n AxisSample

n DotNetSample

Each sample includes the source code for the client applications as well as support files for theWeb
Services development environment. The Apache Axis sample also includes a library of Axis jar files as
well as batch files that you can use to run each class from theWindows command prompt after you
have compiled the sample Java. You can use the sample applications as examples of how to create
your own customWeb Services client applications.

Note: All the sample applications use a command line interface. To see the usage information for the
command line interface, type: dotNetSample -example ClassNamewhere ClassName is the name
of the sample application class.

The Apache Axis sample client applications assume that you have a ServiceManager server instance
running from the local host. If this is not the case, you can change the server host name and port
number using the sample's command line interface.

TheMicrosoft .Net sample client applications assume that you have a ServiceManager server
instance running from the local host. If this is not the case, you can change the server host name and
port number using the sample's command line interface or from Visual Studio .NET's Web reference
URL.

Important: To use attachments with .Net samples, youmust install Microsoft Web Services
Enhancements (WSE) 2.0 SP2. Be sure to select the "Visual Studio Developer" option during
installation. If you addWSE2 after building the examples, youmust delete the old reference files
("reference.cs" and "reference.map"), update the web references, and then rebuild the sample
applications.

Each of the sample folders includes a readme file that contains valuable information about using the
sample application found in each of the sample folder.

Configuration Management sample

The sample client applications contain the following classes for ConfigurationManagement. Refer to
the sample application source code for comments on the usage of each class.

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 73 of 179

Field Description

ConfigurationManagementServiceUtility l Provides the CreateServicemethod to initialize an
object for the service.

l Provides the InitServiceAuthenticationmethod to
send the host name, communications port, operator
name, and operator password with each SOAP
request.

l Provides the InitServiceforAttachments method to
initialize the service to handleMIME attachments.

CreateContactSample Creates a contact record with the supplied parameters.

DeleteContactSample Deletes the contact record listed in the supplied
parameters.

RetrieveContactSample Retrieves a single contact recordmatching the supplied
parameters.

UpdateContactSample Updates a contact record with the supplied parameters.

Incident Management sample

The sample client applications contain the following classes for Incident Management. Refer to the
sample application source code for comments on the usage of each class.

Class Description

CloseIncidentSample Closes an incident record with the supplied parameters.

CreateIncidentSample Creates an incident record with the supplied parameters.

IncidentManagementServiceUtility l Provides the CreateServicemethod to initialize an object
for the service.

l Provides the InitServiceAuthenticationmethod to send the
host name, communications port, operator name, and
operator password with each SOAP request.

l Provides the InitServiceforAttachments method to initialize
the service to handleMIME attachments.

ResolveIncidentSample Resolves an incident recordmatching the supplied parameters.

RetrieveIncidentListSample Retrieves multiple incident records matching the supplied
parameters.

RetrieveIncidentSample Retrieves a single incident recordmatching the supplied
parameters.

UpdateIncidentSample Updates an incident record with the supplied parameters.

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 74 of 179

Command line arguments for the .NET samples
The .NET sample application runs from theWindows command prompt. After you have compiled the
.NET sample into an executable, you can perform configuration and incident management tasks with
the following arguments.

Note: To see the usage information for the .NET sample application, type: dotNetSample -example
ClassNamewhere ClassName is the name of a sample application class.

The following commands invoke ConfigurationManagement functionality.

Operation Command-line example

Create
contact

dotnetsample -example CreateContact -name sneveau -lastNameNeveau -firstName
Sophie -workPhone "(858) 481-5000" -extension 3573 -fullname "Sophie Neveau"

Delete
contact

dotNetSample -example DeleteContact -name sneveau -lastNameNeveau -firstName
Sophie

Retrieve
contact

dotNetSample -example RetrieveContact -name "FALCON, JENNIFER"

Update
Contact

dotNetSample -example UpdateContact -name "FALCON, JENNIFER" -workPhone "
(858) 481-5000" -extension 3573

The following commands invoke Incident Management functionality.

Operation Command-line example

Close
incident

dotNetSample -example CloseIncident -incidentId IM10001 -closeCode "User Closer" -
resolution "Problem disappeared"

Create
incident

dotNetSample -example CreateIncident -title ".NET sample brief description" -category
incident -problemType "not specified" -description ".NET sample incident" -severity 1 -
subCategory data -productType "storage limit exceeded" -initialImpact 1 -
primaryAssignmentGroup "Operating System Support (South America)" -service
"Printing (Africa)"

Resolve
incident

dotNetSample -example ResolveIncident -incidentId IM10006 -resolution "Problem
disappeared"

Retrieve
incident
list

dotNetSample -example RetrieveIncidentList -incidentId IM10001:IM10002

Retrieve
incident

dotNetSample -example RetrieveIncident -incidentId IM10001

Update
incident

dotNetSample -example UpdateIncident -incidentId IM10006 -journalUpdates "User
providedmore information"

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 75 of 179

Command line arguments for the Axis sample application
The Axis sample application runs from the command prompt using Java. After you have compiled the
Axis sample into an executable class file, you can perform configuration and incident management
tasks with the following arguments.

Note: To see the usage information for the Axis sample application, type: ClassNamewhere
ClassName is the name of a sample application class.

Configuration Management

The following commands invoke ConfigurationManagement functionality. These examples assume
you are using the batch files provided with the Axis sample application to automatically set the class
path and call the proper executable class.

Operation Command-line example

Create contact CreateContactSample -name sneveau -fullname "Sophie Neveau"

Delete contact DeleteContactSample -username falcon -name "sneveau"

Retrieve contact RetrieveContactSample -name "FALCON, JENNIFER"

Update Contact UpdateContactSample -name "FALCON, JENNIFER"

Incident Management

The following commands invoke Incident Management functionality. These examples assume you are
using the batch files provided with the Axis sample application to automatically set the class path and
call the proper executable class.

Operation Command-line example

Close
incident

CloseIncidentSample -incidentId IM10001 -closeCode "User Closer" -resolution
"Problem disappeared"

Create
incident

CreateIncidentSample -briefDescription "Java sample brief description" -category
incident -incidentDescription "This is a description" -severity 1 -subCategory hardware -
productType "missing or stolen" -initialImpact 1 -service Applications -
primaryAssignmentGroup Network

Resolve
incident

ResolveIncidentSample -incidentId IM10006 -resolution "Problem disappeared"

Retrieve
incident
list

RetrieveIncidentListSample -incidentId IM10001:IM10002

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 76 of 179

Operation Command-line example

Retrieve
incident

RetrieveIncidentSample -incidentId IM1001

Update
incident

UpdateIncidentSample -incidentId IM10006 -journalUpdates "User providedmore
information"

Using query syntax
As shown in the example above, ServiceManager supports queries using a special query syntax with
special characters such as # ("starts with"), or relational operators such as > or < preceding an actual
data value. WithWeb Services this syntax is available for string data as well. If the field is of a type
other than string (for example an integer or dateTime type) and you are using a strongly typed
programming language such as Java or C# to write your client code, you will not be able to leverage this
feature, since the special characters would not be acceptable data types for these fields. To generate
queries with this syntax on all types of fields, fill in the query=”xxx” section as shown below.

The request

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:pws="http://servicecenter.peregrine.com/PWS"
xmlns:com="http://servicecenter.peregrine.com/PWS/Common">

<soapenv:Header/>
<soapenv:Body>

<pws:RetrieveIncidentKeysListRequest attachmentInfo="?"
attachmentData="?" ignoreEmptyElements="true">

<pws:model query="">
<pws:keys query=" update.time>'05/01/08'">

<pws:IncidentID type="String" mandatory="?" readonly="?">
</pws:IncidentID>

</pws:keys>
<pws:instance query=" " uniquequery="?" recordid="?">

<pws:IncidentID type="String" mandatory="?" readonly="?">
</pws:IncidentID>
<pws:Category type="String" mandatory="?" readonly="?">
</pws:Category>
<pws:OpenTime type="DateTime" mandatory="?" readonly="?">
</pws:OpenTime>
<pws:OpenedBy type="String" mandatory="?" readonly="?">
</pws:OpenedBy>
<pws:severity type="String" mandatory="?" readonly="?">
</pws:severity>
<pws:UpdatedTime type="DateTime" mandatory="?"
readonly="?"></pws:UpdatedTime>

<pws:PrimaryAssignmentGroup type="String" mandatory="?"
readonly="?"></pws:PrimaryAssignmentGroup>

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 77 of 179

<pws:ClosedTime type="DateTime" mandatory="?"
readonly="?"></pws:ClosedTime>

<pws:ClosedBy type="String" mandatory="?" readonly="?">
</pws:ClosedBy>
<pws:ClosureCode type="String" mandatory="?" readonly="?">
</pws:ClosureCode>
<pws:ConfigurationItem type="String" mandatory="?"
readonly="?"></pws:ConfigurationItem>

<pws:Location type="String" mandatory="?" readonly="?">
</pws:Location>
<pws:IncidentDescription type="Array">

<pws:IncidentDescription type="String" mandatory="?"
readonly="?"></pws:IncidentDescription>

</pws:IncidentDescription>
<pws:Resolution type="Array">

<pws:Resolution type="String" mandatory="?"
readonly="?"></pws:Resolution>

</pws:Resolution>
<pws:AssigneeName type="String" mandatory="?" readonly="?">
</pws:AssigneeName>
<pws:Contact type="String" mandatory="?" readonly="?">
</pws:Contact>
<pws:JournalUpdates type="Array">

<pws:JournalUpdates type="String" mandatory="?"
readonly="?"></pws:JournalUpdates>

</pws:JournalUpdates>
<pws:AlertStatus type="String" mandatory="?" readonly="?">
</pws:AlertStatus>
<pws:ContactLastName type="String" mandatory="?"
readonly="?"></pws:ContactLastName>

<pws:ContactFirstName type="String" mandatory="?"
readonly="?"></pws:ContactFirstName>

<pws:Company type="String" mandatory="?" readonly="?">
</pws:Company>
<pws:BriefDescription type="String" mandatory="?"
readonly="?"></pws:BriefDescription>

<pws:TicketOwner type="String" mandatory="?" readonly="?">
</pws:TicketOwner>
<pws:UpdatedBy type="String" mandatory="?" readonly="?">
</pws:UpdatedBy>
<pws:IMTicketStatus type="String" mandatory="?"
readonly="?"></pws:IMTicketStatus>

<pws:Subcategory type="String" mandatory="?" readonly="?">
</pws:Subcategory>
<pws:SLAAgreementID type="Decimal" mandatory="?"
readonly="?"></pws:SLAAgreementID>

<pws:SiteCategory type="String" mandatory="?" readonly="?">
</pws:SiteCategory>
<pws:ProductType type="String" mandatory="?" readonly="?">

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 78 of 179

</pws:ProductType>
<pws:ProblemType type="String" mandatory="?" readonly="?">
</pws:ProblemType>
<pws:ResolutionFixType type="String" mandatory="?"
readonly="?"></pws:ResolutionFixType>

<pws:UserPriority type="String" mandatory="?" readonly="?">
</pws:UserPriority>
<pws:Solution type="Array">

<pws:Solution type="String" mandatory="?" readonly="?">
</pws:Solution>

</pws:Solution>
<pws:InitialImpact type="String" mandatory="?"
readonly="?"></pws:InitialImpact>

<pws:folder type="String" mandatory="?" readonly="?">
</pws:folder>

</pws:instance>
<pws:messages>

<com:message type="String" mandatory="?"
readonly="?" severity="?" module="?">?</com:message>

</pws:messages>
</pws:model>

</pws:RetrieveIncidentKeysListRequest>
</soapenv:Body>

</soapenv:Envelope>

The response

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<RetrieveIncidentKeysListResponse message="Success"
query="" returnCode="0" schemaRevisionDate="2007-04-14"
schemaRevisionLevel="1" status="SUCCESS"
xsi:schemaLocation="http://servicecenter.peregrine.com/PWS
http://<sm server>.americas.hpqcorp.net:13701/sc62server/ws/
Incident.xsd"
xmlns="http://servicecenter.peregrine.com/PWS"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<keys>
<IncidentID type="String">IM10055</IncidentID>

</keys>
<keys>

<IncidentID type="String">IM10063</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10070</IncidentID>

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 79 of 179

</keys>
<keys>

<IncidentID type="String">IM10077</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10090</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10115</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10116</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10117</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10118</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10119</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10120</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10121</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10122</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10123</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10124</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10125</IncidentID>
</keys>

</RetrieveIncidentKeysListResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Note: The field names in such directly entered query strings reflect either the actual field names (such
as update.time) or the Caption (such as UpdateTime). Clients who want to submit an expert/advanced
query should use either the query attribute on the <keys> element or the query attribute on the
<instance> element. Both are provided because some requests do not define any <instance> element.
During SOAP API request processing, the server will look first at the <keys> element and, if there is no

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 80 of 179

query attribute there, will look at the <instance> element. Query attributes defined on any other element
are never consulted during inbound SOAP request processing.

Retrieving data from Service Manager
Retrieval methods are not defined in the extaccess record. The following list shows themethods for
retrieval that are available and under which circumstances to use each one:

• Retrieve<FileName>—Used if only one record will be returned. Throws a fault if multiple records are
returned.

• Retrieve<FileName>KeysList—Retrieves the list of unique keys (which does not have to be the
unique key of the ServiceManager dbdicts). The list can either be passed as an array to the
Retrieve<FileName>Listmethod, or looped through to pass to the Retrieve<FileName>method.

• Retrieve<FileName>List—Retrieves a list of records with information that was gathered either in
the Retrieve<FileName>KeysListmethod or by passing in a query directly through the instance
block. This method expects an array of keys unless the query approach is used.

Note:When retrieving data from a single table rather than a Service such as the contacts table, request
theWSDL for the alias name defined in extaccess, such as "Contact" (singular form, upper-case “C”)
rather than for contacts (the actual file name).

There are different approaches to retrieving a list of records. When developing a custom client there are
actually two separatemethods that can be used to retrieve list data.

The first approach uses the following steps:

1. Send the data query (such as <open.time>>6/30/05</open.time>) to the RetrieveKeysList
method.

2. The result is a list of records where each record contains only the “primary key” (such as Incident ID)
for those records that match the query.

3. You can either provide the list to the RetrieveListmethod and receive all records defined by the list
in a single XML document, or loop through the list, one record at a time, calling Retrieve once for each
record by key.

The second approach uses these steps:

1. Send the data query (such as <open.time>>6/30/05</open.time>) directly to the
RetrieveListmethod. Place the query in the “<instance>” block instead of the “<keys>” block.

2. This single method call returns the entire result set (all fields for all records matching the query) in a
single XML response.

Note: The second approach returns the entire query result set in onemethod call. If the result set is
large, use the first approach to increase performance.

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 81 of 179

Example: Retreiving data from Service Manager via a Web
service
The simplest way to perform retrieval operations is via Query-by-example (QBE). This is done by
creating an instance of a particular kind of object (such as an Incident) and populating one or more fields
with values to determine the result set. You have to only supply values for the fields on which you wish
to select.

The instance is then passed into a RetrieveXXXKeysList request. In a program, such as the sample
programs provided with ServiceManager, you would be assigning values to properties or calling setter
methods on various Java or C# or other objects. In the following example, we submit a
RetrieveIncidentKeysList object, supplying a value for OpenedBy and UpdatedBy. In this example, we
will use ServiceManager query syntax to find all incidents where the OpenedBy element starts with
“fal” as well as pass a literal value for the UpdatedBy field.

We get back a RetrieveIncidentKeysListResponse object listing the primary keys of thematching
Incident objects.

Combiningmultiple values in this QBE style selection connects the query terms with AND. To create a
query using OR, supply an expert query as a string in the <pws:instance query="xxx" …> area.

The request

<?xml version="1.0" encoding="UTF-8" ?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:pws="http://servicecenter.peregrine.com/PWS"
xmlns:com="http://servicecenter.peregrine.com/PWS/Common">

<soapenv:Header/>
<soapenv:Body>

<pws:RetrieveIncidentKeysListRequest attachmentInfo="?"
attachmentData="?" ignoreEmptyElements="true">

<pws:model query="">
<pws:keys query="">

<pws:IncidentID type="String" mandatory="?" readonly="?">
</pws:IncidentID>

</pws:keys>
<pws:instance query="" uniquequery="?" recordid="?">

<pws:IncidentID type="String" mandatory="?" readonly="?">
</pws:IncidentID>
<pws:Category type="String" mandatory="?" readonly="?">
</pws:Category>
<pws:OpenTime type="DateTime" mandatory="?" readonly="?">
</pws:OpenTime>
<pws:OpenedBy type="String" mandatory="?" readonly="?">#fal
</pws:OpenedBy>
<pws:severity type="String" mandatory="?" readonly="?">
</pws:severity>

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 82 of 179

<pws:UpdatedTime type="DateTime" mandatory="?"
readonly="?"></pws:UpdatedTime>
<pws:PrimaryAssignmentGroup type="String" mandatory="?"
readonly="?"></pws:PrimaryAssignmentGroup>
<pws:ClosedTime type="DateTime" mandatory="?" readonly="?">
</pws:ClosedTime>
<pws:ClosedBy type="String" mandatory="?" readonly="?">
</pws:ClosedBy>
<pws:ClosureCode type="String" mandatory="?" readonly="?">
</pws:ClosureCode>
<pws:ConfigurationItem type="String" mandatory="?"
readonly="?"></pws:ConfigurationItem>
<pws:Location type="String" mandatory="?" readonly="?">
</pws:Location>
<pws:IncidentDescription type="Array">

<pws:IncidentDescription type="String" mandatory="?"
readonly="?"></pws:IncidentDescription>

</pws:IncidentDescription>
<pws:Resolution type="Array">

<pws:Resolution type="String" mandatory="?"
readonly="?"></pws:Resolution>

</pws:Resolution>
<pws:AssigneeName type="String" mandatory="?" readonly="?">
</pws:AssigneeName>
<pws:Contact type="String" mandatory="?" readonly="?">
</pws:Contact>
<pws:JournalUpdates type="Array">

<pws:JournalUpdates type="String" mandatory="?"
readonly="?"></pws:JournalUpdates>

</pws:JournalUpdates>
<pws:AlertStatus type="String" mandatory="?" readonly="?">
</pws:AlertStatus>
<pws:ContactLastName type="String" mandatory="?"
readonly="?"></pws:ContactLastName>
<pws:ContactFirstName type="String" mandatory="?"
readonly="?"></pws:ContactFirstName>
<pws:Company type="String" mandatory="?" readonly="?">
</pws:Company>
<pws:BriefDescription type="String" mandatory="?"
readonly="?"></pws:BriefDescription>
<pws:TicketOwner type="String" mandatory="?" readonly="?">
</pws:TicketOwner>
<pws:UpdatedBy type="String" mandatory="?"
readonly="?">falcon</pws:UpdatedBy>
<pws:IMTicketStatus type="String" mandatory="?"
readonly="?"></pws:IMTicketStatus>
<pws:Subcategory type="String" mandatory="?" readonly="?">
</pws:Subcategory>
<pws:SLAAgreementID type="Decimal" mandatory="?"

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 83 of 179

readonly="?"></pws:SLAAgreementID>
<pws:SiteCategory type="String" mandatory="?" readonly="?">
</pws:SiteCategory>
<pws:ProductType type="String" mandatory="?" readonly="?">
</pws:ProductType>
<pws:ProblemType type="String" mandatory="?" readonly="?">
</pws:ProblemType>
<pws:ResolutionFixType type="String" mandatory="?"
readonly="?"></pws:ResolutionFixType>
<pws:UserPriority type="String" mandatory="?" readonly="?">
</pws:UserPriority>
<pws:Solution type="Array">

<pws:Solution type="String" mandatory="?" readonly="?">
</pws:Solution>

</pws:Solution>
<pws:InitialImpact type="String" mandatory="?"

readonly="?"></pws:InitialImpact>
<pws:folder type="String" mandatory="?" readonly="?">
</pws:folder>

</pws:instance>
<pws:messages>

<com:message type="String" mandatory="?" readonly="?"
severity="?" module="?">?</com:message>

</pws:messages>
</pws:model>

</pws:RetrieveIncidentKeysListRequest>
</soapenv:Envelope>

The response

<?xml version="1.0" encoding="utf-16"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<RetrieveIncidentKeysListResponse message="Success" query=""
returnCode="0" schemaRevisionDate="2007-04-14"
schemaRevisionLevel="1" status="SUCCESS"
xsi:schemaLocation="http://servicecenter.peregrine.com/PWS
http://<sm server>.americas.hpqcorp.net:13701/sc62server/ws/
Incident.xsd" xmlns="http://servicecenter.peregrine.com/PWS"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<keys>
<IncidentID type="String">IM10001</IncidentID>

</keys>
<keys>

<IncidentID type="String">IM10004</IncidentID>
</keys>

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 84 of 179

<keys>
<IncidentID type="String">IM10009</IncidentID>

</keys>
<keys>

<IncidentID type="String">IM10016</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10027</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10038</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10049</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10060</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10061</IncidentID>
</keys>

</RetrieveIncidentKeysListResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Having retrieved a list of <keys> elements we can now retrieve these Incidents using a
RetrieveIncidentList request, by supplying the collection of keys elements in that request.

You can submit a variable number of <keys> elements in a RetrieveXXXList request, subject only to
your program’s ability to handle large XML responses. Java client programs can sometimes run out of
memory if the server returns very large responses.

To help prevent the RetrieveXXXListRequest Web Service from causing a Java Heap Space out-of-
memory error when retrieving a list of records, the following applies for the response of a
RetrieveXXXList request:

l When there is neither a start attribute nor a count attribute, return all records/keys.

l When there is a valid start value but no count attribute, return all records starting from the start
attribute.

l When there is a valid start attribute and valid count attribute, return the number of keys/records
starting from the start attribute.

l When there is a negative start attribute, return from the first record.

l When there is a negative count attribute, return one record.

l When the start attribute is bigger than the total number of records/keys, no record is returned.

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 85 of 179

Retrieve data from Service Manager using Pagination
Retrieving a list of data objects may result in a very large XML response document that could cause
performance andmemory utilization issues either on the client or the server. To avoid these problems,
ServiceManager supports the use of pagination, the process of returning pages of data instead of one
large response.

To enable pagination, aWeb service request canmake use of these additional attributes:

l count – number of records/keys to return. By default all records are returned. This attribute indicates
you want to use pagination. (Optional attribute)

l start – the starting record/key number. By default a retrieve request will start at record 0. (Optional
attribute)

l handle – a record-list handle returned on a previous retrieve request that specified a count.

When pagination is used, theWeb service does the following:

l If there is not a 'start' or 'count' attribute, the service returns all records or keys.

l With a valid 'start' value and 'no count' attribute, the service returns all records starting from the
'start' attribute.

l With a valid 'start' attribute and valid 'count' attribute, the service returns the number of keys or
records starting from the 'start' attribute.

l With a negative 'start' attribute, the service returns records from the first record and creates a
warning in log file.

l With a negative 'count' attribute, the service returns one record and creates a warningmessage in
the log file.

l With the 'start' attribute greater than the total number of records or keys, the service returns no
records and creates amessage in the error log file.

Example: Use Web Service with pagination to retrieve data from
Service Manager

In the previous example theWeb Service returned a list of eight Incident keys. To illustrate pagination,
this example limits the number of records to returned to four. This requires the use of the additional
attributes count and start.

For example to limit the response to amaximum of eight records starting at the first record:

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 86 of 179

Request with pagination

<?xml version="1.0" encoding="UTF-8" ?><soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:pws="http://servicecenter.peregrine.com/PWS"
xmlns:com="http://servicecenter.peregrine.com/PWS/Common">

<soapenv:Header/>
<soapenv:Body>

<pws:RetrieveIncidentKeysListRequest attachmentInfo="?"
attachmentData="?" ignoreEmptyElements="true" count=8 start=0>
<pws:model query="">
<pws:keys query="">
<pws:IncidentID type="String" mandatory="?"

readonly="?">
</pws:IncidentID>
</pws:keys>

<pws:instance query="" uniquequery="?" recordid="?">
<pws:IncidentID type="String" mandatory="?"

readonly="?">
</pws:IncidentID>
<pws:Category type="String" mandatory="?" readonly="?">
</pws:Category>
<pws:OpenTime type="DateTime" mandatory="?"
readonly="?">
</pws:OpenTime>
<pws:OpenedBy type="String" mandatory="?"

readonly="?">#fal
</pws:OpenedBy>
<pws:severity type="String" mandatory="?" readonly="?">
</pws:severity>
<pws:UpdatedTime type="DateTime" mandatory="?"

readonly="?"></pws:UpdatedTime>
<pws:PrimaryAssignmentGroup type="String" mandatory="?"
readonly="?"></pws:PrimaryAssignmentGroup>
<pws:ClosedTime type="DateTime" mandatory="?"
readonly="?">
</pws:ClosedTime>
<pws:ClosedBy type="String" mandatory="?" readonly="?">
</pws:ClosedBy>
<pws:ClosureCode type="String" mandatory="?"
readonly="?">
</pws:ClosureCode>
<pws:ConfigurationItem type="String" mandatory="?"

readonly="?"></pws:ConfigurationItem>
<pws:Location type="String" mandatory="?" readonly="?">
</pws:Location>
<pws:IncidentDescription type="Array">
<pws:IncidentDescription type="String" mandatory="?"

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 87 of 179

readonly="?"></pws:IncidentDescription>
</pws:IncidentDescription>
<pws:Resolution type="Array">
<pws:Resolution type="String" mandatory="?"

readonly="?"></pws:Resolution>
</pws:Resolution>
<pws:AssigneeName type="String" mandatory="?"
readonly="?">
</pws:AssigneeName>
<pws:Contact type="String" mandatory="?" readonly="?">
</pws:Contact>
<pws:JournalUpdates type="Array">
<pws:JournalUpdates type="String" mandatory="?"

readonly="?"></pws:JournalUpdates>
</pws:JournalUpdates>
<pws:AlertStatus type="String" mandatory="?"
readonly="?">
</pws:AlertStatus>
<pws:ContactLastName type="String" mandatory="?"

readonly="?"></pws:ContactLastName>
<pws:ContactFirstName type="String" mandatory="?"

readonly="?"></pws:ContactFirstName>
<pws:Company type="String" mandatory="?" readonly="?">
</pws:Company>
<pws:BriefDescription type="String" mandatory="?"
readonly="?"></pws:BriefDescription>
<pws:TicketOwner type="String" mandatory="?"

readonly="?">
</pws:TicketOwner>
<pws:UpdatedBy type="String" mandatory="?"

readonly="?">falcon</pws:UpdatedBy>
<pws:IMTicketStatus type="String" mandatory="?"
readonly="?"></pws:IMTicketStatus>
<pws:Subcategory type="String" mandatory="?"
readonly="?">
</pws:Subcategory>
<pws:SLAAgreementID type="Decimal" mandatory="?"
readonly="?"></pws:SLAAgreementID>
<pws:SiteCategory type="String" mandatory="?"
readonly="?">
</pws:SiteCategory>
<pws:ProductType type="String" mandatory="?"

readonly="?">
</pws:ProductType>
<pws:ProblemType type="String" mandatory="?"
readonly="?">
</pws:ProblemType>
<pws:ResolutionFixType type="String" mandatory="?"

readonly="?"></pws:ResolutionFixType>

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 88 of 179

<pws:UserPriority type="String" mandatory="?"
readonly="?">

</pws:UserPriority>
<pws:Solution type="Array">
<pws:Solution type="String" mandatory="?"
readonly="?">
</pws:Solution>
</pws:Solution>
<pws:InitialImpact type="String" mandatory="?"
readonly="?"></pws:InitialImpact>
<pws:folder type="String" mandatory="?" readonly="?">
</pws:folder>
</pws:instance>
<pws:messages>

<com:message type="String" mandatory="?" readonly="?"
severity="?" module="?">?</com:message>

</pws:messages>
</pws:model>
</pws:RetrieveIncidentKeysListRequest>
</soapenv:Envelope>

Response with pagination

The response indicates that eight records were returned (count=8). In addition the response indicates
that there aremore records to retrieve (more=1).

<?xml version="1.0" encoding="utf-16"?>
<SOAP-ENV:Envelope xmlns:SOAPENV="

http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<RetrieveIncidentKeysListResponse count=8 more=1
handle=probsummary4d67db480000c0082000f1a0 message="Success" query=""

returnCode="0" schemaRevisionDate="2007-04-14"
schemaRevisionLevel="1" status="SUCCESS"
xsi:schemaLocation="http://servicecenter.peregrine.com/PWS
http://<sm server>.americas.hpqcorp.net:13701/sc62server/ws/

Incident.xsd" xmlns="http://servicecenter.peregrine.com/PWS"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<keys>
<IncidentID type="String">IM10001</IncidentID>

</keys>
<keys>

<IncidentID type="String">IM10004</IncidentID>
</keys>
<keys>

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 89 of 179

<IncidentID type="String">IM10009</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10016</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10027</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10038</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10049</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10060</IncidentID>
</keys>

</RetrieveIncidentKeysListResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Next pagination request

To retrieve the next page of records the request would increment the start attribute by the previous
count and supply the handle returned on the previous response.

This request is for the next set of records.

<?xml version="1.0" encoding="UTF-8" ?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:pws="http://servicecenter.peregrine.com/PWS"
xmlns:com="http://servicecenter.peregrine.com/PWS/Common">
<soapenv:Header/>
<soapenv:Body>

<pws:RetrieveIncidentKeysListRequest attachmentInfo="?"
attachmentData="?" ignoreEmptyElements="true" count=8 start=8 handle=

probsummary4d67db480000c0082000f1a0>
<pws:model query="">
<pws:keys query="">
<pws:IncidentID type="String" mandatory="?"

readonly="?">
</pws:IncidentID>
</pws:keys>
<pws:instance query="" uniquequery="?" recordid="?">
<pws:IncidentID type="String" mandatory="?"

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 90 of 179

readonly="?">
</pws:IncidentID>
<pws:Category type="String" mandatory="?" readonly="?">
</pws:Category>
<pws:OpenTime type="DateTime" mandatory="?"

readonly="?">
</pws:OpenTime>
<pws:OpenedBy type="String" mandatory="?"

readonly="?">#fal
</pws:OpenedBy>
<pws:severity type="String" mandatory="?" readonly="?">
</pws:severity>
<pws:UpdatedTime type="DateTime" mandatory="?"

readonly="?"></pws:UpdatedTime>
<pws:PrimaryAssignmentGroup type="String" mandatory="?"

readonly="?"></pws:PrimaryAssignmentGroup>
<pws:ClosedTime type="DateTime" mandatory="?"

readonly="?">
</pws:ClosedTime>
<pws:ClosedBy type="String" mandatory="?" readonly="?">
</pws:ClosedBy>
<pws:ClosureCode type="String" mandatory="?"

readonly="?">
</pws:ClosureCode>
<pws:ConfigurationItem type="String" mandatory="?"

readonly="?"></pws:ConfigurationItem>
<pws:Location type="String" mandatory="?" readonly="?">
</pws:Location>
<pws:IncidentDescription type="Array">
<pws:IncidentDescription type="String" mandatory="?"

readonly="?"></pws:IncidentDescription>
</pws:IncidentDescription>
<pws:Resolution type="Array">
<pws:Resolution type="String" mandatory="?"

readonly="?"></pws:Resolution>
</pws:Resolution>
<pws:AssigneeName type="String" mandatory="?"

readonly="?">
</pws:AssigneeName>
<pws:Contact type="String" mandatory="?" readonly="?">
</pws:Contact>
<pws:JournalUpdates type="Array">
<pws:JournalUpdates type="String" mandatory="?"

readonly="?"></pws:JournalUpdates>
</pws:JournalUpdates>
<pws:AlertStatus type="String" mandatory="?"

readonly="?">
</pws:AlertStatus>
<pws:ContactLastName type="String" mandatory="?"

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 91 of 179

readonly="?"></pws:ContactLastName>
<pws:ContactFirstName type="String" mandatory="?"

readonly="?"></pws:ContactFirstName>
<pws:Company type="String" mandatory="?" readonly="?">
</pws:Company>
<pws:BriefDescription type="String" mandatory="?"

readonly="?"></pws:BriefDescription>
<pws:TicketOwner type="String" mandatory="?"

readonly="?">
</pws:TicketOwner>
<pws:UpdatedBy type="String" mandatory="?"

readonly="?">falcon</pws:UpdatedBy>
<pws:IMTicketStatus type="String" mandatory="?"

readonly="?"></pws:IMTicketStatus>
<pws:Subcategory type="String" mandatory="?"

readonly="?">
</pws:Subcategory>
<pws:SLAAgreementID type="Decimal" mandatory="?"

readonly="?"></pws:SLAAgreementID>
<pws:SiteCategory type="String" mandatory="?"

readonly="?">
</pws:SiteCategory>
<pws:ProductType type="String" mandatory="?"

readonly="?">
</pws:ProductType>
<pws:ProblemType type="String" mandatory="?"

readonly="?">
</pws:ProblemType>
<pws:ResolutionFixType type="String" mandatory="?"

readonly="?"></pws:ResolutionFixType>
<pws:UserPriority type="String" mandatory="?"

readonly="?">
</pws:UserPriority>
<pws:Solution type="Array">
<pws:Solution type="String" mandatory="?"

readonly="?">
</pws:Solution>
</pws:Solution>
<pws:InitialImpact type="String" mandatory="?"

readonly="?"></pws:InitialImpact>
<pws:folder type="String" mandatory="?" readonly="?">
</pws:folder>
</pws:instance>
<pws:messages>
<com:message type="String" mandatory="?" readonly="?"

severity="?" module="?">?</com:message>
</pws:messages>

</pws:model>
</pws:RetrieveIncidentKeysListRequest>

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 92 of 179

</soapenv:Envelope>

Next pagination response

The response indicates that one record was returned (count=1). In addition, the response indicates that
there are nomore records to retrieve (more=0).

<?xml version="1.0" encoding="utf-16"?>
<SOAP-ENV:Envelope xmlns:SOAPENV="
http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<RetrieveIncidentKeysListResponse count=1 more=0
handle=probsummary4d67db480000c0082000f1a0 message="Success" query=""

returnCode="0" schemaRevisionDate="2007-04-14"
schemaRevisionLevel="1" status="SUCCESS"
xsi:schemaLocation="http://servicecenter.peregrine.com/PWS
http://<sm server>.americas.hpqcorp.net:13701/sc62server/ws/
Incident.xsd" xmlns="http://servicecenter.peregrine.com/PWS"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<keys>

<IncidentID type="String">IM10061</IncidentID>
</keys>

</RetrieveIncidentKeysListResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Retrieve data from Service Manager for Optimistic Locking
You can retrieve data via aWeb service for later use in an update using optimistic locking by using an
additional attribute:

l updatecounter – a boolean value specifying if the response should include the attribute
updatecounter that can be used on a subsequent update request to optimistically lock the record.
The value returned in the updatecounter attribute can be specified on a subsequent update request
as the value of the updatecontraint attribute. If the value of the updateconstraint matches the value
in the database the update is allowed. If the updateconstraint value does not match the value in the
database the update is rejected with a return code of 51 and themessage “Recordmodified since
last retrieved”

For example to retrieve the data with the updatecounter.

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 93 of 179

Request with updatecounter

<?xml version="1.0" encoding="UTF-8" ?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:pws="http://servicecenter.peregrine.com/PWS"

xmlns:com="http://servicecenter.peregrine.com/PWS/Common">

<soapenv:Header/>

<soapenv:Body>

<pws:RetrieveIncidentKeysListRequest attachmentInfo="?"

attachmentData="?" ignoreEmptyElements="true">

<pws:model query="" updatecounter=true>

…

…

…

Response with updatecounter

The response indicates the updatecounter for each record returned.

<?xml version="1.0" encoding="utf-16"?>

<SOAP-ENV:Envelope xmlns:SOAPENV="

http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

<RetrieveIncidentKeysListResponse count=8 more=1

handle=probsummary4d67db480000c0082000f1a0 message="Success" query=""

returnCode="0" schemaRevisionDate="2007-04-14"

schemaRevisionLevel="1" status="SUCCESS"

xsi:schemaLocation="http://servicecenter.peregrine.com/PWS

http://<sm server>.americas.hpqcorp.net:13701/sc62server/ws/

Incident.xsd"

xmlns="http://servicecenter.peregrine.com/PWS"

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 94 of 179

xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<keys updatecounter=”7”>

<IncidentID type="String">IM10001</IncidentID>

</keys>

<keys updatecounter =”45”>

<IncidentID type="String">IM10004</IncidentID>

</keys>

<keys updatecounter =”9”>

<IncidentID type="String">IM10009</IncidentID>

</keys>

<keys updatecounter =”13”>

<IncidentID type="String">IM10016</IncidentID>

</keys>

…

…

…

Web Services examples in the RUN directory
All validWeb Services examples for Axis and .NET are contained in the <sm
install>\\webservices\sample directory.

Both the AxisSample and the DotNetSample directories contain documents with setup instructions. In
AxisSample this document is readme.txt. In DotNetSample the document is WebServices
README.doc.

The AxisSample\bin directory contains a selection of batch files that can be run directly, if JDK 1.4 or
higher and Apache Ant are both installed on themachine. The DotNet samples have to be compiled
before running.

Note:Axis 1.x defaults to using its own httpSender class which is not compatible with HTTP 1.1 Keep-
Alive. Axis 1.x must be configured to use the commons-httpclient jar file in order to get keep-alive
behavior. Running theWeb Service without Keep-Alive negatively impacts performance. TheWeb
Service client needs to be Cookie aware so that the servlet container session is maintained. HP
strongly recommend using Axis 2 that provides HTTP 1.1 keep-alive support and cookie-aware
behavior.

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 95 of 179

Example: Retrieving Service Manager Release Management
changes into a text file using Connect-It

1. Create the ServiceManagerWeb Services Connector with the following connection parameter
settings. (All other settings remain the defaults.)

• Server name: <server>:<httpPort (use a dedicated port, not the loadBalancer port)>

• Context Path: sc62server/PWS

• Service name:ChangeManagement

• Enter the SysAdmin userID and password

2. Click Test to verify that the connection works.

3. Click Finish to save the changes made to the new connector.

4. In our example, theWeb Service simply fills information into a delimited text field. The settings for
that connector are as follows:

• Name:Changes

• Processing Mode:write

• Connection protocol: Local / network files

• Enter a folder name and decide whether to create a separate file for each record retrieved or write
all records into one file (recommended).

• On the next screen, decide whether to append to the same file (recommended) or overwrite with
each run, or how many files to keep.

• Enter the path to the descriptor file (see below) or create a new descriptor file.

5. Click Finish to create and save the connector.

To create a description file for the text output file (comma delimited text in our example), the
following code is a sample .dsc file that can be used for retrieving change information:

{ TextFileFormat SMChange
Extension=
FormatType=Delimited
EscapeChar="\\"
Quote="\""
Extracolumn=1
WriteColumn=1
Delimiter=,
{ String "Change Number"

UserType=Default
}

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 96 of 179

{ String "Category"
UserType=Default

}
{ String "Status"

UserType= Default
}
{ String "Approval Status"

UserType=Default
}
{ String "Requested By"

UserType=Default
}
{ String "Assigned To"

UserType= Default
}
{ String "Coordinator"

UserType=Default
}
{ String "Coordinator Phone"

UserType=Default
}
{ TimeStamp "Planned Start Date"

UserType=TimeStamp
}
{ TimeStamp "Planned End Date"

UserType=TimeStamp
}
{ String "Reason"

UserType=Default
}
{ String "Current Phase"

UserType= Default
}
{ String "Risk Assessment"

UserType=Default
}

}

6. Finally the source (Web Services) data and the target data (Delimited Text file) must bemapped,
in this case based on thematching names.

7. BecauseWeb Services need to be prompted to produce output, another text file connector must
be created that helps create the request sent to theWeb service. This text file connector is defined
as follows:

• Processing Mode: read

• Connection Protocol: Local/Network files

• Location:Read files, file name: <path and filename>

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 97 of 179

• Upon successful processing, leave the file in the folder.

Use this .dsc file. Enter <path and filename> and click Find (magnifying glass) to create or modify a
description file.

8. Select a document type. Click the down arrow and enter SMChange.

9. Click Next.

10. Select a file for the preview. Accept the default <path and filename from step 6> and click Next.

11. Select the appropriate delimiter.

12. Enter the information on the screen:
n Write the column headers: checked

n Do not generate errors if a line contains... : checked

n Number of skipped lines: 0

n Quote character: "

n Start of the comment line: //

n Escape character: /

13. Click Next.

14. Enter the column names and type: for example, Change Number - text

15. Click Finish to create and save the connector.

16. Now create amapping between this text file and the ServiceManagerWeb Service by connecting
the two.

17. Click the first text connector and click Produce Now (the F5 button) to fill information from the
cm3r file in ServiceManager into a delimited text file viaWeb Services.

Example: Getting change information from another Service
Manager system

This example retrieves change information from the cm3r file and uses theWeb Service to create a
new change.

1. Click Tailoring> Web Services >Run WSDL to JS.

2. In the “Please enter the URL for theWSDL file” field, enter the following:
http://<serenade>:<port number>/sc62server/PWS/ChangeManagement.wsdl

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 98 of 179

3. Click Proceed and thenAdd to create the ChangeManagement JavaScript record in the
ScriptLibrary.

Note:ServiceManager always uses the user name and password you provided to access the
remoteWeb Service unless you override the values at run time. For example, create custom
JavaScript to use the currently logged in user's credentials instead of the user name and password
you provided to access the remoteWeb Service.

function ChangeManagement()
{
this.location = new String("http://hostname:13080/sc62server/ws");

this.user = null;
this.password = null;
this.connectTimeOut = 10;
this.sendTimeOut = 10;
this.recvTimeOut = 10;
this.soapEnvelope = null;
this.soapBody = null;
this.soapHeader = null;
this.attachments = new Array();
this.resultXML = null;
this.invoke = invoke;
[…]

Note: The namespace specified in “this.location” does not have to be resolvable.

The user can be filled in here (this.user), or in the invoking script. As a best practice, fill in the user
in the invoking script.

4. Now that the Script has been added to the ScriptLibrary, you need to write another JavaScript that
can be used to retrieve the change or create a new change. Enter the JavaScript code as listed
below:

function RetrieveChangeKeysList(query)
{
try
{
var ChangeMgmtService=new system.library.ChangeManagement.
ChangeManagement();

///
// set Connection information (optional)
///
ChangeMgmtService.user = "falcon";

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 99 of 179

ChangeMgmtService.password = "";

///
// create the request object
///
var RetrieveChangeListRequest = new system.library.
ChangeManagement.RetrieveChangeKeysListRequest();

///
// Request Data Fill Section
//

if (query!=null)
{
RetrieveChangeListRequest.model.instance.query=query;
}
else
print("Please enter a valid Query statement.")

//
// Invoke and final processing
//
var RetrieveChangesResponse = ChangeMgmtService.invoke(
RetrieveChangeListRequest);

if (RetrieveChangesResponse.isFault())
{
print(RetrieveChangesResponse.messages.getContent());
return(-1);
}
else
{
print("Success")
print(RetrieveChangesResponse.keys[0].ChangeNumber.getValue())
print(RetrieveChangesResponse.keys[1].ChangeNumber.getValue())
return(RetrieveChangesResponse.keys);
}

}
catch(e)
{
print(e);
}

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 100 of 179

}

function RetrieveChange(number)
{
try
{
var ChangeMgmtService=new system.library.ChangeManagement.ChangeManagement();

//
// set Connection information (optional)
//
ChangeMgmtService.user = "falcon";
ChangeMgmtService.password = "";

//
// create the request object
//
var RetrieveChangeRequest = new system.library.ChangeManagement.

RetrieveChangeRequest();

//
// Request Data Fill Section
//

if (number!=null)
{
RetrieveChangeRequest.model.instance.header.ChangeNumber.setValue(number);
}
else
print("Please pass in a valid Change Number.");

//
// Invoke and final processing
//
var RetrieveChangeResponse = ChangeMgmtService.invoke(RetrieveChangeRequest);

if (RetrieveChangeResponse.isFault())
{
print(RetrieveChangeResponse.messages.getContent());
return(-1);
}
else
{
print("Success")
return(RetrieveChangeResponse.model.instance);
}

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 101 of 179

}
catch(e)
{
print(e);
}

}

5. Create a JavaScript in the same ScriptLibrary record that reads a change record and then creates
a new record in the other ServiceManager system. Enter the Java Script shown below:

function CreateChangeFromChange(change)
{

try
{

var ChangeMgmtService=new system.library.ChangeManagement.

ChangeManagement();

///
// set Connection information (optional)
///

ChangeMgmtService.user = "falcon";
ChangeMgmtService.password = "";

///
// create the request object
///

var CreateChangeRequest = new system.library.ChangeManagement.

CreateChangeRequest();

///
// Request Data Fill Section
///

if (change!=null)
{

CreateChangeRequest.model.instance.header.Category.

setValue(change.header.Category.getValue());
CreateChangeRequest.model.instance.header.RequestedBy.

setValue(change.header.RequestedBy.getValue());
CreateChangeRequest.model.instance.header.Reason.

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 102 of 179

setValue(change.header.Reason.getValue());
CreateChangeRequest.model.instance.header.Coordinator.

setValue(change.header.Coordinator.getValue());
CreateChangeRequest.model.instance.InitialAssessment.

setValue(change.InitialAssessment.getValue());
CreateChangeRequest.model.instance.Urgency.

setValue(change.Urgency.getValue());
CreateChangeRequest.model.instance.ReleaseType.

setValue(change.ReleaseType.getValue());

for (var i=0; i<change.description_structure.

Description.Description.length; i++)
{

CreateChangeRequest.model.instance.description_structure.

Description.Description_newInstance().

setValue(change.description_structure.Description.

Description[i].getValue());
}

}
else

print("Please pass in a valid Change Request.");

//
// Invoke and final processing
//

var CreateChangeResponse = ChangeMgmtService.

invoke(CreateChangeRequest);

if (CreateChangeResponse.isFault())
{

print(CreateChangeResponse.messages.getContent());
return(-1);

}
else
{

print("Success")
return(CreateChangeResponse.model.instance.header.

ChangeNumber.getValue());
}

}

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 103 of 179

catch(e)
{

print(e);
}

}

The following section shows how to call the above WebServices from JavaScript:

///
// Test Call
///
var rc_Code_List=RetrieveChangeKeysList("category=\"" + "Release Management"

+ "\"" + "and number <=\"" + "C10027" + "\"");

//var rc_Code_List=RetrieveChangeKeysList("number>=\"" + "C10026" + "\"");

if (rc_Code_List != -1)
{

for (var i = 0; i < rc_Code_List.length; i+=1)
{

var rc_Code=RetrieveChange(rc_Code_List[i].ChangeNumber.

getValue());
var rc_Create=CreateChangeFromChange(rc_Code);

}
}

Example to close an existing incident record

To run an example of closing an existing Incident Record from the Axis2Sample directory:

1. Follow the instructions in the Axis README.txt file located in the Axis2Sample\resources
directory.

2. Enter the following in the DOS command prompt to close an incident:

C:\scs\sm920\server\webservices\sample\sm7webservices\
Axis2Sample\bin>CloseIncidentSample -host <sm server>

-port <sm port> -username falcon -incidentId IM10001
-closeCode Fault -resolution "It works now"

Note: If the username and password are not entered, they default to “falcon” with no password.

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 104 of 179

Special considerations for using Keep-Alive with Service
Manager
A ServiceManager user session starts when the ServiceManager Server receives the first request
from a SOAP client and ends when the SOAP client closes the HTTP connection. The user login
process is performed in the first SOAP client request and the user logout process is performed when
the SOAP client ends this ServiceManager session. A SOAP client can reduce the login and logout
overhead by enabling HTTP persistent connections, also called HTTP keep-alive. If you want to use
HTTP 1.1 Keep-Alive connections with a SOAP API client, the SOAP API client must support cookies.
When ServiceManager responds to the first POST request from the SOAP API client, it includes a Set
Cookie header that conveys the servlet container sessionid to the client.

l Configure the SOAP stack with which the SOAP API client is written to support cookies. Axis and
.NET can both be configured to do this.

l If the SOAP toolkit supports HTTP 1.1 Keep-Alive but not cookies, you can arrange for the
application to echo back the JSESSIONID value in a Cookie header by adding code to the client
application tomanually create the HTTP header on the second and subsequent requests

Notes:

l In HTTP/1.1, persistent connections are the default behavior of any connection.

l If you use HTTP 1.0 you have tomanually set the HTTP header “connection” to keep-alive.

l A SOAP client ends a ServiceManager session by sending a request with the HTTP header
“connection” set to “close”. If a close request is never received by the ServiceManager server then
this session is terminated by the ServiceManager server when the webservices_sessiontimeout
time is reached.

Keep-Alive example for Service Manager

The following shows an example of the code for using Keep-Alive with ServiceManager.

==
client request:
POST /SM/7/ws HTTP/1.1
accept: application/xop+xml, text/xml image/gif, image/jpeg, *; q=.2,
/; q=.2
authorization: Basic ZmFsY29uOg==
soapaction: "Create"
connection: Keep-Alive
.....

SM server response:
HTTP/1.1 200

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 105 of 179

Set-Cookie: JSESSIONID=ED61093038F9FF8CE9CF44E34C9366AC; Path=/SM
Keep-Alive: timeout=1200000, max=1000
Connection: Keep-Alive
Content-Type: text/xml;charset=utf-8
Content-Length: 2112
.....

Then you need to echo back the JSESSIONID for each client use the following:

POST /SM/7/ws HTTP/1.1
accept: application/xop+xml, text/xml image/gif, image/jpeg, *; q=.2,
/; q=.2
authorization: Basic ZmFsY29uOg==
soapaction: "Retrieve"
connection: Keep-Alive
cookie: JSESSIONID=ED61093038F9FF8CE9CF44E34C9366AC; Path=/SM;
....
==

Note:

If you use Axis2 to implement the client then Axis2 canmaintain the session by calling the
setManageSession(true).

There is an Axis2 example in SM711 installation directory:

(...\Server\webservices\sample\sm7webservices\Axis2Sample)

Use SSL to consume Service Manager Web Services
Provide the client keystore and the client keystore password to theWeb Service consumer. He will
need to enter this information into the proper location on his client. For example, in SOAPUI, you can
enter this information in the File > Preferences > SSL Settings section. To find out how to create the
client keystore, refer to the ServiceManager Trusted Sign-onWhite paper. Ensure that the client’s
cacerts file contains the information on the authority that signed the keystore.

Attachment handling
What do the following error messages mean?

Error Message: Warning: incoming add attachment request 1 has no href
attribute

Error: unable to match incoming add attachment request 1 with no href
attribute to an attachment part

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 106 of 179

They indicate that the <attachment> elements in the XML in the SOAP requests do not have a href or
contentId attribute value. The same value is supposed to be in theMIME message part as the Content-
ID: value. In SOAP with attachments, we need a correlation between the XML element/attributes that
describe the attachment, and the actual binary or base64 attachment content which is in aMIME
message. This correlation is typically a unique ID specified in an href or Content-ID attribute.

The ServiceManager server deliberately allows requests that omit the href or contentId and attempts to
match up the XML and the attachment parts.

We report themissing href or contentId value with amessage in the sm.log file, as follows:

Warning: incoming add attachment request 1 has no href attribute

The server first tries to get an href or contentId value out of the XML; if it succeeds, it finds the
associatedMIME attachment by looking for aMIME message part whose id has the same value. If
there is no href or Content-ID, the server tries tomatch up the <attachment> element with a particular
attachment part. This assumes that there is a one-to-one correspondence between <attachment>
elements and attachment parts and uses the index of the DOM node of the <attachment> element as
an index into the array of binary attachment parts.

This strategy does not work when there aremiscellaneous white-space nodes in the DOM document,
because the index number of the DOM node for the <attachment> element is greater than it would
otherwise be.

Service Manager allows requests with no href or content-id

The reason ServiceManager allows requests with no href or Content-ID is that with some tools and
toolkits it is difficult to arrange for the unique id of an attachment part to be the same in the XML as in
the binary attachment part. Though this is trivial when using .NET, when using Axis, the Java code
would generate a unique cid value in theMIME message part dynamically duringmessage
serialization. Unless you write code to set up a handler to participate in serialization (via a callback), it
is impossible to match the value in the XML to the value in theMIME message part. To prevent these
problems, ServiceManager:

l Relaxed the schema such that href was not strictly required (use=optional).

l Added an alternative, optional attribute called Content-ID, which is used instead of href when
serving responses containing attachments to Axis clients.

l Added code to try to guess the href value that should be present in the XML, if it is missing. If we are
processing the Nth <attachment> element (the Nth DOMNodewithin the set of DOM children for
the <attachments> element, where the <attachment> element has neither an href nor a Content-ID
attribute), ServiceManager tries to look at the attachment part with the same index value to check
whether the name, length, and typematch. If the number of DOMNode children under
<attachments> does not match the number of attachment parts, ServiceManager cannot process
the attachment. It prints the following error in the sm.ini file:

Error: unable to match incoming add attachment request 2 with no href

attribute to an attachment part

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 107 of 179

 This message says “attachment request 2”, which seems to be incorrect; because there is only 1
<attachment> element, it should apparently be “attachment request 1.” However, the attachment
element is the second DOM child node of <attachments> due to the white space text present as DOM
child node 1; the first child node of <attachments> is white space that may be ignored.

The workaround is either do not serialize with pretty-printing (such as adding white space nodes to
make the XML easier to read for the human eye) when sending requests to ServiceManager, or write
code that ensures that requests containing attachment operations have either an href or Content-ID
attribute on the <attachment> element.

Supported attachment types in ServiceManager areMIME andMTOM. We often get the question if the
consumer does not support these attachment types, if the SYSATTACHMENTS file can be exposed to
get the attachments out of ServiceManager. This is not supported. The attachments are compressed
and cut into <=32K pieces and cannot easily be read from an outside source. A workaround that
customers use frequently is receiving the attachment with the parent record, for example via a
RetrieveIncident request, and then transforming it into base64 and sending to the consuming
application where it can be transformed into the required format.

Sample script to send a ticket with attachments within Service
Manager

The sample script below sends a ticket with attachments from ServiceManager to ServiceManager.
First, you will need to have a generated JavaScript for both ServiceManagers: ServiceManager 1,
called IncidentManagement, and ServiceManager 2, called IncidentManagementTarget.

Note: The lines in bold font perform the attachment handling.

try
{

//STEP 1 --> RETRIEVE AN EXISTING INCIDENT HAVING ATTACHMENT(S)
//THIS EXAMPLE USE "IM10010", PLEASE ADD ONE OR MORE ATTACHMENTS TO THIS

INCIDENT IF NO
var imService = new lib.IncidentManagement.IncidentManagement();
var request = new lib.IncidentManagement.RetrieveIncidentRequest();
request.model.instance.IncidentID.setValue("IM10010");
request.attachmentInfo = true;
request.attachmentData = true;

imService.user = "falcon";
imService.pwd = "";

var incidentResp = imService.invoke(request);
if (incidentResp.isFault())
{

print (incidentResp.detail);
}
else
{

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 108 of 179

print("SM OOB Test: Retrieved incident:" +
incidentResp.model.instance.IncidentID.getValue());

}

//STEP2 -->CREATE A NEW INCIDENT BASED ON THE RETRIEVED INCIDENT
//USING 'IncidentManagement' WEB SERVICE

var imService2 = new lib.IncidentManagementTarget.IncidentManagement();
var attach
var newAttach = new Array();
for (var i=0; i<incidentResp.model.instance.attachments.attachment.length; i++)
{

attach = imService.attachments[i];
attach.href = "test_"+i;
attach.action="add";
newAttach.push(attach);

}

var createIM = new lib.IncidentManagementTarget.CreateIncidentRequest();
imService2.setAttachments(newAttach);
imService2.user = "falcon";
imService2.pwd = "";

createIM.attachmentData = true;
createIM.attachmentInfo = true;

createIM.model.instance.OpenedBy.setValue
(incidentResp.model.instance.OpenedBy.getValue());

createIM.model.instance.Title.setValue(incidentResp.model.instance.Title.getValue
());

createIM.model.instance.Category.setValue
(incidentResp.model.instance.Category.getValue());

createIM.model.instance.Area.setValue(incidentResp.model.instance.Area.getValue
());

createIM.model.instance.Subarea.setValue
(incidentResp.model.instance.Subarea.getValue());

createIM.model.instance.Impact.setValue
(incidentResp.model.instance.Impact.getValue());

createIM.model.instance.Urgency.setValue
(incidentResp.model.instance.Urgency.getValue());

createIM.model.instance.AssignmentGroup.setValue
(incidentResp.model.instance.AssignmentGroup.getValue());

createIM.model.instance.Service.setValue
(incidentResp.model.instance.Service.getValue());

for (var i=0;i<newAttach.length;i++)
{

var attachmentXml = createIM.model.instance.attachments.attachment_newInstance
();

attachmentXml.action = newAttach[i].action;

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 109 of 179

attachmentXml.name = newAttach[i].name;
attachmentXml.type = newAttach[i].type;
attachmentXml.len = newAttach[i].value.length;
attachmentXml.attachmentType = attach.attachmentType;

}

for (var i=0;i<incidentResp.model.instance.Description.Description.length; i++)
{

newDescriptionLine = createIM.model.instance.Description.Description_newInstance
();

newDescriptionLine.setValue
(incidentResp.model.instance.Description.Description[i].getValue());

}

response = imService2.invoke(createIM);

if (response.isFault())
{

print ("SM OOB Test: Outgoing request failed with error:" + response.detail);
}
else
{

if (response.messages.message.length; i++)
{

print ("SM OOB Test: Outgoing request returned message:"
+ response.messages.message[i].getValue());

}

}
print("Incident" + incidentResp.model.instance.IncidentID.getValue()

+ "was retrieved from" + imService.getHost() + ":" + imService.getPort()
+ "and copied to new incident "
+ response.model.instance.IncidentID.getValue()
+ "on" + imService2.getHost() + ":" + imService2.getPort());

}
catch(e)
{

print("SM OOB Test: Outgoing request returned message: "
+ response.messages.message[i].getValue()););

}

Consume an external Web Service
You can configure ServiceManager to connect to and exchange information with remoteWeb
Services. This functionality allows ServiceManage to act as a client to other servers that publishWeb
Services. ServiceManager uses JavaScript™ to create and format the proper SOAP messages.

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 110 of 179

Note: For a production application that needs services that are not available within your corporate
intranet (such as postal address verification, email address verification, and currency conversions) HP
recommends that you investigate offerings from established for-feeWeb Services vendors. Although
there are a lot of free and demoWeb Services, we do not recommend basing a production application
on such services, since availability of the service is not guaranteed. Several Web sites such as
www.xmethods.net publish lists of available free and fee-basedWeb Services. (Be sure to click the full
list button to see the complete list of Web Services.)

Use the WSDL2JS utility
TheWSDL2JS (Web Services description language to JavaScript) utility translates the operations and
types in theWSDL into objects, methods and functions in JavaScript that can be called from another
JavaScript record.

TheWSDL2JS utility is a JavaScript script library record named SOAP. It is written based on theW3C
specifications forWSDL to interpret the content of theWSDL.

To consume aWeb Service from ServiceManager perform the following steps.

1. Obtain the URL to theWeb Service's WSDL file.

2. Examine theWSDL either as a text file, or using a third-party graphical WSDL analysis tool to
determine what functions, inputs, and formats theWeb service expects. Some third-party Web
Services tools allow you to experiment interactively withWeb Services. HP recommends that you
familiarize yourself with theWeb Service using such a tool before beginning any ServiceManager
JavaScript work.

3. Execute the RunWSDL to JS wizard to obtain and convert theWeb service's WSDL into
JavaScript.

4. Write custom JavaScript to call the JavaScript functions generated by theWSDL to JS wizard.
These functions will enable you to create and send the SOAP messages required to interact with
theWeb service. HP recommends that you write a short “standalone” script and invoke it from the
Script Library utility to test it prior to implementing the JavaScript call from Format Control,
Triggers, or Display Options. After you have determined and debugged the JavaScript code
required to invoke the service, you can then integrate the script with your ServiceManager
application.

5. Tailor your ServiceManager application to invoke your custom JavaScript when you want to
connect to a remote aWeb service. Usually Web Services are invoked from the Document
Engine, Format Control, Links, Display application, or from similar tailoring tools.

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 111 of 179

Best practices for writing a JavaScript to consume a Web
service
Never modify the JavaScript that is automatically generated by WSDL2JS unless you are specifically
instructed to do so by ServiceManager Customer Support. To invoke theWeb service, write a
JavaScript record that calls the functions generated by WSDL2JS. The JavaScript that invokes an
external Web service should perform the following tasks:

1. Create the Service Object.

2. Create the Request Object.

3. Fill the Request Object with information that defines the request.

4. Invoke the Service Object and pass in the Request Object.

5. Return either the ResponseObject, an instance of the ResponseObject, or a specific value of that
instance.

6. Perform error handling to test each response. Use try {…}, throw {…}, catch {…}, and the isFault
function.

As a best practice, do not reuse the names of variables and functions in the calling JavaScript that are
the names of variables and functions in the generated script. This can help avoid confusion.

Important:Never use the “new” keyword on a subordinate object unless it is an array. Unlike
conventionally compiled applications that invoke aWeb service, the generated function objects
described in this document already use “new” when instantiating all children, so it is not necessary to
do so in the calling JavaScript. The only exception is for arrays, where you use the newInstance()
function to generate the array and fill its elements.

Date/Time handling
The self-written JavaScript is responsible for correct formatting of xml schema dateTime fields. The
WSDL2JS-generated functions do not reformat the values assigned to them to convert them into the
correct format. If a field in an outgoing SOAP message is defined as a dateTime, and the script writer
assigns a value to the field, it needs to be a valid XML Schema dateTime, duration or other date/time
string value. It cannot be a ServiceManager datetime string nor should it be a JavaScript dateTime
string. To get the valid XML Schema date/time, the script writer should use the XMLDate global object.
For example:

// get today’s date/time from Javascript Date() object and store in a
new XMLDate object
var xmlDt = new XMLDate(new Date());

// coerce the datetime value stored in the XMLDate object to ISO/XML

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 112 of 179

schema format
print(xmlDt.getISODateTimeString());

There are a variety of methods for the XMLDate object that you can look up in the white paper with the
title of JavaScript Programmers Guide.pdf.

The constructor for XMLDate can handle several different formats. You can pass it a string, a number
of milliseconds, or a JS Date object (as in the example above).

Example: Interface to another system
This is an example for interfacing the ServiceManager ServiceCatalog with HP’s PPM Demand
service viaWeb Services.

When writing an interface to a different system, it is very important to understand the data structure and
themethods available, as well as understand how to interpret the generated JavaScript code. In this
example, we will not only discuss themethods and fields published by theWSDL, but reading the
generated code to successfully write the invoking code as well.

1. Determine the correct URL to enter into theWSDL to JS tool, check with the PPM administrator.

2. In ServiceManager, go toMenu Navigator and click Utilities > Tools > Web Services. Click
Run WSDL to JS.

3. Enter the URL to theWSDL, such as:
http://<hostname>:8080/itg/ppmservices/DemandService?wsdl

4. Click Proceed.

5. Click Add to add the new ScriptLibrary record called DemandService.

6. Write an interfacing JavaScript record in the ScriptLibrary called DemandServiceInvoke.

Generated JavaScript interfaces

This section helps provide a general understanding of how the generated JavaScript interfaces with the
invoking JavaScript. As a best practice, find the proper objects andmethods using a tool such as
SoapUI and test theWeb Service there prior to writing the invoking script. It should not be necessary to
interpret the generated code when taking that approach.

Check these sections in the “master” JavaScript to write the calling JavaScript:

The first line in themaster code gives the name of themain function or Service Object to call in the
calling JavaScript:

function DemandService()
{

this.location = new String("http://<ppm server>:15000/itg/
ppmservices/DemandService");

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 113 of 179

Create a request for a new project

Find the function that creates the desired result; in this case create a request for a new project:

this.SOAPOperations["createRequest"] = new soap_Operation

("createRequest", "urn:createRequest", "document", "createRequest",

"createRequestResponse");
…
function createRequest()
{

this.$$nsPrefix = "ns1";
this.$$elementFormDefault = "qualified";
this.$$attributes = new Array();
this.$$xmlNames = new Array();
this.$$objNames = new Array();
this.$$minOccurs = new Array();
this.$$refs = new Array();
this.getName = getName;
this.getXmlName = getXmlName;
this.setContent = setContent;
this.addContent = addContent;
this.getContent = getContent;
this.isFault = isFault;
this.$$elementChildren = new Array();
this.$$name = "createRequest";
this.$$xmlNames["createRequest"] = "createRequest";
this.xmlns_ns1 = new String("http://mercury.com/ppm/dm/service/1.0");
this.$$attributes.push("xmlns_ns1");
this.$$xmlNames["xmlns_ns1"] = "xmlns:ns1";
this.$$objNames["xmlns:ns1"] = "xmlns_ns1";
this.requestObj = new Request();
this.$$elementChildren.push("requestObj");

}

The structure of the request

The bold $$elementChildren.push section shows that the requestObj Child element is of type Request
(). To find the structure of the Request, find the definition of that function in the generated code.

function Request()
{

this.$$nsPrefix = "ns8";
this.$$elementFormDefault = "qualified";
this.$$attributes = new Array();
this.$$xmlNames = new Array();

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 114 of 179

this.$$objNames = new Array();
this.$$minOccurs = new Array();
this.$$refs = new Array();
this.getName = getName;
this.getXmlName = getXmlName;
this.setContent = setContent;
this.addContent = addContent;
this.getContent = getContent;
this.isFault = isFault;
this.$$elementChildren = new Array();
this.$$name = "Request";
this.$$xmlNames["Request"] = "Request";
this.$$minOccurs["id"] = 0;
this.id = new xs_string();
this.$$elementChildren.push("id");
this.requestType = new xs_string();
this.$$elementChildren.push("requestType");
this.simpleFields = new Array(); // of SimpleField
this.simpleFields.$$nsPrefix = "ns8"
this.simpleFields_newInstance = function()
{

var newLen = this.simpleFields.push(new SimpleField());
return this.simpleFields[newLen-1];

}
this.$$elementChildren.push("simpleFields");
this.tables = new Array(); // of Table
this.tables.$$nsPrefix = "ns8"
this.tables_newInstance = function()
{

var newLen = this.tables.push(new Table());
return this.tables[newLen-1];

}
this.$$elementChildren.push("tables");
this.notes = new Array(); // of Note
this.notes.$$nsPrefix = "ns8"
this.notes_newInstance = function()
{

var newLen = this.notes.push(new Note());
return this.notes[newLen-1];

}
this.$$elementChildren.push("notes");
this.fieldChangeNotes = new Array(); // of FieldChangeNote
this.fieldChangeNotes.$$nsPrefix = "ns8"
this.fieldChangeNotes_newInstance = function()
{

var newLen = this.fieldChangeNotes.push(new FieldChangeNote());
return this.fieldChangeNotes[newLen-1];

}
this.$$elementChildren.push("fieldChangeNotes");

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 115 of 179

this.URLReferences = new Array(); // of URLReference
this.URLReferences.$$nsPrefix = "ns8"
this.URLReferences_newInstance = function()
{

var newLen = this.URLReferences.push(new URLReference());
return this.URLReferences[newLen-1];

}
this.$$elementChildren.push("URLReferences");
this.remoteReferences = new Array(); // of RemoteReference
this.remoteReferences.$$nsPrefix = "ns8"
this.remoteReferences_newInstance = function()
{

var newLen = this.remoteReferences.push(new RemoteReference());
return this.remoteReferences[newLen-1];

}
this.$$elementChildren.push("remoteReferences");

}

Request object

The Request object can contain simple Fields, Notes, Field Change Notes, Tables etc. This example
examines these fields.

function SimpleField()
{

this.$$nsPrefix = "ns8";
this.$$elementFormDefault = "qualified";
this.$$attributes = new Array();
this.$$xmlNames = new Array();
this.$$objNames = new Array();
this.$$minOccurs = new Array();
this.$$refs = new Array();
this.getName = getName;
this.getXmlName = getXmlName;
this.setContent = setContent;
this.addContent = addContent;
this.getContent = getContent;
this.isFault = isFault;
this.$$elementChildren = new Array();
this.$$name = "SimpleField";
this.$$xmlNames["SimpleField"] = "SimpleField";
this.token = new xs_string();
this.token.$$nsPrefix = "ns7"
this.$$refs["token"] = true;
this.$$elementChildren.push("token");
this.stringValue = new Array(); // of xs_string
this.stringValue.$$nsPrefix = "ns8"
this.stringValue_newInstance = function()
{

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 116 of 179

var newLen = this.stringValue.push(new xs_string());
return this.stringValue[newLen-1];

}
this.$$elementChildren.push("stringValue");
this.$$minOccurs["dateValue"] = 0;
this.dateValue = new xs_dateTime();
this.$$elementChildren.push("dateValue");

}

Simple fields

Simple fields consist of tokens (of type xs_string), as well as instances of string Values (where each
element is of type xs_string).

Check the xs_string() function

When checking the xs_string() function, you will find that the JavaScript uses the setValue function to
fill the elements with data.

function xs_string(val)
{

this.$$nsPrefix = "xsd";
this.$$elementFormDefault = "qualified";
this.$$attributes = new Array();
this.$$xmlNames = new Array();
this.$$objNames = new Array();
this.$$minOccurs = new Array();
this.$$refs = new Array();
this.getValue = getValue;
this.setValue = setValue;
this.$$value = val;
this.xsi_type = new String("xsd:string");
this.$$attributes.push("xsi_type");
this.$$xmlNames["xsi_type"] = "xsi:type";
this.$$objNames["xsi:type"] = "xsi_type";

}

function setValue(value)
{
this.$$value = value;

}

Check expected parameters in invoke() function

Check which parameters the invoke() function expects.

function invoke(requestObj, headerObj, bEmitXsiTypeAttributes)

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 117 of 179

In this case, the headerObj and the bEmitXsiTypeAttributes are optional. They are “nullsub’ed” in the
JavaScript code), so the requestObj is the only required argument.

Check the syntax for the Response function

function createRequestResponse()
{

this.$$nsPrefix = "ns1";
this.$$elementFormDefault = "qualified";
this.$$attributes = new Array();
this.$$xmlNames = new Array();
this.$$objNames = new Array();
this.$$minOccurs = new Array();
this.$$refs = new Array();
this.getName = getName;
this.getXmlName = getXmlName;
this.setContent = setContent;
this.addContent = addContent;
this.getContent = getContent;
this.isFault = isFault;
this.$$elementChildren = new Array();
this.$$name = "createRequestResponse";
this.$$xmlNames["createRequestResponse"] = "createRequestResponse";
this.$$xmlNames["_return"] = "return";
this.$$objNames["return"] = "_return";
this._return = new RemoteReference();
this.$$elementChildren.push("_return");

}

Use getValue

Use getValue (or a similarly defined function) to read the result of the request.

function getValue()
{
return this.$$value;

}

Write the invoking JavaScript code

Now that the generated JavaScript gave information on the structure of the code to use for invoke, write
the invoking JavaScript code. In this case, the invoking code gets passed in information from a Service
Catalog Item. This information is then processed and passed through to the PPMWeb Service.

function CreateDemandRequest(CartItem)
{

try

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 118 of 179

{
///
// Initialization Section
//
// first, initialize the Service Object for this JavaScript

var DemandService=new system.library.DemandService.DemandService();

// set Connection information (optional)
DemandService.user = "admin";
DemandService.password = "admin";

// DemandService.location="http://<ppm server>:15000
/itg/ppmservices/DemandService";

DemandService.location="http://localhost:15001
/itg/ppmservices/DemandService";

// create the request object
var RequestDemRequest =

new system.library.DemandService.createRequest();

//
// Data Fill Section
//

// Data from Cart Item

var PlannedStart=system.library.xmlFill.
getValue(CartItem.options, "PlannedStart");

var PlannedEnd=system.library.xmlFill.
getValue(CartItem.options, "PlannedEnd");

var ProjectName=system.library.xmlFill.
getValue(CartItem.options, "ProjectName");

var ProjectManager=system.library.xmlFill.getValue
(CartItem.options, "ProjectManager");

var Region=system.library.xmlFill.getValue
(CartItem.options, "Region");

var ProjectType=system.library.xmlFill.getValue
(CartItem.options, "ProjectType");

// Fill into Web Request
RequestDemRequest.requestObj.requestType.setValue
("PFM - Proposal");

RequestDemRequest.requestObj.simpleFields_newInstance();

RequestDemRequest.requestObj.simpleFields[0].token.setValue
("REQ.VP.KNTA_PLAN_START_DATE");
var String0=RequestDemRequest.requestObj.simpleFields[0]

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 119 of 179

.stringValue_newInstance();
String0.setValue(PlannedStart)
RequestDemRequest.requestObj.simpleFields_newInstance();

RequestDemRequest.requestObj.simpleFields[1].token.setValue
("REQ.VP.KNTA_PLAN_FINISH_DATE");

var String1=RequestDemRequest.requestObj.simpleFields[1]
.stringValue_newInstance();

String1.setValue(PlannedEnd)

RequestDemRequest.requestObj.simpleFields_newInstance();
RequestDemRequest.requestObj.simpleFields[2].token.setValue
("REQ.VP.KNTA_PROJECT_NAME");

var String2=RequestDemRequest.requestObj.simpleFields[2]
.stringValue_newInstance();

String2.setValue(ProjectName)

RequestDemRequest.requestObj.simpleFields_newInstance();
RequestDemRequest.requestObj.simpleFields[3].token

.setValue("REQ.VP.KNTA_PROJECT_MANAGER");
var String3=RequestDemRequest.requestObj.simpleFields[3]

.stringValue_newInstance();
String3.setValue(ProjectManager)

RequestDemRequest.requestObj.simpleFields_newInstance();
RequestDemRequest.requestObj.simpleFields[4].token

.setValue("REQ.VP.KNTA_REGION");
var String4=RequestDemRequest.requestObj.simpleFields[4]

.stringValue_newInstance();
String4.setValue(Region)

RequestDemRequest.requestObj.simpleFields_newInstance();
RequestDemRequest.requestObj.simpleFields[5].token.setValue

("REQ.VP.KNTA_PROJECT_TYPE");
var String5=RequestDemRequest.requestObj.simpleFields[5]

.stringValue_newInstance();
String5.setValue(ProjectType)

// var ProjectNotes=RequestDemRequest.requestObj.
notes_newInstance();

// ProjectNotes.content.setValue("notes");
RequestDemRequest.requestObj.simpleFields[4].token.getValue())

///
// Invoke and final processing
///

var DemandResponse = DemandService.invoke
(RequestDemRequest);

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 120 of 179

if (DemandResponse.isFault())
{

print(DemandResponse.faultcode.getValue());
print(DemandResponse.faultstring.getValue());
print(DemandResponse.detail.getValue());
return("Failure");

}
else
{

print("Success")
return("Success");

}

}
catch(e)
{

print(e);
}

}

//
// Test Call
///

//var rc_Code=CreateDemandRequest(CartItem);

Determine the structure of the request and response

To determine the structure of the request and response, it is very helpful to look at both the request and
response using a tool such as SOAP UI. The PPMWSDL shown below generated the request and
response in the next section using SOAP UI.

PPMWSDL:

- <wsdl:definitions xmlns:ds="http://mercury.com/ppm/dm/service/1.0"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:dmMsg="http://mercury.com/ppm/dm/msg/1.0"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://mercury.com/ppm/dm/msg/1.0">

<wsdl:documentation>DemandService</wsdl:documentation>
- <wsdl:types>
- <xs:schema xmlns:dm="http://mercury.com/ppm/dm/1.0"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:common="http://mercury.com/ppm/common/1.0"

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 121 of 179

attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://mercury.com/ppm/dm/service/1.0">

<xs:import namespace="http://mercury.com/ppm/dm/1.0"
schemaLocation="DemandService?xsd=xsd0" />

- <xs:element name="createRequest">
- <xs:complexType>
- <xs:sequence>

<xs:element name="requestObj" type="dm:Request" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="createRequestResponse">
- <xs:complexType>
- <xs:sequence>

<xs:element name="return" nillable="true" type="dm:RemoteReference" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="getRequests">
- <xs:complexType>
- <xs:sequence>

<xs:element maxOccurs="unbounded" name="requestIds"
nillable="true" type="dm:Identifier" />

</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="getRequestsResponse">
- <xs:complexType>
- <xs:sequence>

<xs:element maxOccurs="unbounded" name="return"
nillable="true" type="dm:Request" />

</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="addRequestNotes">
- <xs:complexType>
- <xs:sequence>

<xs:element name="requestId" type="dm:Identifier" />
<xs:element maxOccurs="unbounded" name="notes" type="common:Note" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="addRequestNotesResponse">
- <xs:complexType>
- <xs:sequence>

<xs:element name="return" nillable="true" type="xs:int" />
</xs:sequence>
</xs:complexType>
</xs:element>

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 122 of 179

- <xs:element name="deleteRequests">
- <xs:complexType>
- <xs:sequence>

<xs:element maxOccurs="unbounded" name="requestIds"
type="dm:Identifier" />

</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="deleteRequestsResponse">
- <xs:complexType>
- <xs:sequence>

<xs:element name="return" nillable="true" type="xs:int" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="setRequestRemoteReferenceStatus">
- <xs:complexType>
- <xs:sequence>

<xs:element name="receiver" type="dm:Identifier" />
<xs:element name="source" type="dm:Identifier" />
<xs:element name="status" type="xs:string" />
<xs:element maxOccurs="unbounded" name="fields" nillable="true"
type="dm:SimpleField" />

</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="setRequestRemoteReferenceStatusResponse">
- <xs:complexType>
- <xs:sequence>

<xs:element name="return" nillable="true" type="xs:int" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="setRequestFields">
- <xs:complexType>
- <xs:sequence>

<xs:element name="requestId" type="dm:Identifier" />
<xs:element maxOccurs="unbounded" name="fields"
type="dm:SimpleField" />

</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="setRequestFieldsResponse">
- <xs:complexType>
- <xs:sequence>

<xs:element name="return" nillable="true" type="xs:int" />
</xs:sequence>
</xs:complexType>
</xs:element>

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 123 of 179

- <xs:element name="executeWFTransitions">
- <xs:complexType>
- <xs:sequence>

<xs:element name="receiver" type="dm:Identifier" />
<xs:element name="transition" type="xs:string" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="executeWFTransitionsResponse">
- <xs:complexType>
- <xs:sequence>

<xs:element name="return" nillable="true" type="xs:string" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>
</wsdl:types>

- <wsdl:message name="setRequestRemoteReferenceStatusMessage">
<wsdl:part name="part1" element="ds:setRequestRemoteReferenceStatus" />
</wsdl:message>

- <wsdl:message name="setRequestRemoteReferenceStatusResponseMessage">
<wsdl:part name="part1"
element="ds:setRequestRemoteReferenceStatusResponse" />

</wsdl:message>
- <wsdl:message name="addRequestNotesMessage">

<wsdl:part name="part1" element="ds:addRequestNotes" />
</wsdl:message>

- <wsdl:message name="addRequestNotesResponseMessage">
<wsdl:part name="part1" element="ds:addRequestNotesResponse" />
</wsdl:message>

- <wsdl:message name="createRequestMessage">
<wsdl:part name="part1" element="ds:createRequest" />
</wsdl:message>

- <wsdl:message name="createRequestResponseMessage">
<wsdl:part name="part1" element="ds:createRequestResponse" />
</wsdl:message>

- <wsdl:message name="deleteRequestsMessage">
<wsdl:part name="part1" element="ds:deleteRequests" />
</wsdl:message>

- <wsdl:message name="deleteRequestsResponseMessage">
<wsdl:part name="part1" element="ds:deleteRequestsResponse" />
</wsdl:message>

- <wsdl:message name="setRequestFieldsMessage">
<wsdl:part name="part1" element="ds:setRequestFields" />
</wsdl:message>

- <wsdl:message name="setRequestFieldsResponseMessage">
<wsdl:part name="part1" element="ds:setRequestFieldsResponse" />
</wsdl:message>

- <wsdl:message name="getRequestsMessage">

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 124 of 179

<wsdl:part name="part1" element="ds:getRequests" />
</wsdl:message>

- <wsdl:message name="getRequestsResponseMessage">
<wsdl:part name="part1" element="ds:getRequestsResponse" />
</wsdl:message>

- <wsdl:message name="executeWFTransitionsMessage">
<wsdl:part name="part1" element="ds:executeWFTransitions" />
</wsdl:message>

- <wsdl:message name="executeWFTransitionsResponseMessage">
<wsdl:part name="part1" element="ds:executeWFTransitionsResponse" />
</wsdl:message>

- <wsdl:portType name="DemandServicePortType">
- <wsdl:operation name="setRequestRemoteReferenceStatus">

<wsdl:input message="dmMsg:setRequestRemoteReferenceStatusMessage"
wsaw:Action="urn:setRequestRemoteReferenceStatus" />

<wsdl:output message=
"dmMsg:setRequestRemoteReferenceStatusResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0/
DemandServicePortType/setRequestRemoteReferenceStatus" />

</wsdl:operation>
- <wsdl:operation name="addRequestNotes">

<wsdl:input message="dmMsg:addRequestNotesMessage"
wsaw:Action="urn:addRequestNotes" />

<wsdl:output message="dmMsg:addRequestNotesResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0
/DemandServicePortType/addRequestNotesResponse" />

</wsdl:operation>
- <wsdl:operation name="createRequest">

<wsdl:input message="dmMsg:createRequestMessage"
wsaw:Action="urn:createRequest" />

<wsdl:output message="dmMsg:createRequestResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0/
DemandServicePortType/createRequestResponse" />

</wsdl:operation>
- <wsdl:operation name="deleteRequests">

<wsdl:input message="dmMsg:deleteRequestsMessage"
wsaw:Action="urn:deleteRequests" />

<wsdl:output message="dmMsg:deleteRequestsResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0
/DemandServicePortType/deleteRequestsResponse" />

</wsdl:operation>
- <wsdl:operation name="setRequestFields">

<wsdl:input message="dmMsg:setRequestFieldsMessage"
wsaw:Action="urn:setRequestFields" />

<wsdl:output message="dmMsg:setRequestFieldsResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0
/DemandServicePortType/setRequestFieldsResponse" />

</wsdl:operation>
- <wsdl:operation name="getRequests">

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 125 of 179

<wsdl:input message="dmMsg:getRequestsMessage"
wsaw:Action="urn:getRequests" />

<wsdl:output message="dmMsg:getRequestsResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0
/DemandServicePortType/getRequestsResponse" />

</wsdl:operation>
- <wsdl:operation name="executeWFTransitions">

<wsdl:input message="dmMsg:executeWFTransitionsMessage"
wsaw:Action="urn:executeWFTransitions" />

<wsdl:output message="dmMsg:executeWFTransitionsResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0
/DemandServicePortType/executeWFTransitionsResponse" />

</wsdl:operation>
</wsdl:portType>

- <wsdl:binding name="DemandServiceSOAP11Binding"
type="dmMsg:DemandServicePortType">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />

- <wsdl:operation name="setRequestRemoteReferenceStatus">
<soap:operation soapAction="urn:setRequestRemoteReferenceStatus"
style="document" />

- <wsdl:input>
<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="addRequestNotes">
<soap:operation soapAction="urn:addRequestNotes" style="document" />

- <wsdl:input>
<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="createRequest">
<soap:operation soapAction="urn:createRequest" style="document" />

- <wsdl:input>
<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="deleteRequests">
<soap:operation soapAction="urn:deleteRequests" style="document" />

- <wsdl:input>

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 126 of 179

<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="setRequestFields">
<soap:operation soapAction="urn:setRequestFields" style="document" />

- <wsdl:input>
<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="getRequests">
<soap:operation soapAction="urn:getRequests" style="document" />

- <wsdl:input>
<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="executeWFTransitions">
<soap:operation soapAction="urn:executeWFTransitions"
style="document" />

- <wsdl:input>
<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

- <wsdl:binding name="DemandServiceSOAP12Binding"
type="dmMsg:DemandServicePortType">

<soap12:binding transport="http://schemas.xmlsoap.org/soap
/http" style="document" />

- <wsdl:operation name="setRequestRemoteReferenceStatus">
<soap12:operation soapAction="urn:setRequestRemoteReferenceStatus"
style="document" />

- <wsdl:input>
<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 127 of 179

- <wsdl:operation name="addRequestNotes">
<soap12:operation soapAction="urn:addRequestNotes" style="document" />

- <wsdl:input>
<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="createRequest">
<soap12:operation soapAction="urn:createRequest" style="document" />

- <wsdl:input>
<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="deleteRequests">
<soap12:operation soapAction="urn:deleteRequests" style="document" />

- <wsdl:input>
<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="setRequestFields">
<soap12:operation soapAction="urn:setRequestFields" style="document" />

- <wsdl:input>
<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="getRequests">
<soap12:operation soapAction="urn:getRequests" style="document" />

- <wsdl:input>
<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="executeWFTransitions">
<soap12:operation soapAction="urn:executeWFTransitions"
style="document" />

- <wsdl:input>

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 128 of 179

<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

- <wsdl:binding name="DemandServiceHttpBinding"
type="dmMsg:DemandServicePortType">

<http:binding verb="POST" />
- <wsdl:operation name="setRequestRemoteReferenceStatus">

<http:operation location="setRequestRemoteReferenceStatus" />
- <wsdl:input>

<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="addRequestNotes">
<http:operation location="addRequestNotes" />

- <wsdl:input>
<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="createRequest">
<http:operation location="createRequest" />

- <wsdl:input>
<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="deleteRequests">
<http:operation location="deleteRequests" />

- <wsdl:input>
<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="setRequestFields">
<http:operation location="setRequestFields" />

- <wsdl:input>

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 129 of 179

<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="getRequests">
<http:operation location="getRequests" />

- <wsdl:input>
<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="executeWFTransitions">
<http:operation location="executeWFTransitions" />

- <wsdl:input>
<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

- <wsdl:service name="DemandService">
- <wsdl:port name="DemandServiceSOAP11port_http"

binding="dmMsg:DemandServiceSOAP11Binding">
<soap:address location="http://<ppm server>:15000/itg/ppmservices/
DemandService" />
</wsdl:port>

- <wsdl:port name="DemandServiceSOAP12port_http"
binding="dmMsg:DemandServiceSOAP12Binding">

<soap12:address location="http://<ppm server>:15000/itg/
ppmservices/DemandService" />

</wsdl:port>
- <wsdl:port name="DemandServiceHttpport1"

binding="dmMsg:DemandServiceHttpBinding">
<http:address location="http://<ppm server>:15000/itg/
ppmrest/DemandService" />

</wsdl:port>
</wsdl:service>
</wsdl:definitions>

PPM request

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/" xmlns:ns="http://mercury.com/ppm/dm/service/1.0"

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 130 of 179

xmlns:ns1="http://mercury.com/ppm/dm/1.0"
xmlns:ns2="http://mercury.com/ppm/common/1.0">
<soapenv:Header/>
<soapenv:Body>

<ns:createRequest>
<ns:requestObj>

<!--Optional:-->
<ns1:id></ns1:id>
<ns1:requestType></ns1:requestType>
<!--Zero or more repetitions:-->
<ns1:simpleFields>

<ns2:token>REQ.VP.KNTA_PLAN_START_DATE</ns2:token>
<!--Zero or more repetitions:-->
<ns1:stringValue>May 2008</ns1:stringValue>
<!--Optional:-->
<ns1:dateValue></ns1:dateValue>

</ns1:simpleFields>
<!--1 or more repetitions:-->
<ns1:tables>

<ns2:token></ns2:token>
<!--1 or more repetitions:-->
<ns2:columns>

<ns2:token></ns2:token>
<!--1 or more repetitions:-->
<ns2:values></ns2:values>
<!--1 or more repetitions:-->
<ns2:dates></ns2:dates>

</ns2:columns>
</ns1:tables>
<!--1 or more repetitions:-->
<ns1:notes>

<!--Optional:-->
<ns2:author></ns2:author>
<!--Optional:-->
<ns2:creationDate></ns2:creationDate>
<!--Optional:-->
<ns2:content></ns2:content>

</ns1:notes>
<!--1 or more repetitions:-->
<ns1:fieldChangeNotes>

<!--Optional:-->
<ns2:author></ns2:author>
<!--Optional:-->
<ns2:creationDate>?</ns2:creationDate>
<!--Optional:-->
<ns2:content></ns2:content>
<ns1:fieldPrompt></ns1:fieldPrompt>
<ns1:oldValue></ns1:oldValue>
<ns1:newValue></ns1:newValue>

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 131 of 179

</ns1:fieldChangeNotes>
<!--1 or more repetitions:-->
<ns1:URLReferences>

<!--Optional:-->
<ns1:addedBy></ns1:addedBy>
<!--Optional:-->
<ns1:creationDate></ns1:creationDate>
<!--Optional:-->
<ns1:description></ns1:description>
<!--Optional:-->
<ns1:name></ns1:name>
<ns1:refURL></ns1:refURL>

</ns1:URLReferences>
<!--1 or more repetitions:-->
<ns1:remoteReferences>

<!--Optional:-->
<ns1:addedBy></ns1:addedBy>
<!--Optional:-->
<ns1:creationDate></ns1:creationDate>
<!--Optional:-->
<ns1:description></ns1:description>
<!--Optional:-->
<ns1:name></ns1:name>
<!--Optional:-->
<ns1:displayURL></ns1:displayURL>
<ns1:identifier>

<ns1:id></ns1:id>
<!--Optional:-->
<ns1:serverURL></ns1:serverURL>

</ns1:identifier>
<!--Optional:-->
<ns1:status></ns1:status>

</ns1:remoteReferences>
</ns:requestObj>

</ns:createRequest>
</soapenv:Body>

</soapenv:Envelope>

PPM response

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<soapenv:Fault>
<faultcode>INTERNAL ERROR</faultcode>
<faultstring>Internal error has occurred while calling
PPM Web Service. Please contact PPM support with the detail

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 132 of 179

information if the problem persists. (KNTA-11186)
Details: Missing 'T' separator in dateTime</faultstring>

<detail>
<exception:exceptionDetails xmlns:exception=

"http://www.mercury.com/ppm/ws/exception">
<exception:detail>Missing 'T' separator in dateTime
</exception:detail>

</exception:exceptionDetails>
</detail>

</soapenv:Fault>
</soapenv:Body>

</soapenv:Envelope>

Web Services with a proxy server
It is possible to consumeWeb Services through a proxy server in ServiceManager. The proxy server
settings allow your ServiceManager server to connect to remote sites and download theWSDL for the
remoteWeb Services. The following parameters have to be added to the sm.ini file for theWeb
service to connect through a proxy server.

l JVMOptionX:-Dhttp.proxyHost=proxyserver.domain.company.com

l JVMOptionY:-Dhttp.proxyPort=<port number, 8088>

You can also specify a list of hosts to bypass the proxy:

JVMOptionZ:-Dhttp.nonProxyHosts="*.americas.hpqcorp.net|localhost"

The http.nonProxyHosts property indicates the hosts which should connect directly and not
through the proxy server. The value can be a list of hosts, each separated by a |, and in addition a
wildcard character (*) can be used for matching.

The X, Y and Z represent three consecutive numbers. The first JVMOption in the sm.ini will be number
1, the next will be number 2 and 3 etc. If these three are the only JVMOptions in your sm.ini, they will
be:

l JVMOption1:-Dhttp.proxyHost=proxyserver.domain.company.com

l JVMOption2:-Dhttp.proxyPort=<port number, e.g. 8088>

l JVMOption3:-Dhttp.nonProxyHosts="*.domain.company.com|localhost"

Connecting to a secure Web service
If you are consuming a secureWeb service that requires mutual authentication from ServiceManager
application using Javascript andWSDL2JS, follow these steps:.

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 133 of 179

If you are consuming an SSL-protectedWeb service using Javascript in SM 7x, which uses
java.xml.soap.SOAPConnection to send the request, the SSL configuration is done using Java key
stores. Refer to the documentation for the list of sm.ini parameters required for SSL configuration.

When you consume a secureWeb service orWeb site from JavaScript all you need to do is use an
https:// URL. There are no facilities for configuring SSL inWSDL2JS or in your script. The SSL
communication that is initiated by theWSDL2JS-generated code relies on the SSL configuration that is
in place for the server itself. The ServiceManager server’s server certificate in effect becomes the
client certificate for the outbound request.

To supply a Basic Authorization header when consuming aWeb service using JavaScript generated by
WSDL2JS, basic authentication is supplied automatically if you supply userid and password values on
the service object generated by WSDL2JS as shown in the below example:

var service = new system.library.IncidentManagement.
IncidentManagement();

service.user = "falcon";
service.password = "";
...

If on the other hand, you are coding a REST-style GET directly in your script, you need to code it
manually, because you have to code the HTTP request yourself. Add the following style code in the
JavaScript to perform this:

// HTTP GET example with Basic Auth header

var headers = new Array();

try
{

if (result.userid != undefined)
{

var authHeader = new Header();

authHeader.name = "Authorization";
authHeader.value = "Basic " + base64Encode

(result.userid + ":" + result.password);

headers.push(authHeader);
}

strWSDLsrc = doHTTPRequest("GET", wsdlURL, headers, null,
10, 10, 10);

}
catch(e)
{

print("WSDL request failed with exception " + e);
...

}

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 134 of 179

Use SSL connections to connect to an external Web service
When using SSL connections to an external Web service, the ServiceManager server acts like a client
andmust be set up accordingly. TheWeb service provider must send the root certificate or the
certificate authority’s (CA) certificate to the ServiceManager administrator. If it is a certificate
hierarchy, all certificates must be sent. Add this certificate to the ServiceManager cacerts file using
keytool.

For an anonymous SSL connection with an external Web Service usingWSDL2JS, you need a root
certificate file which includes the certificate for the CA that signed the remoteWeb Server's certificate.
The cacerts file that is shipped with ServiceManager may not contain the needed CA certificates and
needs to be edited as described above.

When the root certificate file is saved, the following parameters must be entered into the Service
Manager server sm.ini, if they do not already exist. These parameters identify the name of the root
certificate or authority's certificate as well as the ServiceManager server’s keystore.

Parameter Description

-truststoreFile The TrustStore file to use to validate client certificates. Default to the cacerts in the
RUN\jre\security directory.

-
truststorePass

Identifies the password to the keystore file containing the external Web Servics's
CA certificate. The pass phrase for the TrustStore file

-keystoreFile Identifies the keystore file containing the ServiceManager's server's certificate and
private key. Server keystore

-keystorePass Identifies the password to the keystore file containing the ServiceManager's
certificate and private key. Pass phrase for server keystore.

To enable the SSL encryption:

1. Stop the ServiceManager server.

2. Open the sm.ini file with a text editor.

3. Add the following parameters and their values:
a. keystoreFile

b. keystorePass

c. truststoreFile:cacerts

d. truststorePass

4. Save sm.ini.

5. Restart the ServiceManager sever.

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 135 of 179

6. Login to ServiceManager with SysAdmin privileges.

7. Click Tailoring > Web Services > Run WSDL to JS.

8. Update the endpoint URL to the external Web Service to include the HTTPS protocol. For
example: https://remote_server.remote_domain.com:13445/remote_
service.wsdl

If the https://<fully qualified server path>:<portnumber>/<Service>.wsdl
connection does not work after youmake these changes, it is possible that the distinguished name
(DN) used to create the certificate is not identical to the fully qualified server path in the URL. Check
which DN the certificate is using by asking the provider of the certificate. If it is different from the fully
qualified path used in the URL, request a new certificate where the DN matches the URL. If this cannot
be done in a timely manner, the following workaround can be tested:

Go to the server’s hosts file (which is located in etc/hosts on UNIX® systems, and located in
c:\winnt\system32\drivers\etc\hosts onWindows systems). In the hosts file, add a line with the fully
qualified name of the certificate and the IP address of themachine that runs theWeb Service. For
example:

mymachine.hp.com 10.2.5.77

wheremy”machine.hp.com” is the distinguished name (DN) of the certificate and 10.2.5.77 is the IP
address for the server that hosts theWeb Service.

Note: This is a temporary workaround, and not a permanent fix. Once the new certificate is issued, that
certificate should be put into the root certificate file, and the entry in the hosts file should be removed.

Important:When you use SSL connections on high-frequency Web Services wheremany requests per
second aremade, performance is negatively impacted because an SSL handshake occurs for each
SOAP request. The SSL handshake involves numerous TCP requests and responses as the two
partners identify each other, negotiate the encryption algorithm, and perform other required tasks. To
avoid this issue, ensure to use keep-alive connections. These will perform the handshake once and
then SSL is set up for the length of the session.

Web Services connections through a firewall
If your ServiceManager server is behind a firewall, youmay need to configure a proxy server
redirection to send and receiveWSDL and SOAP requests. If your firewall uses the SOCKS protocol,
then it can likely handleWeb Services redirection requests transparently to the user. If your firewall
does not recognize the SOCKS protocol, then you can install a dedicated redirector application for
SOCKS traffic such as that generated by Web Services requests.

If you install a redirector application for yourWeb Services SOAP traffic, then you need tomodify the
URLs you use to connect to the remoteWeb Services. To download the remoteWSDL, change the
URL listed in theWSDL to JS wizard to point to the dedicated socket you have established for the
remoteWeb Service. To send and receive SOAP messages to theWeb Service, you can change the
location object of your custom JavaScript to the dedicated socket you have established for the remote
Web Service.

Web Services Guide
SOAP API

HP ServiceManager (9.34) Page 136 of 179

Example: dedicated socket connection

Define a dedicated socket on port 8888 to the Amazon Search Service using the following
proxyconnect command of the connect.c application:

proxyconnect -p 8888 -S 192.168.1.254:1080

http://soap.amazon.com/onca/soap280

To obtain theWSDL for the Amazon Search Service through this example proxy connection, update
the WSDL to JSURL to point to:

http://localhost:8888/soap/servlet/rpcrouter

To send to and to receive from the Amazon Search Service SOAP messages , you could update the
custom calling script AmazonSearchServiceTestwith the following new line just after the
AmazonSearchService.ActorSearchRequest class is initialized.

actorSearchRequest.location =

"http://localhost:8888/soap/servlet/rpcrouter"

WebServices Guide
SOAP API

HP ServiceManager (9.34) Page 137 of 179

RESTful API
ServiceManager also supports a Rest API Framework. You can use the Rest API Framework to
support lightweight queries and operations on ServiceManager data via a single URI. Using the Rest
API Framework you can create an application that can perform Create, Read, Update, and Delete
actions on ServiceManager objects.

The Rest API Framework re-implements most of the functionality that the ServiceManager
SOAP implementation. Therefore, the Rest API Framework uses the same actions on objects as the
SOAP implementation, and the implementationmethods are similar.

For more information on the available actions, see the Allowed Actions tab field definitions in theWeb
Services Guide.

Service Document
ServiceManager supports the automatic generation of RESTful Service Documents by providing an
HTML (text/html) representation.

RESTful Service Documents represent server-defined group of Collections used to initialize the
process of creating and editing resources.

AfterRESTful Enabled is checked intoWeb Service Configuration for aWeb service, its
description will be generated.

At the top of the document, there is a group of all of ServiceManager RESTful services. You can go to
the detailed description of each service by clickingService Name.

In the detail of the description, you can find the URI and supported HTTP Methods for each Resource
Type. You can also find the supported actions’ descriptions.

For example:

HP ServiceManager (9.34) Page 138 of 179

Consuming Service Manager RESTful API
A ServiceManager Restful Web service can be consumed by a custom client or by an application that
directly consumes Restful Web Services.

RESTful Syntax
A RESTful query allows you to send a request or execute an operation by sending a single Universal
Resource Identifier (URI) space to ServiceManager. In general, the format for the URI resembles the
following:

l http://{host}:{port}/{initialPath}

This example uses the following placeholders:

l The {host} placeholder indicates the host or domain name on which the service is available.

l The {port} placeholder indicates the TCP port number on which the service is available.

l The {initialPath} placeholder indicates any initial path that is part of the URI for a given deployment.
This might be the path to the deployment point on the given server. This value should start with
/SM/9/rest.

Resource Types

The Rest API Framework in ServiceManager allows you to perform standard CRUD operations on
resources. URI endpoints for resources are roughly divided into the following resource types:

Web Services Guide
RESTful API

HP ServiceManager (9.34) Page 139 of 179

l Resource Collection

l Resource Instance

l Resource with Actions

l Attachment Collection

l Attachment Instance

URI Structure

The following table describes the structure of URIs that can be used in the Rest API Framework.

URI
Resourc
e

Comme
nts Example

/ Service
Documen
t

This is
the
service
documen
t for an
entire
business
service.
Only the
GET
method
is
supporte
d.

http://{host}:{port}/SM/9/rest

/
{
resources}

Resource
Collection

This is
the
collectio
n
resource
s. Only
the GET
and
POST
methods
are
supporte
d.

http://{host}:{port}/SM/9/rest/incidents

Web Services Guide
RESTful API

HP ServiceManager (9.34) Page 140 of 179

/
{
resources}
/{key}

Resource
Instance

This is
an
individual
resource.

http://{host}:{port}/SM/9/rest/incidents/IM10001

If with multiple keys, it should be {key1}/{key2}/{key3}. If one of
the key value is null, it should look like: {key1}/null/{key3}

/
{
resources}
/{key}
/attachme
nts

Attachme
nts
Collection

This is
the
attachme
nt list for
an
individual
resource.

http:/{host}:{port}/SM/9/rest/incidents/IM10001/attachments

/
{
resources}
/{key}
/attachme
nts/{
attachmen
t-id}

Attachme
nt

This is
an
individual
attachme
nt.

http://{host}:{port}
/SM/9/rest/incidents/IM10002/attachments/cid:51dd0b6d0002
c0042075d798

/
{
resources}
/{key}
/action/
{action}

Resource
With
Actions

Only the
POST
method
is
supporte
d.

POST http://{host}:{port}
/SM/9/rest/incidents/IM10134/action/reopen

This table uses the following placeholders:

l The {resources} placeholder represents the resource key of the individual object.

l The {attachment-id} placeholder represents the ID of the attachment for an individual resource.

l The {key} placeholder represents any unique key specified in the extaccess record.

l The {action} placeholder represents any action specified in the Allowed Actions tab of the External
Access Definition. It must be lower case. For example, if the action in the Allowed Actions tab is
"Reopen", the value of {action} should be "reopen".

l action, attachments and view are keywords that are used in the URI.

RESTful Authentication
The RESTful API framework supports the following authenticationmethods:

Web Services Guide
RESTful API

HP ServiceManager (9.34) Page 141 of 179

l HTTP Basic Authentication

l CAC (Common Access Card)

l TSO (Trusted Sign On)

l LW-SSO (Light Weight Single Sign On)

RESTful Commands
The Rest API Framework supports the following HTTP commands:

l GET

l POST

l PUT

l DELETE

The functionality of these commands varies according to the type of object to which it is applied and the
actions that are associated with that object. The following table shows example resources and
illustrates how these commands are used:

Object Example Commands Result

Service
Documen
t

GET / Returns all
accessible
URLs.

Query GET/<incidents> Returns all
Incidents

GET/<incidents>/<id> Returns an
Incident with
the specified
ID.

GET/<incidents>?query=<url-encoded-
string>&sort=number:ascending

Returns a
subset of
Incidents as
specified by
the
URL encode
d string, in
ascending
order.

Web Services Guide
RESTful API

HP ServiceManager (9.34) Page 142 of 179

Resource
s with
Actions

POST /<incidents> Creates an
Incident

PUT /<incidents>/<id> Updates an
specific
Incident

POST /<incidents>/<id>/action/<action> Invokes a
customized
action on a
specific
Incident

RESTful Queries
The Rest API Framework also supports several parameters to query resources to return different views
of a resource or to filter for desired entries in a list. You can run a query on all resource types.

Example of a query:

l /incidents?field1=value1&field2=value2 //Simple Query

l /incidents?query=<url-encoded-string>&sort=number:ascending //Service Manager
Native Query

Notes:

l A query stringmust use HTML URL Encoding.

l Datetime fields must use ISO standard formats.

The following table describes the parameters you can use:

Para
mete
r
Nam
e

Ty
pe Description:

query na
tiv
e
s
m
qu
er
y

Field name could be either "Caption" or "Field".

Examples:

Category="incident" and (Title="Desktop screen out of order" or
Title="Network logon failure")

Category="incident" and (brief.description="Desktop screen out of
order" or brief.description="Network logon failure")

WebServices Guide
RESTful API

HP ServiceManager (9.34) Page 143 of 179

sort str
in
g

Returns the collectionmembers in sorted order according to the arguments specified.
Arguments are listed in pairs where the first argument of the pair specifies the attribute
name on which to base the sort, and the second argument of the pair indicates whether
to sort ascending or descending. More than one attribute can be specified on the sort
list. The attributes “ascending” and “descending” can be used as well.

sort={primaryField}:{ascending|descending}[,{secondaryField}:

{ascending|descending}...]

For example, sort=Urgency or sort=severity or
sort=Urgency:ascending,field2:descending

By default, the sortorder is ascending.

start int Indicates the index of themember that the collection response representation begins
with.

count int Indicates the number of collectionmembers to be included in the response. The
minimum value for this parameter is 1. By default, its behavior is to return all members.
The behavior is the same as “view=summary” if “count=0”.

view str
in
g

Represents a collection.

Supported values:

view=summary

view=condense (default)

view=expand

summary: It returns the number of members if there are any, it does not return the
actual members.

condense: Returns the value of unique key field, it does not return the whole record.
This is the default behavior if the view query parameter is not specified.

expand: It returns all the fields defined in the extaccess record.

Resource Representations
The following topics describe themedia types and supported commands for each resource.

Media Types for an Individual Resource

The following table describes the supported commands andmedia types for an individual resource.

Action Supported?
Supported Request Media
Types

Supported Response Media
Types

WebServices Guide
RESTful API

HP ServiceManager (9.34) Page 144 of 179

GET √ - application/json

POST √ application/json application/json

PUT √ application/json application/json

DELETE √ - application/json

Resource Collection Media Types

The following table describes the supported commands andmedia types for a resource collection.

Action Supported?
Supported Request Media
Types

Supported Response Media
Types

GET √ - application/json

POST √ application/json application/json

PUT - - -

DELETE - - -

Media Types for an individual attachment

The following table describes the supported commands andmedia types for an individual attachment .

Action Supported?
Supported Request Media
Types

Supported Response Media
Types

GET √ - The attachment binary

POST - - -

PUT √ The attachment binary application/json

DELETE √ - application/json

Resource Collection Media Types

The following table describes the supported commands andmedia types for an attachment collection.

Action Supported?
Supported Request Media
Types

Supported Response Media
Types

GET √ - application/json

POST √ The attachment binary application/json

Web Services Guide
RESTful API

HP ServiceManager (9.34) Page 145 of 179

PUT - - -

DELETE √ - application/json

Enable a Resource for REST
To enable a resource to use the RESTful API Framework, follow these steps:

1. Navigate to Tailoring >Web Services >Web Service Configuration.

2. If needed, enter the information in theService Name, Name, orObject Name fields to specify the
resource you want to enable for RESTful.

3. Click Search, and then select the appropriate resource from the list.

4. UnderExternal Access Definition, click the RESTful API tab.

5. Check theRESTful Enabled? check box.

6. Specify the following required fields:

Field Function

Resource Collection Name: This is the name of the Resource Collection. For example,
youmay specify the group of incidents from the
probsummary table as "incidents".

Resource Name: This is the name of the individual Resource. For example,
youmay specify that any individual incident from the
probsummary table be referred to as an "Incident".

Unique Keys This field specifies one or more fields that will function as a
unique identifier for a Resource from the Resource
Collection.

7. If needed, specify the following additional fields:

Field Function

Resource
Collection
Action

POST:

This field represents the default action for resource collection.

Web Services Guide
RESTful API

HP ServiceManager (9.34) Page 146 of 179

Resource
Actions

POST:

PUT:

DELETE:

This field specifies the action to take when an individual resource is part of a
POST, PUT, DELETE command. These actions are specified in theAllowed
Actions tab of theExternal Access Definition.

RESTful Capability Word
The Rest API Framework introduces the following new capability word to ServiceManager.

RESTful API

YouMUST add this capability word to an user's operator record for a user to be able to log in and
execute a RESTful API request.

Note:Existing OMi integration RESTful functions will not check it and keep unchanged. The rest
actions go through document engine and follow the same permission process as normal client.

HTTP Header
Request Header

Autorization:

Keep-Alive:

Connnection:

Accept-Language:

Content-Type: (Required for attachment POST/PUT action)

Content-Disposition: (Required for attachment POST/PUT action. Value is
attachment;filename=filename; Semicolon is reserved for character separator, so it is not allowed in file
name.)

Note: Accept-Language is used for l10n.

Response Header

code&msg: 200, 201, 400, 401, 404, 500

Content-Type:

Content-Length:

WebServices Guide
RESTful API

HP ServiceManager (9.34) Page 147 of 179

HTTP Response Codes
Unless otherwise specified, these HTTP status codes are used:

Code Cause

200 Successful operation. Viewing a list or detail page will return this code if no error occurred.

201 Successful POST operations. Returned after a successful create or update of a object.

400 Bad request. This response codemay indicate that the URI was formed incorrectly.

401 Unauthorized operations.

404 Page not found. The page or resource does not exist.

500 Internal server error. This response codemay indicate a bug. Please contact HP Support.

See Also

Network Working Group RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1
Network Working Group RFC 2616 Section 10: Status Code Definitions

OOB Resource Reference Example
The following topic provide detailed information on how specific resources are published (for example,
Incident):

Web Service: Incident

External Access Definition:

Field Value

Service Name: IncidentManagement

Name: probsummary

Object Name: Incident

Default RESTful settings

Field Value

WebServices Guide
RESTful API

HP ServiceManager (9.34) Page 148 of 179

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

RESTful Enabled: checked

Attachments Enabled: checked

Resource Collection Name: incidents

Resource Name: Incident

Unique Keys: number

HTTP Resource Collection Actions

Command Action Result

GET Retrieves a list of Incidents

POST Create Creates a new collection of resources

HTTP Resource Actions

Command Action Result

GET - Retrieves an individual Incident.

PUT: Update Saves the changes to the Incident record.

POST: Update Saves the changes to the Incident record.

DELETE: -

Samples

Return sample of single incident query

{"Messages":[],
"ReturnCode":0,
"Incident":{

"UpdatedBy":"falcon",
"Status":"Closed",
"SLAAgreementID":168,
"Urgency":"3",
"Area":"failure",
"OpenTime":"2007-08-31T20:21:00+00:00",
"Location":"advantage/North America",
"ClosedTime":"2007-09-01T01:13:00+00:00",
"Title":"Printer malfunction",
"Subarea":"job failed",
"Solution":["Reset printer queue."],
"ClosedBy":"Incident.Analyst",
"OpenedBy":"Servicedesk.Manager",
"IncidentID":"IM10001",
"Assignee":"Incident.Analyst",

WebServices Guide
RESTful API

HP ServiceManager (9.34) Page 149 of 179

"Company":"advantage",
"Description":["Printjob keeps pending."],
"TicketOwner":"Servicedesk.Manager",
"ProblemType":"incident",
"AssignmentGroup":"Office Supplies (North America)",
"UpdatedTime":"2008-08-04T12:53:21+00:00",
"Service":"Printing (North America)",
"Impact":"4",
"ClosureCode":"Solved by Workaround",
"Category":"incident",
"AffectedCI":"adv-nam-printer-hr-5550"
}

}

Note: "Incident" is the Resource Name as defined in the extaccess record.

Return sample of incident list query

{
"@totalcount":136,
"@start":1,
"@count":10,
"Messages":[],
"content":[

{"Incident":{"IncidentID":"IM10001"}},
{"Incident":{"IncidentID":"IM10002"}},
{"Incident":{"IncidentID":"IM10003"}},
{"Incident":{"IncidentID":"IM10004"}},
{"Incident":{"IncidentID":"IM10005"}},
{"Incident":{"IncidentID":"IM10006"}},
{"Incident":{"IncidentID":"IM10007"}},
{"Incident":{"IncidentID":"IM10008"}},
{"Incident":{"IncidentID":"IM10009"}},
{"Incident":{"IncidentID":"IM10010"}}

],
"ReturnCode":0,
"ResourceName":"Incident"

}

Request sample of creating an incident

{
"Incident":
{

"AffectedCI" :"adv-nam-server-mail",
"AlertStatus" : "updated",
"Area" :"failure",
"Assignee" : "Incident.Analyst",

WebServices Guide
RESTful API

HP ServiceManager (9.34) Page 150 of 179

"AssignmentGroup": "Network",
"Category" : "incident",
"ClosureCode" : "Solved by Workaround",
"Company" : "advantage",
"Contact" : "FALCON, JENNIFER",
"ContactFirstName" :"FALCON",
"ContactLastName" : "JENNIFER",
"Description" : ["test"],
"Impact" : "2",
"JournalUpdates":

["08/04/08 12:54:14 US/Mountain (falcon):",
"test",
"08/04/08 12:54:14 US/Mountain (falcon):",
"test"

],
"Location":"advantage/North America",
"OpenTime" : "2007-09-02T07:51:00+00:00",
"OpenedBy":"Jurr.Fleijs",
"ProblemType" : "incident",
"ResolutionFixType" : "incident",
"SLAAgreementID" : 168,
"Service" : "E-mail / Webmail (North America)",
"SiteCategory" : "incident",
"Solution" : ["Solution by rest api"],
"Status" : "Work In Progress",
"Subarea" :"function or feature not working",
"TicketOwner" : "Jurr.Fleijs",
"Title" : "test",
"UpdatedBy" : "problem",
"UpdatedTime" : "2008-08-04T12:54:26+00:00",
"Urgency" : "3",
"UserPriority": "3 - Average",
"explanation" : ["test"],
"folder" :"advantage"
}

}

WebServices Guide
RESTful API

HP ServiceManager (9.34) Page 151 of 179

Troubleshooting
The combination of debugging tools and information gathered from faults usually helps you find the root
cause of an issue easily. Unfortunately, not all Web Services give sufficient fault messages, which
makes debugging the issuemore challenging.

Understanding the return codes provided byWeb
Services
Currently the status attribute always contains either "SUCCESS" or "FAILURE." A best practice is to
check either the status to see if it has the value “SUCCESS” or to check the return code to see if it is
zero. All other values equate to FAILURE. The value of themessage attribute is a string which
corresponds to the return code value. The ServiceManager server global JavaScript method called
RCtoString()will convert a particular integer return code value to the correspondingmessage text. The
following are the currently defined values:

Value Definition

0 Success

1 Bad Length

2 Bad Serial Number

3 Resource Unavailable

4 Unable to Terminate

5 Resource Not Available

6 Resource Expired

7 Specified NameNot Found

9 No (more) records found

10 Nomessages

11 No query words

12 No stop words

13 No string

14 No such word

HP ServiceManager (9.34) Page 152 of 179

Value Definition

15 Not enoughmemory

16 Already exists

17 Shutdown error

18 Stop words not found

19 Toomany documents

20 Unable to open file for output

21 Waiting for resource

22 Word length too long

23 Duplicate file system

24 Duplicate IPC Key

25 IPC Key Not Found

27 Wrong owner

28 Not authorized

29 Invalid Userid Specified

30 Invalid Password Specified

31 New Password is Invalid

32 Password Expired

33 Authority Revoked

34 Max Attempts to Login Exceeded

35 Max Number of Logins Exceeded

36 Invalid terminal for user

37 Invalid Authorization Code

38 Maximum users exceeded

39 Named user already logged in

40 Not a named user and no floating users available

41 User Already Logged In

42 Forced synchronization

Web Services Guide
Troubleshooting

HP ServiceManager (9.34) Page 153 of 179

Value Definition

43 IR read count mismatch

44 Seek error

45 24x7: DBLOG error

46 Open error

47 Error closing remote file

48 Duplicate key

49 Null key

50 All null keys

51 Recordmodified since last retrieved

52 Record deleted since last retrieved

53 Trigger Error

54 Not supported

55 Record no longer qualifies

56 Query timed out

57 Unable to delete file

58 Partially-keyed or non-keyed query

59 Error occurred in parsing

60 Sharedmemory versionmismatch

61 Distributed Lock Manager cannot lock item

62 Refresh not needed

63 Userid expired

64 Userid inactive

65 SQL conversion skipped for this file

66 Query could not be parsed

67 file could not be opened

68 User is not located in LDAP

69 User is not allowed to useODBC driver

Web Services Guide
Troubleshooting

HP ServiceManager (9.34) Page 154 of 179

Value Definition

70 Invalid SOAPaction / unrecognized application action

71 Validation failed

72 User is not allowed to use SOAP API

Example of a failure return code and message
The following is an example of a failure return code andmessage:

message="No (more) records found" returnCode="9" status="FAILURE"

Detailed return codes from Document Engine
The System Administrator canmanipulate the detailed return code by setting the value of $L.exit in
the Document Engine process’s final expressions to one of the following:

Action or Error Situation $L.exit value

record has changed since it was selected changed

cancel processing the record cancel

record is locked locked

Request failed validation bad.val

record was deleted since it was selected deleted

exit processing exit

normal exit normal

Record should get unlocked unlock

Sets exit value tomenu to return to themenu menu

Record was added, screen will be refreshed added

Processing will restart – starting with init of file variable restart

Processing will proceed with a new state record newstate

Displayed records will be refreshed refresh

Displayed joinfile records will be refreshed refreshjoinfile

Web Services Guide
Troubleshooting

HP ServiceManager (9.34) Page 155 of 179

Category changes newcat

Position in record list will be changed reposition

Record will be reset to original values resetrec

Mode will be set to close and close processing will start closestate

Restart processing starting with init of file variable restart

Mode will be set to add, which goes into the open state openstate

Initializing values to add record setupadd

An undefined action was passed to the document engine invalid.action

User is not authorized for this action no auth

Troubleshooting SOAP API
This section lists common issues of SOAP API and describes themethods to troubleshoot.

Debugging
Three parameters aremost frequently used: debughttp:1, RTM:3, and debugdbquery:999. It may be
useful to use themsglog:1 parameter to have all messages written to the sm.log as well, especially for
Connect-It Web Services integrations. As a best practice, put these debug parameters on the
dedicatedWeb Services port such as shown below:

sm -httpPort:13087 –debugnode –debughttp:1

The debughttp parameter

Add the debughttp in the server sm.ini file or in the dedicated servlet container line of the sm.cfg file,
restart the ServiceManager server and rerun theWeb service application to invoke the debugging
parameter.

For consumingWeb Services, the debughttp parameter writes to two files in the ServiceManager
server log directory, http.log and writes additional information into the sm.log file.

An excerpt of the http.log file follows. (To determine which areas of the log file are for theWeb service
call, search for “sm7server/ws”. Regular client communication uses SOAP UI instead.)

POST /sm7webserver/ws HTTP/1.1
content-type: text/xml;charset=UTF-8
soapaction: "EnableNewEmployee"
user-agent: Jakarta Commons-HttpClient/3.0.1
host: <server>:<port>

WebServices Guide
Troubleshooting

HP ServiceManager (9.34) Page 156 of 179

content-length: 2033

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:pws="http://servicecenter.peregrine.com/PWS" xmlns:com=
"http://servicecenter.peregrine.com/PWS/Common">

<soapenv:Header/>
<soapenv:Body>

<pws:EnableNewEmployeeRequestQuoteRequest attachmentInfo="?
attachmentData="?" ignoreEmptyElements="true">
<pws:model query="?">

<pws:keys query="?">
<!--Optional:-->
<pws:number type="String" mandatory="?"

readonly="?">?</pws:number>
</pws:keys>
<pws:instance query="?" uniquequery="?" recordid="?">

<!--Optional:-->
<pws:Priority type="String" mandatory="?"

readonly="?">?</pws:Priority>
<!--Optional:-->
<pws:Reason type="String" mandatory="?" readonly="?"

?</pws:Reason>
<!--Optional:-->
<pws:RequestingDepartment type="String" mandatory="?"
readonly="?">?</pws:RequestingDepartment>

<!--Optional:-->
<pws:Requestor type="String" mandatory="?" readonly="?">?

</pws:Requestor>
<!--Optional:-->
<pws:Location type="String" mandatory="?" readonly="?">?

</pws:Location>
<!--Optional:-->
<pws:HireType type="String" mandatory="?" readonly="?">?

</pws:HireType>
<!--Optional:-->
<pws:attachments>

<!--Zero or more repetitions:-->
<com:attachment href="?" contentId="?" action="?

name="?" type="?" len="attachmentType="?"/>
</pws:attachments>

</pws:instance>
<!--Optional:-->
<pws:messages>

<!--1 or more repetitions:-->
<com:message type="String" mandatory="?" readonly="?"
severity="?" module="?">?</com:message>

</pws:messages>
</pws:model>

WebServices Guide
Troubleshooting

HP ServiceManager (9.34) Page 157 of 179

</pws:EnableNewEmployeeRequestQuoteRequest>
</soapenv:Body>

</soapenv:Envelope>

HTTP/1.1 401
Set-Cookie: JSESSIONID=94DCC5F90495E0202B84EFB1F998195A;
Path=/sc62server
WWW-Authenticate: Basic realm="CASM"
Connection: close
Content-Type: text/html;charset=utf-8
Content-Length: 40
Date: Wed, 21 May 2008 17:16:05 GMT

Interpreting the http.log

The http.logmay contain encoded or compressedmessages from theWindows orWebClient
communication. See below to turn off SOAP compression and FastInfoset encoding. Web Services
communications are not encoded nor compressed.

The http.log contains information on all Processes / Threads that connect to the traced servlets. If more
than one Process / Thread is traced, information in the logmay overlap from different sessions,
resulting in multiple POST or GETmessages together rather than the POST –GET pair you would
expect.

To turn off FastInfoset and compression for the clients, follow these steps:

1. On the shortcut starting theWindows client, add –DFastInfoset=false to the target.

2. The command line arguments for the ServiceManagerWindows client are:
n -vmargs -option1 -option2

3. As an example, if -DFastInfoset=false is the only command line option ensure your command line
is:
n -vmargs -DFastInfoset=false

4. Turn off Compress SOAP Messages on the File - Connect – Connections screen’s Advanced tab.

5. For theWeb client, turn off FastInfoset by setting the JAVA Option -DFastInfoset=false. As an
example, to turn off FastInfoset on Tomcat 5.5 or later, follow these steps:
a. Go to the Apache Tomcat x.x folder on the Start Menu.

b. Start the Configure Tomcat application.

c. Select the Java tab in the configuration dialog.

6. Turn off the Compress SOAP Messages by editing the ...\WEB-INF\web.xml file

<!-- Compress network communication between the application server
and the HP Service Manager server -->

WebServices Guide
Troubleshooting

HP ServiceManager (9.34) Page 158 of 179

<init-param>
<param-name>compress_soap</param-name>
<param-value>false</param-value>

</init-param>

RTM:3 and debugdbquery:999

Sometimes theWeb Service itself is working correctly, but actions performed by the Document Engine
within ServiceManager are not performing as expected. (Error Message: soap_serve - Caught XML
API exception scxmlapi(19) - Doc Engine call failed with cc -1)The RTM:3 and debugdbquery:999
parameters can expose such issues that occur within the application layer of ServiceManager. The
debugging information produced by these parameters can be found in the sm.log file in the Service
Manager server RUN directory. It is not necessary to restart ServiceManager to activate these debug
parameters. Reconnecting theWeb Service to ServiceManager triggers the use of these debug
parameters.

The allowwsdlretrieval parameter

This parameter is used to allow retrieval of theWSDLwithout having the SOAP UI license.

Error messages

Error Message: soap_serve - Caught XML API exception scxmlapi(19) - Doc Engine call failed
with cc -1

ServiceManager publisher:

This error message is issued either when the Document Engine did not attempt to write the record,
because the Process called via extaccess does not perform a save operation, or if a validation failed
and the save could not be performed. To fix this issue, ensure that the Process called does perform an
action that adds or updates a database record. If it does, add themsglog:1 parameter to the sm.ini and
rerun theWeb Service. Check the sm.log file for any validation error messages and then either pass the
required information or change the extaccess record to add any missing required fields to it. If your are
still unsure what is the root cause of the issue after this, add RTM:3 and debugdbquery:999 to the
sm.ini and retest theWeb service operation. If your are still unsure what is the root cause of the issue
after this, add RTM:3 and debugdbquery:999 to the sm.ini file and retest theWeb service operation.

Error Message: Invalid or missing file name in XML request

ServiceManager publisher or consumer:

Complete Error Message: <SOAP-ENV:Fault><faultcode>SOAP-
ENV:Server</faultcode><faultstring>scxmlapi(16) - Invalid or missing file name in XML

Web Services Guide
Troubleshooting

HP ServiceManager (9.34) Page 159 of 179

request</faultstring><detail><appFaultCode>16</appFaultCode><appFaultString>scxmlapi(16) -
Invalid or missing file name in XML request</appFaultString></detail></SOAP-ENV:Fault>

This error message is issued if the binaries cannot successfully retrieve the name for the Object to
access from the extaccess file. This issue occurs most often when theObject name is in “CamelCase”
notation. To prevent this issue, do not use “CamelCase” notation (where the name contains compound
words or phrases that are joined without spaces, and each word is capitalized within the name.) in the
Object Name in the extaccess file. As a best practice, use the name of the dbdicts as the Object Name
as well.

If the underlying cause is not the camel case notation, you canmodify the SOAP body by adding
filename=”<filename>” to work around this issue. For example:

<soap:Body>

<CreateProblemRequest filename="rootcause"

xmlns="http://<server>:<port>/SM/7">

Error Message: getType() in com.peregrine.webservice.ComputerInstanceTypeDevice cannot
override getType() in com.peregrine.webservice.common.StructureType; attempting to use
incompatible return type

The ConfigurationManagement WSDL is made up of the device extaccess record in addition to a
number of device attribute files (such as computer). The following errors occur when you set the API
Caption for the type field in the device extaccess record to “type” or “Type” and then attempt to compile
theWSDL using Apache Ant:

build_java:
[javac] Compiling 114 source files to C:\Service

Manager\server\webservices\sample\AxisSample\build
[javac] C:\Service

Manager\server\webservices\sample\AxisSample\src\com\
peregrine\webservice\ComputerInstanceTypeDevice.java:225: getType() in
com.peregrine.webservice.ComputerInstanceTypeDevice cannot override
getType() in com.peregrine.webservice.common.StructureType; attempting to
use incompatible return type

[javac] found : com.peregrine.webservice.common.StringType
[javac] required: java.lang.String
[javac] public com.peregrine.webservice.common.StringType
getType() {
[javac]
[javac] 1 error

BUILD FAILED
C:\Service Manager\server\webservices\sample\AxisSample\
build.xml:184: Compile
failed; see the compiler error output for details.

WebServices Guide
Troubleshooting

HP ServiceManager (9.34) Page 160 of 179

To avoid this or similar errors, make sure that the name is valid and does not conflict with previously
defined names when you set up alias names (“API Captions”). All of the common.xsd definitions for
data types such as StructureType, ArrayType, have a type attribute, for which Axis manufactures a
getType Javamethod. When it generates a getTypemethod for this new type property/field, those two
methods conflict. It does not matter whether you specify “type” or “Type” because Axis uses camel-
case naming conventions for its generatedmethod names. Whenever an API caption can cause a
conflict with a pre-existing function, change it to be something unique; in this case, for example, make
the API caption CIType.

Failure of the WSDL2JS utility
TheWSDL to JS utility executes the SOAP JavaScript record. It reads the providedWSDLwith all
incorporated schema definitions and creates or updates a JavaScript record in the ServiceManager
ScriptLibrary table with the objects andmethods that can be used for this web service. The generated
code can then be called from a custom written JavaScript to consume the external Web Service. If the
code generated by WSDL2JS is incorrect or incomplete, contact Customer Support for a new unload of
the utility. If the issue is still not solved with the latest version of theWSDL2JS utility, send theWSDL
and all imported / invoked xsd schemas to Customer Support together with an unload of the generated
JavaScript record. It is very important that the location of the xsd files that are imported or invoked from
theWSDL is set correctly, otherwise theWSDL2JS utility will generate incomplete code.

Important:Every time the SOAP JavaScript record is changed, all existingWeb Services generated
JavaScripts have to be re-generated by re-running theWSDL to JS utility and all invoking JavaScripts
have to be re-compiled.

Testing your WSDL with a SOAP UI
To read theWSDL, go to File > New Project and enter a project name as well as the initial WSDL
location and click onOK. The list of methods will be displayed on the left, the request is in themiddle,
the response on the right.

To pass authentication information, enter the Username and Password. If the password is blank, enter
information and then remove the information again.

Note:SoapUI fills in each field value with a questionmark symbol. For correct processing, remove
these ? before submitting the request.

Running Web Services on a dedicated port (servlet)
To create a separate servlet within a horizontally or vertically scaled ServiceManager system, add the
debugnode parameter to the dedicated servlet container. The debugnode parameter stops the load
balancer from distributing client load to this node. This can be used to set up a dedicated servlet for
tracing and logging without adding an uncontrollable amount of load to that servlet. Another use is to
create a dedicated servlet for a special purpose within the scaled solution. As an example, refer to the
following sm.cfg file:

Web Services Guide
Troubleshooting

HP ServiceManager (9.34) Page 161 of 179

#load Balancer Port
sm -loadBalancer -httpPort:13080
#Ports for loadBalanced Connections
sm -httpPort:13081 -httpsPort:13082
sm -httpPort:13083 -httpsPort:13084
sm -httpPort:13085 -httpsPort:13086
#Port for Web Services
sm -httpPort:13087 -debugnode

Current limitations of runningWeb Services through the load balancer:

l The HTTP 307 redirect is not fully compliant with the specifications which can affect Web Services
integrations through the ServiceManager Load Balancer. The workaround is to connect directly to
one of the ServiceManager Application server servlets.

l WebServices through the ServiceManager Load Balancer are not possible when SSL is enabled on
the server.

l WebServices through the ServiceManager Load Balancer are not possible forWeb Services
clients that can't handle a redirect.

Troubleshooting a Web service that is behind a closed
firewall
Sometimes it is necessary to troubleshoot aWeb Service that is not available. To do so, we can check
whether aWSDL file that is stored on the local machine works using test data.

Step 1: Test the WSDL2JS

1. Store theWSDL file locally on the server.

2. Start theWSDL to JS utility and enter, file://<fully qualified path to the file>.wsdl

3. Click Proceed.

If the JavaScript file for theWeb service is generated without error messages and ends with:

lib.SOAP.init();
/// End ----------------

… then theWSDL to JS program was able to interpret theWSDL file.

To correctly write the JavaScript functions to call this Web service and generated JavaScript, check
the generated JavaScript for the function you want to use, in this case:

Web Services Guide
Troubleshooting

HP ServiceManager (9.34) Page 162 of 179

this.SOAPOperations["RetrieveIncident"]
= new soap_Operation("RetrieveIncident", "Retrieve","document",

"RetrieveIncidentRequest",
"RetrieveIncidentResponse");

The request can be found within that line and refers to the request function further down:

function RetrieveIncidentRequest()
{

this.$$nsPrefix = "ns";
this.$$attributes = new Array();
this.$$xmlNames = new Array();
this.$$objNames = new Array();
this.$$minOccurs = new Array();
this.getName = getName;
this.getXmlName = getXmlName;
this.setContent = setContent;
this.addContent = addContent;
this.getContent = getContent;
this.isFault = isFault;
this.$$elementChildren = new Array();
this.$$name = "RetrieveIncidentRequest";
this.$$xmlNames["RetrieveIncidentRequest"] = "ns:RetrieveIncidentRequest";
this.attachmentInfo = new Boolean();
this.$$attributes.push("attachmentInfo");
this.attachmentData = new Boolean();
this.$$attributes.push("attachmentData");
this.ignoreEmptyElements = new Boolean("true");
this.$$attributes.push("ignoreEmptyElements");
this.xmlns = new String("http://servicecenter.peregrine.com/PWS");
this.$$attributes.push("xmlns");
this.model = new RetrieveIncidentRequest_IncidentModelType();
this.$$elementChildren.push("model");

Step 2: Test the request

Once the automatically generated JavaScript code has been saved, write a calling JavaScript to
execute theWeb Service. The following is a simple example code for IncidentManagement record
retrieval:

function RetrieveIncident(incident_id)
{

var IncMgmtSvc = new system.library.IncidentManagement.
IncidentManagement();

IncMgmtSvc.user="falcon"

WebServices Guide
Troubleshooting

HP ServiceManager (9.34) Page 163 of 179

var retrieveReq = new system.library.IncidentManagement.
RetrieveIncidentRequest();

retrieveReq.model.keys.IncidentID.setValue(incident_id);

try
{

var retrieveResp = IncMgmtSvc.invoke(retrieveReq);
if (retrieveResp.isFault())
{

throw("SOAP Fault: " + retrieveResp.
faultstring.getValue());

}
return retrieveResp.model.instance;

}
catch(err)
{
return("Error! " + err);

}
}

retVal=RetrieveIncident("IM1001");

print("Testing the result " + retVal.IncidentID.getValue())

1. To test the request, enter debughttp in the sm.ini file and restart the server and client.

2. If the file http.log exists in the server’s RUN directory, remove it or remove its contents so that
there will be a fresh file to read.

3. Go into the calling JavaScript and click Execute. You will most likely get an error message
because theWeb service you are trying to reach is not available.

4. After the execution is complete, open the http.log file and search for the following:

POST /sc62server/ws HTTP/1.1
accept: application/fastinfoset, text/xml, text/html,
image/gif, image/jpeg, *; q=.2, */*; q=.2
authorization: Basic ZmFsY29uOg==
soapaction: Retrieve
connection: Close
content-type: text/xml; charset=utf-8
content-length: 841
cache-control: no-cache
pragma: no-cache
user-agent: Java/1.5.0_08
host: <server>:<port>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/

WebServices Guide
Troubleshooting

HP ServiceManager (9.34) Page 164 of 179

envelope/"
xmlns:ns0="http://servername.port_number/SM/7/service_name.wsdl"
xmlns:ns1="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:ns2="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:ns3="http://servicecenter.peregrine.com/PWS
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"><soap:Body><ns3:RetrieveIncidentRequest attachmentData=
"false" attachmentInfo="false"
ignoreEmptyElements="true">
<ns3:model><ns3:keys><ns3:IncidentID mandatory="false"
readonly="false" type="String">IM1001</ns3:IncidentID>

</ns3:keys><ns3:instance><ns3:IncidentDescription
type="Array"/><ns3:Resolution type="Array"/>
<ns3:JournalUpdates
type="Array"/>

<ns3:Solution type="Array"/></ns3:instance>
</ns3:model></ns3:RetrieveIncidentRequest></soap:Body></soap:Envelope>

HTTP/1.1 200
Set-Cookie: JSESSIONID=0405ED23EFF6C9A3874F77796FE4210D;
Path=/sc62server
Connection: close
Connection: close
Content-Type: application/fastinfoset;charset=utf-8
Content-Length: 1323
Date: Wed, 04 Jun 2008 22:09:56 GMT
Connection: close
Connection: closeSet-Cookie: SessionId=16.95.106.150:3487;
Version=1

5. You can copy the bold area into an XML editor such as Altova® XMLSpy® and check whether it is
correct XML. If it is, then the request is deemed to be successful (which does not necessarily
mean that it will return data).

Another method to check the request and response is to run the request through a tool such as tcpmon.
To do so, start tcpmon, enter the server name and port of the receivingWeb service and connect the
invoking JavaScript to tcpmon. Both the request and the response are visible in the tcpmon screen and
can be analyzed in an XML editor as well.

Step 3: Test the response

After the request has been submitted successfully, test the response to the request, which is written to
the http.logfile. Look for the following text. (The section that is bolded indicates that this is the response
message):

SOAP-ENV (http://schemas.xmlsoap.org/soap/envelope/
<Envelope><Body>http://servicecenter.peregrine.com/PWSÏ cmn,
http://servicecenter.peregrine.com/PWS/CommonÏ xsd¬http:

WebServices Guide
Troubleshooting

HP ServiceManager (9.34) Page 165 of 179

//www.w3.org/2001/XMLSchemaÏ xsi(http://www.w3.org/2001/
XMLSchema-instanceð=‚ RetrieveIncidentResponsex message No
more) records foundx returnCode@9x schemaRevisionDate
2008-05-30x schemaRevisionLevel@1x status
FAILURE{„… schemaLocation dhttp://servicecenter.peregrine.
com/PWS http://<server>:<port>/sc62server/ws/Incident.xsdð=‚
model=‚ keys}‚ IncidentIDx typeEStringð’ IM1001ÿ}‚
instancexrecordid IM1001 - x
uniquequery number="IM1001"ðE ‚ð ÿÿÿðà
< #document8ÏSOAP-ENV(http://schemas.xmlsoap.org/soap/
envelope/ð? Envelope? BodyxÍ%http://servicecenter.
peregrine.com/PWSÏ cmn,http://servicecenter.peregrine.com/
PWS/CommonÏ xsd¬http://www.w3.org/2001/XMLSchemaÏ xsi(http://
www.w3.org/2001/XMLSchema-instanceð=‚
RetrieveIncidentResponsex message No (more) records foundx
returnCode@9x schemaRevisionDate 2008-05-30x
schemaRevisionLevel@1x status FAILURE{„… schemaLocation
dhttp://servicecenter.peregrine.com/PWS http://geist8440.
americas.hpqcorp.net:13701/sc62server/ws/Incident.xsdð=‚
model=‚ keys}‚ IncidentIDx typeEStringð’ IM1001ÿ}‚
instancexrecordid IM1001 - x
uniquequery number="IM1001"ðF ‚ð ÿÿÿÿ

HTTP/1.1 200
Keep-Alive: timeout=1200000, max=1000
Connection: Keep-Alive
Pragma: requestnum="185"
Content-Encoding: gzip
Content-Type: application/fastinfoset;charset=utf-8
Transfer-Encoding: chunked
Date: Wed, 04 Jun 2008 22:09:56 GMT

1. Copy the sectionmentioned above from the http.log file into a text file and assign it a name such
as responsetest.xml. If you used tcpmon to get the information, you can use the XML response as
is. If it came from the http.log, you will need tomodify the special characters in the log to correct
XML syntax.

2. Change the calling JavaScript to override the invoke function to read and interpret the contents of
the responsetest.xml file. The following is the section of the code needed to do that.

// Temporarily override the "invoke" function to replace it
with
// a function which reads an XML response from a file
<ServiceObject>.invoke = function() {
var resultObj = new Object();
resultObj.responseObj = null;
var resultXML = new XML();
resultXML.setContent("c:\\<path>\\<responsetest.xml>",

WebServices Guide
Troubleshooting

HP ServiceManager (9.34) Page 166 of 179

true);
try
{
lib.SOAP.deserialize("<name of the generated JavaScript>",
resultXML.getDocumentElement(), resultObj);
}
catch(e)
{
print("Error deserializing response: " + e.toString());
return null;
}
try
{
this.soapEnvelope = resultObj.soap_Envelope;
this.soapBody = resultObj.soap_Envelope.soap_Body;
if (this.soapEnvelope.soap_Header != undefined)
{
this.soapHeader = this.soapEnvelope.soap_Header;
}
else
this.soapHeader = null;
return resultObj.soap_Envelope.soap_Body.getContent();
}
catch(e)
{
print("Error extracting Response Object: " + e.toString());
return null;
}
}

3. Change the line of the calling JavaScript that invokes theWeb Service from
<ServiceObject>.invoke to simply invoke to call the invoke function defined within that calling
JavaScript.

4. Click Execute to run this modified JavaScript. If it finishes without errors, the response is deemed
successful.

If any of the above tests fail to complete, contact HP ServiceManager Customer Support and provide
theWSDL file, the request and response xml text files with any error messages, and the sm.log and
http.log files with debughttp turned on.

Max sessions exceeded in Web Services
If aWeb Services request contains "connection: keep-alive" or it uses HTTP/1.1 without a connection
header, the ServiceManager server will keep the session alive for a predefined interval that is defined
by setting the "webservices_sessiontimeout" parameter in the sm.ini file. If aWeb Services client
does not reuse the session for subsequent requests by providing valid headers, the ServiceManager
server creates a new session for each subsequent request and quickly run out of available sessions.

Web Services Guide
Troubleshooting

HP ServiceManager (9.34) Page 167 of 179

To avoid running out of available sessions, there are two options to consider:

Option A: Set the HTTP header "connection:closed" so that the ServiceManagerserver will not keep a
Web Services session open after the current request is finished.

Option B: Utilize theWeb Services session persistence by doing one of the following to reuse the
existingWeb Services session on theServiceManagerserver.

1. Use connection: keep-alive. If the connection header is missing, it defaults to "keep-alive"
for HTTP/1.1.

2. TheWeb Services client needs to supply a session cookie with the same user log-in information
that created the session.

Note: Even withWeb Services session persistence, each SOAP API request is stateless, so that
requests are handled independently between one another.

Troubleshooting HTTP socket connections
The HP ServiceManager server attempts to keep an HTTP socket connection open as long as
possible, but the protocol requires that it must close if the server returns a SOAP fault. If there is no
successful authentication, it must return a SOAP fault.

Redirected ports

To ensure the client has the correct hostname and port number, a SOAP client application can direct
requests to the TCP port number used by the sm -httpPort instance, but must be able to recognize
SOAP header values in the initial response:

l redirectServerHost

l redirectServerPort

The server returns these SOAP header values identifying the dynamically allocated TCP host and port
number for the spawned process. During the client/server session, subsequent SOAP requests must
be directed to the same hostname and port identified in the initial response.

TCP ECONNRESETmessages

If a client/server connection using a spawned child thread terminates, the sm -httpPort child thread
receives a TCP ECONNRESETmessage. The child thread responds to this by self-terminating to
ensure that orphaned child thread does not collect on the server. However, poorly-designed client
applications, or other third-party SOAP tools, that do not gracefully close a connection could cause the
server process to see a TCP ECONNRESETmessage, and that also terminates the server thread.

Web Services Guide
Troubleshooting

HP ServiceManager (9.34) Page 168 of 179

Debugging SOAP errors
The best practice for troubleshooting SOAP errors is to start a new client connection process with a
dedicated log file associated with it. Opening a new client connection process allows you to isolate any
faulty client traffic from your regular client traffic.

1. To set up your system to debug SOAP traffic, do one of the following:

l Start HTTP debugging for the entire system. Type the following command on a single line in the
sm.ini file and then save the file.

debughttp:1

Debug parameters in the sm.ini file affect all ServiceManager processes and the log files record
all send/receivemessages. This method is not recommended for a busy server however, since you
have to restart the server for the debugging parameter to take effect.

l Start a separate client connection process to troubleshoot your SOAP errors. Type the following
command in the operating system command line:

sm -httpPort:unique portnumber -sslConnector:0 -debughttp:1
-log:../logs/debug.log

where

-httpPort identifies a port whereWeb Services clients can connect
-log defines a path to store the logs for this process

Normally, all client connection processes for a particular ServiceManager installation use the
parameter values listed in the sm.ini file. This means that all client connections share the same
log file specified in the sm.ini file. By starting a new client connection process with a different log
parameter value, you can isolate the logs for a particular group of clients. Choose a port number that
is not likely to be used by any other process.

2. Recreate the error.

3. Review the http.log, sm.log and log files from theWeb Services consumer or publisher that
ServiceManager is communicating with and server, and client log files for information about the
SOAP error. The HTTP log is in the server's RUN folder. The server logs are in the path you
specified with the log parameter. The client logs are located in the following paths:

l For aWeb Services client, see yourWeb Services client log

l For aWeb client, see the log filed specified in the log.properties file on the web tier system

l For aWindows client, see the .log on theWindows client system

Web Services Guide
Troubleshooting

HP ServiceManager (9.34) Page 169 of 179

SOAP messages: Debugging HTTP traffic problems

If, after reviewing the client logs, you discover that there is an error in the HTTP transfer of SOAP
messages, youmust manually enable the HTTP debugging option on the ServiceManager server. This
option allows you to trace all HTTP and SOAP messages between the ServiceManager server and
client. You can trace HTTP traffic in one of two ways.

l Trace all HTTP connections to the server

l Trace a dedicated connection to the server

To review all the HTTP traffic, you can enable the debughttp parameter from the ServiceManager
initialization file (sm.ini) file. This causes the server to record all messages sent from and to the
server to the following log files.

l logs\sm.log

l RUN\TEST.log

This method of debugging SOAP messages traces all ServiceManager processes, but significantly
reduces system performance because the log files the server produces contain all HTTP traffic,
including HTTP headers and attachments. For this reason it is recommended that you not enable this
parameter on production systems, but rather in test environments only.

To review HTTP traffic use the -httpPort paremeter as in the sample below. In addition, you can create
a dedicated log file for this connection. By starting a new ServiceManager process and specifying a
separate log parameter, you reduce the amount of system resources needed to produce debugging
output. For example, you can enter the following command from the server OS command line to create
a dedicated servlet and log file.

sm -httpPort:portnumber -debughttp:1 -log:../logs/debug.log

For portnumber, type a communications port number on which you want the server to use for SOAP
requests. You can use the -log parameter to define a path to any log file you want.

SOAP messages: Debugging problemswith RAD applications

If your review of the client logs reveals potential problems in the RAD applications, you can enable the
logging of RAD applicationmessages by adding the rtm startup parameter to the ServiceManager
initialization file. This parameter causes the server to record all application-generatedmessages to
sm.log file. For example, to receive detailed information about the RAD applications type the
following command into the ServiceManager initialization file (sm.ini).

rtm:3

You can use the RAD application loggingmessages to determine if any tailoring changes youmade are
the cause of SOAP faults.

Web Services Guide
Troubleshooting

HP ServiceManager (9.34) Page 170 of 179

Web Services client unable to connect
Themost common error occurs when yourWeb Services client application fails to obtain a response, or
you receive this error message:

Server Error in <name> Application

The underlying connection was closed: Unable to connect to the remote
server

TheWeb Services client may be directing SOAP requests to the wrong host or to the wrong TCP port
number. HP ServiceManager generates WSDL files that contain the hostname and TCP port number
for the ServiceManager server instance receiving the request. TheWeb Services client application
may use the hostname and port number used during application development, but the production
hostname and port might be different each time the application runs if they are dynamically allocated.

If the server instance generating theWSDL is different from the hostname or port number receiving the
client application requests, the client/server connection will fail. Follow these rules to ensure
successful client/server SOAP communication.

l Ensure that yourWeb Services request is not running against a common port with heavy server
traffic. Otherwise, tracking request and responsemessages will be difficult.

l Type the following at the command line to generate debug logs:

sm -httpPort:unique portnumber -sslConnector:0 -debughttp:1 -
log:../logs/debug.log

where

-httpPort identifies a dedicated port forWeb Service client connections
-log defines a path to store the logs for this connection

Tip: It is easier to troubleshoot errors if each SOAP client application connects to its own TCP port
number.

l Examine the HTTP.LOG file for responsemessages. You can use this information to determine
where aWeb Service client connection failure occurs.

Calling external web services with SSL fails after JRE 7
upgrade
Calling external web services with SSL encryption from ServiceManager fails after binary upgrade
including JRE upgrade to version 1.7.0.

The sm.log contains an exception like this:

Web Services Guide
Troubleshooting

HP ServiceManager (9.34) Page 171 of 179

JRTE E java.security.PrivilegedActionException:
com.sun.xml.messaging.saaj.SOAPExceptionImpl: Message send failed
RTE E Error calling method: doSoapRequest in class:
com/hp/ov/sm/server/utility/SoapClient Exception
(com.sun.xml.messaging.saaj.SOAPExceptionImpl:
java.security.PrivilegedActionException:
com.sun.xml.messaging.saaj.SOAPExceptionImpl: Message send failed)
RTE E SCException caught in soapRequest(): Error calling method: doSoapRequest in
class: com/hp/ov/sm/server/utility/SoapClient Exception
(com.sun.xml.messaging.saaj.SOAPExceptionImpl:
java.security.PrivilegedActionException:
com.sun.xml.messaging.saaj.SOAPExceptionImpl: Message send failed)
RAD E Error calling method: doSoapRequest in class:
com/hp/ov/sm/server/utility/SoapClient Exception
(com.sun.xml.messaging.saaj.SOAPExceptionImpl:
java.security.PrivilegedActionException:
com.sun.xml.messaging.saaj.SOAPExceptionImpl: Message send failed)

Additionally, a sm_<process identifier>_stdouterr.log was created. The relevant stack trace is:

Caused by: javax.net.ssl.SSLException: Received fatal alert: unexpected_message
at com.ibm.jsse2.j.a(j.java:21)
at com.ibm.jsse2.j.a(j.java:32)
at com.ibm.jsse2.qc.b(qc.java:5)
at com.ibm.jsse2.qc.a(qc.java:645)
at com.ibm.jsse2.qc.h(qc.java:809)
at com.ibm.jsse2.qc.a(qc.java:106)
at com.ibm.jsse2.qc.startHandshake(qc.java:586)
at com.ibm.net.ssl.www2.protocol.https.c.afterConnect(c.java:15)
at com.ibm.net.ssl.www2.protocol.https.d.connect(d.java:39)
at sun.net.www.protocol.http.HttpURLConnection.getOutputStream

(HttpURLConnection.java:1090
<http://www.protocol.http.httpurlconnection.getoutputstream
(httpurlconnection.java:1090/>)

at com.ibm.net.ssl.www2.protocol.https.b.getOutputStream(b.java:33)
at com.sun.xml.messaging.saaj.client.p2p.HttpSOAPConnection.post

(HttpSOAPConnection.java:323)

Cause:

The remote endpoint is not supporting Server Name Indication (SNI), which is by default activated in
Java 7. The issue is related to the remote endpoint (in this case, the web services server), and whether
it supports SNI extensions during the SSL handshake or not. Once ServiceManager is upgraded to use
Java 7, it starts to use SNI extensions during the SSL handshake. If the remote endpoint does not, the
web service will fail with the error message provided above.

Web Services Guide
Troubleshooting

HP ServiceManager (9.34) Page 172 of 179

Solution:

Activate SNI at the remote endpoint. This is the recommended solution.

Workaround:

If the remote endpoint does not support SNI extensions, and SNI cannot be activated, add the following
JVMOption<n> parameter either to the sm.ini file, or to the start command of the servlet(s) in the
sm.cfg file:

JVMOption2:-Djsse.enableSNIExtension=false

This will disable a security feature SNI in Java 7.

Troubleshooting RESTful API
This section lists common issues of RESTful API and describes themethods to troubleshoot.

Debugging
The following three parameters aremost frequently used for debugging RESTful API:

l debugrest

l dao_threadsperprocess

l dao_sessiontimeout

It is also useful to use themsglog:1 parameter to have all messages written to the sm.log as well.

The debugrest parameter

Add the debugrest in sm.ini or in the dedicated servlet container line of the sm.cfg file, restart the
ServiceManager and re-run the RESTful Web service application to invoke debugging parameter. It
provides more detailed log trace for diagnostics.

The dao_threadsperprocess parameter

Similar to debugrest, it can be set in sm.ini or in the dedicated servlet container line of sm.cfg file

It means themaximum number of threads allowed concurrently running in the process for RESTful
Web Service application. It can be defined in sm.ini and the default value is 10. It is better to start
enough server threads to handle requests (suggest to maintaining the buffer of 30%~ 40% spare
capacities).

Web Services Guide
Troubleshooting

HP ServiceManager (9.34) Page 173 of 179

The dao_sessiontimeout parameter

Like debugrest, the dao_sessiontimeout parameter can be set in sm.ini or in the dedicated servlet
container line of sm.cfg file.

It indicates the seconds to wait before terminate the RESTful threads. It can be defined in sm.ini and
the default value is 15 seconds. Unless the client sends subsequent requests within the timeout, the
ServiceManager server will recycle the session for re-use and re-allocate it on demand.

If there is big divergence, it is recommended to connect several servlets with different thresholds.

Web Services Guide
Troubleshooting

HP ServiceManager (9.34) Page 174 of 179

Syntax for entity references in xml
Character represented Entity Reference xml code

> greater than >

< less than <

“ Quotationmarks "

& ampersand &

‘ apostrophy '

HP ServiceManager (9.34) Page 175 of 179

Definitions, acronyms, and abbreviations

Term Definition

Consuming Using aWeb Service by calling its methods, supplying the appropriate calling
parameters

Publishing Providing a service over theWeb by making public the services operations and objects
in aWeb Service.

WSDL Web Services Description Language, which is a standard, structured way of
describing SOAP messages andWeb Services

REST Representational State Transfer.

HP ServiceManager (9.34) Page 176 of 179

Web Services resources
You can use the following resources to develop and publish your ownWeb Services.

TheWorldWideWebConsortium (W3C) has existed for almost ten years. Its objective is to develop
common protocols and to recommend standards that promote Internet interoperability. There are over
400member organizations who contribute to forming recommendations for standards and best
practices among Internet developers. TheW3C provides leadership in an array of Web technologies
(including XML, HTML, and similar areas of interest) by creating working groups that gather and publish
information and recommendations.

You can find theWSDL schema and SOAP schemas published and propagated by IBM andMicrosoft
at schemas.xmlsoap.org. TheW3C has complete descriptions of the schema elements for both SOAP
andWSDL. See theW3C Web site for themost recent working draft of SOAP andWSDL
recommendations.

There are third party tool kits that simplify creating aWeb Service. For example, Apache Axis and
Microsoft Visual Studio .NET are development tool kits you can use to create a customWeb Services
client directly from the ServiceManagerWeb Services API WSDL.

If you are interested in examples of workingWeb serviceWSDL files, programmatic interfaces,
tutorials, samples, and a list of availableWeb services, see the Xmethods Web site. Also see the
resources listed below:

l Service-Oriented Architecture : A Field Guide to Integrating XML andWeb Services, April 2004,
Prentice Hall Publishing

l WebServices: A Technical Introduction, August 2004, Prentice Hall Publishing

l JavaWeb Services, March 2004, O’Reilly

l Apache Axis

l Microsoft Visual Studio .NET

l schemas.xmlsoap.org

l SOAP schemas

l WorldWideWebConsortium

l GzipWeb site

l ApacheWink

l Representational state transfer

l Hypertext Transfer Protocol

HP ServiceManager (9.34) Page 177 of 179

http://ws.apache.org/axis/
http://msdn.microsoft.com/vstudio/
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://www.w3.org/
http://www.gzip.org/
http://wink.apache.org/
http://en.wikipedia.org/wiki/REST
http://www.w3.org/Protocols/rfc2616/rfc2616.html

Send Documentation Feedback
If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the
following information in the subject line:

Feedback on Web Services Guide (Service Manager 9.34)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a webmail client, and
send your feedback to ovdoc-ITSM@hp.com.

We appreciate your feedback!

HP ServiceManager (9.34) Page 178 of 179

mailto:ovdoc-ITSM@hp.com?subject=Feedback on Web Services Guide (Service Manager 9.34)

	Service Manager Web Services
	Introduction to the Web Service guide
	What is a Web Service?
	Understanding the Service Manager Web Services
	Web Services basics
	Adding or changing Web Services

	Introduction to Web Services in Service Manager
	Web Services and Service Manager
	Web Services naming conventions for SOAP
	Web Services security considerations
	Valid URLs for Service Manager
	Service Manager Web Services URLs
	Configure the Web Service field definitions
	Allowed Actions tab field definitions
	Expressions tab field definitions
	Fields tab definitions
	RESTful tab field definitions

	Publishing Service Manager data using WS API
	Things to consider prior to publishing data
	Publishing Service Manager applications as Web Services
	When to use Web Services
	Can I use the out-of-box Web Services?
	What items do I need to expose?
	Publish a Document Engine display action in the Web Services API
	Publish a Service Manager field in the Web Services API

	What data types should I use for SOAP?
	What methods do I need?
	Managing records with Web Services requests
	Create only
	Update only
	Merge

	Are there any security considerations?
	What are released Web Services?
	Enable SSL encryption for published Web Services

	Example: Publishing request processes for integration
	Create the display option
	Set up the Request Management category
	Create the new Process
	Set up the State record
	Update the format control record
	Set up the extaccess record

	List: Web Services available in the Service Manager Web Services API
	Field names in the extaccess record
	Create dedicated Web Services listeners
	Data conversion between Service Manager and SOAP Web Services
	Example: Publishing the Terminate Change functionality via Web Services
	Create a display option
	Create a new process
	Set up a State record
	Set up an extaccess record
	Execute a request via SOAP Web Services
	Response to a request via SOAP Web Services
	Execute a request via RESTful Web Services
	Response to a request via RESTful Web Services

	Publish a table as a Web service
	Expose a table with more than one Web service
	Remove a Document Engine display action from a Web service
	Remove a Service Manager field from a Web service
	Sample client for SOAP Web Services SM7 URL
	Command line arguments for the Axis2 sample application
	Add an external access action to the Web Services

	SOAP API
	Web Services Description Language (WSDL)
	Basic operations in WSDL files
	Service Manager WSDL files
	Types of Web Services in Service Manager
	WSDL document structure
	XML header
	Namespace definitions
	Operation section
	Messages section
	Types section
	Nillable attribute

	Port type
	Binding section
	Service section
	Port section

	Change example to use the cookie
	Verify the WSDL to JS output
	Example using Keep-Alive with .Net Web Services Studio
	First execution of .Net Web Services Studio
	Second execution of .Net Web Services Studio

	Consuming a Service Manager Web Service
	Dynamic and static Web Services clients
	What happens if an exposed table is changed?

	Updating Service Manager tables
	Requirements for developing custom Web Services clients
	Checklist: Creating a custom Web Services client
	Technical support for custom Web Services clients

	Sample Web Services client for sc62server PWS URL
	Command line arguments for the .NET samples
	Command line arguments for the Axis sample application
	Configuration Management
	Incident Management

	Using query syntax
	The request
	The response

	Retrieving data from Service Manager
	Example: Retreiving data from Service Manager via a Web service
	The request
	The response

	Retrieve data from Service Manager using Pagination
	Example: Use Web Service with pagination to retrieve data from Service Manager
	Request with pagination
	Response with pagination
	Next pagination request
	Next pagination response

	Retrieve data from Service Manager for Optimistic Locking
	Request with updatecounter
	Response with updatecounter

	Web Services examples in the RUN directory
	Example: Retrieving Service Manager Release Management changes into a text fi...
	Example: Getting change information from another Service Manager system
	Example to close an existing incident record

	Special considerations for using Keep-Alive with Service Manager
	Keep-Alive example for Service Manager

	Use SSL to consume Service Manager Web Services
	Attachment handling
	Service Manager allows requests with no href or content-id
	Sample script to send a ticket with attachments within Service Manager

	Consume an external Web Service
	Use the WSDL2JS utility
	Best practices for writing a JavaScript to consume a Web service
	Date/Time handling
	Example: Interface to another system
	Generated JavaScript interfaces
	Create a request for a new project
	The structure of the request
	Request object
	Simple fields
	Check the xs_string() function
	Check expected parameters in invoke() function
	Check the syntax for the Response function
	Use getValue
	Write the invoking JavaScript code
	Determine the structure of the request and response
	PPM request
	PPM response

	Web Services with a proxy server
	Connecting to a secure Web service
	Use SSL connections to connect to an external Web service
	Web Services connections through a firewall

	RESTful API
	Service Document
	Consuming Service Manager RESTful API
	RESTful Syntax
	Resource Types

	RESTful Authentication
	RESTful Commands
	RESTful Queries
	Resource Representations
	Media Types for an Individual Resource
	Resource Collection Media Types
	Media Types for an individual attachment
	Resource Collection Media Types

	Enable a Resource for REST
	RESTful Capability Word
	HTTP Header
	HTTP Response Codes
	See Also

	OOB Resource Reference Example
	Web Service: Incident

	Troubleshooting
	Understanding the return codes provided by Web Services
	Example of a failure return code and message
	Detailed return codes from Document Engine

	Troubleshooting SOAP API
	Debugging
	The debughttp parameter
	Interpreting the http.log
	RTM:3 and debugdbquery:999
	The allowwsdlretrieval parameter

	Error messages
	Failure of the WSDL2JS utility
	Testing your WSDL with a SOAP UI
	Running Web Services on a dedicated port (servlet)
	Troubleshooting a Web service that is behind a closed firewall
	Step 1: Test the WSDL2JS
	Step 2: Test the request
	Step 3: Test the response

	Max sessions exceeded in Web Services
	Troubleshooting HTTP socket connections
	Redirected ports
	TCP ECONNRESET messages

	Debugging SOAP errors
	SOAP messages: Debugging HTTP traffic problems
	SOAP messages: Debugging problems with RAD applications

	Web Services client unable to connect
	Calling external web services with SSL fails after JRE 7 upgrade

	Troubleshooting RESTful API
	Debugging
	The debugrest parameter
	The dao_threadsperprocess parameter
	The dao_sessiontimeout parameter

	Syntax for entity references in xml
	Definitions, acronyms, and abbreviations
	Web Services resources
	Send Documentation Feedback

