/

HP Diagnostics

Software Version: 9.24

.NET Agent Guide

Document Release Date: January 2015
Software Release Date: January 2015

.NET Agent Guide

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial ltems are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notice

© Copyright 2005 - 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.
UNIX® is aregistered trademark of The Open Group.

Java s aregistered trademark of Oracle and/or its affiliates.

Oracle® is aregistered trademark of Oracle and/or its affiliates.

Acknowledgements

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
This product includes software developed by the Spice Group (http://spice.codehaus.org).

For information about open source and third-party license agreements, see the Open Source and Third-Party Software License Agreements document in the Documentation
directory on the product installation media.

Documentation Updates

The title page of this document contains the following identifying information:

« Software Version number, which indicates the software version.
« Document Release Date, which changes each time the document is updated.
« Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to: https://softwaresupport.hp.com/group/softwaresupport/search-
result?keyword=.

This site requires an HP Passport account. If you do not have one, click the Create an account button on the HP Passport Sign in page.

Support

Visit the HP Software Support web site at: https://softwaresupport.hp.com
This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software Support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed to manage your
business. As a valued support customer, you can benefit by using the support web site to:

« Search for knowledge documents of interest

« Submit and track support cases and enhancement requests
« Download software patches

« Manage support contracts

« Look up HP support contacts

HP Diagnostics (9.24) Page 2 of 239

.NET Agent Guide

« Review information about available services
« Enter into discussions with other software customers
« Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP Passport ID, go to
https://softwaresupport.hp.com and click Register.

To find more information about access levels, go to: https://softwaresupport.hp.com/web/softwaresupport/access-levels

HP Software Solutions & Integrations and Best Practices

Visit HP Software Solutions Now at https://h20230.www2.hp.com/sc/solutions/index.jsp to explore how the products in the HP Software catalog work together, exchange
information, and solve business needs.

Visit the Cross Portfolio Best Practices Library at https://hpin.hp.com/group/best-practices-hpsw to access a wide variety of best practice documents and materials.

HP Diagnostics (9.24) Page 3 of 239

Contents

Welcome to This Guide 9
How This Guide Is Organized L 9
Diagnostics Documentation 10

Part 1: Introduction .. . 11
Chapter 1: Diagnostics .NET Agent Overview ... 12

About the Diagnostics .NET Agent ... 12
Introducing Diagnostics Profiler for NET 12
Features and Benefits of the Diagnostics .NET Profiler 13

Part 2: Installation and Configuration of the Diagnostics .NET Agent .._........_. 14

Chapter 2: Preparing to Install the Diagnostics .NET Agent 15
Requirements for the Diagnostics .NET Agent Host 15
Requirements for the Diagnostics .NET ProfilerUl 16
Planning the Installation 16

Chapter 3: Installing .NET Agents L 18
Overview of the NET Agent Installation 19
Accessingthe NET Agent Installer i 20
Installing the .NET Agent 21
Post INstall Tasks 38
Verifying the .NET Agent Installation 38
About Configuration of the .NET Agent for Diagnostics 39
About Configuration of the .NET Agent for TransactionVision _....._.......................... 39
Discovery and Standard Instrumentation 41
Probe Aggregator Service 44
Monitoring NET Applications Deployedin Azure Cloud 45
Monitoring Applications on SharePoint withthe NET Agent 45
Determining the Version of the NET Agent .. . 47
Enabling and Disabling the Diagnostics Agent for NET 48
Enabling and Disabling Standard Instrumentation for Applications 48
Troubleshooting .NET Web Applications Not Discovered 50
Manually Adding an AppDomain Not Discovered 51
Other .NET Agent Troubleshooting Tips ... 54
Uninstalling the .NET Agent 55

HP Diagnostics (9.24) Page 4 of 239

.NET Agent Guide

Chapter 4: Upgrading the Diagnostics .NET Agent 56
Upgrade .NET Agents ... il 56
Upgrade Notes and Limitations 57

Part 3: Advanced .NET Agent Configuration and Instrumentation 58

Chapter 5: Custom Instrumentation for NET Applications 59
About Instrumentation and Capture Points Files 59
Locating the .NET Capture Points Files 60
Coding Points in the Capture Points File 61
Instrumentation Examples ... il 66
Understanding the Overhead of Custom Instrumentation 83
Default Layers for Typical .NET Applications 83

Chapter 6: Understanding the .NET Agent Configuration File 85
Understanding .NET Agent ConfigurationFile, 85
.NET Agent Configuration Elements 86

<ali> BleMENt 86
<appdomain> element ... 87
<bufferpool> element .. 89
<capturecookies™ element . 90
<captureexceptions> element 91
<capturehttpheaders> element __ ... 92
<clientmonitoring> element ... 93
<consumeridrules> element ... 94
<CpUtiME™ ElemMeNnt 95
<credentials> element ... 96
<demomode> element ... 97
<depth> element . L 98
<diagnosticsserver> element 99
<exceptiontype> element ... 101
<exclude> element (when parent is captureexceptions) 102
<exclude> element (when parentis lwmd) 103
<excludeassembly>element . .. 104
<excludesqlparam> element __ .. 105
<filter> element . 106
<filter> @lement |l 107
<gentvhttpeventforwcf>element 108
<htmlinstrumentation> element ... i 109
<httpcaptureparams> element ... il 110
<httpclient> element . . 112

HP Diagnostics (9.24) Page 5 of 239

.NET Agent Guide

<httpheaderrule> element 112
<httpheaderrules> element il 114
<Sid> leMENt L 115
<include> element (when parent is captureexceptions) ... 116
<include> element (when parentis Iwmd) 117
<instrumentation> element ... 118
<iprule> element . 119
SIPrUlES ™ BlEMENt 120
<latency> element 121
<logging> element (when parent is appdomain, probeconfig, or process) 125
<lwmd> element .. 127
<mediator> element ...l 128
<metrics> element ... 130
<metric> element 131
<modes™ element . 133
<param> elemMent 136
<POINtS> lement ... 137
<probeconfig> element 138
<ProCeSS™> ElemMeNt . 139
<profiler> element . 141
<IUM> @lemMeNt .. 143
<sample> element 145
<server> element . 146
<soapcapture> element 147
<soaprequestforsoapfault> element 148
<soaprule> element 149
<S0aAPrUles™> element . . L 150
<sqlparsing> element il 151
<stacktracesampling> element 152
<SYMbOIS> @lemMent . 154
<timeskew> element . . . 156
<tOpPology > €lemMeNt . 157
<transport> element ... 158
<trim> element . 160
AV LMt 161
<uriautocollapsing> element 162
<urireplacepattern> element 164
SUM> Bl EMENt 165
<vmware> element .. 166
<WeEbSErver> element . L 167

HP Diagnostics (9.24) Page 6 of 239

.NET Agent Guide

WS> element L 168
XV element .. 169
Chapter 7: Advanced .NET Agent Configuration 170
Time Synchronization for NET Agents RunningonVMware _.._............................ 171
Customizing the Instrumentation for ASP.NET Applications _.._............................ 171
Discovering the Classes and Methods in an Application 175
Controlling Which HP Software Products the Agent can Work With __...................... 177
Configuring Support for MSMQ BasedCommunication 179
Configuring Latency Trimming and Throttling 179
Configuring Depth TrimmMINg ... 182
Configuring URI Truncation and Mapping ...l 183
Capturing HTTP Server Requests Based on Query Parameters 184
Configuring the .NET Agent for Lightweight Memory Diagnostics 186
Limiting Exception Stack Trace Data 188
Configuring Thread Stack Trace Sampling 190
Disabling Logging 192
Overriding the Default Probe Host Machine Name 192
Listing the Probes Running on a Host 193
Authentication and Authorization for NET Profilers 194
Configuring Consumer ID s ... 195
Configuring SOAP Fault Data 199
Collecting Additional Probe Metrics or Modifying Probe Metrics _......_..................... 199
Manually Enabling Auto-Discovered ASP.NET Applications and Non ASP.NET Services 201
Chapter 8: .NET System Metrics Agent - Systems Metrics Capture 202
About the .NET System Metrics Agent ... o e, 202
System Metrics Captured by Default 202
Configuring .NET System Metrics Capture e, 203
Adding System Metrics Using the Windows Performance Monitor __.._...................... 205
Default Entries in the .NET Agent metrics.configFile 207
Keywords inthe metrics.config File 208
Part 4: Using the Profiler for NET .. ., 211
Chapter 9: Diagnostics Profiler for INET ... e 212
About the .NET Diagnostics Profiler 212
How the .NET Agent Provides Data forthe .NET Profiler _......... 213
.NET Diagnostics Profiler Ul Navigation and Display Controls 214
.NET Diagnostics Profiler Inactivity Timeout 215
How to Access the .NET Diagnostics Profiler 215
How to Enable and Disable the .NET Diagnostics Profiler 216

HP Diagnostics (9.24) Page 7 of 239

.NET Agent Guide

Server Requests Tab Description 217
SQL Tab DesCriptioN . L 220
Methods Tab DesCription 223
Call Tree Tab Description 225
Exceptions Tab DesCription 228
Collections Tab DesCription 230
Threads Window DescCription 233
Send Documentation Feedback 239

HP Diagnostics (9.24) Page 8 of 239

Welcome to This Guide

Welcome to the HP Diagnostics .NET Agent Guide. This guide describes how to install, configure and
use the Diagnostics .NET Agent and the Diagnostics Profiler for NET.

The Diagnostics .NET Agent captures events such as method invocations, collection sites, and the
beginning and end of business and server transactions.

The .NET Agent works with many of HP Software’s Diagnostics products such as LoadRunner,
Business Availability Center, and Performance Center and is an integrated part of HP Software's
application lifecycle solution which includes load testing, production monitoring, and trouble diagnosis.

The Diagnostics Profiler for .NET is installed as part of the Diagnostics .NET Agent. The Diagnostics
Profiler for NET provides a way for .NET development teams to monitor the performance and diagnose
issues with applications in the development environment. HP Software makes this tool available at no
cost, through an easy-to-install trial software download.

How This Guide Is Organized
This guide contains the following parts:
o "Introduction" on page 11

Provides a high level overview of the features, components, architecture, and outputs of the
Diagnostics .NET Agent and Diagnostics Profiler for NET.

« "Installation and Configuration of the Diagnostics .NET Agent" on page 14
Describes how to install and configure the Diagnostics Agent.

« "Advanced .NET Agent Configuration and Instrumentation” on page 58
Describes advanced configuration of the .NET Agent.

« "Using the Profiler for .NET" on page 211

Describes the Ul of the Diagnostics .NET Profiler, and how to use it.

HP Diagnostics (9.24) Page 9 of 239

.NET Agent Guide
Diagnostics Documentation

Diagnostics Documentation

HP Diagnostics includes the following documentation. Unless specified otherwise, the guides are in
PDF format only and are available as downloads from the HP Software Support site (at
https://softwaresupport.hp.com).

Diagnostics User Guide and Online Help. Explains how to choose and interpret the Diagnostics
views in the Diagnostics Enterprise Ul to analyze your monitored applications. To access the online
help for Diagnostics, choose Help > Help in the Diagnostics Enterprise Ul. If Diagnostics is integrated
with another HP Software product the online help is also available through that product's Help menu.
The User Guide is a PDF version of the online help and their content is identical. The User Guide is
available from the Diagnostics online help Home page, from the Windows Start menu (Start >
Programs > HP Diagnostics Server > User Guide), or from the Diagnostics Server installation
directory.

Diagnostics Server Installation and Administration Guide. Explains how to plan a Diagnostics
deployment, and how to install and maintain a Diagnostics Server.

The following Agent guides contain content that supports agent installation, setup and configuration.

« Diagnostics Java Agent Guide. Describes how to install, configure, and use the Diagnostics
Java Agent and the Diagnostics Profiler for Java.

» Diagnostics .NET Agent Guide. Describes how to install, configure, and use the Diagnostics
.NET Agent and Diagnostics Profiler for .NET.

» Diagnostics Python Agent Guide. Describes how to install, configure, and use the Diagnostics
Python Agent. The Guide (in PDF format) is also available from the Profiler Ul help.

Diagnostics Collector Guide. Explains how to install and configure a Diagnostics Collector.

Diagnostics System Requirements and Support Matrixes Guide. Describes the system
requirements for the various Diagnostics components.

Release Notes. Provides last-minute new information and known issues about each version of
Diagnostics. The PDF file is also located in the Diagnostics installation disk root directory.

Diagnostics Data Model and Query API. Describes the Diagnostics data model and the query API
you can use to access the data. The guide is also available from the Diagnostics online help Home

page.

Diagnostics Frequently Asked Questions (FAQ). Gives answers to frequently asked questions.
The FAQ is also available from the Diagnostics online help Home page.

HP Diagnostics (9.24) Page 10 of 239

https://softwaresupport.hp.com/

Part 1: Introduction

HP Diagnostics (9.24) Page 11 of 239

Chapter 1: Diagnostics .NET Agent Overview

This chapter introduces the Diagnostics .NET Agent and the Diagnostics Profiler for .NET by providing
a high level overview of features and components.

This chapter includes:
« "About the Diagnostics .NET Agent" below
« "Introducing Diagnostics Profiler for NET " below

« "Features and Benefits of the Diagnostics .NET Profiler" on the next page

About the Diagnostics .NET Agent

The Diagnostics .NET Agent is installed on the machine that hosts the application that you want to
monitor. Agent installation and setup automatically discovers and provides standard instrumentation for
the .NET AppDomains you choose to monitor.

The agent captures events such as method invocations, collection sites, and the beginning and end of
business and server transactions.

The .NET Agent works with many of HP Software’s Diagnostics products such as LoadRunner,
Performance Center and BSM.

Introducing Diagnostics Profiler for .NET
The Diagnostics Profiler for .NET is installed as part of the Diagnostics .NET Agent.

The Diagnostics Profiler for NET provides a way for .NET development teams to monitor the
performance and diagnose issues with applications in the development environment. HP Software
makes this tool available at no cost, through an easy-to-install download.

The Diagnostics Profiler for .NET provides a strong foundation for collaborative diagnostics because it
has been built using the same Diagnostics probe technology that is used in HP Software's load testing
and production monitoring products. When you use the Diagnostics .NET Profiler in the development
environment to profile applications and solve problems, you get a glimpse of the features that are
included in the Diagnostics Lifecycle Solution that enable you to solve the toughest performance
problems throughout the application’s lifecycle.

Because Diagnostics Profiler for NET uses the same agent that other HP Software Diagnostics
products use, it is an integrated part of HP Software's application lifecycle solution which includes load
testing, production monitoring, and trouble diagnosis.

HP Diagnostics (9.24) Page 12 of 239

.NET Agent Guide
Chapter 1: Diagnostics .NET Agent Overview

Features and Benefits of the Diagnostics .NET Profiler

The following table describes some of the features and benefits of the Diagnostics .NET Agent and the

Diagnostics Profiler for NET:

Feature Description
Server Request Breakdown
Layer Breakdown

Slowest Server Requests
Top 3 Slowest Instances
VM Heap Usage

Collection Memory Leak Diagnostics

Heap Breakdown including Class and
Size Information

SQL Diagnostics
(Slowest SQL)
Exception Diagnostics

Snapshot

HP Diagnostics (9.24)

Benefit

Identify where time is spent in an application

Identify the slowest layer

Identify slowest server request or application entry points
Identify outliers to help diagnose intermittent problems
Identify memory problems and garbage collection issues

Identify the fastest growing and largest size collections
including the caller method that allocated the collection

Identify leaking objects, object growth trends, object
instance counts, and the byte size for objects

Identify the slowest SQL query and report query information

Identify exception counts which often go undetected

Capture all the data displayed on all the tabs into a single
XML report that can be stored or transported for later viewing
and analysis.

Page 13 of 239

Part 2: Installation and Configuration of the
Diagnostics .NET Agent

HP Diagnostics (9.24) Page 14 of 239

Chapter 2: Preparing to Install the Diagnostics .NET
Agent

This chapter provides you with the information and instructions that will help you to plan and prepare for
the installation and configuration of the Diagnostics .NET Agent.

If you are installing the agent for use in an HP AppPulse environment please refer to the HP
Diagnostics .NET Agent Quick Start Guide (Diagnostics_Dotnet_Agent_QuickStart.pdf) for installation
instructions. This document is provided in the HP AppPulse Ul for download with the agent software.

This chapter includes:
« "Requirements for the Diagnostics .NET Agent Host" below
« "Requirements for the Diagnostics .NET Profiler UI" on the next page

« "Planning the Installation" on the next page

Requirements for the Diagnostics .NET Agent Host

For details of the Diagnostics .NET Agent host requirements, see "Requirements for the Diagnostics
.NET Agent Host" in the Diagnostics System Requirements and Support Matrixes Guide located on
the HP Software Support site. Access requires an HP Passport login (register for an HP Passport).

HP Diagnostics (9.24) Page 15 of 239

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM00977586
http://h20229.www2.hp.com/passport-registration.html

.NET Agent Guide
Chapter 2: Preparing to Install the Diagnostics .NET Agent

Requirements for the Diagnostics .NET Profiler Ul

For details of the Diagnostics .NET Profiler Ul requirements, see "Requirements for the Diagnostics
.NET Profiler UI" in the Diagnostics System Requirements and Support Matrixes Guide located on the
HP Software Support site. Access requires an HP Passport login (register for an HP Passport).

Planning the Installation

The .NET Agent is installed on the same machine as the .NET application under test. The following
table is provided to help you gather the information that you will need during the installation of the .NET
Agent.

Diagnostics Server Information
Information Required Where to find it Value

Mode for installing the agent Choose according to product « Profiler only (no connection to
license. server)

o Usedonly with
LoadRunner/Performance
Center (AD license)

« Enterprise mode (AM license)
for use with one of the
following or both:

« Diagnostics

« TransactionVision

Diagnostics Server Name Fully qualified host name or IP | If there is only one Diagnostics
address of the host of the Server in the deployment where
Diagnostics Server. the agent will run, this is the
Diagnostics Serverin

System Health Monitor. (See

, . Commander mode.
"Using System Views for
Administrators" in the HP In a distributed environment with a
Diagnostics Server commander server and mediator
Installation and Administration = servers, this is the Diagnostics
Guide.) Server in Mediator mode that is to

receive the events from the agent.

This is not required for using
the .NET Diagnostics Profiler
in a standalone mode.

HP Diagnostics (9.24) Page 16 of 239

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM00977586
http://h20229.www2.hp.com/passport-registration.html

.NET Agent Guide
Chapter 2: Preparing to Install the Diagnostics .NET Agent

Information Required Where to find it Value

Diagnostics Server Port System Health Monitor. Default value: 2612

This is not required for using
the.NET Diagnostics Profiler
in a standalone mode.

Agent and Port Information

Information Required Where to find it Value

agent group This is user defined at thetime = Default value:

that the agent is installed.
Default

The agent group name you
enteris used as the probe group
name

Probe groups are logical
groupings of probes that report
to the same Diagnostics
Server.

Web Port Min System Administrator. Default value: 35000

The lowest port numberin a
range of ports on the agent
system that can be assigned to
the probe.

Web Port Max System Administrator. Default value: 35100

The highest port numberin a
range of ports on the agent
system that can be assigned to
the probe.

HP Diagnostics (9.24) Page 17 of 239

Chapter 3: Installing .NET Agents

This section describes how toinstall a .NET Agent and gives you information about the setup and
configuration of the .NET Agent.

If you are installing the agent for use in an HP AppPulse environment please refer to the HP
Diagnostics .NET Agent Quick Start Guide (Diagnostics_Dotnet_Agent_QuickStart.pdf) for installation
instructions. This document is provided in the HP AppPulse Ul for download with the agent software.

This chapter includes:
« "Overview of the .NET Agent Installation" on the next page
o "Accessingthe .NET Agent Installer" on page 20
» "Installing the .NET Agent" on page 21
« "Post Install Tasks" on page 38
» "Verifying the .NET Agent Installation" on page 38
« "About Configuration of the .NET Agent for Diagnostics" on page 39
« "About Configuration of the .NET Agent for TransactionVision" on page 39
« "Discovery and Standard Instrumentation" on page 41
» "Probe Aggregator Service" on page 44
« "Monitoring NET Applications Deployed in Azure Cloud" on page 45
» "Monitoring Applications on SharePoint with the .NET Agent" on page 45
« "Determining the Version of the .NET Agent" on page 47
« "Enabling and Disabling the Diagnostics Agent for NET" on page 48
» "Enabling and Disabling Standard Instrumentation for Applications" on page 48
» "Troubleshooting .NET Web Applications Not Discovered" on page 50
» "Manually Adding an AppDomain Not Discovered" on page 51
o "Other .NET Agent Troubleshooting Tips" on page 54

« "Uninstalling the .NET Agent" on page 55

HP Diagnostics (9.24) Page 18 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

Overview of the .NET Agent Installation

The .NET Agent software is installed on the machine hosting the application you want to monitor. With
the .NET Agent you instrument the application domains for monitoring.

See "Preparing to Install the Diagnostics .NET Agent" on page 15 for .NET Agent requirements.

The .NET Agent (version 9.x) requires .NET Framework 2.0 or later. The .NET Framework must be
installed on the machine before you run the .NET Agent installation.

Note: If you need to support .NET Framework 1.1, you will need to use an earlier version of the
.NET Agent (8.x).

WCF Requirements and Limitations: Monitoring .NET Windows Communication Foundation (WCF)
services requires .NET Framework 3.0 SP1 or greater. WCF bindings using the following transports are
supported:

« HTTP
« TCP

If your application uses a transport that is not supported, the .NET probe only creates a generic server
request for each WCF method. It will not be a Web Service and there will be no cross VM correlation.

The HP Diagnostics/TransactionVision .NET Agent installer installs a .NET Agent to collect data for
either Diagnostics or TransactionVision or both.

The .NET Agent installer automatically detects the ASP.NET applications on the system where the
agent is installed. See "Discovery and Standard Instrumentation" on page 41.

The installer configures the agent to capture basic workload and events for each of the ASP.NET
applications detected. The agent configuration is controlled using the probe_config.xml file. See
"Automatic Instrumentation and Configuration for Discovered ASP.NET Applications" on page 42.

The .NET agent uses points files to provide standard instrumentation to enable you to start monitoring
applications. The points files control the workload the agent captures for the application. See "Custom
Instrumentation for NET Applications" on page 59. See "Enabling and Disabling Standard
Instrumentation for Applications" on page 48.

The following points files are installed and enabled to provide instrumentation for monitoring ASP.NET
applications:

o ASP.NET.points
« ADO.points

« WCF.points

HP Diagnostics (9.24) Page 19 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

The following points files can be used for instrumenting applications that use other Microsoft
technologies:

« Remoting.points (for .NET remoting environments)
« msmg.points (for MSMQ environments)
o LWMD.points (for analysis of memory used by collections in applications)

Separate instrumentation points files are created for each IIS installed ASP.NET application domain
detected and named <AppDomain>.points files). The probe_config.xml file contains an
<appdomain> element for each of the detected ASP.NET applications. And each <appdomain>
element contains an instrumentation points file reference. The .NET Agent uses this runtime
instrumentation to capture method latency information from specified applications.

Note: If there is a pre-existing installation of the .NET Agent on the host machine see "Upgrade
.NET Agents" on page 56 for important instructions on how to upgrade the agent systems.

See "Accessing the .NET Agent Installer" below to begin.

Accessing the .NET Agent Installer

You can launch the .NET Agent installer a number of different ways. You caninstall the .NET Agent
from the Diagnostics installation disk or the BSM installation disk or from the Downloads page in BSM.
You can install the software from the SSO Portal. And if you want to install a trial version of the HP
Diagnostics Profiler for NET you can launch the installer from the HP Software Web site download
center.

Note: If you are installing the agent for use in an HP AppPulse environment please refer to the HP
Diagnostics .NET Agent Quick Start Guide (Diagnostics_Dotnet_Agent_QuickStart.pdf) for
installation instructions. This document is provided in the HP AppPulse Ul for download with the
agent software.

To access the Installer from a Diagnostics installation location:

« From the Diagnostics Installation DVD (Autorun.exe) the installation menu page is displayed. From
the menu, select Diagnostics Agent for .NET 64-bit to launch the install for the 64-bit version of
the .NET agent.

« You could run the appropriate installer directly by locating the executable file HPDiagTV.NETAgt
<release number>_win64.msi in the location you install from and copying the file to the new
installation location and then double-clicking it to run the installer.

Continue with "Installing the .NET Agent" on the next page.

HP Diagnostics (9.24) Page 20 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

To download the installer from the HP Software Download Center:

1. Access the SSO portal at http://support.openview.hp.com/selfsolve using your HP Passport
login.

2. Locate the Diagnostics (or TransactionVision) downloads and choose the appropriate link for
downloading the Diagnostics .NET Agent software. Note that you could also use the download
center in order to get the Diagnostics .NET profiler trial/evaluation software.

3. Continue with "Installing the .NET Agent" below.

Follow the download instructions on the web site.

To download the Installer from BSM’s Diagnostics downloads page:

1. InBSM, either select Admin > Diagnostics from the main menu and click the Downloads tab.
Or select Admin > Platform from the main menu and click the Setup and Maintenance tab.

2. Onthe Downloads page, click the appropriate link to download the .NET Agent installer for 64-bit
Windows.

Note: The .NET Agent installers are available in BSM if put into the required directory for BSM to
access. You can enable this during the installation of the Diagnostic Server, or you can copy the
.NET agent installers manually from the Diagnostics installation disk to the required location.

Continue with "Installing the .NET Agent" below.

To launch the installer for HP Diagnostics Profiler for .NET trial software from the HP
Software Trial Software Download Web site:

1. Gotothe HP Software Web site’s Download Center.

2. Inthe Quick Search section, in the Products list, click Diagnostics and click Search.
3. Under Trial Software, select the appropriate link.

4. Follow the download instructions on the web site.

Continue with "Installing the .NET Agent" below.

Installing the .NET Agent

This section provides detailed instructions for a first time installation of the .NET Agent. If there is a
pre-existing installation of the .NET Agent on the host machine see "Upgrading the Diagnostics .NET
Agent" on page 56 for important instructions on how to upgrade the agent systems.

Caution: If the machine on which you are installing the .NET Agent already has a non

HP Diagnostics (9.24) Page 21 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP monitoring or profiling tool installed on it, the .NET Agent setup program detects this
installation and provides the following options:

« Tocancel the .NET Agent installation so that you can manually uninstall the other tool and then
restart the .NET Agent installation.

« Tocontinue with the .NET Agent installation. Note that having both the HP Diagnostics
.NET Agent and a non HP monitoring or profiling tool installed on the same machine may result
in the following:

= Should you decide to uninstall the other (non HP) monitoring or profiling tool after installing
the .NET Agent, this may adversely affect the .NET Agent and if so, requires running the
Enable .NET Agent option from Start menu.

m The other (non HP) monitoring or profiling tool may not function correctly.

Note: If you are installing the agent for use in an HP AppPulse environment please refer to the HP
Diagnostics .NET Agent Quick Start Guide (Diagnostics_Dotnet_Agent_QuickStart.pdf) for
installation instructions. This document is provided in the HP AppPulse Ul for download with the
agent software.

The .NET Agent installation process includes the following steps (select "Step 1. End user license
agreement” below to begin):

"Step 1. End user license agreement" below

"Step 2. Specify install location" on the next page

"Step 3. Select installation options" on the next page

"Step 4. Specify RUM Integration Settings" on page 24

"Step 5. Select agent features to install" on page 26

"Step 6. Agent name and group" on page 26

"Step 7. Diagnostics server information" on page 29

"Step 8. Port and connection information" on page 30

"Step 9. Pre-install summary" on page 35

"Step 10. Additional Setup for Agents Working in an HP SaaS Environment" on page 35
"Step 11. Post Install Information" on page 37

"Step 12. Restart 11S" on page 37

Step 1. End user license agreement

Accept the end user license agreement.

Read the agreement and select | accept the terms of the License Agreement.

Click Next to proceed and continue to the next step.

HP Diagnostics (9.24) Page 22 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

Step 2. Specify install location
Provide the location where you want the Agent installed.

By default, the Agent is installed in C:\MercuryDiagnostics\.NET Probe. This location becomes the
<probe_install_dir>.

Accept the default directory or select a different location either by typing in a different path, or by
clicking Browse to navigate to the installation directory.

Click Next to proceed and continue to the next step.
Step 3. Select installation options

Indicate if the .NET Agent is to be installed as a standalone Profiler without any connection to a server
(for example if you are installing the Diagnostics .NET Profiler trial software), or if you are installing the
agent to work for LoadRunner/Performance Center or to work with a Diagnostics and/or
TransactionVision Server and/or RUM Client Monitor.

e HP Diagnostics/Transaction¥ision Agent for NET

Indicate if this Agentis to be installed as the Profiler or if it will be working with a
DiagnosticsTransactionVision Server,

—Select the Agent installation option:
™ Diagnostics Profiler Mode

™ Diagnostice Mode for Load Runner/Performance Center (AD License)
" Diagnostics Mode with SaaS-hosted mediator on HP premise (AM License)

* {application Management/Enterprise Mode (M License);

¥ Diagnostics ¥ Client Monitor
| TransactionVision

The Agent installed to work with a Diagnostics Server can work along with multiple other agents
and other HP products to provide performance diagnostics in your production and testing
environments.

The Agent installed as the Profiler works as a standalone diagnostics tool. You may reconfigure
the Agent in the future to work with a Diagnostics Server.

Tnet=lchiald

m

Cancel < Back Mext =

Make the selection that is appropriate for the environment where you will be using the agent.

Diagnostics Profiler Mode. Select this option to install the agent as a Diagnostics .NET Profiler
without any connection to a Diagnostics server. This is typically selected when installing the
Diagnostics .NET Profiler trial software prior to purchasing the HP Diagnostics product.

If you select Diagnostics Profiler Mode option, the value of the probe_config.xml <modes> element
is set to pro mode at the time you install the .NET Agent (see "<modes> element" on page 133).

HP Diagnostics (9.24) Page 23 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

Diagnostics Mode for LoadRunner/Performance Center (AD License). Select this option to install
the agent for use with a Diagnostics Server in a load testing (or pre-production) environment where
probes are used only in LoadRunner or Performance Center runs.

The advantage of running a probe in AD mode is that probes in AD mode are only counted against your
HP Diagnostics AD license capacity when in a LoadRunner or Performance Center run. For example if
you have 20 probes installed in LoadRunner/Performance Center AD mode but only 5 in a run, then only
5 are counted against your AD license capacity.

In AD mode the agent will ONLY capture data during a LoadRunner or Performance Center run and the
results will be stored in a specific Diagnostics database for that run, for example, Default Client:21.
When the agent is in AD mode it will not use resources or send any data to the server unless the probe
is part of a LoadRunner/Performance Center run.

If you select this AD License option, the value of the probe_config.xml<modes> element is set to ad
mode at the time you install the .NET Agent (see "<modes> element" on page 133).

See the chapter "Licensing HP Diagnostics" in the HP Diagnostics Server Installation and
Administration Guide for more information.

Diagnostics Mode with SaaS-hosted mediator on HP premise (AM License). Select this option to
install the agent to work in a SaaS environment where the .NET agent will connect to an HP SaaS
server on-premise at HP. An HP SaaS administrator will provide you with information on connecting the
.NET agent to an HP SaaS hosted Diagnostics mediator server.

Application Management/Enterprise Mode (AM License). Select this option to install the agent for
use with a Diagnostics Server and/or a TransactionVision Server in an enterprise (or production)
environment and/or RUM Client Monitor.

Then indicate which of the following the agent will be configured for:
« A Diagnostics Server (installed locally)
« A TransactionVision server

See the HP TransactionVision Deployment Guide in the BSM documentation library for details on
setup options specific to TransactionVision.

« RUM Client Monitor
Enables the integration between Diagnostics and Real User Monitor (RUM).

With this option, the value of the probe_config.xml<modes> element is set to enterprise mode if you
select the Diagnostics Server and tv mode if you select the TransactionVision server at the time you
install the .NET Agent (see "<modes> element" on page 133).

For those agents with Enterprise mode set, the agent will be counted against your HP Diagnostics AM
license capacity.

Click Next to proceed and continue to the next step
Step 4. Specify RUM Integration Settings

This step is skipped if the RUM Client Monitor check box is not selected in "Step 3. Select installation
options" on the previous page.

HP Diagnostics (9.24) Page 24 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

Enter the configuration information for the RUM Client Monitor JavaScript snippet.

iw HP Diagnostics{T 0] x|

Configure RUM Client Monit. ..
—RUM Client Monitor Snippet Parameters

RUM Client Monitor JavaScript file U. .. |‘="E"'tm°"'-1'5

RUM Client Monitor Probe HTTP URL: Ihttp:,lrllr[RUM CM pFDbE UF'.L] :BUBDﬂ'IFIdIEI'ItITIDI'I,lrdEE

RUM Client Monitor Probe HTTPS URL: IhttFlS:,lr,lr[RUM M FIFDbE URL] :lﬂllﬂwpdlent'nnn,.’dah

Cancel < Back Mext =

« RUM Client Monitor JavaScript file URL. Enter the full URL path to the source file containing the
RUM Client Monitor JavaScript. The default file name is clientmon.js.

Note: Copy the RUM JavaScript (clientmon.js) from the RUM installation package. Save it on
the .NET IIS Application Server in the root directory of the web application which is being
monitored.

« RUM Client Monitor Probe HTTP URL. Enter the URL of the RUM Browser Probe to which the
monitored client data is sent. The format for the URL is:
<protocol>://<host>:<port>/hpclientmon/data

« RUM Client Monitor Probe HTTPS URL. Enter the URL of the RUM Browser Probe to which the
monitored client data is sent, if using https. The format for the URL is:
<protocol>://<host>:<port>/hpclientmon/data

Click Next to proceed and continue to the next step.

Note: For details on the RUM Client Monitor-Diagnostics integration, including how to configure
these settings manually, refer to the RUM Client Monitor-Diagnostics Integration Guide located on
the HP Software Support site. Access requires an HP Passport login (register foran HP
Passport).

HP Diagnostics (9.24) Page 25 of 239

http://h20229.www2.hp.com/passport-registration.html

.NET Agent Guide
Chapter 3: Installing .NET Agents

Step 5. Select agent features to install

Select the .NET Agent features you want to install.

1) HP Diagnostics/TransactionVision Agent for .NET 9.20.58.43418 | |

Indicate which features of the .MET Agent should be installed.

Metrics Agent (Recommended)

Collects and reports selected system metrics to the Diagnostics Server,

Probe Aggregator Service (Optional)

Provides improved scalability by redudng network communication with the
Diagnostics Server, Consider wse if you are monitoring multiple .MET applications on
this system.

For more information about determining usage scenarios, refer to the Installation
and Configuration Guide.

Digk Cost...] [Cancel] [< Back] [Mext =

Metrics Agent. It is recommended that you install the Metrics Agent, which is checked by default. But
if you do NOT want to capture system metrics on the host machine you can uncheck the Metrics
Agent box. See "About the .NET System Metrics Agent" on page 202 for more information.

Probe Aggregator. It is recommended that you install the Probe Aggregator Service, which is
checked by default.

If you are installing the agent to work in an HP SaaS environment this option is required for SaaS and
cannot be changed.

This Probe Aggregator service aggregates .NET Agent data to 5 second intervals before sending the
performance data to the Diagnostics mediator server. This can improve scalability by reducing network
communications with the server but the aggregator will also increase probe system overhead.See
"Probe Aggregator Service" on page 44 for more information on the performance tradeoffs to installing
the Probe Aggregator.

Disk Cost. To check the amount of available disk space on the drives of the host, click the Disk Cost
button. Use this functionality to make sure that there is enough room for the Agent installation.

Click Next to proceed and continue to the next step.
Step 6. Agent name and group

Skip this step if the agent won’t be reporting to a Diagnostics Server.

HP Diagnostics (9.24) Page 26 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

Enter the Agent Name and Agent Group Name.

15 HP Diagnostics/TransactionVision Agent for .NET 9.20.58.43569 |- |

The Agent Mame uniguely identifies each agent. The default is the name of the application
which loads the agent.

Agent Mame (Leave blank to accept default based on application name):

An Agent Group is a logical collection of agents that are monitored by the same Diagnostics
Server. The default value is "Default™

Agent Group Mame:
|Default

Enter the admin user password used to connect to the profiler, Ifleft blank, the default
password ("admin®) is set.

Profiler Admin Password:

Agent Name. The name that identifies the agent within HP Diagnostics. If you leave this field blank,
the .NET Agent will auto-generate an agent name based on the application domain name of the
monitored application. The agent name is assigned as the probe entity name.

Note: It is recommended that you leave Agent Name blank and allow the agent to auto-generate
the agent name. Read the following information carefully if you decide to enter your own agent
name.

Note that Diagnostics does not support localization of agent names.
Considerations when entering an agent name:

« Valid characters that can appear in the agent name are: letters, digits, dashes, underscores, and
periods.

« Assign an agent name that will help you recognize the application that is being monitored, and the
type of instrumentation.

For example, the agent name for the .NET Agent installed to monitor the application named
PetWorld can be:

PetWorld_Dotnet_Agent

« When you specify an agent name, all of the agents on the host are forced to use the same agent
name.

HP Diagnostics (9.24) Page 27 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

The default agent name auto-generated by the agent when the agent name field is left blank is
equivalent to specifying $ (MACHINENAME) _$ (APPDOMAIN) .NET.

To override the default name, use the following substitution macros to enhance the name at run
time:

m $(MACHINENAME) : Machine’s host name
= $(APPDOMAIN): Application’s domain name
m $(PID): Application’s process ID
= $(WEBSITENAME): The IIS Web site under which the application is hosted.
m $(COMMANDLINE:n) Where n is the command line parameter number.
For example: +
<id probeid="ILTEST_$(COMMANDLINE:3)_rest” probegroup="Default’/>

with acommand line of iltest “heart and lung” -abc server results in a probeid of
ILTEST server rest.

Note that n=0 indicates the executable/command name.

Note: For applications that are not hosted in IIS the agent name will be reverted to the default, that
is, 3(MACHINENAME) $(APPDOMAIN).NET. An example of this would be console applications.

For newly installed IIS applications you may need to run Rescan ASP.NET Applicationsor Run
HP .NET AppScanner from the HP Diagnostics .NET Agent program group in the Windows Start
menu.

Agent Group Name: Enter a name for an existing group or for a new group to be created. The default
value for the agent group name is Default. The agent group name is case-sensitive. In Diagnostics
this name is used as the probe group name.

Probe groups are logical groupings of probes that report to the same Diagnostics Server. The
performance metrics for a probe group are tracked, and can be displayed on many of the Diagnostics
views.

For example, you could assign all of the probes for a particular enterprise application to a single probe
group so that you can monitor both the performance at the group level and the performance based on
individual probe entities.

Profiler Admin Password. Enter the admin user password used to connect to the .NET Diagnostics
Profiler. If left blank, the default password (admin) is set.

Click Next to proceed and continue to the next step.

HP Diagnostics (9.24) Page 28 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

Step 7. Diagnostics server information

Skip this step if the agent won’t be reporting to a Diagnostics Server or if you are installing the agent to
work in an HP SaaS environment. Your HP SaaS administrator will provide details for configuring
communication between the agent and the SaaS-hosted Diagnostics Server.

Provide the information needed to enable the .NET Agent to communicate with the Diagnostics Server
in Mediator mode.

If you selected to install the Probe Aggregator Service, you will see the Probe Aggregator Data Port
instead of the Diagnostics Server Data Port and Probe Aggregator Metric Port instead of Diagnostics
Server Metric Port.

iZHpP Diagnostics/TransactionVision Agent for .NET E]

Provide the location of the Diagnostics Server in Mediator mode.

Diagnostics Server (Mame or IP address): Port (Default is 2006):
|Io¢3|hnst |2EII]6

Diagnostics Server Data Port (Default is 2612):
2612

Diagnostics Server Metric Port (Default is 2006):
2006

« Inthe Diagnostics Server (Name or IP address) box, type the host name or IP address of the
host for the Diagnostics Server in Mediator mode.

Specify the fully qualified host name, not just the simple host name. In a mixed OS environment,
where UNIX is one of the systems, this is essential for proper network routing.

« Inthe Diagnostics Server Data Port box, type the port number where the Diagnostics Server is
listening for Agent communication. The default port number is 2612. If you changed the port since
the Diagnostics Server was installed, specify that port number here instead of using the default.

If you selected to install the Probe Aggregator Service, you will see the Probe Aggregator Data
Port box instead of for the Diagnostics Server data port. Type in the port number where the
Diagnostics mediator server is listening for the Agent communication when probe aggregation is
installed. The default port number is 2626. If you changed the port since the Diagnostics Server was
installed, specify that port number instead of using the default.

HP Diagnostics (9.24) Page 29 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

« Inthe Diagnostics Server Metric Port box, type the port number where the Diagnostics Server is
listening for communications from the System Metrics Agent. The default port number is 2006. If
you changed the port since the Diagnostics Server was installed, specify that port number here
instead of the default.

If you selected to install the Probe Aggregator Service, you will see the Probe Aggregator Metric
Port box instead of for the Diagnostics Server metric port. Type in the port number where the
Diagnostics mediator server is listening for the Agent communication when probe aggregation is
installed. The default port number is 45000. If you changed the port since the Diagnostics Server
was installed, specify that port number instead of using the default.

« To perform a connectivity check to make sure that the Diagnostics Server is running and accessible
from the installation host, click Test.

The connectivity check lets you know right away if you made an error in the information you
provided about the Diagnostics Server in Mediator mode, or if there is a connection problem
between the Diagnostics Server's host and the Agent’s host. If the connection to the Diagnostics
Server in Mediator mode host cannot be resolved, an error message is displayed.

Click Next to proceed and continue to the next step.
Step 8. Port and connection information

You will see different port and connection configuration dialogs depending on what install options you
selected. Select from the following and proceed with the configuration:

« Port connection information for Diagnostics Servers
« Port and connection information for TransactionVision Server
« Profiler mode with no connection to a Diagnostics or TransactionVision Server

If you are installing the Agent to work with a Diagnostics Server, you will see the following dialog box.

HP Diagnostics (9.24) Page 30 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

Provide the Web port range for the .NET Agent to use.

3 Hp Diagnostics/TransactionVision Agent for .NET g

Provide the web port range for the .MET Agent to use,

The minimum and maximum web part values define the range of ports the agent may use to listen
for incoming requests.

Minimurm Web Port:
135000

Maximum Web Port:
135100

o Minimum Web Port. Type the lowest port number, in a range of ports on the Agent host, you want
to assign to the Agent.

o Maximum Web Port. Type the highest port number, in a range of ports on the Agent host, you want
to assign to the Agent.

The default range is from 35000 to 35100 (inclusive).

The upper and lower limits of the Web Port Range are defined by the Minimum Web Port and
Maximum Web Port fields. The Web Port Range contains the ports the Agent can use.

When an Agent is started, it attempts to find an unused port from within this range, starting from the
lowest port number in the range and working its way up to the highest. Ports within the range could
already be in use if another Agent or application previously claimed them.

The minimum size for the port range is equal to the maximum number of Agents that will be
concurrently running on the Agent’s host.

Considerations when setting the Web Port Range:

« Ifthe Agents are working with ASP.NET applications, double the number of ports to account for
ASP.NET’s AppDomain recycling.

« Ifyou have a firewall between the Agent and a component that will be communicating with the
Agent, open the firewall for the ports within the range. Adjust the range to be just big enough.

Click Next to proceed and continue to the next step. If you also selected the option to have the agent
work in a TransactionVision Environment see the following section for additional configuration.

HP Diagnostics (9.24) Page 31 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

If you are installing the Agent to work in a TransactionVision environment, you will see the following
dialog box.

If you selected to install the agent to work with a TransactionVision Server you will see additional
screens in the installation. See the TransactionVision Deployment Guide for information on using the
agent in a TransactionVision environment.

The Configure the .NET Agent for TransactionVision dialog box appears.

=,

i3 Hp Diagnostics/TransactionVision Agent for .MET g

Configure the .MET Agent for TransactionVision.

Analyzer Communication Transport Type

() Websphere MQ () Sonic MQ
Broker: |
Bort: 21111
Configuration Queue |TVISION.CONFIGURATION. QUELE

User (if required): |

Password (if required): |

Cancel] [< Back] [Mext =

Choose the Messaging Middleware Provider. Options are: WebSphere MQ and SonicMQ.

SonicMQis included with the .NET Agent. If you specify this option, the Sonic MQ .NET client
(Sonic.Client.dll - Progress SonicMQ .NET Client, version 7.6.0.112) is installed as part of the Agent
installation.

A third-party WebSphere MQ installation can be used instead. In this case, you must install the MQ
series .NET client (amgmdnet.dil - WebSphere MQ Classes for .NET, version 1.0.0.3) on the host
being monitored.

By default, SonicMQ is selected.
« For SonicMQ, enter the following:

Broker. Host name on which the Sonic broker is running. Typically this will be the Analyzer
hostname.

Port. The port on which the broker communicates. By default, 21111.

HP Diagnostics (9.24) Page 32 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

Configuration Queue. Name of the configuration queue. By default,
TVISION.CONFIGURATION.QUEUE.

User. User id if required by SonicMQ installation for connection. By default, no username is
required.

Password. Password if required by SonicMQ installation for connection. This is in the obfuscated
form created by using the PassGen utility. By default, no password is required. For more
information about PassGen, see "Command-Line Utilities" in Using Transaction Management.

« For WebSphere MQ, enter the following:
Host. The host on which the WebSphere MQ queue manager resides.
Port. Port number for WebSphere MQ queue manager.
Configuration Queue. Name of the configuration queue.
User. Userid if required by WebSphere installation for connection.

Password. Password if required by the WebSphere MQ installation for connection. This is in the
obfuscated form created by using the PassGen utility. For more information about PassGen, see
"Command-Line Utilities" in Using Transaction Management.

Websphere MQ channel. Channel name for WebSphere MQ queue manager.
Websphere MQ Q Manager. CCSID for WebSphere.

Click Next to proceed and continue to the next step.

If you are installing the Agent in Profiler mode, you will see the following dialog box:

HP Diagnostics (9.24) Page 33 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

Provide the Web port range for the .NET Agent to use.

3 Hp Diagnostics/TransactionVision Agent for .NET g

Provide the web port range for the .MET Agent to use,

The minimum and maximum web part values define the range of ports the agent may use to listen
for incoming requests.

Minimurm Web Port:
135000

Maximum Web Port:
135100

Minimum Web Port. Type the lowest port number, in a range of ports on the Agent host, you want to
assign to the Agent.

Maximum Web Port. Type the highest port number, in a range of ports on the Agent host, you want to
assign to the Agent.

Note: The default range is from 35000 to 35100 (inclusive).
The upper and lower limits of the Web Port Range are defined by the Minimum Web Port and
Maximum Web Port fields. The Web Port Range contains the ports that the Agent can use.

When an Agent is started, it attempts to find an unused port from within this range; starting from the
lowest port number in the range and working its way up to the highest. Ports within the range could
already be in use if another Agent or application previously claimed them.

The minimum size for the port range is equal to the maximum number of Agents that will be
concurrently running on the Agent’s host.

Considerations when setting the Web Port Range:

« Ifthe Agents are working with ASP.NET applications, it is recommended that you double the
number of ports to account for ASP.NET sAppDomain recycling.

« Ifyou have a firewall between the Agent and a component that will be communicating with the
Agent, you must open the firewall for the ports within the range. For this reason you might want to
adjust the range to be just big enough.

Click Next to proceed and continue to the next step.

HP Diagnostics (9.24) Page 34 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

Step 9. Pre-install summary

The pre-installation summary screen opens. Click Back to make any changes. Click Install to start the
.NET Agent installation.

5 Hp Diagnostics/TransactionVision Agent for .NET g

Ready to inztall HP Diagnostics/Tranzaction¥ision Agent for NET

Installation Directory: C:\WMercuryDiagnostics\,MET Probe’,
Agent Mode; EMTERPRISE

Agent Mame; (Default)

Agent Group Mame: Default

Mediator Host: localhost

Data Port: 2626

Metric Port: 45000

Minimum Web Port: 35000

Maximum Web Port: 35100

Click Install to begin the installation. Clidk Back to review or change any of your installation
settings. Click Cancel to exit the wizard.

Note: When installing the agent for use as a Profiler only, there is no test for Metric Port
connectivity.

If you are installing the agent to work in an HP SaaS environment continue to Step 10 otherwise skip
the next step and continue to Step 11.
Step 10. Additional Setup for Agents Working in an HP SaaS Environment

If you are installing the agent to work in an HP SaaS environment then the SaaS Setup module starts
automatically or you can run the SaaS Setup module anytime by selecting Start > All Programs > HP
Diagnostics .NET Probe > SaaS Setup.

In the SaaS Setup module the following dialog is displayed. If you are not setting up the agent foran HP
SaaS environment then you will not see this dialog.

HP Diagnostics (9.24) Page 35 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics/TransactionVision Agent for Java
(A

Configure the Diagnostics Java Agent

Diagnostics Server Connectivity

Diagnostics Server Hame: |im:a|hnst |

Diagnostics Server Port: |443 |

Additional Options

[] Use Proxy Server to connect to Diagnostics Server
Proxy Server Options

Proxy Server Name:
Proxy Server Port:
Proxy Server Username (optional):

Proxy Server Password (optional):

Probe Aggregator Admin password (Used for Support purposes only).

Password: |admin

Hotes:

The default server partis 2006. When S5L is enabled, the default server port or 8443, When S50 is enabled AND
the mediator is 5335 hosted, the default server port is 443,

Back M

18]
"

Finish Cancel

IW'ed May 09 15:06:32 PDT 2012

« Diagnostics Server Connectivity. In an HP SaaS environment the Diagnostics Server is setup by
HP on a system on-premise at HP. The default port for a SaaS environment is 443. An HP SaaS
administrator will provide you with the information on the Diagnostics Server host name and port to

HP Diagnostics (9.24) Page 36 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

use.

« If aproxy serveris used to communicate with the Diagnostics Mediator Server select Use Proxy
Server to connect to Diagnostics Server check box and enter the appropriate options. In an HP
SaaS environment if your company requires a proxy to communicate to outside servers then you
would select this option.

m Proxy Server Name. Host name of the proxy server.

m Proxy Server Port. Port of the proxy server.

m Proxy Server Username (optional). The user used to authenticate the proxy server.

m Proxy Server Password (optional). The password used to authenticate the proxy server.
Proxy Server Options:

« Probe Aggregator Admin password. The password is automatically set to the same password
as the .NET Profiler Admin password (entered in step 5), so for an initial agent setup for SaaS you
will not see this field. If you want to subsequently change the Probe Aggregator Admin password,
you can run the SaaS Setup module again and this field will be displayed.

Continue on to the next step to finish the installation.
Step 11. Post Install Information

On the final installation screen, you can select the Show the Windows Installer Log checkbox to view
the log file and check for errors.

Click Finish to exit the installer.

For information on post installation tasks see "Post Install Tasks" on the next page.
When you are ready you must restart IS, see the next step.

Step 12. Restart lIS

Restart IS or the Web publishing service to pick up the new agent configuration.
« Torestart IIS from the command line or from the Start > Run menu, type iisreset and press Enter.

« Torestart the Web publishing service, use the Service Control Manager on Windows
(%windir%\system32\services.msc).

For Diagnostics these commands restart the Web publishing service but do not immediately start
the.NET Agent. The next time that a Web page in the application is requested, the agent is started, the
applications are instrumented, and the agent registers with the Diagnostics Server.

For TransactionVision these commands restart the Web publishing service but does not immediately
start the .NET Agent. The next time that a Web page in the application is requested, the agent is
started, the applications are instrumented, and the agent reads the Configuration Queue Messages
from the Analyzer.

HP Diagnostics (9.24) Page 37 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

Note: ASP.NET automatically restarts applications under various circumstances, including when
it detects that applications are redeployed, or when applications exceed the configured resource
thresholds.

When ASP.NET restarts an application that is being monitored by a .NET Agent, the agent is
deactivated and a new agent is started. While this is occurring, there can be a period of overlap
where there are multiple agents simultaneously registered with the Diagnostics Serverin
Commander mode and connected to the Diagnostics Server in Mediator mode. This condition
could cause LoadRunner / Performance Center and BSM to report errors during the application
restart sequence.

Continue with the next section to learn more about post installation tasks.

For information on verifying the installation see "Verifying the .NET Agent Installation" below.

Post Install Tasks

See the following topics for information about additional configuration for the .NET Agent:

« Forinformation on how the .NET Agent automatically discovers applications and configures
standard instrumentation to allow monitoring see "Discovery and Standard Instrumentation” on
page 41.

« Forinformation on configuring the .NET Agent for Diagnostics and for links to more advanced topics
see "About Configuration of the .NET Agent for Diagnostics" on the next page.

« Forinformation on configuring the .NET Agent for TransactionVision and to see the types of events
TransactionVision can trace with the .NET Agent see "About Configuration of the .NET Agent for
TransactionVision" on the next page.

« "Enabling and Disabling Standard Instrumentation for Applications" on page 48 for more
information.

« Forinformation on configuration for environments with proxies or firewalls, see the "Configuring for
HTTP Proxy and Firewalls" chapter in the HP Diagnostics Installation and Configuration Guide.

« Forinformation on enabling HTTPS, see the "Enabling HTTPS Between Components” chapter in
the HP Diagnostics Installation and Configuration Guide.

Verifying the .NET Agent Installation

On the final installation screen you can select the Show the Windows Installer Log checkbox to
view the log file and check for errors.

Log files are created in <probe_install_dir>/log. A log file is created for each discovered AppDomain.

HP Diagnostics (9.24) Page 38 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

The .NET probe does not register with the Diagnostics Server until the probe is started. The probe is
started and registered with the Server when the instrumented application is run. For ASP.NET
applications this happens the first time a page is requested for the instrumented application.

Once a .NET probe is started you can launch the Diagnostics Enterprise Ul to verify that the probe is
working. Access the System Health view to see details about each .NET probe and the machines that
host them. See "How to Access the Diagnostics UI" in the Diagnostics Help system or the HP
Diagnostics User Guide.

About Configuration of the .NET Agent for Diagnostics

You can customize the .NET Agent configuration and add custom instrumentation to suit your
environment and the performance issues you would like to diagnose.

The installer configures your ASP.NET applications and the .NET Agent to work together to capture the
basic workload of the applications. It is possible that one or more of your ASP.NET applications was
deployed in a manner that prevents the installer from detecting it. Or, you might want to enhance the
standard instrumentation to capture the performance metrics for the custom classes in the application.

In Diagnostics, you can do additional configuration using the probe_config.xml file. For details on this
file see "Understanding the .NET Agent Configuration File " on page 85. For instructions on advanced
.NET Agent configuration, see "Advanced .NET Agent Configuration" on page 170.

Also in Diagnostics, you can create custom instrumentation points to handle unique situations in your
application environment. For general information on custom instrumentation see "Custom
Instrumentation for .NET Applications" on page 59.

About Configuration of the .NET Agent for
TransactionVision

When used with TransactionVision the .NET Agent captures events from .NET applications and sends
the events to the TransactionVision Analyzer. See the BSM Documentation Library for more
information about TransactionVision.

.NET Agent Configuration for TransactionVision

The default configuration of the .NET Agent allows you to begin tracing certain .NET events in a
monitored application. You can customize the .NET Agent configuration to control what .NET events
are traced and sent to the TransactionVision Analyzer.

To override the default configuration, access the <agent_install_dir>/etc/ probe_config.xml file. See
"Understanding the .NET Agent Configuration File " on page 85 for details on the elements you can
configure for both Diagnostics and TransactionVision.

The <modes> element in the probe_config.xml file is set at installation for both Diagnostics and
TransactionVision (see "<modes> element" on page 133).

When you select to install the .NET Agent to work in a TransactionVision environment the <modes>
element in the probe_config.xml file is set to tv. When this is the only mode selected the agent will

HP Diagnostics (9.24) Page 39 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

work ina TV only mode where the Profiler and the Diagnostics probe is disabled and only TV events are
generated. When you select to install the .NET Agent to work in other modes such as with Diagnostics
then both TV events and Diagnostics data collection will be enabled.

In order to specify TransactionVision specific and TransactionVision transport specific configuration
the following elements in the probe_config.xml file are used exclusively for TransactionVision:

o <tv>element (see "<tv> element" on page 161 for details)

« <timeskew> element (see "<timeskew> element" on page 156 for details)

« <transport> element (see "<transport> element" on page 158 for details)

« <gentvhttpeventforwcf> element (see "<httpheaderrule> element" on page 112 for details)

If the NET Agent is using SonicMQ transport to communicate with the TransactionVision Analyzer,
SSL can be enabled. See the BSM Hardening Guide for details.

Types of Events TransactionVision Can Trace with the .NET Agent

When used with TransactionVision the .NET Agent traces the following types of .NET events:
1. Web Services
a. ASP.NET (*.asmx) - Client and Server
To generate events, use the ASP.NET.points file.
b. WCF (*.svc) - Client and Server
To generate events, use the wcf.points file.
c. REST style services - Server

To generate events, use the wcf.points file and set up the instrumentation of the application
as described in "Configure WCF REST Services for Monitoring" on page 72.

2. Database calls executed using ADO.NET
To generate events, use the ADO.points file.
3. .NET Remoting - Client and Server

To generate .NET remoting events, use the Remoting.points file and setup the application for
instrumentation as described in "How to Configure Instrumentation for NET Remoting" on
page 77.

4. MSMQ - Send and Receive (asynchronous)

To generate events, use the Msmgq.points file.

HP Diagnostics (9.24) Page 40 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

5. HTTP
a. Client outbound - includes calls to REST services
To generate events, use the ASP.NET.points file.
b. ASP.NET inbound/server (POST, GET, PUT) (*.aspx)
To generate events for HTTP, use ASP.NET.points file.
6. Userdefined events
Use the detail argument tv:user_event (see "Optional Point Entries" on page 63)
To turn off event generation remove the relevant points file from scope.

Enabling Correlation of .NET Events

The following .NET correlation rules are available by default in the BSM Transaction Management user
interface and can be enabled from the Event Customization Rules page. For details about correlation
rules, see "Custom Correlation" in the BSM Application Administration Guide.

« .NETMSMQRule
« .NETRemotingRule
o .NETRule

o .NETWCFRule

SSL Configuration for TransactionVision .NET Agents

For TransctionVision if the .NET Agent is using SonicMQ for the messaging middleware, SSL can be
enabled. See “Configur the .NET Agent to Use SSL” in the HP TransactionVision Deployment Guide
for details. Also see the BSM Hardening Guide.

Discovery and Standard Instrumentation

The .NET Agent installer automatically discovers the ASP.NET applications you might want to
instrument. After you install the .NET Agent, you can request that the agent rescan your IS
configuration to catch any additions or changes.

Discovering ASP.NET Applications During Installation

The .NET Agent installer detects ASP.NET applications on the machine when the agent is installed.
The .NET Agent installer discovers applications by inspecting the 1S configuration and looking for
virtual directory entries that might refer to ASP.NET applications.

In some instances, the ASP.NET applications are installed in a manner that prevents them from being
detected. An example is when an ASP.NET application is installed as a Web directory instead of a
virtual directory.

HP Diagnostics (9.24) Page 41 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

Discovering ASP.NET Applications After Installation

You can request a rescan of the IIS configuration if you modified an existing ASP.NET application
deployment or installed new ASP.NET applications. You can use one of the following options:

« Torescan the IIS configuration and automatically update the probe_config.xml file, select Start >
All Programs > HP Diagnostics .NET Probe > Rescan ASP.NET Applications.

« Torescan the IIS configuration and manually select the applications and services to be monitored,
All Programs > HP Diagnostics .NET Probe > Run HP .NET AppScanner. For details of this
option, see "Manually Enabling Auto-Discovered ASP.NET Applications and Non
ASP.NET Services" on page 201.

Automatic Instrumentation and Configuration for Discovered ASP.NET Applications

The .NET Agent installer configures the agent to capture basic ASP.NET/ADO/WCF workload for
each of the ASP.NET applications detected. The agent performs the following configuration steps:

« Creates an application-specific capture points file template.

The capture points file defines the instrumentation that controls the workload that the agent
captures for each application. You can modify the instrumentation in the capture points file to
provide instructions that allow the agent to capture performance data for application-specific
custom methods. See "About Instrumentation and Capture Points Files" on page 59.

« Creates an <appdomain> tagin the probe_config.xml file, which is located in the <probe_
install_dir>/etc directory. The attributes of the <appdomain> tag direct the behavior of the .NET
Agent (points and enabled attributes). See "Understanding the .NET Agent Configuration File " on
page 85 for details.

Note: Diagnostics enables the instrumentation for all discovered applications by setting the
enablealldomains attribute in the process tag to "true", which overrides the appdomain tag’s
enabled attribute. For information on enabling and disabling instrumentation for applications see
"Disabling Logging" on page 192.

Population of BSM's RTSM

Diagnostics populates Cls and model relationships in the BSM Run-time Service Model (RTSM) for
application infrastructure elements and business transactions.

For Cl population the .NET Agent installer automatically discovers the I1S configuration metadata for
ASP.NET applications that are deployed under IIS versions 6.x or greater. The discovered IS
configuration metadata is written to the iis_discovery_data.xml file which is located in the <probe_
install_dir>\etc directory. After you have installed the .NET Agent, you can request that the agent re-
scan your |IS configuration to update for any additions or changes.

o Runtime Population Cls for IS Deployed ASP.NET Applications

At runtime the .NET Agent queries the iis_discovery_data.xml file for [IS configuration metadata
associated with the instrumented AppDomain. If the associated metadata is found, the agent

HP Diagnostics (9.24) Page 42 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

forwards the data to its Diagnostic Server which populates the BSM Run-time Service Model Cls
for NET Application. See integration with the BSM Run-time Service Model model for NET
Applications.

« Discovery of IS Metadata of 1|S Deployed ASP.NET Applications During Installation

The .NET Agent installer discovers 1S deployed ASP.NET applications on the machine when the
agent is installed. The .NET Agent installer discovers applications by querying the WMI (WMEB)
Provider for the I1S configuration metadata. The pertinent metadata is written to the iis_discovery_
data.xml file.

« Discovery of IIS Metadata of ||S Deployed ASP.NET Applications After Installation

You must request a re-scan of the 11S configuration metadata when you have modified an existing
ASP.NET application deployment or installed new ASP.NET applications. To request that the
agent re-scan the I1S configuration and write a new iis_discovery_data.xml file, run Start > HP
Diagnostics .NET Probe > Rescan ASP.NET Applications shortcut. Note that the new iis_
discovery_data.xml file is not intended for editing by the user; any such user edits will be
overwritten by executing this shortcut.

« Privilege Requirements for Discovery of IIS Deployed ASP.NET Applications

The user must have Administrator privileges on the machine that the .NET Agent is installed on,
otherwise the WMI queries will fail and the iis_discovery_data.xml file will not be created.

« Debugging the Discovery of [IS Deployed ASP.NET Applications

If the iis_discovery_data.xml file is not created or there is any reason to suspect that some of its
metadata may be inaccurate, you can enable the creation of a detailed debug file to examine the
results of the WMI queries. To enable the creation of a detailed debug file. change last parameter of
the Target Property for the Start > HP Diagnostics .NET Probe > Rescan ASP.NET
Applications shortcut from "false" to "true". When the Rescan ASP.NET Applications shortcut is
executed, an <probe_install_dir>/log/AutoDetect.log is created. Note that you should have
Administrator privileges when executing this shortcut. You can send the AutoDetect.log to HP
Support for analysis.

For information about setting up the integration with BSM, see the BSM-Diagnostics Integration Guide.
Non ASP.NET Applications

The .NET Agent installation automatically discovers your ASP.NET applications, creates settings for
the applications in the probe_config.xml, and creates template points file for them. For each non-
ASP.NET application—for example, NT Service, console application, Ul client—you must create the
appropriate settings in the probe_config.xml settings to configure the .NET Agent to monitor your
applications as well as create points files indicating which points in your application you want to
monitor.

HP Diagnostics (9.24) Page 43 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

The following is an example of a probe_config.xml setting for an application called
SimpleConsoleHost.exe:

<process name="SimpleConsoleHost">
<points file="SimpleConsoleHost.points"/>
<logging level=" "/>

</process>

The following is an example of points file setting for an application called SimpleConsoleHost.exe:

[SimpleConsoleHost]

class = MyNamespace.SimpleConsoleHost
method = !.*

ignoreMethod = Main

layer = SimpleConsoleHost

See "Custom Instrumentation for .NET Applications" on page 59 for more details.

Note: To monitor services, use the .NET Application Scanner utility. For details, see "Manually
Enabling Auto-Discovered ASP.NET Applications and Non ASP.NET Services" on page 201.

Probe Aggregator Service

The Probe Aggregator Service can optionally be installed as part of the .NET Agent installation. It runs
as a Windows Service, HP Probe Aggregator.

Diagnostics Server Diagnostics Server(s]
(Comrander Mode) HTTP {Mediator Mode)
44— Port
Ligtens for HTTP on port 2006 2006 Listers for HTTP an port 2006
. Ligenzon TCP AP ports
{Can also be wsed 85 a medigtor) 443, 2612

F
HTTP
Paort
2006

Frobe Aggregator ‘

HTTP 3
Part TCPAP port 2626

- 45000
MNET Metrics |~ MET Frobe(s) H

Adgent Service

NET System

HP Diagnostics (9.24) Page 44 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

The Probe Aggregator Service aggregates probe data to 5 second intervals before sending the
performance data to the Diagnostics mediator server. This is useful when the volume of data collected
based on instrumentation of multiple applications is high and networking traffic would be too great if not
aggregated.

The basic .NET Agent installation, without the Probe Aggregator Service, results in performance data
being sent to the Diagnostics mediator server as method starts and stops occur.

There are performance trade-offs to using the Probe Aggregator Service. So you must assess the
requirements in your environment. For example, consider using the probe aggregator when you have
two or more .NET probe instances running on the same system. Actual network overhead is dependent
on the applications being monitored, so you need to determine if the potential savings in network
bandwidth and mediator load offsets the increased memory usage on the application system.

When you install the .NET Agent with the Probe Aggregator Service, this service runs automatically
and waits for connections from the .NET probes. Standard configuration of the probe aggregator is done
during the .NET Agent installation. The <probe_install_
dir>\ProbeAggregator\etc\probeaggregator.properties file is used to set configuration parameters
for the Probe Aggregator (for example, setting the SQL trending threshold).

If you decide, post installation, to install the Probe Aggregator Service you can run the .NET Agent
installation again, selecting the Change button. Then select the check box for installing the Probe
Aggregator Service.

Uninstalling the .NET Agent also removes the Probe Aggregator Service.

See "Enabling and Disabling the Diagnostics Agent for NET" on page 48 for how to disable and enable
the Probe Aggregator Service.

Monitoring NET Applications Deployed in Azure Cloud

Microsoft provides Windows Azure SDK for developers to create and deploy Azure applications to the
Microsoft Windows Azure Cloud Infrastructure. The Diagnostics .NET Agent leverages the Azure SDK
to provide seamless deployment of the .NET Agent into the Azure Infrastructure. Once deployed the
.NET Agent monitors applications running in the Azure Cloud, collecting performance data and
reporting to an HP Diagnostics Server for analysis and problem detection. See the
AzurePackReadMe.pdf in the .NET Agent AzurePack zip file for details on installing and configuring
the .NET Agent for monitoring applications in the Windows Azure Cloud.

Monitoring Applications on SharePoint with the .NET Agent

SharePoint is a web application that runs on ASP.NET and therefore the .NET Agent monitors it like
any other ASP.NET-based web application. For instance, the .NET agent collects metrics that allow
you to see:

« Web services. All calls to Web services that are serviced in the monitored SharePoint
environment, or any Web services that are called from within the SharePoint environment, are
captured.

HP Diagnostics (9.24) Page 45 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

« Server Requests. All incoming HTTP server requests to the SharePoint Server are captured.
« SQL statements. All outgoing database calls made in the SharePoint applications are captured.

You can perform additional configurations to further support monitoring of SharePoint by the
.NET Agent as described below.

Note that SharePoints sites with virtual directories of the same name (AppDomain name) are
distinguished by the full [IS path in the AppDomain\Probe Name and can be configured separately in
the probe_config.xml file.

« Monitor SharePoint Web Parts with custom instrumentation by discovering points using the
Reflector.

See "Discovering the Classes and Methods in an Application" on page 175.

« Monitor the SharePoint SQL Server with a Diagnostics Collector. SharePoint Servers typically use
one or more instances of SQL Server databases to store configuration and data. Install and
configure a Collector to monitor each instance of these databases.

See the HP Diagnostics Collector Guide.

« Monitor SharePoint performance counters at the host level. By default, the NET system metrics
agent collects some Perfmon counters that are expected to be useful for SharePoint monitoring.
You can add additional Perfmon counters.

See "Adding System Metrics Using the Windows Performance Monitor" on page 205.

« Monitor SharePoint performance counters at the probe level. Configure AppDomain-specific
metrics using the using the <metrics> and <metric> elements in the <probe_install_dir>\etc\probe__
config.xm. file.

See ".NET Agent Configuration Elements" on page 86.

« Distinguish different SharePoint team sites with similar URLs by specifying key arguments in the
<httpcaptureparams> element.

See ".NET Agent Configuration Elements" on page 86.

« Consolidate "layout" server requests in SharePoint by specifying the <urireplacepattern> element.
For example, this pattern specifies everything that is fetching layouts gets into one server request:

<symbols>
<urireplacepattern enabled="true">
<pattern value="s#(?i)(”.*)(_layouts).*$#Layouts#" />
</urireplacepattern>
</symbols

HP Diagnostics (9.24) Page 46 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

This configuration is especially useful with newer versions of SharePoint, such as 2010 and 2013,
where the default instrumentation results in numerous server requests.

For another example, this pattern consolidates all pages of the same name by stripping out the path.

<symbols>
<urireplacepattern enabled="true">
<pattern value="s#(?21)(”.*)(?&1t;wordl>/.*\.(aspx|asmx|ashx)$)
#${word1}" />
</urireplacepattern>
</symbols>

This configuration changes two URIs such as these:
/div/20rpo/r3-r8 ops/4.101_afa/4.101.001 listmap/blog/Lists/Links/AllItems.aspx

/About/Directorates/PublishingImages/Forms/AllItems.aspx

To this:
/AllItems.aspx

« Adjust or configure automatic URI collapsing as needed for your monitoring requirements by using
the <uriautocollapsing> element. By default, this feature is enabled.

See ".NET Agent Configuration Elements" on page 86.

» Usethe $(MACHINENAME), $(COMMANDLINE:2), and $(WEBSITENAME) macros for probe
naming.

SharePoint web sites often have names that include numbers and GUIDs. Assign more meaningful
names to the probes by using macros for the probe name. See "Considerations when entering an
agent name:" on page 27.

Collected performance data from SharePoint servers is displayed in the Microsoft SharePoint Server
view group of the Diagnostics Enterprise Ul. For details on the user interface, see the HP Diagnostics
User Guide.

Determining the Version of the .NET Agent

When you request support, it is useful to know the version of the Diagnostics components you
installed.

To determine the version of the .NET Agent:

« Right-click the file <Agent_install_dir>\bin\HP.Profiler.dll and select Properties from the menu.
In the Properties dialog, select the Version tab to display the component version information.

or

HP Diagnostics (9.24) Page 47 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

o Use the System Health view in the Diagnostics Ul.

Enabling and Disabling the Diagnostics Agent for .NET

The .NET Agent is enabled when it is installed. After you restart your Web server and a URL in the
application is accessed, the .NET Agent begins to gather performance information.

You can disable the .NET Agent so that it does not start and does not gather performance metrics.
To disable a .NET Agent:

Select Start > All Programs > HP Diagnostics .NET Probe > Disable HP .NET Probe.

To enable a .NET Agent that was disabled:

Select Start > All Programs > HP Diagnostics .NET Probe > Enable HP .NET Probe.

Note: Disabling the .NET Agent only disables the probe metrics collector and the active probes. It
does not disable the system metrics collector. The process of enabling or disabling system
metrics collection is controlled through the standard Windows services manager. The effect of
enabling or disabling probes only happens the next time the probed application restarts. It has no
affect on currently running applications.

Once the Probe Aggregator Service is installed and running, you can disable and enable it from the
Start Menu. Select Start > All Programs > HP Diagnostics .NET Probe > Disable HP .NET
Probe or Enable HP .NET Probe. Selecting Disable HP .NET Probe, in addition to disabling the .NET
probes will mark the Probe Aggregator Service as disabled, but not stop the service (in case there are
running probes remaining). Selecting Enable HP .NET Probe, in addition to enabling the .NET probes
will change the Probe Aggregator Service back to type automatic and start it if needed.

Enabling and Disabling Standard Instrumentation for
Applications

When the .NET Agent is first installed, the standard ASP.NET/ADO instrumentation for all discovered
applications is enabled, but no application specific instrumentation is enabled. You control which
applications have their instrumentation enabled or disabled using the attributes of the enablealldoamins
attribute in the <process> element and attributes in the <appdomain> element in the probe_
config.xml file for the .NET Agent.

Disabling instrumentation for an application allows you to avoid the processing overhead and
distracting information in the Diagnostics views for applications that are not relevant to the environment
whose performance you want to monitor.

Enabling instrumentation for all application allows the .NET Agent to monitor the performance of all
detected applications so that you can see the performance metrics for all of the applications in the
views of the Diagnostics and Profiler user interfaces.

These are the rules for the enablealldomains attribute of the <process> element:

HP Diagnostics (9.24) Page 48 of 239

NET

Agent Guide

Chapter 3: Installing .NET Agents

enablealldomains = false : If there are no domains in the list of <appdomain> No domains should be
enabled.

enablealldomains = false : If there are domains in the list of <appdomain> Domains should be
enabled if the "enable" attribute is set to true or not defined in the enable attribute of the
<appdomain>.

enablealldomains = true : If there are domains in the list of <appdomain> Only Domains in the list
should be enabled disregarding their "enable" attribute.

enablealldomains = true : If there are no domains in the list of <appdomain> All domains should be
enabled.

enablealldomains attribute is not defined: same as if enablealldomains = true.

To enable or disable the instrumentation for an application:

1. Set the enablealldomains attribute in the <process> element to false. This allows the attributes

of each <appdomain> tag to control the state of the instrumentation for each application. If there
are no <appdomain> entries, no applications are enabled.

2. Set the enabled attribute in the <appdomain> element to true for each application where you

want to enable the instrumentation.

3. Set the enabled attribute in the <appdomain> element to false for each application that is to

have its instrumentation disabled.

The following example shows instrumentation enabled for one application and disabled for another.

<process name="ASP.NET" enablealldomains="false">
<points file="ASP.NET.points" />
<points file="ADO.points" />
<appdomain name="1/ROOT/myApplication"” website="Default Web Site”
enabled="true">
<points file="DefaultWebsite-myApplication.points" />
</appdomain>
<appdomain name="1/RO0T/myApplicationTwo" website="Default Web Site”
enabled="false">
<points file="DefaultWebsite-myApplicationTwo.points"/>
</appdomain>
</process>

To enable the instrumentation for ALL applications:

Set the enablealldomains attribute in the <process> element to true. This overrides the settings of
the attributes in each <appdomain> element so that the instrumentation can be enabled without
having to set numerous attributes.

The following example shows instrumentation enabled for all applications:

HP D

iagnostics (9.24) Page 49 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

<process name="ASP.NET" enablealldomains="true">
<logging level=""/>
<points file="ASP.NET.points"/>
<appdomain name="1/RO0OT/myApplication" website="Default Web Site”
enabled="false">
<points file="DefaultWebsite-myApplication.points"/>
</appdomain>
<appdomain name="1/ROOT/myApplicationTwo" website="Default Web Site”
enabled="false">
<points file="DefaultWebsite-myApplicationTwo.points"/>
</appdomain>
</process>

Troubleshooting .NET Web Applications Not Discovered

In a Microsoft Windows 2003 server and 1S 6 environment, if your web site has a virtual directory under
aweb folder .NET Agent may fail to discover the virtual directory. This is because of an issue with the
Microsoft WMI provider used by Diagnostics to walk down the web site tree. The WMI provider does
not properly recognize the web folder as an 1IS web directory and so Diagnostics can'’t discover the
virtual directory under the folder. See the example described below.

The example shows web folder WebFolderTest under the web site abc. Under this web folder there is a
virtual directory WebChain.

'E Internet Information Services (I15) Manager

3 Bl action Wiew Window Help

- | OE FRR| @] > =

_‘:f-j Internet Information Services Name Pz
= 0 ROSE4238BLD (Jocal computer) i #bin
= __I &pplication Pools | app_code
i ﬁ;-l‘ Deu‘aut,npcluPuol | CallChainForm. aspx
g TWTestPool ' H :
dEH | CalchalnF.unn aspo. designer, cs
o wclipp ‘Web. config
- 1 e
= __) Web Sites
s Default Web Site
S T¥Services
(= abc
i+ ,,E, abevirk

H - CallChainz_0
[+ | aspret_dient
- __J bin
=1 webFolderTest | Web Folder
* Virtual Directory
_ Web Service Extensions

Because of an issue with the WMI provider, the listing in WMI for this web site would not show the
WebFolderTest/WebChain virtual directory. The .NET Agent uses the listing from the WMI provider to
discover web applications. So in situations like this, the .NET Agent may not be able to discover virtual
directories under a web folder.

HP Diagnostics (9.24) Page 50 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

Microsoft recommends modifying the metabase directly or using a simple script like the following to set
the folder style using ADSI:

Set objRoot = GetObject("IIS://localhost/W3SVC/1/Root/WebFolderTest")
objRoot.KeyType = "IIsWebDirectory"
objRoot.SetInfo()

Instead of using a script you can manually configure the web folder as an applicationin IIS. Once this is
done it can be reverted to a non-application but the property would now be set and Diagnostics would
be able to discover the web application.

Another option is to manually add the excluded APPDOMAIN in the ASP.NET AppDomain list in the
probe_config.xml file.

Manually Adding an AppDomain Not Discovered

If an AppDomain that you expected to be discovered by the .NET Agent was not discovered, rescan
the IIS configuration. If the application was added after the .NET Agent was installed it may not have
been discovered. See "Discovering ASP.NET Applications After Installation" on page 42 for details on
rescanning.

If the AppDomain still does not appear, you can manually add the AppDomain. Choose the option
below that suits your application.

« "Add all AppDomains Without Any Filtering" below
« "Add all AppDomains that Match a Specific Name in the Entire 11S configuration" on the next page
« "Add a Specific AppDomain in the [IS Configuration" on page 53

After you modify the configuration as described below, restart [IS or the Web publishing service to
pick up the new agent configuration. See "Step 12. Restart 1IS" on page 37.

Add all AppDomains Without Any Filtering

In the <agent_install_dir>/etc/ probe_config.xml file, locate the ASP.NET section and remove any
existing <appdomain> elements. Then add the following section:

<process enablealldomains="true" name="ASP.NET">
<logging level="" />
<points file="ASP.NET.points" />
<points file="ADO.points" />
<points file="WCF.points" />
</process>

All AppDomains are enabled.

HP Diagnostics (9.24) Page 51 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

Add all AppDomains that Match a Specific Name in the Entire lIS
configuration

Assume that you have multiple AppDomains of the same name, but in different web sites, to be
included. For example the "CallChain" AppDomain below:

Add the entry shown in bold to the <agent_install_dir>/etc/ probe_config.xml file :

<process enablealldomains="false" name="ASP.NET">
<logging level="" />

HP Diagnostics (9.24) Page 52 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

<points file="ASP.NET.points" />
<points file="ADO.points" />
<points file="WCF.points" />
<appdomain enabled="true" name="CallChain">
<points file="CallChain.points" />
</appdomain>
</process>

All AppDomains of the same name are added, regardless of the web site in which they appear.

Add a Specific AppDomain in the IIS Configuration

Assume that you have multiple AppDomains of the same name as described in the previous example.
To specify a particular AppDomain, specify the fully-qualified domain name as described below. For
example, add the following to the <agent_install_dir>/etc/ probe_config.xml file to reference the
CallChain AppDomain in WebSite2:

<process enablealldomains="false" name="ASP.NET">

<logging level="" />

<points file="ASP.NET.points" />

<points file="ADO.points" />

<points file="WCF.points" />

<appdomain enabled="true" name="2/RO0T/CallChain"” website="WebSite2">
<points file="WebSite2-CallChain.points" />

</appdomain>

To get the fully-qualified AppDomain name, perform the following steps.

1. Inthe <probe_install_dir>\log directory, locate the log file name that has the name of the virtual
directory:

HP Diagnostics (9.24) Page 53 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

fddress |2 \MercuryDiagnostics) MET Probellog il

Folders ¥ | | Mame
[’_@ Deskkap - TWRemotingServer, 245457 2731503936, 2.log
D My Diocuments [;j ASP.MET,Z760584614831913,2. 1 -ROOT-TeskServicez WebClient log
a J My Computer E] TYRemotingClient, 245457 3043722839.2.log
\.ﬂ- 34 Floppy (A1) E] RawHtkpClient, 245457 3259102773.2 . log
= < Local Disk (C1) E] ASP.MNET. Z760554614631913, 2, 1-ROOT-TeskServicez, WebJervice log
3 bin E] TestHtkpHeaderConsumerID, 245457 3086352246, 2, log
3 Corfig.Msi E] ASP.MNET. 2700834614831913. 2, 1-ROOT-TeskService2, WebhServiceChain, lag
) Documents and Settings ASP.MET. 2959854397334688. 2. 1 -Root-MSPetShop.log
) FRSE_search ASP.MET.2760834614831913. 2. 1-ROOT-CallZhainz_0.log
3 Inetpub ASP.MET,.Z760584614831913,2,1-RO0T-JavaTraderz WebClient Jog
= 25 MercuryDiagnostics E] ASP.MNET. 2760834614831213, _Instrumentation, lag
=) MET Probe E] ASP.MNET. 2969554397 334635, _Instrumentation, lag
) bin E] ASP.MNET, 24545861 73566540, 2, 1-ROOT-TeskServicez, WebJerviceChain, lag
) ekc E] ASP.MNET, 24545861 73566540, 2, 1-ROOT-TeskServicez, Web3ervice log
R E] ASP.MET. 24545861 73566540, 2, 1-ROOT-TestService2 WebClient. log
> E] ASP.MET. 24545861 73566540, 2, 1-RO0OT-JavaTrader2 Weblient . log
——irri E] ASP.MET. 24545861 73566540, 2, 1-ROOT-CallZhainz_0.log
) ProbeAggregator [;j ASP.MET,24545857158217125,2. 1 -Root-M3Petshop.log
) setup — E] AP MNET, 24545861 73566540, _Instrumentation, lag
E] ASP.MNET. 245458571582 171 25, _Instrumentation, lag
0 srm hl b I I
|24 objects (Disk free space: 14,5 GE) |1 .43 ME | J My Compuker

2. Inthelogfile, locate an entry similar to the following:

2013.01.02.21.10.19.105 [0006] INFO AppDomain Capture disabled for
appdomain(2/R0O0T/CallChain) user(NT AUTHORITY\NETWORK SERVICE).

The highlighted name above is what should be used for the name value in the probe_config.xml
file.

Other .NET Agent Troubleshooting Tips

If you have problems getting the agent started properly here are some things to check:

« Make sure you restarted the web server and that a URL in the application was accessed, this
triggers the agent to begin collecting data.

« Check if a probe_config.xml file was created and is formatted correctly (that is, no missing tag
closers, etc.). This can be done by opening the file in a web browser.

HP Diagnostics (9.24) Page 54 of 239

.NET Agent Guide
Chapter 3: Installing .NET Agents

« Look for any message in the Windows Event Log named “HP Diagnostics”. This log is used
exclusively by the .NET Agent. There should be a message for each attempt to instrument an
application.

« Afterinstalling the .NET agent, Microsoft SharePoint 2013 may not function correctly. To fix this
you can apply the following workaround:

a. Open the SharePoint web.config file for editing. By default this file is located in
C:\inetpub\wwwroot\wss\VirtualDirectories\80.

b. Change the legacyCasModel setting from true to false, as follows:

<trust level="Full" originUrl="" legacyCasModel="false" />
c. Restart IIS by using either IS Manager or the [ISReset command-line utility.

You can track the issue related to this workaround at
http://blogs.msdn.com/b/jaskis/archive/2010/01/05/intermittently-getting-loading-this-assembly-
would-produce-a-different-grant-set-from-other-instances-exception-from-hresult-0x80131401-after-
net-3-5-sp-1.aspx.

Uninstalling the .NET Agent

To uninstall the .NET Agent:
1. Stop all Web applications that are using SOAP.

2. From the Windows Control Panel, select Add/Remove Programs and then select HP
Diagnostics/TransactionVision Agent for .NET to uninstall.

3. Restart the Web applications.
To remove the Probe Aggregator Service you can uninstall the .NET Agent which will also remove

the Probe Aggregator Service. Or you can run the .NET Agent installation again, selecting the
Change button and then de-select the check box for installing the Probe Aggregator Service.

HP Diagnostics (9.24) Page 55 of 239

http://blogs.msdn.com/b/jaskis/archive/2010/01/05/intermittently-getting-loading-this-assembly-would-produce-a-different-grant-set-from-other-instances-exception-from-hresult-0x80131401-after-net-3-5-sp-1.aspx
http://blogs.msdn.com/b/jaskis/archive/2010/01/05/intermittently-getting-loading-this-assembly-would-produce-a-different-grant-set-from-other-instances-exception-from-hresult-0x80131401-after-net-3-5-sp-1.aspx
http://blogs.msdn.com/b/jaskis/archive/2010/01/05/intermittently-getting-loading-this-assembly-would-produce-a-different-grant-set-from-other-instances-exception-from-hresult-0x80131401-after-net-3-5-sp-1.aspx

Chapter 4: Upgrading the Diagnostics .NET Agent

This chapter presents the information you need to upgrade the Diagnostics .NET Agent.

This chapter includes:
» "Upgrade .NET Agents" below

« "Upgrade Notes and Limitations" on the next page

Upgrade .NET Agents

Consider the following when planning the Diagnostics Agent upgrade:

« You must upgrade the Diagnostics Server before upgrading the .NET Agents that are connected to
it because Diagnostics Servers are not forward-compatible.

To upgrade a .NET Agent:
1. Install the new Diagnostics Agent for .NET (select Upgrade).
The upgrade will take effect when the probed applications are restarted.
To force the upgrade to take effect:
a. Shut down all applications that are being monitored by the current .NET Probe.
b. RestartlIS.
c. Restart the applications that were being monitored by the old probe.

See "Installing .NET Agents " on page 18 for additional information you need for installing a
.NET Agent.

2. You can verify that the upgraded Diagnostics Agent is running by checking the version in the
System Health view in the Diagnostics Ul. The version should be the latest version if the upgrade
was successful. To access the System Health view you must open the Diagnostics Ul as the
Mercury System customer from
http://<Diagnostics_Commanding_Server_Name>:2006/query/. Thenin the Views pane you
can select the System Views view group.

HP Diagnostics (9.24) Page 56 of 239

.NET Agent Guide
Chapter 4: Upgrading the Diagnostics .NET Agent

Upgrade Notes and Limitations

In Diagnostics version 9.24, by default HTTP methods (such as PUT, GET, and POST) are used as an
identifying component for each HTTP/S Server Request and a separate HTTP Server Request is
generated for each HTTP method to the same URL. In earlier versions of Diagnostics, the root method
of an HTTP Server Request is 'Server.Request' and one HTTP Server Request is generated for all
HTTP methods to the same URL.

We recommend using the new method of Server Request identification, even though this is not
backward compatible and breaks trend lines. If you must maintain continuity of trend lines, in the
probe_config.xml file, change the value of the symbols usehttpmethod parameter to false
(<symbols usehttpmethod="false” />).

HP Diagnostics (9.24) Page 57 of 239

Part 3: Advanced .NET Agent Configuration and
Instrumentation

HP Diagnostics (9.24) Page 58 of 239

Chapter 5: Custom Instrumentation for NET
Applications

This section explains how to control the instrumentation that HP Diagnostics applies to the classes
and methods of applications to enable the .NET Agent to gather the performance metrics.

This chapter includes:
o "About Instrumentation and Capture Points Files" below
« "Locating the .NET Capture Points Files" on the next page
o "Coding Points in the Capture Points File" on page 61
« "Instrumentation Examples" on page 66
» "Understanding the Overhead of Custom Instrumentation" on page 83

« "Default Layers for Typical .NET Applications" on page 83

About Instrumentation and Capture Points Files

Instrumentation refers to bytecode that the probe inserts into the class files of the application as they
are loaded by the CLR. Instrumentation enables a probe to measure execution time, count invocations,
and catch exceptions; and to correlate method calls and threads. The instrumentation points for each
probe are specified in the capture points file.

The capture points file enables you to control the scope of the instrumentation so that Diagnostics can
give you all the information you need to understand the performance of the applications without
overwhelming you with costly or confusing extraneous information. The instrumentation definitions
contained in the capture points file are called points that tell the probe which methods to instrument,
how they should be instrumented, and which instrumentation should be installed.

Points can include regular expressions that "wildcard" the instructions so that they apply to more than
one method, class or namespace specification. For more information about using regular expressions,
see "Using Regular Expressions" in the HP Diagnostics User Guide.

You can customize the points in the capture point file to include methods, classes, and namespaces for
areas of the application that do not fall within the default points.

The Microsoft specification for NET does not include a unified or recommended interface that business
logic should implement except in the case of instrumentation for web and WCF methods. This means
that the .NET probe will almost always require custom points in the capture points file to enable it to
gather meaningful metrics for the performance of the business logic classes and methods in .NET
applications.

HP Diagnostics (9.24) Page 59 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

The points in the capture points file are grouped into layers. Layers organize the performance metrics
into meaningful tiers of information that can be compared as part of a triage process and control the
collection behavior of the instrumentation.

The points in the capture points files are grouped into default layers. You can customize the default
layers and create new layers (see "Default Layers for Typical .NET Applications" on page 83).

Locating the .NET Capture Points Files

When you install the .NET Agent, predefined default capture points files are installed.

Default capture points files for ASP.NET applications are located at <probe_install_dir>\etc\ and
include Asp.Net.points, Ado.points and WCF.points as well as other points files shown in the table
below.

In addition, the .NET Agent installer automatically creates a separate capture points file for each 11S
deployed ASP.NET Application Domain it detects. You must modify the automatically detected and
created points file to enable custom instrumentation points for the Application Domain. These capture
points files are located in the <probe_install_dir>\etc\<ApplicationDomain>.points file. These
points files and the default points files are read by the .NET Agent.

At installation, only the Asp.Net.points, Ado.points and WCF.points default points files are enabled.
The following default .NET points files are installed in the <probe_install_dir>/etc directory but not
enabled:

Default Point File (initially Instrumentation Target

disabled)

Asp.Net.|IExecutionStep.points [1S5, 11S6 and 11S7. This file makes the |IS points obsolete.
I1S.points 1S5 and 11S6

Lwmd.points Lightweight Memory Diagnostics

Msmg.points Microsoft Message Queuing (MSMQ instrumentation)
Remoting.points .NET Remoting

WebServices.points ASP.NET Web Services

You can enable the points files by adding a reference to them in the <points> element in the scope of
the AppDomain in the probe_config.xml file. See "Understanding the .NET Agent Configuration File
on page 85 for details on each element in the probe_config.xml file.

For information on .NET probe instrumentation specific to TransactionVision, see the HP
TransactionVision Deployment Guide.

HP Diagnostics (9.24) Page 60 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

Coding Points in the Capture Points File

The following arguments can be used to define a point in the points files:

[Point-Name] =<unique name for the point>
class = <class/package name/s to capture>
method = <method name/s to capture>
signature = <signature/s of method/s>
ignoreClass = <classes to ignore>
ignoreMethod= <method prototypes to ignore>
ignoreTree= <class hierarchy to ignore>
deep_mode= <soft or hard mode>

scope = <comma separated list of methods>
ignoreScope= <comma separated list of methods>
detail = <list of specifiers>

keyword = <keyword>

layer = <layer name>

layerType = <layer type>

Caution: Do not modify any of the default points files because, in an installation upgrade,
maodifications are lost. Store your application-specific instrumentation points in a custom capture
points file.

All arguments that can be specified as a regular expression list have an effective maximum limit of 260
characters, which if exceeded results in a truncated value. The arguments are described in the
following sections.

Mandatory Point Arguments

Every point, except for the points for LWMD, HttpCorrelation, WSCorrelation and WCF, must contain
the following arguments:

Argument Description
Point-Name A unique name for the point.
class Specifies the name of the class or interface to be instrumented. The

name should include the full namespace name using periods between
the namespace and class levels. Any valid regular expression can be
used.

HP Diagnostics (9.24) Page 61 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

Argument Description

method Specifies the name of the method to be instrumented. To be successful,
the method name must match a method defined in the class or interface
specified by the class argument. Any valid regular expression can be
used.

layer Specifies a layer, sublayer, or tier under which the data from this point is
grouped. Layers are a part of the instrumentation collection control.

Layers in a point can be specified with nested layers or sublayers by
separating the layer names with a/ (slash). The layer specified following
the slash is a sublayer of the layer specified before the slash. A
sublayer can have its own sublayers by coding another slash and layer
name following a sublayer name.

The following is an example of a custom point that contains the mandatory arguments:

[MyCustomEntry_1]

; comments here...

class = myNameSpace.myClass.MyFoo
method = myMethod

layer = myCustomStuff

Note: Regular expressions can be used for most of the arguments in a point. They must be
prefaced with an exclamation point. For more information about using regular expressions, see
"Using Regular Expressions" in the HP Diagnostics User Guide.

HP Diagnostics (9.24) Page 62 of 239

.NET Agent Guide

Chapter 5: Custom Instrumentation for .NET Applications

Optional Point Entries

Point definitions can contain one or more of the following arguments:

Argument

keyword

ignoreClass

ignoreMethod

ignoreTree

HP Diagnostics (9.24)

Description

Indicates special instrumentation. The keyword argument can be used
to enable specific features; for example, the WCF keyword turns on the
WCF feature. The keyword argument can also relate point definitions to
special functionality; an example of this is the RemotingServer keyword
and the Remoting.points file.

« HttpCorrelation. Tumns on correlation of client/server method calls
viaHTTP

« WsCorrelation. Turns on web service correlation logic on the client
side and turns on correlation of raw HTTP client request calls across
both the .NET and Java technologies.

« WCF. Turns on the WCF feature.

« REST. Turns on the WCF REST service instrumentation.

« lwmd. Turns on lwmd instrumentation.

« Remoting. Turns on .NET Remoting framework instrumentation.

« RemotingServer. Associates points in a .NET Remoting server to
special .NET Remoting logic for these points. See "How to
Configure Instrumentation for NET Remoting" on page 77.

Specifies a comma-separated list of classes to ignore. Any class
matching one of the classes specified with ignoreClass is not
instrumented.

Specifies a comma-separated list of methods to ignore. Any method
matching one of the methods specified with ignoreMethod is not
instrumented.

Ignores instrumenting any method that is implemented on a class that
inherits from the specified class. Thus, an entire class hierarchy tree of
methods would be ignored.

Page 63 of 239

.NET Agent Guide

Chapter 5: Custom Instrumentation for .NET Applications

Argument

deep_mode

scope

ignoreScope

HP Diagnostics (9.24)

Description

Specifies how subclasses are handled. This argument accepts three
values:

« nhone - A value of none is identical to not specifying a deep_mode
argument. It has no effect on how subclasses are handled.

« soft - A value of soft requests that, for every class or interface
matching the class, method, and signature entries, any subclasses
or subinterfaces that also implement the matching method and
signature should also be instrumented. Soft mode is typically used
for points for interfaces.

« hard - A value of hard requests that, for every class or interface
matching the class, method, and signature entries, any subclasses
or subinterfaces at any depth should have all their methods
instrumented. Hard mode is typically used for special cases.
Caution: Hard mode can lead to extensive instrumentation and very
high probe overhead.

Constrains the context in which instrumentation is performed. If
specified, the inserted bytecode is caller side. Any valid regular
expression can be used for the value of this argument. Scope values are
expressed as a comma-separated list of method names.

Excludes certain methods from those included in the scope specified by
the scope argument. Any valid regular expression may be used for the
value of this argument. ignoreScope values are expressed as a comma-
separated list of method names.

Page 64 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

Argument Description
detail Provides more specific capture instructions.

For the following the string that is returned is displayed in the method's
Argument field in the details pane of the Call Profile view. It is a comma-
separated list of the following:

« args:n - Captures all supported types of arguments for the method
(s) that match. A value of ‘n’ captures all arguments. Or you can
enter a value for n from 1 through 256.

« args:0— Calls the ToString() on the current class instance or callee
object. This is invalid for static methods.

« *args:1-—Marks (*) the argument as a key argument for the server
requests if the method is a top-level request.

The detail argument also takes the following value:

« tv:user_event - Generates a TransactionVision event for the
methods that match. As part of the TransactionVision event the
parameters to the method are collected as the Request Payload and
the return value is collected as the Response Payload. The values
displayed are the ToString() values returned by the parameters or the
return value objects. Note that all parameters and return values may
not be collected.

Provides extensive support for transaction tracing by enabling
TransactionVision event generation from practically any given
method in any .NET application. You specify the method on which
you want a TransactionVision event generated. It is highly
recommended that event generation is specified for one method at a
time to avoid too many events and performance degradation in
TransactionVision. Avoid using wild card specifications (but they are
supported for convenience).

layerType Specifies special handling for some instrumented methods and accepts
these values:

« trended_method — Identifies methods to be displayed in the
Trended Methods view.

« sql —Identifies methods used to capture SQL for the SQL views.
These are set by HP Diagnostics and should not be modified.

signature Specifies the signature (return and parameter types); for example,
System.String(System.int32, System.String). Any valid regular
expression can be used.

HP Diagnostics (9.24) Page 65 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for NET Applications

Instrumentation Examples

The following examples illustrate how you can customize the instrumentation of an application by
creating and modifying the points in the capture points file.

This section includes:
« "Custom layer and sublayer" below
« "Wildcard method" below
« "lgnore Specified Methods" on the next page
« "Capture Methods for the Trended Methods View" on the next page
« "Capture Only a Specific Method In a Class" on the next page
« "Capture a Specific Method That Returns a String" on page 68
o "Caller Side Instrumentation" on page 68
« "Argument Capture" on page 69
« "Configure WCF REST Services for Monitoring" on page 72
o "Deep_mode Examples" on page 73
« "How to Configure and Set Up Points for Non-ASP.NET or Windows Applications" on page 74

« "How to Configure Instrumentation for NET Remoting" on page 77

Custom layer and sublayer

The following point creates a custom sublayer called BAR within the layer called FOO for the method
myMethod in myCompany.myFoo class:

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod

layer = FOO/BAR

Wildcard method

The following point captures all methods in the MyCompany.MyFoo class:

[myCompany .myFoo_AllMethods]
class = myCompany.myFoo

HP Diagnostics (9.24) Page 66 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

method = !.*
layer = FOO/BAR

Ignore Specified Methods

The following point captures all methods in the MyCompany.MyFoo class except for the methods
setHomelnterface and getHomelnterface:

[myCompany.myFoo_AllMethodsExcept]

class = myCompany.myFoo

method = !.*

ignoreMethod = setHomeInterface,getHomeInterface
layer = FOO/BAR

The following point captures all methods in the MyCompany namespace except for those contained in
the MyCompany.logging class:

[myCompany All Methods_except_from_MyCompany_Logging]
class = !myCompany\..*

method = !.*

ignoreClass = MyCompany.logging

layer = FOO/BAR

Capture Methods for the Trended Methods View

The following point captures the required data to populate the Trended Methods View for the myMethod
method:

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod

layer = FOO/BAR

layertype = trended_method

Capture Only a Specific Method In a Class
The following point captures all non-static constructor methods for the MyCompany.MyFoo class:

[myCompany.myFoo_Constructor]
class = myCompany.myFoo
method = .ctor

layer = FOO/BAR

HP Diagnostics (9.24) Page 67 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

The following point captures all static constructor methods for the MyCompany.MyFoo class:

[myCompany.myFoo_Singleton]
class = myCompany.myFoo
method = .cctor

layer = FOO/BAR

The following point captures the setFoo method in the MyCompany.MyFoo class:

[myCompany.myFoo_setFoo]
class = myCompany.myFoo
method = setFoo
layer = FOO/BAR

The following point captures all methods in the MyCompany.MyFoo class whose name includes “set”:

[myCompany.myFoo_AllSets]
class = myCompany.myFoo
method = !.*set.*

layer = FOO/BAR

The following point captures all methods in the MyCompany namespace:

[myCompany_All Methods]
class = !myCompany\..*
method = !.*

layer = FOO/BAR

Capture a Specific Method That Returns a String

The following point captures the getFoo method that returns a System.String in the

MyCompany.MyFoo class:

[myCompany.myFoo_GetFoo_String]
class = myCompany.myFoo

method = getFoo

signature = !System.String\(.*
layer = FOO/BAR

Caller Side Instrumentation

By default, all the instrumentation in Diagnostics is Callee side instrumentation where the bytecode is
placed within the method call. Caller side instrumentation refers to the process of placing bytecode for
measurement around the call to the method to be instrumented, instead of within the method.

Caller side instrumentation allows for finer control of instrumentation placement, but can increase the
application initialization time because each class specified in the scope must be checked for

references to the class/method specified in the points.

HP Diagnostics (9.24)

Page 68 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

The scope and ignoreScope arguments are used to specify what caller should be instrumented. The
following two examples refer to Caller side instrumentation.

The following point captures all methods in the MyCompany namespace that are called from the
MyCompany.logging class.

[myCompany_All Methods_from_MyCompany_Logging]
class = !myCompany\..*

method = !.*

scope = !MyCompany.logging.*

layer = FOO/BAR

The ignoreScope argument is used to exclude certain classes and methods from those included in the
scope specified in scope argument. The following point captures all methods in the MyCompany
namespace that are called from the MyCompany.logging class except for those called from the
myMethod method.

[myCompany All Methods_except_from_MyCompany_Logging]
class = !myCompany\..*

method = !.*

scope = !MyCompany.logging.*

ignoreScope = MyCompany.logging.myMethod

layer = FOO/BAR

Argument Capture

The arguments to be captured are specified in the detail key of a points file section.

The following example calls the ToString() method of the n-th argument. The string that is returned is
displayed in the method’s Argument field in the Call Profile view: detail=args:1,...args:4,
*args:3

There are several special values to note:

« args:n— Captures all supported types of arguments for the method(s) that match. A value of ‘n’
captures all arguments. Or you can enter a value for n from 1 through 256.

« args:0— Calls the ToString() method on the current class instance or callee object.
« Adding a * to the args element (*args: 1) marks a key argument.

To see the arguments for each method call, do not specify a key argument. This is a way to get more
detailed information on the captured instance tree and could help answer questions about why this
instance is a MAX tree or what values were passed in when there was an exception.

To group server requests for a method by arguments, specify a key argument. The key arguments,
aggregate server requests with distinct values. Arguments that have a large number of distinct values
are not good candidates for key arguments because this will lead to unique server requests for every
distinct value.

HP Diagnostics (9.24) Page 69 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

Note: Even if you have not specified argument capture, arguments are captured when a method in
the call tree throws an exception. These arguments are displayed in the Call Profile view, in the
Stack Trace section of the Exceptions detail pages. See the Call Profile View online help for more
details.

The following argument capture example relates to the code shown below:

[ILTest]

class = !ILTest_NameSpace.ILTest_Class
method = methodWithParams

detail = args:0, *args:3, args:5, args:7
layer = myFunctionLayer

Here is the relevant code example:

class ILTest Class

{

public bool methodWithParams

(string paraml, int param2, string QnameParam3, long param4, object param5, int
param6, double param7)

{

... some implementation

¥
}
In this example the defined detail will capture ILTest Class.ToString(args:0)
paraml, QnameParam3, param5 and

param7.

The value of QnameParam3 will be part of the identity of the server request if the top level method is
methodWithParams.

When an argument to be captured is marked as a key argument (with an asterisk *) and the method is a
top-level method, the argument value becomes part of the Server Request identity.

For example, if Shipping Type is a parameter of a method processing different shipments and you
specify the Shipping Type argument as a key argument, you will be able to see aggregated views for
each different shipment (apples and oranges) being processed by the method.

HP Diagnostics (9.24) Page 70 of 239

.NET Agent Guide

Chapter 5: Custom Instrumentation for .NET Applications

All Server Requestson L95_Paramet...rnttG5_W2k3 in Sanity LR_9_5_owvintt100 Probe Group filtered by Mo Filter

with Top 5 by Latency % Owver Threshold charted for Last S minutes

=/ K2

Common Tasks

11:12:00
han 022409

T T T
114900 11:20:00
han 0272409 han 0272409

; ILatency (#wg) <showing threshold>|

11:21:.00

hon 02724/00

11:22:.00
hlan 022409

/0y Create New Snapshot and Add
@ “View Profiler for L95_Parameter ...
& Add to application...

Mavigations = [F
i View Layers (1)

@) View Probes (1)

Details - [

T E—

Methods TestAllSystemBuiltins

Methods TestAllSystemBuitinsRefs()
Methods TestBigUglyMethodSignatures()
[Methods TestOtherTypes()

0

0
T 1..0...
2.01..0..
101,00

Default Name Methods MySer...
Methocl MyServerReque... =
Package HPSoftware AM...
Root Method Methods MySer...
Server Req... Pseudo |
Signature System.Void My ...
Count a8 Y=
Exceptions 0 =
Throughput 12/ min NG
Timeouts 0 he

=l Custom Attributes | =

When you specify a key argument, the Call Profile view shows key arguments in the Arguments field in
the Details pane. You will also see the arguments displayed under Method Arguments in the Details

pane.
Call Profile [Average Instance on L95_ParameterCapture_Consolel)| NET _owrmtt&66_VW2k3 of
Methods MyServerReqguestWithArgs{ Apples) ending at 8/24/09 11:22:27 AM for Sanity LR 9 5 ovrntt100]

] 2ms

Methods.FindShipper()

$2ms

1ims

1Hims

Methods.ShipApples()

1#ims

1B ms

o ms 232 ms

Call

,|I- -~ Methods MyServerReguestWithArgs()

I: 33.3% Methods FindShipper()
33.5% Methods ShipApples()

ITTTTTIT
Latency (Total)

7789 ms
784 ms

= Method-Data

Arguments Apples

Class T
Alias

Default Mame
Category Mame
Layer

Exception?

Timeout?

Mame

Namespace

Method Arguments

|_stanmw (Tatall

Fooftware AM Tests

System Void HPSoftw:

ConsoleUMethods
false

false

Methods MyServerRe...
HPSoftware AM Test...
Moidl

Apples

734 7 me

HP Diagnostics (9.24)

Page 71 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

When arguments to be captured are NOT marked as key arguments (with no asterisk *), they are
displayed in the Call Profile view under Method Arguments only.

Configure WCF REST Services for Monitoring

Fora .NET Probe WCF REST services are monitored by default based on the keyword=REST value
enabled out-of-the-box in the WCF.points file. These REST services will be monitored as web
services and their performance data displayed in the Diagnostics Ul SOA Services views.

You can further configure REST services as described in the sections below.
REST Service Configuration

In WCF REST style services sometimes the operations are encoded as url parameters. For example:

HTTP Method: PUT Url: http://localhost:81/RestNOSvc/AccountsRESTService/
{ID}?0p={OPERATION} op can be "deposit" or "withdrawal"

To be able to distinguish operations in these types of services you can specify the operation
parameters of the REST service method as a key argument to allow it to be displayed as a separate
operation. See "Argument Capture" on page 69 for a general description of argument capture.

For example, for the method
[WebInvoke(UriTemplate = "{id}?op={operation}", Method = "PUT")]
public TransactionResult Update(string id, string operation, long Amount)

The operation is the key argument and can be specified in the points file as:

[WebSite2-RestNOSvc]

class = !HP.Test.WcfRestService.*
method = Update

detail = *args:2

layer = WebSite2-RestNOSvc

The SOA Services Operations view example below shows the results of this configuration with
separate operations shown in the table.

HP Diagnostics (9.24) Page 72 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

Web Services Opaiations of AccountsPEST Service on | ROOTRESTn...savmS_W2HE in Sanity LR_..oviesidvm# Probe Groupfiftered by Tvpe containing "Web Sewice" with Top §

Chart =L
B

200 e

50

00 ms

T
10:ETE0 Z3 0200 220 103000 10034
Thy AODTAD Thu AD7A0 Thy 100740 The A0DTA0 Thy 100740 Thy 00740 The 400740 Thy 500740 Thy 100740 The 900740

T
Ap:2E00 10 02030 01400 1220 A0:FZ00

| S |Latenoy Geg) =shawang thresnalax|

Latency % v|h

1

Latency | Thraughput | CPU [Aug]

Status Calor | Char? Wiab Sandca & Dpllli‘ﬂ.l\ MHama | FProba Info
1 Cuar Theashold
O mmm ¢ AccountzRESTSarvice:CheckBaance 1ROCTRESTNOSY. .. 18ms TImn BE4 6 e
o EocountsRESTService;: Updateidapasi) 1ROCTREEToSY,, Tadms NME e B Ems
@ w4 pecountsRESTSenvceUpdaletaiicranal) 1 ROCTRESTneSY... 4.3ms EEA 54.2 i

REST Client Configuration

The REST service client is the same as an HTTP client call and cannot be distinguished. So for
monitoring .NET applications that are REST service clients, the configuration option <httpclient
showurl="false”/> should be set in the probe_config.xml file to avoid a large number of outbound
calls and possible symbol table explosion. The number of calls is due to unique urls accessed by the
client, often with ids encoded in the urls.

For example:

/RestNOSvc/AccountsRESTService/8FFD2F34-E334-4E1E-A940-50FCCCACE1D1

where the Guid represents different account ids.

Deep_mode Examples

The following interface definition is used for both soft and hard deep_mode examples:

public interface Interfacel {

public void callerMethod();

}

The following class is used for both soft and hard deep_mode examples:

public class Classl implements Interfacel {
public void callerMethod(){
calleeMethod();
calleeMethod2();

}

public void calleeMethod(){

HP Diagnostics (9.24) Page 73 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

Console.WriteLine("hello world");
//more code lines here..

}

public void calleeMethod2(){
Console.WriteLine("hello world 2");
}

}

The following point captures the callerMethod in the Class1 class:

[Training-1]

class = Interfacel
method = !.*
deep_mode = soft
layer = Training

The following point captures all methods in Class 1; that is, callerMethod, calleeMethod1, and
calleeMethod?2:

[Training-1]

class = Interfacel
method = !.*
deep_mode = hard
layer = Training

How to Configure and Set Up Points for Non-ASP.NET or Windows
Applications

This section explains how to configure both the probe_config.xml file and custom points files that
enable instrumentation for Non-ASP.NET or Windows applications. Instrumentation for Windows
Services, console applications, Windows Forms applications, and WPF applications are considered
Windows applications and are referred to as such.

Windows Application Design

The critical point to consider when contemplating how to configure a Windows application you want to
monitor is that the .NET probe is designed to monitor long running processes. Therefore, if your
Windows application is designed to run for a few seconds and then exit, you will probably not be able to
see any data for that run. When the Windows application exits quickly, the AppDomain is shut down
and the probe is shut down before it can establish and maintain communication with a Diagnostics
Server or the Diagnostics .NET Profiler.

The following simple Windows application illustrates a number of crucial concepts to be considered
when configuring the instrumentation for a Windows application.

namespace Hello_dotNet_nameSpace

HP Diagnostics (9.24) Page 74 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

{

class someclass

{

static void Main(string[] args)
{
// do something
// read form commandline then exit
clReader myClReader = new clReader();
String cl;
cl = myClReader.readCl();
}
¥

// Command Line Reader
public class clReader
{

public String clread;

public String readCl()

{
System.Console.WriteLine("Continue?");
clread = Console.ReadLine();
return clread;

}

}
}

The Hello_dotNet.exe Windows application has Main() that calls a method, waits for the user to enter
something on the command line, and then exits. Until the application exits, the probe is active.

Creating the Hello_dotNet.points File

In the <probe_install_dir>\bin folder there is a Reflector.exe command line utility you can run against
the Hello_dotNet.exe Windows application to obtain a suggested points file. See "Discovering the
Classes and Methods in an Application" on page 175 for more information on the reflector utility.

When both the Reflector.exe and the Hello_dotNet.exe application are in the same folder, you would
the following command:

Reflector.exe Hello_dotNet.exe

The output is sent to stdout. Among other information you will see the following suggested Hello_
dotNet.points:

[Hello_dotNet_nameSpace]
class = !Hello_dotNet_nameSpace.*
layer = Hello_dotNet_nameSpace

HP Diagnostics (9.24) Page 75 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

The suggested points can be used as is, except when the Windows application has a method like Main
(); that is, a method that, if instrumented, does not return an exit until the application exits. In this case,
the method spans the lifetime of the application so nothing would be reported until the application exits.
Since the probe will be unloaded when the application exits, you will probably not get any data from the
instrumentation point.

To fix this situation, construct a points file so that the Main() method, or any method like it, is not
instrumented. The following Hello_dotNet.points file shows how to do this. It assumes that Main() is
implemented in someclass.

Hello_dotNet.points:

[Hello_dotNet_nameSpace]

class = !Hello_dotNet_nameSpace.*

ignoreClass = Hello_dotNet_nameSpace.someclass
layer = Hello dotNet nameSpace

[ignore]

class = Hello_dotNet_nameSpace.someclass
ignoreMethod = Main

layer = Hello_dotNet_nameSpace

The crucial aspect of this type of points file is shown in bold. The [ignore] section instruments other
methods in Hello_dotNet_nameSpace.someclass if there are any while ignoring the Main() method.

Configuring the Windows Application for Instrumentation

To configure the .NET probe to instrument the Hello_dotNet.exe Windows application, add the
following XML to the probe_config.xml file. You can add it to the bottom of the file just above the
</probeconfig> entry.

<process name="Hello dotNet">
<points file="Hello dotNet.points" />
<instrumentation>
<logging level="" />
</instrumentation>
<logging level="" />
</process>

Note: You must place your Hello_dotNet.points file in the <probe_install_dir>\etc folder before
you make the above changes to the probe_config.xml file.

The only required child element is the points file. The instrumentation, logging, and modes are optional.
The following instrumentation setting can be useful when diagnosing which methods are or are not
being instrumented:

<instrumentation>
<logging level="points ilasm" />
</instrumentation>

HP Diagnostics (9.24) Page 76 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

How to Configure Instrumentation for .NET Remoting

You can configure the .NET probe to add custom instrumentation that supports the instrumentation of
.NET Remoting Client and Server applications. Supported configurations are:

o Both HTTP and TCP bindings
« Both Binary and SOAP Formatting

Configuration

By default, the .NET probe is not enabled to instrument Remoting applications. You must add custom
instrumentation points for both the Client and Server applications.

Two instrumentation keywords are related to Remoting:

Remoting. The Remoting keyword enables instrumentation for various points in the Remoting
Framework.

RemotingServer. The RemotingServer keyword identifies the class that implements the Remoting
Methods and isolates the instrumentation of the methods on that class from unintended instrumentation
of other similar methods.

Client Example

The following very simple Windows application example illustrates a number of crucial concepts the
must be considered when configuring the instrumentation for a Remoting Client Application.

namespace HPSoftware.AM.Tests.Remoting.SimpleRemoting

{

class SimpleConsoleClient
{
[STAThread]
static void Main(string[] args)
{
const string msgl = "How are you?";
String filename =
AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;
RemotingConfiguration.Configure(filename, false);
MyRemotableObject remoteObject = new MyRemotableObject();
doit(remoteObject, myMsg);
Console.WritelLine();
Console.WriteLine("(Press any key to exit)");
Console.ReadKey();

}
public static void doit(MyRemotableObject obj, String message)

{

Console.WritelLine(obj.GetEnlightenment(message));

}
}

HP Diagnostics (9.24) Page 77 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

As described in "How to Configure and Set Up Points for Non-ASP.NET or Windows Applications" on
page 74, you can use the Reflector utility to help determine how to configure the Remoting Client points
file.

To configure the probe to instrument the SimpleConsoleClient Remoting Windows application, add the
following XML to the probe_config.xml file:

<process name="SimpleConsoleClient">
<points file="Remoting.points" />
<points file="SimpleConsoleClient.points" />

<instrumentation><logging level="" /></instrumentation>
<logging level="" />
</process>

You must add the <points file="Remoting.points" /> entry.

If you are in the directory that holds the SimpleConsoleClient.exe and the Reflector.exe is in the PATH,
you can execute the Reflector on the command line to view an implementation decomposition of the
SimpleConsoleClient.exe and suggested point file settings:

Reflector SimpleConsoleClient.exe

The output of this command will contain the following:

Sample .points by Namespace

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient (8

Methods)

Equals System.Boolean(System.Object)

Finalize System.Void()

GetHashCode System.Int32()

GetType System.Type()

doit (method signature information unavailable))
Main System.Void(System.String[])
MemberwiseClone System.Object()

ToString System.String()

The suggested SimpleConsoleClient.points are:

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

These settings, however, would not create instrumentation that would produce any data. The reason,
as discussed in "How to Configure and Set Up Points for Non-ASP.NET or Windows Applications" on

HP Diagnostics (9.24) Page 78 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

page 74, is that you must ignore methods like Main(). If you factor in the need to ignore Main(), you
would be left with the following possible points file settings:

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]

class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
ignoreMethod = Main

layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

Although these settings might be useful and would produce data, you should make them more precise.
This is primarily due to probe performance. The more methods that are instrumented, the greater will be
the probe's performance hit on the instrumented application. For example, if you can remove the
wildcards ".*" from the settings, the scope of your settings become explicit.

Notice from the Reflector output that there is actually only a single implemented class:

HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient

You can remove the wildcards from the class setting as follows:

class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient

Notice also, that the Reflector output does not contain a method setting. The default meaning of no
method setting is that all methods are instrumented. Since most the following methods are only present
because they are inherited from System.Object, it is unlikely that you really want to instrument these
methods: Equals, Finalize, GetHashCode, GetType, MemberwiseClone, ToString. However, it
is likely that you would want to instrument the doit method because it wraps the Remoting client call.

The following settings are recommended for the SimpleConsoleClient.points file:

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]

class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient
method = doit

layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

Server Example

The following Windows application example illustrates a number of crucial concepts the must be
considered when configuring the instrumentation for a Remoting Server Application:

C# code snippets are shown for both the Remotable Object, which is shared between the Remoting
Client and Server, and the SimpleConsoleServer.exe Remoting Server Application.

Here is the C# code snippet for the Remotable Object:

HPSoftware.AM.Tests.Remoting.SimpleRemoting

{
public class MyRemotableObject : MarshalByRefObject

{

const string response = "I'm just fine!";

HP Diagnostics (9.24) Page 79 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

public MyRemotableObject()

{
}
public String GetEnlightenment(string message)

{
return response;
¥
}
}

Here is the C# code snippet for the SimpleConsoleServer.exe:

namespace HPSoftware.AM.Tests.Remoting.SimpleRemoting

{

class SimpleConsoleServer
{
[STAThread]
static void Main(string[] args)
{
String filename =
AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;
RemotingConfiguration.Configure(filename, false);

Console.WriteLine("Server is running... press any key to exit");
Console.ReadKey();
¥
}
}

To configure the probe to instrument the SimpleConsoleServer Remoting Windows application, add the
following XML to the probe_config.xml file:

<process name="SimpleConsoleServer">
<points file="SimpleConsoleServer.points" />

<instrumentation><logging level="" /></instrumentation>
<logging level="" />
</process>

You are not required to add the <points file="Remoting.points" /> entry.

Point files for the Remoting Server can have one or more sections. The first section relates to the
Remotable Object and is a required section. A second section that relates to the Remoting Server
instrumentation can be added. Other optional sections can also be added to instrument other methods
that can be called by either the Remoting methods or the Remoting Server. We will construct the
Remotable Object section first.

The Remotable Object will reside in some assembly. We will assume it is in the RemotableObjects.dIl.

HP Diagnostics (9.24) Page 80 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

When you run the Reflector against the RemotableObjects.dll, you see output that includes:

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject (17

Methods)

__RaceSetServerIdentity System.Runtime.Remoting.ServerIden..)
__ResetServerIdentity System.Void()

CanCastToXmlType System.Boolean(System.String,System..)
CreateObjRef System.Runtime.Remoting.0ObjRef(Syste..)
Equals System.Boolean(System.Object)
Finalize System.Void()

GetComIUnknown System.IntPtr(System.Boolean)
GetEnlightenment System.String(System.String)
GetHashCode System.Int32()

GetLifetimeService System.Object()

GetType System.Type()
InitializelifetimeService System.Object()

InvokeMember System.Object(System.String,Systenm..)
IsInstanceOfType System.Boolean(System.Type)
MemberwiseClone System.MarshalByRefObject(System..)
MemberwiseClone System.Object()

ToString System.String()

As with the Remoting Client example, you cannot just use the suggested point settings. You must be
certain that you identified the class that implements the Remotable Object. You do this by observing
that the Remotable Object is required to inherit from System.MarshalByRefObject and therefore must
have the following methods on it: CreateObjRef, GetLifetimeService,
InitializelifetimeService, MemberwiseClone. From the Reflector output above, you can see that
the HPSoftware. AM. Tests.Remoting. SimpleRemoting. MyRemotableObject class is an obvious
candidate for the class that implements the Remotable Object.

The Remotable Object section must include the keyword = RemotingServer entry. This entry
indicates that the probe's Instrumenter should perform special processing for the point settings in this
section. This special processing accomplishes two things. It instruments all methods on a class that
inherits from System.MarshalByRefObject. Therefore, you need not specify which Remoting methods
to instrument. All Remoting methods will be instrumented. This is also why there is no need for a
method entry in this section. Second, this keyword isolates the instrumentation of methods that are
implemented on a class that inherits from System.MarshalByRefObject to the specified class. This is
important because there are many System classes and user classes that also inherit from
System.MarshalByRefObject and you do not want to unintentionally instrument them.

HP Diagnostics (9.24) Page 81 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

Based on these observations, here is the recommended Remotable Object section:

[RemotableObject]

keyword = RemotingServer

class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject
layer = RemotableObject

Now you can construct the optional Remoting Server section. You only need to create this section if
you want to monitor the Server logic that is invoked independent of the Remoting methods.

When you run the Reflector against the SimpleConsoleServer.exe, you will see output that includes:

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleServer (7
Methods)

Equals System.Boolean(System.Object)

Finalize System.Void()

GetHashCode System.Int32()

GetType System.Type()

Main System.Void(System.String[])

MemberwiseClone System.Object()

ToString System.String()

As explained in "How to Configure and Set Up Points for Non-ASP.NET or Windows Applications" on
page 74, you cannot just use the suggested points settings. You must ignore the Main() method.

Based on these observations, the following settings are the recommended settings for the
SimpleConsoleServer.points file:

[RemotableObject]

keyword = RemotingServer

class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject
layer = RemotableObject

[RemotingServer]
class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleServer

ignoreMethod = Main
layer = RemotingServer

Finally, you can add other optional sections to instrument other methods that can be called by either the
Remoting methods or the Remoting Server.

HP Diagnostics (9.24) Page 82 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

Understanding the Overhead of Custom Instrumentation

When creating custom instrumentation, beware of over-instrumenting the application because that can
introduce excessive latency into the probed application. The custom instrumentation does not have the
same impact on the method latency or the CPU overhead because the overhead of instrumentation is
nearly fixed for every method because the amount of bytecode is almost always the same. The
physical percentages of the CPU and latency overhead will vary in direct proportion to the length of
time the method takes to execute.

For example, if a method takes 100ms and instrumentation makes it execute in 101ms, overhead is
1%. If a method takes 10ms and instrumentation changes its response to 11ms, overhead is 10%. If
this method is not called very often, its overall latency effect on the application is minimal. However,
the overall latency effect of an instrumented method that is called more frequently could have an impact
on the latency of the application’s response even though its overhead percentage is much smaller.

Unlike a traditional profiler that can profile every method called, HP Diagnostics uses bytecode
instrumentation. This allows the default instrumentation to be selective so as to minimize the overhead
caused by instrumentation to an average of 3-5%. Methods with higher latency overhead introduced by
instrumentation are only instrumented when they are called infrequently in relation to other components
in the application and when the instrumentation provides specific information needed for triage
activities.

You should also consider Diagnostics data overhead when you are customizing the instrumentation for
an application. The more methods you instrument, the more data the probe must serialize and pass
over the network to the Diagnostics Server. You can tune the probe’s default configuration so that it can
adjust the volume of Diagnostics data to avoid any unnecessary effect on the performance of the
system being monitored. Improper probe tuning can cause CPU, Memory, and Network overhead on
the physical machine where your probe resides. For more information about managing Latency, CPU,
Memory and Network overhead, see "Advanced .NET Agent Configuration" on page 170.

Default Layers for Typical .NET Applications

HP Diagnostics groups the performance metrics for classes and methods into /layers and sublayers
according to the instructions provided in the points file. The default layers were defined so that the
performance metrics for processing in the application that used similar system resources could be
reported together. The layers make it easier for you to isolate and identify the areas of the system that
could be contributing to performance issues.

The following table lists the default layers and sublayers that are defined for typical .NET applications.
.NET Layers

Layer Sublayers Parent Layer

Web Tier IS

HP Diagnostics (9.24) Page 83 of 239

.NET Agent Guide
Chapter 5: Custom Instrumentation for NET Applications

Layer Sublayers Parent Layer
s ExecutionSteps
Database ADO
ADO Execute Database
Connection
Fill
Update
Cache
Messaging Sender
Receiver
Web Services Soap
Http
WCF
LWMD
HTTP Client

Outbound Calls

HP Diagnostics (9.24) Page 84 of 239

Chapter 6: Understanding the .NET Agent
Configuration File

You control the configuration of the .NET Agent by modifying the elements and attributes in the NET
Agent configuration file: <probe_install_dir>/etc/probe_config.xml.

This chapter includes:
"Understanding .NET Agent Configuration File" below

".NET Agent Configuration Elements" on the next page

Understanding .NET Agent Configuration File

The topics in this section describe the elements and attributes that make up the .NET Agent
configuration file <probe_install_dir>/etc/probe_config.xml.

Each element is defined by describing its purpose, attributes, and parent and children elements. For
information on additional .NET Agent configuration elements specific to TransactionVision see the HP
TransactionVision Deployment Guide.

HP Diagnostics (9.24) Page 85 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

.NET Agent Configuration Elements

<ali> element

Purpose
Enables ALl integration.

Attributes

Attributes Valid Default Description

Values
enabled true false Enable or disable the ALl integration. If enabled, build information
false (build number, build data and server) for a selected probe can be

viewed in the Diagnostics Commander and in an HP AppPulse

environment.

Elements

Number of Occurrences zero or more

Parent Elements probeconfig
Child Elements none
Example

<ali enabled="false" />

HP Diagnostics (9.24)

Page 86 of 239

.NET Agent Guide

Chapter 6: Understanding the .NET Agent Configuration File

<appdomain> element

Purpose

Builds an AppDomain inclusion list for processes that host multiple application domains. If no
appdomain elements are defined for a process then all application domains for that process will be

included.

Attributes

Attributes Valid

Values

enabled true

false
name string
website string

Elements

Number of ZEero or more

Default Description

true

none

none

Determines if the AppDomain should be instrumented. Is overridden
by enableallappdomains attribute of a process element.

Note: When an AppDomain is enabled or disabled, you must restart
the process for the change to take effect. For details on restarting
I1S, see "Step 12. Restart [I1S" on page 37. (To restart an application
that is neither IS hosted, nor running as a Windows Service, stop
and start the application by whatever method is relevant for the
application.)

Name of the .NET AppDomain. (IIS path qualified, see the example
below.)

The name of the Website for those AppDomains that are Websites
(information only)

Occurrences

Parent process

Elements

Child bufferpool, credentials, diagnosticsserver, mediator, id, ipaddress, logging, lwmd,

Elements modes, points, profiler, sample, trim, webserver, symbols, filter, topology
Example

<appdomain enabled="true" name="1/RO0T/MSPetShop"/>
Where 1/RO0OT is the Website ID and MsPetShop is the Virtual DirName

<appdomain enabled="false" name="1/ROOT" website="Default Web Site">
<points file="Default Web Site.points"/>
<id probeid="Default Web Site" />

</appdomain>

HP Diagnostics (9.24)

Page 87 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<authentication> element

Purpose

List of authenticated user names and passwords.

Attributes
Attributes Valid Default Description Requires
Values Application
Restart
username | string admin | Username account. No

password | string admin | Passwords must be generated using the passgen No
utility in the <probe_install_dir>\bin directory.

Elements

Number of Occurrences zero to many

Parent Elements profiler
Child Elements none
Example

<profiler authenticate="true">
<authentication username="Test" password="uU8X9zO0tl6Twi7TkGAhQ="/>
</profiler>

HP Diagnostics (9.24) Page 88 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<bufferpool> element

Purpose

Configures the bufferpool behavior.

Attributes
Attributes Valid Default Description Requires Application
Values Restart
size number 65536 | Size of each buffer. Yes
buffers number 512 Number of buffers in pool. Yes
sleep number 1000 Number of milliseconds between Yes
flush checks.
expires number 1000 Number of milliseconds before buffer = Yes
expires.
Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process
Child Elements none
Example

<bufferpool size="65536" buffers="512" sleep="1000" expires="1000" />

HP Diagnostics (9.24) Page 89 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<capturecookies> element

Purpose

Enables cookies capture for TV events.

Attributes
Attributes Valid Default Description Requires
Values Application Restart
enabled true true Enables, disables capture of cookies for No
false generated TV events
Elements

Number of Occurrences 1

Parent Elements tv
Child Elements none
Example

<tv eventthreads="3" eventthreadsleep="80" eventmemorythreshold="25000000"
configthreadsleep="10000" >

<timeskew historysize="24" checkinterval="300000" latencythreshold="100"
retrythreshold="8"/>

<transport type="sonicmq"
connectionstring="broker=myhost.mydomain.com;port=21111; user=;
password=;configurationqueue=TVISION.CONFIGURATION.QUEUE" />
<capturecookies enabled="true”/>

<capturehttpheaders enabled=""true/>

</tv>

HP Diagnostics (9.24) Page 90 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<captureexceptions> element

Purpose

Enables and controls the stack trace capture for exceptions.

Attributes
Attributes Valid | Default Description Requires
Values Application
Restart
enabled true true Enables exception capture. No
false
capture_ true true Enables (true) or disables (false) the display of = No
args false method parameters in the Exception tab of a
call profile.
max_per_ | number 4 Maximum exceptions captured for one server No
request request.
max_ number = 0 (meaning Maximum size of the call stack for a captured No
stack _ no exception.
size maximum)
Elements

Number of Occurrences 1

Parent Elements probeconfig
Child Elements include, exclude
Example

<captureexceptions enabled="true" max_per_request="4" max_stack _size="0"
capture_args="true">

HP Diagnostics (9.24) Page 91 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<capturehttpheaders> element

Purpose

Enables http header capture for TV events.

Attributes
Attributes Valid Default Description Requires
Values Application
Restart
enabled true true Enables, disables capture of http headers No
false for generated TV events
Elements

Number of Occurrences 1

Parent Elements tv
Child Elements none
Example

<tv eventthreads="3" eventthreadsleep="80" eventmemorythreshold="25000000"
configthreadsleep="10000" >

<timeskew historysize="24" checkinterval="300000" latencythreshold="100"
retrythreshold="8"/>

<transport type="sonicmq"
connectionstring="broker=myhost.mydomain.com;port=21111; user=;
password=;configurationqueue=TVISION.CONFIGURATION.QUEUE"/>
<capturecookies enabled="true”/>

<capturehttpheaders enabled=""true/>

</tv>

HP Diagnostics (9.24) Page 92 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<clientmonitoring> element

Purpose

This is the root element for configuring client monitoring for the .NET Agent.

Attributes
Attributes Valid Values Default Description
enabled true false Enables/disables
false client monitoring
samplemethod percent percent = Specifies which
count method to use for
period sampling
samplerate for percent rate must be 0-100 50 Specifies the rate
for count rate must be >1 for sampling
for period rate must be one of standard
Diagnostics time strings (3m for 3 minutes, 4s for 4
seconds, and so forth)
Elements

Number of Occurrences 1

Parent Elements probeconfig
Child Elements htmlinstrumentation, server, filter
Example

<clientmonitoring enabled="false" samplemethod="percent" samplerate="50" >

HP Diagnostics (9.24) Page 93 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<consumeridrules> element

Purpose

This is the root element for configuring consumer ID rules.

Attributes

Attributes Valid Values Default Description

enabled true false Enables consumer ID rule evaluation.

false

Elements

Number of Occurrences 1

Parent Elements probeconfig
Child Elements httpheaderules, iprules, soaprules
Example

<consumeridrules enabled="false">

HP Diagnostics (9.24)

Page 94 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<cputime> element

Purpose

Controls the cputime setting property.

Attributes
Attributes | Valid Values Default Description
mode none, serverrequest, serverrequest
method
Elements

Number of Occurrences 1

Parent Elements probeconfig, process, or appdomain
Child Elements none
Example

<cputime mode="serverrequest"/>

HP Diagnostics (9.24)

Requires
Application
Restart

No

Page 95 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<credentials> element

Purpose
Supplies credentials that are used to validate for communication with the Diagnostics Server.

Attributes

Attributes | Valid Values Default Description

username string none User name to validate with the Diagnostics Server.
password string none Password to validate with the Diagnostics Server.
authenticate | true, false true Enables and disables authentication.

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process
Child Elements none
Example

<credentials username="test" password="diag" authenticate="true"/>

HP Diagnostics (9.24) Page 96 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<demomode> element

Purpose

This configures demo mode. Demo mode makes it easier to show capability and value of the .NET
agent because it requires less custom points to be defined. With demomode turned on, all outbound
calls will be shown irrespective of any other instrumentation.

Once the calls leading to the outbound calls of interest are identified then demomode should be turned
off and "custom" instrumentation added to ensure that call stacks leading to the outbound calls are
apparent.

It is recommended to TURN THIS OFF under production environments.

Demomode is used primarily to find outbound calls (webserver, http, remoteing, msmq) when the
method making them is not instrumented. It is meant as a way to quickly find how applications may be
connected without having to instrument application specific methods . This may be too noisy in
production situations but is useful when you there is a lack of upstream instrumentation and you don’t
knowwhere the outbound call is being made from. It can be used for all kinds of applications including
ASP.NET.

Attributes
Attributes Valid Default Description Requires Application
Values Restart
enabled true, false false Enables or disables demo No
mode.
Elements

Number of Occurrences Zero orone.

Parent Elements probeconfig
Child Elements none
Example

<demomode enabled="false"/>

HP Diagnostics (9.24) Page 97 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<depth> element

Purpose

Configures depth trimming.

Attributes
Attributes Valid Default Description
Values
enabled true true Enables depth trimming.
false
depth number 25 Sets the depth for depth
trimming.
Elements
Number of Occurrences 1
Parent Elements trim
Child Elements none
Example
<trim>
<depth enabled="true" depth="25"/>
</trim>

HP Diagnostics (9.24)

Requires Application
Restart
No

No

Page 98 of 239

.NET Agent Guide

Chapter 6: Understanding the .NET Agent Configuration File

<diagnosticsserver> element

Purpose

Contains connection and settings information related to the Diagnostics Server which are used for

enterprise mode.

Attributes
Attributes Valid Values Default Description Requires
Application
Restart
url Registrar none URL to connect to registrar. No
URL.
http://<host>:
<port>
delay number 2 Number of seconds to wait Yes
before registering.
keepalive number 15 Number of seconds between No
keepalives.
proxy URL of proxy ' none Registrar connection proxy.
proxyuser user id for none Proxy user account.
proxy
proxypassword password for = none Proxy user account’s password.
proxy
registered_hostname string none Name of host to register as Yes
(external name for firewall
traversing).
register_byip true, false false Register using ipaddress instead Yes
of hosthame.
timeskewcheckinterval | number 60 Number of seconds to wait for No

Elements

Number of Occurrences
Parent Elements

Child Elements

HP Diagnostics (9.24)

1 per parent
probeconfig

none

getting the time skew from the
Diagnostics server.

Page 99 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

Example

This is a general example showing the setting for the <diagnosticsserver> element. The question
marks (?) indicate that appropriate values need to be substituted.

<diagnosticsserver url="http://localhost:2006/commander" delay="2"
keepalive="15" proxy="?" proxyuser="?" proxypassword="?" registerhostname="?"
register_byip="false"/>

For the steps involved in using the registered _hostname attribute to override the default probe host
machine name see "Overriding the Default Probe Host Machine Name" on page 192.

HP Diagnostics (9.24) Page 100 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<exceptiontype> element

Purpose

Define an exception type.

Attributes
Attributes Valid Default Description Requires Application
Values Restart
name string None Class name of an No
exception.
Elements

Number of Occurrences Zero to many

Parent Elements include, exclude
Child Elements None
Example

<exceptiontype name="System.DivideByZeroException"/>

HP Diagnostics (9.24) Page 101 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<exclude> element (when parent is captureexceptions)

Purpose

Define a list of exceptions to exclude.
Attributes

None

Elements

Number of Occurrences 1

Parent Elements captureexceptions
Child Elements exceptiontype
Example
<exclude>
<exceptiontype name="System.DivideByZeroException"/>
</exclude>

HP Diagnostics (9.24) Page 102 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<exclude> element (when parent is lwmd)

Purpose

Define which collection classes to exclude from the Collections by Growth and Collections by Size
tables in the .NET Profiler's Collections tab and the Diagnostics user interface’s Collections view.

The specified collection classes may include classes that implement ICollection. Note that this
setting does not affect the instrumentation of LWMD points; it only affects the presentation of the
LWMD data and the amount of LWMD data that is sent to the Diagnostics Server.

Attributes
None

Elements

Number of Occurrences Zero to many

Parent Elements Iwmd
Child Elements None
Example

<lwmd enabled="true" sample="15s" autobaseline="1h" growth="10" size="10">
<exclude>System.Collections.ArraylList</exclude>
<exclude>System.Data.DataView</exclude>

</1lwmd>

Note that System.Data.DataView implements System.Collections.ICollection.

HP Diagnostics (9.24) Page 103 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<excludeassembly> element

Purpose

Excludes the instrumentation of an assembly. An assembly is an .exe or .dll file. Provides the ability to
exclude sensitive assemblies from instrumentation (for example, when a product was used to
obfuscate and encrypt code in sensitive assemblies and exceptions would be thrown if instrumented).

Add <excludeassembly name=<AssemblyNameToExclude> as a child to a process element.

Attributes
Attributes Valid Default Description Requires
Values Application Restart
name string none Name of assembly to exclude (without Yes
the file extension).
Elements

Number of Occurrences zero to many

Parent Elements process
Child Elements none
Example

<process enablealldomains="true" name="ASP.NET">
<logging level="" />
<points file="ASP.NET.points" />
<points file="ADO.points" />
<points file="WCF.points" />

<excludeassembly name="Acme.Encryption" />
<appdomain enabled="false" name="TestWebService">
<points file=" TestWebService .points" />

</appdomain>
</process>

HP Diagnostics (9.24) Page 104 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<excludesglparam> element

Purpose
Excludes specific SQL Bind Parameters from being captured.

Attributes

Attributes Valid Default Description
Values

name string | none Name of the SQL Bind Parameter to be excluded
from capture for user needs (for example, for
security reasons).

This can be a list of Parameter Names.

Elements

Number of Occurrences zero to many

Parent Elements sqlparsing
Child Elements none
Example

<sqlparsing mode="3" capturesqlparameters="true">
<excludesqglparam name="p__ linqg__1"/>
<excludesqglparam name="p__ linqg__0"/>
</sqlparsing>

HP Diagnostics (9.24)

Requires
Application
Restart

No

Page 105 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<filter> element

Purpose

Filters out certain metrics that would skew the results or not be representative of the processing being

monitored.
Attributes
Attributes Valid Default Description Requires
Values Application
Restart
firstserverrequest | true, false Enables/disables skipping the collection of Yes
false metrics for the first time a particular server
requests (URL) gets run after application
startup.
Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process
Child Elements none
Example

<filter firstserverrequest="false"/>

HP Diagnostics (9.24) Page 106 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<filter> element

Purpose

Enables the inclusion or exclusion of web pages from client monitoring.

Attributes
Attributes Valid Default Description
Values
type include exclude @ Specifies whether to include or exclude web pages from client
exclude monitoring
Elements

Number of Occurrences 1

Parent Elements clientmonitoring
Child Elements url
Example

<filter type="include">
<url name=".*\.aspx" />
</filter>

HP Diagnostics (9.24) Page 107 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<gentvhttpeventforwcf> element

Purpose

Setting this option enables generation of a TransactionVision event for a WCF service with any binding
that uses IIS (http based) hosting. Some WCF services may use a custom or private binding that is not
supported as a true web service and in these types of cases TransactionVision web service events
would not be generated unless you enable this option.

Attributes
Attributes Valid Default Description Requires
Values Application
Restart
enabled true, false Enables/disables the generation of an http event for | No
false a WCEF service with any binding that uses IIS (http
based) hosting. If enabled, provides
TransactionVision web service events.
Elements

Number of Occurrences Zero to one.

Parent Elements probeconfig, process, appdomain
Child Elements none
Example

<gentvhttpeventforwct enabled="true"/>

HP Diagnostics (9.24) Page 108 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<htmlinstrumentation> element

Purpose

Enables configuring an alternate instrumentation file to be used for client monitoring. The file must be
located in the /etc directory.

Note: If an htmlinstrumentation file is set, server element settings are ignored.

Attributes
Attributes Valid Values Default Description
File HPRUMCMInst.hpcm null The name of the file containing alternate (RUM)
client monitoring instrumentation. The file must be
located in the etc folder.
Elements

Number of Occurrences 1

Parent Elements clientmonitoring
Child Elements none
Example

<htmlinstrumentation file="HPDefaultInst.hpcm" />

HP Diagnostics (9.24) Page 109 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<httpcaptureparams> element

Purpose

Specifies how to configure and capture selected query parameters of HTTP Requests by .NET web
applications.

Attributes
Attributes Valid Default Description Requires
Values Application
Restart
enabled true, false Enables/disables HTTP parameter capture. No
false
capturequerystring = true, false Enables/disables the query string capture. No
false The query string is captured as a Server
Request instance property.
This attribute works independently of the
enabled attribute which is used to control
the parameter capture list.
param name "Genre" none Specifies which query parameter by name No
for should be captured as part of the Server
example Request Name.

Number of Occurrences Zero to one.

Parent Elements probeconfig, process
Child Elements param
Example

Forthe HTTP URL
http://MachineName/MVC3/MusicStore/Store/Browse?Genre=Rock&Artist=Punk with this
configuration in the probe_config.xml file:

<httpcaptureparams enabled="true" capturequerystring="true" >
<param name="Genre"/>
<param name="accounttype"/>

</httpcaptureparams>

You see the following server requests:
/MVC3/MusicStore/Store/Browse?Genre=Alternative
/MVC3/MusicStore/Store/Browse?Genre=Blues

/MVC3/MusicStore/Store/Browse?Genre=Classical
/MVC3/MusicStore/Store/Browse?Genre=Disco

HP Diagnostics (9.24) Page 110 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

/MVC3/MusicStore/Store/Browse?Genre=Latin
/MVC3/MusicStore/Store/Browse?Genre=Metal
/MVC3/MusicStore/Store/Browse?Genre=Pop
/MVC3/MusicStore/Store/Browse?Genre=Reggae
/MVC3/MusicStore/Store/Browse?Genre=Rock

HP Diagnostics (9.24) Page 111 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<httpclient> element

Purpose

This configures whether the URL will be included as part of an HTTP outbound call’s identity. The
default is true and should be kept so unless there are many distinct URLs for the outbound HTTP calls.
This could potentially overwhelm the performance of the Diagnostics Server because of the number
outbound calls created (one for each distinct URL). You may also want to turn it off if you do not care
about the URL of the HTTP outbound call. The identity of the HTTP outbound call will then be the

Server and port number to which the request is being made to.

Attributes

Attributes Valid Default Description

Values
showurl true, true Enables/disables the inclusion of the URL as part of
false the identity of an outbound call made by a client

using HTTP.

Setting to false can be used to protect against

symbol table explosion on the server/agent side if

there are too many distinct http client calls.

The value should be set to false for REST service

client applications
Elements

Number of Occurrences Zero to one.

Parent Elements probeconfig, process, appdomain
Child Elements none
Example

<httpclient showurl="true"/>

<httpheaderrule> element

Purpose

Defines a consumer ID rule for HTTP headers.

HP Diagnostics (9.24)

Requires
Application
Restart

No

Page 112 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

Attributes
Attributes Valid Default Description Requires
Values Application
Restart
id string | None ID of the rule. No
rule string | None A regular expression that is used to match No

against the URL that the HTTP request is being
sent to by the consumer.

consumeridfield ' string | None Name of the header to use as the consumer ID. No
Elements

Number of Occurrences Zero to many

Parent Elements httpheaderrules
Child Elements None
Example

<httpheaderrule id="httpHeader 1" rule="/Webservice/.*"
consumeridfield="Caller"/>

HP Diagnostics (9.24) Page 113 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<httpheaderrules> element

Purpose

This element contains all of the <httpheaderrule> elements.
Attributes

None

Elements

Number of Occurrences 1

Parent Elements consmeridrule

Child Elements httpheaderule
Example

<httpheaderrules>

</httpheaderrules>

HP Diagnostics (9.24) Page 114 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<id> element

Purpose

Provides probe id and probe group id.

Attributes
Attribute Valid Values Default Description
probeid String containing: $(MACHINENAME)_ | The name of the probe as
L diai q $(APPDOMAIN).NET | recognized by LoadRunner/
dettsrs, .lg;ts, l:jn ?rscc1:e, Performance Center and
ash, perod and internatly System Health.
defined $() variable values:
$(APPDOMAIN),
$(MACHINENAME),
$(WEBSITENAME),
$(PID)
probegroup = string Default Defines the grouping recognized
by the Diagnostics Server for
reporting of system metrics and
probe metrics.
Elements

Number of Occurrences 1 per parent

Parent Elements probeconfig, process, appdomain
Child Elements none
Example

Default setting example.

<id probeid="$(MACHINENAME)_ $(APPDOMAIN).NET" probegroup="Default"/>
Example

Example for a probe running in a LoadRunner 8.1 environment reporting to "myDiagServer" with the
probe’s name comprised of valid characters, the name of the Web site the application is deployed
under, plus the name of the machine the application is deployed on.

<id probeid="LR_81_$(WEBSITENAME) $(MACHINENAME).NET" probegroup="LR_81_
myDiagServer"/>

HP Diagnostics (9.24) Page 115 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<include> element (when parent is captureexceptions)

Purpose

Define a list of exceptions to include.
Attributes

None

Elements

Number of Occurrences 1

Parent Elements captureexceptions
Child Elements exceptiontype
Example
<include>
<exceptiontype name="System.DivideByZeroException"/>
</include>

HP Diagnostics (9.24) Page 116 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<include> element (when parent is lwmd)

Purpose

Define which collections to include to the exclusion of others.
Attributes

None

Elements

Number of Occurrences Zero to many

Parent Elements lwmd
Child Elements None
Example

<include>System.Collections.Hashtable</include>
<include>System.Collections.ArraylList</include>

HP Diagnostics (9.24) Page 117 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<instrumentation> element

Purpose

Contains logging configuration for instrumenter.
Attributes

None.

Elements

Number of Occurrences 1 per parent

Parent Elements probeconfig, process
Child Elements logging
Example
<instrumentation>
<logging level="property lwmd" />
</instrumentation>

HP Diagnostics (9.24) Page 118 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<iprule> element

Purpose
Defines a consumer ID rule for IP addresses.

Attributes

Attributes Valid Default Description

Values
id string | None Enables consumer ID rule evaluation.
rule string None Define an IP address, or a range of

addresses, to be assigned to a consumer ID.

consumerid | string None The consumer ID to use if there is a match on
the rule.

Elements

Number of Occurrences zero to many

Parent Elements iprules
Child Elements none
Example

<iprule id="IpTestl" rule="43.*.1-20.*" consumerid="HP"/>

HP Diagnostics (9.24)

Requires
Application
Restart

No

No

Page 119 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<iprules> element

Purpose

This element contains all of the <iprule> elements.
Attributes

None

Elements

Number of Occurrences 1

Parent Elements consumeridrules
Child Elements iprule
Example
<iprules>
</iprules>

HP Diagnostics (9.24) Page 120 of 239

.NET Agent Guide

Chapter 6: Understanding the .NET Agent Configuration File

<latency> element

Purpose

Configures latency trimming.

Attributes

Attributes

enabled

throttle

min
max
increment

increment
threshold

decrement
threshold

Elements

Number of Occurrences

Valid
Values

true
false

true
false

number
number
number

number

number

Parent Elements

Child Elements

Example

<trim>

Default Description

true

true

100

75

50

1
trim

none

Enables latency trimming.

Enables latency trimming throttling.

Minimum latency threshold.
Maximum latency threshold.
Threshold increment.

The percentage of the buffer usage before the throttling
should be incremented.

The percentage of the buffer usage before the throttling
should be decremented.

<latency enabled="true" throttle="true" min="2" max="100" increment="2"
incrementthreshold="75" decrementthreshold="50"/>

</trim>

HP Diagnostics (9.24)

Page 121 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<logdirmgr> element

Purpose

Contains the configuration for the log directory manager. The logdirmgr monitors the log directory to
ensure that it does not grow unbounded. The logdirmgr scans the logs periodically as indicated by the
scaninterval. If the size has exceeded the size indicated by maxdirsize the logdirmgr deletes the oldest

files until the size no longer is greater than the maxdirsize.

Important: The account under which the .NET process is running (for 11S the AppPool Account) has to
be provided delete privileges on the log folder. This is not available by default on the NETWORK
SRERVICE account or the App Pool Identity Account (which is the default Application Pool Account).

Attributes

Attributes | Valid Default Description
Values

enabled true true
false

maxdirsize | number 1024 Largest size in MB to which the log directory
can grow.

Must be at least 1(MB).

scaninterval number 30 How often in minutes that the manager scans
the logs to check for growth and size.

Must be at least 10 (minutes).
Elements

Number of Occurrences 1 per parent

Parent Elements probeconfig
Child Elements none
Example

<logdirmgr enabled="true" maxdirsize="1" scaninterval="10"/>

HP Diagnostics (9.24)

Requires
Application
Restart

No

No

Page 122 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<logging> element (when parent is instrumentation)

Purpose
Sets the logging level for the .NET Agent instrumentation processing.

Attributes

Attributes Valid Default Description Requires
Values Application Restart

level off " Level of logging. No
assert
break
severe
warning
info

which is equivalent
to "info"

debug
points

eh

sig

chi

cil
classmap
ilasm
symbols
deepmode
load

all
checksum
property

remoting
lwmd

http

threadids | true true Should thread IDs be
false included in the log.

Valid values below "info" should typically not be used. These are diagnostic settings that can produce
extremely large log files.

Elements

Number of Occurrences zero to many

HP Diagnostics (9.24) Page 123 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

Parent Elements instrumentation
Child Elements none
Example
<instrumentation>
<logging level="warning" />
</instrumentation>

HP Diagnostics (9.24)

Page 124 of 239

.NET Agent Guide

Chapter 6: Understanding the .NET Agent Configuration File

<logging> element (when parent is appdomain, probeconfig, or

process)

Purpose

Sets the logging level for the .NET Agent processing for monitoring and reporting application

performance.

Attributes

Attributes

level off
severe
warning
info

debug
events
property
webserver
http
symbols

probemetrics

registrar
threadpool

authentication

bufferpool
rum
bacforsoa
vmware

exceptions|

tvdebug

max number

Valid Values

Default

which is

equivalent to
llinfoll

10

Description

Requires Application
Restart

No

The maximum sizeofa No

probe log file. After the
log reaches this size
no more logging will
occur.

Valid values below "info" should typically not be used. These are Diagnostic settings that can produce

extremely large log files.

Elements

Number of Occurrences

HP Diagnostics (9.24)

Page 125 of 239

.NET Agent Guide

Chapter 6: Understanding the .NET Agent Configuration File

Parent Elements

Child Elements

Example

<logging max="10"

HP Diagnostics (9.24)

appdomain, probeconfig, process

none

level="INFO"/>

Page 126 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<lwmd> element

Purpose

Configures the Light-Weight Memory Diagnostics (LWMD) feature.

Attributes
Attributes Valid Default Description Requires Application
Values Restart
enabled true false Enables sampling for wmd No
false capturing.
sample string 1m Sample interval
(h-hour/m-minute/
s-second).
autobaseline = string 1h Auto baseline interval.
manualbase = string none Manual baseline time.
line
growth number 15 Number of collections to growth
track.
size number 15 Number of collections to size
track.
Elements

Number of Occurrences =1 per parent

Parent Elements appdomain, probeconfig, process
Child Elements exclude, include
Example

<lwmd enabled="false" sample="1m" autobaseline="1h" manualbaseline= "?"
growth="15" size="15"/>

HP Diagnostics (9.24) Page 127 of 239

.NET Agent Guide

Chapter 6: Understanding the .NET Agent Configuration File

<mediator> element

Purpose

Specifies the diagnostics server that is in the Mediator mode to which events are to be sent when in the

enterprise mode.

Attributes

Attributes Valid Default Description

Values
host host none
name
port number 2612
ssl true/false false

metrichost string

metricport number 2006

block true/false false

ipaddress

localportstart number 4000

localportend = number 5000

Elements

Name of mediator.

Mediator port.

When the Diagnostics Server URL starts with
http the default is false. When the
Diagnostics URL starts with https the default
is true.

The host to which metric data is sent.

The port to which the probe sends the probe
metrics such as heap usage and availability.

Block until mediator connection established.

local ipaddress to use when connecting to the
eventserver.

Beginning of port range to use for tcp event

channel connection to the Diagnostics Serverin

Mediator mode. Used only when ipaddress is
specified.

End of port range to use for tcp event channel
connection to the Diagnostics Serverin
Mediator mode. Used only when ipaddress is
specified.

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements none

HP Diagnostics (9.24)

Requires
Application
Restart

No

No

Yes

No

No

Page 128 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

Example

<mediator host="localhost" port="2612" ssl="false" metricport="2006"
block="false" ipaddress="16.255.18.99" localportstart="4000"
localportend="5000"/>

HP Diagnostics (9.24) Page 129 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<metrics> element

Purpose

This element contains all of the <metric> elements.
Attributes

None

Elements

Number of Occurrences ' 1 per parent

Parent Elements appdomain, process
Child Elements metric

Example
<metrics>

<metric name="% Time in GC" group="Memory" units="percent" category=".NET CLR
Memory" counter="% Time in GC"/>
</metrics>

HP Diagnostics (9.24) Page 130 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<metric> element

Purpose

Specifies additional probe metrics that you want the Diagnostics .NET to collect from perfmon. See
"Collecting Additional Probe Metrics or Modifying Probe Metrics" on page 199 for additional information.

Attributes
Attributes Valid Values Default Description Requires
Application
Restart
name string Name of the metric | Yes
as you would like to
seeitinthe
Diagnostics Ul.
group string Group (Category)of = Yes
the metric as you
would like to see it
in the Diagnostics
ul.
units microseconds, milliseconds, seconds, Units of measure for ' Yes
minutes, hours, days, bytes, kilobytes, the perfmon metric.
megabytes, gigabytes, count, percent,
fraction_percent, load, status
category string The performance Yes
counter category as
specified in
perfmon.
counter string The performance Yes
counter as specified
in perfmon

Note: The instance of the counter is automatically assigned as the process instance for the
counter or application domain instance for ASP.NET application counters. Counters that do not
have process or application domain instances are not collected; you should define system metrics
instead.

Elements

Number of Occurrences 1 or more per parent
Parent Elements metrics

Child Elements none

HP Diagnostics (9.24) Page 131 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

Example

<metrics>

<metric name="% Time in GC" group="Memory" units="percent" category=".NET CLR
Memory" counter="% Time in GC"/>
</metrics>

HP Diagnostics (9.24) Page 132 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<modes> element

Purpose

Specifies which product mode(s) the .NET Agent should run in. See "Controlling Which HP Software
Products the Agent can Work With" on page 177 for more information about using the different modes.

The <modes> element is also used in determining usage against the HP Diagnostics license capacity.

See the chapter "Licensing HP Diagnostics" in the HP Diagnostics Server Installation and
Administration Guide for more information.

The value of the <modes> element is initially set at the time you install the agent.

The .NET agent can set in different modes to do the following:
« Monitor applications from development through pre-production testing and into production.
o Used with other HP Software products.

« Used as a standalone Diagnostics Java Profiler not reporting to a server or to other HP Software

products.
Attributes
Attributes Valid Default Description Requires
Values Application
Restart
enterprise | true Depends Sets agent to run in enterprise mode (probe is No
false on mode working with Diagnostics Server).
chosenin . o o
installation Enterprise mode is like a combination of ad, am
" and pro mode. It will capture data for LoadRunner
trueif prois = runs as well as data outside of LoadRunner runs.
false
Enterprise mode is the default for NET Agents
falseif pro | (if you don’'t specify AD or AM mode). In
is true Enterprise mode the agents are counted against
the AM license capacity.
ent true Depends This is a short form of the enterprise attribute. No
false on mode
chosenin
installation.
true if prois
false
false if pro
is true

HP Diagnostics (9.24) Page 133 of 239

.NET Agent Guide

Chapter 6: Understanding the .NET Agent Configuration File

Attributes Valid Default

Values
ad true false
false
am true false
false
pro true Depends
false on mode
chosenin
installation.
true if
enterprise
is false
false if
enterprise
is true
tv true false
false

HP Diagnostics (9.24)

Description

ad mode supersedes all other modes. If ad mode
and any other modes are set, then mode will be
set to ad.

In ad mode the .NET Agent will only capture runs
from LoadRunner and put the results in a specific
database for that run (for example, Default21).

Agents in AD mode will only be counted against
AD license capacity when the probe is running in
a LoadRunner or Performance Center test run.
When not in a test run the agent does not count
against license capacity.

For example if 20 probes are installed in
LoadRunner/Performance Center AD mode but
only 5 are in a run, then only 5 are counted
against AD license capacity.

am mode supersedes all other modes except for
ad. In am mode the .NET agent will ignore runs.
If LoadRunner is executing an application then
you will see the data in the normal Diagnostics
database.

Agents in AM mode will always be counted
against the AM license capacity.

Sets the agent to run in Profiler mode.

This mode sends data to the profiler. This mode
can be combined with other modes. Agents in
pro mode are not counted against license
capacity.

Enables the capture of TransactionVision
events. See "About Configuration of the NET
Agent for TransactionVision" on page 39 for
details on setting transport and other TV options.
This mode will send events to
TransactionVision. This mode can be combined
with other modes and in tv mode agents are not
counted against Diagnostics’s license capacity

Requires
Application
Restart

No

No

No

Yes

Page 134 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process
Child Elements none
Example

<modes enterprise="false" ad="false" am="false" pro="true"/>

HP Diagnostics (9.24) Page 135 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<param> element

Purpose
Specifies a query parameter to capture in an HTTP request.

Attributes

Attributes Valid Values Default Description

name string none Name of the .NET process that these setting apply to.
None.

Number of Occurrences Zero to many.

Parent Elements httpcaptureparams
Child Elements none
Example

Forthe HTTP URL
http://MachineName/MVC3/MusicStore/Store/Browse?Genre=Rock&Artist=Punk with this
configuration in the probe_config.xml file:

<httpcaptureparams enabled="true" capturequerystring="true" >
<param name="Genre"/>
<param name="accounttype"/>

</httpcaptureparams>

HP Diagnostics (9.24) Page 136 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<points> element

Purpose

Specifies the capture points file to use for instrumentation.

Attributes
Attributes Valid Default Description
Values
file string none Name of instrumentation capture
points file.
Elements

Number of Occurrences zero or more

Parent Elements appdomain, process
Child Elements none
Example

<points file="ASP.NET.points"/>

HP Diagnostics (9.24)

Requires Application

Restart

Yes

Page 137 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<probeconfig> element

Purpose

Provides single containing root element for the .NET Agent configuration.
Attributes

None.

Elements

Number of 1

Occurrences

Parent None

Elements

Child appdomain, bufferpool, captureexceptions, consumeridrules, credentials,

Elements diagnosticsserver, eventserverhost, id, instrumentation, ipaddress, logging, lwmd,
mediator, modes, points, process, profiler, rum, sample, soappayload, trim,
webserver, topology, vmware, xvm

Example
<probeconfig>
</probeconfig>

HP Diagnostics (9.24) Page 138 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<process> element

Purpose
Provides an inclusion filter list of which processes will be monitored.

If no process elements are defined then no processes will be monitored.

Attributes
Attributes Valid Default Description Requires
Values Application
Restart
enablealldomains ' true true When set to true the enable attribute on all Yes
false AppDomains that are part of the process is
overriden so that all will be enabled.
name string | none Name of the .NET process that these setting | Yes

apply to.
These are the rules for the enablealldomains attribute of the <process> element:

« enablealldomains = false : If there are no domains in the list of <appdomain> then no AppDomains
should be enabled.

« enablealldomains = false : If there are domains in the list of <appdomain> then AppDomains should
be enabled if the "enable" attribute is set to true or not defined in the enable attribute of the
<appdomain>.

« enablealldomains = true : If there are domains in the list of <appdomain> then only AppDomains in
the list should be enabled disregarding their "enable" attribute.

« enablealldomains = true : If there are no domains in the list of <appdomain> then all AppDomains
should be enabled.

« enablealldomains attribute is not defined: same as if enablealldomains = true.

Elements

Number of Z€ero or more

Occurrences

Parent probeconfig

Elements

Child appdomain, bufferpool, credentials, diagnosticsserver, mediator, id, instrumentation,
Elements ipaddress, logging, lwmd, modes, points, profiler, sample, trim, webserver, filter,

symbols, topology

HP Diagnostics (9.24) Page 139 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

Example

<process enablealldomains="true" name="ASP.NET">

HP Diagnostics (9.24) Page 140 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<profiler> element

Purpose

Contains settings for the Profiler feature.

Attributes
Attributes Valid Default Description Requires
Values Application
Restart
authenticate true, none Enables/Disables authentication of No
false incoming Profiler connection requests.
Changes to this attribute setting are
applied dynamically; you do not need to
restart the application or the probe.
register true, false Tells the probe to register evenifiitis in No
false Profiler only mode.
samples number 60 Tells the Profiler how many samples to No
keep for Iwmd/heap trending.
best number 1 The number of fastest instance trees to No
keeps.
worst number 3 The number of slowest instance treesto No
keep.
inactivitytimeout string 10m The length of time that the Profiler No
continues to run after the user has
stopped interacting with the Profiler.
disableremoteaccess true, false Disables remote access to the Profiler, No
false thus not exposing the User/Password,
and still be able to
telnet/RemoteDeskTop into the machine
and run the Profiler locally.
Elements

Number of Occurrences 1 per parent
Parent Elements appdomain, probeconfig, process

Child Elements authentication

HP Diagnostics (9.24) Page 141 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

Example

<profiler authenticate="true" register="false" samples="60" best="1" worst="3"
inactivitytimeout="10m">

<authentication username="admin" password="admin"/>
</profiler>

HP Diagnostics (9.24) Page 142 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<rum> element

Purpose

Controls the settings for Real User Monitoring.

Attributes
Attributes Valid | Default Description Requires
Values Application
Restart
enable true true Enables or disables the RUM Integration No
false feature.
responseheader string = X-HP- | The name of the http header whose value No
CAM- contains the Diagnostics to RUM integration
COLOR | information.
encryptedkey string The encrypted key must be generated using No
the passgen utility in the <probe_install_
dir>\bin directory.
Elements

Number of Occurrences 1 per parent

Parent Elements probeconfig
Child Elements none
Example

<rum enabled="true" responseheader="X-HP-CAM-COLOR"
encryptedkey="0BF:3pe941vx43903wre40303xxz3q6r420b43n93wre3io03xjs40h940pc3wir3q
233jur3zir3yi@3zir3vce3wre3xpi3r8o3olr44na3zor3vem3vc@3zird44u@3ohb3rdi3xjs3wx03v
6m3zor3yc63zor3jqz3q6r3wd740vi40b53xpil3ike3wx043gp42ur3q233y3r3zwy3wx0432i42293p
9p"/>

To create the encrypted key, use the PassGen utility as follows:
cd <installdir>/bin
PassGen /system encryptionKey

Where encryptionKey is a string of alpha-numeric characters with a maximum length of 128
characters. The encryptedkey is shown on stdout.

passgen example:

PassGen /system ThelLazyFoxJumpedHigh

HP Diagnostics (9.24) Page 143 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

Returns:

OBF :3g6r3xxz3y3r3xjs3wx03yc63n0r31br3vcO3wd745893wre44u0413j3kn93zwy40vi432i44fr
3m453m894493439040pc40303kjd419r44na3wx0451h3wir3vem31fr3mwjl3yi03wre3xpi3xxz3y3r
3923

HP Diagnostics (9.24) Page 144 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<sample> element

Purpose

Sets the sampling type and rate.

Attributes
Attributes Valid Default Description Requires
Values Application
Restart
method percent, | percent Sets the sampling method: No
count, f t rate must be 0-100
period or percent rate must be 0-
for count rate must be >1
for period rate must be one of standard
Diagnostics time strings (3m for 3 minutes, 4s for
4 seconds, and so forth)
rate number | 0 Sets the sampling rate for percent type. No
Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process, ws
Child Elements none
Example

<xvm><ws><sample method="percent" rate="50"/></ ws ></xvm>
Sampling is a random percentage rate.

<xvm>< ws ><sample method="count" rate="50"/></ ws ></xvm>
Sampling is once every rate count.

<Xvm>< ws ><sample method="period" rate="60000"/></ ws ></xvm>

HP Diagnostics (9.24) Page 145 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<server> element

Purpose
Configures the scripts and URLSs to load for client monitoring instrumentation.

Note: If an htmlinstrumentation file is set, server element settings are ignored.

Attributes
Attribut Valid Values Default Description
es
scriptsu | Example: http://Mediatorhost:port/boomeran | Defines the
rl http://Mediatorhost/ClientMon/boo = g-min.js script and
merang-min.js the URL to
load for
instrumentat
ion
beaconu Example: http://Mediatorhost:port/ClientMonit = Defines the
rl http://Mediatorhost/ClientMonitorin | oring/B script and
g/B the URL to
load for
instrumentat
ion
Elements

Number of Occurrences 1

Parent Elements clientmonitoring
Child Elements none
Example

<server scriptsurl="boomerang-min.js" beaconurl="ClientMonitoring/B" />

HP Diagnostics (9.24) Page 146 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<soapcapture> element

Purpose
Configures whether SOAP requests and responses are captured.

Attributes

Attributes Valid | Default Description
Values

enabled true true Enables or disables the capture of SOAP requests
false and responses. If this is disabled it will affect the
following:

SOAP request capture for SOAP faults

SOAP requests and responses capture for TV
mode

ConsumerlD assigned via the SOAP rules.

maxsize number 0 This is an optional attribute that specifies the
maximum size in characters of the SOAP request
or response captured.

0 indicates unlimited.
Elements

Number of Occurrences one per parent

Parent Elements probeconfig
Child Elements none
Example

<soapcapture enabled="true" maxsize="0" />

HP Diagnostics (9.24)

Requires
Application
Restart

No

No

Page 147 of 239

.NET Agent Guide

Chapter 6: Understanding the .NET Agent Configuration File

<soaprequestforsoapfault> element

Purpose

Configures SOAP request capture (including payloads) on SOAP Faults. Payloads can contain
sensitive information such as credit card numbers so this element is disabled by default.

NOTE: If the <soapcapture> element is disabled it will override the <soaprequestforsoapfault> setting.
Please refer to the documentation for the <soapcapture> element.

Attributes

Attributes Valid Default Description

Values

enabled true false

false

maxsize number 5000

Elements

Enables or disables the SOAP request capture on
SOAP fault feature. Disabled by default.

This is an optional attribute that specifies the
maximum size in characters of SOAP request
capture. If not present the Default value is used. If
present and an error is made in the setting, the
Default value is used.

Number of Occurrences one per parent

Parent Elements

Child Elements

Example

probeconfig

none

<soaprequestforsoapfault enabled="true" maxsize="5000" />

HP Diagnostics (9.24)

Requires
Application
Restart

No

No

Page 148 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<soaprule> element

Purpose

Defines a consumer ID rule for SOAP headers.

Attributes
Attributes Valid Values Default Description Requires
Application
Restart
id string None ID of the rule. No
rule string None A regular expression that is usedto = No
match against the web service
name being called by the consumer.
consumeridfield = string None The element in the SOAP headerto | No
get the value for to use as the
consumer ID.
location soap-header, Not set = The location within the SOAP No
soap-body, soap- payload where the soaprule applies.
envelope, Not set
Elements

Number of Occurrences zero to many

Parent Elements soaprules
Child Elements none
Example

<soaprule id="SOAP1" rule="TestService2" consumeridfield="Caller"/>

HP Diagnostics (9.24) Page 149 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<soaprules> element

Purpose

This element contains all of the <soaprule> elements.
Attributes

None.

Elements

Number of Occurrences 1

Parent Elements consumeridrules

Child Elements soaprules
Example

<soaprules>

</soaprules>

HP Diagnostics (9.24) Page 150 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<sqglparsing> element

Purpose

This element is used to indicate in what mode SQL queries should be parsed. If there are a large
number of SQL queries using literals it can overwhelm the server symbol table so the default is set to
mode 3 to avoid this problem.

Attributes
Attributes Valid Default Description Requires
Values Application
Restart
mode 1,2,3, 3 Boolean property to turn asynchronous No
stack trace sampling on or off.
keywordsfile string | None Optionally allows you to specify a file Yes
containing keywords you want the agent
tofind in the SQL statement and highlight
in upppercase when stored or displayed
by Diagnostics. This helps ensure similar
queries are recognized as the same query
irrespective of case.
capturesqlparameters true false Turns capturing of SQL Bind Parameters | No
false for the Diagnostics Agent on or off.
Elements

Number of Occurrences 1

Parent Elements probeconfig
Child Elements excludesqlparam
Example

<sqlparsing mode="4" capturesqlparameters="false"
keywordsfile="C:\myfolder\mykeyword.txt"/>

HP Diagnostics (9.24) Page 151 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<stacktracesampling> element

Purpose

Enables/disables and configures asynchronous thread stack trace sampling.

Attributes

Attributes

enabled

tardymethodlatency

rate

outboundcalls

HP Diagnostics (9.24)

Valid
Values

true true
false

number = 150
greater
than 20

number 100
greater
than 20

true false
false

Default Description

Enables or disables asynchronous stack
trace sampling feature.

Minimum time (in millisecs) that an
instrumented method must run without
hitting any instrumentation points before
stack trace sampling is attempted for this
method. The purpose of this property is to
control the overhead of sampling by limiting
the stack trace collection to the most
critical cases.

The time (in millisecs) that must elapse
before the next consecutive sampling
attempt is made.

Small values cause frequent sampling,
thus providing rich data, but at the cost of
increased overhead. Large values cause
many methods to miss most of the
samples, thus required you to hunt for
additional details in multiple saved
instances, which may not be there.

The overhead caused by frequent sampling
affects primarily the latency of server
requests. The overall CPU usage by the
probe may go up as well, but this effect is
not as profound as the latency increase.
For machines with many CPUs, the
process CPU consumption may actually
go down (and it is not a good thing).

Turn asynchronous stack trace sampling
on or off for outbound calls/

Requires
Application
Restart

No

No

No

No

Page 152 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

Elements

Number of Occurrences 1
Parent Elements probeconfig

Child Elements

Example

<stacktracesampling enabled="true" tardymethodlatency="150" rate="100"
outboundcalls="false"/>

This statement enables stack trace sampling with the shown configuration.

HP Diagnostics (9.24) Page 153 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<symbols> element

Purpose

Limits the number of unique URIs and SQL strings that can be captured to control the amount of
memory consumed.

Attributes
Attributes Valid Default Description Requires
Values Application
Restart
maxuri number = 1000 Sets the top limit for number of unique URIs No
that can be captured.
maxuriname string Maximum No
number of
unique
URIs
exceeded
maxsq| number 1000 Sets the top limit for number of unique URIs No
that can be captured.
maxsqglname string Maximum No
number of
unique
SQLs
exceeded
usehttpmethod true true true. Use the HTTP method (such as PUT, No
fal GET, POST, and so forth) as the root method
aise (identifying component) for each HTTP/S
Server Request. This generates a separate
HTTP Server Request for each HTTP method
to the same URL.
false. The root method (identifying
component) foran HTTP Server Request is
'Server.Request'. This generates one HTTP
Server Request for all HTTP methods to the
same URL.
Elements

Number of Occurrences 1 per parent
Parent Elements appdomain, probeconfig, process

Child Elements urireplacepattern

HP Diagnostics (9.24) Page 154 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

Example

<symbols maxuri="1000" maxuriname="Maximum number of unique URIs exceeded"
maxsql="1000" maxsqlname="Maximum number of unique SQLs exceeded"
usehttpmethod="true"/>

HP Diagnostics (9.24) Page 155 of 239

.NET Agent Guide

Chapter 6: Understanding the .NET Agent Configuration File

<timeskew> element

Purpose

Used in configuring HP TransactionVision. Calculates the time difference between the time server and
the host on which the .NET Agent is running. The frequency of checking with the time server can be

configured.
Attributes
Attributes Valid
Values
historysize number
checkinterval number

latencythreshold = number

retrythreshold number

Elements

Number of Occurrences
Parent Elements

Child Elements

Example

Default Description Requires
Application
Restart
24 (Read on startup) number of time skew Yes
samples to store and compare for best
sample.
300,000 @ (Dynamic) The time in milliseconds to wait No
ms. before checking the time server for the skew

time calculation.

100 ms. (Dynamic) The maximum time in milliseconds @ Yes
a reply from a time server can take for a valid
time skew value.

8 (Dynamic) Number of times to try when Yes
request to time server fails.

1 (one)
tv

none

<timeskew historysize="24" checkinterval="300000" latencythreshold="100"

retrythreshold="8"/>

HP Diagnostics (9.24)

Page 156 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<topology> element

Purpose

Controls whether topology information will be collected and sent to the Diagnostics server.

Attributes
Attributes Valid Default Description
Values
enable true true Enables gathering topology information and passing it to the
false Diagnostics Server.
Elements

Number of Occurrences 1

Parent Elements <probeconfig>, <process>, or <appdomain>
Child Elements none
Example

<topology enable="true">

HP Diagnostics (9.24) Page 157 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<transport> element

Purpose

Configure the events channel used by TransactionVision.

Attributes

Attributes Valid Default Description Requires

Values Application
Restart

type mgseries sonicmq The event transport provider being Yes
sonicmq used by the Agent.

connectionString = See The connection information for the Yes
below. event transport provider.

conectionString Syntax when type=sonicmq

broker = <broker>; port = <port>; user = <user>; password =<password>;
configurationQueue = <configurationQueue>

Where: Is:

broker Host name on which the Sonic broker is running. Typically this will be the
Analyzer hostname.

port The port on which the broker communicates. By default, 21111.

user Userid if required by SonicMQ installation for connection. By default, no
username is required.

password Password if required by SonicMQ installation for connection. This is in the
obfuscated form created by using the PassGen utility. By default, no password
is required. For more information about PassGen, see "Administration
Utilities" in the BSM Application Administration User Guide.

configurationQueue Name of the queue which has the configuration messages for the .NET
TransactionVision Agent.

conectionString Syntax when type=mqseries

host= <host>; queuemanager=<queuemanager>; port= <port>; channel=,channel>
configurationQueue = <configurationQueue>

Where: Is:

host Host on which the TransactionVision configuration queue is hosted.

HP Diagnostics (9.24) Page 158 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

gqueuemanager Name of the queuemanager.
port MQSeries port on which the QueueManager communicates.
channel MQSeries channel which will be used to communicate.

configurationQueue Name of the queue which has the configuration messages for the .NET
TransactionVision Agent.

Elements

Number of Occurrences 1 (one)

Parent Elements tv
Child Elements None
Example
For SonicMQ:

<transport type="sonicmgq" connectionstring="broker=brokerHost;
port=21111; user=; password=;
configurationqueue=TVISION.CONFIGURATION.QUEUE" />

For MQ Series:

<transport type="mgseries" connectionstring="host=mgHost;
queuemanager=; port=1414; channel=TRADING.CHL;
configurationqueue=TVISION.CONFIGURATION.QUEUE"/>

HP Diagnostics (9.24) Page 159 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<trim> element

Purpose

Configures the trimming feature to reduce data volume transferred between the probe and the
Diagnostics Server.

The Profiler user interface ignores all configured trim settings, for example, depth trimming and latency
trimming, as the Profiler does not require that any data be sent to the Diagnostics Server.

Attributes
None.

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process
Child Elements depth, latency
Example
<trim>
</trim>

HP Diagnostics (9.24) Page 160 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<tv> element

Purpose

Configure the .NET Agent for use with TransactionVision.

Attributes
Attributes Valid | Default Description Requires
Values Application
Restart
eventthreads number ' 3 (Read on startup) The number of Yes
threads spawned by the Agent to
send events to the Analyzer.
eventthreadsleep number = 100 (Dynamic) The time in milliseconds No

the event thread sleeps after
sending a message(event package).

eventmemorythreshold = number = 25,000,000 (Dynamic) The memory consumed No
by the internal buffer (Q) after which
the Agent will try and send the
message on the application thread.

configthreadsleep number 10,000 (Dynamic) The time in milliseconds = No
the event thread sleeps after
browsing the configuration queue.
Elements

Number of Occurrences 1 (one)

Parent Elements ProbeConfig
Child Elements transport, timeskew
Example

<tv eventthreads="3" eventthreadsleep="80"
eventmemorythreshold="25000000" configthreadsleep="10000" >
<timeskew historysize="24" checkinterval="300000" latencythreshold="100"

retrythreshold="8"/>
<transport type="sonicmqg"
connectionstring="broker=myhost.mydomain.com;
port=21111; user=; password=;
configurationqueue=TVISION.CONFIGURATION.QUEUE"/>

</tv>

HP Diagnostics (9.24) Page 161 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<uriautocollapsing> element

Purpose

Configures automatic URI collapsing—the detection and trimming of server requests to avoid flooding
the server symbol table with a large number of unique server requests.

Attributes
Attributes Valid Default Description Requires
Values Application
Restart
enabled true true Enables automatic URI collapsing. No
false
limits numbers | 120/60/25/10 The maximum number of path segments No
separated allowed for each segment position, provided
by "/" all of the preceding path segments are equal.
The last specified value extends for all
unspecified segments, that is, specifications
80/90/20 and 80/90/20/20/20 are equivalent.
Elements

Number of Occurrences 1

Parent Elements probeconfig, symbols
Child Elements none
Example
<symbols>
<uriautocollapsing enabled="true" limits="120/60/25/10"/>
</symbols>

Once the limit for the fourth path segment is exceeded, URIs of that form are collapsed. For instance,
assume the application receives the following URIs:

fa/b/c/01
/alblc/02

/a/blc/11

Because the limit for the fourth path segment is exceeded, all future incoming URIs of that form will be
replaced by /a/b/c/*.

The following screen shots show before and after automatic URI collapsing. The third segment of the
URI path exceeds the specified limit so it is collapsed.

HP Diagnostics (9.24) Page 162 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

LatE‘r1r|:1y %
Status | Chart Server Request Frobe Latency | CPLU [Avg)
Cwer Thr...
(] |:| ICallChain/Call ChainForm aspxial 9hb3 ROS8423 .. 1.7 mz 0.0 us
@ |:| ICallChain/Call ChainForm.aspxfal8h3 ROSE423... 1.7ms 0.0 us
@ |:| ICallChain/Call ChainForm.aspxfalib3 ROSE423 ... 16ms 0.0 s
@ O ICallChain/CallChainForm.azpx/al8by ROSE423 ... 16mz 0.0 s
2] ICallChain/Call ChainForm aspxialbs RiOSE423 ... 16 ms 0.0 us
@ O ICallChain/Call ChainForm.aspxifal &hd ROSE423... 16ms 0.0 us
@ O ICallChain/CallChainForm.aspx/fal 4/b6 ROSE423 ... 16ms 0.0 s
@ [calChainForm.aspx ROSB423... 16msz 156ms
@] [CallChain/Call ChainForm aspxial 7bs RiOSE423 ... 16 ms 156 ms
@ O ICallChain/Call ChainForm.aspxial8h2 ROSE423... 16ms 0.0 us
@ O ICallChain/Call ChainForm.aspx/fal4/b1 ROSE423 ... 16ms 0.0 s
@ O ICallChain/CallChainForm.aspx/al &bl ROSE423 ... 16mz 0.0 s
@] [CallChain/Call ChainForm.aspxial8b0 RiOSE423 ... 16 ms 0.0 us
@ O ICallChain/Call ChainForm.aspxial 5he ROSE423... 15ms 0.0 us
@ [icallchainiCal Chain Form.aspxfaleb2 ROSE423 ... 15ms 156 ms
@ O ICallChain/CallChainForm.azpx/al8bs ROSE423 ... 15mz 0.0 s
(] [T e alhsindC sl ChainFarm aenels1 k3 RASR47Y 1A m= s
After:
SR
Status | Chart Server Request Probe Latency CPU [Avyg)
Cwer Thresh...

(] |:| ICallChain/Call ChainFarm.aspx™b0 ROS584238 .. 1.2 ms 831 .3 us=
] |:| ICallChain/CallChainForm.aspxMhs ROS84238 ... 11 ms 1.2ms
@ |:| ICallChain/CallChainForm.azpxh3 ROS84238 ... 11 msz 9796 U=
@ [l ICallChain/Call ChainF orm azpx b ROSB4238 ... 1.1 mz 9306 u=
] O ICallChain/Call ChainForm azpxb7 RO584238 . 1.4 ms 1.4 ms
] [l ICallChain/CallChainForm.aspxMh2 ROS84238 ... 11 ms 1.3ms
@ |:| ICallChain/CallChainForm.azpxha ROS84238 ... 11 msz 14 mz
@ [l ICallChain/Call ChainF orm.aspx bl ROSB4238 ... 1.1 mz 15msz
] O ICallChain/Call ChainForm azpx™b4d RO584238 . 1.4 ms 1.4 ms

For server request URIs that have been modified by the automatic URI collapsing feature, each
associated call profile retains the original, uncollapsed, URI. You can view this value in the Original
URI field in the Details pane of the Call Profile view.

HP Diagnostics (9.24) Page 163 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<urireplacepattern> element

Purpose

Used to reduce the number of unique server requests by replacing many server requests with one
simplified server request URI that aggregates them. Uses regular expression pattern matching. See
"Configuring URI Truncation and Mapping" on page 183.

Attributes
Attributes Valid Values @ Default Description Requires
Application
Restart
enabled true false Enables uri pattern replacement. No
false
pattern s/string/string/ = If enabled there The syntax for the pattern valueis No
value are two default s/search_pattern/replace_pattermn/.
patterns defined , .
for you. If / is used in the pattern then the
character # should be used instead
of / as the separator.
Patterns are applied to all server
requests and are applied in the
order they are specified in probe
config.xml.
Elements
Number of Occurrences 1
Parent Elements probeconfig, symbols
Child Elements none
Example

<symbols maxuri="" maxsql="">
<urireplacepattern enabled="true">
<pattern value="s/TestServicel/CommonService/"/>

<pattern value="s/TestService2/CommonService/"/>
</urireplacepattern>
</symbols>

HP Diagnostics (9.24) Page 164 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<url> element

Purpose

Enables configuring which web pages are included or excluded from client monitoring.

Attributes
Attributes Valid Default Description
Values
name /CallChain.* ' include every @ Specifies which web pages to include or exclude from

page client monitoring,

Note: Regular expressions can be used.

Changes to these attribute settings are applied dynamically; you do not need to restart the application
or the probe.

Elements

Number of Occurrences 1

Parent Elements filter
Child Elements none
Example

<filter type="include">
<url name=".*\.aspx" />
</filter>

HP Diagnostics (9.24) Page 165 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<vmware> element

Purpose
Controls the ability to adjust timestamps to be more accurate when running in a VMware environment.

Attributes

Attributes Valid Default Description Requires
Values Application
Restart

attempttime true false Enables time stamp adjustments in No
stampadjustments false VMware environments.

useworkaround true false If you encounter negative latency issues No
false when running the .NET Agent on a VMware
guest with the
attempttimestampadjustments attribute set
to true you should set this attribute to true.
When this attribute is set to true the .NET
Agent will use an alternative call to get the
VMware host timestamps to workaround
the negative latency issue.

disableperfcounters = true false Set this option to true if the .NET Agent Yes
false causes |IS worker process to crashina
VMWare environment. This is a workaround
for a Microsoft-VMWare environment
problem related to accessing perfmon
counters in certain VMWare environments.

Elements

Number of Occurrences 1

Parent Elements probeconfig
Child Elements none
Example

<vmware attempttimestampadjustments="false"/>

HP Diagnostics (9.24) Page 166 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<webserver> element

Purpose

Specifies the local Web server properties for communication with the probe.

Attributes
Attributes Valid Default Description Requires Application
Values Restart
start number 35000 | Starting port for webserver. Yes
end number 35100 | Ending port for webserver. Yes
ipaddress IP address Local ip address to run Yes
webserver on.
Example

<webserver start="35000" end="35100" ipaddress="16.255.18.99"/>

HP Diagnostics (9.24) Page 167 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<ws> element

Purpose

Controls Web services correlation sampling.
Attributes

None.

Elements

Number of Occurrences 1

Parent Elements <xvm>
Child Elements <sample>
Example

<xvm><ws><sample method="percent" rate="50"/></ ws ></xvm>

HP Diagnostics (9.24) Page 168 of 239

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

<xvm> element

Purpose

Controls the cross VM settings.
Attributes

None.

Elements

Number of Occurrences 1

Parent Elements probeconfig, process, or appdomain
Child Elements <ws>

Example
<XVmM>< /Xvm>

HP Diagnostics (9.24) Page 169 of 239

Chapter 7: Advanced .NET Agent Configuration

Instructions are provided for advanced configuration of the .NET Agent. Advanced configuration is
intended for experienced users with in-depth knowledge of this product. Use caution when modifying
any of the Diagnostics components’ properties.

This chapter includes:
« "Time Synchronization for .NET Agents Running on VMware" on the next page
« "Customizing the Instrumentation for ASP.NET Applications" on the next page
« "Discovering the Classes and Methods in an Application" on page 175
« "Controlling Which HP Software Products the Agent can Work With" on page 177
 "Configuring Support for MSMQ BasedCommunication" on page 179
« "Configuring Latency Trimming and Throttling" on page 179
« "Configuring Depth Trimming" on page 182
« "Configuring URI Truncation and Mapping" on page 183
« "Capturing HTTP Server Requests Based on Query Parameters" on page 184
« "Configuring the .NET Agent for Lightweight Memory Diagnostics" on page 186
« "Limiting Exception Stack Trace Data" on page 188
« "Configuring Thread Stack Trace Sampling" on page 190
« "Disabling Logging" on page 192
« "Overriding the Default Probe Host Machine Name" on page 192
« "Listing the Probes Running on a Host" on page 193
« "Authentication and Authorization for .NET Profilers" on page 194
« "Configuring Consumer IDs" on page 195
« "Configuring SOAP Fault Data" on page 199

« "Collecting Additional Probe Metrics or Modifying Probe Metrics" on page 199

HP Diagnostics (9.24) Page 170 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

Time Synchronization for .NET Agents Running on VMware

.NET Agents running in VMware hosts have additional time synchronization requirements. For agents
running in a VMware guest, time must be synchronized between the VMware guest and the underlying
VMware host. If time is not synchronized properly, the Diagnostics Ul could display inaccurate metrics
or no metrics at all from a probe running in a VMware guest.

Time should be synchronized according to the recommendations given in the VMware whitepaper on
timekeeping (http://www.vmware.com/pdf/vmware_ timekeeping.pdf)in the section "Synchronizing
Hosts and Virtual Machines with Real Time." In summary, VMware Tools must be installed in each
VMware guest operating system that hosts a Diagnostics probe and the time synchronization option in
VMWare Tools should be turned on. Note that this option in VMware Tools will only work if the guest
operating system time is initially set earlier than that of the VMware host. For instructions on how to
install VMware Tools, see the "Basic System Administration" document for VMware ESX Server. In
addition, if any non-VMware time synchronization software (such as Network Time Protocol) is used, it
should be run in the VMware ESX server service console.

Customizing the Instrumentation for ASP.NET Applications

When the .NET Agent is installed, the ASP.NET.points file is created with the standard
instrumentation that the agent applies to all ASP.NET processing on the monitored server.

You must create application-specific instrumentation points to capture performance metrics for the
business logic that has been implemented through application-specific classes and methods. The
application-specific instrumentation points must be stored in a custom capture points file that can be
associated with the application using the attributes in the <probe_install_dir>/etc/probe_config.xml
file. If the application was auto-detected during the installation or during a rescan of 11S, a custom
capture points file was automatically created for the application at the same time.

Note: If you do not know the classes and methods in an application that you want to monitor, you
can use the Reflector tool that was installed with the .NET Agent to analyze the .dll files in the
application and discover the classes and methods. See "Discovering the Classes and Methods in
an Application" on page 175 for instructions on using Reflector.

To let the .NET Agent know that you want the instrumentation points in a custom capture points file to
apply to an application, you must update the points attribute of the appdomain element in the probe_
config.xml file.

To associate a custom capture points file with an application:

1. Create a capture points file with the instrumentation for the application specific classes. To create
a capture points file, copy an existing capture points file in the <probe_install_dir>/etc directory.

Note: If the application was auto-detected during the installation or during a rescan of IS, a

HP Diagnostics (9.24) Page 171 of 239

http://www.vmware.com/pdf/vmware_timekeeping.pdf

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

capture points file already exists for the application with some or all of the points file entries
commented out.

2. Customize the capture points file by adding instrumentation points so that the agent captures
custom business logic for the applications.

The following example illustrates how to modify the capture points file so that the agent captures
IBuySpy custom code:

[IBuySpy Callee]

class = !IBuySpy.*
method = !.*

signature =

scope =

ignoreScope =

layer = Custom.IBuySpy

For more information about instrumentation, see "Custom Instrumentation for .NET Applications"
on page 59

3. Update the configuration of the .NET Agent probe in probe_config.xml to ensure that the
modified capture points file is properly referenced.

Within the ASP.NET <process> tag add an <appdomain> tag for the application. Include the
<points> tag with the file attribute and the enabled attribute. See "Virtual Directories
(AppDomains) Under Different IS Paths with the Same Names" on the next page for more
examples.

<appdomain name="1/RO0T/your_app_name" website="Default Web Site"
enabled="true">

<points file="DefaultWebsite-your_app.capture points"/>
</appdomain>

The example below illustrates this step. A custom capture points file has been created for the
MSPetsShop application. The file has been named MSPetShop.points. The <appdomain> tag
for the application, and the capture points file were added to the ASP.NET <process> tag in the
probe_config.xml file. Note that the IS path is included in the appdomain tag.

<?xml version="1.0" encoding="utf-8"?>

<probeconfig>
<id probeid="" probegroup="Umatilla"/>

password=""/>
><authentication username=

<credentials username=
<profiler authenticate=
password=""/></profiler>

HP Diagnostics (9.24) Page 172 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

<diagnosticsserver url="http://issaquah:2006"/>
<mediator host="issaquah" port="2612"/>
<webserver start="35000" end="35100"/>

<modes am="true"/>

<instrumentation><logging level="" threadids="no"/></instrumentation>
<lwmd enabled="true" sample="1m" autobaseline="1h" growth="10" size="10"/>

<process name="ASP.NET", enablealldomains="false">
<logging level=""/>
<points file="ASP.NET.points"/>
<appdomain name="1/RO0OT/MSPetShop" website="Default Web Site"
enabled="true">
<points file="DefaultWebsite-MSPetShop.points"/>
</appdomain>
</process>
</probeconfig>

4. Restart IIS as instructed in "Discovery and Standard Instrumentation” on page 41.

Virtual Directories (AppDomains) Under Different IIS Paths with the
Same Names
You can distinguish two or more appdomains on the same IIS server which have the same name.

Consider the configuration below where there are 3 virtual directories (AppDomains) with the name
CallChain.

Internet Information Services (I1S) Manager

@F ! [¥ » ROS84238TST4 * Sites ¥ DefaltWebSite » CalChain » CallChain

&L |7 |8 éd /callChain/CallChain Home
- |2 | LE]
~&5 Start Page)
45| ROSB4238TST4 (AMERICAS \samehts) Filter: - Bco - igsh
*;; Application Pools ASP.NET
= a_, Sites Pl
=) Default Web Site 1= \/\
| aspnet_dient % S E
[+ 7 BasicWCFClient NET NET MET Error
?p BasicWCFService Authorizati... Compilation Pages Glo
% Calchain

—

o e o = &
- @ ¥ calchain - B

% IavaTrader.WebCliant Machine Key Pages and Session State SM

?ﬁ TestService 2, WebClient Centrols
L? TestService2.\WebService
Eﬁ TestService2. WebServiceChair s
168 Wehsite2 —
[+ ¥ callchain Eggl EEE% %%i
Anthanbcration AoHharisstoen M ammraccinm r

HP Diagnostics (9.24) Page 173 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

In the probe_config.xml file you can distinguish the AppDomains by including the IIS configuration
path.

The configuration for the 3 CallChain applications in the example above would be as follows:

<appdomain enabled="false" name="1/RO0T/CallChain/CallChain" website="Default
Web Site">
<points file="Default Web Site-CallChain-CallChain.points" />
</appdomain>
<appdomain enabled="false" name="1/RO0T/CallChain" website="Default Web Site">
<points file="Default Web Site-CallChain.points" />
</appdomain>
<appdomain enabled="false" name="2/RO0T/CallChain" website="WebSite2">
<points file="WebSite2-CallChain.points" />
</appdomain>

The resultant probes are distinguished using the I1S path and are displayed in the Enterprise Ul as:
1ROOTCallChain.NET, 1ROOTCallChainCallChain.NET, 2ROOTCallChain.NET

Backward Compatibility with Pre-9.01 Releases

For the sake of backward compatibility, the 9.01 or later version of the agent will be able to read and
process versions of the probe configuration earlier than 9.01 for ASP.NET AppDomains. The 'earlier
format is shown in the example below:

<appdomain name="CallChain">
<points file="CallChain.points" />
</appdomain>

If you use the earlier format, then the behavior of the agent will revert to the previous version’s behavior.

« All AppDomains with name "CallChain" (in this example) will be enabled or disabled
simultaneously.

« All CallChain probe instances will be consolidated on the server into one probe.
« Trend lines for probes and server requests should continue from previous versions.

It is recommended that you do NOT use the earlier format of configuration where backward
compatibility (such as trend lines) is not required.

For an appdomain configured using the earlier format, if the new behavior is desired, the "old" format
entry should be deleted from the probe_config.xml file. Then run Rescan ASP.NET Applications from
the start menu on the probe system. This will result in the addition of AppDomain entries with the new
format, allowing you to distinguish different probes on the same |IS server with the same name.

The upgrade install will retain the earlier version of the appdomain configuration and modify probe
config.xml to add the new format configuration for any unlisted AppDomains.

HP Diagnostics (9.24) Page 174 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

Discovering the Classes and Methods in an Application

To monitor the performance of an application that you are not familiar with, use the Reflector automatic
discovery tool that is installed with the .NET Agent to find the classes and methods in the application
that you want to add to the instrumentation used by a probe. The Reflector executable is located at
<probe_install_dir>\bin\reflector.exe.

To discover classes and methods using Reflector:
1. Locate the installation directory for the application that you want to monitor.
2. Locate the folder in the application installation directory where the .dll files are stored.

3. Open a command prompt and change the directory to the folder where the .dll files for the
application are stored.

4. Run the Reflector against all of the .dll files and .exe files in the current directory by executing the
following the command at the command prompt:

<probe_install dir>\bin\Reflector.exe

You can limit the Reflector to certain .dll and .exe files by adding additional parameters to the
command. The following example shows another way to enter the command in the previous
example:

<probe_install dir>\bin\Reflector.exe *.dll *.exe

This command explicitly tells the Reflector to check all of the .dll and .exe files in the target
directory.

To limit the Reflector to specific files, you could enter the following:
<probe _install_dir>\bin\Reflector.exe WorkHorse.dIl Utility.dll
This command explicitly tells the Reflector to check only the two .dIl files specified.

The following example shows the commands you might execute if you have an application called
PetShop that has .dll files located in a bin folder:

C:\>cd "c:\Program Files\Microsoft\PetShop\Web\bin"

C:\Program Files\Microsoft\PetShop\Web\bin>
C:\MercuryDiagnostics\".NET Probe"\bin\Reflector.exe

HP Diagnostics (9.24) Page 175 of 239

.NET Agent Guide

Chapter 7: Advanced .NET Agent Configuration

5. The Reflector displays a report of the assemblies, namespaces, classes, and methods found in
the .dll files that you specified.

8 classesz]
(6 classes)
(17 classes)
{11 <lasses)
2 «classes)
{1 «classes)

Equals
Finalize
Getaddress

GETType
Insert

signIn
Tostring
Update

Equals
Finalize
get_Count
get_Item
get_Total

GetInstock
GetorderLd
GETType

retshop.
Petshop.
Petshop.
retshop.

GetHashCode

MemherwiseClone

GetCartiteams
GETENUMerator
GetHashCode

neltems

MemberwiseClone

BLL

C:NProgram Files'Microsoft:PetsShopiweb binyFetshop.BLL.d]]
C:wProgram Filesswmicrosofthpetshopiwebsbinpetshop. pal. dl1]
C:%Program Fileswmicrosofthypetshopiwebibinpretshop. web.d11

retshop.
rPetshop.

DALFactory

web

webh.Controls
weh. ProcessFlow
web. webComponents

petshop. BLL. Account (10 methods)

System. Boolean(System. chject)

System. void()

Petshop.Model, addressInfoSystem. String)

System. Int32()

System. Type()

system.void(Petshop.model. accountInfo)

System.object ()

petshop.Model . AccountInfolsystem. string, System. string)
System.string()

System.void(Petshop.Model. AccountInfo)

petshop.BLL.Cart (17 methods)
Add

System
System
SysTem
System

Lwold(system. string)
LBoolean(System. object)
void ()

LIRE3200

petshop.model. CartItemInfolsystem. Int32)

System.
SysTem.
System.
System.
System.
SysTem.
System.
System.

Decimal()

collections. ArrayList()
collections. IEnUmMeratar()
Int32()
IntBZCSystem.String)
collections. ArrayList()
Tgpeo

object ()

Note: You can redirect the output from the Reflector to afile, as shown in the following

example:

<probe_install_dir>\bin\Reflector.exe sys*.dll > <report_name>.txt

The output from Reflector is redirected to the file that you specify.

Use the information in the report to customize the instrumentation for the application, as described in
"Customizing the Instrumentation for ASP.NET Applications" on page 171.

HP Diagnostics (9.24)

Page 176 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

Controlling Which HP Software Products the Agent can
Work With

The .NET Agent can be set in different modes for the following:
« Monitoring applications from development through pre-production testing and into production.
« Use with other HP Software products.

« Use as a standalone Diagnostics Java Profiler not reporting to a server or to other HP Software
products.

The mode the .NET Agent works in is determined by the <modes> element set in the <probe_install_
dir>/etc/probe_config.xml file.

The <modes> element is also used in determining usage against the license capacity (see "License
Information Based on Currently Connected Probes" in the HP Diagnostics Server Installation and
Administration Guide). For Diagnostics there are two types of LTUs (License to use):

« AM - When using of the product in an enterprise mode, typically in a production environment.

« AD -When using the product in a pre-production load testing environment with probes in
LoadRunner or Performance Center runs.

The value of the <modes> element is initailly set at the time you install the .NET agent. See "Installing
.NET Agents " on page 18.

To change the value of the <modes> element you can edit the probe_config.xml file. Or you can re-run
the .NET Agent installer and use the Change option to set the mode to Diagnostics Profiler Mode
(PRO), Application Management/Enterprise Mode for Diagnostics (Enterprise) and/or
TransactionVision (TV) or Diagnostics Mode for LoadRunner/Performance Center (AD).

Note: To use the standalone Diagnostics Profiler for .NET in enterprise mode or integrated with
other HP Software products, contact HP Software Customer Support to purchase HP
Diagnostics.

To see Diagnostics data in the user interface of the interfacing HP Software products, you must
perform additional configuration steps. See BSM-Diagnostics Integration Guide and the
LoadRunner/Peformance Center-Diagnostics Integration Guide.

The sections that follow provide instructions for configuring each product mode of the <modes>
element (see also "<modes> element" on page 133).

PRO Mode - Diagnostics Profiler for .NET

When PRO mode is set, the agent gathers performance metrics and presents them in the standalone
Diagnostics Profiler for .NET user interface which is made available through a URL on the agent host.

HP Diagnostics (9.24) Page 177 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

In this mode the profiler is always collecting data even when the profiler Ul is not in use. This mode can
be combined with other modes.

PRO mode is not used in determining usage against license capacity.
Enterprise Mode

When configured in Enterprise mode, the agent works with HP Software products such as BSM,
LoadRunner, Performance Center, and as the full Diagnostics enterprise product. It will capture data for
LoadRunner/Performance Center runs in a separate database as well as capture data outside of
LoadRunner/Performance Center runs.

Both AD and AM modes will override this mode.

In Enterprise mode data will also be sent to the Diagnostics .NET Profiler. If the PRO mode is set along
with Enterprise mode then the .NET Agent will collect data continuously for the profiler even if the
profiler Ul is not in use. If PRO mode is not set then the agent will not start collecting data until the
profiler Ul is started.

Enterprise mode is the default for NET Agents (if you don’t specify AD or AM mode). In Enterprise
mode the agents are counted against the AM license capacity.

AM Mode

In AM mode the .NET agent will capture all instrumentation data. You can set AM mode to protect an
agent in a production BSM deployment from accidently being included in a LoadRunner or Performance
Center run. In AM mode, the agent is not listed as an available agent in LoadRunner or Performance
Center.

Agents in AM mode will always be counted against the AM license capacity.
AM mode supersedes all other modes except for AD.
AD Mode

In AD mode the .NET agent will only capture data during runs from LoadRunner/Performance Center
and the results will be stored in a specific Diagnostics database for that run, for example, Default
Client:21.

When the agent is in this mode it will not use resources or send any data to the server unless the probe
is part of a LoadRunner/Performance Center run.

AD mode supersedes all other modes. So for example, if AD mode and any other modes are set then
the mode will be set to AD.

See the BSM-Diagnostics Integration Guide and the LoadRunner/Peformance Center-Diagnostics
Integration Guide for more information.

Use this mode to prevent an agent in a QA environment from using additional resources and continually
report data to the Diagnostics console dataset when a load test is not running.

Another advantage of running a probe in AD mode is that probes in AD mode will only be counted
against AD license capacity when the probe is running in a LoadRunner or Performance Center test
run. For example if you have 20 agents installed in LoadRunner/Performanace Center AD mode but
only 5 arein arun, then only 5 are counted against AD license capacity.

HP Diagnostics (9.24) Page 178 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

TV mode

This mode will send events to Transaction Vision. This mode can be combined with other modes. TV
mode is not used in determing usage against HP Diagnostics license capacity.

Note about AD Mode and Enterprise Mode
The .NET agent gets notified of LoadRunner/Performance Center runs by the Diagnostic Mediator.

If LoadRunner/Performance Center starts testing an instrumented application that is not running, for
example, a web application getting hit the first time, then when the application starts executing the
Diagnostics agent will not be notified of the run. This is because the agent will not have had enough
time to get initialized and start listening to the mediator for this notification.

To work around this problem, the .NET agent needs to be "primed"(initialized) by a call to the web
application before a LoadRunner/Performance Center run is started. This initializes the web
application's process (worker process) and the probe so that it is ready to accept run information from
the mediator.

Configuring Support for MSMQ BasedCommunication

To configure the .NET Agent to support MSMQ based communication, include the msmgq.points file in
the scope of the appdomain as shown in the example excerpt from a <probe_install_dir>/etc/probe_
config file:

<process name="SimplestQueuingSender">
<points file="msmq.points"/>

<modes enterprise="true"/>

</process>

Configuring Latency Trimming and Throttling

When the .NET Agent determines that it is running out of resources because the Diagnostics Serveris
not keeping up with the amount of data that the probes are capturing, the agent can automatically
reduce the number of methods the probe captures using a process called latency trimming. By default,
latency trimming is enabled so that the probe’s work load can be adjusted as necessary.

When latency trimming is enabled, the .NET Agent trims the number of methods captured by a probe
by ignoring methods with a total latency below a certain minimum latency threshold. The idea behind
trimming is that it is better to miss capturing methods with lower latency that are less likely to be of
interest than to allow the probe to bog down or stop running. Trimming allows the probe to continue to
run so that it can capture the more interesting methods with higher latencies.

Note: Because of threading and buffering, partial information about a method that was trimmed
can be transmitted to the Diagnostics Server. When the Diagnostics Server detects that it
received only partial information for a method, it issues a warning message. You should ignore
these warning messages unless you expected that the information for all methods was to be
captured.

HP Diagnostics (9.24) Page 179 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

Note:
« Latency trimming and throttling are ignored by the Profiler user interface.

« The Diagnostics Server can be configured to apply additional trimming of the probe’s data
which will affect the granularity of the data shown by the Diagnostics user interface.

Disabling Latency Trimming

By default, timming is enabled for the .NET Agent. To disable trimming you must change the
configuration.

To disable Latency Trimming:

Add the latency tag to the <probe_install_dir>/etc/probe_config.xml configuration file, as shown in
the following example:

<trim>
<latency enabled="false" />
</trim>

The attribute of the latency element that tums on latency trimming is enabled. Latency trimming is
enabled when enabled is set to true. When enabled attribute is set to false, latency trimming is
disabled. The default value for this attribute is true.

For a description of attributes and elements of the latency element, see "Understanding the .NET
Agent Configuration File " on page 85

Enabling Latency Trimming

By default, trimming is enabled for the .NET Agent. If you subsequently disabled trimming, you must
change the configuration to enable it once more.

To enable Latency Trimming:

Change the value of the enabled attribute of the latency element in the <probe_install_
dir>/etc/probe_config.xml configuration file, as shown in the following example:

<trim>
<latency enabled="true" />
</trim>

The attribute of the latency element that tums on latency trimming is enabled. Latency trimming is
enabled when enabled is set to true. When enabled attribute is set to false, latency trimming is
disabled. The default value for this attribute is true.

For a description of attributes and elements of the latency element, see "Understanding the .NET
Agent Configuration File " on page 85

Setting Latency Trimming Thresholds

By default, the latency trimming thresholds are set so that those methods with a latency less than 2 ms
are trimmed, and those methods with a latency greater than 100 ms are never trimmed.

HP Diagnostics (9.24) Page 180 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

You can set the minimum trimming threshold by adjusting the value of the min attribute. You can set
the maximum trimming threshold by adjusting the value of the max attribute. These attributes are
specified in the latency element in the <probe_install_dir>/etc/probe_config.xml configuration file.

<trim>
<latency enabled="true" min="50" max="100" />
</trim>

The attributes of the latency element that control the trimming thresholds are:
e min

Sets the minimum latency threshold. When latency trimming is enabled, methods with a latency
less than or equal to the value of this attribute are timmed. If you do not specify a value for this
attribute, the default value of 2 ms is used.

The lower the value of the min attribute the greater the chance that the performance of the
application will be adversely impacted. A lower value means that fewer methods are trimmed
because more low-latency methods are captured.

If the information for all methods must be captured, disable latency trimming by setting latency
enabled equal to false.

¢ Max

Sets the maximum latency threshold. When latency trimming is enabled, methods with a latency
greater than or equal to the value of this attribute are never to be trimmed. The default value for this
attribute, if you do not specify a value, is 100ms.

For a description of the attributes and elements of the latency element, see "Understanding the NET
Agent Configuration File " on page 85

Configuring Latency Trimming Throttling

Latency trimming is throttled by default. When throttling is enabled, the amount of trimming that is done
is automatically adjusted based on the percentage of the probe resources that are being used up by the
Diagnostics Server processing backlog.

Without throttling, the methods that fall below the minimum method latency threshold are always
trimmed.

If the percentage resources used by the probe increases above a set throttling increment threshold, the
effective trimming threshold is incremented so that methods with higher latency are trimmed. If the
percentage of probe resources used increases above the threshold again, the effective trimming
threshold is incremented once more so that methods with even higher latency are trimmed. If the
percentage of probe resources used drops below the throttling decrement threshold, the effective
trimming threshold is decremented so that the methods with lower latencies are captured once more.

The effective trimming threshold cannot be incremented above the maximum method latency
threshold, and it cannot be decremented below the minimum method latency threshold.

Below is an example of the latency element in the probe_config.xml configuration file that includes
the throttling attributes:

HP Diagnostics (9.24) Page 181 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

<trim>
<latency enabled="true" min="50" max="100"
throttle="true" incrementthreshold="75"
decrementthreshold="50" increment="2"/>
</trim>

The attributes of the latency element that control throttling are:
« throttle

Throttling is enabled when this attribute is set to true. When this attribute is set to false throttling
is disabled. The default value for this attribute is true.

« increment

Sets the amount that the effective trimming threshold is incremented when the percentage of probe
resources used exceeds the incrementthreshold. Sets the amount that the effective trimming
threshold is decremented when the decrementthreshold is crossed. The default value for this
attribute is 2 ms.

« incrementthreshold

When the percentage of probe resource usage rises to the value of this attribute or higher, throttling
is triggered so that the effective trimming threshold is incremented. The default value for this
attribute is 75 percent.

« decrementthreshold

When the percentage of probe resource usage falls to the value of this attribute or lower, throttling is
triggered so that the effective trimming threshold is decremented. The default value for this attribute
is 50 percent.

For a description of the attributes and elements of the latency element, see "Understanding the NET
Agent Configuration File " on page 85.

Configuring Depth Trimming

The .NET Agent can automatically reduce the number of methods that it captures using a process
called depth trimming. When the Diagnostics Server is not keeping up with the amount of data that the
probe is capturing, the probe can use depth trimming to help prevent it from running out of resources. By
default, depth trimming is enabled.

Note: Depth trimming is ignored by the Profiler user interface.

When depth trimming is enabled, the .NET Agent trims the number of methods captured by ignoring
methods that are called at a stack depth that is greater than the maximum stack depth threshold. Those
that are called at a stack depth less than or equal to the stack depth threshold are captured. The idea
behind trimming is that it is better to miss capturing methods further down in the call stack, that are less

HP Diagnostics (9.24) Page 182 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

likely to be of interest, so that the probe is able to continue to run and is able to capture the more
interesting methods that occur higher in the call stack.

For example, if the stack depth threshold is 3, and the following method calls are made:

/login.do calls a() calls b() calls c()
where only the /login.do, a, and b methods are captured, and method c is trimmed.

Below is an example of the depth element in the probe_config.xml configuration file that includes the
trimming attributes:

<trim>
<depth enabled="true" depth="10" />
</trim>

The attributes of the depth element that control trimming are:
« enabled

Depth trimming is enabled when this attribute is set to true. When this attribute is set to false
depth trimming is disabled. The default value for this attribute is true.

o depth

Sets the threshold that are used for depth timming. Methods that are called at or below the value of
this attribute are timmed when depth timming has been enabled. The default value for this attribute
is 25.

Setting depth to a lower value can significantly reduce the overhead of capture. For a description of
the attributes and elements of the depth element, see "Understanding the .NET Agent
Configuration File " on page 85.

Configuring URI Truncation and Mapping

Any HTTP/S server request URI can be transformed before being reported by the probe. This
transformation is based on regular expression matching and replacement controlled by the
urireplacepattern element in the probe_config.xml configuration file. It is tumed off by default.

This can be useful when you are seeing too many server requests and you want to replace many server
request URIs with one simplified server request URI that aggregates them.

Caution: Overuse of this feature will impact performance.
An example is shown below:

nu un

<symbols maxuri="" maxsql="">
<urireplacepattern enabled="true">
<pattern value="s/TestServicel/CommonService/"/>

HP Diagnostics (9.24) Page 183 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

<pattern value="s/TestService2/CommonService/"/>
</urireplacepattern>
</symbols>

The syntax used for the pattern value is s/search_pattern/replace_pattern/.

The search_pattern and replace_pattern should be enclosed in/. If / is used in the pattern then the
character # should be used instead of / as the separator.

The patterns are applied to all server requests and are applied to the uri in the order they are specified in
the probe_config.xml file.

If urireplacepattern is enabled, then two default patterns are configured by default.

The first of these default patterns is used to trim server requests that contain a ; or/!. All content after
these tokens is removed from the server request.

The pattern used is : s#(;|/?2\\!). *$##"

The second of these default patterns replaces loading of images, pdfs and docs with a fixed token
("/Static Content").

The pattern used is:
s#(?<word1>".*)(/.*\\.js|css|ipg|gif|png|pdf|html|doc|docx #${word1}/Static Content#

Both of these patterns can be customized.

Capturing HTTP Server Requests Based on Query
Parameters

An HTTP/S server request can be named based on its query parameters. This allows the probe to
report more granular metrics for a particular server request.

By default, query parameters are ignored when monitoring a particular server request. To specify that a
server request be created based on a particular query parameter, use the httpcaptureparams element
in the probe_config.xml configuration file. Multiple parameters can be specified.

An example is shown below:

<httpcaptureparams enabled="true">
<param name="Genre"/>
<param name="accounttype"/>
</httpcaptureparams>

A server request is created for each server request that includes the Genre parameter and accounttype
parameters:

HP Diagnostics (9.24) Page 184 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

|
Table [| & @O [2]
= Laten...
Status | Chart Server Request Frobe Latency | CPU {A... | Throu... | Excep... Infa
Cver ...
@ @ MV C 3 Music Stare/ 2ZRO0O.. 107.2ms 1092ms 12/hr 0 =
@ @ IMVC3Music Store/Accourt/Log On? Return U=V C3/Music StorelS... 2RO0... 3M09ms 3120ms 127hr 0
@ |:| MV C 3 Music Store/Shopping CartiAdd To Carti241 2R0O0.. 13s 133 127hr 0
2 [] iMvC3aMusicStore/Store/Browse 2R0O0O.. B45ms 50.7ms 192 hr a
(7] [] IMvC3MusicStore/Store/Browse? Genre=Metal 2R0O0... G24ms 6G24ms 12/hr 1]
@ [imvc3musicStore/Store/Browse? Genre= Pop 2R0O0.. E25ms 468ms 24 /hr 0
@ [imvc3musicStore/Store/Browse? Genre= Reggae 2RO0 .. 561 ms #Ems 36/hr a
2 [] [iMvC3MusicStore/Store/Browse? Genre=Rock 2RO0O.. 722ms 468ms 24 /hr 0 1
@ [] [mvC3MusicStore/Store/Details/241 2R0O0... 426.5ms 4056ms 12 /hr 0 "]

The httppcaptureparams element can also be used to capture the original URI of the server request.
To capture the unmodified server request, set the capturequerystring argument to true:

<httpcaptureparams enabled="false" capturequerystring="true">
<param name="Genre"/>
</httpcaptureparams>

The captured query string is displayed in the call profile (SR instance) as shown below:

Cail Profils [Macmus instancs on 1 287033366R00T NET of /Layouts ending t 112702 141,03 PM for Defauk]

0 4 ms Bms 12 ms 16 ms W ms Hms 28 ms Xms 36 ms ms Ums dT.Tms

[Layouts

Server.Request()

B Sy v T R

call LT bl e -
B a7 oA -
| Mepts | e T
B 98.7% Server Request() a7
= 1.2% SqiCommand Exscuts Fsader () 0 e

831.1% Oumeund Call 1o SepCommand. Exscuts Reader i)

- Herme myouts
— ?;:‘:?‘“‘W E"’::"“‘m@ P E | Cor 1680 cBab 2350 9421 4701 %16
Cubonnd -«
= 0.7% SqiCommand E-ea::;:::;“ " o < 1 i el
Crignal Cuery List= % TEPHEICI B9-34484ACH-501 -1 TCDBBLTEABSHIDE ~

Bog% Oubound Callto SgCommand Executs Render () (] B Latemcy [
= 42% SqiCommand EvecubeResder(2

l:: % Outtscund Cal 1o sqca:-ma Eascuts Radsi () 2 S i
= 33% SqiCommand Exscuts Faader () 1 T =

-1 b Latency (Exchusive Total) 02ms =|

Note: Avoid using a session parameter or highly unique URI value because of the impact to
overhead and data storage.

HP Diagnostics (9.24) Page 185 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

Configuring the .NET Agent for Lightweight Memory
Diagnostics

The Lightweight Memory Diagnostics (LWMD) feature refers to the ability to capture and analyze usage
data that relates to Collections. Specifically Collections refer to any class that implements either the
System.Collections.ICollection or System.Collections.Generic.ICollection interfaces. Examples
of such Collections are ArrayList, HashTable, DataView etc. The most common from of .NET memory
leaks occur in Collections that are not properly maintained.

When the .NET Agent is installed, the default configuration for the .NET Agent probe is to have LWMD
turned off. To enable the LWMD feature you must perform two modifications to the probe_config.xml
file:

« You must enable the <lwmd> element (see "<lwmd> element" on page 127).

« You must add one or more references to the Lwmd.points file as described in the instructions
below.

Note: Enabling the probe to capture collections metrics could incur additional overhead on the host
for an application.

To enable the capture of collection metrics for a process or for an AppDomain:

Add a points tag for the Lwmd.points file to either the process tag or to one or more <appdomain>
tags in the probe_config.xml configuration file.

When you install the .NET Agent, the Lwmd.points file is installed in the <probe_install_dir>/etc/
directory along with the ASP.NET.points and ADO.points files. The Lwmd.points file contains the
instrumentation instructions needed to enable the capture of collection metrics.

To enable LWMD instrumentation for all enabled AppDomains that run under a process, you add the
points tag to the process tag in the probe_config.xml configuration file. For example, to enable LWMD
instrumentation for all enabled ASP.NET AppDomains:

<process name="ASP.NET", <enablealldomains="false">

<points file="ASP.NET.points" />

<points file="ADO.points" />

<points file="Lwmd.points"/>

<appdomain name="1/ROOT/your_app_name" website="Default Web Site
enabled="true">

<points file="DefaultWebsite-your_ app.capture points" />

</appdomain>

</process>

To enable LWMD instrumentation for a specific enabled AppDomain that runs under a process, you add
the points tag to an appdomain tag in the probe_config.xml configuration file. You can add the points

HP Diagnostics (9.24) Page 186 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

tag to one or more of the <appdomain> tags. For example, to enable LWMD instrumentation for the
"your_app_name" AppDomain running in the ASP.NET process:

<process name="ASP.NET", <enablealldomains="false">
<points file="ASP.NET.points" />
<points file="ADO.points" />
<appdomain name="1/ROOT/your_app_name" website="Default Web Site"
enabled="true">
<points file="DefaultWebsite-your_app.capture points" />
<points file="Lwmd.points"/>
</appdomain>
</process>

To disable LWMD:

To disable the LWMD feature you must perform two modifications to the probe_config.xml file:
« Disable the <lwmd> element (see "<lwmd> element" on page 127).

« Delete the points tags for the Lwmd.points file from all process tags and from the appropriate
<appdomain> tags.

Without the LWMD points tags in the configuration file, the probe cannot locate the LWMD
instrumentation instructions contained in the Lwmd.points file and so the probe will not instrument
for Collection usage.

To control LWMD Instrumentation:

When the .NET Agent is installed, the default configuration for the Lwmd. points file contain instructions
to instrument Collection usage in a wide range of assemblies, AppDomains, namespaces and classes.
You can modify the your application's points file to narrow the scope of the Collections that you want to
inspect. LWMD Instrumentation is implemented as Caller side Instrumentation, refer to "Caller Side
Instrumentation" on page 68 for a description of how this instrumentation works.

Note: Narrowing the scope of LWMD instrumentation is a recommended best practice.

To narrow the scope of the Collections that you want to inspect perform the following steps:

1. Delete the points tags for the Lwmd.points file from the process tags and from the appropriate
<appdomain> tags. This will remove the LWMD settings that specify a wide instrumentation
scope.

2. Add an LWMD section to the points file for your process or AppDomain. As an example, to do this
copy and paste the following into your_app.points file:

[LWMD]

keyWord = lwmd
scope =
ignoreScope =

HP Diagnostics (9.24) Page 187 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

3. Set the scope and ignoreScope Arguments in the LWMD section to narrow the scope of the
Collections that you want to inspect. Example:

[LWMD]

keyWord = lwmd

scope = Imy namespace\..*

ignoreScope = !my_namespace.my_classl\..*

The example above instruments all the Collections that are constructed from the my_namespace
namespace except for any Collections that are constructed from any method in the my_
namespace.my_class1 class.

For LWMD Instrumentation there is an internal default value for ignoreScope that is unpublished
and is always included with any value you enter. The default value includes namespaces and
classes relating to the .NET Infrastructure that if instrumented would adversely affect the
application, for example, !System.*, IMicrosoft.*, and so on.

Limiting Exception Stack Trace Data

The agent collects exception data for exception throwing server requests and presents the information
in the Diagnostics Ul. The collected exception data can optionally include a stack trace.

Collecting stack trace data for all exceptions is usually undesirable however, because exception stack
traces that are not of interest overload the display as well as the data collection and transfer operations.
You can therefore limit the exception types for which stack trace data is collected. For example,
filtering application server-based errors such as

System.Security. Authentication.AuthenticationException would allow the stack traces to be used
for more application-specific errors.

The stack trace data that is collected is controlled in three ways: limiting specific exception types,
limiting the number of exceptions for which stack trace data is collected and limiting the size of the
stack trace data.

Note: You can disable all stack trace collection by setting captureexceptions enabled="false" in
the probe_config.xml file. By default, stack trace collection is enabled.

This section includes:
« "Limit Specific Exception Types" on the next page
« "Limit the Number of Exceptions per Server Request" on the next page
« "Limit the Size of the Stack Trace" on the next page

« "Example" on page 190

HP Diagnostics (9.24) Page 188 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

Limit Specific Exception Types

The exceptions for which stack trace data is collected is limited by setting the exclude and include
properties in the probe_config.xml file as shown in the following example:

<exclude>

<exceptiontype name="System.ArithmeticException"/>
</exclude>
<include>

<exceptiontype name="System.DivideByZeroException"/>
</include>

Subtypes of any exception type specified to be excluded or included are also excluded or included,
respectively, unless they are explicitly specified otherwise on the include or exclude list.

The following diagram shows which exception types are included and excluded based on the preceding
example:

}Inclucled by default

System.ArithmeticException Excluded
System.Divide By ZergException Included
Svstam NotFiniteMymberException
System. OverflowExcaption }EXCIUdEd

Changes to the probe-config.xml file take effect immediately; it is not necessary to restart the
application.

Limit the Number of Exceptions per Server Request

By default, the .NET Agent probes collect stack trace data on only the first 4 exceptions encountered
during a server request. If your application has more exceptions for which you want to view stack trace
information, you can increase the value of the max_per_request property in the probe_config.xml
file. As with all collected metrics, increased amounts of collected data place a higher load on the
Diagnostics Server.

Limit the Size of the Stack Trace

By default, the captured stack trace data can be of any size. You can limit the size of the stack trace
string to improve the readability of the Exceptions tab. Set the value of the max_stack_size property to
the maximum stack trace string in the probe_config.xml file. As with all collected data, increased
amounts of collected data place a higher load on the Diagnostics Server. By default, this property is set
to 0 (zero) which means that the stack trace size is not limited.

HP Diagnostics (9.24) Page 189 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

Example

The following settings enable exception stack traces with a maximum stack trace string size of 2048.

<captureexceptions enabled="true" max_per_ request="4" max_stack size="2048">
<exclude>
<exceptiontype name="System.ArithmeticException"/>
</exclude>
<include>
<exceptiontype name="System.DivideByZeroException"/>
</include>
</captureexceptions>

Configuring Thread Stack Trace Sampling

When asynchronous thread sampling is enabled, you can see, in the Call Profile view, which methods
were executed during long running fragments even if no instrumented methods were hit during this time.
See the HP Diagnostics User Guide chapter on Call Profiles for a screen shot showing the additional
nodes added based on thread sampling.

The <stacktracesampling> element in probe_config.xml enables and configures thread stack trace
sampling. For more information about this element, see "<stacktracesampling> element" on page 152.

Example Thread Sampling Configurations

Use Case 1: You see a particular method that intermittently takes an exceptionally long time to
complete. Since the method average execution time is relatively short, you do not want to add
additional instrumentation to the methods callable from the method, because this would increase the
overhead.

1. You enable stack trace sampling and configure the long method latency threshold to a value larger
than the average execution time of the method, but shorter than the observed long running times.

2. The stack traces are collected only for methods running at least as long as the specified threshold
value, thus incurring no overhead for most cases.

3. You examine the Call Profile for the long running instances of the Server Request and sees
additional nodes revealed by stack trace sampling.

Example:

In production environment, a particular method has average latency about 170 milliseconds, but from
time to time it takes 1.4 second for this method to complete. Most of the methods visible in Call Profiles
for any fragment execute in about 550 milliseconds or less.

Since the method in question makes multiple calls to its callees, you do not want to instrument them.
Instead,you enable sampling to find out what is the cause of long execution times. To minimize the
overhead, you set tardymethodlatency value to 600 milliseconds. This ensures that most of the

HP Diagnostics (9.24) Page 190 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

methods will not get sampled at all, because they are likely to complete before this time elapses.
However, any method running longer than this value, including our trouble-making method, will get
sampled, once the method runs for 600 milliseconds (or longer) without making any calls to any of the
instrumented methods.

You also set the value of stacktracesampling-rate to 100 milliseconds. Theoretically, this should give
up to 8 samples for each method invocation that lasts 1.4 seconds ((1400 - 600) / 100).

Use Case 2: You see insufficient Call Profile info for all or some of the Server Requests, but are
reluctant to add additional instrumentation because of the performance concerns or because of the
need to restart the application.

1. You enable stack trace sampling, resets the long method latency to zero, and configures the
sampling rate to balance the overhead and the amount of additional data.

2. The stack traces are collected for all methods
3. You examine the Call Profiles and see additional nodes revealed by stack trace sampling

Example: You prepare a custom application for deployment and sees that the default instrumentation
provided with the Diagnostics probe does not work very well, because many Call Profiles contain very
few methods which do not give any insight about the application specific behavior. You are reluctant to
add additional instrumentation for all classes and methods belonging to her custom application,
because of the performance and memory consumption concerns.

Assuming that a typical fragment that does not have sufficiently detailed call tree information runs in
about 2 seconds, you select stacktracesampling-rate to be 200ms. This can give up to 10 stack traces
per typical fragment. However, you do not want all the stack traces to be reported, because some of
the methods visible in the stack traces can be very fast, and they do not substantially contribute to the
fragment overall latency. After viewing the Call Profiles with the additional method nodes obtained from
sampling, you make an informed decision about adding additional instrumentation points to the probe
configuration in deployment.

Troubleshooting Thread Sampling Configurations
Why do | not see any new nodes in my Call Profile after | enabled stack trace sampling?
See if any of the following applies to your case:

Check if the last method visible in the Call Profile is an outbound call. Outbound calls do not get
sampled by default.

« Try toreduce tardymethodlatency. It is possible that the last method visible in Call Profile makes
calls that get trimmed, but they prohibit the sampling to kick in because there's never an inactive
period of tardymethodlatency for the caller.

« Try toreduce stacktracesampling - rate. Perhaps your methods simply miss the opportunities to get
sampled.

« Verify that the latency of the last visible method in Call Profile is not caused by running garbage
collector. No .NET code runs during garbage collection, and this includes the stack trace sampling
code.

HP Diagnostics (9.24) Page 191 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

What is the minimum value of stacktracesampling.rate | can use?

You can use any positive value, but please keep in mind that each platform will simply refuse to sample
more frequently that it possibly can. The three factors playing a role here are: the minimum granularity
of sleep() available, the timer resolution, and the time it actually takes to collect one set of samples. It
is recommended to be higher than 20 ms.

What is the maximum value of stacktracesampling-tardymethodlatency | can use?

There is no limit. The usefulness of a high setting depends entirely on the latency of the server requests
for the application. To get any results, you should plan for at least a few samples for each fragment you
are concerned with, and even that may require tuning other sampling parameters as well.

Disabling Logging

You can disable application logging by changing the logging level tag of the ASP.NET process
section of the probe_config.xml file, as shown in the following example:

<process name="ASP.NET">
<logging level="off"/>
</process>

You can disable instrumentation logging by changing the logging level tag of the instrumentation
section, as shown in the following example:

<instrumentation>
<logging level="off" />
</instrumentation>

Overriding the Default Probe Host Machine Name

The registered_hostname property enables you to override the default host machine name that a
probe uses to register itself with the Diagnostics Server in Commander mode. In situations where a
firewall or NAT is in place or where your probe host machine has been configured as a multi-homed
device, it might not be possible for the Diagnostics Serverin Commander mode to communicate with
the probe unless you override the default host machine name.

To override the default host machine name for a probe there is a three step process.

1. First, set the registered_hostname attribute, located in the .NET Agent <diagnosticsserver>
element of the probe_config.xml file, to an alternate machine name or IP address that allows
the Diagnostics Server in Commander mode to communicate with the Probe.

For example:

<diagnosticsserver url="http://localhost:2006/commander" registered_

HP Diagnostics (9.24) Page 192 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

hostname=" my_host_name "/>

2. Second, register the alternate machine name or IP address of the host with the .NET Metrics
Agent. To do this, make a metrics.agent.registered_hostname entry in the metrics.config file.
You can add the entry just under the metrics.systemgroup entry.

For example:

metrics.systemgroup = Default
metrics.agent.registered_hostname = my_host_name

3. Finally, you must restart both the .NET Agent and the .NET Metrics Agent for this change to take
effect.

Note:

« Setting the registered_hostname attribute because of a NAT or firewall is only an issue for a
test environment where you are using LoadRunner, Performance Center, or Diagnostics
Standalone.

« You need to set the registered_hostname attribute to deal properly with the use of the IIS
Host Header technology.

« However, if you should set the registered_hostname in a production environment where you are
using BSM or Diagnostics Standalone, the name that you specify is shown as the host name in
System Health.

Listing the Probes Running on a Host

When more than one probe is running on a single host, you cannot know which port each probe is using
since the port that is assigned is based on the one that is available at the time the application (and
probe) is started. As the applications are started and stopped, the port that is assigned to the probe for a
given application is likely to change.

You can determine which probes are running on a host and the ports that they are using by accessing
the following URL.:

http://<probe_host>:<port>
For the port value, enter the port number 35000 or 35001. It does not matter which one you enter.

The list of probes and ports is displayed as shown in the following example:

HP Diagnostics (9.24) Page 193 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

[l OVRNTT153.adapps.hp.com

AY AY
[zs001] CallChain2.NET
[25004] JavaTrader2. WebClient.NET
[25000] MSPetShop.NET
[25002] TestService2 . WebClient.NET

[3s002] TestService2. . WebService NET
HP Diagnostics for .NET Probe version 7.0.13.378

B (T S

Authentication and Authorization for .NET Profilers

You can manage the authentication and authorization of users of the Profiler in the <probe_install_
dir>/etc/probe_config.xml file.

Note: If the .NET Agent is configured to work with a Diagnostics Server, the probe (Profiler)
authorization and authentication settings are managed from the Diagnostics Serverin Commander
mode to which this probe is connected. For more information, see "User Authentication and
Authorization" in the HP Diagnostics Server Installation and Administration Guide.

When you access the probe from the Diagnostics Server, the default username is admin and the
default password is admin.

If the .NET Agent is installed as a profiler only, by default, users are not required to enter a username
and password to access the profiler.

However, you can configure the profiler to require user authentication. If you configure the profiler to
require user authentication, you can define the password required for accessing the profiler.

To configure the profiler to require user authentication:

Go to the <probe_install_dir>/etc/probe_config.xml file and set the value of profiler authenticate to
true.

<profiler authenticate="true">
<authentication username="Test" password="uU8X9z0t1l6Twi7TkGAhQ="/>
</profiler>>

If you do not set a username and password, the default username is admin and the default password is
admin.

HP Diagnostics (9.24) Page 194 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

To create new usernames and passwords for users of the .NET Diagnostics Profiler:

1. Generate a new username and password using the PassGen.exe utility located in the <probe_
install_dir>/bin directory. Enter the user name and password for encryption. The encrypted
password generated for the user is FIPS-2 compliant.

2. Inthe probe_install_dir>/etc/probe_config.xml file, after the <profiler authenticate="true">
line, enter the username and password for each new user, in the following format:

<profiler authenticate="true">
<authentication username=""
</profiler>

password=""/>

= Forauthentication username, enter the username that you chose when running the PassGen
utility.

n for password, enter the encoded string that was returned by the PassGen.exe utility.

Caution: If you defined new usernames and passwords to access the profiler, you can no
longer use the default username and password (admin, admin). Rather, you must use one of
the new usernames that you defined.

Configuring Consumer IDs

Web service metrics can be grouped by particular consumers of the Web service. The metrics are then
aggregated for that consumer and displayed as such in the Services by Consumer ID and Operations
by Consumer ID views.

Aggregating the data by consumer ID is useful if you want to determine who is using a particular
service and how frequently they are using it. Consumer IDs are also useful for BSM. BSM users can
look at the performance of the same application based on consumers to compare their performance
characteristics.

Configuring Consumer IDs is optional. By default, the Consumer ID of a Web service being monitored
is reported as the IP address of the consumer of the Web service.

There are three ways of defining the consumer ID:
« avalue that appears in the SOAP request
« avalue that appears inan HTTP header

«» toaspecific IP address or arange of IP addresses

HP Diagnostics (9.24) Page 195 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

Basic Procedure for Consumer ID Configuration

The basic procedure to configure consumer IDs is as follows:

1. Foreach .NET probe for which you want metrics grouped by consumer, update the probe
config.xml file as described in "Consumer ID Rules Syntax and Examples for NET Agent" below.

2. If you are configuring more than 5 consumer types, update the max.tracked.ids.per.probe setting
in the server.properties file.

About Consumer ID Rules

The assignment of consumer IDs is controlled by consumer ID rules in the probe_config.xml file.

Each category of consumer IDs has its own rules: SOAP rules, HTTP header rules, and IP rules. The
rules are applied in an order no matter which order the rules are defined. The SOAP header rules are
applied first, the HTTP headers rules are applied next, and lastly the IP rules are applied.

All rule types do not need to be used. There could be SOAP rules, noHTTP rules, and IP rules. If there
is no match on any of these rules, the original IP address is used as the consumer ID.

The SOAP rules allow for the consumer ID to be obtained from an XML element in the SOAP header,
envelope or body. The rule specifies a regular expression that is used to match against the web service
name being called by the consumer. See "Using Regular Expressions" in the HP Diagnostics Server
Installation and Administration Guidefor information on using regular expressions.

If there is a match with the web service name, the agent/probe attempts to find the element defined in
consumeridfield in the appropriate SOAP location defined by the SOAP rule. If the element is not found,
this rule is skipped and the agent/probe goes on to the next rule that is defined.

The HTTP header rules allow for the consumer ID to be obtained from a header in the collection of
HTTP headers ina HTTP request.

The IP rules allow for the consumer ID to be obtained from the mapping of IP addresses to a consumer
ID. The rule is used to define an IP address, or a range of addresses, to be assigned to a consumer ID.

Consumer ID Rules Syntax and Examples for .NET Agent

The rules syntax and examples are specific to how the consumer ID is being defined.
SOAP Rules

The SOAP rules allow for the consumer ID to be obtained from an XML element in the SOAP header,
envelope or body.

An example of configuring consumer ID based on a value in the SOAP header is shown below:

<consumeridrules enabled="true">
<soaprules>

HP Diagnostics (9.24) Page 196 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

<soaprule id="SOAP1" rule="TestService" location="soap-header"
consumeridfield="Caller"/>
</soaprules>
</consumeridrules>

id= attribute can be any name you would like to use to identify the rule; this attribute is not used by the
.NET probe.

rule= attribute must be defined for a soaprule. The rule is a regular expression that is used to match
against the web service name being called by the consumer or you can use the exact Web service
name.

location= can be set to "soap-header", "soap-envelope", "soap-body". If you do not specify a location, it
defaults to use "soap-header." If you configure a location for any soap rule, you must configure a
location for all soap rules, or a severe error will occur and the consumer ID based on SOAP logic will be
disabled.

consumeridfield= attribute must be defined for a soaprule. The element in the SOAP header, envelope
or body whose value you want to use as the consumer ID.

If there is a match with the pattemn specified in the rule= attribute, the .NET agent attempts to find a text
element for the element defined in the consumeridfield. The element in the consumeridfield can be a
qualified name—that is, composed of a namespace name and the local part—or an unqualified name,
which does not have an associated namespace. If the element is not found in the specified location,
this rule is skipped and the probe goes on to the next rule that is defined.

For example, the following rule matches on a Web service named TestService and uses the Caller
element’s value as the consumer ID:

<soaprule id="SOAP1" rule="TestService" location="soap-header"
consumeridfield="Caller"/>

As long as the callers of the TestService Web service have a value defined for Caller, the metrics will
be grouped by the different values for Caller. Here is an excerpt from the soap header that would map to
a consumer ID of "Customer2" for this caller of the TestService:

SoapTestl;WS<env:Envelope
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<env:Header>
<Caller>Customer2</Caller> <-- The consumer id returned is"Customer2"
</env:Header>
<env:Body env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<m:sell xmlns:m="http://www.bea.com/examples/Trader">
<string xsi:type="xsd:string">sample string</string>
<intVal xsi:type="xsd:int">100</intVal>
</m:sell>
</env:Body>
</env:Envelope>

HP Diagnostics (9.24) Page 197 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

Enable SOAP Capture

SOAP envelopes can be very large so the <soapcapture> element is provided to enable you to control
the overhead, mainly memory overhead, of capturing SOAP requests and responses.

<soapcapture enabled="true">

The <soapcapture> element controls whether SOAP requests and responses are captured. If it is
disabled, SOAP requests and responses will not be captured. This means there will not be SOAP
requests or responses included in TransactionVision events, nor will there be any SOAP requests
available with SOAP faults, and you cannot configure consumer ID based on SOAP header, envelope,
or body.

The <soapcapture> setting overrides the settings in <soaprequestforsoapfault> which controls SOAP
payload capture on SOAP faults. See "Configuring SOAP Fault Data" on the next page.

HTTP Header Rules

The HTTP header rules allow for the consumer ID to be obtained from a header in the collection of
HTTP headers in a HTTP request. A rule and consumeridfield attribute must both be defined for a
HTTP rule element, and an id attribute can also be defined for the user to identify individual rules.

The rule is a regular expression that is used to match against the URL that the HTTP request is being
sent to by the consumer. If there is a match, the .NET probe attempts to find an HTTP header for the

header name defined in the consumeridfield. If the header name is not found in the collection of HTTP
headers, this rule is skipped and the probe goes on to the next rule that is defined.

Example httpheader rules:

<consumeridrules enabled="true">

<httpheaderrules>

<httpheaderrule id="httpHeader 1" rule="/Webservice/.*
consumeridfield="Caller"/>

</httpheaderrules>
</consumeridrules>

IP Address Rules

The IP rules allow for the consumer ID to be obtained from the mapping of IP addresses to a consumer
ID. A rule and consumerid attribute must both be defined for an IP rule element, and an id attribute can
also be defined for the user to identify individual rules.

The rule is used to define an IP address, or a range of addresses, to be assigned to a consumer ID.
This rule can be defined as a single IP address; for example, 19.225.17.125. The rule can also define a
range; for example, 19.255.17.125,19.255.17.255.

An asterisk can also be used in an octet of an IP address to match against anything in that octet; for
example, 19.255.17.*. A range can be defined in an octet to match a range of values in that octet; for
example, 19.255.17.20-255. Combinations of these can also be used; for example, 19.*.17.20-255,
20.*.10-55.*. If there is a match, the .NET probe sets the consumer ID to the consumer ID defined in
the rule.

Examples:

HP Diagnostics (9.24) Page 198 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

<consumeridrules enabled="true">
<iprules>
<iprule id="IpTestl" rule="18.*.1-20.*" consumerid="Clientl"/>
<iprule id="IpTest2" rule="17.*.*.*" consumerid="Client2"/>
<iprule id="IpTest3" rule="19.255.17.125,19.255.17.255"
consumerid="Client3"/>
</iprules>
</consumeridrules>

Configuring SOAP Fault Data

If a SOAP fault is detected, the SOAP payload can be included with the SOAP fault data. SOAP
payload is only captured when there is a SOAP fault.

In the Diagnostics Ul, you can view the payload information as part of the SOAP fault instance tree
(call profile).

Because payloads can contain sensitive information such as credit card numbers, payload capture on
SOARP faults is disabled by default. To enable payload capture on SOAP faults set
<soaprequestforsoapfault enabled="true"/> in the probe_config.xml file on the .NET probe
system.

You can also define the limit for the payload size using the maxsize attribute in the
<soaprequestforsoapfault> element. For example, the following entry increases the SOAP payload
length to 10000 from its default of 5000:

<soaprequestforsoapfault enabled="true" maxsize="10000"/>

The <soapcapture> element overrides the <soaprequestforsoapfault> element. So that if
<soapcapture> is disabled, <soaprequestforsoapfault> is disabled even if <soaprequestforsoapfault>
is set to true. Also whatever <soapcapture> maxsize value is set, overrides the
<soaprequestforsoapfault> maxsize. So that is <soapcapture> maxsize is set to 5000 and
<soaprequestforsoapfault> maxsize is set to 10000, the payload size will be maximum of 5000.

Collecting Additional Probe Metrics or Modifying Probe
Metrics

You can configure the .NET agent to collect additional probe metrics based on perfmon counters using
the <metrics> and <metric> elements in the <probe_install_dir>\etc\probe_config.xml file. See
"<metric> element" on page 131 and "<metric> element" on page 131 for details.

You can also modify probe metrics using the <metric> element. But note the following special cases:

« If you want to move a metric from one metric category to another, you must change the metric’s
group attribute as well as the metric name attribute. This is because the existing metric name is

HP Diagnostics (9.24) Page 199 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

already registered to its old group on the Diagnostics mediator and this association cannot be
changed.

« If you want to redefine an existing probe metric it is better to create a completely new metric entry
rather than assigning a different perfmon counter to the metric. This ensures that you avoid
aggregating disparate data.

Performance Counter Security

The .NET Agent uses Performance Counters to collect probe metrics. This requires the application
process that is being monitored by the .NET Agent to have access rights to performance counters.
Each process runs as a user account therefore this user account must have access rights to
performance counters. The simplest way to do this is to add the user account that the process runs as
to the Performance Monitor Users group.

However Microsoft has introduced the concept of a virtual accounts in Windows Vista SP2, Windows
Server 2008 SP2, Windows 7 and Windows Server 2008 R2 (see
http://technet.microsoft.com/en-us/library/dd548356(WS.10).aspx for details). These operating
systems have used the virtual accounts concept in IS and by default, application pools in IS run as
ApplicationPoolldentity. Because this user account is virtual, it requires special steps to add the user
account to the Performance Monitors Users group.

In Windows 2008 R2 and Windows 7 do the following:

1. Open the Server Manager tool, there are many ways to do this but one is through Administrative
Tools.

2. Inthe left hand pane find Local Users and Groups under Configuration.
3. Click the + to expand it.
4. Double-click Groups.
5. Double-click the Performance Monitor Users group.
6. Click the Add... button.
7. Click the Locations... button.
8. Select the local computer.
9. Click the OK button.
10. Make sure that object types includes Built-in security principals.

11. Enter IS APPPOOL\<name of the application pool>, (example IS APPPOOL\My
WebService App Pool, where My WebService App Pool is the name of the application pool), in the
text box.

12. Click the OK button.

HP Diagnostics (9.24) Page 200 of 239

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

In Windows 2008 SP2 and Windows Vista SP2 do the following:
1. Open a Command Prompt window.

2. Type net localgroup "Performance Monitor Users™ "lIS APPPOOL\<name of application
pool> /ADD (where <name of the application pool> is the application pool name).

3. The command completed successfully will be displayed if this is successful.

Manually Enabling Auto-Discovered ASP.NET Applications
and Non ASP.NET Services

When installing a .NET Agent, a utility is automatically run that discovers all the ASP.NET applications
configured in 11S and adds them to the probe_config.xml file with a status of enabled for monitoring.

You can run another utility at any time after installation that not only automatically discovers all the
ASP.NET applications configured in IS, but also discovers all the services running on the machine that
are eligible for monitoring. You can then select the specific applications and services that you want to
monitor.

To run this utility:

1. From the Start menu, select All Programs > HP Diagnostics .NET Probe > Run HP
.NET AppScanner.

2. The utility runs and a Window opens with two tabs. The first lists the discovered ASP.NET
applications and the second lists the discovered services. Select the relevant tab.

3. Select the check box for each ASP.NET application or service you want to enable for monitoring.

Note: If an application or service has already been configured and enabled for monitoring, the
check box is already selected by default.

4. Click OK.

A description of the highlighted application or service appears on the right.
A summary section at the bottom provides additional statistical data.

When you enable a service for monitoring, an element is added to the probe_config.xml file with the
name of the service's related process. This element includes instrumentation for standard .NET
frameworks (ASP.NET, ADO, WCF, EF) as well as a custom instrumentation .points file. Configure
this file is you require custom instrumentation beyond that which is included in the standard
frameworks.

HP Diagnostics (9.24) Page 201 of 239

Chapter 8: .NET System Metrics Agent - Systems
Metrics Capture

Information is provided about system metrics capture and how to configure the system metrics
collector installed with the .NET Agent.

This chapter includes:
» "About the .NET System Metrics Agent" below
» "System Metrics Captured by Default" below
» "Configuring .NET System Metrics Capture" on the next page
» "Adding System Metrics Using the Windows Performance Monitor" on page 205
« "Default Entries in the .NET Agent metrics.config File" on page 207

« "Keywords in the metrics.config File" on page 208

About the .NET System Metrics Agent

A system metrics collector is installed with the .NET Agent and run as a Windows Service (HP
Diagnostics Metrics Agent). The .NET system metrics agent gathers system level metrics, such as
CPU usage and memory usage, from the agent’s host. It is configurable so you can control which
metrics are collected as well as aspects of how the metrics are collected and published.

Only one instance of the .NET system metrics agent is run on a given host, no matter how many
instances of the probe were started on the host.

Note: To configure additional probe metric capture with the .NET Agent (other than system
metrics capture described here) see "Collecting Additional Probe Metrics or Modifying Probe
Metrics" on page 199.

System Metrics Captured by Default

The following are the system metrics that the .NET system metrics agent collects by default for all
supported platforms (excluding z/OS):

. CPU

« MemoryUsage

HP Diagnostics (9.24) Page 202 of 239

.NET Agent Guide
Chapter 8: .NET System Metrics Agent - Systems Metrics Capture

« VirtualMemoryUsage

» ContextSwitchesPerSec
o DiskBytesPerSec

» DisklOPerSec

o NetworkBytesPerSec

» NetworklOPerSec

« PagelnsPerSec

o PageOutsPerSec

In addition to the default system metrics listed above, the following system metrics are also captured
by default on .NET Agent systems. (The layout of these entries is described in "Understanding the
system/ Metrics Collector Entries" on the next page).

o .NET CLR Memory\# Total committed Bytes\ Global_
o ASP.NET\Application Restarts

o ASP.NET\Requests Queued

o ASP.NET\Request Wait Time

o ASP.NET\Requests Rejected

o ASP.NET Applications\Requests/sec

o ASP.NET Applications\Requests Executing

You can control which of the default system metrics the .NET system metrics agent gathers and you
can capture custom system metrics with the .NET system metrics agent.

Configuring .NET System Metrics Capture

The configuration file for the .NET system metrics agent is the <probe_install_
dir>/etc/metrics.config file. Changes to the metrics.config file are processed dynamically by the
.NET Agent.

HP Diagnostics (9.24) Page 203 of 239

.NET Agent Guide
Chapter 8: .NET System Metrics Agent - Systems Metrics Capture

i metrics.config - Notepad
File Edit Format View Help

Eystem/.NET CLR Memory“# Total committed Bytes‘_Global_
system/ASP.NET \Application Restarts

system/ASP.NET \Requests Queued

system/ASP.NET Apps v2.0.50727"Requests/sec’__Total__
system/CPU

system/MemoryUsage

system/VirtualMemoryUsage
system/ContextswitchesPersec

system/DiskBytesPersec

system/DiskIOPersec

system/PageInsPersec

system/PageQutsPersec

system/NetworkBytesPersec

system/NetworkIOPersec

Bytes Used|bytes|.NE
Application Restarts|
Requests Queued|coun
ASP.NET v2.0 Requests
CPU|percent | System
MemoryUsage |percent |5
VirtualMemoryUsage | pe
contextswitchesPerse
DiskBytesPersec|byte
DiskIoPersec |count]|
PageInsPersec|count|
PageoutsPersec | count|
NetworkBytesPersec|b
NetworkIOPersec|coun

metrics.server.uri = http://127.0.0.1:45000/metricdata/
metrics.systemgroup = Default
credentials. username

credentﬁaTsiPassword =
S i e Sl o % Sl i et e m s s o et e et it Ame i s i e B b e e e m e B R e e e BT e

There is a different metrics.config file included with the Java Agent. See the HP Diagnostics Java
Agent Guide.

Understanding the system/ Metrics Collector Entries

Metrics collector entries in the metrics.config file instruct the .NET system metrics agent to gather
specific metrics. Entries that begin with system/ are processed as Windows Performance Monitor
Counters.

These system metrics collector entries use the following layout:

system/<Counter_name>\<Performance_object>\<Instance>\<Remote_machine> =
<metric_id>|<metric_units>|<category id>

All fields are required except for the optional <Instance> and <Remote_machine> fields.

Where:

« Counter_name indicates the Windows Performance Monitor counter. See "Adding System Metrics
Using the Windows Performance Monitor" on the next page for details on how to identify the
counter, performance object and instance in the Windows Performance Monitor Ul.

« Performance_object indicates the Windows Performance Monitor performance object associated
with the Counter_name.

« Instance indicates the Windows Performance Monitor instance of a counter. You may use a
wildcard (*) to indicate that all instances are desired. If you wish to specify a specific enumeration of
all instances, you precede the enumeration index number with the hash sign (#1). The enumeration
index number must be a positive number.

« Remote_machine is only required if the Windows Performance Monitor Counter is running on a
machine that is different (remote) from the machine that the .NET system metrics agent is running
on. The minimum requirement for this configuration to work is that the Network Service User on the

HP Diagnostics (9.24) Page 204 of 239

.NET Agent Guide
Chapter 8: .NET System Metrics Agent - Systems Metrics Capture

machine that the .NET system metrics agent is running on must have permissions to read the
Windows Performance Monitor Counters from the remote machine.

o <metric_id> indicates the name that represents the metric in the Diagnostics Ul. The metric_id
must be unique in the metrics.config file. If the value of the metric_id is the same as one of the
default metrics, Diagnostics replaces the metric_id in the entry with a standard name to be used to
reference the metric in the Ul. If the value of the metric_id is not the same as one of the default
metrics, the metric_id is used as the name of the metric in the Ul exactly as shown in the entry.

« <metric_units> indicates the units of measure in which the metric is reported. This is a required
parameter and it must contain one of the following units of measure:
= microseconds, milliseconds, seconds, minutes, hours, days
= bytes, kilobytes, megabytes, gigabytes
m percent, fraction_percent
= count

m |oad

« <category_id> groups a set of metrics together under the same heading in the Details pane of the
Diagnostics Ul. This parameter has no impact on the data displayed in the Diagnostics views.

Example without an <Instance>:

system/ASP.NET\Requests Queued = Requests Queued|count|ASP

Example with an <Instance>:

system/Processor\% Processor Time\ Total = CPU|percent|System

Example with an integer <Instance>:

system/Processor\% Processor Time\#1 = CPU 1|percent|System

Example without an <Instance> and running on a <Remote_Machine):

system/ASP.NET\Requests Queued\\IISAQUAH = Requests Queued(IISAQUAH) |count|ASP

Adding System Metrics Using the Windows Performance
Monitor

To add a system metric counter to the metrics.config file you must first find its definition using the
Windows Performance Monitor (Perfmon). The following example uses version 5.x of Perfmon. Version
6.x is similar but the Ul is a little different.

HP Diagnostics (9.24) Page 205 of 239

.NET Agent Guide
Chapter 8: .NET System Metrics Agent - Systems Metrics Capture

To add counters in Perfmon:

1.

Start the Windows Performance Monitor. For example select Start > Control Panel >
Administrative Tools > Performance.

The Perfmon Performance dialog box is displayed showing the System Monitor graph with a table
of the current counters beneath the graph. Right-click the System Monitor graph and select Add

Counters... from the pop-up menu.

The Add Counters dialog box is displayed:

Add Counters

{7 Use local computer counters
(%) Select counters from computer:

| \WRD5595245R T v |

Performance object;

| Frocessor “ |

() Al counters () &l instances
() Select counters from list () Select instances from list;

% C2 Time A
% C3 Time]

% DPC Time 1

% Idle Time

% Int_e_nupt Tin'_ne

% Privileged Time
% Proceszor Time

add | [Esplain

Cloze

Select the Select counters from computer entry and make sure the host computer is select in
from the drop down list.

In the Performance object list, select the object that the counter belongs to.
Choose Select counters from list and select an instance from the list of instances.
Click the Add button to add the counter. The following instructions tell you how to create an entry

for a counter using the system/ metrics entry described in "Understanding the system/ Metrics
Collector Entries" on page 204.

To collect metrics for a Perfmon counter:

1.

2.

Open the <probe_install_dir>/etc/metrics.config file on the .NET agent system.

Create the system/ metrics entry for the counter using the layout described in "Understanding the
system/ Metrics Collector Entries" on page 204.

You can add this entry anywhere in the file, however best practice is to add it to the bottom of
existing collection of these type of entries. In the example shown in the screen shot above:

HP Diagnostics (9.24) Page 206 of 239

.NET Agent Guide
Chapter 8: .NET System Metrics Agent - Systems Metrics Capture

m The selected host computeris ROS59524ART
m The selected Performance object is Processor
= The selected Counteris % Processor Time

m The selected Instance is _Total

Soif the host computer is local, the entry in the metrics.config file for the Performance Monitor
counter would be:

system/Processor\% Processor Time_Total = CPU|percent|System

And if the host computer is remote, the entry in the metrics.config file for the Performance Monitor
counter would be:

system/Processor\% Processor Time_Total\ROS59524ART = CPU(ROS59524ART)
| percent |System

Performance Counter Security

The .NET metrics agent uses Performance Counters to collect system metrics. The metrics agent runs
as a Network Service and this account needs to be added to the Performance Monitor Users group.

Troubleshooting Added System Metrics Counters

If you specify a new counter that appears to not be functioning, you can use the Windows Event Viewer
tolook at the Diagnostics logs for the .NET system metrics agent source for errors and warnings.

For example:

A Could not locate Performance Counter with specified category name warning entry typically
indicates that you may have mis-typed the name of the counter. This can happen, for example, if you
read a counter name from the PerfMon Performance pane that has embedded blanks. The default font
used by PerfMon is not a monospaced font and as such makes it difficult to see embedded blanks in
the name of the counters, categories and instances. You can change the font to a monospaced font
type and then more clearly see the exact format of counter names.

For example:

AnInstance does not exist in the specified Category warning entry typically indicates that the
instance you have chosen is not active at this time. We do not recommend that you use transient
instances. Permanent instances like __ Total__ are appropriate.

Default Entries in the .NET Agent metrics.config File

Upon installation, the <probe_install_dir>/etc/metrics.config file has three entries:

HP Diagnostics (9.24) Page 207 of 239

.NET Agent Guide
Chapter 8: .NET System Metrics Agent - Systems Metrics Capture

« A grouping of default system/ entries for PerfMon counters
« A metrics.server.uri entry that specifies how the .NET system metrics agent publishes its data
« A default metrics.systemgroup entry

Other additional entries can be added after these default entries.

Keywords in the metrics.config File

The keywords that can be used in entries in the <probe_install_dir>/etc/metrics.config file are as
follows:

« credentials.password

« credentials.username

« default.sampling.rate

« Mmetrics.server.uri

« metrics.systemgroup

« metrics.agent.publish.interval
« metrics.agent.registered_hostname
o proxy.password

e proxy.user

e proxy.uri

« system/

The use of the system/ keyword is described in "Configuring .NET System Metrics Capture" on
page 203.

The use of each of the other keywords is described in the following section.

credentials.password This setting must match the setting for the password attribute of
the <credentials> element in the probe_config.xml file. See
"<credentials> element" on page 96 for more details.

credentials.username This setting must match the setting for the username attribute of
the <credentials> element in the probe_config.xml file. See
"<credentials> element" on page 96 for more details.

HP Diagnostics (9.24) Page 208 of 239

.NET Agent Guide
Chapter 8: .NET System Metrics Agent - Systems Metrics Capture

default.sampling.rate This setting defines the rate at which the .NET system metrics
agent samples the configured system metric counters. The
default rate is every 5 seconds. Values are expressed as a
number of Seconds, Minutes, Hours or Days, for example, nS,
nM, nH or nD. The following example sets the rate to every 10
seconds:

default.sampling.rate = 10s

metrics.server.uri This setting is automatically generated at install time. It defines
the URI that the .NET system metrics agent uses to publish the
system metric counters to the Diagnostic Mediator Server.

The following example is for a Diagnostic Mediator Server
running on the my_diag_server machine, and using a metricport
of 2006 to publish the metrics:

metrics.server.uri =
http://<my_diag _server>:2006/metricdata/?sleep=false

Any changes to the probe_config.xml settings for either the
metrichost attribute or the metricport attribute of the <mediator>
element must also be reflected at the same time in the
metrics.server.uri setting.

The ?sleep setting controls whether the Diagnostic Mediator
Server that receives the published metrics will respond
immediately or delay its response to the .NET system metrics
agent. A setting of ?sleep=false responds immediately, a
setting of ?sleep=true delays its responds by a default of 5
seconds.

The following example is for a Probe Aggregator-enabled .NET
system, using the default metricport of 45000 to publish the
metrics:

metrics.server.uri =
http://127.0.0.1:45000/metricdata/

metrics.systemgroup This setting is automatically generated at install time. Do not
change this setting.

metrics.agent.publish.interval | This setting defines the interval between publishes of the
current values of the System Metric Counters by the .NET
system metrics agent to the Diagnostic Mediator Server. The
default interval is 5 seconds. Set values can be expressed as a
number of Seconds or Minutes, for example, nS or nM. The
following example sets the publish interval to 10 seconds:

metrics.agent.publish.interval = 10S

HP Diagnostics (9.24) Page 209 of 239

.NET Agent Guide
Chapter 8: .NET System Metrics Agent - Systems Metrics Capture

metrics.agent.registered_ Refer to the "Overriding the Default Probe Host Machine Name"

hostname on page 192 for a description of when and how to use this
setting.

proxy.password This setting must match the setting for the proxypassword

attribute of the < diagnosticsserver> element in the probe
config.xml file. See "<diagnosticsserver> element" on page 99
for more details. Also refer to “Configuring Diagnostics Servers
and Agents for HTTP Proxy” in the HP Diagnostics Server
Installation and Administration Guide.

proxy.user This setting must match the setting for the proxyuser attribute of
the < diagnosticsserver> element in the probe_config.xmil file.
See "<diagnosticsserver> element" on page 99 for more details.
Also refer to “Configuring Diagnostics Servers and Agents for
HTTP Proxy” in the HP Diagnostics Server Installation and
Administration Guide.

proxy.uri This setting must match the setting for the proxy attribute of the
< diagnosticsserver> element in the probe_config.xml file. See
"<diagnosticsserver> element" on page 99 for more details.
Also refer to “Configuring Diagnostics Servers and Agents for
HTTP Proxy” in the HP Diagnostics Server Installation and
Administration Guide.

HP Diagnostics (9.24) Page 210 of 239

Part 4: Using the Profiler for .NET

HP Diagnostics (9.24) Page 211 of 239

Chapter 9: Diagnostics Profiler for .NET

This chapter describes how to use the .NET Diagnostics Profiler:

" About the .NET Diagnostics Profiler" below

"How the .NET Agent Provides Data for the .NET Profiler" on the next page
".NET Diagnostics Profiler Ul Navigation and Display Controls" on page 214
".NET Diagnostics Profiler Inactivity Timeout" on page 215

"How to Access the .NET Diagnostics Profiler" on page 215

"How to Enable and Disable the .NET Diagnostics Profiler" on page 216

.NET Diagnostics Profiler Ul Description:

« "Server Requests Tab Description" on page 217

"SQL Tab Description" on page 220
"Methods Tab Description" on page 223
"Call Tree Tab Description" on page 225
"Exceptions Tab Description" on page 228

"Collections Tab Description" on page 230

.NET Threads Window Ul Description:

« "Threads Window Description" on page 233

About the .NET Diagnostics Profiler

The Diagnostics Profiler for .NET is installed with the .NET Agent. The Profiler runs in a separate Ul
and provides near real-time data, enabling you to pinpoint application performance bottlenecks.

HP D

Note: The.NET Diagnostics Profiler operates in an unlicensed mode with load restrictions until the
probe is able to connect to a Diagnostics Server that has been properly licensed. In unlicensed
mode, the .NET Profiler is limited to capturing data from 5 concurrent threads.

If you installed the unlicensed trial software agent from the HP Software Web site and you want to
use it with a Diagnostics Server, contact HP Software Support to purchase HP Diagnostics.

iagnostics (9.24) Page 212 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

If you are using Diagnostics with HP LoadRunner or HP Performance Center you will be prompted to
enter the Diagnostics User Name and Password when selecting the .NET Profiler from the Diagnostics
ul.

You can use the different tabs in the .NET Profiler to analyze method latency for the selected
application. And you can analyze memory problems for the selected application using the memory
diagnostics metrics displayed in the .NET Profiler.

Some of the information presented in the .NET Profiler is also available in the Diagnostics enterprise
ul.

How the .NET Agent Provides Data for the .NET Profiler

This section describes the way in which the .NET Agent monitor your application and how this data is
displayed in the .NET Diagnostics Profiler.

Monitoring Method Latency and Call Stacks

The .NET Agent runs probes to monitor your application and keep track of the metrics for all of the
instrumented methods that your application calls. As probes are monitoring, they capture the call stack
for the three slowest instances and the single fastest instance of each server request.

When a new server request instance is encountered that is slower than one of the currently captured
instances for the server request, it replaces one of the previously captured instances. In the same
manner the captured call stack for the fastest instance is replaced when an instance that is even faster
is encountered.

The .NET Diagnostics Profiler displays metrics for all of the instrumented methods. The .NET Profiler
ignores all configured trim settings, for example, latency trimming, depth trimming or throttling. For
details about trim configuration refer to the "Advanced .NET Agent Configuration and Instrumentation”
on page 58. You can drill down to the instances of the methods that were included in one of the four
server request call stacks that were captured when you accessed the .NET Diagnostics Profiler user
interface.

While you are analyzing the information displayed on the various tabs of the .NET Diagnostics Profiler,
you are working with the methods and call stacks captured from the time that the .NET Profiler was
started/reset to the time that the user interface was started/refreshed. In the meantime the probe
continues to monitor your application, capture method metrics, and capture call stacks. These changes
are not sent automatically to the user interface, you must request them via the Refresh Now button.
This is so the underlying data will not change unexpectedly while you are investigating something of
interest.

Monitoring Application Memory

The .NET Diagnostics Profiler allows you to monitor your application's memory usage using
Lightweight Memory Diagnostics. Lightweight Memory Diagnostics allows you to monitor the
collections that your application has created, and to identify the largest collections and the fastest
growing collections. For more information about Lightweight Memory Diagnostics, see "Collections
Tab Description" on page 230.

HP Diagnostics (9.24) Page 213 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

.NET Diagnostics Profiler Ul Navigation and Display
Controls

This section describes the following features and controls that are common to all of the .NET Profiler
tabs: Refresh now, Reset, Snapshot and Help:

Relresh Now! Snapshot
Reset Helo

[57) Diagnostics Profiler copyighie zosa-2008 vene Probe: L81 TestService2 WebCliert. NET OVRNTT153 W2K3 versan: 9.0.63.33530
| sarver Requasts l S0 | Mathods | CaliTras | Exceptions | Colactusns RefreshBowt! | Besst Snapshot |

+ Sarved, Baquat
Server Bequest
+ Sarver . Regquest

$Sarvicad Wablhent/ SoapTast, aip] 2 10,173 19,053
siServical Waeblhent/ TestSarvdce 2. WebCliant.asp...} i &, 702 6,702
sServicel Wablleni WebRescurce axd] F £35 [1F]

Refresh Metrics

Click Refresh Now to refresh the information displayed on the tabs with the latest metrics and call
stacks.

After you refresh the metrics, the .NET Diagnostics Profiler continues to monitor and collect metrics
using the same baseline for the calculations of instance counts, average latency, and slowest latency.
It also continues to use the captured call stacks as a basis of comparison for finding new call stacks to
capture.

Reset Metrics

You can force the .NET Diagnostics Profiler to use new baselines for the calculation of instance
counts, average latency, and slowest latency, and to force-drop all captured call stacks, by clicking
Reset.

After you reset the metrics, the .NET Diagnostics Profiler begins collecting data with new baselines
and starts processing the instance trees as though the profiler had just been started.

Note: You may want to click Reset once your system has warmed up so that you can do your
performance analysis using metrics that are more representative of the processing that takes
place when your application is running in steady state.

Take a Snapshot

You can capture a snapshot of the data from your profiler session into an .xml formatted file, by clicking
the Snapshot button.

The resulting snapshot can be used, for example, as a report that is distributed to your colleagues or as
a point of reference when you are about to make changes to your applications. The snapshot includes
the profiler tabs so that you can review and analyze the data in the snapshot in the same way that you
would view it in the Profiler.

HP Diagnostics (9.24) Page 214 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

The Profiler displays a dialog box that indicates the path to where the .xml file is stored. When you open
the snapshot, the saved profiler data is displayed in your browser.

Access Help

When you click Help, on the top right hand corner of the screen, you access the on-line help manual for
the .NET Diagnostics Profiler.

.NET Diagnostics Profiler Inactivity Timeout

By default, the .NET Diagnostics Profiler is not started until you display the Profiler Ul. When you close
the Profiler Ul, the profiler continues to run for a period of time specified by the inactivitytimeout
attribute in <probe_install_dir>/etc/probe_config.xml. If you reopen the Profiler Ul before the profiler
times out, the profiler displays the data for the time period since the profiler was started. If you reopen
the Profiler Ul after the timeout has occurred, the profiler is restarted and only the data for the new
profiler session is displayed. As long as the Profiler Ul is open, the profiler session remains active. The
count down for the inactivity timeout begins when you close the Profiler Ul.

How to Access the .NET Diagnostics Profiler

Once you have installed the .NET Agent, configured a probe to collect performance metrics and started
the application that is being monitored, you can access the .NET Diagnostics Profiler from your
browser and view diagnostics data. You can also access the .NET Diagnostics Profiler by drilling down
from the views of the Diagnostics Enterprise user interface.

Remote access to the .NET Profiler can be disabled with the profiler element in the probe_config.xml
file.

To open the .NET Diagnostics Profiler directly (standalone):

1. Inyour browser, go to the .NET Diagnostics Profiler URL: http://<probe_host> :< probeport>
[profiler

The probes are assigned to the first available port beginning at 35000.
2. Type your username and password.

Depending on your authentication settings, you may be prompted to enter a username and
password. The default username is admin. The default password is admin.

For more information about authentication, usernames and passwords when you have the full
Diagnostics product, refer to the HP Diagnostics Server Installation and Administration Guide
section on Authentication and Authorization.

HP Diagnostics (9.24) Page 215 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

To drill down to the Diagnostics .NET Profiler from the main Diagnostics Ul:

1. From any view in the Diagnostics Ul that shows probe entities, right-click the probe in the table
and select View Profiler for <probe name> from the menu.

If you are using Diagnostics with HP LoadRunner or HP Performance Center you will be prompted
to enter the Diagnostics User Name and Password when selecting the .NET Profiler from the
Diagnostics Ul.

2. If the Profiler fails to open, ensure that you have set a default browser within your operating
system.

How to Enable and Disable the .NET Diagnostics Profiler

This task describes how to disable and re-enable the .NET Profiler to start.

When the .NET Agent is installed and probes configured to work with a Diagnostics Server, the probe
data collection starts automatically when a Web page in the monitored application is accessed.

By default the .NET Diagnostics Profiler isn't started until you access the Profiler Ul. You may
configure the agent so that the .NET Profiler is started at the same time that the probe data collection is
started or so the .NET Profiler cannot be started.

To configure the probe to automatically start the profiler:

You may want to start the .NET Profiler at the same time that the probe is started if you are trying to
understand the performance of your application when it is first invoked.

Set the pro attribute in <probe_install_dir>/etc/probe_config.xml to true.
<modes enterprise="true" pro="true"/>
To configure the probe to prevent the Profiler from starting:

You may want to prevent someone from starting the .NET Profiler for a probe that is monitoring an
application where you do not want to incur the additional overhead from the .NET Profiler.

Set the pro attribute in <probe_install_dir>/etc/probe_config.xml to false
<modes enterprise="true" pro="false"/>
To configure the probe to start the Profiler when you access the Ul:

By default, the probe starts the Profiler when you bring up the Profiler Ul. If you have altered the setting
for the probe, you may want to reset the behavior of the probe to the default behavior.

Set the pro attribute in <probe_install_dir>/etc/probe_config.xml to auto:

<modes enterprise="true" pro="auto"/>

Note: If you do not include the pro attribute, the probe defaults to the behavior when pro is set to
auto.

HP Diagnostics (9.24) Page 216 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

Server Requests Tab Description

The .NET Diagnostics Profiler keeps track of all of the method calls made by your application. The
Server Requests tab displays information about the server request methods. The server request
methods are listed in a table that shows the number of times that each method was executed, along
with the average latency and the slowest execution time for all of the calls to the method. You can
expand each server request listed in the table, to reveal the latency for the three slowest instances of
the server request along with the single fastest instance.

Note: The .NET Diagnostics Profiler captures call trees for the three slowest instances and the
single fastest instance of each server request. The .NET Diagnostics Profiler lets you drill into the
captured call trees from the Server Requests tab.

UI example server Requests | S0L Methods Call Tree | Exceptions Collections Lo -2 | Busat | | Snepehot

+ Systarm, Wab. HEtpRunbme, P
E.HetpRurbme. P

W ab HEtpRuntime. Proce 51 4
- Gystarn, Web, Hth [MER 498 (66T AT, ITE

-
B
e
B

+
s
B
B

in
&
o
rs
3|
i
5
3

bR
6
3
3 |3 |3 (3 |3
-3
e
|
o o o2 s [
i
r |
3
5
=]

T : S0 g,i
[+ Systarn. Wab HitpRurtimae. Froge [LET] 26 EIH 25,967 |
+ Datgh, darl o 502 3,298
Server Request Layer Breakdown
Method Table Layerg :::: down Table
To access Inthe .NET Diagnostics Profiler, select the Server Requests tab.
Relevant tasks "How to Access the .NET Diagnostics Profiler" on page 215

HP Diagnostics (9.24) Page 217 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

The following user interface elements are included:

Ul Element Description

Server The Method table lists the server requests that have been called. You can sort the
Request table by clicking the column headers.

Method , . .

Table The following columns are included in the table:

Method. The server request methods that were called.

If a server request method was called more than once, the method name is preceded
by a plus sign (+) oraminus sign (-) toindicate that the instance specific latency
information is available for the server request.

Calls. The number of times that the server request method was invoked.

Average. The average latency for all of the calls to the server request method. The
average latency is shown in microseconds.

Slowest. The response time of the instance with the longest latency. The slowest
response time is shown in microseconds.

If a server request method was called more than once, the method name is preceded
by a plus sign (+) oraminus sign (-). When you click the plus sign, the entry is
expanded to reveal the three slowest instances of the method along with the single
fastest method. Click the minus sign to the collapse instances shown.

If a server request method was called only once, the entry itself represents the single
instance of the method call. The value in the Slowest column is the instance's
latency.

You can view the call tree for a server request instance by clicking on any row that
contains a server request instance (a row that does not have a plus sign (+) or a minus
(-) sign before the method name or that only contains a latency value is a server
request instance).

The Profiler switches to the Call Tree tab and displays the call tree for the selected
server request instance. The method call for the selected server request is highlighted
in blue in the call tree.

HP Diagnostics (9.24) Page 218 of 239

.NET Agent Guide

Chapter 9: Diagnostics Profiler for NET

Ul Element

Layer
Breakdown
Graph

Layer
Breakdown
Legend

Description

The Layer Breakdown graph shows the amount of processing time that was spent in
each layer while executing a selected instance of a method call. It is a graphical
representation of the information shown in the Layer Breakdown table.

You can view the Layer Breakdown for a server request instance by hovering the
mouse pointer on any row in the Method table that contains a server request instance
(a row that does not have a plus sign (+) or a minus (-) sign before the method name, or
that only has alatency value, is a server request instance).

The Profiler shows the layer breakdown for the indicated instance in both the Layer
Breakdown Graph and Layer Breakdown Table.

The graph is divided so that each layer is depicted as an area on the graph that is
proportional to the percentage of processing that was performed in the layer. Each
layer is displayed in a different color, as shown in the Legend column in the Layer
Breakdown table.

The Legend shows the amount of processing time that was spent in each layer while
executing a selected instance of a method call. The table can be sorted by clicking the
column headers.

The following columns are included in the table:

Legend. The color that is used in the Layer Breakdown graph to depict the processing
that took place in the layer.

Layer Name. The name of the layer where the processing for the server request took
place.

%. The percentage of processing time that was spent in each layer, for a selected
server request.

Time. The latency measured for the processing that took place in the layer, for a
selected server request. The time is shown in microseconds.

HP Diagnostics (9.24) Page 219 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

SQL Tab Description

The .NET Diagnostics Profiler keeps track of all of the method calls that your application makes. The
SQL tab displays the SQL methods only. The SQL methods are listed in the Method table which shows
the number of times that each method was executed, along with the average latency and the slowest
execution time for all of the calls to the method. The Method table also shows the actual SQL
statement when it was included in the SQL method call.

Each SQL method listed in the table can be expanded to reveal the latency for each instance of the
method that was included in a captured call tree.

UI example Server Requests | SQL | Methods | Call Tree | Exceptions | Collectons G el _!
+ PetShop. SQOLServerDAL. SQLH: 993 4,403 1,401,536
+ Systern.Data.Sqlclient. SqlCon 249 7,805 1,400,624 | SELECT Account.ErmnatL...
- Sustern.Data.S5qlclient. Sglcorr 498 1,996 285,143 | SELECT Itern.Iternldte...
1,327
1,203
1,149
933
Svstern.Data.Sglclient. SglCon 1 41,496 41,496 | SELECT Productld, Mategory...
+ PetShop. SOLServerDAL. SOLH: 249 2,340 28,950
+ Sustern.Data.Sglclient. SglCon 249 1,276 21,954 | SELECT &ty FROM IrermId
+ Systern.Data. Sglclient. SglCon 249 1.461 16,101 | SELECT Account. Firsttoun...
Swstern.Data.Sglclient. SglCon 1 1,558 1,558 | SELECT Iternld, Attr: IN...

To access Inthe .NET Diagnostics Profiler, select the SQL tab.

Important | The .NET Diagnostics Profiler captures call trees for the three slowest instances and
information the single fastest instance of each server request. You can drill down to the captured
call trees from the SQL tab.

Relevant "How to Access the .NET Diagnostics Profiler" on page 215

tasks

See also For more information on the Call Tree tab, see "Call Tree Tab Description" on
page 225.

HP Diagnostics (9.24) Page 220 of 239

.NET Agent Guide

Chapter 9: Diagnostics Profiler for NET

The following user interface elements are included:

Ul Element

Table

Description

This table lists the SQL methods that have been called, and displays latency
information for instances of the SQL method calls that were included in the captured
call trees. The table can be sorted by clicking the column headers.

The following columns are included in the table:

Method. The SQL methods that were called. If an SQL method has two or more
instances in the captured call trees, the method name is preceded by a plus sign (+)
or a minus sign (-) to indicate additional instance specific latency information can be
viewed for the SQL call.

Calls. The number of times that the SQL method was invoked. This count includes all
instances, whether or not they are included in the captured call trees.

Average. The average latency for all of the calls to the SQL method. The average
latency is shown in microseconds.

Slowest. The response time for the instance with the longest latency. The slowest
response time is shown in microseconds.

SQL. The first part of the SQL statement that was executed by the SQL method call.

You can display a tooltip containing the entire SQL statement by holding the mouse
pointer over a row in the SQL column.

The latencies for instances of SQL methods can be displayed if they are included in
one of the captured call trees.

If two or more instances of an SQL method are included in the captured call trees, that
method's name is preceded by a plus sign (+) or a minus sign (-) in the Method table.
The entry can be expanded to reveal the latency for each of the captured instances for
the selected method. Click the minus sign to collapse the visible instances.

HP Diagnostics (9.24) Page 221 of 239

.NET Agent Guide

Chapter 9: Diagnostics Profiler for NET

Ul Element

Table
(continued)

Description

if only one instance of an SQL method was included in the captured call trees, the
method name in the SQL Method table is not preceded by a plus sign or minus sign
and the table entry itself represents the single instance of the method call, and the
value in the Slowest column is the instance's latency.

If noinstances of a SQL method were included in the captured call trees, the method
is not preceded by a plus sign or minus sign, and when you click the method, you get a
message indicating that although this method was called there is no data captured for
it.

You can view the call tree for an SQL method instance listed in the SQL Method table
by clicking on any row that contains an instance of an SQL method call. (A row that
does not have a plus sign (+) or a minus (-) sign before the method name, or that only
contains a latency value, is an SQL instance.)

When you select a row with an SQL method instance, the Call Tree tab opens, and
displays the call tree for the selected SQL method instance. The method call for the
selected SQL method is highlighted in blue in the call tree.

For information on the Call Tree tab, see "Call Tree Tab Description" on page 225.

HP Diagnostics (9.24) Page 222 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

Methods Tab Description

The .NET Diagnostics Profiler keeps track of all of the method calls that your application makes. The
Methods tab is used to list all of the methods. The methods are listed in the Method table, which shows
the number of times each method was executed, along with the average latency and the slowest
execution time for all of the calls to the method. The methods listed in the Methods tab include the
server requests methods listed in the Server Requests tab, the SQL methods listed in the SQL tab, and

the methods that generated exceptions shown in the Exceptions tab.

Each method listed in the table can be expanded to reveal the latency for each instance of the method
that was included in one of the captured call trees. The .NET Diagnostics Profiler captures call trees for
the three slowest instances and the single fastest instance of each server request. The .NET
Diagnostics Profiler lets you drill down to the captured call trees from the Methods tab.

UI exam ple Server Requests | SQL | Methods | Call Tree | Exceptions | Collections Bafiechincuy | Reset |
+ Systern.Web,HtpRuntime, ProcessRequestiow 2475 21,627 2,679,104
+ PetShop.Web. Glabal. Application_Errar 248 14,396 1,701,324
+ PetShop. Web, OrderProcess. Onload 248 23,314 1,556,395
+ PetShop. Web,ProcessFlow, CartController, PurchaseCart 248 23,061 1,550,664
+ PetShop. Web. SignIn, SubmitClicked 2439 11,543 1,405,137
+ PetShop. Web.PracessFlow AccountController. ProcessLogin 243 10,951 1,404,444
+ PetShop.BLL. Account. Signln 249 10,094 1,402,582
+ PetShop SQLServerDAL Account. Signin 249 2,545 1,402,022
+ PetShop. SQLServerDAL SQLHelper. ExecuteReader 998 4,403 1,401,536
+ Systermn, Data, SglClient. 5glCammand. ExecuteReader 993 3,351 1,400,624
+ PetShop. BLL. Cart, GetOrderLinelterns 248 2,466 720,331 L.
To access Inthe .NET Diagnostics Profiler, select the Methods tab.
" H H 1 "
Relevant tasks How to Access the .NET Diagnostics Profiler" on page 215
HP Diagnostics (9.24) Page 223 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

The following user interface elements are included:

Ul Element Description

Table This table lists the methods that have been called, and displays latency information
for instances of the method calls that are included in the captured call trees. This table
can be sorted by clicking the column headers.

The following columns are included in the table:

Method. The name of the methods that were called. If a method has two or more
instances included in the captured call trees, the method name is preceded by a plus
sign (+) toindicate additional instance specific latency information can be viewed for
the method call.

Calls. The number of times that the method was invoked. This count includes all
instances, whether or not they are included in the captured call trees.

Average. The average latency for all of the calls to the method. The average latency
is shown in microseconds.

Slowest. The response time for the instance with the longest latency. The slowest
response time is shown in microseconds.

You can view the latency for instances of methods if they are included in one of the
captured call trees.

If two or more instances of a method are included in the captured call trees, the
method name in the Method table is preceded by a plus sign (+) ora minus sign (-).
The plus sign indicates that you can expand the entry to reveal the latency for each of
the captured instances for the selected method. Click the minus sign to collapse the
visible instances.

If no instances of a method were included in the captured call trees, the method is not
preceded by a plus sign or minus sign, and when you click the method, you get a
message indicating that although this method was called there is no data captured for
it.

Table You can view the call tree for a method instance listed in the Method table by clicking

(continued) on any row that contains an instance of a method call. (A row that does not have a
plus sign (+) or a minus (-) sign before the method name, or that only contains a
latency value, is a method instance.)

When you click a row with a method instance, the Call Tree tab opens and displays
the call tree for the selected method instance. The method call for the selected
method is highlighted in blue in the call tree.

For information on the Call Tree tab, see "Call Tree Tab Description" on the next page.

HP Diagnostics (9.24) Page 224 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

Call Tree Tab Description

The .NET Diagnostics Profiler captures call trees for the three slowest instances and the single fastest
instance of each server request. The captured server request call trees are displayed on the Call Tree
tab, in the Call Breakdown graph and in the Call Tree table.

As you analyze the methods presented on the Server Requests, SQL, Exceptions, and Methods tabs,
you navigate to the Call Tree tab to understand the context of the processing associated with particular
instances of the method's execution. The call tree allows you to see the calling and the callee methods
for the method of interest as well as the contribution of those methods to the measured latency.

ul Server Requests | S0L | Methods | Call Tree | Exceptions | Collections BRI
example

- Sestern. Web. HttpRuntime.ProcessRequestlow(/MSPetShop/Signln.aspx) [41,215 / 7H,584 uSec]
PetShop.web. Signln..ctor [138 / 138 uSec]
PetShop.Web, Controls, MavBar, . ckor [069 / 069 uSec]

- PetShop.Web Contrals MavBar, Onlnit [124 / 216 uSec]
PetShop.Web, Contrals NavBar InitializeComponent [092 / 092 uSec]
- PetShop.Web Controls, MavBar,Page_Load [156 / 225 uSec]
PetShop.Web, Contrals, NavBar.ShowlLoggedInArea [069 f 069 uSec]
- PetShop.Web Signln SubmitClicked [3,827 J 32,721 uSec]
PetShop.wWeb. WebComponents CleanString. InputText [124 / 124 uSec]
PatShop.web, WebComponents, CleanString. InputText [079 f 079 ufec]
PetShop.Web,ProcessFlaw. AccountContraller, . ctor [071 / 071 uSec]
- PetShop.Web.ProcessFlow. AccountController. Processlogin [10,632 / 28,620 uSeq]
PetShop, BLL Account, ckor [122 / 123 uSec]
- PetShop.BLL Account.Signln [4,663 / 17,865 uSec]
- PetShop.DALFactary. Account, Create [2,005 / 2,119 liSec]
PetShop. SQLServerDAL Account, ctor [114 / 114 JSec]
+ PetShop, SQLServerDAL Account, Signin [4,280 f 11,P83 uSec]

Calf Tree Call Breakdown
Table Graph
To Inthe .NET Diagnostics Profiler, select the Call Tree tab.

access
You can also access a Call Tree by clicking one of the method instances listed on the

Server Requests, SQL, Exceptions, and Methods tabs.

Relevant | "How to Access the .NET Diagnostics Profiler" on page 215
tasks

HP Diagnostics (9.24) Page 225 of 239

.NET Agent Guide

Chapter 9: Diagnostics Profiler for NET

The following user interface elements are included:

Ul Element

The Call
Breakdown
Graph

Description

The Call Breakdown graph shows the processing time that was spent at each level of
the call tree hierarchy.

Each level in the graph represents the processing at the corresponding level in the call
stack. The length of the bar is proportional to the length of time spent in performing the
methods at that level of the call stack. The positions where a bar starts and stops
indicates the relative time, in relationship to the other levels, that the processing for
the level began and ended. A gap in a bar, where the bar ends and then resumes
again, indicates that the processing returned to a higher level in the hierarchy before
once again proceeding at the lower level.

There are two ways that you may identify the method associated with a particular
location on the Call Breakdown graph as you mouse over the bars in the graph.

As you slide the pointer along a bar in the graph, a tooltip is displayed with the name of
the method associated with each segment of the graph bar.

As you slide the pointer along a bar in the graph, the Call Tree table scrolls so that the
method associated with the selected location in the graph is displayed in the table.
The row that contains the selected method is highlighted in gold.

HP Diagnostics (9.24) Page 226 of 239

.NET Agent Guide

Chapter 9: Diagnostics Profiler for NET

Ul Element

Call Tree
Table

Description

The Call Tree table lists method calls that are part of a captured server request call
tree in a hierarchical structure.

Each method in the call tree is depicted on a separate line containing two parts: the
method name and the latency.

The latency for each method is shown in brackets following the method name. There
are two numbers in the brackets separated by a slash: the exclusive latency and the
total latency.

Exclusive Latency is the amount of latency that is attributable to just the processing in
the selected method.

Total Latency is the amount of latency that is attributable to the selected method and
all of its callee methods.

In the following example the exclusive latency is 156:
- PetShop.Web.Controls.NavBar.PagelLoad [156/225 uSec]

To see a captured call tree on the Call Tree tab you must select a method instance
from one of the other .NET Diagnostics Profiler tabs. The Call Tree tab opens with the
call tree that contains the selected instance visible and the selected method instance
highlighted in blue.

The method of interest will remain highlighted until a different method is selected on
one of the other tabs.

You may identify the method associated with a particular location on the Call
Breakdown graph by mousing over the bars in the graph. As you slide the pointer along
a bar in the graph, the Call Tree table scrolls so that the method associated with the
selected location in the graph is displayed in the table. The row that contains the
selected method is highlighted in gold.

The path through the call tree that has the longest latency is called the critical path.
Methods in the Call Tree table that are on the critical path are written using a red font.

HP Diagnostics (9.24) Page 227 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

Exceptions Tab Description

The .NET Diagnostics Profiler keeps track of all of the method calls that your application makes. The
Exceptions tab is used to list only the methods that generated exceptions. The calling methods that
generated exceptions are listed in a table that shows the number of times that each method threw an
exception. This information allows you to quickly determine if your application is throwing exceptions,
and exactly what those exceptions are.

If the exception was included in one of the captured call trees, the exception class will also be listed in

the table along with the latency for each instance of an exception.

Note: The .NET Diagnostics Profiler captures call trees for the three slowest instances and the
single fastest instance of each server request. You can drill down to the captured call trees from
the Exceptions tab.

Ul example
Server Reguests | SQL | Methods | Call Tree | Exceptions | Collections

- PetShop.Web.ProcessFlow.AccountController.Processlogin 21
- System.Threading.ThreadabortException [=
10,282 ps

8,126 ps

7430 ps

- PetShop.Web.ProcessFlow.AccountContraller.UpdateAccount | 20
- System.Threading.ThreadAbortException [=
40,8592 ps

31,642 ps

26,316 ps

To access Inthe .NET Diagnostics Profiler, select the Exceptions tab.

Important Exceptions are only captured by the probe if the exception causes the termination of a
information method. If the instrumented method handles the exception, no exception information
is gathered by the probe.

Relevant "How to Access the .NET Diagnostics Profiler" on page 215
tasks

HP Diagnostics (9.24) Page 228 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

The following user interface elements are included:

ul
Element Description

Table This table lists the methods calls that generated exceptions and allows you to view
latency information for instances of the exceptions that were included in the captured call
trees. The rows in this table can be sorted by clicking the column headers.

The table includes the following columns:

Method. The name of the methods generated exceptions. If a method generated two or
more exceptions and they were included in the captured call trees, the method name is
preceded by a plus sign (+) ora minus sign (-) to indicate that additional instance-
specific latency information can be viewed for the exception.

Exceptions. The number of times that the method generated an exception. This count
includes all instances of all classes of exceptions, whether or not they are included in the
captured call trees.

The latency for instances of exceptions are available to be displayed if they are included
in one of the captured call trees.

If an instance of an exception for a particular method call was included in one of the
captured call trees, the method name in the Exceptions table is preceded by a plus sign
(+) oraminus sign (-). The plus sign indicates that when you click the row in the table,
the entry expands to reveal additional rows with the exception class for each of the
captured instances of the exception. The minus sign indicates that when you click the
row in the table, the entry contracts so that the exception class row is hidden.

Table If two or more instances of an exception class were included in the captured call trees,
the exception class name in the Exceptions table is preceded by a plus sign (+) ora
minus sign (-). The plus sign indicates that when you click the row in the table, the entry
expands to reveal the latency for each of the captured instances for the selected
exception class. The minus sign indicates that when you click the row in the table, the
entry contracts so that the latency for the captured exception class is hidden.

If only one instance of an exception class was included in the captured call trees, the
exception class in the Exceptions table is not preceded a plus sign or minus sign. In this
case, the table entry itself represents the single instance of the exception class and the
value in the latency for the exception can be determined from the Call Trees tab.

You can view the call tree for an exception listed in the Exceptions table by clicking on
any row that contains an instance of an exceptions class. (A row that does not have a
plus sign (+) or a minus (-) sign before the exception class or that only contains a latency
value is an exception class instance.)

When you click a row with an exception class instance, the profiler switches to the Call
Tree tab and displays the call tree for the selected exception instance. The method call
that generated the exception for the selected exception class is highlighted in blue in the
call tree.

For information on the Call Tree tab, see "Call Tree Tab Description" on page 225.

HP Diagnostics (9.24) Page 229 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

Collections Tab Description

The .NET Diagnostics Profiler can monitor your applications' memory usage using Lightweight Memory
Diagnostics (LWMD). LWMD monitors the memory used by your applications by tracking the
collections. The metrics from LWMD are displayed on the Collections tab. The memory metrics are
shown in a graph of heap usage, and in tables that list the collections that are growing the fastest and
that have become the largest. The Collections tab displays these problems, enabling identification of
memory issues.

U I example Server Requests | SOQL | Methods | Call Tree | Exceptions | Collactions

Sampled: Sunday, Movermmber 27, 2005 5:20:08 PM
Baszelined: Sunday, Movermnber 27, 2005 4:55:06 PM
Contains: ProductInfo
Allocated In: Systermn.VoidPetShop, Web. Controls, SimplePager. OnDataBindingl(Systern. Eventirgs]

4 Systermn, Collections. ArrayList 4 Systern, Collections. ArrayList
4 Systerm, Collections. ArrayList [4 Systern, Collections, ArrayLizt
4 Systemn. Collections. Arraylist b\s 4 Systemn. Collections. ArrayLizt
4 System. Collections. Arraylist 4 Systemn. Collections. ArrayList
4 Systermn, Collections. ArrayList 4 Systern. Collections. ArrayList
4 Systern, Collections. ArrayList 4 Systern, Collections. ArrayList
4 System. Collections.Hashtable 4 Systemn. Collections.Haszhtable
2 Systern. Collections. Arraylist 2 Systern. Collections. ArrayList
2 System. Collections. Arraylist 2 Systemn. Collections. ArrayList
2 System. Collections. ArrayList 2 Systemn. Colleckions. ArrayList
Sample and Collection b '
; ¥ Collection by Heap Usage
Coftection Data Growth table Size table graph
table
To access Inthe .NET Diagnostics Profiler, select the Collections tab.
Relevant tasks "How to Access the .NET Diagnostics Profiler" on page 215

HP Diagnostics (9.24) Page 230 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

The following user interface elements are included:

Ul Element Description

Heap The Heap Usage graph shows the memory that was committed and used at periodic
Usage sample intervals. (The default sample interval is 1 minute.) For each sample interval,
Graph a bar is displayed on the graph.

« The height of the bar indicates the total amount of heap that was committed when
the sample was taken.

« The red portion of the bar indicates the amount of the heap that was committed
and used when the sample was taken.

« The green portion of the bar indicates the amount of the heap that was committed,
but not used, when the sample was taken.

Hold the mouse pointer over a sample's bar on the graph to display a tooltip showing
the size of the heap that was used, followed by the size of the heap that was
committed for the selected sample.

By default, the LWMD process establishes a new baseline for measuring the growth
of collections every hour. You can force a new baseline by clicking the Force
Baseline link at the upper-right corner of the Heap Usage graph.

When the .NET Diagnostics Profiler establishes a new baseline, a green line is
inserted between the last sample of the previous baseline and the first sample of the
next baseline to mark the point where the baseline was set.

The calculation for the growth of collections that is used to determine which
collections are included in the Collections by Growth table, is based on the number of
collections added since the last baseline.

Samples Displays additional information about the sample selected in the Heap Usage graph,
and and about the collection selected from the collection tables.

Collections . L)

Details It contains the following information:

Pane Sampled. The date and time when the selected Heap Usage sample was taken.
Baselined. The date and time of the last baseline prior to the sample being taken.

Contains. The type of object contained in the selected collection. This information is
displayed when you mouse over the Collections by Growth or Collections by Size
tables.

Allocated In. The method that allocated the selected collection. This information is
displayed when you mouse over the Collections by Growth or Collections by Size
tables.

HP Diagnostics (9.24) Page 231 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

Ul Element Description

Collections The Collections by Growth table lists the top ten collections in relation to the growth in

by Growth the number of objects contained in the collection since the last baseline. The top-ten

Table list of collections changes from sample to sample as the growth rates for each
collection fluctuate. When a new baseline is established, the growth rate is calculated
in relation to the new baseline, so the list of collections can change significantly.

The table contains the following information:

Growth. The number of objects that were added to the collection since the last
baseline.

Class. The class name for the collection.

To see details for the collection, hold the mouse pointer over the row in the table for
the collection. The row is highlighted in pink and the details are displayed in the
Samples and Collections Details pane.

Collections The Collections by Size table lists the top ten collections relative to the size of the
by Size collection for the selected Heap Usage sample. The size of a collection is based upon
Table the total number of objects in the collection.

The table contains the following information:
Size. The total number of objects in the collection at the end of the sample period.
Class. The class name for the collection.

To see details for the collection, hold the mouse pointer over the row in the table for
the collection. The row is highlighted in pink and the details are displayed in the
Samples and Collections Details pane.

HP Diagnostics (9.24) Page 232 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

Threads Window Description

The Threads window displays thread performance metrics for the threads that are running in a

.NET probed application and provides a way for you to capture stack traces for the running threads.
There is also a thread state analyzer that displays approximate thread state distribution percentage for
each thread.

This page can be useful for helping to diagnose the following situations:
« Incorrect thread pooling or attempting to do too much in a single thread.
« Performance problems caused by deadlocks or concurrency-related issues.

« Problems that go deep into the interactions with the OS kernel where you need to see the CPU time
broken into user and kernel times.

HP Diagnostics (9.24) Page 233 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

The following is an example of the .NET Threads display.

: #f HP Diagnostics - Threads =] E3

| Automatically, Every: seconds History Length: Stack Trace Depth:

1 Chart Stack Traces State Analyzer
i Chart Difference in:
1454
1351 Total CPU Time (ms)| ¥
1253
1157
-
[
E
[
5
E
=
o
(¥}
g
'_
14:16:20 14:16:30 14:18:40 14:18:50 14:17:00 144710 14:47:20 14:17:30
“B Thread id - 9052
—

' Thread Name Thread State Kemel Time [ms) UserTime [ms) Lock Mame Lock Owner Name Lock Owner Id
Thread id - 8868 Waiting 375 (15%) 9,187 (25%) 0 <
Thread id - 8824 Waiting 218 [B%) 3,656 (10%) 0 =
Thread id - 8052 Waiting 46 [1%) 1,843 5%) [i]

Thread id - 9616 Waitir, e e I T] T
Thread id - 6312 Watti —"a ack Traces @ Analyzer LIS
: 1
Mercury Ll ThreadPool+WarkerTh... Waitir | | Buffer Flusher Irternalilfait Cne:
jiintesdIEE So6E Wattir Mercury bl Th. niarker Thread 11 get Thread Sample
Thread id - 7340 Waitir
Thread id - 8872 Waitir Mercury L Th. iforker Thresd .12 GetCortesd
Thread id - 7348 Waitir | | ercury Ll Th. Worker Thread 17 get Thread Metrics
jIesdidEEIte Wattir Mercury Ll Th.. +orker Thread 5 Internalifait One
Thread id - 7532 Waitir
Thread id - 764 Waitir Mercury Lt Th. iforker Thread 60 Internaliiait One
Thread i - RRL WWsitic || parcury L Timer Internalifait Cne
Thread count: 228 215 PM
- Deadlocked l:l Running l:l Unknown
_ Blocked l:l o l:l Starving
To Select a .NET probe from the the .NET Probes or Probes view, then click View Threads

access in New Window from the Common Tasks area.

HP Diagnostics (9.24) Page 234 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

The following user interface elements are included:

ul
Element Description

Controls Used to control how often the thread metrics are updated, maximum stack trace depth
for each thread, and what kind of data is displayed for the thread processing in your
application.

When the Threads tab is updated, the information displayed on the tab is refreshed with
the latest thread metrics. You control how often the Profiler updates the thread metrics
on the Threads tab.

Update button. Select the Update button and the Profiler refreshes the information in
the graph and the thread table and captures stack traces.

Automatically, Every (Thread Metric Update Frequency). Check this box to turn
automatic updates on. Select the update interval from the spinner. The Profiler
immediately begins refreshing the thread metrics displayed in this tab based on the
update interval specified.

Whenever the Profiler updates the Threads tab display, stack traces are captured for
each of the threads listed in the thread table. You can control how many stack traces for
each thread are displayed in the stack trace history.

History Length. Select the number of samples to keep and display.

Stack Trace Depth. Select the maximum stack trace depth collected for each sample
for each thread.

HP Diagnostics (9.24) Page 235 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

Ul
Element

Chart
Tab

Thread
Table

Description

Charts the metric for the selected threads. You may chart the metrics for one or more of
the threads listed in the threads table and you can select the metric that is to be charted
for each thread.

Select a thread in the thread table to have it's metric graphed in the chart. Diagnostics
removes the metrics for any previously charted threads from the graph and charts the
metric for the selected thread. The graph legend is updated to indicate the color with
which the selected thread's metrics were charted.

To chart additional threads in the graph along with any that you have already charted,
select additional threads in the thread table.

To select each additional thread one at a time, select each row in the thread table using
Ctrl-Click. To select arange of threads, select the row in the thread table using Shift-
Click. Diagnostics charts the metrics for the selected thread along with the metrics for
all of the threads in the thread table that are between the selected threads and the newly
selected thread. The graph legend is updated to indicate the colors with which the
selected threads metrics were charted.

To remove the metrics from the chart for selected threads, use Ctrl-Click to select the
row in the thread table that contains the thread whose metrics you'd like to remove from
the chart.

Chart difference in. To select a metric to be charted for each thread, select the metric
from the drop down menu. Diagnostics updates the graph to chart the indicated metric for
each of the threads selected in the thread table.

The table shown below the chart lists the metrics for each thread.

The following columns are displayed:

Thread Name. The name of the captured thread.

Thread State. The state of the thread at the last thread metric update interval.

Kernel Time (ms). The portion of the CPU time during which the thread was executing
in kernel mode.

User Time (ms). The portion of the CPU time during which the thread was executing in
user mode.

The following data comes from the JVM: Lock Name, Lock Owner Name, Lock Owner
Id.

The table can also include columns for Waited Time and Blocked Time metrics if you
enable them. To enable these metrics, set the
threads.contention.monitoring.enabled property to true in the <probe_install_
dir>/etc/probe.properties file. This setting may cause instability for some older JVMs.

HP Diagnostics (9.24) Page 236 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

Ul

Element Description

Stack Stack traces for the threads selected in the threads table are displayed when you have
Traces indicated that you want thread stack traces captured.

Tab

The Stack Traces tab display is divided into two areas:

Captured Stack Traces. List contains a list of the times when stack trace captures
occurred.

Stack Trace Details. Displays the stack traces that you indicated based on your
selections from the stack trace capture list, the scope selection drop down, and the
thread table.

The Stack Trace Details for drop down allows you to control which thread's stack
traces the Profiler displays in the Stack Trace details area.

When you select All Threads, the stack traces for all threads are displayed in the stack
trace details area. The selections made in the threads table do not impact the stack
traces that are displayed in the stack trace details area when All Threads is selected.

When you select Selected Threads, the stack traces displayed in the stack trace
details area are limited to those for the threads that you select in the threads table in the
Chart tab.

HP Diagnostics (9.24) Page 237 of 239

.NET Agent Guide
Chapter 9: Diagnostics Profiler for NET

ul
Element Description

State The State Analyzer displays approximate thread state distribution percentage for each
Analyzer thread, over the specified time period. Each thread is represented by a single row.

The left panel provides the thread name. The center panel provides the thread state data.
The total height of the colored bar represents 100%. If a thread has been in more than
one state during the observation period, multiple colors are used to display the
corresponding states, proportional to the time spent in those states. For automatic
updates, the observation period is the same as the configured refresh period.

The right panel displays the current method name, with line number, if available. If the
stack traces collected for the thread over the observation period are all the same, the
method name is displayed using a bold font. If different stack traces were observed, the
displayed method is the topmost common method for the collected stack traces, and its
display uses a regular font. If no such common method could be found, nothing is
displayed.

The following thread states are presented by the Thread State Analyzer:
Deadlocked. The thread participates in a deadlock cycle.

Blocked. The thread is delayed (suspended) when trying to enter a Java monitor. This
can happen when the thread tries to invoke a synchronized method, enter a
synchronized block, or re-enter the Java monitor after being awaken from the waiting
state, while another thread has not left the Java monitor yet.

Running. The thread is actively consuming CPU time.

1/0. The thread is performing an I/O operation. It does not use any CPU time. The notion
of I/0 covers not only the traditional operations on files or sockets, but also covers any
multimedia or graphics operations. In general, the thread is waiting for an external (out-of-
process) event.

Sleeping. The thread is delayed after invoking the Thread.sleep() method.

Waiting. The thread is delayed, usually having executed Object.wait(). However,
threads can get into this state by other means. In general, the thread is waiting for an
internal (in-process) event.

Starving. The thread is runnable, it is not suspended by any 1/O, wait(), or sleep()
operation, but is not running. This can be caused by insufficient number of CPUs
available, Garbage Collection pauses, excessive paging, or by a virtual machine guest
OS experiencing a shortage of resources.

Unknown. The Diagnostics Agent was unable to determine the state of the thread.

HP Diagnostics (9.24) Page 238 of 239

Send Documentation Feedback

If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the
following information in the subject line:

Feedback on .NET Agent Guide (Diagnostics 9.24)
Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a web mail client, and
send your feedback to SW-doc@hp.com.

We appreciate your feedback!

HP Diagnostics (9.24) Page 239 of 239

mailto:SW-doc@hp.com?subject=Feedback on .NET Agent Guide (Diagnostics 9.24)

	Welcome to This Guide
	How This Guide Is Organized
	Diagnostics Documentation

	Part 1: Introduction
	Chapter 1: Diagnostics .NET Agent Overview
	About the Diagnostics .NET Agent
	Introducing Diagnostics Profiler for .NET
	Features and Benefits of the Diagnostics .NET Profiler

	Part 2: Installation and Configuration of the Diagnostics .NET Agent
	Chapter 2: Preparing to Install the Diagnostics .NET Agent
	Requirements for the Diagnostics .NET Agent Host
	Requirements for the Diagnostics .NET Profiler UI
	Planning the Installation

	Chapter 3: Installing .NET Agents
	Overview of the .NET Agent Installation
	Accessing the .NET Agent Installer
	Installing the .NET Agent
	Post Install Tasks
	Verifying the .NET Agent Installation
	About Configuration of the .NET Agent for Diagnostics
	About Configuration of the .NET Agent for TransactionVision
	Discovery and Standard Instrumentation
	Probe Aggregator Service
	Monitoring NET Applications Deployed in Azure Cloud
	Monitoring Applications on SharePoint with the .NET Agent
	Determining the Version of the .NET Agent
	Enabling and Disabling the Diagnostics Agent for .NET
	Enabling and Disabling Standard Instrumentation for Applications
	Troubleshooting .NET Web Applications Not Discovered
	Manually Adding an AppDomain Not Discovered
	Other .NET Agent Troubleshooting Tips
	Uninstalling the .NET Agent

	Chapter 4: Upgrading the Diagnostics .NET Agent
	Upgrade .NET Agents
	Upgrade Notes and Limitations

	Part 3: Advanced .NET Agent Configuration and Instrumentation
	Chapter 5: Custom Instrumentation for .NET Applications
	About Instrumentation and Capture Points Files
	Locating the .NET Capture Points Files
	Coding Points in the Capture Points File
	Instrumentation Examples
	Understanding the Overhead of Custom Instrumentation
	Default Layers for Typical .NET Applications

	Chapter 6: Understanding the .NET Agent Configuration File
	Understanding .NET Agent Configuration File
	.NET Agent Configuration Elements
	<ali> element
	<appdomain> element
	<bufferpool> element
	<capturecookies> element
	<captureexceptions> element
	<capturehttpheaders> element
	<clientmonitoring> element
	<consumeridrules> element
	<cputime> element
	<credentials> element
	<demomode> element
	<depth> element
	<diagnosticsserver> element
	<exceptiontype> element
	<exclude> element (when parent is captureexceptions)
	<exclude> element (when parent is lwmd)
	<excludeassembly> element
	<excludesqlparam> element
	<filter> element
	<filter> element
	<gentvhttpeventforwcf> element
	<htmlinstrumentation> element
	<httpcaptureparams> element
	<httpclient> element
	<httpheaderrule> element
	<httpheaderrules> element
	<id> element
	<include> element (when parent is captureexceptions)
	<include> element (when parent is lwmd)
	<instrumentation> element
	<iprule> element
	<iprules> element
	<latency> element
	<logging> element (when parent is appdomain, probeconfig, or process)
	<lwmd> element
	<mediator> element
	<metrics> element
	<metric> element
	<modes> element
	<param> element
	<points> element
	<probeconfig> element
	<process> element
	<profiler> element
	<rum> element
	<sample> element
	<server> element
	<soapcapture> element
	<soaprequestforsoapfault> element
	<soaprule> element
	<soaprules> element
	<sqlparsing> element
	<stacktracesampling> element
	<symbols> element
	<timeskew> element
	<topology> element
	<transport> element
	<trim> element
	<tv> element
	<uriautocollapsing> element
	<urireplacepattern> element
	<url> element
	<vmware> element
	<webserver> element
	<ws> element
	<xvm> element

	Chapter 7: Advanced .NET Agent Configuration
	Time Synchronization for .NET Agents Running on VMware
	Customizing the Instrumentation for ASP.NET Applications
	Discovering the Classes and Methods in an Application
	Controlling Which HP Software Products the Agent can Work With
	Configuring Support for MSMQ BasedCommunication
	Configuring Latency Trimming and Throttling
	Configuring Depth Trimming
	Configuring URI Truncation and Mapping
	Capturing HTTP Server Requests Based on Query Parameters
	Configuring the .NET Agent for Lightweight Memory Diagnostics
	Limiting Exception Stack Trace Data
	Configuring Thread Stack Trace Sampling
	Disabling Logging
	Overriding the Default Probe Host Machine Name
	Listing the Probes Running on a Host
	Authentication and Authorization for .NET Profilers
	Configuring Consumer IDs
	Configuring SOAP Fault Data
	Collecting Additional Probe Metrics or Modifying Probe Metrics
	Manually Enabling Auto-Discovered ASP.NET Applications and Non ASP.NET Services

	Chapter 8: .NET System Metrics Agent - Systems Metrics Capture
	About the .NET System Metrics Agent
	System Metrics Captured by Default
	Configuring .NET System Metrics Capture
	Adding System Metrics Using the Windows Performance Monitor
	Default Entries in the .NET Agent metrics.config File
	Keywords in the metrics.config File

	Part 4: Using the Profiler for .NET
	Chapter 9: Diagnostics Profiler for .NET
	About the .NET Diagnostics Profiler
	How the .NET Agent Provides Data for the .NET Profiler
	.NET Diagnostics Profiler UI Navigation and Display Controls
	.NET Diagnostics Profiler Inactivity Timeout
	How to Access the .NET Diagnostics Profiler
	How to Enable and Disable the .NET Diagnostics Profiler
	Server Requests Tab Description
	SQL Tab Description
	Methods Tab Description
	Call Tree Tab Description
	Exceptions Tab Description
	Collections Tab Description
	Threads Window Description

	Send Documentation Feedback

