
hp Unified Correlation Analyzer

Unified Correlation Analyzer
for

Event Based Correlation

Version 3.1

Value Pack Development Guide

Edition: 1.0

For Windows© and Linux (RHEL 5.8 & 6.3) Operating Systems

April 2014

© Copyright 2014 Hewlett-Packard Development Company, L.P.

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only

warranties for HP products and services are set forth in the express warranty

statements accompanying such products and services. Nothing herein should be

construed as constituting an additional warranty. HP shall not be liable for technical or

editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use or

copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,

Computer Software Documentation, and Technical Data for Commercial Items are

licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notices

© Copyright 2014 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and

64-bit configurations) on all HP 9000 computers are Open Group UNIX 95 branded

products.

Java™ is trademark of Oracle and/or its affiliates.

Microsoft®, Internet Explorer, Windows®, Windows Server 2007®, Windows XP®,

and Windows 7® are either registered trademarks or trademarks of Microsoft

Corporation in the United States and/or other countries.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City,

California.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark, and the X device is a trademark of X/Open

Company Ltd. in the UK and other countries.

Red Hat® is a registered trademark of the Red Hat Company.

Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

Eclipse™ is a trade mark of The Eclipse Foundation.

Contents

Preface ... 7

Chapter 1 ... 9

Introduction ... 9

Chapter 2 ... 10

Getting started with UCA for EBC ... 10

2.1 Software Pre-requisites .. 10
2.1.1 Operating system .. 10
2.1.2 Java JRE/JDK ... 10
2.1.3 Eclipse IDE ... 11
2.1.4 Installing UCA for EBC and UCA for EBC Development Kit 14
2.1.5 Post-install Environment Setup ... 14
2.1.6 UCA for EBC Eclipse plug-in installation instructions 15

Chapter 3 ... 20

Value pack development lifecycle ... 20

3.1 Memento on Value packs and Scenario definitions ... 20
3.1.1 Value Pack Definition .. 20
3.1.2 Scenario Definition .. 20
3.2 Life Cycle ... 22
3.3 Creating a new UCA for EBC Value Pack ... 23
3.3.1 Creating a value pack project within Eclipse .. 23
3.3.2 Anatomy of the created project ... 27
3.3.3 Validation of the created project ... 28
3.4 Customizing the created ‘skeleton’ Value Pack project 31
3.4.1 Updating the scenario filters ... 31
3.4.2 Updating the correlation rules file ... 32
3.5 Generating the Value Pack kit ... 32
3.6 Deploying the Value Pack kit on UCA for EBC .. 35
3.6.1 Install the Value Pack package (ZIP file) on an HP Itanium or Linux system

running UCA for EBC Server. ... 35
3.6.2 Deploy the Value Pack ... 35
3.6.3 Start the Value Pack on UCA for EBC Server: ... 36
3.7 Testing the Value Pack in real-time ... 36

Focus on development key points .. 38

4.1 Implementing Alarm enrichment .. 38
4.2 Developing the scenario rules.. 41
4.2.1 Basics ... 42
4.2.2 Sample rules on Alarm facts in CLOUD mode ... 43
4.2.3 Sample rules on Alarm events in STREAM mode 45
4.2.4 Defining and using rule templates .. 47
4.2.5 Introducing Java code in the rules .. 47
4.3 Defining your own beans ... 48
4.4 Executing external actions from the rules .. 49

4.4.1 Standard external actions ... 49
4.4.2 Calling services defined using Spring ... 58
4.4.3 Forwarding alarms to external systems .. 59
4.5 Making useful logs ... 66
4.6 Creating JUnit Tests .. 67
4.7 Injecting events to UCA for EBC .. 70
4.7.1 Normalized input ... 71
4.7.2 Command-line injector tool ... 72
4.7.3 A sample Java Alarm injector ... 72

Chapter 5 ... 74

Advanced Development features .. 74

5.1 Advanced feature: Spring Framework integration ... 74
5.1.1 Defining and using Spring Beans inside rule files using global variables .. 75
5.2 Using the Flag Object .. 78
5.3 Alarm Custom fields ... 78
5.4 Alarm Raised Time .. 78
5.5 Scenario specific configuration .. 78
5.6 Performing initialization at scenario startup ... 78
5.7 WUI extensions for value packs... 78
5.7.1 Extending the WUI at value pack Level .. 78
5.7.2 Extending the WUI at Global Level ... 79
5.7.3 Web application extensions configuration .. 80
5.7.4 Inheriting the UCA for EBC logged user and role in the extended web

application ... 81
5.8 Configuring the GUI filter tags editor ... 82
5.9 Editing Filter Files with the UCA for EBC eclipse filter editor 83
5.9.1 Editing a Filter ... 83
5.9.2 Associating an Alarm File Sample to the Filter Editor 84
5.9.3 How to read the Filter editor aggregated view? .. 86
5.9.4 How to read the ‘passed filter’ view? .. 87
5.9.5 How to use the filter to create a new top-filter? .. 88
5.10 Persisting alarms or events using the DB forwarder feature 90
5.10.1 Concepts ... 90
5.10.2 Getting started .. 90
5.10.3 Example .. 93
5.10.4 Advanced settings... 94

Appendix A .. 98

A. Ant build.xml targets ... 98

Glossary .. 99

Figures
Figure 1 - Drools plug-in for Eclipse IDE: Installation step 1 ... 13
Figure 2 - Drools plug-in for Eclipse IDE: Installation step 2 ... 13
Figure 3 - Drools plug-in for Eclipse IDE: Installation step 3 ... 14
Figure 4 - UCA for EBC Eclipse plug-in: Installation step 1 .. 16
Figure 5 - UCA for EBC Eclipse plug-in: Installation step 2 .. 17
Figure 6 - UCA for EBC Eclipse plug-in: Installation step 3 .. 18
Figure 7 – The UCA-EBC Scenario Components ... 21
Figure 8 - The 5 steps to create a UCA for EBC Value Pack .. 22
Figure 9 - Value pack project creation wizard Step1 ... 25
Figure 10 - Value pack project creation wizard Step2 ... 26
Figure 11 - Created Value pack ... 27
Figure 12 - Folder structure of the created project .. 28
Figure 13- Running JUnit tests on the created project in Eclipse IDE 29
Figure 14 - JUnit tests results on the created project in Eclipse IDE 30
Figure 15 - Running JUnit tests on the created project at the command-line using Ant 30
Figure 16 - JUnit tests results on the created project viewed using a Web browser 31
Figure 17 - The default “catch all” project’s filters.xml file... 32
Figure 18 - Building the kit of your customized Value Pack .. 33
Figure 19 - The kit of your customized Value Pack ... 34
Figure 20 - Contents of the ZIP file of your customized Value Pack 35
Figure 21 - Defining AlarmForwarder beans in the context.xml file 61
Figure 22 - Defining AlarmForwarder globals in the ValuePackConfiguration.xml file . 62
Figure 23 - Declaring the use of an AlarmForwarder global variable in a rule file 63
Figure 24 - Using an AlarmForwarder global variable to write Alarms to an XML file 64
Figure 25 - Scenario logger example .. 67
Figure 26 - Ant targets provided by the build.xml file .. 70
Figure 27 - JUnit tests results for your Value Pack ... 70
Figure 28 - UCA for EBC alarm collection ... 71
Figure 29 - The default project’s empty context.xml file .. 75
Figure 30 - The “Low Level Event Filtering” Value Pack’s context.xml file 76
Figure 31 - Defining global variables in the ValuePackConfiguration.xml file 77
Figure 32 - Defining global variables in rules files ... 77
Figure 33 - Using global variables in rules files ... 78

Tables

Table 1 - Software versions 7
Table 2 - Java JRE/JDK Prerequisites for UCA for EBC Development Kit 10
Table 3 - Eclipse IDE Prerequisites for UCA for EBC Development Kit 11
Table 4 - Java helper classes for OSS Open Mediation TeMIP Value Pack 53
Table 5 - AO directives helper classes 55
Table 6 - TT directives helper classes 56
Table 7 - Java helper classes for OSS Open Mediation Exec Value Pack 57
Table 8 - JMS properties set for alarms being forwarded to OSS Open Mediation 66

7

Preface

This guide provides an overview of the Unified Correlated Analyzer for Event Based

Correlation product and describes how to create Value Packs to target customer

specific use cases.

Product Name: Unified Correlation Analyzer for Event Based Correlation
Product Version: V3.1

Intended Audience

Here are some recommendations based on possible reader profiles:

 Solution Developers

 Software Development Engineers

Software Versions

The term UNIX is used as a generic reference to the operating system, unless

otherwise specified.

The software versions referred to in this document are as follows:

Product Version Supported Operating systems

UCA for Event Based Correlation
Software Development Kit V3.1

 Windows XP / Vista

 Windows Server 2007

 Windows 7

 Red Hat Enterprise Linux Server
release 5.8 & 6.3

Table 1 - Software versions

Typographical Conventions

Courier Font:

 Source code and examples of file contents

 Commands that you enter on the screen

 Pathnames

 Keyboard key names

Italic Text:

 Filenames, programs and parameters

 The names of other documents referenced in this manual

Bold Text:

 To introduce new terms and to emphasize important words

Associated Documents

The following documents contain useful reference information:

References

[R1] HP UCA for Event Based Correlation – Installation Guide

[R2] HP UCA for Event Based Correlation – Reference Guide

8

[R3] HP UCA for Event Based Correlation – Administration, Configuration and

Troubleshooting Guide

[R4] HP UCA for Event Based Correlation – Value Pack Examples

[R5] Open Mediation V620L01 Functional Specification

[R6] Open Mediation Installation and Configuration Guide

[R7] Unified Correlation Analyzer for Event Based Correlation – User Interface Guide

Support

Please visit our HP Software Support Online Web site at

www.hp.com/go/hpsoftwaresupport for contact information, and details about HP

Software products, services, and support.

The Software support area of the Software Web site includes the following:

 Downloadable documentation.

 Troubleshooting information.

 Patches and updates.

 Problem reporting.

 Training information.

 Support program information.

http://www.hp.com/go/hpsoftwaresupport

9

Chapter 1

Introduction

This guide explains how to create a new correlation project, how to package it and

deploy it on a Unified Correlated Analyzer for Event Based Correlation (UCA for EBC)

Server in just a few minutes.

After validating some pre-requisites and installing both UCA for EBC (runtime) and

UCA for EBC Development Kit products, the following chapters will dive into the

development of UCA for EBC Value Packs and explain how to create new scenarios,

how to develop alarm/event correlation rules based on samples and how to

customize UCA for EBC.

Note

Throughout this document, we use the ${UCA_EBC_HOME} environment variable to

reference the root directory (“static” part) of UCA for EBC. The default value for the

${UCA_EBC_HOME} environment variable is /opt/UCA-EBC. The

${UCA_EBC_HOME} environment variable thus references the /opt/UCA-EBC

directory unless UCA for EBC “static” part has been installed in an alternate directory.

We also use ${UCA_EBC_DATA} environment variable to reference the data

directory (“variable” part) of UCA for EBC. The default value for the

${UCA_EBC_DATA} environment variable is /var/opt/UCA-EBC. The

${UCA_EBC_DATA} environment variable thus references the /var/opt/UCA-EBC

directory unless UCA for EBC “variable” part has been installed in an alternate

directory.

Since UCA-EBC V2.0, on Linux and HP-UX systems, the ${UCA_EBC_DATA}

directory may contain multiple instances of UCA-EBC. In this document, we will use

the value ${UCA_EBC_INSTANCE} for referring to

${UCA_EBC_DATA}/instances/<instance-name> directory on Linux/HP-UX

systems and to ${UCA_EBC_DATA} on Windows systems.

Note that at installation time on Linux/HP-UX, a single <instance-name> is

configured: default.

10

Chapter 2

Getting started with UCA for EBC

2.1 Software Pre-requisites

2.1.1 Operating system

The UCA for EBC Development Kit is provided (and supported) for:

Windows operating systems.

 It has been validated on Windows XP, Windows Vista, Windows 7, and Windows

Server 2007.

Red Hat Enterprise Linux.

 It has been validated on Server Release 5.8 & 6.3.

2.1.2 Java JRE/JDK

The following table lists the Java JRE/JDK pre-requisites for UCA for EBC

Development Kit:

Software Version

Java JDK* 1.6.0.08 (or later)

Table 2 - Java JRE/JDK Prerequisites for UCA for EBC Development Kit

You can check whether Java is already installed on your system and which version of

the Java JRE/JDK is installed by issuing the following commands:

On Windows XP, Windows Vista, Windows 7, and Windows Server 2007:

To check if you already have Java installed, open a command-line (Run… ->

cmd.exe) and type:

C:\> java -version

You should get an output similar to the following:

java version "1.6.0_17"
Java(TM) SE Runtime Environment (build 1.6.0_17-b04)
Java HotSpot(TM) Client VM (build 14.3-b01, mixed mode,
sharing)

Alternatively to using the command-line, you can check if you already have Java

installed by going to the Control Panel and selecting the Java icon. In the Java tab,

you will find information on the Java version installed on your system.

11

The latest JDK package for Windows XP, Windows Vista, Windows 7, and Windows

Server 2007 can be downloaded (for free) from www.hp.com/go/java

On Linux:

To check if you already have Java installed:

$ rpm –qa | grep jdk

Red Hat Enterprise Linux Server comes with OpenJDK Java VM. You should get an

output similar to the following (here 1.6.0 and 1.7.0 are installed):

java-1.6.0-openjdk-1.6.0.0-1.41.1.10.4.el6.x86_64
java-1.6.0-openjdk-devel-1.6.0.0-1.41.1.10.4.el6.x86_64
java-1.7.0-openjdk-1.7.0.9-2.3.4.1.el6_3.x86_64
java-1.7.0-openjdk-devel-1.7.0.9-2.3.4.1.el6_3.x86_64

You can also download (for free) the latest Java packages (HotSpot Java VM) from

Oracle from http://java.com/en/download/manual.jsp. If this is installed (usually under

/usr/java), you should get an output similar to the following:

jdk-1.6.0_23-fcs.x86_64

Note

* Java 1.6 JRE is enough for using the UCA for EBC Development Kit. However the

JDK comes with some useful debugging tools (jconsole, jvisualvm, etc…) that may

prove helpful for troubleshooting. It is therefore recommended to install the JDK.

2.1.3 Eclipse IDE

The UCA for EBC Development Kit has been designed for an easy integration with

the Eclipse Integrated Development Environment (IDE) tool.

Before starting the development of any UCA for EBC value pack, it is necessary to

download and install the Eclipse
TM

 application development environment.

The following table lists the Eclipse IDE pre-requisites for UCA for EBC Development

Kit:

Software Version

Eclipse IDE 3.7 (Indigo) or higher

Table 3 - Eclipse IDE Prerequisites for UCA for EBC Development Kit

The minimum version of Eclipse IDE required by the UCA for EBC Development Kit is

version 3.4 but we recommended Eclipse IDE version 3.7 (Indigo) or higher.

If you already have Eclipse IDE installed on your system, you can either use this

version with the UCA for EBC Development Kit (provided this version complies with

the version requirement: version 3.4 or higher) or you can install a new version of

Eclipse IDE.

http://www.hp.com/go/java
http://java.com/en/download/manual.jsp

12

If you want to install Eclipse IDE, please go to the following URL for downloading

Eclipse IDE: http://www.eclipse.org/downloads/

At the time of writing, the Eclipse IDE version is Juno 4.2.

We recommend you to download either (other choices may also be valid):

Eclipse IDE for Java Developers, or

Eclipse IDE for Java EE Developers

Then you need to choose to install either the 32-bit or 64-bit version of Eclipse IDE

depending on whether you have a 32-bit or 64-bit operating system.

Once Eclipse IDE is installed on your system, and in order to get the full benefit of the

Drools development environment in Eclipse, it is also necessary to download and

install the Drools plug-in for Eclipse.

Before downloading the Drools plug-in for Eclipse IDE, please make sure that the

Drools plug-in you plan to download has the same version number as the version of

Drools used by UCA for EBC.

UCA for EBC currently uses Drools version 5.5.0.Final. The download URL for this

version of the plug-in is the following:

https://repository.jboss.org/nexus/content/repositories/releases/org/drools/org.drools.

updatesite/5.5.0.Final/org.drools.updatesite-5.5.0.Final-assembly.zip

2.1.3.1 Drools plug-in for Eclipse IDE installation instructions

Download and save the ZIP file of the Drools plug-in for Eclipse IDE in a temporary

directory, for example: C:\Temp.

From the Eclipse ‘Help’ menu, choose ‘Install new software’ and then click on the

Add… button.

Select the downloaded file using the Archive... button and give it the name “jboss

drools tools 5.5.0.Final” as shown in the picture below:

http://www.eclipse.org/downloads/
https://repository.jboss.org/nexus/content/repositories/releases/org/drools/org.drools.updatesite/5.5.0.Final/org.drools.updatesite-5.5.0.Final-assembly.zip
https://repository.jboss.org/nexus/content/repositories/releases/org/drools/org.drools.updatesite/5.5.0.Final/org.drools.updatesite-5.5.0.Final-assembly.zip

13

Figure 1 - Drools plug-in for Eclipse IDE: Installation step 1

Then click on the OK button.

The screen should then display the archive content as follow:

Figure 2 - Drools plug-in for Eclipse IDE: Installation step 2

Check the “Drools and jBPM” checkbox and then click on the Next > button.

The following screen is displayed:

14

Figure 3 - Drools plug-in for Eclipse IDE: Installation step 3

Click on the Next > button for installing the plug-in after accepting the license terms.

The plug-in installation requires a restart of your Eclipse IDE environment.

2.1.4 Installing UCA for EBC and UCA for EBC Development
Kit

Detailed information on how to install UCA for EBC and UCA for EBC Development

Kit is provided in the [R1] HP UCA for Event Based Correlation – Installation Guide

2.1.5 Post-install Environment Setup

2.1.5.1 The UCA_EBC_DEV_HOME Variable

The UCA for EBC Development Kit installation procedure adds the

%UCA_EBC_DEV_HOME% environment variable to your user environment.

This variable is necessary for various development phases of a UCA for EBC value

pack development, especially the build and packaging phases.

To verify that this variable is correctly set after the UCA for EBC Development Kit has

been installed, open a command-line (Run… -> cmd.exe) and type:

On Windows:

C:\> echo %UCA_EBC_DEV_HOME%

You should get an output similar to the following:

15

C:\UCA-EBC-DEV\

Note

On Windows 7, you should log out and log back in again for the new environment

variable to be taken into account after installation of the UCA for EBC Development

Kit.

On Linux:

$ echo ${UCA_EBC_DEV_HOME}

You should get an output similar to the following:

/opt/UCA-EBC-DEV

Note

On Linux this Variable must be manually set in the user’s environment, as specified in

the UCA for EBC Installation Guide.

2.1.5.2 Ant Configuration

The UCA for EBC value pack packaging is based on the use of the Apache Ant tool.

This tool requires a specific version and specific settings. Be sure to use the Apache

Ant tool provided with UCA for EBC in the %UCA_EBC_DEV_HOME%\3pp\ant

directory (${UCA_EBC_DEV_HOME}/3pp/ant on Linux).

Be sure that you don’t have the ANT_HOME environment variable set to the path of

another version of Apache Ant, which would create conflicts with the version of

Apache Ant in the 3pp\ant\bin folder. If you do, you should either clear the

ANT_HOME environment variable:

C:\> set ANT_HOME=

Or set it to the directory of the Apache Ant version that comes with the UCA for EBC

development kit:

C:\> set ANT_HOME=%UCA_EBC_DEV_HOME%\3pp\ant

$ANT_HOME/bin/ant -version
Apache Ant(TM) version 1.8.2 compiled on December 20 2010

The delivered Apache Ant version that comes with the UCA for EBC development kit

is:

$ANT_HOME/bin/ant -version
Apache Ant(TM) version 1.8.2 compiled on December 20 2010

2.1.6 UCA for EBC Eclipse plug-in installation instructions

The UCA for EBC Development Kit delivers an Eclipse plug-in that eases UCA for

EBC value pack project creation under eclipse.

This plugin is delivered in the

%UCA_EBC_DEV_HOME%\eclipseplugin\ucaEbcEclipsePluginSite-3.1.3-

assembly.zip file.

The installation of this plug-in is made as follows:

16

From the Eclipse ‘Help’ menu, choose ‘Install new software’ and then click on the

Add… button.

Select the UCA for EBC eclipse plug-in ZIP file using the Archive... button and give it

the name “UCA for EBC plug-in” as shown in the picture below:

Figure 4 - UCA for EBC Eclipse plug-in: Installation step 1

Then click on the OK button.

17

The screen should then display the archive content as follow:

Figure 5 - UCA for EBC Eclipse plug-in: Installation step 2

Check the “UCA EBC plugins” checkbox, uncheck the “Contact all update sites…”,

and then click on the Next > button.

18

The following screen is displayed:

Figure 6 - UCA for EBC Eclipse plug-in: Installation step 3

Click on the Next > button for installing the plug-ins after accepting the license terms.

19

Note

The following message appears during the installation. This is a normal message as

the provided jar files are signed.

Select the listed Certificated and Click OK to continue the installation.

The plug-in installation requires a restart of your Eclipse IDE environment. Please

restart eclipse before any attempt to create a UCA for EBC project.

20

Chapter 3

Value pack development lifecycle

3.1 Memento on Value packs and Scenario
definitions

3.1.1 Value Pack Definition

Creating a Value Pack can be seen as implementing a “Correlation” bundle for

managing a special correlation use case. The following are example of such

correlation use cases:

 a Low Level Filtering use case

 a domain-specific correlation use case like IP MPLS or L2 Metro Ethernet

 a simple ‘operator’ use case that groups/correlates alarms based on specific

rules

A Value Pack is a “functional container” that contains one or more scenarios, each

scenario implementing a part of the whole correlation use case targeted by the Value

Pack.

Scenarios can be cascaded so that the output of one scenario can be the input of

another scenario.

Note

 For additional information about Value Pack and Scenario configuration

parameters, please refer to: [R2] HP UCA for Event Based Correlation – Reference

Guide

3.1.2 Scenario Definition

A scenario is fully defined by implementing the following steps:

 Defining the properties of the scenario

 Defining the filter of the scenario (this will determine what type of alarms will

enter the scenario)

 Implementing Alarm enrichment processing (optional)

 Implementing scenario rules

Note

 The first two steps “Scenario definition file” and “Filter definition file” are

described in the following document: [R2] HP UCA for Event Based Correlation –

Reference Guide

21

Figure 7 – The UCA-EBC Scenario Components

Scenario

Filters Engine Rules

22

3.2 Life Cycle

The process of creating a UCA for EBC Value Pack is described by the following

figure:

Figure 8 - The 5 steps to create a UCA for EBC Value Pack

For step 1 “Create a new UCA for EBC Value Pack project”, use the UCA for EBC

project builder eclipse plug-in.

Step 2 “Update the UCA for EBC Value Pack project” is the main step when creating

new UCA for EBC Value Packs. This part is explained in details in the next

paragraphs and sections.

Step 3 “Develop correlation rules” is also a main step when creating new UCA for

EBC Value Packs.

Step 4 is performed automatically using Apache Ant. The build.xml file has all

necessary targets to compile, test, and generate a ZIP file for your Value Pack.

Create project

Step 1

Manual update
(filters,

scenarios, rules,
code)

Step 2

Unit Testing

Step 3

Packaging of
the Value Pack

Step 4

Deployment of
the Value Pack

Step 5

23

Step 5 involves copying your Value Pack zip file to the

${UCA_EBC_INSTANCE}/valuepacks folder on a UCA for EBC Server, as

mentioned in Chapter 2 “Getting started with UCA for EBC” of this document.

Developing correlation features involves creating one or more correlation scenarios

for your Value Pack, each scenario using its own filter and implementing its own

rules.

3.3 Creating a new UCA for EBC Value Pack

UCA for EBC can be seen as an application container in which so called UCA for

EBC “Value Packs" are deployed.

A Value Pack represents a set of features (scenarios) that are grouped together to

implement one or more correlation use cases.

A UCA for EBC value pack thus includes for example: event filtering, event based

rules, customized java code and possibly configuration files for each of these

scenarios.

3.3.1 Creating a value pack project within Eclipse

The UCA for EBC eclipse plug-in provides a project creation wizard allowing the

creation of a new value pack project in just a few clicks and dialog boxes.

This wizard can be launched from the eclipse main toolbar by clicking on the

UCA/EBC icon:

Or from the Eclipse “New Project” Menu as follow:

24

This launches the UCA EBC value pack wizard:

25

Figure 9 - Value pack project creation wizard Step1

From this panel you can set the project and value pack configuration:

On the first line you must enter the name of the eclipse project to be created.

On the second line you need to give the value pack name and its version

Then the ‘location’ panel allows specifying the location of the created project. It can

be in the current workspace or in an external directory of your choice.

Finally the UCA SDK Location allows specifying the home directory of the UCA for

EBC Development kit. The default value is obtained from the

%UCA_EBC_DEV_HOME% environment variable.

Then Click on the Next > button for getting the next wizard step.

This is the scenario panel configuration. Note that the project creation wizard allows

creating a single initial scenario per value pack. The creation of additional scenarios

for a given value pack must be done manually by editing the various value pack

configuration files.

26

Figure 10 - Value pack project creation wizard Step2

At this step you can set the scenario parameters:

On the first line you must enter the scenario name.

On the second line you need to give the scenario package name. This package name

will be used for all the scenario’s java source code files.

In the filter panel you have to enter the name of the filter file for this scenario. As this

is an XML file, the ‘.xml’ suffix is mandatory.

Then the rule panel allows you specifying the rule file name (and a description) and

also specify if this scenario will use template rules file or not (this is done by checking

the ‘Use template rule’ box.

Then Click on the Finish button for creating the Project.

Note: for creating “topology based” Value Pack project, please refer to the UCA

Topology Extension user guide.

This project creation wizard execution leads to the creation of an Eclipse project

skeleton. It exhibits a basic correlation scenario that can compile and unit test

successfully. From this example, developers can extend it to build their own Value

Packs.

27

Figure 11 - Created Value pack

3.3.2 Anatomy of the created project

Using Eclipse IDE, you can browse through the different directories that compose the

created “Skeleton” project.

Please see below for a glimpse at the folder structure of the created project:

28

Figure 12 - Folder structure of the created project

The created “Skeleton” project also comes with an Apache Ant build.xml file that is

used for building and packaging the value pack outside of the Eclipse IDE.

3.3.3 Validation of the created project

The created project contains predefined test classes that automatically load/compiles

the value pack resources (scenario definitions, filters and rules files) and validate

them (at least syntactically).

JUnit tests can be run either directly from eclipse, by right-clicking on the test

package and choosing “Run As > JUnit Test” as shown in the following screen shot:

29

Figure 13- Running JUnit tests on the created project in Eclipse IDE

30

In which case the test results can be seen directly in Eclipse IDE:

Figure 14 - JUnit tests results on the created project in Eclipse IDE

Or from the command line by executing the Apache Ant tool and selecting the “test”

Ant target (You need to run the “ant test” command from the root directory of your

project workspace) as shown in the following screen shot:

Figure 15 - Running JUnit tests on the created project at the command-

line using Ant

In which case the results can be shown in your preferred Web browser by opening
the index.html file in the target\vp-build-dir\reports\junitreport

directory of your project workspace:

31

Figure 16 - JUnit tests results on the created project viewed using a

Web browser

3.4 Customizing the created ‘skeleton’ Value Pack
project

The project generated by the UCA for EBC project builder eclipse plug-in provides a

simple scenario implementing some basic alarm statistics that is just here for

validating the project structure.

Of course you have to turn the created ‘skeleton’ project into your new Correlation-

project value pack. For this you have to customize

 The Value pack configuration files

 The scenario filter file

 The scenario rule files

 The Associated Java code files.

Note

 For additional information about Value Pack and Scenario configuration

parameters, please refer to: [R2] HP UCA for Event Based Correlation – Reference

Guide

3.4.1 Updating the scenario filters

There is a filter file named filters.xml that is associated with the scenario of the

created value pack.

The goal of this file is to define the passing filter for Alarms that will be consumed by

the current scenario. Then, all alarms entering UCA for EBC will be evaluated against

the filter file of each scenario, to decide if they should be forwarded to the scenario or

not.

32

If the properties of an alarm match the passing filter(s) defined in the filters file then

the alarm is forwarded to the scenario. On the other hand, if the properties of an

alarm don’t match the passing filter(s) of the filters file then the alarm is not forwarded

to the scenario.

The default generated filter allows any alarm to be forwarded to the scenario.

Figure 17 - The default “catch all” project’s filters.xml file

Notes

 Please refer to: [R2] HP UCA for Event Based Correlation – Reference Guide for

a full description of the Filter file syntax.

 Refer to section 5.9 of this document for a description on how to use the UCA-

EBC eclipse filter editor.

3.4.2 Updating the correlation rules file

By default, the generated rules file defines a single rule implementing a basic statistic

use case. This rule is just for demoing and testing. It is just an example, which must

be changed to something relevant.

3.5 Generating the Value Pack kit

Once your project has been updated, it is necessary to generate the kit associated

with it so that it can be deployed on UCA for EBC (this is the packaging phase). To do

this, you just need to execute the following commands:

C:\> cd <Project Base>
C:\> ant all

33

Figure 18 - Building the kit of your customized Value Pack

The kit of the project is then generated in the target/vp-build-dir/vp directory

of the <Project Base> directory as a zip file called <my valuepack name>-vp-<my

valuepack version>.zip:

34

Figure 19 - The kit of your customized Value Pack

The ZIP file of your customized Value Pack contains the following information:

 The Configuration (conf/) directory that contains:

 The Value Pack Spring beans file: context.xml

 The Value Pack configuration file: ValuePackConfiguration.xml

 The Library (lib/) directory that contains:

 The JAR file of the Value Pack containing the compiled Java code that you

developed for your Value Pack in addition to the rules files

 Any custom JAR files that you need to run this Value Pack

 The Scenario (<your-scenario-name>/) directory that contains:

 The filters file(s)

 The external parameters file(s), if your Value Pack contains rules files that

are template-based

 The rule file(s)

$ unzip -l target/vp-build-dir/vp/myVP1-vp-1.0.zip

Archive: target/vp-build-dir/vp/myVP1-vp-1.0.zip

 Length Date Time Name

--------- ---------- ----- ----

 0 05-30-2013 17:46 myVP1-1.0/

 0 05-30-2013 17:46 myVP1-1.0/conf/

 0 05-30-2013 17:46 myVP1-1.0/lib/

 0 05-30-2013 17:46 myVP1-1.0/myScenario1/

 2726 05-30-2013 17:46 myVP1-

1.0/conf/ValuePackConfiguration.xml

 1100 05-30-2013 17:46 myVP1-1.0/conf/context.xml

 6423 05-30-2013 17:46 myVP1-1.0/lib/myVP1-lib-1.0.jar

 2596 05-30-2013 17:46 myVP1-1.0/myScenario1/Alarms.xml

 626 05-30-2013 17:46 myVP1-1.0/myScenario1/filters.xml

 420 05-30-2013 17:46 myVP1-

1.0/myScenario1/filtersTags.xml

35

 3299 05-30-2013 17:46 myVP1-1.0/myScenario1/rules.drl

--------- -------

 17190 11 files

Figure 20 - Contents of the ZIP file of your customized Value Pack

3.6 Deploying the Value Pack kit on UCA for EBC

To deploy your value pack in the UCA server, the following three steps are

necessary:

 Install the Value Pack ZIP file on UCA for EBC Server

 Deploy the Value Pack on UCA for EBC Server

 Start the Value Pack on UCA for EBC Server

3.6.1 Install the Value Pack package (ZIP file) on an HP
Itanium or Linux system running UCA for EBC Server.

Copy your Value Pack package (the ZIP file located at: target/vp/<my value

pack name>vp-<my value pack version>.zip) to the

${UCA_EBC_INSTANCE}/valuepacks directory on the UCA for EBC system

For example:

$ cp target/vp-build-dir/vp/myVP1-vp-1.0.zip
${UCA_EBC_DATA}/instances/default/valuepacks/

3.6.2 Deploy the Value Pack

To deploy the Value Pack in the ${UCA_EBC_INSTANCE}/deploy directory, use the

“--deploy” option of the uca-ebc-admin administration tool (executed as uca user):

> cd ${UCA_EBC_HOME}/bin
> uca-ebc-admin --deploy -vpn <my value pack name> -vpv <my value
pack version>

You should get an output similar to the following:

UCA for EBC Home directory set to: /opt/UCA-EBC
UCA for EBC Data directory set to: /var/opt/UCA-EBC
INFO - Value Pack name: <my value pack name> version: <my value
pack version> has been successfully deployed
INFO - Exiting...

Note

 Alternatively, you can also deploy the value pack from the UCA for EBC GUI.

36

3.6.3 Start the Value Pack on UCA for EBC Server:

Two different ways are available to you to start value packs deployed on UCA for

EBC depending on whether UCA for EBC is started or not.

You can check whether UCA for EBC is running or not by issuing the following

command:

> ${UCA_EBC_HOME}/bin/uca-ebc show

If UCA for EBC is stopped, restarting UCA for EBC will load all value packs deployed

in the ${UCA_EBC_INSTANCE}/deploy folder including your value pack.

If UCA for EBC is running, use the “--start” option of the uca-ebc-admin

administration tool (executed as uca user) to start your value pack:

> cd ${UCA_EBC_HOME}/bin

> uca-ebc-admin --start -vpn <my value pack name> -vpv <my

value pack version>

You should get an output similar to the following:

UCA for EBC Home directory set to: /opt/UCA-EBC

UCA for EBC Data directory set to: /var/opt/UCA-EBC

INFO - Exiting...

Note

 Alternatively, you can also start the value pack from the UCA for EBC GUI.

You can get the list of running value packs on UCA for EBC using the “--list” option of

the uca-ebc-admin command-line administration tool:

> cd ${UCA_EBC_HOME}/bin

> uca-ebc-admin --list

Note

 For additional information about the uca-ebc-admin command-line administration

tool, please refer to: [R3] HP UCA for Event Based Correlation – Administration,

Configuration and Troubleshooting Guide

[R4] HP UCA for Event Based Correlation – Value Pack Examples

3.7 Testing the Value Pack in real-time

Now that both UCA for EBC and your value pack are up and running, the UCA for

EBC application implements the ‘Statistic circuit’ correlation package and is ready to

listen to incoming alarms.

In order to provide an easy way to test the global solution, a simple tool is provided

that lets you inject a set of alarms (defined in a XML file) into UCA for EBC.

37

As the action provided in the properties file is to “log” information to a log file (in

“append” mode), it is easily possible to test the circuit in real-time.

A sample Alarms.xml input file containing sample alarms to use with your value

pack is provided in the ${UCA_EBC_INSTANCE}/deploy/<your value pack

name>-<your value pack version>/skeleton folder. The output log file

named output.xml is located in the ${UCA_EBC_HOME} root folder.

Following is an example of the uca-ebc-injector command-line tool used to inject

Alarms into UCA for EBC in order to test your Value Pack in real conditions:

>${UCA_EBC_HOME}/bin/uca-ebc-injector -file
${UCA_EBC_INSTANCE}/deploy/skeleton-project-
1.0/mypackage/Alarms.xml
>tail -f ${UCA_EBC_HOME}/output.xml &

You should get an output similar to the following:

STATISTICAL ALARM: 2 Alarms received ###

Note

 For additional information about the uca-ebc-injector command-line tool, please

refer to: [R3] HP UCA for Event Based Correlation – Administration, Configuration

and Troubleshooting Guide

[R4] HP UCA for Event Based Correlation – Value Pack Examples

38

Chapter 4

Focus on development key points

4.1 Implementing Alarm enrichment

Alarm enrichment processing is called by the UCA for EBC framework after the alarm

passed the scenario filters and before it is inserted in the scenario Working Memory.

The enrichment is implemented by performing the following steps:

Step 1: Extend the UCA

com.hp.uca.expert.lifecycle.LifeCycleAnalysis Java class and override

the following methods:

onAlarmCreationProcess(Alarm alarm): to extend alarm creation objects

onAlarmDeletionProcess(AlarmDeletion alarm): to extend alarm deletion

objects

onAlarmStateChangeProcess(AlarmStateChange alarm): to extend alarm

state change objects

onAlarmAttributeValueChangeProcess(AlarmAttributeValueChange

alarm): to extend alarm attribute value change objects

Example of LifeCycleAnalysis Extension:

package com.hp.uca.ebc.enrichmentexample;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

import com.hp.uca.common.trace.LogHelper;

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmCommon;

import com.hp.uca.expert.lifecycle.LifeCycleAnalysis;

import com.hp.uca.expert.scenario.Scenario;

public class ExtendedLifeCycle extends LifeCycleAnalysis {

 private static Log log =

 LogFactory.getLog(ExtendedLifeCycle.class);

 public ExtendedLifeCycle (Scenario scenario) {

 super(scenario);

 }

 @Override

 public AlarmCommon onAlarmCreationProcess(Alarm alarm) {

 LogHelper.enter(log, "onAlarmCreationProcess()");

39

 // put the Alarm Enrichment Code here !!

 // (standard alarm fields or LocalVariable)

 LogHelper.exit(log, "onAlarmCreationProcess()");

 return enrichedAlarm;

 }

}

In this example, the enrichment is performed only in the case of an alarm creation

event.

Step 2: Declare the ExtendedLifeCycle class at the scenario definition Level :

This is done by using the <customLifeCycleClass> in the Scenario Definition section

of the ValuepackConfiguration.xml file.

Example :

<scenarios>

 <scenario name="com.hp.uca.ebc.enrichmentexample.myscenario">

 <alarmEligibilityPolicy>

 NetworkState!="CLEARED"

 </alarmEligibilityPolicy>

 <filterFile>

 src/main/resources/valuepack/myscenario/filters.xml

 </filterFile>

 <fireAllRulesPolicy>EACH_ACCESS</fireAllRulesPolicy>

 <globals></globals>

 <processingMode>CLOUD</processingMode>

 <rulesFiles>

 <rulesFile>

 <filename>

 file:./src/main/resources/valuepack/myscenario/rules.drl

 </filename>

 <name>my scenario rules</name>

 <ruleFileType>DRL</ruleFileType>

 </rulesFile>

 </rulesFiles>

 <customLifeCycleClass>

 com.hp.uca.ebc.enrichmentexample.ExtendedLifeCycle

 </customLifeCycleClass>

 </scenario>

</scenarios>

Step3: Extend the Alarm object if necessary

In order to ease the rule writing, it may be easier to store the enrichment information

in some dedicated alarm object attributes.

In such case the Alarm objects (Alarm, AlarmDeletion, AlarmAttributeValueChange

and AlarmStateChange) can be extended.

Example of Alarm extension :

package com.hp.uca.ebc.enrichmentexample;

import javax.xml.bind.annotation.XmlRootElement;

import org.neo4j.graphdb.Relationship;

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmHelper;

@XmlRootElement

public class EnrichedAlarm extends Alarm {

40

 /**

 * New Alarm field

 */

 private String location;

 public EnrichedAlarm() {

 super();

 }

 public EnrichedAlarm (Alarm alarm) {

 super(alarm);

 }

 @Override

 public EnrichedAlarm clone() throws CloneNotSupportedException

 {

 EnrichedAlarm newAlarm = (EnrichedAlarm) super.clone();

 newAlarm.location = this.location;

 return newAlarm;

 }

 public String getLocation() {

 return location;

 }

 public void setLocation(String location) {

 this.location = location;

 }

 @Override

 public String toFormattedString() {

 StringBuffer toStringBuffer=

AlarmHelper.toFormattedStringBuffer(this);

 AlarmHelper.addFormatedItem(toStringBuffer, “Location:”,

getLocation());

 return toStringBuffer.toString();

 }

}

Example of LifeCycleAnalysis Extension using Alarm

extension:

package com.hp.uca.ebc.enrichmentexample;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

import com.hp.uca.common.trace.LogHelper;

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmCommon;

import com.hp.uca.expert.lifecycle.LifeCycleAnalysis;

import com.hp.uca.expert.scenario.Scenario;

public class ExtendedLifeCycle extends LifeCycleAnalysis {

 private static Log log =

 LogFactory.getLog(ExtendedLifeCycle.class);

 public ExtendedLifeCycle (Scenario scenario) {

41

 super(scenario);

 }

 @Override

 public AlarmCommon onAlarmCreationProcess(Alarm alarm) {

 LogHelper.enter(log, "onAlarmCreationProcess()");

 EnrichedAlarm enrichedAlarm = new EnrichedAlarm (alarm);

 // put the Alarm Enrichment Code here !!

 // enrichedAlarm.setLocation(“a location”);

 LogHelper.exit(log, "onAlarmCreationProcess()");

 return enrichedAlarm;

 }

}

4.2 Developing the scenario rules

Rules files are files containing correlation rules interpreted by the Drools inference

engine of the scenario.

The Drool Expert engine used in UCA for EBC has its own rule language. The rule file

content must comply with this language.

 Please refer to Drools Expert guide, Chapter 5 The Rule Language for a

description of the language: http://www.jboss.org/drools/documentation

Important note

Drools keywords for inserting, updating, and deleting objects in Working Memory (i.e.

insert, update, retract) MUST NOT be used directly when developing UCA-EBC

rules. This is for working memory integrity, and due to the locking mechanism

implemented within the UCA-EBC framework.

 Instead of using insert(myObject) directly, you should use

theScenario.getSession().insert(myObject) from Drools files or

ScenarioThreadLocal.getScenario().getSession().insert(myO

bject) from Java code

 Instead of using update(myObject) directly, you should use

theScenario.getSession().update(myObject) from Drools files or

ScenarioThreadLocal.getScenario().getSession().update(myO

bject) from Java code

 Instead of using retract(myObject) directly, you should use

theScenario.getSession().retract(myObject) from Drools files or

ScenarioThreadLocal.getScenario().getSession().retract(my

Object) from Java code

The ScenarioThreadLocal class is located in the

com.hp.uca.expert.scenario package.

Also, all timer based keywords should be avoided: duration, timer, calendar.

On top of the basic rule language syntax, additional operators are available to deal

with time constraints:

Temporal operator: see Drools Fusion guide, Chapter 2.4. Temporal Reasoning

http://www.jboss.org/drools/documentation

42

Sliding Time Window Feature: see Drools Fusion guide, Chapter 2.6. Sliding Time

Window

 See http://www.jboss.org/drools/documentation for more information on how to

create rules that deal with time constraints.

Note

To use the sliding time window feature, objects in working memory must be declared

as Event (and not as Fact).

 Please see Drools Fusion guide, Chapter 2.1. Events semantics at URL

http://docs.jboss.org/drools/release/5.3.0.Final/drools-fusion-

docs/html/ch02.html#d0e184, for more information on what events are compared to

facts and how to declare them.

4.2.1 Basics

Any rules file contains one or multiple rules, and has a ‘.drl’ extension.

Here are the different parts composing a rule file:

package package-name

imports

globals

functions

queries

rules

Package

The package name is optional, but it is recommended to partition your rules in

different packages for clarity.

Imports

The “imports” part, allows you to import Java classes that can be used in the Action or

Condition parts of a rule.

Important note

In UCA for EBC, importing the Alarm Java class (com.hp.uca.expert.alarm.Alarm) is

necessary in order to be able to use alarm attributes in rule conditions.

Globals

The ”globals” part is used to define variables that have a global scope (across rules).

The global variables have to be initialized by the application.

http://www.jboss.org/drools/documentation
http://docs.jboss.org/drools/release/5.3.0.Final/drools-fusion-docs/html/ch02.html#d0e184
http://docs.jboss.org/drools/release/5.3.0.Final/drools-fusion-docs/html/ch02.html#d0e184

43

Functions

Functions let you define functions that let you avoid repeating the same lines of code

over the entire rules file.

Queries

UCA for EBC does not currently provide support for queries.

Rules

The rules define the behavior of the expert system.

 Please refer to Drools Expert guide, for a full description of rule files:

http://www.jboss.org/drools/documentation

4.2.2 Sample rules on Alarm facts in CLOUD mode

In CLOUD mode, the UCA for EBC system inserts Alarm facts in Working Memory

and these facts remain infinitely in working memory unless they are specifically

removed in the rules (using the retract statement). This retract statement is generally

done in the right end side part of rules.

UCA for EBC contains an Alarm Java class (com.hp.uca.expert.alarm.Alarm) which

represents a “generic” Alarm as a fact. Rules can rely on attributes and services of

the Alarm object. For instance, testing a specific value of an attribute in the condition

part or setting a specific attribute of the Alarm in the action part.

To use the CLOUD mode, the scenario processing mode must be set to “CLOUD” in

the ValuePackConfiguration.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<valuePackConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

 name="myValuepackName" version="myValuepackVersion">

 <scenarios>

 <scenario name="myScenario">

 <filterFile>${uca.home}/myValuePack/myScenario/myScenario-

filter.xml</filterFile>

 <fireAllRulesPolicy>WATCHDOG</fireAllRulesPolicy>

 <globals>

 </globals>

 <processingMode>CLOUD</processingMode>

 <rulesFiles>

 <rulesFile>

 <filename>file:${uca.home}/myValuePack/myScenario/myScenarioRules.drl</

filename>

 <name>myRules</name>

 <ruleFileType>DRL</ruleFileType>

 </rulesFile>

 </rulesFiles>

 </scenario>

 </scenarios>

</valuePackConfiguration>

Here is a simple example that identifies “Similar alarms” (i.e. Alarms that have the

same alarm type, managed object and probable cause as another Alarm). This

example illustrates a case where the UCA for EBC engine is in CLOUD processing

mode.

The rule file called myScenarioRules.drl contains a rule, the “Similar Alarm” rule,

which performs the following processing:

http://www.jboss.org/drools/documentation

44

When an alarm ‘a’ is found in Working Memory (with a severity different from ‘clear’)

and if there is another not cleared (severity different from ‘clear’) alarm (this !=a) with

the same attribute values for the originatingManageEntity, alarmType and

probableCause properties then display a text.

package scenario.sample;

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

rule "Similar Alarm"

when

 a: Alarm(perceivedSeverity != PerceivedSeverity.CLEAR)

 a1: Alarm(

 this != a &&

 perceivedSeverity != PerceivedSeverity.CLEAR &&

 originatingManagedEntity == a.originatingManagedEntity &&

 alarmType == a.alarmType &&

 probableCause == a.probableCause)

 then

 System.out.println("Executing: "+drools.getRule().getName());

 System.out.println(a1.getIdentifier() + “similar to “+

a.getIdentifier());

end

Important note

Importing the Alarm Java class (com.hp.uca.expert.alarm.Alarm) is necessary.

Declaring the Alarm class as a Fact in the “declare” section of the rules file is not

mandatory however. By default, if they are not declared at all, objects are understood

to be Facts in Working Memory.

Another rule, the “Clear Alarm” rule focuses on cleared alarms:

rule "Clear Alarm"

when

 a: Alarm(perceivedSeverity != PerceivedSeverity.CLEAR)

 a1: Alarm(

 perceivedSeverity == PerceivedSeverity.CLEAR &&

 originatingManagedEntity == a.originatingManagedEntity &&

 alarmType == a.alarmType &&

 probableCause == a.probableCause &&

 timeInMilliseconds > a.timeInMilliseconds)

 then

 System.out.println("Executing: “+drools.getRule().getName());

 System.out.println(a1.getIdentifier() + " clears "+

a.getIdentifier());

end

45

Note

The drools object in the sample rule code above is a predefined Drools java object

that you can use in the Action part of a rule to get information on the rule itself among

other things. In our example, the method drools.getRule().getName(), called

from a rule's Action part, returns the name of the rule. See

http://docs.jboss.org/drools/release/5.3.0.Final/drools-expert-

docs/html_single/#d0e5989 for more information on the drools predefined object.

4.2.3 Sample rules on Alarm events in STREAM mode

In STREAM mode, UCA for EBC inserts Alarm events in Working Memory only for a

period of time. After that, Alarm events are automatically removed from working

memory.

To use the STREAM mode, the scenario processing mode must be set to “STREAM”

in the ValuePackConfiguration.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<valuePackConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

 name="myValuepackName" version="myValuepackVersion">

 <scenarios>

 <scenario name="myScenario">

 <filterFile>${uca.home}/myValuePack/myScenario/myScenario-

filter.xml</filterFile>

 <fireAllRulesPolicy>EACH_ACCESS</fireAllRulesPolicy>

 <globals>

 </globals>

 <processingMode>STREAM</processingMode>

 <rulesFiles>

 <rulesFile>

 <filename>file:${uca.home}/myValuePack/myScenario/myScenarioRules.drl</

filename>

 <name>myRules</name>

 <ruleFileType>DRL</ruleFileType>

 </rulesFile>

 </rulesFiles>

 </scenario>

 </scenarios>

</valuePackConfiguration>

Important note

Importing the Alarm Java class (com.hp.uca.expert.alarm.Alarm) is necessary.

Declaring the Alarm class as an Event in the “declare” section of the rules file is also

mandatory.

By default, if they are not declared at all, objects are understood to be Facts in

Working Memory. So, declaring Alarms as Events is mandatory.

 Please see Drools Fusion guide, Chapter 2.1. Events semantics at URL

http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-

docs/html/ch02.html#d0e184, for more information on what events are compared to

facts and how to declare them.



import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import java.text.SimpleDateFormat;

http://docs.jboss.org/drools/release/5.3.0.Final/drools-expert-docs/html_single/#d0e5989
http://docs.jboss.org/drools/release/5.3.0.Final/drools-expert-docs/html_single/#d0e5989
http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/html/ch02.html#d0e184
http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/html/ch02.html#d0e184

46

import java.util.Date;

import java.util.Locale;

declare Alarm

 @role(event)

 @timestamp(timeInMilliseconds)

 @expires(30m)

end

The above “Alarm” declaration specifies that:

 Alarms should be treated as Events in Working Memory, not Facts

 The timeInMilliseconds attribute (i.e. the EventTime attribute of the Alarm) is used

as the timestamp of the Alarm instead of the time when the Alarm Event is

actually inserted into working memory, which is the default timestamp for Events

in Working Memory. The timestamp of the Alarm Event plays a role when time

constraints are used in rules.

 Alarm Events expiration time is 30 minutes: the Alarm Events will be removed

from working memory automatically after 30 minutes.

Generally, rules in STREAM mode are used to identify patterns of Events (Events that

occurs in a specific order) during a specific time window.

The “Store not cleared Alarm” rule is an example of such a rule in STREAM mode. It

performs the following rules:

When an alarm ‘a’ is in Working Memory (an alarm on a “BOX” item with a severity

different from ‘clear’) and if there are no other alarms (matching specific criterias)

received within 2 seconds of alarm ‘a’ then the AdditionalInformation attribute of alarm

‘a’ is updated

rule "Store not cleared Alarm"

 when

 a: Alarm(originatingManagedEntity matches "BOX .*" &&

 perceivedSeverity != PerceivedSeverity.CLEAR)

 not Alarm(originatingManagedEntity ==

a.originatingManagedEntity &&

 perceivedSeverity == PerceivedSeverity.CLEAR &&

 this after[0s, 2s] a)

 then

 System.out.println("Executing rule:

"+drools.getRule().getName()+" on " + a.getAdditionalText());

 // Add the correlation time and rule name in the Additional

Information Field of the alarm

 Date now=new Date();

 SimpleDateFormat sdf = new SimpleDateFormat("EEE MMM dd

HH:mm:ss zzz yyyy",

 Locale.FRENCH);

 a.setAdditionalInformation("correlated by rule:

"+drools.getRule().getName()

 +" at " +sdf.format(now));

47

 // Store the alarm

 acmeActionManager.doDummyAction(a);

end

Note

The JBoss Drools documentation contains a lot of other examples of rules in both

STREAM (Drools Fusion) and CLOUD (Drools Expert) modes. As writing the

correlations rules is the major undertaking of creating a correlation project, it is highly

recommended to constantly refer to the Drools documentation when writing Rules.

 Please see http://www.jboss.org/drools/documentation for documentation on how

to write rules for Drools Expert and Drools Fusion.

4.2.4 Defining and using rule templates

 For information about rule templates, please refer to: [R2] HP UCA for Event

Based Correlation – Reference Guide

4.2.5 Introducing Java code in the rules

Drools rules files natively support Java code in the consequence part of the rules

(after the “then” keyword). All you have to do is import the packages/classes that you

need in the import section of the rules files and then write Java code referencing

these classes.

For example, you declare the java.util.Date class in the rules file:

template header

timeslot

package com.hp.uca.expert.vp.llef.grouping;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import java.util.regex.Matcher;

import java.util.regex.Pattern;

import com.hp.uca.expert.example.hibernate.AlarmDao;

import java.text.SimpleDateFormat;

import java.util.Date;

import java.util.Locale;

import java.util.ArrayList;

import java.util.Iterator;

import com.hp.uca.expert.scenario.ScenarioPublic;

import com.hp.uca.common.trace.LogHelper;

import com.hp.uca.expert.flag.Flag;

import com.hp.uca.expert.testmaterial.AbstractJunitIntegrationTest;

#declare any global variables here

global AlarmDao alarmDAO;

global ScenarioPublic theScenario;

Then you can create and use java.util.Date objects in the consequence part (after the

“then” keyword) of your rules:

// Description: find a root cause and the associated symptoms in a

given time window

// Constraints:

// - the root cause is not cleared during the time window

template "Update Root Cause with Symptoms no clearance received"

http://www.jboss.org/drools/documentation

48

rule "Update Root Cause with Symptoms no clearance received"

 when

 […]

 then

 LogHelper.enter(theScenario.getLogger(),

drools.getRule().getName(),rootAlarm.getOriginatingManagedEntity()+" -

"+ rootAlarm.getAdditionalText());

 // Add the correlation time and rule name in the

Additional Information Field of the alarm

 Date now=new Date();

 SimpleDateFormat sdf = new SimpleDateFormat("EEE MMM dd

HH:mm:ss zzz yyyy",

 Locale.FRENCH);

 String addInfo="correlated by rule:

"+drools.getRule().getName()

 +" at " +sdf.format(now) + "\nAssociated

sympthoms:\n";

The java.util.Date objects that you create are not stored in Working Memory unless

you do so explicitly using the “insert” statement.

Note

 For more information, please see the Drools documentation:

http://www.jboss.org/drools/documentation

4.3 Defining your own beans

Spring beans (corresponding to the external Java services that you want to use) are

defined in the context.xml of your Value Pack.

Here below is an example of a bean named “dbForwarder” that is relevant for

forwarding alarms into an SQL data store.

<bean id="dbForwarder"

class="com.hp.uca.expert.alarm.JDBCAlarmForwarder">

 <property name="alarmDao" ref="alarmDao" />

</bean>

You can define any bean in this file.

In order to retrieve the Java instance of that bean object, you will need to use

following API in your value pack:

Scenario.getValuePack().getApplicationContext()

In order to retrieve the Spring ApplicationContext that will allow you to retrieve your

bean.

With above example, typical code would have been:

 return (JDBCAlarmForwarder) theScenario.getValuePack()
 .getApplicationContext().getBean("dbForwarder");

http://www.jboss.org/drools/documentation

49

4.4 Executing external actions from the rules

External actions in rules are basically any action that either uses OSS Open

Mediation V7.0 framework services or external Java services.

There are two categories of external actions that we will describe in the following

sections:

 Standard external actions: these actions use the Action class, defined by

the UCA for EBC framework, to execute actions on the OSS Open Mediation

V7.0 framework (i.e. execute actions on any application connected to the

OSS Open Mediation V7.0 framework using a Channel Adapter)

 Calling services defined using Spring: Spring beans are defined in the

context.xml of your Value Pack and global variables that reference these

Spring beans are defined in your scenario(s) and used in your rule file(s).

 Forwarding alarms to external systems: Alarm forwarders are defined

using Spring beans and used from the rules to forward alarms to files, JMS

queues/topics, the OSS Open Mediation V7.0 framework, or any database

that has a JDBC interface

4.4.1 Standard external actions

Standard external actions are defined as actions that are to be executed by the OSS

Open Mediation V7.0 framework.

The UCA for EBC framework defines a Java class named Action that you can use to

perform standard external actions in rules, like for example executing a shell script or

a TeMIP directive on a TeMIP director.

In order to be able to use the methods of the Action class, you have to import the

class in the “import” part of the rule file:

package com.hp.uca.expert.action;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.CustomFields;

import com.hp.uca.expert.x733alarm.CustomField;

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import com.hp.uca.expert.x733alarm.NetworkState; // NOT_CLEARED, CLEARED

import com.hp.uca.expert.x733alarm.OperatorState; // NOT_ACKNOWLEDGED,

ACKNOWLEDGED, TERMINATED

import com.hp.uca.expert.x733alarm.ProblemState; // NOT_HANDLED,

HANDLED, CLOSED

import com.hp.uca.mediation.action.client.Action;

import com.hp.uca.mediation.action.jaxws.ActionResponseItem;

import java.util.ArrayList;

Then you can create Action objects in the “then” part of a rule as described in the

example below:

Display properties of any new alarm

rule "Any Not Acknowledged Alarm (Action)"

 when

 a: Alarm(operatorState == OperatorState.NOT_ACKNOWLEDGED)

 then

 System.out.println("[RULE " + drools.getRule().getName() + "] Found not

acknowledged alarm: identifier = " + a.getIdentifier() + ":");

 System.out.println(a.toFormattedString());

 // Acknowledging the Alarm

50

 Action action = new Action("TeMIP_AO_Directives_localhost ");

 action.addCommand("directiveName", "ACKNOWLEDGE");

 action.addCommand("entityName", a.getIdentifier());

action.addCommand("UserId", "UCA Expert");

theScenario.addAction(action); // Associate the action with the scenario

 System.out.println("Executing synchronous ACKNOWLEDGE directive on

alarm: " + a.getIdentifier());

 action.executeSync();

 System.out.println("Done:");

 System.out.println(" - ActionId = " + action.getActionId());

 System.out.println(" - ActionStatus = " + action.getActionStatus());

 System.out.println(" - ActionStatusExplanation = " +

action.getActionStatusExplanation());

 if (!action.getListActionResponseItem().isEmpty()) {

 System.out.println(" - ActionResponseItems = ");

 // Loop through all action response items

 for (ActionResponseItem item :

action.getListActionResponseItem()) {

 if (!item.getOutput().getEntry().isEmpty()) {

 // Loop through all output entries

 for (ActionResponseItem.Output.Entry entry :

item.getOutput().getEntry()) {

 System.out.println(" -> " +

entry.getKey() + " = " + entry.getValue());

 }

 }

 }

 }

 else {

 System.out.println(" - ActionResponseItems = none");

 }

 System.out.println(" - RawText = " + action.getRawTextAsString());

 end

Basically you need to write the following code in your rule:

Action action = new Action("TeMIP_AO_Directives_localhost");

This will create a new Action object. There are 2 ways to create a new Action object:

Either with the Action class constructor that takes an Action Reference parameter.

The value of this parameter must match an Action Reference defined in

${UCA_EBC_INSTANCE}/conf/ActionRegistry.xml file

Or with the Action class constructor that takes the NMS Name, Service Name, Mvp

Name and Mvp Version parameters. The Mvp Name and Version must match a

Mediation Value Pack MvpName and MvpVersion attributes in the

${UCA_EBC_INSTANCE}/conf/ActionRegistry.xml file

Here’s the content of a sample ActionRegistry.xml file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ActionRegistryXML xmlns="http://registry.action.mediation.uca.hp.com/">

 <MediationValuePack MvpName="temip"

 MvpVersion="1.0"

 url=http://localhost:26700/uca/mediation/action/ActionService?WSDL

brokerURL=" failover://tcp://localhost:10000">

 <Action actionReference="TeMIP_AO_Directives_localhost">

 <ServiceName>aoDirective</ServiceName>

 <NmsName>localTeMIP</NmsName>

 </Action>

 <Action actionReference="TeMIP_TT_Directives_localhost">

 <ServiceName>ttDirective</ServiceName>

 <NmsName>localTeMIP</NmsName>

 </Action>

 <Action actionReference="TeMIP_FlowManagement">

http://localhost:26700/uca/mediation/action/ActionService?WSDL

51

 <ServiceName>subscriptionManagement</ServiceName>

 <NmsName>localTeMIP</NmsName>

 </Action>

 </MediationValuePack>

 <MediationValuePack MvpName="exec"

 MvpVersion="1.0"

url="http://localhost:26700/uca/mediation/action/ActionService?WSDL"

brokerURL=" failover://tcp://localhost:10000">
 <Action actionReference="Exec_localhost">

 <ServiceName>commandsExecution</ServiceName>

 <NmsName>localhost</NmsName>

 </Action>

 </MediationValuePack>

</ActionRegistryXML>

 Please refer to [R2] HP UCA for Event Based Correlation – Reference Guide for

more information on how to use the Action class or configure the

ActionRegistry.xml file.

Please refer to [R6] Open Mediation Installation and Configuration Guide for more

information on how to configure OSS Open Mediation V7.0 to support the execution

of Actions.

Once you have created an Action object, you can specify the parameters that will

define what action to perform, in the following example a TeMIP directive:

 action.addCommand("directiveName", "ACKNOWLEDGE");

 action.addCommand("entityName", a.getIdentifier());

 action.addCommand("UserId", "UCA Expert");

Using the addCommand() method you can specify the key/value pairs to use as

parameters to the Action object. These parameters depend on the type of Action to

perform.

For acknowledging a TeMIP Alarm, you need to specify the key/value pairs as shown

above: specifying the UserId of the user acknowledging the alarm is optional, just like

in TeMIP.

Then, you need to associate the Action to the current Scenario so that the Action can

be properly processed:

theScenario.addAction(action);

Then, you need to execute the Action. Both synchronous and asynchronous actions

are possible. Only one of the following lines of code is necessary, depending on

whether you want to execute a synchronous or asynchronous action:

action.executeSync();

action.executeAsync(AODirectiveKey.ENTITY_NAME);

Synchronous actions are “blocking”. The action.executeSync() call will block the

execution of the rule until the action is completed. The whole rule engine for the

scenario is blocked while the action is being executed.

52

Asynchronous actions are “non blocking”. This is the reason why they are the

recommended method for executing actions. The action.executeAsync(…) call

doesn’t block the execution of the rule. The rules continue to be executed.

There’s a mandatory parameter to the action.executeAsync(…) method: the

synchronizationKey. This key indicates the name of the action command key that will

be used to synchronize asynchronous actions so that the order of asynchronous

actions referring to the same action command key/value pair is preserved.

The synchronizationKey parameter enables you to preserve some kind of order

among all the asynchronous actions triggered by your rules. By default (if you specify

Action.NO_SYNCHRONIZATION_KEY as the synchronization key) there is no order.

All asynchronous actions are executed in parallel by a pool of threads. There is no

guarantee that the asynchronous actions will be executed in the order in which they

were requested.

If you do not need asynchronous actions to be executed in any specific order, then

you can use Action.NO_SYNCHRONIZATION_KEY as the synchronization key when

calling the action.executeAsync(…) method.

On the other hand, if you need all asynchronous actions to be executed in the order

they are requested, you need to use a command key (specified with the

action.addCommand(key, value) method) that has the same value for all

asynchronous actions as the synchronization key.

If you need only groups of asynchronous actions to be executed in the order they are

requested, you need to use a command key (specified with the

action.addCommand(key, value) method) that has the same value for all

asynchronous actions of the same group as the synchronization key.

For example, for executing TeMIP AO Directives you can use the

AODirectiveKey.ENTITY_NAME as synchronization key:

...

Action action = new Action(“TeMIP_AO_Directives_localhost”);

action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET);

action.addCommand(AODirectiveKey.ENTITY_NAME, “OPERATION_CONTEXT

OC1 ALARM_OBJECT 155”);

action.addCommand(AODirectiveKey.ADDITIONAL_TEXT, “my text”);

theScenario.addAction(action)

...

action.executeAsync(AODirectiveKey.ENTITY_NAME);

...

In the example above, as long as you execute TeMIP AO Directives using the

action.executeAsync(AODirectiveKey.ENTITY_NAME) syntax, all TeMIP AO

Directives actions on the same entity will be executed in the order that they are

called.

If you do not want to use the synchronization key feature, you can pass null or

Action.NO_SYNCHRONIZATION_KEY to the executeAsync(…) method:

...

action.executeAsync(Action.NO_SYNCHRONIZATION_KEY);

...

53

Note

 For more information on synchronous and asynchronous actions (including how

to use synchronization keys for asynchronous actions), please refer to: [R2] HP UCA

for Event Based Correlation – Reference Guide.

Once the action has been performed on the Network Management System the result

of the execution of the action can be retrieved using the following methods:

action.getActionStatus();

action.getActionStatusExplanation();

Other methods of the Action class provide even more detailed information on the

result of the execution of the action. See the Java Documentation for the Action class

for more information.

4.4.1.1 Writing Actions for the OSS Open Mediation TeMIP Value Pack

The delivered value pack examples come with a lib/ directory containing the TeMIP

mapper jar file:

lib/uca-mediation-temip-mvp-mapper-keys-3.1.jar

This will allow you to benefit from java classes that have been designed to help you

write rules that execute TeMIP Alarm Object (AO) directives or TeMIP Trouble Ticket

(TT) directives (provided the OSS Open Mediation V7.0 TeMIP Value Pack is

deployed).

To do so, the first step is to add the following import statement in your rules file:

import com.hp.uca.temip.mvp.mapper.*;

Below is the list of classes that you can use to help you write rules (all AO classes are

defined in the com.hp.uca.temip.mvp.aodirective.mapper package, while TT classes

are defined in the com.hp.uca.temip.mvp.ttdirective.mapper package).

There are 2 sets of classes. The first set contains classes that define constants that

should be used in the “key” part when using the Action.addCommand(key, value)

method:

Class name Class description

AODirectiveKey in

com.hp.uca.temip.mvp.aodire

ctive.mapper package

Contains string constants that list all the possible

values for keys when using the

Action.addCommand(key, value) method on AO

Directives

TTDirectiveKey in

com.hp.uca.temip.mvp.ttdirect

ive.mapper package

Contains string constants that list all the possible

values for keys when using the

Action.addCommand(key, value) method on TT

Directives

Table 4 - Java helper classes for OSS Open Mediation TeMIP Value Pack

The most important constant in the AODirectiveKey class is the

AODirectiveKey.DIRECTIVE_NAME (or the TTDirectiveKey.DIRECTIVE_NAME in the

54

TTDirectiveKey class depending on whether you want to execute AO or TT

directives).

Using this constant, you can define the name of the TeMIP Alarm Object (or Trouble

Ticket) directive that you wish to execute:

...

Action action = new Action(“TeMIP_AO_Directives_localhost”);

action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET);

...

theScenario.addAction(action);

...

action.executeAsync(AODirectiveKey.ENTITY_NAME);

...

The other constants define the names of AO (or TT) Directive parameters or

attributes that you can use. For example:

...

Action action = new Action(“TeMIP_AO_Directives_localhost”);

action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET);

action.addCommand(AODirectiveKey.ENTITY_NAME, “OPERATION_CONTEXT

OC1 ALARM_OBJECT 155”);

action.addCommand(AODirectiveKey.ADDITIONAL_TEXT, “my text”);

theScenario.addAction(action);

...

action.executeSync();

...

The second set contains classes that define constants that should be used in the

“value” part when using the Action.addCommand(key, value) method.

Below is the list of such classes for Alarm Object directives (besides the

AODirectiveKey class that is explained above):

Class name Class description

AlarmClassType Contains string constants that list all the possible

values for the Alarm_Class attribute (of the SET

directive for example). These constants should be

used in the value part when using the

Action.addCommand(key, value) method

AlarmObjectProblemStatus Contains string constants that list all the possible

values for the Problem_Status attribute (of the

DUMP or SET directives for example)

AlarmObjectState Contains string constants that list all the possible

values for the State attribute (of the DUMP or SET

directives for example) and the Previous_State

attribute (of the SET directive for example)

55

AlarmOriginType Contains string constants that list all the possible

values for the Alarm_Origin attribute (of the SET

directive for example)

AlarmType Contains string constants that list all the possible

values for the Alarm_Type attribute (of the CREATE,

DUMP or SET directives for example)

AODirective Contains string constants that list all the possible

values for Alarm Object directive names

(ACKNOWLEDGE, ADDPARENT, ARCHIVE, … for

example)

AutomaticOperationsSeverit

y

Contains string constants that list all the possible

values for the Automatic_Terminate_On_Close

attribute (of the SET directive for example)

DeleteCondition Contains string constants that list all the possible

values for the State attribute (of the DELETE

directive for example)

EntityScope Contains string constants that list all the possible

values for the entityScope attribute (of any directive)

EventID Contains string constants that list all the possible

values for the EventID attribute (of the GETEVENT

directive for example)

Partition Contains string constants that list all the possible

values for the Partition attribute (of any directive)

ProbableCause Contains string constants that list all the possible

values for the Probable_Cause attribute (of the

CREATE, DUMP or SET directives for example)

SecurityAlarmCause Contains string constants that list all the possible

values for the Security_Alarm_Cause attribute (of

the CREATE, DUMP or SET directives for example)

Severity Contains string constants that list all the possible

values for the Severity (of the ARCHIVE directive for

example), Perceived_Severity (of the CREATE,

DELETE, DUMP, or SET directives for example), or

Original_Severity (of the SET directive for example)

attributes

SummarizeScope Contains string constants that list all the possible

values for the Scope attribute (of the DUMP directive

for example)

TrendIndication Contains string constants that list all the possible

values for the Trend_Indication attribute (of the

CREATE or SET directives for example)

Table 5 - AO directives helper classes

56

Below is the list of such classes for Trouble Ticket (TT_SERVER) directives (besides

the TTDirectiveKey class that is explained above):

Class name Class description

AttributeId Contains string constants that list all the possible values

for the AttributeId attribute (of the SHOW directive).

These constants should be used in the value part when

using the Action.addCommand(key, value) method

AutoResponseType Contains string constants that list all the possible values

for the Type attribute (of the ASSOCIATETT, CANCELTT,

CLOSETT, CREATETT or DISSOCIATETT directives)

Partition Contains string constants that list all the possible values

for the Partition attribute (of any directive)

RegisterOperationType Contains string constants that list all the possible values

for the Operation attribute (of the REGISTER directive)

TTDirective Contains string constants that list all the possible values

for Trouble Ticket directive names (ASSOCIATETT,

CANCELTT, CLEARALL, CLOSETT, CREATE … for

example)

Table 6 - TT directives helper classes

The most important class in this set is the AODirective class (or the TTDirective class

of Trouble Ticket directives) that lists all possible Alarm Object directive names

(ACKNOWLEDGE, ADDPARENT, ARCHIVE, … for example):

...

Action action = new Action(“TeMIP_AO_Directives_localhost”);

action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET);

...

theScenario.addAction(action);

...

action.executeAsync(AODirectiveKey.ENTITY_NAME);

...

The other classes contain constants that define the list of possible value for AO

Directive (or TT Directive) parameters or attributes.

...

Action action = new Action(“TeMIP_AO_Directives_localhost”);

action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET);

action.addCommand(AODirectiveKey.ENTITY_NAME, “OPERATION_CONTEXT

OC1 ALARM_OBJECT 155”);

action.addCommand(AODirectiveKey.TREND_INDICATION,

TrendIndication.LESSSEVERE);

57

action.addCommand(AODirectiveKey.PROBABLE_CAUSE,

ProbableCause.LOSSOFSIGNAL);

theScenario.addAction(action);

...

action.executeSync();

...

You can use Eclipse IDE’s automatic completion feature (the keyboard shortcut for

this feature is: CTRL+<Space>) to discover the constants defined in each of the

classes mentioned above.

4.4.1.2 Writing Actions for the OSS Open Mediation Exec Value Pack

The delivered value pack examples come with a lib directory containing the TeMIP

mapper jar file:

lib/uca-mediation-exec-mvp-mapper-keys-3.1.jar

To create an Exec Action for the OSS Open Mediation Exec Value Pack you must

first add the following import statement in your rule file:

import com.hp.uca.exec.mvp.mapper.*;

This will allow you to benefit from java classes that have been designed to help you

write rules that execute command/executables/shell scripts (provided the OSS Open

Mediation V7.0 Exec Value Pack is deployed).

Below is the list of classes that you can use to help you write rules (all classes are

defined in the com.hp.uca.exec.mvp.mapper package):

Class name Class description

ExecActionKey Contains string constants that list all the possible values for

keys when using the Action.addCommand(key, value)

method

Table 7 - Java helper classes for OSS Open Mediation Exec Value Pack

Here’s an example of the ExecActionKey class use:

...

Action action = new Action("Exec_localhost");

action.addCommand(ExecActionKey.COMMAND, "ping");

action.addCommand(ExecActionKey.ARGUMENT, "127.0.0.1");

...

theScenario.addAction(action);

...

action.executeSync();

...

58

4.4.2 Calling services defined using Spring

Sometimes the actions performed in the THEN part of rules will be calls to

nonstandard Java package services such as Hibernate, JMS… These services

generally need to be initialized and the Spring configuration file of the Value Pack,

context.xml, is one way to do it.

In order to be able to use these services from Drools rules files, Drools global

variables need to be defined that reference the Spring beans defined in the

context.xml file of the value pack.

Any service defined using Spring can be “retrieved” in any rule file using the “global”

keyword.

Below is an excerpt from the Drools Expert documentation that explains the concept

of global variables:

[…] With global you define global variables. They are

used to make application objects available to the rules.

Typically, they are used to provide data or services that

the rules use, especially application services used in

rule consequences, and to return data from the rules,

like logs or values added in rule consequences, or for

the rules to interact with the application, doing

callbacks. Globals are not inserted into the Working

Memory, and therefore a global should never be used to

establish conditions in rules except when it has a

constant immutable value. The engine cannot be notified

about value changes of globals and does not track their

changes. Incorrect use of globals in constraints may

yield surprising results - surprising in a bad way.

If multiple packages declare globals with the same

identifier they must be of the same type and all of them

will reference the same global value. […]

 Please refer to the [R2] HP UCA for Event Based Correlation – Reference Guide

for more information about the Spring Framework integration with UCA for EBC.

First, in order to be able to use Spring beans in rules files, the Spring beans must be

declared in the context.xml file of the Value Pack. Then global variable entries

must be defined for each Spring bean in the ValuePackConfiguration.xml file

as shown below:

<?xml version="1.0" encoding="UTF-8"?>

<valuePackConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

 name="__PROJECT_NAME__" version="__PROJECT_VERSION__">

 <scenarios>

 <scenario name="Grouping-Scenario">

 <filterFile>src/main/resources/com/hp/uca/expert/vp/llef/groupin

g/grouping-filter.xml</filterFile>

 <fireAllRulesPolicy>EACH_ACCESS</fireAllRulesPolicy>

 <globals>

 <global>

 <key>alarmDAO</key>

 <value>alarmDAO</value>

 </global>

 </globals>

59

 <processingMode>STREAM</processingMode>

 <rulesFiles>

 <rulesFile>

 <filename>file:./src/main/resources/com/hp/uca/expert/vp/llef/gr

ouping/grouping-template.drl</filename>

 <name>grouping</name>

 <paramsFilename>file:./src/main/resources/com/hp/uca/expert/vp/l

lef/grouping/grouping-params.xml</paramsFilename>

 <ruleFileType>XDRL</ruleFileType>

 </rulesFile>

 </rulesFiles>

 </scenario>

 </scenarios>

</valuePackConfiguration>

The “globals” XML tag in the ValuePackConfiguration.xml file defines a list (i.e.

a Java map) of beans that will be available in your rules file(s) as global variables.

The following piece of code illustrates de use of external Java libraries from rule files:

package com.hp.uca.expert.example.hibernate;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

…

import com.hp.uca.expert.example.hibernate.AlarmDao;

…

#declare any global variables here

global AlarmDao alarmDAO;

…

template "Root Cause without Symptom"

rule "Root Cause without Symptom"

 when

 …

Then

…

 // Store the root cause alarm

alarmDAO.save(fatherAlarm);

…

4.4.3 Forwarding alarms to external systems

A common use case is when you want to forward alarms being processed by a

scenario to external systems/applications.

You might want to create an XML file containing some alarms that you want to export

from the scenario so that you can import these alarms on an external

system/application.

Alternatively, if the external system/application that you want to export alarms to has

a JMS queue/topic that can be used to import alarms, then you might want to export

alarms directly to this JMS queue/topic.

Finally, if the external system/application is accessible from OSS Open Mediation

V7.0 via a specific Channel Adapter, then you might want to export the alarms directly

to the OSS Open Mediation V7.0 bus.

Java class

import Definition of

global variables

External action

using global

variable

60

The UCA for EBC framework defines standard classes that enable you forwarding

Alarm objects (or collections thereof) located in Drools Working Memory or that have

been defined in the rules of a scenario to either a file, a JMS queue/topic or OSS

Open Mediation V7.0.

The following Java classes are part of the UCA for EBC framework:

1. To forward alarms to a file:

com.hp.uca.expert.alarm.FileAlarmForwarder

2. To forward alarms to a JMS queue/topic:

com.hp.uca.expert.alarm.JMSAlarmForwarder

3. To forward alarms to OSS Open Mediation V7.0:

com.hp.uca.expert.alarm.OpenMediationAlarmForwarder

4. To persist alarms into a DB store:

com.hp.uca.expert.alarm.JDBCAlarmForwarder

 Please refer to UCA for EBC Javadoc for complete information on these classes.

The Javadoc for UCA for EBC is located both at %UCA_EBC_DEV_HOME%\apidoc

and at ${UCA_EBC_HOME}/apidoc.

One way to forward alarms is to define an AlarmForwarder (either

FileAlarmForwarder, JMSAlarmForwarder, OpenMediationAlarmForwarder or

JDBCAlarmForwarder) bean in the Spring configuration file of the scenario

(context.xml).

Note

Please note that the recommended way for defining alarm forwarders is to define

them in the Spring configuration file of the scenario: context.xml.

A Thread is associated with each alarm forwarder (either FileAlarmForwarder,

JMSAlarmForwarder, OpenMediationAlarmForwarder, or JDBCAlarmForwarder). This

thread is automatically started when the associated AlarmForwarder object is created.

If the AlarmForwarder has been created using the recommended method (in the

Spring configuration file of the scenario: context.xml) then the associated thread

will be automatically stopped when the bean associated with the alarm forwarder is

destroyed. Otherwise you need to use the requestStop() method to explicitly stop the

thread associated with the alarm forwarder when you don't need it anymore.

The thread associated with an alarm forwarder provides compression to improve

performance. Alarms may not be forwarded right away. They are accumulated in a

queue for the duration of the compression period (by default 1 second) so that they

can be forwarded as a batch of alarms at the end of the compression period (by

default every second). You can change the value of the compression period using the

setCompressionPeriod(long) method. If you set the compression period to 0

milliseconds, no compression will be performed.

Here’s an example of defining such a bean in the context.xml file of a scenario:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:jms="http://www.springframework.org/schema/jms"

61

 xmlns:p="http://www.springframework.org/schema/p"

xmlns:context="http://www.springframework.org/schema/context"

 xmlns:amq="http://activemq.apache.org/schema/core"

xmlns:util="http://www.springframework.org/schema/util"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context.xsd

 http://www.springframework.org/schema/jms

http://www.springframework.org/schema/jms/spring-jms.xsd

 http://activemq.apache.org/schema/core

http://activemq.apache.org/schema/core/activemq-core.xsd">

 <context:annotation-config />

 <bean name="forwardedAlarmsFile" class="java.io.File">

 <constructor-arg index="0"><value>forwarded-

alarms.xml</value></constructor-arg><!-- String pathname -->

 </bean>

 <bean name="fileAlarmForwarder"

class="com.hp.uca.expert.alarm.FileAlarmForwarder" depends-

on="forwardedAlarmsFile">

 <constructor-arg index="0"><ref

bean="forwardedAlarmsFile"/></constructor-arg><!-- File file -->

 <constructor-arg

index="1"><value>false</value></constructor-arg><!-- boolean overwrite

-->

 </bean>

 <bean name="jmsAlarmForwarder"

class="com.hp.uca.expert.alarm.JMSAlarmForwarder">

 <constructor-arg

index="0"><value>vm://localhost?broker.persistent=false</value></constr

uctor-arg><!-- String brokerURL -->

 <constructor-arg

index="1"><value>jms.alarm.forwarder.test.queue</value></constructor-

arg><!-- String destinationName -->

 <constructor-arg

index="2"><value>true</value></constructor-arg><!-- boolean isQueue -->

 </bean>

 <bean name="openMediationAlarmForwarder"

class="com.hp.uca.expert.alarm.OpenMediationAlarmForwarder">

 <constructor-arg index="0"><value>UCA-

EBC_remotesystem</value></constructor-arg><!-- String actionReference -

->

 <constructor-arg index="1"><value>Alarm Flow from UCA

EBC</value></constructor-arg><!-- String alarmFlowName -->

 </bean>

</beans>

Figure 21 - Defining AlarmForwarder beans in the context.xml file

The highlighted portion of the context.xml file shows the definition of a

FileAlarmForwarder bean that will be used in the rule files of a scenario to forward

alarms to an XML file.

Once the context.xml file has been properly set up, you need to define global

variable entries in the ValuePackConfiguration.xml file for each Spring bean

that you want to access from the rules as shown below:

<?xml version="1.0" encoding="UTF-8"?>

<valuePackConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

 name="__PROJECT_NAME__" version="__PROJECT_VERSION__">

62

 <scenarios>

 <scenario name="alarmforwarder">

<filterFile>src/main/resources/valuepack/alarmforwarder/filters.xml</fi

lterFile>

 <fireAllRulesPolicy>EACH_ACCESS</fireAllRulesPolicy>

 <globals>

 <global>

 <key>fileAlarmForwarder</key>

 <value>fileAlarmForwarder</value>

 </global>

 <global>

 <key>jmsAlarmForwarder</key>

 <value>jmsAlarmForwarder</value>

 </global>

 <global>

 <key>openMediationAlarmForwarder</key>

 <value>openMediationAlarmForwarder</value>

 </global>

 </globals>

 <processingMode>STREAM</processingMode>

 <rulesFiles>

 <rulesFile>

 <filename>file:./src/main/resources/valuepack/alarmforwarder/ala

rmforwarder.drl</filename>

 <name>alarmforwarder rules</name>

 <ruleFileType>DRL</ruleFileType>

 </rulesFile>

 </rulesFiles>

 </scenario>

 …

 </scenarios>

</valuePackConfiguration>

Figure 22 - Defining AlarmForwarder globals in the
ValuePackConfiguration.xml file

The highlighted portion of the ValuePackConfiguration.xml file shows the

definition of a fileAlarmForwarder global variable referencing the fileAlarmForwarder

Spring bean defined in the context.xml file that will be used in the rule files of a

scenario to forward alarms to an XML file.

Once the ValuePackConfiguration.xml file has been properly set up, you need

to make some modifications to the rule files where you want to use the

fileAlarmForwarder global variable:

Import the proper Java class:

com.hp.uca.expert.alarm.FileAlarmForwarder for a FileAlarmForwarder

com.hp.uca.expert.alarm.JMSAlarmForwarder for a JMSAlarmForwarder

com.hp.uca.expert.alarm.OpenMediationAlarmForwarder for an

OpenMediationAlarmForwarder

Declare the global variables (defined in the ValuePackConfiguration.xml file)

that you want to use in the rule file

Below is an example of how to import the proper Java class, and declare the global

variables that you want to use:

package com.hp.uca.expert.vp.alarmforwarder;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmDeletion;

import com.hp.uca.expert.alarm.AlarmStateChange;

import com.hp.uca.expert.alarm.AlarmAttributeValueChange;

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import java.util.ArrayList;

import com.hp.uca.expert.scenario.Scenario;

63

import com.hp.uca.common.trace.LogHelper;

import com.hp.uca.expert.flag.Flag;

import com.hp.uca.expert.testmaterial.AbstractJunitIntegrationTest;

import com.hp.uca.expert.alarm.FileAlarmForwarder;

import com.hp.uca.expert.alarm.JMSAlarmForwarder;

import com.hp.uca.expert.alarm.OpenMediationAlarmForwarder;

#declare any global variables here

global Scenario theScenario;

global FileAlarmForwarder fileAlarmForwarder;

global JMSAlarmForwarder jmsAlarmForwarder;

global OpenMediationAlarmForwarder openMediationAlarmForwarder;

declare Alarm

 @role(event)

 @timestamp(timeInMilliseconds)

 @expires(30m)

end

Figure 23 - Declaring the use of an AlarmForwarder global variable in a

rule file

Once the proper Java classes have been imported and the global variables declared,

you can just use global variable to write Alarms (or collections of Alarms) to an XML

file (the one specified in the context.xml file):

…

import com.hp.uca.expert.alarm.FileAlarmForwarder;

import com.hp.uca.expert.alarm.JMSAlarmForwarder;

import com.hp.uca.expert.alarm.OpenMediationAlarmForwarder;

#declare any global variables here

global Scenario theScenario;

global FileAlarmForwarder fileAlarmForwarder;

global JMSAlarmForwarder jmsAlarmForwarder;

global OpenMediationAlarmForwarder openMediationAlarmForwarder;

declare Alarm

 @role(event)

 @timestamp(timeInMilliseconds)

 @expires(30m)

end

Forward any alarm received

rule "Forward any alarm received"

no-loop

 when

 $alarm : Alarm()

 then

 LogHelper.enter(theScenario.getLogger(),

drools.getRule().getName());

 // Forward the alarm to a file, jms queue/topic or OSS Open

Mediation

 fileAlarmForwarder.write($alarm);

 // Forward the alarm to a jms queue or topic

 jmsAlarmForwarder.write($alarm);

 // Forward the alarm to OSS Open Mediation

 openMediationAlarmForwarder.write($alarm);

 // Retract the alarm

 theScenario.getLogger().info("Retracting: \n"+

$alarm.toFormattedString());

 theScenario.getSession().retract($alarm);

 LogHelper.exit(theScenario.getLogger(),

drools.getRule().getName());

end

…

64

Figure 24 - Using an AlarmForwarder global variable to write Alarms to

an XML file

The XML file generated by the FileAlarmForwarder is fully compatible with the XML

schema for UCA for EBC Alarms defined at ${UCA_EBC_HOME}/schemas/uca-

expert-alarm.xsd. For example, the generated XML file containing the alarms

can be used as input to the ${UCA_EBC_HOME}/bin/uca-ebc-injector

command-line tool.

The JMSAlarmForwarder on the other hand can be used to forward alarms directly to

a JMS queue/topic, for example the Alarm input queue of a UCA for EBC server

(which is implemented as a JMS Topic). You can use the following values to forward

alarms to a UCA for EBC alarm input queue:

brokerURL: JMSAlarmForwarder.DEFAULT_UCA_EBC_BROKER_URL (the value

of this constant is “tcp://localhost:61666”)

destinationName: JMSAlarmForwarder.

DEFAULT_UCA_EBC_ALARMS_TOPIC_NAME (the value of this constant is

“com.hp.uca.ebc.alarms”)

isQueue: false (because the UCA for EBC alarm input queue is in fact a JMS topic,

not a JMS queue)

Finally the OpenMediationAlarmForwarder can be used to forward alarms to OSS

Open Mediation V7.0. In order to use an OpenMediationAlarmForwarder, you must

first create an action reference in the

${UCA_EBC_INSTANCE}/conf/ActionRegistry.xml file that will define how to

connect to the UCA for EBC Channel Adapter on OSS Open Mediation V7.0, and

how to reach the Channel Adapter of the system/application that you target.

Below is an example of an action reference defined in the ActionRegistry.xml

file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ActionRegistryXML

xmlns="http://registry.action.mediation.uca.hp.com/">

 <MediationValuePack MvpName="ApplicationX" MvpVersion="1.1"

 url="http://localhost:26700/uca/mediation/action/ActionService?W

SDL"

 brokerURL="failover://tcp://localhost:10000">

 <Action actionReference="ApplicationX_remotesystem">

 <ServiceName>applicationX-1.1</ServiceName>

 <NmsName>remotesystem</NmsName>

 </Action>

 </MediationValuePack>

</ActionRegistryXML>

In the sample ActionRegistry.xml file above, an action reference has been

defined for an “ApplicationX” application on a remote system connected to OSS Open

Mediation V7.0 via an ApplicationX Channel Adapter (ApplicationX is a fictitious

application).

The brokerURL attribute must match the URL of the ActiveMQ broker defined for the

OSS Open Mediation V7.0 that you target. The hostname in the URL must match the

hostname of the system where OSS Open Mediation V7.0 is installed. By default the

port number used for the ActiveMQ broker on OSS Open Mediation V7.0 container

instance 0 is 10000.

To verify what port number is used for your OSS Open Mediation V7.0 container

instance, please check the value of the activemq.port property in the
/var/opt/openmediation-V60/containers/instance-<instance

number>/conf/servicemix.properties file.

65

The following JMS properties will be set for the alarms being forwarded to OSS Open

Mediation V7.0. These properties can be used by consumer Channel Adapters to

filter the alarms that they’re interested in among all alarms pushed by various

Channel Adapters to the OSS Open Mediation V7.0 alarms JMS topic:

JMS Property Name Value

NOMOriginalProvider set to the value of ${ca.name} in UCA

EBC CA

NOMOriginalProviderEnd

point

“UCA EBC version on hostname”

NOMOriginalProviderPor

t

not set

NOMOriginalProviderHos

t

set to the value of ${nom_hostname}

in UCA EBC CA

NOMOriginalProviderCon

tainerInstanceNumber

set to the value of

${sys.nom_instance_number} in UCA

EBC CA

NOMType set to

"http://hp.com/openmediation/alarms/2

011/08" in UCA EBC CA

NOMActionMessageType not set (this is not an action message,

this is an alarm message)

NOMActionEntityHint not set (this is not an action message,

this is an alarm message)

NOMActionNameHint not set (this is not an action message,

this is an alarm message)

NOMFinalConsumer the value of the “serviceName”

attribute of the action reference (in the

ActionRegistry.xml file) associated with

the OpenMediationAlarmForwarder

object

NOMFinalConsumerEndp

oint

"mvpName mvpVersion on

nmsName", where the names in italics

are XML entities/attributes of the

action reference (in the

ActionRegistry.xml file) associated with

the OpenMediationAlarmForwarder

object

NOMFinalConsumerPort "alarmFlowName" associated with the

OpenMediationAlarmForwarder object

or "UCA EBC Alarms" by default. You

can set the FlowName attribute when

you create the

OpenMediationAlarmForwarder object

NOMFinalConsumerHost the value of the "nmsName" XML

entity of the action reference (in the

ActionRegistry.xml file) associated with

the OpenMediationAlarmForwarder

object

66

NOMFinalConsumerCons

tainerInstanceNumber

not set

Table 8 - JMS properties set for alarms being forwarded to OSS Open

Mediation

4.5 Making useful logs

The UCA for EBC product provides an advanced logging mechanism that is able to

trace specific rule processing for each Scenario.

The UCA for EBC Administration GUI fully supports this logging mechanism.

Note

For more information on how to troubleshoot scenarios using the UCA for EBC

Administration GUI, please see: [R7] Unified Correlation Analyzer for Event Based

Correlation – User Interface Guide, chapter Troubleshooting UCA for event based

Correlation

To take benefits from this mechanism, the rule developer must use the logger

provided by the UCA for EBC framework for each scenario by calling the following

method:

 theScenario.getLogger() from Drools files

 ScenarioThreadLocal.getScenario().getLogger() from Java code

The ScenarioThreadLocal class is located in the

com.hp.uca.expert.scenario package.

The getLogger() method provides access to a standard

org.apache.log4j.Logger object. Consequently, all standard log4j Logger

methods are available to better qualify the level of information needed (for example

info(), debug(), warn(), etc…).

The following piece of code demonstrates how to use the UCA for EBC scenario

logger to log messages from a Drools rule file:

67

package com.hp.uca.expert.vp.sample;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.CustomFields;

import com.hp.uca.expert.x733alarm.CustomField;

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import com.hp.uca.expert.x733alarm.NetworkState; // NOT_CLEARED, CLEARED

import com.hp.uca.expert.x733alarm.OperatorState; // NOT_ACKNOWLEDGED,

ACKNOWLEDGED, TERMINATED

import com.hp.uca.expert.x733alarm.ProblemState; // NOT_HANDLED, HANDLED, CLOSED

import com.hp.uca.expert.scenario.Scenario;

import com.hp.uca.common.trace.LogHelper;

#declare any global variables here

global Scenario theScenario;

rule "Any new Acknowledged Alarm"

 when

 a: Alarm(operatorState == OperatorState.ACKNOWLEDGED)

 then

 LogHelper.enter(theScenario.getLogger(), drools.getRule().getName());

 theScenario.getLogger().info("[RULE " + drools.getRule().getName() + "] Found

new acknowledged alarm: identifier = " + a.getIdentifier()+ ":");

 theScenario.getLogger().debug(a.toFormattedString());

 LogHelper.exit(theScenario.getLogger(), drools.getRule().getName());

end

rule "Any new Terminated Alarm"

 when

 a: Alarm(operatorState == OperatorState.TERMINATED)

 then

 LogHelper.enter(theScenario.getLogger(), drools.getRule().getName());

 theScenario.getLogger().info("[RULE " + drools.getRule().getName() + "] Found

new terminated alarm: identifier = " + a.getIdentifier() + ":");

 theScenario.getLogger().debug(a.toFormattedString());

 LogHelper.exit(theScenario.getLogger(), drools.getRule().getName());

end

Figure 25 - Scenario logger example

Note

 Please refer to Chapter 5.10 “Scenario Loggers” in the [R2] HP UCA for Event

Based Correlation – Reference Guide for more information on how to use Scenario

Loggers.

4.6 Creating JUnit Tests

Developing Value Packs involves creating correlation rules and writing code. In any

case, it is highly recommended to unit test your rules and code.

To help you in that regard, the ‘skeleton’ project (the project created by the UCA

Eclipse plug-in) provides you with a template of a JUnit test (based on JUnit 4.4)

along with the complete infrastructure to compile, run and generate reports for unit

tests.

The following JUnit test is a good starting point to create new unit tests:

It is a JUnit 4.4 test that also supports Java and Spring framework annotations: using

@RunWith and @Configuration annotations automatically loads the associated

Spring configuration file (called <test file name>-context.xml)

The template JUnit test class that we provide extends the

AbstractJunitIntegrationTest class. This class is part of the UCA for EBC

framework. It implements the Spring framework ApplicationContextAware interface,

and thus provides access to the Spring beans (Java objects) defined in the Spring

68

configuration file(called <test file name>-context.xml). You can easily

retrieve any Spring bean defined in the Spring configuration file by using the

getApplicationContext().getBean(String name) method from any JUnit test class

that extends the AbstractJunitIntegrationTest class.

 In JUnit 4.4, any method that represents a unit test needs to have the @Test

annotation before the definition of the method.

It is mandatory to define a Testsuite so that tests can be found in the Apache Ant

project of your Value Pack. Defining the following method allows for automatic

retrieval of all tests defined in the unit test class:

 // Way to run tests via ANT Junit

 public static junit.framework.Test suite() {

 return new JUnit4TestAdapter(SkeletonTest.class);

 }

Below is the code for the template JUnit test class:

package com.hp.uca.expert.vp.skeleton;

import junit.framework.JUnit4TestAdapter;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

import org.junit.AfterClass;

import org.junit.BeforeClass;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import com.hp.uca.common.misc.Constants;

import com.hp.uca.common.trace.LogHelper;

import com.hp.uca.expert.testmaterial.AbstractJunitIntegrationTest;

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration

public class SkeletonTest extends AbstractJunitIntegrationTest{

 private static Log log = LogFactory.getLog(SkeletonTest.class);

 private static final String SCENARIO_BEAN_NAME = "skeleton";

 private static final String ALARM_FILE =

"src/test/resources/com/hp/uca/expert/vp/skeleton/Alarms.xml";

 /**

 * @throws java.lang.Exception

 */

 @BeforeClass

 public static void setUpBeforeClass() throws Exception {

 log.info(Constants.TEST_START.val() + SkeletonTest.class.getName());

 }

 /**

 * @throws java.lang.Exception

 */

 @AfterClass

 public static void tearDownAfterClass() throws Exception {

 log.info(Constants.TEST_END.val() + SkeletonTest.class.getName()

 + Constants.GROUP_ALT1_SEPARATOR.val());

69

 }

 // Way to run tests via ANT Junit

 public static junit.framework.Test suite() {

 return new JUnit4TestAdapter(SkeletonTest.class);

 }

 @Test

 public void test() throws Exception {

 LogHelper.enter(log, "test()");

 /*

 * Initialize variables and Enable engine internal logs

 */

 initTest(SCENARIO_BEAN_NAME, BMK_PATH);

 /*

 * Send alarms

 */

 getProducer().sendAlarms(ALARM_FILE);

 /*

 * Waiting for the TEST_END FLag that should be inserted by the rule

 * itself

 */

 waitingForTheEndTestFlag(getFlagEventListener(),1 * SECOND,10*SECOND);

 /*

 * Disable Rule Log to close the file used to compare engine historical

 * events

 */

 closeRuleLogFiles(getScenario());

 /*

 * Check test result by comparing the historical engine events with a

 * benchmark

 */

 checkTestResult(getLogRuleFileName(),getLogRuleFileNameBmk());

 LogHelper.exit(log, "test()");

 }

}

Note

The AbstractJunitIntegrationTest test utility class have been developed and is

provided as part of the UCA for EBC development kit. A JavaDoc documentation is
provided for this class. Please refer to the Java Documentation of the
com.hp.uca.expert.testmaterial package for full explanations.

Using the Apache Ant build.xml file provided in the example project (Skeleton)

project (or projects created b by the UCA eclipse plugin) allows you to automatically

compile tests (using the “test-compile” Ant target), run the tests and generate the test

reports (using the “test-run” Ant target).

Following is the list of all Ant targets provided by the build.xml file:

70

Figure 26 - Ant targets provided by the build.xml file

Note

The build.xml Ant file on runs Test Classes that have a name ended by ‘Test’ all other
classes will not be executed when launching the ‘test’ target.
It is therefore highly recommended to name all test classes with a name ending with
‘Test.java’.

JUnit test reports in HTML format are available in the

target/reports/junitreport folder of your Value Pack:

Figure 27 - JUnit tests results for your Value Pack

4.7 Injecting events to UCA for EBC

The Alarm Collector is the UCA for EBC internal component responsible for collecting

events from outside UCA for EBC in order to feed them to the scenarios of the Value

Packs deployed on UCA for EBC.

The Alarm Collector is implemented as a JMS Topic that is registered using JNDI so

that other applications can get access to it to post events that will feed UCA for EBC

Value Packs.

71

Figure 28 - UCA for EBC alarm collection

4.7.1 Normalized input

The UCA for EBC Alarm Collector defines a normalized alarm XML format based on

the X.733 standard alarm format. Only alarms that comply with this format will be

processed.

4.7.1.1 Sample alarms file

Here is a sample XML file that contains alarms in the X.733 alarm format:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Alarms xmlns="http://hp.com/uca/expert/x733Alarm">

 <AlarmCreationInterface>

 <sourceIdentifier>src</sourceIdentifier>

 <identifier>1</identifier>

 <originatingManagedEntity>BOX B1</originatingManagedEntity>

 <alarmType>COMMUNICATIONS_ALARM</alarmType>

 <probableCause>Fire</probableCause>

 <perceivedSeverity>MINOR</perceivedSeverity>

 <alarmRaisedTime>2009-09-16T12:00:00.000+02:00</alarmRaisedTime>

 </AlarmCreationInterface>

 <AlarmCreationInterface>

 <sourceIdentifier>src</sourceIdentifier>

 <identifier>2</identifier>

 <originatingManagedEntity>BOX B1</originatingManagedEntity>

 <alarmType>COMMUNICATIONS_ALARM</alarmType>

 <probableCause>Fire</probableCause>

 <perceivedSeverity>CLEAR</perceivedSeverity>

 <alarmRaisedTime>2009-09-16T12:00:00.000+02:00</alarmRaisedTime>

 </AlarmCreationInterface>

</Alarms>

Alarm
Collector

JM
S

JNDI

Provider

Normalized XML event format

72

4.7.2 Command-line injector tool

UCA for EBC provides a tool to send events described in a simple XML File

containing X.733 alarms to the UCA for EBC Alarm Collector.

This tool is located in the ${UCA_EBC_HOME}/bin folder. It is called uca-ebc-

injector.

This tool will inject alarms contained in an XML file into the input alarm queue

(implemented as a JMS Topic) of a local or remote UCA for EBC Server instance.

A sample of such an XML file containing alarms to be fed to UCA for EBC is located

in the ${UCA_EBC_HOME}/alarms folder.

Note

 For more information on the uca-ebc-injector command-line tool, please refer to

the [R3] HP UCA for Event Based Correlation – Administration, Configuration and

Troubleshooting Guide

[R4] HP UCA for Event Based Correlation – Value Pack Examples

4.7.3 A sample Java Alarm injector

The following chapters describe how you can create your own sample Java Alarm

injector application that can connect to UCA for EBC Alarm Collector JMS Topic to

post Alarms to UCA for EBC.

4.7.3.1 Initializing the JNDI initial context

In order to create a sample Java Alarm injector, you must first initialize the JNDI

context that will be used to retrieve the JMS Topic of the UCA for EBC Alarm

Collector:

 Context jndiContext = null;

/*

* Create a JNDI API InitialContext object

*/

try {

 jndiContext = new InitialContext();

 } catch (NamingException e) {

 System.out.println("Could not create JNDI API context: " +

e.toString());

 System.exit(1);

}

Please note that the jndi.properties file must be provided in the classpath of

your sample Java Alarm injector.

4.7.3.2 Configuring the jndi.properties file

Here is the content of a sample jndi.properties file to be used by your sample

Java Alarm injector:

java.naming.factory.initial =

org.apache.activemq.jndi.ActiveMQInitialContextFactory

topic.uca-ebc-alarms = com.hp.uca.ebc.alarms

use the following property to configure the default connector

java.naming.provider.url =tcp\://localhost\:61666

73

The topic.uca-ebc-alarms property is used to record the name the UCA for EBC

Alarm Collector JMS topic: com.hp.uca.ebc.alarms

The java.naming.provider.url property can be configured to match the hostname

and port number of UCA for EBC JNDI service.

4.7.3.3 Looking up the UCA for EBC Alarm Collector JMS topic

Once the JNDI context is initialized, the codes in your sample Java Alarm injector

shall first lookup for the JNDI connection factory, and then retrieve the UCA for EBC

Alarm Collector JMS topic by looking up its name:

 ConnectionFactory connectionFactory = null;

 Destination destination = null;

 /*

 * Look up connection factory and destination.

 */

 try {

 connectionFactory = (ConnectionFactory) jndiContext

 .lookup("ConnectionFactory");

 destination = (Destination) jndiContext.lookup("uca-ebc-alarms");

 } catch (NamingException e) {

 System.out.println("JNDI API lookup failed: " + e);

 System.exit(1) ;

}

4.7.3.4 Connect and send the message

With the connectionFactory retrieved, you then need to create the connection, then

the session, and finally the producer:

 Connection connection = null;

 MessageProducer producer = null;

 try {

 connection = connectionFactory.createConnection();

 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 producer = session.createProducer(destination);

 TextMessage message = session.createTextMessage();

 StringBuffer buf = new StringBuffer();

 buf.append("<?xml version=\"1.0\" encoding=\"UTF-8\"

standalone=\"yes\"?>");

 buf.append("<Alarms>");

 buf.append("<AlarmCreationInterface>");

 buf.append("<sourceIdentifier>src</sourceIdentifier>");

 buf.append("<identifier>12301</identifier>");

 buf.

append("<originatingManagedEntityClass>BOX</originatingManagedEntityCla

ss>");

 buf.append("<originatingManagedEntity>BOX

B1</originatingManagedEntity>");

 buf.append("<alarmType>COMMUNICATIONS_ALARM</alarmType>");

 buf.append("<probableCause>Fire</probableCause>");

 buf.append("<perceivedSeverity>MAJOR</perceivedSeverity>");

 buf.append("<alarmRaisedTime>2009-09-

16T12:00:00.000+02:00</alarmRaisedTime>");

 buf.append("</AlarmCreationInterface>");

 buf.append("</Alarms>");

 message.setText(buf.toString());

 System.out.println("Sending message: " + message.getText());

74

 producer.send(message);

} catch (JMSException e) {

 System.out.println("Exception occurred: " + e);

} finally {

if (connection != null) {

 try {

 connection.close();

 } catch (JMSException e) {

 }

}

By now you should have a functioning sample Java Alarm injector.

Chapter 5

Advanced Development features

5.1 Advanced feature: Spring Framework integration

A Spring Framework context.xml file is provided in the

src/main/resources/valuepack/conf folder. This file is defined for the whole

“skeleton” value pack, i.e. it is common for all scenarios of the value pack.

All the Spring beans defined in this file will be available to each rule file of each

scenario of the value pack.

By default the context.xml file is empty:

75

Figure 29 - The default project’s empty context.xml file

You can define any number of Spring beans in the context.xml file. These beans

will be accessible from within the rules files through global variables defined in your
rules files provided you follow the instructions explained in the following sections.

5.1.1 Defining and using Spring Beans inside rule files using
global variables

The Spring “dependency injection” framework is useful for defining global variables
(already initialized) in rules files. In a normal Drools environment, this is done
through some Java code. As UCA hides the Drools session object, global variables

are “injected” with Spring, from a XML definition (context.xml).

Note

It is worth noting that there are 2 context.xml files in each value pack:

 In the src/main/resources/valuepack/conf folder is the

context.xml that is used when the value pack runs on a UCA EBC Server

instance

 In the src/test/resources/<scenario folder name> folder is the

<scenario name>-context.xml that is used when the value pack runs

in JUnit test mode.

Please make sure to define all your Spring beans in both files, otherwise the JUnit

tests might fail.

First you need to define your Spring beans in the context.xml file (the following

sample file comes from the Low Level Event Filtering value pack and is described in
the “UCA for EBC Value Packs Examples” guide)

The Spring beans that you define in the context.xml file are defined at the Value
Pack level, and thus are global to all scenarios of the Value Pack:

76

Figure 30 - The “Low Level Event Filtering” Value Pack’s context.xml

file

In the above screenshot, we define a Spring bean called acmeActionManager. This

is just an example; with any other Spring bean, the process explained in the following
paragraphs would have been the same.

Next we need to associate the Spring beans with global variables defined in your

scenario. This is done in the ValuePackConfiguration.xml file that defines the

configuration for all the scenarios of your value pack.

Note

Although Spring beans are defined at the Value Pack level, global variables are

defined at the scenario level. If you need a Spring bean to be global to all scenarios

of your Value Pack, you need to configure the Spring bean as a global variable for

each scenario of the Value Pack in the ValuePackConfiguration.xml file.

77

Figure 31 - Defining global variables in the
ValuePackConfiguration.xml file

When you define global variables in the ValuePackConfiguration.xml file, the

“key” has to match the name of the global variable you are defining (the name you
choose must match the name of the global variable that you declare in your rules
file(s)), and the “value” has to match the name of the bean defined in the

context.xml file.

The last step is to define a global variable for the Spring bean in your rules file:

Figure 32 - Defining global variables in rules files

In the import section of your rules file, you need to add an “import” statement for the
Java class of your Spring Bean:

import com.hp.uca.expert.vp.llef.action.AcmeActionManager;

Then you need to add a “global” statement creating a global variable for your Spring
Bean:

global AcmeActionManager acmeActionManager;

Then you can use the global variable in your rules:

78

Figure 33 - Using global variables in rules files

5.2 Using the Flag Object

 Please refer to [R2] HP UCA for Event Based Correlation – Reference Guide for

more information on how to use the Flag Object.

5.3 Alarm Custom fields

 Please refer to [R2] HP UCA for Event Based Correlation – Reference Guide for

more information on how to use the CustomFields Object.

5.4 Alarm Raised Time

The UCA for EBC provides a helper to set the alarmRaisedTime field, just use the

setTimeInMillisecond() that sets all time related fields.

 Please refer to [R2] HP UCA for Event Based Correlation – Reference Guide,

Chapter 5.1.1.2 General Attributes of Alarm for more information on how to deal with

time fields.

5.5 Scenario specific configuration

The UCA for EBC provides a way to manage complex configuration based on XML

file when the Customer Value Pack need a complex specific configuration.

 Please refer to [R2] HP UCA for Event Based Correlation – Reference Guide for

more information on how to use the Specific Configuration.

5.6 Performing initialization at scenario startup

 Please refer to [R2] HP UCA for Event Based Correlation – Reference Guide for

more information on how to perform initialization of customer object needed by a

Value Pack.

5.7 WUI extensions for value packs

Since version 3.1 the UCA for EBC Web User Interface can be extended to host

value pack’s specific web applications or global web application

5.7.1 Extending the WUI at value pack Level

Any .war file delivered within value pack directory tree (usually in lib subdirectory) will

be loaded through the UCA for EBC web server and visible through the Web User

Interface.

When the value pack is started, the UCA for EBC Web UI makes this web application

available from a new tab if the value packs’ monitoring panel.

79

Example: the war file MyVWebApp.war dropped in deploy/uca-topo-demo-3.1/lib

directory will lead to:

By default the UCA for EBC server binds the value pack web application at the

following address:

http://localhost:8888/fullValuepackName-warFilename

For the example above this would give:

http://localhost:8888/uca-topo-demo-3.1-myVpWebApp

5.7.2 Extending the WUI at Global Level

In some cases the WUI extension is not directly linked to a specific value pack but

may cover several value packs or a functionality global to the platform.

In such case it is useful to access this webapp from the global level (UCA-EBC). This

is thr role of the ‘Extras’ Submenu.

The ‘Extras’ sub-menu is displayed when you have optionally put some extra .war

files under the $UCA_EBC_INSTANCE/webapps directory (note the name of the

directory with a ‘s’ at the end). This directory is optional and is not created by

default.

Each .war file stored in this directory will be displayed by UCA for EBC UI under the

following menu:

UCA-EBC:instanceName > Extras > <name of .war file>

As in the picture below:

http://localhost:8888/fullValuepackName-warFilename
http://localhost:8888/uca-topo-demo-3.1-myVpWebApp

80

5.7.3 Web application extensions configuration

Some web application extensions may require some additional configuration in order

for the UCA for EBC Web User Interface to build the expected URL.

Two possible configurations are offered:

 Defining the URL service Path

 Defining URL service parameters

5.7.3.1 Defining the URL service Path for extensions at value pack level

This is done by adding a property in uca-ebc.properties with the form:

ValuepackFullname-warFileName-webapp-servicepath=your_path

Example:

For the value pack: uca-topo-demo (version3.1) with a war file named

myWebApp.war define:

uca-topo-demo-3.1-myVpWebApp-webapp-servicepath=myService

 This will lead to building the following URL:

http://localhost:8888/uca-topo-demo-3.1-myVpWebApp/myService

5.7.3.2 Defining the URL service Path for extensions at global level

This is done by adding a property in uca-ebc.properties with the form:

warFileName-webapp-servicepath=your_path

Example:

For the war file named myWebApp-sample.war define:

http://localhost:8888/uca-topo-demo-3.1-myVpWebApp/myService

81

myWebApp-sample-webapp-servicepath=myService

 This will lead to building the following URL:

http://localhost:8888/myWebApp-sample/myService

5.7.3.3 Defining the URL parameters for extensions at value pack level

This is done by adding a property in uca-ebc.properties with the form:

ValuepackFullname-warFileName-webapp-parameters= coma separated list of

parameters

Example:

For the value pack: uca-topo-demo (version3.1) with a war file named

myWebApp.war define:

uca-topo-demo-3.1-myVpWebApp-webapp-parameters=param1=value1,param2=value2

 This will lead to building the following URL:

http://localhost:8888/uca-topo-demo-3.1-myVpWebApp/?param1=value1¶m2=value2#

5.7.3.4 Defining the URL parameters for extensions at global level

This is done by adding a property in uca-ebc.properties with the form:

warFileName-webapp-parameters= coma separated list of parameters

Example:

For the war file named myWebApp-sample.war define:

myWebApp-sample-webapp-parameters=param1=value1,param2=value2

 This will lead to building the following URL:

http://localhost:8888/myWebApp-sample/?param1=value1¶m2=value2#

5.7.4 Inheriting the UCA for EBC logged user and role in the
extended web application

Some web application may want to know which UCA user is logged (as well as his

associated role) in order to adapt its processing depending on the user id or the role.

This is done by using placeholders in URL parameters as follow:

 ${user} will represent the current logged user

 ${role} will represent this user’s role.

A typical definition would be:

uca-topo-demo-3.1-myVpWebApp-webapp-servicepath= username=${user},userrole=${role}

http://localhost:8888/myWebApp-sample/myService
http://localhost:8888/uca-topo-demo-3.1-myVpWebApp/?param1=value1¶m2=value2

82

5.8 Configuring the GUI filter tags editor

 Please refer to [R2] HP UCA for Event Based Correlation – Reference Guide for

more information on how to perform configuration to enable the GUI tags editor

feature.

83

5.9 Editing Filter Files with the UCA for EBC eclipse
filter editor

The UCA-EBC Development Toolkit provides a specific filter editor intended to ease

the development of UCA-EBC filters.

This tool is mainly a checking tool that allows testing the filter against a sample of

alarms. As a result the tool gives for each alarm, which Top-filter it passes or not, and

if it passes a Top-filter, gives the associated tags (if any).

5.9.1 Editing a Filter

The UCA-EBC filter editor is available by right clicking on the Filter file as follow:

This launches the UCA-EBC filter editor.

At this stage the editor contains a single editor tab which is an XML editor allowing to

edit/save the Xml Filter file:

84

5.9.2 Associating an Alarm File Sample to the Filter Editor

In Order to check the Filter against a set of alarms, the Xml Alarm file must be

associated to the filter editor. This is done by left clicking on the Alarm File in order to

select the file and the click on the ‘Associate Alarms’ button as follow:

85

 When the association is done, the editor turns itself into a multi-panel editor offering

several edition panels:

 The Filter file editor panel, allowing to edit the Filter file

 The Aggregated View panel, giving an overview of the passing/blocked alarms

 The Alarm file editor panel, allowing to edit the Alarm File

 The Passed filter view, giving information on passed filters and tags.

As shown in the picture below:

86



5.9.3 How to read the Filter editor aggregated view?

This view offers a panel per top filter as defined in the filter file.

You can switch from one top-filter to others by clicking on the top level panel

selection:

The configuration Panel area allows selecting the alarms attributes to be displayed in

the Alarm table list.

The Alarm table list shows the content of the alarm file as a table. Each table row is

preceded by a check box indicating if the alarm is passing or not the given top-filter (A

checked box and a green color indicate the alarm is passing the filter)

87

5.9.4 How to read the ‘passed filter’ view?

For a selected alarm, the ‘passed filter’ view gives the list of passed top-filters and the

corresponding filter tags.

The passed filter view is a 3 parts window:

 The top part is the alarm picker, it allows selecting the alarm

 The left part displays the selected alarm content

 The right part gives the ‘passed’ top-filters and associated Tags.

88

5.9.5 How to use the filter to create a new top-filter?

The aggregate view offers the possibility to quickly create a new top-filter.

A top filter creation is a multi step operation:

Step 1 : Create a new top-filter tab. This is done by clicking on the ‘New’ tab in the

top-filter selection area:

This creates a new Filter panel with a default name. This name can be changed by

right clicking on the new filter tab:

89

Note: a Top-filter can also be deleted by clicking on the ‘delete’ option of the same

menu.

Step 2: select the alarm attributes that will play a role in the filtering in the

“Configuration panel” section.

Example:

Step 3: In the Alarm table, select those alarms that will pass the filter by selecting

the checkbox.

Step 4: generate the new filter by clicking the “Generate Filter” button.

Step 5: Click on the filter editor view and check the generated filter. You can

manually edit the generated editor in order to make some fine tuning or changes.

Step 6: Control the result of the new filter in the “passed Filter” view

Step 7: save your changes

Warning

The “Generate filter” Button can be used on an already existing filter in order to

modify it. However by re-generating an existing filter, all the Tags defined in it will be

lost. It is therefore not recommended to use the “Generate filter” button on existing

filters.

90

5.10 Persisting alarms or events using the DB
forwarder feature

This chapter provides technical information about the DB forwarder feature introduced
in UCA-EBC 3.1.
It is intended to the UCA-EBC Value Pack developer that needs to set up that
functionality within his VP.
Any DB coming with a JDBC driver can be supported by this feature.
However, UCA-EBC brings 2 DBs with libraries already part of the UCA-EBC default
libraries: H2 and HyperSQL.

5.10.1 Concepts

5.10.1.1 Storing alarms

To store alarms into a DB, the well-known alarm forwarder mechanism is used. In this
particular case, a JDBC alarm forwarder is now provided to perform such actions.

Alarms that are stored into a DB follow also the same scheme of the alarms received
through classic NOM mediation platform. Once stored in the DB, they are pushed
back into the dispatcher of the Value Pack using the DB flow mechanism.

So if you want to recognize them from standard alarms, you will have to define a way
to do it. This can done using a special identifier for the alarm, or by using a special
custom field.

This is up to the Value Pack owner to decide which method is to be used.

5.10.1.2 Storing events

UCA-EBC 3.1 brings new EventForwarder interface to handle Event objects
(introduced in 3.1 as well).

 com.hp.uca.expert.event.EventForwarder

 com.hp.uca.expert.event.Event

To store such Event objects into a DB, end-user can use a JDBC event forwarder
based on the same concepts as the alarm forwarder described above.

 com.hp.uca.expert.event.JDBCEventForwarder

In the contrary of alarms, events stored into a DB do not have DB flow mechanism
associated into it.

5.10.2 Getting started

To make use of the DB feature, this is just a question of configuring correctly your
value pack. This is done by modifying the VP context.xml file (*).

Firstly, in this file, you will have to make use of the default JDBC settings by importing
the provided file from the UCA classpath, as:

91

<import resource="classpath:jdbc/dependencies.xml" />

Those default settings bring mainly an AlarmDao bean (called alarmDao) and an
AlarmNotifier bean (called dbNotifier).
If you do not want to use default JDBC settings, you can do so by referring to the
Advanced settings section below.

Then, still in context.xml, you will have to define at minimum 2 Spring beans:

 the datasource bean

 the DB forwarder bean

and optionally

 the DB store bean

Note

(*) You can also configure JDBC settings globally for all value packs in the
conf/dependencies.xml file if needed.

5.10.2.1 Defining the datasource

The first thing to configure is the datasource. This is done by defining a new Spring
bean. Spring offers a number of options for configuring a data sources via data
source beans.

These sources include the following:

 Data sources that use JNDI

 Data sources that use JDBC drivers

 Data sources that pool connections

Below is an example using pool connections with Apache Commons DBCP (*), and
with a H2 database (**).

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource"

 destroy-method="close">

 <property name="driverClassName" value="org.h2.Driver" />

 <property name="url" value="jdbc:h2:~/.uca/exampleDB" />

 <property name="username" value="sa" />

 <property name="password" value="" />

</bean>

92

Notes

(*) You could also use
"org.springframework.jdbc.datasource.DriverManagerDataSource" or other of your
choice

(**) You could also use HyperSQL DB. For other DBs, make sure to make the
requested JDBC driver as part of your value pack libraries.

5.10.2.2 Defining the DB store

The second thing to configure is the store used to persist alarms. Currently only a
store of type SQL is supported. But still, in prevision of managing NOSQL stores, a
bean is to be defined for specifying what that store is capable of. This setting is
optional. The settable properties of an SQL store are:

Property Type Description

name string defines the name of the DB

supportsCreate boolean
tells if the DB can be created by the UCA-EBC engine if
it does not exists

supportsIfNotExist boolean
tells if the DB supports the SQL syntax "IF NOT EXISTS"
at creation

supportsUnlimitedVarChar boolean
tells if the DB supports definition of VARCHAR without a
numeric limit

Here below is a simple example:

<bean id="dbStore" class="com.hp.uca.expert.store.sql.SqlStore">

 <property name="name" value="h2" />

</bean>

5.10.2.3 Defining the DB forwarder

The next thing to configure is the DB forwarder itself, which is the thread that is going
to use datasource and store defined previously to persist alarms. The DB forwarder
has only 2 properties:

Property Type Description

alarmDao bean the DB Alarm DAO bean

store bean the DB store bean

Here below the typical configuration.
(The init-method is optional as the DB forwarder has an auto-start capability)

93

<bean id="dbForwarder" class="com.hp.uca.expert.alarm.JDBCAlarmForwarder"

init-method="start">

 <property name="alarmDao" ref="alarmDao" />

 <property name="store" ref="dbStore" />

</bean>

Note: If you use a DB forwarder to forward Events instead of Alarms, you will need to

configure as per example below (the eventDao bean needs to be configured too, as

specified in Advanced settings section below)

<bean id="dbForwarder" class="com.hp.uca.expert.event.JDBCEventForwarder"

init-method="start">

 <property name="eventDao" ref="eventDao" />

 <property name="store" ref="dbStore" />

</bean>

5.10.2.4 Defining the DB flow

To be able to receive alarms changes coming from the DB as per any other alarm
coming from a NOM mediation flow, you will have to configure a DB flow in
ValuePackConfiguration.xml file.

The dbFlow has only 2 properties:

Property Type Description

name string the name of the DB flow. should be unique in case of multiple flows

dbNotifierName string
refers to the name of the DB notifier on which to subscribe for
notifications. This is explained in Advanced Setting section. Its default
name is “dbNotifier”.

A default configuration could be:

<dbFlows>

 <dbFlow name="exampleDbFlow" dbNotifierName="dbNotifier" />

</dbFlows>

5.10.3 Example

You can refer to the example part of the UCA-EBC Development Toolkit.

You can find it under %UCA_EBC_DEV_HOME%/vp-examples/persistence-example.

You can build this example as per usual

 # ant all

94

Specifically, you can have a look at files under src/main/resources/valuepack/conf to

see how to configure the DB feature elements (context.xml) and the DB flows

(ValuePackConfiguration.xml)

5.10.4 Advanced settings

Advanced settings are optional and are only for those who do not want to use the
default settings provided by the file jdbc/dependencies.xml. You can replace following
line

<import resource="classpath:jdbc/dependencies.xml" />

by adding each of the following bean directly in the value pack context.xml

5.10.4.1 Defining the SQL Session factory

The SQL session factory is the MyBatis(*) session factory bean. It has two properties:

Property Type Description

dataSource bean the datasource bean

configLocation string the location of the MyBatis configuration file

The default configuration is:

<bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean">

 <property name="dataSource" ref="dataSource" />

 <property name="configLocation" value="classpath:jdbc/mybatis-

config.xml"/>

</bean>

Note

(*) MyBatis is an Open Source software delivered as part of UCA-EBC 3.1 libraries.

5.10.4.2 Defining the DB Alarm DAO

The DB DAO is the mapper interface used to instantiate the Java interface
corresponding to the SQL commands stored in the file defined within the MyBatis
configuration file. By default, the alarms mapper interface is defined in file jdbc/sql-
alarms-mapper.xml.
The DB DAO has two properties:

Property Type Description

sqlSessionFactory bean the SQL session factory bean

mapperInterface string
the Java interface for the DAO, which is defaulted to the one
provided by UCA-EBC, i.e.

95

com.hp.uca.expert.alarm.store.AlarmDao

The DB DAO is in turn used to configure the DB forwarder and the DB notifier beans.

The default configuration is:

<bean id="alarmDao" class="org.mybatis.spring.mapper.MapperFactoryBean">

 <property name="sqlSessionFactory" ref="sqlSessionFactory" />

 <property name="mapperInterface"

value="com.hp.uca.expert.alarm.store.AlarmDao" />

</bean>

5.10.4.3 Defining the DB Notifier

The DB notifier is the component that will listen to the DB for changes and will notify
the value pack about those changes. It has two properties:

Property Type Description

alarmDao bean the DB Alarm DAO bean

checkTimer number
a timer in milliseconds representing the interval between two DB
checkings for the changes

The default configuration is:

<bean id="dbNotifier" class="com.hp.uca.expert.alarm.store.AlarmNotifier"

scope="singleton">

 <property name="alarmDao" ref="alarmDao" />

 <property name="checkTimer" value="1000" />

</bean>

5.10.4.4 Defining the DB Event DAO

The DB Event DAO is the mapper interface used to instantiate the Java interface
corresponding to the SQL commands stored in the file defined within the MyBatis
configuration file. By default, the events mapper interface is defined in file jdbc/sql-
events-mapper.xml.
The DB Event DAO has two properties:

Property Type Description

sqlSessionFactory bean the SQL session factory bean

mapperInterface string
the Java interface for the DAO, which is defaulted to the one
provided by UCA-EBC, i.e.
com.hp.uca.expert.event.store.EventDao

The DB Event DAO is in turn used to configure the DB forwarder bean.

96

There is no default configuration available but it should be easily configurable as per
below:

<bean id="eventDao" class="org.mybatis.spring.mapper.MapperFactoryBean">

 <property name="sqlSessionFactory" ref="sqlSessionFactory" />

 <property name="mapperInterface"

value="com.hp.uca.expert.event.store.EventDao" />

</bean>

5.10.4.5 Defining the SQL Mapping interfaces

Alarms mapper:

The alarms mapper interface is defined by default in file jdbc/sql-alarms-mapper.xml.
This file defines the dynamic SQL mapping of the Java interface provided:

This interface is provided by default and can be replaced if necessary, in which case
the mapping interface should be changed accordingly.

Events mapper:

The events mapper interface is defined by default in file jdbc/sql-events-mapper.xml.
This file defines the dynamic SQL mapping of the Java interface provided:

97

This interface is provided by default and can be replaced if necessary, in which case
the mapping interface should be changed accordingly.

98

Appendix A

A. Ant build.xml targets

The value pack examples provided with UCA for EBC come with an Ant build.xml

file that can build and package the project as described in this document.

Following is the full list of Apache Ant targets defined in the build.xml file that can

be executed from the command line using the ant tool:

eclipse

Command:

 # ant eclipse

Creates the .project and .classpath files used by eclipse when importing a project.

clean

Command:

 # ant clean

Removes all files created during the build from the build directory.

compile

Command:

 # ant compile

Compiles all Java files of the project.

test

Command:

 # ant test

Runs the JUnit tests defined in the project.

package

Command:

 # ant package

Build the final, “ready to deploy” value pack ZIP file.

all

Command:

 # ant all

Is equivalent to executing the following targets: “clean”, “compile”, “test” and

“package”.

99

Glossary

UCA: Unified Correlation Analyzer

EBC: Event Based Correlation

IDE: Integrated Development Environment

JMS: Java Messaging Service

JMX: Java Management Extension, used to access or process action on the UCA for

EBC product.

JNDI: Java Naming and Directory Interface

Inference engine: Process that uses a Rete algorithm for expert behavior

DRL: Drools Rule file

XML: Extensible Markup Language

XSD: Schema of an XML file, describing its structure

X.733: Standard describing the structure of an Alarm used in telecommunication

environment.

EVP: UCA for EBC Value Pack

