hp Unified Correlation Analyzer

W

Unified Correlation Analyzer
for
Event Based Correlation
Version 3.1

Value Pack Development Guide

Edition: 1.0

For Windows® and Linux (RHEL 5.8 & 6.3) Operating Systems

April 2014

© Copyright 2014 Hewlett-Packard Development Company, L.P.

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial Items are
licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notices
© Copyright 2014 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and
64-bit configurations) on all HP 9000 computers are Open Group UNIX 95 branded
products.

Java™ is trademark of Oracle and/or its affiliates.

Microsoft®, Internet Explorer, Windows®, Windows Server 2007®, Windows XP®,
and Windows 7® are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City,
California.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark, and the X device is a trademark of X/Open
Company Ltd. in the UK and other countries.

Red Hat® is a registered trademark of the Red Hat Company.
Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

Eclipse™ is a trade mark of The Eclipse Foundation.

Contents

P EIACE ... 7
L@ o= 01 (- 0t 9
[T oo 1¥ Tox 1 o IS PR 9
(O o= 01 (-1 10
Getting started with UCA for EBCuuiiiiiiiiiiiiiiiiiiii e 10
2.1 Software Pre-reqUISIteS. ..., 10

211 Operating SYSteMcoooeii i, 10

21.2 JAVA JREJIDK ...t 10

2.13 ECHPSE IDE ...ttt 11

214 Installing UCA for EBC and UCA for EBC Development Kitoee.e. 14

2.1.5 Post-install ENVIroNmMeNnt SEtUP..........uuuieiiiiieiiieiieieieieeerereeereeeeerererererenennae. 14

216 UCA for EBC Eclipse plug-in installation inStructions.............cccccoecveeennnnee. 15

R APEET B e 20
Value pack development lifeCYCleuuiiiiiiiiiiiicc e, 20
3.1 Memento on Value packs and Scenario definitions...........cccccccveevviiiiiieennnennn. 20

3.11 Value Pack DefinitioNcc.eeviiiiiiiiiiii e 20

3.1.2 Scenario DEfiNItION..........ociiiiiiie e 20

3.2 LIfE CYCIE i e 22

3.3 Creating a new UCA for EBC Value PacKcccoouviiiiiiiiiiiiiicece e 23

3.3.1 Creating a value pack project within Eclipsecccc . 23

3.3.2 Anatomy of the created ProjeCt........uuvviiiiiiiiiiiiiiieieieeeeeeeeeeeeeeee e 27

3.3.3 Validation of the created Projectc..eeeiiieiiiiiiei e 28

3.4 Customizing the created ‘skeleton’ Value Pack project............cccccovuviviinnnnnnn. 31

3.4.1 Updating the scenario filterscocooooioiiiiiiiiecec e 31

3.4.2 Updating the correlation rules file ..., 32

3.5 Generating the Value Pack Kit ..o 32

3.6 Deploying the Value Pack kit on UCA for EBC...........ccoviiiiiiiniiiee e, 35

3.6.1 Install the Value Pack package (ZIP file) on an HP Itanium or Linux system

running UCA fOr EBC SEIVET.coicuiiiiiiiiiee ittt 35

3.6.2 Deploy the Value Packcooiii e 35

3.6.3 Start the Value Pack on UCA for EBC SEeIVEr:cccvveeiiiieeeiniiieee e 36

3.7 Testing the Value Pack in real-timecccoiiiiiiiiiie e 36

Focus on development Key POINtSo.uiiiiiiiiii i 38
4.1 Implementing Alarm enrichMent ... 38

4.2 Developing the SCENario rUIES..........occuiiiiiiiiiie e 41

42.1 BlASICS -ettttiiete et e a e e e e e e e e nb e e eas 42

4.2.2 Sample rules on Alarm facts in CLOUD modecccceeeeiiiiiiiiieeeee e 43

4.2.3 Sample rules on Alarm events in STREAM MOde.........ccoeviiiiiieieiieennnins 45

4.2.4 Defining and using rule templatescccccceeeiiiciiiiiiie e a7

4.2.5 Introducing Java code inthe rulescccceeev i a7

4.3 Defining YOUr OWN DEANSuiiiiiiiiii it 48

4.4 Executing external actions from the rules..........oocii e, 49

44.1 Standard external ACtONScuevii i 49
4.4.2 Calling services defined USiNg SPriNg.......c.ceeoiirreeiiiiieeeiiiiee e 58
4.4.3 Forwarding alarms to external SYStemMSc.ueveiiiiiieiniiiie e 59
4.5 MaKing USEfUl OGS ...vvviiiieiei i 66
4.6 Creating JUNIE TESES ..uuiiiii i icciiiiiiee s settre e e e e e s st e e e e e e s e st ae e e e e e e e s snnnenneees 67
4.7 Injecting events to UCA fOr EBCoiiiiiiiii e 70
4.7.1 NOIMANZEA INPUL.....eiiiiiiiii e 71
4.7.2 Command-line INJECLOr tOO0]..........uuiiiieee i 72
4.7.3 A sample Java Alarm iNJECIONuviiiiie e 72
CAPLEE 5 e 74
Advanced Development fEatUIeSccceiiiieeiiiiiiiiiiei e 74
5.1 Advanced feature: Spring Framework integrationccccoocvvveiniiieennnneenn 74
5.11 Defining and using Spring Beans inside rule files using global variables ..75
5.2 Using the Flag ObJeCtccooviiiiiiee 78
5.3 Alarm Custom fieldS........couuviiiiiieiii e 78
T AN I 1 g = 1Y =T B T o1 PP 78
5.5 Scenario specific CONfIgUrationcooueeiiiiiiiiiii e 78
5.6 Performing initialization at scenario startupcccceeveeeeiii, 78
5.7 WUI extensions for value packs.........ccccccoiiiiii, 78
57.1 Extending the WUI at value pack Level..........ccccoiiiiiiiini e 78
5.7.2 Extending the WUI at Global LeVel...........cooviiiiiiiiiiiieee e 79
5.7.3 Web application extensions configurationeevveveveiieeeiiiieiiiiiiiennnns 80
5.7.4 Inheriting the UCA for EBC logged user and role in the extended web
appPlication ... 81
5.8 Configuring the GUI filter tags editor ... 82
5.9 Editing Filter Files with the UCA for EBC eclipse filter editorccocuue... 83
59.1 EdItiNG @ FIIEE ..cooeieie e 83
5.9.2 Associating an Alarm File Sample to the Filter EQitorovvvvvivviiiennns 84
5.9.3 How to read the Filter editor aggregated VIEW?uvvvvvvvvrvveveeeeerennnnnnnns 86
594 How to read the ‘passed filter VIeW?coooiiiiiiii e 87
5.9.5 How to use the filter to create a new top-filter?ccccoeiiii, 88
5.10 Persisting alarms or events using the DB forwarder feature 90
L0 O 0 R 0o] o To1= o £ TSP 90
5.10.2 Getting SLAredooiiiiiiiei it 90
B5.10.3 EXAMPIE oo 93
5.10.4 AdVANCEd SEHINGS. ..ottt e e ee e e e 94
F Y o] o 1] o Lo [USRI 98
A. ANt build. xmI TAIJETS ..o 98
GlOSSANY ittt 99

Figures

Figure 1 - Drools plug-in for Eclipse IDE: Installation step L.......cccccceeeiiiiiiiieieee e siciiieeeeeen 13
Figure 2 - Drools plug-in for Eclipse IDE: Installation Step 2.......cccccvveeeiiviviiiieee e ecciieeeeeen 13
Figure 3 - Drools plug-in for Eclipse IDE: Installation Step 3.......cccccveeeiiiiiiiieeeee i 14
Figure 4 - UCA for EBC Eclipse plug-in: Installation Step 1cccovcviieiiiiieiniiiie e 16
Figure 5 - UCA for EBC Eclipse plug-in: Installation Step 2coovcviieiiiiiieiniiiie e 17
Figure 6 - UCA for EBC Eclipse plug-in: Installation Step 3coovviiieiiiiiieiiiiiee e 18
Figure 7 — The UCA-EBC Scenario COMPONENTSceeiiiiiieiiiiiie ittt 21
Figure 8 - The 5 steps to create a UCA for EBC Value PacK............cccceevviiiiiiniiiiceniiee e, 22
Figure 9 - Value pack project creation Wizard STEPL.........cceveiiiiieiiiiie e 25
Figure 10 - Value pack project creation Wizard StEP2.........ccoovvuvierieieeeiiiiiieiree e ceiieeeee e 26
Figure 11 - Created Valu@ PACK........cceeeiiiiiiiiiiiie sttt e e s st e e e s e ee e e e e e s s nnaaneeeaee s 27
Figure 12 - Folder structure of the created project...........ccccoooieii 28
Figure 13- Running JUnit tests on the created project in Eclipse IDEcl. 29
Figure 14 - JUnit tests results on the created project in Eclipse IDEccooeeiiiii. 30
Figure 15 - Running JUnit tests on the created project at the command-line using Ant......... 30
Figure 16 - JUnit tests results on the created project viewed using a Web browser 31
Figure 17 - The default “catch all” project’'s filters.xml file...cccccccciiiiiiiii i, 32
Figure 18 - Building the kit of your customized Value Packccccccc . 33
Figure 19 - The kit of your customized Value Pack...............ccccc, 34
Figure 20 - Contents of the ZIP file of your customized Value Pack.............................. 35
Figure 21 - Defining AlarmForwarder beans in the context.xml file.......ccccooiniiiiiinnns 61
Figure 22 - Defining AlarmForwarder globals in the ValuePackConfiguration.xml file. 62
Figure 23 - Declaring the use of an AlarmForwarder global variable in a rule file 63
Figure 24 - Using an AlarmForwarder global variable to write Alarms to an XML file............. 64
Figure 25 - Scenario logger example ... 67
Figure 26 - Ant targets provided by the build.xmlfileccc 70
Figure 27 - JUnit tests results for your Value Packcccccc 70
Figure 28 - UCA for EBC alarm COIECHONc.uuiiiiiiiiiiiiiiee e 71
Figure 29 - The default project’'s empty context.xml file ..o, 75
Figure 30 - The “Low Level Event Filtering” Value Pack’s context .xml file.........cccceenne. 76
Figure 31 - Defining global variables in the ValuePackConfiguration.xml file............. 77
Figure 32 - Defining global variables in rules fileS ... 77

Figure 33 - Using global variables in rules fileS ... 78

Tables

Table 1 - Software versions 7
Table 2 - Java JRE/JDK Prerequisites for UCA for EBC Development Kit 10
Table 3 - Eclipse IDE Prerequisites for UCA for EBC Development Kit 11
Table 4 - Java helper classes for OSS Open Mediation TeMIP Value Pack 53
Table 5 - AO directives helper classes 55
Table 6 - TT directives helper classes 56
Table 7 - Java helper classes for OSS Open Mediation Exec Value Pack 57

Table 8 - IMS properties set for alarms being forwarded to OSS Open Mediation 66

Preface

This guide provides an overview of the Unified Correlated Analyzer for Event Based
Correlation product and describes how to create Value Packs to target customer
specific use cases.

Product Name: Unified Correlation Analyzer for Event Based Correlation
Product Version: V3.1
Intended Audience

Here are some recommendations based on possible reader profiles:
e Solution Developers
o Software Development Engineers

Software Versions

The term UNIX is used as a generic reference to the operating system, unless
otherwise specified.

The software versions referred to in this document are as follows:

Product Version Supported Operating systems
UCA for Event Based Correlation e Windows XP / Vista
Software Development Kit V3.1 e Windows Server 2007
e Windows 7

¢ Red Hat Enterprise Linux Server
release 5.8 & 6.3

Table 1 - Software versions

Typographical Conventions

Courier Font:

Source code and examples of file contents
Commands that you enter on the screen
Pathnames

Keyboard key names

Italic Text:
e Filenames, programs and parameters
e The names of other documents referenced in this manual

Bold Text:
e Tointroduce new terms and to emphasize important words
Associated Documents

The following documents contain useful reference information:

References
[R1] HP UCA for Event Based Correlation — Installation Guide
[R2] HP UCA for Event Based Correlation — Reference Guide

[R3] HP UCA for Event Based Correlation — Administration, Configuration and
Troubleshooting Guide

[R4] HP UCA for Event Based Correlation — Value Pack Examples
[R5] Open Mediation V620L01 Functional Specification
[R6] Open Mediation Installation and Configuration Guide

[R7] Unified Correlation Analyzer for Event Based Correlation — User Interface Guide

Support

Please visit our HP Software Support Online Web site at
www.hp.com/go/hpsoftwaresupport for contact information, and details about HP
Software products, services, and support.

The Software support area of the Software Web site includes the following:

e Downloadable documentation.
e Troubleshooting information.
e Patches and updates.

e Problem reporting.

e Training information.

e Support program information.

http://www.hp.com/go/hpsoftwaresupport

Chapter 1

Introduction

This guide explains how to create a new correlation project, how to package it and
deploy it on a Unified Correlated Analyzer for Event Based Correlation (UCA for EBC)
Server in just a few minutes.

After validating some pre-requisites and installing both UCA for EBC (runtime) and
UCA for EBC Development Kit products, the following chapters will dive into the
development of UCA for EBC Value Packs and explain how to create new scenarios,
how to develop alarm/event correlation rules based on samples and how to
customize UCA for EBC.

Note

Throughout this document, we use the $ {UCA EBC_HOME} environment variable to
reference the root directory (“static” part) of UCA for EBC. The default value for the
${UCA _EBC_HOME} environment variable is /opt/UCA-EBC. The
${UCA_EBC_HOME} environment variable thus references the /opt/UCA-EBC
directory unless UCA for EBC “static” part has been installed in an alternate directory.

We also use ${UCA EBC_DATA} environment variable to reference the data
directory (“variable” part) of UCA for EBC. The default value for the
${UCA_EBC_DATA} environment variable is /var/opt/UCA-EBC. The
${UCA_EBC_DATA} environment variable thus references the /var/opt/UCA-EBC
directory unless UCA for EBC “variable” part has been installed in an alternate
directory.

Since UCA-EBC V2.0, on Linux and HP-UX systems, the $ {UCA EBC DATA}
directory may contain multiple instances of UCA-EBC. In this document, we will use
the value ${UCA EBC_INSTANCE} for referring to

${UCA EBC DATA}/instances/<instance-name> directory on Linux/HP-UX
systems and to $ {UCA EBC_DATA} on Windows systems.

Note that at installation time on Linux/HP-UX, a single <instance-name> is
configured: default.

Chapter 2

Getting started with UCA for EBC

2.1 Software Pre-requisites

2.1.1 Operating system
The UCA for EBC Development Kit is provided (and supported) for:

Windows operating systems.
It has been validated on Windows XP, Windows Vista, Windows 7, and Windows
Server 2007.

Red Hat Enterprise Linux.
It has been validated on Server Release 5.8 & 6.3.

2.1.2 Java JRE/JDK

The following table lists the Java JRE/JDK pre-requisites for UCA for EBC
Development Kit:

Software Version
Java JDK* 1.6.0.08 (or later)

Table 2 - Java JRE/JDK Prerequisites for UCA for EBC Development Kit

You can check whether Java is already installed on your system and which version of
the Java JRE/JDK is installed by issuing the following commands:

On Windows XP, Windows Vista, Windows 7, and Windows Server 2007:

To check if you already have Java installed, open a command-line (Run... ->
cmd.exe) and type:

| C:\> java -version

You should get an output similar to the following:

java version "1.6.0_17"

Java(TM) SE Runtime Environment (build 1.6.0_17-be4)
Java HotSpot(TM) Client VM (build 14.3-b@1, mixed mode,
sharing)

Alternatively to using the command-line, you can check if you already have Java
installed by going to the Control Panel and selecting the Java icon. In the Java tab,
you will find information on the Java version installed on your system.

10

The latest IDK package for Windows XP, Windows Vista, Windows 7, and Windows
Server 2007 can be downloaded (for free) from www.hp.com/go/java

On Linux:

To check if you already have Java installed:

| $ rpm -ga | grep jdk

Red Hat Enterprise Linux Server comes with OpenJDK Java VM. You should get an
output similar to the following (here 1.6.0 and 1.7.0 are installed):

java-1.6.0-openjdk-1.6.0.0-1.41.1.10.4.e16.x86_64
java-1.6.0-openjdk-devel-1.6.0.0-1.41.1.10.4. el6. x86_64
java-1.7.0-openjdk-1.7.0.9-2.3.4.1.e16_3.x86_64
java-1.7.0-openjdk-devel-1.7.0.9-2.3.4.1.el6_3.x86_64

You can also download (for free) the latest Java packages (HotSpot Java VM) from
Oracle from http://java.com/en/download/manual.jsp. If this is installed (usually under
lusr/java), you should get an output similar to the following:

| jdk-1.6.0_23-fcs.x86_64

Note

* Java 1.6 JRE is enough for using the UCA for EBC Development Kit. However the
JDK comes with some useful debugging tools (jconsole, jvisualvm, etc...) that may
prove helpful for troubleshooting. It is therefore recommended to install the JDK.

2.1.3 Eclipse IDE

The UCA for EBC Development Kit has been designed for an easy integration with
the Eclipse Integrated Development Environment (IDE) tool.

Before starting the development of any UCA for EBC value pack, it is necessary to
download and install the Eclipse ™ application development environment.

The following table lists the Eclipse IDE pre-requisites for UCA for EBC Development
Kit:

Software Version

Eclipse IDE 3.7 (Indigo) or higher

Table 3 - Eclipse IDE Prerequisites for UCA for EBC Development Kit

The minimum version of Eclipse IDE required by the UCA for EBC Development Kit is
version 3.4 but we recommended Eclipse IDE version 3.7 (Indigo) or higher.

If you already have Eclipse IDE installed on your system, you can either use this
version with the UCA for EBC Development Kit (provided this version complies with
the version requirement: version 3.4 or higher) or you can install a new version of
Eclipse IDE.

11

http://www.hp.com/go/java
http://java.com/en/download/manual.jsp

If you want to install Eclipse IDE, please go to the following URL for downloading
Eclipse IDE: http://www.eclipse.org/downloads/

At the time of writing, the Eclipse IDE version is Juno 4.2.

We recommend you to download either (other choices may also be valid):
Eclipse IDE for Java Developers, or

Eclipse IDE for Java EE Developers

Then you need to choose to install either the 32-bit or 64-bit version of Eclipse IDE
depending on whether you have a 32-bit or 64-bit operating system.

Once Eclipse IDE is installed on your system, and in order to get the full benefit of the
Drools development environment in Eclipse, it is also necessary to download and
install the Drools plug-in for Eclipse.

Before downloading the Drools plug-in for Eclipse IDE, please make sure that the
Drools plug-in you plan to download has the same version number as the version of
Drools used by UCA for EBC.

UCA for EBC currently uses Drools version 5.5.0.Final. The download URL for this
version of the plug-in is the following:

https://repository.jboss.org/nexus/content/repositories/releases/org/drools/org.drools.
updatesite/5.5.0.Final/org.drools.updatesite-5.5.0.Final-assembly.zip

2.1.3.1 Drools plug-in for Eclipse IDE installation instructions

Download and save the ZIP file of the Drools plug-in for Eclipse IDE in a temporary
directory, for example: C:\Temp.

From the Eclipse ‘Help’ menu, choose ‘Install new software’ and then click on the

button.

Select the downloaded file using the button and give it the name “jboss
drools tools 5.5.0.Final” as shown in the picture below:

12

http://www.eclipse.org/downloads/
https://repository.jboss.org/nexus/content/repositories/releases/org/drools/org.drools.updatesite/5.5.0.Final/org.drools.updatesite-5.5.0.Final-assembly.zip
https://repository.jboss.org/nexus/content/repositories/releases/org/drools/org.drools.updatesite/5.5.0.Final/org.drools.updatesite-5.5.0.Final-assembly.zip

= Install

o
&

Available Software

L]

Select a site or enter the location of a site.

&)
|

Work with: type or select a site - Add.

Find more software by working with the "Available Software Sites” preferences.
type filter text

Name

[F] (@ Thereis no site selected.

Version

2 Add Repositary ==
Neme: Drools 5.5.0-Final

Location: file:/C:/Program Files/droolsjbpm-tools-distribution-5.5.0

Select All Deselect All
@
Details

[]Show only the latest versions of available software [Hide items that are already installed
Group items by category What is already installed?

[T Show only software applicable to target environment

Contact all update sites during install to find required software

@ < Back Ne> Fiich

Figure 1 - Drools plug-in for Eclipse IDE: Installation step 1
Then click on the [OK] button.

The screen should then display the archive content as follow:

5 -
2 Install 2 e — - . =1

type filter text
|| Name Version
. [000 Drools and jBPM
[] < JBoss Drools Core 5.5.0.Final
[7] 4 JBoss Drools Guvnor 55.0.Final
[] < JBoss jBPM Core 5.5.0.Final
[7] 4 JBoss jBPM Task 55.0.Final
|
|| | setectan Deselect All
Details
Drools and jBPM plugins for Eclipse. A
More...
[[7] Show only the latest versions of available software [Hide items that are alreacly installed

Available Software
Check the items that you wish to install :).T

Work with: Droals 5.5.0-Final - file:/C:/Program Files/droolsjbpm-taols-distribution-5.5.0.Final/binaries/org.drools.updatesite/ -

Find more software by working with the "Available Software Sites” preferences.

Graup items by category What is already installed?
[] Show only software applicable to target envirenment
[#] Contact all update sites during install to find required software

@ < B Newt> i

Figure 2 - Drools plug-in for Eclipse IDE: Installation step 2

Check the “Drools and jBPM” checkbox and then click on the button.

The following screen is displayed:

13

= Install TR —— — o B 3

Install Details
Review the items to be installed. _")‘TJ
Name Version Id
(gL JBoss Drools Core 5.5.0.Final org.drools.eclipse.feature feature.group
L§L JBoss Drools Guvnor 5.5.0.Final org.guvnor.tools.featurefeature.group
(§L JBoss jBPM Core 5.5.0.Final org.jbpm.eclipse.feature.feature.group
(gL JBoss jBPM Task 5.5.0.Final org.jbpm.eclipse.task feature.feature.group

Size: Unknown
Details

\

Figure 3 - Drools plug-in for Eclipse IDE: Installation step 3

Click on the button for installing the plug-in after accepting the license terms.

The plug-in installation requires a restart of your Eclipse IDE environment.

2.1.4 Installing UCA for EBC and UCA for EBC Development
Kit
Detailed information on how to install UCA for EBC and UCA for EBC Development
Kit is provided in the [R1] HP UCA for Event Based Correlation — Installation Guide

2.1.5 Post-install Environment Setup

2.1.5.1 The UCA_EBC_DEV_HOME Variable

The UCA for EBC Development Kit installation procedure adds the
%UCA_EBC_DEV_HOME% environment variable to your user environment.

This variable is necessary for various development phases of a UCA for EBC value
pack development, especially the build and packaging phases.

To verify that this variable is correctly set after the UCA for EBC Development Kit has
been installed, open a command-line (Run... -> cmd.exe) and type:

On Windows:
| c:\> echo %UCA_EBC_DEV_HOME%

You should get an output similar to the following:

14

| C:\UCA-EBC-DEV\

Note

On Windows 7, you should log out and log back in again for the new environment
variable to be taken into account after installation of the UCA for EBC Development
Kit.

On Linux:
| $ echo ${UCA_EBC_DEV_HOME}

You should get an output similar to the following:

[/opt/UCA-EBC-DEV |

Note

On Linux this Variable must be manually set in the user’s environment, as specified in
the UCA for EBC Installation Guide.

2.1.5.2 Ant Configuration

The UCA for EBC value pack packaging is based on the use of the Apache Ant tool.
This tool requires a specific version and specific settings. Be sure to use the Apache
Ant tool provided with UCA for EBC in the $UCA_EBC_DEV_HOME$\3pp\ant
directory (${UCA EBC_DEV_HOME}/3pp/ant on Linux).

Be sure that you don’t have the ANT_HOME environment variable set to the path of
another version of Apache Ant, which would create conflicts with the version of
Apache Ant in the 3pp\ant\bin folder. If you do, you should either clear the
ANT_HOME environment variable:

C:\> set ANT_HOME=

Or set it to the directory of the Apache Ant version that comes with the UCA for EBC
development kit:
C:\> set ANT_HOME=%UCA_EBC_DEV_HOME%\3pp\ant

$ANT_HOME/bin/ant -version
Apache Ant(TM) version 1.8.2 compiled on December 20 2010

The delivered Apache Ant version that comes with the UCA for EBC development kit
is:

$ANT_HOME/bin/ant -version
Apache Ant(TM) version 1.8.2 compiled on December 20 2010

2.1.6 UCA for EBC Eclipse plug-in installation instructions

The UCA for EBC Development Kit delivers an Eclipse plug-in that eases UCA for
EBC value pack project creation under eclipse.

This plugin is delivered in the
%UCA_EBC_DEV_HOME%\eclipseplugin\ucaEbcEclipsePluginSite-3.1.3-
assembly.zip file.

The installation of this plug-in is made as follows:

15

From the Eclipse ‘Help’ menu, choose ‘Install new software’ and then click on the

button.

Select the UCA for EBC eclipse plug-in ZIP file using the button and give it
the name “UCA for EBC plug-in” as shown in the picture below:

& nstan ¢ W

[=]=] = |
Available Software
Select a site or enter the location of a site. \D —
Work with: type or select a site - Add...

Find more software by working with the "Available Software Sites” preferences.

type filter text

Name - ~ Version
[[] @ There is no site selected. = Add Repository ﬂ

Name: UCA for EBC plugin Local..

‘ Location: jarfile:/C:/UCA-EBC-DEV/eclipseplugin/ucaEbcEclipsePlu
]

Select Al | [Deselect Al

Details I ® [0K] [Cancel] 0

]

Show only the latest versions of available software [Hide items that are already installed
Group items by category What is already installed?
[7] Show only software applicable to target environment

[7] Centact all update sites during install to find required software

@ < Back Next > Finish

Figure 4 - UCA for EBC Eclipse plug-in: Installation step 1
Then click on the button.

The screen should then display the archive content as follow:

= Install - [— = ﬁ
Available Software

Check the items that you wish to install. 3 a
Work with: UCA EBC Plugin - jarfile;/C;/UCA-EBC-DEV/eclipseplugin/ucaEbcEclipsePluginSite-3.1.3-assembly.zipl/ - Add...

Find more software by working with the “Available Software Sites” preferences.

type filter text

Name Version
4 []o0 UCA EBC plugins
@ UCA EBC eclipse project builder plugin 313
@ UCA EBC Filter File Generator plugin 313

Select All] [Deselect All 2 items selected

Details

Show only the latest versions of available software Hide items that are already installed

Group items by category What is already installed?

[] Show only software applicable to target environment

[Contact all update sites during install to find required software

)

Figure 5 - UCA for EBC Eclipse plug-in: Installation step 2
Check the “UCA EBC plugins” checkbox, uncheck the “Contact all update sites...”,

and then click on the button.

17

The following screen is displayed:

= Install -

Install Details

Review the items to be installed.

Name Version
§* UCA EBC eclipse project builder plugin 313
% UCA EBC Filter File Generator plugin 313

Size: Unknown

Details

Id
ucakbcProjectBuilderFeatur...
ucaEbcFilterGeneratorFeatu...

H Next > ‘ Finish

Cancel

Figure 6 - UCA for EBC Eclipse plug-in: Installation step 3

Click on the button for installing the plug-ins after accepting the license terms.

18

Note

The following message appears during the installation. This is a normal message as

the provided jar files are signed.

= Selection Needed ﬁ

Do you trust these certificates?

Hewlett Packard; OSS; CMS

SelectAll | | Deselect All

Hewlett Packard; OSS; CMS
Hewlett Packard; OSS; CMS

@) I OK] I Cancel]

Select the listed Certificated and Click to continue the installation.

The plug-in installation requires a restart of your Eclipse IDE environment. Please
restart eclipse before any attempt to create a UCA for EBC project.

19

Chapter 3

Value pack development lifecycle

3.1 Memento on Value packs and Scenario
definitions

3.1.1 Value Pack Definition

Creating a Value Pack can be seen as implementing a “Correlation” bundle for
managing a special correlation use case. The following are example of such
correlation use cases:

e alow Level Filtering use case
¢ adomain-specific correlation use case like IP MPLS or L2 Metro Ethernet

e asimple ‘operator’ use case that groups/correlates alarms based on specific
rules

A Value Pack is a “functional container” that contains one or more scenarios, each
scenario implementing a part of the whole correlation use case targeted by the Value
Pack.

Scenarios can be cascaded so that the output of one scenario can be the input of
another scenario.

Note

¥~ For additional information about Value Pack and Scenario configuration

parameters, please refer to: [R2] HP UCA for Event Based Correlation — Reference
Guide

3.1.2 Scenario Definition
A scenario is fully defined by implementing the following steps:
e Defining the properties of the scenario

e Defining the filter of the scenario (this will determine what type of alarms will
enter the scenario)

e Implementing Alarm enrichment processing (optional)
e Implementing scenario rules

Note

¥~ The first two steps “Scenario definition file” and “Filter definition file” are

described in the following document: [R2] HP UCA for Event Based Correlation —
Reference Guide

20

Scenario

W

Figure 7 — The UCA-EBC Scenario Components

21

3.2 Life Cycle

The process of creating a UCA for EBC Value Pack is described by the following
figure:

=

Manual update

1
1
: (filters,
I scenarios, rules,
| code)
\ /
N o e e e el e e o o Pl
,’ Step 3 \‘
e et R
| . . 1 .
| Unit Testing J T — Packaging of
I 1 the Value Pack
1 1
1 1
\ /

=

Deployment of

a
T~—
N~

the Value Pack

N o o e - -

Figure 8 - The 5 steps to create a UCA for EBC Value Pack

For step 1 “Create a new UCA for EBC Value Pack project”, use the UCA for EBC
project builder eclipse plug-in.

Step 2 “Update the UCA for EBC Value Pack project” is the main step when creating
new UCA for EBC Value Packs. This part is explained in details in the next
paragraphs and sections.

Step 3 “Develop correlation rules” is also a main step when creating new UCA for
EBC Value Packs.

Step 4 is performed automatically using Apache Ant. The build.xml file has all
necessary targets to compile, test, and generate a ZIP file for your Value Pack.

=

N o o o - -

=

N o e e - -

22

3.3

Step 5 involves copying your Value Pack zip file to the
${UCA_EBC_INSTANCE}/valuepacks folder on a UCA for EBC Server, as
mentioned in Chapter 2 “Getting started with UCA for EBC” of this document.

Developing correlation features involves creating one or more correlation scenarios
for your Value Pack, each scenario using its own filter and implementing its own
rules.

Creating a new UCA for EBC Value Pack

UCA for EBC can be seen as an application container in which so called UCA for
EBC “Value Packs" are deployed.

A Value Pack represents a set of features (scenarios) that are grouped together to
implement one or more correlation use cases.

A UCA for EBC value pack thus includes for example: event filtering, event based
rules, customized java code and possibly configuration files for each of these
scenarios.

3.3.1 Creating a value pack project within Eclipse

The UCA for EBC eclipse plug-in provides a project creation wizard allowing the
creation of a new value pack project in just a few clicks and dialog boxes.

This wizard can be launched from the eclipse main toolbar by clicking on the
UCA/EBC icon:

- — = ——

= Plug-in Develqpm.ent - uca-eocpert;"uca-expert-dev-kit-parﬂfpomﬂﬁlfclﬁseﬂftform -

File Edit Source Mavigate Search

Regiect Run Window Help

s~ O~ Q~ H G- E®™S 4

=

9~ [~ = 0-
= Package Explorer &3 %Plug-ins

Or from the Eclipse “New Project” Menu as follow:

23

-
= MNew Project

Select a wizard

Create a new project resource

Wizards:

| type filter text

[» [= Google
[(= Guwvnor
4 (= lava
£ Java Project
¥ Java Project from Existing Ant Buildfile
[» [= JavaScript
b = jBPM
[» [Plug-in Development

I Cliel
s = UCAEBC

% Mew UCA EBC Project

4

This launches the UCA EBC value pack wizard:

24

F EI N
Create a UCA EBC Valuepack Project

Create a UCA-EBC valuepack project in the workspace or in an external location

Project name:
myEclipseProject
Value pack

Marme: myValuepack Version: 1.0

Location
@ Create new project in workspace

) Create new project in:

ChAUsers\URAGOYworkspace\myEclipseProject Browse...

UCA SDK Location

Directory: CAUCA-EBC-DEV

=
@ <Back || Ned> e

Figure 9 - Value pack project creation wizard Stepl
From this panel you can set the project and value pack configuration:
On the first line you must enter the name of the eclipse project to be created.
On the second line you need to give the value pack name and its version

Then the ‘location’ panel allows specifying the location of the created project. It can
be in the current workspace or in an external directory of your choice.

Finally the UCA SDK Location allows specifying the home directory of the UCA for
EBC Development kit. The default value is obtained from the
%UCA_EBC_DEV_HOME% environment variable.

Then Click on the button for getting the next wizard step.

This is the scenario panel configuration. Note that the project creation wizard allows
creating a single initial scenario per value pack. The creation of additional scenarios
for a given value pack must be done manually by editing the various value pack
configuration files.

25

:

Create a UCA EBC Valuepack Project
Create a UCA EBC Scenaric

Scenario name:
zcenariol

Scenario package: (e.g. com.example.myvaluepack)

com.hp.example.myValuepack
filters

filter file name: filters.xml

Rule file
Rule file name: (e.g. myfile.drl) rules.drl
Rules Description: scenaricl rules

[Use templated rules

P
'\3_,' Mesxt » Finish l I Cancel

Figure 10 - Value pack project creation wizard Step2
At this step you can set the scenario parameters:
On the first line you must enter the scenario name.

On the second line you need to give the scenario package name. This package name
will be used for all the scenario’s java source code files.

In the filter panel you have to enter the name of the filter file for this scenario. As this
is an XML file, the ‘.xml’ suffix is mandatory.

Then the rule panel allows you specifying the rule file name (and a description) and
also specify if this scenario will use template rules file or not (this is done by checking
the ‘Use template rule’ box.

Then Click on the button for creating the Project.

Note: for creating “topology based” Value Pack project, please refer to the UCA
Topology Extension user guide.

This project creation wizard execution leads to the creation of an Eclipse project
skeleton. It exhibits a basic correlation scenario that can compile and unit test
successfully. From this example, developers can extend it to build their own Value
Packs.

26

r
= Java - Eclipse Platform

=B . |

=R

File Edit Source Refactor Mavigate Search Project Run Window Help

@& H-0-G%- #HE~

E®O P n] e - -

& ()

»

[% Package Explorer 32

E&|le~ =0

= myEclipseProject|

a [src/mainfjava
a {1 myValuepack
I [4) scenariol java
4 [src/main/resources
I 2 valuepack.conf
a [valuepack.scenariol
¥ Alarms.xml
%] filtersxml
@ rules.drl
4 [src/test/java
a £ myValuepack
¢ [J] scenariol Testjava
a [src/test/resources
B bmk
» H: myValuepack
%] logdjxml
uca-ebc.properties
» [UCAEBCresources
i =) Referenced Libraries
» &) IRE System Library [jre6]
= lib
B = s
(= target
] Build.xml

2= Outline 52

=0

@

4

An outline is not available.

[Problems 32

0 items

@ Javadoc] [Declaratimﬂ =2 Console}

G|

L

Description

=
Resource Path

Location

1

-:' Sign in to Google..,

myEclipseProject

Figure 11 - Created Value pack

3.3.2 Anatomy of the created project

Using Eclipse IDE, you can browse through the different directories that compose the
created “Skeleton” project.

Please see below for a glimpse at the folder structure of the created project:

27

f l e

= Java - Eclipse Platform

File Edit Source Refactor Mavigate Search Project Run Window Help

=g @' (53 ﬁ'ﬁ"%' B & ﬁf{i—,Resource
- - R AR R -
[# Package Explorer 2 = 4:{}| @ - 0=
4 |24 myEclipseProject g
4 @ src/main/java I
a4 £ myValuepack
> [J] scenariol java =5
4 [src/main/resources -
a i valuepack.conf ==
|X| contextxml
x| ValuePackConfigurationxml
a £ valuepack.scenariol
x| Alarmsxml
x| filtersaeml
43 rules.drl
4 [P sroftest/java
4 £ myValuepack
- [J] scenariolTestjava
4 [src/test/resources
» S bmk
a H myValuepack
%] main-context.xml
%] scenaricl Test-contextaxml
|| logdjamnl
uca-ebc.properties
» [UCAEBCresources
» =, Referenced Libraries
> =i JRE System Library [jre6]

= lib
s [s
(= target
& Buildaml
| -:' Sign in to Google.. = 0% myEclipseProject
5 el B
- -

Figure 12 - Folder structure of the created project

The created “Skeleton” project also comes with an Apache Ant build.xml file that is
used for building and packaging the value pack outside of the Eclipse IDE.

3.3.3 Validation of the created project

The created project contains predefined test classes that automatically load/compiles
the value pack resources (scenario definitions, filters and rules files) and validate

them (at least syntactically).

JUnit tests can be run either directly from eclipse, by right-clicking on the test
package and choosing “Run As > JUnit Test” as shown in the following screen shot:

28

I =

. . T
File Edit Source Refactor Mavigate Search Project Run Window Help
e~ - Q- & H-0-Q- WO~ E®E 7~ £ [Tava) 25 Resource
W w o] w % - - o
%‘o'vzﬁ =8 EEOutImeS@ =8
4 (=% myEclipseProject -
b sre/main/java An outling is not available.
[[src/main/resources
a2 [srcftestfjava
a [myValuenack!
b @ s New N
4 [sroftest/ Go Into
I HS bmk
4 2 omyV Open in New Window
¥ n Open Type Hierarchy F4
b s Show In Alt+Shift+W »
[x] logd
uca- Copy Ctrl+C
I+ [UCAERC % Copy Qualified Name
b Bh Referenc o0 pog Cirl+V
1 = JRE Syst
- Elele Eelete
= lib # Delet Delet
b & sre #= Rernove frem Context Ctrl+Alt+Shift+Down
& target Build Path v
£ Build.xm
Source Alt+Shift+5 ¥
Refactor Alt+Shift+T b
fiy Import...
Yy Export..
References 3
Declarations 3
.\‘-)c“ Refresh F5
Assign Working Sets...
. » ¥ =0
Run As b | B 1Java Applet Alt+Shift+ X, A L) i
Debug As v | O 2Java Application Alt+Shift+X,)
Profile As v Ju 3 JUnit Test Alt+Shifts X, T Bath foction
e Run Configurations...
Team 3
Compare With 3
Restore from Local History... m 3
s,
2§ Signin to Goo Properties Alt+Enter

Figure 13- Running JUnit tests on the created project in Eclipse IDE

29

In which case the test results can be seen directly in Eclipse IDE:
= Java - Eclipse Platform I l l = 11

File Edit Mavigate Search Project Run Window Help

O @ $-0 Q- $O- E®G F- EEE)LReouce

[% Package Explorer |gfu Junit &2 =] = B[5= outline = =0
Finished after 9.346 seconds = =
P BE i}:‘/ R An outline is not available.
Runs 171 B Errorst 0 B Failures: 0
] myValuepack.scenariol Test [Runner: JUnit 4] (4.013 s)
[2{ Problems | @ Javadoc | [&) Declaration | B Console &3 =0
I <terminated> myValuepack [JUnit] C:\Program Files'\Java\jre6bin\javaw.exe (Jun 13, 2012 11:03:39 AM)

S e g
Jun 13, 2812 11:
INFQ:

INFO:
Jun 13, 2812 11:8
INFO: Stopping IMX
Jun 13, 2812 11:83:49 A
INFO: Unexporting RMI reg
Jun 13, 2812 11:83:49 AM
INFO: Scenaric Thread :
Jun 13, 2812 11:83:49 Ap
INFO: Scenario Thread
Jun 13, 2812 11:83:49 A
INFO: Unregistering IMX-exp
Jun 13, 2012 11:83:49
INFO: -- [END] --

2-62229-133957822

= Failure Trace

<.remoting.

-hp.uca.expert.scenario.internal.ScenarioImpl run
p requested
n.hp.uca.expert.scenario.internal.ScenarioImpl run

m

r:'&gnmto Google... : 0¥

[——

Figure 14 - JUnit tests results on the created project in Eclipse IDE

Or from the command line by executing the Apache Ant tool and selecting the “test”
Ant target (You need to run the “ant test” command from the root directory of your
project workspace) as shown in the following screen shot:

B Administrater: Command Prompt |E‘E|éj

IC-~Users \URAGONruntime—Eclipsefpplication“nyEclipseProject>ant test
[Buildfile: C:“\Users“URAGO“runtime-EclipsefApplicationmyEclipseProjectsbuild.xml

jconpile-tests:
[nkdir]l Created dir: CG::\Users \URAGONruntime—EclipsefApplication“myEclipseProjectstarget wp—hbuild-dir~test
[javac]l Compiling 1 source file to C:\Users“\URAGONruntime-EclipsefApplication myEclipseProjectstarget vp—build-dirstest

Created dir: C:\Users\UBAGONruntime—EclipsefpplicationsmyEclipseProjectstarget up—huild-dir\reports
Created dir: C:\Users \UBAGO~runtime—Eclipsefpplication~myEclipseProjecthtarget up-huild-dirsreportsy,
Created dir: C:\Users“\URAGO\runtime—Eclipsefpplication~myEclipseProjecthtarget up-huild-dirsreportsy,
Running mylUaluepack.scenariolTest
Tests run: 1, Failures: B. Erro 8. Time elapsed: 9.436 sec
[junitreport] Processing G:xUsers\URAGONruntime—-Eclipsefipplication~myEclipseProjectitarget’wp—huild-dirsreportssjunitreport TESTS-Te|
lstSuites.xml to C:Users\URAGONAppDatasLocalsTempsnull26124815
[junitreport] Loading stylesheet jar:file:/C:/UCA-EBC-DEU-/3pp-ant~libsant—junit.jar?/org-apache/tools/ant- taskdefs optional/junit.xs|
L/junit—frames.xsl
[juni port] Transform time: 338ms
[junitreport] Deleting: C::\Users \URAGONAppDatasLocalsTempnull261248150
[copy]l Copying 13 files to C:\Users“URAGONruntime—Eclipsefpplication’myEclipseProject reportsijunit 201206131187

[BUILD SUCCESSFUL
Total time: 14 seconds

l SUserssURAGONruntime—Ec lipsefpplication myEc lipseProject>

Figure 15 - Running JUnit tests on the created project at the command-
line using Ant

In which case the results can be shown in your preferred Web browser by opening
the index.html file in the target\vp-build-dir\reports\junitreport
directory of your project workspace:

30

r — — e
j': Unit Test Results. -

¢ O filey///C/Users/URAGO/runtime-EclipseApplication/myEclipseProject/target/vp-build-dir/reports/junitreport/index.html %N
@ Extending Ecl" se- .. 7 | mbaron.ftp-develop... L EclipseZone - Gettin... u Flexible Project Stru... 7 | Help - Eclipse Platfo.. I Jersey - ClassloaderL.. [dev pointers
Eﬂ Cette page est en | anglais ~ | Voulez-vous |a traduire 7 ITraduirel Non \Ne Jamais traduire les pages rédigées en anglais I IOptiUﬂS" %
Home Unit Test Results.
Packages Designed for use with JUnit and Ant.
myWaluepack Summary
Tests Failures Errors Success rate Time
1]] 100.00% 9.436
Mote: failures are anticipated and checked for with assertions while errers are unanticipated.
Classes
i Packages
scenarigl Test
Name Tests Errors Failures Time(s) Time Stamp Host
myValuepack 1 0 1] 9.436 2012-06- URAGOZ

13T09:07:06

Figure 16 - JUnit tests results on the created project viewed using a
Web browser

3.4 Customizing the created ‘skeleton’ Value Pack
project

The project generated by the UCA for EBC project builder eclipse plug-in provides a
simple scenario implementing some basic alarm statistics that is just here for
validating the project structure.

Of course you have to turn the created ‘skeleton’ project into your new Correlation-
project value pack. For this you have to customize

e The Value pack configuration files
e The scenario filter file

e The scenario rule files

e The Associated Java code files.

Note

¥~ For additional information about Value Pack and Scenario configuration

parameters, please refer to: [R2] HP UCA for Event Based Correlation — Reference
Guide

3.4.1 Updating the scenario filters

There is a filter file named filters.xml that is associated with the scenario of the
created value pack.

The goal of this file is to define the passing filter for Alarms that will be consumed by
the current scenario. Then, all alarms entering UCA for EBC will be evaluated against
the filter file of each scenario, to decide if they should be forwarded to the scenario or
not.

31

If the properties of an alarm match the passing filter(s) defined in the filters file then
the alarm is forwarded to the scenario. On the other hand, if the properties of an
alarm don’t match the passing filter(s) of the filters file then the alarm is not forwarded
to the scenario.

The default generated filter allows any alarm to be forwarded to the scenario.

A filters-filexml o5

0" encoding="UTF-8" 73
p://hp.com/uca/expert/Filter™>
name="test">

1 <?xml version="1
29 <filters xml

tement>
e>originatingManagedEntity</fieldName>

>matches rator>

Figure 17 - The default “catch all” project’s filters.xml file

Notes

¥ Please refer to: [R2] HP UCA for Event Based Correlation — Reference Guide for
a full description of the Filter file syntax.

&~ Refer to section 5.9 of this document for a description on how to use the UCA-
EBC eclipse filter editor.

3.4.2 Updating the correlation rules file

3.5

By default, the generated rules file defines a single rule implementing a basic statistic
use case. This rule is just for demoing and testing. It is just an example, which must
be changed to something relevant.

Generating the Value Pack kit

Once your project has been updated, it is necessary to generate the kit associated
with it so that it can be deployed on UCA for EBC (this is the packaging phase). To do
this, you just need to execute the following commands:

C:\> cd <Project Base>
C:\> ant all

32

B Administrator: Command Prampt =
o

C:\Users\Sordetd\Documents\EclipsesHelios 3.6 SR2\WorkspaceDefault \My-Correlation-projectant all
[Buildfile: C:\Users\SordetJ\Documents\EclipseNHelios 3.6 SR2\Workspace“Default\My-Correlation—project\build.xml

clean:
[delete] Deleting directory G:\Users\SordetJ\Documents\EclipsesHelios 3.6 SR2\Workspace\Default\My-Correlation—projec
ft\target\vp—build-dir

dir.check:

jcompile-including-generated:

) ated dir: C:\Users\SordetJ\Documents“\Eclipse“Helios 3.6 SR2\Workspace‘Default“\My-Correlation—project\targ|
et wp-build-dirsclasses

[javac] Compiling 1 source file to C:\Users“\SordetJ\Documents“\EclipsesHelios 3.6 SR2Z\Workspace’\Default\My—Correlatiol
In—pro ject target\wp-build-dirsclasses

lcompile :

[javac] Compiling 2 source files to C:\Users\SordetJ\Documents:\Eclipse\Helios 3.6 SR2\WorkspaceDefault\My-Correlati
lon—projecti\target\up-build-dir\test

test:
[mkdir] Created dir: C:\Users\SordetJ\Documents\Eclipse\Helios 3.6 SR2\Workspace:Default\My—-Correlation—project\targ

et wp-huild-dir\reports

[mkdir] Created d G:\Users\SordetJ\Documents\Eclipse\Helios 3.6 SR2\Workspace\Default\My-Correlation—project:tary|
let\wp-huild-dir\reports\junit

[mkdir] Created d G:\Users\SordetJ\Documents\Eclipse\Helios 3.6 SR2\Workspace\Default\My—Correlation—project\targ|
et \wp-build-dir\reports\junitreport

[junit] Running com.hp.uca.expert.up.skeleton.SkeletonTemplateTest

[junit] Tests pun: 1, Failures: @, Eprors: B, Time elapsed: 11,194 sec

[junit] Running com.hp.uca.expert.up.skeleton.SkeletonTest

[junit] Tests run: 1, Failures: B, Errors: B, Time elapsed: 18,733 sec
[junitreport] Processing C:\Usersi\SordetJ\Documents\Eclipse\Helios 3.6 SR2\Workspace\Default\My—Correlation—projectitarg|
et \wp-huild-dirsreports\junitreport\TESTS-TestSuites.xnl to C:\Users\SordetJ\AppDatanLocal\Tenpsnulli4B658A334
Ljun port] Loading stylesheet jar:file:~C:/UCA-EBC-DEV/3pp-antslib/ant-junit.jar!/org/apachestools/ant/taskdefs/optio|
nal/junit/xsl/junit—frames.xsl
[junitreport] Transform time: 836ms
[junitreport] Deleting: C:\Users\Sordetd\AppData‘LocalsTemp\nulll4@6588334

[copy] Copying 15 files to C:\Users\SordetJ\Documents\EclipseHelios 3.6 SR2\Morkspace“Default:\My-Correlation-proje
ct\reportsi\junit\201112061630

ljar:
[jar] Building jar: G:sUsers\SordetJDocuments\EclipsesHelios 3.6 SRZ\Workspace:Default\My-Correlation—project\tar|
lget\up-build-dir\My-Correlation—project-1lib-1.8_jar

pre—kit :

[copy] Copying 11 files to C:\Users\SordetJ\Documents\Eclipse\Helios 3.6 SR2\Workspace\Default\My—-Correlation-proje
lct\targetsvp-huild-dirSvpsdeploysMy—Corre lation-project-1.8

[copy] Copying 1 file to G:i\Users\SordetdDocuments\Eclipse\Helios 3.6 SR2\Uorkspace\Default\My—Correlation—project
Ntarget\wp-huild-dir\vpsdeploysMy—Correlation—project—1.B%1i]

[copy] Copying 2 files to C:\Users\SordetJ\Documents\Eclipse“Helios 3.6 SR2\Workspace\Default\My—Correlation—projec
tstarget \vp-build-dirswpsdeploysMy—Correlation-project—1.8%1ih

kit :

ipl Building zi SUgersi\BordetJ\Documents\Eclipse\Helios 3.6 SR2\Workspace‘Default\My—Correlation—projectitar|
uild-dirswpi\My-Correlation-project-vp-1.8.zip

ipackage :
all:
[BUILD SUGCESSFUL

Total time: 28 seconds
C:\Users\Sordetd\Documents\Eclipse\Helios 3.6 SR2\Workspace‘Default\My—Correlation—project>

Figure 18 - Building the kit of your customized Value Pack

The kit of the project is then generated in the target/vp-build-dir/vp directory
of the <Project Base> directory as a zip file called <my valuepack name>-vp-<my
valuepack version>.zip:

33

@n\‘;;v| J < target » vp-build-dir » vp » v|"¢| | Sear\;}.‘ o

‘ Organize = Views = (& Burn

Folders v | Name Type Size
., Workspace - J deploy File Folder
| Default EM)r-Correlation-project-\rp-l.ﬂ.zip WinRAR ZIP archive 36 KB

J .metadata

. My-Correlation-project
o lib
. logs

. reports
. srC
. target
| classes
J log
. vp-build-dir
| classes
. reports
. test

i VP - |4 T | +

2 items & Computer

% =

Figure 19 - The kit of your customized Value Pack

The ZIP file of your customized Value Pack contains the following information:

The Configuration (conf /) directory that contains:

The Value Pack Spring beans file: context .xml

The Value Pack configuration file: valuePackConfiguration.xml
The Library (1ib/) directory that contains:

The JAR file of the Value Pack containing the compiled Java code that you
developed for your Value Pack in addition to the rules files

Any custom JAR files that you need to run this Value Pack
The Scenario (<your-scenario-name>/) directory that contains:
The filters file(s)

The external parameters file(s), if your Value Pack contains rules files that
are template-based

The rule file(s)

$ unzip -1 target/vp-build-dir/vp/myVPl-vp-1.0.zip
Archive: target/vp-build-dir/vp/myVPl-vp-1.0.zip
Length Date Time Name

0 05-30-2013 17:46 myVP1-1.0/

0 05-30-2013 17:46 myVP1-1.0/conf/

0 05-30-2013 17:46 myVP1-1.0/1lib/

0 05-30-2013 17:46 myVP1-1.0/myScenariol/

2726 05-30-2013 17:46 myVP1l-

1.0/conf/ValuePackConfiguration.xml

1100 05-30-2013 17:46 myVP1-1.0/conf/context.xml

6423 05-30-2013 17:46 myVP1-1.0/1ib/myVP1l-1ib-1.0.jar

2596 05-30-2013 17:46 myVP1-1.0/myScenariol/Alarms.xml
626 05-30-2013 17:46 myVP1-1.0/myScenariol/filters.xml
420 05-30-2013 17:46 myVP1-

1.0/myScenariol/filtersTags.xml

34

3.6

3299 05-30-2013 17:46 myVP1-1.0/myScenariol/rules.drl

Figure 20 - Contents of the ZIP file of your customized Value Pack

Deploying the Value Pack kit on UCA for EBC

To deploy your value pack in the UCA server, the following three steps are
necessary:

e Install the Value Pack ZIP file on UCA for EBC Server
e Deploy the Value Pack on UCA for EBC Server
e Start the Value Pack on UCA for EBC Server

3.6.1 Install the Value Pack package (ZIP file) on an HP

3.6.2

Itanium or Linux system running UCA for EBC Server.

Copy your Value Pack package (the ZIP file located at: target/vp/<my value
pack name>vp-<my value pack version>.zip) tothe
${UCA_EBC_INSTANCE}/valuepacks directory on the UCA for EBC system

For example:

$ cp target/vp-build-dir/vp/myVP1-vp-1.0.zip
${UCA_EBC_DATA}/instances/default/valuepacks/

Deploy the Value Pack

To deploy the Value Pack in the ${UCA EBC INSTANCE}/deploy directory, use the
“--deploy” option of the uca-ebc-admin administration tool (executed as uca user):

> c¢d ${UCA_EBC_HOME}/bin
> uca-ebc-admin --deploy -vpn <my value pack name> -vpv <my value
pack version>

You should get an output similar to the following:

UCA for EBC Home directory set to: /opt/UCA-EBC

UCA for EBC Data directory set to: /var/opt/UCA-EBC

INFO - Value Pack name: <my value pack name> version: <my value
pack version> has been successfully deployed

INFO - Exiting...

Note

&~ Alternatively, you can also deploy the value pack from the UCA for EBC GUI.

35

3.6.3 Start the Value Pack on UCA for EBC Server:

3.7

Two different ways are available to you to start value packs deployed on UCA for
EBC depending on whether UCA for EBC is started or not.

You can check whether UCA for EBC is running or not by issuing the following
command:

| > ${UCA_EBC_HOME}/bin/uca-ebc show

If UCA for EBC is stopped, restarting UCA for EBC will load all value packs deployed
inthe ${UCA EBC INSTANCE}/deploy folder including your value pack.

If UCA for EBC is running, use the “--start” option of the uca-ebc-admin
administration tool (executed as uca user) to start your value pack:

> cd ${UCA EBC HOME}/bin
> uca-ebc-admin --start -vpn <my value pack name> -vpv <my
value pack version>

You should get an output similar to the following:

UCA for EBC Home directory set to: /opt/UCA-EBC
UCA for EBC Data directory set to: /var/opt/UCA-EBC
INFO - Exiting...

Note

& Alternatively, you can also start the value pack from the UCA for EBC GUI.

You can get the list of running value packs on UCA for EBC using the “--list” option of
the uca-ebc-admin command-line administration tool:

> cd ${UCA EBC HOME}/bin
> uca-ebc-admin --list

Note

&~ For additional information about the uca-ebc-admin command-line administration
tool, please refer to: [R3] HP UCA for Event Based Correlation — Administration,
Configuration and Troubleshooting Guide

[R4] HP UCA for Event Based Correlation — Value Pack Examples

Testing the Value Pack in real-time

Now that both UCA for EBC and your value pack are up and running, the UCA for
EBC application implements the ‘Statistic circuit’ correlation package and is ready to
listen to incoming alarms.

In order to provide an easy way to test the global solution, a simple tool is provided
that lets you inject a set of alarms (defined in a XML file) into UCA for EBC.

36

As the action provided in the properties file is to “log” information to a log file (in
“append” mode), it is easily possible to test the circuit in real-time.

A sample Alarms.xml input file containing sample alarms to use with your value
pack is provided in the $ {UCA EBC INSTANCE}/deploy/<your value pack
name>-<your value pack version>/skeleton folder. The output log file
named output.xml is located in the $ {UCA EBC HOME} root folder.

Following is an example of the uca-ebc-injector command-line tool used to inject
Alarms into UCA for EBC in order to test your Value Pack in real conditions:

>${UCA_EBC_HOME}/bin/uca-ebc-injector -file
${UCA_EBC_INSTANCE}/deploy/skeleton-project-
1.0/mypackage/Alarms.xml

>tail -f ${UCA_EBC_HOME}/output.xml &

You should get an output similar to the following:

|### STATISTICAL ALARM: 2 Alarms received ###

Note

¥~ For additional information about the uca-ebc-injector command-line tool, please

refer to: [R3] HP UCA for Event Based Correlation — Administration, Configuration
and Troubleshooting Guide

[R4] HP UCA for Event Based Correlation — Value Pack Examples

37

Chapter 4

Focus on development key points

4.1

Implementing Alarm enrichment

Alarm enrichment processing is called by the UCA for EBC framework after the alarm
passed the scenario filters and before it is inserted in the scenario Working Memory.

The enrichment is implemented by performing the following steps:

Step 1: Extend the UCA
com.hp.uca.expert.lifecycle.LifeCycleAnalysis Java class and override
the following methods:

onAlarmCreationProcess (Alarm alarm):to extend alarm creation objects

onAlarmDeletionProcess (AlarmDeletion alarm):to extend alarm deletion
objects

onAlarmStateChangeProcess (AlarmStateChange alarm):to extend alarm
state change objects

onAlarmAttributeValueChangeProcess (AlarmAttributeValueChange
alarm): to extend alarm attribute value change objects

Example of LifeCycleAnalysis Extension:

package com.hp.uca.ebc.enrichmentexample;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import com.hp.uca.common.trace.LogHelper;

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmCommon;

import com.hp.uca.expert.lifecycle.LifeCycleAnalysis;

import com.hp.uca.expert.scenario.Scenario;

public class ExtendedLifeCycle extends LifeCycleAnalysis {

private static Log log =
LogFactory.getlLog (ExtendedLifeCycle.class) ;

public ExtendedLifeCycle (Scenario scenario) {

super (scenario) ;

@Override
public AlarmCommon onAlarmCreationProcess (Alarm alarm) {
LogHelper.enter (log, "onAlarmCreationProcess()");

38

// put the Alarm Enrichment Code here !!
// (standard alarm fields or LocalVariable)

LogHelper.exit (log, "onAlarmCreationProcess()");

return enrichedAlarm;

}

In this example, the enrichment is performed only in the case of an alarm creation
event.

Step 2: Declare the ExtendedLifeCycle class at the scenario definition Level ;
This is done by using the <customLifeCycleClass> in the Scenario Definition section
of the ValuepackConfiguration.xml file.

Example :

<scenarios>
<scenario name="com.hp.uca.ebc.enrichmentexample.myscenario">
<alarmEligibilityPolicy>
NetworkState!=" CLEARED&quOt;
</alarmEligibilityPolicy>
<filterFile>
src/main/resources/valuepack/myscenario/filters.xml
</filterFile>
<fireAllRulesPolicy>EACH ACCESS</fireAllRulesPolicy>
<globals></globals>
<processingMode>CLOUD</processingMode>
<rulesFiles>
<rulesFile>
<filename>
file:./src/main/resources/valuepack/myscenario/rules.drl
</filename>
<name>my scenario rules</name>
<ruleFileType>DRL</ruleFileType>
</rulesFile>
</rulesFiles>
<customLifeCycleClass>
com.hp.uca.ebc.enrichmentexample.ExtendedLifeCycle
</customLifeCycleClass>
</scenario>

</scenarios>

Step3: Extend the Alarm object if necessary

In order to ease the rule writing, it may be easier to store the enrichment information
in some dedicated alarm object attributes.

In such case the Alarm objects (Alarm, AlarmDeletion, AlarmAttributeValueChange
and AlarmStateChange) can be extended.

Example of Alarm extension :

package com.hp.uca.ebc.enrichmentexample;

import javax.xml.bind.annotation.XmlRootElement;
import org.neo4j.graphdb.Relationship;

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmHelper;

@XmlRootElement
public class EnrichedAlarm extends Alarm {

39

/**
* New Alarm field
Y/
private String location;

public EnrichedAlarm() {

super () ;

public EnrichedAlarm (Alarm alarm) {
super (alarm) ;

@Override
public EnrichedAlarm clone() throws CloneNotSupportedException
{
EnrichedAlarm newAlarm = (EnrichedAlarm) super.clone();
newAlarm.location = this.location;

return newAlarm;

public String getLocation () {

return location;

public void setLocation(String location) {

this.location = location;

@Override
public String toFormattedString() {
StringBuffer toStringBuffer=
AlarmHelper.toFormattedStringBuffer (this);

AlarmHelper.addFormatedItem (toStringBuffer, “Location:”,
getLocation());

return toStringBuffer.toString();

Example of LifeCycleAnalysis Extension using Alarm
extension:

package com.hp.uca.ebc.enrichmentexample;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

import com.hp.uca.common.trace.LogHelper;

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmCommon;

import com.hp.uca.expert.lifecycle.LifeCycleAnalysis;

import com.hp.uca.expert.scenario.Scenario;

public class ExtendedLifeCycle extends LifeCycleAnalysis {

private static Log log =
LogFactory.getLog (ExtendedLifeCycle.class);

public ExtendedLifeCycle (Scenario scenario) ({

super (scenario) ;

@Override
public AlarmCommon onAlarmCreationProcess (Alarm alarm) {
LogHelper.enter (log, "onAlarmCreationProcess()");

EnrichedAlarm enrichedAlarm = new EnrichedAlarm (alarm);

// put the Alarm Enrichment Code here !!
// enrichedAlarm.setLocation(“a location”);

LogHelper.exit (log, "onAlarmCreationProcess()");

return enrichedAlarm;

4.2 Developing the scenario rules

Rules files are files containing correlation rules interpreted by the Drools inference
engine of the scenario.

The Drool Expert engine used in UCA for EBC has its own rule language. The rule file
content must comply with this language.

&~ Please refer to Drools Expert guide, Chapter 5 The Rule Language for a
description of the language: http://www.jboss.org/drools/documentation

Important note

Drools keywords for inserting, updating, and deleting objects in Working Memory (i.e.
insert, update, retract) MUST NOT be used directly when developing UCA-EBC
rules. This is for working memory integrity, and due to the locking mechanism
implemented within the UCA-EBC framework.

e Instead of using insert (myObject) directly, you should use
theScenario.getSession () .insert (myObject) from Drools files or
ScenarioThreadLocal.getScenario().getSession().insert (myO
bject) from Java code

e Instead of using update (myObject) directly, you should use
theScenario.getSession () .update (myObject) from Drools files or
ScenarioThreadLocal.getScenario () .getSession () .update (myO
bject) from Java code

e Instead of using retract (myObject) directly, you should use
theScenario.getSession () .retract (myObject) from Drools files or
ScenarioThreadLocal.getScenario().getSession () .retract (my
Object) from Java code

The ScenarioThreadLocal class is located in the
com.hp.uca.expert.scenario package.

Also, all timer based keywords should be avoided: duration, timer, calendar.

On top of the basic rule language syntax, additional operators are available to deal
with time constraints:

Temporal operator: see Drools Fusion guide, Chapter 2.4. Temporal Reasoning

41

http://www.jboss.org/drools/documentation

Sliding Time Window Feature: see Drools Fusion guide, Chapter 2.6. Sliding Time
Window

&~ See http://www.jboss.org/drools/documentation for more information on how to
create rules that deal with time constraints.

Note

To use the sliding time window feature, objects in working memory must be declared
as Event (and not as Fact).

¥~ Please see Drools Fusion guide, Chapter 2.1. Events semantics at URL
http://docs.jboss.org/drools/release/5.3.0.Final/drools-fusion-
docs/html/ch02.html#d0e184, for more information on what events are compared to
facts and how to declare them.

4.2.1 Basics

Any rules file contains one or multiple rules, and has a ‘.drl’ extension.

Here are the different parts composing a rule file:

package package-name
imports

globals

functions

queries

rules

Package

The package name is optional, but it is recommended to partition your rules in
different packages for clarity.

Imports

The “imports” part, allows you to import Java classes that can be used in the Action or
Condition parts of a rule.

Important note

In UCA for EBC, importing the Alarm Java class (com.hp.uca.expert.alarm.Alarm) is
necessary in order to be able to use alarm attributes in rule conditions.

Globals

The "globals” part is used to define variables that have a global scope (across rules).
The global variables have to be initialized by the application.

42

http://www.jboss.org/drools/documentation
http://docs.jboss.org/drools/release/5.3.0.Final/drools-fusion-docs/html/ch02.html#d0e184
http://docs.jboss.org/drools/release/5.3.0.Final/drools-fusion-docs/html/ch02.html#d0e184

4.2.2

Functions

Functions let you define functions that let you avoid repeating the same lines of code
over the entire rules file.

Queries

UCA for EBC does not currently provide support for queries.

Rules

The rules define the behavior of the expert system.

&~ Please refer to Drools Expert guide, for a full description of rule files:
http://www.jboss.org/drools/documentation

Sample rules on Alarm facts in CLOUD mode

In CLOUD mode, the UCA for EBC system inserts Alarm facts in Working Memory
and these facts remain infinitely in working memory unless they are specifically
removed in the rules (using the retract statement). This retract statement is generally
done in the right end side part of rules.

UCA for EBC contains an Alarm Java class (com.hp.uca.expert.alarm.Alarm) which
represents a “generic” Alarm as a fact. Rules can rely on attributes and services of
the Alarm object. For instance, testing a specific value of an attribute in the condition
part or setting a specific attribute of the Alarm in the action part.

To use the CLOUD mode, the scenario processing mode must be set to “CLOUD” in
the ValuePackConfiguration.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<valuePackConfiguration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"
name="myValuepackName" version="myValuepackVersion'">
<scenarios>
<scenario name="myScenario'>
<filterFile>${uca.home}/myValuePack/myScenario/myScenario-
filter.xml</filterFile>
<fireAllRulesPolicy>WATCHDOG</fireAllRulesPolicy>
<globals>
</globals>
<processingMode>CLOUD</processingMode>
<rulesFiles>
<rulesFile>
<filename>file:${uca.home}/myValuePack/myScenario/myScenarioRules.drl</
filename>
<name>myRules</name>
<ruleFileType>DRL</ruleFileType>
</rulesFile>
</rulesFiles>
</scenario>
</scenarios>
</valuePackConfiguration>

Here is a simple example that identifies “Similar alarms” (i.e. Alarms that have the
same alarm type, managed object and probable cause as another Alarm). This
example illustrates a case where the UCA for EBC engine is in CLOUD processing
mode.

The rule file called myScenarioRules.drl contains a rule, the “Similar Alarm” rule,
which performs the following processing:

43

http://www.jboss.org/drools/documentation

When an alarm ‘a’ is found in Working Memory (with a severity different from ‘clear’)
and if there is another not cleared (severity different from ‘clear’) alarm (this !=a) with
the same attribute values for the originatingManageEntity, alarmType and
probableCause properties then display a text.

package scenario.sample;

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.PerceivedSeverity;

rule "Similar Alarm"

when
a: Alarm(perceivedSeverity != PerceivedSeverity.CLEAR)
al: Alarm(

this != a &&
perceivedSeverity != PerceivedSeverity.CLEAR &&
originatingManagedEntity == a.originatingManagedEntity &&
alarmType == a.alarmType &&
probableCause == a.probableCause)
then
System.out.println ("Executing: "+drools.getRule () .getName());
System.out.println(al.getIdentifier () + “similar to “+

a.getIdentifier()):;
end

Important note

Importing the Alarm Java class (com.hp.uca.expert.alarm.Alarm) is hecessary.
Declaring the Alarm class as a Fact in the “declare” section of the rules file is not
mandatory however. By default, if they are not declared at all, objects are understood
to be Facts in Working Memory.

Another rule, the “Clear Alarm” rule focuses on cleared alarms:

rule "Clear Alarm"

when
a: Alarm(perceivedSeverity != PerceivedSeverity.CLEAR)
al: Alarm(
perceivedSeverity == PerceivedSeverity.CLEAR &&
originatingManagedEntity == a.originatingManagedEntity &&
alarmType == a.alarmType &&
probableCause == a.probableCause &&

timeInMilliseconds > a.timeInMilliseconds)

then
System.out.println ("Executing: “+drools.getRule () .getName())
System.out.println(al.getIdentifier() + " clears "+

a.getIdentifier()):;
end

44

4.2.3

Note

The drools object in the sample rule code above is a predefined Drools java object
that you can use in the Action part of a rule to get information on the rule itself among
other things. In our example, the method drools.getRule () .getName (), called
from a rule's Action part, returns the name of the rule. See
http://docs.jboss.org/drools/release/5.3.0.Final/drools-expert-
docs/html_single/#d0e5989 for more information on the drools predefined object.

Sample rules on Alarm events in STREAM mode

In STREAM mode, UCA for EBC inserts Alarm events in Working Memory only for a
period of time. After that, Alarm events are automatically removed from working
memory.

To use the STREAM mode, the scenario processing mode must be set to “STREAM”
in the ValuePackConfiguration.xmnl file:

<?xml version="1.0" encoding="UTF-8"?>
<valuePackConfiguration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"
name="myValuepackName" version="myValuepackVersion'>
<scenarios>
<scenario name="myScenario">
<filterFile>${uca.home}/myValuePack/myScenario/myScenario-
filter.xml</filterFile>
<fireAllRulesPolicy>EACH ACCESS</fireAllRulesPolicy>
<globals>
</globals>
<processingMode>STREAM</processingMode>
<rulesFiles>
<rulesFile>

<filename>file:${uca.home}/myValuePack/myScenario/myScenarioRules.drl</
filename>
<name>myRules</name>
<ruleFileType>DRL</ruleFileType>
</rulesFile>
</rulesFiles>
</scenario>
</scenarios>
</valuePackConfiguration>

Important note

Importing the Alarm Java class (com.hp.uca.expert.alarm.Alarm) is necessary.
Declaring the Alarm class as an Event in the “declare” section of the rules file is also
mandatory.

By default, if they are not declared at all, objects are understood to be Facts in
Working Memory. So, declaring Alarms as Events is mandatory.

¥~ Please see Drools Fusion guide, Chapter 2.1. Events semantics at URL
http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-
docs/html/ch02.html#d0e184, for more information on what events are compared to
facts and how to declare them.

import com.hp.uca.expert.alarm.Alarm;
import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import java.text.SimpleDateFormat;

45

http://docs.jboss.org/drools/release/5.3.0.Final/drools-expert-docs/html_single/#d0e5989
http://docs.jboss.org/drools/release/5.3.0.Final/drools-expert-docs/html_single/#d0e5989
http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/html/ch02.html#d0e184
http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/html/ch02.html#d0e184

import java.util.Date;

import java.util.Locale;

declare Alarm
@role(event)
@timestamp(timeInMilliseconds)
Qexpires(30m)

end

The above “Alarm” declaration specifies that:

Generally, rules in STREAM mode are used to identify patterns of Events (Events that

Alarms should be treated as Events in Working Memory, not Facts

The timelnMilliseconds attribute (i.e. the EventTime attribute of the Alarm) is used
as the timestamp of the Alarm instead of the time when the Alarm Event is
actually inserted into working memory, which is the default timestamp for Events
in Working Memory. The timestamp of the Alarm Event plays a role when time
constraints are used in rules.

Alarm Events expiration time is 30 minutes: the Alarm Events will be removed
from working memory automatically after 30 minutes.

occurs in a specific order) during a specific time window.

The “Store not cleared Alarm” rule is an example of such a rule in STREAM mode. It

performs the following rules:

When an alarm ‘a’ is in Working Memory (an alarm on a “BOX” item with a severity
different from ‘clear’) and if there are no other alarms (matching specific criterias)

received within 2 seconds of alarm ‘a’ then the Additionalinformation attribute of alarm

‘a’ is updated

rule "Store not cleared Alarm"
when
a: Alarm(originatingManagedEntity matches "BOX .*" &&
perceivedSeverity != PerceivedSeverity.CLEAR)

not Alarm(originatingManagedEntity ==
a.originatingManagedEntity &&
perceivedSeverity == PerceivedSeverity.CLEAR &&
this after[0Os, 2s] a)

then
System.out.println("Executing rule:
"t+drools.getRule () .getName ()+" on " + a.getAdditionalText())

// Add the correlation time and rule name in the Additional
Information Field of the alarm

Date now=new Date();

SimpleDateFormat sdf = new SimpleDateFormat ("EEE MMM dd
HH:mm:ss zzz yyyy",

Locale.FRENCH) ;

a.setAdditionalInformation ("correlated by rule:

"t+drools.getRule () .getName ()
+" at " +sdf.format (now));

46

4.2.4

4.2.5

// Store the alarm

acmeActionManager.doDummyAction (a) ;

end

Note

The JBoss Drools documentation contains a lot of other examples of rules in both
STREAM (Drools Fusion) and CLOUD (Drools Expert) modes. As writing the
correlations rules is the major undertaking of creating a correlation project, it is highly
recommended to constantly refer to the Drools documentation when writing Rules.

&~ Please see http://www.jboss.org/drools/documentation for documentation on how
to write rules for Drools Expert and Drools Fusion.

Defining and using rule templates

@ For information about rule templates, please refer to: [R2] HP UCA for Event
Based Correlation — Reference Guide

Introducing Java code in the rules

Drools rules files natively support Java code in the consequence part of the rules
(after the “then” keyword). All you have to do is import the packages/classes that you
need in the import section of the rules files and then write Java code referencing
these classes.

For example, you declare the java.util.Date class in the rules file:

template header
timeslot

package com.hp.uca.expert.vp.llef.grouping;

#list any import classes here.
import com.hp.uca.expert.alarm.Alarm;
import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import java.util.regex.Matcher;
import java.util.regex.Pattern;
import com.hp.uca.expert.example.hibernate.AlarmDao;

import java.text.SimpleDateFormat;
import java.util.Date;

import java.util.Locale;

import java.util.ArrayList;

import java.util.Iterator;

import com.hp.uca.expert.scenario.ScenarioPublic;

import com.hp.uca.common.trace.LogHelper;

import com.hp.uca.expert.flag.Flag;

import com.hp.uca.expert.testmaterial.AbstractJunitIntegrationTest;

#declare any global variables here
global AlarmDao alarmDAO;
global ScenarioPublic theScenario;

Then you can create and use java.util.Date objects in the consequence part (after the
“then” keyword) of your rules:

// Description: find a root cause and the associated symptoms in a
given time window

// Constraints:

// - the root cause is not cleared during the time window
template "Update Root Cause with Symptoms no clearance received"

a7

http://www.jboss.org/drools/documentation

4.3

rule "Update Root Cause with Symptoms no clearance received"

when

[..]

then
LogHelper.enter (theScenario.getLogger() ,
drools.getRule () .getName () ,rootAlarm.getOriginatingManagedEntity () +" -
"+ rootAlarm.getAdditionalText()) ;

// Add the correlation time and rule name in the
Additional Information Field of the alarm
Date now=new Date() ;
SimpleDateFormat sdf = new SimpleDateFormat ("EEE MMM dd
HH:mm:ss zzz yyyy",
Locale.FRENCH) ;
String addInfo="correlated by rule:
"+drools.getRule () .getName ()
+" at " +sdf.format(now) + "\nAssociated

sympthoms:\n";

The java.util.Date objects that you create are not stored in Working Memory unless
you do so explicitly using the “insert” statement.

Note

¥~ For more information, please see the Drools documentation:
http://www.jboss.org/drools/documentation

Defining your own beans

Spring beans (corresponding to the external Java services that you want to use) are
defined in the context .xml of your Value Pack.

Here below is an example of a bean named “dbForwarder” that is relevant for
forwarding alarms into an SQL data store.

<bean id="dbForwarder"
class="com.hp.uca.expert.alarm.JDBCAlarmForwarder">

<property name="alarmDao" ref="alarmDao" />
</bean>

You can define any bean in this file.

In order to retrieve the Java instance of that bean object, you will need to use
following API in your value pack:

Scenario.getValuePack().getApplicationContext()

In order to retrieve the Spring ApplicationContext that will allow you to retrieve your
bean.

With above example, typical code would have been:

return (JDBCAlarmForwarder) theScenario.getValuePack()
.getApplicationContext().getBean("dbForwarder");

48

http://www.jboss.org/drools/documentation

4.4 Executing external actions from the rules

External actions in rules are basically any action that either uses OSS Open
Mediation V7.0 framework services or external Java services.

There are two categories of external actions that we will describe in the following
sections:

e Standard external actions: these actions use the Action class, defined by
the UCA for EBC framework, to execute actions on the OSS Open Mediation
V7.0 framework (i.e. execute actions on any application connected to the
OSS Open Mediation V7.0 framework using a Channel Adapter)

e Calling services defined using Spring: Spring beans are defined in the
context.xml of your Value Pack and global variables that reference these
Spring beans are defined in your scenario(s) and used in your rule file(s).

e Forwarding alarms to external systems: Alarm forwarders are defined
using Spring beans and used from the rules to forward alarms to files, IMS
queues/topics, the OSS Open Mediation V7.0 framework, or any database
that has a JDBC interface

4.4.1 Standard external actions

Standard external actions are defined as actions that are to be executed by the OSS
Open Mediation V7.0 framework.

The UCA for EBC framework defines a Java class named Action that you can use to
perform standard external actions in rules, like for example executing a shell script or
a TeMIP directive on a TeMIP director.

In order to be able to use the methods of the Action class, you have to import the
class in the “import” part of the rule file:

package com.hp.uca.expert.action;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.CustomFields;
import com.hp.uca.expert.x733alarm.CustomField;
import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import com.hp.uca.expert.x733alarm.NetworkState; // NOT_ CLEARED, CLEARED
import com.hp.uca.expert.x733alarm.OperatorState; // NOT_ ACKNOWLEDGED,
ACKNOWLEDGED, TERMINATED

import com.hp.uca.expert.x733alarm.ProblemState; // NOT_HANDLED,

HANDLED, CLOSED

import com.hp.uca.mediation.action.client.Action;

import com.hp.uca.mediation.action.jaxws.ActionResponseItem;
import java.util.ArrayList;

Then you can create Action objects in the “then” part of a rule as described in the
example below:

Display properties of any new alarm

rule "Any Not Acknowledged Alarm (Action)"

when

a: Alarm(operatorState == OperatorState.NOT_ ACKNOWLEDGED)
then

System.out.println (" [RULE " + drools.getRule().getName() + "] Found not
acknowledged alarm: identifier = " + a.getIdentifier() + ":");

System.out.println(a.toFormattedString());

// Acknowledging the Alarm

49

Action action = new Action ("TeMIP AO Directives localhost ");

action.addCommand ("directiveName", "ACKNOWLEDGE") ;

action.addCommand ("entityName", a.getIdentifier());

action.addCommand ("UserId", "UCA Expert");

theScenario.addAction (action); // Associate the action with the scenario
System.out.println ("Executing synchronous ACKNOWLEDGE directive on

alarm: " + a.getIdentifier());
action.executeSync();

System.out.println ("Done:") ;
System.out.println (" - ActionId = " + action.getActionId());
System.out.println (" - ActionStatus = " + action.getActionStatus());
System.out.println (" - ActionStatusExplanation = " +
action.getActionStatusExplanation());
if (laction.getListActionResponseltem() .isEmpty()) {
System.out.println (" - ActionResponseltems = ");

// Loop through all action response items
for (ActionResponseltem item :
action.getListActionResponseItem()) {
if (!item.getOutput () .getEntry() .isEmpty()) {
// Loop through all output entries
for (ActionResponseltem.Output.Entry entry :

item.getOutput () .getEntry()) {
System.out.println (" -> "+
entry.getKey() + " = " + entry.getValue());
}
}
}
}
else {
System.out.println (" - ActionResponseltems = none");
}
System.out.println (" - RawText = " + action.getRawTextAsString());
end

Basically you need to write the following code in your rule:

Action action = new Action("TeMIP_AQO_Directives_localhost");

This will create a new Action object. There are 2 ways to create a new Action object:

Either with the Action class constructor that takes an Action Reference parameter.
The value of this parameter must match an Action Reference defined in
${UCA EBC_INSTANCE}/conf/ActionRegistry.xml file

Or with the Action class constructor that takes the NMS Name, Service Name, Mvp
Name and Mvp Version parameters. The Mvp Name and Version must match a
Mediation Value Pack MvpName and MvpVersion attributes in the

${UCA EBC_ INSTANCE}/conf/ActionRegistry.xml file

Here’s the content of a sample ActionRegistry.xml file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ActionRegistryXML xmlns="http://registry.action.mediation.uca.hp.com/">

<MediationValuePack MvpName="temip"
MvpVersion="1.0"

url=http://localhost:26700/uca/mediation/action/ActionService?WSDL
brokerURL=" failover://tcp://localhost:10000">

<Action actionReference="TeMIP AO Directives localhost'">
<ServiceName>aoDirective</ServiceName>
<NmsName>localTeMIP</NmsName>

</Action>

<Action actionReference="TeMIP TT Directives localhost'>
<ServiceName>ttDirective</ServiceName>
<NmsName>localTeMIP</NmsName>

</Action>

<Action actionReference="TeMIP FlowManagement'>

50

http://localhost:26700/uca/mediation/action/ActionService?WSDL

<ServiceName>subscriptionManagement</ServiceName>
<NmsName>localTeMIP</NmsName>
</Action>
</MediationValuePack>

<MediationValuePack MvpName="exec"

MvpVersion="1.0"
url="http://localhost:26700/uca/mediation/action/ActionService?WSDL"
brokerURL=" failover://tcp://localhost:10000">

<Action actionReference="Exec localhost'">
<ServiceName>commandsExecution</ServiceName>
<NmsName>localhost</NmsName>
</Action>
</MediationValuePack>

</ActionRegistryXML>

&~ please refer to [R2] HP UCA for Event Based Correlation — Reference Guide for
more information on how to use the Action class or configure the
ActionRegistry.xml file.

¥~ please refer to [R6] Open Mediation Installation and Configuration Guide for more

information on how to configure OSS Open Mediation V7.0 to support the execution
of Actions.

Once you have created an Action object, you can specify the parameters that will
define what action to perform, in the following example a TeMIP directive:

action.addCommand ("directiveName", "ACKNOWLEDGE") ;
action.addCommand ("entityName", a.getIdentifier());
action.addCommand ("UserId", "UCA Expert");

Using the addCommand() method you can specify the key/value pairs to use as
parameters to the Action object. These parameters depend on the type of Action to
perform.

For acknowledging a TeMIP Alarm, you need to specify the key/value pairs as shown
above: specifying the Userld of the user acknowledging the alarm is optional, just like
in TeMIP.

Then, you need to associate the Action to the current Scenario so that the Action can
be properly processed:

theScenario.addAction(action);

Then, you need to execute the Action. Both synchronous and asynchronous actions
are possible. Only one of the following lines of code is necessary, depending on
whether you want to execute a synchronous or asynchronous action:

action.executeSync();
action.executeAsync(AODirectiveKey.ENTITY_NAME);

Synchronous actions are “blocking”. The action.executeSync() call will block the
execution of the rule until the action is completed. The whole rule engine for the
scenario is blocked while the action is being executed.

51

Asynchronous actions are “non blocking”. This is the reason why they are the
recommended method for executing actions. The action.executeAsync(...) call
doesn’t block the execution of the rule. The rules continue to be executed.

There’s a mandatory parameter to the action.executeAsync(...) method: the
synchronizationKey. This key indicates the name of the action command key that will
be used to synchronize asynchronous actions so that the order of asynchronous
actions referring to the same action command key/value pair is preserved.

The synchronizationKey parameter enables you to preserve some kind of order
among all the asynchronous actions triggered by your rules. By default (if you specify
Action.NO_SYNCHRONIZATION_KEY as the synchronization key) there is no order.
All asynchronous actions are executed in parallel by a pool of threads. There is no
guarantee that the asynchronous actions will be executed in the order in which they
were requested.

If you do not need asynchronous actions to be executed in any specific order, then
you can use Action.NO_SYNCHRONIZATION_KEY as the synchronization key when
calling the action.executeAsync(...) method.

On the other hand, if you need all asynchronous actions to be executed in the order
they are requested, you need to use a command key (specified with the
action.addCommand(key, value) method) that has the same value for all
asynchronous actions as the synchronization key.

If you need only groups of asynchronous actions to be executed in the order they are
requested, you need to use a command key (specified with the
action.addCommand(key, value) method) that has the same value for all
asynchronous actions of the same group as the synchronization key.

For example, for executing TeMIP AO Directives you can use the
AODirectiveKey.ENTITY NAME as synchronization key:

Action action = new Action(“TeMIP_AO_Directives_localhost”);
action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET);

action.addCommand(AODirectiveKey.ENTITY_NAME, “OPERATION_CONTEXT
OC1 ALARM_OBJECT 155”);

action.addCommand(AODirectiveKey.ADDITIONAL_TEXT, “my text”);

theScenario.addAction(action)

action.executeAsync(AODirectiveKey.ENTITY_NAME);

In the example above, as long as you execute TeMIP AO Directives using the
action.executeAsync (AODirectiveKey.ENTITY NAME) syntax, all TeMIP AO
Directives actions on the same entity will be executed in the order that they are
called.

If you do not want to use the synchronization key feature, you can pass null or
Action.NO_SYNCHRONIZATION_KEY to the executeAsync(...) method:

action.executeAsync(Action.NO_SYNCHRONIZATION_KEY);

52

Note

¥~ For more information on synchronous and asynchronous actions (including how
to use synchronization keys for asynchronous actions), please refer to: [R2] HP UCA
for Event Based Correlation — Reference Guide.

Once the action has been performed on the Network Management System the result
of the execution of the action can be retrieved using the following methods:

action.getActionStatus();
action.getActionStatusExplanation();

Other methods of the Action class provide even more detailed information on the
result of the execution of the action. See the Java Documentation for the Action class
for more information.

4.4.1.1 Writing Actions for the OSS Open Mediation TeMIP Value Pack

The delivered value pack examples come with a 1ib/ directory containing the TeMIP
mapper jar file:
lib/uca-mediation-temip-mvp-mapper-keys-3.1.jar

This will allow you to benefit from java classes that have been designed to help you
write rules that execute TeMIP Alarm Object (AO) directives or TeMIP Trouble Ticket
(TT) directives (provided the OSS Open Mediation V7.0 TeMIP Value Pack is
deployed).

To do so, the first step is to add the following import statement in your rules file:

import com.hp.uca.temip.mvp.mapper.*;

Below is the list of classes that you can use to help you write rules (all AO classes are
defined in the com.hp.uca.temip.mvp.aodirective.mapper package, while TT classes
are defined in the com.hp.uca.temip.mvp.ttdirective.mapper package).

There are 2 sets of classes. The first set contains classes that define constants that
should be used in the “key” part when using the Action.addCommand(key, value)
method:

Class name Class description

AODirectiveKey in Contains string constants that list all the possible

com.hp.uca.temip.mvp.aodire values for keys when using the

ctive.mapper package Action.addCommand(key, value) method on AO
Directives

TTDirectiveKey in Contains string constants that list all the possible

com.hp.uca.temip.mvp.ttdirect values for keys when using the

ive.mapper package Action.addCommand(key, value) method on TT
Directives

Table 4 - Java helper classes for OSS Open Mediation TeMIP Value Pack

The most important constant in the AODirectiveKey class is the
AODirectiveKey.DIRECTIVE NAME (or the TTDirectiveKey.DIRECTIVE NAME in the

53

TTDirectiveKey class depending on whether you want to execute AO or TT
directives).

Using this constant, you can define the name of the TeMIP Alarm Object (or Trouble
Ticket) directive that you wish to execute:

Action action = new Action(“TeMIP_AO_Directives_localhost”);
action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET);

theScenario.addAction(action);
action.executeAsync(AODirectiveKey.ENTITY_NAME);

The other constants define the names of AO (or TT) Directive parameters or
attributes that you can use. For example:

Action action = new Action(“TeMIP_AO_Directives_localhost”);
action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET);

action.addCommand(AODirectiveKey.ENTITY_NAME, “OPERATION_CONTEXT
OC1 ALARM_OBJECT 1557);

action.addCommand(AODirectiveKey.ADDITIONAL_TEXT, “my text”);

theScenario.addAction(action);

action.executeSync();

The second set contains classes that define constants that should be used in the
“value” part when using the Action.addCommand(key, value) method.

Below is the list of such classes for Alarm Object directives (besides the
AODirectiveKey class that is explained above):

Class name Class description

AlarmClassType Contains string constants that list all the possible
values for the Alarm_Class attribute (of the SET
directive for example). These constants should be
used in the value part when using the
Action.addCommand(key, value) method

AlarmObjectProblemStatus Contains string constants that list all the possible
values for the Problem_Status attribute (of the
DUMP or SET directives for example)

AlarmObjectState Contains string constants that list all the possible
values for the State attribute (of the DUMP or SET
directives for example) and the Previous_State
attribute (of the SET directive for example)

54

AlarmOriginType

AlarmType

AODirective

AutomaticOperationsSeverit
y

DeleteCondition

EntityScope

EventID

Partition

ProbableCause

SecurityAlarmCause

Severity

SummarizeScope

TrendIndication

Contains string constants that list all the possible
values for the Alarm_Origin attribute (of the SET
directive for example)

Contains string constants that list all the possible
values for the Alarm_Type attribute (of the CREATE,
DUMP or SET directives for example)

Contains string constants that list all the possible
values for Alarm Object directive names
(ACKNOWLEDGE, ADDPARENT, ARCHIVE, ... for
example)

Contains string constants that list all the possible
values for the Automatic_Terminate_On_Close
attribute (of the SET directive for example)

Contains string constants that list all the possible
values for the State attribute (of the DELETE
directive for example)

Contains string constants that list all the possible
values for the entityScope attribute (of any directive)

Contains string constants that list all the possible
values for the EventID attribute (of the GETEVENT
directive for example)

Contains string constants that list all the possible
values for the Partition attribute (of any directive)

Contains string constants that list all the possible
values for the Probable_Cause attribute (of the
CREATE, DUMP or SET directives for example)

Contains string constants that list all the possible
values for the Security_Alarm_Cause attribute (of
the CREATE, DUMP or SET directives for example)

Contains string constants that list all the possible
values for the Severity (of the ARCHIVE directive for
example), Perceived_Severity (of the CREATE,
DELETE, DUMP, or SET directives for example), or
Original_Severity (of the SET directive for example)
attributes

Contains string constants that list all the possible
values for the Scope attribute (of the DUMP directive
for example)

Contains string constants that list all the possible
values for the Trend_Indication attribute (of the
CREATE or SET directives for example)

Table 5 - AO directives helper classes

55

Below is the list of such classes for Trouble Ticket (TT_SERVER) directives (besides
the TTDirectiveKey class that is explained above):

Class name Class description

Attributeld Contains string constants that list all the possible values
for the Attributeld attribute (of the SHOW directive).
These constants should be used in the value part when
using the Action.addCommand(key, value) method

AutoResponseType Contains string constants that list all the possible values
for the Type attribute (of the ASSOCIATETT, CANCELTT,
CLOSETT, CREATETT or DISSOCIATETT directives)

Partition Contains string constants that list all the possible values
for the Partition attribute (of any directive)

RegisterOperationType Contains string constants that list all the possible values
for the Operation attribute (of the REGISTER directive)

TTDirective Contains string constants that list all the possible values
for Trouble Ticket directive names (ASSOCIATETT,
CANCELTT, CLEARALL, CLOSETT, CREATE ... for
example)

Table 6 - TT directives helper classes

The most important class in this set is the AODirective class (or the TTDirective class
of Trouble Ticket directives) that lists all possible Alarm Object directive names
(ACKNOWLEDGE, ADDPARENT, ARCHIVE, ... for example):

Action action = new Action(“TeMIP_AO_Directives_localhost”);
action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET);

theScenario.addAction(action);

action.executeAsync(AODirectiveKey.ENTITY_NAME);

The other classes contain constants that define the list of possible value for AO
Directive (or TT Directive) parameters or attributes.

Action action = new Action(“TeMIP_AO_Directives_localhost”);
action.addCommand(AODirectiveKey.DIRECTIVE_NAME, AODirective.SET);

action.addCommand(AODirectiveKey.ENTITY_NAME, “OPERATION_CONTEXT
OC1 ALARM_OBJECT 155”);

action.addCommand(AODirectiveKey. TREND_INDICATION,
TrendIndication.LESSSEVERE);

56

action.addCommand(AODirectiveKey.PROBABLE_CAUSE,
ProbableCause.LOSSOFSIGNAL);

theScenario.addAction(action);
action.executeSync();

You can use Eclipse IDE’s automatic completion feature (the keyboard shortcut for
this feature is: CTRL+<Space>) to discover the constants defined in each of the
classes mentioned above.

4.4.1.2 Writing Actions for the OSS Open Mediation Exec Value Pack

The delivered value pack examples come with a lib directory containing the TeMIP
mapper jar file:

lib/uca-mediation-exec-mvp-mapper-keys-3.1.jar

To create an Exec Action for the OSS Open Mediation Exec Value Pack you must
first add the following import statement in your rule file:

import com.hp.uca.exec.mvp.mapper.*;

This will allow you to benefit from java classes that have been designed to help you
write rules that execute command/executables/shell scripts (provided the OSS Open
Mediation V7.0 Exec Value Pack is deployed).

Below is the list of classes that you can use to help you write rules (all classes are
defined in the com.hp.uca.exec.mvp.mapper package):

Class name Class description

ExecActionKey Contains string constants that list all the possible values for
keys when using the Action.addCommand(key, value)
method

Table 7 - Java helper classes for OSS Open Mediation Exec Value Pack
Here’'s an example of the ExecActionKey class use:
Action action = new Action("Exec_localhost");
action.addCommand(ExecActionKey. COMMAND, "ping");
action.addCommand(ExecActionKey. ARGUMENT, "127.0.0.1");

theScenario.addAction(action);

action.executeSync();

57

4.4.2 Calling services defined using Spring

Sometimes the actions performed in the THEN part of rules will be calls to
nonstandard Java package services such as Hibernate, JMS... These services
generally need to be initialized and the Spring configuration file of the Value Pack,
context.xml, iS one way to do it.

In order to be able to use these services from Drools rules files, Drools global
variables need to be defined that reference the Spring beans defined in the
context.xml file of the value pack.

Any service defined using Spring can be “retrieved” in any rule file using the “global”
keyword.

Below is an excerpt from the Drools Expert documentation that explains the concept
of global variables:

[...] With global you define global variables. They are
used to make application objects available to the rules.
Typically, they are used to provide data or services that
the rules use, especially application services used in
rule consequences, and to return data from the rules,
like logs or values added in rule consequences, or for
the rules to interact with the application, doing
callbacks. Globals are not inserted into the Working
Memory, and therefore a global should never be used to
establish conditions in rules except when it has a
constant immutable value. The engine cannot be notified
about value changes of globals and does not track their
changes. Incorrect use of globals in constraints may
yield surprising results - surprising in a bad way.

If multiple packages declare globals with the same
identifier they must be of the same type and all of them
will reference the same global value. [..]

&~ Pplease refer to the [R2] HP UCA for Event Based Correlation — Reference Guide
for more information about the Spring Framework integration with UCA for EBC.

First, in order to be able to use Spring beans in rules files, the Spring beans must be
declared in the context. xml1 file of the Value Pack. Then global variable entries
must be defined for each Spring bean in the ValuePackConfiguration.xml file
as shown below:

<?xml version="1.0" encoding="UTF-8"?>
<valuePackConfiguration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"
name="_ PROJECT NAME " version="_PROJECT VERSION ">
<scenarios>
<scenario name="Grouping-Scenario'>

<filterFile>src/main/resources/com/hp/uca/expert/vp/llef/groupin
g/grouping-filter.xml</filterFile>
<fireAllRulesPolicy>EACH ACCESS</fireAllRulesPolicy>
<globals>
<global>
<key>alarmDAO</key>
<value>alarmDAO</value>
</global>
</globals>

58

Java class
import

<processingMode>STREAM</processingMode>
<rulesFiles>
<rulesFile>
<filename>file:./src/main/resources/com/hp/uca/expert/vp/llef/gr
ouping/grouping-template.drl</filename>
<name>grouping</name>

<paramsFilename>file:./src/main/resources/com/hp/uca/expert/vp/1l

lef/grouping/grouping-params.xml</paramsFilename>
<ruleFileType>XDRL</ruleFileType>
</rulesFile>
</rulesFiles>
</scenario>
</scenarios>

</valuePackConfiguration>

The “globals” XML tag in the ValuePackConfiguration.xml file defines a list (i.e.
a Java map) of beans that will be available in your rules file(s) as global variables.

The following piece of code illustrates de use of external Java libraries from rule files:

package com.hp.uca.expert.example.hibernate;
#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;
import com.hp.uca.expert.x733alarm.PerceivedSeverity;

CZE;;;;:;EEZQEZ;ca.expert.example.hibern%;;:;;;;;E;;::>
4

/////:; €clare any global var es here
obal AlarmDao alarmDAQ;:
\ Definition of

global variables

template "Root Cause without Symptom"
rule "Root Cause without Symptom"
when

Then

ore the root caus rm
larmDAO.save (fatherAlarm)s

External action
using global
variable

VAN

4.4.3 Forwarding alarms to external systems

A common use case is when you want to forward alarms being processed by a
scenario to external systems/applications.

You might want to create an XML file containing some alarms that you want to export
from the scenario so that you can import these alarms on an external
system/application.

Alternatively, if the external system/application that you want to export alarms to has
a JMS queue/topic that can be used to import alarms, then you might want to export
alarms directly to this IMS queue/topic.

Finally, if the external system/application is accessible from OSS Open Mediation
V7.0 via a specific Channel Adapter, then you might want to export the alarms directly
to the OSS Open Mediation V7.0 bus.

59

The UCA for EBC framework defines standard classes that enable you forwarding
Alarm objects (or collections thereof) located in Drools Working Memory or that have
been defined in the rules of a scenario to either a file, a IMS queue/topic or OSS
Open Mediation V7.0.

The following Java classes are part of the UCA for EBC framework:

1. To forward alarms to a file:
com.hp.uca.expert.alarm.FileAlarmForwarder

2. To forward alarms to a JMS queue/topic:
com.hp.uca.expert.alarm.JMSAlarmForwarder

3. To forward alarms to OSS Open Mediation V7.0:
com.hp.uca.expert.alarm.OpenMediationAlarmForwarder

4. To persist alarms into a DB store:
com.hp.uca.expert.alarm.JDBCAlarmForwarder

&~ please refer to UCA for EBC Javadoc for complete information on these classes.
The Javadoc for UCA for EBC is located both at $UCA EBC DEV_HOMES$\apidoc
and at ${UCA_EBC_HOME}/apidoc.

One way to forward alarms is to define an AlarmForwarder (either
FileAlarmForwarder, JMSAlarmForwarder, OpenMediationAlarmForwarder or
JDBCAlarmForwarder) bean in the Spring configuration file of the scenario
(context.xml).

Note

Please note that the recommended way for defining alarm forwarders is to define
them in the Spring configuration file of the scenario: context . xml.

A Thread is associated with each alarm forwarder (either FileAlarmForwarder,
JMSAlarmForwarder, OpenMediationAlarmForwarder, or JDBCAlarmForwarder). This
thread is automatically started when the associated AlarmForwarder object is created.
If the AlarmForwarder has been created using the recommended method (in the
Spring configuration file of the scenario: context . xml) then the associated thread
will be automatically stopped when the bean associated with the alarm forwarder is
destroyed. Otherwise you need to use the requestStop() method to explicitly stop the
thread associated with the alarm forwarder when you don't need it anymore.

The thread associated with an alarm forwarder provides compression to improve
performance. Alarms may not be forwarded right away. They are accumulated in a
queue for the duration of the compression period (by default 1 second) so that they
can be forwarded as a batch of alarms at the end of the compression period (by
default every second). You can change the value of the compression period using the
setCompressionPeriod(long) method. If you set the compression period to 0
milliseconds, no compression will be performed.

Here’s an example of defining such a bean in the context .xml file of a scenario:

<?xml version="1.0" encoding="UTF-8"7?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns:jms="http://www.springframework.org/schema/jms"

60

xmlns:p="http://www.springframework.org/schema/p"
xmlns:context="http://www.springframework.org/schema/context"

xmlns:amg="http://activemq.apache.org/schema/core"
xmlns:util="http://www.springframework.org/schema/util"

xsi:schemalLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/jms

http://www.springframework.org/schema/jms/spring-jms.xsd
http://activemg.apache.org/schema/core

http://activemq.apache.org/schema/core/activemg-core.xsd">

<context:annotation-config />

<bean name="forwardedAlarmsFile" class="java.io.File">
<constructor-arg index="0"><value>forwarded-
alarms.xml</value></constructor-arg><!-- String pathname -->
</bean>

<bean name="fileAlarmForwarder"
class="com.hp.uca.expert.alarm.FileAlarmForwarder" depends-
on="forwardedAlarmsFile">
<constructor-arg index="0"><ref

bean="forwardedAlarmsFile"/></constructor-arg><!-- File file -->
<constructor-arg
index="1"><value>false</value></constructor-arg><!-- boolean overwrite
-—>
</bean>

<bean name="jmsAlarmForwarder"
class="com.hp.uca.expert.alarm.JMSAlarmForwarder">
<constructor-arg
index="0"><value>vm://localhost?broker.persistent=false</value></constr
uctor-arg><!-- String brokerURL -->
<constructor-arg
index="1"><value>jms.alarm.forwarder.test.queue</value></constructor-

arg><!-- String destinationName -->
<constructor-arg
index="2"><value>true</value></constructor-arg><!-- boolean isQueue -->
</bean>

<bean name="openMediationAlarmForwarder"
class="com.hp.uca.expert.alarm.OpenMediationAlarmForwarder">
<constructor-arg index="0"><value>UCA-
EBC remotesystem</value></constructor-arg><!-- String actionReference -
->
<constructor-arg index="1"><value>Alarm Flow from UCA
EBC</value></constructor-arg><!-- String alarmFlowName -->
</bean>
</beans>

Figure 21 - Defining AlarmForwarder beans in the context.xml file

The highlighted portion of the context . xml file shows the definition of a
FileAlarmForwarder bean that will be used in the rule files of a scenario to forward
alarms to an XML file.

Once the context.xml file has been properly set up, you need to define global
variable entries in the VvaluePackConfiguration.xml file for each Spring bean
that you want to access from the rules as shown below:

<?xml version="1.0" encoding="UTF-8"?>
<valuePackConfiguration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"

name="_ PROJECT NAME " version="__ PROJECT VERSION ">

61

<scenarios>
<scenario name="alarmforwarder">

<filterFile>src/main/resources/valuepack/alarmforwarder/filters.xml</fi
lterFile>
<fireAllRulesPolicy>EACH ACCESS</fireAllRulesPolicy>
<globals>
<global>
<key>fileAlarmForwarder</key>
<value>fileAlarmForwarder</value>
</global>
<global>
<key>jmsAlarmForwarder</key>
<value>jmsAlarmForwarder</value>
</global>
<global>
<key>openMediationAlarmForwarder</key>
<value>openMediationAlarmForwarder</value>
</global>
</globals>
<processingMode>STREAM</processingMode>
<rulesFiles>
<rulesFile>
<filename>file:./src/main/resources/valuepack/alarmforwarder/ala
rmforwarder.drl</filename>
<name>alarmforwarder rules</name>
<ruleFileType>DRL</ruleFileType>
</rulesFile>
</rulesFiles>
</scenario>

</scenarios>
</valuePackConfiguration>

Figure 22 - Defining AlarmForwarder globals in the
ValuePackConfiguration.xml file

The highlighted portion of the ValuePackConfiguration.xml file shows the
definition of a fileAlarmForwarder global variable referencing the fileAlarmForwarder
Spring bean defined in the context . xm1 file that will be used in the rule files of a
scenario to forward alarms to an XML file.

Once the ValuePackConfiguration.xml file has been properly set up, you need
to make some modifications to the rule files where you want to use the
fileAlarmForwarder global variable:

Import the proper Java class:
com.hp.uca.expert.alarm.FileAlarmForwarder for a FileAlarmForwarder
com.hp.uca.expert.alarm.JMSAlarmForwarder for a IMSAlarmForwarder

com.hp.uca.expert.alarm.OpenMediationAlarmForwarder for an
OpenMediationAlarmForwarder

Declare the global variables (defined in the ValuePackConfiguration.xml file)
that you want to use in the rule file

Below is an example of how to import the proper Java class, and declare the global
variables that you want to use:

package com.hp.uca.expert.vp.alarmforwarder;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmDeletion;

import com.hp.uca.expert.alarm.AlarmStateChange;

import com.hp.uca.expert.alarm.AlarmAttributeValueChange;
import com.hp.uca.expert.x733alarm.PerceivedSeverity;
import java.util.ArrayList;

import com.hp.uca.expert.scenario.Scenario;

62

import com.hp.uca.common.trace.LogHelper;
import com.hp.uca.expert.flag.Flag;

import com.hp.uca.expert.alarm.FileAlarmForwarder;
import com.hp.uca.expert.alarm.JMSAlarmForwarder;
import com.hp.uca.expert.alarm.OpenMediationAlarmForwarder;

#declare any global variables here

global Scenario theScenario;

global FileAlarmForwarder fileAlarmForwarder;

global JMSAlarmForwarder jmsAlarmForwarder;

global OpenMediationAlarmForwarder openMediationAlarmForwarder;

declare Alarm
@role(event)
@timestamp (timeInMilliseconds)
@expires(30m)

end

import com.hp.uca.expert.testmaterial.AbstractJunitIntegrationTest;

Figure 23 - Declaring the use of an AlarmForwarder global variable in a

rule file

Once the proper Java classes have been imported and the global variables declared,

you can just use global variable to write Alarms (or collections of Alarms) to an XML

file (the one specified in the context .xml file):

import com.hp.uca.expert.alarm.FileAlarmForwarder;
import com.hp.uca.expert.alarm.JMSAlarmForwarder;
import com.hp.uca.expert.alarm.OpenMediationAlarmForwarder;

#declare any global variables here

global Scenario theScenario;

global FileAlarmForwarder fileAlarmForwarder;

global JMSAlarmForwarder jmsAlarmForwarder;

global OpenMediationAlarmForwarder openMediationAlarmForwarder;

declare Alarm
@role(event)
@timestamp (timeInMilliseconds)
@expires(30m)

end

Forward any alarm received
rule "Forward any alarm received"
no-loop

when

Salarm : Alarm()

then

LogHelper.enter (theScenario.getLogger (),
drools.getRule () .getName ()) ;

// Forward the alarm to a file, jms queue/topic or 0SS Open
Mediation

fileAlarmForwarder.write (Salarm) ;

// Forward the alarm to a jms queue or topic

jmsAlarmForwarder.write ($Salarm) ;

// Forward the alarm to 0SS Open Mediation

openMediationAlarmForwarder.write ($Salarm) ;

// Retract the alarm

theScenario.getLogger () .info ("Retracting: \n"+
Salarm.toFormattedString());
theScenario.getSession () .retract ($alarm);

LogHelper.exit (theScenario.getLogger (),
drools.getRule () .getName ()) ;
end

63

Figure 24 - Using an AlarmForwarder global variable to write Alarms to
an XML file

The XML file generated by the FileAlarmForwarder is fully compatible with the XML
schema for UCA for EBC Alarms defined at $ {UCA_EBC_HOME}/schemas/uca-
expert-alarm.xsd. For example, the generated XML file containing the alarms
can be used as input to the $ {UCA EBC_HOME}/bin/uca-ebc-injector
command-line tool.

The JMSAlarmForwarder on the other hand can be used to forward alarms directly to
a JMS queue/topic, for example the Alarm input queue of a UCA for EBC server
(which is implemented as a JMS Topic). You can use the following values to forward
alarms to a UCA for EBC alarm input queue:

brokerURL: JMSAlarmForwarder.DEFAULT_UCA EBC_BROKER_URL (the value
of this constant is “tcp://localhost:61666”)

destinationName: JMSAlarmForwarder.
DEFAULT_UCA_EBC_ALARMS_TOPIC_NAME (the value of this constant is
“com.hp.uca.ebc.alarms”)

isQueue: false (because the UCA for EBC alarm input queue is in fact a JMS topic,
not a JMS queue)

Finally the OpenMediationAlarmForwarder can be used to forward alarms to OSS
Open Mediation V7.0. In order to use an OpenMediationAlarmForwarder, you must
first create an action reference in the

${UCA_EBC_ INSTANCE}/conf/ActionRegistry.xml file that will define how to
connect to the UCA for EBC Channel Adapter on OSS Open Mediation V7.0, and
how to reach the Channel Adapter of the system/application that you target.

Below is an example of an action reference defined in the ActionRegistry.xml
file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ActionRegistryXML
xmlns="http://registry.action.mediation.uca.hp.com/">

<MediationValuePack MvpName="ApplicationX" MvpVersion="1.1"

url="http://localhost:26700/uca/mediation/action/ActionService?W
SDL"
brokerURL="failover://tcp://localhost:10000">

<Action actionReference="ApplicationX remotesystem">
<ServiceName>applicationX-1.1</ServiceName>
<NmsName>remotesystem</NmsName>
</Action>
</MediationValuePack>
</ActionRegistryXML>

In the sample ActionRegistry.xml file above, an action reference has been
defined for an “ApplicationX” application on a remote system connected to OSS Open
Mediation V7.0 via an ApplicationX Channel Adapter (ApplicationX is a fictitious
application).

The brokerURL attribute must match the URL of the ActiveMQ broker defined for the
OSS Open Mediation V7.0 that you target. The hostname in the URL must match the
hostname of the system where OSS Open Mediation V7.0 is installed. By default the
port number used for the ActiveMQ broker on OSS Open Mediation V7.0 container
instance 0 is 10000.

To verify what port number is used for your OSS Open Mediation V7.0 container
instance, please check the value of the activemq.port property in the
/var/opt/openmediation-V60/containers/instance-<instance
number>/conf/servicemix.properties file.

64

The following JMS properties will be set for the alarms being forwarded to OSS Open
Mediation V7.0. These properties can be used by consumer Channel Adapters to
filter the alarms that they’re interested in among all alarms pushed by various
Channel Adapters to the OSS Open Mediation V7.0 alarms JMS topic:

JMS Property Name
NOMOriginalProvider
NOMOriginalProviderEnd

point

NOMOriginalProviderPor
t

NOMOiriginalProviderHos
t

NOMOriginalProviderCon
tainerinstanceNumber

NOMType

NOMActionMessageType

NOMActionEntityHint

NOMActionNameHint

NOMFinalConsumer

NOMPFinalConsumerEndp

oint

NOMFinalConsumerPort

NOMFinalConsumerHost

Value

set to the value of ${ca.name} in UCA
EBC CA

“UCA EBC version on hosthame”

not set

set to the value of ${nom_hostname}
in UCA EBC CA

set to the value of
${sys.nom_instance_number} in UCA
EBC CA

set to
"http://hp.com/openmediation/alarms/2
011/08" in UCA EBC CA

not set (this is not an action message,
this is an alarm message)

not set (this is not an action message,
this is an alarm message)

not set (this is not an action message,
this is an alarm message)

the value of the “serviceName”
attribute of the action reference (in the
ActionRegistry.xml file) associated with
the OpenMediationAlarmForwarder
object

"mvpName mvpVersion on
nmsName", where the names in italics
are XML entities/attributes of the
action reference (in the
ActionRegistry.xml file) associated with
the OpenMediationAlarmForwarder
object

"alarmFlowName" associated with the
OpenMediationAlarmForwarder object
or "UCA EBC Alarms" by default. You
can set the FlowName attribute when
you create the
OpenMediationAlarmForwarder object

the value of the "nmsName" XML
entity of the action reference (in the
ActionRegistry.xml file) associated with
the OpenMediationAlarmForwarder
object

65

NOMFinalConsumerCons not set
tainerinstanceNumber

Table 8 - JMS properties set for alarms being forwarded to OSS Open
Mediation

4.5 Making useful logs

The UCA for EBC product provides an advanced logging mechanism that is able to
trace specific rule processing for each Scenario.

The UCA for EBC Administration GUI fully supports this logging mechanism.

Note

“F~ For more information on how to troubleshoot scenarios using the UCA for EBC
Administration GUI, please see: [R7] Unified Correlation Analyzer for Event Based
Correlation — User Interface Guide, chapter Troubleshooting UCA for event based
Correlation

To take benefits from this mechanism, the rule developer must use the logger
provided by the UCA for EBC framework for each scenario by calling the following
method:

e theScenario.getLogger () from Drools files

e ScenarioThreadLocal.getScenario () .getLogger () from Java code

The ScenarioThreadLocal class is located in the
com.hp.uca.expert.scenario package.

The getLogger () method provides access to a standard
org.apache.log4j.Logger object. Consequently, all standard log4j Logger
methods are available to better qualify the level of information needed (for example
info (), debug (), warn (), etc...).

The following piece of code demonstrates how to use the UCA for EBC scenario
logger to log messages from a Drools rule file:

66

4.6

package com.hp.uca.expert.vp.sample;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.CustomFields;
import com.hp.uca.expert.x733alarm.CustomField;
import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import com.hp.uca.expert.x733alarm.NetworkState; // NOT_C

import com.hp.uca.expert.x733alarm.OperatorState; // NOT_.

ACKNOWLEDGED, TERMINATED

import com.hp.uca.expert.x733alarm.ProblemState; // NOT_HANDLED, HANDLED, CLOSED

import com.hp.uca.expert.scenario.Scenario;
import com.hp.uca.common.trace.LogHelper;

#declare any global variables here
global Scenario theScenario;

rule "Any new Acknowledged Alarm"

when
a: Alarm(operatorState == OperatorState.ACKNOWLEDGED)
then
LogHelper.enter (theScenario.getLogger (), drools.getRule () .getName());
theScenario.getLogger () .info (" [RULE " + drools.getRule () .getName() + "] Found
new acknowledged alarm: identifier = " + a.getIdentifier()+ ":");
theScenario.getlLogger () .debug(a.toFormattedString()) ;
LogHelper.exit (theScenario.getLogger (), drools.getRule().getName());
end

rule "Any new Terminated Alarm"

when
a: Alarm(operatorState == OperatorState.TERMINATED)
then
LogHelper.enter (theScenario.getLogger (), drools.getRule () .getName());
theScenario.getLogger () .info (" [RULE " + drools.getRule () .getName() + "] Found
new terminated alarm: identifier = " + a.getIdentifier() + ":");
theScenario.getLogger () .debug (a.toFormattedString()) ;
LogHelper.exit (theScenario.getLogger (), drools.getRule () .getName()) ;
end

Figure 25 - Scenario logger example

Note

&~ please refer to Chapter 5.10 “Scenario Loggers” in the [R2] HP UCA for Event

Based Correlation — Reference Guide for more information on how to use Scenario
Loggers.

Creating JUnit Tests

Developing Value Packs involves creating correlation rules and writing code. In any
case, it is highly recommended to unit test your rules and code.

To help you in that regard, the ‘skeleton’ project (the project created by the UCA
Eclipse plug-in) provides you with a template of a JUnit test (based on JUnit 4.4)
along with the complete infrastructure to compile, run and generate reports for unit
tests.

The following JUnit test is a good starting point to create new unit tests:

Itis a JUnit 4.4 test that also supports Java and Spring framework annotations: using
@RunWith and @Configuration annotations automatically loads the associated
Spring configuration file (called <test file name>-context.xml)

The template JUnit test class that we provide extends the
AbstractJunitintegrationTest class. This class is part of the UCA for EBC
framework. It implements the Spring framework ApplicationContextAware interface,
and thus provides access to the Spring beans (Java objects) defined in the Spring

67

configuration file(called <test file name>-context.xml). You can easily
retrieve any Spring bean defined in the Spring configuration file by using the
getApplicationContext().getBean(String name) method from any JUnit test class
that extends the AbstractJunitintegrationTest class.

In JUnit 4.4, any method that represents a unit test needs to have the @Test
annotation before the definition of the method.

It is mandatory to define a Testsuite so that tests can be found in the Apache Ant
project of your Value Pack. Defining the following method allows for automatic
retrieval of all tests defined in the unit test class:

// Way to run tests via ANT Junit
public static junit.framework.Test suite() {
return new JUnit4TestAdapter (SkeletonTest.class);

Below is the code for the template JUnit test class:

package com.hp.uca.expert.vp.skeleton;
import junit.framework.JUnit4d4TestAdapter;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

import org.junit.AfterClass;

import org.junit.BeforeClass;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import com.hp.uca.common.misc.Constants;
import com.hp.uca.common.trace.LogHelper;
import com.hp.uca.expert.testmaterial.AbstractJunitIntegrationTest;

QRunWith (SpringJUnit4ClassRunner.class)
@ContextConfiguration
public class SkeletonTest extends AbstractJunitIntegrationTest{

private static Log log = LogFactory.getlLog(SkeletonTest.class);

private static final String SCENARIO BEAN N. = "skeleton";

private static final String ALARM FILE =
"src/test/resources/com/hp/uca/expert/vp/skeleton/Alarms.xml" ;

/**
* @throws java.lang.Exception
*/
@BeforeClass
public static void setUpBeforeClass() throws Exception {
log.info(Constants.TEST START.val() + SkeletonTest.class.getName());

/**
* Qthrows java.lang.Exception
*/
QAfterClass
public static void tearDownAfterClass() throws Exception {
log.info(Constants.TEST END.val() + SkeletonTest.class.getName ()
+ Constants.GROUP_ALT1_SEPARATOR.val());

68

// Way to run tests via ANT Junit
public static junit.framework.Test suite() {
return new JUnit4TestAdapter (SkeletonTest.class);

QTest
public void test() throws Exception {
LogHelper.enter (log, "test()");
/*
* Initialize variables and Enable engine internal logs
*/
initTest(SCENARIO_BEAN_NAME, BMK_PATH);

/*

* Send alarms

*/
getProducer () .sendAlarms (ALARM FILE) ;

/*
* Waiting for the TEST END FLag that should be inserted by the rule
* itself
*/

waitingForTheEndTestFlag(getFlagEventListener() ,1 * SECOND,10*SECOND) ;

/*

* Disable Rule Log to close the file used to compare engine historical
* events

*/

closeRulelogFiles (getScenario()) ;

/*

* Check test result by comparing the historical engine events with a
* benchmark

*/

checkTestResult (getLogRuleFileName () ,getLogRuleFileNameBmk ()) ;

LogHelper.exit(log, "test()"):

Note

The AbstractJunitIntegrationTest test utility class have been developed and is
provided as part of the UCA for EBC development kit. A JavaDoc documentation is
provided for this class. Please refer to the Java Documentation of the
com.hp.uca.expert.testmaterial package for full explanations.

Using the Apache Antbuild.xml file provided in the example project (Skeleton)
project (or projects created b by the UCA eclipse plugin) allows you to automatically
compile tests (using the “test-compile” Ant target), run the tests and generate the test
reports (using the “test-run” Ant target).

Following is the list of all Ant targets provided by the build.xml file:

69

4.7

%An o B QO R KO

bon Project
@ Al
@ buid
® dlean
@ clean-al
i@ compile
[E] jar

i@ jar-clean
@ kit

@ kit-clean
@ test-clean
i@ kest-compile

L R e R R 3

@ test-run
@ usage [default]

Figure 26 - Ant targets provided by the build.xml file
Note

The build.xml Ant file on runs Test Classes that have a name ended by ‘Test’ all other
classes will not be executed when launching the ‘test’ target.

It is therefore highly recommended to name all test classes with a name ending with
‘Test.java’.

JUnit test reports in HTML format are available in the
target/reports/junitreport folder of your Value Pack:

O e B ==

[Fie Edt Navigite Search Project Run Window Help
O-Pdl H-0-Q- HE~ @S F- L-L-BEeo~ £ [T <8 Jeva £

7 5%l v X, "VahiePackConfig 2 Unit Test Resuits, £ =]

- file//C:/UCA-EBC-DEV/My Corelation Project/target/teports/junitreport/index htmi -+ B

Homeg Unit Test Results.
Packages Oesigned for use with JUnt and &nt
Som.ho.uca. expert.vp skelstor

Summary
V| Tests Failures Errors Success rate Time
100.00% 18.589

Classes Note: failures are anticpated and checked for with assertions while errors are unanticipated.

Packages
Name Tests Errors Failures Time(s) Time Stamp Host

somubo.uca expert.vp.skeleton 2 o ° 18.685 2011-05- PMASSEL
26T12:36:43

2§ 5igninto Google.. 1 fikee///C:/UCA-EBC-DEV/My %20Ce secttarge L™

Figure 27 - JUnit tests results for your Value Pack

Injecting events to UCA for EBC

The Alarm Collector is the UCA for EBC internal component responsible for collecting
events from outside UCA for EBC in order to feed them to the scenarios of the Value
Packs deployed on UCA for EBC.

The Alarm Collector is implemented as a JMS Topic that is registered using JNDI so
that other applications can get access to it to post events that will feed UCA for EBC
Value Packs.

70

Alarm

Collector

— o o o e
o o o e

/
T

Normalized XML event format

Provider

Figure 28 - UCA for EBC alarm collection

4.7.1 Normalized input

The UCA for EBC Alarm Collector defines a normalized alarm XML format based on
the X.733 standard alarm format. Only alarms that comply with this format will be
processed.

4.7.1.1 Sample alarms file

Here is a sample XML file that contains alarms in the X.733 alarm format:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Alarms xmlns="http://hp.com/uca/expert/x733Alarm">

<AlarmCreationInterface>
<sourceldentifier>src</sourceldentifier>
<identifier>1</identifier>
<originatingManagedEntity>BOX Bl</originatingManagedEntity>
<alarmType>COMMUNICATIONS ALARM</alarmType>
<probableCause>Fire</probableCause>
<perceivedSeverity>MINOR</perceivedSeverity>
<alarmRaisedTime>2009-09-16T12:00:00.000+02:00</alarmRaisedTime>

</AlarmCreationInterface>

<AlarmCreationInterface>
<sourceldentifier>src</sourceldentifier>
<identifier>2</identifier>
<originatingManagedEntity>BOX Bl</originatingManagedEntity>
<alarmType>COMMUNICATIONS ALARM</alarmType>
<probableCause>Fire</probableCause>
<perceivedSeverity>CLEAR</perceivedSeverity>
<alarmRaisedTime>2009-09-16T12:00:00.000+02:00</alarmRaisedTime>

</AlarmCreationInterface>

</Alarms>

71

4.7.2 Command-line injector tool

UCA for EBC provides a tool to send events described in a simple XML File
containing X.733 alarms to the UCA for EBC Alarm Collector.

This tool is located in the $ {UCA_EBC_HOME} /bin folder. It is called uca-ebc-
injector.

This tool will inject alarms contained in an XML file into the input alarm queue
(implemented as a JMS Topic) of a local or remote UCA for EBC Server instance.

A sample of such an XML file containing alarms to be fed to UCA for EBC is located
in the ${UCA EBC HOME}/alarms folder.

Note

%~ For more information on the uca-ebc-injector command-line tool, please refer to
the [R3] HP UCA for Event Based Correlation — Administration, Configuration and
Troubleshooting Guide

[R4] HP UCA for Event Based Correlation — Value Pack Examples

4.7.3 A sample Java Alarm injector

The following chapters describe how you can create your own sample Java Alarm
injector application that can connect to UCA for EBC Alarm Collector JMS Topic to
post Alarms to UCA for EBC.

4.7.3.1 Initializing the JNDI initial context

In order to create a sample Java Alarm injector, you must first initialize the JNDI
context that will be used to retrieve the JMS Topic of the UCA for EBC Alarm
Collector:

Context jndiContext = null;
/*
* Create a JNDI API InitialContext object
*/
try {

jndiContext = new InitialContext();
} catch (NamingException e) {

System.out.println ("Could not create JNDI API context: " +
e.toString());

System.exit(1l);

}

Please note that the jndi . properties file must be provided in the classpath of
your sample Java Alarm injector.

4.7.3.2 Configuring the jndi.properties file

Here is the content of a sample jndi.properties file to be used by your sample
Java Alarm injector:

java.naming.factory.initial =
org.apache.activemqg.jndi.ActiveMQInitialContextFactory

topic.uca-ebc-alarms = com.hp.uca.ebc.alarms

use the following property to configure the default connector

java.naming.provider.url =tcp\://localhost\:61666

72

The topic.uca-ebc-alarms property is used to record the name the UCA for EBC
Alarm Collector JMS topic: com.hp.uca.ebc.alarms

The java.naming.provider.url property can be configured to match the hostname
and port number of UCA for EBC JNDI service.

4.7.3.3 Looking up the UCA for EBC Alarm Collector JMS topic

Once the JNDI context is initialized, the codes in your sample Java Alarm injector
shall first lookup for the INDI connection factory, and then retrieve the UCA for EBC
Alarm Collector JMS topic by looking up its name:

ConnectionFactory connectionFactory = null;

Destination destination = null;
/*
* Look up connection factory and destination.
*/
try {
connectionFactory = (ConnectionFactory) jndiContext

.lookup ("ConnectionFactory") ;
destination = (Destination) jndiContext.lookup ("uca-ebc-alarms");
} catch (NamingException e) {
System.out.println ("JNDI API lookup failed: " + e);
System.exit (1) ;

4.7.3.4 Connect and send the message

With the connectionFactory retrieved, you then need to create the connection, then
the session, and finally the producer:

Connection connection = null;

MessageProducer producer = null;

try {
connection = connectionFactory.createConnection();
session = connection.createSession(false, Session.AUTO ACKNOWLEDGE) ;
producer = session.createProducer (destination);

TextMessage message = session.createTextMessage () ;

StringBuffer buf = new StringBuffer();

buf.append ("<?xml version=\"1.0\" encoding=\"UTF-8\"
standalone=\"yes\"?>");

buf.append("<Alarms>") ;

(
buf.append("<AlarmCreationInterface>");
buf.append ("<sourceldentifier>src</sourceldentifier>");
buf.append("<identifier>12301</identifier>");
buf.

append ("<originatingManagedEntityClass>BOX</originatingManagedEntityCla
ss>") ;
buf.append("<originatingManagedEntity>BOX
Bl</originatingManagedEntity>") ;
buf.append("<alarmType>COMMUNICATIONS ALARM</alarmType>");
buf.append ("<probableCause>Fire</probableCause>") ;
buf.append ("<perceivedSeverity>MAJOR</perceivedSeverity>");
buf.append("<alarmRaisedTime>2009-09-
16T12:00:00.000+02:00</alarmRaisedTime>") ;
buf.append("</AlarmCreationInterface>");
buf.append("</Alarms>") ;
message.setText (buf.toString());

System.out.println ("Sending message: " + message.getText());

73

producer.send (message) ;
} catch (JMSException e) {

System.out.println ("Exception occurred: " + e);
} finally {
if (connection != null) ({

try {

connection.close() ;
} catch (JMSException e) {
}

By now you should have a functioning sample Java Alarm injector.

Chapter 5

Advanced Development features

5.1 Advanced feature: Spring Framework integration

A Spring Framework context . xm1 file is provided in the
src/main/resources/valuepack/cont folder. This file is defined for the whole
“skeleton” value pack, i.e. it is common for all scenarios of the value pack.

All the Spring beans defined in this file will be available to each rule file of each
scenario of the value pack.

By default the context.xm1 file is empty:

74

5.1.1

%] contextxml &2 =
1.0" encoding="UTF-5"2> -

p://wvwv.springframevork . org/schema/beans"”

i/ /www, springframevork. chema/beans/spring-beans.xsd
i/ /www, springframevork. ema/context
/www.springframevork.org/schema/context/spring-context.xsd
ttp://w¥w.springframevork.org/schema/jms

ttp://www. springframsvork. org/schema/jms/spring-jms. xsd
://activemqg. apache.org/schema/core

tp://activemq. apache.org/schema/core/activemg-core. xsd">

<

<context:annotation-config />

< m r

Design | Source

Figure 29 - The default project’s empty context.xml file

You can define any number of Spring beans in the context.xml file. These beans
will be accessible from within the rules files through global variables defined in your
rules files provided you follow the instructions explained in the following sections.

Defining and using Spring Beans inside rule files using
global variables

The Spring “dependency injection” framework is useful for defining global variables
(already initialized) in rules files. In a normal Drools environment, this is done
through some Java code. As UCA hides the Drools session object, global variables
are “injected” with Spring, from a XML definition (context.xm1l).

Note

It is worth noting that there are 2 context. xml files in each value pack:
e Inthe src/main/resources/valuepack/conf folder is the
context.xml that is used when the value pack runs on a UCA EBC Server
instance

e Inthe src/test/resources/<scenario folder name> folder is the
<scenario name>-context.xml thatis used when the value pack runs
in JUnit test mode.

Please make sure to define all your Spring beans in both files, otherwise the JUnit
tests might fail.

First you need to define your Spring beans in the context. xm1 file (the following
sample file comes from the Low Level Event Filtering value pack and is described in
the “‘UCA for EBC Value Packs Examples” guide)

The Spring beans that you define in the context.xml file are defined at the Value
Pack level, and thus are global to all scenarios of the Value Pack:

75

X contextxml 2 =0

1 <?xml version="1.0" encoding="UTF-£"7> n
©<beans zmlns="http://wwv.springframevork.org/schema/beans"

2
3 ¥mlns : x: D/ /¥y . ¥3. 0rg/2001 /KMLSChema-instance” Xmlns:jms="attp://vvv.springframevork.org/schema/.
4 xmlns :p=", //www. springframevork.org/schema/p" xmlns:context="http://wwv.springframevork.org/schena/
5 xmlns:amg="xattp://activemg.apachs.org/. ma/cors” xmlns:iutil= p://vwv. springframevork. org/schemas/ut,
€ xeiischemalocation="http://vwv.springframevork.org/schena/beans

kttp://www.Springframevork.ora/schena/beans/spring-beans.xsd
http://wwv.springframevork.
http://wvw.springframevork.
http://wwv.springframevork.
http://wvv.springframevork.
nttp://activer pache. ci]
13 http://activemq. apache.org/schema/sers/activemg-core. xsd"s

<bean id='"PIENPISTAIAEPERERE " c1ass="com. hp. uca.expert.vp. l1ef. action. AcmeActionManager" />

</beans>

[i v

Design | Source

Figure 30 - The “Low Level Event Filtering” Value Pack’s context.xml
file

In the above screenshot, we define a Spring bean called acmeActionManager. This
is just an example; with any other Spring bean, the process explained in the following
paragraphs would have been the same.

Next we need to associate the Spring beans with global variables defined in your

scenario. This is done in the ValuePackConfiguration.xml file that defines the
configuration for all the scenarios of your value pack.

Note

Although Spring beans are defined at the Value Pack level, global variables are
defined at the scenario level. If you need a Spring bean to be global to all scenarios
of your Value Pack, you need to configure the Spring bean as a global variable for
each scenario of the Value Pack in the valuePackConfiguration.xml file.

[x] ValuePackConfigurationxml 3 =
1 <?xml version="1.8" encoding="UTF-8"?> - m
2% <valuePackConfiguration xmlns="http://hp.com/uca/expert/config" P
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance”

4 name="__ PROJECT_NAME__" wversion="__ PROJECT_VERSION ">

5 =
6= <scenarios>

7€ <scenario name="com.hp.uca.expert.vp. llef.grouping.Grouping”>

8 <filterFile>src/main/resources/valuepack/grouping/grouping-filter.xml</filterl
9 <fireAl1RulesPolicy>EACH_ACCESS</fireAllRulesPolicy>

o <globals>

1 <global>

2 <key>acmeActionManager</key>

3 <value>acmeActionManager</value>

4 </global>

5

<processingMode>STREAM< /processingMode>

17= <rulesFiles>
18= <rulesFile>
19 <filename>file:./src/main/resources/valuepack/grouping/grouping-templ
20 <name>Grouping Rule Set</name>
21 <paramsFilename>file:./src/main/resources/valuepack/grouping/grouping
22 <ruleFileType>XDRL</ruleFileType>
23 </rulesFile>
24 </rulesFiles>
25 </scenario>
26& <scenario name="com.hp.uca.expert.up. llef.inactivity. Inactivity™>
27 <filterFile>src/main/resources/valuepack/inactivity/inactivity-filter.xml</fi
28 <fireAllRulesPolicy>EACH ACCESS</fireAllRulesPolicy>
29 <globals>

3= <globals>

31 | <kev>acmeActionManager</key> ad

“ m »
Design | Source

Figure 31 - Defining global variables in the
ValuePackConfiguration.xml file

When you define global variables in the ValuePackConfiguration.xml file, the
“key” has to match the name of the global variable you are defining (the name you
choose must match the name of the global variable that you declare in your rules
file(s)), and the “value” has to match the name of the bean defined in the
context.xml file.

The last step is to define a global variable for the Spring bean in your rules file:

grouping-template.drl I3

=

10 import java.util.regex.Matcher: P
11 import java.util.regex.Pattern;

import java.text.SimpleDateFormat:
4 import java.util.Date;

5 import java.util.Locale;

& import java.util.ArrayList;

7 import java.util.Iterator;

m

9 import com.hp.uca.expert.scenario.ScenaricPublic;

0 import com.hp.uca.common.trace.LogHelper;

1 import com.hp.uca.expert.flag.Flag;

2 import com.hp.uca.expert.testmaterial.AbstractJdunitIntegrationTest;

4 {import com.hp.uca.expert.vp.llef.action.AcmeActionManager;

global ScenarioPublic theScenario:
2{ global AcmeActionManager acmeActionManager;

rance exists for the symptom in the given list of symptoms

2= function boolean isCleared (Alarm symptom,Arraylist symptoms) {
if (symptoms!=null) {
Iterator ii=symptoms.iterator();

while (ii.hasNext()) {
Alarm a=(Alarm)ii.next(};

Text Editor | Rete Tree

Figure 32 - Defining global variables in rules files

In the import section of your rules file, you need to add an “import” statement for the
Java class of your Spring Bean:

import com.hp.uca.expert.vp.llef.action.AcmeActionManager;

Then you need to add a “global” statement creating a global variable for your Spring
Bean:

global AcmeActionManager acmeActionManager;

Then you can use the global variable in your rules:

141 perceivedSsverity != PerceivedSeverity.CLEAR,
additionalText matches "Root Cause .*")

then
LogHelper.enter (theScenario.getlogger (), drools.getRule().getName (), rootAlarm.getAdditionalText(})
Date now=new Date();
SimpleDateFormat sdf = new SimpleDateFormat ("
Locale.FRENCH) ;
rootAlarm.sechdditionalInformation ("correlated by rule: "+drools.getRule () .getName ()
+" at " +sdf.format (now)):

n

acmeActionManager.doDummyAction (roothlarm) ;

theScenario.getSession () .retract (rootAlarm) ;

< i G
Text Editor | Rete Tree

77

5.2

5.3

5.4

5.5

5.6

5.7

Figure 33 - Using global variables in rules files

Using the Flag Object

&~ please refer to [R2] HP UCA for Event Based Correlation — Reference Guide for
more information on how to use the Flag Object.

Alarm Custom fields

&~ please refer to [R2] HP UCA for Event Based Correlation — Reference Guide for
more information on how to use the CustomFields Object.

Alarm Raised Time

The UCA for EBC provides a helper to set the alarmRaisedTime field, just use the
setTimelnMillisecond() that sets all time related fields.

& please refer to [R2] HP UCA for Event Based Correlation — Reference Guide,

Chapter 5.1.1.2 General Attributes of Alarm for more information on how to deal with
time fields.

Scenario specific configuration

The UCA for EBC provides a way to manage complex configuration based on XML
file when the Customer Value Pack need a complex specific configuration.

&~ please refer to [R2] HP UCA for Event Based Correlation — Reference Guide for
more information on how to use the Specific Configuration.

Performing initialization at scenario startup

&~ please refer to [R2] HP UCA for Event Based Correlation — Reference Guide for

more information on how to perform initialization of customer object needed by a
Value Pack.

WUI extensions for value packs

Since version 3.1 the UCA for EBC Web User Interface can be extended to host
value pack’s specific web applications or global web application

5.7.1 Extending the WUI at value pack Level

Any .war file delivered within value pack directory tree (usually in lib subdirectory) will
be loaded through the UCA for EBC web server and visible through the Web User
Interface.

When the value pack is started, the UCA for EBC Web Ul makes this web application
available from a new tab if the value packs’ monitoring panel.

78

Example: the war file MyViWebApp .war dropped in deploy/uca-topo-demo-3.1/1ib
directory will lead to:

@; UCA for Event Based Correlation
uca-topo-demo-3 1 = Value Pack = Monitoring
4§ UCA-EBC:default Monitoring Configuration Troubleshooting < my\VpWebApp)
v [uca-topo-demo-3.1 Value Pack : uca-topo-demo-3.1
£ Value Pack eAH Scenarios are running. Flow is disabled

& linkdown

@ performance scenarios List

Scenario Status Status Explanation

fAm hn s ahe fanadame linkAAun (= Scenario is runnina

By default the UCA for EBC server binds the value pack web application at the
following address:

http://localhost:8888/fullValuepackName-warFilename

For the example above this would give:

http://localhost:8888/uca-topo-demo-3.1-myVpWebApp

5.7.2 Extending the WUI at Global Level

In some cases the WUI extension is not directly linked to a specific value pack but
may cover several value packs or a functionality global to the platform.

In such case it is useful to access this webapp from the global level (UCA-EBC). This
is thr role of the ‘Extras’ Submenu.

The ‘Extras’ sub-menu is displayed when you have optionally put some extra .war
files under the $SUCA_EBC_INSTANCE/webapps directory (note the name of the
directory with a ‘s’ at the end). This directory is optional and is not created by
default.

Each .war file stored in this directory will be displayed by UCA for EBC Ul under the
following menu:

UCA-EBC:instanceName > Extras > <name of .war file>

As in the picture below:

79

http://localhost:8888/fullValuepackName-warFilename
http://localhost:8888/uca-topo-demo-3.1-myVpWebApp

Welcome: anonymous (Observer) Help -

ﬁ;?y UCA for Event Based Correlation

UCA-EBC:default > Extras = myWebApp-sample

v 4% UCA-EBC:default myWebApp-sampl
£ Application

& Users Sample "Hello, World"
@ ctons Application

43 Topology Manager

A [uca-topo-demo-3.1
This is the home page for a sample application used to illustrate

~ the source directory organization of a web application within
UCA-EBC.

1 webapp-sample-3.1-2

Note that this web application will be handled in a Jetty server
which does not support JSP pages.

To prove that they work, you can execute either of the following links:

¢ To a sample hello world servlet.

* To a sample bean access servlet.
* To a sample bean access through ajax.

Unfortunately the following should not work:

. T

5.7.3 Web application extensions configuration

»

m

Some web application extensions may require some additional configuration in order

for the UCA for EBC Web User Interface to build the expected URL.
Two possible configurations are offered:
e Defining the URL service Path

e Defining URL service parameters

5.7.3.1 Defining the URL service Path for extensions at value pack level

This is done by adding a property in uca-ebc.properties with the form:
ValuepackFullname-warFileName-webapp-servicepath=your_path
Example:

For the value pack: uca-topo-demo (version3.1) with a war file named
myWebApp.war define:

uca-topo-demo-3.1-myVpWebApp-webapp-servicepath=myService
= This will lead to building the following URL:
http://localhost:8888/uca-topo-demo-3.1-myVpWebApp/myService

5.7.3.2 Defining the URL service Path for extensions at global level
This is done by adding a property in uca-ebc.properties with the form:
warFileName-webapp-servicepath=your_path
Example:

For the war file named myWebApp-sample.war define:

80

http://localhost:8888/uca-topo-demo-3.1-myVpWebApp/myService

myWebApp-sample-webapp-servicepath=myService
= This will lead to building the following URL:
http://localhost:8888/myWebApp-sample/myService

5.7.3.3 Defining the URL parameters for extensions at value pack level
This is done by adding a property in uca-ebc.properties with the form:

ValuepackFullname-warFileName-webapp-parameters= coma separated list of
parameters

Example:

For the value pack: uca-topo-demo (version3.1) with a war file named
myWebApp.war define:

uca-topo-demo-3.1-myVpWebApp-webapp-parameters=paraml=valuel,param2=value2
= This will lead to building the following URL:

http://localhost:8888/uca-topo-demo-3.1-myVpWebApp/?paraml=valuel¶m2=value2#

5.7.3.4 Defining the URL parameters for extensions at global level
This is done by adding a property in uca-ebc.properties with the form:

warFileName-webapp-parameters= coma separated list of parameters

Example:

For the war file named myWebApp-sample.war define:
myWebApp-sample-webapp-parameters=paraml=valuel,param2=value2

= This will lead to building the following URL.:
http://localhost:8888/myWebApp-sample/?paraml=valuel¶m2=value2#

5.7.4 Inheriting the UCA for EBC logged user and role in the
extended web application

Some web application may want to know which UCA user is logged (as well as his
associated role) in order to adapt its processing depending on the user id or the role.

This is done by using placeholders in URL parameters as follow:
o ${user} will represent the current logged user
e ${role} will represent this user’s role.

A typical definition would be:

uca-topo-demo-3.1-myVpWebApp-webapp-servicepath= username=${user},userrole=${role}

81

http://localhost:8888/myWebApp-sample/myService
http://localhost:8888/uca-topo-demo-3.1-myVpWebApp/?param1=value1¶m2=value2

5.8 Configuring the GUI filter tags editor

&~ please refer to [R2] HP UCA for Event Based Correlation — Reference Guide for

more information on how to perform configuration to enable the GUI tags editor
feature.

82

5.9 Editing Filter Files with the UCA for EBC eclipse
filter editor

The UCA-EBC Development Toolkit provides a specific filter editor intended to ease
the development of UCA-EBC filters.

This tool is mainly a checking tool that allows testing the filter against a sample of
alarms. As a result the tool gives for each alarm, which Top-filter it passes or not, and
if it passes a Top-filter, gives the associated tags (if any).

5.9.1 Editing a Filter
The UCA-EBC filter editor is available by right clicking on the Filter file as follow:

— = - —— -
= Java - ProblemDetection/uca-evp-pd-skeleton/pom.xm| - Eclipse SDK . “
File Edit Mavigate Search Project Run Design Windew Help
i - & $-0-%- G- @+~ «BFB 28 0 -3~
[pa [Ju v [Pro 23] Ty\l -3 Naw = B[] pomaxml (@ pom.xml (@ pomaxml B2
=] <ED ~ 1 <?xml version="1.8" encoding="UTF-8"?>
2= <project wmlns="http:/ /maven.apache.org/POM/4.8.8" wmln:
Mew y Flen="http://maven.apache.org/PON/4.8.
I }.8.6</modelVersion>
pd-assembly Open =] . . _
d- |
E d :::"p ® Open With , Text Editor
B | Copy - € UCAEBC Filter File Edgr
. Paste Ctrl+V] XML Editor
ain
" ¥ Delete Delete | |5 System Editor
y java Remove from Context Ctrl+Alt+ Shift+ Down =| In-Place Editor ot
ectior
4 resources Mark as Landmark Ctrl+Alt+ Shift+Up Default Editor
7 bmk Move...
24 com Other... ection
Rename... F2
> % |"Ip
e ft fy Import.
> [actionsfactory ey Export... nx${project.version}</evp.version:>
> [y alarmeligibility d-skeleton</evp.name>
> [alarmlifecycle % Refresh F5
a [y all
¥} Alarms_all_problems. Run As L
¥} Alarms_BitError_T1.x Debug As »
¥} Alarms_BitError_T2.x Profile As » par</ids
|7 Alarms_Power_T1.xm Team > .
¥} Alarms_Power_T2.xm) ugins>.
¥ Alarms_Power_T3:xm Compare With » | <plugin:]
Replace With > <groupId:org.apache.maven.plugir
¥ Alarms_Synch_TLxm <artifactId>maven-dependency-pli
[|7 Alarms_Synch_T2.xm Google 4 <executions>»
1) Alarms_XmlGeneric_§ SnTED » <E)\'ECLIJtiCn> N
¥} PDFramework_seque <id>copy-local</id>
|¥} PDFrameworkTest-cq Properties Alt+Enter :phaieig'E”Ef‘EtE'PESOUPCE
oals
1 ProblemDetection_all_fifters.xml 2697 /17T 39 B <goalscopy</goals
1% ProblemXmiConfig_allaenl 2712 8/2/12 6:28 LT </goals>
1% ValuePackConfiguration_allxml 3251 1/29/1 a1e <configuration>
s [basic 42 <artifactItems:
. G enrichment 432 <artifactItem>

This launches the UCA-EBC filter editor.

At this stage the editor contains a single editor tab which is an XML editor allowing to
edit/save the Xml Filter file:

83

— - — = T — v I
= lava - ProblemDetection/uca-evp-pd-fwk/src/test/resources/ft/all/ProblemDetection_all_filters.xml - Eclipse SDK. Flglﬁlg
File Edit Mavigate Search Project Run Window Help
i = @ - & Associate Alarms F @) <Drools> %5 Debug
Fr O~ Q- R N N R
M~ 5 v s o v v
|¥] pom.xml (Iﬁl pom.xml (lﬂ pom.xml (@ UCA EBC Filter Editor: ProblemDetection_all_filtersxml &3 =g
=
|l 1<?xml version="1.8" encoding="UTF-8" 2> -
4 2 ¢filters wmlns="http://hp.com/uca/expert/filter"> EI
Ju 3
4 <topFilter name="XmlGeneric_Synch™»
r(i‘l 5 <anyCondition tag="TeMIP TT">
'Eg 6 <allConditions
- 7 <allCondition>
= 8 <stringFilterStatement:>
9 <fieldName>originatingManagedEntity</fieldName>
18 <operatorrmatches</operater:
|| 11 <fieldValue>motorola_omcr_system .* managedelement .* bssfunction .*
12 </stringFilterStatement:
13 </allCondition>
14 <anyConditions
15 <stringFilterStatement tag="Trigger">
16 <fieldName>additionalText</fieldName:>
17 <operatorr>contains</operator>
13 ¢<fieldvalue>[116] Synchronization Loss 005 Timer Expired</fieldvalue: -
il — —m |]
ProblemDetection_all_filters.xml) L:?
iy ‘
u
;-:'Sign in to Google = E.d @ @ } & B =
L = — -— = -

Single Tab Editor

5.9.2 Associating an Alarm File Sample to the Filter Editor

In Order to check the Filter against a set of alarms, the Xml Alarm file must be
associated to the filter editor. This is done by left clicking on the Alarm File in order to
select the file and the click on the ‘Associate Alarms’ button as follow:

84

é J;va = ProblemDetecﬁom’uca-evp-pd'-wirtf'tesb’msﬂurce'sf&:’alvbfproblemDetectlcm_all_ﬁIters.xml = EE';;SE SDK =aic| il
File Edit Mavigate Search Project Run
(mifhs - & ASSDCIEW‘H”’HS TR HET (w™E T§ §) <Drools> %5 Debug
i Gl 28]~ 51 7 & vy [Assiciaipaslam fle to the ilter Editor |
12 pa Juu ([opro 82 T Ty [%mNa |~ O|[[¥ pomami [[X) pomxmi || pomxml [UCA EBC Filter Editor: ProblemDetection_all fi 1 =3

Eh=-3

| [msl
scripf

xS

ts

rc

b [y main
4 (S test

b oy java

uca-evp-pd-assembly
uca-evp-pd-example
uca-evp-pd-fwk
= logs

m,

4 [resources

> g bmk
4 [com
> [hp

& (G ft

» [y actionsfactory
> [y alarmeligibility
> [alarmlifecycle

4 [all

Alarms_all_problems.xml 2825 9,

e ror T1. a7
¥y Alarms_BitError_T2xml 2525 9/12/
(¥} Alarms_Power_Tlaml 2825 9/12/1
|¥ Alarms_Power_T2.xml 2525 9/
¥y Alarms_Power_T3.xml 2825 9
[} Alarms_Synch_T1.axml 3646
|¥ Alarms_Synch_T2xml 2825 9/12/1
¥} Alarms_xXmlGeneric_Synch_TLxml
[¥ PDFramework_sequencedTest-cor
|¥) PDFrameworkTest-context.xml 274
[¥j ProblemDetection_all filters.xml 2¢
[¥ ProblemXmiCenfig_allxml 2712 &

¥ ValuePackConfiguration_allxml 32

> (& basic

» [enrichment
» [problemdefault =2

n | »

1<?xml version="1.8" encoding="UTF-8" 2>
2 <filters xmlns="http://hp.com/uca/expert/filter">

3
4
5
6
7
8

a
1@
11
12
13
14
15
16
17
18
19
28
21
22
23
24
25
26
27
28
29
3@
31
32
33
34
35
36

<topFilter name="XmlGeneric_Synch">

<anyCondition tag="TeMIP TT">

<allCondition>
<allCondition>
<stringFilterStatement>
<fieldName>originatingManagedEntity</fieldName>
<operator>matches</operator>
<fieldValue>motorola_omcr_system
</stringFilterStatement>
<f/allCondition>
<anyCondition»
<stringFilterStatement tag="Trigger"»
<fieldName>additionalText</fieldName:>
<operator>contains</operator>
<fieldvalue>[116] Synchronization Loss 005 Timer Expired</1
</stringFilterStatement>
<stringFilterStatement tag="Trigger">
<fieldName>additionalText</fieldName:
<operator>contains</operators
<fieldvalue»[118] Remote Alarm 005 Timer Expired</fieldvalc
</stringFilterStatement>
<stringFilterStatement tag="SubAlarm”>
<fieldName>additionalText</fieldName>
<operator>contains</operator>
<fieldValue>[18] Link Disconnected</fieldvalue>
</stringFilterStatement>
<stringFilterStatement tag="SubAlarm”>
<fieldName>additionalText</fieldName:
<operator:contains</operatory
<fieldvaluex[@] Last RSL Link Failure</fieldvaluex
</stringFilterStatement>
</anyCondition>
</allConditicn>

.* managedelement .* bssfi

4

I | b

m

ProblemDetection_sll_filters.xml I

E'A Problems (@ Javadoc (@) Declaration (:*' Call Hierarchy (Qn Search %

B Console| =3 Progre;ﬂ

Lokl BB S

q

12 file names matching 'uca-ebc.properties’ in 'ProblemDetection’

= test

(= resources

-

Alarms_all_problemsxml - ProblemDetection/uca-evp-pd-fwk/src/test/resources/ft/all

-al Sign in to Google...

When the association is done, the editor turns itself into a multi-panel editor offering
several edition panels:

The Filter file editor panel, allowing to edit the Filter file

The Aggregated View panel, giving an overview of the passing/blocked alarms

The Alarm file editor panel, allowing to edit the Alarm File

The Passed filter view, giving information on passed filters and tags.

As shown in the picture below:

85

File Edit Navigate Search Project Run Window Help
i Q- & AsociotcAams O -G HE- (@B S~ B @ <Drools> 5 Debug
HrE et oD
[¥] pem.xml f@ pom.xml f@ pomaxml f@ UCA EBC Filter Editor: ProblemDetection_all_filtersaml &3 =8
&g
{g | Problem_BitError . Problem_Power| XmiGeneric_Synch| Problem_Synch| New|
| a0 Configuration Panel
= Select the attributes you are interested in : 3
: [lidentifier [] acknowledgementUserldentifier [| probleminformation [correlationMotificationldentifiers [H userText
B [originalSeverity [originatingManagedEntity |H] additionalText [7] networkState || sourceldentifier
I [“|alarmRaisedTime [~] specificProblem [problemState [] probableCause [perceivedSeverity
[domain [7] pbAlarm [alarmType [7] operatorState
[selectAllAttributes | [Generate filter
identifier userTedt originatingManagedEntity additionalText =)
[7] operation_context .uca_network alarm_object 44... ~ Khorfakkan_BSC24: BridiPPM_6185_0 motorola_omer_system .kivusat_test managedel... TPD_TEST Motorola 26 - Test SITE D
operation_context .uca_network alarm_object44... Khorfakkan_BSC24: BriciPPM_6185_0 motorola_omer_system .kivusat test managedel.. TPD_TEST Motorola 2G - Test SITE D
| [7] operation_context .uca_network alarm_object85 Khorfakkan_BSC24: BridiPPM_6185_0 motorola_omer_system kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITE D
[@ operation_context .uca_network alarm_object81 Khorfakkan_BSC24: BridiPPM 6185 0: test motorols_omer_system .kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITE D
operation_context .uca_network alarm_object80 Khorfakkan_BSC24:BridiPPM_6185 0: test motorols_omer_system .kivusat test managedel.. TPD_TEST Motorola 2G - Test SITE D
[@ operation_context .uca_network alarm_object181 Khorfakkan_BSC24: BridiPPIM_6185_1: test motorola_omer_system kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITE D
operation_context .uca_network alarm_object 180 Khorfakkan_BSC24:BridiPPM_6185 1: test motorola_omer_system .kivusat test managedel.. TPD_TEST Motorola 2G - Test SITE D |
[7] operation_context .uca_network alarm_object185 Khorfakkan_BSC24: BridiPPM_6185_1 motorola_omer_system .kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITE D|=
| [@ operation_context .uca_network alarm_object 280 Khorfakkan_BSC24:BridiPPM_6185_2: test motorola_omer_system kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITE D
| operation_context .uca_network alarm_object 281 Khorfakkan_BSC24: BriciPPM_6185 2 test motorola_omer_system .kivusat test managedel.. TPD_TEST Motorola 2G - Test SITE D
| operation_context .uca_network alarm_object 278 Khorfakkan_BSC24: BridiPPM_6185_2 motorola_omer_system .kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITE D
[@ operation_context .uca_network alarm_object 380 Khorfakkan_BSC24:BridiPPM_6185_1: to mixwith.. motorola_omcr_system kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITE D i
operation_context .uca_network alarm_object381 Khorfakkan_BSC24: BridiPPM_6185_1: to mixwit.. motorola_omer_system kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITE D
operation_context .uca_network alarm_object379 Khorfakkan_BSC24: BridiPPM_6185_1 motorola_omer_system kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITE D i
[@ operation_context .uca_network alarm_object480 Khorfakkan_BSC24:BridiPPM 6185 4: test motorola_omer_system kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITE D
| operation_context .uca_network alarm_object481 Khorfakkan_BSC24: BriciPPM_6185 4 test motorola_omer_system .kivusat test managedel.. TPD_TEST Motorola 26 - Test SITED—| | [
[7] operation_context .uca_network alarm_object 482 Khorfakkan_BSC24: BridiPPM_6185_4 motorola_omer_system kivusat_test managedel.. TPD_TEST Motorola 2G - Test SITE D
[@ operation_context .uca_network alarm_object 580 Khorfakkan_BSC24:EridiPPM 6185 5: test motorola_omer_system kivusat_test managedel.. TPD_TEST Motorola 26 - Test SITE D
operation_context .uca_network alarm_object 581 Khorfakkan_BSC24: BriciPPM_6185 5: test motorols_omer_system .kivusat test managedel.. TPD_TEST Motorola 2G - Test SITE D
| [7]_ operation_context .uca_network alarm_object 583 Khorfakkan_BSC24: BridiPPM_6185_5 motorola_omer_system kivusat_test managedel... TPD_TEST Motorola 2G - Test SITED ~
l < L]
—
: T BroblemDetection_all_filters.xml | Filter Generator| Alarms_all_problems.m \ Passsd—Fi\ters'ViEw‘ :
i 0 ‘ i] SignintoGoogle.. . & [@ B % 4 B 55 ||
L s — 4
[]

5.9.3 How to read the Filter editor aggregated view?

This view offers a panel per top filter as defined in the filter file.
You can switch from one top-filter to others by clicking on the top level panel
selection:

@ UCA EBC Filter Editor: ProblemDetection_all_filters.xml 22

| %] pom.xml (m pomxml (m om.xml

Configuration Panel

1 Select the attributes you are interested in:
1 [identifier = acknowledgementUserddentifier () preblemInformation [correlationMotificationIdentifiers M| userText

The configuration Panel area allows selecting the alarms attributes to be displayed in
the Alarm table list.

Problem_BitError [Problem_Power meIGeneric_Synch [Problem_Syn(h New]

Configuration Panel

Select the attributes you are interested in:

[l identifier [] acknowledgementUserddentifier [probleminformation [correlationNotificationldentifiers [H userText

|| eriginalSeverity [H| originatingManagedEntity |H| additional Text |”] networkState || sourceldentifier
[alarmRaisedTime [specificProblem = problemState = probableCause = perceivedSeverity
[domain) pbAlarm () alarmType |} operatorState

The Alarm table list shows the content of the alarm file as a table. Each table row is
preceded by a check box indicating if the alarm is passing or not the given top-filter (A
checked box and a green color indicate the alarm is passing the filter)

86

identifier

operation_context .|
operation_context .
operation_context .|
operation_context .|
operation_context .|
operation_context .
operation_context .|
operation_context .|
operation_context .
operation_context .|
operation_context .|
operation_context .
operation_context .|
operation_context .|
operation_context .|
operation_context .
operation_context .

operation_context .|

uca_network alarm_cbject 44...
uca_network alarm_chject 44...

uca_network alarm_object 85

uca_network alarm_object 81

uca_network alarm_object 80

uca_network alarm_object 181
uca_network alarm_object 180
uca_network alarm_object 186
uca_network alarm_ohbject 280
uca_network alarm_object 281
uca_network alarm_object 278
uca_network alarm_ohbject 380
uca_network alarm_object 381
uca_network alarm_object 379
uca_network alarm_object 480
uca_network alarm_ohbject 481
uca_network alarm_object 482
uca_network alarm_object 580

userText

Khorfakkan_BSC24: BridiPPM_6185_0
Khorfakkan_BSC24: BridiPPM_6185_0
Khorfakkan_BSC24: BridiPPM_6185_0
Khorfakkan_BSC24: BridiPPM_6185_0: test
Khorfakkan_BSC24:BridiPPM_6185_0: test
Khorfakkan_BSC24: BridiPPM_6185_1: test
Khorfakkan_BSC24:BridiPPM_6185 1: test
Khorfakkan_BSC24: BridiPPM_6185_1
Khorfakkan_BSC24:BridiPPM_6185_2: test
Khorfakkan_BSC24: BridiPPM_6185_2: test
Khorfakkan_BSC24: BridiPPM_6185_2

Khorfakkan_BSC24:BridiPPM_6185_1: to mix with...
Khorfakkan_BSC24: BridiPPM_6185_1: to mix wit...

Khorfakkan_BSC24: BridiPPM_6185_1
Khorfakkan_BSC24:BridiPPM_6185_4: test
Khorfakkan_BSC24: BridiPPM_6185_4: test
Khorfakkan_BSC24: BridiPPM_6185_4
Khorfakkan_BSC24:BridiPPM_6185_5: test

originatingManagedEntity

moterola_omer_system
moterola_omcr_system
motorola_omer_system
motorola_omer_system
moterola_omcr_system
moterola_omcr_system
motorola_omer_system
moterola_omcr_system
moterola_omcr_system
motorola_omer_system
moterola_omer_system
moterola_omcr_system
motorola_omer_system
moterola_omer_system
moterola_omcr_system
moterola_omcr_system
motorela_omer_system

moterola_omcr_system

5.9.4 How to read the ‘passed filter’ view?

kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...

kivusat_test managedel...

additionalText

TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te

For a selected alarm, the ‘passed filter’ view gives the list of passed top-filters and the
corresponding filter tags.

The passed filter view is a 3 parts window:

The top part is the alarm picker, it allows selecting the alarm

The left part displays the selected alarm content

The right part gives the ‘passed’ top-filters and associated Tags.

87

File Edit Mavigate Search Project Run Window Help

FPWEREN, R R R

=
f Alarm-Passed-Filters-View

Ju Please select an Alarm: [operation_conta‘t .uca_network alarm_object 181 -

B <Txml version="1.0" encoding="UTF-8" standalone="yes"?> “ | Passing Filter Name Passing Filter Statement Tags

il @~ & AsocateMlams < W QG #H G~ &) <Drools> %5 Debug

%] pomaxml (@ pom.xml (@ pom.xml (@ UCA EBEC Filter Editor: ProblemDetection_all_filtersaoml 2 =&

<AlarmCreationInterface xmins="http://hp.com/uca/expert/x733Alarm"> fl
<identifier> operation_context .uca_network alarm_object 181 < /identifier> Problem_BitError TeMIP TT, SubAlarm
<sourceldentifier= TeMIP EMS5=</sourceldentifier= KmlGeneric_Synch TeMIP TT, SubAlarm
<alarmRaisedTime> 2010-09-16T14:36:23.027+02:00 < /alarmRaised Time> Problem_Synch TeMIP TT, SubAlarm
<originatingManagedEntity> motorola_omer_system .kivusat_test managedel:
<originatingManagedEntityStructure:
<classInstance instance="kivusat_test" clazz="motorola_omcr_system"/>
< classlnstance instanc ssfunction_5" clazz="managedelement’/ >
< classlnstance instanci " clazz="hssfunction”/>
< classInstance instanc: clazz="btssitemgr"/>
< classlnstance instance="1" clazz="RSL"/>
</foriginatingManagedEntityStructure>
<alarmType> COMMUNICATIONS_ALARM</alarmType>
< probableCause> CommunicationsSubsystemPFailure< /probableCausex E
<perceivedSeverity> MINOR < /perceivedSeverity 1
<networkState> NOT_CLEARED < /networkState>
<operatorState> ACKNOWLEDGED <//operatorState>
<problemState> NOT_HAMNDLED < /problemStates
<probleminformation> Attribute not available</problemInformation>
<specificProblem>Attribute not available</specificProblem>
<additionalText> TPD_TEST Motorola 26 - Test SITE DOWN - [0] Last RSL Link
< correlationMotificationIdentifiers=> Attribute not available=</correlationMNotific
<customFields=>
< customField value="UCA Expert" name="acknowledgementUserldentifier
< customField value="Minor” name="originalSeverity"/>
< customField value="Khorfakkan_BSC24: BridiPPM_5185_1: test” name="us
< customField value=".uca_pit_dom" name="domain"/>
</customFields= | 4
< /AlarmCreationInterface>

4 [T] b 4 T b

ProblemDetection_all_filters.xml |Fi|ter Generator |A|arms_a||_prob\ems.xm| lPassedfFiIterstiewJ

. | | | -;:lSign in to Geogle...

fElel 3Py Eg

[

— h—

5.9.5 How to use the filter to create a new top-filter?

The aggregate view offers the possibility to quickly create a new top-filter.

A top filter creation is a multi step operation:

Step 1: Create a new top-filter tab. This is done by clicking on the ‘New’ tab in the
top-filter selection area:

| %] pom.xml (@ pom.xml (@ pom.xml (@ UCA EBC Filter Editor: ProblemDetection_all_filters.eml &3 =08
Problem_BitError ﬁ’roblem_Power F‘(mlGeneric_Synch Problem_Synch Nabﬂ
Configuration Panel ——
Select the attributes you are interested in: x
[identifier (=]} acknowledgementUserldentifier (= preblemInformation [correlationMotificationldentifiers [userT:
[originalSeverity originatingManagedEntity additionalText ["] networkState [soure

This creates a new Filter panel with a default name. This name can be changed by
right clicking on the new filter tab:

88

3

=4

m

|X| pom.xml |X| pom.xml %] pom.xml

Problem_BitError | Problem_Power | XmlGeneric_Synch | Problem_Synch Filtfrq

Cenfiguration Panel

Select the attributes you are interested in :

[identifier

& UCA EBC Filter Editor: ProblemDetection_all_filtersxml &2

[7] originalSeverity [originatingManagedEntity

Note: a Top-filter can also be deleted by clicking on the ‘delete’ option of the same

menu.

Step 2:

“Configuration panel” section.

Example:

Configuration Panel

Mleane

Delete Filter 5 and dispose this tab

Rename Filter

[networkState

[7] acknowledgementUserdentifier [| problemInformation [| correlationMotificationldentifiers || userTe

[additionalText [source

select the alarm attributes that will play a role in the filtering in the

3

Select the attributes you are interested in : S
[identifier] acknowledgementUserldentifier] problemInformation [correlationMotificationldentifiers || userText
& originalSeverity [] originatingManagedEntity [H] additional Text [] networkState [sourceldentifier
[] alarmRaisedTime [M specificProblem ["] problemState [7] probableCause [7] perceivedSeverity
[] domain [7] pbAlarm [] alarmType ["] operatorState

Step 3: Inthe Alarm table, select those alarms that will pass the filter by selecting

the checkbox.

identifier originalSev... additionalText specificProblem 'S
operation_context .uca_network alarm_ocbject 44... Critical TPD_TEST Motorola 26 - Test SITE DOWRN SYNC... Attribute not available
[[] operation_context .uca_network alarm_object 44.. Minor TPD_TEST Motorola 26 - Test SITE DOWM - [0] L... Attribute not available =
operation_context .uca_network alarm_chject 85 Critical TPD_TEST Motorola 26 - Test SITE DOWRN SYNC... Attribute not available
[7] operation_context .uca_network alarm_object 81 Minor TPD_TEST Motorola 26 - Test SITE DOWM - [0] L... Attribute not available
[7] operation_context .uca_network alarm_object 80 Minor TPD_TEST Motorola 26 - Test SITE DOWM - [10] ... Attribute not available
[7] operation_context .uca_network alarm_object 181 Minor TPD_TEST Motorola 26 - Test SITE DOWM - [0] L... Attribute not available
Step 4: generate the new filter by clicking the “Generate Filter” button.
[identifier ["] acknowledgementUserldentifier [probleminformation [correlationNotificationldentifiers [~] userText
[H] originalSeverity [originatingManagedEntity =] additionalText [C] networkState [sourceldentifier
[] alarmRaisedTime [H| specificProblem ["] problemState [] probableCause [T] perceivedSeverity
[] dornain [] pbaAlarm [T alarmType [] operatorState
[Select All Attributes] ’Generate filter
identifier originalSev.. additionalText specificProblem
operation_context .uca_network alarm_object 44... Critical TPD_TEST Motorola 2G - Test SITE DOWM SYMNC... Attribute not available

[7] operation_context .uca_network alarm_object 44... Minar TPD_TEST Motorola 2G - Test SITE DOWM - [0] L... Attribute not available

Step 5: Click on the filter editor view and check the generated filter. You can

manually edit the generated editor in order to make some fine tuning or changes.
Step 6: Control the result of the new filter in the “passed Filter” view
Step 7: save your changes

Warning

The “Generate filter” Button can be used on an already existing filter in order to
modify it. However by re-generating an existing filter, all the Tags defined in it will be
lost. It is therefore not recommended to use the “Generate filter” button on existing
filters.

89

5.10 Persisting alarms or events using the DB
forwarder feature

This chapter provides technical information about the DB forwarder feature introduced
in UCA-EBC 3.1.

Itis intended to the UCA-EBC Value Pack developer that needs to set up that
functionality within his VP.

Any DB coming with a JDBC driver can be supported by this feature.

However, UCA-EBC brings 2 DBs with libraries already part of the UCA-EBC default
libraries: H2 and HyperSQL.

5.10.1Concepts

5.10.1.1 Storing alarms

To store alarms into a DB, the well-known alarm forwarder mechanism is used. In this
particular case, a JDBC alarm forwarder is now provided to perform such actions.

Alarms that are stored into a DB follow also the same scheme of the alarms received
through classic NOM mediation platform. Once stored in the DB, they are pushed
back into the dispatcher of the Value Pack using the DB flow mechanism.

So if you want to recognize them from standard alarms, you will have to define a way
to do it. This can done using a special identifier for the alarm, or by using a special
custom field.

This is up to the Value Pack owner to decide which method is to be used.
5.10.1.2 Storing events

UCA-EBC 3.1 brings new EventForwarder interface to handle Event objects
(introduced in 3.1 as well).

e com.hp.uca.expert.event.EventForwarder
e com.hp.uca.expert.event.Event

To store such Event objects into a DB, end-user can use a JDBC event forwarder
based on the same concepts as the alarm forwarder described above.

e com.hp.uca.expert.event.JDBCEventForwarder

In the contrary of alarms, events stored into a DB do not have DB flow mechanism
associated into it.

5.10.2Getting started

To make use of the DB feature, this is just a question of configuring correctly your
value pack. This is done by modifying the VP context.xml file (*).

Firstly, in this file, you will have to make use of the default JDBC settings by importing
the provided file from the UCA classpath, as:

90

<import resource="classpath:jdbc/dependencies.xml" />

Those default settings bring mainly an AlarmDao bean (called alarmDao) and an
AlarmNotifier bean (called dbNotifier).

If you do not want to use default JDBC settings, you can do so by referring to the
Advanced settings section below.

Then, still in context.xml, you will have to define at minimum 2 Spring beans:

e the datasource bean
e the DB forwarder bean

and optionally
e the DB store bean

Note

(*) You can also configure JDBC settings globally for all value packs in the
conf/dependencies.xml file if needed.

5.10.2.1 Defining the datasource

The first thing to configure is the datasource. This is done by defining a new Spring
bean. Spring offers a number of options for configuring a data sources via data
source beans.

These sources include the following:
e Data sources that use JNDI
e Data sources that use JDBC drivers

e Data sources that pool connections

Below is an example using pool connections with Apache Commons DBCP (*), and
with a H2 database (**).

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">
<property name="driverClassName" value="org.h2.Driver" />
<property name="url" value="jdbc:h2:~/.uca/exampleDB" />
<property name="username" value="sa" />
<property name="password" value="" />

</bean>

91

Notes

(*) You could also use

"org.springframework.jdbc.datasource.DriverManagerDataSource" or other of your
choice

(**) You could also use HyperSQL DB. For other DBs, make sure to make the
requested JDBC driver as part of your value pack libraries.

5.10.2.2 Defining the DB store

supportsUnlimitedvVarChar |boolean

supportsCreate boolean

supportsIfNotExist boolean

The second thing to configure is the store used to persist alarms. Currently only a
store of type SQL is supported. But still, in prevision of managing NOSQL stores, a
bean is to be defined for specifying what that store is capable of. This setting is
optional. The settable properties of an SQL store are:

Property Type |Description
name string |defines the name of the DB

tells if the DB can be created by the UCA-EBC engine if
it does not exists

tells if the DB supports the SQL syntax "IF NOT EXISTS"
at creation

tells if the DB supports definition of VARCHAR without a
numeric limit

Here below is a simple example:

<bean id="dbStore" class="com.hp.uca.expert.store.sqgl.SqglStore">
<property name="name" value="h2" />
</bean>

5.10.2.3 Defining the DB forwarder

The next thing to configure is the DB forwarder itself, which is the thread that is going
to use datasource and store defined previously to persist alarms. The DB forwarder
has only 2 properties:

Property Type |Description
alarmDao |bean {the DB Alarm DAO bean
store |bean |the DB store bean

Here below the typical configuration.
(The init-method is optional as the DB forwarder has an auto-start capability)

92

<bean id="dbForwarder" class="com.hp.uca.expert.alarm.JDBCAlarmForwarder"
init-method="start">

<property name="alarmDao" ref="alarmDao" />

<property name="store" ref="dbStore" />
</bean>

Note: If you use a DB forwarder to forward Events instead of Alarms, you will need to
configure as per example below (the eventDao bean needs to be configured too, as
specified in Advanced settings section below)

<bean id="dbForwarder" class="com.hp.uca.expert.event.JDBCEventForwarder"
init-method="start">

<property name="eventDao" ref="eventDao" />

<property name="store" ref="dbStore" />
</bean>

5.10.2.4 Defining the DB flow

To be able to receive alarms changes coming from the DB as per any other alarm
coming from a NOM mediation flow, you will have to configure a DB flow in
ValuePackConfiguration.xml file.

The dbFlow has only 2 properties:

Property Type |Description
name string the name of the DB flow. should be unique in case of multiple flows

refers to the name of the DB notifier on which to subscribe for
dbNotifierName |string notifications. This is explained in Advanced Setting section. Its default
name is “dbNotifier”.

A default configuration could be:

<dbFlows>
<dbFlow name="exampleDbFlow" dbNotifierName="dbNotifier" />
</dbFlows>

5.10.3Example

You can refer to the example part of the UCA-EBC Development Toolkit.
You can find it under %UCA_EBC_DEV_HOME%/vp-examples/persistence-example.

You can build this example as per usual

ant all

93

Specifically, you can have a look at files under src/main/resources/valuepack/conf to
see how to configure the DB feature elements (context.xml) and the DB flows
(ValuePackConfiguration.xml)

5.10.4Advanced settings

Advanced settings are optional and are only for those who do not want to use the
default settings provided by the file jdbc/dependencies.xml. You can replace following
line

<import resource="classpath:jdbc/dependencies.xml" />

by adding each of the following bean directly in the value pack context.xml

5.10.4.1 Defining the SQL Session factory

The SQL session factory is the MyBatis(*) session factory bean. It has two properties:

Property |Type Description
dataSource |bean |the datasource bean
configLocation |string |the location of the MyBatis configuration file

The default configuration is:

<bean id="sglSessionFactory" class="org.mybatis.spring.SglSessionFactoryBean">
<property name="dataSource" ref="dataSource" />
<property name="configLocation" value="classpath:jdbc/mybatis-
config.xml"/>
</bean>

Note

(*) MyBatis is an Open Source software delivered as part of UCA-EBC 3.1 libraries.

5.10.4.2 Defining the DB Alarm DAO

The DB DAO is the mapper interface used to instantiate the Java interface
corresponding to the SQL commands stored in the file defined within the MyBatis
configuration file. By default, the alarms mapper interface is defined in file jdbc/sql-
alarms-mapper.xml.

The DB DAO has two properties:

Property Type |Description
sqlSessionFactory |bean the SQL session factory bean

the Java interface for the DAO, which is defaulted to the one

mapperinterface string provided by UCA-EBC, i.e.

94

com.hp.uca.expert.alarm.store.AlarmDao

The DB DAO is in turn used to configure the DB forwarder and the DB notifier beans.

The default configuration is:

<bean id="alarmDao" class="org.mybatis.spring.mapper.MapperFactoryBean">
<property name="sqglSessionFactory" ref="sqglSessionFactory" />
<property name="mapperInterface"

value="com.hp.uca.expert.alarm.store.AlarmDao" />

</bean>

5.10.4.3 Defining the DB Notifier

The DB natifier is the component that will listen to the DB for changes and will notify
the value pack about those changes. It has two properties:

Property | Type |Description
alarmDao | bean |the DB Alarm DAO bean

a timer in milliseconds representing the interval between two DB

checkTimer \number checkings for the changes

The default configuration is:

<bean id="dbNotifier" class="com.hp.uca.expert.alarm.store.AlarmNotifier"
scope="singleton">

<property name="alarmDao" ref="alarmDao" />

<property name="checkTimer" value="1000" />
</bean>

5.10.4.4 Defining the DB Event DAO

The DB Event DAO is the mapper interface used to instantiate the Java interface
corresponding to the SQL commands stored in the file defined within the MyBatis
configuration file. By default, the events mapper interface is defined in file jdbc/sql-
events-mapper.xml.

The DB Event DAO has two properties:

Property Type |Description
sqlSessionFactory |bean the SQL session factory bean

the Java interface for the DAO, which is defaulted to the one
mapperinterface |string |provided by UCA-EBC, i.e.
com.hp.uca.expert.event.store.EventDao

The DB Event DAO is in turn used to configure the DB forwarder bean.

95

There is no default configuration available but it should be easily configurable as per
below:

<bean id="eventDao" class="org.mybatis.spring.mapper.MapperFactoryBean">
<property name="sqglSessionFactory" ref="sqglSessionFactory" />
<property name="mapperInterface"

value="com.hp.uca.expert.event.store.EventDao" />

</bean>

5.10.4.5 Defining the SQL Mapping interfaces

Alarms mapper:

The alarms mapper interface is defined by default in file jdbc/sgl-alarms-mapper.xml.
This file defines the dynamic SQL mapping of the Java interface provided:

@ AlarmDaointerface @ StoreDaolnterface

List=StoredAlarm > getAlarms(long since) :2:3 ;::::g:g::ésmre type)

StoredAlarm getAlarmiString identifier) void clearAll)

= 4]

A
Y

5
&

hY
¥ i
® AlarmDao

void storeAlarm (Alarm CreationMapper a)

void removedlarm (String identifier)

void markForDeletioniAlarmDeletionMapper a)
void updateAlarm (AttributeChangesMapper a)
List<5toredAlarm > getAlarmsMarkedAsDeleted()
void removellarmsg

This interface is provided by default and can be replaced if necessary, in which case
the mapping interface should be changed accordingly.

Events mapper:

The events mapper interface is defined by default in file jdbc/sql-events-mapper.xml.
This file defines the dynamic SQL mapping of the Java interface provided:

96

® StoreDaointerface

void createStore(Store type)
void deleteStore
void clear&l(

A

I
® EventDao

List<5toredEvent> getEventsilong since)

StoredEvent getEvent(String identifier)

void removeBEvent(5tring identifier)

void storeEvent{EventCreationMapper eventCreationMapper)

This interface is provided by default and can be replaced if necessary, in which case
the mapping interface should be changed accordingly.

97

Appendix A

A. Ant build. xml targets

The value pack examples provided with UCA for EBC come with an Ant build.xml
file that can build and package the project as described in this document.

Following is the full list of Apache Ant targets defined in the build.xml file that can
be executed from the command line using the ant tool:

eclipse

Command:

ant eclipse

Creates the .project and .classpath files used by eclipse when importing a project.
clean

Command:

| # ant clean

Removes all files created during the build from the build directory.
compile

Command:

| # ant compile

Compiles all Java files of the project.
test

Command:

ant test

Runs the JUnit tests defined in the project.
package

Command:

| # ant package

Build the final, “ready to deploy” value pack ZIP file.
all

Command:

| # ant all

"« "«

Is equivalent to executing the following targets: “clean”, “compile”, “test” and

“package”.

98

Glossary

UCA: Unified Correlation Analyzer

EBC: Event Based Correlation

IDE: Integrated Development Environment
JMS: Java Messaging Service

JMX: Java Management Extension, used to access or process action on the UCA for
EBC product.

JNDI: Java Naming and Directory Interface

Inference engine: Process that uses a Rete algorithm for expert behavior
DRL: Drools Rule file

XML: Extensible Markup Language

XSD: Schema of an XML file, describing its structure

X.733: Standard describing the structure of an Alarm used in telecommunication
environment.

EVP: UCA for EBC Value Pack

99

