hp Unified Correlation Analyzer

W

Unified Correlation Analyzer
for
Event Based Correlation
Version 3.1

Administration, Configuration and
Troubleshooting Guide

Edition: 1.0

For the HP-UX (11.31) and Linux (RHEL 5.8 & 6.3) Operating Systems

April 2014

© Copyright 2014 Hewlett-Packard Development Company, L.P.

Legal Notices

Warranty

The information contained herein is subject to change without notice. The
only warranties for HP products and services are set forth in the express
warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for
possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government
under vendor's standard commercial license.

Copyright Notices

© Copyright 2014 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems
Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both
32 and 64-bit configurations) on all HP 9000 computers are Open Group
UNIX 95 branded products.

Java™ is trademark of Oracle and/or its affiliates.

Microsoft®, Windows® and Windows NT® are U.S. registered trademarks of
Microsoft Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City,
California.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark, and the X device is a trademark of
X/Open Company Ltd. in the UK and other countries.

Contents

P EIACE ... 9
(O o= 01 - 0t 11
TN oo 1¥ [ox o o ISP 11
(O o= 01 (-1 12
UCA for EBC AdMINISTratioN........uuuuiiiiiieeeeiiiies e 12
2.1 Starting and stopping UCAfOr EBC ..., 12
211 Starting UCATOrEBC ... 12
212 StoppiNg UCA fOr EBCoeiiiiiiiiee ettt 13
2.13 Displaying the status of UCA for EBCccccveiiiiiieiiiiiie e 13
2.2 ComMAaNd-liNE tOOISuveiiiiiieie et 14
221 UCA-EDC-INVENTOIY ... s 14
222 UCA-EDC-INJECTION .. 15
223 U Tor= BT o Torr= o [V1 o 1SRRI 17
224 UCA-EDC-INSTANCE.oiiiiiiii s 25
2.25 UCA-EDC-DACKUD ... 26
2.3 UCA for EBC USEN INtEIACE ...eovveeeieiiiiiieiee et 29
(O g =T] (= S TN 30
UCA for EBC Configurationcoiiiiiiiiiiiiiie e 30
3.1 Multiple instances coNfiguration............cocueeieiiiiieiiiiie e 30
3.2 Configuration fileScooviiiii 31
3.2.1 uca-ebc.properties file configuration............ccoooooiiiiiiiiiiiiiie e 31
3.2.2 ActionRegistry.xml file configuration.............ccccovuieiiiiiiin e 35
3.2.3 uca-ebc-log4j.xml file configurationcccocceeiiiii 40
3.24 Additional configuration fil@Seuvvviiiiiiiiiiiiiiieieeeee s 41
3.25 How to revert back to the default configuration files............ccccvvvvvviiiiiinnnnns 41
3.3 High-Availability (HA) configurationcccoouveiiiiiiiiiie e 42
3.31 Simple cluster configuration USINg NFS..........ocoociiiiiiiiie e 42
3.3.2 Neo4j database High-Availability (HA) configuration for Topology
D q =T 1S (o o SRS 43
3.4 BaCKUP QN FESTOME ...ccce ittt ettt e e e e e e s baeeaaaeeeas 44
34.1 Standalone UCA fOr EBC ...t seee e 44
3.4.2 Clustered UCA fOr EBCccooi ittt et e e e e s seeenea e e e s e 45
3.4.3 UCA for EBC with external topology SErver..........cccceeieieiiiiiiiiiieeeee e 45
(O =T o =T P 47
(U102 (o] gt =1 =TGR V[0 Y o1 (o] o | 1Yo N a7
4.1 Monitoring the alarm flow in real-time..........cccccoiiii e, a7
41.1 (O] 1= Tox (o gl F= = USSR 48
41.2 DTS o 1 (o =T g - - 49
4.1.3 RV L[S o= Tod [F= = R 49
41.4 SCENANO/ENGING TAYETeiiiiiiiiiiieeie ettt a e 49

CAPTIEI 5 e 51

UCA for EBC Troubleshooting........ccooovieeiiiiiiicie e 51
5.1 TroubleShooting tOOIS..........coiiiiiiieiiiiie e 51
51.1 LOG FllES .ttt 51
5.1.2 UCA for EBC Graphical User Interfacecccccccovvvivieeeieeeiiiiciiieee e 51
5.1.3 JMX CONSOIE....ceeiiiiiie et 53
CRAPTET B .. 90
UCA for EBC Advanced Troubleshooting.......ccccooeeeevviiiiiiiiiiiee e, 90
6.1 UCA for EBC Logging MeChaniSIMc.ceeeiiiiiiiiiiiiieiiiiee e 90
6.1.1 Standard application 10ggiNgcocueeiiiiiiiiiiiiie e 90
6.1.2 Collector 10ggiNgcooeeeeeeeeeee e, 91
6.1.3 SCenario 10ggingcooeee e 91
6.1.4 DIrOOIS 1OGGING -eeieitiieeeiiee ettt 99

6.1.5 Enabling these logs can be complementary to using the scenario specific
Drools engine logs that are described in section: 6.1.2 “Collector logging100

6.2 Managing the Drools engine(S)......cccovvvviiiiiiiii 101
6.2.1 Dumping the Working MEMOIYuuuuueeereeiieeeeeeeereeessrersrererererernnenenen. 101
6.2.2 Clearing the Working MEmOIYcocuiiiiiiiiiiiiiiee e 103
6.2.3 Reloading the TUIEScooiiiiii e 104
6.3 Managing the flows and actionsccccccceviiii 106
6.3.1 Managing the DB flOWSuuvuiiiiiiiiiiiiiiieiieieieeeseeeeeeveeeeeeeeeeeeeeeseseserennne 106
6.3.2 Managing the mediation flIOWS ... 108
6.3.3 MaNAGING ACLONSceiiiiiiieeiiiiie ettt 112
6.4 UCA for EBC Performance analysis..........cccccccviiiiiii 112
(O =T 0} (-1 PR 114
Frequent problems and SOIUtIONScooviviiiiiiiiiiiiieeee 114
7.1 Problems executing uca-ebc-adminccccciii 114
7.1.1 Cannot connect to UCA for EBC JMX CONNECEONcccvvvivieiiiiiieniieeenn 114
7.1.2 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-ebc-
=T [0 11 8 (o o RS 114
7.2 Problems executing UCa-eDC-INJECLON..........ciiiiiiiieiiiie e 115
7.2.1 Cannot create CONNECLIONuuiiiiieee ettt 115
7.2.2 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-ebc-
1] [=Tex (o] g (oo TR TP UUPTPUPPUPTN 116
7.3 Problems starting UCA fOr EBC........ccuvviiiieiiiiieeec e 117
7.3.1 AlreadyBOUNAEXCEPLIONvviviieeeiiiiiiiiieieeesesireereee e e s s snreeereee e e s e nnneeeeees 117
7.3.2 ClassNotFoundException:
javax.management.remote.rmi.RMIServerimpl_Stub..........c..ccccevneennns 118

7.3.3 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-ebc.log119

GlOSSANY ettt 120

Figure 3 - Troubleshooting/Log panel at Application level

Figure 7 - Java JMX Console: UCA for EBC Action Manager

Figure 10 - Java JMX Console;
Figure 11 - Java JMX Console;
Figure 12 - Java JMX Console:
Figure 13 - Java JMX Console:
Figure 14 - Java JMX Console:
Figure 15 - Java JMX Console:
Figure 16 - Java JMX Console:
Figure 17 - Java JMX Console:

Figures

Figure 1 - ACtionRegiStry. XMl fil€cocoiiiiiiiiii e 36
Figure 2 - UCA for EBC — Monitoring the Alarm FIOWcoocciiiiiie e 48
.. 52

Figure 4 - Troubleshooting/Statistics panel at Application Level............ccoccooeiviiiiiiniieecnne, 53
Figure 5 - Java JMX Console: Connecting to UCA for EBC Server...........ccccocoviiiiiiiiniiees 54
Figure 6 - Java JMX Console: UCA for EBC MBEANS...........ccoiiiiieiiiiiie it 55
.. 56

Figure 8 - Java JMX Console: UCA for EBC Collector - Attributescccocoeiiiiiiniiees 60
Figure 9 - Java JMX Console: UCA for EBC Dispatcher - Attributes...............ccccoooiiis 62
UCA for EBC Properties - Attributes...........cccccceeeeeevvviinnnnen. 64

UCA for EBC Server - Operationsc.cocccvvvveereeesiiicnvvnnnn. 66

UCA for EBC Value Pack Manager - Operations 67

a UCA for EBC Value PacK..........ccuveeiiiiiiiiie, 71

UCA for EBC Value Pack - Class Loader - Attributes 72

UCA for EBC Value Pack - Class Loader - Operations........ 74

UCA for EBC Value Pack — DB Flows - Attributes 75

UCA for EBC Value Pack — DB Flows - Operations............. 77

UCA for EBC Value Pack — Mediation Flows - Attributes..... 77

Figure 18 - Java JMX Console:
Figure 19 - Java JMX Console:
Figure 20 - Java JMX Console:
Figure 21 - Java JMX Console:
Figure 22 - Java JMX Console:
Figure 23 - Java JMX Console:
Figure 24 - Java JMX Console:
Figure 25 - Configuring scenario specific logging in the uca-ebc-log4j.xmlfile......................

UCA for EBC Value Pack — Mediation Flows - Operations .. 79

UCA for EBC Value Pack - Scenarioscoooeevvvreievieeeeennnn. 81
UCA for EBC Value Pack — Value Pack - Attributes............. 82
UCA for EBC Value Pack — Value Pack - Operations.......... 84
UCA for EBC Value Pack — Scenario - Attributes................. 85
UCA for EBC Value Pack — Scenario - Operations............... 89

92

Figure 26 - Configuring scenario exceptions specific logging in the uca-ebc-log4j.xmil file 93

Figure 27 - Java JMX Console:

one scenario

Drools perspective icon

Drools Audit panel

Enabling/Disabling scenario specific rule execution logging for

.. 94
Figure 28 - Selecting the JBoss Drools perspective in Eclipse IDE by clicking on the JBoss
... 95
Figure 29 - Selecting the JBoss Drools perspective in Eclipse IDE by using the Eclipse IDE
L0 0T 10 PP PP PP PP PP PP PPPPRPPPPPPPPPPIRt 95
Figure 30 - Showing the JBoss Drools Audit view in Eclipse IDEccccooii, 96
Figure 31 - Eclipse IDE: Using drag and drop to open a Drools engine log file in the Drools
AUIE PANEL. ... ————— 96
Figure 32 - Eclipse IDE: Using the “Open log” icon to open a Drools engine log file in the
... 97
Figure 33 - Eclipse IDE: Viewing scenario rule execution 10gs ..., 97
Figure 34 - Showing the JBoss Drools Agenda or Working Memory view in Eclipse IDE 98
Figure 35 - Running a JUnit Test of a Value Pack in debug mode in Eclipse IDE.................. 98
Figure 36 - Sample view of the Drools Working Memory panel in Eclipse IDE...................... 99
Figure 37 - Sample view of the Drools Agenda panel in Eclipse IDEccccocveiiinieeennnn. 99
Figure 38 - Configuring the log for Working Memory Agenda and Event Listeners.............. 100
Figure 39 - Java JMX Console: Dumping the working memory of a Scenario...................... 102
Figure 40 - UCA for EBC User Interface: Dumping the working memory of a scenario 102
Figure 41 - Java JMX Console: Clearing the working memory of a Scenario....................... 103
Figure 42 - UCA for EBC User Interface: Clearing the working memory of a scenario 104
Figure 43 - Java JMX Console: Reloading the rules of a Scenario............cccvveeeeeeiiiiiinnnen. 105
Figure 44 - Java JMX Console: Reloading the rules of all Scenarios of a Value Pack......... 105
Figure 45 - UCA for EBC User Interface: Reloading the rules of a Scenario........................ 106
Figure 46 - Java JMX Console: Performing operations on a single DB flow............c..c......... 107
Figure 47 - UCA for EBC User Interface: Performing operations on a single DB flow.......... 108
Figure 48 - Java JMX Console: Performing operations on mediation flows at the Value Pack
TEVEL .ot r e s 109
Figure 49 - UCA for EBC User Interface: Resynchronizing the mediation flows of a Value
o T TP EPTTT ST 109
Figure 50 - Java JMX Console: Performing operations on a single mediation flow.............. 111

Figure 51 - UCA for EBC User Interface: Performing operations on a single mediation flow 112

Figure 52 - Java JMX Console: Dumping Failed Actions for a Scenario

Figure 53 - Java JMX Console: Monitoring performance of UCA for EBC Server

Table 1 - Software versions

Tables

Table 2 - uca-ebc-injector tool options

Table 3 - Properties for uca-ebc-injector in uca-ebc.properties file

Table 4 - uca-ebc-admin tool main options

Table 5 - uca-ebc-admin tool sub-options

Table 6 - Properties for uca-ebc-admin in uca-ebc.properties file

Table 7 - Main options for the uca-ebc-instance tool

Table 8 - Options for backing up UCA for EBC instances using the uca-ebc-instance tool
Table 9 - Options for restoring UCA for EBC instances using the uca-ebc-instance tool
Table 10 - Options for listing the available UCA for EBC instance backups using the uca-ebc-

instance tool

Table 11 - Host and Port # properties in the uca-ebc.properties file
Table 12 - Web GUI properties in the uca-ebc.properties file

Table 13 - Collector properties in the uca-ebc.properties file

Table 14 - Action Manager properties in the uca-ebc.properties file
Table 15 - Rule Engine logger properties in the uca-ebc.properties file

Table 16 - Java JMX Console:
Table 17 - Java JMX Console:
Table 18 - Java JMX Console:
Table 19 - Java JMX Console:

Table 20 - Java JMX Console:
Table 21 - Java JMX Console:

Table 22 - Java JMX Console:
Table 23 - Java JMX Console:
Table 24 - Java IMX Console:
Table 25 - Java JMX Console:
Table 26 - Java JMX Console:
Table 27 - Java JMX Console:
Table 28 - Java JMX Console:
Table 29 - Java JMX Console:
Table 30 - Java JMX Console:
Table 31 - Java JMX Console:
Table 32 - Java JMX Console:
Table 33 - Java JMX Console:
Table 34 - Java JMX Console:
Table 35 - Java JMX Console:
Table 36 - Java JMX Console:
Table 37 - Java JMX Console:
Table 38 - Java JMX Console:
Table 39 - Java JMX Console:

UCA for EBC Action Manager — Action Queue - Attributes

9
17
17
22
25
25
26
27
28

29
32
33
33
34
34
57

UCA for EBC Action Manager — Action Queue - Operations 58
UCA for EBC Action Manager — Action Statistics - Attributes 58
UCA for EBC Action Manager — Action Statistics - Operations

59

UCA for EBC Action Manager — Action Threads - Attributes 59
UCA for EBC Action Manager — Action Threads - Operations

UCA for EBC Collector - Attributes

UCA for EBC Collector - Operations

UCA for EBC Dispatcher - Attributes

UCA for EBC Dispatcher - Operations

UCA for EBC Properties - Attributes

UCA for EBC Server - Operations

UCA for EBC Value Pack Manager - Attributes

UCA for EBC Value Pack Manager - Operations

UCA for EBC Value Pack - Class Loader - Attributes
UCA for EBC Value Pack - Class Loader - Operations
UCA for EBC Value Pack — DB Flows - Attributes

UCA for EBC Value Pack — DB Flows - Operations
UCA for EBC Value Pack — Mediation Flows - Attributes
UCA for EBC Value Pack — Mediation Flows - Operations
UCA for EBC Value Pack — Value Pack - Attributes
UCA for EBC Value Pack — Value Pack - Operations
UCA for EBC Value Pack — Scenario - Attributes

UCA for EBC Value Pack — Scenario - Operations

Table 40 - uca-ebc-admin: Cannot connect to UCA for EBC JMX connector
Table 41 - uca-ebc-admin: FileNotFoundException

Table 42 - uca-ebc-injector: Cannot create connection

Table 43 - uca-ebc-injector: FileNotFoundException

Table 44 - uca-ebc: AlreadyBoundException

Table 45 - uca-ebc: ClassNotFoundException

Table 46 - uca-ebc: FileNotFoundException

59
61
61
63
63
65
66
67
70
73
75
76
77
78
80
83
85
88
89
114
115
115
116
117
118
119

Preface

This guide provides an overview of Unified Correlated Analyzer for Event
Based Correlation product and describes how to administer, configure,
monitor and troubleshoot the UCA for EBC product.

Product Name: Unified Correlation Analyzer for Event Based Correlation (also
referred to in this document as UCA for EBC)

Product Version: 3.1

Intended Audience
Here are some recommendations based on possible reader profiles:
e Solution Developers

e Software Development Engineers

Software Versions

The term UNIX is used as a generic reference to the operating system, unless
otherwise specified.

The software versions referred to in this document are as follows:

Product Version Supported Operating systems

UCA for Event Based HP-UX 11.31 for Itanium

Correlation Server Version 3.1 | Red Hat Enterprise Linux Server release
5.8&6.3

UCA for Event Based HP-UX 11.31 for Itanium

Correlation Channel Adapter Red Hat Enterprise Linux Server release

Version 3.1 5.8&6.3

UCA for Event Based Windows XP / Vista

Correlation Software Windows Server 2007

Development Kit Version 3.1 Windows 7

UCA for Event Based Windows XP / Vista

Correlation Problem Detection | Windows Server 2007

Kit Version 3.1 Windows 7

Table 1 - Software versions

Typographical Conventions
Courier Font:

e Source code and examples of file contents
o Commands that you enter on the screen

e Pathnames

o Keyboard key names

Italic Text:

e Filenames, programs and parameters.
o The names of other documents referenced in this manual.
Bold Text:

e To introduce new terms and to emphasize important words.

Associated Documents

The following documents contain useful reference information:

References

[R1] HP UCA for Event Based Correlation Reference Guide

[R2] HP UCA for Event Based Correlation Value Pack Development Guide
[R3] HP UCA for Event Based Correlation User Interface Guide

[R4] HP UCA for Event Based Correlation Installation Guide

[R5] HP UCA for Event Based Correlation Topology Extension Guide

Support

Please visit our HP Software Support Online Web site at
www.hp.com/go/hpsoftwaresupport for contact information, and details about
HP Software products, services, and support.

The Software support area of the Software Web site includes the following:
e Downloadable documentation.
e Troubleshooting information.
e Patches and updates.
e Problem reporting.
e Training information.

e Support program information.

10

http://www.hp.com/go/hpsoftwaresupport

Chapter 1

Introduction

This guide describes how to administer, configure, monitor and troubleshoot
the UCA for EBC product.

Throughout this document, we use the $ {UCA EBC HOME} environment
variable to reference the root directory (“static” part) of UCA for EBC. The
default value for the s {uca EBC HOME} environment variable is /opt/uca-
EBC. The s${uca EBC HOME} environment variable thus references the
/opt/UcA-EBC directory unless UCA for EBC “static” part has been installed
in an alternate directory.

We also use s {uca EBC_ DATA} environment variable to reference the data
directory (“variable” part) of UCA for EBC. The default value for the
${UCA_EBC _DATA} environment variable is /var/opt/Uca-EBC. The
${UCA EBC DATA} environment variable thus references the /var/opt/uca-
EBC directory unless UCA for EBC “variable” part has been installed in an
alternate directory.

Since UCA-EBC V2.0, the ${uca_EBC_DATA} directory may contain multiple
instances of UCA-EBC. In this document, we will use the value

${UCA_EBC INSTANCE} for referring to

${UCA_EBC DATA}/instances/<instance-name> directory.

At installation, a single <instance-name> is configured: default.

%~ For more information on how to install the UCA for EBC product, please
refer to: [R4] HP UCA for Event Based Correlation Installation Guide.

¥~ For more information on the UCA for EBC product, please refer to: [R1]
HP UCA for Event Based Correlation Reference Guide.

11

Chapter 2

UCA for EBC Administration

2.1 Starting and stopping UCA for EBC

2.1.1 Starting UCA for EBC

To start UCA for EBC, please run the following commands as uca user:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc start

Here’s a sample output from this command:

Using UCA for EBC Home directory specified by the UCA_EBC_HOME
environment variable: /opt/UCA-EBC

Using UCA for EBC Data directory specified by the UCA_EBC_DATA
environment variable: /var/opt/UCA-EBC

*** INFO: Starting UCA for Event Based Correlation version 3.1

Traces are logged in the $ {UCA EBC_INSTANCE}/logs/uca-ebc.log
file.

To start UCA for EBC in verbose mode (traces logged to the console), please
run the following commands as uca user (note the use of the —v option):

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc -v start

Since UCA-EBC V2.0, it is possible to launch multiple instances on a same
machine. Each instance is managed by the uca-ebc-instance command
line tool (refer to chapter 2.2.4). If not specified, the default instance is
launched.

To start UCA for EBC for a specific instance (specified by <instance-
name> in the example below), please run the following commands as uca
user (note the use of the —i option):

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc -i <instance-name> start

12

2.1.2 Stopping UCA for EBC

In order to stop UCA for EBC, please run the following commands as uca
user:

On both HP-UX, and Linux:

$ cd S$S{UCA EBC HOME}/bin
$ uca-ebc stop

Here’s a sample output from this command:

Since UCA-EBC V2.0, it is possible to have multiple instances running on a
same machine. If not specified, the default instance is stopped.

To stop UCA for EBC for a specific instance (specified by <instance-name> in
the example below), please run the following commands as uca user (note
the use of the —i option):

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME!}/bin
$ uca-ebc -i <instance-name> stop

2.1.3 Displaying the status of UCA for EBC

In order to show the status of UCA for EBC, please run the following
commands as uca user:

On both HP-UX, and Linux:

$ cd S${UCA EBC HOME}/bin
$ uca-ebc show

Here’s a sample output from this command:

The status of UCA for EBC can either be “Running” or “Stopped”.

Since UCA-EBC V2.0, it is possible to have multiple instances running on a
same machine. If not specified, the status of the default instance is returned.

To get the status of UCA for EBC for a specific instance (specified by
<instance-name> in the example below), please run the following commands
as uca user (note the use of the —i option):

13

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc -i <instance-name> show

2.2 Command-line tools

Some command-line tools are provided in the ${UCA_EBC_HOME}/bin folder
that may prove to be of some help to users of UCA for EBC:

uca-ebc-inventory: this command-line tool lists the UCA for EBC
packages installed on the system.

uca-ebc-injector: this command-line tool provides the capability to
inject alarms described in XML files directly into the UCA for EBC
input queue without going through the mediation layer (OSS Open
Mediation V7.0), thus bypassing both OSS Open Mediation V7.0 and
UCA for EBC Channel Adapter

uca-ebc-admin: this command-line tool provides a lot of options to
configure, administer, and monitor UCA for EBC, but also UCA for
EBC value packs and scenarios. Most of the features of this tool are
also available using the UCA for EBC User Interface.

uca-ebc-instance: this command line tool manages the different
instances of UCA for EBC. It provides options to list current
instances, add a new instance, delete or rename an existing instance
and set the default instance name.

uca-ebc-backup: this command line tool provides facilities for
backup and restore of the instances of UCA for EBC.

For more information on the UCA for EBC User Interface, please refer to: [R3]
HP UCA for Event Based Correlation User Interface Guide

2.2.1 uca-ebc-inventory

This command-line tool lists the packages (including patches) installed on the
system for the following products:

UCA for EBC Server

UCA for EBC Channel Adapter for OSS Open Mediation
UCA for EBC Development Kit

OSS Open Mediation

To execute the uca-ebc-inventory tool, please use the following commands:

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-inventory

Here’s an example of the output of the execution of uca-ebc-inventory:

14

The uca-ebc-inventory tool has no execution options and no associated
configuration file.

2.2.2 uca-ebc-injector

This command-line tool provides the capability to easily send events (Alarm
creation, Alarm Attribute Value Change, Alarm State Change, Alarm Deletion,
etc...) to UCA for EBC by pushing XML files containing these events to the
JMS input queue (implemented as a JMS Topic) of UCA for EBC.

The alarms are directly injected into UCA for EBC without going through the
mediation layer (OSS Open Mediation V7.0), thus bypassing both OSS Open
Mediation V7.0 and UCA for EBC Channel Adapter.

This command-line tool can be very helpful for testing UCA for EBC Value
Packs in real conditions without having to set up the mediation layer (OSS
Open Mediation V7.0 and UCA for EBC Channel Adapter).

The following sections describe how to execute and how to configure the uca-
ebc-injector tool.

To execute the uca-ebc-injector tool, please use the following commands:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-injector <options>

<options> is a list of valid options for the uca-ebc-injector tool

The uca-ebc-injector command-line tool can be used either in random mode,
where random alarms are generated automatically based on a template and
sent to UCA for EBC, or in file mode, where alarms are provided to the uca-

ebc-injector tool as an XML file that is then sent to UCA for EBC.

The uca-ebc-injector tool is by default in file mode unless the -r or --random
option is used, in which case the uca-ebc-injector tool is in random mode.

To use the uca-ebc-injector tool in file mode, please use the following
commands:

15

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-injector -file /tmp/Alarms.xml

The above command will send 1 burst of alarms to UCA for EBC. The alarms
in this burst will be exactly the same as the alarms in the file specified by the -
file or --filename option.

To use the uca-ebc-injector tool in random mode, please use the -r or --
random option. Below is an example of the uca-ebc-injector tool being used in
random mode:

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-injector --random -file /tmp/Alarms.xml --number 10 -
-delay 5000

The above command will send 10 bursts of random alarms to UCA for EBC.
The delay between each burst will be 5 seconds. Each burst of alarms will
send one alarm unless the --buffer-size option is specified. The alarms sent in
the burst will be the same as the alarms in the template file except for the 1D
of the alarms (sequential IDs will be used instead) and the severity of the
alarm (the severity will be chosen at random).

Since UCA for EBC 3.1, it is possible to have multiple instances running on a
same machine. If not specified, the uca-ebc-injector tool applies to the default
instance.

This tool has the following options available:

-i <instance-name> Default value: default

This option sets the instance of UCA for EBC to
use. Instance <instance-name> must exist. If
used, this option must be set as first option.

--buffer-size <Slize> Default value: 1

This option is used in random mode (-r, or --
random option) to specify the number of alarms
per alarm burst.

--delay <Delay> Default value: 0

This option specifies the delay (in milliseconds)
between 2 alarms files (in file mode) or 2 alarm
bursts (in random mode).

-f, -file <Filename> No default value

This option sets the uca-ebc-injector tool in file or
random modes. It specifies one alarm file to use
as input for the uca-ebc-injector tool.

The file specified by <filename> must be a valid
XML file complying with the Alarm XSD file located
at the following location:
${UCA_EBC_HOME}/schemas/uca-expert-
alarm.xsd

--number <Number> Default value: 1

This option is used in random mode (-r, or --
random option) to specify the number of alarm
bursts to be sent

-r, --random This option sets the uca-ebc-injector tool in
random mode.

This option can be used in conjunction with the -
file option to send random alarms (sequential IDs,
random severity) based on the alarms provided
with the -file option

Table 2 - uca-ebc-injector tool options

The uca-ebc-injector tool has some configuration properties defined in the
${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file, but these
properties are FOR INTERNAL USE ONLY, and are not meant to be updated.

The following table lists these properties for reference only:

Property name Explanation

java.naming.factory.in Default value :
itial org.apache.activemq.jndi.ActiveMQInitialContextFa
ctory

FOR INTERNAL USE ONLY. DO NOT UPDATE
THE VALUE OF THIS PROPERTY.

java.naming.provider. Default value :
url tcp\://${uca.ebc.serverhost}\:${uca.ebc.jms.broker.p
ort}

FOR INTERNAL USE ONLY. DO NOT UPDATE
THE VALUE OF THIS PROPERTY.

topic.uca-ebc-alarms Default value : com.hp.uca.ebc.alarms

FOR INTERNAL USE ONLY. DO NOT UPDATE
THE VALUE OF THIS PROPERTY.

Table 3 - Properties for uca-ebc-injector in uca-ebc.properties file

2.2.3 uca-ebc-admin

This command-line tool provides a lot of options to configure, administer, and
monitor UCA for EBC Server, but also UCA for EBC value packs and
scenarios. Most of the features of this tool are also available using the UCA
for EBC User Interface.

The following sections describe how to execute and how to configure the uca-
ebc-admin tool.

To execute the uca-ebc-admin tool, please use the following commands:

17

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-admin <options>

<options> is a list of valid options for the uca-ebc-admin tool (both main
options and sub-options)

Since UCA-EBC V2.0, it is possible to have multiple instances running on a

same machine. If not specified, the uca-ebc-admin tool applies to the default
instance. Otherwise, the instance to administer can be specified with the -1

<instance name> option. This option must be the first option listed.

The following table lists the main options of the uca-ebc-admin tool (sub-
options can be used alongside these main options, the list of which is
described further):

-h, --help This option displays the uca-ebc-admin tool
usage message

-i <instance-name> This option sets the instance of UCA for EBC to
administer. Instance <instance-name> must
exist. If used, this option must be the first
option.

-a, --audit This option dumps full audit information
(including status, performance information):

e information on UCA EBC instance:
o Value pack manager
o Collector
o Dispatcher
o Action Threads, Stats, Queue
o Alarm forwarders
e [nformation on value packs
o Mediation flows
o Db flows
e |Information on scenarios
o Filters
o Queue
o Working Memory
o Scenario/Watchdog threads

This option always applies to all value packs
and scenarios.

-s, --stats This option dumps specific statistics information
(including status and some performance
information) on all value packs and scenarios or
a specific value pack or scenario depending on
the sub-options used.

& see Notes: (1) ())

18

-1, --list
-Ig, --log4j
-p, --perf

-w, --workingMemory

-c, --clean

-r, --reload

-rc, --reloadConf

-dep, --deploy

This option lists all Value Packs and Scenarios

This option reloads the UCA for EBC log4j
configuration file

This option displays performance
measurements.

This option dumps the working memory of one
or more scenarios.

By default it applies to all scenarios of all value
packs except if sub-options are used.

& see Notes: () A)

This option cleans the working memory (retracts
all facts) of one or more scenarios.

By default it applies to all scenarios of all value
packs except if sub-options are used.

& see Notes: () A)

This option reloads the rule engine of one or
more scenarios or reloads a specific rules file.

By default this option reloads the rule engine of
all scenarios of all value packs except if sub-
options are used.

& see Notes: () A () (H

This option reloads the configuration files. The
files to be reloaded can be chosen between the:
- whole set of files of all actives value packs

- whole set of files of a single active value pack
- whole set of files concerning a single scenario
- a single file within a scenario when used in
conjunction with the —conf sub-option.

& see Notes: () A ())

This option deploys a value pack stored in the
${UCA_EBC_INSTANCE}/valuepacks directory
into the ${UCA_EBC_INSTANCE} deploy
directory.

This option applies to the selected value pack.
&~ See Note: ()

Once deployed, the value pack can be started
by executing the uca-ebc-admin tool with the -
start, --start option (if UCA for EBC is already
running) or by starting UCA for EBC (if UCA for
EBC is stopped).

19

-undep, --undeploy

-start, --start

-stop, --stop
-d, --disable
-e, --enable

-rl, --ruleLogging

This option undeploys a value pack from the
${UCA_EBC_INSTANCE}/deploy directory and
creates an archive (ZIP file) of it in the
${UCA_EBC_INSTANCE}/valuepacks directory.
The zipped value pack that was previously
present in the
${UCA_EBC_INSTANCE}/valuepacks directory
is moved to the
${UCA_EBC_INSTANCE}/archive directory and
a timestamp is added to the file name.

This option applies to the selected value pack.
& See Note: ()

Once the value pack has been undeployed, it
can be deployed back again by using the -
deploy, --deploy option.

This option starts a value pack.

This option applies to the selected value pack.
& See Note: ()

This option stops a value pack.

This option applies to the selected value pack.
& See Note: ()

This option disables:

e either rule engine logging (if -rl,--
ruleLogging option is also selected)

e or scenario logging (if -sl,--
scenarioLogging option is also
selected).

This option enables:

e either rule engine logging (if -rl,--
ruleLogging option is also selected)

e or scenario logging (if -sl,--
scenarioLogging option is also
selected).

Used in conjunction with either the —d, --disable
or —e, --enable options, this option enables or
disables rule engine logging for one or more
scenarios.

By default it applies to all scenarios of all value
packs except if sub-options are used.

& see Notes: () A ()

20

-startflow, --startflow

-stopflow, --stopflow

-resyncflow, --
resyncflow

-statusflow, --statusflow

-dumpfa, --
dumpfailedactions

-retractfa, --
retractfailedactions

-R, --restartServer

This option starts a mediation flow.

Used with the -vpn <value pack name> and —
vpv <value pack version> sub-options, this
option applies to all the mediation flows of the
selected value pack.

Used with the -vpn <value pack name>, —vpv
<value pack version>, and —flow <flow name>
sub-options, this option applies to the selected
mediation flow of the selected value pack.

This option stops a mediation flow.

Used with the -vpn <value pack name> and —
vpv <value pack version> sub-options, this
option applies to all the mediation flows of the
selected value pack.

Used with the -vpn <value pack name>, —vpv
<value pack version>, and —flow <flow name>
sub-options, this option applies to the selected
mediation flow of the selected value pack.

This option resynchronizes a mediation flow.

Used with the -vpn <value pack name> and —
vpv <value pack version> sub-options, this
option applies to all the mediation flows of the
selected value pack.

Used with the -vpn <value pack name>, —vpv
<value pack version>, and —flow <flow name>
sub-options, this option applies to the selected
mediation flow of the selected value pack.

This option displays the status of a mediation
flow.

Used with the -vpn <value pack name> and —
vpv <value pack version> sub-options, this
option applies to all the mediation flows of the
selected value pack.

Used with the -vpn <value pack name>, —vpv
<value pack version>, and —flow <flow name>
sub-options, this option applies to the selected
mediation flow of the selected value pack.

Dumps failed actions of a scenario to the logs.
This option applies to the selected scenario.
& see Note: (%)

Retracts failed actions of a scenario from
Working Memory

This option applies to the selected scenario.
& see Note: (%)

Restart the UCA-EBC Server

& see Note: (°)

21

-S, --showServer Shows the status of UCA-EBC Server
& See Note: ()

-T, --stopServer Stops the UCA-EBC Server
& See Note: ()

Table 4 - uca-ebc-admin tool main options

Here's the list of notes that applies to the above “uca-ebc-admin tool main
options” table:

Notes

(*) If no sub-option is selected, then the option applies to all value packs or all
their scenarios

(2) If -vpn <value pack name> and —vpv <value pack version> sub-options are
selected, then the option applies to the specified value pack or all its
scenarios

(3) If -vpn <value pack name>, -vpv <value pack version>, and -scenario
<scenario hame> sub-options are selected, then the option applies to the
specified scenario

(4) If -vpn <value pack name>, -vpv <value pack version>, -scenario
<scenario name>, and -rule <rules file identifier> sub-options are selected,
then the option applies to the specified rules file.

(5) If -vpn <value pack name>, -vpv <value pack version>, -scenario
<scenario name>, and -conf <configuration file identifier> sub-options are
selected, then the option applies to the specified configuration file.

(6) If -i <instance name> option is selected, then the option applies to the
specified UCA-EBC Server instance. Otherwise it applies to the default UCA-
EBC Server instance.

The following table lists the sub-options that can be used in conjunction with
the main options of the uca-ebc-admin tool:

-vpn <value pack name> Used in conjunction with the -vpv sub-option,
this sub-option selects the value pack
specified by <value pack name> and <value
pack version>.

This sub-option can be used alongside the
following options:

e -w, --workingMemory
e -C, --Clean

e -, --reload

e -dep, --deploy

e -undep, --undeploy

-vpv <value pack version>

-scenario <scenario name>

e -start, --start

e -stop, --stop

e -rl, --ruleLogging

e -sl, --scenariolLogging

o -startflow, --startflow

o -stopflow, --stopflow

o -resyncflow, --resyncflow
e -statusflow, --statusflow
e -5, --stats

Used in conjunction with the -vpn sub-option,
this sub-option selects the value pack
specified by <value pack name> and <value
pack version>.

This sub-option can be used alongside the
following options:

e -w, --workingMemory

e -C,--Clean

e -1, --reload

e -dep, --deploy

e -undep, --undeploy

e -start, --start

e -stop, --stop

e -rl, --ruleLogging

e -sl, --scenarioLogging

e -startflow, --startflow

o -stopflow, --stopflow

o -resyncflow, --resyncflow
e -statusflow, --statusflow
e -3, --audit

e -5, --stats

Used in conjunction with the -vpn, and -vpv
sub-options, this sub-option selects the
scenario specified by <value pack name>,
<value pack version>, and <scenario hame>.

This sub-option can be used alongside the
following options:

e -w, --workingMemory
e -c, --Clean
e -1, --reload

e -rl, --ruleLogging

23

-rule <rules file identifier>

-flow <mediation flow
name>

-conf <configuration file
identifier>

e -sl, --scenariolLogging

Used in conjunction with the -vpn, -vpv, and -
scenario sub-options, this sub-option selects
the rules file specified by <value pack
name>, <value pack version>, <scenario
name>, and <rules file identifier>.

This sub-option can be used alongside the
following options:

e -, --reload

The rules file identifier is the name that is
associated with a rules file for a specific
scenario (see ValuePackConfiguration .xml
file).

Used in conjunction with the -vpn, and -vpv
sub-options, this sub-option selects the
mediation flow specified by <value pack
name>, <value pack version>, and
<mediation flow name>.

This sub-option can be used alongside the
following options:

o -startflow, --startflow

o -stopflow, --stopflow

e -resyncflow, --resyncflow
o -statusflow, --statusflow

The mediation flow name is the name that is
associated with a specific mediation flow
(see ValuePackConfiguration .xml file).

Used in conjunction with the -vpn, -vpv, and -
scenario sub-options, this sub-option selects
the rules file specified by <value pack
name>, <value pack version>, <scenario
name>, and <configuration file identifier>.

This sub-option can only be used alongside
the following options:

e -rc, --reloadConf
The configuration file identifier is either:

e One of the keywords :

o filter

o mapper
o specific
o template

e the filename of a specific
configuration file

e the name of the template

If the keyword “specific” is used, all specific
configuration files are selected.

Table 5 - uca-ebc-admin tool sub-options

The uca-ebc-admin tool has some configuration properties defined in the
${UCA EBC_ INSTANCE}/conf/uca-ebc.properties file, but these
properties are FOR INTERNAL USE ONLY, and are not meant to be updated.

The following table lists these properties for reference only:

Property name Explanation

uca.ebc.jmx.url Default value :
service\:;jmx\:rmi\://${uca.ebc.serverhost}/jndi/rmi\://
${uca.ebc.serverhostj\:${uca.ebc.jmx.rmi.port}/uca-
ebc

FOR INTERNAL USE ONLY. DO NOT UPDATE
THE VALUE OF THIS PROPERTY.

Table 6 - Properties for uca-ebc-admin in uca-ebc.properties file

2.2.4 uca-ebc-instance

The uca-ebc-instance command-line tool provides options to create, delete,
list or configure instances of UCA for EBC Server. This tool is not supported
on Windows platforms.

Instances are created in the $ {UCA EBC_DATA}/instances directory. At
installation, a single instance is created. It is named “default”.

To execute the uca-ebc-instance tool, please use the following commands:

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-instance <options>

<options> is a list of valid options for the uca-ebc-instance tool

The following table lists the main options of the uca-ebc-instance tool:

-h This option displays the uca-ebc-instance tool
usage message

-l This option lists all available instances.

-a <instance-name> This option creates a new instance named
<instance-name>

& see Notes: () O

-d <instance-name> This option deletes an existing instance named
<instance-name>.

25

-r <old-name> <new- This option renames an existing instance named
name> <old-name> to <new-name>. Note that <new-
name> should not already exist.

-S <instance-name> This option sets the default instance to use to
be: <instance-name>.

& see Note: (%)

Table 7 - Main options for the uca-ebc-instance tool

Notes

(1) When creating a new instance, the root folder for the new instance is
created. This folder is referred to as ${UCA EBC INSTANCE} in this
document.

(%) When creating a new instance, please make sure that there is no port
conflict with other applications running on your server.

(%) When no “-i” option is provided with the uca-ebc, uca-ebc-admin, uca-ebc-
injector, or the uca-ebc-backup tool, the default instance is used.

&~ Please refer to chapter 3.1 “Multiple instances configuration” below for
more information on how to configure multiple instances of UCA for EBC.

2.2.5 uca-ebc-backup

This command-line tool provides the ability to backup and restore UCA for
EBC Server instances. This tool is not supported on Windows platforms.

To execute the uca-ebc-backup tool, please use the following commands:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-backup <command> <options>

<command> isoneof [-b | -backup | -r | -restore | -1 | -list]

<options> is a list of valid options for the command

2.2.5.1 Backing up

When the —b | -backup option is given to the uca-ebc-backup tool, a backup
of the data directory for a specific instance is performed (excluding the logs
and work subdirectories). In order to do so, the uca-ebc-backup tool
compresses the instance directory hierarchy and stores the resulting file into
a directory of the users’ choice.

If the UCA for EBC Topology Extension is installed along with UCA for EBC
Server and the neo4j Server is configured as embedded, the neo4;j
subdirectory is also backed up. The backup of the neo4j subdirectory is done
using the neo4j Enterprise backup utility, which performs a full backup without
acquiring any locks, thus allowing for continued operations on the neo4;j
instance.

Please make sure that UCA for EBC server is up and running when neo4j is
embedded before proceeding with a backup. (= See Note below)

To back up a UCA for EBC instance, please execute the following command:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-backup -b|-backup <options>

The following table lists the options of the uca-ebc-backup tool for backing up
UCA for EBC instances:

-h This option displays the uca-ebc-backup tool
usage message

-i <instance-name> This option specifies the instance of UCA for
EBC to backup. If it is not specified, the default
instance is used.

-f|-from <directory> This option specifies the UCA for EBC data
directory. If it is not specified, the
${UCA_EBC_DATA]} directory is used.

-t|-to <directory> This option specifies the directory where to store
the backup file. If it is not specified, the
${UCA_EBC_DATA}/backup directory is used.

-n|-name <name> This option specifies the name of the file to use
as the backup file. If it is not specified, the name
of the file is generated automatically using the
following pattern: %instance-%date-%time.

Table 8 - Options for backing up UCA for EBC instances using the uca-
ebc-instance tool

Note

When UCA for EBC is not running during the backup procedure, it is not a
problem: a warning is displayed but the neo4j database is backed up
properly.

Important: if your neo4j database is located outside of the
${UCA_EBC_INSTANCE} directory (for example if you set the value of the
uca.ebc.topology.location property to /my-absolute-path in the
${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file), the backup tool will
keep a copy in a subdirectory of the ${UCA_EBC_INSTANCE} directory

2.2.5.2 Restoring

When the —r | -restore option is given to the uca-ebc-backup tool, a specific
instance of UCA for EBC is restored from a compressed file previously
created by the uca-ebc-backup tool.

Restoring a backup file is only supported when UCA for EBC server is not
running. When UCA for EBC server is running, restoring a backup will result
in unexpected behavior.

Restoring a backup of a UCA for EBC instance results in the current
configuration of neo4j being replaced by the backup. (= See Note (‘) below)

27

To restore a UCA for EBC instance from a backup file, please use the
following command:

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-backup -r|-restore —name filename <options>

The following table lists the options of the uca-ebc-backup tool for restoring
UCA for EBC instance backup files:

-h This option displays the uca-ebc-backup tool
usage message

-n|-name <name> This option is mandatory and specifies the fully
qualified name of the backup file to restore.

-t|-to <directory> This option specifies the UCA for EBC data
directory where to restore the backup file. If it is
not specified, ${UCA_EBC_DATA} is used.

&~ See Note below

Table 9 - Options for restoring UCA for EBC instances using the uca-
ebc-instance tool

Note

@' The restore mechanism does restore the neo4J DB in the
${UCA_EBC_INSTANCE}/neod4j directory which is the default location of
the neo4j DB.

If you have the location of neo4j DB outside of ${UCA_EBC_INSTANCE}
(for example if you specified uca.ebc.topology.location=/my-absolute-path
in the uca-ebc.properties file), you will have to manually copy the
contents of the neo4j subdirectory to the /my-absolute-path directory.

@ Be careful! The backup file contains the instance name. If an instance with
the same name exists when an instance is restored, the existing instance
will be overwritten.

However, please note that the current logs and work directories are not
removed.

2.2.5.3 Listing the available backups

When the —I | -list option is given to the uca-ebc-backup tool, all compressed
backup files are listed.

It is helpful to run this command before restoring a backup to know what
backup files are available. It may also be helpful if you need to do some
cleanup of the backup files.

The list is sorted by creation time. It is up to the end-user to clean the backup
directory when backup files become irrelevant and should be removed.

To list all available UCA for EBC instance backup files, please use the
following command:

28

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-backup -1l|-list <options>

The following table lists the options of the uca-ebc-backup tool for listing
available backup files:

-h This option displays the uca-ebc-backup tool
usage message

-f|-from <directory> This option specifies the directory where the
backup files are stored. If it is not specified, the
${UCA_EBC_DATA}/backup directory is used.

Table 10 - Options for listing the available UCA for EBC instance
backups using the uca-ebc-instance tool

2.3 UCA for EBC User Interface

In addition to the command-line tools, the web-based user interface of UCA
for EBC also provides administration, monitoring and troubleshooting
capabilities for the UCA for EBC product.

Note

¥~ For more information on how to configure UCA for EBC at the value pack

or scenario level please refer to: [R3] HP UCA for Event Based Correlation
User Interface Guide[R2] HP UCA for Event Based Correlation Value Pack
Development Guide

29

Chapter 3

UCA for EBC Configuration

UCA for EBC can be configured using properties located in configuration files.

The following chapters describe all the properties that can be set to configure
UCA for EBC at the application level using configuration files (usually located
inthe ${UCA EBC INSTANCE}/conf/ folder). Additional configuration can
be performed at the value pack and scenario level.

Note

¥~ For more information on how to configure UCA for EBC at the value pack
or scenario level please refer to: [R2] HP UCA for Event Based Correlation
Value Pack Development Guide

3.1 Multiple instances configuration

Since UCA-EBC V2.0, it is possible to configure multiple instances on a same
server. There is a command line tool for managing those instances: uca-ebc-
instance.

Please refer to Chapter 2.2.4 “uca-ebc-instance” for more information on how
to use this tool.

When creating a new instance of UCA for EBC, the port numbers specified in
the ${UCA EBC INSTANCE}/conf/uca-ebc.properties file are
automatically tuned so that they do not interfere with ports of existing
instances of UCA for EBC. They are adjusted based on default port numbers
delivered in the ${UCA EBC HOME}/defaults/conf/uca-
ebc.properties file.

For example, such ports may have following values (the port numbers in the
example below correspond to a 3" instance of UCA for EBC):

uca.ebc.jms.broker.port=61866
uca.ebc.jmx.rmi.port=1300
uca.gui.port=9088

However, you have to make sure that the above ports do not conflict with
ports used by other applications on your server.

If you have added other ports in your properties (for example for topology
extension), please make sure to tune these ports accordingly.

|uca.ebc.topology.webPort=7675

In the same way, the port numbers in the
${UCA EBC INSTANCE}/conf/uca-ebc-1log4j.xml file are
automatically tuned.

30

The Port property for the CHAINSAW appender specified in the
${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xml file should be
different for each instance of UCA for EBC:

| <param name="Port" value="4745"/>

3.2 Configuration files

3.2.1 uca-ebc.properties file configuration

The ${UCA EBC INSTANCE}/conf/uca-ebc.properties file contains
the different properties that can be set for an instance of UCA for EBC Server.

The following tables list the different properties that can be set:

Property name Explanation

uca.ebc.serverhost Default value : localhost

This property defines the local host name as used by
the JMX (administration) and JMS (alarm Broker)
connection bindings.

The value ‘localhost’ is usually enough, but it can be
changed to enter the host fully qualified DNS name
or an IP address (especially if the server has several
IP interfaces), depending on whether UCA for EBC
Server should bind to one specific DNS Name/IP
Address or all DNS Names/IP Addresses configured
on the server.

uca.ebc.jms.broker. Default value : 61666
port The port used by the JMS Broker.

The value of this property can be set to an alternate
port number in case of port number conflict with
another application on your system.

uca.ebc.jmx.rmi.port Default value : 1100
The port used by RMI for IMX connections.

The value of this property can be set to an alternate
port number in case of port number conflict with
another application on your system.

uca.gui.port Default value : 8888

The local port number used by the embedded UCA
for EBC User Interface web server. The value of this
property can be set to an alternate port number in
case of port number conflict with another application
on your system.

The URL for connecting to the UCA for EBC User
interface is the following:

Ihttp://<hostname or IP address>:<port #>/ucal

<hostname or IP address> is the actual hostname
(full DNS name) or the IP address of the UCA for
EBC Server system.

31

Property name Explanation

<port #> is the port number for UCA for EBC User
Interface set by the uca.gui.port property (By default:
8888 for the default instance of UCA for EBC).

Table 11 - Host and Port # properties in the uca-ebc.properties file

If you change the uca.ebc.serverhost, or uca.ebc.jms.broker.port
properties, the UCA for EBC Channel Adapter configuration must be changed
accordingly. The uca-ebc-ca.properties file of the UCA for EBC Channel
Adapter must be checked and changed if required:

UCA EBC Server to connect to
uca.ebc.jms.broker.host=1ocalhost
uca.ebc.jms.broker.port=61666

The default location for the uca-ebc-ca.properties file of the UCA for EBC
Channel Adapter is the following:

/var/<0SS Open Mediation root
directory>/containers/instance-0/ips/uca-ebc-ca-
3.1/etc/uca-ebc-ca.properties

Where:

e <0SS Open Mediation root directory> stands for the OSS Open
Mediation installation root directory, which, by default, translates to the
/opt/openmediation-70 directory

e instance-0is the OSS Open Mediation container instance folder name.
Depending on you configuration, the container number could be different
than 0. If this is the case, please adjust the name of the container
instance folder accordingly

&~ For full details on how to change this file, please refer to: [R4] HP UCA
for Event Based Correlation Installation Guide.

32

Property name Explanation

uca.gui.webapp Default value: webapp/uca-expert-ui.war

The location of the Web application ARchive file
of the UCA for EBC User Interface.

Table 12 - Web GUI properties in the uca-ebc.properties file

Property name Explanation

collector.logger.enabl Default value: false

el When set to true, collector logging is enabled. All

alarms collected by UCA for EBC, i.e. alarms sent
by OSS Open Mediation to UCA for EBC and
alarms injected into UCA for EBC using the uca-
ebc-injector tool, will be logged to a file at the
following location:

S{UCA EBC INSTANCE}/logs/uca-ebc-
collector.log

collector.measuremen Default value: false

el ezl When set to true, event rate measurement is

enabled for the UCA for EBC collector
component. The collection statistics data are
available either through JMX (using the standard
Java jconsole or jvisualvm tool for example), the
uca-ebc-admin tool, or the UCA for EBC User
Interface.

collector.messages.va Default value: true

elaulel When set to true, validation of all events (Alarms)

coming into UCA for EBC is enabled. Validation
errors are reported in the statistics of the Collector
both at the Java JMX Console and UCA for EBC
User Interface.

Validation errors can occur when Alarms that do
not conform to the UCA for EBC Alarm XML
schema are received by UCA for EBC.

%~ For more information on the UCA for EBC
Alarm XML schema, please refer to: [R1] HP UCA
for Event Based Correlation Reference Guide.

Table 13 - Collector properties in the uca-ebc.properties file

33

Property name Explanation

action.threads Default value: 20

This property defines the size of the thread pool
size (in number of threads) of the UCA for EBC
Action Manager component. These threads are in
charge of processing asynchronous actions. This
property can be tuned up/down in case you need
more/less threads to process a large/small
number of asynchronous actions in parallel.

action.timeout Default value: 60000

This property defines the default timeout for
actions (in milliseconds) processed by the UCA
for EBC Action Manager component. If an action
exceeds the timeout, then the action fails with a
status explanation indicating that a timeout has
run out.

This default action timeout can be overwritten for
any single action by using the public void
setActionTimeout (int actionTimeout)
method of any Action object. The
actionTimeout parameter is also in
milliseconds.

Table 14 - Action Manager properties in the uca-ebc.properties file

engine.logger.enabled Default value: false

When set to true, scenario-specific Drools
engine logging is enabled. This setting affects
all scenarios of all value packs.

Scenario-specific engine log files are named
logEngine <scenario name>.log and are
located in the ${UCA EBC INSTANCE}/logs
directory. Scenario-specific engine log files
contain standard Drools engine log entries
specific to a scenario.

These log files can be easily displayed in
Eclipse IDE using the Audit view, provided you
have installed the Drools Eclipse plugin. This
view is show by default if you switch to the
Drools perspective.

engine.logger.interval Default value: 1000

This property represents the interval (in
milliseconds) at which engine log entries are
written to the scenario-specific engine log.

Table 15 - Rule Engine logger properties in the uca-ebc.properties file

The uca-ebc.properties file also contains topology related properties.
These properties, prefixed either uca.ebc.topology or neo4j, are related to

34

the UCA for EBC Topology Extension product. These properties are
described in the UCA for EBC Topology Extension guide.

%~ For more information on how to set these properties to configure the UCA
for EBC Topology Extension product, please refer to: [R5] HP UCA for Event
Based Correlation Topology Extension Guide.

Finally, there’s also a property named uca.ebc.version in the uca-
ebc.properties file that stores the version of the UCA for EBC Server
product: 3.1. This property is for INTERNAL USE ONLY and should not be
updated.

Note

UCA for EBC Server must be restarted in order for any change to the uca-
ebc.properties file to be taken into account.

For non-stop update of some of the properties, you can use the uca-ebc-
admin tool, or the JMX interface (with jconsole or jvisualvm).

&~ please see section 2.2.3 “uca-ebc-admin” for more information on the list

of properties that can be updated using the uca-ebc-admin command-line
tool.

&~ Please see section 5.1.3 “JMX Console” for more information on the list
of properties that can be updated at the Java JMX Console.

3.2.2 ActionRegistry.xml file configuration

UCA for EBC value pack scenarios have the ability to send action requests to
be executed by the mediation layer associated with UCA for EBC Server:
OSS Open Mediation V7.0.

The actions are executed by a Channel Adapter (specific to a target
application) on the mediation layer. Action replies are then returned to the
scenario that sent the action requests.

UCA for EBC value pack scenarios use web services to communicate with
the Action Service web service of a Channel Adapter, typically the UCA for
EBC Channel Adapter.

For these actions to be properly routed to the mediation layer and then to the
correct Channel Adapter and target application, the file

${UCA EBC INSTANCE}/conf/ActionRegistry.xml mustbe
configured correctly.

35

<ActionRegistryXML zmlns="http://registry.action.mediation.uca.hp.com/ ">

<MediationValuePack MvpHame="temip" MvpVersion="1.1"
url="http://localhost:26700/uca/mediation/action/ActionService *WSDL"
="failover://tcp://localhost:10000">

="TeMIP AC Directives localhost">
ive</ServiceNamex

Wom -] M b R

10 <HmsName>localTeMIP</NmsName>

11

iz I I ="TeMIP TT Directives localhost">
13 <ServiceName>ttDirective</ServiceName>

14 <HmsName>localTeMIP</NmsName>

15 </BAction>

16

17 <ServiceName>subscriptionManagement</Servicelame:>
is8 <HmsMName>localTeMIP</NmsName>

1s </RAction>

20 </MediationValuePack>

21

22 <MediationValuePack MvpHame="exec" MvpVersion="1.1"
23 url="http://localhost:26700/uca/mediation/action/ActionService ?WSDL"
24 brokerURL="failover://tcp://localhost:10000™>

25

28 <Action actionReference="Exec localhost">

27 <ServiceName>commandsExecution</ServiceName>

28 <HmsHamerlocalhost</HmsHame>

23 </RAction>

30 </MediationValuePack>

31

32 </BctionRegistryXML>

Figure 1 - ActionRegistry.xml file

The default configuration for this file can be retrieved from the
${UCA EBC HOME}/defaults/conf folderin case you want to revert back
to the default configuration.

The ActionRegistry.xml file is an UCA for EBC application level
configuration file. It is shared by all UCA for EBC value packs running on UCA
for EBC Server.

The ActionRegistry.xml file defines “mediation value packs”, and “action
references” for these mediation value packs. The following sections will
describe in detail how to configure the ActionRegistry.xml file in terms of
“mediation value packs”, and “action references”

Note

UCA for EBC Server must be restarted in order for any change to the
ActionRegistry.xml file to be taken into account, unless you use the
Java JMX Console to refresh the UCA for EBC Action Manager with the
contents of the ActionRegistry.xml file.

" Please see 5.1.3.1 “Monitoring UCA for EBC internal components” to

learn how to refresh the UCA for EBC Action Manager with the contents of
the ActionRegistry.xml file using the Java JMX Console.

3.2.2.1 Defining Mediation Value packs

Each “mediation value pack” defined in the ActionRegistry.xml file
describes the properties of a gateway to access the Action Service web
service on a UCA for EBC Channel Adapter deployed on OSS Open
Mediation V7.0.

36

This gateway will be able to process action requests on the mediation layer
by forwarding the action requests to the proper Channel Adapter on OSS
Open Mediation V7.0 for processing.

Each “mediation value pack” defined in the ActionRegistry.xml file has
the following properties:

e MvpName: You can give any value to this property (the value is not
bound to anything). However, it is recommended to use the name of
the Channel Adapter that will be targeted by the action requests. For
example:

o “temip” (as in TeMIP Channel Adapter) or
o “exec” (as in Exec Channel Adapter)

e MvpVersion: You can give any value to this property (the value is not
bound to anything). However, it is recommended to use the version of
the Channel Adapter that will be targeted by the action requests. For

example:
o 1lO0or
o 21or
o eftc...

e brokerURL: This property contains the correct URI for connecting to
the JMS Broker of the OSS Open Mediation V7.0 container instance
that contains a UCA for EBC Channel Adapter. By default the port
number of the JMS Broker of OSS Open Mediation V7.0 container 0
is 10000. To verify what port number is used for your OSS Open
Mediation V7.0 container instance, please check the value of the
activemq.port property in the /var/opt/openmediation-
V60/containers/instance-<instance
number>/conf/servicemix.properties file.

JMS Broker URIs have the following pattern:

ltcp://<hostname or IPaddress>:<port#>| or

ffaiIover://tcp://<hostname or IPaddress>:<port#>| for the failover
URI

where:

<hostname or IP address> is the actual hostname (full DNS name) or
the IP address of the OSS Open Mediation V7.0 system.

<port #> is the port number of the JMS Broker of the OSS Open
Mediation V7.0 container instance that contains a UCA for EBC
Channel Adapter. The default port # is 10000 for container instance
0.

The brokerURL property is used to connect to the Alarms JMS topic
of the UCA for EBC Channel Adapter when using the standard UCA
for EBC OpenMediationAlarmForwarder Java class for forwarding
alarms to OSS Open Mediation V7.0.

¥~ For more information on how to forward alarms, please refer to: [R2] HP
UCA for Event Based Correlation Value Pack Development Guide

e url: This property contains the correct URL for connecting to the Action
Service web service on a UCA for EBC Channel Adapter. For

37

example, if the UCA for EBC Channel Adapter is on localhost and
uses the default port number for its Action Service web service:

ohttp://localhost:26700/uca/mediation/action/ActionService?WSDL

An incorrect value for the url property will result in action requests not
being able to be processed on the mediation layer. Please verify this
url using a web browser before using it in the ActionRegistry.xml file.

Note

Action Service web service URLs have the following pattern:

http://<hostname or]
IPaddress>: <port#>/uca/mediation/action/ActionService? WS
DL

<hostname or IP address> is the actual hostname (full DNS name) or
the IP address of the UCA for EBC CA system.

<port #> is the port number for UCA for EBC CA Action Service,
26700 by default. This port number is set in the <OSS Open
Mediation variable root directory>/containers/instance-<container
instance number>/ips/uca-ebc-ca-<UCA for EBC CA
version>/etc/action-service.xml file (see the value of the locationURI
property of the cxfbc:consumer XML entity).

<OSS Open Mediation variable root directory> usually translates to
/var/opt/openmediation-veO0.

Two mediation value packs are defined by default in the ActionRegistry.xml
file:

¢ A “temip” services mediation value pack, providing a gateway to a
TeMIP Channel Adapter for executing TeMIP Alarm Object directives,
TeMIP Trouble Ticket directives, and alarm collection flow
creation/deletion/resynchronization

o An “exec” services mediation value pack, providing a gateway to an
Exec Channel Adapter for executing command-line interface
executables/commands

Each mediation value pack can contain one or more action references. Action
references are explained in the next section.

3.2.2.2 Defining Action References

Action references define references to be used in the Drools rules files
associated to scenarios of UCA for EBC value pack for executing
synchronous/asynchronous action on products (TeMIP for example)
connected to OSS Open Mediation V7.0 via their own Channel Adapter.

Below is an example of how action references can be used in rules files (we
assume in this example that an action reference called
“TeMIP_AQO_Directives_impot” has been defined in the ActionRegistry.xml
file)

Basically you need to write the following code in your rules file:

38

http://localhost:26700/uca/mediation/action/ActionService?WSDL

Action action = new Action("TeMIP_AO Directives impot");

The action reference called “TeMIP_AQO_Directives_impot” is used
when creating an Action Java Object in the rules files.

Once an Action object is created, you can specify the parameters that
will define what action to perform, in the following example a TeMIP
Alarm Object directive:

action.addCommand ("directiveName", "ACKNOWLEDGE") ;
action.addCommand ("entityName", a.getIdentifier());
action.addCommand ("UserId", "UCA EBC");

Then, you need to execute the Action. Both synchronous and
asynchronous actions are possible:

Either:

//synchronous execution

action.executeSync() ;

//asynchronous execution
action.executeAsync (AODirectiveKey.ENTITY NAME) ;

%~ For more information on synchronous and asynchronous actions
(including how to use synchronization keys for asynchronous actions),
please refer to: [R1] HP UCA for Event Based Correlation Reference
Guide.

Each “action reference” defined in the ActionRegistry.xml file has the
following properties:

e actionReference: this is the name of the action reference to use in the
Drools rules files associated with scenarios of UCA for EBC value
pack

An incorrect value for the actionReference property will result in action
requests not being able to be processed on the mediation layer. Please
verify that value of the actionReference property is in line with the
action reference used in the Drools rules files of the scenarios of your
UCA for EBC value pack(s).

e serviceName: this is a valid name of service (type of action)
implemented by the target Channel Adapter (TeMIP CA, Exec CA,
etc...). This service name is determined by the target Channel
Adapter and the services it provides. For example:

o The TeMIP Channel Adapter provides the following services:

= TeMIP_AO_Directive, for executing Alarm Object (AO)
directives

= TeMIP_TT_Directive, for executing Trouble Ticket (TT)
directives

= subscriptionManagement, for executing alarm
collection flow creation/deletion/resynchronization

o The Exec Channel Adapter provides the following services:

39

= Exec, for executing command-line interface
executables/commands

An incorrect value for the serviceName property will result in action
requests not being able to be processed on the mediation layer. Please
verify that value of the serviceName property is valid for the target
Channel Adapter by reviewing the target Channel Adapter
documentation.

e NmsName: hostname or IP address of the system targeted by the
target Channel Adapter. This property is used for information only. It
is not bound to anything.

3.2.3 uca-ebc-log4j.xml file configuration

The ${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xml file is the Log4J
configuration file for the whole UCA for EBC application. It is a standard
Apache Log4J configuration file.(*")

This file contains three main sections where the following items are defined:

e Appenders: appenders mainly define where the log messages are
sent, and the pattern used for logging the messages. There are three
main appenders defined.

o CONSOLE: for logging to the console

o FILE: for logging to the
${UCA EBC INSTANCE}/logs/uca-ebc.log file

o DB: for logging to a database. This log database is used for
displaying the logs on the UCA for EBC User Interface

In addition to the three main appenders, a sample CHAINSAW
appender is also provided for integration with the Apache Chainsaw
GUI-based log viewer. (%)

e Loggers: loggers are defined by Java package names. Each logger
defines its own log level and appender references. The loggers are
grouped into several sections (the different sections are identified by
comments in the file):

o Detailed Traces for Value Pack Scenarios
o Detailed Traces for UCA Main Components
o Detailed Traces for UCA Scenarios

o Detailed Traces for UCA Components

o Detailed Traces for UCA ClassLoader

o Third Party Products Internals

¢ Root: the root section defines the default log level and the default
appender references to use for logging

You can make your own changes to the
${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xml file, for example:

o Modifying existing appenders or creating new ones

o Modifying existing loggers: changing the log level or the appender
references

o Adding new loggers, for 3" party products for example

40

e Adding new loggers for your own scenarios

¢ Modifying the default log level and appender references in the root
section of the file

Once you have made changes to the ${UCA EBC INSTANCE}/conf/uca-
ebc-1log47j.xml file, you either need to restart UCA for EBC Server or
reload the Log4J configuration at the command-line using the uca-ebc-admin
tool, the Java console or the UCA for EBC User Interface.

There are several levels of logging provided by UCA for EBC: standard
application logging, and scenario specific rule logging. (%)

Log files (both standard application log file, and scenario specific log files) are
stored inthe ${UCA EBC INSTANCE}/logs directory or at the UCA for EBC
User Interface.

Notes

() ¥ Please see http://logging.apache.org/log4j/1.2/ to learn more about
Apache Log4J configuration files.

(®) ¥~ Please see http://logging.apache.org/chainsaw/index.html to learn
more about Apache Chainsaw.

(3) &~ Please see section 6.1 “UCA for EBC Logging Mechanism” to learn
about the different levels of logging provided by UCA for EBC (standard
application logging, and scenario specific rule logging) and to learn how to
enable/disable and configure these logs.

3.2.4 Additional configuration files

Some configuration files are present in addition to the

${UCA EBC INSTANCE}/conf/uca-ebc.properties,
${UCA EBC INSTANCE}/conf/ActionRegistry.xml, and
${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xml files.

3.2.4.1 UCA EBC Spring Framework configuration files

UCA for EBC is integrated with Spring Framework. The main components of
UCA for EBC are defined using Spring Framework. Three configuration files
located in the ${UCA EBC HOME}/conf directory are present by default:

e application-context.xml

® main-context.xml

These files are for INTERNAL USE ONLY and should not be modified.

3.2.5 How to revert back to the default configuration files

A reference copy of each of the configuration files present in the
${UCA EBC INSTANCE}/conf folder can be found in the
${UCA EBC HOME}/defaults/conf folder.

In case you want to revert back the default configuration of any of the
configuration files present in the ${UCA EBC INSTANCE}/conf folder, you
just need to copy the reference copy of the configuration file from the
${UCA EBC HOME}/defaults/conf folder to the

${UCA EBC INSTANCE}/conf folder.

41

http://logging.apache.org/log4j/1.2/
http://logging.apache.org/chainsaw/index.html

Note

UCA for EBC Server must be restarted in order for any change to the
configuration files in the ${UCA EBC INSTANCE}/conf folder to be taken
into account.

3.3 High-Availability (HA) configuration

3.3.1 Simple cluster configuration using NFS

The simplest cluster configuration is a set of (minimum 2) members UCA for
EBC servers accessing the same Storage Area Network providing access to
a single data storage.

To setup such a cluster configuration, the following steps are required:

1. Install UCA for EBC using the -d option to specify the same “data”
directory. = See Note ()

For example, given that /shared/UCA-EBC is the NFS mount point for the
UCA for EBC data directory, you need to execute the following command on
all servers:

[root] # install-uca-ebc.sh -d /shared/UCA-EBC

On first installation of UCA for EBC (on serverl), the subdirectories under
/shared/UCA-EBC are automatically created. On subsequent installations
(on server2 and +), the subdirectories are not recreated because they already
exist. Using this method, you can install an extra server even if UCA for EBC
is running on another server.

2. Start UCA for EBC on the first server. @ See Note (2)

[uca@serverl] # uca-ebc start

SAN

/shared/UCA-EBC

Serverl Server2

3. When serverl is to be stopped for some reason, then server2 is able to
recover the work, once started.

[uca@server2] # uca-ebc start

42

Notes

(") It is mandatory that the “uca” user account used to run UCA for EBC has
the same uid / gid on all the servers sharing a same data directory. If this is
not the case, UCA for EBC will not be able to recover from one server to the
other due to file ownership issues. It is therefore recommended to use a NIS
user account across servers.

(®) Log and work files are stored in a shared NFS data storage. It is not
supported to have more than 1 UCA for EBC server instance running on the
same data storage due to possible file synchronization issues.

3.3.2 Neo4j database High-Availability (HA) configuration
for Topology Extension

The simplest configuration of neo4j is to have the database server embedded
in UCA for EBC server. As such, it can run only on a single machine,
accessible through a single port. When configured as embedded, the
database is stored under the ${UCA EBC INSTANCE} /neo4j directory.

When a simple cluster configuration is used along with an embedded neo4j
topology, the High-Availability (HA) mechanism is implemented by the shared
location of the s {UCA EBC INSTANCE} directory which includes the neo4j
database. When a member of the cluster starts, it inherits the neo4j database
state, i.e. the topology state, from the last cluster member that stopped.

This solution does not use the HA mechanism of neo4j. (= see Note (*)
below).

To deploy the UCA for EBC database, i.e. the neo4j database, in a multiple
machine setup, you have to tune the uca.ebc.topology property in the
S{UCA EBC INSTANCE}/conf/uca-ebc.properties file, as follows:

uca.ebc.topology=external

This property is set by default to “embedded” but it needs to be changed to
“external” for HA configuration. (= see Note (%) below)

Neo4j HA can be set up to accommodate differing requirements for load, fault
tolerance and available hardware. The typical setup when running multiple
Neo4j instances in HA mode is: (= see Note (*) below)

= a HTTP REST load-balancer, namely HA proxy
= a single Neo4j master
= 0 or more Neo4j slaves

= a mechanism for master election, namely a Coordinator cluster (¢ see
Note (°) below)

To configure UCA for EBC to use a Neodj HA cluster, you need to setup the
uca.ebc.topology.serverhost and uca.ebc.topology.webPort properties in
the ${UCA EBC INSTANCE}/conf/uca-ebc.properties file to be equal
to the Neo4J HA proxy configuration. For example:

uca.ebc.topology.serverhost=server3.local.domain
uca.ebc.topology.webPort=7474

43

Then, you have to configure the Neo4j cluster to run in HA mode. Please refer
to the Neo4j high-availability setup tutorial for more information. (= see Note
(%) below)

Notes

(1) The “embedded” value for the uca.ebc.topology property in the
${UCA EBC INSTANCE}/conf/uca-ebc.properties file does not
currently support the neo4j HA mode.

(2) Suggested reading: http://docs.neo4j.org/chunked/stable/ha.html. Please
note that only neo4j-enterprise edition supports HA features.

(3) The Coordinator function is based on Apache Zookeeper service:
http://hadoop.apache.org/zookeeper/

(4) The Neo4j high-availability setup tutorial is available at the following URL:
http://docs.neo4j.org/chunked/stable/ha-setup-tutorial.html

3.4 Backup and restore

3.4.1 Standalone UCA for EBC

A standalone UCA for EBC server is a server running on a single machine. If
the UCA for EBC Topology Extension is installed and configured, the neo4;j
server is running embedded within UCA for EBC Server. (¢ see Note below)

On both HP-UX and Linux:

To perform a backup/restore, please use the uca-ebc-backup command line
tool (Please refer to Chapter 2.2.5 “uca-ebc-backup” for command usage).

On Windows:

To perform a backup/restore, as no command line tool is provided, please
use the following procedure:

For backups:
1. ¢d $UCA EBC DATA%

2. zip all directories (except logs and work) into a backup .zip file, and store it
in a safe place

For restores: (Please make sure that UCA for EBC is not running)
1. cd SUCA EBC DATA%
2. remove all directories (except logs and work)

3. unzip the backup .zip file that was created during the backup

Note

neo4j embedded server online backup feature must be activated.

This is done by setting the neo4j.config.online_backup_enabled property to
true inthe ${UCA EBC INSTANCE}/conf/uca-ebc.properties
configuration file.

44

http://docs.neo4j.org/chunked/stable/ha.html
http://hadoop.apache.org/zookeeper/
http://docs.neo4j.org/chunked/stable/ha-setup-tutorial.html

3.4.2 Clustered UCA for EBC

A clustered UCA for EBC server is a set of multiple servers running on
separate machines but using the same data directory under NFS. This is
described in Chapter 3.3.1 Simple cluster configuration using NFS”.

As data is stored on a unique place, it is only necessary to perform the
backup once for the cluster, on any machine. To perform a backup/restore,
please use the procedure explained above (in Chapter 3.4.1 “Standalone
UCA for EBC”) which is applicable in a clustered context as well.

3.4.3 UCA for EBC with external topology server

A UCA for EBC server using an external neo4j topology server has to be
backed up (or restored) in two steps.

3.4.3.1 First step: backup/restore of UCA for EBC

To backup/restore UCA for EBC, use the procedure explained in Chapter
3.4.1 “Standalone UCA for EBC” above. This procedure will back up
everything that is stored in the UCA for EBC instance directory, except the
neo4j database, which is external.

3.4.3.2 Second step: backup/restore of neo4j database

When neo4j server is configured to be external to UCA for EBC, it is
necessary to backup/restore this external machine separately. Please be
aware that the neo4j backup utility is only available when using the Enterprise
Edition of Neo4j (= see Note (%) below).

Please follow the steps described below to perform a backup/restore of the
neo4j database.

For backups:

¢ Do a full backup using the neo4j-backup command line tool on a safe
new directory (¢ see Note (1) below)

For restores:

o Restore the backup by replacing the current database (usually stored in
${NEO4J HOME}/data/graph.db) by the contents of the directory
generated during the backup.

Notes

(1) The neodj-enterprise edition supports online backup only if the neo4j
server has been launched with the online_backup_enabled property set
to true.

Suggested reading: http://docs.neo4j.org/chunked/stable/operations-
backup.html.

(2) Note that if neo4j has been configured in High-Availability (HA) mode,

you’ll have to specify the -cluster option as specified at the following
URL: http://docs.neo4j.org/chunked/stable/backup-ha.html

45

http://docs.neo4j.org/chunked/stable/operations-backup.html
http://docs.neo4j.org/chunked/stable/operations-backup.html
http://docs.neo4j.org/chunked/stable/backup-ha.html

46

Chapter 4

UCA for EBC Monitoring

4.1 Monitoring the alarm flow in real-time

The purpose of monitoring the alarm flow is to offer any integrator and/or
rules designer (at development time) or any user (in production) the capability
to better understand what happens in the UCA for EBC engine (in particular in
each rule engine/working memory of a scenario).

A UCA for EBC solution can be complex including several values packs, each
of them containing several scenarios. At each level, filtering at the scenario
level indicates the scope of interest of the scenario, in terms of what type of
events the scenario will process.

Monitoring the alarm flow is key to a better understanding of what goes on
inside UCA for EBC in terms of processing of the alarm flow in real-time,
when a complete UCA for EBC solution, with possibly several value packs
and scenarios, is deployed.

Monitoring the alarm flow involves taking measurements of the alarm flow at
several key processing points in the UCA for EBC solution:

¢ At the UCA for EBC Collector layer, i.e. alarm collection layer (this
component is the entry point for alarms/events into UCA for EBC)

¢ At the UCA for EBC Dispatcher layer, i.e. alarm dispatcher layer (this
component processes alarms/events sent by the UCA for EBC
Collector and dispatches them to value packs and scenarios)

o At the Value Pack layer
e At the Scenario layer, i.e. the Drools engine layer

The following figure explains the “points-of-control” where measurements of
the alarm flow are performed:

a7

Y Alarm filtering, compression, and life cycle

D Alarm queue
- Thread -
. Value ack 1
eg? ® & Alarms/Events internal architecture p

-
Scenario Z

Collector is rule engine
Incoming ,/- —
- Scenario A
rule engine

Alarms/Event
Scenario B
i rule engine

i Scenario Z
rule engine

Collector layer Dispatcher layer Value pack layer Scenario / Rule engine layer

Validation of incoming Dispatching of
Alarms/Events Alarms/Events

Figure 2 - UCA for EBC - Monitoring the Alarm Flow

Monitoring of the alarm flow is performed at the Collector layer, Dispatcher
layer, Value Pack layer and Scenario / Rule engine layer is shown in the
above figure.

These measurements of the alarm flow are presented as statistics, and
counters, and can be displayed both at the Java JMX Console and at the
UCA for EBC User Interface (in the Troubleshooting / Statistics panel).

The following sections describe, for each layer of the UCA for EBC product,
the different ‘points-of-control’ where statistics about the alarm flow are
available. These statistics can help developers and integrators better
understand how scenarios consume the input Event/Alarm stream. Monitoring
these statistics can provide insight into the internal processing of a scenario in
real time that can help troubleshooting issues or possibly lead to
improvements in terms of performance.

Note

¥~ For more information on the UCA for EBC User Interface, please refer to:
[R3] HP UCA for Event Based Correlation User Interface Guide

&~ please see section 5.1.3 “JMX Console” for more information on the
statistics, and counters displayed at the Java JMX Console.

4.1.1 Collector layer

The Collector component is responsible for receiving and validating incoming
Events/Alarms from the mediation layer (OSS Open Mediation V7.0) and
forwarding them to the next layer (the Dispatcher layer). The following
indicators can help monitoring the alarm flow at the Collector layer in real-
time:

e How many objects (alarms) were received since startup

48

e The last time an object (alarm) was received
¢ How many errors occurred during alarm validation
e The last time an error occurred during alarm validation

Note

These statistics can be displayed both at the Java JMX Console and at the
UCA for EBC User Interface (in the Troubleshooting / Statistics panel).

¥~ For more information on the UCA for EBC User Interface, please refer to:
[R3] HP UCA for Event Based Correlation User Interface Guide

4.1.2 Dispatcher layer

The Dispatcher is responsible for storing incoming events (Alarms),
analyzing and dispatching these events to the running value packs and

scenarios. The following indicators can help monitoring the alarm flow at the
Dispatcher layer in real-time:

¢ Current number of objects (alarms) dispatched
e Last time an object (alarm) has been dispatched
o Rate of alarms reception

Note

These statistics can be displayed both at the Java JMX Console and at the
UCA for EBC User Interface (5.1.2 - UCA for EBC Graphical User Interface).

4.1.3 Value Pack layer

Additional statistics regarding the alarm flow are available at the Value Pack
layer:

e How many objects (alarms) were received since startup (per alarm
type)

e Last time an object (alarm) was received

e Alarm input rate

e Percentage of events received by the Value Pack compared to the total
of events received by the UCA for EBC Dispatcher

Note

These statistics can be displayed both at the Java JMX Console and at the
UCA for EBC User Interface (5.1.2 - UCA for EBC Graphical User Interface).

4.1.4 Scenario/Engine layer

Additional statistics regarding the alarm flow are available at the Scenario
(Drools engine) layer:

e Number of facts* inserted into Working Memory since startup

e Current number of facts* in real-time

e Last time an object (alarm) was injected, retracted, modified in Working
Memory

49

Number of facts* retracted from the Working Memory since start-up

Number of facts* modified in Working Memory since start-up

Rate of alarms reception

Percentage of events inserted into Working Memory compared to the
total of events received by the Scenario (this indicator measures what
percentage of incoming events are filtered out by the scenario)

* Facts are Drools Working Memory objects. Once any Java object is inserted
into Drools Working Memory, it becomes a “Fact”.

Notes

These statistics can be displayed both at the Java JMX Console and at the
UCA for EBC User Interface (5.1.2 - UCA for EBC Graphical User Interface).

50

Chapter 5

UCA for EBC Troubleshooting

5.1 Troubleshooting tools

Below is the list of tools that you can use to troubleshoot UCA for EBC.

5.1.1 Log files

Log files can be of great help when troubleshooting issues with UCA for EBC.
UCA for EBC log files are located in the ${UCA EBC INSTANCE}/logs
directory.

You can view the log files directly on the file system using any text file editor
or you could also use the UCA for EBC User Interface to view the logs. This
latter method for viewing the logs has the advantage of providing easy
navigation and filtering capabilities. The UCA for EBC application log can also
be cleaned to focus on new log messages only.

Configuration of the logs is driven by the content of the
${UCA_EBC TINSTANCE}/conf/uca-ebc-log4j.xnml file (). Several
types of logs are available, both at application level and at scenario level (2).

Note

(1) F~ Pplease refer to section 3.2.3 “uca-ebc-log4j.xml file configuration” to

learn more about the configuration of the
${UCA EBC_ INSTANCE}/conf/uca-ebc-log4j.xml file.

(2) &~ Please see section 6.1 “UCA for EBC Logging Mechanism* to learn

about the different levels of logging provided by UCA for EBC, how to
enable/disable and how to configure these logs.

Recommendation: logging has an impact on performance. To avoid issues,
please do not use too much logging on a production environment.

5.1.2 UCA for EBC Graphical User Interface

The UCA for EBC User Interface provides troubleshooting tools.

At each level, be it application level, value pack level or scenario level, a
troubleshooting panel is provided that contains information that will help to
troubleshoot issues with the UCA for EBC application, a specific value pack
or a scenario.

51

The following screenshot shows Troubleshooting/Log panel at application
level:

e e ;-Lﬂ@lﬁ

<[&[4[x][22 He intranet search P~

@Uv [nttp://localhos

Jr Favorites - i [B] Web Slice Gallery v 8] Suggested Sites v & Google Traduction

(@ UCA Expert - UCA Expert/Application/Troublesho... 9 v B v = @ v Pagev Safetyv Toolsv @~ i &

v 4 UCAExpert

© Appication
£3 Actions

Monitoring - Troubleshooting Tools.

& ' action-0.11-SNAPSHC|
‘alarms-flow-monitorin
fife-cycle-0.11-SNAPS

llef-example-0.10

1 let-example-0.1-SNe o timestamp priority category valuepa thread | messsge

Pd-0.11-SNAPSHOT 42357 2011-10-06 17:09:48.712 INFO com.hp.uca.ex. T-VPFi... Refreshing ValuePack o

onfiguravion of llef-example=0.10

42358 2011-10-06 17:09:49.728 INFO com.hp.uca.ex. main Scareing Value Eack : CA-EBC\deploy\acsion-0.11-SNAPSHOT. . .

% ' skeleton-project-0.10-|

42359 2011-10-06 17:09:50.289 INFO com.hp.uca.ex. TP

Refreshing ValuePack configuravi

on of 1ife-cyele-0.11-SNADSHOT

skeleton-project-0.11- 42360 2011-10-08 17:09:60.205 INFO

com.hp.uca.ex. T-VPFi.. Refreshing ValuePack of pros,

2on-0.11-3WARSHOT

42361 20111006 17:09:50.252 INFO

com hp.ucs.ex. T-VPFi.. Refreshing ValuePack

configuration of act:

42362 2011-10-06 17:09:50.414 INFO

Res:

com hp.ucs.ex. TVRF zeshing ValuePack configura:

n of pd-0.11-SNAPSHOT

42363 2011-10-08 17:09:50.481 INFO com.hp.uca.ex. msin Refreshing com.h .V 703: dizplay nad

42364 2011-10-08 17:09:50.481 INFO com.hp.uca.ex. mein Bean factor:

y for contexs I

~ SCENARIO CONFIGURATION
ame : cloudhctionScenazio

| =) consale

€& Local intranet | Protected Mode: Off v ®o5% -

Figure 3 - Troubleshooting/Log panel at Application level

Each troubleshooting panel at each level (application, value pack, and
scenario) contains two sub-panels:

= A “Statistics” subpanel that contains key performance indicators that
help understanding the behavior of UCA for EBC, a value pack or a
scenario

= A “Logs” subpanel that displays the full UCA for EBC application logs,
the Value Pack logs or a scenario specific logs depending on the
level.

52

The following screenshot shows Troubleshooting/Statistics panel at
application level:

6 UCA Expent - UCA Expert/Application/ Troubleshooting - Windows Intermet Explorer = - = = o e |

&) = (&) ripocatmont opert #UCA tAppRaat - ~TR8 1% [[P #p itramet seo P~
Favorites. 5 ©) Web ey v yested Sites v § Google Traduction

48 UCA Bxpert - UCA Expert/Application/Troublesho. R W% v Pagev Safetyv Toolsv @~ K &

v UCA Expert Monitoring | Troubleshooting Tools
© Application

action-0 11-SNAPSHOT
alarms-fiow-monitoring-0. 1
ife-cycle-0 11-SNAPSHOT|

lief-example-0.10

pA-0.11-SNAPSHOT

skeleton-project-0.10-SNA|

A W liet-example-0.11-SNAPSH

skeleton-project-0.11-SNA]

MR ™[] Console

€& Local intranet | Protected Mode: Off A v Rue% -

Figure 4 - Troubleshooting/Statistics panel at Application Level

Note

%~ For more information on how to connect to the UCA for EBC User

Interface or to learn about the troubleshooting tools available in the UCA for
EBC User Interface, please refer to: [R3] HP UCA for Event Based
Correlation User Interface Guide

5.1.3 JMX Console

To start the Java JMX Console, either locally on the system hosting the UCA
for EBC Server or remotely from another system (in which case you will need
to adjust the IMX URL accordingly), please execute the following commands:

On both HP-UX, and Linux:

$ SJAVA HOME/bin/jconsole

Select the “Remote Process” radio button and type the following URL in the
input text field:

service:jmx:rmi://<hostname or IP address>/jndi/rmi://<hosthame or IP|
address>: <port #>/uca-ebc|

<hostname or IP address> is the actual hostname (full DNS name) or the IP
address of the UCA for EBC Server system. The default value is localhost.

<port #> is the port number for UCA for EBC Server RMI port, 1100 by default
for the default instance. Please check the value of the “uca.ebc.jmx.rmi.port”

53

property in the ${UCA EBC INSTANCE}/conf/uca-ebc.properties file
if you're unsure what RMI port number your UCA for EBC Server is using.

| £ Java Monitoring & Management Console ISRACEE X

Connection Window Help

=) JConsole: New Connection EX5

&

. =

New Connection v

(71 Local Process:
Name FID

com,hp.uca,comman.launch.Ucalauncher com.hp.uca.exp. .. 7380
sun. tools. jconsole. JConsole 7196
4076

®

' Remote Process:

service:jmucrmi: flocalhostfindifrmi: [flocalhost: 1100/uca-ebe|

Usage: <hcstname>:<part> OR service:jmc <protocol>: <sap>
Username: Password:

Figure 5 - Java JMX Console: Connecting to UCA for EBC Server

Then click on the “Connect” button.

Once you're connected to the Java JMX console for UCA for EBC, you can
go to the MBeans tab to get access to the managed Java beans that have
been defined specifically for administering UCA for EBC.

All managed beans for UCA for EBC are located under the uca_ebc folder,
as seen in the following screenshot:

54

x

|£/ Connection Window Help o &

Overwewl Memoryl Threadsl C\asseslVM Summary‘ MEEBNS‘ ==

Action

IMImplementation
com.sun.management
connector

java.lang

java.util.logging

javax. management.remote.rmi

uri.aiache.am\/emq

- .. ActionManager
¢ @ ActionQueue

mEEEHEHEE

{ B-@ ActionStats

: @ ActionThreads

E@ Collector

i [-Attributes

. [-Operations

[= @@ Dispatcher

| [-Attributes

: [i-Operations

=@ Properties_uca_ebc

| [-Attributes

=@ Server

. E-Operations

7@ valuePackManager

i Hattributes

: [-Operations

= pd-example-3.0-5P2
‘@ ClassLoader
MediationFlows
£+ L. Scenarios
2@ com.hp.uca.expert.vp.pd.ProblemDetection

Fi-Attributes
: [-Operations
=@ ValuePack
Atributes
Operations

Figure 6 - Java JMX Console: UCA for EBC MBeans

Under the uca_ebc folder, there are several folders providing
information/statistics*/monitoring/administration features on:

¢ Internal UCA for EBC components:
o Action Manager
o Collector
o Dispatcher
o Properties
o Server
o Value Pack Manager

e UCA for EBC value packs: there is one folder per running
pack

The following sections will provide more detail on these folders.
Note

* The statistics available in the Java Console are also available at the UCA for
EBC User Interface. Some additional features are available in the Java
Console, for example to reset the statistics counters or to get information
about internal UCA for EBC components that are not yet available at the UCA
for EBC User Interface.

5.1.3.1 Monitoring UCA for EBC internal components

Monitoring UCA for EBC Action Manager

The UCA for EBC Action Manager is an internal UCA for EBC component that
provides the capability to process asynchronous actions requested in the
Drools rules files of an UCA for EBC Value Pack scenario. Asynchronous
actions are created when the following code is present in a Drools rules file of
a scenatrio:

55

Action

action.
action.
action.
action.

action = new Action ("TeMIP AO Directives localhost");
addCommand ("directiveName", "ACKNOWLEDGE") ;
addCommand ("entityName", a.getIdentifier());
addCommand ("UserId", "UCA EBC");

executeAsync (AODirectiveKey.ENTITY NAME) ;

These asynchronous actions are handled by the UCA for EBC Action
Manager internal component and are processed by the proper Channel
Adapter on the mediation layer (OSS Open Mediation V7.0).

In the Java Console, the Action Manager folder contains the following sub-

folders:

e Action Queue: this queue contains the list of asynchronous actions
that are currently being processed

e Action Statistics: Information about the performance rate of the Action
Manager

e Action Threads: Information about the Action Manager thread pool

The following screenshot shows the UCA for EBC Action Manager
component at the Java JMX Console:

. pd-example-3.0-5P2

|£| Connection Window Help = = B
Overview | Memory | Threads| Classes| VM Summary| M8eans | b
Action Attribute values
-) IMImplementation
com.sun.management Name Value
connector CurrentSize o
java.lang ateLastHighWaterMark -05-16 16:29:46.102 +
java.util.logging ateLastPublish -05-16 17:45:32.071 +
[. javax.management.remote.rmi ateLastSubscribe ~05-16 17:45:32.070 +
£+ 1L org.apache.activemq atelastZeroed -05-16 17:45:32.070 +
(= . uca_ebe HighWaterMark
[= |, ActionManager HighWaterMarkstilllncreasing alse
=@ ActionQueue axSize o
[zgettributes | umberZeroedSinceLastHighWaterMark 88
Operations SizeHistory va.lang.String[3]
@ ActionStats TotalObjects Fli:ls—g_g—
@ ActiorThreads TotalObjectsSinceLastHighWaterMark |96
@ Collector
@ Dispatcher
@ Properties_uca_sbc
@ Server
@ ValuePackManager

Figure 7 - Java JMX Console: UCA for EBC Action Manager

The following sections will provide more detail on the sub-components of the
UCA for EBC Action Manager available at the Java JMX console.

Notes

%~ For more information on asynchronous actions please refer to: [R2] HP
UCA for Event Based Correlation Value Pack Development Guide

56

Action Queue

The Action Queue can be monitored at the Java JMX console using both
attributes and operations.

The following table lists the attributes of the Action Queue that are shown on
the Java JMX console:

Attribute name Settable Explanation

CurrentSize No The current size of the Action Queue (in
number of asynchronous actions in the
queue)

DateLastHighwaterMark NO Date and time of the last high water

mark for the Action Queue

DateLastPublish No Date and time of the last time an
asynchronous action was added to the
gueue

DatelLastSubscribe No Date and time of the last time an

asynchronous action was removed from
the queue to be processed by a thread

DatelastZeroed No Date and time of the last time the Action
Queue was empty

HighWaterMark No Value of the last high water mark for the
Action Queue (in number of
asynchronous actions in the queue)

HighWaterMarksStillincre NO Whether the high water mark for the

asing Action Queue is still increasing or not

MaxSize No Maximum size of the ActionQueue (in
number of asynchronous actions in the
queue)

NumberZeroedSinceLas NO The number of times the Action Queue

tHighWaterMark size was 0 since the last high water
mark

SizeHistory No A history of the size of the ActionQueue
(in number of asynchronous actions in
the queue)

TotalObjects No Total number of asynchronous actions

that have been added to the Action
Queue since start-up

TotalObjectsSinceLastH NO Total number of asynchronous actions
ighWaterMark that have been added to the Action
Queue since last high water mark

Table 16 - Java JMX Console: UCA for EBC Action Manager — Action
Queue - Attributes

The following table lists the operations that can be executed on the Action

Queue using the Java JMX console:
Operation name Explanation

57

resetQueueHistory() Resets all Action Queue counters (attributes)

Table 17 - Java JMX Console: UCA for EBC Action Manager — Action
Queue - Operations

Action Statistics

Action Statistics can be monitored at the Java JMX console using both
attributes and operations.

The following table lists the attributes of the Action Statistics that are shown
on the Java JMX console:

Attribute name Settable Explanation

ConsolidatedRate No The consolidated (average) performance
rate of the Action Manager (in number of
asynchronous actions processed per
second)

HighestRate No The highest performance rate of the Action
Manager (in number of asynchronous
actions processed per second)

LastRate No The last performance rate of the Action
Manager (in number of asynchronous
actions processed per second)

LongestBurstRate No The performance rate of the longest burst
of the Action Manager (in number of
asynchronous actions processed per
second)

Table 18 - Java JMX Console: UCA for EBC Action Manager — Action
Statistics - Attributes

The following table lists the operations that can be executed on the Action
Statistics using the Java JMX console:
Operation name Explanation

resetRates() Resets all Action Statistics rates (i.e. attributes)

58

Table 19 - Java JMX Console: UCA for EBC Action Manager — Action
Statistics - Operations

Action Threads

Action Threads can be monitored at the Java JMX console using both
attributes and operations.

The following table lists the attributes of the Action Threads that are shown on
the Java JMX console:

Attribute name Settable Explanation

FailedActions No The total number of failed asynchronous
actions of the Action Manager

NbActiveThread No The current number of active threads in
the thread pool of the Action Manager

NbPoolThread No The total number of threads in the
thread pool of the Action Manager

Table 20 - Java JMX Console: UCA for EBC Action Manager — Action
Threads - Attributes

The following table lists the operations that can be executed on the Action
Threads using the Java JMX console:

Operation name Explanation

resetCounters() Resets all Action Threads counters (i.e. attributes)

Table 21 - Java JMX Console: UCA for EBC Action Manager — Action
Threads - Operations

Monitoring UCA for EBC Collector

The UCA for EBC Collector is an internal UCA for EBC component that
collects all events (Alarms, etc...) coming into UCA for EBC either from the
mediation layer (OSS Open Mediation V7.0) or from the uca-ebc-injector tool.

Monitoring the UCA for EBC Collector component is akin to measuring the
input rate of UCA for EBC.

All incoming events are first validated to weed out invalid/unrecognized types
of events. Validation errors will result in the events being rejected by the
Collector.

The following screenshot shows the UCA for EBC Collector component at the
Java JMX Console:

59

|£] Java Monitoring & Management Console - pid: 5632 org.codehaus.classworlds.Launcher start

=1=] %

™

|£| Connection Window Help |:| EI IZI
| [}ver\rlewl Memoryl Threadsl C\ass‘esl VM Summary| MBeans | =
.. IMImplementation Attribute values
|/ com.sun.management
B+ connector Mame Value
[1) java.lang AverageEventNbPerMessage 1.0
. Java.util.logging CollectorRate 93.45465991101621
b Javaxmanagemeﬂt.remote. DatelastMessageValidationError 2014-04-23 16:58:55.581 +0200
b 1L org.apache.activemg DatelastReceivedEvent 2014-04-23 17:01:05.153 +0200
\ org.necd] DatelastReceivedMessage 2014-04-23 17:01:05.137 +0200
=0T ucaiepc DatelastRejectedEvent 2014-04-23 16:58:55.581 +0200
@ ActI:OHMEﬂﬁger DateLastRejectedMessage 2014-04-23 16:58:55.581 +0200
@ Collector MessageValidationErrorsMumber]
EzgAttributes| ReceivedEvents 1
[+ Operations ReceivedMessages 1
@ CollectorStats RejectedEvents o
[+ Dispatcher RejectedMessages o
[+-@ Properties_uca_ebc
@@ Server
-5 ValuePackManager
[+l [, persistence-example-3.1
4 I 3 -Refresh

Figure 8 - Java JMX Console: UCA for EBC Collector - Attributes

The UCA for EBC Collector can be monitored at the Java JMX console using

both attributes and operations.

The following table lists the attributes of the UCA for EBC Collector that are

shown on the Java JMX console:

Attribute name Settable Explanation

AverageEventNbPerMes NO

Average number of events™® per JIMS

sage message received by the collector, i.e.
batching factor

CollectorRate No

Collector rate is the average event rate

going through the Collector (in events

per second)

DatelLastMessageValida NO
tionError
Collector

DatelLastReceivedEvent NO

Date and time of the last event®”)

Date and time of the last event™ in error
(due to validation error) received by the

(Alarms, etc...) received by the Collector

DatelLastReceivedMess ~ NO

Date and time of the last IMS

age message™ received by the Collector

DateLastRejectedEvent ~ NO

Date and time of the last event”

rejected by the Collector

60

Attribute name Settable Explanation

Datel astRejectedMessa NO Date and time of the last IMS

ge message™ rejected by the Collector

MessageValidationError ~ NO Number of events™ in error (due to

sNumber validation error) received by the
Collector

ReceivedEvents No Number of events® (Alarms, etc...)

received by the Collector

ReceivedMessages No Number of IMS messages(l) received by
the Collector

RejectedEvents No Number of events® (Alarms, etc...)
rejected by the Collector

RejectedMessages No Number of JMS messages™” rejected by
the Collector

Table 22 - Java JMX Console: UCA for EBC Collector - Attributes

Note

™ The UCA for EBC Collector receives JMS message which can contain any
number of events (Alarms, etc...), i.e. a batch of events. This explains why
there are Collector statistics for both IMS messages and events.

The following table lists the operations that can be executed on the UCA for
EBC Collector using the Java JMX console:

Operation name Explanation

resetCounters() Resets all Collector counters (i.e. attributes)

Table 23 - Java JMX Console: UCA for EBC Collector - Operations

Note

¥~ For more information on the uca-ebc-injector tool please refer to the
following section: 2.2.2 “uca-ebc-injector”.

Monitoring UCA for EBC Dispatcher

The UCA for EBC Dispatcher is an internal UCA for EBC component that
receives events (Alarms, etc...) coming from the UCA for EBC Collector and
forwards those events to any eligible scenario (a property of the scenario
states whether a scenario is eligible to receiving incoming events or not) of
any value pack currently running on UCA for EBC.

61

The following screenshot shows the UCA for EBC Dispatcher component at

the Java JMX Console:

£ Connection Window Help l:l E”zl
Dvewlewl Memoryl Threadsl Classesl VM Summary‘ MBEEHSl =
. Action Attribute values
[#- 1. IMImplementation
[+ |, com.sun.management Name Value
. connector DispatcherRate 1.3950628960550917
[1L java.lang LogEvents false
. java.util.logging Queue_CurrentSize [1]
[1L javax.management.remote.rmi Queue_DatelastChangeEvent 2013-05-16 17:43:19.499 +0200
[| org.apache.activemq Queue_DateLastDeletionEvent 2013-05-16 16:27:57.008 +0200
EHJ! uca_ebc Queue_DatelastHighWaterMark 2013-05-16 16:29:10.331 +0200
. ActionManager Queue_DatelLastPublish 2013-05-16 17:45:32.039 +0200
3 Collector Queue_DatelastSubscribe 2013-05-16 17:45:32.039 +0200
[=-1@ Dispatcher Queue_DateLastZeroed 2013-05-16 17:45:32.039 +0200
[E28A Queue_HighVWaterMark 0]
Operations Queue_HighWaterMarkStillincreasing |false
3 Properties_uca_ebc Queue_NumberZeroedSinceLastHigh... |96
@ Server Queue_SizeHistory java.lang.String[2]
 VvaluePackManager Queue_TotalChangesEvents o
. pd-example-3.0-5P2 Queue_TotalDeletionEvents [1]
Queue_TotalObjects 102
|Queue_TotalObjectsSinceLastHighWat... 95

Figure 9 - Java JMX Console: UCA for EBC Dispatcher - Attributes

The UCA for EBC Dispatcher can be monitored at the Java JMX console
using both attributes and operations.

The following table lists the attributes of the UCA for EBC Dispatcher that are
shown on the Java JMX console:

Attribute name

DispatcherRate

LogEvents

Queue_CurrentSize

Queue_DateLastChange
Event

Queue_DateLastDeletio
nEvent

Queue_DatelastHighW
aterMark

Settable Explanation

No The event rate of the dispatcher (in
number of events per second)

Yes A flag indicating whether the Dispatcher
should log the list of events that it
processes or not.

THIS ATTRIBUTE IS OBSOLETE. DO
NOT USE IT.

No The current size of the Dispatcher
queue (in number of events)

No The date and time of the last “change
event” that was added to the Dispatcher
gueue

No The date and time of the last “deletion
event” that was added to the Dispatcher
queue

No The date and time of the last high water
mark of the Dispatcher queue

62

Attribute name Settable Explanation

Queue_DatelastPublish NO Date and time of the last time an event
was added to the queue

Queue_DatelastSubscri NO Date and time of the last time an event

b was removed from the queue to be
processed

Queue_DatelastZeroed NO The date and time of the last time the

Dispatcher queue was empty

Queue_HighWaterMark ~ NO The value of the high water mark of the
Dispatcher queue (in number of events)

Queue_HighWaterMark ~ NO Whether the high water mark of the

Stillincreasing Dispatcher queue is still increasing or
not

Queue_NumberZeroedS NO The number of times that the Dispatcher

incelLastHighWaterMark gueue was empty since the last high
water mark

Queue_SizeHistory No The history of the Dispatcher queue size

Queue_TotalChangesEv NO The total number of “change events”

ents that have been added to the Dispatcher
Queue since start-up

Queue_TotalDeletionEv ~ NO The total number of “deletion events”

ents that have been added to the Dispatcher

Queue since start-up

Queue_TotalObjects No The total number of “objects” that have
been added to the Dispatcher Queue
since start-up

Queue_TotalObjectsSin ~ NO The total number of “objects” that have
celLastHighWaterMark been added to the Dispatcher Queue
since the last high water mark

Table 24 - Java JMX Console: UCA for EBC Dispatcher - Attributes

The following table lists the operations that can be executed on the UCA for
EBC Dispatcher using the Java JMX console:

Operation name Explanation

resetCounters() Resets all Dispatcher counters (i.e. attributes), except

the LogEvents attribute.
Table 25 - Java JMX Console: UCA for EBC Dispatcher - Operations

Monitoring UCA for EBC Properties

The UCA for EBC Properties folder at the Java JMX Console shows the file
system location of each sub-folder of the UCA for EBC application.

63

The following screenshot shows the UCA for EBC Properties component at
the Java JMX Console:

(£l Connection Window Help = a x
Overview | Memory | Threads | Classes | vM Summary| MBeans =l
| Action Attribute values
IMImplementation
com.sun.management Name Value
| connector \AlarmsDirectory opt/UCA-EBC/alarms
java.lang ApidocDirectory opt/UCA-EBC/apidoc
jova.util.logging ArchiveDirectory /var/opt/UCA-EBC/instances/default/archive
| javax.management.remaote.rmi BinDirectory opt/UCA-EBC/bin
. org.apache.activemq ConfigurationDefaultDirectory opt/UCA-EBC/defaults/conf
(=) uca_ebc ConfigurationDirectory /var/opt/UCA-EBCfinstances/default/conf
ActionManager ataDirectory /var/opt/UCA-EBC/instances/default/
@ Collector faultsDirectory opt/UCA-EBC/defaults
[#-@ Dispatcher eployDirectory jvar/opt/UCA-EBC/instances/default/deploy
(1@ Properties_uca_ebc ExternalLibDirectory /var/opt/UCA-EBC/instances/default/externallib
A tedDirectory opt/UCA-EBC/gettingStarted
@ Server ibDirectory opt/UCA-EBC/lib
@ ValuePackManager icensesDirectory opt/UCA-EBC/licenses
pd-example-3.0-5P2 og4]ConfigurationFileUrl ffile:/var/opt/UCA-EBC/instances/default/conf/uca-ebc-lo...
ogDefaultDirectory opt/UCA-EBC/defaults/logs
ogDirectory jvar/opt/UCA-EBC/instances/default/logs
ootDirectory /opt/UCA-EBC/
SchemasDirectory opt/UCA-EBC/schemas
serDBDirectory jvar/opt/UCA-EBC/instances/default/users
Directory opt/UCA-EBC/defaults/valuepacks
ValuePacksDirectory /var/opt/UCA-EBC/instances/default/valuepacks
tory opt/UCA-EBC/webapp

Figure 10 - Java JMX Console: UCA for EBC Properties - Attributes

There are no operations that can be executed at the Java JMX Console on
the UCA for EBC Properties.

The following table lists the attributes of the UCA for EBC Properties that are
shown on the Java JMX console:

Attribute name Settable Explanation
AlarmsDirectory No Default Value:

${UCA_EBC_HOME}/alarms

ApidocDirectory No Default Value:
${UCA_EBC_HOME}/apidoc

ArchiveDirectory No Default Value:
${UCA_EBC_INSTANCE}/archive

BinDirectory No Default Value:
${UCA_EBC_HOME}/bin

ConfigurationDefaultDir NO Default Value:
ectory ${UCA_EBC_HOME}/defaults/conf

ConfigurationDirectory ~ NO Default Value:
${UCA_EBC_INSTANCE}/conf

DataDirectory Yes Default Value:
${UCA EBC _ INSTANCE}

DefaultsDirectory No Default Value:
${UCA_EBC_HOME}/defaults

DeployDirectory No Default Value:
${UCA_EBC_INSTANCE}/deploy

Attribute name

ExternalLibDirectory

GettingStartedDirectory

LibDirectory

LicensesDirectory

Log4jConfigurationFileU

rl

LogDefaultDirectory

LogDirectory

RootDirectory

SchemasDirectory

ValuePacksDefaultDirec

tory

ValuePacksDirectory

WebappDirectory

Settable

No

No

No

No

No

No

No

Yes

No

No

No

No

Explanation

Default Value:
${UCA_EBC_INSTANCE}/externallib

Default Value:
${UCA_EBC_HOME}/gettingStarted

Default Value: ${UCA_EBC_HOME}/lib

Default Value:
${UCA EBC_HOME}/licenses

Default Value:
file:${UCA_EBC_VAR}/conf/uca-ebc-
log4j.xml

Default Value:
${UCA_EBC_HOME}/defaults/logs

Default Value:
${UCA_EBC_INSTANCE}/Ilogs

Default Value: ${UCA_EBC_HOME}

Default Value:
${UCA_EBC_HOME}/schemas

Default Value:
${UCA_EBC_HOME}/defaults/valuepac
ks

Default Value:
${UCA_EBC_INSTANCE}/valuepacks

Default Value:
${UCA_EBC_HOME}/webapp

Table 26 - Java JMX Console: UCA for EBC Properties - Attributes

Monitoring UCA for EBC Server

The following screenshot shows the UCA for EBC Server component at the

Java JMX Console:

65

e

2| Connection Window Help = a
erview | Memory | Threads| Classes | vM Summary| MBeans &=

x

Action Operation invocation
IMImplementation
connector

java.lang

Java.util.logging
javax.management.remote. rmi
org.apache.activemg
uca_ebc

ActionManager void
Dispatcher

@ Properties_uca_ebc
E-@ Server
s oe

DEsaEaaEss||e

&

reloadLog4jConfigurationFile
-~reloadLogd]ConfigurationFile

sarverStop void
serverStop serverstop | (p0 true)

~serverShow
@ ValuePackManager
pd-example-3.0-SP2

ot [nmzm] 0

java.lang.String O

Figure 11 - Java JMX Console: UCA for EBC Server - Operations

The UCA for EBC Server can be monitored at the Java JMX console using
operations.

The following table lists the operations that can be executed on the UCA for
EBC Server using the Java JMX console:

Operation name Explanation

reloadLog4jConfigurationFile() Reloads the log4J configuration file.

reloadLog4jConfigurationFile(S Reloads the log4J configuration file, using the
tring) log4J configuration file located at the path
passed as parameter

serverStop(boolean) Stops UCA for EBC Server. The parameter is a
boolean flag that indicates whether to restart
(true) UCA for EBC Server once it has stopped
or not (false).

serverStop() Stops UCA for EBC Server.

serverShow() Displays the status of UCA for EBC Server,
whether it’s running or not.

Table 27 - Java JMX Console: UCA for EBC Server - Operations

Monitoring UCA for EBC Value Pack Manager

The UCA for EBC Value Pack Manager is an internal UCA for EBC
component. It manages all the Value Packs of the UCA for EBC application.

The following screenshot shows the UCA for EBC Value Pack Manager
component at the Java JMX Console:

2| Connection Window Help I:IE”ZI
Overview | Memory | Threads | Classes | v Summary| MBeans =&
Action Operation invacation
IMImplementation
com.sun.management java.lang.String [~ gisplay | ()
connector

javaang

Java.util.logging

Javax.management.remote.rmi Javalang.Stng [cariyaluepack | (po String)

org.apache.activemq

= | uca_ebc
ActionManager jova.lang,Strin .
Callctor Jovedana Sting (po| swng |.pt[swmg)
Dispatcher
Properties_uca_sbc
@ Server Java.lang.String [, 1 jepioyvaluepack 0 Strin 1 strin
[ValuePackManager oy CP 9 o[9)
© [-Attributes
i .)
[). pd-example-3.0-5P2 Javallang.Sting [gopvaluePack | (po String ,pl String)

Java.lang.Sting | olgagscenarioSession | (po string .pt string . p2 String

jova.lang. String

(p0 String . p1 String . p2 String

Javalang.String | corenginelogging | (po string . pL string . p2 string . P

java.lang.Stri
g (p0 String . p1 String . p2 String

4| 1l | »

Figure 12 - Java JMX Console: UCA for EBC Value Pack Manager -
Operations

The UCA for EBC Value Pack Manager can be monitored at the Java JMX
console using both attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack
Manager that are shown on the Java JMX console:

Attribute name Settable Explanation

ActiveValuePacks No The list of active value pack currently

running on UCA for EBC

AllValuePacks No The list of all value pack currently
running/degraded/stopped/not deployed
on UCA for EBC

DeploymentHistory No The complete history of deployments of
value packs on UCA for EBC

Table 28 - Java JMX Console: UCA for EBC Value Pack Manager -
Attributes

The following table lists the operations that can be executed on the UCA for

EBC Value Pack Manager using the Java JMX console:

Operation name Explanation

display() Lists all Value Packs and scenarios currently
running on UCA for EBC

startValuePack(String) Starts a Value Pack identified by the path of the
Value Pack in the
${UCA_EBC_INSTANCE}/deploy folder passed
as parameter.

For example: “deploy/<Value Pack Name>-
<Value Pack Version>"

Parameter 1: path of the Value Pack

67

Operation name Explanation

startvValuePack(String, String) ~ Starts a Value Pack identified by its name and
version passed as parameters.

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version

undeployValuePack(String, Undeploys a Value Pack identified by its name
String) and version passed as parameters

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version

stopValuePack(String, String) Stops a Value Pack identified by its name and
version passed as parameters

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version

dumpScenarioSession(String, Dumps the Drools Working Memory of a
String, String) scenario of a value pack identified by the value
pack name, version, and the scenario name

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version
Parameter 3: Scenario Name

If parameter 3 is omitted, then the Drools
Working Memory of all the scenarios of the
Value Pack specified in parameters 1, and 2 is
dumped.

If parameter 1, 2, and 3 are omitted, then the
Drools Working Memory of all the scenarios of
all the value packs is dumped.

reloadScenarioSession(String Reloads a specific rule file of a scenario of a

, String, String, String) value pack identified by the value pack name,
version, the scenario name, and the rule file
name

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version
Parameter 3: Scenario Name
Parameter 4: Rule File Name

If Parameter 4 is omitted, then all rules files of
the scenario of the Value Pack specified in
parameters 1, 2, and 3 are reloaded.

If parameter 3 and 4 are omitted, then all rules
files of all the scenarios of the Value Pack
specified in parameters 1, and 2 are reloaded.

If parameter 1, 2, 3 and 4 are omitted, then all
rules files of all the scenarios of all the value
packs are reloaded.

Operation name Explanation

retractScenarioSession(Strin ~ Clears the Drools Working Memory of a
g, String, String) scenario of a value pack identified by the value
pack name, version, and the scenario name

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version
Parameter 3: Scenario Name

If parameter 3 is omitted, then the Drools
Working Memory of all the scenarios of the
Value Pack specified in parameters 1, and 2 is
cleared.

If parameter 1, 2, and 3 are omitted, then the
Drools Working Memory of all the scenarios of
all the value packs is cleared.

setEngineLogging(String, Enables/Disables scenario specific Drools

String, String, Boolean) engine logging for a Value Pack scenario
specified by the Value Pack name, version, and
scenario name. The 4" parameter is a boolean
value: true for enabling, false for disabling
scenario specific Drools engine logging.

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version
Parameter 3: Scenario Name

Parameter 4: A Flag indicating whether to
enable/disable engine logging (true/false)

If parameter 3 is omitted, then the engine
logging of all the scenarios of the Value Pack
specified in parameters 1, and 2 is enabled or
disabled depending on the value of parameter 4.

If parameter 1, 2, and 3 are omitted, then the
engine logging of all the scenarios of all the
value packs is enabled or disabled depending
on the value of parameter 4.

69

Operation name Explanation

reloadConfigurationFile(Strin ~ Reloads a configuration file for a Value Pack

g, String, String, String) scenario specified by the Value Pack name,
version, and scenario name. The 4™ parameter
is the name of the configuration file to reload.

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version
Parameter 3: Scenario Name
Parameter 4: Configuration file name

If parameter 4 is omitted, all configuration files of
the scenario are reloaded.

If parameters 3 and 4 are omitted, all
configuration files of all scenarios of the value
pack are reloaded.

If parameters 1, 2, 3 and 4 are omitted, all
configuration files of all scenarios of all value
packs are reloaded.

Table 29 - Java JMX Console: UCA for EBC Value Pack Manager -
Operations

5.1.3.2 Monitoring UCA for EBC value packs

Each UCA for EBC Value Pack running has its own sub-folder at the Java
JMX Console, under the “uca_ebc” top folder. Each Value Pack sub-folder is
named after the Value Pack name and version.

In the Java Console, each Value Pack folder contains the following sub-
folders:

o Class Loader: this sub-folder is displayed only if the
uca.ebc.classloader property in the
${UCA EBC INSTANCE}/conf/uca-ebc.properties file has
been setto ucaclassloader (this is not the case by default) and
contains information about the UCA for EBC class loader specific to
the Value Pack

DB flows: this sub-folder contains information about the DB flows
specific to the Value Pack

Mediation flows: this sub-folder contains information about the
mediation flows specific to the Value Pack

e Scenarios: this sub-folder contains information on each of the
scenarios of the value pack (the contents of this sub-folder is
explained in the next section: 5.1.3.3 “Monitoring UCA for EBC
scenarios”)

Value Pack: this sub-folder contains information on the value pack
itself

The following screenshot shows a sample UCA for EBC Value Pack sub-
folder at the Java JMX Console:

70

Class Loader

|2 Java Monitoring & Management Console - pid: 8332 org.codehaus.classworlds.Launcher start = = Py

|| Connection Window Help ~ = "

| Dverwewl Memoryl Threadsl CIassesIVM Summaryl MBeans | =

IMImplementation
cnm.sun.management
. connector
. java.lang
. java.util.logging
. javax.management.remote.rmi
. org.apache.activerng
. uca_ebc
[1. ActionManager
(@@ Collector
(@ CollectorStats
(@ Dispatcher
[H- @ Properties_uca_ebc
@ Server
@ valuePackManager
& i
@ ClassLoader
. DBFlows
MediationFlows
Scenarios
(- valuePack

THH-F-F -

Figure 13 - Java JMX Console: a UCA for EBC Value Pack

The following sections will provide more detail on the Class Loader, DB
Flows, Mediation flows, Scenarios and Value Pack sub-folders of any UCA for
EBC Value Pack at the Java JMX console.

This sub-folder is displayed only if the uca.ebc.classloader property in
the ${UCA EBC INSTANCE}/conf/uca-ebc.properties file has been
setto ucaclassloader (this is not the case by default).

The UCA for EBC Value Pack Class Loader represents the UCA EBC class
loader for a specific UCA for EBC Value Pack.

The following screenshot shows the attributes available for a UCA for EBC
Value Pack Class Loader component at the Java JMX Console:

71

v - — B
|£:] Java Monitoring & Management Console - pid: 8332 org.codehaus.classworlds.Launcher start E‘E‘g

[£ Connection Window Help EEE
=i

Overview | Memory | Threads | Classes | v Summary| MBeans ‘

[+ [IMImplementation Attribute values
[#- . com.sun.management
| connactor Name Value
. java.lang ListClasses java.lang.String[25]
. Java.util.logging ListErrorClasses java.lang.String[0
./ javax.management.remote.rmi ListErrorResources java.lang.String[0
(- L. org.apache.activemg ListFullPackages va.lang.String[706]
(=) uca_ebe ListlarFiles g va.larlg.str'mg[ll
B L. ActionManager ListValuePackPackages java.lang.String[5
(6@ Collector TotalErrorClasses [
(@@ CollectorStats TotalLoadedClasses 25
@ Dispatcher TotalLoadedPackages 5
@ Properties_uca_ebc
@ Server
@ ValuePackManager

m

- |. persistence-example-3.1
=+ ClassLoader

i [-Operations
DBFlows
MediationFlows
- |, Scenarios
@ ValuePack

— r— —— =

Figure 14 - Java JMX Console: UCA for EBC Value Pack - Class Loader -
Attributes

—

Any UCA for EBC Value Pack Class Loader can be monitored at the Java
JMX console using both attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack Class
Loader that are shown on the Java JMX console:

Attribute name Settable Explanation

ListClasses No The list of Java Classes loaded by the
Value Pack Class Loader

ListErrorClasses No The list of Java Classes that could not be
loaded by the Value Pack Class Loader

ListErrorResources No The list of Java Resources that could not
be loaded by the Value Pack Class
Loader

ListFullPackages No The full list of Java Packages loaded by

the Value Pack Class Loader

ListJarFiles No The list of JAR files loaded by the Value
Pack Class Loader

ListvaluePackPackages NO The list of Value Pack Java Packages
loaded by the Value Pack Class Loader

TotalErrorClasses No The total number of Java Classes that
could not be loaded by the Value Pack
Class Loader

Attribute name Settable Explanation

TotalLoadedClasses No The total number of Java Classes loaded
by the Value Pack Class Loader

TotalLoadedPackages No The total number of Java Packages
loaded by the Value Pack Class Loader

Table 30 - Java JMX Console: UCA for EBC Value Pack - Class Loader -
Attributes

The following screenshot shows the operations available for a UCA for EBC
Value Pack Class Loader component at the Java JMX Console:

73

-

|£| Java Monitoring & Management Conscle - pid: 8332 org.codehaus.classworlds.Launcher start EIM

| Connection Window Help o [X
‘ D'verviewl Memoryl Threadsl C\assesl VM Summary‘ MBEBHS| ==

[#- | IMImplementation
com.sun.management
connector
java.lang
java.util.logging
i javax.management.remote.rmi
org.apache.activemq
[uca_ebc

. ActionManager

@ Collector

@ CollectorStats

@ Dispatcher

@ Properties_uca_ebc

[H-@ Server

(- valuePackManager
(= | persistence-example-3.1

-Attributes
{Operations]

. DBFlows

| MediationFlows
- . Scenarios

[+ ValuePack

R -

Operation invocation

java.lang.String O

java.lang.String 0O

paalianrE i dumpFullClass | (po String)

java.lang.String (g0 String)

g g g getClassInfoAllHierarchy (po String)

java.lang.String (po String)

Java.lang.String getResourceInfoAllHierarchy I (po String)}

- z

Figure 15 - Java JMX Console: UCA for EBC Value Pack - Class Loader -

Operations

The following table lists the operations that can be executed on the UCA for
EBC Value Pack Class Loader using the Java JMX console:

Operation name

dumpResources()

dumpClasses()

dumpFullClass(String)

getClassInfo(String)

Explanation

Dumps the list of all the Resources loaded by
the Value Pack Class Loader

Dumps the list of all the Java Classes loaded
by the Value Pack Class Loader

Dumps a Java Class loaded by the Value Pack
Class Loader. The Java Class is identified by
the name of the class passed as a parameter.

Parameter 1: Full Class Name

Returns information on a Java Class loaded by
the Value Pack Class Loader. The Java Class
is identified by the name of the class passed as
a parameter.

Parameter 1: Full Class Name

getClassinfoAllHierarchy(Stri Returns information on a Java Class loaded by

ng)

getResourcelnfo(String)

the Value Pack Class Loader or by the Main
Class Loader. The Java Class is identified by
the name of the class passed as a parameter.

Parameter 1: Full Class Name

Returns information on a Resource loaded by
the Value Pack Class Loader. The Resource is

74

DB Flows

Operation name Explanation

identified by the name passed as a parameter.
Parameter 1: Resource Name

getResourcelnfoAllHierarchy(Returns information on a Resource loaded by

String) the Value Pack Class Loader or Main Class
Loader. The Resource is identified by the name
passed as a parameter.

Parameter 1: Resource Name

Table 31 - Java JMX Console: UCA for EBC Value Pack - Class Loader -
Operations

The UCA for EBC Value Pack DB Flows represent the DB flows for a specific
UCA for EBC Value Pack.

The following screenshot shows the attributes available for a UCA for EBC
Value Pack Mediation Flows component at the Java JMX Console:

|£| Java Monitoring & Management Console - pid: 8332 org.codehaus.classworlds.Launcher start E@u
|£/ Connection Window Help [[=]
Uvemewl Memory | Threadsl Classesl VM Summary‘ MBeans ‘ ==
| IMImplementation Attribute values
|/ com.sun.management
Name Value
FlowStatus Active
o~
2014-04-24 13:04:52.006 +0200 Active
.. org.apache.activemg FlowStatusHistory i
ca_ebc mAaa ma s ae ma ra men mmma ol -
| ActionManager < | i *
@ Collector FlowType Dynamic
@ CollectorStats Name scenarioDBFlove
@ Dispatcher Sourceldentifier DB
@ Properties_uca_ebc SynchronizationStatus Synchronized f
@ Server it
[H-@@ ValuePackManager 2014-04-24 13:04:52.006 +0200 Synchr |
£l 1 persistence-example-3.1 SynchronizationStatusHistory i
(@ ClassLoader mman mn ma omocn omocoe acoem o o
1)i DBFlows 4 i} | D
=143 scenarioDBFlow
D
Operations
[#- | MediationFlows
|/ Scenarios
@ ValuePack
= aa——

Figure 16 - Java JMX Console: UCA for EBC Value Pack — DB Flows -
Attributes

Any UCA for EBC Value Pack DB Flow can be monitored at the Java JMX
console using both attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack DB
Flows that are shown on the Java JMX console:

Attribute name Settable Explanation

75

Attribute name Settable Explanation

FlowStatus No The status of the DB Flow

FlowStatusHistory No A history of the status of the Mediation
DB over time

FlowType No Either dynamic or static

Name No The name of the DB Flow

Sourceldentifier No The source identifier of the DB Flow

SynchronizationStatus ~ NO Either synchronized or synchronizing

SynchronizationStatusH ~NO A history of the synchronization status of

istory the DB Flow over time

Table 32 - Java JMX Console: UCA for EBC Value Pack — DB Flows -
Attributes

The following screenshot shows the operations available for a UCA for EBC
Value Pack Class Loader component at the Java JMX Console:

r[é,:] Java Monitoring & Management ConsJe - pid: 8332_c=rg.codehaus.classworids.Launcher start - E@g.‘
|£ Connection Window Help l:l El lIl
Ove:wewl Memrlehreadsl CLaisﬂ.il\.'M Summa:yl MBeans ‘ ==
[#- 1. IMImplementation Operation invocation
: zzﬁzuﬂno.rmanagement java.lang.String -E 0

| java.lang
t- [java.util.logging
- |, javax.management.remote.rmi
| org.apache.activemg
[Er . uca_ebc
|, ActionManager

@ Dispatcher java.lang.Strin

@ Properties_uca_ebc L g g
@ Server
@

ValuePackManager

stop | ()

BB B

B

[

|. persistence-example-3.1

@ Classloader

(=). DBFlows

(=)@ scenarioDBFlows

[H-Attributes

: \

|, MediationFlows java.lang.string [giatus

[|| Scenarios 0

@ valuePack

java.lang.String 0

76

Figure 17 - Java JMX Console: UCA for EBC Value Pack — DB Flows -
Operations

The following table lists the operations that can be executed on the UCA for
EBC Value Pack DB Flows using the Java JMX console:

Operation name Explanation

start() Start the DB Flow

stop() Stop the DB Flow

status() Displays the status of the DB Flow
resynchronize() Resynchronizes the DB Flow

Table 33 - Java JMX Console: UCA for EBC Value Pack — DB Flows -
Operations
Mediation Flows

The UCA for EBC Value Pack Mediation Flows represent the mediation flows
for a specific UCA for EBC Value Pack.

The following screenshot shows the attributes available for a UCA for EBC
Value Pack Mediation Flow component at the Java JMX Console:

|£| Connection Window Help - a X
Overview | Memory [Threads | Classes | VM Summary| MBeans | ==
Action Aftribute values
IMImplementation
com.sun.management Name Value
connector ActionReference [TeMIP_FlowManagement
Java.lang FailedActions o
J_BVE-UU‘-‘UEIQ‘"EI FlowStatus |Active
JBVEX-mﬁﬂagﬂf{“ﬂ"t-"em“te-”m‘ FlowStatusHistory java.lang.String[3]
org.apache.activemq FlovType Dynamic
=1 uca_ebc Name Flow1
ActionManager SyncronizationStatus Synchronizing
@ Collector SyncronizationStatusHistory java.lang.String[1]

@ Dispatcher

@ Properties_uca_ebc
@ Server

@ ValuePackManager
.. pd-example-3.0-5P2
@ ClassLoader

=+ | MediationFlows
i =8 Flowl

| [Z-Operations
-6 Flow2

i -3 Flow3
Scenarios
FE-@ ValuePack

O B R

Figure 18 - Java JMX Console: UCA for EBC Value Pack — Mediation
Flows - Attributes

Any UCA for EBC Value Pack Mediation Flow can be monitored at the Java
JMX console using both attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack
Mediation Flows that are shown on the Java JMX console:

77

Attribute name Settable Explanation

ActionReference No The Action Reference (from the
ActionRegistry.xml configuration file)
associated with the Mediation Flow

FailedActions No The number of Failed actions associated
with the Mediation Flow (Each action is
either a CreateFlow, DeleteFlow,
ResynchronizeFlow, or a StatusFlow

action)
FlowStatus No The status of the Mediation Flow
FlowStatusHistory No A history of the status of the Mediation

Flow over time

FlowType No Either dynamic or static

Name No The name of the Mediation Flow
SynchronizationStatus ~ NO Either synchronized or synchronizing
SynchronizationStatusH ~ NO A history of the synchronization status of
istory the Mediation Flow over time

Table 34 - Java JMX Console: UCA for EBC Value Pack — Mediation
Flows - Attributes

The following screenshot shows the operations available for a UCA for EBC
Value Pack Mediation Flow component at the Java JMX Console:

78

. -
| £ Java Monitoring & Management Console - pid: 8332 org.codehaus.classworlds.Launcher start

|£/ Connection Window Help

‘ Dverviewl Memory I Threadsl Classes | VM Summary‘ MBeans ‘

JMImplementation
Ccom.sun.management
connector

java.lang
Jjava.util.logging
Javax.management.remote.rmi
org.apache.activemg
-4 uca_ebc

| ActionManager

@ Collector

@ CollectorStats

@ Dispatcher

@ Properties_uca_shc

ValuePackManager
persistence-example-3.1
@ ClassLoader

|| DBFlows

Operation invocation

java.lang.5tring | digplayMediationFlowXML | ()

java.lang.5tring | displaylastActionStatus | ()

java.lang.String [displaylLastCreateFlowActionStatus l[}

java.lang.String [displaylLastDeleteFlowActionStatus l[)

java.lang.String [displayLastStatusFlowActionStatus I[)

java.lang.String [displayLastResynchFlowActionStatus][)

java.lang.String

java.lang.String

java.lang.String

java.lang.String 0

Figure 19 - Java JMX Console: UCA for EBC Value Pack — Mediation

Flows - Operations

79

Scenarios

The following table lists the operations that can be executed on the UCA for
EBC Value Pack Mediation Flows using the Java JMX console:

Operation name Explanation

start() Start the Mediation Flow

stop() Stop the Mediation Flow

status() Displays the status of the Mediation Flow
resynchronize() Resynchronizes the Mediation Flow

displayMediationFlowXML () Displays the XML definition of the Mediation
Flow (extracted from the
ValuePackConfiguration.xml file)

displayLastActionStatus() Displays the output of the last action performed
on the Mediation Flow (either a CreateFlow,
DeleteFlow, ResynchronizeFlow, or a
StatusFlow action)

displayLastCreateFlowAction Displays the output of the last CreateFlow
Status() action performed on the Mediation Flow

displayLastDeleteFlowAction ~ Displays the output of the last DeleteFlow
Status() action performed on the Mediation Flow

displayLastStatusFlowAction ~ Displays the output of the last StatusFlow
Status() action performed on the Mediation Flow

displayLastResynchFlowActi Displays the output of the last
onStatus() ResynchronizeFlow action performed on the
Mediation Flow

Table 35 - Java JMX Console: UCA for EBC Value Pack — Mediation
Flows - Operations

All the scenarios of a value pack are listed under the Scenarios sub-folder of
the value pack folder, like in the screenshot below:

80

Value Pack

r B
|£:| Java Monitaring & Management Console - pid: 8332 org.codehaus.classworlds.Launcher start E@M

|£| Connection Window Help - & X
O'verwewl Memorlehreadsl C\assesl VM Summaryl MEeansl ==
IMImplementation MBeanInfo
com.sun.management
connector Name Value
java.lang Info:
java.util.logging ObjectMame uca_ebc:type=persistence-example-3.1,side=S...
javax.management.remote.rmi ClassMame com.hp.uca.expert.scenario.internal. Scenario]MX.
org.apache.activemq Description Information on the management interface of th...
[uca_ebc Constructor-0:
[1) ActionManager Name com.hp.uca.expert.scenario.internal.Scenario]MX
@ Collector Description Public constructor of the MBean
@ CollectorStats Parameter-0-0:
@ Dispatcher Name pl
@@ Properties_uca_ebc Description
@ Server Type com.hp.uca.expert.scenario.internal.ScenarioImpl
@ ValuePackManager Constructor-1:
./ persistence-example-3.1 Name com.hp.uca.expert.scenario.internal. Scenario]MX
@ ClassLoader Description Public constructor of the MBean
DBFlows
. MediationFlows
(= . Scenarios
[ER Jcom.hp.uca.ebc.vp.examples. persistence. SimpleScenario | SRS
[H-Attributes
Operations Name Value
@ valuePack Info:
immutableInfo true
interfaceClasshame com.hp.uca.expert.jmxbean. ScenaricJMXMXBean
mxbean true I
N
—=

Figure 20 - Java JMX Console: UCA for EBC Value Pack - Scenarios

Each scenario sub-folder is named after the scenario. Please see chapter
5.1.3.3 “Monitoring UCA for EBC scenarios” for detailed information on the
contents of each scenario sub-folder.

The Value Pack sub-folder of a UCA for EBC Value Pack presents the
attributes and operations for a specific UCA for EBC Value Pack.

The following screenshot shows the attributes available for a Value Pack sub-
folder of a UCA for EBC Value Pack at the Java JMX Console:

81

— — S ~
|£ | Java Monitoring & Management Console - pid: 8332 org.codehaus.classworlds.Launcher start i @@u
|£| Connection Window Help IZI El El

Dverviewl Memaory | Thread.sl Classes | VM Summary‘ MBeans ‘ sl=
| IMImplementation Attribute values
com.sun.management
connector Name Value
Java.lang DatelLastReceivedEvent 2014-04-24 13:04:52.006 +0200
T java.util.logging FlowPercentage 100.0%
t- 1) javax.management.remote.rmi FlowStatus Disabled
- . org.apache.activemg ReceivedEventsSinceStartup 2
= uca_ebe ScenarioStatus Running
[l L ActionManager Scenarioshame java.lang.String[1]
G4 Collectar Status Running
(4@ CollectorStats StatusExplanation All Scenarios are running. Flow is disabled.
[1-6@ Dispatcher StatusHistory java.lang.String[3]
[1-6@ Properties_uca_ebc SynchraonizationStatus Mane
[H-63 Server
[ValueFackManager
=k | persistence-example-3.1
@@ ClassLoader
|. DBFlows
| MediationFlows
|, Scenarios
(=1 ValuePack
A
Operations

Figure 21 - Java JMX Console: UCA for EBC Value Pack — Value Pack -
Attributes

Any UCA for EBC Value Pack can be monitored at the Java JMX console
using both attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack that are
shown on the Java JMX console:

Attribute name Settable Explanation

DatelLastReceivedEvent NO The date and time of the last event
received by the Value Pack

FlowPercentage No Percentage of events received by the
Value Pack compared to the total of
events received by the UCA for EBC
Dispatcher

FlowStatus No The status of the Mediation Flow for the
Value Pack, either:

e Unknown

o Disabled
e Inactive
e Failover
e Failed

e Active

e Starting
e Stopping

82

ReceivedEventsSinceSt
artup

ScenarioStatus

ScenariosName

Status

StatusExplanation

StatusHistory

SynchronizationStatus

No

No

No

No

No

No

No

The number of events received by the
Value Pack since start-up

The status of the Scenarios for the Value
Pack, either:

Starting
Running
Degraded
Failed
Stopped

Unknown

The list of scenario names associated
with the Value Pack

The status of the Value Pack, either:

Starting
Running
Degraded
Failed
Stopping
Stopped
NotDeployed

Unknown

A detailed explanation of the status of
the Value Pack

The full history of the Value Pack
statuses, since it was first started

The synchronization status of the Value
Pack, either:

Synchronizing

Synchronized

Table 36 - Java JMX Console: UCA for EBC Value Pack — Value Pack -

Attributes

The following screenshot shows the operations available for a VValue Pack
sub-folder of a UCA for EBC Value Pack at the Java JMX Console:

83

"

|£:| Java Monitoring & Management Console - pid: 8332 org.codehaus.classworlds. auncher start E‘@M

@ valuePackManager
persistence-example-3.1

@ ClassLoader void | reloadaliScenarios | ()

|£/ Connection| Window Help - & X
Overview | Memory | Threads | Classes | vM Summary| MEEBHS‘ sl
. IMImplementation Operation invocation
. com.sun.management
[| connector void resetStatistics | ()
java.lang
. java.util.logging
[#- || javax.management.remate.rmi
[+ |. org.apache.activem
=8 ucga epbc K void | retractAllScenarios | ()
[#- | ActionManager
[+-5@ Collector
@ CollectorStats
oS ¥o0 | _gumpSessonofalscenarios |
@ Properties_uca_ehe dumpSessionOfAllScenarios | ()
@ Server
=-

. DBFlows

[# . MediationFlows
[! Scenarios
(=63 ValuePack

Java.lang.String | deleteallMediationFlows | ()

java.lang.String resynchallMediationFlows | ()

java.lang.String statusAllMediationFlows | ()

Figure 22 - Java JMX Console: UCA for EBC Value Pack — Value Pack -
Operations

The following table lists the operations that can be executed on the UCA for
EBC Value Pack using the Java JMX console:

Operation name Explanation

resetStatistics() Resets the statistics for the Value Pack

retractAllScenarios() Clears the Drools Working Memory of all the
scenarios of the Value Pack

dumpSessionOfAllScenarios() Dumps the Drools Working Memory of all the
scenarios of the Value Pack

reloadAllScenarios() Reloads all rules files of all the scenarios of
the Value Pack

createAllMediationFlows() Creates all the mediation flows associated
with the Value Pack

deleteAllMediationFlows() Deletes all the mediation flows associated
with the Value Pack

resynchAllMediationFlows() Resynchronizes all the mediation flows
associated with the Value Pack

statusAllMediationFlows() Retrieves the status of all the mediation
flows associated with the Value Pack

84

Table 37 - Java JMX Console: UCA for EBC Value Pack — Value Pack -
Operations

5.1.3.3 Monitoring UCA for EBC scenarios

Each scenario of a running UCA for EBC Value Pack has its own sub-folder
at the Java JMX Console, under the “uca_ebc/<value pack name>-<value

pack version>/Scenarios” folder. Each Scenario sub-folder is named after the
Scenario.

The following screenshot shows the attributes available for a Scenario sub-
folder of a UCA for EBC Value Pack at the Java JMX Console:

I N
|:£2] Java Monitoring & Management Console - pid: 8332 org.codehaus.classworlds.Launcher start -— - é@g
|£| Connection Window Help l:l El E

Dverwewl Memoryl‘rhreadsl C\asseslVM Summaryl MEeﬁns‘ S
. IMImplementation Attribute values
. com.sun.management
. connector Name Value
. java.lang ‘Actions_Failed o
. java.util.logging CompressionRate
. javax.management.remaote.rmi Compression_AVC_Compressed
. org.apache.activemg Compression_AVC_EfficiencyPercentage
(= uca_ebc Compression_AVC_Received
|/ ActionManager Compression_SC_Compressed
@ Collector Compression_SC_EfficiencyPercentage
CollectorStats Compression_SC_Received
Dispatcher Filter_DatelastRejectedEvent 2014-04-24 13:04:50.617 +0200
@ Properties_uca_ebc Filter_NumberOfFassedEventsSinceStartup 4
@ Server Filter_NumberOfRejected i artup 0
@ ValuePackManager FlowPercentage 100.0%
[| persistence-example-3.1 LogRules ifalse
@ Classloader Queue_Currentsize 0]
- DBFlows Queue_DateLastHighWaterMark 2014-04-24 13:04:52.006 +0200
. MediationFlows Queue_DatelastPublish 2014-04-24 14:05:05.964 +0200
(= Scenarios Queue_DatelastSubscribe 2014-04-24 14:05:05.964 +0200
=1 com.hp.uca.ebe.vp.examples.pl | [Queue_DateLastZeroed 2014-04-24 14:05:05.964 +0200
[E28A Queue_HighWaterMark 1
[-Operations Queue_HighWaterMarksStillIncreasing Ifalse
@ ValuePack Queue_NumberZeroedSinceLastHighWaterMark 3
Queue_SizeHistory java.lang.String[1]
Queue_TotalObjects 4
Queue_TotalObjectsSincelastHighWaterMark 2
Status Running
StatusExplanation Scenario is running
StatusHistory java.lang.String[2]
'WM_CurrentNumberOfFacts 6
\WM_DatelLastinjectedFact 2014-04-24 14:05:05.964 +0200
\WM_DateLastRemovedFact 2014-04-24 13:04:50.617 +0200
\WM_DateLastUpdatedFact 2014-04-24 14:05:08.226 +0200
\WM_InsertUpdateRetractRate 671.2792501542264
WM_MaxNumberOfFactsSinceStartup 6
WM_MediationSynchronizationFlag ltrue
WM_MediationSynchronizationHistor java.lang.String[2]
umberOfFactsSinceStartup
umberOfRemovedFactsSinceStartup
umberOfUpdatedFactsSinceStartup 21
atchdog_ExpireditemRate 7335.71702230862
—=
Figure 23 - Java JMX Console: UCA for EBC Value Pack — Scenario -

Attributes

Any Scenario of a UCA for EBC Value Pack can be monitored at the Java
JMX console using both attributes and operations.

The following table lists the attributes of any Scenario of a UCA for EBC
Value Pack that are shown on the Java JMX console:

Attribute name Settable Explanation

Actions_Failed No The number of failed actions for the
scenario

Compression_AVC Co NoO The number of AVC (Attribute Value

mpressed Change) events compressed by the
Compression thread

Compression_AVC_Effi NoO The efficiency percentage of the

ciencyPercentage Compression Thread regarding AVC

(Attribute Value Change) events

85

Compression_AVC_Rec
eived

Compression_SC_Com
pressed

Compression_SC_Effici
encyPercentage

Compression_SC_Recei
ved

Filter_DatelL astRejected
Event

Filter_NumberOfPassed
EventsSinceStartup

Filter_NumberOfRejecte
dEventsSinceStartup

FlowPercentage

LogRules

Queue_CurrentSize

Queue_DatelLastHighW

aterMark

Queue_DatelLastPublish

Queue_DatelLastSubscri

be

Queue_DatelLastZeroed

Queue_HighWaterMark

Queue_HighWaterMark
Stillincreasing

No

No

No

No

No

No

No

No

Yes

No

No

No

No

No

No

No

The number of AVC (Attribute Value
Change) events received

The number of SC (State Change) events
compressed by the Compression thread

The efficiency percentage of the
Compression Thread regarding SC (State
Change) events

The number of SC (State Change) events
received

The Date and Time of the last event that
was rejected by the scenario filter

The number of events that passed the
scenario filters since start-up

The number of events rejected by the
scenario filters since start-up

Percentage of events inserted into
Working Memory compared to the total of
events received by the Scenario

Flag (true/false) indicating whether
scenario specific Drools engine logging is
enabled/disable for the scenario

The current size (in number of events) of
the scenario events queue

The date and time of the last high water
mark of the Scenario events queue

Date and time of the last time an event
was added to the Scenario events queue

Date and time of the last time an event
was removed from the Scenario events
queue to be processed

The date and time of the last time the
Scenario events queue was empty

The value of the high water mark of the
Scenario events queue (in number of
events)

Whether the high water mark of the
Scenario events queue is still increasing
or not

86

Attribute name

Queue_NumberZeroedS
inceLastHighWaterMark

Queue_SizeHistory

Queue_TotalObjects

Queue_TotalObjectsSin
ceLastHighWaterMark

Status

StatusExplanation

StatusHistory

WM_CurrentNumberOfF
act

WM_Datel astInjectedFa
ct

WM_DatelL astRemoved
Fact

WM_DatelLastUpdatedF
act

WM_lInsertUpdateRetrac
tRate

WM_MaxNumberOfFact
sSinceStartup

Settable Explanation

No The number of times that the Scenario
events queue was empty since the last
high water mark

No The history of the Scenario events queue
size
No The total number of “objects” that have

been added to the Scenario events queue
since start-up

No The total number of “objects” that have
been added to the Scenario events queue
since the last high water mark

No The status of the Scenario, either:

Starting
Running
Degraded
Failed
Stopped

Unknown

No An explanation for the status of the
Scenario

No The full history of the Scenario statuses,
since it was first started

No The current number of facts in the Drools
Working Memory of the Scenario

No Date and time of the last fact inserted into
the Drools Working Memory of the
Scenario

No Date and time of the last fact removed
from the Drools Working Memory of the
Scenario

No Date and time of the last fact updated in
the Drools Working Memory of the
Scenario

No The rate of operations
(insert/update/retract fact) on the Drools
Working Memory of the Scenario in
operations per second

No The maximum number of facts in the
Drools Working Memory of the Scenario
since start-up

87

Attribute name Settable Explanation
WM_MediationSynchro ~ NO The value of the Mediation
nizationFlag Synchronization Flag:
e True (i.e. the mediation flow is
synchronized)
e False (i.e. the mediation flow is
currently undergoing a
synchronization)
WM_MediationSynchro NO The history of the synchronization status
nizationHistory of the mediation flow
WM_NumberOfFactsSin ~ NO The number of facts that have been
ceStartup inserted into the Drools Working Memory
of the Scenario since start-up
WM_NumberOfRemove NO The number of facts that have been
dFactsSinceStartup removed from the Drools Working
Memory of the Scenario since start-up
WM_NumberOfUpdated NO The number of facts that have been

FactsSinceStartup

Table 38 - Java JMX Console: UCA for EBC Value Pack — Scenatrio -

The following screenshot shows the operations available for a Scenario sub-

updated in the Drools Working Memory of

the Scenario since start-up

Attributes

folder of a UCA for EBC Value Pack at the Java JMX Console:

- 5
| £] Java Monitoring & Management Console - pid: 8332 org.codehaus.classworlds.Launcher start - élﬂlg
|£| Connection| Window Help I:l El IZl
| overview | Memory | Threads | Classes | v summary | MBeans}| ==

\. IMImplementation
|/ COm.sun.management
|| connector
. java.lang
.. java.util.logging
|| javax.management.remote.rmi
org.apache.activemgq
uca_ebc
. ActionManager
6@ Collector
@ CollectorStats
@ Dispatcher
“@ Properties_uca_ebc
@ Server
“@ valuePackManager
|| persistence-example-3.1
@ ClassLoader
-}, DBFlows
- .. MediationFlows
.| Scenarios
= com.hp.uca.ebc.vp.examples.p
-Attributes
@ valuePack

OHEHE-Eaae

DEHnEEnEEs

@@

TEEE

Operation invocation

< | 1 »

0

boolean [l sadRulesFile (po

String)]

void [)

void 0

void | dumpFalledActions _ ()

void | retractFaiedactons | ()
boolean ()

void [dumpSession_| ()

wvoid clearCompressionStats | ()

88

Figure 24 - Java JMX Console: UCA for EBC Value Pack — Scenario -
Operations

The following table lists the operations that can be executed on any Scenario
of a UCA for EBC Value Pack using the Java JMX console:

Operation name Explanation

resetCounters() Resets the statistics for the Scenario

reloadRulesFile(String) Reload a specific Rules File of the Scenario

Parameter 1: The name of the Rules File

retractAll() Clears the Drools Working Memory of the
Scenario

resetStatus() Resets the status of the Scenario

dumpFailedActions() Dump all failed actions for the Scenario

retractFailedActions() Retracts all failed actions from the Drools
Working Memory of the Scenario

reloadScenario() Reloads all rules files of the Scenario

dumpSession() Dumps the Drools Working Memory of the
Scenario

clearCompressionStats() Resets the statistics regarding Compression

Table 39 - Java JMX Console: UCA for EBC Value Pack — Scenario -
Operations

89

Chapter 6

UCA for EBC Advanced
Troubleshooting

6.1 UCA for EBC Logging Mechanism

The UCA for EBC logging feature is based on the log4j technology.

The main application logging mechanism is driven by the setting of the
${UCA_EBC_ INSTANCE}/conf/uca-ebc-log4j.xml log4j configuration
file.

Some other (specific) logging levels can be activated by setting some
properties in the $ {UCA EBC_ INSTANCE}/conf/uca-ebc.properties
file. These additional logging levels are:

e Scenario rule execution log:

That allows logging scenarios rules execution in a dedicated file in
order to help debugging.

e Collector log:
That allows logging all alarms collected in a specific file.

The generated log files are located in the ${UCA EBC INSTANCE}/logs
directory.

Note

Changes to the ${UCA EBC_INSTANCE}/conf/uca-ebc.properties file
require a restart of UCA for EBC Server in order for the changes to be taken
into account.

Changes to the ${UCA EBC_INSTANCE}/conf/uca-ebc-log4j.xml file
require either a reload of the Log4J configuration (through the uca-ebc-admin
command-line tool, or the UCA for EBC User Interface) or a restart of UCA for
EBC Server in order for the changes to be taken into account.

6.1.1 Standard application logging

Application logging is controlled by the
${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xml log4j configuration
file.

The CONSOLE, FILE, and DB appenders are used for controlling application
logging to the console, standard application log file or UCA for EBC User
Interface. The standard application log file is the following (by default):
${UCA_EBC_INSTANCE}/logs/uca-ebc.log

The ${UCA _EBC_ INSTANCE}/conf/uca-ebc-log4j.xml can be
modified to control:

e what kind of events get logged

90

e what is the trace level for each event type (event type are defined
by Java package names)

o where the events are logged (what appenders are used)

The provided ${UCA EBC INSTANCE}/conf/uca-ebc-logdj.xml file
predefines a set of application classes for which the logging can be activated
or not.

6.1.2 Collector logging

The Collector raw logging feature is the possibility to log in a file the exact
alarm list that is received by the collector.

This logging featurecan be enabled/disabled at application start-up by setting
the collector.logger.enabled property to true or false inthe
${UCA EBC INSTANCE}/conf/uca-ebc.properties file.

By setting this property to true all alarms going through the Collector will be
dumped in either one of the following files before any other treatment if done
on the received alarms:

e the ${UCA EBC INSTANCE}/logs/uca-ebc-collector.log file
for alarms that are not rejected by the Collector

e the ${UCA EBC INSTANCE}/logs/uca-ebc-collector-
rejected. 1og file for alarms that are rejected by the Collector

Alarms can be rejected by the Collector for either one of the following
reasons:

¢ The JMS message containing the alarms does not have the proper
body format: the expected JMS message body format expected by
the Collector is Text

e The content of the JIMS message cannot be converted to Alarm objects
because the XML format of the alarms inside the JMS message is not
compliant with the UCA for EBC Alarm format defined in the
${UCA EBC HOME}/schemas/uca-expert-alarm.xsd file

e Collector message validation is turned on (the
collector.messages.validation property is setto true in the
${UCA EBC INSTANCE}/conf/uca-ebc.properties file), and
the alarms in the JMS message received by the Collector failed
validation

Alarms are dumped directly in XML format in the uca-ebc-collector. log
file. On the other hand, the uca-ebc-collector-rejected. log file has
the format of a log file.

6.1.3 Scenario logging

6.1.3.1 Scenario logging

In order to be able to configure how log messages coming from the Scenario
rule files (drl files) are processed (what trace level and appenders are used),
a specific logger must be added to the

${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xml configuration file.

This logger is defined as follows:

91

<logger name="<scenario name>" additivity="false">
<level value="INFO" />
<appender-ref ref="CONSOLE" />
<appender-ref ref="DB" />

</logger>

Where <scenario name> is the name of the scenario for which you want to
configure the logging. The <scenario name> has to be identical to the
<scenario name> defined in the valuePackConfiguration.xml file of
your Value Pack.

The definition of your scenario specific logger can be added to the “Detailed
Traces for Value Pack Scenarios” section of the

${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xml file. This section is
identified by comments in the file.

The following screenshot shows an example of how to configure specific
logging in the uca-ebc-log4j.xml file:

to show

k scenarios.

ario" attribute

ario" additivity="false">

[Fa T v I e - N Y R e
L e R - TR B Sl R I R e]

97 <appender-ref ref="CONSOLE" />
/>

=k </logger>

itivity="fals=">

Figure 25 - Configuring scenario specific logging in the uca-ebc-
log4j.xml file

6.1.3.2 Scenario exceptions logging

It is possible to define a specific logger (one for each scenario) in the
${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xml configuration file for
logging the exceptions thrown in the action part of the rules of a scenario.

By default, these exceptions are logged using the scenario logger as defined
in the previous chapter: 6.1.3.1 “Scenario logging”.

If you want exceptions log messages to be handled by a specific logger
different from the scenario logger, you can define it in the uca-ebc-
log47j.xml configuration file. The logger should be named
“myScenario.exceptions” (change myScenario to the actual name of
your scenario as per the ValuePackConfiguration.xml file).

92

The following screenshot shows an example of how to configure a specific
scenario exception logger in the uca-ebc-log4j.xml file:

<l--

=D, O
4oDomod
o+ 0
g
=
m
o+ o+
[P A
- W
[~
(S|
G, W
5]
o+ Hy b

=
s
-+ E
Jn
+
=)
)
i

<logger name="myScenarioc.exceptions" additivity="false">
<level value="INFO" />
<appender-ref ref="CONSOLE" />
<appender-ref ref="FILE" />
<appender-ref ref="DB" />
</logger>

Figure 26 - Configuring scenario exceptions specific logging in the uca-
ebc-log4j.xml file

In versions of UCA for EBC prior to UCA for EBC V3.1, these scenario
exceptions were logged using either
"com.hp.uca.expert.scenario.internal.ScenarioImpl" or
"com.hp.uca.expert.watchdog.WatchdogThread' loggers depending
on whether the Scenario Thread or Watchdog Thread was executing the rules
when the exception occurred.

With to UCA for EBC V3.1 onward, these scenario exceptions are now logged
to “myScenario.exceptions’.

There’s some commented XML code in the uca-ebc-I1og4j.xml file
delivered with UCA for EBC V3.1 that can be used to easily create a
‘myScenario.exceptions” logger.

Note

& Please refer to section 3.2.3 “uca-ebc-log4j.xml file configuration” to learn
more about the configuration of the ${UCA EBC INSTANCE}/conf/uca-
ebc-log4i.xml file

6.1.3.3 Scenario rule execution logging

Rule execution can be logged per scenario in a dedicated log file. Logging
can be enabled/disabled at application start-up by setting the
engine.logger.enabled property to trueffalse in the

${UCA EBC INSTANCE}/conf/uca-ebc.properties file.

This property controls scenario specific rule execution logging for all
scenarios.

Properties like engine.logger.interval (which controls the interval in
milliseconds at which rule execution information is written to the log file) can
also be set. These properties affect all scenario specific rule execution log
files.

93

Note

¥ Please refer to section 3.2.1 "uca-ebc.properties file configuration”,
especially Table 15 “ - Rule Engine logger properties in the uca-
ebc.properties file”, for more information on how to configure the

${UCA EBC INSTANCE}/conf/uca-ebc.properties file.

Changes to the ${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file
require a restart of UCA for EBC Server in order for the changes to be taken
into account.

Scenario-specific rule execution log files are named

logEngine <scenario name>.log and are located in the
${UCA_EBC_INSTANCE}/logs directory. Scenario-specific engine log files
contain standard Drools engine log entries specific to a scenario.

At runtime, it is also possible to enable/disable scenario specific rule
execution logging for just one scenario by using either the uca-ebc-admin
command-line tool or the Java console.

Below is a screenshot showing how to enable/disable scenario specific rule
execution logging for just one scenario by using the Java console:

| 4| Java Monitoring & Management Console - pid: 6456 com.hp.uca.common.launch.UcaLauncher com hp.uca.expert.engine. Bootstrap |
[£] Connection Window Help _[Ex
Overview | Memory | Threads | Classes | VM Summary | MBeans ==
IMImplementation Attribute values
com.sun. management
Ei- |, connector Name Value
java.lang Actions_Faled o
- java.utiliogging Filter_DateLastRejectedEvent 2012-01-09 17:04:58.852 +0100
(=] Uca_expert Filter_NumberOfRej tup 0
ActionManager FlowPer centage INo Event received
@ Collector LogRules rue
9 Dispatcher LogScenario [false
(3@ MainClassLoader Queue_CurrentSize 0
. My-Correlation-project-1.0 \Queue_Datel astHighWaterMark: 2012-01-09 17:04:58.851 40100
'@ Properties_uca_expert Gueue_DateLastPublish 2012-01-09 17:04:58.851 +0100
@ valuePackManager Queue_DatelastSubscribe 2012-01-09 17:04:58.851 40100
£)} lef-example-0.12 Queue DatelastZeroed 2012-01-09 17:04:58.851 +0100
@ ClassLoader Queus_HighWaterMark 0
1)) Scenarios Queue_HighWaterMarkStilincreasing e
=@ com.hp.uca.expert.vp.lef.grouping. Grouping Queue | elastHight’ k (]
IQueue_SizeHistory java.lang.String[0]
Operations Queve_TotzlObjects o
® com.hp.uca.expert.vp.lef.inactivity.Inactivity | | [Queve_TotalObjectsSinceL astrighWaterMark o
@ com.hp.uca.expert.vp.lef statistical Statistical Status IRunning
@ com.hp.uca.expert.vp.lef. timewait. TimeWait
@ com.hp.uca. expert.up. lef.updown. UpDown Statuskistory [javalang String[2]
@ ValuePack WM_Currenthumber OfFacts la
WM_DateL astimectedract 2012-01-09 17:04:58.652 +0100
WM_DateL astremovedFact 2012-01-09 17:04:58.852 +0100
\WM_DateLastUpdatedFact 2012-01-09 17:04:58.852 +0100
[WM_InsertUpdateRetractRate 0.0
WM_MaxNumber OfFactsSinceStar tup o
WM_MediationsyndhranizationFiag [rue:
WM _MediationSynchronizationHistory ljavaang.String[0]
WM _NumberOfFactsSinceStartup o
(WM_NumberOfRemovedFactsSinceStartup 0
"M _NumberOfUpdatedFactsSinceStartup o

Figure 27 - Java JMX Console: Enabling/Disabling scenario specific rule
execution logging for one scenario

Scenario specific rule execution log files are compatible with the JBoss Rule
Audit feature in Eclipse IDE.

The JBoss Rule Audit panel comes with the JBoss Drools Eclipse plugin. You
can view this panel by selecting the JBoss Drools perspective in Eclipse IDE
as shown below. The JBoss Rule Audit panel should be part of the JBoss
Drools perspective unless it has been removed.

94

8] Droals - Edlipse
File Edit Navigate Searcn Project Run Window Help
e @+ & U B OvAUr FET MO AT Lcivimeow

B Debug &' Java
&= Outline & i)
An outline is not available.

o

Click to activate the
Drools perspective

& g

S

JBoss Rule Audit
panel

/

[£ Problems | I Properties) Audit Ju JUnit| @ Console | 3= Call Hierarchy & lw

4 = Object inserted (5): id=1, t=2009-09-16T12:00:00.000+02:00, e=BOX B1, type=COMMUNICATIONS_ALARM, s=MINOR, ns=NOT_CLEARED, 05=NOT_ACKNOWLEDGED, ps=NOT_HANDLED, ins=t
= Activation created: Rule Any Not I id=1, t=2009-09-16T12:00: +02:00, e=BOX BL, type=COMMUNICATIONS_ALARM. s=MINOR, ns=NOT_CLEARED, 0s=NOT_ACK

4+ # Activation executed: Rule Any Not Acknowledged Alarm a=id =1, 1=2008-08-16T12:00:00.000+02:00, e=BOX B, type=COMMUNICATIONS_ALARM, $=MINOR, ns=NOT_CLEARED, 08=NOT_ACKN

Object updated (5): id=1, 1=2009-09-16T12,00:00.000+02:00, e=BOX B1. type=COMMUNICATIONS_ALARM, s=MINOR, ns=NOT_CLEARED, 05=ACKNOWLEDGED, ps=NOT_HANDLED, ins=tru¢

+ * Object updated (5): id=1, 1=2009-09-16T12:00:00,000+02:00, e=BOX B1, type=COMMUNICATIONS_ALARM, s=MINOR, ns=NOT_CLEARED, 0s=TERMINATED, ps=HANDLED, ins=true, ave="alse, |
= Activation created: Rule Any TO_BE RETRACTED Alarm 1=2009-09-16T12:00:00.000+ 02:00, e=BOX BL, type=COMMUNICATIONS_ALARM, s=MINOR, ns=NOT_CLEARED, os=TERMIN
= Activation created: Rule Any Terminated Alarm a 9-08-16T1200:00.000 +02:00, €=BOX B1, type=COMMUNICATIONS_ALARM, 5= MINOR. ns=NOT_CLEARED, os=TERMINATED, ps

4+ # Activation executed: Rule Any Terminated Alarm a=id=1, 1=2008-09-16T1200:00.000+02:00, &=BOX B1, type =COMMUNICATIONS_ALARM, s=MINOR, ns=NOT_CLEARED, 05=TERMINATED, ps=
= Object inserted (6): id=TEST_END val=true desc=this is the end of the test

4+ # Activation executed: Rule Any TO_BE RETRACTED Alarm a=id=L, t=2003-08-16T12:00:00.000+0200, e=B0X BL. type=COMMUNICATIONS_ALARM, s=MINOR. ns=NOT_CLEARED, 0s=TERMINAT)
= Object inserted (7% id =garbageGo val =true descaGa for garbage collection rule

Figure 28 - Selecting the JBoss Drools perspective in Eclipse IDE by
clicking on the JBoss Drools perspective icon

Alternatively, you can switch to the JBoss Drools perspective by going to the
“Window” -> “Open Perspective” Eclipse IDE top menu, and selecting the
“Drools” perspective, as shown below.

i®] Drools - Eclipse P U ————

File Edit MNavigate Search Project Run Window] Help
9~ A~ & D~ I New Window ¥ v v Gl v

New Edit
[# Package Expl &2 . % Navigatoﬂ T s Eder

% Open Perspective » [Other .

Show View 4

Customize Perspective...
Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives

Mavigation 4

Preferences

-

E Open Perspective

<> CollabNet il
[22CVS Repository Exploring
[3Database Debug

(i Database Development
#5Debug

) Drools |
10 Guvnor Repaository Exploring
& Java

& Java Browsing

#® Java EE (default)

fe!Java Type Hierarchy
%*JavaS[ript

v jBPM

n

| [OK] [Cancel I i

Figure 29 - Selecting the JBoss Drools perspective in Eclipse IDE by
using the Eclipse IDE menus

95

If the Drools Audit panel is hot shown, you can select it by going to the
“Window” -> “Show View” Eclipse IDE top menu, and selecting the “Audit’
view from the Drools group.

@] Drools - Edlipse e —— - - —
File Edit Navigate Search Project Run |Window | Help
i~ @~ & Q- H New Window A - - - el 4 -
f# Package Expl 3 % Navigator| % 7| RS e
: Open Perspective 4
€ Show View r| U Audit
. 2= Call Hierarchy
Customize Perspective... B Console Al Shift+Q, C
SRR e [Declaration Alt+Shift+Q, D
Reset Perspective... @ Javadoc Alt+Shift+Q, J
Close Perspective Ju JUnit
Close All Perspectives % Navigator
., ,| 5 Outline Alt+Shift+Q, O
[Package Explorer Alt+Shift+Q, P
Preferences [Problems Alt+Shift+Q, X
3 Progress
B Properties
) Rules
¥ Tasks
fe Type Hierarchy Alt+Shift+Q, T
Other.. Alt+Shift+Q, Q
E Show View)| 3% |
type filter text
= Data Management =
= Debug
4 = Droals
) Agenda =
Q Audit

) Global Data
@ Process Instance
) Process Instances
) Rules
4 Working Memory
= Google
= Ginmar

[OK] [Cancel I

Figure 30 - Showing the JBoss Drools Audit view in Eclipse IDE

To display the contents of a scenario specific rule execution log file using
Eclipse IDE, you need to load the file inside the Audit panel.

You can open a logEngine_<scenario name>.log file in the Audit panel by
using drap and drop of the file into the Audit panel as shown in the screenshot
below.

[2i Problems | = Properties |) Audit &2 _Ju JUnit| Bl Console| -3 Call Hierarchy = =0

ine_skeletonlog

Figure 31 - Eclipse IDE: Using drag and drop to open a Drools engine
log file in the Drools Audit panel

Alternatively you can open a Drools engine log file in the Drools Audit panel
by clicking on the “Open log” icon of the Drools Audit panel as show below:

96

[Zl Problems | = Properties | £ Audit &3 . Jv JUnit| & Console| "3 Call Hierarchy 5] =

Figure 32 - Eclipse IDE: Using the “Open log” icon to open a Drools
engine log file in the Drools Audit panel

The following screenshot shows an example of how contents of a scenario
specific rule execution log file is displayed in the Audit panel of the Drools
perspective in Eclipse IDE:

~— -— =3
= Drools - Eclipse Platform - o (P
File Edit Navigate Search Project Run Window Help
Qe B-0-Q~ BHEG- BB A Tl G- £ [T D) S
[2_ Problems | = Properties @ Audit £2 EIUn(f B Console =] & ® =8
g g
i 4: 8 Objectinserted (1): <Alarm mlns="http://hp.com/ucafexp laim"><sourceldenti identifier>1230L </identif lass>BOX: "
= Activation created: Rule Store not cleared Alarm a=<Alarm xmlns="http://hp.com/uca/expert/xT33Alamm"> <sourc i identifier>1230L < /identfi ud
S| 4 = Objectinserted (2): <Alarm xmins="http://hp.comy/uca/expert/T33Alam’> <sourceldenti id 12302« /identfi lass>BOK</
= Activation cancelled: Rule Store not cleared Alarm a= <Alarm xmins="http://hp.com/uca/exp Jarm'" ¢sourc 4/sourc identifier-12301</identifier> <originatingManage| &
4 n Objectinserted (3): <Alarm xmlns="http://hp.com/ucafexpert/xT33Alam" > <sourc dentifier-12303+</identif lass=>BOX/ E; I
= Activation created: Rule Store not cleared Alarm a= <Alarm xmins="http://hp.com/ pert/xT33 Alarm' "> <sourc itier> src</ identifier>12303¢/identifi
a 0 Qbjectinserted (4): <Alarm xmins="http://hp.com/uca/expert/T33Alam" > <sourc identifier-12304</identfi lass>BOK:
= Activation created: Rule Store clearance a= <Alarm xmlns="http://hp.com/uca/expert/sT33Alzrm"> <sourcy i ourceldenti dentifier»12304</identif Cla
Activation evecuted: Rule Store clearance a=<Alarm xmins="http://hp.com/ucatexp larm"» <sourceldenti identifier-12304< /identifier= < originatingManagedEntityClass|
4 n Objectinserted (5): <Alarm xmins="http://hp.com/ucaexpert/xT33Alarm" > < sourc identifier-12305+/identif lass=BOX/
= Activation created: Rule Store not cleared Alarm a=<Alarm xmins="http://hp. D larm"> ¢sourcs src<) dentifier>12305¢/identif
4 ® Objectinserted (6): <Alarm xmins="http://hp.com/s D larm" > <sourcs i identifier>12306+/identif lass>BOK:
¢ Activation cancelled: Rule Store not cleared Alarm a= <Alarm xmins="http://hp.com/uca/expert/xT33Alarm" > <sourc </sourc ier> <identifier>12305</identifier> < originatingManage
4 % Activation executed: Rule Store not cleared Alarm a=<Alarm xmlns="http://hp.com/uca/expert/x733Alarm"> < identifier>12303+/identifier<ori
4 n Object inserted (7): <Alarm xmins="http://hp.com/uca/ I identifier>12307 < fidentifiers lass= BOX/
= Activation created: Rule Store not cleared Alarm a=<Alarm xmins="http://hp.com/uca/expert/xT33Alam"> <sourc dentifier=12307 < /identifiers < oniginatingManag
Activation executed: Rule Store not cleared Alarm a=<Alarm xmlns="http://hp.com/) pert/xT33Alarm "> < identifier>12307< fidentifiers < ori
« . }
s s Q

Figure 33 - Eclipse IDE: Viewing scenario rule execution logs

Scenario specific rule execution log files contain Drools rule activation
information in addition to the insertion/update/deletion of objects in Drools
working memory.

Besides the Audit panel, the Drools perspective in Eclipse IDE also provides
the Agenda and Working Memory panels which give information on the
planned rule execution schedule (Agenda panel) and the list of all the objects
in the Working Memory (Working Memory panel) of a Drools Engine.

You can select the Agenda or Working Memory panels by either switching to
the Drools perspective or going to the “Window” -> “Show View” Eclipse IDE
top menu, and selecting the “Agenda” or “Working Memory” view from the
Drools group, as shown below.

97

1@ Drools - Eclipse - - . -
File Edit Mavigate Search Project Run |Window | Help
il O~ & 9~ B New Window & - Gl wioow -
New Edit
f# Package Expl & ™% Navigator| T2 T = or
: Open Perspective 4
& Show View »| 9 Agenda
O Audit
Customize P tive..
ustomize Perspective % call Hierarchy
Save Perspective As.. B Console Alt+Shift+Q, C
Reset Perspective. E Declaration Alt+Shift+Q, D
Close Perspective @ Javadoc Alt+Shift+Q,)
Close All Perspectives Ju JUnit
Navigation o & |
8= Outline Alt+5hift+Q, O
Preferences ¥ Package Explorer Alt+Shift+Q, P
[0 Problems Alt+Shift+Q, X
=3 Progress
= Properties
2 Rules
¥ Tasks
s Type Hierarchy Alt=Shift+Q, T
) Working Memory
Other... Alt+Shift+Q, Q

Figure 34 - Showing the JBoss Drools Agenda or Working Memory view
in Eclipse IDE

The Drools Agenda and Working Memory views are useful in debug mode in
Eclipse, for example, when running the JUnit tests of a Value Pack in debug
mode in Eclipse. You put breakpoints in either the rules or java code of a
Value Pack (by double-clicking left of the line number of a line of rules or java
code) then execute the JUnit tests of a Value Pack in debug mode by right-
clicking on the JUnit test file and selecting the “Debug As” -> “Drools JUnit
Test” context menu item, as shown below

getProducer() . sendAlarms (ALARM_FILE);

waitingForTheEndTe Open Declaration
Open Type Hierarchy
Open Call Hierarchy

Show in Breadcrumb
Quick Outline

Quick Type Hierarchy
Open With

Show In

closeRuleLogFiles(

checkTestResult(82 copy ualified Name
LogHelper.exit(log Foste
} Quick Fix
¥ Source
Refactor
Local History

2. Problems = Properties| Q) Audit| 0 |
References
Declarations

& Add to Snippets..

Run As

Debug As
Profile As
Validate

Team

Compare With
Replace With
Google

Preferences.

3 [0*SECOND);

F4
Ctri+AlteH
Alt+Shift+B
Ctrl+0
Ctri+T

B

Alt+Shift+W »
k

Ctri+V
Ctri+1
Alt+Shift+S*
Alt+Shift+T»

B

' L Call Hierarchy

5 1Debug on Server
} 2 Drools Junit Test

3 JUnit Test

4 Web Application
5 Web Application (running on an external server)

Debug Configurations...

}
} Insert 29:8

R oW

Alt+Shift+D, R

Alt+Shift+D, T

Figure 35 - Running a JUnit Test of a Value Pack in debug mode in
Eclipse IDE

The execution will pause once the first breakpoint is encountered. Once the
execution is paused you can inspect the contents of the Drools Working
Memory by looking at the Working Memory panel, as shown below:

98

B Console | ¥ Tasks -3¢ Call Hierarchy | &) Working Memory 2 . ©) Agenda

» a [0]= SynchronizationFlag (id=5849)

» & [1]= Alarm (id=5850)

& [2]=TickFlag (id=5851)

» a [3]= GarbageCollectionFlag (id=5852)
& [4]= AsyncActionFlag (id=5853)

Figure 36 - Sample view of the Drools Working Memory panel in Eclipse
IDE

The Drools Working Memory panel gives information on the list of all the
objects in Working Memory: Alarms, Flags, custom objects, ...

You can also inspect the Drools Agenda by looking at the Agenda panel, as
show below:

By Agenda View X Waorking Memory View | Global Data View +h]

=l & MAIN[focus] = AgendaGroupImpl (id=1123)
SRFS (] = Agendaltem (id=1196)
+ & ruleMame= "Sample rule”

+ & message= "Dearest user 1™

Figure 37 - Sample view of the Drools Agenda panel in Eclipse IDE

The Drools Agenda panel gives information on the planned rule execution
schedule.

Note

The Drools perspective in Eclipse IDE is provided by Drools plug-in for
Eclipse.

For more information on how to install the Drools plug-in for Eclipse IDE
please refer to: [R2] HP UCA for Event Based Correlation Value Pack
Development Guide

6.1.4 Drools logging

6.1.4.1 Configuring the log for Working Memory Agenda and Event
Listeners

Inthe ${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xml Log4]
configuration file for UCA for EBC, you can configure the log level and
appender references for two classes that monitor Drools Engine Agenda and
Drools Working Memory for all the scenarios of all the Value Packs running
on UCA for EBC.

You can configure the log for these two classes by updating the following
section in the ${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xml Log4J
configuration file:

99

zuw COPPTHUTLTLITL LTI LAaOwLE

269 <appender-ref ref="FILE" />

270 <appender-ref ref="DB" />
271 </logger>
272§ <logger name="com.hp.uca.expert.engine.rulesession.WMAgendaEventListener”

273 addi ="false">

274 <level valus="DEBUG" />

275 <appender-ref ref="COMNSOLE"™ />

276 <appender-ref ref="FILE" />

277 <appender-ref ref="DB" />

278 </logger>

279

280 <logger name="com.hp.uca.expert.engine.rulesession.WMEventListener"”
281 addi ="false">

282 <level valus="DEBUG" />

283 <appender-ref ref="CONSOLE"™ />

284 <appender-ref ref="FILE" />

285 <appender-ref ref="DB" />

286 </logger>

287

288 <logger name="com.hp.uca.expert.lifecycle.LifeCyclelnalysis"
289 a

2390 L

281 sareean Aav_waf waFf=0rrdISnT BT S

Figure 38 - Configuring the log for Working Memory Agenda and Event
Listeners

Setting the log level to DEBUG for the WMAgendaEventListener will add log
messages to the log(s) every time the Agenda of the Drools Engine of a
Scenario is updated, i.e. when:

¢ Rule activations are created
¢ Rule activations are canceled
e Before rules are fired

e After rules are fired

Setting the log level to DEBUG for the WMEventListener will add log
messages to the log(s) every time the Working Memory of the Drools Engine
of a Scenario is updated, i.e. when:

e Objects are inserted into Working Memory
e Objects are updated in Working Memory

o Objects are retracted from Working Memory

Note

6.1.5 Enabling these logs can be complementary to using
the scenario specific Drools engine logs that are
described in section: 6.1.2 “Collector logging

The Collector raw logging feature is the possibility to log in a file the exact
alarm list that is received by the collector.

This logging featurecan be enabled/disabled at application start-up by setting
the collector.logger.enabled property to true or false inthe
${UCA EBC INSTANCE}/conf/uca-ebc.properties file.

By setting this property to true all alarms going through the Collector will be
dumped in either one of the following files before any other treatment if done
on the received alarms:

e the ${UCA EBC INSTANCE}/logs/uca-ebc-collector.log file
for alarms that are not rejected by the Collector

100

e the ${UCA EBC INSTANCE}/logs/uca-ebc-collector-
rejected. log file for alarms that are rejected by the Collector

Alarms can be rejected by the Collector for either one of the following
reasons:

¢ The JMS message containing the alarms does not have the proper
body format: the expected JMS message body format expected by
the Collector is Text

¢ The content of the JIMS message cannot be converted to Alarm objects
because the XML format of the alarms inside the JMS message is not
compliant with the UCA for EBC Alarm format defined in the
${UCA EBC HOME}/schemas/uca-expert-alarm.xsd file

e Collector message validation is turned on (the
collector.messages.validation property is setto true inthe
${UCA EBC INSTANCE}/conf/uca-ebc.properties file), and
the alarms in the JMS message received by the Collector failed
validation

Alarms are dumped directly in XML format in the uca-ebc-collector. log
file. On the other hand, the uca-ebc-collector-rejected. log file has
the format of a log file.

Scenario logging”

6.2 Managing the Drools engine(s)

Each scenario has its own Drools rule engine for processing the Drools rules
defined in the rules files of the scenario. The following operations can be
performed on the working memory of a scenario, without having to restart
either UCA for EBC or any Value Pack:

e Dumping the Working Memory
e Clearing the Working Memory

¢ Reloading the Rules

6.2.1 Dumping the Working Memory

Dumping the Working Memory of a scenario dumps the complete list of object
(Facts) currently in the working memory of a Scenario to the log(s).

Dumping the Working Memory of a scenario can be performed using the Java
JMX Console at the Scenario level by going to the “MBeans” tab of the Java
Console and navigating to the “uca_ebc/<value pack name>-<value pack
version>/scenarios/<scenario name>/operations” folder.

The following screenshot shows how to dump the working memory at the
scenario level:

101

|£| Connection Window Help I:IEHII
=i

Overview | Memory | Threads | Classes | vM Summary| MBeans

_ Action Operation invocation
IMImplementation

. com.sun.management void [resetCounters | ()

. connector
. java.lang
. java.utillogging

Jaanansgenent renotem b00lean [cloackulestile | (po| stwng)

uca_ebc

D HEEeEEe

=

|, ActionManager

@ Dispatcher retractAll | ()
@ Properties_uca_ebc

@ Server

@ valuePackManager

) pd-example-3.0-5P2 void [resetstatus | ()

@ ClassLoader
. MediationFlows

oE®

Scenarios

=@ com.hp.uca.expert.vp.pd.Probl void [dumpFailedActions | ()

Attributes

(Operations

@ valuePack

void | retractFailedactions | ()
void [clearcompressionstats | ()
bl 0

w0 [_ampsessen | ()

< I | »

Figure 39 - Java JMX Console: Dumping the working memory of a
Scenario

Dumping the Working Memory of a scenario can also be performed at the
UCA for EBC User Interface in the Scenario / Monitoring panel, as shown in
the following screenshot:

WG] ——— - i [|

UCA for EBC - pd-example-3.0-...

wep ~ S

ﬁ/] UCA for Event Based Correlation

‘pd-example.3 0.5P2 > Valse Pack > Uonkoring “

~n Monitoring. . Configuraion Troubleshooting |
|

|

~ 8 Value Pack : pd-example-3.0-5P2
| o @ Al Scnerion s roming Stop | Resychronze
Xl

Scenarios List
Scensro Status Status Explanation Actons

‘comPp.ucs expert vp.pd ProdlemDetection © scemromrnong Dump WM | | Clear WM | [Reload | |Reset Status

Mediton Flows List |

Wedaton Fows Status. Status Explanaton Actons
Flowt @ awe Stop. |Resynchronize
o @ A Stop. |Resynchronize
Fiowd © Ao stop_ |Resynchronze

B ™8 (7] 04.18:45 Notification: ValuePack pd-exampie-3.0-SP2 : Running

Figure 40 - UCA for EBC User Interface: Dumping the working memory
of a scenario

Note

%~ For more information on the UCA for EBC User Interface, please refer to:

[R3] HP UCA for Event Based Correlation User Interface Guide®~ For more

information on how to dump the working memory of a scenario using the Java
JMX Console, please see the section: 5.1.3.3 “Monitoring UCA for EBC
scenarios”

102

6.2.2 Clearing the Working Memory

Clearing the Working Memory of a scenario can be necessary at times when
you want to start fresh with your scenario. This operation may or may not be
followed by a resynchronization of the mediation flow of the Value Pack that
the scenario belongs to, in case you need you scenario to receive the current
list of events (Alarms) from the mediation layer or not.

Cleaning the Working Memory of a scenario can be performed using the Java
JMX Console at the Scenario level by going to the “MBeans” tab of the Java
Console and navigating to the “uca_ebc/<value pack name>-<value pack
version>/scenarios/<scenario name>/operations” folder.

The following screenshot shows how to clear the working memory at the
scenario level:

x

£l Connection Window Help - =

Overview | Memory | Threads | Classes | vM summary| MBeans =l=
Action Operation invocation
IMImplementation
com.sun.managemert void 0

connector
java.lang
java.util.logging

Iovsemanagerent remite.mi boolean [~ qioadRulestie | (po| swng)

uca_ebc
ActionManager

T 6 - B B

@ Collector
Dispatcher void [retractall | ()
Properties_uca_ebc

@ Server

[+ ValuePackManager

- L pd-example-3.0-5F2 void [resetStatus | ()

@ ClassLoader
MediationFlows
= | Scenarios
= com.hp.uca.expert.vp.pd.Frob
Attributes

void [dumpFailedActions | ()
pe
F-@ ValuePack
void | retractFailedActions | ()
void [clearCompressionStats | ()
= [¢

0 aumpsesmen |0

<= 11l J 3

Figure 41 - Java JMX Console: Clearing the working memory of a
Scenario

Cleaning the Working Memory of a scenario can also be performed at the
UCA for EBC User Interface in the Scenario / Monitoring panel, as shown in
the following screenshot:

103

[T =

Logout | Hep ~|SELE

po-example-3.0-5P2 > Value Pack > Wonitoring

~ h Henitoring Configuration Troubleshooting

P
-~ & Stop | |Resynchronize

v

Status Status Explanation Actions.
comhp.uca.expert.vp.pd ProblemDetection @ Scenario s unning Dump VWM | |Clear WM | | Reload | |Reset Status

Mediation Flows List

Mediation Flows

)

0006

us Status Explanation Actions.
Flow1 Active. Stop | [Resynchronize
Flow2 Stop | [Resynchronize

Flow3 Active. Stop | [Resynchronize

B ™)) 04:18:45 Notification: ValuePack pd-example-3.0-SP2 : Running

Figure 42 - UCA for EBC User Interface: Clearing the working memory of
a scenario

Note

¥~ For more information on the UCA for EBC User Interface, please refer to:

[R3] HP UCA for Event Based Correlation User Interface Guide® For more
information on how to clear the working memory of a scenario using the Java
JMX Console, please see the section: 5.1.3.3 “Monitoring UCA for EBC
scenarios”

6.2.3 Reloading the rules

Each scenario of a Value Pack contains a list of Drools rules files or Drools
template rules files (template rules file are similar to standard rules file but
use an extra parameters file).

Each and all of the rules files (and template rules files) can be modified at
runtime and reloaded without restarting UCA for EBC or any individual Value
Pack so that the new rules files get used right away in the Drools engine of
the scenario.

The process for reloading the rules files is the following:

o Update the rules files, template rules files, and template parameters
files as you wish in the deployment directory of the Value Pack:
${UCA EBC INSTANCE}/deploy/<value pack name>-<value
pack version>

¢ Reload the rules of a scenario using either the uca-ebc-admin
command-line tool (with the -r or --reload option), the Java JMX
Console or UCA for EBC User Interface

Reloading the rules of a scenario can be performed using the Java JMX
Console at the Scenario level by going to the “MBeans” tab of the Java

104

Console and navigating to the “uca_ebc/<value pack name>-<value pack
version>/scenarios/<scenario name>/operations” folder.

The following screenshot shows how to reload rules files at the scenario level:

4] Connection Window Help

=

erview | Memory | Threads | Classes | vM Summary| MBeans

&

=

Action

IMImplementation
com.sun.management
connector

java.lang

java.util.logging
javax.management.remote.rmi
org.apache.activemq

DEEEEHEED o

uca_ebc
ActionManager
(@ Collector
Dispatcher
Praperties_uca_ebc
Server
ValuePackManager
(=44 pd-example-3.0-5F2
@ ClassLoader
MediationFlows
Scenarios
(= com.hp.uca.expert.vp.pd.Probl
[-Attributes
:

@ ValuePack

e THE

< 1}] b

Operation invocation

ot [rsmacantrs |
boolean (p0 String)
vod [retracall | ()
vod [resetStatus | ()
0
vod [retractraledactions | ()
" mesceeressiosieg] ()
boolean 0

8 dmpsesson |0

Figure 43 - Java JMX Console: Reloading the rules of a Scenario

The same operation can be performed for all the rules files of all scenarios of

one Value Pack, as shown in the following screenshot:

|£l Connection Window Help

overview | Memory | Threads | Classes | v summary| MBeans

Action

. IMImplementation

. com.sun.management

connector

java.lang

java.util.logging

javax.management.remote.rmi

org.apache.activemq

uca_ebc
ActionManager

@ Collector

@ Dispatcher

@ Properties_uca_ebc

@ Server

@ ValuePackManager
pd-example-3.0-SP2

@@ ClassLoader

MediationFlows

Scenarios

(=@ ValueFack
[+-Attributes

[T BB B B

O & HEEE

Operation invacation

void | resetStatistics | ()

void | retractAllScenarios | ()

void | dumpSessionOfallScenarios | ()

void | reloadaliScenarios | ()

prry 175 [osmrssiorion]

prtry 15 [sismion

ity 15 [oibtasmtions |

ity 15 [g

Figure 44 - Java JMX Console: Reloading the rules of all Scenarios of a

Value Pack

Reloading the rules of a scenario can also be performed at the UCA for EBC
User Interface in the Scenario / Monitoring panel, as shown in the following

screenshot:

105

ﬁﬁ.w UCA for Event Based Correlation

p-example-3.0-5P2 > Value P

~ Monitoring Gonfiguration Troubleshooting

~ B Value Pack: pd-example-3.0-5P2
& @ 41 scenarios are running o Stop | [Resynchronize

Sl

Scenario Status Status Expianation Actions.

comhp.uca.expert vp pd roviemDetecton @ scenerio s raning Dump WM | [Clear Wt | | Reload || Reset Status

nnnnnn

Active Stop| [Resynchronize

Active Stop | |Resynchronte

00

— @ e Stop | |Resynchronte

1™ () 04:18:45 Notification: ValuePack pd-example-3.0-SP2 : Running

Figure 45 - UCA for EBC User Interface: Reloading the rules of a
Scenario

Note

¥~ For more information on the UCA for EBC User Interface, please refer to:

[R3] HP UCA for Event Based Correlation User Interface Guide® For more
information on how to reload the rules of a scenario using the Java JMX
Console, please see the section: 5.1.3.3 “Monitoring UCA for EBC scenarios’

¥~ For more information on how to reload the rules of a scenario using the

uca-ebc-admin command-line tool, please see the section: 2.2.3 “uca-ebc-
admin”

6.3 Managing the flows and actions

6.3.1 Managing the DB flows

Each Value Pack can have one or more DB flows associated with it. Each DB
flow represents a flow of events (Alarms) coming from a DB and going into
the Value Pack and its scenarios.

DB flows are defined at the Value Pack level. All Scenarios of a Value Pack
share the same DB flows.

6.3.1.1 Managing individual DB flows

The following operations can be performed on individual DB flows, without
having to restart neither UCA for EBC nor the Value Pack (each operation
only affects one DB flow):

e Start a DB flow (available in Java Console and UCA for EBC GUI)
e Stop a DB flow (available in Java Console and UCA for EBC GUI)

106

e Check the status of a DB flow (available in Java Console only)

¢ Resynchronize a DB flow (available in Java Console and UCA for EBC
GUI)

The following screenshot shows how to perform these operations on
individual DB flows using the Java console:

-

|£ | Java Monitoring & Management Console - pid: 9756 org.codehaus.classworlds.Launcher start { =HICT g
|£/|Connection| Window Help

= = X
‘ []rverwewl Memory | Threadsl Classesl WM Summaryl MBEE"S‘ =il

IMImplementation
/ Com.sun.management [
. connector java.lang.String | gtart | ()
. java.lang
Jjava.util.logging
Jjavax.management.remote.rmi
. org.apache.activemq
uca_ebec

Operation invocation

- B R

-G - e

. ActionManager '
@ Collector
@ CollectorStats
@ Dispatcher
@ Properties_uca_ebc
@ Server
@ valuePackManager
. persistence-example-3.1
@ ClassLoader
[}~ |/ DBFlows
. =28 scenarioDBFlow
: [F-Attributes
{Operations]

MediationFlows java.lang.String -status 0
Scenarios

[03 ValuePack

java.lang.String stop | () |

java.lang.String 0

Figure 46 - Java JMX Console: Performing operations on a single DB
flow

It is possible to start, stop, and resynchronize DB flows using the UCA for
EBC User Interface as shown in the following screenshot:

107

. . S— - .

Ji-UCA for EBC - perslstence-’example-i1/... <r | P - -
€ | @ localhost:8888/uca #persistence-example-3.1L.VALUE_PACK:MONITORING ¢ ||B- Google PAl- + & OB 3
] Welcome: admin (Adminiss tep - =1
ﬁ;? UCA for Event Based Correlation
persistence-example-3.1 = Value Pack > Monitoring
~ 4 UCA-EBC.default G T i e-exam
v I persistence-exam Value Pack : persistence-example-3.1
43 Value Pack € 4 scenarios are running. Flowis disabled Stop | |Resynchronize

@ com.hp.uca.et

Scenarios List

Scenario Status Status Explanation Synchro Status Actions

com.np.uca.ebcvp.examples persistence.Simplesc @) Scenarioisrunning (@) Dump WM |Clear WM | |Reload | |Reset Status
[
| Flows List

Flows Source Status Status Explanation Synchro Status Actions

temipFlaw I @ nacwe "] Resynchronize

scenariaDBFlow B @ v @ Stop | [Resynchronize

™91 | 04:34:33 User "admin” logged-in
x

Q) 00%

——- —_—,——— .

Figure 47 - UCA for EBC User Interface: Performing operations on a
single DB flow

6.3.2 Managing the mediation flows

Each Value Pack can have one or more mediation flows associated with it.
Each mediation flow represents a flow of events (Alarms) coming from the
mediation layer and going into the Value Pack and its scenarios.

Mediation flows are defined at the Value Pack level. All Scenarios of a Value
Pack share the same mediation flows.

6.3.2.1 Managing the mediation flows at the value pack level

The following operations can be performed on the mediation flows of a Value
Pack at the Value Pack level, without having to restart neither UCA for EBC
nor the Value Pack (each operation affects all the mediation flows of the
Value Pack at once):

e Create all the mediation flows (available in Java Console, and uca-ebc-
admin tool)

e Delete all the mediation flows (available in Java Console, and uca-ebc-
admin tool)

e Resynchronize all the mediation flows (available in Java Console, uca-ebc-
admin tool and UCA for EBC GUI)

e Check the status of all the mediation flows (available in Java Console, and
uca-ebc-admin tool)

108

The following screenshot shows how to perform these operation on the
mediation flows at the value pack level using the Java console:

|£ Connection Window Help _ 5 x

Overview | Memory | Threads | Classes | vM Summary| MBeans =l=
Action Operation invocation
. IMImplementation
com.sun.management void 0
connector
java.lang
java.utillogging
javax.management.remote. rmi -
) org.apache.activemq 0
uca_ebe
ActionManager
@ Collector
e
£ Propetes cn_obe v 0
@ Server
@ valuePackManager
= 1. pd-example-3.0-5F2
[#}® ClassLoader woid)
MediationFlows
[+ Scenarios
(=@ ValuePack
Attributes

freiors 3 | capuntmassioions | ()

50 saavimessorions |

5005 (conasiisssorios |

500 | sttt |

Figure 48 - Java JMX Console: Performing operations on mediation
flows at the Value Pack level

Resynchronizing the mediation flows is the only operation that can be
performed at the value pack level on the mediation flows of a value pack
using the UCA for EBC User Interface as shown in the following screenshot:

[t — - — - - o ()]

7 UCA for EBC - pd-example-3.0-... | +

Logout Hep ~|=HE

ﬁﬁ. UCA for Event Based Correlation
pd-example-3.0-5P2 > Value Pack > Monitoring
A H Manitoring. Configuration Troubleshooting
A8 Value Pack : pd-example-3.0-5P2
~ R @ 21 scenarios are running Stop | |Resynchronize
R
Scenarios List
Scsnario Status Status Expianaton Actons |
comhp.uca.expert.vp.pd.ProblemDetection @ scenario s running Durmp WM | |Clear WM | |Reload | |Reset Status

Mediation Flows List

Nediation Flows. Status Status Explanation Actions

Flow1 @ Ace Stop | Resynchronze
Flow2 @ e Stop | |Resynchronize
Flow3 [Stop | |Resynchronize

M ™[] 03:19:54 Notification: ValuePack pd-example-3.0-SP2 - Running

Figure 49 - UCA for EBC User Interface: Resynchronizing the mediation
flows of a Value Pack

Resynchronizing the mediation flows of a Value Pack can be necessary at
times when you want to start fresh with your Value Pack and all its scenarios.

Mediation flows at defined at the Value Pack level in the
ValuePackConfiguration.xml file of the Value Pack. Each Value Pack
has its own mediation flows. As a consequence, resynchronizing the
mediation flows of a Value Pack only affects the one Value Pack. All other
Value Packs remain unaffected by the resynchronization.

109

When the mediation flows of a Value Pack are resynchronized, all the
scenarios will receive the current list of events (Alarms) coming from the
mediation layer. Usually, a resynchronization of the mediation flows is
preceded by an operation to clear the Working Memory of all the scenarios of
the Value Pack, so that:

e events (Alarms) are not duplicated in Working Memory, especially for
scenarios that are in STREAM mode

¢ all scenarios can start fresh with both the complete current list of event
from the mediation layer and an empty Working Memory

Note

¥~ For more information on the UCA for EBC User Interface, please refer to:

[R3] HP UCA for Event Based Correlation User Interface Guide® For more

information on how to resynchronize the mediation flow for a value pack,
please see the section: 5.1.3.2 “Monitoring UCA for EBC value packs”

6.3.2.2 Managing individual mediation flows

The following operations can be performed on individual mediation flows,
without having to restart neither UCA for EBC nor the Value Pack (each
operation only affects one mediation flow):

e Start a mediation flow (available in Java Console, uca-ebc-admin tool and
UCA for EBC GUI)

e Stop a mediation flow (available in Java Console, uca-ebc-admin tool and
UCA for EBC GUI)

e Check the status of a mediation flow (available in Java Console, and uca-
ebc-admin tool)

e Resynchronize a mediation flow (available in Java Console, uca-ebc-admin
tool and UCA for EBC GUI)

¢ Display the configuration of the mediation flow (as XML text) (available
only in Java Console)

¢ Display the status/output of the last action (either CreateFlow,
DeleteFlow, StatusFlow or ResynchronizeFlow) performed on the
mediation flow (available only in Java Console)

¢ Display the status/output of the last CreateFlow action performed on
the mediation flow (available only in Java Console)

o Display the status/output of the last DeleteFlow action performed on
the mediation flow (available only in Java Console)

¢ Display the status/output of the last StatusFlow action performed on the
mediation flow (available only in Java Console)

¢ Display the status/output of the last ResynchronizeFlow action
performed on the mediation flow (available only in Java Console)

110

The following screenshot shows how to perform these operations on
individual mediation flows using the Java console:

% Connection Window Help

Overview | Memory | Threads | Classes | v Summary| MBEEHS‘

[-[=]l=]
=i

1. Action
. IMImplementation
| com.sun.management
. connectar
java.lang
| java.util.logging
| javax.management.remote.rmi
. org.apache.activemq
ca_ebc
ActionManager

@ Properties_uca_ebc

@ Server

@ ValuePackManager

| pd-example-3.0-5F2

@ ClassLoader

(L) MediationFlows
B®

=]

Scenarios
ValuePack

Operation invocation

E
java.lang.String

java.lang.String

java.lang.String

java.lang.String 0
java.lang.string | icplayMediationFlowixML | ()
java.lang.String | displayLastActionStatus | ()

java.lang.String

displayLastCreateFlowActionStatus] ()

java.lang.String

displayLastDeleteFlowActionStatus])

java.lang.String

displayLastStatusFlowActionStatus] ()

java.lang.String

displayLastResynchFlowActionStatus] ()

Figure 50 - Java JMX Console: Performing operations on a single

mediation flow

It is possible to start, stop, resynchronize, as well as view the status of
individual mediation flows using the UCA for EBC User Interface as shown in

the following screenshot:

(T

{71 UCA for EBC - pd-example-3.0-...

S —_——

pd-example-3.0-SP2 > Value Pack > Wontoring

-— IR ——-——-@[@g

Welcome: admin (Administrator)

UCA for Event Based Correlation

Logout

Hep | =01

~ # . Monitoring Configuraion Troubleshaating
2K Value Pack : pd-example-3.0-SP2
N) @ The alarm flow is not active (see traces for detaik). Stop | [Resynchronize
)
Scenarios List
Scenario Status Status Explanaton Actions:
com.hp.uca.expert vp.pd. ProblemDetection @ scenerosmuming Durmp WM | Clear Wi | [Reload | [Reset Status
I

Mediation Flows List

Medistion Flows.

Flowt

Flow2

Flow3

otification: Valuel

Status Status Explanation Actions
@ ree Start
© o Stop | [Resynchrontze

(~] Active Stop

Resynchronze

111

Figure 51 - UCA for EBC User Interface: Performing operations on a
single mediation flow

6.3.3 Managing actions

Actions are executed by the mediation layer. Each action is associated with
the scenario that started the action.

6.3.3.1 Dumping Failed Actions

As actions are executed by the mediation layer, dumping the list of failed
actions for a Scenario can be of great help while investigating issues
regarding the mediation layer at the Scenario level.

The list of failed actions can be dumped in the log files (depending on your
Log4J configuration). The log files can be viewed directly on the file system in
the ${UCA EBC_ INSTANCE}/logs directory using any text editor. The log
files can also be viewed at the UCA for EBC User Interface in the
Troubleshooting/Logs panel.

Dumping failed actions can only be performed using the Java JMX Console at
the Scenario level by going to the “MBeans” tab of the Java Console and
navigating to the “uca_ebc/<value pack name>-<value pack
version>/scenarios/<scenario name>/operations” folder.

The following screenshot shows how to dump failed actions at the scenario
level:

|£| Connection Window Help - &

x

Overview | Memory | Threads | Classes | vM Summary| MBeans| =

Action Operation invocation
JMImplementation
com.sun. management void [~ resetCounters | ()
connector

. javalang

. java.util.logging

javax.management.remote.rmi boolean [_poogrulesriie | (po String)
org.apache activemq

uca_ebc

[HEH

ActionManager

3
(@@ Collector .

® Dispatcher void 0
‘@ Properties_uca_ebc

@ Server

@ ValuePackManager -

= 1 pd-example-3.0-5P2 resetStatus | ()

@ ClassLoader
MediationFlows
Scenarios _

6@ com.hp.uca.expert.vp.pd.Frobl void 0
Attributes

[+ ValuePack

TEE

void | rotractFailedActions | ()
wvoid [gaarCompressionstats | ()
0

w04 Lampsesson |0

L | »

Figure 52 - Java JMX Console: Dumping Failed Actions for a Scenario
Note

¥~ For more information on how to dump failed actions for a scenario,
please see the section: 5.1.3.3 “Monitoring UCA for EBC scenarios”

6.4 UCA for EBC Performance analysis

Through the Java JMX interface, UCA for EBC provides event rate
measurements that help when analyzing the performance of a UCA for EBC
solution.

112

This “Dispatcher Rate” measure is the average event rate of UCA for EBC (in
events per second) since start-up.

This measure is available by going to the “MBeans” tab of the Java Console
and navigating to the “uca_ebc/Dispatcher/attributes” folder:

|£/ Connection Window Help

= & x
‘ Dverwewl Memnrlehreadsl C\asseslVM Summarﬂ MEEEHSl =d=
. Action Attribute values
IMImplementation
com.sun.management Name Value
. connector DispatcherRate 0.2769206424558905
. java.lang LogEvents false
java.util.logging Queue_CurrentSize 0
javax.management.remate.rmi Queue_DateLastCh 2013-05-21 14:47:11.187 +0200
, org.apache.activemg Queue_DateLastDeletionEvent 2013-05-21 14:24:07.896 +0200
[=h 1 uca_ebc Queue_DatelastHighWaterMark 2013-05-21 14:24:52.216 +0200
ActionManager Queue_DateLastPublish 2013-05-21 16:18:24.619 +0200
@ Collector Queue_Datelastsubscribe 2013-05-21 16:18:24.620 +0200
(1 Dispatcher Queue_DatelastZeroed 2013-05-21 16:18:24.620 +0200
[E22 Queue_HighWaterMarl 0
CH-Operations Queue_HighWaterMarkStillIncreasing [false
Properties_uca_ebc Queue_NumberZeroedSinceLastHighWaterMark [17
@ Server Queue_SizeHistory [java.lang.5tring[2]
@ ValuePackManager Queue_TotalChangesEvents 1]
pd-example-3.0-5P2 Queue_TotalDeletionEvents 0
Queue_TotalObjects 23
Queue_TotalObjectsSincelastHighWaterMark |18

Figure 53 - Java JMX Console: Monitoring performance of UCA for EBC
Server

This measure and other measurement rates are available both at the Java
JMX Console and also at the UCA for EBC User Interface in the
Troubleshooting / Statistics panel.

Note

%~ For more information on the Java JMX Console, please see the section:
5.1.3 “*JMX Console”

¥~ For more information on the UCA for EBC User Interface, please refer to:

[R3] HP UCA for Event Based Correlation User Interface Guide ¥ Please

see the next section 4.1 “Monitoring the alarm flow in real-time” for more
information on how to monitor the alarm flow of UCA for EBC.

113

Chapter 7

Frequent problems and solutions

Below is a list of known issues/ problems that you may encounter, along with
a description of how to solve or work around the issue/problem.

7.1 Problems executing uca-ebc-admin

7.1.1 Cannot connect to UCA for EBC JMX connector

If you get an error stating “Cannot connect to UCA Expert JMX connector”
while executing the uca-ebc-admin command-line tool, then you may want to
perform the following verifications:

Verification Suggested
solution/work-around

Verify that UCA for EBC Server is started Start UCA for EBC Server
if it is stopped

Table 40 - uca-ebc-admin: Cannot connect to UCA for EBC JMX
connector

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-admin <options>

7.1.2 FileNotFoundException: ${UCA_EBC_INSTANCE}
/logs/uca-ebc-admin.log
If you get an error stating “FileNotFoundException: ${UCA_EBC_INSTANCE}

/logs/uca-ebc-admin.log” while executing the uca-ebc-admin command-line
tool, then you may want to perform the following verifications:

Verification

114

solution/work-around

Verify that the user trying to execute uca- Use another user account

ebc-admin has permission to write in the or change the

${UCA_EBC_INSTANCE} directory permissions on the
${UCA_EBC_INSTANCE}
directory if this is not the
case

Table 41 - uca-ebc-admin: FileNotFoundException

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-admin <options>

7.2 Problems executing uca-ebc-injector

7.2.1 Cannot create connection

If you get an error stating “Cannot create connection on UCA Expert IMS
queue” while executing the uca-ebc-injector command-line tool, then you may
want to perform the following verifications:

Verification Suggested solution/work-

around

Verify that UCA for EBC Server is started Start UCA for EBC Server if it is
stopped

Table 42 - uca-ebc-injector: Cannot create connection

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME!}/bin
$ uca-ebc-injector <options>

115

7.2.2 FileNotFoundException: ${UCA_EBC_INSTANCE}
/logs/uca-ebc-injector.log
If you get an error stating “FileNotFoundException: ${UCA_EBC_INSTANCE}

/logs/uca-ebc-injector.log” while executing the uca-ebc-injector command-line
tool, then you may want to perform the following verifications:

Verification Suggested

solution/work-around

Verify that the user trying to execute uca- Use another user account

ebc-injector has permission to write in the or change the

${UCA_EBC_INSTANCE]} directory permissions on the
${UCA_EBC_INSTANCE}
directory if this is not the
case

Table 43 - uca-ebc-injector: FileNotFoundException

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-injector <options>

116

7.3 Problems starting UCA for EBC

7.3.1 AlreadyBoundException

If you get an error stating “java.rmi.AlreadyBoundException: uca-ebc” while
starting UCA for EBC, then you may want to perform the following
verifications:

Verification Suggested solution/work-around

Verify that there’s no port Update the UCA for EBC RMI port
number conflict between UCA number in the

for EBC RMI port number and ${UCA_EBC_INSTANCE}/conf/uca
the port numbers used by -ebc.properties file to avoid the port
another process on the system number conflict if needed

Table 44 - uca-ebc: AlreadyBoundException

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc <options>

117

7.3.2 ClassNotFoundException:
javax.management.remote.rmi.RMIServerimpl_Stub

If you get an error stating “java.lang.ClassNotFoundException:
javax.management.remote.rmi.RMIServerimpl_Stub” while starting UCA for
EBC, then you may want to perform the following verifications:

Verification Suggested solution/work-around

Verify that there’s no port Update the UCA for EBC RMI port
number conflict between UCA number in the

for EBC RMI port number and ${UCA_EBC_INSTANCE}/conf/uca
the port numbers used by -ebc.properties file to avoid the port
another process on the system number conflict if needed

Table 45 - uca-ebc: ClassNotFoundException

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc <options>

118

7.3.3 FileNotFoundException: ${UCA_EBC _INSTANCE}
/logs/uca-ebc.log
If you get an error stating “FileNotFoundException: ${UCA EBC_INSTANCE}

/logs/uca-ebc.log” while starting UCA for EBC, then you may want to perform
the following verifications:

Verification Suggested solution/work-around
Verify that the user trying to Start UCA for EBC under the uca
start UCA for EBC has account if this is not the case

permission to write in the
${UCA EBC _INSTANCE}
directory

Table 46 - uca-ebc: FileNotFoundException

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc <options>

119

Glossary

UCA: Unified Correlation Analyzer

EBC: Event Based Correlation

CA: Channel Adapter for OSS Open Mediation V7.0
JMS: Java Messaging Service

JMX: Java Management Extension, used to access or process action on the
UCA for EBC product

JNDI: Java Naming and Directory Interface

Inference engine: Process that uses a Rete algorithm
DRL: Drools Rule file

XML: eXtensible Markup Language

XSD: Schema of an XML file, describing its structure

X733: Standard describing the structure of an Alarm used in
telecommunication environment

EVP: UCA for EBC Value Pack

120

