
HP Operations Orchestration
for the Windows and Linux operating systems

Software Version: OO 10.x

Web Services Wizard Guide

Document Release Date: May 2014

Software Release Date: May 2014

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Copyright Notices

© Copyright 2014 Hewlett-Packard Development Company, L.P.

Trademark Notices

For information on open-source and third-party software acknowledgements, see Open-Source and Third-
Party Software Acknowledgements (3rdPartyOpenNotices.pdf) in the documentation set for this OO 10.00
release.

Web Services Wizard Guide 2

Documentation Updates

The title page of this document contains the following identifying information:
• Software Version number, which indicates the software version.
• Document Release Date, which changes each time the document is updated.
• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to:
http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP Passport ID, go to:
http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your HP sales representative for details.

Web Services Wizard Guide 3

http://h20230.www2.hp.com/selfsolve/manuals
http://h20229.www2.hp.com/passport-registration.html

Support

Visit the HP Software Support Web site at:

www.hp.com/go/hpsoftwaresupport

This Web site provides contact information and details about the products, services, and support that HP
Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer,
you can benefit by using the support Web site to:
• Search for knowledge documents of interest
• Submit and track support cases and enhancement requests
• Download software patches
• Manage support contracts
• Look up HP support contacts
• Review information about available services
• Enter into discussions with other software customers
• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a
support contract. To register for an HP Passport ID, go to:
http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

Web Services Wizard Guide 4

http://h20229.www2.hp.com/passport-registration.html
http://h20230.www2.hp.com/new_access_levels.jsp

Contents

1 Introduction ... 6

Overview of the Web Services Wizard ... 7

Download OO Releases and Documents on HP Live Network .. 7

2 Wizard Processing Details ... 9

How the Web Services Wizard Uses SoapUI .. 10

Processing Templates ... 10

Locate Inputs and Create the inputMap ... 11

Locate Outputs and Create Operation Outputs ... 13

Populate InvokeMethod2 Default Values for All Operations .. 14

3 The Invoke Method 2 Operation .. 15

Overview of the Invoke Method 2 Operation .. 16

Build a SOAP Request.. 16

Complete Set of Inputs ... 17

4 Using the Web Services Wizard .. 20

System Requirements... 21

Install the Web Services Wizard ... 21

Web Services Wizard Code Dependencies ... 21

Configure Logging Settings.. 21

WS Wizard Enhancements from 9x ... 21

5 Using the Web Services Wizard to Create Web Services Flows 22

Use the Web Services Wizard to Create OO Flows from Selected WSDL Operations 23

After Running the Web Services Wizard .. 31

6 Troubleshooting .. 32

General Troubleshooting Principles .. 33

Troubleshooting Steps .. 33

OO WebService Tool with Proxy .. 35

Web Services Wizard Guide 5

1 Introduction
This section includes the following topics:

• Overview of the Web Services Wizard

• Download OO Releases and Documents on HP Live Network

• Supported Languages

Web Services Wizard Guide 6

Overview of the Web Services Wizard

When you run the Web Services Wizard (wswizard.exe), you provide it with the WSDL for a
Web service. The Web Services Wizard creates OO flows based on the API described in the
Web Service Definition Language (WSDL) of the Web service that you identify in the wizard.
The WSDL string you provide as a pointer can be a file’s location and name or a URL.

The Web Services Wizard helps you create OO flows when:

• An OO integration does not exist.

• An OO integration does exist, but the customer has modified the application. For
example, a customer using Remedy may have modified a form or added a field. To
take advantage of the customer’s modifications, the Remedy Web Service is updated.
You can use the Web Services Wizard to create OO flows from the modified web
service.

• If a new version of an application with an OO integration is released and the
integration content does not support the new version, you can use the Web Services
Wizard to create new OO flows.

Example

You have an application named MyAlert that creates a ticket through a web service and
API, and you want to tell MyAlert to create a ticket. The Web Services Wizard extracts , the
application’s APIs from the Web service’s WSDL for the actions that can be performed with
the application, such as creating or changing a ticket. The WSDL defines the web service’s
methods, the inputs for each method, and the required format for each input.
When you provide the wizard with the WSDL (in our example, for MyAlert) and run the
wizard, it generates flows that can run against the Web service. All flows created using the
Web Services Wizard have a single step which is built from the Invoke Method 2 operation
in the Library/Operations/Wizards/Web Services Wizard/ folder from the Base Content Pack.
The flows are created in the project location folder specified by the user. Running the flows
requires a Remote Action Service (RAS) that has access to the Web service. For information
on creating and configuring RAS references, see “Operating outside Central with Remote
Action Services” in the Guide to Authoring Operations Orchestration Flows.

Download OO Releases and Documents on HP Live Network

HP Live Network provides an Operations Orchestration Community page in which you
can find and download supported releases of OO and associated documents.

To download OO releases and documents, go to:
https://hpln.hp.com/

This site requires that you register for an HP Passport and sign-in. To register for an HP
Passport ID, go to:
http://h20229.www2.hp.com/passport-registration.html
Or click the New users - please register link on the HP Passport login page.

On the HP Live Network page, click Operations Orchestration Community.

Web Services Wizard Guide 7

https://www.www2.hp.com/
http://h20229.www2.hp.com/passport-registration.html

The Operations Orchestration Community page contains links to announcements,
discussions, downloads, documentation, help, and support.

1. On the left-hand side, click Operations Orchestration Content Packs.

2. In the Operations Orchestration Content Packs box, click Content. The HP
Passport sign-in page appears.

3. Enter your HP Password User ID and Password and click Sign-in.
4. Click HP Operations Orchestration 10.0.

5. Search for Base Content Pack.

Supported Languages

This release supports the following languages:

• en - English

• fr - French

• de - German

• ja - Japanese

• es - Spanish

• zh_CN - Simplified Chinese

Web Services Wizard Guide 8

2 Wizard Processing Details
This section includes the following topics:

• How the Web Services Wizard Uses SoapUI

• Processing Templates

• Locate Inputs and Create the inputMap

• Locate Outputs and Create Operation Outputs

• Populate InvokeMethod2 Default Values for All Operations

Web Services Wizard Guide 9

How the Web Services Wizard Uses SoapUI

SoapUI is an open-source Web service testing tool. It provides Web service inspection,
invoking, development, and simulation. The Web Services Wizard uses SoapUI to parse the
WSDL and create a template SOAP request (Base Content Pack 2013 uses SoapUI version
4.0.1).

This template is an XML with placeholder tokens that are replaced with real data in order to
make a request to the server. If you run SoapUI manually and create a project referencing a
WSDL, you will see it create these request templates in the tree as nodes named Request 1
for every operation in the WSDL. This is the template that the Web Services Wizard receives
from SoapUI, and uses to populate the xmlTemplate input.

Similarly, the Web Services Wizard (in OO versions 9.00 and later) retrieves a SOAP
response template with tokens that indicate how the response will look. This is a little more
difficult to reproduce in the SoapUI GUI, as it requires creating a Mock Response and then
using the Open Editor function to look at the XML.

For HP OO 9.0, support was added to specify a Web proxy via the properties
http.proxyHost and http.proxyPort in the wsw.properties file in the OO Home folder
under /Studio/tools/conf/.

You only need to enter the configuration information once (the first time you run the wizard
against a WSDL outside the firewall). It is then read from the wsw,properties file and
prepopulated in the wizard GUI. You can change it in the file or in the wizard GUI and the
values are saved for the next time you run the wizard.
For OO 10.00, specifying a Web proxy in the wsw.properties file is no longer supported.
You can change it only from the wizard GUI.

After retrieving the templates for the request and the response, the WSDL is discarded. No
further information is obtained from the WSDL, and all subsequent operations in both the
Web Services Wizard and the Invoke Method 2 operation are based entirely on the
templates returned from SoapUI.

Processing Templates

The template processing logic parses through a SOAP template (either a request template or
a response template) looking for tokens. It is called in different ways for different purposes —
for processing the request template and for processing the response template:

1 Locating input tokens in the request template to create the input map (in the wizard).

2 Locating output tokens in the response template (in the wizard).

3 Replacing input tokens with actual values to build the SOAP request (in the Invoke
Method 2 operation).

In all cases, the logic skips any leading xml elements until it finds an element whose
namespace prefix is either soap or soapenv and whose element name is not envelope, and
then begins with the content of that element; this effectively ends up arriving at the topmost
element under the outermost Body element.

Web Services Wizard Guide 10

 Locate Inputs and Create the inputMap

In the wizard, the request template is processed, and for each token that is found, a pipe-
delimited value is returned indicating its path in the template, but with the outermost SOAP
envelope information removed. For example, if the template looks like this:
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>

 <Test>

 <Name>?</Name>

 <Address>?</Address>

 </Test>

 </soapenv:Body>

</soapenv:Envelope>

it returns the values Test|Name and Test|Address. Note that the whole path is needed, as
an element (such as Name)may appear in more than one place in a template, and there
needs to be a unique path to each.

If, during this input processing, the wizard encounters a comment that indicates that it is at
the beginning of an array ("x or more repetitions" or "m to n repetitions"), the value zero (0)
is inserted at that point. For example:
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>

 <Test>

 <!--1 or more repetitions-->

 <Name>?</Name>

 <!--1 or more repetitions-->

 <Address>?</Address>

 </Test>

 </soapenv:Body>

</soapenv:Envelope>

returns the values Test|0|Name and Test|0|Address. As arrays may be nested, there
may be templates whose values contain more than one zero (0).

The next task is to define a meaningful set of input names to be created. This is done using
an input map. An input map permits a user-friendly name to be associated with each value.
For example, Address is mapped to Test|Address and Name is mapped to Test|Name.
The inputMap input that is generated in the operation is a list of these mappings between
pipe-delimited paths and user-friendly names. In the first example above, the inputMap
contains:
Test|Name=Name

Test|Address=Address

The creation of the inputMap is a little complex. Use the following tips when determining a
name for each path name:

Web Services Wizard Guide 11

• Use the last part of the path (for example, Name or Address) if it is unique within
the template.

• Avoid using a friendly name that is already one of the input names to the Invoke
Method 2 operation, such as xmlTemplate.

• If there are duplicate names, add a prefix for additional levels (with a period
separator) onto the user-friendly name to make the name unique. For example, if
the template yielded One|Name and Two|Name, the following input map would
be created:

One|Name=One.Name

Two|Name=Two.Name

as both would otherwise map to the same value of Name.

• Single zeros in the pipe-delimited path (indicating the beginning of an array) are
replaced with wildcards (*). The position of the wildcard in the user-friendly name is
moved to the end of the next element. In the above example, for Test|0|Name and
Test|0|Address, the following input map would be created:

Test|*|Name=^Name*$

Test|*|Address=^Address*$

Note:

• The purpose of moving the wildcard position is to allow more intuitive input
names like Name0 and Name1.

• The value on the right side of the equal sign for array types is surrounded by the
^ and $ symbols as a workaround for resolving the issue of parameters having
similar names. These values are used as regex patterns for array types and
similarly-named parameters without these symbols corrupting the algorithm.

• The simplification of friendly names (see the first bullet in this list) only applies to
the part of an array to the left of the wildcard; all elements to the right will remain.
For example, the items Test|0|Extra|Stuff|Name and
Test|0|Extra|Stuff|Address results in:

Test|*|Extra|Stuff|Name=^Extra*.Stuff.Name$

Test|*|Extra|Stuff|Address=^Extra*.Stuff.Address$

regardless ofthe fact that the Extra and Stuff are otherwise unnecessary.

The wizard then uses the inputMap to create step-level and flow-level inputs for each
item in the map. Any occurrences of wildcards are replaced with zeros in the input
names. If the flow developer wants to provide additional elements (beyond just the 0th),
s/he needs to add them both as step level inputs and flow level inputs. Using our previous
example:
Test|*|Name=^Name*$

Test|*|Address=^Address*$

Name0 and Address0 are created as inputs to the step and the flow.

The Web Services Wizard accepts JSON-formatted arrays for the array types found in
the WSDL. So, instead of entering a new input for each element in the array, you can
now enter a JSON-formatted array as the input value instead of creating additional
inputs.
When you run the Web Services Wizard, you must check the Use JSON arrays for
WSDL array type option on the Select operation(s) screen. This will add the input
field "usesJSON" with a value of "true" to the created Invoke Method 2 step. Then for

Web Services Wizard Guide 12

the inputs, use a JSON format array for the "0" element and the Invoke Method 2
operation to create the required elements to send in the request.

For example, for an array structure defined by the following in the xmlTemplate:
<ns:AffectedCI type="Array">

 <!--Zero or more repetitions:-->

 <ns:AffectedCI type="String" mandatory=""
readonly=""></ns:AffectedCI>

</ns:AffectedCI>

• The inputMap entry for this array must use the following wildcard format:
CreateChangeTaskOORequest|model|instance|middle|AffectedCI|*|Affecte
dCI=^AffectedCI*$

• The associated Web Services Wizard created AffectedCI0 input field JSON array
formatted value should be similar to:

["CIvalue1","CIvalue2","CIvalue3"]

Locate Outputs and Create Operation Outputs

Locating outputs in the XML template uses the same logic as finding inputs, but instead of
returning a pipe-delimited path, the process returns an XML XPath expression. This is
nearly the same thing except with a slash as a delimiter rather than a pipe. There are,
however a few differences:

• /text() is appended to the XPath in order to correctly extract the text of the simple
elements. For example, the following template:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>

 <Test>

 <Name>?</Name>

 <Address>?</Address>

 </Test>

 </soapenv:Body>

</soapenv:Envelope>

corresponds to the outputs /Test/Name/text() and /Test/Address/text().

• Nothing is appended to the XPath of array elements. This causes the entire portion
of the XML document to be returned in a single output, and it is the flow developer’s
responsibility to use other operations (like XML or JSON ones) to extract the
relevant items. This difference is due to the fact that arrays can become arbitrarily
nested, and returning such structured data in a simple variable is not an easy task.
For example, the following template

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>

 <Test>

Web Services Wizard Guide 13

 <!--1 or more repetitions-->

 <Name>?</Name>

 <!--1 or more repetitions-->

 <Address>?</Address>

 </Test>

 </soapenv:Body>

</soapenv:Envelope>

yields just the single output /Test.

If JSON arrays are being used, an additional output named jsonStripped is populated with
the SOAP response in a JSON-formatted string.

The wizard then creates step outputs for each output that was located in the template,
assigning an XPath filter to each one (whose value was determined above). At this point, the
wizard has completed its main lifting. The remainder of the process resumes when the flow is
run, calling the Invoke Method 2 operation.

Populate InvokeMethod2 Default Values for All Operations

The Web Services Wizard allows setting InvokeMethod2 inputs so that each operation
created from the WSDL has the inputs set by default. For example, the timeout input can be
the same for all Web service operations and setting the value once in the wizard will, in turn,
set the timeout input value for all operation(s) selected on the selection page. Setting the
default values in the Web Services Wizard is optional.

The Web Services Wizard does not validate the default inputs entered. This validation takes
place during the flow run.. The Web Services Wizard allows you to specify default values only
for the authentication type selected. For example, if the http authentication type is selected,
the wizard allows you to enter the default inputs for HTTP authentication onlyand skips the
WS-Security page when you click the Next button.

Web Services Wizard Guide 14

3 The Invoke Method 2 Operation
This section includes the following topics:

• Overview of the Invoke Method 2 Operation

• Build a SOAP Request

• Complete Set of Inputs

Web Services Wizard Guide 15

Overview of the Invoke Method 2 Operation

The Invoke Method 2 operation is called when the flow is run. Its basic tasks are to:

• Build a SOAP request based on the xmlTemplate, the inputMap, and the inputs
supplied to the operation (see the next section).

• Perform security functions as indicated by input values, such as signing the
outbound request, encrypting it, and setting up SSL for https.

• Perform an XSLT transformation on the SOAP reply to populate the
documentStripped and/or jsonStripped output, that strips the namespace
prefixes from all of the output fields. For example, the reply:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>

 <xyz:Test>

 <xmlns:Name>Real Name</xmlns:Name>

 <abc:Address>An address</abc:Address>

 </xyz:Test>

 </soapenv:Body>

</soapenv:Envelope>

would become:
<Envelope>

 <Body>

 <Test>

 <Name>Real Name</Name>

 <Address>An address</Address>

 </Test>

 </Body>

</Envelope>

or in a JSON formatted string:
{"Body":{"Test":{"Name":"Real Name1","Address":"An address1"}}}

This conversion is necessary as the operation outputs use XPath filters or JSON to
extract values, and XPath expressions do not work well with XML that contains
namespaces.

Build a SOAP Request

Building a SOAP request includes the following steps:

• Input resolution

This step uses the inputMap together with the operation inputs, to determine the
values to be substituted.

Web Services Wizard Guide 16

For example, if the inputMap contains Test|Name=Name and there is an input named
Name with the value George Washington, this step combines them to determine that
the element in the request corresponding to Test|Name=Name should have the value
George Washington. This step also handles wildcards in array references. For example,
an inputMap containing Test|*|Name=Name* and inputs Name0 and Name1 should
have values corresponding to the elements in the SOAP request corresponding to
Test|0|Name and Test|1|Name.

• Completing values

This step parses through the SOAP template looking for tokens. When it finds one, it
attempts to find a value resolved from the previous step, and substitutes it if found. If no
input is found with the specified name, the token is removed.

If the processing encounters the beginning of an array (indicated by the special
comments in the template (“x or more repetitions” or “m to n repetitions”), the resolved
inputs for that array are sorted numerically (so that 10 appears after 9 rather than
between 1 and 2), and then substituted into the SOAP request. Note that any missing
gaps in the input names are ignored; for example, if the inputs are Name0 and Name2
(and Name1 is missing), then only two values are substituted in the template (the values
for Name0 and Name2); no empty entries are created for missing values.

Complete Set of Inputs

Input Description

contentType Sets the http Content-Type header to
the given value. Defaults to text/xml.

ICONCLUDE_WSW_VERSION Must be the constant 2.

header_* Any input that begins with header_ is
processed by the Http Client Post
Raw operation, which then creates an
HTTP header out of it. For example, if
the input named header_Accept-
Encoding contains the value gzip, the
request will be altered to add the HTTP
header Accept-Encoding: gzip.

inputMap Described in Locating Inputs and
Creating the inputMap.

password The password sent to the Web service.

proxy The name of the proxy host that is used
to make the Web service request across
a firewall. (Optional)

proxyUsername The proxy username, if necessary, used
when making Web service requests
across a firewall. (Optional)

Web Services Wizard Guide 17

proxyPassword The proxy password used when making
Web service requests across a firewall.
(Optional)

proxyPort The port on the proxy host used to make
the Web service request across a
firewall. (Optional)

returnXMLRequest If this input is set to true, a new output
named rawXMLRequest is returned
by the operation which contains the text
of the SOAP request that was sent. This
is useful for troubleshooting purposes.

timeout The timeout in ms for the HTTP
connection. Note that there may be
other timeouts that affect the
connection, such as the timeout between
Central and the RAS.

trimComments Removes all comments from the
outbound SOAP request. (Hidden input)

trimNullOptionalTypes By default (true), for every element in
xmlTemplate that is marked as
Optional and for which no token has
been substituted with a value, the
element is removed from the outbound
SOAP request. (Hidden input)

trimNullComplexTypes By default (true), for every element in
xmlTemplate that has sub-elements
(including arrays) and for which no
token has been substituted with a value,
the entire element (and all of its
embedded elements) is removed from
the outbound SOAP request. (Hidden
input)

trustAllRoots When set to true, when HTTPS
connections are made, it ignores the
signing authority of the certificate
(permitting self-signed certificates) and
ignores discrepancies between the
hostname on the certificate and the
actual server name that is hosting the
Web service.

url The URL of the Web service, extracted
from the WSDL. This generally has
variable references to the host and port
so that this value does not need to be
changed to send a request to a host or a
port different from the one hosting the
WSDL.

Web Services Wizard Guide 18

useCookies Determines whether the HTTP client
will use cookies (store them during the
connection and send them back for
subsequent HTTP requests to the same
server).

usesJSON Use JSON arrays for all inputs of array
type.

username The username sent to the Web service.

xmlTemplate Described in How the Web Services
Wizard Uses SoapUI.

WSSecurityEncryptRequest A boolean value (default false)
indicating whether or not to encrypt the
SOAP request.

WSSecurityKeystore When encrypting or digitally signing the
SOAP request, this indicates the
keystore containing the certificate.

WSSecurityKeystorePassword When encrypting or digitally signing the
SOAP request, this indicates the
password to the keystore.

WSSecurityKeystoreType When encrypting or digitally signing the
SOAP request, this indicates the
keystore type.

WSSecuritySignRequest A boolean value (default false)
indicating whether or not to digitally
sign the SOAP request with an X509
signature.

WSSecurityTimestampRequest A boolean value (default false)
indicating whether or not to securely
timestamp the SOAP request.

wswAuthenticationType Can be assigned with one of the
following values: http, ws-security
text, ws-security digest, and none.
http is used for normal HTTP
authentication, where the user and
password are sent as HTTP headers.
The two ws-security* options use
SOAP WS-Security protocols.

* All other headers are passed intact to
the Http Client Post Raw operation,
which can interpret them.

Web Services Wizard Guide 19

4 Using the Web Services Wizard
This section includes the following topics:

• System Requirements

• Run the Web Services Wizard

• Web Services Wizard Dependencies

• Configure Logging Settings

Web Services Wizard Guide 20

System Requirements

Following are the minimum software requirements for systems running Web Services
Wizard for HP Operations Orchestration:

• For running the wizards, the environment must have Java SE Runtime
Environment 7 (also known as JRE) installed.

Install the Web Services Wizard

The Web Services wizard is automatically installed if HP OO Studio is chosen from the
Operations Orchestration installer

Web Services Wizard Code Dependencies

The wizard does not have any dependencies. All third parties are encapsulated into the
executable files.

Configure Logging Settings

The configure logging settings are no longer supported in the10x wizard.

WS Wizard Enhancements from 9x

• The wizard now appears in the taskbar and can be closed, minimized or brought to
the front.

• The UI is correctly divided. The scroll bar is now not necessary.

• Operation selection has a search functionality which allows you to quickly find an
operation by typing letters of the operation name.

• The wizard includes functionality to override an existing flow/s.

Web Services Wizard Guide 21

5 Using the Web Services Wizard to Create
Web Services Flows

This section includes the following topics:

• Use the Web Services Wizard to Create OO Flows from Selected WSDL Operations

• After Running the Web Services Wizard

Web Services Wizard Guide 22

Use the Web Services Wizard to Create OO Flows from
Selected WSDL Operations

The Web Services Wizard creates OO flows based on the operations available in the WSDL
that you specify when you run the wizard. This tool is available by launching the wizard
executable file. The Web Services Wizard is a is a simple and intuitive tool that leads the
user through the tasks and simplifies the process of flow creation.
To use the Web Services Wizard to create an OO flow from a WSDL

1 Start the Web Services Wizard.
The Welcome page opens

2 Click Next to continue.

Web Services Wizard Guide 23

The Select Destination page opens.

• In the Enter the location field, enter the required project path or click Browse to

locate the project location, and then click Next.

• The wizard generates a 10.x studio project but not a content pack or a repository. The
project has a default location: C:\Users\[username]\.oo\Workspace\New Project.

3 Enter the URL to the WSDL, or select a local WSDL from a file system.

Web Services Wizard Guide 24

If proxy information is required to access the WSDL URL, enter it here. If loading the
WSDL succeeds, the Populate operation(s) with default values page opens. In this
page, you can set default values for the flows that the Web Services Wizard generates.

4 Optional Step: Enter values for any common inputs (these are the default inputs of
Invoke Method 2 operation, so every flow created by the wizard will contain them). If the
inputs are common for all flows created, they can be entered on this page. The default
values are populated on the page.

Web Services Wizard Guide 25

Note: If you set the values here, each operation will be assigned with the preset values .
To change the value, you need to modify each flow in Studio or rerun the Web Services
Wizard select the Overwrite the flow if already exists checkbox in step 7.

Click Next to continue to either the Populate operation(s) HTTP authentication
with default values page or Populate operation(s) WS-Security with default
values page or Select operation(s) page depending on the authentication type
selected. For example, if you select an authentication type of “ws-security text”, the next
page will be the optional step of populating the WS-Security default input values.

5 Optional Step: Enter values for the common HTTP authentication inputs. If the inputs
are common for all flows created, they can be entered on this page.

Web Services Wizard Guide 26

Note: If you set the values here, each operation will be assigned with the preset values .
To change the value, you need to modify each flow in Studio or rerun the Web Services
Wizard select the Overwrite the flow if already exists checkbox in step 7.

Click Next to continue.

6 Optional Step: Enter values for the common WS-Security inputs. If the inputs are
common for all flows created, they can be entered on this page.

Web Services Wizard Guide 27

Note: If you set the values here, each operation will be assigned with the preset values .
To change the value, you need to modify each flow in Studio or rerun the Web Services
Wizard and select the Overwrite the flow if already exists checkbox in step 7.

Click Next to continue.

7 Select the operation(s) for which you are interested in creating flows. The available
operations are displayed in the list. If you want to use JSON-formatted arrays for all
array type inputs in all the generated flows, check the Use JSON arrays for WSDL
array types box. If you do not check the box, you can still use JSON formatted arrays,
but you have to manually set the input usesJSON in Invoke Method 2 to True for all the
flows that you want to accept JSON data. Click Next to continue.

Web Services Wizard Guide 28

You can move the operations from one column to the other. Use the search textbox if the
list is long, and you cannot find the required cmdlet. The wizard searches the list for the
operations with names containing the search text. In addition, the wizard updates the
list as you type.

After the flows are successfully created and saved in the repository, the Web Services
Wizard finishes.

Web Services Wizard Guide 29

Web Services Wizard Guide 30

After Running the Web Services Wizard

If the Web Services Wizard ran successfully, you will have a new set of flows ready for use.
However, may have to make some adjustments before the operations can be used, due to the
following issues:

• The source WSDL may have problems or may have changed.

• There may be undocumented headers.

To diagnose and correct these situations, read this section, along with the Troubleshooting
section.
Notes:

In addition to inputs, the parsing obtains results that can be captured as operation outputs
(which are expressed as results in steps). Any arrays in the XML are extracted as a single
XML result from which the flow author can extract narrow subsets.

• In the flows that the Web Services Wizard generates, the flow inputs that
correspond to Web services inputs are optional. Sometimes some of the inputs that
the Web service definitions indicate as required are not actually required, and
mirroring these settings in the flow would force the flow user to enter unused values
when running it. So, the Web Services Wizard sets all inputs as optional. When the
Web service does indicate that a field is optional, it precedes the field with the
comment "<!-Optional:>" or "<!zero or more repetitions->". For information
on which inputs should be required, see the documentation for the relevant Web
service.

• If the Web service, whose WSDL you are accessing, resides on the other side of a
firewall from your Studio machine, you must specify an HTTP proxy to be used to
reach the Web service.

Web Services Wizard Guide 31

6 Troubleshooting
This section includes the following topics:

• General Troubleshooting Principles

• Troubleshooting Steps

Web Services Wizard Guide 32

General Troubleshooting Principles

• If you experience difficulties running the Web Services Wizard, first check any changes
you make on one input before trying them on all inputs.

• If you experience difficulties running the Web Services Wizard against a WSDL with a
URL that starts with https, try opening the WSDL in a browser and saving it to the local
file system. Make sure to copy all dependencies (such as xsd files) as it is difficult to
access them through the wizard. These files can be found under <xs:schema><xs:import>
tags. Then, run the Web Services Wizard against the WSDL file instead.

• If an unexpected error message is returned after running the OO flows that the Web
Services Wizard created, try adding and setting the trimNullOptionalTypes and/or
trimNullComplexTypes to false in the Invoke Method 2 operation of your flow. This
results in the outbound SOAP request looking more like the request sent by SoapUI
when inputs have null values.

Troubleshooting Steps

If the Web Services Wizard fails to load the operations for selection and returns with a null
pointer exception:

• Try removing any white space around the comments section of the WSDL.

This is a known issue with the SoapUI utility that the Web Services Wizard uses.

• The Web Services Wizard passes on the SoapUI's "Null-pointer Exception" message
followed by the message "Failed to load WSDL" if you attempt to load an invalid WSDL.

This is a known issue with the SoapUI utility that the Web Services Wizard uses.

• Validate that the XML request is as you expected.
This can be done by setting the returnXMLRequest input value to true in the Invoke
Method 2 operation in your newly created flow. This will add an output result of the
actual XML request that was sent.

• Try the request in SoapUI to verify that the Web service is working correctly.

Install SoapUI (http://www.soapui.org/), create a project from the WSDL and a request
object for the operation in question. Then, replace its content with the XML request from
the output above.

• Some WSDLs have been written in a way that causes the Web Services Wizard to fail to
recognize some array types. When one of these OO flows runs, it may return the
following exception:
<faultcode><soapenv:Server.userException</faultcode><faultstring>org.xml.sa
x.SAXException: Found character data inside an array element while
deserializing</faultstring><

The original WSDL file, that was correctly processed by the Web Services Wizard, used
the ArrayOf_xsd_String implementation:
<wsdl:message name="createSelectionListRequest">

…

<wsdl:part name="values" type="impl:ArrayOf_xsd_String"/>

…

Web Services Wizard Guide 33

http://www.soapui.org/

</wsdl:message>

The modified WSDL file, which is correctly processed by the Web Services Wizard,
redefines the type ArrayOf_xsd_String to WSListValues (this is a specific case for the
createSelectionList operation from the example). Using the WSListValues type
definition, you can also define your own array of string types (for example,
ArrayOfStrings) in place of ArrayOf_xsd_String.
<wsdl:types>

 …

<complexType name="WSListValues">

<sequence>

<!--Zero or more repetitions:-->

<element maxOccurs="unbounded" minOccurs="0" name="value" type="xsd:string"
/>

</sequence>

</complexType>

…

</wsdl:types>

<wsdl:message name="createSelectionListRequest">

…

<wsdl:part name="values" type="tns1:WSListValues"/>

…

</wsdl:message>

• In some cases, the InvokeMethod2 operation fails to run when used in a flow in Studio.
This occurs because the SOAP envelope isincorrect. A single flow UUID is passed within
<flowUuids></flowUuids> instead of an array. This occurs for all soap requests that
have an element wsdl:arrayType that does not have nillable="true".

In the SOAP UI, the generated request contains an empty flowUuids array by default.
You should edit it manually and insert any relevant UUIDs of interest. For example, the
xmlTemplate input of the Invoke Method 2 step in the generated Get Flow Details can be
modified manually as shown below:
<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsc="http://wscentralservice.services.dharma.iconclude.com"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">

 <soapenv:Header/>

 <soapenv:Body>

 <wsc:getFlowDetails
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <flowUuids xsi:type="xsd:string">?</flowUuids>

 </wsc:getFlowDetails>

 </soapenv:Body>

</soapenv:Envelope>

Web Services Wizard Guide 34

OO WebService Tool with Proxy

If you cannot launch the OO WebService wizard to create ops from a wsdl file (local or
remote), create an xml file named soapui-settings.xml in the following format and save it in
your home directory:

<?xml version="1.0" encoding="UTF-8" ?>

 <con:soapui-settings xmlns:con="http://eviware.com/soapui/config">

 <con:setting id="WsdlSettings@cache-wsdls">true</con:setting>

 <con:setting id="WsdlSettings@pretty-print-response-xml">true</con:setting>

 <con:setting id="HttpSettings@include_request_in_time_taken">true</con:setting>

 <con:setting id="HttpSettings@include_response_in_time_taken">true</con:setting>

 <con:setting id="WsdlSettings@name-with-binding">true</con:setting>

 <con:setting id="HttpSettings@max_connections_per_host">500</con:setting>

 <con:setting id="HttpSettings@max_total_connections">2000</con:setting>

 <con:setting id="ProxySettings@host">111.222.111.322</con:setting>

 <con:setting id="ProxySettings@port">3128</con:setting>

 <con:setting id="ProxySettings@enableProxy">true</con:setting>

 </con:soapui-settings>

If this fails due to proxy issues, this file will ask for your credentials for the proxy (hard-
coded in the file). Modify the proxy host and port in the file, place it in your home directory,
and enter the username and password, when prompted. This procedure will allow the wsdl
file to be loaded correctly.

Web Services Wizard Guide 35

	Warranty
	Restricted Rights Legend
	Trademark Notices
	Contents
	1 Introduction
	2 Wizard Processing Details
	3 The Invoke Method 2 Operation
	4 Using the Web Services Wizard
	5 Using the Web Services Wizard to Create Web Services Flows
	6 Troubleshooting

