

HP Vertica Analytics Platform 6.1.x

Administrator's Guide
Doc Revision 3

Copyright© 2006-2013 Hewlett-Packard

Date of Publication: Monday, October 28, 2013

-ii-

Contents

Administrator's Guide 12

Syntax Conventions 13

Administration Overview 14

Configuring the Database 15

Configurat ion Procedure ..16
Prepare Disk Storage Locations ...16
Disk Space Requirements for HP Vert ica ..18
Disk Space Requirements for Management Console ...18
Prepare the Logical Schema Script ..19
Prepare Data Files ...19
Prepare Load Scripts ..20
Create an Optional Sample Query Script..20
Create an Empty Database ..21
Create the Logical Schema ..25
Perform a Partial Data Load..26
Test the Database ..26
Optimize Query Performance ...26
Complete the Data Load ..27
Test the Optimized Database ..27
Set Up Incremental (Trickle) Loads ..28
Implement Locales for International Data Sets ...29
Change Transaction Isolation Levels ..34

Implement Security ...35
Configurat ion Parameters ...36

Configuring HP Vertica Settings Using MC..36
Configuring HP Vertica at the Command Line ...37

Designing a Logical Schema ...46
Using Multiple Schemas..46
Tables in Schemas ..53
Using Named Sequences ...57
Implementing Views ..72

Designing a Physical Schema ..76
Using Database Designer ..77
Creat ing Custom Designs ..89

Managing Licenses 108

Understanding HP Vert ica Licenses ... 108
Installing or Upgrading a License Key ... 110

New HP Vertica License Installations ... 110
HP Vert ica License Renewals or Upgrades .. 110

-iii-

 Contents

Viewing Your License Status ... 111
Calculating the Database Size .. 112
Monitoring Database Size for License Compliance ... 113

Implementing Security 116

Implementing Client Authentication ... 117
Password Authentication .. 118
About External Authentication .. 122
Implementing Kerberos Authentication... 132

Implementing SSL.. 133
SSL Prerequisites ... 134
Generating certificat ions and keys.. 136
Generating Certificat ions and Keys for MC ... 137
Importing a new certificate to MC.. 139
Distributing cert ifications and keys .. 140
Configuring SSL .. 140
Requiring SSL for client connections .. 143

Managing Users and Privileges 143

About Database Users.. 143
Types of database users .. 144
Creat ing a database user ... 145
Changing a user's password ... 146
Locking/unlocking a user's database access.. 147

About MC Users ... 148
Creat ing an MC user ... 149
Managing MC users .. 152

About Database Privileges .. 153
Default priv ileges for all users... 153
Privileges required for common database operations .. 154
Privileges that can be granted on objects... 163
Granting and revoking privileges .. 173
Modifying priv ileges ... 178
Viewing privileges granted on objects ... 182

About Database Roles.. 184
Types of database roles ... 185
Using database roles .. 188
Role hierarchy .. 189
Creat ing database roles ... 190
Delet ing database roles ... 190
Granting privileges to roles .. 191
Revoking privileges from roles ... 191
Granting access to database roles.. 192
Revoking access fro m database roles ... 193
Granting admin istrative access to a role .. 193
Revoking administrative access from a ro le ... 194
Enabling roles ... 195
Disabling roles.. 195
Viewing enabled and available roles .. 196
Viewing named roles... 196

-iv-

Administrator's Guide

Viewing a user's role ... 196
About MC Priv ileges and Roles ... 199

MC configuration privileges .. 200
MC database privileges... 205
Granting database access to MC users ... 209
Mapping an MC user to a database user's privileges ... 210
Adding mult iple MC users to a database ... 215
How to find out an MC user's database role.. 217
Adding mult iple users to MC-managed databases ... 218
MC mapping matrix .. 219

Using the Administration Tools 222

Using the Admin istration Tools Interface .. 223
K-Safety Support in Admin istration Tools .. 224
Notes for Remote Terminal Users ... 226
Using the Admin istration Tools Help ... 227
Password Authentication... 228
Distributing Changes Made to the Administration Tools Metadata .. 228
Administration Tools and Management Console.. 229
Administration Tools Reference .. 231

Viewing Database Cluster State .. 231
Connecting to the Database.. 232
Starting the Database... 233
Stopping the Database... 234
Restarting HP Vertica on Host .. 234
Configurat ion Menu Item ... 235
Advanced Tools Menu Options... 239
Writing Admin istration Tools Scripts .. 245

Using Management Console 252

Connecting to MC .. 252
Managing Client Connections on MC .. 253
Managing Database Clusters on MC... 253

Create an Empty Database Using MC.. 254
Import an Existing Database Into MC.. 255

Using MC on an AWS Cluster ... 257
Managing MC Settings.. 257
Changing MC or Agent Ports ... 257

How to Change the Agent Port.. 258
How to Change the MC Port .. 258

Backing Up MC .. 259
Troubleshooting Management Console .. 259

Viewing the MC Log... 260
Exporting the User Audit Log ... 261
Restarting MC .. 261
Resetting MC to Pre -configured State ... 262
Avoiding MC Self-Signed Cert ificate Expirat ion .. 262

-v-

 Contents

Operating the Database 264

Starting and Stopping the Database... 264
Starting the Database... 265
Stopping the Database... 266

Working with the HP Vertica Index Tool .. 267
Running the Reindex Option ... 269
Running the CheckCRC Option .. 270
Handling CheckCRC Errors ... 270
Running the Checksort Option .. 271
Viewing Index Tool... 272

Working with Tables 274

Creat ing Base Tables ... 274
Creat ing a Table Like Another... 277
Creat ing Temporary Tables .. 279
Creat ing External Tables ... 283
Validating External Tab les ... 284
External Table Support .. 285
Using External Tables.. 287
Altering Table Defin itions .. 288

Exclusive ALTER TABLE clauses .. 289
Using consecutive ALTER TABLE commands ... 289
Adding table columns ... 290
Updating associated table views ... 291
Altering table columns .. 291
Adding constraints on columns ... 296
Dropping a table column .. 297
Moving a table to another schema .. 299
Changing a table owner .. 299
Changing a sequence owner... 302
Renaming tables ... 303

Updating Tables with Records from Other Tables ... 304
Dropping and Truncating Tables ... 307

About Constraints 309

Adding Constraints... 309
Primary Key Constraints .. 313
Foreign Key Constraints ... 314
Unique Constraints .. 315
Not NULL Constraints.. 317

Dropping Constraints ... 317
Enforcing Primary Key and Foreign Key Constraints ... 318
Analyzing Constraints (Detecting Constraint Violat ions)... 319

Fixing Constraint Vio lations .. 322
Reenabling Error Report ing ... 324

-vi-

Administrator's Guide

Working with Table Partitions 325

Defining partit ions.. 326
Dropping partitions .. 328
Partit ioning and segmenting data... 330
Partit ioning and data storage .. 331
Managing partitions ... 332
Partit ioning, repartit ioning, and reorganizing tables .. 333
Auto partitioning... 335
Eliminating Part itions .. 337
Moving Partitions ... 339
Restoring Archived Partit ions .. 341

Bulk Loading Data 342

Checking Data Format Before o r After Load ing .. 343
Performing the In itial Database Load ... 344
Using Load Scripts ... 345
Using COPY and COPY LOCAL ... 346
Transforming Data During Loads .. 347
Specifying COPY FROM Options .. 350
Choosing a Load Method .. 352
Specifying How COPY Loads Data .. 354

Interpreting Last Column End of Row Values ... 355
Loading UTF-8 Format Data ... 357
Loading Nat ive Varchar Data .. 364
Loading Binary Data ... 365
Loading Fixed-Width Format Data... 368

Ignoring Columns and Fields in the Load File .. 372
Loading Data into Pre -jo in Projections .. 373
Using Parallel Load St reams .. 376
Using the Parallel Load Library ... 377
Checking COPY Metrics ... 379
Controlling Load Exceptions and Reject ions .. 381

Specifying an Exceptions File (EXCEPTIONS) .. 384
Specifying a Rejected Data File (REJECTED DATA) ... 385
COPY Exception and Rejected Data Files .. 386
COPY LOCAL Exception and Reject ion Files .. 388

Referential Integrity Load Violat ion ... 389

Trickle Loading Data 390

Using INSERT, UPDATE, and DELETE.. 390
WOS Overflow ... 390

Copying and Exporting Data 391

Exporting Data .. 392
Importing Data .. 394
Using Public and Private IP Networks .. 395

Identify the Public Network to HP Vertica ... 395

-vii-

 Contents

Identify the Database or Node(s) used for Import/Export .. 396
Using EXPORT Functions.. 397

Exporting the Catalog ... 398
Exporting Tables .. 400
Exporting Objects .. 402

Bulk Deleting and Purging Data 406

Best Practices for DELETE and UPDATE .. 407
Performance Considerations for DELETE and UPDATE Queries ... 407
Optimizing DELETEs and UPDATEs for Performance ... 408

Purging Deleted Data ... 410
Setting a Purge Po licy ... 410
Manually Purging Data ... 412

Managing the Database 413

Load Balancing ... 414
Configuring HP Vertica Nodes ... 415
Configuring the Directors ... 419
Connecting to the Virtual IP (VIP) ... 422
Monitoring Shared Node Connections ... 422
Determining Where Connections Are Going .. 423
IPVS Troubleshooting Tips.. 425
Keepalived Troubleshooting Tips ... 426

Managing Nodes... 429
Elastic Cluster... 429
Adding Nodes ... 435
Removing Nodes.. 441
Replacing Nodes .. 445
Rebalancing Data Across Nodes ... 449
Redistributing Configuration Files to Nodes .. 452
Changing the IP Addresses of an HP Vertica Cluster ... 452
Stopping and Starting Nodes on MC.. 454

Managing Disk Space .. 456
Adding Disk Space to a Node.. 456
Replacing Failed Disks ... 457
Catalog and Data Files .. 457
Understanding the Catalog Directory ... 458
Reclaiming Disk Space from Deleted Records... 459

Managing Tuple Mover Operations .. 461
Understanding the Tuple Mover ... 462
Tuning the Tuple Mover... 464

Managing Workload Resources ... 467
The Resource Manager ... 468
Resource Manager Impact on Query Execution ... 468
Resource Pool Architecture.. 469
Managing Resources at Query Run Time.. 474
Restoring Resource Manager Defaults ... 477
Best Practices for Managing Workload Resources .. 478
Managing System Resource Usage... 493

-viii-

Administrator's Guide

Working With Storage Locations 498

Viewing Storage Locations and Policies .. 499
Adding Storage Locations... 501
Altering Storage Location Use ... 504
Altering Location Labels ... 505
Creat ing Storage Policies .. 507
Moving Data Storage Locations .. 510
Clearing Storage Policies .. 511
Measuring Storage Performance .. 513
Setting Storage Performance .. 514
Dropping Storage Locations ... 515
Retiring Storage Locations ... 516
Restoring Retired Storage Locations... 516

Backing Up and Restoring the Database 517

Understanding VBR Terminology... 517
When to Back up the Database .. 519
Backup Directory Structure and Contents.. 520
Using Hard File Link Local Backups.. 522
Viewing and Removing Backups .. 523
Configuring Remote Backup Hosts... 525
Configuring Hard Link Local Backup Hosts ... 530
Generating the vbr.py Configurat ion File .. 530

Configuring Required VBR Parameters .. 532
Configuring Advanced VBR Parameters ... 533
Configuring the Hard Link Local VBR Parameter .. 535
Example Backup Configuration File .. 535

Creat ing Full and Incremental Backups ... 537
Creat ing Schema and Table Backups.. 539
Creat ing Hard Link Local Backups ... 545
Interrupting the Backup Ut ility .. 546
Restoring Full Database Backups .. 546
Restoring Schema and Table Backups .. 548
Restoring Hard Link Local Backups ... 551
Copying the Database to Another Cluster .. 553
Restoring to the Same Cluster .. 557
Backup and Restore Utility Reference.. 557

VBR Utility Reference.. 557
VBR Configuration File Reference .. 559

-ix-

 Contents

Recovering the Database 565

Failure Recovery... 566
Restarting HP Vertica on a Host .. 568
Restarting the Database ... 568
Recovering the Cluster from a Backup ... 570
Monitoring Recovery ... 571
Exporting a Catalog.. 572
Best Practices for Disaster Recovery .. 573

Monitoring HP Vertica 575

Monitoring Log Files ... 575
Rotating Log Files .. 575
Monitoring Process Status (ps) .. 577
Monitoring Linux Resource Usage ... 578
Monitoring Disk Space Usage.. 579
Monitoring Database Size for License Compliance ... 580
Monitoring Shared Node Connections.. 581
Monitoring Elastic Cluster Rebalancing... 583
Monitoring Parameters .. 583
Monitoring Events .. 584

Event logging mechanisms... 584
Event severity types... 585
Event data.. 588
Configuring event reporting... 589
Event reporting examples ... 594

Using System Tables.. 595
Retain ing Monitoring Informat ion .. 599

Enabling and disabling Data Collector... 600
Viewing current data retention policy .. 600
Configuring data retention policies ... 601
Working with data collect ion logs .. 602
Monitoring Data Collection components... 604
Querying Data Collector tables ... 605
Configuring PROJECTION_REFRESHES History.. 606

Monitoring Query Plan Profiles ... 606
Monitoring Partit ion Reorganizat ion .. 606
Monitoring Resource Pools and Resource Usage by Queries... 607
Monitoring Recovery ... 609
Monitoring HP Vert ica Using MC .. 612

Viewing MC Home Page.. 613
Monitoring Same-name Databases on MC.. 614
Monitoring the Database Cluster... 614
Monitoring System Resources... 621
Monitoring Node Activity .. 632
Monitoring MC-managed Database Messages ... 633
Monitoring MC User Activity ... 639

Monitoring HP Vert ica Using Ganglia ... 641
Ganglia Architecture ... 641
Ganglia Prerequisites... 642

-x-

Administrator's Guide

Required Packages for a Ganglia Installat ion ... 643
Installing the HP Vertica Monitoring Package ... 644
Configuring Ganglia .. 648
Configuring the Vert ica Monitoring Package ... 653
Upgrading the Vertica Monitoring Package.. 656
Uninstalling HP Vertica-Ganglia .. 656

Analyzing Workloads 658

Getting Tuning Recommendations Through an API.. 658
Getting Tuning Recommendations Through MC ... 661
Understanding WLA Triggering Conditions ... 662

Collecting Database Statistics 666

Statistics Used by the Query Optimizer.. 667
How Statistics are Collected ... 667
How statistics are computed ... 670
How statistics are reported.. 670
Determining when statistics were last updated ... 670
Reacting to stale statistics ... 675
Canceling statistics collection .. 676
Best practices for statistics collection ... 677

Using Diagnostic Tools 679

Determining Your Version of HP Vertica .. 680
Collecting Diagnostics (scrutinize Command).. 680

Diagnostics (scrutinize) syntax.. 685
How to run scrutinize .. 687
How scrutinize co llects/packages diagnostics .. 688
How to upload scrutinize results to support .. 690
Examples for the scrutinize command ... 691

Collecting Diagnostics (diagnostics Command) ... 692
Exporting a Catalog.. 694
Exporting Profiling Data ... 694

Understanding Query Plans 695

How to Obtain a Query Plan... 696
How to Save a Query Plan .. 697
About EXPLAIN output.. 697

Viewing Cost and Rows Path .. 699
Viewing Statistics Query Plan Output ... 700
Viewing Pro jection Path ... 701
Viewing Join Path .. 702
Viewing path ID path .. 705
Viewing filter path... 706
Viewing the GROUPBY PIPELINED and GROUPBY HASH path ... 707
Viewing sort path... 708
Viewing limit path ... 709
Viewing data redistribution path ... 710

-xi-

 Contents

Viewing analytic function path ... 711
Viewing merge path .. 712

Linking EXPLAIN plan to error messages and profiling information .. 713

Profiling Database Performance 716

How to Determine if Profiling is Enabled .. 717
How to Enable Profiling for the Current Session.. 717
How to Disable Profiling for the Current Session .. 717
How to Enable Profiling for all Sessions ... 718
How to Disable Profiling for all Sessions .. 718
How to Clear Profiling Data ... 719
About Real-time Profiling... 719
How to Profile a Single Statement .. 721
How to View Profiling Data ... 722
How to View Real-t ime Profiling Data .. 724
Profiling Query Plan Profiles ... 725

How to Get Query Plan Status for Small Queries .. 726
How to Get Query Plan Status for Large Queries .. 727
Improving Readability of QUERY_PLAN_PROFILES Output ... 728
Managing Query Profiling Data .. 729
Reacting to Suboptimal Query Plans .. 730

How to Label Queries for Profiling ... 730

About Locales 732

Locale Specificat ion... 734
Long Form... 734
Short Form .. 739

Supported Locales .. 740
Locale Restrictions and Workarounds .. 752
Loading Representative Data ... 754

Appendix: Binary File Formats 755

Creat ing Native Binary Format Files .. 755

Copyright Notice 762

-12-

Administrator's Guide

Welcome to the HP Vertica Administrator's Guide. This document describes how to set up and
maintain an HP Vertica Analytics Platform database.

Prerequisites

This document assumes that you have already:

 Become familiar with the concepts discussed in the Concepts Guide.

 Performed the procedures described in the Installation Guide:

 Constructed a hardware platform

 Installed Linux

 Installed HP Vertica (configured a cluster of hosts)

 Followed the Tutorial in the Getting Started Guide to experiment with setting up an example
database.

-13-

 13

Syntax Conventions

The following are the syntax conventions used in the HP Vertica documentation.

Syntax Convention Description

Text without brackets/braces Indicates content you type, as shown.

< Text inside angle brackets > Represents a placeholder for which you must supply a value. The
variable is usually shown in italics. See Placeholders below.

[Text inside brackets] Indicates optional items; for example, CREATE TABLE
[schema_name.]table_name

The brackets indicate that the schema_name is optional. Do not type

the square brackets.

{ Text inside braces } Indicates a set of options from which you choose one; for example:

QUOTES { ON | OFF } indicates that exactly one of ON or OFF must

be provided. You do not type the braces: QUOTES ON

Backslash \ Represents a continuation character used to indicate text that is too

long to fit on a single line.

Ellipses ... Indicate a repetition of the previous parameter. For example,
option[,...] means that you can enter multiple,

comma-separated options.

Showing ellipses in code examples might also mean that part of the

text has been omitted for readability, such as in multi-row result sets.

 Indentation Is an attempt to maximize readability; SQL is a free-form language.

Placeholders Represent items that must be replaced with appropriate identifiers or
expressions and are usually shown in italics.

Vertical bar | Is a separator for mutually exclusive items. For example: [ASC |

DESC]

Choose one or neither. You do not type the square brackets.

-14-

Administration Overview

This document describes the functions performed by an HP Vertica database administrator (DBA).
Perform these tasks using only the dedicated database administrator account that was created
when you installed HP Vertica. The examples in this documentation set assume that the
administrative account name is dbadmin.

 To perform certain cluster configuration and administration tasks, the DBA (users of the
administrative account) must be able to supply the root password for those hosts. If this
requirement conflicts with your organization's security policies, these functions must be
performed by your IT staff.

 If you perform administrative functions using a different account from the account provided
during installation, HP Vertica encounters file ownership problems.

 If you share the administrative account password, make sure that only one user runs the
Administration Tools at any time. Otherwise, automatic configuration propagation does not
work correctly.

 The Administration Tools require that the calling user's shell be /bin/bash. Other shells give
unexpected results and are not supported.

-15-

Configuring the Database

This section provides information about:

 The configuration procedure (page 16)

 Configuration parameters (page 36)

 Designing a logical schema (page 46)

 Creating the physical schema (page 76)

 Implementing security (page 35)

See also implementing locales (page 29) for international data sets.

Note: Before you begin this section, HP strongly recommends that you follow the Tutorial in

the Getting Started Guide to quickly familiarize yourself with creating and configuring a
fully-functioning example database.

-16-

 16

Configuration Procedure

This section describes the tasks required to set up an HP Vertica database. It assumes that you
have obtained a valid license key file, installed the HP Vertica rpm package, and run the
installation script as described in the Installation Guide.

You'll complete the configuration procedure using the:

 Administration Tools

If you are unfamiliar with Dialog-based user interfaces, read Using the Administration Tools
Interface (page 223) before you begin. See also the Administration Tools Reference (page
231) for details.

 vsql interactive interface

 The Database Designer, described fully in Designing a Physical Schema (page 76)

Note: Users can also perform certain tasks using the Management Console. Those tasks will

point to the appropriate topic.

IMPORTANT NOTES

Follow the configuration procedure in the order presented in this book.

HP strongly recommends that you first use the Tutorial in the Getting Started Guide to experiment
with creating and configuring a database.

The generic configuration procedure described here can be used several times during the
development process and modified each time to fit changing goals. You can omit steps such as
preparing actual data files and sample queries, and run the Database Designer without optimizing
for queries. For example, you can create, load, and query a database several times for
development and testing purposes, then one final time to create and load the production
database.

Prepare Disk Storage Locations

You must create and specify directories in which to store your catalog and data files (physical
schema). You can specify these locations when you install or configure the database, or later
during database operations.

The directory you specify for your catalog files (the catalog path) is used across all nodes. That is,
if you specify /home/catalog for your catalog files, HP Vertica will use /home/catalog as the catalog
path on all nodes. The catalog directory should always be separate from any data files.

Note: Do not use a shared directory for more than one node. Data and catalog directories must
be distinct for each node. Multiple nodes must not be allowed to write to the same data or
catalog directory.

The same is true for your data path. If you specify that your data should be stored in /home/data,
HP Vertica ensures this is the data path used on all database nodes.

-17-

 Configuring the Database

Do not use a single directory to contain both catalog and data files. You can store the catalog and
data directories on different drives, which can be either on drives local to the host (recommended
for the catalog directory) or on a shared storage location, such as an external disk enclosure or a
SAN.

Both the catalog and data directories must be owned by the database administrator.

Before you specify a catalog or data path, be sure to create these locations on all nodes of your
database.

Specifying Disk Storage Location During Installation

There are three ways to specify the disk storage location. You can specify the location when you:

 Install HP Vertica

 Create a database using the Administration Tools

 Install and configure Management Console

To specify the disk storage location when you install:

When you install HP Vertica, the data_directory parameter in the install_vertica script
lets you specify a directory to contain database data and catalog files. The script defaults to the
Database Administrator's default home directory: /home/dbadmin.

You should replace this default with a directory that has adequate space to hold your data and
catalog files.

Before you create a database, verify that the data and catalog directory exists on each node in the
cluster. Also verify that the directory on each node is owned by the database administrator.

Notes

 Catalog and data path names must contain only alphanumeric characters and cannot have
leading space characters. Failure to comply with these restrictions will result in database
creation failure.

 HP Vertica refuses to overwrite a directory if it appears to be in use by another database.
Therefore, if you created a database for evaluation purposes, dropped the database, and want
to reuse the database name, make sure that the disk storage location previously used has
been completely cleaned up. See Creating and Configuring Storage Locations (page 498)
for details.

Configuring Disk Usage to Optimize Performance

Once you have created your initial storage location, you can add additional storage locations to
the database later. Not only does this provide additional space, it lets you control disk usage and
increase I/O performance by isolating files that have different I/O or access patterns. For example,
consider:

 Isolating execution engine temporary files from data files by creating a separate storage
location for temp space.

-18-

Administrator's Guide

 Creating labeled storage locations and storage policies, in which selected database objects
are stored on different storage locations based on measured performance statistics or
predicted access patterns.

See Creating and configuring storage locations (page 498) for details.

Using Shared Storage With HP Vertica

If using shared SAN storage, ensure there is no contention among the nodes for disk space or
bandwidth.

 Each host must have its own catalog and data locations. Hosts cannot share catalog or data
locations.

 Configure the storage so that there is enough I/O bandwidth for each node to access the
storage independently.

Viewing Database Storage Information

You can view node-specific information on your HP Vertica cluster through the Management
Console. See Monitoring HP Vertica Using MC (page 612) for details.

Disk Space Requirements for HP Vertica

In addition to actual data stored in the database, HP Vertica requires disk space for several data
reorganization operations, such as mergeout and managing nodes (page 429) in the cluster.
For best results, HP recommends that disk utilization per node be no more than sixty percent
(60%) for a K-Safe=1 database to allow such operations to proceed.

In addition, disk space is temporarily required by certain query execution operators, such as hash
joins and sorts, in the case when they have to spill to disk. Such operators might be encountered
during queries, recovery, refreshing projections, and so on. The amount of disk space needed in
this manner (known as temp space) depends on the nature of the queries, amount of data on the
node and number of concurrent users on the system. By default, any unused disk space on the
data disk can be used as temp space. However, it is possible and recommended to provision temp
space separate from data disk space. See Configuring Disk Usage to Optimize Performance
(page 17).

Disk Space Requirements for Management Console

You can install MC on any node in the cluster, so there are no special disk requirements for
MC—other than disk space you would normally allocate for your database cluster. See Disk
Space Requirements for HP Vertica (page 18).

-19-

 Configuring the Database

Prepare the Logical Schema Script

Designing a logical schema for an HP Vertica database is no different from designing one for any
other SQL database. Details are described more fully in Designing a Logical Schema (page 46).

To create your logical schema, prepare a SQL script (plain text file, typically with an extension of
.sql) that:

1 Creates additional schemas (as necessary). See Using Multiple Schemas (page 46).

2 Creates the tables and column constraints in your database using the CREATE TABLE
command.

3 Defines the necessary table constraints using the ALTER TABLE command.

4 Defines any views on the table using the CREATE VIEW command.

You can generate a script file using:

 A schema designer application.

 A schema extracted from an existing database.

 A text editor.

 One of the example database example-name_define_schema.sql scripts as a template.
(See the example database directories in /opt/vertica/examples.)

In your script file, make sure that:

 Each statement ends with a semicolon.

 You use data types supported by HP Vertica, as described in the SQL Reference Manual.

Once you have created a database, you can test your schema script by executing it as described
in Create the Logical Schema (page 25). If you encounter errors, drop all tables, correct the
errors, and run the script again.

Prepare Data Files
Prepare two sets of data files:

 Test data files. Use test files to test the database after the partial data load. If possible, use part
of the actual data files to prepare the test data files.

 Actual data files. Once the database has been tested and optimized, use your data files for
your initial Bulk Loading Data (page 342).

How to Name Data Files

Name each data file to match the corresponding table in the logical schema. Case does not
matter.

-20-

Administrator's Guide

Use the extension .tbl or whatever you prefer. For example, if a table is named

Stock_Dimension, name the corresponding data file stock_dimension.tbl. When using

multiple data files, append _nnn (where nnn is a positive integer in the range 001 to 999) to the file
name. For example, stock_dimension.tbl_001, stock_dimension.tbl_002, and so on.

Prepare Load Scripts
Note: You can postpone this step if your goal is to test a logical schema design for validity.

Prepare SQL scripts to load data directly into physical storage using the COPY...DIRECT
statement using vsql, or through ODBC as described in the Programmer's Guide.

You need scripts that load the:

 Large tables

 Small tables

HP recommends that you load large tables using multiple files. To test the load process, use files
of 10GB to 50GB in size. This size provides several advantages:

 You can use one of the data files as a sample data file for the Database Designer.

 You can load just enough data to perform a partial data load (page 26) before you load the
remainder.

 If a single load fails and rolls back, you do not lose an excessive amount of time.

 Once the load process is tested, for multi-terabyte tables, break up the full load in file sizes of
250-500GB.

See the Bulk Loading Data (page 342) and the following additional topics for details:

 Bulk Loading Data (page 342)

 Using Load Scripts (page 345)

 Using Parallel Load Streams (page 376)

 Loading Data into Pre-join Projections (page 373)

 Enforcing Constraints (page 318)

 About Load Errors (page 381)

Tip: You can use the load scripts included in the example databases in the Getting Started

Guide as templates.

Create an Optional Sample Query Script
The purpose of a sample query script is to test your schema and load scripts for errors.

Include a sample of queries your users are likely to run against the database. If you don't have any
real queries, just write simple SQL that collects counts on each of your tables. Alternatively, you
can skip this step.

-21-

 Configuring the Database

Create an Empty Database

Two options are available for creating an empty database:

 Using the Management Console

 Using Administration Tools

Creating a Database Name and Password

Database name must conform to the following rules:

 Be between 1-30 characters

 Begin with a letter

 Follow with any combination of letters (upper and lowercase), numbers, and/or underscores.

Database names are case sensitive; however, HP strongly recommends that you do not create
databases with the same name that uses different case; for example, do not create a database
called mydatabase and another database called MyDataBase.

Database passwords

Database passwords may contain letters, digits, and certain special characters; however, no
non-ASCII Unicode characters may be used. The following table lists special (ASCII) characters
that HP Vertica permits in database passwords. Special characters can appear anywhere within a
password string; for example, mypas$word or $mypassword or mypassword$ are all permitted.

Caution: Using special characters in database passwords that are not listed in the following

table could cause database instability.

Character Description

pound sign

! exclamation point

+ plus sign

* asterisk

? question mark

, comma

. period

/ forward slash

= equals sign

~ tilde

-22-

Administrator's Guide

- minus sign

$ dollar sign

_ underscore

: colon

 space

" double quote

' single quote

% percent sign

& ampersand

(parenthesis

) parenthesis

; semicolon

< less than sign

> greater than sign

@ at sign

` back quote

[square bracket

] square bracket

\ backslash

^ caret

| vertical bar

{ curly bracket

} curly bracket

See also

Password Guidelines (page 121)

Create an Empty Database Using MC

You can create a new database on an existing HP Vertica cluster through the Management
Console interface.

Database creation can be a long-running process, lasting from minutes to hours, depending on the
size of the target database. You can close the web browser during the process and sign back in to
MC later; the creation process continues unless an unexpected error occurs. See the Notes

section below the procedure on this page.

-23-

 Configuring the Database

You currently need to use command line scripts to define the database schema and load data.
Refer to the topics in Configuration Procedure (page 16). You should also run the Database
Designer, which you access through the Administration Tools, to create either a comprehensive or
query-specific design. Consider using the Tutorial in the Getting Started Guide to create a sample
database you can start monitoring immediately.

How to create an empty database on an MC-managed cluster

1 If you are already on the Databases and Clusters page, skip to the next step; otherwise:

a) Connect (page 252) to MC and sign in as an MC administrator.

b) On the Home page, click the Databases and Clusters task.

2 If no databases exist on the cluster, continue to the next step; otherwise:

a) If a database is running on the cluster on which you want to add a new database, select the
database and click Stop.

b) Wait for the running database to have a status of Stopped.

3 Click the cluster on which you want to create the new database and click Create Database.

4 The Create Database wizard opens. Provide the following information:

 Database name and password. See Creating a Database Name and Password (page
21) for rules.

 Optionally click Advanced to open the advanced settings and change the port and catalog,

data, and temporary data paths. By default the MC application/web server port is 5450 and

paths are /home/dbadmin, or whatever you defined for the paths when you ran the

Cluster Creation Wizard or the install_vertica script. Do not use the default agent
port 5444 as a new setting for the MC port. See MC Settings > Configuration for port

values.

5 Click Continue.

6 Select nodes to include in the database.

The Database Configuration window opens with the options you provided and a graphical
representation of the nodes appears on the page. By default, all nodes are selected to be part
of this database (denoted by a green check mark). You can optionally click each node and
clear Include host in new database to exclude that node from the database. Excluded nodes
are gray. If you change your mind, click the node and select the Include check box.

7 Click Create in the Database Configuration window to create the database on the nodes.

The creation process takes a few moments, after which the database starts and a Success
message appears on the interface.

8 Click OK to close the success message.

MC's Manage page opens and displays the database nodes. Nodes not included in the database
are colored gray, which means they are standby nodes you can include later. To add nodes to or
remove nodes from your HP Vertica cluster, which are not shown in standby mode, you must run
the install_vertica script.

Notes

 If warnings occur during database creation, nodes will be marked on the UI with an Alert icon
and a message.

-24-

Administrator's Guide

 Warnings do not prevent the database from being created, but you should address
warnings after the database creation process completes by viewing the database
Message Center from the MC Home page.

 Failure messages display on the database Manage page with a link to more detailed

information and a hint with an actionable task that you must complete before you can
continue. Problem nodes are colored red for quick identification.

 To view more detailed information about a node in the cluster, double-click the node from
the Manage page, which opens the Node Details page.

 To create MC users and grant them access to an MC-managed database, see About MC
Users (page 148) and Creating an MC user (page 149).

See Also

Creating an HP Vertica Cluster Using MC

Troubleshooting Management Console (page 259)

Restarting MC (page 261)

Create a Database Using Administration Tools

1 Run the Administration Tools from your Administration Host as follows:

$ /opt/vertica/bin/admintools

If you are using a remote terminal application, such as PuTTY or a Cygwin bash shell, see
Notes for Remote Terminal Users (page 226).

2 Accept the license agreement and specify the location of your license file. See Managing
Your License Key (page 108) for more information.

This step is necessary only if it is the first time you have run the Administration Tools

3 On the Main Menu, click Configuration Menu, and click OK.

4 On the Configuration Menu, click Create Database, and click OK.

5 Enter the name of the database and an optional comment, and click OK.

6 Establish the superuser password for your database.

 To provide a password enter the password and click OK. Confirm the password by entering
it again, and then click OK.

 If you don't want to provide the password, leave it blank and click OK. If you don't set a

password, HP Vertica prompts you to verify that you truly do not want to establish a
superuser password for this database. Click Yes to create the database without a
password or No to establish the password.

Caution: If you do not enter a password at this point, the superuser password is set to empty.

Unless the database is for evaluation or academic purposes, HP strongly recommends that
you enter a superuser password. See Creating a Database Name and Password (page 21)
for guidelines.

7 Select the hosts to include in the database from the list of hosts specified when HP Vertica was

installed (install_vertica -s), and click OK.

8 Specify the directories in which to store the data and catalog files, and click OK.

-25-

 Configuring the Database

Note: Do not use a shared directory for more than one node. Data and catalog directories must

be distinct for each node. Multiple nodes must not be allowed to write to the same data or
catalog directory.

Catalog and data pathnames must contain only alphanumeric characters and cannot have
leading spaces. Failure to comply with these restrictions results in database creation failure.

For example:

Catalog pathname: /home/dbadmin

Data Pathname: /home/dbadmin

9 Review the Current Database Definition screen to verify that it represents the database you
want to create, and then click Yes to proceed or No to modify the database definition.

If you click Yes, HP Vertica creates the database you defined and then displays a message to

indicate that the database was successfully created.

Note: For databases created with 3 or more nodes, HP Vertica automatically sets K-safety to 1
to ensure that the database is fault tolerant in case a node fails. For more information, see the
Failure Recovery (page 566) in the Administrator's Guide and MARK_DESIGN_KSAFE in the
SQL Reference Manual.

10 Click OK to acknowledge the message.

If you receive an error message, see Startup Problems.

Create the Logical Schema
1 Connect to the database.

In the Administration Tools Main Menu, click Connect to Database and click OK.

See Connecting to the Database for details.

The vsql welcome script appears:

Welcome to vsql, the Vertica Analytic Database interactive terminal.

Type: \h or \? for help with vsql commands

 \g or terminate with semicolon to execute query

 \q to quit

=>

2 Run the logical schema script

-26-

Administrator's Guide

Using the \i meta-command in vsql to run the SQL logical schema script (page 19) that you
prepared earlier.

3 Disconnect from the database

Use the \q meta-command in vsql to return to the Administration Tools.

Perform a Partial Data Load

HP recommends that for large tables, you perform a partial data load and then test your database
before completing a full data load. This load should load a representative amount of data.

1 Load the small tables.

Load the small table data files using the SQL load scripts (page 20) and data files (page 19)
you prepared earlier.

2 Partially load the large tables.

Load 10GB to 50GB of table data for each table using the SQL load scripts (page 20) and
data files (page 19) that you prepared earlier.

For more information about projections, see Physical Schema in the Concepts Guide.

Test the Database

Test the database to verify that it is running as expected.

Check queries for syntax errors and execution times.

1 Use the vsql \timing meta-command to enable the display of query execution time in
milliseconds.

2 Execute the SQL sample query script that you prepared earlier.

3 Execute several ad hoc queries.

Optimize Query Performance

Optimizing the database consists of optimizing for compression and tuning for queries. (See
Designing a Physical Schema (page 76).)

To optimize the database, use the Database Designer to create and deploy a design for optimiz ing
the database. See the Tutorial in the Getting Started Guide for an example of using the Database
Designer to create a Comprehensive Design.

After you have run the Database Designer, use the techniques described in Optimizing Query
Performance in the Programmer's Guide to improve the performance of certain types of queries.

Note: The database response time depends on factors such as type and size of the application

query, database design, data size and data types stored, available computational power, and
network bandwidth. Adding nodes to a database cluster does not necessarily improve the
system response time for every query, especially if the response time is already short, e.g., less
then 10 seconds, or the response time is not hardware bound.

-27-

 Configuring the Database

Complete the Data Load

To complete the load:

1 Monitor system resource usage

Continue to run the top, free, and df utilities and watch them while your load scripts are
running (as described in Monitoring Linux Resource Usage (page 578)). You can do this on
any or all nodes in the cluster. Make sure that the system is not swapping excessively (watch

kswapd in top) or running out of swap space (watch for a large amount of used swap space
in free).

Vertica expects a dedicated machine. if your loader or other processes take up significant
amounts of RAM, it can result in swapping. If you cannot dedicate the machine to Vertica,
adjust resource pool settings appropriately.

2 Complete the large table loads

Run the remainder of the large table load scripts.

Test the Optimized Database

Check query execution times to test your optimized design:

1 Use the vsql \timing meta-command to enable the display of query execution time in
milliseconds.

Execute a SQL sample query script to test your schema and load scripts for errors.

Note: Include a sample of queries your users are likely to run against the database. If you don't

have any real queries, just write simple SQL that collects counts on each of your tables.
Alternatively, you can skip this step.

2 Execute several ad hoc queries

1. Run Administration Tools and select Connect to Database.

2. Use the \i meta-command to execute the query script; for example:

vmartdb=> \i vmart_query_03.sql

 customer_name | annual_income

------------------+---------------

 James M. McNulty | 999979

 Emily G. Vogel | 999998

(2 rows)

Time: First fetch (2 rows): 58.411 ms. All rows formatted: 58.448 ms

vmartdb=> \i vmart_query_06.sql

 store_key | order_number | date_ordered

-----------+--------------+--------------

 45 | 202416 | 2004-01-04

 113 | 66017 | 2004-01-04

 121 | 251417 | 2004-01-04

-28-

Administrator's Guide

 24 | 250295 | 2004-01-04

 9 | 188567 | 2004-01-04

 166 | 36008 | 2004-01-04

 27 | 150241 | 2004-01-04

 148 | 182207 | 2004-01-04

 198 | 75716 | 2004-01-04

(9 rows)

Time: First fetch (9 rows): 25.342 ms. All rows formatted: 25.383 ms

Once the database is optimized, it should run queries efficiently. If you discover queries that you
want to optimize, you can modify and update the design. See Modifying Designs and Creating a
Query-specific Design Using the Database Designer (page 84) in the Administrator's Guide.

Set Up Incremental (Trickle) Loads

Once you have a working database, you can use trickle loading to load new data while concurrent
queries are running.

Trickle load is accomplished by using the COPY command (without the DIRECT keyword) to load
10,000 to 100,000 rows per transaction into the WOS. This allows HP Vertica to batch multiple
loads when it writes data to disk. While the COPY command defaults to loading into the WOS, it
will write ROS if the WOS is full.

See Trickle Loading Data (page 390) for details.

See Also

COPY in the SQL Reference Manual

Loading data through ODBC and Loading data through JDBC in the Programmer's Guide

-29-

 29

Implement Locales for International Data Sets

The locale is a parameter that defines the user's language, country, and any special variant
preferences, such as collation. HP Vertica uses the locale to determine the behavior of various
string functions as well for collation for various SQL commands that require ordering and
comparison; for example, GROUP BY, ORDER BY, joins, the analytic ORDER BY clause, and so
forth.

By default, the locale for the database is en_US@collation=binary (English US). You can
establish a new default locale that is used for all sessions on the database, as well as override
individual sessions with different locales. Additionally the locale can be set through ODBC,
JDBC, and ADO.net.

ICU Locale Support

HP Vertica uses the ICU library for locale support; thus, you must specify locale using the ICU
Locale syntax. While the locale used by the database session is not derived from the operating

system (through the LANG variable), HP Vertica does recommend that you set the LANG
appropriately for each node running vsql, as described in the next section.

While ICU library services can specify collation, currency, and calendar preferences, HP Vertica
supports only the collation component. Any keywords not relating to collation are rejected.

Projections are always collated using the en_US@collation=binary collation regardless of the
session collation. Any locale-specific collation is applied at query time.

The SET DATESTYLE TO ... command provides some aspects of the calendar, but HP Vertica
supports only dollars as currency.

Changing DB Locale for a Session

This examples sets the session locale to Thai.

1 At the OS level for each node running vsql, set the LANG variable to the locale language as
follows:

export LANG=th_TH.UTF-8

NOTE: If setting the LANG= as noted does not work, OS support for locales may not be
installed.

2 For each HP Vertica session (from ODBC/JDBC or vsql) set the language locale.

From vsql:

\locale th_TH

3 From ODBC/JDBC:

"SET LOCALE TO th_TH;"

4 In PUTTY (or ssh terminal), change the settings as follows:

settings > window > translation > UTF-8

5 Click Apply, and Save.

-30-

Administrator's Guide

All data being loaded must be in UTF-8 format, not an ISO format, as described in Loading UTF-8
Format Data (page 357). Character sets like ISO 8859-1 (Latin1), which are incompatible with
UTF-8 are not supported, so functions like substring do not work correctly for multi-byte
characters. Thus, ISO settings for locale should NOT work correctly. If the translation setting
ISO-8859-11:2001 (Latin/Thai) works, the data is loaded incorrectly. To convert data correctly,
use a utility program such as Linux iconv (see the man page).

Notes

 The maximum length parameter for VARCHAR and CHAR data type refers to the number of
octets (bytes) that can be stored in that field and not number of characters. When using
multi-byte UTF-8 characters, size fields to accommodate from 1 to 4 bytes per character,
depending on the data.

See Also

Supported Locales (page 740) in the Appendix (page 732)

SET LOCALE in the SQL Reference Manual

ICU User Guide http://userguide.icu-project.org/locale (external link)

Specify the Default Locale for the Database

The default locale configuration parameter sets the initial locale for every database session once
the database has been restarted. Sessions may override this value.

To set the local for the database, use the configuration parameter as follows:

SELECT SET_CONFIG_PARAMETER('DefaultSessionLocale' ,

'<ICU-locale-identifier>');

For example:

mydb=> SELECT SET_CONFIG_PARAMETER('DefaultSessionLocale','en_GB');

 SET_CONFIG_PARAMETER

 Parameter set successfully

(1 row)

Override the Default Locale for a Session

To override the default locale for a specific session, use one of the following commands:

 The vsql command \locale <ICU-locale-identifier>.

For example:

\locale en_GB

INFO: Locale: 'en_GB'

INFO: English (United Kingdom)

INFO: Short form: 'LEN'

 The statement SET LOCALE TO <ICU-locale-identifier>.

SET LOCALE TO en_GB;

http://userguide.icu-project.org/locale

-31-

 Configuring the Database

SET LOCALE TO en_GB;

INFO: Locale: 'en_GB'

INFO: English (United Kingdom)

INFO: Short form: 'LEN'

You can also use the short form (page 739) of a locale in either of these commands:

SET LOCALE TO LEN;

INFO: Locale: 'en'

INFO: English

INFO: Short form: 'LEN'

\locale LEN

INFO: Locale: 'en'

INFO: English

INFO: Short form: 'LEN'

You can use these commands to override the locale as many times as needed within a session.
The session locale setting applies to any subsequent commands issued in the session.

See Also

SET LOCALE in the SQL Reference Manual

Best Practices for Working with Locales

It is important to understand the distinction between the locale settings on the database server and
locale settings at the client application level. The server locale settings impact only the collation
behavior for server-side query processing. The client application is responsible for ensuring that
the correct locale is set in order to display the characters correctly. Below are the best practices
recommended by HP to ensure predictable results:

Server locale

Server session locale should be set using the set as described in Specify the Default Locale for
the Database (page 30). If using different locales in different session, set the server locale at the
start of each session from your client.

vsql client

 If there is no default session locale at database level, the server locale for the session should
be set to the desired locale, as described in Override the Default Locale for a Session (page
30).

 The locale setting in the terminal emulator where vsql client is run should be set to be
equivalent to session locale setting on server side (ICU locale) so data is collated correctly on
the server and displayed correctly on the client.

 All input data for vsql should be in UTF-8 and all output data is encoded in UTF-8

 Non UTF-8 encodings and associated locale values should not be used because they are not
supported.

 Refer to the documentation of your terminal emulator for instructions on setting locale and
encoding.

-32-

Administrator's Guide

ODBC clients

 ODBC applications can be either in ANSI or Unicode mode. If Unicode, the encoding used by
ODBC is UCS-2. If the user application is ANSI, the data must be in single-byte ASCII, which is
compatible with UTF-8 used on the database server. The ODBC driver converts UCS-2 to
UTF-8 when passing to the HP Vertica server and converts data sent by the HP Vertica server
from UTF-8 to UCS-2.

 If the user application is not already in UCS-2, the application is responsible for converting the
input data to UCS-2, or unexpected results could occur. For example:

 On non-UCS-2 data passed to ODBC APIs, when it is interpreted as UCS-2, it could result
in an invalid UCS-2 symbol being passed to the APIs, resulting in errors.

 The symbol provided in the alternate encoding could be a valid UCS-2 symbol; in this case,
incorrect data is inserted into the database.

 If there is no default session locale at database level, ODBC applications should set the

desired server session locale using SQLSetConnectAttr (if different from database wide
setting) in order to get expected collation and string functions behavior on the server.

JDBC and ADO.NET clients

 JDBC and ADO.NET applications use a UTF-16 character set encoding and are responsible
for converting any non-UTF-16 encoded data to UTF-16. The same cautions apply as for
ODBC if this encoding is violated.

 The JDBC and ADO.NET drivers convert UTF-16 data to UTF-8 when passing to the HP
Vertica server and convert data sent by HP Vertica server from UTF-8 to UTF-16.

 If there is no default session locale at the database level, JDBC and ADO.NET applications
should set the correct server session locale by executing the SET LOCALE TO command in
order to get expected collation and string functions behavior on the server. See the SET
LOCALE command in the SQL Reference Manual.

Notes and Restrictions

Session related:

 The locale setting is session scoped and applies to queries only (no DML/DDL) run in that
session. You cannot specify a locale for an individual query.

 The default locale for new sessions can be set using a configuration parameter

Query related:

The following restrictions apply when queries are run with locale other than the default
en_US@collation=binary:

 Multicolumn NOT IN subqueries are not supported when one or more of the left-side NOT IN
columns is of CHAR or VARCHAR data type. For example:

=> CREATE TABLE test (x VARCHAR(10), y INT);

=> SELECT ... FROM test WHERE (x,y) NOT IN (SELECT ...);

 ERROR: Multi-expression NOT IN subquery is not supported because a

left hand expression could be NULL

-33-

 Configuring the Database

Note: An error is reported even if columns test.x and test.y have a "NOT NULL"
constraint.

 Correlated HAVING clause subqueries are not supported if the outer query contains a GROUP

BY on a CHAR or a VARCHAR column. In the following example, the GROUP BY x in the outer
query causes the error:

=> DROP TABLE test CASCADE;

=> CREATE TABLE test (x VARCHAR(10));

=> SELECT COUNT(*) FROM test t GROUP BY x HAVING x

 IN (SELECT x FROM test WHERE t.x||'a' = test.x||'a');

 ERROR: subquery uses ungrouped column "t.x" from outer query

 Subqueries that use analytic functions in the HAVING clause are not supported. For example:

=> DROP TABLE test CASCADE;

=> CREATE TABLE test (x VARCHAR(10));

=> SELECT MAX(x)OVER(PARTITION BY 1 ORDER BY 1)

 FROM test GROUP BY x HAVING x IN (

 SELECT MAX(x) FROM test);

 ERROR: Analytics query with having clause expression that involves

aggregates

 and subquery is not supported

DML/DDL related:

 SQL identifiers (such as table names, column names, and so on) can use UTF-8 Unicode
characters. For example, the following CREATE TABLE statement uses the ß (German eszett)
in the table name:

=> CREATE TABLE straße(x int, y int);

 CREATE TABLE

 Projection sort orders are made according to the default en_US@collation=binary collation.
Thus, regardless of the session setting, issuing the following command creates a projection
sorted by col1 according to the binary collation:

=> CREATE PROJECTION p1 AS SELECT * FROM table1 ORDER BY col1;

Note that in such cases, straße and strasse would not be near each other on disk.

Sorting by binary collation also means that sort optimizations do not work in locales other than
binary. HP Vertica returns the following warning if you create tables or projections in a
non-binary locale:

WARNING: Projections are always created and persisted in the default

HP Vertica locale. The current locale is de_DE

 When creating pre-join projections, the projection definition query does not respect the locale
or collation setting. This means that when you insert data into the fact table of a pre-join
projection, referential integrity checks are not locale or collation aware.

For example:

\locale LDE_S1 -- German

=> CREATE TABLE dim (col1 varchar(20) primary key);

=> CREATE TABLE fact (col1 varchar(20) references dim(col1));

=> CREATE PROJECTION pj AS SELECT * FROM fact JOIN dim

 ON fact.col1 = dim.col1 UNSEGMENTED ALL NODES;

-34-

Administrator's Guide

=> INSERT INTO dim VALUES('ß');

=> COMMIT;

The following INSERT statement fails with a "nonexistent FK" error even though 'ß' is in the
dim table, and in the German locale 'SS' and 'ß' refer to the same character.

=> INSERT INTO fact VALUES('SS');

 ERROR: Nonexistent foreign key value detected in FK-PK join (fact

x dim)

 using subquery and dim_node0001; value SS

=> => ROLLBACK;

=> DROP TABLE dim, fact CASCADE;

 When the locale is non-binary, the collation function is used to transform the input to a binary
string which sorts in the proper order.

This transformation increases the number of bytes required for the input according to this
formula:

result_column_width = input_octet_width * CollationExpansion + 4

CollationExpansion defaults to 5.

 CHAR fields are displayed as fixed length, including any trailing spaces. When CHAR fields
are processed internally, they are first stripped of trailing spaces. For VARCHAR fields, trailing
spaces are usually treated as significant characters; however, trailing spaces are ignored
when sorting or comparing either type of character string field using a non-BINARY locale.

Change Transaction Isolation Levels

By default, HP Vertica uses the READ COMMITTED isolation level for every session. If you prefer,
you can change the default isolation level for the database or for a specific session.

To change the isolation level for a specific session, use the SET SESSION CHARACTERISTICS
command.

To change the isolation level for the database, use the TransactionIsolationLevel
configuration parameter. Once modified, HP Vertica uses the new transaction level for every new
session.

The following examples set the default isolation for the database to SERIALIZABLE and then
back to READ COMMITTED:

=> SELECT SET_CONFIG_PARAMETER('TransactionIsolationLevel','SERIALIZABLE');

=> SELECT SET_CONFIG_PARAMETER('TransactionIsolationLevel','READ COMMITTED');

Notes

 A change to isolation level only applies to future sessions. Existing sessions and their
transactions continue to use the original isolation level.

-35-

 Configuring the Database

 A transaction retains its isolation level until it completes, even if the session's transaction
isolation level changes mid-transaction. HP Vertica internal processes (such as the Tuple

Mover and refresh operations) and DDL operations are always run at SERIALIZABLE
isolation level to ensure consistency.

See Also

Transactions in the Concepts Guide for an overview of how HP Vertica uses session-scoped
isolation levels

Configuration Parameters (page 36)

Implement Security
Once you have created the database, you need to implement security before you can grant users
access to it. See Implementing Security (page 116).

-36-

 36

Configuration Parameters

You can modify certain parameters to configure your HP Vertica database using one of the
following options:

 Dynamically through the Management Console browser-based interface (page 36)

 At the command line (page 37) directly

 From vsql

IMPORTANT: Before you modify a database parameter, review all documentation about the

parameter to determine the context under which you can change it. Parameter changes take
effect after you restart the database.

Configuring HP Vertica Settings Using MC
To change database settings for any MC-managed database, click the Settings tab at the bottom

of the Overview, Activity, or Manage pages. The database must be running.

The Settings page defaults to parameters in the General category. To change other parameters,
click an option from the tab panel on the left.

Some settings require that you restart the database, and MC will prompt you to do so. You can
ignore the prompt, but those changes will not take effect until after you restart the database.

If you want to change settings that are specific to Management Console, such as change MC or
agent port assignments, see Managing MC Settings (page 257) for more information.

See also

Configuration Parameters (page 36)

-37-

 Configuring the Database

Configuring HP Vertica at the Command Line

The tables in this section list parameters for configuring HP Vertica at the command line.

General Parameters

The following table describes the general parameters for configuring HP Vertica.

Parameters Default Description

AnalyzeRowCountInterval 60 seconds Automatically runs every 60 seconds to collect the

number of rows in the projection and aggregates
row counts calculated during loads. See
Collecting Statistics (page 666).

CompressNetworkData 0 When enabled (set to value 1), HP Vertica will

compress all of the data it sends over the network.
This speeds up network traffic at the expense of
added CPU load. You can enable this if you find

that the network is throttling your database
performance.

CopyFromVerticaWithIdentity 1 Allows COPY FROM VERTICA and EXPORT TO
VERTICA to load values into Identity (or

Auto-increment) columns. The destination Identity
value is not incremented automatically. To disable
the default behavior, set this parameter to zero (0).

ExternalTablesExceptionsLimi

t

100 Determines the maximum number of COPY

exceptions and rejections that can occur when a
select statement references an external table.
Setting this parameter to -1 removes any

exceptions limit. For more information, see
Validating External Tables (page 284).

FencedUDxMemoryLimitMB -1 Sets the maximum amount of memory (in MB) that
a fenced-mode UDF can use. Any UDF that

attempts to allocate more memory than this limit
triggers an exception. When set to -1, there is no
limit on the amount of memory a UDF can allocate.

For more information, see Fenced Mode in the
Programmer's Guide.

MaxAutoSegColumns 32 Specifies the number of columns (0 - 1024) to
segment automatically when creating

auto-projections from COPY and INSERT INTO
statements. Setting this parameter to zero (0)
indicates to use all columns in the hash

segmentation expression.

-38-

Administrator's Guide

MaxClientSessions 50 Determines the maximum number of client
sessions that can be run on a single node of the

database. The default value includes 5 additional
administrative logins.

Tip: Setting this parameter to 0 is useful for

preventing new client sessions from being opened
while you are shutting down the database. Be sure

to restore the parameter to its original setting once
you've restarted the database. See the section
"Interrupting and Closing Sessions" in Managing

Sessions (page 494).

ParallelizeLocalSegmentLoad 1 Insert data in parallel when inserting into a
segmented projection. Only applicable when local
segments (see "Local Data Segmentation" on

page 431) are enabled. Disable this setting if you
find that excessive resources are used when
inserting data into local segments.

SegmentAutoProjection 1 Determines whether auto-projections are

segmented by default. Setting this parameter to
zero (0) disables the feature.

TransactionIsolationLevel READ
COMMITTED

Changes the isolation level for the database. Once
modified, HP Vertica uses the new transaction

level for every new session. Existing sessions and
their transactions continue to use the original
isolation level. See Change Transaction

Isolation Levels (page 34).

TransactionMode READ WRITE Controls whether transactions are read/write or
read-only. Read/write is the default. Existing
sessions and their transactions continue to use the

original isolation level.

Setting Configuration Parameters

You can set a new value for a configuration parameter with a select statement as follows. These
examples illustrate changing the parameters listed in the table:

SELECT SET_CONFIG_PARAMETER ('AnalyzeRowCountInterval',3600);

SELECT SET_CONFIG_PARAMETER ('CompressNetworkData',1);

SELECT SET_CONFIG_PARAMETER ('ExternalTablesExceptionsLimit',-1);

SELECT SET_CONFIG_PARAMETER ('MaxClientSessions', 100);

SELECT SET_CONFIG_PARAMETER ('TransactionMode','READ ONLY');

SELECT SET_CONFIG_PARAMETER ('TransactionIsolationLevel','SERIALIZABLE');

SELECT SET_CONFIG_PARAMETER ('CopyFromVerticaWithIdentity',0);

Tuple Mover Parameters

These parameters control how the Tuple Mover operates.

-39-

 Configuring the Database

Parameters Description Default Example

ActivePartitionCount Sets the number of partitions, called

active partitions, that are currently
being loaded. For information about
how the Tuple Mover treats active (and

inactive) partitions during a mergeout
operation, see Understanding the
Tuple Mover (page 462).

1
SELECT SET_CONFIG_PARAMETER

('ActivePartitionCount',

 2);

MergeOutInterval The number of seconds the Tuple

Mover waits between checks for new
ROS files to merge out. If ROS
containers are added frequently, you

may need to decrease this value.

600
SELECT SET_CONFIG_PARAMETER

('MergeOutInterval',1200);

MoveOutInterval The number of seconds the Tuple
mover waits between checks for new
data in the WOS to move to ROS.

300
SELECT SET_CONFIG_PARAMETER

('MoveOutInterval',600);

MoveOutMaxAgeTime The specified interval (in seconds) after

which the tuple mover is forced to write
the WOS to disk. The default interval is
30 minutes.

Tip: If you had been running the

force_moveout.sh script in previous

releases, you no longer need to run it.

1800
SELECT SET_CONFIG_PARAMETER

('MoveOutMaxAgeTime', 1200);

MoveOutSizePct The percentage of the WOS that can be
filled with data before the Tuple Mover

performs a moveout operation.

0
SELECT SET_CONFIG_PARAMETER

('MoveOutSizePct', 50);

Epoch Management Parameters

The following table describes the epoch management parameters for configuring HP Vertica.

Parameters Description Default Example

AdvanceAHMInterval Determines how frequently (in
seconds) HP Vertica checks the
history retention status. By default

the AHM interval is set to 180
seconds (3 minutes).

Note: AdvanceAHMInterval
cannot be set to a value less than

the EpochMapInterval.

180
SELECT SET_CONFIG_PARAMETER

('AdvanceAHMInterval',

'3600');

EpochMapInterval Determines the granularity of
mapping between epochs and
time available to historical queries.

When a historical queries AT

180
SELECT SET_CONFIG_PARAMETER

('EpochMapInterval',

'300');

-40-

Administrator's Guide

TIME T is issued, HP Vertica

maps it to an epoch within a

granularity of EpochMapInterval
seconds. It similarly affects the
time reported for Last Good Epoch

during Failure Recovery (page
566). Note that it does not affect
internal precision of epochs

themselves.

By default, EpochMapInterval is
set to 180 seconds (3 minutes).

Tip: Decreasing this interval

increases the number of epochs
saved on disk. Therefore, you
might want to reduce the

HistoryRetentionTime parameter
to limit the number of history
epochs that HP Vertica retains.

HistoryRetentionTime Determines how long deleted data

is saved (in seconds) as a
historical reference. The default is
0, which means that HP Vertica

saves historical data only when
nodes are down. Once the
specified time has passed since

the delete, the data is eligible to be
purged. Use the -1 setting if you
prefer to use

HistoryRetentionEpochs for

determining which deleted data
can be purged.

Note: The default setting of 0

effectively prevents the use of the
Administration Tools 'Roll Back
Database to Last Good Epoch'

option because the AHM remains
close to the current epoch and a
rollback is not permitted to an

epoch prior to the AHM.

Tip: If you rely on the Roll Back

option to remove recently loaded
data, consider setting a day -wide
window for removing loaded data;

for example:

SELECT

SET_CONFIG_PARAMETER

('HistoryRetentionTime',

'86400');

0
SELECT SET_CONFIG_PARAMETER

('HistoryRetentionTime',

'240');

HistoryRetentionEpoc

hs

Specifies the number of historical

epochs to save, and therefore, the

-1
SELECT SET_CONFIG_PARAMETER

('HistoryRetentionEpochs',

'40');

-41-

 Configuring the Database

amount of deleted data.

Unless you have a reason to limit

the number of epochs, HP
recommends that you specify the
time over which delete data is

saved. The -1 setting disables this
configuration parameter.

If both History parameters are

specified,
HistoryRetentionTime takes

precedence, and if both
parameters are set to -1, all
historical data is preserved.

See Setting a Purge Policy
(page 410).

Monitoring Parameters

The following table describes the monitoring parameters for configuring HP Vertica.

Parameters Description Default Example

SnmpTrapDestinations
List

Defines where HP Vertica
send traps for SNMP. See

Configuring Reporting for
SNMP (page 591).

none
SELECT SET_CONFIG_PARAMETER

('SnmpTrapDestinationsList'

,

'localhost 162 public');

SnmpTrapsEnabled Enables event trapping for
SNMP. See Configuring

Reporting for SNMP (page
591).

0
SELECT SET_CONFIG_PARAMETER

('SnmpTrapsEnabled', 1);

SnmpTrapEvents Define which events HP
Vertica traps through SNMP.

See Configuring Reporting
for SNMP (page 591).

Low Disk Space,
Read Only File

System, Loss of K
Safety, Current
Fault Tolerance at

Critical Level, Too
Many ROS
Containers, WOS

Over Flow, Node
State Change,
Recovery Failure,

and Stale
Checkpoint

SELECT SET_CONFIG_PARAMETER

('SnmpTrapEvents', 'Low Disk

Space, Recovery Failure');

SyslogEnabled Enables event trapping for
syslog. See Configuring

Reporting for Syslog (page

0
SELECT SET_CONFIG_PARAMETER

('SyslogEnabled', 1);

-42-

Administrator's Guide

589).

SyslogEvents Defines events that generate
a syslog entry. See

Configuring Reporting for
Syslog (page 589).

none
SELECT SET_CONFIG_PARAMETER

('SyslogEvents', 'Low Disk

Space, Recovery Failure');

SyslogFacility Defines which SyslogFacility
HP Vertica uses. See

Configuring Reporting for
Syslog (page 589).

user
SELECT SET_CONFIG_PARAMETER

('SyslogFacility' , 'ftp');

Profiling Parameters

The following table describes the profiling parameters for configuring HP Vertica. See Profiling
Database Performance (page 716) for more information on profiling queries.

Parameters Description Default Example

GlobalEEProfiling Enables profiling for query

execution runs in all sessions,
on all nodes.

0
SELECT SET_CONFIG_PARAMETER

('GlobalEEProfiling',1);

GlobalQueryProfiling Enables query profiling for all
sessions on all nodes.

0
SELECT SET_CONFIG_PARAMETER

('GlobalQueryProfiling',1);

GlobalSessionProfiling Enables session profiling for all

sessions on all nodes.

0
SELECT SET_CONFIG_PARAMETER

('GlobalSessionProfiling',1)

;

Security Parameters

The following table describes the parameters for configuring the client authentication method and
enabling SSL for HP Vertica.

Parameters Description Default Setting Example

ClientAuthentication Configures client authentication.

By default, HP Vertica uses user
name and password (if supplied)
to grant access to the database.

The preferred method for
establishing client
authentication is to use the

Administration Tools. See
Implementing Client
Authentication (page 117) and

How to Create Authentication

local all trust
SELECT SET_CONFIG_PARAMETER

('ClientAuthentication',

'hostnossl dbadmin

0.0.0.0/0 trust');

-43-

 Configuring the Database

Records (page 123).

EnableSSL Configures SSL for the server.
See Implementing SSL (page

133).

0
SELECT SET_CONFIG_PARAMETER

('EnableSSL', '1');

See Also

Kerberos Authentication Parameters (page 44)

Internationalization Parameters

The following table describes the internationalization parameters for configuring HP Vertica.

Parameters Description Default Example

DefaultIntervalStyle Sets the default interval style
to use. If set to 0 (default),
the interval is in PLAIN style

(the SQL standard), no
interval units on output. If set
to 1, the interval is in UNITS

on output. This parameter
does not take effect until the
database is restarted.

0
SELECT SET_CONFIG_PARAMETER

('DefaultIntervalStyle', 1);

DefaultSessionLocale Sets the default session

startup locale for the
database. This parameter
does not take effect until the

database is restarted.

en_US@collation=

binary

SELECT SET_CONFIG_PARAMETER

('DefaultSessionLocale',

'en_GB');

EscapeStringWarning Issues a warning when back
slashes are used in a string
literal. This is provided to

help locate back slashes that
are being treated as escape
characters so they can be

fixed to follow the Standard
conforming string syntax
instead.

1
SELECT SET_CONFIG_PARAMETER

('EscapeStringWarning','1');

StandardConformingStri

ngs

In HP Vertica 4.0, determines

whether ordinary string
literals ('...') treat
backslashes (\) as string

literals or escape characters.
When set to '1', backslashes
are treated as string literals,

when set to '0', back

1
SELECT SET_CONFIG_PARAMETER

('StandardConformingStrings'

,'0');

-44-

Administrator's Guide

slashes are treated as
escape characters.

Tip: To treat backslashes as

escape characters, use the

Extended string syntax:

(E'...');

See String Literals
(Character) in the SQL

Reference Manual.

Data Collector Parameters

The following table lists the Data Collector parameter for configuring HP Vertica.

Parameters Description Default Example

EnableDataCollect

or

Enables and disables the

Data Collector (the Workload
Analyzer's internal diagnostics
utility) for all sessions on all
nodes. Default is 1, enabled.

Use 0 to turn off data
collection.

1
SELECT

 SET_CONFIG_PARAMETER

('EnableDataCollector',

 0);

For more information, see the following topics in the SQL Reference Manual:

 Data Collector Functions

 ANALYZE_WORKLOAD

 V_MONITOR.DATA_COLLECTOR

 V_MONITOR.TUNING_RECOMMENDATIONS

See also the following topics in the Administrator's Guide

 Retaining Monitoring Information (page 599)

 Analyzing Workloads (page 658) and Tuning Recommendations (page 662)

 Analyzing Workloads Through Management Console (page 661) and Through an API
(page 658)

Kerberos Authentication Parameters

The following parameters are for configuring the HP Vertica Kerberos principal and specifying the
location of the keytab file.

-45-

 Configuring the Database

Parameter Description

KerberosServiceName Provides the service name portion of the HP Vertica Kerberos principal.
By default, this parameter is 'vertica'. Example,

vertica/host@EXAMPLE.COM

KerberosHostname Provides the instance or host name portion of the HP Vertica Kerberos
principal. Example: vertica/host@EXAMPLE.COM

The KerberosHostname parameter is optional, but note the following:

 If you specify this parameter, you'll have a single cluster-wide
principal that is easier to manage.

 If you do not specify this parameter, HP Vertica uses the return

value from the gethostname() function. Each node, and the
keytab file on each node, will have a different principal.

KerberosRealm Provides the realm portion of the HP Vertica Kerberos principal. A realm
is the authentication administrative domain and is usually formed in

uppercase letters; for example: vertica/host@EXAMPLE.COM

KerberosKeytabFile Provides the location of the keytab file that contains credentials for the

HP Vertica Kerberos principal. By default, this file is located in
/etc/krb5.keytab, and the principal must take the form

KerberosServiceName/KerberosHostName@KerberosRealm.

Note: The keytab file must be readable by the file owner who is running

the process (typically the Linux dbadmin user) with no permissions for
group or other, where file permissions would be 0600.

Example: KerberosKeytabFile=/etc/krb5.keytab

See Also

Implementing Kerberos Authentication (page 132)

-46-

 46

Designing a Logical Schema

Designing a logical schema for an HP Vertica database is no different than designing for any other
SQL database. A logical schema consists of objects such as Schemas, Tables, Views and
Referential Integrity constraints that are visible to SQL users. HP Vertica supports any relational
schema design of your choice.

Using Multiple Schemas

Using a single schema is effective if there is only one database user or if a few users cooperate in
sharing the database. In many cases, however, it makes sense to use additional schemas to allow
users and their applications to create and access tables in separate namespaces. For example,
using additional schemas allows:

 Many users to access the database without interfering with one another.

Individual schemas can be configured to grant specific users access to the schema and its
tables while restricting others.

 Third-party applications to create tables that have the same name in different schemas,
preventing table collisions.

Unlike other RDBMS, a schema in an HP Vertica database is not a collection of objects bound to
one user.

Multiple Schema Examples

This section provides examples of when and how you might want to use multiple schemas to
separate database users. These examples fall into two categories: using multiple private schemas
and using a combination of private schemas (i.e. schemas limited to a single user) and shared
schemas (i.e. schemas shared across multiple users).

Using Multiple Private Schemas

Using multiple private schemas is an effective way of separating database users from one another
when sensitive information is involved. Typically a user is granted access to only one schema and
its contents, thus providing database security at the schema level. Database users can be running
different applications, multiple copies of the same application, or even multiple instances of the
same application. This enables you to consolidate applications on one database to reduce
management overhead and use resources more effectively. The following examples highlight
using multiple private schemas.

 Using Multiple Schemas to Separate Users and Their Unique Applications

In this example, both database users work for the same company. One user (HRUser) uses a
Human Resource (HR) application with access to sensitive personal data, such as salaries,
while another user (MedUser) accesses information regarding company healthcare costs
through a healthcare management application. HRUser should not be able to access company
healthcare cost information and MedUser should not be able to view personal employee data.

-47-

 Configuring the Database

To grant these users access to data they need while restricting them from data they should not
see, two schemas are created with appropriate user access, as follows:

 HRSchema—A schema owned by HRUser that is accessed by the HR application.

 HealthSchema—A schema owned by MedUser that is accessed by the healthcare
management application.

 Using Multiple Schemas to Support Multitenancy

This example is similar to the last example in that access to sensitive data is limited by
separating users into different schemas. In this case, however, each user is using a virtual
instance of the same application.

An example of this is a retail marketing analytics company that provides data and software as
a service (SaaS) to large retailers to help them determine which promotional methods they use
are most effective at driving customer sales.

In this example, each database user equates to a retailer, and each user only has access to its
own schema. The retail marketing analytics company provides a virtual instance of the same
application to each retail customer, and each instance points to the user‘s specific schema in
which to create and update tables. The tables in these schemas use the same names because
they are created by instances of the same application, but they do not conflict because they
are in separate schemas.

Example of schemas in this database could be:

 MartSchema—A schema owned by MartUser, a large department store chain.

 PharmSchema—A schema owned by PharmUser, a large drug store chain.

-48-

Administrator's Guide

 Using Multiple Schemas to Migrate to a Newer Version of an Application

Using multiple schemas is an effective way of migrating to a new version of a software
application. In this case, a new schema is created to support the new version of the software,
and the old schema is kept as long as necessary to support the original version of the software.
This is called a ―rolling application upgrade.‖

For example, a company might use a HR application to store employee data. The following
schemas could be used for the original and updated versions of the software:

 HRSchema—A schema owned by HRUser, the schema user for the original HR
application.

 V2HRSchema—A schema owned by V2HRUser, the schema user for the new version of
the HR application.

-49-

 Configuring the Database

Using Combinations of Private and Shared Schemas

The previous examples illustrate cases in which all schemas in the database are private and no
information is shared between users. However, users might want to share common data. In the
retail case, for example, MartUser and PharmUser might want to compare their per store sales of
a particular product against the industry per store sales average. Since this information is an
industry average and is not specific to any retail chain, it can be placed in a schema on which both
users are granted USAGE privileges. (For more information about schema privileges, see
Schema Privileges (page 164).)

Example of schemas in this database could be:

 MartSchema—A schema owned by MartUser, a large department store chain.

 PharmSchema—A schema owned by PharmUser, a large drug store chain.

 IndustrySchema—A schema owned by DBUser (from the retail marketing analytics company)
on which both MartUser and PharmUser have USAGE privileges. It is unlikely that retailers
would be given any privileges beyond USAGE on the schema and SELECT on one or more of
its tables.

Creating Schemas

You can create as many schemas as necessary for your database. For example, you could create
a schema for each database user. However, schemas and users are not synonymous as they are
in Oracle.

-50-

Administrator's Guide

By default, only a superuser can create a schema or give a user the right to create a schema. (See
GRANT (Database) in the SQL Reference Manual.)

To create a schema use the CREATE SCHEMA statement, as described in the SQL Reference
Manual.

Specifying Objects in Multiple Schemas

Once you create two or more schemas, each SQL statement or function must identify the schema
associated with the object you are referencing. You can specify an object within multiple schemas
by:

 Qualifying the object name by using the schema name and object name separated by a dot.
For example, to specify MyTable, located in Schema1, qualify the name as

Schema1.MyTable.

 Using a search path that includes the desired schemas when a referenced object is
unqualified. By Setting Schema Search Paths (page 50), HP Vertica will automatically
search the specified schemas to find the object.

Setting Search Paths

The search path is a list of schemas where HP Vertica looks for tables and User Defined Functions
(UDFs) that are referenced without a schema name. For example, if a statement references a
table named Customers without naming the schema that contains the table, and the search path is
public, Schema1, and Schema2, HP Vertica first searches the public schema for a table named
Customers. If it does not find a table named Customers in public, it searches Schema1 and then
Schema2.

HP Vertica uses the first table or UDF it finds that matches the unqualified reference. If the table or
UDF is not found in any schema in the search path, HP Vertica reports an error.

Note: HP Vertica only searches for tables and UDFs in schemas to which the user has access

privileges. If the user does not have access to a schema in the search path, HP Vertica silently
skips the schema. It does not report an error or warning if the user's search path contains one
or more schemas to which the user does not have access privileges. Any schemas in the
search path that do not exist (for example, schemas that have been deleted since being added
to the search path) are also silently ignored.

The first schema in the search path to which the user has access is called the current schema.
This is the schema where HP Vertica creates tables if a CREATE TABLE statement does not
specify a schema name.

The default schema search path is "$user", public, v_catalog, v_monitor,
v_internal.

=> SHOW SEARCH_PATH;

 name | setting

-------------+---

 search_path | "$user", public, v_catalog, v_monitor, v_internal

(1 row)

-51-

 Configuring the Database

The $user entry in the search path is a placeholder that resolves to the current user name, and

public references the public schema. The v_catalog and v_monitor schemas contain HP
Vertica system tables, and the v_internal schema is for HP Vertica's internal use.

Note: HP Vertica always ensures that the v_catalog, v_monitor, and v_internal schemas are

part of the schema search path.

The default search path has HP Vertica search for unqualified tables first in the user‘s schema,
assuming that a separate schema exists for each user and that the schema uses their user name.
If such a user schema does not exist, or if HP Vertica cannot find the table there, HP Vertica next
search the public schema, and then the v_catalog and v_monitor built-in schemas.

A database administrator can set a user's default search schema when creating the user by using
the SEARCH_PATH parameter of the CREATE USER statement. An administrator or the user
can change the user's default search path using the ALTER USER statement's SEARCH_PATH
parameter. Changes made to the default search path using ALTER USER affect new user
sessions—they do not affect any current sessions.

A user can use the SET SEARCH_PATH statement to override the schema search path for the
current session.

Tip: The SET SEARCH_PATH statement is equivalent in function to the CURRENT_SCHEMA
statement found in some other databases.

To see the current search path, use the SHOW SEARCH_PATH statement. To view the current
schema, use SELECT CURRENT_SCHEMA(). The function SELECT CURRENT_SCHEMA()
also shows the resolved name of $user.

The following example demonstrates displaying and altering the schema search path for the
current user session:

=> SHOW SEARCH_PATH;

 name | setting

-------------+---

 search_path | "$user", PUBLIC, v_catalog, v_monitor, v_internal

(1 row)

=> SET SEARCH_PATH TO SchemaA, "$user", public;

SET

=> SHOW SEARCH_PATH;

 name | setting

-------------+--

 search_path | SchemaA, "$user", public, v_catalog, v_monitor, v_internal

(1 row)

You can use the DEFAULT keyword to reset the schema search path to the default.

=> SET SEARCH_PATH TO DEFAULT;

SET

=> SHOW SEARCH_PATH;

 name | setting

-52-

Administrator's Guide

-------------+---

 search_path | "$user", public, v_catalog, v_monitor, v_internal

(1 row)

To view the default schema search path for a user, query the search_path column of the
V_CATALOG.USERS system table:

=> SELECT search_path from USERS WHERE user_name = 'ExampleUser';

 search_path

 "$user", public, v_catalog, v_monitor, v_internal

(1 row)

=> ALTER USER ExampleUser SEARCH_PATH SchemaA,"$user",public;

ALTER USER

=> SELECT search_path from USERS WHERE user_name = 'ExampleUser';

 search_path

--

 SchemaA, "$user", public, v_catalog, v_monitor, v_internal

(1 row)

=> SHOW SEARCH_PATH;

 name | setting

-------------+---

 search_path | "$user", public, v_catalog, v_monitor, v_internal

(1 row)

Note that changing the default search path has no effect ion the user's current session. Even using
the SET SEARCH_PATH DEFAULT statement does not set the search path to the newly-defined
default value. It only has an effect in new sessions.

See Also

SQL System Tables (Monitoring APIs)

Creating Objects that Span Multiple Schemas

HP Vertica supports views or pre-join projections that reference tables across multiple schemas.
For example, a user might need to compare employee salaries to industry averages. In this case,
the application would query a shared schema (IndustrySchema) for salary averages in addition to
its own private schema (HRSchema) for company-specific salary information.

-53-

 Configuring the Database

Best Practice: When creating objects that span schemas, use qualified table names. This
naming convention avoids confusion if the query path or table structure within the schemas
changes at a later date.

Tables in Schemas

In HP Vertica you can create both base tables and temporary tables, depending on what you are
trying to accomplish. For example, base tables are created in the HP Vertica logical schema while
temporary tables are useful for dividing complex query processing into multiple steps.

For more information, see Creating Tables (page 274) and Creating Temporary Tables (page
279).

About Base Tables

The CREATE TABLE statement creates a table in the HP Vertica logical schema. The example
databases described in the Getting Started Guide include sample SQL scripts that demonstrate
this procedure. For example:

CREATE TABLE vendor_dimension (

 vendor_key INTEGER NOT NULL PRIMARY KEY,

 vendor_name VARCHAR(64),

 vendor_address VARCHAR(64),

 vendor_city VARCHAR(64),

 vendor_state CHAR(2),

 vendor_region VARCHAR(32),

 deal_size INTEGER,

 last_deal_update DATE

);

-54-

Administrator's Guide

Automatic projection creation

To get your database up and running quickly, HP Vertica automatically creates a default projection
for each table created through the CREATE TABLE and CREATE TEMPORARY TABLE
statements. Each projection created automatically (or manually) includes a base projection name
prefix. You must use the projection prefix when altering or dropping a projection (ALTER
PROJECTION RENAME, DROP PROJECTION).

How you use the CREATE TABLE statement determines when the projection is created:

 If you create a table without providing the projection-related clauses, HP Vertica automatically
creates a superprojection for the table when you use an INSERT INTO or COPY statement to
load data into the table for the first time. The projection is created in the same schema as the
table. Once HP Vertica has created the projection, it loads the data.

 If you use CREATE TABLE AS SELECT to create a table from the results of a query, the table
is created first and a projection is created immediately after, using some of the properties of
the underlying SELECT query.

 (Advanced users only) If you use any of the following parameters, the default projection is
created immediately upon table creation using the specified properties:

 column-definition (ENCODING encoding-type and ACCESSRANK integer)

 ORDER BY table-column

 hash-segmentation-clause

 range-segmentation-clause

 UNSEGMENTED { NODE node | ALL NODES }

 KSAFE

Note: Before you define a superprojection in the above manner, read Creating Custom

Designs (page 89) in the Administrator's Guide.

Characteristics of default automatic projections

A default auto-projection has the following characteristics:

 It is a superprojection.

 It uses the default encoding-type AUTO.

 If created as a result of a CREATE TABLE AS SELECT statement, uses the encoding
specified in the query table.

 Auto-projections use hash segmentation.

 The number of table columns used in the segmentation expression can be configured, using
the MaxAutoSegColumns configuration parameter. See General Parameters (page 37) in

the Administrator's Guide. Columns are segmented in this order:

 Short (<8 bytes) data type columns first

 Larger (> 8 byte) data type columns

 Up to 32 columns (default for MaxAutoSegColumns configuration parameter)

 If segmenting more than 32 columns, use nested hash function

Auto-projections are defined by the table properties and creation methods, as follows:

-55-

 Configuring the Database

I f table... Sort order is... Segmentation is...

Is created from input stream
(COPY or INSERT INTO)

Same as input stream, if
sorted.

On PK column (if any), on all FK
columns (if any), on the first 31
configurable columns of the table

Is created from CREATE
TABLE AS SELECT query

Same as input stream, if
sorted.

If not sorted, sorted using
following rules.

Same segmentation columns f query
output is segmented

The same as the load, if output of
query is unsegmented or unknown

Has FK and PK constraints FK first, then PK columns PK columns

Has FK constraints only (no
PK)

FK first, then remaining
columns

Small data type (< 8 byte) columns
first, then large data type columns

Has PK constraints only (no

FK)

PK columns PK columns

Has no FK or PK constraints On all columns Small data type (< 8 byte) columns
first, then large data type columns

Default automatic projections and segmentation get your database up and running quickly. HP
recommends that you start with these projections and then use the Database Designer to optimize
your database further. The Database Designer creates projections that optimize your database
based on the characteristics of the data and, optionally, the queries you use.

See Also

Creating Base Tables (page 274)

Projections in the Concepts Guide

CREATE TABLE in the SQL Reference Manual

About Temporary Tables

You create temporary tables using the CREATE TEMPORARY TABLE statement. A common use
case for a temporary table is to divide complex query processing into multiple steps. Typically, a
reporting tool holds intermediate results while reports are generated (for example, first get a result
set, then query the result set, and so on). You can also write subqueries.

Note: The default retention when creating temporary tables is ON COMMIT DELETE ROWS,

which discards data at transaction completion. The non-default value is ON COMMIT PRESERVE
ROWS, which discards data when the current session ends.

Global Temporary Tables

HP Vertica creates global temporary tables in the public schema, with the data contents private to
the transaction or session through which data is inserted.

-56-

Administrator's Guide

Global temporary table definitions are accessible to all users and sessions, so that two (or more)
users can access the same global table concurrently. However, whenever a user commits or rolls
back a transaction, or ends the session, HP Vertica removes the global temporary table data
automatically, so users see only data specific to their own transactions or session.

Global temporary table definitions persist in the database catalogs until they are removed explicitly
through a DROP TABLE statement.

Local Temporary Tables

Local temporary tables are created in the V_TEMP_SCHEMA namespace and inserted into the
user's search path transparently. Each local temporary table is visible only to the user who creates
it, and only for the duration of the session in which the table is created.

When the session ends, HP Vertica automatically drops the table definition from the database
catalogs. You cannot preserve non-empty, session-scoped temporary tables using the ON
COMMIT PRESERVE ROWS statement.

Creating local temporary tables is significantly faster than creating regular tables, so you should
make use of them whenever possible.

Automatic Projection Creation and Characteristics

Once local or global table exists, HP Vertica creates auto-projections for temporary tables
whenever you load or insert data.

The default auto-projection for a temporary table has the following characteristics:

 It is a superprojection.

 It uses the default encoding-type AUTO.

 It is automatically unsegmented on the initiator node, if you do not specify a segmentation
clause (hash-segmentation-clause or range-segmentation-clause).

 The projection is not pinned.

 Temp tables are not recoverable, so the superprojection is not K-Safe (K-SAFE=0), and you
cannot make it so.

Auto-projections are defined by the table properties and creation methods, as follows:

I f table... Sort order is... Segmentation is...

Is created from input stream
(COPY or INSERT INTO)

Same as input stream, if
sorted.

On PK column (if any), on all FK
columns (if any), on the first 31
configurable columns of the table

Is created from CREATE
TABLE AS SELECT query

Same as input stream, if
sorted.

If not sorted, sorted using
following rules.

Same segmentation columns f query
output is segmented

The same as the load, if output of
query is unsegmented or unknown

Has FK and PK constraints FK first, then PK columns PK columns

Has FK constraints only (no

PK)

FK first, then remaining

columns

Small data type (< 8 byte) columns

first, then large data type columns

-57-

 Configuring the Database

Has PK constraints only (no

FK)

PK columns PK columns

Has no FK or PK constraints On all columns Small data type (< 8 byte) columns
first, then large data type columns

Advanced users can modify the default projection created through the CREATE TEMPORARY
TABLE statement by defining one or more of the following parameters:

 column-definition (temp table) (ENCODING encoding-type and ACCESSRANK integer)

 ORDER BY table-column

 hash-segmentation-clause

 range-segmentation-clause

 UNSEGMENTED { NODE node | ALL NODES }

 NO PROJECTION

Note: Before you define the superprojection in this manner, read Creating Custom Designs

(page 89) in the Administrator's Guide.

See Also

Creating Temporary Tables (page 279)

Projections in the Concepts Guide

CREATE TEMPORARY TABLE in the SQL Reference Manual

Using Named Sequences

Named sequences are database objects that generate unique numbers in ascending or
descending sequential order. They are most often used when an application requires a unique
identifier in a table or an expression. Once a named sequence returns a value, it never returns that
same value again. Named sequences are independent objects, and while you can use their values
in tables, they are not subordinate to them.

Types of Incrementing Value Objects

In addition to named sequences, HP Vertica supports two other kinds of sequence objects, which
also increment values:

 Auto-increment column value: a sequence available only for numeric column types.
Auto-increment sequences automatically assign the next incremental sequence value for that
column when a new row is added to the table.

 Identity column: a sequence available only for numeric column types.

-58-

Administrator's Guide

Auto-increment and Identity sequences are defined through column constraints in the CREATE
TABLE statement and are incremented each time a row is added to the table. Both of these object
types are table-dependent and do not persist independently. The identity value is never rolled
back even if the transaction that tries to insert a value into the table is not committed. The
LAST_INSERT_ID function returns the last value generated for an auto-increment or identity
column.

Each type of sequence object has a set of properties and controls. A named sequence has the
most controls, and an Auto-increment sequence the least. The following table lists the major
differences between the three sequence objects:

Behavior Named Sequence Identity Auto-increment

Default cache value 250K X X X

Set initial cache X X

Define start value X X

Specify increment unit X X

Create as standalone object X

Create as column constraint X X

Exists only as part of table X X

Requires name X

Use in expressions X

Unique across tables X

Change parameters X

Move to different schema X

Set to increment or decrement X

Grant privileges to object X

Specify minimum value X

Specify maximum value X

Always starts at 1 X

While sequence object values are guaranteed to be unique, they are not guaranteed to be
contiguous. Since sequences are not necessarily contiguous, you may interpret the returned
values as missing. For example, two nodes can increment a sequence at different rates. The node
with a heavier processing load increments the sequence, but the values are not contiguous with
those being incremented on the other node.

Using a Sequence with an Auto_Increment or Identity Column

Each table can contain only one auto_increment or identity column. A table can contain

both an auto_increment or identity column, and a named sequence, as in the next
example, illustrating a table with both types of sequences:

-59-

 Configuring the Database

VMart=> CREATE TABLE test2 (id INTEGER NOT NULL UNIQUE,

 middle INTEGER DEFAULT NEXTVAL('my_seq'), next INT, last auto_increment);

CREATE TABLE

Named Sequence Functions

When you create a named sequence object, you can also specify the increment or decrement
value. The default is 1. Use these functions with named sequences:

 NEXTVAL — Advances the sequence and returns the next sequence value. This value is
incremented for ascending sequences and decremented for descending sequences. The first
time you call NEXTVAL after creating a sequence, the function sets up the cache in which to
store the sequence values, and returns either the default sequence value, or the start number
you specified with CREATE SEQUENCE.

 CURRVAL — Returns the LAST value across all nodes returned by a previous invocation of
NEXTVAL in the same session. If there were no calls to NEXTVAL after creating a sequence,
the CURRVAL function returns an error:

ERROR: Sequence seq2 has not been accessed in the session

You can use the NEXTVAL and CURRVAL functions in INSERT and COPY expressions.

Using DDL Commands and Functions With Named Sequences

For details, see the following related statements and functions in the SQL Reference Manual:

Use this statement... To...

CREATE SEQUENCE Create a named sequence object.

ALTER SEQUENCE Alter named sequence parameters, rename a
sequence within a schema, or move a named sequence
between schemas.

DROP SEQUENCE Remove a named sequence object.

GRANT SEQUENCE Grant user privileges to a named sequence object. See also
Sequence Privileges (page 167).

Creating Sequences

Create a sequence using the CREATE SEQUENCE statement. All of the parameters (besides a
sequence name) are optional.

The following example creates an ascending sequence called my_seq, starting at 100:

=> CREATE SEQUENCE my_seq START 100;

After creating a sequence, you must call the NEXTVAL function at least once in a session to
create a cache for the sequence and its initial value. Subsequently, use NEXTVAL to increment
the sequence. Use the CURRVAL function to get the current value.

-60-

Administrator's Guide

The following NEXTVAL function instantiates the newly-created my_seq sequence and sets its
first number:

=> SELECT NEXTVAL('my_seq');

 nextval

 100

(1 row)

If you call CURRVAL before NEXTVAL, the system returns an error:

ERROR: Sequence my_seq has not been accessed in the session

The following command returns the current value of this sequence. Since no other operations
have been performed on the newly-created sequence, the function returns the expected value of
100:

=> SELECT CURRVAL('my_seq');

 currval

 100

(1 row)

The following command increments the sequence value:

=> SELECT NEXTVAL('my_seq');

 nextval

 101

(1 row)

Calling the CURRVAL again function returns only the current value:

=> SELECT CURRVAL('my_seq');

 currval

 101

(1 row)

The following example shows how to use the my_seq sequence in an INSERT statement.

=> CREATE TABLE customer (

 lname VARCHAR(25),

 fname VARCHAR(25),

 membership_card INTEGER,

 id INTEGER

);

=> INSERT INTO customer VALUES ('Hawkins' ,'John', 072753, NEXTVAL('my_seq'));

Now query the table you just created to confirm that the ID column has been incremented to 102:

=> SELECT * FROM customer;

 lname | fname | membership_card | id

---------+-------+-----------------+-----

 Hawkins | John | 72753 | 102

(1 row)

-61-

 Configuring the Database

The following example shows how to use a sequence as the default value for an INSERT
command:

=> CREATE TABLE customer2(

 id INTEGER DEFAULT NEXTVAL('my_seq'),

 lname VARCHAR(25),

 fname VARCHAR(25),

 membership_card INTEGER

);

=> INSERT INTO customer2 VALUES (default,'Carr', 'Mary', 87432);

Now query the table you just created. The ID column has been incremented again to 103:

=> SELECT * FROM customer2;

 id | lname | fname | membership_card

-----+-------+-------+-----------------

 103 | Carr | Mary | 87432

(1 row)

The following example shows how to use NEXTVAL in a SELECT statement:

=> SELECT NEXTVAL('my_seq'), lname FROM customer2;

 NEXTVAL | lname

---------+-------

 104 | Carr

(1 row)

As you can see, each time you call NEXTVAL(), the value increments.

The CURRVAL() function returns the current value.

Altering Sequences

The ALTER SEQUENCE statement lets you change the attributes of a previously-defined
sequence. Changes take effect in the next database session. Any parameters not specifically set
in the ALTER SEQUENCE command retain their previous settings.

The ALTER SEQUENCE statement lets you rename an existing sequence, or the schema of a
sequence, but you cannot combine either of these changes with any other optional parameters.

Note: Using ALTER SEQUENCE to set a START value below the CURRVAL can result in

duplicate keys.

Examples

The following example modifies an ascending sequence called my_seq to start at 105:

ALTER SEQUENCE my_seq RESTART WITH 105;

The following example moves a sequence from one schema to another:

ALTER SEQUENCE [public.]my_seq SET SCHEMA vmart;

The following example renames a sequence in the Vmart schema:

ALTER SEQUENCE [vmart.]my_seq RENAME TO serial;

-62-

Administrator's Guide

Remember that changes occur only after you start a new database session. For example, if you
create a sequence named my_sequence and start the value at 10, each time you call the

NEXTVAL function, you increment by 1, as in the following series of commands:

CREATE SEQUENCE my_sequence START 10;

SELECT NEXTVAL('my_sequence');

 nextval

 10

(1 row)

SELECT NEXTVAL('my_sequence');

 nextval

 11

(1 row)

Now issue the ALTER SEQUENCE statement to assign a new value starting at 50:

ALTER SEQUENCE my_sequence RESTART WITH 50;

When you call the NEXTVAL function, the sequence is incremented again by 1 value:

SELECT NEXTVAL('my_sequence');

 NEXTVAL

 12

(1 row)

The sequence starts at 50 only after restarting the database session:

SELECT NEXTVAL('my_sequence');

 NEXTVAL

 50

(1 row)

Distributed Sequences

When you create a sequence object, the CACHE parameter controls the sequence efficiency, by
determining the number of sequence values each node maintains during a session. The default
cache value is 250K, meaning that each node reserves 250,000 values for each sequence per
session.

HP Vertica distributes a session across all nodes. After you create a sequence, the first time a
node executes a NEXTVAL() function as part of a SQL statement, the node reserves its own
cache of sequence values. The node then maintains that set of values for the current session.
Other nodes executing a NEXTVAL() function will also create and maintain their own cache of
sequence values cache.

NOTE: If any node consumes all of its sequence values, HP Vertica must perform a catalog

lock to obtain a new set of values. A catalog lock can be costly in terms of database
performance, since certain activities, such as data inserts, cannot occur until HP Vertica
releases the lock.

-63-

 Configuring the Database

During a session, one node can use its allocated set of sequence values slowly, while another
node uses its values more quickly. Therefore, the value returned from NEXTVAL in one statement
can differ from the values returned in another statement executed on another node.

Regardless of the number of calls to NEXTVAL and CURRVAL, HP Vertica increments a
sequence only once per row. If multiple calls to NEXTVAL occur within the same row, the function
returns the same value. If sequences are used in join statements, HP Vertica increments a
sequence once for each composite row output by the join.

The current value of a sequence is calculated as follows:

 At the end of every statement, the state of all sequences used in the session is returned to the
initiator node.

 The initiator node calculates the maximum CURRVAL of each sequence across all states on
all nodes.

 This maximum value is used as CURRVAL in subsequent statements until another NEXTVAL
is invoked.

Sequence values in cache can be lost in the following situations:

 If a statement fails after NEXTVAL is called (thereby consuming a sequence value from the
cache), the value is lost.

 If a disconnect occurs (for example, dropped session), any remaining values in the cache that
have not been returned through NEXTVAL (unused) are lost.

To recover lost sequence values, you can run an ALTER SEQUENCE command to define a new
sequence number generator, which resets the counter to the correct value in the next session.

Note: An elastic projection (a segmented projection created when Elastic Cluster is enabled)

created with a modularhash segmentation expression uses hash instead.

The behavior of sequences across HP Vertica nodes is explained in the following examples.

Note: IDENTITY and AUTO_INCREMENT columns behave in a similar manner.

Example 1: The following example, which illustrates sequence distribution, assumes a 3-node

cluster with node01 as the initiator node.

First create a simple table called dist:

CREATE TABLE dist (i INT, j VARCHAR);

Create a projection called oneNode and segment by column i on node01:

CREATE PROJECTION oneNode AS SELECT * FROM dist

SEGMENTED BY i NODES node01;

Create a second projection called twoNodes and segment column x by modularhash on node02
and node03:

CREATE PROJECTION twoNodes AS SELECT * FROM dist

SEGMENTED BY MODULARHASH(i) NODES node02, node03;

-64-

Administrator's Guide

Create a third projection called threeNodes and segment column i by modularhash on all nodes
(1-3):

CREATE PROJECTION threeNodes as SELECT * FROM dist

SEGMENTED BY MODULARHASH(i) ALL NODES;

Insert some values:

COPY dist FROM STDIN;

1|ONE

2|TWO

3|THREE

4|FOUR

5|FIVE

6|SIX

\.

Query the STORAGE_CONTAINERS table to return the projections on each node:

SELECT node_name, projection_name, total_row_count FROM storage_containers;

 node_name | projection_name | total_row_count

-----------+-----------------+-----------------

 node0001 | oneNode | 6 --Contains rows with i=(1,2,3,4,5,6)

 node0001 | threeNodes | 2 --Contains rows with i=(3,6)

 node0002 | twoNodes | 3 --Contains rows with i=(2,4,6)

 node0002 | threeNodes | 2 --Contains rows with i=(1,4)

 node0003 | twoNodes | 3 --Contains rows with i=(1,3,5)

 node0003 | threeNodes | 2 --Contains rows with i=(2,5)

(6 rows)

The following table shows the segmentation of rows for projection oneNode:

1 ONE Node01

2 TWO Node01

3 THREE Node01

4 FOUR Node01

5 FIVE Node01

6 SIX Node01

The following table shows the segmentation of rows for projection twoNodes:

1 ONE Node03

2 TWO Node02

3 THREE Node03

4 FOUR Node02

5 FIVE Node03

6 SIX Node02

The following table shows the segmentation of rows for projection threeNodes:

1 ONE Node02

2 TWO Node03

3 THREE Node01

4 FOUR Node02

5 FIVE Node03

6 SIX Node01

-65-

 Configuring the Database

Create a sequence and specify a cache of 10. The sequence will cache up to 10 values in memory
for performance. As per the CREATE SEQUENCE statement, the minimum value is 1 (only one
value can be generated at a time, for example, no cache).

Example 2: Create a sequence named s1 and specify a cache of 10:

CREATE SEQUENCE s1 cache 10;

SELECT s1.nextval, s1.currval, s1.nextval, s1.currval, j FROM oneNode;

 nextval | currval | nextval | currval | j

---------+---------+---------+---------+-------

 1 | 1 | 1 | 1 | ONE

 2 | 2 | 2 | 2 | TWO

 3 | 3 | 3 | 3 | THREE

 4 | 4 | 4 | 4 | FOUR

 5 | 5 | 5 | 5 | FIVE

 6 | 6 | 6 | 6 | SIX

(6 rows)

The following table illustrates the current state of the sequence for that session. It holds the current
value, values remaining (the difference between the current value (6) and the cache (10)), and
cache activity. There is no cache activity on node02 or node03.

Sequence Cache State Node01 Node02 Node03

Current value 6 NO CACHE NO CACHE

Remainder 4 NO CACHE NO CACHE

Example 3: Return the current values from twoNodes:

SELECT s1.currval, j FROM twoNodes;

 currval | j

---------+-------

 6 | ONE

 6 | THREE

 6 | FIVE

 6 | TWO

 6 | FOUR

 6 | SIX

(6 rows)

Example 4: Now call NEXTVAL from threeNodes. The assumption is that node02 holds the cache
before node03:

SELECT s1.nextval, j from threeNodes;

 nextval | j

---------+-------

 101 | ONE

 201 | TWO

 7 | THREE

 102 | FOUR

 202 | FIVE

 8 | SIX

(6 rows)

-66-

Administrator's Guide

The following table illustrates the sequence cache state with values on node01, node02, and
node03:

Sequence Cache State Node01 Node02 Node03

Current value 8 102 202

Left 2 8 8

Example 5: Insert values from twoNodes into the destination table:

SELECT s1.currval, j FROM twoNodes;

 nextval | j

---------+-------

 202 | ONE

 202 | TWO

 202 | THREE

 202 | FOUR

 202 | FIVE

 202 | SIX

(6 rows)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 6 102 202

Left 4 8 8

Example 6: The following command runs on node02 only:

SELECT s1.nextval, j FROM twoNodes WHERE i = 2;

 nextval | j

---------+-----

 103 | TWO

(1 row)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 6 103 202

Left 4 7 8

Example 7: The following command calls the current value from twoNodes:

SELECT s1.currval, j FROM twoNodes;

 currval | j

---------+-------

-67-

 Configuring the Database

 103 | ONE

 103 | TWO

 103 | THREE

 103 | FOUR

 103 | FIVE

 103 | SIX

(6 rows)

Example 8: This example assume that node02 holds the cache before node03:

SELECT s1.nextval, j FROM twoNodes;

 nextval | j

---------+-------

 203 | ONE

 104 | TWO

 204 | THREE

 105 | FOUR

 205 | FIVE

 106 | SIX

(6 rows)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 6 106 205

Left 4 6 5

Example 9: The following command calls the current value from oneNode:

SELECT s1.currval, j FROM twoNodes;

 currval | j

---------+-------

 205 | ONE

 205 | TWO

 205 | THREE

 205 | FOUR

 205 | FIVE

 205 | SIX

(6 rows)

Example 10: This example calls the NEXTVAL function on oneNode:

SELECT s1.nextval, j FROM oneNode;

 nextval | j

---------+-------

 7 | ONE

 8 | TWO

 9 | THREE

 10 | FOUR

 301 | FIVE

 302 | SIX

(6 rows)

The following table illustrates the sequence cache state:

-68-

Administrator's Guide

Sequence Cache State Node01 Node02 Node03

Current value 302 106 205

Left 8 4 5

Example 11: In this example, twoNodes is the outer table and threeNodes is the inner table to a

merge join. threeNodes is resegmented as per twoNodes.

SELECT s1.nextval, j FROM twoNodes JOIN threeNodes ON twoNodes.i = threeNodes.i;

SELECT s1.nextval, j FROM oneNode;

 nextval | j

---------+-------

 206 | ONE

 107 | TWO

 207 | THREE

 108 | FOUR

 208 | FIVE

 109 | SIX

(6 rows)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 302 109 208

Left 8 1 2

Example 12: This next example shows how sequences work with buddy projections.

--Same session

DROP TABLE t CASCADE;

CREATE TABLE t (i INT, j varchar(20));

CREATE PROJECTION threeNodes AS SELECT * FROM t

SEGMENTED BY MODULARHASH(i) ALL NODES KSAFE 1;

COPY t FROM STDIN;

1|ONE

2|TWO

3|THREE

4|FOUR

5|FIVE

6|SIX

\.

SELECT node_name, projection_name, total_row_count FROM storage_containers;

 node_name | projection_name | total_row_count

-----------+-----------------+-----------------

 node01 | threeNodes_b0 | 2

 node03 | threeNodes_b0 | 2

 node02 | threeNodes_b0 | 2

 node02 | threeNodes_b1 | 2

 node01 | threeNodes_b1 | 2

 node03 | threeNodes_b1 | 2

(6 rows)

-69-

 Configuring the Database

The following function call assumes that node02 is down. It is the same session. Node03 takes up
the work of node02:

SELECT s1.nextval, j FROM t;

 nextval | j

---------+-------

 401 | ONE

 402 | TWO

 305 | THREE

 403 | FOUR

 404 | FIVE

 306 | SIX

(6 rows)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 306 110 404

Left 4 0 6

Example 13: This example starts a new session.

DROP TABLE t CASCADE;

CREATE TABLE t (i INT, j VARCHAR);

CREATE PROJECTION oneNode AS SELECT * FROM t SEGMENTED BY i NODES node01;

CREATE PROJECTION twoNodes AS SELECT * FROM t SEGMENTED BY MODULARHASH(i) NODES node02, node03;

CREATE PROJECTION threeNodes AS SELECT * FROM t SEGMENTED BY MODULARHASH(i) ALL NODES;

INSERT INTO t values (nextval('s1'), 'ONE');

SELECT * FROM t;

 i | j

-----+-------

 501 | ONE

(1 rows)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 501 NO CACHE NO CACHE

Left 9 0 0

Example 14:

INSERT INTO t SELECT s1.nextval, 'TWO' FROM twoNodes;

SELECT * FROM t;

 i | j

-----+-------

 501 | ONE --stored in node01 for oneNode, node02 for twoNodes, node02 for threeNodes

 601 | TWO --stored in node01 for oneNode, node03 for twoNodes, node01 for threeNodes

(2 rows)

The following table illustrates the sequence cache state:

-70-

Administrator's Guide

Sequence Cache State Node01 Node02 Node03

Current value 501 601 NO CACHE

Left 9 9 0

Example 15:

INSERT INTO t select s1.nextval, 'TRE' from threeNodes;

SELECT * FROM t;

 i | j

-----+-------

 501 | ONE --stored in node01 for oneNode, node02 for twoNodes, node02 for threeNodes

 601 | TWO --stored in node01 for oneNode, node03 for twoNodes, node01 for threeNodes

 502 | TRE --stored in node01 for oneNode, node03 for twoNodes, node03 for threeNodes

 602 | TRE --stored in node01 for oneNode, node02 for twoNodes, node02 for threeNodes

(4 rows)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 502 602 NO CACHE

Left 9 9 0

Example 16:

INSERT INTO t SELECT s1.currval, j FROM threeNodes WHERE i != 502;

SELECT * FROM t;

 i | j

-----+-------

 501 | ONE --stored in node01 for oneNode, node02 for twoNodes, node02 for threeNodes

 601 | TWO --stored in node01 for oneNode, node03 for twoNodes, node01 for threeNodes

 502 | TRE --stored in node01 for oneNode, node03 for twoNodes, node03 for threeNodes

 602 | TRE --stored in node01 for oneNode, node02 for twoNodes, node02 for threeNodes

 602 | ONE --stored in node01 for oneNode, node02 for twoNodes, node02 for threeNodes

 502 | TWO --stored in node01 for oneNode, node03 for twoNodes, node03 for threeNodes

 602 | TRE --stored in node01 for oneNode, node02 for twoNodes, node02 for threeNodes

(7 rows)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 502 602 NO CACHE

Left 9 9 0

Example 17:

INSERT INTO t VALUES (s1.currval + 1, 'QUA');

SELECT * FROM t;

 i | j

-----+-------

 501 | ONE --stored in node01 for oneNode, node02 for twoNodes, node02 for threeNodes

 601 | TWO --stored in node01 for oneNode, node03 for twoNodes, node01 for threeNodes

 502 | TRE --stored in node01 for oneNode, node03 for twoNodes, node03 for threeNodes

 602 | TRE --stored in node01 for oneNode, node02 for twoNodes, node02 for threeNodes

 602 | ONE --stored in node01 for oneNode, node02 for twoNodes, node02 for threeNodes

 502 | TWO --stored in node01 for oneNode, node03 for twoNodes, node03 for threeNodes

 602 | TRE --stored in node01 for oneNode, node02 for twoNodes, node02 for threeNodes

-71-

 Configuring the Database

 603 | QUA

(8 rows)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 502 602 NO CACHE

Left 9 9 0

See Also

Sequence Privileges (page 167)

In the SQL Reference Manual:

ALTER SEQUENCE

CREATE TABLE column-constraint

CURRVAL

DROP SEQUENCE

GRANT (Sequence)

NEXTVAL

Loading Sequences

You can use a sequence as part of creating a table. The sequence must already exist, and have
been instantiated using the NEXTVAL statement.

Creating and Instantiating a Sequence

The following example creates an ascending sequence called my_seq, starting at 100:

=> CREATE SEQUENCE my_seq START 100;

After creating a sequence, you must call the NEXTVAL function at least once in a session to
create a cache for the sequence and its initial value. Subsequently, use NEXTVAL to increment
the sequence. Use the CURRVAL function to get the current value.

The following NEXTVAL function instantiates the newly-created my_seq sequence and sets its
first number:

=> SELECT NEXTVAL('my_seq');

 nextval

 100

(1 row)

If you call CURRVAL before NEXTVAL, the system returns an error:

-72-

Administrator's Guide

ERROR: Sequence my_seq has not been accessed in the session

Using a Sequence in an INSERT Command

Update sequence number values by calling the NEXTVAL function, which increments/decrements
the current sequence and returns the next value. Use CURRVAL to return the current value.
These functions can also be used in INSERT and COPY expressions.

The following example shows how to use a sequence as the default value for an INSERT
command:

CREATE TABLE customer2(

 ID INTEGER DEFAULT NEXTVAL('my_seq'),

 lname VARCHAR(25),

 fname VARCHAR(25),

 membership_card INTEGER

);

INSERT INTO customer2 VALUES (default,'Carr', 'Mary', 87432);

Now query the table you just created. The column named ID has been incremented by (1) again to
104:

SELECT * FROM customer2;

 ID | lname | fname | membership_card

-----+-------+-------+-----------------

 104 | Carr | Mary | 87432

(1 row)

Dropping Sequences

Use the DROP SEQUENCE function to remove a sequence. You cannot drop a sequence:

 If other objects depend on the sequence. The CASCADE keyword is not supported.

 That is used in the default expression of a column until all references to the sequence are
removed from the default expression.

Example

The following command drops the sequence named my_sequence:

=> DROP SEQUENCE my_sequence;

Implementing Views

A view is a stored query that dynamically accesses and computes data from the database at
execution time. It differs from a projection in that it is not materialized: it does not store data on
disk. This means that it doesn't need to be refreshed whenever the data in the underlying tables
change, but it does require additional time to access and compute data.

Views are read-only and they support references to tables, temp tables, and other views. They
do not support inserts, deletes, or updates. You can use a view as an abstraction mechanism to:

-73-

 Configuring the Database

 Hide the complexity of SELECT statements from users for support or security purposes. For
example, you could create a view that selects specific columns from specific tables to ensure
that users have easy access to the information they need while restricting them from
confidential information.

 Encapsulate the details of the structure of your tables, which could change as your application
evolves, behind a consistent user interface.

Creating Views

A view contains one or more SELECT statements that reference any combination of one or more
tables, temp tables, or views. Additionally, views can specify the column names used to display
results.

The user who creates the view must be a superuser or have the following privileges:

 CREATE on the schema in which the view is created.

 SELECT on all the tables and views referenced within the view's defining query.

 USAGE on all the schemas that contain the tables and views referenced within the view's
defining query.

To create a view:

1 Use the CREATE VIEW statement to create the view.

2 Use the GRANT (View) statement to grant users the privilege to use the view.

Note: Once created, a view cannot be actively altered. It can only be deleted and recreated.

Using Views

Views can be used in the FROM clause of any SQL query or subquery. At execution, HP Vertica
internally substitutes the name of the view used in the query with the actual contents of the view.

The following example defines a view (ship) and illustrates how a query that refers to the view is
transformed internally at execution time.

 New view

=> CREATE VIEW ship AS SELECT * FROM public.shipping_dimension;

 Original query

=> SELECT * FROM ship;

 Transformed query

=> SELECT * FROM (SELECT * FROM public.shipping_dimension) AS ship;

Tip: To use a view, a user must be granted SELECT permissions on the view. See GRANT

(View).

-74-

Administrator's Guide

The following example creates a view named myview that sums all individual incomes of

customers listed in the store.store_sales_fact table by state. The results are grouped in

ascending order by state.

=> CREATE VIEW myview AS

 SELECT SUM(annual_income), customer_state

 FROM public.customer_dimension

 WHERE customer_key IN

 (SELECT customer_key

 FROM store.store_sales_fact)

 GROUP BY customer_state

 ORDER BY customer_state ASC;

The following example uses the myview view with a WHERE clause that limits the results to
combined salaries of greater than 2,000,000,000.

=> SELECT * FROM myview where sum > 2000000000;

 SUM | customer_state

-------------+----------------

 2723441590 | AZ

 29253817091 | CA

 4907216137 | CO

 3769455689 | CT

 3330524215 | FL

 4581840709 | IL

 3310667307 | IN

 2793284639 | MA

 5225333668 | MI

 2128169759 | NV

 2806150503 | PA

 2832710696 | TN

 14215397659 | TX

 2642551509 | UT

(14 rows)

Notes

If HP Vertica does not have to evaluate an expression that would generate a run-time error in
order to answer a query, the run-time error might not occur. See the following sequence of
commands for an example of this scenario.

If you run a query like the following, HP Vertica returns an error:

=> SELECT TO_DATE('F','dd mm yyyy') FROM customer_dimension;

 ERROR: Invalid input for DD: "F"

Now create a view using the same query. Note that the view gets created when you would expect
it to return the same error:

=> CREATE VIEW temp AS SELECT TO_DATE('F','dd mm yyyy') FROM customer_dimension;

CREATE VIEW

The view, however, cannot be used in all queries without generating the same error message. For
example, the following query returns the same error, which is what you would expect:

=> SELECT * FROM temp;

-75-

 Configuring the Database

 ERROR: Invalid input for DD: "F"

When you then issue a COUNT command, the returned rowcount is correct:

=> SELECT COUNT(*) FROM temp;

 count

 100

(1 row)

This behavior works as intended. You might want to create views that contain subqueries, where
not every row is intended to pass the predicate.

-76-

 76

Designing a Physical Schema

Data in HP Vertica is physically stored in projections. When you initially load data into a table using
INSERT, COPY (or COPY LOCAL), HP Vertica creates a default superprojection for the table. This
superprojection ensures that all of the data is available for queries. However, these default
superprojections might not optimize database performance, resulting in slow query performance
and low data compression.

To improve performance, create a physical design for your database that optimizes both query
performance and data compression. You can create this design by hand (page 89) or use the
Database Designer (page 77).

HP recommends that you load sample data and use the Database Designer to optimize your
database. The Database Designer is discussed in greater detail in the following topics.

-77-

 77

Using Database Designer

Database Designer is a UI-based tool that recommends a physical database design (projections)
that provides the best performance to answer your query needs. Using Database Designer
minimizes the time the DBA spends on physical database tuning and provides the ability to
re-design the database incrementally to optimize for changing workloads over time.

You can run Database Designer before or after an HP Vertica database has been deployed, and it
runs as a background process.

When you use Database Designer to create a design, the DBA provides the following inputs:

 Logical schema (CREATE TABLE statements)

 Sample data

 A sample set of queries that represent what you'd normally run

 A K-safety level

To launch Database Designer, from the Administration Tools menu, select Configuration Menu
-> Run Database Designer.

During the design process, Database Designer analyzes the logical schema definition, the sample
data, and sample queries and creates a physical schema (projections) in the form of a SQL script
that you deploy automatically or manually. The script creates a minimal set of superprojections to
ensure K-safety, and, optionally, pre-join projections.

Tip: HP recommends that you first create a design using Database Designer. If the
performance of this design is not adequate, you can design custom projections (page 89).

In most cases, the projections that Database Designer creates provide excellent query
performance within physical constraints while using disk space efficiently. Here are just a few of
the benefits and tasks that Database Designer automates for the DBA:

 Recommends buddy projections with the same sort order, which can significantly improve
load, recovery, and site node performance. All buddy projections have the same base name so
that they can be identified as a group.

Note: If you manually create projections, Database Designer recommends a buddy with the
same sort order, if one does not already exist. By default, Database Designer recommends
both super and non-super segmented projections with a buddy of the same sort order.

 Automatically rebalances data after you add or remove nodes.

 Accepts queries longer than 65K characters as design input.

 Runs the design and deployment processes in the background.

This is useful if you have a large design that you want to run overnight. An active SSH session
is not required, so design/deploy operations continue to run uninterrupted, even if the session
is terminated. The next time you run the Administration Tools, a message indicates that a
design is either running or has completed.

Note: To stop a design, use Ctrl+C at the command line.

 Accepts up to 100 queries in the query input file for a query-specific design.

 Accepts unlimited queries for a comprehensive design.

-78-

Administrator's Guide

 Produces higher quality designs by considering UPDATE and DELETE statements.

Database Designer needs representative data to analyze in order to create the most efficient
projections for your database, so the DBA should load a moderate amount of data for each table in
the database before running Database Designer. Loading too much data (over 10GB per table)
significantly slows the design process and is unlikely to result in a better design.

If you already have queries that you plan to run on your data, supply them to Database Designer
so it can optimize the projections for those queries.

Design Types

The Database Designer provides two design types: comprehensive and query specific. The
design you choose depends on what you are trying to accomplish.

Comprehensive Design

A comprehensive design creates an initial or replacement design for all the tables in the specified
schemas. Create a comprehensive design when you are creating a new database.

To help Database Designer create an efficient design, load representative data into the tables
before you begin the design process. Supply Database Designer with any queries you plan to use
so Database Designer can optimize the design for them. Database Designer accepts any number
of queries during a comprehensive design. Ensure that the sample queries that you supply are
representative of all the types of queries you plan to run on your database.

The comprehensive design flow lets you select several options that control how the Database
Designer generates the design and what it does with it:

 Optimize with queries: Lets you supply queries for which Database Designer should

optimize the design.

Update statistics: Collects or refreshes statistics about the data in the database. Accurate
statistics help Database Designer optimize compression and query performance. By selecting this
option, database statistics are updated to maximize design quality.

Note: Updating statistics takes time and resources. If the current statistics are up to date, this

step is unnecessary. When in doubt, update the statistics. For more information, see
Collecting Statistics (page 666).

 Deploy design: Deploys the new database design to your database. During deployment, new
projections are added, some existing projections might be retained, and any unnecessary
existing projections are removed. Any new projections are refreshed so they are populated
with data. If you decide not to deploy the design, Database Designer saves the SQL script for
the new design so you can review it and deploy it manually later. For details, see Deploying
Designs Using the Database Designer (page 87).

Database Designer also lets you choose how you want your database optimized:

 Optimized for query performance, so that the queries run faster. This could result in a larger
database storage footprint because additional projections might be created.

 Optimized for load performance, so the size of the database is minimized. This could result in
slower query performance.

-79-

 Configuring the Database

 Balanced optimization, which balances between query performance and database size.

For details, see Creating a Comprehensive Design Using the Database Designer (page 79).

Note: Both the design and deployment processes run in the background. This is useful if you

have a large design that you want to run overnight. Because an active SSH session is not
required, the design/deploy operations continue to run uninterrupted, even if the session is
terminated. The next time you run the Administration Tools, a message indicates that a design
is either running or has completed.

To optimize the performance of an existing database, you can create a new comprehensive
design. In addition to the tasks described earlier, Database Designer recommends:

 Creating new buddy projections to meet the K-safety requirements, only when they do not
already exist.

 Creating replacement buddy projections when Database Designer changes the encoding of
pre-existing projections that it has decided to keep.

Query-specific Design

A query-specific design creates an enhanced design with additional projections that are optimized
specifically for the query you provide. Create a query-specific design when you have a query that
you want to optimize.

The query-specific design process lets you specify the following options:

 Update statistics: Collects or refreshes statistics about the data in the database. Accurate
statistics help Database Designer optimize the compression and query performance of the
database. By selecting this option, database statistics are updated to maximize design quality.

Note: Updating statistics takes time and resources, so if the current statistics are up to date,
this is unnecessary. When in doubt, update the statistics. For more information, see
Collecting Statistics (page 666).

 Deploy design: Deploys the new database design. New projections are added to the

database and refreshed so they are populated with data. No existing projections are affected
by the deployment.

For details, see Creating a Query-specific Design Using the Database Designer (page 84) in
this guide.

Creating a Comprehensive Design Using Database Designer

Create a comprehensive design for a new database after you have loaded representative data into
it. You can use the comprehensive design process to redesign a database when necessary (for
example, after you have made significant changes to the database's schemas). Database
Designer creates a complete initial or replacement physical schema design based on data
statistics and queries. It creates segmented superprojections for large tables when deploying to
multiple node clusters, and creates replicated superprojections for smaller tables.

If you rerun a comprehensive design on pre-existing DBD projections, doing so is faster than the
first comprehensive design phase. The Database Designer does not encode any data that it
already encoded, and it does not optimize projections that it has already optimized for storage.

-80-

Administrator's Guide

Note: If you have one or two queries you want to add to your existing database design,

including MicroStrategy Reports, you can use the Database Designer to create a query-specific
(incremental) design, which creates projections for all valid tables referenced in the queries that
you provide. However, successfully completing a query-specific design does not necessarily
create projections for all tables. In this model, the Database Designer creates projections for
only the tables that your queries specifically reference. For a complete initial or replacement
design, use the Database Designer to create a comprehensive design. Alternatively, you can
create projections manually. See Creating a Query-specific Design Using the Database
Designer (page 84) for details.

The following procedure was introduced as Step 5 in the Tutorial in the Getting Started Guide. It is
repeated here for your convenience.

Creating a Comprehensive Design

In this procedure you'll create a comprehensive design using Database Designer through the
Administration Tools interface. These steps assumes that you have already performed the
following prerequisite steps:

1 Set up the example environment

2 Created the example database

3 Defined the database schema

4 Loaded the data

Note: If you have a query you want to optimize after you create a comprehensive design, you

can create an incremental design later. See Creating a Query-specific Design Using the
Database Designer (page 84) for details.

Create the comprehensive design using the Database Designer

1 To exit the vsql session and return to the Main Menu in the Administration Tools, type \q.

Alternatively, restart the Administration Tools:

$ /opt/vertica/bin/admintools

2 From the Main Menu, click Configuration Menu and click OK.

3 From the Configuration Menu, click Run Database Designer and click OK.

4 Select vmartdb as the database and click OK.

If you are asked to enter the password for the database, click OK to bypass. No password was

assigned in Step 2: Create the Example Database, so you do not need to enter one now.

5 Click OK to accept the default directory (/tmp/examples, unless you changed it) for storing
Database Designer output and log files. Note this location.

Note: If you choose to not deploy your design now, Database Designer saves the SQL script to

deploy the design in the default directory where you can review and manually deploy it later.

6 In the Database Designer window, enter a name for the design, for example, vmart_design,
and click OK. Design names can contain only alphanumeric characters or underscores. No

other special characters are allowed.

7 To create a complete initial design, in the Design Type window, click Comprehensive and
click OK.

-81-

 Configuring the Database

8 Because the Vmart design is a multi-schema database, select all three schemas for your
design, and click OK.

If you include a schema that contains tables without data, the Administration Tools notifies you
that designing for tables without data could be suboptimal. You can choose to continue, but HP
recommends that you click Cancel and deselect the schemas that contain empty tables before

you proceed.

9 In the Design Options window, because the Vmart design is a multi-schema database, accept
all three options (described below) and click OK.

Generally, you enable all three options because Database Designer is best positioned to
generate a new comprehensive design and create a complete set of projections for the tables
in the selected schema. The three options are:

 Optimize with queries: Supplying the Database Designer with queries is especially

important if you want to optimize the database design for query performance.

Database Designer does not impose hard limits to the number of queries or tables it
accepts as input. However, it is limited by system resources, concurrent loads, and
query/schema complexity. HP recommends that you limit the design input to 100 queries.

 Update statistics: Accurate statistics help the Database Designer choose the best

strategy for data compression. If you select this option, the database statistics are updated
to maximize design quality.

Updating statistics takes time and resources, so if the current statistics are up to date, this
step is unnecessary. When in doubt, update statistics.

 Deploy design: The new design is automatically deployed, which means that during
deployment, new projections are added, some existing projections might be retained, and
any unnecessary existing projections are removed. Any new projections are refreshed so
that they are populated with data.

Note: For large databases, a full design session could take a long time, but it is best to allow

this process to complete uninterrupted. If the session must be canceled, use Ctrl+C.

-82-

Administrator's Guide

10 If you selected the Optimize with queries option, you must enter the full path to the file

containing the queries that will be run on your database. In this example it is:
/tmp/examples/vmart_queries.sql

The queries in the query file must be delimited with a semicolon (;).

Note: Although there is no hard limit to the number of queries or tables you can provide as

input to a comprehensive design, Database Designer is limited by system resources,
concurrent loads, and query/schema complexity. HP recommends that you limit the design
input to 100 queries.

11 Choose the K-safety value you want. This example uses 1. Click OK.

Note: If you are creating a comprehensive design on a single node, you are not asked to enter

a K-safety value.

12 Choose Balanced for the Database Designer's design priority and click OK.

The design priorities are:

 Balanced query/load performance tells Database Designer to create a design that is

balanced between database size and query performance.

 Query load performance creates a design focused on faster query performance, which

might recommend additional projections. These projections could result in a larger
database storage size.

 Load performance is optimized for loads, minimizing database size, potentially at the

expense of query performance.

13 When the informational message displays, click Proceed.

Database Designer:

 Sets up the design session

 Examines table data

 Loads queries from the query file you provided

 Creates the design

 Deploys the design or saves a SQL file containing the design, depending on what you
selected for the Deploy design option in step 9.

-83-

 Configuring the Database

Depending on system resources, the design process could take several minutes.

14 When Database Designer finishes, press Enter to return to the Administration Tools menu.

15 After you have created your design, query the system table DESIGN_STATUS to see the
steps taken to create the design. If you also deployed the design, those steps are listed in the
system table DEPLOY_STATUS:

vmartdb=> SELECT * FROM V_MONITOR.DESIGN_STATUS;

vmartdb=> SELECT * FROM V_MONITOR.DEPLOY_STATUS;

When you run Database Designer using the Administration Tools, it creates a backup of the
current design of your database before deploying the new design. This backup is stored in the
directory you specified in step 5 and is named catalog_dump.sql.

Proceed to Step 6.

See Also

Connect to the Database and Run a Simple Query in the Getting Started Guide

Replicated and Segmented Projections

When creating a comprehensive design, Database Designer creates a complete physical schema
design based on data statistics and queries. It also reviews the submitted design tables to decide
whether projections should be segmented (distributed across the cluster nodes) or replicated
(duplicated on all cluster nodes).

Replicated Projections

Replication occurs when HP Vertica stores identical copies of data across all nodes in a cluster.

If you are running on a single-node database, Database Designer recommends that all projections
be replicated.

Assuming that largest-row-count equals the number of rows in the design table with the largest
number of rows, Database Designer recommends that a projection be replicated if any one of the
following is true:

 Condition 1: largest-row-count < 1,000000 and number of rows in the table <= 10% of
largest-row-count

 Condition 2: largest-row-count >= 10,000,000 and number of rows in the table <= 1% of
largest-row-count

 Condition 3: The number of rows in the table <= 100,000

Segmented Projections

Segmentation occurs when HP Vertica distributes data evenly across multiple database nodes so
that all nodes participate in query execution.

Database Designer recommends segmented superprojections for large tables when deploying to
multiple node clusters, and recommends replicated superprojections for smaller tables.

For more information about replication and segmentation, see High Availability Through
Projections.

-84-

Administrator's Guide

Creating a Query-specific Design Using Database Designer

If you used the Tutorial in the Getting Started Guide, you have already created a comprehensive
design.

If you have new queries that you want to optimize, you can create an enhanced design with
additional projections that are tuned for those queries. The query-specific design that you create in
this procedure is optimized to balance query performance and compression for the provided
query.

1 Log in to a terminal using the database administrator account.

The default account name is dbadmin.

2 Start the Administration Tools:

$ /opt/vertica/bin/admintools

3 If the database is not already running, on the Main Menu ,select Start Database and click OK.

4 Click Configuration Menu and click OK.

5 From the Configuration Menu, click Run Database Designer, and then click OK.

6 Select your database and click OK.

Note: This procedure assumes you are optimizing the vmartdb database you created in the

Tutorial.

If you are asked to enter the database password, enter it and click OK. In the case of the vmart

database, no password was assigned, so you should not be prompted for one now.

7 Click OK to accept the default directory for storing Database Designer output and log files.
Note this location.

8 In the Database Designer window, enter a name for the design and click OK. For this

example, click OK to accept the default vmart_design name.

-85-

 Configuring the Database

9 In the Design Type window, click Query-specific and click OK.

10 In the Design Options window, select the options you want and click OK.

 Update statistics: Accurate statistics help Database Designer choose the best strategy

for data compression. If you select this option, the database statistics are updated to
maximize design quality.

Updating statistics takes time and resources, so if the current statistics are up to date, this
step is unnecessary. When in doubt, update statistics.

 Deploy design: The new design is automatically deployed, which means that during
deployment, new projections are added, some existing projections might be retained, and
any unnecessary existing projections are removed. Any new projections are refreshed so
that they are populated with data.

Note: For large databases, completing a full design session can be time consuming. HP

Vertica recommends that you allow the process to complete uninterrupted. If you must cancel
the session before it completes, use Ctrl+C.

11 Database Designer prompts you for the input query file. If you have MicroStrategy reports that
you want to use, HP Vertica recommends that you first create a single file containing all of the
reports to use as Database Designer input file. The queries in the query file must be delimited
with a semicolon (;).

Enter the full path to the file containing the queries that you plan to run on your database. For
this example, the query file is:

/examples/vmart/vmart_queries2.sql

-86-

Administrator's Guide

12 Accept the default or enter a new value for the K-safety value (in this case 1) and click OK.

Note: If you are creating a comprehensive design on a single node, you are not asked to enter
a K-safety value.

13 When the informational message displays, click Proceed.

The Database Designer:

 Sets up the design session.

 Examines table data.

 Loads the query file that you provided.

 Creates the design.

 If you selected to deploy the design in step 10, creates and refreshes any new projections
for the design. Otherwise, it saves a SQL script containing the SQL statements that
create the design.

Note: A message that Database Designer did not optimize projections means that the auto

projections created in the initial design were already optimized, so Database Designer makes
no new suggestions.

-87-

 Configuring the Database

14 When Database Designer finishes, press Enter to return to the Administration Tools menu.

15 Once you have deployed your design, query the system table DESIGN_STATUS to see the
steps taken to create the design. If you deployed the design, those steps are listed in the
system table DEPLOY_STATUS:

vmartdb=> SELECT * FROM V_MONITOR.DESIGN_STATUS;

vmartdb=> SELECT * FROM V_MONITOR.DEPLOY_STATUS;

Deploying Designs

HP Vertica recommends that you test your design on a non-production server before you deploy it
to your production server.

There are two ways to deploy the design that Database Designer creates:

 Letting the Database Designer deploy (page 87) your design at design time

 Manually deploying (page 88) your design at a later time

Deploying Designs Using Database Designer

HP recommends that you deploy designs at design time for the following reasons:

 It is faster and easier.

 It requires fewer steps.

 Database Designer provides projections optimized for your design.

 If a design has already been deployed, the newly-deployed design automatically replaces it.

If you choose to deploy your design automatically at design time, Database Designer creates a
backup of your database's current design. This is useful if you want to restore projections dropped
by the new design. the backup file is located in the output directory you specified during the design
process.

If you choose to deploy your design at a later time (for example, if you want to to maintain
projections from a pre-existing deployment), you can manually run a deployment script. See
Deploying Designs Manually (page 88).

To deploy a design automatically at design time, select Deploy design in the Design Options
window, when you create the design. For details, see Creating a Query-specific Design Using
Database Designer (page 84).

Whether you choose the automatic or manual option, HP Vertica always generates the following
scripts, which you can use at any time:

 <design name>_deploy.sql—This file contains the SQL statements that create
projections for the design you are deploying, deploy the design, and drop unused projections.

 <design name>_projection_backup_<unique id #>.sql—Contains the design that
existed on the system before deployment. This file is useful as a backup in case you need to
revert to the old pre-deployment design.

 <design name>_design.sql—Contains the new design projection definitions.

Once you have deployed your design, query the DEPLOY_STATUS system table to see the steps
the deployment took:

-88-

Administrator's Guide

vmartdb=> SELECT * FROM V_MONITOR.DEPLOY_STATUS;

Deploying Designs Manually

If you chose not to have Database Designer deploy your design at design time, you can deploy it
later manually. You can either run the deployment script or you can follow a series of steps.

Deploying a design using the deployment script:

1 Make sure that you have a database loaded with a logical schema.

2 To deploy the projections to a test or production environment, use the \i meta-command in vsql
to run the SQL script.

3 Run the Database Designer deployment script:

<design name>_deploy.sql

Where <design_name> is the name of the database design.

Deploying a design manually:

1 Use the START_REFRESH function to update the newly created projections to the same level
as the existing projections.

You can also use the REFRESH function, which invokes refresh synchronously, rather than as a
background process.

2 Use the MAKE_AHM_NOW function to set the Ancient History Mark (AHM) to the greatest

allowable epoch (now).

3 Optionally, use the DROP PROJECTION function to drop the temporary projections that were

created for the temporary design.

Note: You can keep the temporary projections, but they could reduce query processing speed

if they remain in the database.

4 Run the ANALYZE_STATISTICS function on all projections in the database. This function
collects and aggregates data samples and storage information from all nodes on which a
projection is stored, then writes statistics into the catalog. For example:

vmartdb=> SELECT ANALYZE_STATISTICS ('');

5 Once you have deployed your design, query the DEPLOY_STATUS system table to see that
the steps the deployment took:

vmartdb=> SELECT * FROM V_MONITOR.DEPLOY_STATUS;

-89-

 89

Creating Custom Designs

HP strongly recommends that you use the physical schema design produced by Database
Designer, which provides K-safety, excellent query performance, and efficient use of storage
space. If you find that any of your queries are not running as efficiently as you would like, you can
use the Database Designer query-specific design process to optimize the database design for the
query.

If the projections created by Database Designer still do not meet your needs, you can write custom
projections, from scratch or based on projection designs created by Database Designer.

If you are unfamiliar with writing custom projections, start by modifying an existing design
generated by Database Designer.

The Design Process

To customize an existing design or create a new one, take these steps:

1 Plan the design or design modification.

As with most successful projects, a good design requires some up-front planning. See
Planning Your Design (page 89).

2 Create or modify projections.

For an overview of the CREATE PROJECTION statement and guidelines for creating common
projections, see Design Fundamentals (page 92). The CREATE PROJECTION section in the
SQL Reference Manual also provides more detail.

3 Deploy the projections to a test environment. See Writing and Deploying Custom
Projections (page 92).

4 Test the projections.

5 Modify the projections as necessary.

6 Once you have finalized the design, deploy the projections to the production environment.

Planning Your Design

The syntax for creating a design is easy for anyone who is familiar with SQL. As with any
successful project, however, a successful design requires some initial planning. Before you create
your first design:

 Become familiar with standard design requirements and plan your design to include them. See
Design Requirements (page 90).

 Determine how many projections you need to include in the design. See Determining the
Number of Projections to Use (page 90).

 Determine the type of compression and encoding to use for columns. See Data Encoding and
Compression.

 Determine whether or not you want the database to be K-safe. HP Vertica recommends that all
production databases have a minimum K-safety of one (K=1). Valid K-safety values are 0, 1,
and 2. See Designing for K-Safety (page 91).

-90-

Administrator's Guide

Design Requirements

A physical schema design is a script that contains CREATE PROJECTION statements. These
statements determine which columns are included in projections and how they are optimized.

If you use Database Designer as a starting point, it automatically creates designs that meet all
fundamental design requirements. If you intend to create or modify designs manually, be aware
that all designs must meet the following requirements:

 Every design must create at least one superprojection for every table in the database that is
used by the client application. These projections provide complete coverage that enables
users to perform ad-hoc queries as needed. They can contain joins and they are usually
configured to maximize performance through sort order, compression, and encoding.

 Query-specific projections are optional. If you are satisfied with the performance provided
through superprojections, you do not need to create additional projections. However, you can
maximize performance by tuning for specific query work loads.

 HP recommends that all production databases have a minimum K-safety of one (K=1) to
support high availability and recovery. (K-safety can be set to 0, 1, or 2.) See High Availability
Through Projections in the Concepts Guide and Designing for K-Safety (page 91).

Determining the Number of Projections to Use

In many cases, a design that consists of a set of superprojections (and their buddies) provides
satisfactory performance through compression and encoding. This is especially true if the sort
orders for the projections have been used to maximize performance for one or more query
predicates (WHERE clauses).

However, you might want to add additional query-specific projections to increase the performance
of queries that run slowly, are used frequently, or are run as part of business-critical reporting. The
number of additional projections (and their buddies) that you create should be determined by:

 Your organization's needs

 The amount of disk space you have available on each node in the cluster

 The amount of time available for loading data into the database

As the number of projections that are tuned for specific queries increases, the performance of
these queries improves. However, the amount of disk space used and the amount of time required
to load data increases as well. Therefore, you should create and test designs to determine the
optimum number of projections for your database configuration. On average, organizations that
choose to implement query-specific projections achieve optimal performance through the addition
of a few query-specific projections.

-91-

 Configuring the Database

Designing for K-Safety

Before creating custom physical schema designs, determine whether you want the database to be
K-safe and adhere to the appropriate design requirements for K-safe databases or databases with
no K-safety. HP recommends that all production databases have a minimum K-safety of one
(K=1). Valid K-safety values are 0, 1, and 2. Non-production databases do not have to be K-safe.
You can start by creating a physical schema design with no K-safety, and then modify it to be
K-safe at a later point in time. See High Availability and Recovery and High Availability Through
Projections in the Concepts Guide for an explanation of how HP Vertica implements high
availability and recovery through replication and segmentation.

Requirements for a K-Safe Physical Schema Design

Database Designer automatically generates designs with a K-safety of 1 for clusters that contain
at least three nodes. (If your cluster has one or two nodes, it generates designs with a K-safety of
0. You can modify a design created for a three-node (or greater) cluster, and the K-safe
requirements are already set.

If you create custom projections, your physical schema design must meet the following
requirements to be able to successfully recover the database in the event of a failure:

 Segmented projections must be segmented across all nodes. Refer to Designing for
Segmentation (page 91) and Designing Segmented Projections for K-Safety (page 96).

 Replicated projections must be replicated on all nodes. See Designing Replicated
Projections for K-Safety (page 95).

 Segmented projections must have K buddy projections (projections that have identical
columns and segmentation criteria, except that corresponding segments are placed on
different nodes).

You can use the MARK_DESIGN_KSAFE function to find out whether your schema design meets
requirements for K-safety.

Requirements for a Physical Schema Design with No K-Safety

If you use Database Designer to generate an comprehensive design that you can modify and you
do not want the design to be K-safe, set K-safety level to 0 (zero).

If you want to start from scratch, do the following to establish minimal projection requirements for a
functioning database with no K-safety (K=0):

1 Define at least one superprojection for each table in the logical schema.

2 Replicate (define an exact copy of) each dimension table superprojection on each node.

Designing for Segmentation

You segment projections using hash segmentation. Hash segmentation allows you to segment a
projection based on a built-in hash function that provides even distribution of data across multiple
nodes, resulting in optimal query execution. In a projection, the data to be hashed consists of one
or more column values, each having a large number of unique values and an acceptable amount
of skew in the value distribution. Primary key columns that meet the criteria could be an excellent
choice for hash segmentation.

-92-

Administrator's Guide

Note: For detailed information about using hash segmentation in a projection, see CREATE

PROJECTION in the SQL Reference Manual.

When segmenting projections, determine which columns to use to segment the projection.
Choose one or more columns that have a large number of unique data values and acceptable
skew in their data distribution. Primary key columns are an excellent choice for hash
segmentation. The columns must be unique across all the tables being used in a query.

Design Fundamentals

Although you can write custom projections from scratch, HP Vertica recommends that you use
Database Designer to create a design to use as a starting point. This ensures that you have
projections that meet basic requirements.

Writing and Deploying Custom Projections

Before you write custom projections, be sure to review the topics in Planning Your Design (page
89) carefully. Failure to follow these considerations can result in non-functional projections.

To manually modify or create a projection:

1 Write a script to create the projection, using the CREATE PROJECTION statement.

2 Use the \i meta-command in vsql to run the script.

Note: You must have a database loaded with a logical schema.

3 For a K-safe database, use the function SELECT get_projections('table_name') to
verify that the projections were properly created. Good projections are noted as being "safe."
This means that the projection has enough buddies to be K-safe.

4 If you added the new projection to a database that already has projections that contain data,
you need to update the newly created projection to work with the existing projections. By
default, the new projection is out-of-date (not available for query processing) until you refresh
it.

5 Use the MAKE_AHM_NOW function to set the Ancient History Mark (AHM) to the greatest
allowable epoch (now).

Use the DROP_PROJECTION function to drop any previous projections that are no longer
needed.

These projections can waste disk space and reduce load speed if they remain in the database.

1 Run the ANALYZE_STATISTICS function on all projections in the database. This function
collects and aggregates data samples and storage information from all nodes on which a
projection is stored, and then writes statistics into the catalog. For example:

=>SELECT ANALYZE_STATISTICS ('');

-93-

 Configuring the Database

Anatomy of a Projection

The CREATE PROJECTION statement defines the individual elements of a projection, as the
following graphic shows.

The previous example contains the following significant elements:

Column list and encoding

Lists every column in the projection and defines the encoding for each column. Unlike traditional
database architectures, HP Vertica operates on encoded data representations. Therefore, HP
recommends that you use data encoding because it results in less disk I/O.

Base query

Identifies all the columns to incorporate in the projection through column name and table name
references. The base query for large table projections can contain PK/FK joins to smaller tables.

Sort order

The ORDER BY clause specifies a projection's sort order, which localizes logically grouped values
so that a disk read can pick up many results at once. The sort order optimizes for a specific query
or commonalities in a class of queries based on the query predicate. The best sort orders are

determined by the WHERE clauses. For example, if a projection's sort order is (x, y), and the

query's WHERE clause specifies (x=1 AND y=2), all of the needed data is found together in the
sort order, so the query runs almost instantaneously.

You can also optimize a query by matching the projection's sort order to the query's GROUP BY
clause. If you do not specify a sort order, HP Vertica uses the order in which columns are specified
in the column definition as the projection's sort order.

-94-

Administrator's Guide

Segmentation

The segmentation clause determines whether a projection is segmented across nodes within the
database. Segmentation distributes contiguous pieces of projections, called segments, for large
and medium tables across database nodes. Segmentation maximizes database performance by
distributing the load. Use SEGMENTED BY HASH to segment large table projections.

For small tables, use the UNSEGMENTED keyword to direct HP Vertica to replicate these tables,
rather than segment them. Replication creates and stores identical copies of projections for small
tables across all nodes in the cluster. Replication ensures high availability and recovery.

Designing Superprojections

Superprojections have the following requirements:

 They must contain every column within the table.

 For a K-safe design, superprojections must either be replicated on all nodes within the
database cluster (for dimension tables) or paired with buddies and segmented across all
nodes (for very large tables and medium large tables). See Physical Schema and High
Availability Through Projections in the Concepts Guide for an overview of projections and how
they are stored. See Designing for K-Safety (page 91) for design specifics.

To provide maximum usability, superprojections need to minimize storage requirements while
maximizing query performance. To achieve this, the sort order for columns in superprojections is
based on storage requirements and commonly used queries.

Minimizing Storage Requirements

Minimizing storage not only saves on physical resources, it increases performance by requiring
the database to perform less disk I/O. To minimize storage space for a projection:

 Analyze the type of data stored in each projection column and choose the most effective
encoding method. See the CREATE PROJECTION statement and encoding-type in the SQL
Reference Manual.

The HP Vertica optimizer gives Run-Length Encoding (RLE) preference, so be sure to use it
whenever appropriate. Run Length Encoding (RLE) replaces sequences (runs) of identical
values with a single pair that contains the value and number of occurrences. Therefore, use it
only when the run length is large, such as when sorting low-cardinality columns.

 Prioritize low-cardinality columns in the column sort order. This minimizes the number of rows
that HP Vertica stores and accesses to retrieve query results.

For more information about minimizing storage requirements, see Choosing Sort Orders for
Low Cardinality Predicates (page 98) and Choosing Sort Orders for High Cardinality
Predicates (page 99).

Maximizing Query Performance

In addition to minimizing storage requirements, the column sort order facilitates the most
commonly used queries for the table. This means that the column sort order prioritizes the lowest
cardinality columns that are actually used in queries. For examples that take into account both
storage and query requirements, see Choosing Sort-orders for Low Cardinality Predicates
(page 98).

-95-

 Configuring the Database

Projections within a buddy set can all have different sort orders. This enables you to maximize
query performance for groups of queries with common WHERE clauses, but different sort orders.
If, for example, you have a three-node cluster, your buddy set contains three interrelated
projections, each having its own sort order.

In a database with a K-safety of 1 or 2, buddy projections are used for data recovery. If a node
fails, it queries the other nodes to recover data through buddy projections. (See How Result Sets
are Stored in the Concepts Guide.) If a projection's buddies use different sort orders, it takes
longer to recover the projection because the data has to be resorted during recovery to match the
sort order of the projection. Therefore, consider using identical sort orders for tables that are rarely
queried or that are repeatedly accessed by the same query, and use multiple sort orders for tables
that are accessed by queries with common WHERE clauses, but different sort orders.

If you have queries that access multiple tables or you want to maintain the same sort order for
projections within buddy sets, create query-specific projections. Designs that contain projections
for specific queries are called optimized designs.

Designing Replicated Projections for K-Safety

If you are creating or modifying a design for a K-safe database, make sure that projections for
dimension tables are replicated on each node in the database.

You can accomplish this using a single CREATE PROJECTION command for each dimension
table. The UNSEGMENTED ALL NODES syntax within the segmentation clause automatically
creates an unsegmented projection on each node in the database.

When you run your design script, HP Vertica generates a list of nodes based on the number of
nodes in the database and replicates the projection accordingly. Replicated projections have the
name:

projection-name_node-name

If, for example, the nodes are named NODE01, NODE02, and NODE03, the projections are
named ABC_NODE01, ABC_NODE02, and ABC_NODE03.

Note: This naming convention can affect functions that provide information about projections,

for example, GET_PROJECTIONS or GET_PROJECTION_STATUS, where you must provide

the name ABC_NODE01 instead of just ABC. To view a list of the nodes in a database, use the
View Database (page 237) command in the Administration Tools.

The following script uses the UNSEGMENTED ALL NODES syntax to create one unsegmented
superprojection for the store_dimension table on each node.

CREATE PROJECTION store_dimension(

 C0_store_dimension_floor_plan_type ENCODING RLE ,

 C1_store_dimension_photo_processing_type ENCODING RLE ,

 C2_store_dimension_store_key ,

 C3_store_dimension_store_name ,

 C4_store_dimension_store_number ,

 C5_store_dimension_store_street_address ,

 C6_store_dimension_store_city ,

 C7_store_dimension_store_state ,

 C8_store_dimension_store_region ,

-96-

Administrator's Guide

 C9_store_dimension_financial_service_type ,

 C10_store_dimension_selling_square_footage ,

 C11_store_dimension_total_square_footage ,

 C12_store_dimension_first_open_date ,

 C13_store_dimension_last_remodel_date)

AS SELECT T_store_dimension.floor_plan_type,

 T_store_dimension.photo_processing_type,

 T_store_dimension.store_key,

 T_store_dimension.store_name,

 T_store_dimension.store_number,

 T_store_dimension.store_street_address,

 T_store_dimension.store_city,

 T_store_dimension.store_state,

 T_store_dimension.store_region,

 T_store_dimension.financial_service_type,

 T_store_dimension.selling_square_footage,

 T_store_dimension.total_square_footage,

 T_store_dimension.first_open_date,

 T_store_dimension.last_remodel_date

FROM store_dimension T_store_dimension

ORDER BY T_store_dimension.floor_plan_type,

T_store_dimension.photo_processing_type

UNSEGMENTED ALL NODES;

Note: Large dimension tables can be segmented. A dimension table is considered to be large
when it is approximately the same size as a fact table.

Designing Segmented Projections for K-Safety

If you are creating or modifying a design for a K-safe database, you need to create K-safe
projections for fact tables and large dimension tables. (A dimension table is considered to be large
if it is similar in size to a fact table.) To accomplish this, you must:

 Create a segmented projection for each fact and large dimension table.

 Create segmented buddy projections for each of these projections. The total number of
projections in a buddy set must be two for a K=1 database or three for a K=2 database.

For an overview of segmented projections and their buddies, see Projection Segmentation in the
Concepts Guide. For information about designing for K-safety, see Designing for K-Safety (page
91) and Designing for Segmentation (page 91).

Segmenting Projections

To segment a projection, use the segmentation clause to specify the:

 Segmentation method to use.

 Column to use to segment the projection.

 Nodes on which to segment the projection. You can segment projections across all the nodes,
or just the number of nodes necessary to maintain K-safety, either three for a K=1 database or
five for a K=2 database.

See the CREATE PROJECTION statement in the SQL Reference Manual.

-97-

 Configuring the Database

The following segmentation clause uses hash segmentation to segment the projection across all
nodes based on the T_retail_sales_fact.pos_transaction_number column:

CREATE PROJECTION retail_sales_fact_P1...

SEGMENTED BY HASH(T_retail_sales_fact.pos_transaction_number) ALL NODES;

Creating Buddy Projections

To create a buddy projection, copy the original projection and modify it as follows:

 Rename it to something similar to the name of the original projection. For example, a

projection named retail_sales_fact_P1 could have buddies named
retail_sales_fact_P1_B1 and retail_sales_fact_P1_B2.

 Modify the sort order as needed.

 Create an offset to store the segments for the buddy on different nodes. For example, the first

buddy in a projection set would have an offset of one (OFFSET1;) the second buddy in a
projection set would have an offset of two (OFFSET2;), and so on.

To create a buddy for the projection created in the previous example:

CREATE PROJECTION retail_sales_fact_P1_B1...

SEGMENTED BY HASH(T_retail_sales_fact.pos_transaction_number) ALL NODES OFFSET 1;

Projection Design for Merge Operations

The HP Vertica query optimizer automatically picks the best projections to use for queries, but you
can help improve the performance of MERGE operations by ensuring projections are designed for
optimal use.

Good projection design lets HP Vertica choose the faster merge join between the target and
source tables without having to perform additional sort and data transfer operations.

HP recommends that you first use Database Designer to generate a comprehensive design and
then customize projections, as needed. Be sure to first review the topics in Planning Your Design
(page 89). Failure to follow those considerations could result in non-functioning projections.

In the following MERGE statement, HP Vertica inserts and/or updates records from the source

table's column b into the target table's column a:

=> MERGE INTO target t USING source s ON t.a = s.b WHEN

HP Vertica can use a local merge join if tables target and source use one of the following

projection designs, where their inputs are pre-sorted through the CREATE PROJECTION ORDER
BY clause:

 Replicated projections that are sorted on:

 Column a for target

 Column b for source

 Segmented projections that are identically segmented on:

 Column a for target

 Column b for source

 Corresponding segmented columns

-98-

Administrator's Guide

Tip: For best merge performance, the source table should be smaller than the target table.

See Also

MERGE in the SQL Reference Manual

Merging Data Between Tables

Optimizing MERGE for Delete Performance

Maximizing Projection Performance

This section explains how to design your projections in order to optimize their performance.

Choosing Sort Orders for Low-Cardinality Predicates

When dealing with predicates on low-cardinality columns, use a combination of RLE and sorting to
reduce disk I/O. To achieve this, bucket data so that all rows that correspond to the same value
are clustered together on disk. The following example shows how RLE is combined with the
column sort order to minimize storage requirements and maximize query performance:

SELECT name FROM students

 WHERE gender = 'M' AND pass_fail = 'P' AND class = 'senior';

Column Descriptions

The columns from the students table contain the following values and encoding types:

Column # of Values Encoded With

gender 2 (M or F) RLE

pass_fail 2 (P or F) RLE

class 4 (freshman, sophomore, junior,
or senior)

RLE

name 10000 (too many to list) Auto

Optimal Sort Order

The fastest way to access the names of students who are male, have passed their grade level,
and are seniors is to work through the low-cardinality columns with the smallest number of values
before the high cardinality columns. The following example illustrates a column sort order that
minimizes storage and maximizes query performance for the example query:

ORDER BY = student.gender,student.class,student.pass_fail,student.name

-99-

 Configuring the Database

This example creates the following buckets:

This query operates efficiently because only a subset of buckets (highlighted in blue) is evaluated
for each condition in the where clause.

Suboptimal Sort Order

The following example shows a sort order that starts with the name column. This sort order is
suboptimal because it maximizes the number of rows that are stored and minimizes query
performance because the students' gender, pass/fail status, and class must be evaluated for
every name:

ORDER BY = student.name, student.gender, student.pass_fail, student.class

Choosing Sort Orders for High-Cardinality Predicates

In some cases, your query predicate might require you to prioritize a high-cardinality column in the
projection's sort order. For example, you might have predicates based on phone numbers or
timestamps. To avoid establishing a sub-optimal projection, insert a new column into the table and
the projection. This pseudo-column artificially creates a low-cardinality bucket that you can then
prioritize in the projection's sort order.

To be effective, the number of unique values in the column you insert should be almost equal to
the square root of the number of unique values in the original high-cardinality column. Use
SELECT DISTINCT to determine the number of unique values in the high cardinality column.

The following example illustrates this concept.

Query Without Bucketing

The following query requires a full column scan on the high-cardinality column (Number) because

the sort order is prioritized on the Number column:

SELECT Address

-100-

Administrator's Guide

 FROM cdr_table WHERE Number='9788876542';

Query With Bucketing

Inserting the low-cardinality column Area_Code and prioritizing it in the projection's sort order
enables a partial scan of the Number column.

SELECT Address

 FROM cdr_table WHERE Area_Code='978' AND Number='9788876542';

Prioritizing Column Access Speed

If you measure and set the performance of storage locations within your cluster, HP Vertica uses
this information to determine where to store columns based on their rank. For more information,
see Setting Location Performance (page 514).

How Columns are Ranked

HP Vertica stores columns included in the projection sort order on the fastest storage locations.
Columns not included in the projection sort order are stored on slower disks. Columns for each
projection are ranked as follows:

 Columns in the sort order are given the highest priority (numbers > 1000).

 The last column in the sort order is given the rank number 1001.

-101-

 Configuring the Database

 The next-to-last column in the sort order is given the rank number 1002, and so on until the first
column in the sort order is given 1000 + # of sort columns.

 The remaining columns are given numbers from 1000–1, starting with 1000 and decrementing
by one per column.

HP Vertica then stores columns on disk from the highest ranking to the lowest ranking, with the
highest ranking columns placed on the fastest disks, and the lowest ranking columns placed on
the slowest disks.

Overriding Default Column Ranking

You can modify which columns are stored on fast disks by manually overriding the default ranks

for these columns. To accomplish this, set the ACCESSRANK keyword in the column list. Make sure
to use an integer that is not already being used for another column. For example, if you want to
give a column the fastest access rank, use a number that is significantly higher than 1000 + the
number of sort columns. This allows you to enter more columns over time without bumping into the
access rank you set.

The following example sets the access rank for the C1_retail_sales_fact_store_key
column to 1500.

CREATE PROJECTION retail_sales_fact_P1 (

 C1_retail_sales_fact_store_key ENCODING RLE ACCESSRANK 1500,

 C2_retail_sales_fact_pos_transaction_number ,

 C3_retail_sales_fact_sales_dollar_amount ,

 C4_retail_sales_fact_cost_dollar_amount)

Projection Examples

This section provides examples that show you how to create projections.

-102-

 102

New K-Safe=2 Database

In this example, projections are created for a new five-node database with a K-safety of 2. To
simplify the example, this database contains only two tables: retail_sale_fact and

store_dimension. Creating projections for this database consists of creating the following

segmented and unsegmented (replicated) superprojections:

 Segmented projections

To support K-safety=2, the database requires three segmented projections (one projection and
two buddy projections) for each fact table. In this case, it requires three segmented projections

for the retail_sale_fact table:

Projection Description

P1 The primary projection for the retail_sale_fact

table.

P1_B1 The first buddy projection for P1. This buddy is

required to provide K-safety=1.

P1_B2 The second buddy projection for P1. This buddy is

required to provide K-safety=2.

 Unsegmented Projections

To support the database, one unsegmented superprojection must be created for each
dimension table on each node. In this case, one unsegmented superprojection must be

created on each node for the store_dimension table:

Node Unsegmented Projection

Node01 store_dimension_Node01

Node02 store_dimension_Node02

Node03 store_dimension_Node03

Node04 store_dimension_Node04

Node05 store_dimension_Node05

Creating Segmented Projections Example

The following SQL script creates the P1 projection and its buddies, P1_B1 and P1_B2, for the

retail_sales_fact table. The following syntax is significant:

-103-

 Configuring the Database

 CREATE PROJECTION creates the named projection (retail_sales_fact_P1,
retail_sales_fact_ P1_B1, or retail_sales_fact_P1_B2).

 ALL NODES automatically segments the projections across all five nodes in the cluster without
specifically referring to each node.

 HASH evenly distributes the data across these nodes.

 OFFSET ensures that the same data is not stored on the same nodes for each of the buddies.
The first buddy uses OFFSET 1 to shift the storage locations by 1 and the second buddy uses
OFFSET 2 to shift the storage locations by 1. This is critical to ensure K-safety.

CREATE PROJECTION retail_sales_fact_P1 (

 C1_retail_sales_fact_store_key ENCODING RLE ,

 C2_retail_sales_fact_pos_transaction_number ,

 C3_retail_sales_fact_sales_dollar_amount ,

 C4_retail_sales_fact_cost_dollar_amount)

AS SELECT T_retail_sales_fact.store_key,

 T_retail_sales_fact.pos_transaction_number,

 T_retail_sales_fact.sales_dollar_amount,

 T_retail_sales_fact.cost_dollar_amount

FROM retail_sales_fact T_retail_sales_fact

ORDER BY T_retail_sales_fact.store_key

SEGMENTED BY HASH(T_retail_sales_fact.pos_transaction_number) ALL NODES;

--

-- Projection # : 6

-- Projection storage (KBytes) : 4.8e+06

-- Note: This is a super projection for table: retail_sales_fact

CREATE PROJECTION retail_sales_fact_P1_B1 (

 C1_retail_sales_fact_store_key ENCODING RLE ,

 C2_retail_sales_fact_pos_transaction_number ,

 C3_retail_sales_fact_sales_dollar_amount ,

 C4_retail_sales_fact_cost_dollar_amount)

AS SELECT T_retail_sales_fact.store_key,

 T_retail_sales_fact.pos_transaction_number,

 T_retail_sales_fact.sales_dollar_amount,

 T_retail_sales_fact.cost_dollar_amount

FROM retail_sales_fact T_retail_sales_fact

ORDER BY T_retail_sales_fact.store_key

SEGMENTED BY HASH(T_retail_sales_fact.pos_transaction_number) ALL NODES

OFFSET 1;

--

-- Projection # : 6

-- Projection storage (KBytes) : 4.8e+06

-- Note: This is a super projection for table: retail_sales_fact

CREATE PROJECTION retail_sales_fact_P1_B2 (

 C1_retail_sales_fact_store_key ENCODING RLE ,

 C2_retail_sales_fact_pos_transaction_number ,

 C3_retail_sales_fact_sales_dollar_amount ,

 C4_retail_sales_fact_cost_dollar_amount)

AS SELECT T_retail_sales_fact.store_key,

 T_retail_sales_fact.pos_transaction_number,

 T_retail_sales_fact.sales_dollar_amount,

 T_retail_sales_fact.cost_dollar_amount

FROM retail_sales_fact T_retail_sales_fact

-104-

Administrator's Guide

ORDER BY T_retail_sales_fact.store_key

SEGMENTED BY HASH(T_retail_sales_fact.pos_transaction_number) ALL NODES

OFFSET 2;

--

Creating Unsegmented Projections Example

The following script uses the UNSEGMENTED ALL NODES syntax to create one unsegmented
superprojection for the store_dimension table on each node.

CREATE PROJECTION store_dimension (

 C0_store_dimension_floor_plan_type ENCODING RLE ,

 C1_store_dimension_photo_processing_type ENCODING RLE ,

 C2_store_dimension_store_key ,

 C3_store_dimension_store_name ,

 C4_store_dimension_store_number ,

 C5_store_dimension_store_street_address ,

 C6_store_dimension_store_city ,

 C7_store_dimension_store_state ,

 C8_store_dimension_store_region ,

 C9_store_dimension_financial_service_type ,

 C10_store_dimension_selling_square_footage ,

 C11_store_dimension_total_square_footage ,

 C12_store_dimension_first_open_date ,

 C13_store_dimension_last_remodel_date)

AS SELECT T_store_dimension.floor_plan_type,

 T_store_dimension.photo_processing_type,

 T_store_dimension.store_key,

 T_store_dimension.store_name,

 T_store_dimension.store_number,

 T_store_dimension.store_street_address,

 T_store_dimension.store_city,

 T_store_dimension.store_state,

 T_store_dimension.store_region,

 T_store_dimension.financial_service_type,

 T_store_dimension.selling_square_footage,

 T_store_dimension.total_square_footage,

 T_store_dimension.first_open_date,

 T_store_dimension.last_remodel_date

FROM store_dimension T_store_dimension

ORDER BY T_store_dimension.floor_plan_type,

T_store_dimension.photo_processing_type

UNSEGMENTED ALL NODES;

-105-

 105

Adding Node to a Database

In this example, a fourth node (Node04) is being added to a three-node database cluster. The
database contains two tables: retail_sale_fact and store_dimension. It also contains the
following segmented and unsegmented (replicated) superprojections:

 Segmented projections

P1 and its buddy, B1, are projections for the retail_sale_fact table. They were created

using the ALL NODES syntax, so HP Vertica automatically segments the projections across all
three nodes.

 Unsegmented Projections

Currently three unsegmented superprojections exist for the store_dimension table, one for

each node, as follows:

Node Unsegmented Projection

Node01 store_dimension_Node01

Node02 store_dimension_Node02

Node03 store_dimension_Node03

To support an additional node, replacement projections need to be created for the segmented
projections, P1 and B1. The new projections could be called P2 and B2, respectively. Additionally,

an unsegmented superprojection (store_dimension_Node04) needs to be created for the
dimension table on the new node (Node04).

Creating Segmented Projections Example

The following SQL script creates the original P1 projection and its buddy, B1, for the

retail_sales_fact table. Since the script uses the ALL NODES syntax, creating a new

projection that includes the fourth node is as easy as copying the script and changing the names of
the projection and its buddy to unique names (for example, P2 for the projection and P2_B2 for its

buddy). The names that need to be changed are highlighted within the example.

CREATE PROJECTION retail_sales_fact_P1 (

 C1_retail_sales_fact_store_key ENCODING RLE ,

 C2_retail_sales_fact_pos_transaction_number ,

 C3_retail_sales_fact_sales_dollar_amount ,

 C4_retail_sales_fact_cost_dollar_amount)

AS SELECT T_retail_sales_fact.store_key,

 T_retail_sales_fact.pos_transaction_number,

 T_retail_sales_fact.sales_dollar_amount,

 T_retail_sales_fact.cost_dollar_amount

FROM retail_sales_fact T_retail_sales_fact

ORDER BY T_retail_sales_fact.store_key

SEGMENTED BY HASH(T_retail_sales_fact.pos_transaction_number) ALL NODES;

--

-- Projection # : 6

-- Projection storage (KBytes) : 4.8e+06

-106-

Administrator's Guide

-- Note: This is a super projection for table: retail_sales_fact

CREATE PROJECTION retail_sales_fact_P1_B1 (

 C1_retail_sales_fact_store_key ENCODING RLE ,

 C2_retail_sales_fact_pos_transaction_number ,

 C3_retail_sales_fact_sales_dollar_amount ,

 C4_retail_sales_fact_cost_dollar_amount)

AS SELECT T_retail_sales_fact.store_key,

 T_retail_sales_fact.pos_transaction_number,

 T_retail_sales_fact.sales_dollar_amount,

 T_retail_sales_fact.cost_dollar_amount

FROM retail_sales_fact T_retail_sales_fact

ORDER BY T_retail_sales_fact.store_key

SEGMENTED BY HASH(T_retail_sales_fact.pos_transaction_number) ALL NODES

OFFSET 1;

--

Creating Unsegmented Projections Example

The following script used the ALL NODES syntax to create the original three unsegmented
superprojections for the store_dimension table, one per node.

The following syntax is significant:

 CREATE PROJECTION creates a superprojection called store_dimension.

 ALL NODES automatically places a complete copy of the superprojection on each of the three
original nodes.

CREATE PROJECTION store_dimension (

 C0_store_dimension_floor_plan_type ENCODING RLE ,

 C1_store_dimension_photo_processing_type ENCODING RLE ,

 C2_store_dimension_store_key ,

 C3_store_dimension_store_name ,

 C4_store_dimension_store_number ,

 C5_store_dimension_store_street_address ,

 C6_store_dimension_store_city ,

 C7_store_dimension_store_state ,

 C8_store_dimension_store_region ,

 C9_store_dimension_financial_service_type ,

 C10_store_dimension_selling_square_footage ,

 C11_store_dimension_total_square_footage ,

 C12_store_dimension_first_open_date ,

 C13_store_dimension_last_remodel_date)

AS SELECT T_store_dimension.floor_plan_type,

 T_store_dimension.photo_processing_type,

 T_store_dimension.store_key,

 T_store_dimension.store_name,

 T_store_dimension.store_number,

 T_store_dimension.store_street_address,

 T_store_dimension.store_city,

 T_store_dimension.store_state,

 T_store_dimension.store_region,

 T_store_dimension.financial_service_type,

 T_store_dimension.selling_square_footage,

 T_store_dimension.total_square_footage,

-107-

 Configuring the Database

 T_store_dimension.first_open_date,

 T_store_dimension.last_remodel_date

FROM store_dimension T_store_dimension

ORDER BY T_store_dimension.floor_plan_type,

T_store_dimension.photo_processing_type

UNSEGMENTED ALL NODES;

To create another copy of the superprojection on the fourth node (Node04), the best approach is
to create a copy of that projection on Node04 only. This means avoiding the ALL NODES syntax.
The following script shows how to create the fourth superprojection.

The following syntax is significant:

 CREATE PROJECTION creates a superprojection called store_dimension_Node04.

 UNSEGMENTED SITE Node04 creates the projection on just Node04.
CREATE PROJECTION store_dimension_Node04 (

 C0_store_dimension_floor_plan_type ENCODING RLE ,

 C1_store_dimension_photo_processing_type ENCODING RLE ,

 C2_store_dimension_store_key ,

 C3_store_dimension_store_name ,

 C4_store_dimension_store_number ,

 C5_store_dimension_store_street_address ,

 C6_store_dimension_store_city ,

 C7_store_dimension_store_state ,

 C8_store_dimension_store_region ,

 C9_store_dimension_financial_service_type ,

 C10_store_dimension_selling_square_footage ,

 C11_store_dimension_total_square_footage ,

 C12_store_dimension_first_open_date ,

 C13_store_dimension_last_remodel_date)

AS SELECT T_store_dimension.floor_plan_type,

 T_store_dimension.photo_processing_type,

 T_store_dimension.store_key,

 T_store_dimension.store_name,

 T_store_dimension.store_number,

 T_store_dimension.store_street_address,

 T_store_dimension.store_city,

 T_store_dimension.store_state,

 T_store_dimension.store_region,

 T_store_dimension.financial_service_type,

 T_store_dimension.selling_square_footage,

 T_store_dimension.total_square_footage,

 T_store_dimension.first_open_date,

 T_store_dimension.last_remodel_date

FROM store_dimension T_store_dimension

ORDER BY T_store_dimension.floor_plan_type,

T_store_dimension.photo_processing_type

UNSEGMENTED NODE Node04;

-108-

 108

Managing Licenses

You must license HP Vertica in order to use it. Hewlett-Packard supplies your license information
to you in the form of a license file named vlicense.dat, which has the terms of your license

encoded in it.

To prevent inadvertently introducing special characters (such as line endings or file terminators)
into the license key file, do not open the file in an editor or e-mail client. Though such characters
are not always visible in an editor, their presence invalidates the license.

Copying the HP Vertica Enterprise Edition and Evaluation License Files

For ease of HP Vertica Enterprise Edition installation, HP recommends that you copy the license
file to /tmp/vlicense.dat on the Administration host.

Always be careful not to alter the license key file in any way when copying the file between
Windows and Linux, or to any other location. To help prevent applications from trying to alter the
file, enclose the license file in an archive file (such as a .zip or .tar file).

After copying the license file from one location to another, check that the copied file size is
identical to that of the one you received from HP Vertica.

Obtaining a License Key File

To obtain a license key, contact HP Vertica at: http://www.vertica.com/about/contact-us/

HP Vertica Community Edition users: Your HP Vertica Community Edition download package

includes the Community Edition license, which allows three nodes and 1TB of data. The HP
Vertica Community Edition license does not expire.

Understanding HP Vertica Licenses
HP Vertica has flexible licensing terms. It can be licensed on the following bases:

 Term-based (valid until a specific date)

 Raw data size based (valid to store up to some amount of raw data)

 Both term-based and data-size-based

 Unlimited duration and data storage

 Raw data size based and a limit of 3 nodes (HP Vertica Community Edition)

Your license key has your licensing bases encoded into it. If you are unsure of your current
license, you can view your license information from within HP Vertica (page 111).

-109-

 Managing Licenses

Term License Warnings and Expiration

The term portion of a license is easy to manage—you are licensed to use HP Vertica until a
specific date. If the term of your license expires, HP Vertica alerts you with messages appearing in
the Administration Tools and vsql. For example:

=> CREATE TABLE T (A INT);

NOTICE: Vertica license is in its grace period

HINT: Renew at http://www.vertica.com/

CREATE TABLE

Contact HP Vertica at http://www.vertica.com/about/contact-us/ as soon as possible to renew
your license, and then install the new license (page 110). After the grace period expires, HP
Vertica stops processing queries.

Data Size License Warnings and Remedies

If your license includes a raw data size allowance, HP Vertica periodically audits the size of your
database to ensure it remains compliant with the license agreement. For details of this audit, see
Calculating the Database Size (page 112). You should also monitor your database size to know
when it will approach licensed usage. Monitoring the database size helps you plan to either
upgrade your license to allow for continued database growth or delete data from the database so
you remain compliant with your license. See Monitoring Database Size for License
Compliance (page 113) for details.

If your database's size approaches your licensed usage allowance, you will see warnings in the
Administration Tools and vsql. You have two options to eliminate these warnings:

 Upgrade your license to a larger data size allowance.

 Delete data from your database to remain under your licensed raw data size allowance. The
warnings disappear after HP Vertica's next audit of the database size shows that it is no longer
close to or over the licensed amount. You can also manually run a database audit (see
Monitoring Database Size for License Compliance (page 113) for details).

If your database continues to grow after you receive warnings that its size is approaching your
licensed size allowance, HP Vertica displays additional warnings in more parts of the system after
a grace period passes.

If Your HP Vertica Enterprise Edition Database Size Exceeds Your Licensed Limits

If your Enterprise Edition database size exceeds your licensed data allowance, all successful
queries from ODBC and JDBC clients return with a status of SUCCESS_WITH_INFO instead of
the usual SUCCESS. The message sent with the results contains a warning about the database
size. Your ODBC and JDBC clients should be prepared to handle these messages instead of
assuming that successful requests always return SUCCESS.

If Your HP Vertica Community Edition Database Size Exceeds Your Licensed Limits

If your Community Edition database size exceeds your licensed data allowance, you will no longer
be able to load or modify data in your database. In addition, you will not be able to delete data from
your database.

To bring your database under compliance, you can choose to:

-110-

Administrator's Guide

 Drop database tables

 Upgrade to HP Vertica Enterprise Edition (or an evaluation license)

Installing or Upgrading a License Key

The steps you follow to apply your HP Vertica license key vary, depending on the type of license
you are applying and whether you are upgrading your license. This section describes the
following:

 New HP Vertica License Installations

 HP Vertica License Renewals or Upgrades (page 110)

New HP Vertica License Installations
1 Copy the license key file to your Administration Host.

2 Ensure the license key's file permissions are set to at least 666 (read and write permissions for
all users).

3 Install HP Vertica as described in the Installation Guide if you have not already done so. The
interface prompts you for the license key file.

4 To install Community Edition, leave the default path blank and press OK. To apply your

evaluation or Enterprise Edition license, enter the absolute path of the license key file you
downloaded to your Administration Host and press OK. The first time you log in as the

Database Administrator and run the Administration Tools, the interface prompts you to accept
the End-User License Agreement (EULA).

Note: If you installed Management Console, the MC administrator can point to the location of

the license key during Management Console configuration.

5 Choose View EULA to review the EULA.

6 Exit the EULA and choose Accept EULA to officially accept the EULA and continue installing
the license, or choose Reject EULA to reject the EULA and return to the Advanced Tools

menu.

HP Vertica License Renewals or Upgrades

If your license is expiring or you want your database to grow beyond your licensed data size, you
must renew or upgrade your license. Once you have obtained your renewal or upgraded license
key file, you can install it using Administration Tools or using the Management Console.

Uploading or Upgrading a License Key using Administration Tools:

1 Copy the license key file to your Administration Host.

2 Ensure the license key's file permissions are set to at least 666 (read and write permissions for
all users).

-111-

 Managing Licenses

3 Start your database, if it is not already running.

4 In the Administration Tools, select Advanced > Upgrade License Key and click OK.

5 Enter the path to your new license key file and click OK. The interface prompts you to accept

the End-User License Agreement (EULA).

6 Choose View EULA to review the EULA.

7 Exit the EULA and choose Accept EULA to officially accept the EULA and continue installing
the license, or choose Reject EULA to reject the EULA and return to the Advanced Tools

menu.

Uploading or Upgrading a License Key using Management Console:

You can upload a new license file from the Management Console Home > Settings page.

You can also upgrade an HP Vertica license from the Settings page for each database.

Browse to the location of the license key from your local computer (where the web browser is
installed), upload the file, and save.

Note: As soon as you renew or upgrade your license key from either your Administration Host

or the Management Console Home > Settings page, HP Vertica applies the license update.
No further warnings appear.

Viewing Your License Status
HP Vertica has several functions to show you your license terms and current status.

Examining Your License Key

Use the DISPLAY_LICENSE SQL function described in the SQL Reference Manual to display the
license information. This function displays the dates for which your license is valid (or "Perpetual"
if your license does not expire) and any raw data allowance. For example:

=> SELECT DISPLAY_LICENSE();

 DISPLAY_LICENSE

--

 HP Vertica Systems, Inc.

1/1/2011

12/31/2011

30

50TB

(1 row)

Viewing Your License Status

If your license includes a raw data size allowance, HP Vertica periodically audits your database's
size to ensure it remains compliant with the license agreement. If you license has an end date, HP
Vertica also periodically checks to see if the license has expired. You can see the result of the
latest audits using the GET_COMPLIANCE_STATUS function.

-112-

Administrator's Guide

 GET_COMPLIANCE_STATUS

--

 Raw Data Size: 2.00GB +/- 0.003GB

 License Size : 4.000GB

 Utilization : 50%

 Audit Time : 2011-03-09 09:54:09.538704+00

 Compliance Status : The database is in compliance with respect to raw data size.

 License End Date: 04/06/2011

 Days Remaining: 28.59

(1 row)

Viewing your license status through MC

Information about license usage is on the Settings page. See Monitoring Database Size for
License Compliance (page 113).

Calculating the Database Size
You can use your HP Vertica software until your data reaches the maximum raw data size that the
license agreement provides. This section describes when data is monitored, what data is included
in the estimate, and the general methodology used to produce an estimate. For more information
about monitoring for data size, see Monitoring Database Size for License Compliance (page
113).

How HP Vertica Estimates Raw Data Size

HP Vertica uses statistical sampling to calculate an accurate estimate of the raw data size of the
database. In this context, raw data means the uncompressed, unfederated data stored in a single
HP Vertica database. For the purpose of license size audit and enforcement, HP Vertica evaluates
the raw data size as if the data had been exported from the database in text format, rather than as
compressed data.

HP Vertica conducts your database size audit using statistical sampling. This method allows HP
Vertica to estimate the size of the database without significantly impacting database performance.
The trade-off between accuracy and impact on performance is a small margin of error, inherent in
statistical sampling. Reports on your database size include the margin of error, so you can assess
the accuracy of the estimate. To learn more about simple random sampling, see the Wikipedia
entry for Simple Random Sample http://en.wikipedia.org/wiki/Simple_random_sample.

Excluding Data from Raw Data Size Estimate

Not all data in the HP Vertica database is evaluated as part of the raw data size. Specifically, HP
Vertica excludes the following data:

 Multiple projections (underlying physical copies) of data from a logical database entity (table).
Data appearing in multiple projections of the same table is counted only once.

 Data stored in temporary tables.

 Data accessible through external table definitions.

http://en.wikipedia.org/wiki/Simple_random_sample

-113-

 Managing Licenses

 Data that has been deleted, but which remains in the database. To understand more about
deleting and purging data, see Purging Deleted Data (page 410).

 Data stored in the WOS.

 Data stored in system and work tables such as monitoring tables, Data Collector tables, and
Database Designer tables.

Evaluating Data Type Footprint Size

The data sampled for the estimate is treated as if it had been exported from the database in text
format (such as printed from vsql). This means that HP Vertica evaluates the data type footprint
sizes as follows:

 Strings and binary types (CHAR, VARCHAR, BINARY, VARBINARY) are counted as their
actual size in bytes using UTF-8 encoding. NULL values are counted as 1-byte values (zero
bytes for the NULL, and 1-byte for the delimiter).

 Numeric data types are counted as if they had been printed. Each digit counts as a byte, as
does any decimal point, sign, or scientific notation. For example, -123.456 counts as eight
bytes (six digits plus the decimal point and minus sign).

 Date/time data types are counted as if they had been converted to text, including any hyphens
or other separators. For example, a timestamp column containing the value for noon on July
4th, 2011 would be 19 bytes. As text, vsql would print the value as 2011-07-04 12:00:00, which
is 19 characters, including the space between the date and the time.

NOTE: Each column has an additional byte for the column delimiter.

Using AUDIT to Estimate Database Size

To supply a more accurate database size estimate than statistical sampling can provide, use the
AUDIT function to perform a full audit. This function has parameters to set both the

error_tolerance and confidence_level. Using one or both of these parameters increases

or decreases the function's performance impact.

For instance, lowering the error_tolerance to zero (0) and raising the confidence_level to
100, provides the most accurate size estimate, and increases the performance impact of calling
the AUDIT function. During a detailed, low error-tolerant audit, all of the data in the database is
dumped to a raw format to calculate its size. Since performing a stringent audit can significantly
impact database performance, never perform a full audit of a production database. See AUDIT for
details.

NOTE: Unlike estimating raw data size using statistical sampling, a full audit performs SQL

queries on the full database contents, including the contents of the WOS.

Monitoring Database Size for License Compliance
If your HP Vertica license includes a raw data storage allowance, you should regularly monitor the
size of your database. This monitoring allows you to plan to either schedule deleting old data to
keep your database in compliance with your license agreement, or budget for a license upgrade to
allow for the continued growth of your database.

-114-

Administrator's Guide

Viewing the Current License State

HP Vertica periodically runs an audit of the database size to verify that your database remains
compliant with your license. You can view the results of the most recent audit by calling the
GET_COMPLIANCE_STATUS function.

 GET_COMPLIANCE_STATUS

--

 Raw Data Size: 2.00GB +/- 0.003GB

 License Size : 4.000GB

 Utilization : 50%

 Audit Time : 2011-03-09 09:54:09.538704+00

 Compliance Status : The database is in compliance with respect to raw data size.

 License End Date: 04/06/2011

 Days Remaining: 28.59

(1 row)Periodically running GET_COMPLIANCE_STATUS to monitor your database's license
status is usually enough to ensure that your database remains compliant with your license. If your
database begins to near its data allowance, you may want to use the other auditing functions
described below to determine where your database is growing and how recent deletes have
affected the size of your database.

Manually Running an Audit of the Entire Database

You can trigger HP Vertica's automatic audit of your database at any time using the
AUDIT_LICENSE_SIZE SQL function. This function triggers the same audit that HP Vertica
performs periodically. The audit runs in the background, so you need to wait for the audit to
complete. You can then view the audit results using GET_COMPLIANCE_STATUS.

An alternative to AUDIT_LICENSE_SIZE is to use the AUDIT SQL function to audit the size of
your entire database by passing it an empty string. Unlike AUDIT_LICENSE_SIZE, this function
operates synchronously, returning when it has estimated the size of the database.

=> SELECT AUDIT('');

 AUDIT

 76376696

(1 row)

The size of the database is reported in bytes. The AUDIT function also allows you to control the
accuracy of the estimated database size using additional parameters. See the entry for the AUDIT
function in the SQL Reference Manual for full details

Note: HP Vertica does not count the results of the AUDIT function as an official audit. It takes

no license compliance actions based on the results.

-115-

 Managing Licenses

Targeted Auditing

If your audits find your database to be unexpectedly large, you may want to find which schemas,
tables, or partitions are using the most storage. You can use the AUDIT function to perform
targeted audits of schemas, tables, or partitions by supplying the name of the entity whose size
you want to find. For example, to find the size of the online_sales schema in the VMart example
database, run the following command:

VMart=> SELECT AUDIT('online_sales');

 AUDIT

 35716504

(1 row)

You can also change the granularity of an audit to report the size of each entity in a larger entity
(for example, each table in a schema) by using the granularity argument of the AUDIT function.
See the AUDIT function's entry in the SQL Reference Manual.

Using Management Console to Monitor License Compliance

You can also get information about raw data storage through the Management Console. This
information is available in the database Overview page, which displays a grid view of the

database's overall health.

 The needle in the license meter adjusts to reflect the amount used in megabytes.

 The grace period represents the term portion of the license.

 The Audit button returns the same information as the AUDIT() function in a graphical
representation.

 The Details link within the License grid (next to the Audit button) provides historical information
about license usage. This page also shows a progress meter of percent used toward your
license limit.

-116-

 116

Implementing Security

In HP Vertica, there are three primary security concerns:

 Client authentication prevents unauthorized access to the database

 Connection encryption prevents the interception of data, as well as authenticating the identity
of the server and the client

 Client authorization (managing users and privileges) controls what users can access and
change in the database

Client Authentication

To gain access to HP Vertica, a user or client application must supply the name of a valid user
account. You can configure HP Vertica to require just a user name, but a more common practice is
to require an additional means of authentication, such as a password. There are several ways to
implement this added authentication:

 Password authentication (page 118) using passwords stored in the database.

 Authentication using outside means (page 122), such as LDAP or Kerberos.

You can use different authentication methods based on:

 Connection type

 Client IP address range

 User name for the client that is attempting to access the server

See Implementing Client Authentication (page 117).

Connection Encryption

To secure the connection between the client and the server, you can configure HP Vertica and
database clients to use Secure Socket Layer (SSL) to communicate. HP Vertica uses SSL to:

 Authenticate the server so the client can confirm the server's identity. HP Vertica supports
mutual authentication in which the server can also confirm the identity of the client. This
authentication helps prevent "man-in-the-middle" attacks.

 Encrypt data sent between the client and database server to significantly reduce the likelihood
that the data can be read if the connection between the client and server is compromised.

 Verify that data sent between the client and server has not been altered during transmission.

See Implementing SSL (page 133).

Client Authorization

Database users should have access to just the database resources they need to perform their
tasks. For example, some users need to query only specific sets of data. To prevent unauthorized
access to additional data, you can limit their access to just the data that they need to perform their
queries. Other users should be able to read the data but not be able to modify or insert new data.
Still other users might need more permissive access, such as the right to create and modify
schemas, tables, and views or even grant other users access to database resources.

-117-

 Implementing Security

A collection of SQL statements control authorization for the resources users can access. See
Managing Users and Privileges (page 143), in particular About Database Privileges (page
153). You can also use roles to grant users access to a set of privileges, rather than directly grant
the privileges for each user. See About Database Roles (page 184).

Use the GRANT statements to assign privileges to users and the REVOKE statements to repeal
privileges. See the SQL Reference Manual for details.

Implementing Client Authentication
To connect to a database server, a user or client application is required to provide the user name
for the account established for its use on the server. You can configure HP Vertica to require just a
user name, but you usually require an additional means of authentication, such as a password. HP
Vertica uses client authentication to determine whether the client application (or the user running
the client application) is permitted to connect to the server using the database user name
provided.

HP Vertica supports the following client authentication methods:

 trust — Authenticates clients based on valid user names only. You might want to implement
trust if a user connection has already been authenticated through some external means such
as SSL or a firewall.

 reject — Rejects the connection and prevents additional records from being evaluated for the
client. Use this setting to filter out clients that match this record. For example, this is useful for
rejecting specific clients based on user name or IP address.

 krb5 — Authenticates the client using Kerberos version 5. This is useful if users have already
been provisioned for Kerberos.

 gss — Authenticates the client using GSS-encoded Kerberos tokens. (HP Vertica follows RFC
1964.) This method is useful if your application uses the Generic Security Services Application
Programming Interface (GSS-API).

 ldap — Authenticates the client using Lightweight Directory Access Protocol (LDAP). This
method is useful if your application uses LDAP to query directory services.

 md5 — Requires that the client supply an MD5-hashed password across the network for
authentication. By default, all account passwords are encrypted using Message-Digest
Algorithm 5 (MD5). The server provides the client with salt (random bytes included in the hash
to prevent replay attacks).

 password — Requires that the client supply the password in clear text. Do not use this setting
on untrusted networks.

The method HP Vertica uses to authenticate a particular client connection can be automatically
selected on the basis of the connection type, client IP address, and user name.

If you do not choose a client authentication method, HP Vertica defaults to the username and
password (if supplied) to grant access to the database. If you later add authentication methods,
the username/password default is no longer enabled. If you want to continue using password
authentication, you have to explicitly add it as described in Password Authentication (page 118).

-118-

Administrator's Guide

Note: This section describes the authentication methods supported at the database server

layer. For communication layer authentication between server and client, refer to
Implementing SSL (page 133).

Password Authentication

The simplest method to authenticate a client is to assign the user account a password in HP
Vertica. If a user account has a password set, then the user or client using the account to connect
to the database must supply the correct password. If the user account does not have a password
set and HP Vertica is not configured to use another form of client authentication, the user account
is always allowed to log in.

Passwords are stored in the database in an encrypted format to prevent others from potentially
stealing them. However, the transmission of the password to HP Vertica is in plain text. This
means it is possible for a "man in the middle" attack to intercept the password. To secure the login,
consider implementing SSL security (page 133) or MD5 authentication.

Passwords are assigned to user accounts when they are created or afterwards (see the CREATE
USER and ALTER USER statements in the SQL Reference Manual). Passwords can be changed
using ALTER USER or the vsql \password command. A superuser can set any user account's
password. Users can change their own passwords.

To make password authentication more effective, enforce password policies that control how often
users are forced to change passwords and the required content of a password. These policies are
set using Profiles (page 118).

Default password authentication

By default, the vertica.conf file does not have any authentication records. When there are no
authentication records, HP Vertica defaults to using password authentication for user accounts
that have passwords.

If you add authentication methods to vertica.conf, even for remote hosts, password

authentication is disabled. You need to explicitly enable password authentication. To always
enable local users to log in using password authentication, you would add the following to the
vertica.conf file:

ClientAuthentication = local all password

This allows users logged into a database host to connect to the database using HP Vertica-based
passwords, rather than some other form of authentication.

Profiles

You set password policies using profiles. A profile is a group of parameters that sets requirements
for user passwords. You assign users to a profile to set their password policy.

A profile controls:

 How often users must change their passwords.

-119-

 Implementing Security

 How many times users must change their passwords before they can reuse an old password.

 How many times users can fail to log in before their account is locked.

 The required length and content of the password (maximum and minimum amount of
characters and the minimum number of letters, capital letters, lowercase letters, digits, and
symbols that must be in a password).

You can create multiple profiles to enforce different password policies for different users. For
example, you might decide to create one profile for interactive users that requires them to
frequently change their passwords and another profile for user accounts that applications use to
access the database that aren't required to change passwords.

How you create and modify profiles

You create profiles using the CREATE PROFILE statement and change profiles using ALTER
PROFILE. You can assign a user to a profile when you create the user (CREATE USER), or
afterwards using the ALTER USER statement. A user can be assigned to only one profile at a
time.

All newly-created databases contain an initial profile named DEFAULT. All database users are
assigned to the DEFAULT profile if:

 You do not explicitly assign users a profile when you create them

 You drop the profile to which a user is currently assigned

You can change the policy parameters in the DEFAULT profile, but you cannot delete it.

Note: When upgrading from versions of HP Vertica prior to version 5.0, a DEFAULT profile is
added to each database, and all users are assigned to it.

The profiles you create can inherit some or all of their policy parameters from the DEFAULT
profile. When creating a profile using the CREATE PROFILE statement, any parameter you set to
the special value DEFAULT or any parameter to which you do not assign a value inherits its value
from the DEFAULT profile. Changing a parameter in the the DEFAULT profile changes that
parameter's value in every profile that inherited the parameter from DEFAULT.

When you assign users to a profile (or alter an existing profile that has users assigned to it), the
profile's policies for password content (maximum and minimum length, number of specific types of
characters) do not have an immediate effect on the users—HP Vertica does not test user's
passwords to ensure they comply with the new password criteria. These settings only affect the
users the next time they change their password. If you want to ensure users comply with the new
password policy, use the ALTER USER statement to expire user passwords. Users with expired
passwords are prompted to their change passwords when they next log in.

Note: Only the profile settings for how many failed login attempts trigger account locking

(page 120) and how long accounts are locked have an effect on external password
authentication methods such as LDAP or Kerberos. All password complexity (page 121),
reuse, and lifetime settings (page 120) have an effect on passwords managed by HP Vertica
only.

See Also

V_CATALOG.PROFILES

-120-

Administrator's Guide

Password Expiration

Use profiles to control how often users must change their passwords. Initially, the DEFAULT
profile is set so that passwords never expire. You can change this default value, or you can create
additional profiles that set time limits for passwords and assign users to them.

When a password expires, the user is required to change his or her password when next logging
in, unless the profile to which the user is assigned has a PASSWORD_GRACE_TIME set. In that
case, the user is allowed to log in after the expiration, but HP Vertica warns about the password
expiration. Once the grace period elapses, the user is forced to change their password, unless
they have manually changed the password during the grace period.

Password expiration has no effect on any of the user's current sessions.

Note: You can expire a user's password immediately using the ALTER USER statement's

PASSWORD EXPIRE argument. Expiring a password is useful to force users to comply with a
change to their password policy, or when setting a new password for users who have forgotten
their old one.

Account Locking

One password policy you can set in a profile is how many consecutive failed login attempts (giving
the wrong password when trying to log in) a user account is allowed before the account is locked.

You set this value using the FAILED_LOGIN_ATTEMPTS parameter in the CREATE PROFILE or
ALTER PROFILE statement.

HP Vertica locks any user account that has more sequential failed login attempts than the value to

which you set FAILED_LOGIN_ATTEMPTS. A locked account is not allowed to log in, even if the
user supplies the correct password.

How to unlock a locked account

There are two ways to unlock an account:

 A superuser can manually unlock the account using the ALTER USER command.

 HP Vertica automatically unlocks the account after the number of days set in the

PASSWORD_LOCK_TIME parameter of the user's profile has passed. However, if this

parameter is set to UNLIMITED, the user's account is never automatically unlocked and a
superuser must be manually unlock it.

This locking mechanism helps prevent dictionary-style brute-force attempts to crack users'
passwords.

Note: A superuser account cannot be locked, since it is the only user that can unlock accounts.

For this reason, you should ensure that you choose a very secure password for a superuser
account. See Password Guidelines (page 121) for suggestions on choosing a secure
password.

The following examples demonstrates failing to log in to an account whose profile is set to lock
accounts after three failed tries:

-121-

 Implementing Security

> vsql -U dbuser

Password:

vsql: FATAL: Invalid username or password

> vsql -U dbuser

Password:

vsql: FATAL: Invalid username or password

> vsql -U dbuser

Password:

vsql: FATAL: The user account "dbuser" is locked due to too many invalid logins

HINT: Please contact the database administrator

> vsql -U dbuser

Password:

vsql: FATAL: The user account "dbuser" is locked due to too many invalid logins

HINT: Please contact the database administrator

Password Guidelines

For passwords to be effective, they must be hard to guess. You need to protect passwords from:

 Dictionary-style brute-force attacks

 Users who have knowledge of the password holder (family names, dates of birth, etc.)

Use profiles (page 118) to enforce good password practices (password length and required
content), and make sure database users know not to use personal information in their passwords.

What to use

Consider the following password guidelines, published by the Internet Engineering Task Force
(IETF), when you create passwords:

 Use mixed-case characters.

 Use non-alphabetic characters (for example, numeric digits and punctuation).

 Use a password that is easy to remember, so you don't need to write it down; for example,
i3atSandw1ches! instead of !a# *̂!$&D)z.

 Use a password that you can type quickly without having to look at the keyboard.

What to avoid

Avoid using the following practices to create a password:

 Do not use your login or user name in any form (as-is, reversed, capitalized, doubled, and so
on).

 Do not use your first, middle, or last name in any form.

 Do not use your spouse's, partner's, child's, parent's, friend's, or pet's name in any form.

 Do not use other information easily obtained about you, including your date of birth, license
plate number, telephone number, Social Security number, make of your automobile, house
address, and so on.

 Do not use a password of all digits or all the same letter.

-122-

Administrator's Guide

 Do not use a word contained in English or foreign language dictionaries, spelling lists, acronym
or abbreviation lists, or other lists of words.

 Do not use a password that contains fewer than six characters.

 Do not give your password to another person for any reason.

See also

Creating a Database Name and Password (page 21)

About External Authentication

To help you implement external authentication methods, HP Vertica provides an editing
environment within the Administration Tools that lets you create, edit, and maintain authentication
records. The Administration Tools also verifies that the authentication records are correctly

formed, inserts the records into the vertica.conf configuration file, and implements the
changes on all cluster nodes.

The vertica.conf file supports multiple records, one per line, to provide options for client
sessions that might require a variety of authentication methods. Each record establishes the
authentication method to use based on:

 Connection type

 Client IP address range

 User name for the client that is attempting to access the database

For example, you could use multiple records to have application logins authenticated using HP
Vertica-based passwords, and interactive users authenticated using LDAP. See Example
authentication records (page 130).

HP Vertica uses the first record with a matching connection type, client address, and user name to
authenticate that connection. If authentication fails, the client is denied access to HP Vertica.
Access is also denied if no records match the client session. If, however, there are no records (the

DBA did not configure vertica.conf), HP Vertica reverts to using the user name and password
(if created) to control client access to the database.

Setting up your environment to create authentication records

Editing of vertica.conf is performed by the text editor set in your Linux or UNIX account's
VISUAL or EDITOR environment variable. If you have not specified a text editor, HP Vertica uses
the vim (vi) editor.

To switch your editor from vi to GNU Emacs, run the following command before you run the
Administration Tools:

$ export EDITOR=/usr/bin/emacs

You can also add the above line to the .profile file in your home directory to always use GNU

Emacs to edit the authentication records.

CAUTION: Never edit vertica.conf directly, because Administration Tools performs error
checking on your entries before adding them to the vertica.conf.

-123-

 Implementing Security

About local password authentication

If you add authentication methods to vertica.conf but still want password authentication to

work locally, you must explicitly add a password authentication entry. See Password
Authentication (page 118) for details.

How to Create Authentication Records

In this procedure, you'll use the Administration Tools to specify the authentication methods to use
for various client sessions.

How to create authentication records

1 On the Main Menu in the Administration Tools, select View Database Cluster State, verify
that all cluster nodes are UP, and click OK.

2 Select Configuration Menu, and click OK.

3 On the Configuration Menu, select Edit Authentication, and click OK.

4 Select the database you want to create authentication records for and click OK.

Your system's default editor opens the vertica.conf file .

5 Enter one or more authentication records.

Tip: See Authentication record format (page 124) and Authentication Record Formatting

Rules (page 125) for information about the content and rules required to create a record.

6 When you have finished entering authentication records, exit the editor. For example, in vi,
press the Esc key and type :wq to complete your editing session.

The Administration Tools verifies that the records are correctly formed and does one of the
following, the first of which prompts you for action:

 If the records are properly formed, they are inserted into the vertica.conf file, and the
file is automatically copied to other nodes in the database cluster. You are prompted to
restart the database. Click OK and go to step 7.

 If the records are not properly formed, a message describes the problem and gives you the
opportunity to: edit your errors (e), exit without saving your changes (a), or save and
implement your changes anyway (s). Saving your changes is not recommended because it
can cause client authentication to fail.

7 Restart the database (page 233).

If you do not specify a client authentication method

If you do not insert records into the vertica.conf file, HP Vertica defaults to the username and

password (if supplied) to grant access to the database. If you later add authentication methods,
the username/password default is no longer enabled. To continue using password authentication,
you must explicitly add it as described in Password Authentication (page 118).

See Also

How to Modify Authentication Records (page 130)

-124-

Administrator's Guide

Authentication record format

Each authentication record has the following format:

ClientAuthentication = connection_type user_name address method

Where:

 connection_type is the access method the client uses to connect to an instance. Valid

values are:

 local — Matches connection attempts made using local domain sockets. When using the
local connection type, do not specify the <address> parameter.

 host — Matches connection attempts made using TCP/IP. Connection attempts can be
made using a plain (non-SSL) or SSL-wrapped TCP socket.

 hostssl — Matches a SSL TCP connection only.

 hostnossl — Matches a plain TCP socket only.

For client connections: Avoid using -h <hostname> from the client if a "local" connection type

is specified and you want to match the client authentication entry. See the vsql command line
option h hostname.

 user_name identifies the client's user name. Valid user names are:

 all — Matches all users.

 One or more specific user names.

user_name accepts either a single value or concatenated values. To concatenate values,

use a plus sign between the values, for example: user1+user2

 address identifies the client machine IP address range. Use a format of

<IP_Address>/<netmask_value>. IP address must be specified numerically, not as domain or
host names. HP Vertica supports the following formats:

 w.x.y.z/<mask_format> (For example, 10.10.0.25/24.)

The mask length indicates the number of high-order bits of the client IP address that must
match. Do not insert any white space between the IP address, the slash (/), and the
Classless Inter-Domain Routing (CIDR) mask length.

 Separate dotted-IP address and mask values (For example, 10.10.0.25 255.255.255.0.)

To allow users to connect from any IP address, use the value 0.0.0.0/0.

Note: If working with a cluster with multiple nodes, be aware that any IP/netmask settings in

host-based ClientAuthentication parameters (host, hostssl, or hostnossl) must match all nodes
in the cluster. This allows the database owner to authenticate with and administer every node
in the cluster. For example, specifying 10.10.0.8/30 would allow a CIDR address range of
10.10.0.8–10.10.0.11.

 method identifies the authentication method to be used for clients that match this record. Use

one of the following:

 trust — Authenticates clients based on valid user names only. You might want to
implement trust if a user connection has already been authenticated through some external
means such as SSL or a firewall.

-125-

 Implementing Security

 reject — Rejects the connection and prevents additional records from being evaluated
for the client. Use this setting to filter out clients that match this record. For example, this is
useful for rejecting specific clients based on user name or IP address.

 krb5 — Authenticates the client using Kerberos version 5. This is useful if users have
already been provisioned for Kerberos.

 gss — Authenticates the client using GSS-encoded Kerberos tokens. (HP Vertica follows
RFC 1964.) This is useful if your application uses the GSS API.

 ldap — Authenticates the client using Lightweight Directory Access Protocol (LDAP). This
is useful if your application uses LDAP to query directory services. The LDAP directory
must contain a record for each client you need to authenticate.

 md5 — Requires the client to supply an MD5-hashed password across the network for
authentication. By default, all account passwords are encrypted using md5. The server
provides the client with salt (random bytes included in the hash to prevent replay attacks).

 ident — Authenticates the client using a local connection, where the Ident server is
installed on the same computer as the HP Vertica database. HP Vertica queries the Ident
server to see if a system user is authorized to log in as the specified database user without
specifying a password. This is useful for allowing system users password-less access to
the database.

 password — Requires the client to supply the password in clear text. Do not use this
setting on untrusted networks.

If the ClientAuthentication record does not exist, HP Vertica uses the password
method to authenticate the user.

Note for client connections: Use -h <hostname> from the client if either a gss or krb5
(Kerberos) connection method is specified. See the vsql command line option h hostname.

Authentication Record Formatting Rules

When you create authentication records, keep the following rules in mind:

 Only one authentication record is allowed per line.

 Each authentication record must be on one line.

 Fields that make up the authentication record can be separated by white space or tabs.

 Other than IP addresses and mask columns, field values cannot contain white space.

 Place more specific rules (a specific user or IP address) before broader rules (all users or a
range of IP addresses).

Note: The order of rules is important. HP Vertica scans the list of rules from top to bottom and
uses the first rule that matches the incoming connection.

See Also

Authentication record format (page 124)

Example authentication records (page 130)

-126-

Administrator's Guide

Configuring LDAP Authentication

To use LDAP as the authentication method to validate user name/password pairs:

 You must be connected to one or more preconfigured LDAP servers.

 The LDAP directory must contain a record for each client you need to authenticate.

HP Vertica supports two types of LDAP client authentication:

 LDAP bind

 LDAP bind and search

LDAP bind

If HP Vertica can create a distinguished name (DN) for a user, specify LDAP as the authentication
method by creating an authentication record in the vertica.conf file similar to the following:

ClientAuthentication = host all 10.0.0.0/8 ldap

"ldap://ldap.example.com/basedn;cn=;,dc=example,dc=com"

Where:

 You must include the URL for the LDAP server in the ClientAuthentication parameter.

In this example, the URL for the LDAP server is ldap://ldap.example.com. For
connections over SSL, use S_HTTP, as in the following example:

ClientAuthentication = local all 10.0.0.0/8 ldap

"ldaps://ldap.example.com/basedn;cn=;,dc=qa_domain,dc=com"

 The HP Vertica server binds the distinguished name constructed as

prefix username suffix

 Typically, the prefix is used to specify the common name (cn), and the suffix is used to specify
the remaining part of the DN. For example, the DN for user "jsmith" would be

cn=jsmith,dc=example,dc=com

 If the LDAP server does not find that DN, authentication fails.

 For ODBC, the SQLConnect function sends the user name and password to HP Vertica for
authentication. If the client IP address and user name/password combination matches an

LDAP ClientAuthentication record in vertica.conf, HP Vertica contacts the LDAP
server.

 For JDBC, the java.sql.DriverManager.getConnection() function passes the user
name and password to the database for authentication. If the client IP address and user

name/password combination matches an LDAP ClientAuthentication record in
vertica.conf, HP Vertica contacts the LDAP server.

If you have some of the information needed to create a DN in the authentication record, use the
Linux tool ldapsearch to find the DN. ldapsearch opens a connection to an LDAP server,

searches the LDAP directory using the specified parameters, and returns the DN if it has enough
information and finds a match.

For example, the following ldapsearch command connects to an LDAP/Active Directory server
and searches for the user. The following command searches the server for user jsmith:

-127-

 Implementing Security

$ ldapsearch -LLL -H -x ldap://ad.example.com -b 'dc=example,dc=com' -D

'DOMAIN\jsmith' -w 'password' "DC=ad,DC=example,DC=com"

'(sAMAccountName=jsmith)' dn cn uid

The ldapsearch command returns:

dn: CN=jsmith,OU=Users,DC=ad,DC=example,DC=com

cn: jsmith

Using this information, create the ClientAuthentication record for this LDAP/Active
Directory record as:

ClientAuthentication = host all 10.0.0.0/8 ldap

"ldap://ad.example.com/basedn;cn=;,OU=users,DC=ad,DC=example,DC=com"

LDAP bind and search

If HP Vertica does not have enough information to create the DN for a user attempting to
authenticate, the authentication record must specify to use LDAP bind and search. For LDAP bind

and search authentication, the authentication record must contain the word search in the URL of
the LDAP server, for example:

ldap://ldap.example.com/search

When HP Vertica sees search in the authentication record, it directs the LDAP server to search
for a DN with the information in the record.

The format of an authentication record for LDAP bind and search is:

ClientAuthentication = host all 10.0.0.0/8 ldap

 "ldap://ldap.example.com/search;basedn=<root DN>;

 binddn=<bind DN>;bindpasswd=<password>;

 searchattribute=<attribute_name>"

In this authentication record:

 basedn: Root DN where the search should begin (required)

 binddn: DN of the user to search for (Default: blank)

 bindpasswd: Password of the binddn user (Default: blank)

 searchattribute: Attribute of the binddn user (Default: UID). Use this parameter to
search for the user name within a specific attribute.

 Parameters can appear in any order after search;. They must be separated by semicolons.

 The basedn parameter is required. All other parameters are optional.

 If HP Vertica passes a user name to the LDAP server, that name cannot contain any of the
following characters because they have special meaning on the LDAP server:

 Asterisks (*)

 Parentheses (or)

 Forward slashes (/)

 Backward slashes (\)

-128-

Administrator's Guide

LDAP anonymous binding

Unless you specifically configure the LDAP server to deny anonymous binds, the underlying LDAP
protocol will not cause MC's Configure Authentication process to fail if you choose "Bind
anonymously" for the MC administrator. Before you use anonymous bindings for LDAP
authentication on MC, be sure that your LDAP server is configured to explicitly disable/enable this
option. For more information, see the article on Infusion Technology Solutions
http://blog.infusiontechsolutions.com/disable-anonymous-access-to-openldap/, as well as
the OpenLDAP documentation http://www.openldap.org/doc/admin24/access-control.html
on access control.

Configuring multiple LDAP servers

In the vertica.conf file, the ClientAuthentication record can contain multiple LDAP

URLs, separated by single spaces. The following record instructs the LDAP server to search the

entire directory (basedn=dc=example,dc=com) for a DN with an OU (office unit) attribute that

matches Sales. If the search returns no results or otherwise fails, the LDAP server searches for a
DN with the OU attribute that matches Marketing:

ClientAuthentication = host all 10.0.0.0/8 ldap

"ldap://ldap.example.com/search;basedn=dc=example,dc=com;OU=Sales"

"ldap://ldap.example.com/search;basedn=dc=example,dc=com;OU=Marketing"

Configuring Ident Authentication

The Ident protocol, defined in RFC 1413 http://www.ietf.org/rfc/rfc1413, identifies the system
user of a particular connection. You configure HP Vertica client authentication to query an Ident
server to see if that system user can log in as a certain database user without specifying a
password. With this feature, system users can run automated scripts to execute tasks on the HP
Vertica server.

Warning: Ident responses can be easily spoofed by untrusted servers. Ident authentication

should take place only on local connections, where the Ident server is installed on the same
computer as the HP Vertica database server.

ClientAuthentication records for Ident authentication

To configure Ident authentication, the ClientAuthentication record in the vertica.conf
file must have one of the following formats:

ClientAuthentication = local <database_user> ident

systemusers=<systemuser1:systemuser2:...> [continue]

ClientAuthentication = local <database_user> ident [continue]

Where:

 local indicates that the Ident server is installed on the same computer as the database, a
requirement for Ident authentication on HP Vertica.

http://blog.infusiontechsolutions.com/disable-anonymous-access-to-openldap/
http://www.openldap.org/doc/admin24/access-control.html
http://www.ietf.org/rfc/rfc1413

-129-

 Implementing Security

 <database_user>: The name of any valid user of the database. To allow the specified

system users to log in as any database user, use the word all instead of a database user

name.

 <systemuser1:systemuser2:...>: Colon-delimited list of system user names.

 continue: Allows system users not specified in the systemusers list to authenticate using

methods specified in subsequent ClientAuthentication records. The continue
keyword can be used with or without the systemusers list.

The following examples show how to configure Ident authentication in HP Vertica:

 Allow the system's root user to log in to the database as the dbadmin user:

ClientAuthentication = local dbadmin ident systemusers=root

 Allow system users jsmith, tbrown, and root to log in as database user user1:

ClientAuthentication = local user1 ident systemusers=jsmith:tbrown:root

 Allow system user jsmith to log in as any database user:

ClientAuthentication = local all ident systemusers=jsmith

 Allow any system user to log in as the database user of the same name:

ClientAuthentication = local all ident

 Allow any system user to log in as user1:

ClientAuthentication = local user1 ident systemusers=*

 Allow the system user backup to log in as dbadmin without a password and allow all other
system users to log in a dbadmin with a password:

ClientAuthentication = local dbadmin ident systemusers=backup continue,

local dbadmin password

 Allow all system users to log in as the database user with the same name without a password,
and log in as other database users with a password:

ClientAuthentication = local all ident continue, local all password

Installing and configuring an Ident server

To use Ident authentication, you must install the oidentd server and enable it on your HP Vertica
server. oidentd is an Ident daemon that is compatible with HP Vertica and compliant with RFC
1413.

To install and configure oidentd on Red Hat Linux for use with your HP Vertica database, take
these steps:

1 To install oidentd on Red Hat Linux, run this command:

$ yum install oidentd

Note: The source code and installation instructions for oidentd are available at the oidentd

website http://ojnk.sourceforge.net/.

2 For Ident authentication to work, the Ident server must accept IPv6 connections. To make sure
this happens, you need to start oidentd with the argument -a ::. In the script

/etc/init.d/oidentid, change the line

exec="/usr/sbin/oidentd"

to

http://ojnk.sourceforge.net/

-130-

Administrator's Guide

exec="/usr/sbin/oidentd -a ::"

3 Restart the server with the following command:

/etc/init.d/oidentd restart

Example authentication records

The following examples show several different authentication records.

Using an IP range and Trust authentication method

The following example allows the dbadmin account to connect from any IP address in the range of
10.0.0.0 to 10.255.255.255 without a password, as long as the connection is made without using
SSL:

ClientAuthentication = hostnossl dbadmin 10.0.0.0/8 trust

Note: If this is the only authentication record in vertica.conf file, dbadmin will be the only
user that is able to log in.

Using multiple authentication records

When the vertica.conf file contains multiple authentication records, HP Vertica scans them

from top to bottom and uses the first entry that matches the incoming connection to authenticate
(or reject) the user. If the user fails to authenticate using the method specified in the record, HP
Vertica denies access to that user. You can use this behavior to include records that enable or
reject specific connections and end with one or more "catch-all" records. The following example
demonstrates setting up some specific records, followed by some catch-all records:

ClientAuthentication = host alice 192.168.1.100/32 reject

ClientAuthentication = host alice 192.168.1.101/32 trust

ClientAuthentication = host all 0.0.0.0/0 password

ClientAuthentication = local all password

The first two records apply only to the user alice. If alice attempts to connect from 192.168.1.100,
the first record is used to authenticate her, which rejects her connection attempt. If she attempts to
connect from 192.168.1.101, she is allowed to connect automatically. If alice attempts to log in
from any other remote system, the third record matches, and she must enter a password. Finally,
if she attempts to connect locally from a node in the cluster, the fourth record applies, and she
again has to enter a password to authenticate herself. For all other users, the third and fourth
record are used to authenticate them using password authentication. The first two records are
ignored, since their user name doesn't match the name in the record.

The ordering of the records is important. If the order of the records were reversed, so that the
wildcard rule was first, the rules that are specific to alice would never be used. The wildcard or
local rule would always match, and HP Vertica would use the password authentication, no matter
where alice connected from.

How to Modify Authentication Records

To modify an existing authentication record, use the Administration Tools or set the
ClientAuthentication configuration parameter.

-131-

 Implementing Security

Using the Administration Tools

The advantages of using the Administration Tools are:

 You do not have to connect to the database

 The editor verifies that records are correctly formed

 The editor maintains records so they are available to you to edit later

Note: You must restart the database to implement your changes.

For information about using the Administration Tools to create and edit authentication records, see
How to Create Authentication Records (page 123).

Using the ClientAuthentication configuration parameter

The advantage of using the ClientAuthentication configuration parameter is that the
changes are implemented immediately across all nodes within the database cluster. You do not
need to restart the database.

However, all the database nodes must be up and you must connect to the database before you set
this parameter. Most importantly, this method does not verify that records are correctly formed and
it does not maintain the records so you can modify them later.

New authentication records are appended to the list of existing authentication records. Because
HP Vertica scans the list of records from top to bottom and uses the first record that matches the
incoming connection, you might find your newly-added record does not have an effect if HP
Vertica used an earlier record instead.

To configure client authentication through a connection parameter, use the
SET_CONFIG_PARAMETER function:

=> SELECT SET_CONFIG_PARAMETER('ClientAuthentication,'

 'connection type user name address method');

When you specify authentication records, make sure to adhere to the following guidelines:

 Fields that make up the record can be separated by white space or tabs

 Other than IP addresses and mask columns, field values cannot contain white space

For more information, see Authentication Record Format and Rules (page 124).

Examples

The following example creates an authentication record for the trust method:

=> SELECT SET_CONFIG_PARAMETER('ClientAuthentication',

 'hostnossl dbadmin 0.0.0.0/0 trust');

The following example creates an authentication record for the LDAP method:

=> SELECT SET_CONFIG_PARAMETER('ClientAuthentication', 'host all 10.0.0.0/8 ldap

 "ldap://summit.vertica.com;cn=;,dc=vertica,dc=com"');

The following example specifies three authentication records. In a single command, separate
each authentication record by a comma:

=> SELECT SET_CONFIG_PARAMETER('ClientAuthentication',

-132-

Administrator's Guide

 'hostnossl dbadmin 0.0.0.0/0 trust, hostnossl all 0.0.0.0/0 md5, local all

trust');

Implementing Kerberos Authentication

Instead of using HP Vertica's own password features, you can choose to authenticate users via a
Kerberos server.

Before configuring HP Vertica to use an external client authentication system, you must first set up
the service you want to use. See the documentation for your authentication service.

General prerequisites

If an authentication method requires access to a remote Kerberos server, the server must be
available or clients cannot be authenticated using this method. If clients cannot be authenticated,
do not grant them access to the database.

Kerberos prerequisites

Both the client identity and the HP Vertica server must be configured as Kerberos principals in the
centralized user store or Kerberos Key Distribution Center (KDC).

Configuring authentication through Kerberos and GSS

To enable authentication through Kerberos or GSS, Kerberos- and GSS- enabled clients require
knowledge about the authentication protocol in use. If you are using Kerberos or GSS as an
authentication method, specify the following parameters.

Parameter Description

KerberosServiceName Provides the service name portion of the HP Vertica Kerberos principal.
By default, this parameter is 'vertica'. Example,

vertica/host@EXAMPLE.COM

KerberosHostname Provides the instance or host name portion of the HP Vertica Kerberos
principal. Example: vertica/host@EXAMPLE.COM

The KerberosHostname parameter is optional, but note the following:

 If you specify this parameter, you'll have a single cluster-wide
principal that is easier to manage.

 If you do not specify this parameter, HP Vertica uses the return

value from the gethostname() function. Each node, and the
keytab file on each node, will have a different principal.

KerberosRealm Provides the realm portion of the HP Vertica Kerberos principal. A realm

is the authentication administrative domain and is usually formed in
uppercase letters; for example: vertica/host@EXAMPLE.COM

KerberosKeytabFile Provides the location of the keytab file that contains credentials for the

HP Vertica Kerberos principal. By default, this file is located in
/etc/krb5.keytab, and the principal must take the form

-133-

 Implementing Security

KerberosServiceName/KerberosHostName@KerberosRealm.

Note: The keytab file must be readable by the file owner who is running

the process (typically the Linux dbadmin user) with no permissions for

group or other, where file permissions would be 0600.

Example: KerberosKeytabFile=/etc/krb5.keytab

Note: The same parameters and syntax apply for both Kerberos and GSS.

To specify a parameter, set the configuration parameter, as follows:

ClientAuthentication = Kerberos_Parameter Value

Where:

 Kerberos_Parameter is one of the following: KerberosRealm, KerberosHostname,
KerberosKeytabFile, or KerberosServiceName.

 Value is the value of the parameter.

Example
ClientAuthentication = KerberosRealm .VERTICA.COM

Implementing SSL
To ensure privacy and verify data integrity, you can configure HP Vertica and database clients to
use Secure Socket Layer (SSL) to communicate and secure the connection between the client
and the server. The SSL protocol uses a trusted third-party called a Certificate Authority (CA),
which means that both the owner of a certificate and the party that relies on the certificate trust the
CA.

Certificate authority

The CA issues electronic certificates to identify one or both ends of a transaction and to certify
ownership of a public key by the name on the certificate.

Public/private keys

A CA issues digital certificates that contain a public key and the identity of the owner.

The public key is available to all users through a publicly-accessible directory, while private keys
are confidential to their respective owner. The private/public key pair ensures that the data can be
encrypted by one key and decrypted by the other key pair only.

The public and private keys are similar and can be used alternatively; for example, what one key
encrypts, the other key pair can decrypt.

 If encrypted with a public key, can be decrypted by its corresponding private key only

 If encrypted with a private key can be decrypted by its corresponding public key only

For example, if Alice wants to send confidential data to Bob and needs to ensure that only Bob can
read it, she will encrypt the data with Bob's public key. Only Bob has access to his corresponding
private key; therefore, he is the only person who can decrypt Alice's encrypted data back into its
original form, even if someone else gains access to the encrypted data.

-134-

Administrator's Guide

HP Vertica uses SSL to:

 Authenticate the server so the client can confirm the server's identity. HP Vertica also supports
mutual authentication in which the server can confirm the identity of the client. This
authentication helps prevent man-in-the-middle attacks.

 Encrypt data sent between the client and database server to significantly reduce the likelihood
that the data can be read if the connection between the client and server is compromised.

 Verify that data sent between the client and server has not been altered during transmission.

HP Vertica supports the following authentication methods under SSL v3/Transport Layer Security
(TLS) 1.0 protocol:

 SSL server authentication — Lets the client confirm the server's identity by verifying that the

server's certificate and public key are valid and were issued by a certificate authority (CA)
listed in the client's list of trusted CAs. See "Required Prerequisites for SSL Server
Authentication and SSL Encryption" in SSL Prerequisites (page 134) and Configuring SSL
(page 140).

 SSL client authentication — (Optional) Lets the server confirm the client's identity by

verifying that the client's certificate and public key are valid and were issued by a certificate
authority (CA) listed in the server's list of trusted CAs. Client authentication is optional because
HP Vertica can achieve authentication at the application protocol level through user name and
password credentials. See "Additional Prerequisites for SSL Server and Client Mutual
Authentication" in SSL Prerequisites (page 134).

 Encryption — Encrypts data sent between the client and database server to significantly

reduce the likelihood that the data can be read if the connection between the client and server
is compromised. Encryption works both ways, regardless of whether SSL Client Authentication
is enabled. See "Required Prerequisites for SSL Server Authentication and SSL encryption"
in SSL Prerequisites (page 134) and Configuring SSL (page 140).

 Data integrity — Verifies that data sent between the client and server has not been altered

during transmission.

Note: For server authentication, HP Vertica supports using RSA encryption with ephemeral

Diffie-Hellman http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
(DH). DH is the key agreement protocol.

SSL Prerequisites
Before you implement SSL security, obtain the appropriate certificate signed by a certificate
authority (CA) and private key files and then copy the certificate to your system. (See the
OpenSSL (http://www.openssl.org) documentation.) These files must be in Privacy-Enhanced
Mail (PEM) format.

Prerequisites for SSL server authentication and SSL encryption

Follow these steps to set up SSL authentication of the server by the clients, which is also required
in order to provide encrypted communication between server and client.

http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://www.openssl.org/

-135-

 Implementing Security

1 On each server host in the cluster, copy the server certificate file (server.crt) and private

key (server.key) to the HP Vertica catalog directory. (See Distributing Certifications and

Keys (page 140).)

The public key contained within the certificate and the corresponding private key allow the SSL
connection to encrypt the data and ensure its integrity.

Note: The server.key file must have read and write permissions for the dbadmin user only.
Do not provide any additional permissions or extend them to any other users. Under Linux, for
example, file permissions would be 0600.

2 If you are using Mutual SSL Authentication, then copy the root.crt file to each client so that
the client's can verify the server's certificate. If you are using vsql, copy the file to:

/home/dbadmin/.vsql/.

This ability is not available for ODBC clients at this time.

The root.crt file contains either the server's certificate or the CA that issued the server
certificate.

Note: If you do not perform this step, the SSL connection is set up and ensures message

integrity and confidentiality via encryption; however, the client cannot authenticate the server
and is, therefore, susceptible to problems where a fake server with the valid certificate file

masquerades as the real server. If the root.crt is present but does not match the CA used
to sign the certificate, the database will not start.

Optional prerequisites for SSL server and client mutual authentication

Follow these additional steps to optionally configure authentication of clients by the server.

Setting up client authentication by the server is optional because the server can use alternative
techniques, like database-level password authentication, to verify the client's identity. Follow these
steps only if you want to have both server and client mutually authenticate themselves with SSL
keys.

1 On each server host in the cluster, copy the root.crt file to the HP Vertica catalog directory.
(See Distributing Certifications and Keys (page 140).)

The root.crt file has the same name on the client and server. However, these files do not
need to be identical. They would be identical only if the client and server certificates were used
by the same root certificate authority (CA).

2 On each client, copy the client certificate file (client.crt) and private key (client.key) to

the client. If you are using vsql, copy the files to: /home/dbadmin/.vsql/.

If you are using either ODBC or JDBC, you can place the files anywhere on your system and
provide the location in the connection string (ODBC/JDBC) or ODBCINI (ODBC only). See
Configuring SSL for ODBC clients (page 141) and Configuring SSL for JDBC clients
(page 141).

Note: If you're using ODBC, the private key file (client.key) must have read and write
permissions for the dbadmin user only. Do not provide any additional permissions or extend
them to any other users. Under Linux, for example, file permissions would be 0600.

-136-

Administrator's Guide

Generating certifications and keys

For testing purposes, you can create and use simple self-signed certificates. For production, you
need to use certificates signed by a certificate authority (CA) so the client can verify the server's
identity.

This section illustrates how to create certificate authority (CA) keys and self-signed certificates for
testing purposes. It uses the CA private keys to sign "normal" certificates and to generate the
server's and client's private key files. For detailed information about creating signed certificates,
refer to the OpenSSL (http://www.openssl.org) documentation.

The server and client keys can be rooted in different CAs.

1 Create the CA private key:

$>openssl genrsa -des3 -out rootkey.pem

The output file name can vary.

2 Create the CA public certificate:

$>openssl req -new -x509 -key rootkey.pem -out root.crt

The output file name can vary.

Important: The following is an example of the certificate's contents. When you create a
certificate, there must be one unique name (a Distinguished Name (DN)), which is different for

each certificate that you create. The examples in this procedure use the Organizational

Unit Name for the DN.

Country Name (2 letter code) [GB]:US

State or Province Name (full name) [Berkshire]:Massachusetts

Locality Name (e.g., city) [Newbury]:Billerica

Organization Name (e.g., company) [My Company Ltd]:HP Vertica

Organizational Unit Name (e.g., section) []:Support_CA

Common Name (e.g., your name or your server's hostname) []:myhost

Email Address []:myhost@vertica.com

3 Create the server's private key file:

$>openssl genrsa -out server.key

Note that HP Vertica supports only unencrypted key files, so there is no -des3 argument.

4 Create the server certificate request:

$>openssl req -new -out reqout.txt -key server.key

This step was not required for the CA because CA certificates are self-signed.

You are prompted to enter information that is incorporated into your certificate request. In this

example, the Organizational Unit Name contains the unique DN (Support_server):

Country Name (2 letter code) [GB]:US

State or Province Name (full name) [Berkshire]:Massachusetts

Locality Name (e.g., city) [Newbury]:Billerica

Organization Name (e.g., company) [My Company Ltd]:HP Vertica

Organizational Unit Name (e.g., section) []:Support_server

Common Name (e.g., your name or your server's hostname) []:myhost

Email Address []:myhost@vertica.com

http://www.openssl.org/

-137-

 Implementing Security

5 Use the CA private key file to sign the server's certificate :

$>openssl x509 -req -in reqout.txt -days 3650 -sha1 -CAcreateserial -CA

root.crt -CAkey rootkey.pem -out server.crt

6 Create the client's private key file:

$>openssl genrsa -out client.key

HP Vertica supports only unencrypted key files, so there is no -des3 argument.

7 Create the client certificate request:

$>openssl req -new -out reqout.txt -key client.key

This step was not required for the CA because CA certificates are self-signed.

You are prompted to enter information that is incorporated into your certificate request. In this

example, the Organizational Unit Name contains the unique DN (Support_client):

Country Name (2 letter code) [GB]:US

State or Province Name (full name) [Berkshire]:Massachusetts

Locality Name (e.g., city) [Newbury]:Billerica

Organization Name (e.g., company) [My Company Ltd]:HP

Organizational Unit Name (e.g., section) []:Support_client

Common Name (e.g., your name or your server's hostname) []:myhost

Email Address []:myhost@vertica.com

8 Use the CA private key file to sign the client's certificate :

$>openssl x509 -req -in reqout.txt -days 3650 -sha1 -CAcreateserial -CA

root.crt -CAkey rootkey.pem -out client.crt

JDBC Certificates

If you are using JDBC, perform the following steps after you have generated the key and
self-signed certificate:

1 Convert the HP Vertica server certificate to a form that JAVA understands:

openssl x509 -in server.crt -out server.crt.der -outform der

2 Create a new truststore and imported the certificate into it:

keytool -keystore verticastore -alias verticasql -import -file

server.crt.der

Generating Certifications and Keys for MC

A certificate signing request (CSR) is a block of encrypted text that you generate on the server on
which the certificate will be used. You send the CSR to a certificate authority (CA) in order to apply
for a digital identity certificate. The certificate authority uses the CSR to create your SSL certificate
from information in your certificate; for example, organization name, common (domain) name, city,
country, and so on.

MC uses a combination of OAuth (Open Authorization), Secure Socket Layer (SSL), and
locally-encrypted passwords to secure HTTPS requests between a user's browser and MC, as
well as between MC and the agents. Authentication occurs through MC and between agents
within the cluster. Agents also authenticate and authorize jobs.

-138-

Administrator's Guide

The MC configuration process sets up SSL automatically, but you must have the openssl package
installed on your Linux environment first.

When you connect to MC (page 252) through a client browser, HP Vertica assigns each HTTPS
request a self-signed certificate, which includes a timestamp. To increase security and protect
against password replay attacks, the timestamp is valid for several seconds only, after which it
expires.

To avoid being blocked out of MC, synchronize time on the hosts in your HP Vertica cluster, as
well as on the MC host if it resides on a dedicated server. To recover from loss or lack of
synchronization, resync system time and the Network Time Protocol. See Set Up Time
Synchronization in the Installation Guide. If you want to generate your own certificates and keys
for MC, see Generating Certifications and Keys for MC (page 137).

Signed certificates

For production, you need to use certificates that are signed by a certificate authority. You can
create and submit one now and import the certificate into MC (page 139) when the certificate
returns from the CA.

To generate a new CSR, enter the following command in a terminal window, like vsql:

openssl req -new -key /opt/vertica/config/keystore.key -out server.csr

When you press enter, you are prompted to enter information that will be incorporated into your
certificate request. Some fields contain a default value, which you should change, and some you
can leave blank, like password and optional company name. Enter '.' to leave the field blank.

IMPORTANT: The keystore.key value for the -key option creates private key for the keystore. If

you generate a new key and import it using the Management Console interface, the MC
process will not restart properly. You will have to restore the original keystore.jks file and
restart Management Console (page 259).

Here's an example of the information contained in the CSR, showing both the default and
replacement values:

Country Name (2 letter code) [GB]:US

State or Province Name (full name) [Berkshire]:Massachusetts

Locality Name (eg, city) [Newbury]: Billerica

Organization Name (eg, company) [My Company Ltd]:HP

Organizational Unit Name (eg, section) []:Information Management

Common Name (eg, your name or your server's hostname) []:console.vertica.com

Email Address []:mcadmin@vertica.com

The Common Name field is the fully qualified domain name of your server. The entry must be an
exact match for what you type in your web browser, or you will receive a name mismatch error.

Self-signed certificates

If you want to test your new SSL implementation, you can self-sign a CSR using either a
temporary certificate or your own internal CA, if one is available.

Note: A self-signed certificate will generate a browser-based error notifying you that the signing

certificate authority is unknown and not trusted. For testing purposes, accept the risks and
continue.

-139-

 Implementing Security

The following command generate a temporary certificate, which is good for 365 days:

openssl x509 -req -days 365 -in server.csr -signkey

/opt/vertica/config/keystore.key -out server.crt

Here's an example of the command's output to the terminal window:

Signature ok

subject=/C=US/ST=Massachusetts/L=Billerica/O=HP/OU=IT/

CN=console.vertica.com/emailAddress=mcadmin@vertica.com

Getting Private key

You can now import the self-signed key (page 139), server.crt, into Management Console.

See Also

For additional information about certificates and keys, refer to the following external web sites:

 How to Configure SSL
http://docs.codehaus.org/display/JETTY/How+to+configure+SSL on the Jetty @
Codehaus Wiki

 The full Java keytool documentation, Key and Certificate Management Tool
http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html, on the
Oracle web site

Note: At the time of publication, the above links were valid. HP does not control this content,
which could change between HP Vertica documentation releases.

Importing a new certificate to MC

To generate a new certificate for Management Console, you must use the keystore.key file,

which is located in /opt/vconsole/config on the server on which you installed MC. Any other
generated key/certificate pair will cause MC to restart incorrectly. You will then have to restore the

original keystore.jks file and restart Management Console (page 259). See Generating
Certifications and Keys for Management Console (page 137).

To import a new certificate

1 Connect to Management Console (page 252) and log in as an administrator.

2 On the Home page, click MC Settings.

3 In the button panel at left, click SSL certificates.

4 To the right of "Upload a new SSL certificate" click Browse to import the new key.

5 Click Apply.

6 Restart Management Console (page 259).

http://docs.codehaus.org/display/JETTY/How+to+configure+SSL
http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html

-140-

Administrator's Guide

Distributing certifications and keys

Once you have created the prerequisite certifications and keys for one host, you can easily
distribute them cluster-wide by using the Administration Tools. Client files cannot be distributed
through Administration Tools.

To distribute certifications and keys to all hosts in a cluster:

1 Log on to a host that contains the certifications and keys you want to distribute and start the
Administration Tools.

See Using the Administration Tools (page 222) for information about accessing the
Administration Tools.

2 On the Main Menu in the Administration Tools, select Configuration Menu, and click OK.

3 On the Configuration Menu, select Distribute Config Files, and click OK.

4 Select SSL Keys and click OK.

5 Select the database where you want to distribute the files and click OK.

6 Fill in the fields with the directory /home/dbadmin/.vsql/ using the root.crt,

server.crt and server.key files to distribute the files.

7 Configure SSL (page 140).

Configuring SSL

Configure SSL for each server in the cluster.

To enable SSL:

1 Ensure that you have performed the steps listed in SSL Prerequisites (page 134) minimally
for server authentication and encryption, and optionally for mutual authentication.

2 Set the EnableSSL parameter to 1. By default, EnableSSL is set to 0 (disabled).

=> SELECT SET_CONFIG_PARAMETER('EnableSSL', '1');

Note: HP Vertica fails to start if SSL has been enabled and the server certificate files

(server.crt, server.key) are not in the expected location.

3 Restart the database (page 233).

4 If you are using either ODBC or JDBC, configure SSL for the appropriate client:

 Configuring SSL for ODBC Clients (page 141)

 Configuring SSL for JDBC Clients (page 141)

vsql automatically attempts to make connections using SSL. If a connection fails, vsql attempts
to make a second connection over clear text.

See Also

Configuration Parameters (page 36)

-141-

 Implementing Security

Configuring SSL for ODBC clients

Configuring SSL for ODBC clients requires that you set the SSLMode parameter. If you want to
configure optional SSL client authentication, you also need to configure the SSLKeyFile and
SSLCertFile parameters.

The method you use to configure the DSN depends on the type of client operating system you are
using:

 Linux and UNIX — Enter the parameters in the odbc.ini file. See Creating an ODBC DSN
for Linux, Solaris, AIX, and HP-UX Clients.

 Microsoft Windows — Enter the parameters in the Windows Registry. See Creating an ODBC
DSN for Windows Clients.

SSLMode parameter

Set the SSLMode parameter to one of the following for the DSN:

 require — Requires the server to use SSL. If the server cannot provide an encrypted channel,
the connection fails.

 prefer (the default) — Prefers the server to use SSL. If the server does not offer an encrypted
channel, the client requests one. The first connection to the database tries to use SSL. If that
fails, a second connection is attempted over a clear channel.

 allow — The first connection to the database tries to use a clear channel. If that fails, a
second connection is attempted over SSL.

 disable — Never connects to the server using SSL. This setting is typically used for
troubleshooting.

SSLKeyFile parameter

To configure optional SSL client authentication, set the SSLKeyFile parameter to the file path and
name of the client's private key. This key can reside anywhere on the client.

SSLCertFile parameter

To configure optional SSL client authentication, set the SSLCertFile parameter to the file path and
name of the client's public certificate. This file can reside anywhere on the client.

Configuring SSL for JDBC clients

To configure JDBC:

1 Enable the driver for SSL.

2 Configure troubleshooting if desired.

-142-

Administrator's Guide

To enable the driver for SSL

For JDBC, the driver must be enabled for SSL. Use a connection parameter when connecting to
the database to force a connection using SSL. You can specify a connection parameter within a
connection URL or by using an additional properties object parameter to
DriverManager.getConnection.

 Using a Connection URL

The following example forces a connection using SSL by setting the ssl connection parameter
to true:

String url = "jdbc:vertica://VerticaHost://DatabaseName?user=username"

+
 "&password=password&ssl=true";

Connection conn = DriverManager.getConnection (url);

Note: If the server is not SSL enabled, the connection fails. This differs from vsql, which can try
an unencrypted connection.

 Using an Additional Properties Object Parameter

The following code fragment forces a connection using SSL by establishing an ssl connection
property:

String url = "jdbc:vertica://VerticaHost/DatabaseName";

Properties props = new Properties();

props.setProperty("user", "username"); props.setProperty("password",

"password");

props.setProperty("ssl", "true");

Connection conn = new Connection(url, props);

Note: For compatibility with future versions, specify a value, even though the ssl property does
not require that a value be associated with it. Specifying a ssl property, even without a value of
"true," automatically forces a connection using SSL.

To configure troubleshooting

To enable troubleshooting, configure the keystore file that contains trusted certificate authority
(CA) certificates:

-Djavax.net.debug=ssl

-Djavax.net.ssl.trustStore=<keystore file>

In the above command:

 Configuring -Djavax.net.debug=ssl is optional.

 The keystore file is the same keystore that was updated as part of Generating Certifications
and Keys (page 136) (JDBC Certificates). Normally, the keystore file is $HOME/.keystore.
The keytool utility takes server.crt.der and places it in the keystore.

For details, see "Customizing the Default Key and Trust Stores, Store Types, and Store
Passwords" on the java.sun.com
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#CustomizingS
tores web site.

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#CustomizingStores
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#CustomizingStores

-143-

 Managing Users and Privileges

Requiring SSL for client connections

You can require clients to use SSL when connecting to HP Vertica by creating a client
authentication record for them that has a connection_type of hostssl. You can choose to limit
specific users to only connecting using SSL (useful for specific clients that you know are
connecting through an insecure network connection) or require all clients to use SSL.

See Implementing client authentication (page 117) for more information about creating client
authentication records.

Managing Users and Privileges

Database users should have access to only the database resources they need to perform their
tasks. For example, most users should be able to read data but not modify or insert new data,
while other users might need more permissive access, such as the right to create and modify
schemas, tables, and views, as well as rebalance nodes on a cluster and start or stop a database.
It is also possible to allow certain users to grant other users access to the appropriate database
resources.

Client authentication controls what database objects users can access and change in the
database. To prevent unauthorized access, a superuser limits access to what is needed, granting
privileges directly to users or to roles through a series of GRANT statements. Roles can then be
granted to users, as well as to other roles.

A Management Console administrator can also grant MC users access to one or more HP Vertica
databases through the MC interface. See About MC Users (page 148) and About MC Privileges
and Roles (page 199) for details.

This section introduces the privilege role model (page 153) in HP Vertica and describes how to
create and manage users.

See also

About Database Privileges (page 153) and About Database Roles (page 184)

GRANT and REVOKE statements in the SQL Reference Manual

About Database Users

Every HP Vertica database has one or more users. When users connect to a database, they must
log on with valid credentials (username and password) that a superuser defined in the database.

Database users own the objects they create in a database, such as tables, procedures, and
storage locations.

Note: By default, users have the right to create temporary tables in a database.

-144-

Administrator's Guide

See also

Creating a database user (page 145)

CREATE USER in the SQL Reference Manual

About MC Users (page 148)

Types of database users

In an HP Vertica database, there are three types of users:

 Database administrator (DBADMIN)

 Object owner

 Everyone else (PUBLIC)

Note: External to an HP Vertica database, an MC administrator can create users through the
Management Console and grant them database access. See About MC Users (page 148) for
details.

DBADMIN user

When you create a new database, a single database administrator account, DBADMIN, is
automatically created along with the PUBLIC role. This database superuser bypasses all
permission checks and has the authority to perform all database operations, such as bypassing all
GRANT/REVOKE authorizations and any user granted the PSEUDOSUPERUSER (page 186)
role.

Note: Although the dbadmin user has the same name as the Linux database administrator

account, do not confuse the concept of a database superuser with Linux superuser (root)
privilege; they are not the same. A database superuser cannot have Linux superuser
privileges.

The DBADMIN user can start and stop a database without a database password. To connect to
the database, a password is required.

See Also

DBADMIN role (page 185)

PSEUDOSUPERUSER role (page 186)

PUBLIC role (page 187)

-145-

 Managing Users and Privileges

Object owner

An object owner is the user who creates a particular database object and can perform any
operation on that object. By default, only an owner (or a superuser) can act on a database object.
In order to allow other users to use an object, the owner or superuser must grant privileges to
those users using one of the GRANT statements.

Note: Object owners are PUBLIC users (page 145) for objects that other users own.

See About Database Privileges (page 153) for more information.

PUBLIC user

All non-DBA (superuser) or object owners are PUBLIC users.

Note: Object owners are PUBLIC users for objects that other users own.

Newly-created users do not have access to schema PUBLIC by default. Make sure to GRANT
USAGE ON SCHEMA PUBLIC to all users you create.

See Also

PUBLIC role (page 187)

Creating a database user

This procedure describes how to create a new user on the database.

1 From vsql, connect to the database as a superuser.

2 Issue the CREATE USER statement with optional parameters.

3 Run a series of GRANT statements to grant the new user privileges.

Notes

 Newly-created users do not have access to schema PUBLIC by default. Make sure to GRANT
USAGE ON SCHEMA PUBLIC to all users you create

 By default, database users have the right to create temporary tables in the database.

 If you plan to create users on Management Console (page 149), the database user account
needs to exist before you can associate an MC user with the database.

 You can change information about a user, such as his or her password, by using the ALTER
USER statement. If you want to configure a user to not have any password authentication, you
can set the empty password ‗‘ in CREATE or ALTER USER statements, or omit the
IDENTIFIED BY parameter in CREATE USER.

-146-

Administrator's Guide

Example

The following series of commands add user Fred to a database with password 'password. The
second command grants USAGE privileges to Fred on the public schema:

=> CREATE USER Fred IDENTIFIED BY 'password';

=> GRANT USAGE ON SCHEMA PUBLIC to Fred;

User names created with double-quotes are case sensitive. For example:

=> CREATE USER "FrEd1";

In the above example, the logon name must be an exact match. If the user name was created
without double-quotes (for example, FRED1), then the user can log on as FRED1, FrEd1, fred1,
and so on.

ALTER USER and DROP USER syntax is not case sensitive.

See also

Granting and revoking privileges (page 173)

Granting access to database roles (page 192)

Creating an MC user (page 149)

Changing a user's password

A superuser can change another user's database account, including reset a password, with the
the ALTER USER statement.

Making changes to a database user account does not affect current sessions.

In the following example, Fred's password is now newpassword.

=> ALTER USER Fred IDENTIFIED BY 'newpassword';

Note: Non-DBA users can change their own passwords using the IDENTIFIED BY

'new-password' option along with the REPLACE 'old-password' clause. See ALTER USER for
details.

Changing a user's MC password

On MC, users with ADMIN or IT privileges can reset a user's non-LDAP password from the MC
interface.

Non-LDAP passwords on MC are for MC access only and are not related to a user's logon
credentials on the HP Vertica database.

1 Sign in to Management Console and navigate to MC Settings > User management.

2 Click to select the user to modify and click Edit.

-147-

 Managing Users and Privileges

3 Click Edit password and enter the new password twice.

4 Click OK and then click Save.

Locking/unlocking a user's database access

A superuser can manually lock an existing database user's account with the ALTER USER
statement. For example, the following command prevents user Fred from logging in to the
database:

=> ALTER USER Fred ACCOUNT LOCK;

=> \c - Fred

FATAL 4974: The user account "Fred" is locked

HINT: Please contact the database administrator

To grant Fred database access again, use UNLOCK syntax with the ALTER USER command:

=> ALTER USER Fred ACCOUNT UNLOCK;

=> \c - Fred

You are now connected as user "Fred".

Using CREATE USER to lock an account

Although not as common, you can create a new user with a locked account; for example, you
might want to set up an account for a user who doesn't need immediate database access, as in the
case of an employee who will join the company at a future date.

=> CREATE USER Bob ACCOUNT LOCK;

CREATE USER

CREATE USER also supports UNLOCK syntax; however, UNLOCK is the default, so you need not

specify the UNLOCK keyword when you create a new user to whom you want to grant immediate
database access.

Locking an account automatically

Instead of manually locking an account, a superuser can automate account locking by setting a
maximum number of failed login attempts for users through the CREATE PROFILE statement. See
also Profiles (page 118).

Blocking database access from Management Console

An MC administrator can enable or disable user accounts from the MC interface. See
Disabling/enabling user access to MC.

-148-

Administrator's Guide

About MC Users

Unlike database users, which you create on the HP Vertica database and then grant privileges
and roles through SQL statements, you create MC users on the Management Console interface.
MC users are external to the database; their information is stored on an internal database on the
MC application/web server, and their access to both MC and to MC-managed databases is
controlled by groups of privileges (also referred to as access levels). MC users are not system
(Linux) users; they are entries in the MC internal database.

Permission group types

There are two types of permission groups on MC, those that apply to MC configuration and those
that apply to database access:

 MC configuration (page 200) privileges are made up of roles that control what users can
configure on the MC, such as modify MC settings, create/import HP Vertica databases, restart
MC, create an HP Vertica cluster through the MC interfac, and create and manage MC users.

 MC database (page 205) privileges are made up of roles that control what users can see or do
on an MC-managed HP Vertica database, such as view the database cluster state, query and
session activity, monitor database messages and read log files, replace cluster nodes, and
stop databases.

If you are using MC, you might want to allow one or more users in your organization to configure
and manage MC, and you might want other users to have database access only. You can meet
these requirements by creating MC users and granting them a role from each privileges group.
See Creating an MC user (page 149) for details.

MC user types

There are four types of role-based users on MC:

 The default superuser administrator (Linux account) who gets created when you install and
configure MC and oversees the entire MC. See SUPER role (mc) (page 201).

 Users who can configure all aspects of MC and control all MC-managed databases. See
ADMIN role (mc) (page 202).

 Users who can configure some aspects of MC and monitor all MC-managed databases. See
IT role (mc) (page 204).

 Users who cannot configure MC and have access to one or more MC-managed databases
only. See NONE role (mc) (page 205).

Creating users and choosing an authentication method

You create users and grant them privileges (through roles) on the MC Settings page, where you
can also choose how to authenticate their access to MC; for example:

 To add users who will be authenticated against the MC, click User Management

 To add users who will be authenticated through your organization's LDAP repository, click
Authentication

-149-

 Managing Users and Privileges

MC supports only one method for authentication, so if you choose MC, all MC users will be
authenticated using their MC login credentials.

Default MC users

The MC super account is the only default user. The super or another MC administrator must
create all other MC users.

See also

Management Console in the Concepts Guide

About MC Privileges and Roles (page 199)

Granting database access to MC users (page 209)

Mapping an MC user to a database user's privileges (page 210)

Creating an MC user

MC provides two authentication schemes for MC users: LDAP or MC (internal). Which method you
choose will be the method MC uses to authenticate all MC users. It is not possible to authenticate
some MC users against LDAP and other MC users against credentials in the database through
MC.

 MC (internal) authentication. Internal user authorization is specific to the MC itself, where

you create a user with a username and password combination. This method stores MC user
information in an internal database on the MC application/web server, and encrypts
passwords. Note that these MC users are not system (Linux) users; they are entries in the
MC‘s internal database.

 LDAP authentication. All MC users—except for the MC super administrator, which is a Linux

account—will be authenticated based on search criteria against your organization's LDAP
repository. MC uses information from LDAP for authentication purposes only and does not
modify LDAP information. Also, MC does not store LDAP passwords but passes them to the
LDAP server for authentication.

Instructions for creating new MC users are in this topic.

 If you chose MC authentication, follow the instructions under Create a new
MC-authenticated user.

 If you chose LDAP authentication, follow the instructions under Create a new user from
LDAP.

See About MC Users (page 148) and Configuring LDAP Authentication (page 126) for more
information.

Prerequisites

Before you create an MC user, you already:

-150-

Administrator's Guide

 Created a database directly on the server or through the MC interface, or you imported an
existing database cluster into the MC interface. See Managing Database Clusters on MC
(page 253).

 Created a database user account (source user) on the server, which has the privileges and/or
roles you want to map to the new (target) MC user. See Creating a database user (page
145).

 Know what MC privileges you want to grant the new MC user. See About MC Privileges and
Roles (page 199).

 Are familiar with the concept of mapping MC users to database users (page 210).

If you have not yet met the first two above prerequisites, you can still create new MC users; you
just won't be able to map them to a database until after the database and target database user
exist. To grant MC users database access later, see Granting database access to MC users
(page 209).

Create a new MC-authenticated user

1 Sign in to Management Console as an administrator and navigate to MC Settings > User
management.

2 Click Add.

3 Enter the MC username.

Note: It is not necessary to give the MC user the exact same name as the database user

account you'll map the MC user to in Step 7. What matters is that the source database user has
privileges and/or roles similar to the database role you want to grant the MC user. The most
likely scenario is that you will map multiple MC users to a single database user account. See
MC database privileges (page 205) and Mapping an MC user to a database user's
privileges (page 210) for more information.

4 Let MC generate a password or create one by clicking Edit password. If LDAP has been

configured, the MC password field will not appear.

5 Optionally enter the user's e-mail address.

6 Select an MC configuration permissions level. See MC configuration privileges (page

200).

7 Next to the DB access levels section, click Add to grant this user database permissions. If
you want to grant access later, proceed to Step 8. If you want to grant database access now,
provide the following information:

1. Choose a database. Select a database from the list of MC-discovered (databases that

were created on or imported into the MC interface).

2. Database username. Enter an existing database user name or, if the database is running,

click the ellipses […] to browse for a list of database users, and select a name from the list.

3. Database password. Enter the password to the database user account (not this
username's password).

4. Restricted access. Chose a database level (ADMIN (page 207), IT (page 208), or USER

(page 209)) for this user.

5. Click OK to close the Add permissions dialog box.

See Mapping an MC user to a database user's privileges (page 210) for additional
information about associating the two user accounts.

-151-

 Managing Users and Privileges

8 Leave the user's Status as enabled (the default). If you need to prevent this user from

accessing MC, select disabled.

9 Click Add User to finish.

Create a new LDAP-authenticated user

When you add a user from LDAP on the MC interface, options on the Add a new user dialog box
are slightly different from when you create users without LDAP authentication. Because
passwords are store externally (LDAP server) the password field does not appear. An MC
administrator can override the default LDAP search string if the user is found in another branch of
the tree. The Add user field is pre-populated with the default search path entered when LDAP was

configured.

1 Sign in to Management Console and navigate to MC Settings > User management.

2 Click Add and provide the following information:

1. LDAP user name.

2. LDAP search string.

3. User attribute, and click Verify user.

4. User's email address.

5. MC configuration role. NONE is the default. See MC configuration privileges (page 200)
for details.

6. Database access level. See MC database privileges (page 205) for details.

7. Accept or change the default user's Status (enabled).

3 Click Add user.

If you encounter issues when creating new users from LDAP, you'll need to contact your
organization's IT department.

How MC validates new users

After you click OK to close the Add permissions dialog box, MC tries to validate the database
username and password entered against the selected MC-managed database or against your
organization's LDAP directory. If the credentials are found to be invalid, you are asked to re-enter
them.

If the database is not available at the time you create the new user, MC saves the
username/password and prompts for validation when the user accesses the Database and
Clusters page later.

See also

Configuring MC

About MC Users (page 148)

About MC Privileges and Roles (page 199)

Granting database access to MC users (page 209)

Creating a database user (page 145)

-152-

Administrator's Guide

Mapping an MC user to a database user's privileges (page 210)

Adding multiple users to MC-managed databases (page 218)

Managing MC users

You manage MC users through the following pages on the Management Console interface:

 MC Settings > User management

 MC Settings > Resource access

Who manages users

The MC superuser administrator (SUPER role (mc) (page 201)) and users granted ADMIN role
(mc) (page 202) manage all aspects of users, including their access to MC and to MC-managed
databases.

Users granted IT role (mc) (page 204) can enable and disable user accounts.

See About MC Users (page 148) and About MC Privileges and Roles (page 199) for more
information.

Editing an MC user's information follows the same steps as creating a new user (page 149),
except the user's information will be pre-populated, which you then edit and save.

The only user account you cannot alter or remove from the MC interface is the MC super account.

What kind of user information you can manage

You can change the following user properties:

 MC password

 Email address. This field is optional; if the user is authenticated against LDAP, the email field is
pre-populated with that user's email address if one exists.

 MC configuration privileges (page 200) role

 MC database privileges (page 205) role

You can also change a user's status (enable/disable access to MC) and delete users.

About user names

After you create and save a user, you cannot change that user's MC user name, but you can
delete the user account and create a new user account under a new name. The only thing you lose
by deleting a user account is its audit activity, but MC immediately resumes logging activity under
the user's new account.

See also

About MC Users (page 148)

About MC Privileges and Roles (page 199)

-153-

 Managing Users and Privileges

About Database Privileges

When a database object is created, such as a schema, table, or view, that object is assigned an
owner—the person who executed the CREATE statement. By default, database administrators
(superusers) or object owners are the only users who can do anything with the object.

In order to allow other users to use an object, or remove a user's right to use an object, the
authorized user must grant another user privileges on the object.

Privileges are granted (or revoked) through a collection of GRANT/REVOKE statements that
assign the privilege—a type of permission that lets users perform an action on a database object,
such as:

 Create a schema

 Create a table (in a schema)

 Create a view

 View (select) data

 Insert, update, or delete table data

 Drop tables or schemas

 Run procedures

Before HP Vertica executes a statement, it determines if the requesting user has the necessary
privileges to perform the operation.

For more information about the privileges associated with these resources, see Privileges that
can be granted on objects (page 163).

Note: HP Vertica logs information about each grant (grantor, grantee, privilege, and so on) in

the V_CATALOG.GRANTS system table.

See Also

GRANT Statements and REVOKE Statements in the SQL Reference Manual

Default privileges for all users
To set the minimum level of privilege for all users, HP Vertica has the special PUBLIC role (page
187), which it grants to each user automatically. This role is automatically enabled, but the
database administrator or a superuser can also grant higher privileges to users separately using
GRANT statements.

The following topics discuss those higher privileges.

-154-

Administrator's Guide

Default privileges for MC users

Privileges on Management Console (MC) are managed through roles, which determine a user's
access to MC and to MC-managed HP Vertica databases through the MC interface. MC privileges
do not alter or override HP Vertica privileges or roles. See About MC Privileges and Roles (page
199) for details.

Privileges required for common database operations

This topic lists the required privileges for database objects in HP Vertica.

Unless otherwise noted, superusers can perform all of the operations shown in the following tables
without any additional privilege requirements. Object owners have the necessary rights to perform
operations on their own objects, by default.

Schemas

The PUBLIC schema is present in any newly-created HP Vertica database, and newly-created
users have only USAGE privilege on PUBLIC. A database superuser must explicitly grant new
users CREATE privileges, as well as grant them individual object privileges so the new users can
create or look up objects in the PUBLIC schema. See GRANT (Schema) and REVOKE (Schema).

Operation Required Privileges

CREATE SCHEMA CREATE privilege on database

DROP SCHEMA Schema owner

ALTER SCHEMA RENAME CREATE privilege on database

Tables

See GRANT (Table) and REVOKE (Table).

Operation Required Privileges

CREATE TABLE CREATE privilege on schema

Note: Referencing sequences in the CREATE

TABLE statement requires the following privileges:

 SELECT privilege on sequence object

 USAGE privilege on sequence schema

DROP TABLE USAGE privilege on the schema that contains the
table or schema owner

TRUNCATE TABLE USAGE privilege on the schema that contains the

table or schema owner

ALTER TABLE ADD/DROP/

 RENAME/ALTER-TYPE COLUMN

USAGE privilege on the schema that contains the
table

-155-

 Managing Users and Privileges

ALTER TABLE ADD/DROP

 CONSTRAINT

USAGE privilege on the schema that contains the
table

ALTER TABLE PARTITION

 (REORGANIZE)

USAGE privilege on the schema that contains the
table

ALTER TABLE RENAME USAGE and CREATE privilege on the schema that
contains the table

ALTER TABLE SET SCHEMA CREATE privilege on new schema

 USAGE privilege on the old schema

SELECT SELECT privilege on table

 USAGE privilege on schema that contains the
table

INSERT INSERT privilege on table

 USAGE privilege on schema that contains the
table

DELETE DELETE privilege on table

 USAGE privilege on schema that contains the
table

 SELECT privilege on the referenced table
when executing a DELETE statement that
references table column values in a WHERE
or SET clause

UPDATE UPDATE privilege on table

 USAGE privilege on schema that contains the
table

 SELECT privilege on the table when

executing an UPDATE statement that
references table column values in a WHERE
or SET clause

REFERENCES REFERENCES privilege on table to create

foreign key constraints that reference this
table

 USAGE privileges on schema that contains

the constrained table and the source of the
foreign k

ANALYZE_STATISTICS() INSERT/UPDATE/DELETE privilege on table

 USAGE privilege on schema that contains the
table

ANALYZE_HISTOGRAM() INSERT/UPDATE/DELETE privilege on table

 USAGE privilege on schema that contains the
table

DROP_STATISTICS() INSERT/UPDATE/DELETE privilege on table

 USAGE privilege on schema that contains the
table

DROP_PARTITION() USAGE privilege on schema that contains the table

MERGE_PARTITIONS() USAGE privilege on schema that contains the table

-156-

Administrator's Guide

Views

See GRANT (View) and REVOKE (View).

Operation Required Privileges

CREATE VIEW CREATE privilege on the schema to contain
a view

 SELECT privileges on base objects
(tables/views)

 USAGE privileges on schema that contains
the base objects

DROP VIEW USAGE privilege on schema that contains the view
or schema owner

SELECT ... FROM VIEW SELECT privilege on view

 USAGE privilege on the schema that
contains the view

Note: Privileges required on base objects for view

owner must be directly granted, not through roles:

 View owner must have SELECT ... WITH

GRANT OPTION privileges on the view's
base tables or views if non-owner runs a
SELECT query on the view. This privilege

must be directly granted to the owner,not
through a role.

 View owner must have SELECT privilege
directly granted (not through a role) on a

view's base objects (table or view) if owner
runs a SELECT query on the view.

Projections

Operation Required Privileges

CREATE PROJECTION SELECT privilege on base tables

 USAGE privilege on schema that contains
base tables or schema owner

 CREATE privilege on schema to contain the
projection

Note: If a projection is implicitly created with the

table, no additional privilege is needed other than

privileges for table creation.

AUTO/DELAYED PROJECTION On projections created during INSERT..SELECT or
COPY operations:

 SELECT privilege on base tables

 USAGE privilege on schema that contains
base tables

-157-

 Managing Users and Privileges

ALTER PROJECTION RENAME USAGE and CREATE privilege on schema that
contains the projection

DROP PROJECTION USAGE privilege on schema that contains the

projection or schema owner

External procedures

See GRANT (Procedure) and REVOKE (Procedure).

Operation Required Privileges

CREATE PROCEDURE Superuser

DROP PROCEDURE Superuser

EXECUTE EXECUTE privilege on procedure

 USAGE privilege on schema that contains
the procedure

Libraries

Operation Required Privileges

CREATE LIBRARY Superuser

DROP LIBRARY Superuser

User-defined extensions (UDx)

The following abbreviations are used in the UDx table:

 UDF = Scalar

 UDT = Transform

 UDAnF= Analytic

 UDAF = Aggregate

See GRANT (User Defined Extension) and REVOKE (User Defined Extension).

Operation Required Privileges

CREATE FUNCTION (SQL)

CREATE FUNCTION (UDF)

CREATE TRANSFORM FUNCTION (UDF)

CREATE ANALYTIC FUNCTION (UDAnF

CREATE AGGREGATE FUNCTION

(UDAF)

 CREATE privilege on schema to contain
the user-defined function/extension

 USAGE privilege on base library (if
applicable)

DROP FUNCTION

DROP TRANSFORM FUNCTION

DROP ANALYTIC FUNCTION

DROP AGGREGATE FUNCTION

 Superuser or function owner

 USAGE privilege on schema that contains
the function

-158-

Administrator's Guide

ALTER FUNCTION RENAME TO USAGE and CREATE privilege on schema that
contains the function

ALTER FUNCTION SET SCHEMA USAGE privilege on schema that currently
contains the function (old schema)

 CREATE privilege on the schema to which
the function will be moved (new schema)

EXECUTE (SQL/UDF/UDT/

 ADAF/UDAnF) function

 EXECUTE privilege on function

 USAGE privilege on schema that contains
the function

Sequences

See GRANT (Sequence) and REVOKE (Sequence).

Operation Required Privileges

CREATE SEQUENCE CREATE privilege on schema to contain the
sequence

Note: Referencing sequence in the CREATE

TABLE statement requires SELECT privilege on

sequence object and USAGE privilege on sequence
schema.

CREATE TABLE with SEQUENCE SELECT privilege on sequence

 USAGE privilege on sequence schema

DROP SEQUENCE USAGE privilege on schema containing the

sequence or schema owner

ALTER SEQUENCE RENAME TO USAGE and CREATE privileges on schema

ALTER SEQUENCE SET SCHEMA USAGE privilege on the schema that

currently contains the sequence (old
schema)

 CREATE privilege on new schema to contain
the sequence

CURRVAL()

NEXTVAL()

 SELECT privilege on sequence

 USAGE privilege on sequence schema

Resource pools

See GRANT (Resource Pool) and REVOKE (Resource Pool).

Operation Required Privileges

CREATE RESOURCE POOL Superuser

-159-

 Managing Users and Privileges

ALTER RESOURCE POOL Superuser on the resource pool to alter:

 MAXMEMORYSIZE

 PRIORITY

 QUEUETIMEOUT

UPDATE privilege on the resource pool to alter:

 PLANNEDCONCURRENCY

 SINGLEINITIATOR

 MAXCONCURRENCY

SET SESSION RESOURCE_POOL USAGE privilege on the resource pool

 Users can only change their own resource
pool setting using ALTER USER syntax

DROP RESOURCE POOL Superuser

Users/Profiles/Roles

See GRANT (Role) and REVOKE (Role).

Operation Required Privileges

CREATE USER

CREATE PROFILE

CREATE ROLE

Superuser

ALTER USER

ALTER PROFILE

ALTER ROLE RENAME

Superuser

DROP USER

DROP PROFILE

DROP ROLE

Superuser

Object visibility

You can use one or a combination of vsql \d [pattern] meta commands and SQL system tables to
view objects on which you have privileges to view.

 Use \dn [pattern] to view schema names and owners

 Use \dt [pattern] to view all tables in the database, as well as the system table
V_CATALOG.TABLES

 Use \dj [pattern] to view projections showing the schema, projection name, owner, and node,
as well as the system table V_CATALOG.PROJECTIONS

Operation Required Privileges

Look up schema At least one privilege on schema that contains the
object

-160-

Administrator's Guide

Look up object in schema or in
system tables

USAGE privilege on schema

At least one privilege on any of the following objects:

 TABLE

 VIEW

 FUNCTION

 PROCEDURE

 SEQUENCE

Look up projection At least one privilege on all base tables

 USAGE privilege on schema of all base
tables

Look up resource pool SELECT privilege on the resource pool

Existence of object USAGE privilege on the schema that contains the
object

I/O operations

Operation Required Privileges

CONNECT

DISCONNECT

None

EXPORT TO HP Vertica SELECT privileges on the source table

 USAGE privilege on source table schema

 INSERT privileges for the destination table
in target database

 USAGE privilege on destination table
schema

COPY FROM HP Vertica SELECT privileges on the source table

 USAGE privilege on source table schema

 INSERT privileges for the destination table
in target database

 USAGE privilege on destination table
schema

COPY FROM file Superuser

COPY FROM STDIN INSERT privilege on table

 USAGE privilege on schema

COPY LOCAL INSERT privilege on table

 USAGE privilege on schema

-161-

 Managing Users and Privileges

Comments

Operation Required Privileges

COMMENT ON { is one of }:

 AGGREGATE FUNCTION

 ANALYTIC FUNCTION

 COLUMN

 CONSTRAINT

 FUNCTION

 LIBRARY

 NODE

 PROJECTION

 SCHEMA

 SEQUENCE

 TABLE

 TRANSFORM FUNCTION

 VIEW

Object owner or superuser

Transactions

Operation Required Privileges

COMMIT None

ROLLBACK None

RELEASE SAVEPOINT None

SAVEPOINT None

-162-

Administrator's Guide

Sessions

Operation Required Privileges

SET { is one of }:

 DATESTYLE

 ESCAPE_STRING_WARNIN
G

 INTERVALSTYLE

 LOCALE

 ROLE

 SEARCH_PATH

 SESSION AUTOCOMMIT

 SESSION
CHARACTERISTICS

 SESSION MEMORYCAP

 SESSION RESOURCE
POOL

 SESSION RUNTIMECAP

 SESSION TEMPSPACE

 STANDARD_CONFORMING
_STRINGS

 TIMEZONE

None

SHOW { name | ALL } None

Tuning operations

Operation Required Privileges

PROFILE Same privileges required to run the query being
profiled

EXPLAIN Same privileges required to run the query for
which you use the EXPLAIN keyword

-163-

 Managing Users and Privileges

Privileges that can be granted on objects

The following table provides an overview of privileges that can be granted on (or revoked from)
database objects in HP Vertica:

See Also

GRANT Statements and REVOKE Statements in the SQL Reference Manual

Database privileges

Only a database superuser can create a database. In a new database, the PUBLIC role (page
187) is granted USAGE on the automatically-created PUBLIC schema. It is up to the superuser to
grant further privileges to users and roles.

The only privilege a superuser can grant on the database itself is CREATE, which allows the user
to create a new schema in the database. For details on granting and revoking privileges on a
database, see the GRANT (Database) and REVOKE (Database) topics in the SQL Reference
Manual.

Privilege Grantor Description

CREATE Superuser Allows a user to create a schema.

-164-

Administrator's Guide

Schema privileges

By default, only a superuser and the schema owner have privileges to create objects within a
schema. Additionally, only the schema owner or a superuser can drop or alter a schema. See
DROP SCHEMA and ALTER SCHEMA.

All new users have only USAGE privilege on the PUBLIC schema, which is present in any
newly-created HP Vertica database. A superuser must then explicitly grant these new users
CREATE privileges, as well as grant them individual object privileges, so the new users can create
or look up objects in the PUBLIC schema. Without USAGE privilege, objects in the schema cannot
be used or altered, even by the object owner.

CREATE gives the schema owner or user WITH GRANT OPTION permission to create new
objects in the schema, including renaming an object in the schema or moving an object into this
schema.

Note: The schema owner is typically the user who creates the schema. However, a superuser

can create a schema and assign ownership of the schema to a different user at creation.

All other access to the schema and its objects must be explicitly granted to users or roles by the
superuser or schema owner. This prevents unauthorized users from accessing the schema and its
objects. A user can be granted one of the following privileges through the GRANT statement:

Privilege Description

CREATE Allows the user to create new objects within the schema. This

includes the ability to create a new object, rename existing objects,
and move objects into the schema from other schemas.

USAGE Permission to select, access, alter, and drop objects in the schema.
The user must also be granted access to the individual objects in
order to alter them. For example, a user would need to be granted

USAGE on the schema and SELECT on a table to be able to select
data from a table. You receive an error message if you attempt to
query a table that you have SELECT privileges on, but do not have

USAGE privileges for the schema that contains the table.

Schema privileges and the search path

The search path determines to which schema unqualified objects in SQL statements belong.

When a user specifies an object name in a statement without supplying the schema in which the
object exists (called an unqualified object name) HP Vertica has two different behaviors,
depending on whether the object is being accessed or created.

Creating an object Accessing/altering an object

When a user creates an object—such as table, view, sequence,

procedure, function—with an unqualified name, HP Vertica tries to
create the object in the current schema (the first schema in the
schema search path), returning an error if the schema does not exist

When a user accesses or alters an

object with an unqualified name,
those statements search through
all schemas for a matching object,

-165-

 Managing Users and Privileges

or if the user does not have CREATE privileges in that schema.

Use the SHOW search_path command to view the current search
path.

=> SHOW search_path;

 name | setting

-------------+---

--

 search_path | "$user", public, v_catalog, v_monitor, v_internal

(1 row)

Note: The first schema in the search path is the current schema, and

the $user setting is a placeholder that resolves to the current user's
name.

starting with the current schema,

where:

 The object name in the
schema matches the

object name in the
statement.

 The user has USAGE
privileges on the schema

in order to access object
in it.

 The user has at least one
privilege on the object.

See Also

Setting Schema Search Paths (page 50)

GRANT (Schema) and REVOKE (Schema) in the SQL Reference Manual

Table privileges

By default, only a superuser and the table owner (typically the person who creates a table) have
access to a table. The ability to drop or alter a table is also reserved for a superuser or table owner.
This privilege cannot be granted to other users.

All other users or roles (including the user who owns the schema, if he or she does not also own
the table) must be explicitly granted using WITH GRANT OPTION syntax to access the table.

These are the table privileges a superuser or table owner can grant:

Privilege Description

SELECT Permission to run SELECT queries on the table.

INSERT Permission to INSERT data into the table.

DELETE Permission to DELETE data from the table, as well as SELECT
privilege on the table when executing a DELETE statement that

references table column values in a WHERE or SET clause.

UPDATE Permission to UPDATE and change data in the table, as well as
SELECT privilege on the table when executing an UPDATE
statement that references table column values in a WHERE or SET

clause.

REFERENCES Permission to CREATE foreign key constraints that reference this
table.

-166-

Administrator's Guide

To use any of the above privileges, the user must also have USAGE privileges on the schema that
contains the table. See Schema Privileges (page 164) for details.

Referencing sequence in the CREATE TABLE statement requires the following privileges:

 SELECT privilege on sequence object

 USAGE privilege on sequence schema

For details on granting and revoking table privileges, see GRANT (Table) and REVOKE (Table) in
the SQL Reference Manual.

Projection privileges

Because projections are the underlying storage construct for tables, they are atypical in that they
do not have an owner or privileges associated with them directly. Instead, the privileges to create,
access, or alter a projection are based on the anchor and base tables that the projection
references, as well as the schemas that contain them.

To be able run a query involving a projection, a user must have SELECT privileges on the table or
tables that the projection references, and USAGE privileges on all the schemas that contain those
tables.

There are two ways to create projection: explicitly and implicitly.

Explicit projection creation and privileges

To explicitly create a projection using the CREATE PROJECTION statement, a user must be a
superuser or owner of the anchor table or have the following privileges:

 CREATE privilege on the schema in which the projection is created

 SELECT on all the base tables referenced by the projection

 USAGE on all the schemas that contain the base tables referenced by the projection

Explicitly-created projections can only be dropped by the table owner on which the projection is
based for a single-table projection, or the owner of the anchor table for pre-join projections.

Implicit projection creation and privileges

Projections get implicitly created when you insert data into a table, an operation that automatically
creates a superprojection for the table.

Implicitly-created projections do not require any additional privileges to create or drop, other than
privileges for table creation. Users who can create a table or drop a table can also create and drop
the associated superprojection.

Selecting from projections

To select from projections requires the following privileges:

 SELECT privilege on each of the base tables

 USAGE privilege on the corresponding containing schemas

-167-

 Managing Users and Privileges

HP Vertica does not associate privileges directly with projections since they are the underlying
storage construct. Privileges may only be granted on the logical storage containers: the tables and
views.

Dropping projections

Dropping projections are handled much the same way HP Vertica creates them:

 Explicitly with DROP PROJECTION statement

 Implicitly when you drop the table

View privileges

By default, only a superuser and the view owner (typically the person who creates the view) have
access to the base object for a view. All other users and roles must be directly granted access to
the view. For example:

 If a non-owner runs a SELECT query on the view, the view owner must also have SELECT ...
WITH GRANT OPTION privileges on the view's base tables or views. This privilege must be
directly granted to the owner, rather than through a role.

 If a view owner runs a SELECT query on the view, the owner must also have SELECT
privilege directly granted (not through a role) on a view's base objects (table or view).

The only privilege that can be granted to a user or role is SELECT, which allows the user to
execute SELECT queries on the view. The user or role also needs to have USAGE privilege on the
schema containing the view to be able to run queries on the view.

Privilege Description

SELECT Permission to run SELECT queries on the view.

USAGE Permission on the schema that contains the view

For details on granting and revoking view privileges, see GRANT (View) and REVOKE (View) in
the SQL Reference Manual.

Sequence privileges

To create a sequence, a user must have CREATE privileges on schema that contains the
sequence. Only the owner and superusers can initially access the sequence. All other users must
be granted access to the sequence by a superuser or the owner.

Only the sequence owner (typically the person who creates the sequence) or can drop or rename
a sequence, or change the schema in which the sequence resides:

 DROP SEQUENCE: Only a sequence owner or schema owner can drop a sequence.

-168-

Administrator's Guide

 ALTER SEQUENCE RENAME TO: A sequence owner must have USAGE and CREATE
privileges on the schema that contains the sequence to be renamed.

 ALTER SEQUENCE SET SCHEMA: A sequence owner must have USAGE privilege on the
schema that currently contains the sequence (old schema), as well as CREATE privilege on
the schema where the sequence will be moved (new schema).

The following table lists the privileges that can be granted to users or roles on sequences.

The only privilege that can be granted to a user or role is SELECT, which allows the user to use
CURRVAL() and NEXTVAL() on sequence and reference in table. The user or role also needs to
have USAGE privilege on the schema containing the sequence.

Privilege Description

SELECT Permission to use CURRVAL() and NEXTVAL() on
sequence and reference in table.

USAGE Permissions on the schema that contains the sequence.

Note: Referencing sequence in the CREATE TABLE statement requires SELECT privilege on
sequence object and USAGE privilege on sequence schema.

For details on granting and revoking sequence privileges, see GRANT (Sequence) and REVOKE
(Sequence) in the SQL Reference Manual.

See Also

Using Named Sequences (page 57)

External procedure privileges

Only a superuser is allowed to create or drop an external procedure.

By default, users cannot execute external procedures. A superuser must grant users and roles this
right, using the GRANT (Procedure) EXECUTE statement. Additionally, users must have USAGE
privileges on the schema that contains the procedure in order to call it.

Privilege Description

EXECUTE Permission to run an external procedure.

USAGE Permission on the schema that contains the procedure.

For details on granting and revoking external table privileges, see GRANT (Procedure) and
REVOKE (Procedure) in the SQL Reference Manual.

-169-

 Managing Users and Privileges

User-defined function privileges

User-defined functions (described in CREATE FUNCTION Statements) can be created by
superusers or users with CREATE privileges on the schema that will contain the function, as well
as USAGE privileges on the base library (if applicable).

Users or roles other than the function owner can use a function only if they have been granted
EXECUTE privileges on it. They must also have USAGE privileges on the schema that contains
the function to be able to call it.

Privilege Description

EXECUTE Permission to call a user-defined function.

USAGE Permission on the schema that contains the function.

 DROP FUNCTION: Only a superuser or function owner can drop the function.

 ALTER FUNCTION RENAME TO: A superuser or function owner must have USAGE and
CREATE privileges on the schema that contains the function to be renamed.

 ALTER FUNCTION SET SCHEMA: A superuser or function owner must have USAGE
privilege on the schema that currently contains the function (old schema), as well as CREATE
privilege on the schema where the function will be moved (new schema).

For details on granting and revoking user-defined function privileges, see the following topics in
the SQL Reference Manual:

 GRANT (Aggregate Function) and REVOKE (Aggregate Function)

 GRANT (Analytic Function) and REVOKE (Analytic Function)

 GRANT (Function) and REVOKE (Function)

 GRANT (Transform Function) and REVOKE (Transform Function)

Library privileges

Only a superuser can load an external library using the CREATE LIBRARY statement. By default,
only a superuser can create user-defined functions (UDFs) based on a loaded library. A superuser
can use the GRANT USAGE ON LIBRARY statement to allow users to create UDFs based on
classes in the library. The user must also have CREATE privileges on the schema that will contain
the UDF.

Privilege Description

USAGE Permission to create UDFs based on classes in the library

Once created, only a superuser or the user who created a UDF can use it by default. Either of
them can grant other users or roles the ability to call the function using the GRANT EXECUTE ON
FUNCTION statement. See the GRANT (Function) and REVOKE (Function) topics in the SQL
Reference Manual for more information on granting and revoking privileges on functions.

-170-

Administrator's Guide

In addition to EXECUTE privilege, users/roles also require USAGE privilege on the schema in
which the function resides in order to execute the function.

For more information about libraries and UDFs, see Developing and Using User Defined
Functions in the Programmer's Guide.

Resource pool privileges

Only a superuser can create, alter, or drop a resource pool.

By default, users are granted USAGE rights to the GENERAL pool, from which their queries and
other statements allocate memory and get their priorities. A superuser must grant users USAGE
rights to any additional resource pools by using the GRANT USAGE ON RESOURCE POOL
statement. Once granted access to the resource pool, users can use the SET SESSION
RESOURCE POOL statement and the RESOURCE POOL clause of the ALTER USER statement
to have their queries draw their resources from the new pool.

Privilege Description

USAGE Permission to use a resource pool.

SELECT Permission to look up resource pool information/status in system
tables.

UPDATE Permission to adjust the tuning parameters of the pool.

For details on granting and revoking resource pool privileges, see GRANT (Resource Pool) and
REVOKE (Resource Pool) in the SQL Reference Manual.

Storage location privileges

Users and roles without superuser privileges can copy data to and from storage locations as long
as the following conditions are met, where a superuser:

1 Creates a a special class of storage location (ADD_LOCATION) specifying the 'USER'
argument, which indicates the specified area is accessible to non-dbadmin users.

2 Grants users or roles READ and/or WRITE access to the specified location using the GRANT
(Storage Location) statement.

Note: GRANT/REVOKE (Storage Location) statements are applicable only to 'USER' storage

locations.

Once such storage locations exist and the appropriate privileges are granted, users and roles
granted READ privileges can copy data from files in the storage location into a table. Those
granted WRITE privileges can export data from a table to the storage location on which they have
been granted access. WRITE privileges also let users save COPY statement exceptions and
rejected data files from HP Vertica to the specified storage location.

-171-

 Managing Users and Privileges

Only a superuser can add, alter, retire, drop, and restore a location, as well as set and measure
location performance. All non-dbadmin users or roles require READ and/or WRITE permissions
on the location.

Privilege Description

READ Allows the user to copy data from files in the storage location into a
table.

WRITE Allows the user to copy data to the specific storage location. Users
with WRITE privileges can also save COPY statement exceptions

and rejected data files to the specified storage location.

See Also

GRANT (Storage Location) and Storage Management Functions in the SQL Reference Manual

ADD_LOCATION in the SQL Reference Manual

Role, profile, and user privileges

Only a superuser can create, alter or drop a:

 role

 profile

 user

By default, only the superuser can grant or revoke a role to another user or role. A user or role can
be given the privilege to grant and revoke a role by using the WITH ADMIN OPTION clause of the
GRANT statement.

For details on granting and revoking role privileges, see GRANT (Role) and REVOKE (Role) in the
SQL Reference Manual.

See Also

CREATE USER, ALTER USER, DROP USER

CREATE PROFILE, ALTER PROFILE, DROP PROFILE

CREATE ROLE, ALTER ROLE RENAME, DROP ROLE

Metadata privileges

A superuser has unrestricted access to all database metadata. Other users have significantly
reduced access to metadata based on their privileges, as follows:

Type of Metadata User Access

Catalog objects: Users must possess USAGE privilege on the schema and any type

-172-

Administrator's Guide

 Tables

 Columns

 Constraints

 Sequences

 External
Procedures

 Projections

 ROS containers

 WOS

of access (SELECT) or modify privilege on the object to see

catalog metadata about the object. See also Schema Privileges
(page 164).

For internal objects like projections, WOS and ROS containers that

don't have access privileges directly associated with them, the
user must possess the requisite privileges on the associated
schema and table objects instead. For example, to see whether a

table has any data in the WOS, you need to have USAGE on the
table schema and at least SELECT on the table itself. See also
Table Privileges (page 165) and Projection Privileges (page

166).

User sessions and
functions, and system

tables related to these
sessions

Users can only access information about their own, current
sessions.

The following functions provide restricted functionality to users:

 CURRENT_DATABASE

 CURRENT_SCHEMA

 CURRENT_USER

 HAS_TABLE_PRIVILEGE

 SESSION_USER (same as CURRENT_USER)

The system table, SESSIONS, provides restricted functionality to

users.

Storage locations Users require READ permissions to copy data from storage
locations.

Only a superuser can add or retire storage locations.

I/O privileges

Users need no special permissions to connect to and disconnect from an HP Vertica database.

To EXPORT TO and COPY FROM HP Vertica, the user must have:

 SELECT privileges on the source table

 USAGE privilege on source table schema

 INSERT privileges for the destination table in target database

 USAGE privilege on destination table schema

To COPY FROM STDIN and use local COPY a user must have INSERT privileges on the table
and USAGE privilege on schema.

Note: Only a superuser can COPY from file.

Comment privileges

A comment lets you add, revise, or remove a textual message to a database object. You must be
an object owner or superuser in order to COMMENT ON one of the following objects:

 COLUMN

-173-

 Managing Users and Privileges

 CONSTRAINT

 FUNCTION (including AGGREGATE and ANALYTIC)

 LIBRARY

 NODE

 PROJECTION

 SCHEMA

 SEQUENCE

 TABLE

 TRANSFORM FUNCTION

 VIEW

Other users must have VIEW privileges on an object to view its comments.

Transaction privileges

No special permissions are required for the following database operations:

 COMMIT

 ROLLBACK

 RELEASE SAVEPOINT

 SAVEPOINT

Session privileges

No special permissions are required for users to use the SHOW statement or any of the SET
statements.

Tuning privileges

In order to PROFILE a single SQL statement or returns a query plan's execution strategy to
standard output using the EXPLAIN command, users must have the same privileges that are
required for them to run the same query without the PROFILE or EXPLAIN keyword.

Granting and revoking privileges

To grant or revoke a privilege using one of the SQL GRANT or REVOKE statements, the user
must have the following permissions for the GRANT/REVOKE statement to succeed:

 Superuser or privilege WITH GRANT OPTION

 USAGE privilege on the schema

 Appropriate privileges on the object

The syntax for granting and revoking privileges is different for each database object, such as
schema, database, table, view, sequence, procedure, function, resource pool, and so on.

-174-

Administrator's Guide

Normally, a superuser first creates a user and then uses GRANT syntax to define the user's
privileges or roles or both. For example, the following series of statements creates user Carol and

grants Carol access to the apps database in the PUBLIC schema and also lets Carol grant
SELECT privileges to other users on the applog table:

=> CREATE USER Carol;

=> GRANT USAGE ON SCHEMA PUBLIC to Carol;

=> GRANT ALL ON DATABASE apps TO Carol;

=> GRANT SELECT ON applog TO Carol WITH GRANT OPTION;

See GRANT Statements and REVOKE Statements in the SQL Reference Manual.

About superuser privileges

A superuser (DBADMIN) is the automatically-created database user who has the same name as
the Linux database administrator account and who can bypass all GRANT/REVOKE
authorization, as well as supersede any user that has been granted the PSEUDOSUPERUSER
(page 186) role.

Note: Database superusers are not the same as a Linux superuser with (root) privilege and

cannot have Linux superuser privilege.

A superuser can grant privileges on all database object types to other users, as well as grant
privileges to roles. Users who have been granted the role will then gain the privilege as soon as
they enable it (page 195).

Superusers may grant or revoke any object privilege on behalf of the object owner, which means a
superuser can grant or revoke the object privilege if the object owner could have granted or
revoked the same object privilege. A superuser may revoke the privilege that an object owner
granted, as well as the reverse.

Since a superuser is acting on behalf of the object owner, the GRANTOR column of
V_CATALOG.GRANTS table displays the object owner rather than the superuser who issued the
GRANT statement.

A superuser can also alter ownership of table and sequence objects.

See Also

The DBADMIN Role (page 185)

About schema owner privileges

By default, the schema owner has privileges to create objects within a schema. Additionally, the
schema owner can drop any object in the schema, requiring no additional privilege on the object.

The schema owner is typically the user who creates the schema.

Schema owners cannot access objects in the schema. Access to objects requires the appropriate
privilege at the object level.

-175-

 Managing Users and Privileges

All other access to the schema and its objects must be explicitly granted to users or roles by a
superuser or schema owner to prevent unauthorized users from accessing the schema and its
objects.

See Schema Privileges (page 164)

About object owner privileges

The database, along with every object in it, has an owner. The object owner is usually the person
who created the object, although a superuser can alter ownership of objects, such as table and
sequence.

Object owners must have appropriate schema privilege to access, alter, rename, move or drop
any object it owns without any additional privileges.

An object owner can also:

 Grant privileges on their own object to other users

The WITH GRANT OPTION clause specifies that a user can grant the permission to other
users. For example, if user Bob creates a table, Bob can grant privileges on that table to users
Ted, Alice, and so on.

 Grant privileges to roles

Users who are granted the role gain the privilege.

How to grant privileges

As described in Granting and Revoking Privileges (page 173), specific users grant privileges
using the GRANT statement with or without the optional WITH GRANT OPTION, which allows the
user to grant the same privileges to other users.

 A superuser can grant privileges on all object types to other users.

 A superuser or object owner can grant privileges to roles. Users who have been granted the
role then gain the privilege.

 An object owner can grant privileges on the object to other users using the optional WITH
GRANT OPTION clause.

 The user needs to have USAGE privilege on schema and appropriate privileges on the object.

When a user grants an explicit list of privileges, such as GRANT INSERT, DELETE, REFERENCES

ON applog TO Bob:

 The GRANT statement succeeds only if all the roles are granted successfully. If any grant
operation fails, the entire statement rolls back.

 HP Vertica will return ERROR if the user does not have grant options for the privileges listed.

-176-

Administrator's Guide

When a user grants ALL privileges, such as GRANT ALL ON applog TO Bob, the statement

always succeeds. HP Vertica grants all the privileges on which the grantor has the WITH GRANT
OPTION and skips those privileges without the optional WITH GRANT OPTION.

For example, if the user Bob has delete privileges with the optional grant option on the applog
table, only DELETE privileges are granted to Bob, and the statement succeeds:

=> GRANT DELETE ON applog TO Bob WITH GRANT OPTION;

GRANT PRIVILEGE

For details, see the GRANT Statements in the SQL Reference Manual.

How to revoke privileges

In general, ONLY the user who originally granted a privilege can revoke it using a REVOKE
statement. That user must have superuser privilege or have the optional WITH GRANT OPTION
on the privilege. The user also must have USAGE privilege on the schema and appropriate
privileges on the object for the REVOKE statement to succeed.

In order to revoke a privilege, this privilege must have been granted to the specified grantee by this
grantor before. If HP Vertica finds that to be the case, the above REVOKE statement removes the
privilege (and WITH GRANT OPTION privilege, if supplied) from the grantee. Otherwise, HP
Vertica prints a NOTICE that the operation failed, as in the following example.

=> REVOKE SELECT ON applog FROM Bob;

NOTICE 0: Cannot revoke "SELECT" privilege(s) for relation "applog"

that you did not grant to "Bob"

REVOKE PRIVILEGE

The above REVOKE statement removes the privilege (and WITH GRANT OPTION privilege, if
applicable) from the grantee or it prints a notice that the operation failed.

In order to revoke grant option for a privilege, the grantor must have previously granted the grant
option for the privilege to the specified grantee. Otherwise, HP Vertica prints a NOTICE.

The following REVOKE statement removes the GRANT option only but leaves the privilege intact:

=> GRANT INSERT on applog TO Bob WITH GRANT OPTION;

GRANT PRIVILEGE

=> REVOKE GRANT OPTION FOR INSERT ON applog FROM Bob;

REVOKE PRIVILEGE

When a user revokes an explicit list of privileges, such as GRANT INSERT, DELETE,
REFERENCES ON applog TO Bob:

 The REVOKE statement succeeds only if all the roles are revoked successfully. If any revoke
operation fails, the entire statement rolls back.

 HP Vertica returns ERROR if the user does not have grant options for the privileges listed.

 HP Vertica returns NOTICE when revoking privileges that this user had not been previously
granted.

When a user revokes ALL privileges, such as REVOKE ALL ON applog TO Bob, the statement
always succeeds. HP Vertica revokes all the privileges on which the grantor has the optional
WITH GRANT OPTION and skips those privileges without the WITH GRANT OPTION.

-177-

 Managing Users and Privileges

For example, if the user Bob has delete privileges with the optional grant option on the applog
table, only grant option is revoked from Bob, and the statement succeeds without NOTICE:

=> REVOKE GRANT OPTION FOR DELETE ON applog FROM Bob;

For details, see the REVOKE Statements in the SQL Reference Manual.

Privilege ownership chains

The ability to revoke privileges on objects can cascade throughout an organization. If the grant
option was revoked from a user, the privilege that this user granted to other users will also be
revoked.

If a privilege was granted to a user or role by multiple grantors, to completely revoke this privilege
from the grantee the privilege has to be revoked by each original grantor. The only exception is a
superuser may revoke privileges granted by an object owner, with the reverse being true, as well.

In the following example, the SELECT privilege on table t1 is granted through a chain of users,
from a superuser through User3.

 A superuser grants User1 CREATE privileges on the schema s1:

=> \c - dbadmin

You are now connected as user "dbadmin".

=> CREATE USER User1;

CREATE USER

=> CREATE USER User2;

CREATE USER

=> CREATE USER User3;

CREATE USER

=> CREATE SCHEMA s1;

CREATE SCHEMA

=> GRANT USAGE on SCHEMA s1 TO User1, User2, User3;

GRANT PRIVILEGE

=> CREATE ROLE reviewer;

CREATE ROLE

=> GRANT CREATE ON SCHEMA s1 TO User1;

GRANT PRIVILEGE

 User1 creates new table t1 within schema s1 and then grants SELECT WITH GRANT
OPTION privilege on s1.t1 to User2:

=> \c - User1

You are now connected as user "User1".

=> CREATE TABLE s1.t1(id int, sourceID VARCHAR(8));

CREATE TABLE

=> GRANT SELECT on s1.t1 to User2 WITH GRANT OPTION;

GRANT PRIVILEGE

 User2 grants SELECT WITH GRANT OPTION privilege on s1.t1 to User3:

=> \c - User2

You are now connected as user "User2".

-178-

Administrator's Guide

=> GRANT SELECT on s1.t1 to User3 WITH GRANT OPTION;

GRANT PRIVILEGE

 User3 grants SELECT privilege on s1.t1 to the reviewer role:

=> \c - User3

You are now connected as user "User3".

=> GRANT SELECT on s1.t1 to reviewer;

GRANT PRIVILEGE

Users cannot revoke privileges upstream in the chain. For example, User2 did not grant privileges
on User1, so when User1 runs the following REVOKE command, HP Vertica rolls back the
command:

=> \c - User2

You are now connected as user "User2".

=> REVOKE CREATE ON SCHEMA s1 FROM User1;

ROLLBACK 0: "CREATE" privilege(s) for schema "s1" could not be revoked from

"User1"

Users can revoke privileges indirectly from users who received privileges through a cascading
chain, like the one shown in the example above. Here, users can use the CASCADE option to
revoke privileges from all users "downstream" in the chain. A superuser or User1 can use the
CASCADE option to revoke the SELECT privilege on table s1.t1 from all users. For example, a
superuser or User1 can execute the following statement to revoke the SELECT privilege from all
users and roles within the chain:

=> \c - User1

You are now connected as user "User1".

=> REVOKE SELECT ON s1.t1 FROM User2 CASCADE;

REVOKE PRIVILEGE

When a superuser or User1 executes the above statement, the SELECT privilege on table s1.t1 is
revoked from User2, User3, and the reviewer role. The GRANT privilege is also revoked from
User2 and User3, which a superuser can verify by querying the V_CATALOG.GRANTS system
table.

=> SELECT * FROM grants WHERE object_name = 's1' AND grantee ILIKE 'User%';

 grantor | privileges_description | object_schema | object_name | grantee

---------+------------------------+---------------+-------------+---------

 dbadmin | USAGE | | s1 | User1

 dbadmin | USAGE | | s1 | User2

 dbadmin | USAGE | | s1 | User3

(3 rows)

Modifying privileges

A superuser or object owner can use one of the ALTER statements to modify a privilege, such as
changing a sequence owner or table owner. Reassignment to the new owner does not transfer
grants from the original owner to the new owner; grants made by the original owner are dropped.

-179-

 Managing Users and Privileges

Changing a table owner

The ability to change table ownership is useful when moving a table from one schema to another.
Ownership reassignment is also useful when a table owner leaves the company or changes job
responsibilities. Because you can change the table owner, the tables won't have to be completely
rewritten, you can avoid loss in productivity.

The syntax looks like this:

ALTER TABLE [[db-name.]schema.]table-name OWNER TO new-owner name

In order to alter table ownership, you must be either the table owner or a superuser.

A change in table ownership transfers just the owner and not privileges; grants made by the
original owner are dropped and all existing privileges on the table are revoked from the previous
owner. However, altering the table owner transfers ownership of dependent sequence objects

(associated IDENTITY/AUTO-INCREMENT sequences) but does not transfer ownership of other
referenced sequences. See ALTER SEQUENCE for details on transferring sequence ownership.

Notes

 Table privileges are separate from schema privileges; therefore, a table privilege change or
table owner change does not result in any schema privilege change.

 Because projections define the physical representation of the table, HP Vertica does not
require separate projection owners. The ability to create or drop projections is based on the
table privileges on which the projection is anchored.

 During the alter operation HP Vertica updates projections anchored on the table owned by the
old owner to reflect the new owner. For pre-join projection operations, HP Vertica checks for
privileges on the referenced table.

Example

In this example, user Bob connects to the database, looks up the tables, and transfers ownership
of table t33 from himself to to user Alice.

=> \c - Bob

You are now connected as user "Bob".

=> \d

 Schema | Name | Kind | Owner | Comment

--------+--------+-------+---------+---------

 public | applog | table | dbadmin |

 public | t33 | table | Bob |

(2 rows)

=> ALTER TABLE t33 OWNER TO Alice;

ALTER TABLE

Notice that when Bob looks up database tables again, he no longer sees table t33.

=> \d

 List of tables

 List of tables

 Schema | Name | Kind | Owner | Comment

-180-

Administrator's Guide

--------+--------+-------+---------+---------

 public | applog | table | dbadmin |

(1 row)

When user Alice connects to the database and looks up tables, she sees she is the owner of table
t33.

=> \c - Alice

You are now connected as user "Alice".

=> \d

 List of tables

 Schema | Name | Kind | Owner | Comment

--------+------+-------+-------+---------

 public | t33 | table | Alice |

(2 rows)

Either Alice or a superuser can transfer table ownership back to Bob. In the following case a
superuser performs the transfer.

=> \c - dbadmin

You are now connected as user "dbadmin".

=> ALTER TABLE t33 OWNER TO Bob;

ALTER TABLE

=> \d

 List of tables

 Schema | Name | Kind | Owner | Comment

--------+----------+-------+---------+---------

 public | applog | table | dbadmin |

 public | comments | table | dbadmin |

 public | t33 | table | Bob |

 s1 | t1 | table | User1 |

(4 rows)

You can also query the V_CATALOG.TABLES system table to view table and owner information.
Note that a change in ownership does not change the table ID.

In the below series of commands, the superuser changes table ownership back to Alice and
queries the TABLES system table.

=> ALTER TABLE t33 OWNER TO Alice;

ALTER TABLE

=> SELECT table_schema_id, table_schema, table_id, table_name, owner_id, owner_name FROM tables;

 table_schema_id | table_schema | table_id | table_name | owner_id | owner_name

-------------------+--------------+-------------------+------------+-------------------+---------

 45035996273704968 | public | 45035996273713634 | applog | 45035996273704962 | dbadmin

 45035996273704968 | public | 45035996273724496 | comments | 45035996273704962 | dbadmin

 45035996273730528 | s1 | 45035996273730548 | t1 | 45035996273730516 | User1

 45035996273704968 | public | 45035996273795846 | t33 | 45035996273724576 | Alice

(5 rows)

Now the superuser changes table ownership back to Bob and queries the TABLES table again.
Nothing changes but the owner_name row, from Alice to Bob.

-181-

 Managing Users and Privileges

=> ALTER TABLE t33 OWNER TO Bob;

ALTER TABLE

=> SELECT table_schema_id, table_schema, table_id, table_name, owner_id,

owner_name FROM tables;
 table_schema_id | table_schema | table_id | table_name | owner_id | owner_name

-------------------+--------------+-------------------+------------+-------------------+---------

 45035996273704968 | public | 45035996273713634 | applog | 45035996273704962 | dbadmin

 45035996273704968 | public | 45035996273724496 | comments | 45035996273704962 | dbadmin

 45035996273730528 | s1 | 45035996273730548 | t1 | 45035996273730516 | User1

 45035996273704968 | public | 45035996273793876 | foo | 45035996273724576 | Alice

 45035996273704968 | public | 45035996273795846 | t33 | 45035996273714428 | Bob

(5 rows)

Table reassignment with sequences

Altering the table owner transfers ownership of only associated IDENTITY/AUTO-INCREMENT
sequences but not other reference sequences. For example, in the below series of commands,
ownership on sequence s1 does not change:

=> CREATE USER u1;

CREATE USER

=> CREATE USER u2;

CREATE USER

=> CREATE SEQUENCE s1 MINVALUE 10 INCREMENT BY 2;

CREATE SEQUENCE

=> CREATE TABLE t1 (a INT, id INT DEFAULT NEXTVAL('s1'));

CREATE TABLE

=> CREATE TABLE t2 (a INT, id INT DEFAULT NEXTVAL('s1'));

CREATE TABLE

=> SELECT sequence_name, owner_name FROM sequences;

 sequence_name | owner_name

---------------+------------

 s1 | dbadmin

(1 row)

=> ALTER TABLE t1 OWNER TO u1;

ALTER TABLE

=> SELECT sequence_name, owner_name FROM sequences;

 sequence_name | owner_name

---------------+------------

 s1 | dbadmin

(1 row)

=> ALTER TABLE t2 OWNER TO u2;

ALTER TABLE

=> SELECT sequence_name, owner_name FROM sequences;

 sequence_name | owner_name

---------------+------------

 s1 | dbadmin

(1 row)

-182-

Administrator's Guide

See Also

Changing a sequence owner (page 182)

Changing a sequence owner

The ALTER SEQUENCE command lets you change the attributes of an existing sequence. All
changes take effect immediately, within the same session. Any parameters not set during an
ALTER SEQUENCE statement retain their prior settings.

If you need to change sequence ownership, such as if an employee who owns a sequence leaves
the company, you can do so with the following ALTER SEQUENCE syntax:

ALTER SEQUENCE sequence-name OWNER TO new-owner-name;

This operation immediately reassigns the sequence from the current owner to the specified new
owner.

Only the sequence owner or a superuser can change ownership, and reassignment does not
transfer grants from the original owner to the new owner; grants made by the original owner are
dropped.

Note: Renaming a table owner transfers ownership of dependent sequence objects

(associated IDENTITY/AUTO-INCREMENT sequences) but does not transfer ownership of
other referenced sequences. See Changing a table owner (page 179).

Example

The following example reassigns sequence ownership from the current owner to user Bob:

=> ALTER SEQUENCE sequential OWNER TO Bob;

See ALTER SEQUENCE in the SQL Reference Manual for details.

Viewing privileges granted on objects

HP Vertica logs information about privileges granted on various objects, including the grantor and
grantee, in the V_CATALOG.GRANTS system table. The order of columns in the table
corresponds to the order in which they appear in the GRANT command. An asterisk in the output
means the privilege was granted WITH GRANT OPTION.

The following command queries the GRANTS system table:

=> SELECT * FROM grants ORDER BY grantor, grantee;

 grantor | privileges_description | object_schema | object_name | grantee

---------+---+---------------+-------------+-------

 Bob | | | commentor | Alice

 dbadmin | CREATE | | schema2 | Bob

 dbadmin | | | commentor | Bob

 dbadmin | | | commentor | Bob

 dbadmin | | | logadmin | Bob

 dbadmin | USAGE | | general | Bob

-183-

 Managing Users and Privileges

 dbadmin | INSERT, UPDATE, DELETE, REFERENCES | public | applog | Bob

 dbadmin | | | logadmin | Ted

 dbadmin | USAGE | | general | Ted

 dbadmin | USAGE | | general | Sue

 dbadmin | CREATE, CREATE TEMP | | vmart | Sue

 dbadmin | USAGE | | public | Sue

 dbadmin | SELECT* | public | applog | Sue

 dbadmin | USAGE | | general | Alice

 dbadmin | INSERT, SELECT | public | comments | commentor

 dbadmin | INSERT, SELECT | public | applog | commentor

 dbadmin | | | logwriter | logadmin

 dbadmin | | | logreader | logadmin

 dbadmin | DELETE | public | applog | logadmin

 dbadmin | SELECT | public | applog | logreader

 dbadmin | INSERT | public | applog | logwriter

 dbadmin | USAGE | | v_internal | public

 dbadmin | CREATE TEMP | | vmart | public

 dbadmin | USAGE | | public | public

 dbadmin | USAGE | | v_catalog | public

 dbadmin | USAGE | | v_monitor | public

 dbadmin | CREATE*, CREATE TEMP* | | vmart | dbadmin

 dbadmin | USAGE*, CREATE* | | schema2 | dbadmin

 dbadmin | INSERT*, SELECT*, UPDATE*, DELETE*, REFERENCES* | public | comments | dbadmin

 dbadmin | INSERT*, SELECT*, UPDATE*, DELETE*, REFERENCES* | public | applog | dbadmin

(30 rows)

To quickly find all of the privileges that have been granted to all users on the schema named
myschema, run the following statement:

=> SELECT grantee, privileges_description FROM GRANTS

 WHERE object_name='myschema';

 grantee | privileges_description

---------+------------------------

 Bob | USAGE, CREATE

 Alice | CREATE

(2 rows)

Note that the vsql commands, \dp and \z, both return similar information to GRANTS:

=> \dp

 Access privileges for database "apps"

 Grantee | Grantor | Privileges | Schema | Name

-----------+---------+---+--------+------------

 public | dbadmin | USAGE | | v_internal

 public | dbadmin | USAGE | | v_catalog

 public | dbadmin | USAGE | | v_monitor

 logadmin | dbadmin | | | logreader

 logadmin | dbadmin | | | logwriter

 Fred | dbadmin | USAGE | | general

 Fred | dbadmin | | | logadmin

 Bob | dbadmin | USAGE | | general

 dbadmin | dbadmin | USAGE*, CREATE* | | schema2

 Bob | dbadmin | CREATE | | schema2

 Sue | dbadmin | USAGE | | general

 public | dbadmin | USAGE | | public

 Sue | dbadmin | USAGE | | public

 public | dbadmin | CREATE TEMP | | appdat

 dbadmin | dbadmin | CREATE*, CREATE TEMP* | | appdat

 Sue | dbadmin | CREATE, CREATE TEMP | | appdat

 dbadmin | dbadmin | INSERT*, SELECT*, UPDATE*, DELETE*, REFERENCES* | public | applog

 logreader | dbadmin | SELECT | public | applog

 logwriter | dbadmin | INSERT | public | applog

 logadmin | dbadmin | DELETE | public | applog

 Sue | dbadmin | SELECT* | public | applog

(22 rows)

-184-

Administrator's Guide

See GRANT Statements in the SQL Reference Manual.

About Database Roles

To make managing permissions easier, use roles. A role is a collection of privileges that a
superuser can grant to (or revoke from) one or more users or other roles. Using roles avoids
having to manually grant sets of privileges user by user. For example, several users might be
assigned to the administrator role. You can grant or revoke privileges to or from the administrator
role, and all users with access to that role are affected by the change.

Note: Users must first enable a role before they gain all of the privileges that have been

granted to it. See Enabling Roles (page 195).

Role hierarchies

You can also use roles to build hierarchies of roles; for example, you can create an administrator
role that has privileges granted non-administrator roles as well as to the privileges granted directly
to the administrator role. See also Role hierarchy (page 189).

Roles do no supersede manually-granted privileges, so privileges directly assigned to a user are
not altered by roles. Roles just give additional privileges to the user.

Creating and using a role

Using a role follows this general flow:

1 A superuser creates a role using the CREATE ROLE statement.

2 A superuser or object owner grants privileges to the role using one of the GRANT statements.

3 A superuser or users with administrator access to the role grant users and other roles access
to the role.

4 Users granted access to the role use the SET ROLE command to enable that role and gain the
role's privileges.

You can do steps 2 and 3 in any order. However, granting access to a role means little until the
role has privileges granted to it.

Tip: You can query the V_CATALOG system tables ROLES, GRANTS, and USERS to see any

directly-assigned roles; however, these tables do not indicate whether a role is available to a
user when roles could be available through other roles (indirectly). See the HAS_ROLE()
function for additional information.

Roles on Management Console

When users sign in to the Management Console (MC), what they can view or do is governed by
MC roles. For details, see About MC Users (page 148) and About MC Privileges and Roles
(page 199).

-185-

 Managing Users and Privileges

Types of database roles

HP Vertica has three pre-defined roles:

 PUBLIC (page 187)

 PSEUDOSUPERUSER (page 186)

 DBADMIN (page 185)

Note: You might encounter a DBDUSER role in system table output. This role is internal only;

you can ignore it.

Predefined roles cannot be dropped or renamed. Other roles may not be granted to (or revoked
from) predefined roles except to/from PUBLIC, but predefined roles may be granted to other roles
or users or both.

Individual privileges may be granted to/revoked from predefined roles. See the SQL Reference
Manual for all of the GRANT and REVOKE statements.

DBADMIN role

Every database has the special DBADMIN role. A superuser (or someone with the
PSEUDOSUPERUSER role (page 186)) can grant this role to or revoke this role from any user or
role.

Users who enable the DBADMIN role gain these privileges:

 Create or drop users

 Create or drop schemas

 Create or drop roles

 View all system tables

 View and terminate user sessions

The DBADMIN role does NOT allow users to:

 Start and stop a database

 Change DBADMIN privileges

 Set configuration parameters (set_config_parameter)

You can assign additional privileges to the DBADMIN role, but you cannot assign any additional
roles; for example, the following is not allowed:

=> CREATE ROLE appviewer;

CREATE ROLE

=> GRANT appviewer TO dbadmin;

ROLLBACK 2347: Cannot alter predefined role "dbadmin"

-186-

Administrator's Guide

You can, however, grant the DBADMIN role to other roles to augment a set of privileges. See Role
hierarchy (page 189) for more information.

View a list of database superusers

To see who is a superuser, run the vsql \du meta-command. In this example, only dbadmin is a
superuser.

=> \du

 List of users

 User name | Is Superuser

-----------+--------------

 dbadmin | t

 Fred | f

 Bob | f

 Sue | f

 Alice | f

 User1 | f

 User2 | f

 User3 | f

 u1 | f

 u2 | f

(10 rows)

See also

DBADMIN user (page 144)

PSEUDOSUPERUSER role

The special PSEUDOSUPERUSER role is automatically created in each database. A superuser
(or someone with the PSEUDOSUPERUSER role) can grant this role to another user, or revoke
the role from another user. The PSEUDOSUPERUSER cannot revoke or change any superuser
privileges.

Users with the PSEUDOSUPERUSER role enabled have all of the privileges of the database
superuser, including the ability to:

 Create schemas

 Create and grant privileges to roles

 Bypass all GRANT/REVOKE authorization

 Set user account's passwords

 Lock and unlock user accounts

 Create or drop a UDF library

 Create or drop a UDF function

 Create or drop an external procedure

 Add or edit comments on nodes

 Create or drop password profiles

-187-

 Managing Users and Privileges

You can assign additional privileges to the PSEUDOSUPERUSER role, but you cannot assign
any additional roles; for example, the following is not allowed:

=> CREATE ROLE appviewer;

CREATE ROLE

=> GRANT appviewer TO pseudosuperuser;

ROLLBACK 2347: Cannot alter predefined role "pseudosuperuser"

PUBLIC role

By default, every database has the special PUBLIC role. HP Vertica grants this role to each user
automatically, and it is automatically enabled. You grant privileges to this role that every user
should have by default. You can also grant access to roles to PUBLIC, which allows any user to
access the role using the SET ROLE statement.

Note: The PUBLIC role can never be dropped, nor can it be revoked from users or roles.

Example

In the following example, if the superuser hadn't granted INSERT privileges on the table
publicdata to the PUBLIC group, the INSERT statement executed by user bob would fail:

=> CREATE TABLE publicdata (a INT, b VARCHAR);

CREATE TABLE

=> GRANT INSERT, SELECT ON publicdata TO PUBLIC;

GRANT PRIVILEGE

=> CREATE PROJECTION publicdataproj AS (SELECT * FROM publicdata);

CREATE PROJECTION

dbadmin=> \c - bob

You are now connected as user "bob".

=> INSERT INTO publicdata VALUES (10, 'Hello World');

OUTPUT

 1

(1 row)

See also

PUBLIC user (page 145)

Default roles for database users

By default, no roles (other than the default PUBLIC role (page 187)) are enabled at the start of a
user session.

=> SHOW ENABLED_ROLES;

 name | setting

---------------+---------

 enabled roles |

(1 row)

-188-

Administrator's Guide

A superuser can set one or more default roles for a user, which are automatically enabled at the
start of the user's session. Setting a default role is a good idea if users normally rely on the
privileges granted by one or more roles to carry out the majority of their tasks. To set a default role,
use the DEFAULT ROLE parameter of the ALTER USER statement as superuser:

=> \c vmart apps

You are now connected to database "apps" as user "dbadmin".

=> ALTER USER Bob DEFAULT ROLE logadmin;

ALTER USER

=> \c - Bob;

You are now connected as user "Bob"

=> SHOW ENABLED_ROLES;

 name | setting

---------------+----------

 enabled roles | logadmin

(1 row)

Notes

 Only roles that the user already has access to can be made default.

 Unlike granting a role, setting a default role or roles overwrites any previously-set defaults.

 To clear any default roles for a user, use the keyword NONE as the role name in the DEFAULT
ROLE argument.

 Default roles only take effect at the start of a user session. They do not affect the roles enabled
in the user's current session.

 Avoid giving users default roles that have administrative or destructive privileges (the
PSEUDOSUPERUSER (page 186) role or DROP privileges, for example). By forcing users to
explicitly enable these privileges, you can help prevent accidental data loss.

Using database roles

There are several steps to using roles:

1 A superuser creates a role using the CREATE ROLE statement.

2 A superuser or object owner grants privileges to the role.

3 A superuser or users with administrator access to the role grant users and other roles access
to the role.

4 Users granted access to the role run the SET ROLE command to make that role active and
gain the role's privileges.

You can do steps 2 and 3 in any order. However, granting access to a role means little until the
role has privileges granted to it.

Tip: Query system tables ROLES, GRANTS, and USERS to see any directly-assigned roles.

Because these tables do not indicate whether a role is available to a user when roles could be
available through other roles (indirectly), see the HAS_ROLE() function for additional
information.

-189-

 Managing Users and Privileges

See also

About MC Privileges and Roles (page 199)

Role hierarchy

In addition to granting roles to users, you can also grant roles to other roles. This lets you build
hierarchies of roles, with more privileged roles (an administrator, for example) being assigned all
of the privileges of lesser-privileged roles (a user of a particular application), in addition to the
privileges you assign to it directly. By organizing your roles this way, any privilege you add to the
application role (reading or writing to a new table, for example) is automatically made available to
the more-privileged administrator role.

Example

The following example creates two roles, assigns them privileges, then assigns them to a new
administrative role.

1 Create new table applog:

=> CREATE TABLE applog (id int, sourceID VARCHAR(32),

 data TIMESTAMP, event VARCHAR(256));

2 Create a new role called logreader:

=> CREATE ROLE logreader;

3 Grant the logreader role read-only access on the applog table:

=> GRANT SELECT ON applog TO logreader;

4 Create a new role called logwriter:

=> CREATE ROLE logwriter;

5 Grant the logwriter write access on the applog table:

=> GRANT INSERT ON applog to logwriter;

6 Create a new role called logadmin, which will rule the other two roles:

=> CREATE ROLE logadmin;

7 Grant the logadmin role privileges to delete data:

=> GRANT DELETE ON applog to logadmin;

8 Grant the logadmin role privileges to have the same privileges as the logreader and logwriter
roles:

=> GRANT logreader, logwriter TO logadmin;

9 Create new user Bob:

=> CREATE USER Bob;

10 Give Bob logadmin privileges:

=> GRANT logadmin TO Bob;

The user Bob can now enable the logadmin role, which also includes the logreader and logwriter
roles. Note that Bob cannot enable either the logreader or logwriter role directly. A user can only
enable explicitly-granted roles.

Hierarchical roles also works with administrative access to a role:

-190-

Administrator's Guide

=> GRANT logreader, logwriter TO logadmin WITH ADMIN OPTION;

GRANT ROLE

=> GRANT logadmin TO Bob;

=> \c - bob; -- connect as Bob

You are now connected as user "Bob".

=> SET ROLE logadmin; -- Enable logadmin role

SET

=> GRANT logreader TO Alice;

GRANT ROLE

Note that the user Bob only has administrative access to the logreader and logwriter roles through
the logadmin role. He doesn't have administrative access to the logadmin role, since it wasn't
granted to him with the optional WITH ADMIN OPTION argument:

=> GRANT logadmin TO Alice;

WARNING: Some roles were not granted

GRANT ROLE

For Bob to be able to grant the logadmin role, a superuser would have had to explicitly grant him
administrative access.

See also

About MC Privileges and Roles (page 199)

Creating database roles

A superuser creates a new role using the CREATE ROLE statement. Only a superuser can create
or drop roles.

=> CREATE ROLE administrator;

CREATE ROLE

The newly-created role has no privileges assigned to it, and no users or other roles are initially
granted access to it. A superuser must grant privileges (page 191) and access (page 192) to the
role.

Deleting database roles

A superuser can delete a role with the DROP ROLE statement.

Note that if any user or other role has been assigned the role you are trying to delete, the DROP
ROLE statement fails with a dependency message.

=> DROP ROLE administrator;

NOTICE: User Bob depends on Role administrator

ROLLBACK: DROP ROLE failed due to dependencies

DETAIL: Cannot drop Role administrator because other objects depend on it

HINT: Use DROP ROLE ... CASCADE to remove granted roles from the dependent

users/roles

Supply the optional CASCADE parameter to drop the role and its dependencies.

-191-

 Managing Users and Privileges

=> DROP ROLE administrator CASCADE;

DROP ROLE

Granting privileges to roles

A superuser or owner of a schema, table, or other database object can assign privileges to a role,
just as they would assign privileges to an individual user by using the GRANT statements
described in the SQL Reference Manual. See About Database Privileges (page 153) for
information about which privileges can be granted.

Granting a privilege to a role immediately affects active user sessions. When you grant a new
privilege, it becomes immediately available to every user with the role active.

Example

The following example creates two roles and assigns them different privileges on a single table
called applog.

1 Create a table called applog:

=> CREATE TABLE applog (id int, sourceID VARCHAR(32),

 data TIMESTAMP, event VARCHAR(256));

2 Create a new role called logreader:

=> CREATE ROLE logreader;

3 Assign read-only privileges to the logreader role on table applog:

=> GRANT SELECT ON applog TO logreader;

4 Create a role called logwriter:

=> CREATE ROLE logwriter;

5 Assign write privileges to the logwriter role on table applog:

=> GRANT INSERT ON applog TO logwriter;

See the SQL Reference Manual for the different GRANT statements.

Revoking privileges from roles

Use one of the REVOKE statements to revoke a privilege from a role.

=> REVOKE INSERT ON applog FROM logwriter;

REVOKE PRIVILEGE

Revoking a privilege immediately affects any user sessions that have the role active. When you
revoke a privilege, it is immediately removed from users that rely on the role for the privilege.

See the SQL Reference Manual for the different REVOKE statements.

-192-

Administrator's Guide

Granting access to database roles

A superuser can assign any role to a user or to another role using the GRANT command. The
simplest form of this command is:

GRANT role [, ...] TO { user | role } [, ...]

HP Vertica will return a NOTICE if you grant a role with or without admin option, to a grantee who
has already been granted that role. For example:

=> GRANT commenter to Bob;

NOTICE 4622: Role "commenter" was already granted to user "Bob"

See GRANT (Role) in the SQL Reference Manual for details.

Example

The following process illustrates how to create a role called commenter and granting user Bob
access to that role.

1 Connect to the database as a superuser:

\c - dbadmin

2 Create a table called comments:

=> CREATE TABLE comments (id INT, comment VARCHAR);

3 Create a new role called commenter:

=> CREATE ROLE commenter;

4 Grant privileges to the new role on the comments table:

=> GRANT INSERT, SELECT ON comments TO commenter;

5 Grant the commenter role to user Bob.

=> GRANT commenter TO Bob;

Enable the newly-granted role

1 Connect to the database as user Bob

=> \c - Bob

2 User Bob enables the role:

=> SET ROLE commenter;

3 Now insert some values into the comments table:

=> INSERT INTO comments VALUES (1, 'Hello World');

Based on the privileges granted to Bob by the commenter role, Bob can insert and query the
comments table.

4 Query the comments table:

=> SELECT * FROM comments;

 id | comment

----+-------------

-193-

 Managing Users and Privileges

 1 | Hello World

(1 row)

5 Commit the transaction:

=> COMMIT;

 Note that Bob does not have proper permissions to drop the table:

=> DROP TABLE comments;

ROLLBACK 4000: Must be owner of relation comments

See also

Granting database access to MC users (page 209)

Revoking access from database roles

A superuser can revoke any role from a user or from another role using the REVOKE command.
The simplest form of this command is:

REVOKE role [, ...] FROM { user | role | PUBLIC } [, ...]

See REVOKE (Role) in the SQL Reference Manual for details.

Example

To revoke access from a role, use the REVOKE (Role) statement:

1 Connect to the database as a superuser:

\c - dbadmin

2 Revoke the commenter role from user Bob:

=> REVOKE commenter FROM bob;

Granting administrative access to a role
A superuser can assign a user or role administrative access to a role by supplying the optional
WITH ADMIN OPTION argument to the GRANT statement. Administrative access allows the user
to grant and revoke access to the role for other users (including granting them administrative
access). Giving users the ability to grant roles lets a superuser delegate role administration to
other users.

Example

The following example demonstrates granting the user bob administrative access to the
commenter role, then connecting as bob and granting a role to another user.

1 Connect to the database as a superuser (or a user with administrative access):

=> \c - dbadmin

2 Grand administrative options on the commenter role to Bob

=> GRANT commenter TO Bob WITH ADMIN OPTION;

-194-

Administrator's Guide

3 Connect to the database as user Bob

=> \c - Bob

4 As user Bob, grant the commenter role to Alice:

=> GRANT commenter TO Alice;

Users with administrative access to a role can also grant other users administrative access:

=> GRANT commenter TO alice WITH ADMIN OPTION;

GRANT ROLE

As with all user privilege models, database superusers should be cautious when granting any user
a role with administrative privileges. For example, if the database superuser grants two users a
role with administrative privileges, both users can revoke the role of the other user. This example

shows granting the appalling role (with administrative privileges) to users bob and alice.

After each user has been granted the appadmin role, either use can connect as the other will full
privileges.

=> GRANT appadmin TO bob, alice WITH ADMIN OPTION;

GRANT ROLE

=> \connect - bob

You are now connected as user "bob".

=> REVOKE appadmin FROM alice;

REVOKE ROLE

Revoking administrative access from a role
A superuser can revoke administrative access from a role using the ADMIN OPTION parameter
with the REVOKE statement. Giving users the ability to revoke roles lets a superuser delegate role
administration to other users.

Example

The following example demonstrates revoking administrative access from Alice for the commenter
role.

1 Connect to the database as a superuser (or a user with administrative access)

\c - dbadmin

2 Issue the REVOKE command with ADMIN OPTION parameters:

=> REVOKE ADMIN OPTION FOR commenter FROM alice;

-195-

 Managing Users and Privileges

Enabling roles

By default, roles aren't enabled automatically for a user account. (See Default roles for database
users (page 187) for a way to make roles enabled automatically.) Users must explicitly enable a
role using the SET ROLE statement. When users enable a role in their session, they gain all of the
privileges assigned to that role. Enabling a role does not affect any other roles that the users have
active in their sessions. They can have multiple roles enabled simultaneously, gaining the
combined privileges of all the roles they have enabled, plus any of the privileges that have been
granted to them directly.

=> SELECT * FROM applog;

ERROR: permission denied for relation applog

=> SET ROLE logreader;

SET

=> SELECT * FROM applog;

 id | sourceID | data | event

----+----------+----------------------------+--

 1 | Loader | 2011-03-31 11:00:38.494226 | Error: Failed to open source file

 2 | Reporter | 2011-03-31 11:00:38.494226 | Warning: Low disk space on volume /scratch-a

(2 rows)

You can enable all of the roles available to your user account using the SET ROLE ALL statement.

=> SET ROLE ALL;

SET

=> SHOW ENABLED_ROLES;

 name | setting

---------------+------------------------------

 enabled roles | logreader, logwriter

(1 row)

See also

Viewing a user's role (page 196)

Disabling roles
To disable all roles, use the SET ROLE NONE statement:

=> SET ROLE NONE;

SET

=> SHOW ENABLED_ROLES;

 name | setting

---------------+---------

 enabled roles |

(1 row)

-196-

Administrator's Guide

Viewing enabled and available roles

You can list the roles you have enabled in your session using the SHOW ENABLED ROLES
statement:

=> SHOW ENABLED_ROLES;

 name | setting

---------------+----------

 enabled roles | logreader

(1 row)

You can find the roles available to your account using the SHOW AVAILABLE ROLES statement:

Bob=> SHOW AVAILABLE_ROLES;

 name | setting

-----------------+-----------------------------

 available roles | logreader, logwriter

(1 row)

Viewing named roles

To view the names of all roles users can access, along with any roles that have been assigned to
those roles, query the V_CATALOG.ROLES system table.

=> SELECT * FROM roles;

 name | assigned_roles

-----------------+----------------------

 public |

 dbadmin | dbduser*

 pseudosuperuser | dbadmin

 dbduser |

 logreader |

 logwriter |

 logadmin | logreader, logwriter

(7 rows)

Note: An asterisk (*) in the output means that role was granted WITH ADMIN OPTION. Also,
the dbduser role in output above is internal only; you can ignore it.

Viewing a user's role

The HAS_ROLE() function lets you see if a role has been granted to a user.

-197-

 Managing Users and Privileges

Non-superusers can check their own role membership using HAS_ROLE('role_name'), but only a
superuser can look up other users' memberships using the user_name parameter. Omitting the
user_name parameter will return role results for the superuser who is calling the function.

How to view a user's role

In this example, user Bob wants to see if he's been assigned the logwriter command. The output
returns boolean value t for true, denoting that Bob is assigned the specified logwriter role:

Bob=> SELECT HAS_ROLE('logwriter');

 HAS_ROLE

 t

(1 row)

In this example, a superuser wants to verify that the logadmin role has been granted to user Ted:

dbadmin=> SELECT HAS_ROLE('Ted', 'logadmin');

The output returns boolean value t for true, denoting that Ted is assigned the specified logadmin
role:

 HAS_ROLE

 t

(1 row)

Note that if a superuser omits the user_name argument, the function looks up that superuser's
role. The following output indicates that this superuser is not assigned the logadmin role:

dbadmin=> SELECT HAS_ROLE('logadmin');

 HAS_ROLE

 f

(1 row)

Output of the function call with user Alice indicates that she is not granted the logadmin role:

dbadmin=> SELECT HAS_ROLE('Alice', 'logadmin');

 HAS_ROLE

 f

(1 row)

To view additional information about users, roles and grants, you can also query the following
system tables in the V_CATALOG schema to show directly-assigned roles:

 ROLES

 GRANTS

 USERS

Note that the system tables do not indicate whether a role is available to a user when roles could
be available through other roles (indirectly). You need to call the HAS_ROLE() function for that
information.

-198-

Administrator's Guide

Users

This command returns all columns from the USERS system table:

=> SELECT * FROM users;

-[RECORD 1]-----+---------------------------

user_id | 45035996273704962

user_name | dbadmin

is_super_user | t

profile_name | default

is_locked | f

lock_time |

resource_pool | general

memory_cap_kb | unlimited

temp_space_cap_kb | unlimited

run_time_cap | unlimited

all_roles | dbadmin*, pseudosuperuser*

default_roles | dbadmin*, pseudosuperuser*

Note: An asterisk (*) in table output for all_roles and default_roles columns indicates a role
granted WITH ADMIN OPTION.

Roles

The following command returns all columns from the ROLES system table:

=> SELECT * FROM roles;

 name | assigned_roles

-----------------+----------------

 public |

 dbadmin | dbduser*

 pseudosuperuser | dbadmin

 dbduser |

(4 rows)

Note: The dbduser role in output above is internal only; you can ignore it.

Grants

The following command returns all columns from the GRANTS system table:

=> SELECT * FROM grants;

 grantor | privileges_description | object_schema | object_name | grantee

---------+------------------------+---------------+-------------+---------

 dbadmin | USAGE | | public | public

 dbadmin | USAGE | | v_internal | public

 dbadmin | USAGE | | v_catalog | public

 dbadmin | USAGE | | v_monitor | public

(4 rows)

Viewing user roles on Management Console

You can see an MC user's roles and database resources through the MC Settings > User
management page on the Management Console interface. For more information, see About MC

Privileges and Roles (page 199).

-199-

 Managing Users and Privileges

About MC Privileges and Roles
As introduced in About MC Users (page 148), you control user access to Management Console
through groups of privileges (also referred to as access levels) that fall into two types, those that
apply to MC configuration, and those that apply to MC-managed HP Vertica databases.

MC permission groups

 MC configuration (page 200) privileges are made up of roles that control what users can
configure on the MC, such as modify MC settings, create/import HP Vertica databases, restart
MC, create an HP Vertica cluster through the MC interfac, and create and manage MC users.

 MC database (page 205) privileges are made up of roles that control what users can see or do
on an MC-managed HP Vertica database, such as view the database cluster state, query and
session activity, monitor database messages and read log files, replace cluster nodes, and
stop databases.

Note: When you grant an MC user a database role, that user inherits the privileges assigned to

the database user account to which the MC user is mapped. For maximum access, use the
dbadmin username and password.

MC database privileges cannot alter or override the HP Vertica database user's privileges and
roles. MC user/database user association is described in Mapping an MC user to a database
user's privileges (page 210).

MC's configuration privileges and database access

The following table shows MC role-based users and summarizes the levels of access they have
on the MC interface, as well as to any MC-managed databases.

User type MC config permissions MC database permissions

MC administrators
(SUPER and

ADMIN)

Perform all administrative
operations on MC, including

configure and restart the
MC process and add,
change, and remove all user

accounts.

Automatically inherit the database
privileges of the main database user

account used to set up one or more
databases on the MC interface. By default,
MC administrators have access to all

MC-managed databases.

IT users (IT) Monitor all MC-managed
databases, view MC-level

(non database) messages,
logs, and alerts, disable or
enable user access to MC,

and reset non-LDAP user
passwords.

Inherit no database privileges. You must
grant the IT user access to one or more

MC-managed databases, which you do by
mapping this user to the database user
account. The MC IT user then inherits the

privileges assigned to the database user to
which he/she is mapped.

-200-

Administrator's Guide

Database users

(NONE)

Perform no administrative

operations on MC. View
and/or manage databases
that you assign them.

Inherit no database privileges. You must

grant the database (NONE) user access to
one or more MC-managed databases,
which you do by mapping this user to the

database user account. The database user
inherits the privileges assigned to the
database user to which he/she is mapped.

Described in
About MC Users
(page 148)

Described in MC
configuration privileges
(page 200)

Described in MC database privileges
(page 205)

See also

About MC Users (page 148)

Creating an MC user (page 149)

Mapping an MC user to a database user's privileges (page 210)

MC configuration privileges
When you create an MC user, you assign them an MC configuration access level (role). For the
most part, MC configuration permissions control a user's ability to create users and manage MC
settings on the MC interface. You can grant a maximum of one role to each MC user, choosing
from one of the following:

 ADMIN role (mc) (page 202)—Full access to all MC functionality, including any MC-managed
database

 IT role (mc) (page 204)—Full access to all MC functionality, but database access is assigned

 NONE role (mc) (page 205)—Database access only, according to the databases an
administrator assigns

You grant MC configuration permissions at the same time you create the user's account, through
the MC Settings page. You can change MC access levels through the same page later, if

necessary. See Creating an MC user (page 149) for details.

You will also likely grant non-administrators (users with the IT and NONE roles) access to one or
more MC-managed databases. See MC database privileges (page 205) for details.

MC configuration privileges by user role

The following table summarizes MC configuration permissions by role. For details, see each role
in the above list.

MC access privileges ADMIN IT NONE

Configure MC settings: Yes

-201-

 Managing Users and Privileges

 Configure storage locations and ports

 Upload an HP Vertica license

 Upload new SSL certificates

 Manage LDAP authentication

Create and manage databases and clusters

 Create a new database or import an
existing one

 Create a new cluster or import an
existing one

 Remove database/cluster from the MC
interface

Yes

Configure user settings:

 Add, edit, delete users

 Enable/disable user access to MC

 Add, change, delete user permissions

 Map users to one or more databases

Yes

Monitor user activity on MC Yes

Reset MC to its original, preconfigured state Yes

Restart Management Console Yes

Disable or enable user access to MC interface Yes Yes

Reset users' (non-LDAP) passwords Yes Yes

Monitor all console-managed databases Yes Yes

View MC log and non-database MC alerts Yes Yes

See also

About MC Users (page 148)

About MC Privileges and Roles (page 199)

MC database privileges (page 205)

Creating an MC user (page 149)

Granting database access to MC users (page 209)

Mapping an MC user to a database user's privileges (page 210)

SUPER role (mc)

The default superuser administrator, called Super on the MC UI, is a Linux user account that gets
created when you install and configure MC. During the configuration process, you can assign the
Super any name you like; it need not be dbadmin.

-202-

Administrator's Guide

The MC SUPER role, a superset of the ADMIN role (mc) (page 202), has the following privileges:

 Oversees the entire Management Console, including all MC-managed database clusters

Note: This user inherits the privileges/roles of the user name supplied when importing an HP
Vertica database into MC. HP recommends that you use the database administrator's
credentials.

 Creates the first MC user accounts and assigns them an MC configuration role

 Grants MC users access to one or more MC-managed HP Vertica databases by assigning MC
database privileges (page 205) to each user

The MC super administrator account is unique. Unlike other MC users you create, including other
MC administrators, the MC super account cannot be altered or dropped, and you cannot grant the
SUPER role to other MC users. The only property you can change for the MC super is the
password. Otherwise the SUPER role has the same privileges on MC as the ADMIN role (mc)
(page 202).

On MC-managed HP Vertica databases, SUPER has the same privileges as ADMIN role (db)
(page 207).

The MC super account does not exist within the LDAP server. This account is also different from
the special dbadmin account that gets created during an HP Vertica installation, whose privileges
are governed by the DBADMIN role (page 185). The HP Vertica-created dbadmin is a Linux
account that owns the database catalog and storage locations and can bypass database
authorization rules, such as creating or dropping schemas, roles, and users. The MC super does
not have the same privileges as dbadmin.

See also

Configuring MC

About MC Privileges and Roles (page 199)

Creating an MC user (page 149)

Granting database access to MC users (page 209)

Adding multiple users to MC-managed databases (page 218)

Mapping an MC user to a database user's privileges (page 210)

Managing MC users (page 152)

ADMIN role (mc)

This user account is the user who can perform all administrative operations on Management
Console, including configure and restart the MC process and add, change, and remove all user
accounts. By default, MC administrators inherit the database privileges of the main database user
account used to set up the database on the MC interface. Therefore, MC administrators have
access to all MC-managed databases. Grant the ADMIN role to users you want to be MC
administrators.

-203-

 Managing Users and Privileges

The difference between this ADMIN user and the default Linux account, the MC SUPER role
(page 201), is you cannot alter or delete the MC SUPER account, and you can't grant the SUPER
role to any other MC users. You can, however, change the access level for other MC
administrators, and you can delete this user's accounts from the MC interface.

The following list highlights privileges granted to the ADMIN role:

 Modify MC settings, such as storage locations and ports, restart the MC process, and reset
MC to its original, unconfigured state

 Audit license activity and install/upgrade an HP Vertica license

 Upload a new SSL certificate

 Use LDAP for user authentication

 View the MC log, alerts and messages

 Add new users and map them to one or more HP Vertica databases by granting an MC
database-level role (page 205)

 Select a database and add multiple users at once

 Manage user roles and their access to MC

 Remove users from the MC

 Monitor user activity on the MC interface

 Stop and start any MC-managed database

 Create new databases/clusters and and import existing databases/clusters into MC

 Remove databases/clusters from the MC interface

 View all databases/clusters imported into MC

About the MC database administrator role

There is also an MC database administrator (ADMIN) role that controls a user's access to
MC-managed databases. The two ADMIN roles are similar, but they are not the same, and you do
not need to grant users with the ADMIN (mc) role an ADMIN (db) role because MC ADMIN users
automatically inherit all database privileges of the main database user account that was created
on or imported into MC.

The following table summarizes the primary difference between the two ADMIN roles, but see
ADMIN role (db) (page 207) for details specific to MC-managed database administrators.

MC configuration ADMIN role MC database ADMIN role

Perform all administrative operations on

the MC itself, including restarting the MC
process. Privileges extend to monitoring
all MC-created and imported databases

but anything database-related beyond
that scope depends on the user's
privileges granted on the database

through GRANT statements.

Perform database-specific activities, such

as stop and start the database, and
monitor query and user activity and
resources. Other database operations

depend on that user's privileges on the
specific database. This ADMIN role
cannot configure MC.

See also

About MC Privileges and Roles (page 199)

-204-

Administrator's Guide

ADMIN role (db) (page 207)

Creating an MC user (page 149)

Granting database access to MC users (page 209)

Adding multiple users to MC-managed databases (page 218)

Mapping an MC user to a database user's privileges (page 210)

Managing MC users (page 152)

IT role (mc)

MC IT users can monitor all MC-managed databases, view MC-level (non database) messages,
logs, and alerts, disable or enable user access to MC, and reset non-LDAP user passwords. You
can also assign MC IT users specific database privileges, which you do by mapping IT users to a
user on a database. In this way, the MC IT user inherits the privileges assigned to the database
user to which he/she is mapped.

About the MC IT (database) role

There is also an IT database administrator (IT) role that controls a user's access to MC-managed
databases. If you grant an MC user both IT roles, it means the user can perform some
configuration on MC and also has access to one or more MC-managed databases. The database
mapping is not required, but it gives the IT user wider privileges.

The two IT roles are similar, but they are not the same. The following table summarizes the
primary difference between them, but see IT role (db) (page 208) for details.

MC configuration IT role MC database IT role

Monitor MC-managed database, view
non-database messages, and manage

user access

Monitor databases on which the user has
privileges, view the database overview

and activity pages, monitor the node state
view messages and mark them
read/unread, view database settings.

Can also be mapped to one or more HP
Vertica databases.

See also

About MC Privileges and Roles (page 199)

IT role (db) (page 208)

Mapping an MC user to a database user's privileges (page 210)

-205-

 Managing Users and Privileges

NONE role (mc)

The default role for all newly-created users on MC is NONE, which prevents users granted this
role from configuring the MC. When you create MC users with the NONE role, you grant them an
MC database-level role (page 205). This assignment maps the MC user to a user account on a
specific database and specifies that the NONE user inherits the database user‘s privileges to
which he or she is mapped.

Which database-level role you grant this user with NONE privileges—whether ADMIN (db) or IT
(db) or USER (db)—depends on the level of access you want the user to have on the
MC-managed database. Database roles have no impact on the ADMIN and IT roles at the MC
configuration level.

See also

About MC Privileges and Roles (page 199)

About MC Users (page 148)

MC database privileges (page 205)

ADMIN role (db) (page 207), IT role (db) (page 208), and USER role (db) (page 209)

MC database privileges

When you create MC users (page 149), you first assign them MC configuration (page 200)
privileges, which controls what they can do on the MC itself. In the same user-creation operation,
you grant access to one or more MC-managed databases. MC database access does not give the
MC user privileges directly on HP Vertica; it provides MC users varying levels of access to
assigned database functionality through the MC interface.

Assign users an MC database level through one of the following roles:

 ADMIN role (db) (page 207)—Full access to all MC-managed databases. Actual privileges
ADMINs inherit depend on the database user account used to create or import the HP Vertica
database into the MC interface.

 IT role (db) (page 208)—Can start and stop a database but cannot remove it from the MC
interface or drop it.

 USER role (db) (page 209)—Can only view database information through the database
Overview and Activities pages but is restricted from viewing more detailed data.

When you assign an MC database level to an MC user, you need to map the MC user account to
a database user account. Mapping lets the MC user inherit the privileges assigned to that
database user and ensures that the MC user cannot do or see anything that is not allowed by the
privileges set up for the user account on the server database.

-206-

Administrator's Guide

Privileges assigned to the database user always supersede privileges of the MC user if there is a
conflict, such as stopping a database. When the MC user logs in to MC, using his or her MC user
name and password, MC privileges for database-related activities are compared to the user
privileges on the database itself (the account you mapped the MC user to). Only when the user
has both MC privileges and corresponding database privileges will the operations be exposed to
that user in the MC interface.

TIP: As a best practice, you should identify, in advance, the appropriate HP Vertica database

user account that has privileges and/or roles similar to one of the MC database roles.

See Creating an MC user (page 149) and Mapping an MC user to a database user's
privileges (page 210) for more information.

MC database privileges by role

The following tables summarizes MC configuration-level privileges by user role. The first table
shows the default privileges, and the second table shows, for the ADMIN role only, which
operations are dependent on the database user account's privileges and/or roles itself.

Default database-level privileges ADMIN IT USER

View messages Yes Yes Yes

Delete messages and mark read/unread Yes Yes

View database Overview page Yes Yes Yes

View database Activity page Yes Yes Yes

View database grid page Yes Yes Yes

Start a database Yes

Stop a node Yes

View node state Yes Yes

View MC settings Yes Yes

Privileges governed by the HP Vertica database user account:

Database-specific privileges ADMIN

Audit license activity Yes

Install new license Yes

View WLA tuning recommendations Yes

View database query page Yes

Stop a database Yes

Rebalance a database Yes

Drop a database Yes

Start, replace, add, remove nodes Yes

-207-

 Managing Users and Privileges

Modify database settings Yes

See also

About MC Users (page 148)

About MC Privileges and Roles (page 199)

MC configuration privileges (page 200)

ADMIN role (db)

ADMIN is a superuser with full privileges to monitor MC-managed database activity and
messages. Other database privileges (such as stop or drop the database) are governed by the
user account on the HP Vertica database that this ADMIN (db) user is mapped to. ADMIN is the
most permissive role and is a superset of privileges granted to the IT (page 208) and USER (page
209) roles.

The ADMIN user has the following database privileges by default:

 View and delete database messages

 Mark messages read or unread

 View the database overview (grid) page

 View the database activity page

 Start the database

 View database cluster node state

 View database settings

The following MC-managed database operations depend on the database user's role that you
mapped this ADMIN user to:

 View license information

 Install a new license

 View Workload Analyzer tuning recommendations

 View query activity and loads

 Stop the database

 Rebalance the database

 Add, stop, replace, or remove nodes

 Manage database settings

Note: Database access granted through Management Console never overrides roles granted
on a specific HP Vertica database.

-208-

Administrator's Guide

About the ADMIN (MC configuration) role

There is also an MC configuration administrator role that defines what the user can change on the
MC itself. The two ADMIN roles are similar, but they are not the same. Unlike the MC configuration
role of ADMIN, which can manage all MC users and all databases imported into the UI, the MC
database ADMIN role has privileges only on the databases you map this user to. The following
table summarizes the primary difference between them, but see ADMIN role (mc) (page 202) for
additional details.

MC database ADMIN role MC configuration ADMIN role

Perform database-specific activities, such

as stop and start the database, and
monitor query and user activity and
resources. Other database operations

depend on that user's privileges on the
specific database. This ADMIN role
cannot configure MC.

Perform all administrative operations on

the MC itself, including restarting the MC
process. Privileges extend to monitoring
all MC-created and imported databases

but anything database-related beyond
that scope depends on the user's
privileges granted on the database

through GRANT statements.

See also

About MC Privileges and Roles (page 199)

ADMIN role (mc) (page 202)

IT role (db)

IT can view most details about an MC-managed database, such as messages (and mark them
read/unread), the database overall health and activity/resources, cluster and node state, and MC
settings. You grant and manage user role assignments through the MC Settings > User
management page on the MC.

About the IT (MC configuration) role

There is also an IT role at the MC configuration access level. The two IT roles are similar, but they
are not the same. If you grant an MC user both IT roles, it means the user can perform some
configuration on MC and also has access to one or more MC-managed databases. The following
table summarizes the primary difference between them, but see IT role (mc) (page 204) for
additional details.

MC database IT MC configuration IT

Monitor databases on which the user has

privileges, view the database overview
and activity pages, monitor the node state
view messages and mark them

read/unread, view database settings.

Monitor MC-managed database, view

non-database messages, and manage
user access.

-209-

 Managing Users and Privileges

See also

About MC Privileges and Roles (page 199)

IT role (mc) (page 204)

Mapping an MC user to a database user's privileges (page 210)

USER role (db)

USER has limited database privileges, such as viewing database cluster health,
activity/resources, and messages. MC users granted the USER database role might have higher
levels of permission on the MC itself, such as the IT role (mc) (page 204). Alternatively, USER
users might have no (NONE) privileges to configure MC. How you combine the two levels is up to
you.

See also

About MC Privileges and Roles (page 199)

MC configuration privileges (page 200)

Mapping an MC user to a database user's privileges (page 210)

Granting database access to MC users
If you did not grant an MC user a database-level role (page 205) when you created the user
account, this procedure describes how to do so.

Granting the user an MC database-level role associates the MC user with a database user's
privileges and ensures that the MC user cannot do or see anything that is not allowed by the
privileges set up for the user account on the server database. When that MC user logs in to MC,
his or her MC privileges for database-related activities are compared to that user's privileges on
the database itself. Only when the user has both MC privileges and corresponding database
privileges will the operations be exposed in the MC interface. See Mapping an MC user to a
database user's privileges (page 210) for examples.

Prerequisites

Before you grant database access to an MC user, make sure you have read the prerequisites in
Creating an MC user (page 149).

Grant a database-level role to an MC user:

1 Log in to Management Console as an administrator and navigate to MC Settings > User
management.

-210-

Administrator's Guide

2 Select an MC user and click Edit.

3 Verify the MC configuration privileges (page 200) are what you want them to be. NONE is
the default.

4 Next to the DB access levels section, click Add and provide the following database access

credentials:

1. Choose a database. Select a database from the list of MC-discovered (databases that
were created on or imported into the MC interface).

2. Database username. Enter an existing database user name or, if the database is running,

click the ellipses […] to browse for a list of database users, and select a name from the list.

3. Database password. Enter the password to the database user account (not this

username's password).

4. Restricted access. Chose a database level (ADMIN (page 207), IT (page 208), or USER

(page 209)) for this user.

5. Click OK to close the Add permissions dialog box.

5 Optionally change the user's Status (enabled is the default).

6 Click Save.

See Mapping an MC user to a database user's privileges (page 210) for a graphical illustration
of how easy it is to map the two user accounts.

How MC validates new users

After you click OK to close the Add permissions dialog box, MC tries to validate the database
username and password entered against the selected MC-managed database or against your
organization's LDAP directory. If the credentials are found to be invalid, you are asked to re-enter
them.

If the database is not available at the time you create the new user, MC saves the
username/password and prompts for validation when the user accesses the Database and
Clusters page later.

See also

About MC Users (page 148)

About MC Privileges and Roles (page 199)

Creating an MC user (page 149)

Creating a database user (page 145)

Adding multiple users to MC-managed databases (page 218)

Mapping an MC user to a database user's privileges
Database mapping occurs when you link one or more MC user accounts to a database user

account. After you map users, the MC user inherits privileges granted to the database user, up to
the limitations of the user's database access level on MC.

-211-

 Managing Users and Privileges

This topic presents the same mapping information as in Granting database access to MC users
(page 209) but with graphics. See also MC database privileges (page 205) for an introduction to
database mapping through the MC interface and details about the different database access roles
you can grant to an MC user.

How to map an MC user to a database user

The following series of images shows you how easy it is to map an MC user to a database user
account from the MC Settings > User management page.

You view the list of MC users so you can see who has what privileges. You notice that user alice
has no database privileges, which would appear under the Resources column.

-212-

Administrator's Guide

To give alice database privileges, click to highlight her MC username, click Edit, and the Edit
existing user page displays with no resources (databases) assigned to MC user alice.

Click Add, and when the Add permissions dialog box opens, choose a database from the menu.

-213-

 Managing Users and Privileges

In the same Add permissions dialog box, after you select a database, you need to enter the user

name of the database user account that you want to map alice to. To see a list of database user
names, click the ellipses […] and select a name from the list. In this example, you already know
that database user carol has privileges to stop and start the database, but the alice database
account can only view certain tables. On MC, you want alice to have similar privileges to carol, so
you map MC alice to database carol.

-214-

Administrator's Guide

After you click OK, remember to assign MC user alice an MC database level. In this case, choose
IT, a role that has permissions to start and stop the selected database.

Enter the database password, click OK , close the confirmation dialog box, and click Save.

That's it.

What if you map the wrong permissions

In the following mapping example, if you had granted alice MC database access level of ADMIN
but mapped her to a database account with only USER-type privileges, Alice's access to that
database would be limited to USER privileges. This is by design. When Alice logs in to MC using
her own user name and password, MC privileges for her ADMIN-assigned role are compared to
the user privileges on the database itself. Only when the user has both MC privileges and
corresponding database privileges will the appropriate operations be exposed in the MC interface.

-215-

 Managing Users and Privileges

Adding multiple MC users to a database

In addition to creating or editing MC users and mapping them to a selected database, you can also
select a database and add users to that database on the MC Settings > Resouce access page.

Choose a database from the list, click Add, and select an MC user name, one at a time. Map the

MC user to the database user account, and then grant each MC user the database level you want
him or her to have.

-216-

Administrator's Guide

It is possible you will grant the same database access to several MC users.

See Granting database access to MC users (page 209) and Mapping an MC user to a
database user's privileges (page 210) for details.

-217-

 Managing Users and Privileges

How to find out an MC user's database role
On the User management page, the Resources column lists all of the databases a user is

mapped to. It does not, however, display the user's database access level (page 205) (role).

-218-

Administrator's Guide

You can retrieve that information by highlighting a user and clicking Edit. In the dialog box that

opens (shown in example below), Bob's role on the mcdb database is ADMIN. You can change
Bob's role from this dialog box by clicking Edit and assigning a different database-access role.

Adding multiple users to MC-managed databases

If you are administering one or more MC-managed databases, and several MC users need access
to it, you have two options on the MC Settings page:

 From the User management option, select each user and grant database access, one user at

a time

 From the Resource access option, select a database first and add users to it

This procedure describes how to add several users to one database at once. If you want to add
users one at a time, see Creating an MC user (page 149).

Before you start

Read the prerequisites in Creating an MC user (page 149).

How to add multiple users to a database

1 Log in to MC as an administrator and navigate to MC Settings > Resource access.

2 Choose a database from the list of discovered databases. Selecting the database populates a

table with users who already have privileges on the selected database.

-219-

 Managing Users and Privileges

3 To add new users, click Add and select the MC username you want to add to the database

from the drop-down list.

4 Enter an existing Database username on the selected database or click the ellipses button
[…] to browse for names. (This is the database account you want to map the selected user to.)

5 Enter the database password (not this username's password).

Note: The database password is generally the dbadmin superuser's password.

6 Choose a database-access role (ADMIN (page 207) or IT (page 208) or USER (page 209))

for this user.

7 Click OK to close the Add access to resource dialog box.

8 Perform steps 3-7 for each user you want to add to the selected database, and then click Save.

See also

About MC Users (page 148)

About MC Privileges and Roles (page 199)

Mapping an MC user to a database user's privileges (page 210)

MC mapping matrix
The following table shows the three different MC configuration (page 200) roles, ADMIN, IT, and
NONE, combined with the type of privileges a user granted that role inherits when mapped to a
specific database-level (page 205) role.

MC configuration level MC database level The combination lets the user ...

ADMIN role (mc)

(page 202)

All (implicit) Perform all administrative operations

on Management Console, including
configure and restart the MC process.

 Maximum access to all databases
created and/or imported into the MC
interface—governed by the privileges

associated with the database user
account used to set up the database on
the MC.

IT role (mc) (page

204)

ADMIN role (db)

(page 207)

 Monitor MC-managed database
activity.

 View non-database messages.

 Manage user access (enable/disable).

 Monitor MC-managed database activity
and messages.

 Other database privileges (such as stop
or drop the database) are governed by
the mapped user account on the
database itself.

 Automatically inherits all privileges

-220-

Administrator's Guide

granted to the NONE:IT combination.

IT role (mc) (page

204)

IT role (db) (page

208)

 Monitor MC-managed database
activity.

 View non-database messages.

 Manage user access
(edit/enable/disable).

 On databases where granted
privileges, monitor database overview
and activity, monitor node state, view

messages and mark them read/unread,
view database settings

 Automatically inherits all privileges
granted to the IT:USER combination.

IT role (mc) (page

204)

USER role (db) (page

209)

 Monitor MC-managed database activity

 View non-database messages.

 Manage user access (enable/disable).

 Viewing database cluster health,
activity/resources, and messages and
alerts.

NONE role (mc)
(page 205)

ADMIN role (db)
(page 207)

 No privileges to monitor/modify
anything related to the MC itself.

 Monitor MC-managed database
activity, node state, and messages.

 Other database privileges (such as stop
or drop the database) are governed by

the mapped user account on the
database itself.

 Automatically inherits all privileges
granted to the NONE:IT combination.

NONE role (mc)
(page 205)

IT role (db) (page
208)

 No privileges to monitor/modify
anything related to the MC itself

 Monitor MC-managed database
activity, node state, and settings.

 View the database overview and
activity pages.

 View messages and mark them
read/unread.

 Automatically inherits all privileges
granted to the NONE:USER
combination.

NONE role (mc)
(page 205)

USER role (db) (page
209)

 No privileges to monitor/modify
anything related to the MC itself.

 View database cluster health,
activity/resources, and messages and
alerts.

-221-

 Managing Users and Privileges

-222-

Using the Administration Tools

HP Vertica provides a set of tools that allows you to perform administrative tasks quickly and
easily. Most of the database administration tasks in HP Vertica can be done using the
Administration Tools.

Always run the Administration Tools using the Database Administrator account on the
Administration host, if possible. Make sure that no other Administration Tools processes are
running.

If the Administration host is unresponsive, run the Administration Tools on a different node in the
cluster. That node permanently takes over the role of Administration host.

A man page is available for admintools. If you are running as the dbadmin user, simply type: man

admintools. If you are running as a different user, type: man -M /opt/vertica/man
admintools.

Running the Administration Tools

At the Linux command line:

$ /opt/vertica/bin/admintools [-t | --tool] toolname [options]

toolname Is one of the tools described in the Administration Tools

Reference (page 231).

options

-h

--help

Shows a brief help message and exits.

-a

--help_all

Lists all command-line subcommands and

options as described in Writing
Administration Tools Scripts (page 245).

If you omit toolname and options parameters, the Main Menu dialog box appears inside your
console or terminal window with a dark blue background and a title on top. The screen captures
used in this documentation set are cropped down to the dialog box itself.

If you are unfamiliar with this type of interface, read Using the Administration Tools Interface
(page 223) before you do anything else.

First Time Only

The first time you log in as the Database Administrator and run the Administration Tools, the user
interface displays.

1 In the EULA (end-user license agreement) window, type accept to proceed.

A window displays, requesting the location of the license key file you downloaded from the HP

Web site. The default path is /tmp/vlicense.dat.

2 Type the absolute path to your license key (for example, /tmp/vlicense.dat) and click OK.

-223-

 Using the Administration Tools

Between Dialogs

While the Administration Tools are working, you see the command line processing in a window.
Do not interrupt the processing.

Using the Administration Tools Interface
The HP Vertica Administration Tools are implemented using Dialog, a graphical user interface that
works in terminal (character-cell) windows.The interface responds to mouse clicks in some
terminal windows, particularly local Linux windows, but you might find that it responds only to
keystrokes. Thus, this section describes how to use the Administration Tools using only
keystrokes.

Note: This section does not describe every possible combination of keystrokes you can use to

accomplish a particular task. Feel free to experiment and to use whatever keystrokes you
prefer.

Enter [Return]

In all dialogs, when you are ready to run a command, select a file, or cancel the dialog, press the
Enter key. The command descriptions in this section do not explicitly instruct you to press Enter.

OK - Cancel - Help

The OK, Cancel, and Help buttons are

present on virtually all dialogs. Use the
tab, space bar, or right and left arrow keys
to select an option and then press Enter.

The same keystrokes apply to dialogs
that present a choice of Yes or No.

Menu Dialogs

Some dialogs require that you choose
one command from a menu. Type the
alphanumeric character shown or use the

up and down arrow keys to select a
command and then press Enter.

List Dialogs

-224-

Administrator's Guide

In a list dialog, use the up and down arrow

keys to highlight items, then use the
space bar to select the items (which
marks them with an X). Some list dialogs

allow you to select multiple items. When
you have finished selecting items, press
Enter.

Form Dialogs

In a form dialog (also referred to as a dialog box), use the tab key to cycle between OK, Cancel,
Help, and the form field area. Once the cursor is in the form field area, use the up and down arrow
keys to select an individual field (highlighted) and enter information. When you have finished
entering information in all fields, press Enter.

Help Buttons

Online help is provided in the form of text dialogs. If you have trouble viewing the help, see Notes
for Remote Terminal Users (page 226) in this document.

K-Safety Support in Administration Tools

The Administration Tools allow certain operations on a K-Safe database, even if some nodes are
unresponsive.

The database must have been marked as K-Safe using the MARK_DESIGN_KSAFE function.

The following management functions within the Administration Tools are operational when some
nodes are unresponsive.

Note: HP Vertica users can perform much of the below functionality using the Management

Console interface. See Management Console and Administration Tools for details.

 View database cluster state

 Connect to database

 Start database (including manual recovery)

 Stop database

 Replace node (assuming node that is down is the one being replaced)

-225-

 Using the Administration Tools

 View database parameters

 Upgrade license key

The following operations work with unresponsive nodes; however, you might have to repeat the
operation on the failed nodes after they are back in operation:

 Edit authentication

 Distribute config files

 Install external procedure

 (Setting) database parameters

The following management functions within the Administration Tools require that all nodes be UP
in order to be operational:

 Create database

 Run the Database Designer

 Drop database

 Set restart policy

 Roll back database to Last Good Epoch

-226-

 226

Notes for Remote Terminal Users

The appearance of the graphical interface depends on the color and font settings used by your
terminal window. The screen captures in this document were made using the default color and font
settings in a PuTTy terminal application running on a Windows platform.

Note: If you are using a remote terminal application, such as PuTTy or a Cygwin bash shell,

make sure your window is at least 81 characters wide and 23 characters high.

If you are using PuTTY, you can make the Administration Tools look like the screen captures in
this document:

1 In a PuTTY window, right click the title area and select Change Settings.

2 Create or load a saved session.

3 In the Category dialog, click Window > Appearance.

4 In the Font settings, click the Change... button.

5 Select Font: Courier New: Regular Size: 10

6 Click Apply.

Repeat these steps for each existing session that you use to run the Administration Tools.

You can also change the translation to support UTF-8:

1 In a PuTTY window, right click the title area and select Change Settings.

2 Create or load a saved session.

3 In the Category dialog, click Window > Translation.

4 In the "Received data assumed to be in which character set" drop-down menu, select UTF-8.

5 Click Apply.

-227-

 Using the Administration Tools

Using the Administration Tools Help
The Help on Using the Administration Tools command displays a help screen about using the
Administration Tools.

Most of the online help in the Administration Tools is context-sensitive. For example, if you use
up/down arrows to select a command, press tab to move to the Help button, and press return, you
get help on the selected command.

In a Menu Dialog

1 Use the up and down arrow keys to choose the command for which you want help.

2 Use the Tab key to move the cursor to the Help button.

3 Press Enter (Return).

-228-

Administrator's Guide

In a Dialog Box

1 Use the up and down arrow keys to choose the field on which you want help.

2 Use the Tab key to move the cursor to the Help button.

3 Press Enter (Return).

Scrolling

Some help files are too long for a single screen. Use the up and down arrow keys to scroll through
the text.

Password Authentication
When you create a new user with the CREATE USER command, you can configure the password
or leave it empty. You cannot bypass the password if the user was created with a password
configured. You can change a user's password using the ALTER USER command.

See Implementing Security (page 116) for more information about controlling database
authorization through passwords.

Tip: Unless the database is used solely for evaluation purposes, HP recommends that all

database users have encrypted passwords.

Distributing Changes Made to the Administration Tools

Metadata
Administration Tools-specific metadata for a failed node will fall out of synchronization with other
cluster nodes if you make the following changes:

 Modify the restart policy

 Add one or more nodes

 Drop one or more nodes.

When you restore the node to the database cluster, you can use the Administration Tools to
update the node with the latest Administration Tools metadata:

-229-

 Using the Administration Tools

1 Log on to a host that contains the metadata you want to transfer and start the Administration
Tools. (See Using the Administration Tools (page 222).)

2 On the Main Menu in the Administration Tools, select Configuration Menu and click OK.

3 On the Configuration Menu, select Distribute Config Files and click OK.

4 Select AdminTools Meta-Data.

The Administration Tools metadata is distributed to every host in the cluster.

5 Restart the database (page 233).

Administration Tools and Management Console
You can perform most database administration tasks using the Administration Tools, but you have
the additional option of using the more visual and dynamic Management Console.

Management Console provides some, but not all of the functionality provided by the
Administration Tools. MC also provides functionality not available in the Administration Tools. The
following table compares the functionality available in both interfaces. Continue to use
Administration Tools and the command line to perform actions not yet supported by Management
Console.

HP Vertica Functionality Management
Console

Administration
Tools

Use a Web interface for the administration of HP Vertica Yes No

Manage/monitor one or more databases and clusters

through a UI

Yes No

Manage multiple databases on different clusters Yes Yes

View database cluster state Yes Yes

View multiple cluster states Yes No

Connect to the database Yes Yes

Start/stop an existing database Yes Yes

Stop/restart HP Vertica on host Yes Yes

Kill an HP Vertica process on host No Yes

Create one or more databases Yes Yes

View databases Yes Yes

Remove a database from view Yes No

Drop a database Yes Yes

Create a physical schema design (Database Designer) No Yes

Modify a physical schema design (Database Designer) No Yes

Set the restart policy No Yes

Roll back database to the Last Good Epoch No Yes

-230-

Administrator's Guide

Manage clusters (add, replace, remove hosts) Yes Yes

Rebalance data across nodes in the database Yes Yes

Configure database parameters dynamically Yes No

View database activity in relation to physical resource usage Yes No

View alerts and messages dynamically Yes No

View current database size usage statistics Yes No

View database size usage statistics over time Yes No

Upload/upgrade a license file Yes Yes

Warn users about license violation on login Yes Yes

Create, edit, manage, and delete users/user information Yes No

Use LDAP to authenticate users with company credentials Yes Yes

Manage user access to MC through roles Yes No

Map Management Console users to an HP Vertica database Yes No

Enable and disable user access to MC and/or the database Yes No

Audit user activity on database Yes No

Hide features unavailable to a user through roles Yes No

Generate new user (non-LDAP) passwords Yes No

See Also

Monitoring HP Vertica Using Management Console (page 612)

-231-

 231

Administration Tools Reference

Viewing Database Cluster State

This tool shows the current state of the nodes in the database.

1 On the Main Menu, select View Database Cluster State, and click OK.

The normal state of a running database is ALL UP. The normal state of a stopped database is
ALL DOWN.

2 If some hosts are UP and some DOWN, restart the specific host that is down using Restart HP

Vertica on Host from the Administration Tools, or you can start the database as described in

Starting and Stopping the Database (page 233) (unless you have a known node failure and
want to continue in that state.)

Nodes shown as INITIALIZING or RECOVERING indicate that Failure Recovery (page 566)
is in progress.

-232-

Administrator's Guide

Nodes in other states (such as NEEDS_CATCHUP) are transitional and can be ignored unless
they persist.

See Also

 Advanced Menu Options (page 239)

 Startup Problems

 Shutdown Problems

Connecting to the Database

This tool connects to a running database with vsql. You can use the Administration Tools to
connect to a database from any node within the database while logged in to any user account with
access privileges. You cannot use the Administration Tools to connect from a host that is not a
database node. To connect from other hosts, run vsql as described in Connecting From the
Command Line in the Programmer's Guide.

1 On the Main Menu, click Connect to Database, and then click OK.

2 Supply the database password if asked:

Password:

When you create a new user with the CREATE USER command, you can configure the
password or leave it empty. You cannot bypass the password if the user was created with a
password configured. You can change a user's password using the ALTER USER command.

The Administration Tools connect to the database and transfer control to vsql.

Welcome to vsql, the Vertica Analytic Database interactive terminal.

Type: \h or \? for help with vsql commands

 \g or terminate with semicolon to execute query

 \q to quit

=>

See Using vsql for more information.

Note: After entering your password, you may be prompted to change your password if it has

expired. See Implementing Client Authentication (page 117) for details of password
security.

See Also

CREATE USER and ALTER USER in the SQL Reference Manual

-233-

 233

Starting the Database

Starting a K-safe database is supported when up to K nodes are down or unavailable. See Failure
Recovery (page 566) for a discussion on various scenarios encountered during database
shutdown, startup and recovery.

You can start a database using any of these methods:

 The Management Console

 The Administration Tools interface

 The command line

Starting the database using MC

On MC's Databases and Clusters page, click a database to select it, and click Start within the
dialog box that displays.

Starting the database using the Administration Tools

1 Open the Administration Tools and select View Database Cluster State (page 231) to make
sure that all nodes are down and that no other database is running. If all nodes are not down,
see Shutdown Problems.

2 Open the Administration Tools. See Using the Administration Tools (page 222) for
information about accessing the Administration Tools.

3 On the Main Menu, select Start Database,and then select OK.

4 Select the database to start, and then click OK.

Warning: HP strongly recommends that you start only one database at a time. If you start
more than one database at any time, the results are unpredictable. Users could encounter
resource conflicts or perform operations in the wrong database.

5 Enter the database password, and then click OK.

6 When prompted that the database started successfully, click OK.

7 Check the log files to make sure that no startup problems occurred. See Monitoring HP
Vertica Using Ganglia (page 641).

If the database does not start successfully, see Startup Problems.

Starting the database at the command line

If you use the admintools command line option (page 245), start_db(), to start a database,

the -p password argument is only required during database creation, when you install a new
license.

As long as the license is valid, the -p argument is not required to start the database and is silently
ignored, even if you introduce a typo or prematurely press the enter key. This is by design, as the
database can only be started by the user who (as part of the verticadba UNIX user group) initially
created the database or who has root or su privileges.

If the license were to become invalid, HP Vertica would use the -p password argument to attempt
to upgrade the license with the license file stored in /opt/vertica/config/share/license.key.

-234-

Administrator's Guide

Following is an example of using start_db on a standalone node:

[dbadmin@localhost ~]$ /opt/vertica/bin/admintools -t start_db -d VMart

Info: no password specified, using none

 Node Status: v_vmart_node0001: (DOWN)

 Node Status: v_vmart_node0001: (DOWN)

 Node Status: v_vmart_node0001: (DOWN)

 Node Status: v_vmart_node0001: (DOWN)

 Node Status: v_vmart_node0001: (DOWN)

 Node Status: v_vmart_node0001: (DOWN)

 Node Status: v_vmart_node0001: (DOWN)

 Node Status: v_vmart_node0001: (DOWN)

 Node Status: v_vmart_node0001: (UP)

Database VMart started successfully

Stopping the Database

This Administration Tool stops a running database.

1 Use View Database Cluster State (page 231) to make sure that all nodes are up. If all nodes
are not up, see Restarting HP Vertica on Host (page 234).

2 On the Main Menu, select Stop Database, and click OK.

3 Select the database you want to stop, and click OK.

4 Enter the password if asked, and click OK.

5 A message confirms that the database has been successfully stopped. Click OK.

Notes

If the database does not stop successfully, see Shutdown Problems.

You cannot stop databases if your password has expired. The Administration Tools displays an
error message if you attempt to do so. You need to change your expired password using vsql
before you can shut down a database.

Restarting HP Vertica on Host
This tool restarts the HP Vertica process one or more nodes in a running database. Use this tool
when a cluster host reboots while the database is running. The spread daemon starts
automatically but the HP Vertica process does not, thus the node does not automatically rejoin the
cluster.

1 On the Main Menu, select View Database Cluster State, and click OK.

2 If one or more nodes are down, select Restart HP Vertica on Host, and click OK.

-235-

 Using the Administration Tools

3 Select the database that contains the host that you want to restart, and click OK.

4 Select the Host that you want to restart, and click OK.

5 Select View Database Cluster State again to make sure that all nodes are up.

Configuration Menu Item

The Configuration Menu allows you to:

 Create, drop, and view databases

 Use the Database Designer to create or modify a physical schema design

1 On the Main Menu, click Configuration Menu, and then click OK.

Creating a Database

1 On the Configuration Menu, click Create Database and then click OK.

2 Enter the name of the database and an optional comment. Click OK.

3 Enter a password.

If you do not enter a password, you are prompted to indicate whether you want to enter a
password. Click Yes to enter a password or No to create a database without a superuser

password.

-236-

Administrator's Guide

Warning: If you do not enter a password at this point, superuser password is set to empty.

Unless the database is for evaluation or academic purposes, HP strongly recommends that
you enter a superuser password.

4 If you entered a password, enter the password again.

5 Select the hosts to include in the database. The hosts in this list are the ones that were

specified at installation time (install_vertica -s).

6 Specify the directories in which to store the catalog and data files.

Note: Catalog and data paths must contain only alphanumeric characters and cannot have

leading space characters. Failure to comply with these restrictions could result in database
creation failure.

Note: Do not use a shared directory for more than one node. Data and catalog directories must

be distinct for each node. Multiple nodes must not be allowed to write to the same data or
catalog directory.

-237-

 Using the Administration Tools

7 Check the current database definition for correctness, and click Yes to proceed.

8 A message indicates that you have successfully created a database. Click OK.

Note: If you get an error message, see Startup Problems

Dropping a Database

This tool drops an existing database. Only the Database Administrator is allowed to drop a
database.

1 Stop the database as described in Stopping a Database (page 234).

2 On the Configuration Menu, click Drop Database and then click OK.

3 Select the database to drop and click OK.

4 Click Yes to confirm that you want to drop the database.

5 Type yes and click OK to reconfirm that you really want to drop the database.

6 A message indicates that you have successfully dropped the database. Click OK.

Notes

In addition to dropping the database, HP Vertica automatically drops the node definitions that refer
to the database unless:

 Another database uses a node definition. If another database refers to any of these node
definitions, none of the node definitions are dropped.

 A node definition is the only node defined for the host. (HP Vertica uses node definitions to
locate hosts that are available for database creation, so removing the only node defined for a
host would make the host unavailable for new databases.)

Viewing a Database

This tool displays the characteristics of an existing database.

-238-

Administrator's Guide

1 On the Configuration Menu, select View Database and click OK.

2 Select the database to view.

3 HP Vertica displays the following information about the database:

 The name of the database.

 The name and location of the log file for the database.

 The hosts within the database cluster.

 The value of the restart policy setting.

Note: This setting determines whether nodes within a K-Safe database are restarted when

they are rebooted. See Setting the Restart Policy (page 238).

 The database port.

 The name and location of the catalog directory.

Setting the Restart Policy

The Restart Policy enables you to determine whether or not nodes in a K-Safe database are
automatically restarted when they are rebooted. Since this feature does not automatically restart
nodes if the entire database is DOWN, it is not useful for databases that are not K-Safe.

To set the Restart Policy for a database:

1 Open the Administration Tools.

2 On the Main Menu, select Configuration Menu, and click OK.

3 In the Configuration Menu, select Set Restart Policy, and click OK.

4 Select the database for which you want to set the Restart Policy, and click OK.

5 Select one of the following policies for the database:

 Never — Nodes are never restarted automatically.

 K-Safe — Nodes are automatically restarted if the database cluster is still UP. This is the

default setting.

 Always - Node on a single node database is restarted automatically

6 Click OK.

Best Practice for Restoring Failed Hardware

Following this procedure will prevent HP Vertica from misdiagnosing missing disk or bad mounts
as data corruptions, which would result in a time-consuming, full-node recovery.

If a server fails due to hardware issues, for example a bad disk or a failed controller, upon repairing
the hardware:

-239-

 Using the Administration Tools

1 Reboot the machine into runlevel 1, which is a root and console-only mode.

Runlevel 1 prevents network connectivity and keeps HP Vertica from attempting to reconnect
to the cluster.

2 In runlevel 1, validate that the hardware has been repaired, the controllers are online, and any
RAID recover is able to proceed.

Note: You do not need to initialize RAID recover in runlevel 1; simply validate that it can
recover.

3 Once the hardware is confirmed consistent, only then reboot to runlevel 3 or higher.

At this point, the network activates, and HP Vertica rejoins the cluster and automatically recovers
any missing data. Note that, on a single-node database, if any files that were associated with a
projection have been deleted or corrupted, HP Vertica will delete all files associated with that
projection, which could result in data loss.

1 Run the Administration Tools.

$ /opt/vertica/bin/adminTools

2 On the AdminTools Main Menu, click Configuration Menu, and then click OK.

3 On the Configuration Menu, click Install External Procedure and then click OK.

4 Select the database on which you want to install the external procedure.

5 Either select the file to install or manually type the complete file path, and then click OK.

6 If you are not the superuser, you are prompted to enter your password and click OK.

The Administration Tools automatically create the

<database_catalog_path>/procedures directory on each node in the database and
installs the external procedure in these directories for you.

Click OK in the dialog that indicates that the installation was successful.

Advanced Tools Menu Options

This Advanced Tools Menu provides interactive recovery and repair commands.

-240-

Administrator's Guide

1 On the Main Menu, click Advanced Tools Menu and then OK.

Rolling Back Database to the Last Good Epoch

HP Vertica provides the ability to roll the entire database back to a specific epoch primarily to
assist in the correction of human errors during data loads or other accidental corruptions. For
example, suppose that you have been performing a bulk load and the cluster went down during a
particular COPY command. You might want to discard all epochs back to the point at which the
previous COPY command committed and run the one that did not finish again. You can determine
that point by examining the log files (see Monitoring the Log Files (page 575)).

1 On the Advanced Tools menu, select Roll Back Database to Last Good Epoch.

2 Select the database to roll back. The database must be stopped.

3 Accept the suggested restart epoch or specify a different one.

4 Confirm that you want to discard the changes after the specified epoch.

The database restarts successfully.

Important note:

In HP Vertica 4.1, the default for the HistoryRetentionTime configuration parameter changed

to 0, which means that HP Vertica only keeps historical data when nodes are down. This new
setting effectively prevents the use of the Administration Tools 'Roll Back Database to Last Good
Epoch' option because the AHM remains close to the current epoch and a rollback is not permitted
to an epoch prior to the AHM. If you rely on the Roll Back option to remove recently loaded data,
consider setting a day-wide window for removing loaded data; for example:

=> SELECT SET_CONFIG_PARAMETER ('HistoryRetentionTime', '86400');

Stopping HP Vertica on Host

This command attempts to gracefully shut down the HP Vertica process on a single node.

Caution: Do not use this command if you are intending to shut down the entire cluster. Use

Stop Database (page 234) instead, which performs a clean shutdown to minimize data loss.

1 On the Advanced Tools menu, select Stop HP Vertica on Host and click OK.

-241-

 Using the Administration Tools

2 Select the hosts to stop.

3 Confirm that you want to stop the hosts.

If the command succeeds View Database Cluster State (page 231) shows that the selected
hosts are DOWN.

If the command fails to stop any selected nodes, proceed to Killing HP Vertica Process on
(page 241)Host.

Killing the HP Vertica Process on Host

This command sends a kill signal to the HP Vertica process on a node.

-242-

Administrator's Guide

Caution: Do not use this command unless you have already tried Stop Database (page 234)

and Stop HP Vertica on Node (page 240) and both were unsuccessful.

1 On the Advanced menu, select Kill HP Vertica Process on Host and click OK.

2 Select the hosts on which to kills the HP Vertica process.

3 Confirm that you want to stop the processes.

4 If the command succeeds View Database Cluster State (page 231) shows that the selected
hosts are DOWN.

5 If the command fails to stop any selected processes, see Shutdown Problems.

-243-

 Using the Administration Tools

Upgrading an Enterprise or Evaluation License Key

The following steps are for HP Vertica Enterprise Edition or evaluation licensed users only. This
command copies a license key file into the database. See Managing Your License Key (page
108) for more information.

1 On the Advanced menu select Upgrade License Key and click OK.

2 Select the database for which to upgrade the license key.

3 Enter the absolute pathname of your downloaded license key file (for example,

/tmp/vlicense.dat) and click OK.

4 Click OK when you see a message that indicates that the upgrade succeeded.

Note: If you are using HP Vertica Community Edition, follow the instructions in Upgrading from
an HP Vertica Community Edition license for instructions to upgrade to an HP Vertica
Enterprise Edition or evaluation license key.

Managing Clusters

Cluster Management lets you add, replace, or remove hosts from a database cluster. These
processes are usually part of a larger process of adding (page 435), removing (page 441), or
replacing (page 445) a database node.

Before Using Cluster Management: View the database state to verify that it is running. See

View Database Cluster State (page 231). If the database isn't running, restart it. See Starting
a Database.

Using Cluster Management

To use Cluster Management:

1 From the Main Menu, select Advanced Tools, and then click OK.

2 In the Advanced Tools Menu, select Cluster Management, and then click OK.

3 Select one of the following, and then click OK.

 Add Hosts to Database: See Adding Hosts to a Database (page 439).

 Re-balance Data: See Rebalancing Data (page 450).

 Replace Host: See Replacing Hosts (page 448).

 Remove Host from Database: See Removing Hosts from a Database (page 442).

Using the Administration Tools

The Help Using the Administration Tools command displays a help screen about using the
Administration Tools.

Most of the online help in the Administration Tools is context-sensitive. For example, if you up the
use up/down arrows to select a command, press tab to move to the Help button, and press return,
you get help on the selected command.

-244-

Administrator's Guide

Administration Tools Metadata

The Administration Tools configuration data (metadata) contains information that databases need
to start, such as the hostname/IP address of each participating host in the database cluster.

To facilitate hostname resolution within the Administration Tools, at the command line, and inside
the installation utility, HP Vertica enforces all hostnames you provide through the Administration
Tools to use IP addresses:

 During installation

HP Vertica immediately converts any hostname you provide through command line
options -s, -A or -R to its IP address equivalent.

 If you provide a hostname during installation that resolves to multiple IP addresses (such
as in multi-homed systems), the installer prompts you to choose one IP address.

 HP Vertica retains the name you give for messages and prompts only; internally it stores
these hostnames as IP addresses.

 Within the Administration Tools

All hosts are in IP form to allow for direct comparisons (for example db = database =
database.verticacorp.com).

 At the command line

HP Vertica converts any hostname value to an IP address that it uses to look up the host in the
configuration metadata. If a host has multiple IP addresses that are resolved, HP Vertica tests
each IP address to see if it resides in the metadata, choosing the first match. No match
indicates that the host is not part of the database cluster.

Metadata is more portable because HP Vertica does not require the names of the hosts in the
cluster to be exactly the same when you install or upgrade your database.

-245-

 245

Writing Administration Tools Scripts

You can invoke most of the Administration Tools from the command line or a shell script.

Syntax

> /opt/vertica/bin/admintools [-t | --tool] toolname [options]

Note: For convenience, you can add /opt/vertica/bin to your search path.

Parameters

[-t] | [--tool] Instructs the Administration Tools to run the specified tool.

Note: If you use the --no-log option to run the Administration Tools

silently, --no-log must appear before the -t option.

toolname Name of one of the tools described in the help output below.

[options]

-h

--help

Shows a brief help message and exits.

-a

--help_all

Lists all command-line subcommands and options as
shown in the Tools section below.

Tools

To return a description of the tools you can access, issue the following command at a command
prompt:

$ admintools -a
Usage:

 adminTools [-t | --tool] toolName [options]

Valid tools are:

 stop_node

 host_to_node

 install_procedure

 show_active_db

 return_epoch

 stop_db

 db_remove_node

 stop_host

 install_node

 list_allnodes

 rebalance_data

 logrotate

 drop_db

 kill_node

 list_db

 kill_host

 set_restart_policy

 config_nodes

 db_status

 unit_test

 drop_node

 restart_db

 database_parameters

 restart_node

 check_spread

-246-

Administrator's Guide

 view_cluster

 node_map

 list_host

 start_db

 edit_auth

 command_host

 uninstall_node

 create_db

 connect_db

 list_node

 db_replace_node

 upgrade_license_key

 db_add_node

Usage: stop_node [options]

Options:

 -h, --help show this help message and exit

 -s HOSTS, --hosts=HOSTS

 comma-separated list of hosts on which the vertica

 process is to be killed using a SIGTERM signal

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

Usage: host_to_node [options]

Options:

 -h, --help show this help message and exit

 -s HOST, --host=HOST comma separated list of hostnames which is to be

 converted into its corresponding nodenames

 -d DB, --database=DB show only node/host mapping for this database.

Usage: install_procedure [options]

Options:

 -h, --help show this help message and exit

 -d DBNAME, --database=DBNAME

 Name of database for installed procedure

 -f PROCPATH, --file=PROCPATH

 Path of procedure file to install

 -p OWNERPASSWORD, --password=OWNERPASSWORD

 Password of procedure file onwer

Usage: show_active_db [options]

Options:

 -h, --help show this help message and exit

Usage: return_epoch [options]

Options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database

Usage: stop_db [options]

Options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database to be stopped

 -p DBPASSWORD, --password=DBPASSWORD

 Database password in single quotes

 -F, --force Force the databases to shutdown, even if users are

 connected.

 -i, --noprompts do not stop and wait for user input(default false)

Usage: db_remove_node [options]

Options:

-247-

 Using the Administration Tools

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database to be modified

 -s HOSTS, --hosts=HOSTS

 Name of the host to remove from the db

 -p DBPASSWORD, --password=DBPASSWORD

 Database password in single quotes

 -i, --noprompts do not stop and wait for user input(default false)

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

Usage: stop_host [options]

Options:

 -h, --help show this help message and exit

 -s HOSTS, --hosts=HOSTS

 comma-separated list of hosts on which the vertica

 process is to be killed using a SIGTERM signal

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

Usage: install_node [options]

Options:

 -h, --help show this help message and exit

 -s HOSTNAME, --host=HOSTNAME

 Comma separated list of hostnames upon which to

 install

 -r RPMNAME, --rpm=RPMNAME

 Fully qualified file name of the RPM to be used on

 install

 -p PASSWORD, --password=PASSWORD

 Name of file containing root password for machines in

 the list

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

Usage: list_allnodes [options]

Options:

 -h, --help show this help message and exit

Usage: rebalance_data [options]

Options:

 -h, --help show this help message and exit

 -d DBNAME, --dbname=DBNAME

 database name

 -k KSAFETY, --ksafety=KSAFETY

 specify the new k value to use

 -p PASSWORD, --password=PASSWORD

 --script Don't re-balance the data, just provide a script for

 later use.

Usage: logrotateconfig [options]

Options:

 -h, --help show this help message and exit

 -d DBNAME, --dbname=DBNAME

 database name

 -r ROTATION, --rotation=ROTATION

 set how often the log is rotated.[

 daily|weekly|monthly]

 -s MAXLOGSZ, --maxsize=MAXLOGSZ

 set maximum log size before rotation is forced.

 -k KEEP, --keep=KEEP set # of old logs to keep

Usage: drop_db [options]

-248-

Administrator's Guide

Options:

 -h, --help show this help message and exit

 -d DB, --database=DB Database to be dropped

Usage: kill_node [options]

Options:

 -h, --help show this help message and exit

 -s HOSTS, --hosts=HOSTS

 comma-separated list of hosts on which the vertica

 process is to be killed using a SIGKILL signal

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

Usage: list_db [options]

Options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database to be listed

Usage: kill_host [options]

Options:

 -h, --help show this help message and exit

 -s HOSTS, --hosts=HOSTS

 comma-separated list of hosts on which the vertica

 process is to be killed using a SIGKILL signal

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

Usage: set_restart_policy [options]

Options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database for which to set policy

 -p POLICY, --policy=POLICY

 Restart policy: ('never', 'ksafe', 'always')

Usage: config_nodes [options]

Options:

 -h, --help show this help message and exit

 -f NODEHOSTFILE, --file=NODEHOSTFILE

 File containing list of nodes, hostnames, catalog

 path, and datapath (node<whitespace>host<whitespace>ca

 talogPath<whitespace>dataPath one per line)

 -i, --install Attempt to install from RPM on all nodes in the list

 -r RPMNAME, --rpm=RPMNAME

 Fully qualified file name of the RPM to be used on

 install

 -p PASSWORD, --password=PASSWORD

 Name of file containing Root password for machines in

 the list

 -c, --check Check all nodes to make sure they can interconnect

 -s SKIPANALYZENODE, --skipanalyzenode=SKIPANALYZENODE

 skipanalyzenode

Usage: db_status [options]

Options:

 -h, --help show this help message and exit

 -s STATUS, --status=STATUS

 Database status UP,DOWN or ALL(list running dbs -

 UP,list down dbs - DOWN list all dbs - ALL

Running unit tests...

testClearScreen (vertica.UnitTest.TestSequenceFunctions) ... ok

-249-

 Using the Administration Tools

--

Ran 1 test in 0.002s

OK

Usage: drop_node [options]

Options:

 -h, --help show this help message and exit

 -n NODENAME, --node=NODENAME

 Name of the node to be dropped

 --force Force a node to be dropped if its the last reference

 to the host.

Usage: restart_db [options]

Options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database to be restarted

 -e EPOCH, --epoch=EPOCH

 Epoch at which the database is to be restarted. If

 'last' is given as argument the db is restarted from

 the last good epoch.

 -p DBPASSWORD, --password=DBPASSWORD

 Database password in single quotes

 -i, --noprompts do not stop and wait for user input(default false)

Usage: database_parameters [options]

Options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database

 -P PARAMETER, --parameter=PARAMETER

 Database parameter

 -c COMPONENT, --component=COMPONENT

 Component[optional]

 -s SUBCOMPONENT, --subcomponent=SUBCOMPONENT

 Sub Component[optional]

 -p PASSWORD, --password=PASSWORD

 Database password[optional]

Usage: restart_node [options]

Options:

 -h, --help show this help message and exit

 -s NODES, --hosts=NODES

 comma-separated list of hosts to be restarted

 -d DB, --database=DB Name of database whose node is to be restarted

 -p DBPASSWORD, --password=DBPASSWORD

 Database password in single quotes

 -i, --noprompts do not stop and wait for user input(default false)

 -F, --force force the node to start and auto recover if necessary

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

Usage: check_spread [options]

Options:

 -h, --help show this help message and exit

Usage: view_cluster [options]

Options:

 -h, --help show this help message and exit

 -x, --xpand show the full cluster state, node by node

 -d DB, --database=DB filter the output for a single database

Usage: node_map [options]

-250-

Administrator's Guide

Options:

 -h, --help show this help message and exit

 -d DB, --database=DB List only data for this database.

Usage: list_host [options]

Options:

 -h, --help show this help message and exit

Usage: start_db [options]

Options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database to be started

 -p DBPASSWORD, --password=DBPASSWORD

 Database password in single quotes

 -i, --noprompts do not stop and wait for user input(default false)

 -F, --force force the database to start at an epoch before data

 consistency problems were detected.

Usage: edit_auth [options]

Options:

 -h, --help show this help message and exit

 -d DATABASE, --database=DATABASE

 database to edit authentication parameters for

Usage: command_host [options]

Options:

 -h, --help show this help message and exit

 -c CMD, --command=CMD

 Command to run

Usage: uninstall_node [options]

Options:

 -h, --help show this help message and exit

 -s HOSTNAME, --host=HOSTNAME

 Comma separated list of hostnames upon which to

 uninstall

 -p PASSWORD, --password=PASSWORD

 Name of file containing root password for machines in

 the list

 -d, --delete Delete configuration data during uninstall

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

Usage: create_db [options]

Options:

 -h, --help show this help message and exit

 -s NODES, --hosts=NODES

 comma-separated list of hosts to participate in

 database

 -d DB, --database=DB Name of database to be created

 -c CATALOG, --catalog_path=CATALOG

 Path of catalog directory[optional] if not using

 compat21

 -D DATA, --data_path=DATA

 Path of data directory[optional] if not using compat21

 -p DBPASSWORD, --password=DBPASSWORD

 Database password in single quotes [optional]

 -l LICENSEFILE, --license=LICENSEFILE

 Database license [optional]

 -P POLICY, --policy=POLICY

 Database restart policy [optional]

-251-

 Using the Administration Tools

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

Usage: connect_db [options]

Options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database to connect

 -p DBPASSWORD, --password=DBPASSWORD

 Database password in single quotes

Usage: list_node [options]

Options:

 -h, --help show this help message and exit

 -n NODENAME, --node=NODENAME

 Name of the node to be listed

Usage: db_replace_node [options]

Options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database to be restarted

 -o ORIGINAL, --original=ORIGINAL

 Name of host you wish to replace

 -n NEWHOST, --new=NEWHOST

 Name of the replacement host

 -p DBPASSWORD, --password=DBPASSWORD

 Database password in single quotes

 -i, --noprompts do not stop and wait for user input(default false)

Usage: upgrade_license_key [options]

Options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database [required if databases exist]

 -l LICENSE, --license=LICENSE

 Database license

 -i INSTALL, --install=INSTALL

 argument '-i install' to Install license else without

 '-i install' Upgrade license

 -p PASSWORD, --password=PASSWORD

 Database password[optional]

Usage: db_add_node [options]

Options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database to be restarted

 -s HOSTS, --hosts=HOSTS

 Comma separated list of hosts to add to database

 -p DBPASSWORD, --password=DBPASSWORD

 Database password in single quotes

 -a AHOSTS, --add=AHOSTS

 Comma separated list of hosts to add to database

 -i, --noprompts do not stop and wait for user input(default false)

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

-252-

 252

Using Management Console

Most of the information you need to use MC is available on the MC interface. The topics in this
section augment some areas of the MC interface and provide examples. For an introduction to MC
functionality, architecture, and security, see Management Console in the Concepts Guide.

Note: Management Console provides some, but not all of the functionality that the

Administration Tools provides. In addition, MC provides extended functionality not available in
the Administration Tools, such as a graphical view of your HP Vertica database and detailed
monitoring charts and graphs, described in Monitoring HP Vertica Using MC (page 612). See
Administration Tools and Management Console (page 229) in the Administrator's Guide.

If you have not yet installed MC, see Installing and Configuring Management Console in the
Installation Guide.

Connecting to MC
To connect to Management Console:

1 Open an HTML-5 compliant browser.

2 Enter the IP address or host name of the host on which you installed MC (or any cluster node if
you installed HP Vertica first), followed by the MC port you assigned when you configured MC
(default 5450).

For example, enter one of:

https://00.00.00.00:5450/

or

https://hostname:5450/

3 When the MC logon dialog appears, enter your MC username and password and click Log in.

Note: When MC users log in to the MC interface, MC checks their privileges on HP Vertica

Data Collector (DC) tables on MC-monitored databases. Based on DC table privileges, along
with the role assigned the MC user, each user's access to the MC's Overview, Activity and
Node details pages could be limited. See About MC Privileges and Roles (page 199) for
more information.

If you do not have an MC username/password, contact your MC administrator.

-253-

 Using Management Console

Managing Client Connections on MC

Each client session on MC uses a connection from MaxClientSessions, a database
configuration parameter that determines the maximum number of sessions that can run on a
single database cluster node. If multiple MC users are mapped to the same database account and
are concurrently monitoring the Overview and Activity pages, graphs could be slow to update
while MC waits for a connection from the pool.

Tip: You can increase the value for MaxClientSessions on an MC-monitored database to

take extra sessions into account. See Managing Sessions (page 494) for details.

See Also

Monitoring HP Vertica Using MC (page 612)

Managing Database Clusters on MC
To perform database/cluster-specific tasks on one or more MC-managed clusters, navigate to the
Databases and Clusters page.

MC administrators see the Import/Create Database Cluster options, while non-administrative MC
users see only the databases on which they have been assigned the appropriate access levels
(page 148). Depending on your access level, the database-related operations you can perform on
the MC interface include:

 Create a new database/cluster (page 22).

 Import an existing database/cluster (page 255) into the MC interface.

 Start the database, unless it is already running (green).

 Stop the database, but only if no users are connected.

 Remove the database from the MC interface.

Note: Remove does not drop the database; it leaves it in the cluster, hidden from the UI. To
add the database back to the MC interface, import it using the IP address of any cluster node.
A Remove operation also stops metrics gathering on that database, but statistics gathering
automatically resumes after you re-import.

 Drop the database after you ensure no users are connected. Drop is a permanent action that
drops the database from the cluster.

 View Database to open the Overview page, a layout that provides a dashboard view into the
health of your database cluster (node state, storage, performance, CPU/memory, and query
concurrency). From this page you can drill down into more detailed database-specific
information by clicking data points in the graphs.

 View Cluster to open the Manage page, which shows all nodes in the cluster, as well as each
node's state. You can also see a list of monitored databases on the selected cluster and its
state; for example, a green arrow indicates a database in an UP state. For node-specific
information, click any node to open the Node Details page.

-254-

Administrator's Guide

See Also

For more information about what users can see and do on MC, see the following topics:

About MC Users (page 148)

About MC Privileges and Roles (page 199)

Create an Empty Database Using MC

You can create a new database on an existing HP Vertica cluster through the Management
Console interface.

Database creation can be a long-running process, lasting from minutes to hours, depending on the
size of the target database. You can close the web browser during the process and sign back in to
MC later; the creation process continues unless an unexpected error occurs. See the Notes

section below the procedure on this page.

You currently need to use command line scripts to define the database schema and load data.
Refer to the topics in Configuration Procedure (page 16). You should also run the Database
Designer, which you access through the Administration Tools, to create either a comprehensive or
query-specific design. Consider using the Tutorial in the Getting Started Guide to create a sample
database you can start monitoring immediately.

How to create an empty database on an MC-managed cluster

1 If you are already on the Databases and Clusters page, skip to the next step; otherwise:

a) Connect (page 252) to MC and sign in as an MC administrator.

b) On the Home page, click the Databases and Clusters task.

2 If no databases exist on the cluster, continue to the next step; otherwise:

a) If a database is running on the cluster on which you want to add a new database, select the
database and click Stop.

b) Wait for the running database to have a status of Stopped.

3 Click the cluster on which you want to create the new database and click Create Database.

4 The Create Database wizard opens. Provide the following information:

 Database name and password. See Creating a Database Name and Password (page
21) for rules.

 Optionally click Advanced to open the advanced settings and change the port and catalog,

data, and temporary data paths. By default the MC application/web server port is 5450 and

paths are /home/dbadmin, or whatever you defined for the paths when you ran the

Cluster Creation Wizard or the install_vertica script. Do not use the default agent
port 5444 as a new setting for the MC port. See MC Settings > Configuration for port

values.

5 Click Continue.

6 Select nodes to include in the database.

-255-

 Using Management Console

The Database Configuration window opens with the options you provided and a graphical
representation of the nodes appears on the page. By default, all nodes are selected to be part
of this database (denoted by a green check mark). You can optionally click each node and
clear Include host in new database to exclude that node from the database. Excluded nodes
are gray. If you change your mind, click the node and select the Include check box.

7 Click Create in the Database Configuration window to create the database on the nodes.

The creation process takes a few moments, after which the database starts and a Success

message appears on the interface.

8 Click OK to close the success message.

MC's Manage page opens and displays the database nodes. Nodes not included in the database
are colored gray, which means they are standby nodes you can include later. To add nodes to or
remove nodes from your HP Vertica cluster, which are not shown in standby mode, you must run
the install_vertica script.

Notes

 If warnings occur during database creation, nodes will be marked on the UI with an Alert icon
and a message.

 Warnings do not prevent the database from being created, but you should address
warnings after the database creation process completes by viewing the database
Message Center from the MC Home page.

 Failure messages display on the database Manage page with a link to more detailed

information and a hint with an actionable task that you must complete before you can
continue. Problem nodes are colored red for quick identification.

 To view more detailed information about a node in the cluster, double-click the node from
the Manage page, which opens the Node Details page.

 To create MC users and grant them access to an MC-managed database, see About MC
Users (page 148) and Creating an MC user (page 149).

See Also

Creating an HP Vertica Cluster Using MC

Troubleshooting Management Console (page 259)

Restarting MC (page 261)

Import an Existing Database Into MC

If you have already upgraded your database to the current version of HP Vertica, MC
automatically discovers the cluster and any databases installed on it, regardless of whether those
databases are currently running or are down.

Note: If you haven't created a database and want to create one through the MC, see Create an

Empty Database Using MC (page 22).

In the image below, MC discovered two databases:

 DATABASE2, which is running, denoted by a green UP arrow

-256-

Administrator's Guide

 MYDB, which is not running, denoted by a red DOWN arrow

How to import an existing database on the cluster

The following procedure describes how to import an MC-discovered existing database into the MC
interface so you can monitor it.

1 Connect (page 252) to Management Console and sign in as an MC administrator.

2 On the MC Home page, click Databases and Clusters.

3 On the Databases and Clusters page, click the cluster cube and click View in the dialog box

that opens.

4 On the left side of the page, look under the Databases heading and click Import Discovered.

Tip: A running MC-discoverd databases appears as Monitored, and any non-running

databases appear as Discovered. MC supports only one running database on a single cluster
at a time. In the image above, if you want to monitor the MYDB database, you would need to
shut down the DATABASE2 database first.

5 In the Import Database dialog box:

1. Select the database you want to import.

2. Optionally clear auto-discovered databases you don't want to import.

3. Supply the database username and password and click Import.

After Management Console connects to the database it opens the Manage page, which provides
a view of the cluster nodes. See Monitoring Cluster Status (page 616) for more information.

You perform the import process once per existing database. Next time you connect to
Management Console, you'll see your database under the Recent Databases section on the
Home page, as well as on the Databases and Clusters page.

-257-

 Using Management Console

Using MC on an AWS Cluster

If you are running an Amazon Web Services (AWS) cluster on HP Vertica 6.1.2, you can install
and run MC to monitor and manage your database. You cannot, however, use the MC interface to
create or import an HP Vertica cluster.

Managing MC Settings
On the MC Settings page, you can configure properties specific to Management Console, such
as:

 Change the MC and agent default port assignments

 Upload a new HP Vertica Enterprise Edition license

Note: By default, a Community Edition edition license is included with MC, which has a
1-TB/3-node limit.

 Upload a new SSL certificate

 Use LDAP for user authentication

 Create new MC users and map them to an MC-managed database using user credentials on
the HP Vertica server

 Install HP Vertica on a cluster of hosts through the MC interface

If you are looking for database-specific settings

If you want to inspect or modify settings related to an MC-managed database, go to the Databases
and Clusters page, view a running database, and access that database's Settings page from a tab
at the bottom at the page.

Changing MC or Agent Ports
When you configure MC, the Configuration Wizard sets up the following default ports:

 5450—Used to connect a web browser session to MC and allows communication from HP
Vertica cluster nodes to the MC application/web server

 5444—Provides MC-to-node and node-to-node (agent) communications for database
create/import and monitoring activities

-258-

Administrator's Guide

If you need to change the MC default ports

A scenario might arise where you need to change the default port assignments for MC or its
agents. For example, perhaps one of the default ports is not available on your HP Vertica cluster,
or you encounter connection problems between MC and the agents. The following topics describe
how to change port assignments for MC or its agents.

See Also

Ensure Ports are Available in the Installation Guide

How to Change the Agent Port

Changing the agent port takes place in two steps: at the command line, where you modify the
config.py file and through a browser, where you modify MC settings.

Change the agent port in config.py

1 Log in as root on any cluster node and change to the agent directory:

cd /opt/vertica/agent

2 Use any text editor to open config.py.

3 Scroll down to the agent_port = 5444 entry and replace 5444 with a different port number.

4 Save and close the file.

5 Copy config.py to the /opt/vertica/agent directory on all nodes in the cluster.

6 Restart the agent process by running the following command:

/etc/init.d/vertica_agent restart

7 Repeat (as root) Step 6 on each cluster node where you copied the config.py file.

Change the agent port on MC

1 Open a web browser and connect to MC (page 252) as a user with MC ADMIN (page 202)
privileges.

2 Navigate to MC Settings > Configuration.

3 Change Default HP Vertica agent port from 5444 to the new value you specified in the

config.py file.

4 Click Apply and click Done.

5 Restart MC (page 261) so MC can connect to the agent at its new port.

How to Change the MC Port

Use this procedure to change the default port for MC's application server from 5450 to a different
value.

-259-

 Using Management Console

1 Open a web browser and connect to MC (page 252) as a user with MC ADMIN (page 202)
privileges.

2 On the MC Home page, navigate to MC Settings > Configuration and change the Application

server running port value from 5450 to a new value.

3 In the change-port dialog, click OK.

4 Restart MC (page 261).

5 Reconnect your browser session using the new port. For example, if you changed the port
from 5450 to 5555, use one of the following formats:

https://00.00.00.00:5555/

OR

https://hostname:5555/

Backing Up MC
Before you upgrade MC, HP recommends that you back up your MC metadata (configuration and
user settings) on a storage location external to the server on which you installed MC.

1 On the target server (where you want to store MC metadata), log on as root or a user with sudo
privileges.

2 Create a backup directory; for example:

mkdir /backups/mc/mc-backup-20130425

3 Copy the /opt/vconsole directory to the new backup folder:

cp –r /opt/vconsole /backups/mc/mc-backup-20130425

Troubleshooting Management Console
The Management Console Diagnostics page, which you access from the Home page, helps you
resolve issues within the MC process, not the database.

What you can diagnose:

 View Management Console logs, which you can sort by column headings, such as type,
component, or message).

 Search (page 635) within messages for key words or phrases and search for log entries within
a specific time frame.

 Export (page 637) database messages to a file.

 Reset console parameters to their original configuration.

Caution: Reset removes all data (monitoring and configuration information) from storage and
forces you to reconfigure MC as if it were the first time.

 Restart the Management Console process (page 261). When the process completes, you
are directed back to the login page.

-260-

Administrator's Guide

Viewing the MC Log
If you want to browse MC logs (not database logs), navigate to the Diagnostics > MC Log page.

This page provides a tabular view of the contents at /opt/vconsole/log/mc/mconsole.log,
letting you more easily identify and troubleshoot issues related to MC.

You can sort log entries by clicking the column header and search within messages for key words,
phrases, and log entries within a specific time frame. You can also export log messages to a file.

See Also

Exporting MC-managed Database Messages and Logs (page 637)

-261-

 Using Management Console

Exporting the User Audit Log

When an MC user makes changes on Management Console, whether to an MC-managed
database or to the MC itself, their action generates a log entry that contains data you can export to
a file.

If you perform an MC factory reset (restore MC to its pre-configured state), you automatically have
the opportunity to export audit records before the reset occurs.

To manually export MC user activity

1 From the MC Home page, click Diagnostics and then click Audit Log.

2 On the Audit log viewer page, click Export and save the file to a location on the server.

To see what types of user operations the audit logger records, see Monitoring MC User Activity
(page 639).

Restarting MC

You might need to restart the MC web/application server for a number of reasons, such as after
you change port assignments, use the MC interface to import a new SSL certificate, or if the MC
interface or HP Vertica-related tasks become unresponsive.

Restarting MC requires ADMIN role (mc) (page 202) or SUPER role (mc) (page 201) privileges.

How to restart MC through the MC interface (using your browser)

1 Open a web browser and connect to MC (page 252) as an administrator.

2 On MC's Home page, click Diagnostics.

3 Click Restart Console and then click OK to continue or Cancel to return to the Diagnostics

page..

The MC process shuts down for a few seconds and automatically restarts. After the process
completes, you are directed back to the sign-in page.

How to restart MC at the command line

If you are unable to connect to MC through a web browser for any reason, such as if the MC
interface or HP Vertica-related tasks become unresponsive, you can run the
vertica-consoled script with start, stop, or restart arguments.

Follow these steps to start, stop, or restart MC.

1 As root, open a terminal window on the server on which MC is installed.

2 Run the vertica-consoled script:

/etc/init.d/vertica-consoled { stop | start | restart }

stop Stops the MC application/web server.

-262-

Administrator's Guide

start Starts the MC application/web server.

Caution: Use start only i f you are certain MC is not already running. As a best

practice, stop MC before you issue the start command.

restart Restarts the MC application/web server. This process will report that the stop didn't
work if MC is not already running.

Starting over

If you need to return MC to its original state (a "factory reset"), see Resetting MC to
Pre-configured State (page 262).

Resetting MC to Pre-configured State
If you decide to reset MC to its original, preconfigured state, you can do so on the Diagnostics
page by clicking Factory Reset.

Tip: Consider trying one of the options described in Restarting MC (page 261) first.

A factory reset removes all metadata (about a week's worth of database monitoring/configuration
information and MC users) from storage and forces you to reconfigure MC again, as described in
Configuring MC in the Installation Guide.

After you click Factory Reset, you have the chance to export audit records to a file by clicking Yes.
If you click No (do not export audit records), the process begins. There is no undo.

Keep the following in mind concerning user accounts and the MC.

 When you first configure MC, during the configuration process you create an MC super user (a
Linux account). Issuing a Factory Reset on the MC does not create a new MC super user, nor
does it delete the existing MC super user. When initializing after a Factory Reset, you must
logon using the original MC super user account.

 Note that, once MC is configured, you can add users that are specific to MC. Users created
through the MC interface are MC specific. When you subsequently change a password
through the MC, you only change the password for the specific MC user. Passwords external
to MC (i.e., system Linux users and HP Vertica database passwords) remain unchanged.

For information on MC users, refer to the sections, Creating an MC User (page 149) and MC
configuration privileges (page 200).

Avoiding MC Self-Signed Certificate Expiration

When you connect to MC (page 252) through a client browser, HP Vertica assigns each HTTPS
request a self-signed certificate, which includes a timestamp. To increase security and protect
against password replay attacks, the timestamp is valid for several seconds only, after which it
expires.

-263-

 Using Management Console

To avoid being blocked out of MC, synchronize time on the hosts in your HP Vertica cluster, as
well as on the MC host if it resides on a dedicated server. To recover from loss or lack of
synchronization, resync system time and the Network Time Protocol. See Set Up Time
Synchronization in the Installation Guide. If you want to generate your own certificates and keys
for MC, see Generating Certifications and Keys for MC (page 137).

-264-

Operating the Database

Starting and Stopping the Database
This section describes how to start and stop the HP Vertica database using the Administration
Tools, Management Console, or from the command line.

-265-

 265

Starting the Database

Starting a K-safe database is supported when up to K nodes are down or unavailable. See Failure
Recovery (page 566) for a discussion on various scenarios encountered during database
shutdown, startup and recovery.

You can start a database using any of these methods:

 The Management Console

 The Administration Tools interface

 The command line

Starting the database using MC

On MC's Databases and Clusters page, click a database to select it, and click Start within the
dialog box that displays.

Starting the database using the Administration Tools

1 Open the Administration Tools and select View Database Cluster State (page 231) to make
sure that all nodes are down and that no other database is running. If all nodes are not down,
see Shutdown Problems.

2 Open the Administration Tools. See Using the Administration Tools (page 222) for
information about accessing the Administration Tools.

3 On the Main Menu, select Start Database,and then select OK.

4 Select the database to start, and then click OK.

Warning: HP strongly recommends that you start only one database at a time. If you start
more than one database at any time, the results are unpredictable. Users could encounter
resource conflicts or perform operations in the wrong database.

5 Enter the database password, and then click OK.

6 When prompted that the database started successfully, click OK.

7 Check the log files to make sure that no startup problems occurred. See Monitoring HP
Vertica Using Ganglia (page 641).

If the database does not start successfully, see Startup Problems.

Starting the database at the command line

If you use the admintools command line option (page 245), start_db(), to start a database,

the -p password argument is only required during database creation, when you install a new
license.

As long as the license is valid, the -p argument is not required to start the database and is silently
ignored, even if you introduce a typo or prematurely press the enter key. This is by design, as the
database can only be started by the user who (as part of the verticadba UNIX user group) initially
created the database or who has root or su privileges.

If the license were to become invalid, HP Vertica would use the -p password argument to attempt
to upgrade the license with the license file stored in /opt/vertica/config/share/license.key.

-266-

Administrator's Guide

Following is an example of using start_db on a standalone node:

[dbadmin@localhost ~]$ /opt/vertica/bin/admintools -t start_db -d VMart

Info: no password specified, using none

 Node Status: v_vmart_node0001: (DOWN)

 Node Status: v_vmart_node0001: (DOWN)

 Node Status: v_vmart_node0001: (DOWN)

 Node Status: v_vmart_node0001: (DOWN)

 Node Status: v_vmart_node0001: (DOWN)

 Node Status: v_vmart_node0001: (DOWN)

 Node Status: v_vmart_node0001: (DOWN)

 Node Status: v_vmart_node0001: (DOWN)

 Node Status: v_vmart_node0001: (UP)

Database VMart started successfully

Stopping the Database

Stopping a K-safe database is supported when up to K nodes are down or unavailable. See
Failure Recovery (page 566) for a discussion on various scenarios encountered during database
shutdown, startup and recovery.

You can stop a running database using either of these methods:

 The Management Console

 The Administration Tools interface

Stopping a running database using MC

1 Log in to MC as an MC administrator and navigate to the Manage page to make sure all nodes
are up. If a node is down, click that node and select Start node in the Node list dialog box.

2 Inform all users that have open connections that the database is going to shut down and
instruct them to close their sessions.

Tip: To check for open sessions, query the V_MONITOR.SESSIONS table. The client_label

column returns a value of MC for users who are connected to MC.

3 Still on the Manage page, click Stop in the toolbar.

Stopping a running database using the Administration Tools

1 Use View Database Cluster State (page 231) to make sure that all nodes are up. If all nodes
are not up, see Restarting a Node (page 234).

2 Inform all users that have open connections that the database is going to shut down and
instruct them to close their sessions.

Tip: A simple way to prevent new client sessions from being opened while you are shutting

down the database is to set the MaxClientSessions (page 37) configuration parameter to 0.
Be sure to restore the parameter to its original setting once you've restarted the database.

=> SELECT SET_CONFIG_PARAMETER ('MaxClientSessions', 0);

-267-

 Operating the Database

3 Close any remaining user sessions. (Use the CLOSE_SESSION and
CLOSE_ALL_SESSIONS functions.)

4 Open the Administration Tools. See Using the Administration Tools (page 222) for
information about accessing the Administration Tools.

5 On the Main Menu, select Stop Database, and then click OK.

6 Select the database you want to stop, and click OK.

7 Enter the password if asked, and click OK.

8 When prompted that the database has been successfully stopped, click OK.

Stopping a running database at the command line

If you use the admintools command line option (page 245), stop_db(), to stop a database as
follows:

[dbadmin@localhost ~]$ /opt/vertica/bin/admintools -t stop_db -d VMart

Info: no password specified, using none

 Issuing shutdown command to database

Database VMart stopped successfully

As long as the license is valid, the -p argument is not required to stop the database and is silently
ignored, even if you introduce a typo or press the enter key prematurely. This is by design, as the
database can only be stopped by the user who (as part of the verticadba UNIX user group) initially
created the database or who has root or su privileges.

If the license were to become invalid, HP Vertica would use the -p password argument to attempt
to upgrade the license with the license file stored in
/opt/vertica/config/share/license.key.

Working with the HP Vertica Index Tool
As of HP Vertica 6.0, there are three Index tool options:

 Reindex

 CheckCRC

 Checksort

NOTE: The Checksort option is available as of Version 6.0.1.

You use the HP Vertica Reindex option only if you have upgraded HP Vertica 6.0 from an earlier
version. Following an upgrade to 6.0, any new ROSes (including those that the TM generates) will
use the new index format. New installations use the improved index and maintain CRC
automatically.

You can run each of the HP Vertica Index tool options when the database cluster is down. You can
run the CheckCRC (-v) and Checksort (-I) options with the cluster up or down, as follows:

-268-

Administrator's Guide

Index Option Cluster down (per node) Cluster up (per node or all nodes)

Reindex vertica -D catalog_path -i N/A. Node cluster must be down to reindex.

CheckCRC vertica -D catalog_path -v select run_index_tool ('checkcrc')

select run_index_tool ('checkcrc', 'true')

Checksort vertica -D catalog_path -I select run_index_tool ('checksort')

select run_index_tool ('checksort', 'true')

The HP Vertica Index tool options are accessed through the vertica binary, located in the
/opt/vertica/bin directory on most installations.

NOTE: Running the Index tool options from the command line outputs progress about tool
activity, but not its results. To review the detailed messages after running the Index tool options,
see the indextool.log file, located in the database catalog directory as described below.

Syntax
/opt/vertica/bin/vertica -D catalog_path [-i | -I | -v]

Parameters

Parameter Description

-D catalog_path Specifies the catalog directory (-D) on which to run each
option.

-i Reindexes the ROSes.

-I Checks the node's ROSes for correct sort order.

-v Calculates a per-block cyclic redundancy check (CRC) on

existing data storage.

NOTE: You must run the reindex option on each cluster node, with the cluster down. You can
run the Index tool in parallel on different nodes.

Permissions

You must be a superuser to run the Index tool with any option.

Controlling Expression Analysis

The expression analysis that occurs as part of the HP Vertica database indexing techniques
improves overall performance. You can turn off such analysis, but doing so is not recommended.

To control expression analysis:

1 Use add_vertica_options to turn off EE expression analysis:

select add_vertica_options('EE', 'DISABLE_EXPR_ANALYSIS');

2 Display the current value by selecting it as follows:

select show_current_vertica_options;

3 Use clr_vertica_options to enable the expression analysis option:

select clr_vertica_options('EE', 'DISABLE_EXPR_ANALYSIS');

-269-

 Operating the Database

Performance and CRC

HP Vertica recognizes that CRC can affect overall database performance. You can turn off the
CRC facility, but doing so is not recommended.

To control CRC:

1 Change the value of the configuration parameter to zero (0):

select set_config_parameter(‗CheckCRC‘, ‗0‘);

2 Display the value:

select * from configuration_parameters;

3 To enable CRC. set the parameter to one (1):

select set_config_parameter(‗CheckCRC‘, ‗1');

The following sections describe each of the HP Vertica Index tool options and how and when to
use them.

Running the Reindex Option

Run the HP Vertica Reindex option to update each ROS index after upgrading to 6.0. Using this
option scans all local storage and reindexes the data in all ROSes on the node from which you
invoke the tool, adding several new fields to the ROS data blocks. These fields include the data

block's minimum and maximum values (min_value and max_value), and the total number of

nulls stored in the block (null_count). This option also calculates cyclic redundancy check
(CRC) values, and populates the corresponding data block field with the CRC value. The new data
block fields are required before using the CheckCRC or Checksort options. Once ROS data has
been reindexed, you can use either of the other HP Vertica Index tool options.

To reindex ROSes with the database cluster DOWN:

1 From the command line, start the Index tool with -D to specify the catalog directory path, and

-i to reindex:

[dbadmin@localhost bin]$ /opt/vertica/bin/vertica -D

/home/dbadmin/VMart/v_vmart_node0001_catalog -i

2 The Index tool outputs some general data to the terminal, and writes detailed information to the

indextool.log file:

Setting up logger and sessions...

Loading catalog...

Collecting storage containers...

Scanning data on disk...

Storages 219/219, bytes 302134347/302134347 100%

Committing catalog and SAL changes...

[dbadmin@localhost bin]$

3 The indextool.log file is located in the database catalog directory:

/home/dbadmin/VMart/v_vmart_node0001_catalog/indextool.log

-270-

Administrator's Guide

Running the CheckCRC Option

The CheckCRC option initially calculates a cyclic redundancy check (CRC) on each block of the
existing data storage. You can run this option only after the ROS has been reindexed. Using this
Index tool option populates the corresponding ROS data block field with a CRC value. Running
CheckCRC after its first invocation checks for data corruption.

To run CheckCRC when the database cluster is down:

1 From the command line, use the Index tool with -D to specify the catalog directory path, and

-v to specify the CheckCRC option.

2 CheckCRC outputs general data such as the following to the terminal, and writes detailed

information to the indextool.log file:

dbadmin@localhost bin]$ /opt/vertica/bin/vertica -D

/home/dbadmin/VMart/v_vmart_node0001_catalog -v

Setting up logger and sessions...

Loading catalog...

Collecting storage containers...

Scanning data on disk...

Storages 272/272, bytes 302135743/302135743 100%

[dbadmin@localhost bin]$

3 The indextool.log file is located in the database catalog directory:

/home/dbadmin/VMart/v_vmart_node0001_catalog/indextool.log

To run CheckCRC when the database is running:

1 From vsql, enter this query to run the check on the initiator node:

select run_index_tool ('checkcrc');

-or-

select run_index_tool ('checkcrc', 'false');

2 Enter this query to run the check on all nodes:

select run_index_tool ('checkcrc', 'true');

Handling CheckCRC Errors

Once CRC values exist in each ROS data block, HP Vertica calculates and compares the existing
CRC each time data is fetched from disk as part of query processing. If CRC errors occur while
fetching data, the following information is written to the vertica.log file:

CRC Check Failure Details:

File Name:

File Offset:

Compressed size in file:

Memory Address of Read Buffer:

Pointer to Compressed Data:

-271-

 Operating the Database

Memory Contents:

The Event Manager is also notified upon CRC errors, so you can use an SNMP trap to capture
CRC errors:

"CRC mismatch detected on file <file_path>. File may be corrupted. Please check

hardware and drivers."

If you are running a query from vsql, ODBC, or JDBC, the query returns a FileColumnReader

ERROR, indicating that a specific block's CRC does not match a given record, with the following
hint:

hint: Data file may be corrupt. Ensure that all hardware (disk and memory) is

working properly. Possible solutions are to delete the file <pathname> while the

node is down, and then allow the node to recover, or truncate the table data.

code: ERRCODE_DATA_CORRUPTED

Running the Checksort Option

If ROS data is not sorted correctly in the projection's order, queries that rely on sorted data will be
incorrect. Use the Checksort option to check the ROS sort order if you suspect or detect incorrect

queries. The Index tool Checksort option (-I) evaluates each ROS row to determine if the row is
sorted correctly. If the check locates a row that is not in order, it writes an error message to the log
file indicating the row number and contents of the unsorted row.

NOTE: Running Checksort from the command line does not report any defects that the tool

discovers, only the amount of scanned data.

The Checksort option checks only the ROSes of the host from which you initiate the Index tool. For
a comprehensive check of all ROSes in the HP Vertica cluster, run check sort on each cluster
node to ensure that all ROS data is sorted.

To run Checksort when the database cluster is down:

1 From the command line, start the Index tool with -D to specify the catalog directory path, and

-I to check the sort order:

[dbadmin@localhost bin]$ /opt/vertica/bin/vertica -D

/home/dbadmin/VMart/v_vmart_node0001_catalog -I

2 The Index tool outputs some general data to the terminal, and detailed information to the
indextool.log file:

Setting up logger and sessions...

Loading catalog...

Collecting storage containers...

Scanning data on disk...

Storages 17/17, bytes 1739030582/1739030582 100%

3 The indextool.log file is located in the database catalog directory:

/home/dbadmin/VMart/v_vmart_node0001_catalog/indextool.log

-272-

Administrator's Guide

To run Checksort when the database is running:

1 From vsql, enter this query to check the ROS sort order on the initiator node:

select run_index_tool ('checksort');

-or-

select run_index_tool ('checksort', 'false');

2 Enter this query to run the sort check on all nodes:

select run_index_tool ('checksort', 'true');

Viewing Index Tool

When running the HP Vertica Index tool options from the command line, the tool writes minimal

output to STDOUT, and detailed information to the indextool.log file in the database catalog
directory. When running CheckCRC and Checksort from vsql, results are written to the
vertica.log file on the node from which you run the query.

To view the results in the indextool.log file:

1 From the command line, navigate to the indextool.log file, located in the database
catalog directory.

[15:07:55][vertica-s1]: cd

/my_host/databases/check/v_check_node0001_catalog

2 For Checksort, all error messages include an OID number and the string 'Sort Order

Violation' as follows:

<INFO> ...on oid 45035996273723545: Sort Order Violation:

3 You can use grep on the indextool.log file to search for the Sort Order Violation string

with a command such as this, which returns the line before each string (-B1), and the four lines

that follow (-A4):

[15:07:55][vertica-s1]: grep -B1 -A4 'Sort Order Violation:'

/my_host/databases/check/v_check_node0001_catalog/indextool.log

2012-06-14 14:07:13.686 unknown:0x7fe1da7a1950 [EE] <INFO> An error

occurred when running index tool thread on oid 45035996273723537:

Sort Order Violation:

Row Position: 624

Column Index: 0

Last Row: 2576000

This Row: 2575000

--

012-06-14 14:07:13.687 unknown:0x7fe1dafa2950 [EE] <INFO> An error

occurred when running index tool thread on oid 45035996273723545:

Sort Order Violation:

Row Position: 3

Column Index: 0

-273-

 Operating the Database

Last Row: 4

This Row: 2

--

To find the relevant projection where the sort violation was found:

1 Query the storage_containers system table using a storage_oid equal to the OID

value listed in the indextool.log file.

2 Use a query such as this:

=> select * from storage_containers where storage_oid =

45035996273723545;

-274-

Working with Tables

Creating Base Tables
The CREATE TABLE statement creates a table in the HP Vertica logical schema.The example
database described in the Getting Started Guide includes sample SQL scripts that demonstrate
this procedure. For example:

CREATE TABLE vendor_dimension (

 vendor_key INTEGER NOT NULL PRIMARY KEY,

 vendor_name VARCHAR(64),

 vendor_address VARCHAR(64),

 vendor_city VARCHAR(64),

 vendor_state CHAR(2),

 vendor_region VARCHAR(32),

 deal_size INTEGER,

 last_deal_update DATE

);

NOTE: Each table can have a maximum 1600 columns.

Creating Tables Using the /*+direct*/ Clause

You can create a table or temporary directly to disk (ROS), bypassing memory (WOS), by using
the /* +direct */ clause. For example, following is an existing table called states:

VMart=> select * from states;

 State | Bird | Tree | Tax

-------+----------+-------+-----

 MA | Robin | Maple | 5.7

 NH | Thrush | Elm | 0

 NY | Cardinal | Oak | 7.2

(3 rows)

Create a new table, StateBird, with the /*+direct*/ clause in the statement. Place the

clause directly before the query (select State, Bird from states):

VMart=> create table StateBird as /*+direct*/ select State, Bird from states;

CREATE TABLE

VMart=> select * from StateBird;

 State | Bird

-------+----------

 MA | Robin

 NH | Thrush

 NY | Cardinal

(3 rows)

The following example creates a temporary table using the /*+direct*/ clause in the

statement, along with the ON COMMIT PRESERVE ROWS directive:

VVMart=> create temp table StateTax ON COMMIT PRESERVE ROWS as /*+direct*/ select

State, Tax from states;

-275-

 Working with Tables

CREATE TABLE

VMart=> select * from StateTax;

 State | Tax

-------+-----

 MA | 5.7

 NH | 0

 NY | 7.2

(3 rows)

Automatic projection creation

To get your database up and running quickly, HP Vertica automatically creates a default projection
for each table created through the CREATE TABLE and CREATE TEMPORARY TABLE
statements. Each projection created automatically (or manually) includes a base projection name
prefix. You must use the projection prefix when altering or dropping a projection (ALTER
PROJECTION RENAME, DROP PROJECTION).

How you use the CREATE TABLE statement determines when the projection is created:

 If you create a table without providing the projection-related clauses, HP Vertica automatically
creates a superprojection for the table when you use an INSERT INTO or COPY statement to
load data into the table for the first time. The projection is created in the same schema as the
table. Once HP Vertica has created the projection, it loads the data.

 If you use CREATE TABLE AS SELECT to create a table from the results of a query, the table
is created first and a projection is created immediately after, using some of the properties of
the underlying SELECT query.

 (Advanced users only) If you use any of the following parameters, the default projection is
created immediately upon table creation using the specified properties:

 column-definition (ENCODING encoding-type and ACCESSRANK integer)

 ORDER BY table-column

 hash-segmentation-clause

 range-segmentation-clause

 UNSEGMENTED { NODE node | ALL NODES }

 KSAFE

Note: Before you define a superprojection in the above manner, read Creating Custom

Designs (page 89) in the Administrator's Guide.

Characteristics of default automatic projections

A default auto-projection has the following characteristics:

 It is a superprojection.

 It uses the default encoding-type AUTO.

 If created as a result of a CREATE TABLE AS SELECT statement, uses the encoding
specified in the query table.

 Auto-projections use hash segmentation.

-276-

Administrator's Guide

 The number of table columns used in the segmentation expression can be configured, using

the MaxAutoSegColumns configuration parameter. See General Parameters (page 37) in
the Administrator's Guide. Columns are segmented in this order:

 Short (<8 bytes) data type columns first

 Larger (> 8 byte) data type columns

 Up to 32 columns (default for MaxAutoSegColumns configuration parameter)

 If segmenting more than 32 columns, use nested hash function

Auto-projections are defined by the table properties and creation methods, as follows:

I f table... Sort order is... Segmentation is...

Is created from input stream

(COPY or INSERT INTO)

Same as input stream, if

sorted.

On PK column (if any), on all FK

columns (if any), on the first 31
configurable columns of the table

Is created from CREATE

TABLE AS SELECT query

Same as input stream, if

sorted.

If not sorted, sorted using
following rules.

Same segmentation columns f query

output is segmented

The same as the load, if output of
query is unsegmented or unknown

Has FK and PK constraints FK first, then PK columns PK columns

Has FK constraints only (no
PK)

FK first, then remaining
columns

Small data type (< 8 byte) columns
first, then large data type columns

Has PK constraints only (no
FK)

PK columns PK columns

Has no FK or PK constraints On all columns Small data type (< 8 byte) columns

first, then large data type columns

Default automatic projections and segmentation get your database up and running quickly. HP
recommends that you start with these projections and then use the Database Designer to optimize
your database further. The Database Designer creates projections that optimize your database
based on the characteristics of the data and, optionally, the queries you use.

See Also

Creating External Tables (page 283)

Projections in the Concepts Guide

CREATE TABLE in the SQL Reference Manual

-277-

 Working with Tables

Creating a Table Like Another

You can create a new table based on an existing table using the CREATE TABLE statement with

the LIKE existing_table clause, optionally including the projections of the existing table. Creating

a new table with the LIKE option replicates the table definition and any storage policy associated

with the existing table. The statement does not copy any data. The main purpose of this function is
to create an intermediate table into which you can move partition data, and eventually, archive the
data and drop the intermediate table.

NOTE: Invoking CREATE TABLE with its LIKE clause before calling the function to move
partitions for archiving requires first dropping pre-join-projections or refreshing out-of-date
projections.

You can optionally use the including projections clause to create a table that will have the

existing table's current and non-pre-join projection definitions whenever you populate the table.
Replicated projections are named automatically to avoid conflict with any existing objects, and
follow the same naming conventions as auto projections. You cannot create a new table like
another if the source table has pre-join- or out-of-date-projections. The statement displays a
warning message.

NOTE: HP Vertica does not support using CREATE TABLE new_t LIKE exist_t INCLUDING
PROJECTIONS if exist_t is a temporary table.

Epochs and Node Recovery

The checkpoint epoch (CPE) for both the source and target projections are updated as ROSes are
moved. The start and end epochs of all storage containers, such as ROSes, are modified to the
agreed move epoch. When this occurs, the epochs of all columns without an actual data file
rewrite advance the CPE to the move epoch. If any nodes are down during the TM moveout, they
will detect that there is storage to recover, and will recover from other nodes with the correct epoch
upon rejoining the cluster.

Storage Location and Policies for New Tables

When you use the CREATE TABLE...LIKE statement, any storage policy objects associated with

the table are also copied. Data added to the new table will use the same labeled storage location
as the source table, unless you change the storage policy. For more information, see Working
With Storage Locations (page 498).

Simple Example

This example shows how to use the statement for a table that already exists, and suggests a
naming convention that describes the contents of the new table:

Create a new schema in which to create an intermediate table with projections. This is the table
into which you will move partitions. Then, create a table identical to the source table from which to
move partitions:

VMART=> create schema partn_backup;

CREATE SCHEMA

-278-

Administrator's Guide

VMART=> create table partn_backup.trades_200801 like prod.trades including

projections;

CREATE TABLE

Once the schema and table exist, you can move one or more of the existing table partitions to the
new intermediate table.

Using CREATE TABLE LIKE

For this example, create a table, states:

VMART=> create table states

VMART-> (state char(2) not null,

VMART(> bird varchar(20),

VMART(> flower varchar (20),

VMART(> tree char (20),

VMART(> tax float) partition by state;

CREATE TABLE

Populate the table with some data on New England:

insert into states values ('MA', 'chickadee', 'american_elm', 5.675,

'07-04-1620');

insert into states values ('VT', 'Hermit_Thrasher', 'Sugar_Maple', 6.0,

'07-04-1610');

.

.

.

Select the states table to see its content:

VMART=> select * from states;

 State | bird | tree | tax | stateDate

-------+---------------------+----------------------+-------+------------

 MA | chickadee | american_elm | 5.675 | 1620-07-04

 NH | Purple_Finch | White_Birch | 0 | 1615-07-04

 VT | Hermit_Thrasher | Sugar_maple | 6 | 1618-07-04

 ME | Black_Cap_Chickadee | Pine_Tree | 5 | 1615-07-04

 CT | American_Robin | White_Oak | 6.35 | 1618-07-04

 RI | Rhode_Island_Red | Red_Maple | 5 | 1619-07-04

(6 rows)

View the projections for this table:

VMART=> \dj

 List of projections

 Schema | Name | Owner | Node | Comment

--------+-------------------+---------+------------------+---------

 .

 .

 .

 public | states_b0 | dbadmin | |

 public | states_b1 | dbadmin | |

 public | states_p_node0001 | dbadmin | v_vmart_node0001 |

 public | states_p_node0002 | dbadmin | v_vmart_node0002 |

-279-

 Working with Tables

 public | states_p_node0003 | dbadmin | v_vmart_node0003 |

Now, create a table like the states table, including projections:

VMART=> create table newstates like states including projections;

CREATE TABLE

VMART=> select * from newstates;

 State | bird | tree | tax | stateDate

-------+------+------+-----+-----------

(0 rows)

See Also

Creating Base Tables (page 274)

Creating Temporary Tables (page 279)

Creating External Tables (page 283)

Moving Partitions (page 339)

CREATE TABLE in the SQL Reference Manual

Creating Temporary Tables
You create temporary tables using the CREATE TEMPORARY TABLE statement, specifying the
table as either local or global. You cannot create temporary external tables. A common use case
for a temporary table is to divide complex query processing into multiple steps. Typically, a
reporting tool holds intermediate results while reports are generated (for example, first get a result
set, then query the result set, and so on). You can also write subqueries.

Note: The default retention when creating temporary tables is ON COMMIT DELETE ROWS,

which discards data at transaction completion. The non-default value is ON COMMIT PRESERVE
ROWS, which discards data when the current session ends.

Global Temporary Tables

HP Vertica creates global temporary tables in the public schema, with the data contents private to
the transaction or session through which data is inserted.

Global temporary table definitions are accessible to all users and sessions, so that two (or more)
users can access the same global table concurrently. However, whenever a user commits or rolls
back a transaction, or ends the session, HP Vertica removes the global temporary table data
automatically, so users see only data specific to their own transactions or session.

Global temporary table definitions persist in the database catalogs until they are removed explicitly
through a DROP TABLE statement.

-280-

Administrator's Guide

Local Temporary Tables

Local temporary tables are created in the V_TEMP_SCHEMA namespace and inserted into the

user's search path transparently. Each local temporary table is visible only to the user who creates
it, and only for the duration of the session in which the table is created.

When the session ends, HP Vertica automatically drops the table definition from the database
catalogs. You cannot preserve non-empty, session-scoped temporary tables using the ON
COMMIT PRESERVE ROWS statement.

Creating local temporary tables is significantly faster than creating regular tables, so you should
make use of them whenever possible.

NOTE: You cannot add projections to non-empty, session-scoped temporary tables if you

specify ON COMMIT PRESERVE ROWS. Be sure that projections exist before you load data,
as described in the section Automatic Projection Creation in CREATE TABLE. Also, while you
can add projections for tables created with the ON COMMIT DELETE ROWS option, be aware
that you could save the projection but still lose all the data.

Creating a Temp Table Using the /*+direct*/ Clause

You can create a table or temporary directly to disk (ROS), bypassing memory (WOS), by using
the /* +direct */ clause. For example, following is an existing table called states:

VMart=> select * from states;

 State | Bird | Tree | Tax

-------+----------+-------+-----

 MA | Robin | Maple | 5.7

 NH | Thrush | Elm | 0

 NY | Cardinal | Oak | 7.2

(3 rows)

Create a new table, StateBird, with the /*+direct*/ clause in the statement. Place the
clause directly before the query (select State, Bird from states):

VMart=> create table StateBird as /*+direct*/ select State, Bird from states;

CREATE TABLE

VMart=> select * from StateBird;

 State | Bird

-------+----------

 MA | Robin

 NH | Thrush

 NY | Cardinal

(3 rows)

The following example creates a temporary table using the /*+direct*/ clause in the

statement, along with the ON COMMIT PRESERVE ROWS directive:

VVMart=> create temp table StateTax ON COMMIT PRESERVE ROWS as /*+direct*/ select

State, Tax from states;

CREATE TABLE

VMart=> select * from StateTax;

 State | Tax

-281-

 Working with Tables

-------+-----

 MA | 5.7

 NH | 0

 NY | 7.2

(3 rows)

Characteristics of Default Automatic Projections

Once local or global table exists, HP Vertica creates auto-projections for temporary tables
whenever you load or insert data.

The default auto-projection for a temporary table has the following characteristics:

 It is a superprojection.

 It uses the default encoding-type AUTO.

 It is automatically unsegmented on the initiator node, if you do not specify a segmentation
clause (hash-segmentation-clause or range-segmentation-clause).

 The projection is not pinned.

 Temp tables are not recoverable, so the superprojection is not K-Safe (K-SAFE=0), and you
cannot make it so.

Auto-projections are defined by the table properties and creation methods, as follows:

I f table... Sort order is... Segmentation is...

Is created from input stream
(COPY or INSERT INTO)

Same as input stream, if
sorted.

On PK column (if any), on all FK
columns (if any), on the first 31
configurable columns of the table

Is created from CREATE
TABLE AS SELECT query

Same as input stream, if
sorted.

If not sorted, sorted using

following rules.

Same segmentation columns f query
output is segmented

The same as the load, if output of

query is unsegmented or unknown

Has FK and PK constraints FK first, then PK columns PK columns

Has FK constraints only (no

PK)

FK first, then remaining

columns

Small data type (< 8 byte) columns

first, then large data type columns

Has PK constraints only (no
FK)

PK columns PK columns

Has no FK or PK constraints On all columns Small data type (< 8 byte) columns
first, then large data type columns

Advanced users can modify the default projection created through the CREATE TEMPORARY

TABLE statement by defining one or more of the following parameters:

 column-definition (temp table) (ENCODING encoding-type and ACCESSRANK integer)

 ORDER BY table-column

 hash-segmentation-clause

 range-segmentation-clause

 UNSEGMENTED { NODE node | ALL NODES }

-282-

Administrator's Guide

 NO PROJECTION

Note: Before you define the superprojection in this manner, read Creating Custom Designs
(page 89) in the Administrator's Guide.

Preserving GLOBAL temporary table data for transaction or session

You can preserve session-scoped rows in a GLOBAL temporary table for the entire session or for
the current transaction only.

To preserve a temporary table for the transaction, use the ON COMMIT DELETE ROWS clause:

=> CREATE GLOBAL TEMP TABLE temp_table1 (

 x NUMERIC,

 y NUMERIC)

 ON COMMIT DELETE ROWS;

To preserve temporary table data until the end of the session, use the ON COMMIT PRESERVE
ROWS clause:

=> CREATE GLOBAL TEMP TABLE temp_table2 (

 x NUMERIC,

 y NUMERIC)

 ON COMMIT PRESERVE ROWS;

Specifying the encoding to use for a column

You can specify the encoding type to use per column.

The following example specifies that the superprojection created for the temp table use RLE
encoding for the y column:

=> CREATE LOCAL TEMP TABLE temp_table1 (

 x NUMERIC,

 y NUMERIC ENCODING RLE)

 ON COMMIT DELETE ROWS;

The following example specifies that the superprojection created for the temp table use the sort
order specified by the ORDER BY clause rather than the order of columns in the column list.

=> CREATE GLOBAL TEMP TABLE temp_table1 (

 x NUMERIC,

 y NUMERIC ENCODING RLE,

 b VARCHAR(8),

 z VARCHAR(8))

 ORDER BY z, x;

See Also

Projections in the Concepts Guide

CREATE TEMPORARY TABLE in the SQL Reference Manual

-283-

 Working with Tables

Creating External Tables
You create an external table using the CREATE EXTERNAL TABLE AS COPY statement. You

cannot create temporary external tables. For the syntax details to create an external table, see the
CREATE EXTERNAL TABLE statement in the SQL Reference Manual.

NOTE: Each table can have a maximum of 1600 columns.

Required Permissions for External Tables

You must be a database superuser to create external tables, unless you create a
USER-accessible storage location (see ADD_LOCATION) and grant user privileges to the
location, schema, and so on.

NOTE: Permission requirements for external tables differ from other tables. To gain full access
(including SELECT) to an external table that a user has privileges to create, the database
superuser must also grant READ access to the USER-accessible storage location, see GRANT
(Storage Location).

COPY Statement Definition

When you create an external table, table data is not added to the database, and no projections are
created. Instead, HP Vertica performs a syntactic check of the CREATE EXTERNAL TABLE...
statement, and stores the table name and COPY statement definition in the catalog. When a
SELECT query references an external table, the stored COPY statement is parsed to obtain the
referenced data. Successfully returning data from the external table requires that the COPY
definition is correct, and that other dependencies, such as files, nodes, and other resources are
accessible and available at query-time.

For more information about checking the validity of the external table COPY definition, see
Validating External Tables (page 284).

Developing User-Defined Load (UDL) Functions for External Tables

You can create external tables with your own load functions. For more information about
developing user-defined load functions, see User Defined Load (UDL) and the extended COPY
syntax in the SQL Reference Manual.

Examples

Examples of external table definitions:

CREATE EXTERNAL TABLE ext1 (x integer) AS COPY FROM '/tmp/ext1.dat' DELIMITER ',';

CREATE EXTERNAL TABLE ext1 (x integer) AS COPY FROM '/tmp/ext1.dat.bz2' BZIP

DELIMITER ',';

CREATE EXTERNAL TABLE ext1 (x integer, y integer) AS COPY (x as '5', y) FROM

'/tmp/ext1.dat.bz2' BZIP DELIMITER ',';

-284-

Administrator's Guide

See Also

COPY and CREATE EXTERNAL TABLE in the SQL Reference Manual

Validating External Tables

When you create an external table, HP Vertica validates the syntax of the CREATE EXTERNAL

TABLE AS COPY FROM statement. For instance, if you omit a required keyword in the statement
(such as FROM), creating the external table fails, as in this example:

VMart=> create external table ext (ts timestamp,d varchar) as copy

'/home/dbadmin/designer.log';

ERROR 2778: COPY requires a data source; either a FROM clause or a WITH SOURCE

for a user-defined source

Checking other aspects of the COPY definition (such as path statements and node availability)
does not occur until a select query references the external table.

To validate that you have successfully created an external table definition, run a select query
referencing the external table. Check that the returned query data is what you expect. If the query
does not return data correctly, check the COPY exception and rejected data log files.

Since the COPY definition determines what occurs when you query an external table, obtaining
COPY statement errors can help reveal any underlying problems. For more information about
COPY exceptions and rejections, see Controlling Load Exceptions and Rejections (page 381).

Limiting the Maximum Number of Exceptions

Querying external table data with an incorrect COPY FROM statement definition can potentially
result in many exceptions. To limit the number of saved exceptions, HP Vertica sets the maximum

number of reported rejections with the ExternalTablesExceptionsLimit configuration

parameter. The default value is 100. Setting the ExternalTablesExceptionsLimit to -1
disables the limit.

For more information about configuration parameters, see Configuration Parameters (page 36),
and specifically, General Parameters (page 37).

If COPY errors reach the maximum number of exceptions, the external table query continues, but

COPY generates a warning in the vertica.log, and does not report subsequent rejections
and/or exceptions.

NOTE: Using the ExternalTablesExceptionsLimit configuration parameter differs from

the COPY statement REJECTMAX clause. If COPY reaches the number of exceptions defined
by REJECTMAX, COPY aborts execution, and does not generate a vertica.log warning.

-285-

 Working with Tables

External Table Support
After creating external tables, you access them as any other table.

Managing Resources for External Tables

External tables require minimal additional resources. When you use a select query for an external
table, HP Vertica uses a small amount of memory when reading external table data, since the
table contents are not part of your database and are parsed each time the external table is used.

Backing Up and Restoring External Tables

Since the data in external tables is managed outside of HP Vertica, only the external table
definitions, not the data files, are included in database backups.

Using Sequences and Identity Columns in External Tables

The COPY statement definition for external tables can include identity columns and sequences.
Whenever a select statement queries the external table, sequences and identity columns are
re-evaluated. This results in changing the external table column values, even if the underlying
external table data remains the same.

Viewing External Table Definitions

When you create an external table, HP Vertica stores the COPY definition statement in the
table_definition column of the v_catalog.tables system table.

1 To list all tables, use a select * query, as shown:

select * from v_catalog.tables where table_definition <> '';

2 Use a query such as the following to list the external table definitions (table_definition):

select table_name, table_definition from v_catalog.tables;

 table_name |

table_definition

------------+---

 t1 | COPY FROM 'TMPDIR/external_table.dat'

DELIMITER ','

 t1_copy | COPY FROM 'TMPDIR/external_table.dat'

DELIMITER ','

 t2 | COPY FROM 'TMPDIR/external_table2.dat' DELIMITER ','

(3 rows)

External Table DML Support

Following are examples of supported queries, and others that are not:

-286-

Administrator's Guide

Supported Unsupported

SELECT * FROM external_table; DELETE FROM external_table WHERE x = 5;

SELECT * FROM external_table where col1=4; INSERT INTO external_table SELECT * FROM ext;

DELETE FROM ext WHERE id IN (SELECT x FROM

external_table);

INSERT INTO ext SELECT * FROM external_table; SELECT * FROM external_table for update;

Using External Table Values

Following is a basic example of how you could use the values of an external table.

1 Create and display the contents of a file with some integer values:

[dbadmin@localhost ~]$ more ext.dat

1

2

3

4

5

6

7

8

10

11

12

2 Create an external table pointing at ext.dat:

VMart=> create external table ext (x integer) as copy from

'/home/dbadmin/ext.dat';

CREATE TABLE

3 Select the table contents:

VMart=> select * from ext;

 x

 1

 2

 3

 4

 5

 6

 7

 8

 10

 11

 12

(11 rows)

4 Perform evaluation on some external table contents:

VMart=> select ext.x, ext.x + ext.x as double_x from ext where x > 5;

-287-

 Working with Tables

 x | double_x

----+----------

 6 | 12

 7 | 14

 8 | 16

 10 | 20

 11 | 22

 12 | 24

(6 rows)

5 Create a second table (second), also with integer values:

VMart=> create table second (y integer);

CREATE TABLE

6 Populate the table with some values:

VMart=> copy second from stdin;

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.

>> 1

>> 1

>> 3

>> 4

>> 5

>> \.

7 Join the external table (ext) with the table created in HP Vertica, called second:

VMart=> select * from ext join second on x=y;

 x | y

---+---

 1 | 1

 1 | 1

 3 | 3

 4 | 4

 5 | 5

(5 rows)

Using External Tables

External tables let you query data stored in files accessible to the HP Vertica database, but not
managed by it. Creating external tables supplies read-only access through SELECT queries. You
cannot modify external tables through DML commands, such as INSERT, UPDATE, DELETE,
and MERGE.

Using CREATE EXTERNAL TABLE AS COPY Statement

You create external tables with the CREATE EXTERNAL TABLE AS COPY... statement, shown in
this basic example:

CREATE EXTERNAL TABLE tbl(i INT) AS COPY (i) FROM 'path1' ON node1, 'path2' ON node2;

-288-

Administrator's Guide

For more details on the supported options to create an external table, see the CREATE
EXTERNAL TABLE statement in the SQL Reference Manual.

The data you specify in the FROM clause of a CREATE EXTERNAL TABLE AS COPY statement can
reside in one or more files or directories, and on one or more nodes. After successfully creating an
external table, HP Vertica stores the table name and its COPY definition. Each time a select query
references the external table, HP Vertica parses the COPY statement definition again to access
the data. Here is a sample select statement:

SELECT * FROM tbl WHERE i > 10;

Storing HP Vertica Data in External Tables

While there are many requirements for you to use external table data, one reason is to store
infrequently-accessed HP Vertica data on low-cost external media. If external storage is a goal at
your site, the process to accomplish that requires exporting the older data to a text file, creating a
bzip or gzip file of the export data, and saving the compressed file on an NFS disk. You can then
create an external table to access the data any time it is required.

Using External Tables with User-Defined Load (UDL) Functions

You can also use external tables in conjunction with the UDL functions that you create. For more
information about using UDLs, see User Defined Load (UDL) in the Programmer's Guide.

Organizing External Table Data

If the data you store in external tables changes regularly (for instance, each month in the case of
storing recent historical data), your COPY definition statement can use wildcards to make parsing
the stored COPY statement definition more dynamic. For instance, if you store monthly data on an
NFS mount, you could organize monthly files within a top-level directory for a calendar year, such
as:

/2012/monthly_archived_data/

In this case, the external table COPY statement will include a wildcard definition such as the
following:

CREATE TABLE archive_data (...) AS COPY FROM

'nfs_name/2012/monthly_archived_data/*'

Whenever an HP Vertica query references the external table months, and HP Vertica parses the

COPY statement, all stored data tables in the top-level monthly_archived_data directory are
made accessible to the query.

Altering Table Definitions

Using ALTER TABLE syntax, you can respond to your evolving database schema requirements.
The ability to change the definition of existing database objects facilitates ongoing maintenance.
Furthermore, most of these options are both fast and efficient for large tables, because they
consume fewer resources and less storage than having to stage data in a temporary table.

-289-

 Working with Tables

Here are some of the operations you can perform using the ALTER TABLE statement:

 Rename a table

 Add, drop, and rename columns

 Add and drop constraints

 Add table columns with a default derived expression

 Change a column's data type

 Change a table owner

 Rename a table schema

 Move a table to a new schema

 Change, reorganize, and remove table partitions

External table restrictions

Not all ALTER TABLE options are applicable for external tables. For instance, you cannot add a
column to an external table, but you can rename the table:

=> ALTER TABLE mytable RENAME TO mytable2;

ALTER TABLE

Exclusive ALTER TABLE clauses

The following clauses are exclusive, which means you cannot combine them with another ALTER
TABLE clause:

 ADD COLUMN

 RENAME COLUMN

 SET SCHEMA

 PARTITION BY

 REORGANIZE

 REMOVE PARTITIONING

 RENAME [TO]

 OWNER TO

NOTE: You can use the ADD constraints and DROP constraints clauses together.

Using consecutive ALTER TABLE commands

With the exception of performing a table rename, complete other ALTER TABLE statements

consecutively. For example, to add multiple columns to a table, issue consecutive ALTER TABLE
ADD COLUMN commands, ending each statement with a semicolon.

For more information about ALTER TABLE syntax and parameters, see the SQL Reference
Manual.

-290-

Administrator's Guide

Adding table columns

When you add a new column to a table using ALTER TABLE ADD COLUMN, the default expression
for the new column can either consist of an expression that evaluates to a constant or is a derived
expression (page 291) involving other columns of the same table.

The ADD COLUMN syntax performs the following operations:

 Inserts the default value for existing rows. For example, if the default expression is
CURRENT_TIMESTAMP, all rows have the current timestamp.

 Automatically adds the new column with a unique projection column name to all
superprojections of the table.

 Populates the column according to the column-constraint (DEFAULT, for example).

 Takes an O lock on the table until the operation completes, in order to prevent DELETE,
UPDATE, INSERT, and COPY statements from affecting the table. SELECT statements
issued at SERIALIZABLE isolation level are also blocked until the operation completes

Note: Adding a column to a table does not affect the K-safety of the physical schema design,

and you can add columns when nodes are down.

Updating associated table views

New columns that you add to a table with an associated view do not appear in the view's result set,
even if the view uses a wildcard (*) to represent all table columns. To incorporate new columns,
you must recreate the view. See CREATE VIEW in the SQL Reference Manual.

Restrictions

Each table can have a maximum of 1600 columns.

You cannot add columns to a temporary table or to tables that have out-of-date superprojections
with up-to-date buddies.

The default expression of an ADD COLUMN statement disallows nested queries, user-defined
functions, pr aggregate functions. Instead, use the ALTER COLUMN option, described in Altering
table columns (page 291).

About using volatile functions

You cannot use a volatile function in the following two scenarios. Attempting to do so causes a
rollback.

 As the default expression for an ALTER TABLE ADD COLUMN statement:

ALTER TABLE t ADD COLUMN a2 INT DEFAULT my_sequence.nextval;

ROLLBACK: VOLATILE functions are not supported in a default expression

ALTER TABLE t ADD COLUMN n2 INT DEFAULT my_sequence.currval;

ROLLBACK: VOLATILE functions are not supported in a default expression

ALTER TABLE t ADD COLUMN c2 INT DEFAULT RANDOM() + 1;

ROLLBACK: VOLATILE functions are not supported in a default expression

-291-

 Working with Tables

 As the default expression for an ALTER TABLE ALTER COLUMN statement on an external

table:

ALTER TABLE mytable ADD COLUMN a2 FLOAT DEFAULT RANDOM();

ROLLBACK 5241: Unsupported access to external table

ALTER TABLE mytable ALTER COLUMN x SET DEFAULT RANDOM();

ROLLBACK 5241: Unsupported access to external table

You can specify a volatile function as a column default expression using the ALTER TABLE ALTER
COLUMN statement:

ALTER TABLE t ALTER COLUMN a2 SET DEFAULT my_sequence.nextval;

Updating associated table views
New columns that you add to a table with an associated view do not appear in the view's result set,
even if the view uses a wildcard (*) to represent all table columns. To incorporate new columns,
you must recreate the view. See CREATE VIEW in the SQL Reference Manual.

Altering table columns

Use ALTER COLUMN syntax to alter an existing table column to change, drop, or establish a default
expression for the column. You can also use DROP DEFAULT to remove a default expression.

Any new data that you load after altering a column will conform to the modified table definition. For
example:

 After a DROP COLUMN operation completes, data backed up from the current epoch onward
will recover without the column. Data recovered from a backup prior to the current epoch will
re-add the table column. Because drop operations physically purge object storage and catalog
definitions (table history) from the table, AT EPOCH (historical) queries return nothing for the
dropped column.

 If you change a column's data type from CHAR(8) to CHAR(16) in epoch 10 and you restore
the database from epoch 5, the column will be CHAR(8) again.

Adding columns with a default derived expression

You can add columns to a table and set its default value as a derived expression that references
another column in the same table. HP Vertica computes a default value within a row. This
flexibility is useful for adding a column to a large fact table that shows another view on the data
without having to INSERT .. SELECT a large data set.

-292-

Administrator's Guide

Added columns require an O lock on the table until the add operation completes. This lock
prevents DELETE, UPDATE, INSERT, and COPY statements from affecting the table. One
consequence of the O lock is that SELECT statements issued at SERIALIZABLE isolation level.

Only the new data you load after the alter operation completes is derived from the expression.

A default expression cannot be included in a nested query, user-defined function, or aggregate
function. The column must be a specific expression that involves other elements in the same row.

You also cannot derive data from another derived column. This means that if you already have a
column with a default value expression, you cannot add another column whose default references
the existing column.

Note: You can add a column when nodes down.

How to add simple derived expressions from other columns

1 Create a sample table called t with timestamp, integer and varchar(10) columns:

=> CREATE TABLE t (a TIMESTAMP, b INT, c VARCHAR(10));

CREATE TABLE

=> INSERT INTO t VALUES ('2012-05-14 10:39:25', 2, 'MA');

 OUTPUT

 1

(1 row)

2 Use the vsql \d t meta-command to describe the table:

=> \d t
 List of Fields by Tables

 Schema | Table | Column | Type | Size | Default | Not Null | Primary Key | Foreign Key

--------+-------+--------+-------------+------+---------+----------+-------------+-------------

 public | t | a | timestamp | 8 | | f | f |

 public | t | b | int | 8 | | f | f |

 public | t | c | varchar(10) | 10 | | f | f |

 (3 rows)

3 Add a fourth table column that extracts the month from column a (timestamp):

=> ALTER TABLE t ADD COLUMN d NUMERIC DEFAULT EXTRACT(MONTH FROM a);

ALTER TABLE

4 Query table t:

=> SELECT * FROM t;

 a | b | c | d

---------------------+---+----+-------------------

 2012-05-14 10:39:25 | 2 | MA | 5.000000000000000

(1 row)

Column d returns integer 5 (representing the 5th month) padded with the default numeric scale
(15).

5 View the table schema, you can see the new column and its default value.

=> \d t
 List of Fields by Tables

 Schema | Table | Column | Type | Size | Default | Not Null | Primary

Key | Foreign Key

-293-

 Working with Tables

--------+-------+--------+----------------+------+-------------------------+----------+----------

---+-------------

 public | t | a | timestamp | 8 | | f | f

|

 public | t | b | int | 8 | | f | f

|

 public | t | c | varchar(10) | 10 | | f | f

|

 public | t | d | numeric(37,15) | 16 | date_part('month', t.a) | f | f

|

 (4 rows)

6 Clean up (drop table t):

=> DROP TABLE t;

DROP TABLE

Changing a column's data type

You can changes a table column's data type for any type whose conversion does not require
storage reorganization. For example, the following types are the conversions that HP Vertica
supports:

 Binary types—expansion and contraction but cannot convert between BINARY and
VARBINARY types.

 Character types—all conversions allowed, even between CHAR and VARCHAR

 Exact numeric types—INTEGER, INT, BIGINT, TINYINT, INT8, SMALLINT, and all NUMERIC
values of scale <=18 and precision 0 are interchangeable. For NUMERIC data types, you
cannot alter precision, but you can change the scale in the ranges (0-18), (19-37), and so on.

HP Vertica does not allow data type conversion on types that require storage reorganization:

 Boolean type conversion to other types

 DATE/TIME type conversion

 Approximate numeric type conversions

 Between BINARY and VARBINARY types

You can expand (and shrink) columns within the same class of data type, which is useful if you
want to store longer strings in a column. HP Vertica validates the data before it performs the
conversion.

For example, if you try to convert a column from varchar(25) to varchar(10) and that column holds
a string with 20 characters, the conversion will fail. HP Vertica allow the conversion as long as that
column does not have a string larger than 10 characters.

Examples

The following example expands an existing CHAR column from 5 to 10:

=> CREATE TABLE t (x CHAR, y CHAR(5));

CREATE TABLE

=> ALTER TABLE t ALTER COLUMN y SET DATA TYPE CHAR(10);

-294-

Administrator's Guide

ALTER TABLE

=> DROP TABLE t;

DROP TABLE

This example illustrates the behavior of a changed column's type. First you set column y's type to
VARCHAR(5) and then insert strings with characters that equal 5 and exceed 5:

=> CREATE TABLE t (x VARCHAR, y VARCHAR);

CREATE TABLE

=> ALTER TABLE t ALTER COLUMN y SET DATA TYPE VARCHAR(5);

ALTER TABLE

=> INSERT INTO t VALUES ('1232344455','hello');

 OUTPUT

 1

(1 row)

=> INSERT INTO t VALUES ('1232344455','hello1');

ERROR 4797: String of 6 octets is too long for type Varchar(5)

=> DROP TABLE t;

DROP TABLE

You can also contract the data type's size, as long as that altered column contains no strings
greater than 5:

=> CREATE TABLE t (x CHAR, y CHAR(10));

CREATE TABLE

=> ALTER TABLE t ALTER COLUMN y SET DATA TYPE CHAR(5);

ALTER TABLE

=> DROP TABLE t;

DROP TABLE

You cannot convert types between binary and varbinary. For example, the table definition below
contains two binary columns, so when you try to convert column y to a varbinary type, HP Vertica
returns a ROLLBACK message:

=> CREATE TABLE t (x BINARY, y BINARY);

CREATE TABLE

=> ALTER TABLE t ALTER COLUMN y SET DATA TYPE VARBINARY;--N

ROLLBACK 2377: Cannot convert column "y" from "binary(1)" to type "varbinary(80)

=> DROP TABLE t;

DROP TABLE

How to perform an illegitimate column conversion

The SQL standard disallows an illegitimate column conversion, but you can work around this
restriction if you need to convert data from a non-SQL database. The following example takes you
through the process step by step, where you'll manage your own epochs.

-295-

 Working with Tables

Given a sales table with columns id (INT) and price (VARCHAR), assume you want to
convert the VARCHAR column to a NUMERIC field. You'll do this by adding a temporary column
whose default value is derived from the existing price column, rename the column, and then drop
the original column.

1 Create the sample table with INTEGER and VARCHAR columns and insert two rows.

=> CREATE TABLE sales(id INT, price VARCHAR) UNSEGMENTED ALL NODES;

CREATE TABLE

=> INSERT INTO sales VALUES (1, '$50.00');

=> INSERT INTO sales VALUES (2, '$100.00');

2 Commit the transaction:

=> COMMIT;

COMMIT

3 Query the sales table:

=> SELECT * FROM SALES;

 id | price

----+---------

 1 | $50.00

 2 | $100.00

(2 rows)

4 Add column temp_price. This is your temporary column.

=> ALTER TABLE sales ADD COLUMN temp_price NUMERIC DEFAULT

SUBSTR(sales.price, 2)::NUMERIC;

ALTER TABLE

5 Query the sales table, and you'll see the new temp_price column with its derived NUMERIC
values:

=> SELECT * FROM SALES;

 id | price | temp_price

----+---------+---------------------

 1 | $50.00 | 50.000000000000000

 2 | $100.00 | 100.000000000000000

(2 rows)

6 Drop the default expression from that column.

=> ALTER TABLE sales ALTER COLUMN temp_price DROP DEFAULT;

ALTER TABLE

7 Advance the AHM:

SELECT advance_epoch(1);

 advance_epoch

 New Epoch: 83

(1 row)

8 Manage epochs:

SELECT manage_epoch();

 manage_epoch

 Current Epoch=83, AHM Epoch=82

-296-

Administrator's Guide

(1 row)

9 Drop the original price column.

=> ALTER TABLE sales DROP COLUMN price CASCADE;

ALTER COLUMN

10 Rename the new (temporary) temp_price column back to its original name, price:

=> ALTER TABLE sales RENAME COLUMN temp_price to price;

ALTER COLUMN

11 Query the sales table one last time:

=> SELECT * FROM SALES;

 id | price

----+---------------------

 1 | 50.000000000000000

 2 | 100.000000000000000

(2 rows)

12 Clean up (drop table sales):

=> DROP TABLE sales;

DROP TABLE

See ALTER TABLE in the SQL Reference Manual

Adding constraints on columns

To add constraints on a new column:

1 Use the ALTER TABLE ADD COLUMN clause to add a new table column.

2 Use ALTER TABLE ADD CONSTRAINT to define constraints for the new column.

Adding and removing NOT NULL constraints

Use the[SET | DROP] NOT NULL clause to add (SET) or remove (DROP) a NOT NULL constraint
on the column.

When a column is a primary key and you drop the primary key constraint, the column retains the

NOT NULL constraint. If you want to allow that column to now contain NULL values, use [DROP
NOT NULL] to remove the NOT NULL constraint.

Examples
ALTER TABLE T1 ALTER COLUMN x SET NOT NULL;

ALTER TABLE T1 ALTER COLUMN x DROP NOT NULL;

Note: Using the [SET | DROP] NOT NULL clause does not validate whether the column data
conforms to the NOT NULL constraint. Use ANALYZE_CONSTRAINTS to check for
constraint violations in a table.

See Also

About Constraints (page 309)

-297-

 Working with Tables

Dropping a table column

When you use the ALTER TABLE ... DROP COLUMN statement to drop a column, HP Vertica
drops both the specified column from the table and the ROS containers that correspond to the
dropped column.

The syntax looks like this:

ALTER TABLE [[db-name.]schema.]table-name

... | DROP [COLUMN] column-name [CASCADE | RESTRICT]

Because drop operations physically purge object storage and catalog definitions (table history)
from the table, AT EPOCH (historical) queries return nothing for the dropped column.

The altered table has the same object ID.

Note: Drop column operations can be fast because these catalog-level changes do not require
data reorganization, letting you quickly reclaim disk storage.

Restrictions

 At the table level, you cannot drop or alter a primary key column or a column participating in
the table's partitioning clause.

 At the projection level, you cannot drop the first column in a projection's sort order or columns
that participate in in the segmentation expression of a projection.

 All nodes must be up for the drop operation to succeed.

Using CASCADE to force a drop

You can work around some of the restrictions by using the CASCADE keyword which enforces

minimal reorganization of the table's definition in order to drop the column. You can use
CASCADE to drop a column if that column fits into one of the scenarios in the following table. Note
that in all cases that use CASCADE, HP Vertica tries to drop the projection(s) and will roll back if
K-safety is compromised:

Column to drop ... DROP column CASCADE behavior

Has a constraint of any kind on it HP Vertica will drop the column with CASCADE specified
when a FOREIGN KEY constraint depends on a UNIQUE or

PRIMARY KEY constraint on the referenced columns.

Participates in the projection's sort
order

If you drop a column using the CASCADE keyword, HP
Vertica truncates the projection's sort order up to and

including the projection that has been dropped without impact
on physical storage for other columns and then drops the
specified column. For example if a projection's columns are in

sort order (a,b,c), dropping column b causes the projection's
sort order to be just (a), omitting column (c).

-298-

Administrator's Guide

Participates in ONE of the

following:

 Is a pre-join projection

 Participates in the
projection's segmentation
expression

In these scenarios, HP Vertica drops any non-critical,

dependent projections, maintains the superprojection that
contains the data, and drops the specified column. When a
pre-join projection contains a column to be dropped with

CASCADE, HP Vertica tries to drop the projection.

Assume, for example, that you have a table with multiple
projections and where one projection has the column you are

trying to drop is part of the segmentation clause. When you
specify CASCADE, the DROP COLUMN statement tries to
implicitly drop the projection that has this column in the

segmentation clause. If it succeeds the transaction
completes, but if it violates k-safety the transaction rolls back.

Although this is a DROP COLUMN ... CASCADE operation

(not DROP PROJECTION), HP Vertica could encounter cases

when it is not possible to drop a projection's column without

reorganizing the projection. In these cases, CASCADE will try
to drop the projection itself to maintain data integrity. If
K-safety is compromised, the operation rolls back.

Examples

The following series of commands successfully drops a BYTEA data type column:

=> CREATE TABLE t (x BYTEA(65000), y BYTEA, z BYTEA(1));

CREATE TABLE

=> ALTER TABLE t DROP COLUMN y;

ALTER TABLE

=> SELECT y FROM t;

ERROR 2624: Column "y" does not exist

=> ALTER TABLE t DROP COLUMN x RESTRICT;

ALTER TABLE

=> SELECT x FROM t;

ERROR 2624: Column "x" does not exist

=> SELECT * FROM t;

 z

(0 rows)

=> DROP TABLE t CASCADE;

DROP TABLE

The following series of commands tries to drop a FLOAT(8) column and fails because there are
not enough projections to maintain k-safety.

=> CREATE TABLE t (x FLOAT(8),y FLOAT(08));

CREATE TABLE

-299-

 Working with Tables

=> ALTER TABLE t DROP COLUMN y RESTRICT;

ALTER TABLE

=> SELECT y FROM t;

ERROR 2624: Column "y" does not exist

=> ALTER TABLE t DROP x CASCADE;

ROLLBACK 2409: Cannot drop any more columns in t

=> DROP TABLE t CASCADE;

Moving a table to another schema

The ALTER TABLE SET SCHEMA statement moves a table from one schema to another. Moving

a table requires that you have CREATE privileges for the destination schema. You can move only
one table between schemas at a time. You cannot move temporary tables between schemas.

SET SCHEMA has two options, CASCADE and RESTRICT. CASCADE, which is the default,
automatically moves all projections that are anchored on the source table to the destination

schema, regardless of the schema in which the projections reside. The RESTRICT option moves
only projections that are anchored on the source table and which also reside in the same schema.

If a table of the same name or any of the projections that you want to move already exist in the new
schema, the statement rolls back and does not move either the table or any projections. To work
around name conflicts:

1 Rename any conflicting table or projections that you want to move.

2 Run the ALTER TABLE SET SCHEMA statement again.

Note: HP Vertica lets you move system tables to system schemas. Moving system tables could
be necessary to support designs created through the Database Designer.

Changing a table owner

The ability to change table ownership is useful when moving a table from one schema to another.
Ownership reassignment is also useful when a table owner leaves the company or changes job
responsibilities. Because you can change the table owner, the tables won't have to be completely
rewritten, you can avoid loss in productivity.

The syntax looks like this:

ALTER TABLE [[db-name.]schema.]table-name OWNER TO new-owner name

In order to alter table ownership, you must be either the table owner or a superuser.

-300-

Administrator's Guide

A change in table ownership transfers just the owner and not privileges; grants made by the
original owner are dropped and all existing privileges on the table are revoked from the previous
owner. However, altering the table owner transfers ownership of dependent sequence objects

(associated IDENTITY/AUTO-INCREMENT sequences) but does not transfer ownership of other
referenced sequences. See ALTER SEQUENCE for details on transferring sequence ownership.

Notes

 Table privileges are separate from schema privileges; therefore, a table privilege change or
table owner change does not result in any schema privilege change.

 Because projections define the physical representation of the table, HP Vertica does not
require separate projection owners. The ability to create or drop projections is based on the
table privileges on which the projection is anchored.

 During the alter operation HP Vertica updates projections anchored on the table owned by the
old owner to reflect the new owner. For pre-join projection operations, HP Vertica checks for
privileges on the referenced table.

Example

In this example, user Bob connects to the database, looks up the tables, and transfers ownership
of table t33 from himself to to user Alice.

=> \c - Bob

You are now connected as user "Bob".

=> \d

 Schema | Name | Kind | Owner | Comment

--------+--------+-------+---------+---------

 public | applog | table | dbadmin |

 public | t33 | table | Bob |

(2 rows)

=> ALTER TABLE t33 OWNER TO Alice;

ALTER TABLE

Notice that when Bob looks up database tables again, he no longer sees table t33.

=> \d

 List of tables

 List of tables

 Schema | Name | Kind | Owner | Comment

--------+--------+-------+---------+---------

 public | applog | table | dbadmin |

(1 row)

When user Alice connects to the database and looks up tables, she sees she is the owner of table
t33.

=> \c - Alice

You are now connected as user "Alice".

=> \d

 List of tables

 Schema | Name | Kind | Owner | Comment

-301-

 Working with Tables

--------+------+-------+-------+---------

 public | t33 | table | Alice |

(2 rows)

Either Alice or a superuser can transfer table ownership back to Bob. In the following case a
superuser performs the transfer.

=> \c - dbadmin

You are now connected as user "dbadmin".

=> ALTER TABLE t33 OWNER TO Bob;

ALTER TABLE

=> \d

 List of tables

 Schema | Name | Kind | Owner | Comment

--------+----------+-------+---------+---------

 public | applog | table | dbadmin |

 public | comments | table | dbadmin |

 public | t33 | table | Bob |

 s1 | t1 | table | User1 |

(4 rows)

You can also query the V_CATALOG.TABLES system table to view table and owner information.
Note that a change in ownership does not change the table ID.

In the below series of commands, the superuser changes table ownership back to Alice and
queries the TABLES system table.

=> ALTER TABLE t33 OWNER TO Alice;

ALTER TABLE

=> SELECT table_schema_id, table_schema, table_id, table_name, owner_id, owner_name FROM tables;

 table_schema_id | table_schema | table_id | table_name | owner_id | owner_name

-------------------+--------------+-------------------+------------+-------------------+---------

 45035996273704968 | public | 45035996273713634 | applog | 45035996273704962 | dbadmin

 45035996273704968 | public | 45035996273724496 | comments | 45035996273704962 | dbadmin

 45035996273730528 | s1 | 45035996273730548 | t1 | 45035996273730516 | User1

 45035996273704968 | public | 45035996273795846 | t33 | 45035996273724576 | Alice

(5 rows)

Now the superuser changes table ownership back to Bob and queries the TABLES table again.
Nothing changes but the owner_name row, from Alice to Bob.

=> ALTER TABLE t33 OWNER TO Bob;

ALTER TABLE

=> SELECT table_schema_id, table_schema, table_id, table_name, owner_id,

owner_name FROM tables;
 table_schema_id | table_schema | table_id | table_name | owner_id | owner_name

-------------------+--------------+-------------------+------------+-------------------+---------

 45035996273704968 | public | 45035996273713634 | applog | 45035996273704962 | dbadmin

 45035996273704968 | public | 45035996273724496 | comments | 45035996273704962 | dbadmin

 45035996273730528 | s1 | 45035996273730548 | t1 | 45035996273730516 | User1

 45035996273704968 | public | 45035996273793876 | foo | 45035996273724576 | Alice

 45035996273704968 | public | 45035996273795846 | t33 | 45035996273714428 | Bob

(5 rows)

-302-

Administrator's Guide

Table reassignment with sequences

Altering the table owner transfers ownership of only associated IDENTITY/AUTO-INCREMENT
sequences but not other reference sequences. For example, in the below series of commands,
ownership on sequence s1 does not change:

=> CREATE USER u1;

CREATE USER

=> CREATE USER u2;

CREATE USER

=> CREATE SEQUENCE s1 MINVALUE 10 INCREMENT BY 2;

CREATE SEQUENCE

=> CREATE TABLE t1 (a INT, id INT DEFAULT NEXTVAL('s1'));

CREATE TABLE

=> CREATE TABLE t2 (a INT, id INT DEFAULT NEXTVAL('s1'));

CREATE TABLE

=> SELECT sequence_name, owner_name FROM sequences;

 sequence_name | owner_name

---------------+------------

 s1 | dbadmin

(1 row)

=> ALTER TABLE t1 OWNER TO u1;

ALTER TABLE

=> SELECT sequence_name, owner_name FROM sequences;

 sequence_name | owner_name

---------------+------------

 s1 | dbadmin

(1 row)

=> ALTER TABLE t2 OWNER TO u2;

ALTER TABLE

=> SELECT sequence_name, owner_name FROM sequences;

 sequence_name | owner_name

---------------+------------

 s1 | dbadmin

(1 row)

See Also

Changing a sequence owner (page 182)

Changing a sequence owner

The ALTER SEQUENCE command lets you change the attributes of an existing sequence. All

changes take effect immediately, within the same session. Any parameters not set during an
ALTER SEQUENCE statement retain their prior settings.

-303-

 Working with Tables

If you need to change sequence ownership, such as if an employee who owns a sequence leaves
the company, you can do so with the following ALTER SEQUENCE syntax:

ALTER SEQUENCE sequence-name OWNER TO new-owner-name;

This operation immediately reassigns the sequence from the current owner to the specified new
owner.

Only the sequence owner or a superuser can change ownership, and reassignment does not
transfer grants from the original owner to the new owner; grants made by the original owner are
dropped.

Note: Renaming a table owner transfers ownership of dependent sequence objects

(associated IDENTITY/AUTO-INCREMENT sequences) but does not transfer ownership of
other referenced sequences. See Changing a table owner (page 179).

Example

The following example reassigns sequence ownership from the current owner to user Bob:

=> ALTER SEQUENCE sequential OWNER TO Bob;

See ALTER SEQUENCE in the SQL Reference Manual for details.

Renaming tables

The ALTER TABLE RENAME TO statement lets you rename one or more tables. The new table
names must not exist already.

Renaming tables does not affect existing pre-join projections because pre-join projections refer to
tables by their unique numeric object IDs (OIDs). Renaming tables also does not change the table
OID.

To rename two or more tables:

1 List the tables to rename with a comma-delimited list, specifying a schema-name after part of
the table specification only before the RENAME TO clause:

=> ALTER TABLE S1.T1, S1.T2 RENAME TO U1, U2;

The statement renames the listed tables to their new table names from left to right, matching
them sequentially, in a one-to-one correspondence.

The RENAME TO parameter is applied atomically so that all tables are renamed, or none of the

tables is renamed. For example, if the number of tables to rename does not match the number
of new names, none of the tables is renamed.

2 Do not specify a schema-name as part of the table specification after the RENAME TO clause,
since the statement applies to only one schema. The following example generates a syntax
error:

=> ALTER TABLE S1.T1, S1.T2 RENAME TO S1.U1, S1.U2;

Note: Renaming a table referenced by a view causes the view to fail, unless you create another
table with the previous name to replace the renamed table.

-304-

Administrator's Guide

Using rename to swap tables within a schema

You can use the ALTER TABLE RENAME TO statement to swap tables within a schema without
actually moving data. You cannot swap tables across schemas.

To swap tables within a schema (example statement is split to explain steps):

1 Enter the names of the tables to swap, followed by a new temporary table placeholder

(temps):

=> ALTER TABLE T1, T2, temps

2 Use the RENAME TO clause to swap the tables: T1 to temps, T2 to T1, and temps to T2:

RENAME TO temps, T1, T2;

Updating Tables with Records from Other Tables
If you have a batch of data you want to insert into your database that consists of both new and
updated records, and you know that duplicate records exist in the new data, a merge operation is
the most efficient way to perform the load because it inserts and updates data simultaneously.
This is an important process for any analytic database because it means that the data you are
analyzing is up to date. Without merge, you would have to go through a multi-step process; for
example, stage the new batch in a temporary table, perform an inner join against the main table to
identify the updated records, insert the entire new batch of records, and then drop the temporary
table.

The MERGE command lets you perform all of the above operations using a single command,
making it fast and easy to bulk load a new data set that consists of both new records and updates
to existing records. By default MERGE uses the WOS and if the WOS fills up, overflows to the
ROS.

When you write a MERGE statement, you specify a target and source table. You also provide a

search condition through the ON clause, which HP Vertica uses to evaluate each row in the source

table in order to update or insert its records into the target table.

You can also use optional WHEN MATCHED and WHEN NOT MATCHED clauses to further refine
results. For example, if you use one or both of:

 WHEN MATCHED THEN UPDATE: HP Vertica updates (replaces) the values of the specified
columns in all rows when it finds more than one matching row in the target table for a row in the
source table. All other columns and rows in the table are unchanged. If HP Vertica finds more
than one matching row in the source table for a row in the target table, it returns a run-time
error.

 WHEN NOT MATCHED THEN INSERT: HP Vertica inserts into the target table all rows from the
source table that do not match any rows in the target table.

-305-

 Working with Tables

For this example, assume you have two tables. The target table (locations) holds the information
about eating establishments where the data does not change very often. Another table (called
new_locations) logs restaurant traffic. You want to update the occurrence count in the target
(locations) table based on the source data (restaurant traffic) and not write a new record for the
same location multiple times. This example illustrates the merging of such data, which
updates—rather than replaces—records.

Create the target table

Create the target table called locations, which includes the restaurant locations:

=> CREATE TABLE locations (

 customer_id INTEGER,

 location_x FLOAT,

 location_y FLOAT,

 location_count INTEGER,

 location_name VARCHAR2(20));

Insert into the locations table two customers (1, 2) and two locations (Diner, Cafe) and commit the
transaction:

=> INSERT INTO locations VALUES (1, 10.1, 2.7, 1, 'Diner');

=> INSERT INTO locations VALUES (1, 4.1, 7.7, 1, 'Cafe');

=> INSERT INTO locations VALUES (2, 4.1, 7.7, 1, 'Cafe');

=> COMMIT;

View the target (locations) table:

=> SELECT * FROM locations;

 customer_id | location_x | location_y | location_count | location_name

-------------+------------+------------+----------------+---------------

 1 | 10.1 | 2.7 | 1 | Diner

 1 | 4.1 | 7.7 | 1 | Cafe

 2 | 4.1 | 7.7 | 1 | Cafe

(3 rows)

-306-

Administrator's Guide

Create the source table

Now create a source table (new_locations), which will hold the updated records representing new
restaurant traffic.

=> CREATE TABLE new_locations (

 customer_id INTEGER,

 location_x FLOAT,

 location_y FLOAT,

 location_count INTEGER,

 location_name VARCHAR2(20));

Insert a record into the source table to indicate that customer 1 was seen at the Diner location a
second time.

=> INSERT INTO new_locations VALUES (1, 10.1, 2.7, 1, 'Diner');

Insert a record into the source table to indicate that customer 2 was seen at a new location (Hotel).

=> INSERT INTO new_locations VALUES (2, 5.1, 7.9, 1, 'Hotel');

Now add a new customer (3) into the source table and commit the transaction.

=> INSERT INTO new_locations VALUES (3, 4.1, 7.7, 1, 'Cafe');

=> COMMIT;

View the results of the source (new_locations) table:

=> SELECT * FROM new_locations;

 customer_id | location_x | location_y | location_count | location_name

-------------+------------+------------+----------------+---------------

 1 | 10.1 | 2.7 | 1 | Diner

 2 | 5.1 | 7.9 | 1 | Hotel

 3 | 4.1 | 7.7 | 1 | Cafe

(3 rows)

Merge data from the two tables

The following statement tells HP Vertica to update the occurrence count in the target (locations)
table based on the source data (restaurant traffic updates) and not write a new record for the same

location multiple times. HP Vertica will also insert new records into the locations table from the
new_locations table when it doesn't find a match.

=> MERGE INTO locations l USING new_locations n

 ON (l.customer_id = n.customer_id

 AND l.location_x = n.location_x AND

 l.location_y = n.location_y)

 WHEN MATCHED THEN UPDATE SET location_count = l.location_count + n.location_count

 WHEN NOT MATCHED THEN INSERT (customer_id, location_x, location_y, location_count, location_name)

 VALUES (n.customer_id, n.location_x, n.location_y, n.location_count, n.location_name);

OUTPUT

 3

(1 row)

Commit the transaction:

-307-

 Working with Tables

=> COMMIT;

What the output row means

The returned OUTPUT value at the end of a MERGE operation denotes the number of rows
updated plus the number of rows inserted. In this case, the returned value of 3 represents:

 The new location (Hotel)

 The second time customer_id 1 was seen at the Diner location

 The new customer (customer_id 3)

If you query the target table locations, you can see the merged (updated and inserted) results.

=> SELECT * FROM locations;

Updated rows are highlighted:

See Also

Projection Design for Merge Optimizations (page 97)

Viewing MERGE Query Plan Output (page 712)

MERGE in the SQL Reference Manual

Dropping and Truncating Tables
HP Vertica provides two statements to manage tables: DROP TABLE and TRUNCATE TABLE.
You cannot truncate an external table.

Dropping Tables

Dropping a table removes its definition from the HP Vertica database. For the syntax details of this
statement, see DROP TABLE in the SQL Reference Manual.

To drop a table, use the statement as follows:

=> DROP TABLE IF EXISTS mytable;

DROP TABLE

=> DROP TABLE IF EXISTS mytable; -- Doesn't exist

NOTICE: Nothing was dropped

DROP TABLE

You cannot use the CASCADE option to drop an external table, since the table is read-only, you
cannot remove any of its associated files.

-308-

Administrator's Guide

Truncating Tables

Truncating a table removes all storage associated with the table, but preserves the table
definitions. Use TRUNCATE TABLE for testing purposes to remove all table data without having to
recreate projections when you reload table data. For the syntax details of this statement, see
TRUNCATE TABLE in the SQL Reference Manual. You cannot truncate an external table.

The TRUNCATE TABLE statement commits the entire transaction after statement execution,
even if truncating the table fails. You cannot roll back a TRUNCATE statement.

If the truncated table is a large single (fact) table containing pre-join projections, the projections
show zero (0) rows after the transaction completes and the table is ready for data reload.

If the table to truncate is a dimension table, drop the pre-join projections before executing the
TRUNCATE TABLE statement. Otherwise, the statement returns the following error:

Cannot truncate a dimension table with pre-joined projections

If the truncated table has out-of-date projections, those projections are cleared and marked
up-to-date after the TRUNCATE TABLE operation completes.

TRUNCATE TABLE takes an O (Owner) lock on the table until the truncation process completes,
and the savepoint is then released.

-309-

About Constraints

Constraints specify rules on data that can go into a column. Some examples of constraints are:

 Primary or foreign key

 Uniqueness

 Not NULL

 Default values

 Automatically incremented values

 Values that are generated by the database

Use constraints when you want to ensure the integrity of your data in one or more columns.

Note: Be aware that HP Vertica checks on constraints during query run time, not when you load

data into your tables. It is your responsibility to ensure the integrity of your data. Do not define
constraints on columns unless you expect to keep the data consistent.

Adding Constraints
Add constraints on one or more table columns using the following SQL commands:

 CREATE TABLE—Add a constraint on one or more columns.

 ALTER TABLE—Add or drop a constraint on one or more columns.

There are two syntax definitions you can use to add or change a constraint:

 column-constraint—Use this syntax when you add a constraint on a column definition in a
CREATE TABLE statement.

 table-constraint—Use this syntax when you add a constraint after a column definition in a
CREATE TABLE statement, or when you add, alter, or drop a constraint on a column using
ALTER TABLE.

HP Vertica recommends naming a constraint but it is optional; if you specify the CONSTRAINT
keyword, you must give a name for the constraint.

The examples that follow illustrate several ways of adding constraints. For additional details, see:

 Primary key constraints (page 313)

 Foreign key constraints (page 314)

 Unique constraints (page 315)

 Not NULL constraints (page 317)

Adding Column Constraints with CREATE TABLE

There are several ways to add a constraint on a column using CREATE TABLE:

-310-

Administrator's Guide

 On the column definition using the CONSTRAINT keyword, which requires that you assign a
constraint name, in this example, dim1PK:

CREATE TABLE dim1 (
 c1 INTEGER CONSTRAINT dim1PK PRIMARY KEY,

 c2 INTEGER

);

 On the column definition, omitting the CONSTRAINT keyword. When you omit the
CONSTRAINT keyword, you cannot specify a constraint name:

CREATE TABLE dim1 (

 c1 INTEGER PRIMARY KEY,

 c2 INTEGER

);

 After the column definition, using the CONSTRAINT keyword and assigning a name, in this
example, dim1PK:

CREATE TABLE dim1 (

 c1 INTEGER,

 c2 INTEGER,

 CONSTRAINT dim1pk PRIMARY KEY(c1)

);

 After the column definition, omitting the CONSTRAINT keyword:

CREATE TABLE dim1 (

 c1 INTEGER,

 c2 INTEGER,
 PRIMARY KEY(c1)

);

Adding Two Constraints on a Column

To add more than one constraint on a column, specify the constraints one after another when you
create the table column. For example, the following statement enforces both not NULL and unique
constraints on the customer_key column, indicating that the column values cannot be NULL and

must be unique:

CREATE TABLE test1 (

 id INTEGER NOT NULL UNIQUE,

 ...

);

Adding a Foreign Key Constraint on a Column

There are four ways to add a foreign key constraint on a column using CREATE TABLE. The
FOREIGN KEY keywords are not valid on the column definition, only after the column definition:

 On the column definition, use the CONSTRAINT and REFERENCES keywords and name the

constraint, in this example, fact1dim1PK. This example creates a column with a named
foreign key constraint referencing the table (dim1) with the primary key (c1):

CREATE TABLE fact1 (

 c1 INTEGER CONSTRAINT fact1dim1FK REFERENCES dim1(c1),

 c2 INTEGER

);

-311-

 About Constraints

 On the column definition, omit the CONSTRAINT keyword and use the REFERENCES
keyword with the table name and column:

CREATE TABLE fact1 (

 c1 INTEGER REFERENCES dim1(c1),

 c2 INTEGER

);

 After the column definition, use the CONSTRAINT, FOREIGN KEY, and REFERENCES
keywords and name the constraint:

CREATE TABLE fact1 (

 c1 INTEGER,

 c2 INTEGER,

 CONSTRAINT fk1 FOREIGN KEY(c1) REFERENCES dim1(c1)

);

 After the column definition, omitting the CONSTRAINT keyword:

CREATE TABLE fact1 (

 c1 INTEGER,

 c2 INTEGER,

 FOREIGN KEY(c1) REFERENCES dim1(c1)

);

Each of the following ALTER TABLE statements adds a foreign key constraint on an existing
column, with and without using the CONSTRAINT keyword:

ALTER TABLE fact2

 ADD CONSTRAINT fk1 FOREIGN KEY (c1) REFERENCES dim2(c1);

or

ALTER TABLE fact2

 ADD FOREIGN KEY (c1) REFERENCES dim2(c1);

For additional details, see FOREIGN KEY constraints (page 314).

Adding Multicolumn Constraints

The following example defines a primary key constraint on multiple columns by first defining the
table columns (c1 and c2), and then specifying both columns in a PRIMARY KEY clause:

CREATE TABLE dim (

 c1 INTEGER,

 c2 INTEGER,

 PRIMARY KEY (c1, c2)

);

To specify multicolumn (compound) primary keys, the following example uses CREATE TABLE to
define the columns. After creating the table, ALTER TABLE defines the compound primary key
and names it dim2PK:

CREATE TABLE dim2 (

 c1 INTEGER,

 c2 INTEGER,

 c3 INTEGER NOT NULL,

 c4 INTEGER UNIQUE

-312-

Administrator's Guide

);

ALTER TABLE dim2

 ADD CONSTRAINT dim2PK PRIMARY KEY (c1, c2);

In the next example, you define a compound primary key as part of the CREATE TABLE
statement. Then you specify the matching foreign key constraint to table dim2 using CREATE
TABLE and ALTER TABLE:

CREATE TABLE dim2 (

 c1 INTEGER,

 c2 INTEGER,

 c3 INTEGER NOT NULL,

 c4 INTEGER UNIQUE,

 PRIMARY KEY (c1, c2)

);

CREATE TABLE fact2 (

 c1 INTEGER,

 c2 INTEGER,

 c3 INTEGER NOT NULL,

 c4 INTEGER UNIQUE

);

ALTER TABLE fact2

 ADD CONSTRAINT fact2FK FOREIGN KEY (c1, c2) REFERENCES dim2(c1, c2);

Specify a foreign key constraint using a reference to the table that contains the primary key. In the
ADD CONSTRAINT clause, the REFERENCES column names are optional. The following ALTER
TABLE statement is equivalent to the previous ALTER TABLE statement:

ALTER TABLE fact2

 ADD CONSTRAINT fact2FK FOREIGN KEY (c1, c2) REFERENCES dim2;

Adding Constraints on Tables with Existing Data

When you add a constraint on a column with existing data, HP Vertica does not check to ensure
that the column does not contain invalid values. If your data does not conform to the declared
constraints, your queries could yield unexpected results.

Use ANALYZE_CONSTRAINTS to check for constraint violations in your column. If you find
violations, use the ALTER COLUMN SET/DROP parameters of the ALTER TABLE statement to
apply or remove a constraint on an existing column.

Adding and Changing Constraints on Columns Using ALTER TABLE

The following example uses ALTER TABLE to add a column (b) with not NULL and default 5
constraints to a table (test6):

CREATE TABLE test6 (a INT);

ALTER TABLE test6 ADD COLUMN b INT DEFAULT 5 NOT NULL;

Use ALTER TABLE with the ALTER COLUMN and SET NOT NULL clauses to add the constraint
on column a in table test6:

ALTER TABLE test6 ALTER COLUMN a SET NOT NULL;

-313-

 About Constraints

Adding and Dropping NOT NULL Column Constraints

Use the SET NOT NULL or DROP NOT NULL clause to add or remove a not NULL column
constraint. Use these clauses to ensure that the column has the proper constraints when you have
added or removed a primary key constraint on a column, or any time you want to add or remove
the not NULL constraint.

Note: A PRIMARY KEY constraint includes a not NULL constraint, but if you drop the
PRIMARY KEY constraint on a column, the not NULL constraint remains on that column.

Examples
ALTER TABLE T1 ALTER COLUMN x SET NOT NULL;

ALTER TABLE T1 ALTER COLUMN x DROP NOT NULL;

Enforcing Constraints

To maximize query performance, HP Vertica checks for primary key and foreign key violations
when loading into the fact table of a pre-join projection. For more details, see Enforcing Primary
Key and Foreign Key Constraints (page 318).

HP Vertica checks for not NULL constraint violations when loading data, but it does not check for
unique constraint violations.

To enforce constraints, load data without committing it using the COPY with NO COMMIT option
and then perform a post-load check using the ANALYZE_CONSTRAINTS function. If constraint
violations are found, you can roll back the load because you have not committed it. For more
details, see Analyzing Constraints (Detecting Constraint Violations) (page 319).

See Also

 ALTER TABLE

 CREATE TABLE

 COPY (NO COMMIT)

 ANALYZE_CONSTRAINTS

Primary Key Constraints

A primary key (PK) is a single column or combination of columns (called a compound key) that
uniquely identifies each row in a table. A primary key constraint contains unique, non-null values.

When you apply the primary key constraint, the not NULL and unique constraints are added
implicitly. You do not need to specify them when you create the column. However, if you remove
the primary key constraint, the not NULL constraint continues to apply to the column. To remove
the not NULL constraint after removing the primary key constraint, use the ALTER COLUMN
DROP NOT NULL parameter of the ALTER TABLE statement (see Dropping Constraints
(page 317)).

The following statement adds a primary key constraint on the employee_id field:

CREATE TABLE employees (

-314-

Administrator's Guide

 employee_id INTEGER PRIMARY KEY

);

Alternatively, you can add a primary key constraint after the column is created:

CREATE TABLE employees (

 employee_id INTEGER

);

ALTER TABLE employees

 ADD PRIMARY KEY (employee_id);

Note: If you specify a primary key constraint using ALTER TABLE, the system returns the
following message, which is informational only. The primary key constraint is added to the
designated column.

WARNING 2623: Column "employee_id" definition changed to NOT NULL

Primary keys can also constrain more than one column:

CREATE TABLE employees (

 employee_id INTEGER,

 employee_gender CHAR(1),

 PRIMARY KEY (employee_id, employee_gender)

);

Foreign Key Constraints

A foreign key (FK) is a column that is used to join a table to other tables to ensure referential
integrity of the data. A foreign key constraint requires that a column contain only values from the
primary key column on a specific dimension table.

A column with a foreign key constraint can contain NULL values if it does not also have a not
NULL (page 317) constraint, even though the NULL value does not appear in the PRIMARY KEY
column of the dimension table. This allows rows to be inserted into the table even if the foreign key
is not yet known.

In HP Vertica, the fact table's join columns are required to have foreign key constraints in order to
participate in pre-join projections. If the fact table join column has a foreign key constraint, outer
join queries produce the same result set as inner join queries.

You can add a FOREIGN KEY constraint solely by referencing the table that contains the primary
key. The columns in the referenced table do not need to be specified explicitly.

Examples

Create a table called inventory to store inventory data:

CREATE TABLE inventory (

 date_key INTEGER NOT NULL,

 product_key INTEGER NOT NULL,

 warehouse_key INTEGER NOT NULL,

 ...

);

Create a table called warehouse to store warehouse information:

-315-

 About Constraints

CREATE TABLE warehouse (

 warehouse_key INTEGER NOT NULL PRIMARY KEY,

 warehouse_name VARCHAR(20),

 ...

);

To ensure referential integrity between the inventory and warehouse tables, define a foreign key
constraint called fk_inventory_warehouse on the inventory table that references the
warehouse table:

ALTER TABLE inventory

 ADD CONSTRAINT fk_inventory_warehouse FOREIGN KEY(warehouse_key)

 REFERENCES warehouse(warehouse_key);

In this example, the inventory table is the referencing table and the warehouse table is the

referenced table.

You can also create the foreign key constraint in the CREATE TABLE statement that creates the

warehouse table, eliminating the need for the ALTER TABLE statement. If you do not specify one
or more columns, the PRIMARY KEY of the referenced table is used:

CREATE TABLE warehouse (

 warehouse_key INTEGER NOT NULL PRIMARY KEY REFERENCES warehouse,

 warehouse_name VARCHAR(20),

 ...

);

A foreign key can also constrain and reference multiple columns. The following example uses
CREATE TABLE to add a foreign key constraint to a pair of columns:

CREATE TABLE t1 (

 c1 INTEGER PRIMARY KEY,

 c2 INTEGER,

 c3 INTEGER,

 FOREIGN KEY (c2, c3) REFERENCES other_table (c1, c2)

);

The following two examples use ALTER TABLE to add a foreign key constraint to a pair of
columns. When you use the CONSTRAINT keyword, you must specify a constraint name:

ALTER TABLE t

 ADD FOREIGN KEY (a, b) REFERENCES other_table(c, d);

ALTER TABLE t

 ADD CONSTRAINT fk_cname FOREIGN KEY (a, b) REFERENCES other_table(c, d);

Note: The FOREIGN KEY keywords are valid only after the column definition, not on the
column definition.

Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique
with respect to all rows in the table.

-316-

Administrator's Guide

Note: If you add a unique constraint to a column and then insert data into that column that is not

unique with respect to other values in that column, HP Vertica inserts the data anyway. If your
data does not conform to the declared constraints, your queries could yield unexpected results.
Use ANALYZE_CONSTRAINTS to check for constraint violations.

There are several ways to add a unique constraint on a column. If you use the CONSTRAINT
keyword, you must specify a constraint name. The following example adds a UNIQUE constraint
on the product_key column and names it product_key_UK:

CREATE TABLE product (

 product_key INTEGER NOT NULL CONSTRAINT product_key_UK UNIQUE,

 ...

);

HP Vertica recommends naming constraints, but it is optional:

CREATE TABLE product (

 product_key INTEGER NOT NULL UNIQUE,

 ...

);

You can specify the constraint after the column definition, with and without naming it:

CREATE TABLE product (

 product_key INTEGER NOT NULL,

 ...,

 CONSTRAINT product_key_uk UNIQUE (product_key)

);

CREATE TABLE product (

 product_key INTEGER NOT NULL,

 ...,

 UNIQUE (product_key)

);

You can also use ALTER TABLE to specify a unique constraint. This example names the
constraint product_key_UK:

ALTER TABLE product

 ADD CONSTRAINT product_key_UK UNIQUE (product_key);

You can use CREATE TABLE and ALTER TABLE to specify unique constraints on multiple
columns. If a unique constraint refers to a group of columns, separate the column names using
commas. The column listing specifies that the combination of values in the indicated columns is
unique across the whole table, though any one of the columns need not be (and ordinarily isn't)
unique:

CREATE TABLE dim1 (

 c1 INTEGER,

 c2 INTEGER,

 c3 INTEGER,

 UNIQUE (c1, c2)

);

-317-

 About Constraints

Not NULL Constraints

A not NULL constraint specifies that a column cannot contain a null value. This means that new
rows cannot be inserted or updated unless you specify a value for this column.

You can apply the not NULL constraint when you create a column using the CREATE TABLE
statement. You can also add or drop the not NULL constraint to an existing column using,
respectively:

 ALTER TABLE t ALTER COLUMN x SET NOT NULL

 ALTER TABLE t ALTER COLUMN x DROP NOT NULL

The not NULL constraint is implicitly applied to a column when you add the PRIMARY KEY (PK)
constraint. When you designate a column as a primary key, you do not need to specify the not
NULL constraint.

However, if you remove the primary key constraint, the not NULL constraint still applies to the
column. Use the ALTER COLUMN x DROP NOT NULL parameter of the ALTER TABLE
statement to drop the not NULL constraint after dropping the primary key constraint.

The following statement enforces a not NULL constraint on the customer_key column,

specifying that the column cannot accept NULL values.

CREATE TABLE customer (

 customer_key INTEGER NOT NULL,

 ...

);

Dropping Constraints
To drop named constraints, use the ALTER TABLE command.

The following example drops the constraint factfk2:

=> ALTER TABLE fact2 DROP CONSTRAINT fact2fk;

To drop constraints that you did not assign a name to, query the system table
TABLE_CONSTRAINTS, which returns both system-generated and user-named constraint
names:

=> SELECT * FROM TABLE_CONSTRAINTS;

If you do not specify a constraint name, HP Vertica assigns a constraint name that is unique to that
table. In the following output, note the system-generated constraint name C_PRIMARY and the

user-defined constraint name fk_inventory_date:

-[RECORD 1]--------+--------------------------

constraint_id | 45035996273707984

constraint_name | C_PRIMARY

constraint_schema_id | 45035996273704966

constraint_key_count | 1

foreign_key_count | 0

-318-

Administrator's Guide

table_id | 45035996273707982

foreign_table_id | 0

constraint_type | p

-[...]---------+--------------------------

-[RECORD 9]--------+--------------------------

constraint_id | 45035996273708016

constraint_name | fk_inventory_date

constraint_schema_id | 0

constraint_key_count | 1

foreign_key_count | 1

table_id | 45035996273708014

foreign_table_id | 45035996273707994

constraint_type | f

Once you know the name of the constraint, you can then drop it using the ALTER TABLE
command. (If you do not know the table name, use table_id to retrieve table_name from the
ALL_TABLES table.)

Notes

 Primary key constraints cannot be dropped if there is another table with a foreign key
constraint that references the primary key.

 A foreign key constraint cannot be dropped if there are any pre-join projections on the table.

 Dropping a primary or foreign key constraint does not automatically drop the not NULL
constraint on a column. You need to manually drop this constraint if you no longer want it.

See Also

ALTER TABLE

Enforcing Primary Key and Foreign Key Constraints

Enforcing Primary Key Constraints

HP Vertica does not enforce the uniqueness of primary keys when they are loaded into a table.
However, when data is loaded into a table with a pre-joined dimension, or when the table is joined
to a dimension table during a query, a key enforcement error could result if there is not exactly one
dimension row that matches each foreign key value.

Note: Consider using sequences or auto-incrementing columns for primary key columns, which

guarantees uniqueness and avoids the constraint enforcement problem and associated
overhead. For more information, see Using Sequences (page 57).

Enforcing Foreign Key Constraints

A table's foreign key constraints are enforced during data load only if there is a pre-join projection
that has that table as its anchor table. If there no such pre-join projection exists, then it is possible
to load data that causes a constraint violation. Subsequently, a constraint violation error can
happen when:

 An inner join query is processed.

 An outer join is treated as an inner join due to the presence of foreign key.

-319-

 About Constraints

 A new pre-join projection anchored on the table with the foreign key constraint is refreshed.

Detecting constraint violations before you commit data

To detect constraint violations, you can load data without committing it using the COPY statement
with the NO COMMIT option, and then perform a post-load check using the
ANALYZE_CONSTRAINTS function. If constraint violations exist, you can roll back the load
because you have not committed it. For more details, see Analyzing Constraints (Detecting
Constraint Violations) (page 319).

Analyzing Constraints (Detecting Constraint Violations)
The ANALYZE_CONSTRAINTS() function analyzes and reports on constraint violations within the
current schema search path. To check for constraint violations:

 Pass an empty argument to check for violations on all tables within the current schema

 Pass a single table argument to check for violations on the specified table

 Pass two arguments, a table name and a column or list of columns, to check for violations in
those columns

Given the following inputs, HP Vertica returns one row, indicating one violation, because the same
primary key value (10) was inserted into table t1 twice:

=> CREATE TABLE t1(c1 INT);

=> ALTER TABLE t1 ADD CONSTRAINT pk_t1 PRIMARY KEY (c1);

=> CREATE PROJECTION t1_p (c1) AS SELECT * FROM t1 UNSEGMENTED ALL NODES;

=> INSERT INTO t1 values (10);

=> INSERT INTO t1 values (10); --Duplicate primary key value

=> SELECT ANALYZE_CONSTRAINTS('t1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public t1 c1 pk_t1 PRIMARY ('10')

(1 row)

If the second INSERT statement above had contained any different value, the result would have
been 0 rows (no violations).

In the following example, create a table that contains three integer columns, one a unique key and
one a primary key:

=> CREATE TABLE fact_1(

 f INTEGER,

 f_UK INTEGER UNIQUE,

 f_PK INTEGER PRIMARY KEY

);

Issue a command that refers to a nonexistent table and column:

=> SELECT ANALYZE_CONSTRAINTS('f_BB');

 ERROR: 'f_BB' is not a table name in the current search path

Issue a command that refers to a nonexistent column:

=> SELECT ANALYZE_CONSTRAINTS('fact_1','x');

 ERROR 41614: Nonexistent columns: 'x '

Insert some values into table fact_1 and commit the changes:

=> INSERT INTO fact_1 values (1, 1, 1);

-320-

Administrator's Guide

=> COMMIT;

Run ANALYZE_CONSTRAINTS on table fact_1. No constraint violations are reported:

=> SELECT ANALYZE_CONSTRAINTS('fact_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

(0 rows)

Insert duplicate unique and primary key values and run ANALYZE_CONSTRAINTS on table
fact_1 again. The system shows two violations: one against the primary key and one against the
unique key:

=> INSERT INTO fact_1 VALUES (1, 1, 1);

=> COMMIT;

=> SELECT ANALYZE_CONSTRAINTS('fact_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | fact_1 | f_pk | - | PRIMARY | ('1')

 public | fact_1 | f_uk | - | UNIQUE | ('1')

(2 rows)

The following command looks for constraint validations on only the unique key in the table
fact_1, qualified with its schema name:

=> SELECT ANALYZE_CONSTRAINTS('public.fact_1', 'f_UK');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | fact_1 | f_uk | C_UNIQUE | UNIQUE | ('1')

(1 row)

The following example shows that you can specify the same column more than once;
ANALYZE_CONSTRAINTS, however, returns the violation only once:

=> SELECT ANALYZE_CONSTRAINTS('fact_1', 'f_PK, F_PK');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | fact_1 | f_pk | C_PRIMARY | PRIMARY | ('1')

(1 row)

The following example creates a new dimension table, dim_1, and inserts a foreign key and
different (character) data types:

=> CREATE TABLE dim_1 (b VARCHAR(3), b_PK VARCHAR(4), b_FK INTEGER REFERENCES fact_1(f_PK));

Alter the table to create a multicolumn unique key and multicolumn foreign key and create
superprojections:

=> ALTER TABLE dim_1 ADD CONSTRAINT dim_1_multiuk PRIMARY KEY (b, b_PK);

The following command inserts a missing foreign key (0) into table dim_1 and commits the
changes:

=> INSERT INTO dim_1 VALUES ('r1', 'Xpk1', 0);

=> COMMIT;

Checking for constraints on the table dim_1 in the public schema detects a foreign key

violation:

=> SELECT ANALYZE_CONSTRAINTS('public.dim_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | dim_1 | b_fk | C_FOREIGN | FOREIGN | ('0')

(1 row)

Now add a duplicate value into the unique key and commit the changes:

-321-

 About Constraints

=> INSERT INTO dim_1 values ('r2', 'Xpk1', 1);

=> INSERT INTO dim_1 values ('r1', 'Xpk1', 1);

=> COMMIT;

Checking for constraint violations on table dim_1 detects the duplicate unique key error:

=> SELECT ANALYZE_CONSTRAINTS('dim_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+----------------

 public | dim_1 | b, b_pk | dim_1_multiuk | PRIMARY | ('r1', 'Xpk1')

 public | dim_1 | b_fk | C_FOREIGN | FOREIGN | ('0')

(2 rows)

Create a table with multicolumn foreign key and create the superprojections:

=> CREATE TABLE dim_2(z_fk1 VARCHAR(3), z_fk2 VARCHAR(4));

=> ALTER TABLE dim_2 ADD CONSTRAINT dim_2_multifk FOREIGN KEY (z_fk1, z_fk2) REFERENCES dim_1(b, b_PK);

Insert a foreign key that matches a foreign key in table dim_1 and commit the changes:

=> INSERT INTO dim_2 VALUES ('r1', 'Xpk1');

=> COMMIT;

Checking for constraints on table dim_2 detects no violations:

=> SELECT ANALYZE_CONSTRAINTS('dim_2');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

(0 rows)

Add a value that does not match and commit the change:

=> INSERT INTO dim_2 values ('r1', 'NONE');

=> COMMIT;

Checking for constraints on table dim_2 detects a foreign key violation:

=> SELECT ANALYZE_CONSTRAINTS('dim_2');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+----------------

 public | dim_2 | z_fk1, z_fk2 | dim_2_multifk | FOREIGN | ('r1', 'NONE')

(1 row)

Analyze all constraints on all tables:

=> SELECT ANALYZE_CONSTRAINTS('');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | dim_1 | b, b_pk | dim_1_multiuk | PRIMARY | ('r1', 'Xpk1')

 public | dim_1 | b_fk | C_FOREIGN | FOREIGN | ('0')

 public | dim_2 | z_fk1, z_fk2 | dim_2_multifk | FOREIGN | ('r1', 'NONE')

 public | fact_1 | f_pk | C_PRIMARY | PRIMARY | ('1')

 public | fact_1 | f_uk | C_UNIQUE | UNIQUE | ('1')

(5 rows)

To quickly clean up your database, issue the following command:

=> DROP TABLE fact_1 cascade;

=> DROP TABLE dim_1 cascade;

=> DROP TABLE dim_2 cascade;

-322-

Administrator's Guide

Fixing Constraint Violations

When HP Vertica finds duplicate primary key or unique values at run time, use the
DISABLE_DUPLICATE_KEY_ERROR function to suppress error messaging. Queries execute as
though no constraints are defined on the schema and the effects are session scoped.

CAUTION: When called, DISABLE_DUPLICATE_KEY_ERROR suppresses data integrity

checking and can lead to incorrect query results. Use this function only after you insert
duplicate primary keys into a dimension table in the presence of a pre-join projection. Correct
the violations and reenable integrity checking with REENABLE_DUPLICATE_KEY_ERROR.

The following series of commands create a table named dim and the corresponding projection:

CREATE TABLE dim (pk INTEGER PRIMARY KEY, x INTEGER);

CREATE PROJECTION dim_p (pk, x) AS SELECT * FROM dim ORDER BY x UNSEGMENTED ALL

NODES;

The next two statements create a table named fact and the pre-join projection that joins fact to
dim.

CREATE TABLE fact(fk INTEGER REFERENCES dim(pk));

CREATE PROJECTION prejoin_p (fk, pk, x) AS SELECT * FROM fact, dim WHERE pk=fk ORDER

BY x;

The following statements load values into table dim. The last statement inserts a duplicate primary

key value of 1:

INSERT INTO dim values (1,1);

INSERT INTO dim values (2,2);

INSERT INTO dim values (1,2); --Constraint violation

COMMIT;

Table dim now contains duplicate primary key values, but you cannot delete the violating row
because of the presence of the pre-join projection. Any attempt to delete the record results in the
following error message:

ROLLBACK: Duplicate primary key detected in FK-PK join Hash-Join (x dim_p), value

1

In order to remove the constraint violation (pk=1), use the following sequence of commands,
which puts the database back into the state just before the duplicate primary key was added.

To remove the violation:

1 Save the original dim rows that match the duplicated primary key:

CREATE TEMP TABLE dim_temp(pk integer, x integer);

INSERT INTO dim_temp SELECT * FROM dim WHERE pk=1 AND x=1; -- original

dim row

2 Temporarily disable error messaging on duplicate constraint values:

SELECT DISABLE_DUPLICATE_KEY_ERROR();

Caution: Remember that running the DISABLE_DUPLICATE_KEY_ERROR function
suppresses the enforcement of data integrity checking.

-323-

 About Constraints

3 Remove the original row that contains duplicate values:

DELETE FROM dim WHERE pk=1;

4 Allow the database to resume data integrity checking:

SELECT REENABLE_DUPLICATE_KEY_ERROR();

5 Reinsert the original values back into the dimension table:

INSERT INTO dim SELECT * from dim_temp;

COMMIT;

6 Validate your dimension and fact tables.

If you receive the following error message, it means that the duplicate records you want to delete
are not identical. That is, the records contain values that differ in at least one column that is not a
primary key; for example, (1,1) and (1,2).

ROLLBACK: Delete: could not find a data row to delete (data integrity violation?)

The difference between this message and the rollback message in the previous example is that a
fact row contains a foreign key that matches the duplicated primary key, which has been inserted.
A row with values from the fact and dimension table is now in the pre-join projection. In order for
the DELETE statement (Step 3 in the following example) to complete successfully, extra
predicates are required to identify the original dimension table values (the values that are in the
pre-join).

This example is nearly identical to the previous example, except that an additional INSERT
statement joins the fact table to the dimension table by a primary key value of 1:

INSERT INTO dim values (1,1);

INSERT INTO dim values (2,2);

INSERT INTO fact values (1); -- New insert statement joins fact with dim on
primary key value=1

INSERT INTO dim values (1,2); -- Duplicate primary key value=1

COMMIT;

To remove the violation:

1 Save the original dim and fact rows that match the duplicated primary key:

CREATE TEMP TABLE dim_temp(pk integer, x integer);

CREATE TEMP TABLE fact_temp(fk integer);

INSERT INTO dim_temp SELECT * FROM dim WHERE pk=1 AND x=1; -- original

dim row

INSERT INTO fact_temp SELECT * FROM fact WHERE fk=1;

2 Temporarily suppresses the enforcement of data integrity checking:

SELECT DISABLE_DUPLICATE_KEY_ERROR();

3 Remove the duplicate primary keys. These steps also implicitly remove all fact rows with the
matching foreign key.

a) Remove the original row that contains duplicate values:

DELETE FROM dim WHERE pk=1 AND x=1;

Note: The extra predicate (x=1) specifies removal of the original (1,1) row, rather than the

newly inserted (1,2) values that caused the violation.

b) Remove all remaining rows:

-324-

Administrator's Guide

DELETE FROM dim WHERE pk=1;

4 Reenable integrity checking:

SELECT REENABLE_DUPLICATE_KEY_ERROR();

5 Reinsert the original values back into the fact and dimension table:

INSERT INTO dim SELECT * from dim_temp;

INSERT INTO fact SELECT * from fact_temp;

COMMIT;

Validate your dimension and fact tables.

Reenabling Error Reporting

If you ran DISABLE_DUPLICATE_KEY_ERROR to suppress error reporting while fixing duplicate
key violations, you can get incorrect query results going forward. As soon as you fix the violations,
run the REENABLE_DUPLICATE_KEY_ERROR function to restore the default behavior of error
reporting.

The effects of this function are session scoped.

-325-

Working with Table Partitions

When you partition data at the table level, you divide one large table into smaller pieces. You

specify what you want to partition by using CREATE TABLE .. PARTITION BY syntax. Partitions
apply to all projections for a given table.

A common use for partitioning tables is to split data by time. For instance, if a table holds decades
of data, you can partition it by year; alternatively, you can partition the table by month, if the table
contains a single year of data.

Partitions can improve parallelism during query execution and enable some other optimizations.
Partitions also segregate data on each node to make it easier to drop partitions, such as when you
need to quickly drop older data to make room for new.

Tip: When a storage container has data for a single partition, you can discard that storage

location (DROP_LOCATION) after dropping the partition using the DROP_PARTITION()
function.

Differences between partitioning and segmenting data

There is a distinction between partitioning at the table level and segmenting a projection:

 Partitioning—You define partitions using CREATE TABLE..PARTITION BY syntax for fast
data purges and query performance. Table partitioning segregates data on each node. You
can drop partitions.

 Segmentation—You define how projections are distributed using CREATE

PROJECTION..SEGMENTED BY syntax. Segmenting projections (by hash or range) distributes
projection data across multiple nodes in a cluster. Different projections for the same table
have identical partitioning, but can have different segmentation clauses. See Projection
Segmentation in the Concepts Guide.

Both methods of storing and organizing data provide opportunities for parallelism during query
processing. See Partitioning and Segmenting Data (page 330) for details.

Partition Operations

The basic operations for working with partitions are as follow:

 Defining partitions (page 326)

 Bulk Loading Data (page 342), and engaging in other normal operations

 Forcing data partitioning, if needed

 Moving partitions to another table as part of archiving historical data

 Dropping partitions (page 328) to drop existing partitions

 Displaying partition metadata with the PARTITIONS system table, to display one row per
partition key, per ROS container.

HP Vertica provides functions that let you manage your partitions and obtain additional information
about them. See the Partition Management Functions in the SQL Reference Manual.

Table partitioning is not supported when you create external tables or when you use CREATE
TABLE AS SELECT operations.

-326-

Administrator's Guide

See Also

CREATE TABLE in the SQL Reference Manual

Partitioning, repartitioning, and reorganizing tables (page 333)

Defining partitions
The first step in defining data partitions is to establish the relationship between the data and

partitions. To illustrate, consider the following table called trade, which contains unpartitioned
data for the trade date (tdate), ticker symbol (tsymbol), and time (ttime).

Table 1: Unpartitioned data

 tdate | tsymbol | ttime

------------+---------+----------

 2008-01-02 | AAA | 13:00:00

 2009-02-04 | BBB | 14:30:00

 2010-09-18 | AAA | 09:55:00

 2009-05-06 | AAA | 11:14:30

 2008-12-22 | BBB | 15:30:00

(5 rows)

If you want to discard data once a year, a logical choice is to partition the table by year. The
partition expression PARTITION BY EXTRACT(year FROM tdate)creates the partitions shown
in Table 2:

Table 2: Data partitioned by year

2008 2009 2010
 tdate tsymbol ttime

---------+---------+---------

01/02/08 | AAA | 13:00:00

12/22/08 | BBB | 15:30:00

 tdate tsymbol ttime

---------+---------+---------

02/04/09 | BBB | 14:30:00

05/06/09 | AAA | 11:14:30

 tdate tsymbol ttime

---------+---------+---------

09/18/10 | AAA | 09:55:00

Unlike some databases, which require you to explicitly define partition boundaries in the CREATE
TABLE statement, HP Vertica selects a partition for each row based on the result of a partitioning
expression provided in the CREATE TABLE statement. Partitions do not have explicit names
associated with them. Internally, HP Vertica creates a partition for each distinct value in the
PARTITION BY expression.

After you specify a partition expression, HP Vertica processes the data by applying the partition
expression to each row and then assigning partitions.

The following syntax generates the partitions for this example, with the results shown in Table 3. It

creates a table called trade, partitioned by year. For additional information, see CREATE TABLE
in the SQL Reference Manual.

CREATE TABLE trade (

 tdate DATE NOT NULL,

 tsymbol VARCHAR(8) NOT NULL,

 ttime TIME)

PARTITION BY EXTRACT (year FROM tdate);

CREATE PROJECTION trade_p (tdate, tsymbol, ttime) AS

-327-

 Working with Table Partitions

SELECT * FROM trade

ORDER BY tdate, tsymbol, ttime UNSEGMENTED ALL NODES;

INSERT INTO trade VALUES ('01/02/08' , 'AAA' , '13:00:00');

INSERT INTO trade VALUES ('02/04/09' , 'BBB' , '14:30:00');

INSERT INTO trade VALUES ('09/18/10' , 'AAA' , '09:55:00');

INSERT INTO trade VALUES ('05/06/09' , 'AAA' , '11:14:30');

INSERT INTO trade VALUES ('12/22/08' , 'BBB' , '15:30:00');

Table 3: Partitioning expression and results

Partitioning by Year and Month

To partition by both year and month, you need a partition expression that pads the month out to
two digits so the partition keys appear as:

201101

201102

201103

...

201111

201112

You can use the following partition expression to partition the table using the year and month:

PARTITION BY EXTRACT(year FROM tdate)*100 + EXTRACT(month FROM tdate)

Restrictions on Partitioning Expressions

 The partitioning expression can reference one or more columns from the table.

 The partitioning expression cannot evaluate to NULL for any row, so do not include columns
that allow a NULL value in the CREATE TABLE..PARTITION BY expression.

 Any SQL functions in the partitioning expression must be immutable, meaning that they return
the exact same value regardless of when they are invoked, and independently of session or
environment settings, such as LOCALE. For example, you cannot use the TO_CHAR function
in a partition expression, because it depends on locale settings, or the RANDOM function,
since it produces different values at each invocation.

 HP Vertica meta-functions cannot be used in partitioning expressions.

 All projections anchored on a table must include all columns referenced in the PARTITION BY
expression; this allows the partition to be calculated.

 You cannot modify partition expressions once a partitioned table is created. If you want
modified partition expressions, create a new table with a new PARTITION BY clause, and then
INSERT...SELECT from the old table to the new table. Once your data is partitioned the way
you want it, you can drop the old table.

-328-

Administrator's Guide

Best Practices for Partitioning

 While HP Vertica supports a maximum of 1024 partitions, few, if any, organizations will need to
approach that maximum. Fewer partitions are likely to meet your business needs, while also
ensuring maximum performance. Many customers, for example, partition their data by month,
bringing their partition count to 12. HP Vertica recommends you keep the number of partitions
between 10 and 20 to achieve excellent performance.

 Do not apply partitioning to tables used as dimension tables in pre-join projections. You can
apply partitioning to tables used as large single (fact) tables in pre-join projections.

Dropping partitions
Use the DROP_PARTITION function to drop a partition. Normally, this is a fast operation that
simply discards all ROS containers that contain data for the partition.

Occasionally, a ROS container contains rows that belong to more than one partition. For example,
this can happen after a MERGE_PARTITIONS operation. In this case, HP Vertica performs a split
operation to avoid discarding too much data. HP Vertica tries to keep data from different partitions
segregated into different ROS containers, but there are a small number of exceptions. For
instance, the following operations can result in a ROS container with mixed partitions:

 MERGE_PARTITIONS, which merges ROS containers that have data belonging to partitions
in a specified partition key range.

 Refresh and recovery operations operations can generate ROS containers with mixed
partitions under some conditions. See Auto Partitioning (page 335).

The number of partitions that contain data is restricted by the number of ROS containers that can
comfortably exist in the system.

In general, if a ROS container has data that belongs to n+1 partitions and you want to drop a
specific partition, the DROP_PARTITION operation:

1 Forces the partition of data into two containers where

 one container holds the data that belongs to the partition that is to be dropped

 another container holds the remaining n partitions

2 Drops the specified partition.

You can also use the MERGE_PARTITIONS function to merge ROS containers that have data
belonging to partitions in a specified partition key range; for example, [partitionKeyFrom,
partitionKeyTo].

DROP_PARTITION forces a moveout if there is data in the WOS (WOS is not partition aware).

DROP_PARTITION acquires an exclusive lock on the table to prevent DELETE | UPDATE |
INSERT | COPY statements from affecting the table, as well as any SELECT statements issued at
SERIALIZABLE isolation level.

Users must have USAGE privilege on schema that contains the table.

-329-

 Working with Table Partitions

DROP_PARTITION operations cannot be performed on tables with projections that are not up to
date (have not been refreshed).

DROP_PARTITION fails if you do not set the optional third parameter to true and it encounters
ROS's that do not have partition keys.

Examples

Using the example schema in Defining Partitions (page 326), the following command explicitly
drops the 2009 partition key from table trade:

 SELECT DROP_PARTITION('trade', 2009);

 DROP_PARTITION

 Partition dropped

(1 row)

Here, the partition key is specified:

SELECT DROP_PARTITION('trade', EXTRACT('year' FROM '2009-01-01'::date));

 DROP_PARTITION

 Partition dropped

(1 row)

The following example creates a table called dates and partitions the table by year:

CREATE TABLE dates (

 year INTEGER NOT NULL,

 month VARCHAR(8) NOT NULL)

PARTITION BY year * 12 + month;

The following statement drops the partition using a constant for Oct 2010 (2010*12 + 10 = 24130):

 SELECT DROP_PARTITION('dates', '24130');

 DROP_PARTITION

 Partition dropped

(1 row)

Alternatively, the expression can be placed in line: SELECT DROP_PARTITION('dates',
2010*12 + 10);

The following command first reorganizes the data if it is unpartitioned and then explicitly drops the
2009 partition key from table trade:

SELECT DROP_PARTITION('trade', 2009, false, true);

 DROP_PARTITION

 Partition dropped

(1 row)

See Also

DROP_PARTITION in the SQL Reference Manual

-330-

Administrator's Guide

Partitioning and segmenting data

Partitioning and segmentation have completely separate functions in HP Vertica, and opposite
goals regarding data localization. Since other databases often use the terms interchangeably, it is
important to know the differences.

 Segmentation defines how data is spread among cluster nodes. The goal is to distribute data

evenly across multiple database nodes so that all nodes can participate in query execution.

 Partitioning specifies how data is organized within individual nodes. Partitioning attempts to

introduce hot spots within the node, providing a convenient way to drop data and reclaim the
disk space.

Note: Segmentation is defined by the CREATE PROJECTION statement, and partitioning is
defined by the CREATE TABLE statement. Logically, the partition clause is applied after the
segmentation clause. See the SQL Reference Manual for details.

To further illustrate the differences, partitioning data by year makes sense if you intend to retain
and drop data at the granularity of a year. On the other hand, segmenting the data by year would
be inefficient, because the node holding data for the current year would likely answer far more
queries than the other nodes.

The following diagram illustrates the flow of segmentation and partitioning on a four-node
database cluster:

1 Example table data

2 Data segmented by HASH(order_id)

3 Data segmented by hash across four nodes

4 Data partitioned by year on a single node

-331-

 Working with Table Partitions

While partitioning occurs on all four nodes, the illustration shows partitioned data on one node for
simplicity.

See Also

Reclaiming Disk Space (page 459)

Using Identically Segmented Projections in the Programmer's Guide

Projection Segmentation in the Concepts Guide

CREATE PROJECTION and CREATE TABLE in the SQL Reference Manual

Partitioning and data storage

Partitions and ROS containers

 Data is automatically split into partitions during load / refresh / recovery operations.

 The Tuple Mover maintains physical separation of partitions.

 Each ROS container contains data for a single partition, though there can be multiple ROS
containers for a single partition.

Partition pruning

When a query predicate includes one more more columns in the partitioning clause, queries look
only at relevant ROS containers. See Partition Elimination (page 337) for details.

-332-

Administrator's Guide

Managing partitions
HP Vertica provides several functions that let you manage and monitor your partitions.

PARTITIONS

You can display partition metadata, one row per partition key, per ROS container, via the
PARTITIONS system table.

Given a projection named p1, with three ROS containers, the PARTITIONS function returns
three rows:

=> SELECT PARTITION_KEY, PROJECTION_NAME, ROS_ID, ROS_SIZE_BYTES, ROS_ROW_COUNT, NODE_NAME FROM

partitions;

 PARTITION_KEY | PROJECTION_NAME | ROS_ID | ROS_SIZE_BYTES | ROS_ROW_COUNT |

NODE_NAME

---------------+------------------+-------------------+----------------+---------------+---------

 2008 | trade_p_node0001 | 45035996273740461 | 90 | 1 | node0001

 2007 | trade_p_node0001 | 45035996273740477 | 99 | 2 | node0001

 2006 | trade_p_node0001 | 45035996273740493 | 99 | 2 | node0001

(3 rows)

MERGE_PARTITIONS

The MERGE_PARTITIONS() function merges partitions between the specified values to a single
ROS container. For example:

MERGE_PARTITIONS (table_name , partition_key_from , partition_key_to)

The edge values of the partition key are included in the range, and partition_key_from must

be less than or equal to partition_key_to. Inclusion of partitions in the range is based on the

application of less than(<)/greater than(>) operators of the corresponding data type.

Note: No restrictions are placed on a partition key's data type.

If partition_key_from is the same as partition_key_to, all ROS containers of the
partition key are merged into one ROS.

Users must have USAGE privilege on schema that contains the table.The following series of
statements show how to merge partitions:

=> SELECT MERGE_PARTITIONS('T1', '200', '400');

=> SELECT MERGE_PARTITIONS('T1', '800', '800');

=> SELECT MERGE_PARTITIONS('T1', 'CA', 'MA');

=> SELECT MERGE_PARTITIONS('T1', 'false', 'true');

=> SELECT MERGE_PARTITIONS('T1', '06/06/2008', '06/07/2008');

=> SELECT MERGE_PARTITIONS('T1', '02:01:10', '04:20:40');

=> SELECT MERGE_PARTITIONS('T1', '06/06/2008 02:01:10', '06/07/2008 02:01:10');

=> SELECT MERGE_PARTITIONS('T1', '8 hours', '1 day 4 hours 20 seconds');

-333-

 Working with Table Partitions

PARTITION_TABLE

The PARTITION_TABLE() function physically separates partitions into separate containers. Only
ROS containers with more than one distinct value participate in the split.

The following example creates a simple table called states and partitions data by state.

=> CREATE TABLE states (

 year INTEGER NOT NULL,

 state VARCHAR NOT NULL)

 PARTITION BY state;

=> CREATE PROJECTION states_p (state, year) AS

 SELECT * FROM states

 ORDER BY state, year UNSEGMENTED ALL NODES;

Now issue the command to partition table states:

=> SELECT PARTITION_TABLE('states');

 PARTITION_TABLE

partition operation for projection 'states_p_node0004'

partition operation for projection 'states_p_node0003'

partition operation for projection 'states_p_node0002'

partition operation for projection 'states_p_node0001'

(1 row)

Notes

There are just a few more things worth mentioning in helping you manage your partitions.

 To prevent too many ROS containers, be aware that delete operations must open all the
containers; thus, ideally create fewer than 20 partitions and avoid creating more than 50.

You can use the MERGE_PARTITIONS() function to merge old partitions to a single ROS
container.

 Non-deterministic functions cannot be used in the PARTITION BY expression. One example is
TIMESTAMP WITH TIME ZONE, because the value depends on user settings.

 A dimension table in a pre-join projection cannot be partitioned.

Partitioning, repartitioning, and reorganizing tables
Using the ALTER TABLE statement with its PARTITION BY syntax andthe optional REORGANIZE

keyword partitions or re-partitions a table according to the partition-clause that you define in the
statement. HP Vertica immediately drops any existing partition keys when you execute the
statement.

You can use the PARTITION BY and REORGANIZE keywords separately or together. However,
you cannot use these keywords with any other ALTER TABLE clauses.

-334-

Administrator's Guide

Partition-clause expressions are limited in the following ways:

 Your partition-clause must calculate a single non-null value for each row. You can reference
multiple columns, but each row must return a single value.

 You can specify leaf expressions, functions, and operators in the partition clause expression.

 All leaf expressions in the partition clause must be either constants or columns of the table.

 Aggregate functions and queries are not permitted in the partition-clause expression.

 SQL functions used in the partition-clause expression must be immutable.

Partitioning or re-partitioning tables requires USAGE privilege on the schema that contains the
table.

Reorganizing Data After Partitioning

Partitioning is not complete until you reorganize the data. The optional REORGANIZE keyword
completes table partitioning by assigning partition keys. You can use REORGANIZE with
PARTITION BY, or as the only keyword in the ALTER TABLE statement for tables that were
previously altered with the PARTITION BY modifier, but were not reorganized with the
REORGANIZE keyword.

If you specify the REORGANIZE keyword, data is partitioned immediately to the new schema as a
background task.

Tip: As a best practice, HP recommends that you reorganize the data while partitioning the

table, using PARTITION BY with the REORGANIZE keyword. If you do not specify

REORGANIZE, performance for queries, DROP_PARTITION() operations, and node recovery
could be degraded until the data is reorganized. Also, without reorganizing existing data, new
data is stored according to the new partition expression, while the existing data storage
remains unchanged.

Monitoring Reorganization

When you use the ALTER TABLE .. REORGANIZE, the operation reorganizes the data in the
background.

You can monitor details of the reorganization process by polling the following system tables:

 V_MONITOR.PARTITION_STATUS displays the fraction of each table that is partitioned
correctly.

 V_MONITOR.PARTITION_REORGANIZE_ERRORS logs any errors issued by the
background REORGANIZE process.

 V_MONITOR.PARTITIONS displays NULLS in the partition_key column for any ROS's that
have not been reorganized.

Note: The corresponding foreground process to ALTER TABLE ... REORGANIZE is
PARTITION_TABLE().

-335-

 Working with Table Partitions

Auto partitioning

HP Vertica attempts to keep data from each partition stored separately. Auto partitioning occurs
when data is written to disk, such as during COPY DIRECT or moveout operations.

Separate storage provides two benefits: Partitions can be dropped quickly, and partition
elimination (page 337) can omit storage that does not need to need not to participate in a query
plan.

Note: If you use INSERT...SELECT in a partitioned table, HP Vertica sorts the data before

writing it to disk, even if the source of the SELECT has the same sort order as the destination.

Examples

The examples that follow use this simple schema. First create a table named t1 and partition the

data on the c1 column:

CREATE TABLE t1 (

 c1 INT NOT NULL,

 c2 INT NOT NULL)

SEGMENTED BY c1 ALL NODES

PARTITION BY c2;

Create two identically-segmented buddy projections:

CREATE PROJECTION t1_p AS SELECT * FROM t1 SEGMENTED BY HASH(c1) ALL NODES OFFSET 0;

CREATE PROJECTION t1_p1 AS SELECT * FROM t1 SEGMENTED BY HASH(c1) ALL NODES OFFSET 1;

Now insert some data:

INSERT INTO t1 VALUES(10,15);

INSERT INTO t1 VALUES(20,25);

INSERT INTO t1 VALUES(30,35);

INSERT INTO t1 VALUES(40,45);

Query the table to verify the inputs:

SELECT * FROM t1;

 c1 | c2

----+----

 10 | 15

 20 | 25

 30 | 35

 40 | 45

(4 rows)

Now perform a moveout operation on the projections in the table:

SELECT DO_TM_TASK('moveout','t1');

 do_tm_task

 moveout for projection 't1_p1'

 moveout for projection 't1_p'

(1 row)

-336-

Administrator's Guide

Query the PARTITIONS system table, and you'll see that the four partition keys reside on two
nodes, each in its own ROS container (see the ros_id column). The PARTITION BY clause was

used on column c2, so HP Vertica auto partitioned the input values during the COPY operation:

SELECT partition_key, projection_name, ros_id, ros_size_bytes, ros_row_count, node_name

FROM PARTITIONS WHERE projection_name like 't1_p1';

 partition_key | projection_name | ros_id | ros_size_bytes | ros_row_count | node_name

---------------+-----------------+-------------------+----------------+---------------+----------

 15 | t1_p1 | 49539595901154617 | 78 | 1 | node0002

 25 | t1_p1 | 54043195528525081 | 78 | 1 | node0003

 35 | t1_p1 | 54043195528525069 | 78 | 1 | node0003

 45 | t1_p1 | 49539595901154605 | 79 | 1 | node0002

(4 rows)

HP Vertica does not auto partition when you refresh with the same sort order. If you create a new
projection, HP Vertica returns a message telling you to refresh the projections; for example:

CREATE PROJECTION t1_p2 AS SELECT * FROM t1 SEGMENTED BY HASH(c1) ALL NODES OFFSET 2;

 WARNING: Projection <public.t1_p2> is not available for query processing.

Execute the select

 start_refresh() function to copy data into this projection.

 The projection must have a sufficient number of buddy projections and all nodes

 must be up before starting a refresh.

Run the START_REFRESH function:

SELECT START_REFRESH();

 start_Refresh

--

 Starting refresh background process.

(1 row)

Query the PARTITIONS system table again. The partition keys now reside in two ROS containers,
instead of four, which you can tell by looking at the values in the ros_id column. The
ros_row_count column holds the number of rows in the ROS container:

SELECT partition_key, projection_name, ros_id, ros_size_bytes, ros_row_count, node_name

FROM PARTITIONS WHERE projection_name like 't1_p2';

 partition_key | projection_name | ros_id | ros_size_bytes | ros_row_count | node_name

---------------+-----------------+-------------------+----------------+---------------+----------

 15 | t1_p2 | 54043195528525121 | 80 | 2 | node0003

 25 | t1_p2 | 58546795155895541 | 77 | 2 | node0004

 35 | t1_p2 | 58546795155895541 | 77 | 2 | node0004

 45 | t1_p2 | 54043195528525121 | 80 | 2 | node0003

(4 rows)

The following command more specifically queries ROS information for the partitioned tables. In
this example, the query counts two ROS containers each on two different nodes for projection
t1_p2:

SELECT ros_id, node_name, COUNT(*) FROM PARTITIONS

WHERE projection_name LIKE 't1_p2' GROUP BY ros_id, node_name;

 ros_id | node_name | COUNT

-------------------+-----------+-------

 54043195528525121 | node0003 | 2

 58546795155895541 | node0004 | 2

-337-

 Working with Table Partitions

(2 rows)

This command returns a result of four ROS containers on two different nodes for projection
t1_p1:

SELECT ros_id,node_name, COUNT(*) FROM PARTITIONS

WHERE projection_name LIKE 't1_p1' GROUP BY ros_id, node_name;

 ros_id | node_name | COUNT

-------------------+-----------+-------

 49539595901154605 | node0002 | 1

 49539595901154617 | node0002 | 1

 54043195528525069 | node0003 | 1

 54043195528525081 | node0003 | 1

(4 rows)

See Also

DO_TM_TASK and PARTITIONS and START_REFRESH in the SQL Reference Manual

Eliminating Partitions
If the ROS containers of partitioned tables are not needed, HP Vertica can eliminate the
containers from being processed during query execution. To eliminate ROS containers, HP
Vertica compares query predicates to partition-related metadata.

Each ROS partition expression column maintains the minimum and maximum values of data
stored in that ROS, and HP Vertica uses those min/max values to potentially eliminate ROS
containers from query planning. Partitions that cannot contain matching values are not scanned.
For example, if a ROS does not contain data that satisfies a given query predicate, the optimizer
eliminates (prunes) that ROS from the query plan. After non-participating ROS containers have
been eliminated, queries that use partitioned tables run more quickly.

Note: Partition pruning occurs at query run time and requires a query predicate on the
partitioning column.

Assume a table that is partitioned by year (2007, 2008, 2009) into three ROS containers, one for
each year. Given the following series of commands, the two ROS containers that contain data for
2007 and 2008 fall outside the boundaries of the requested year (2009) and get eliminated.

=> CREATE TABLE ... PARTITION BY EXTRACT(year FROM date);

=> SELECT ... WHERE date = '12-2-2009';

-338-

Administrator's Guide

On any database that has been upgraded from version 3.5, or earlier, ROS containers are
ineligible for partition elimination because they do not contain the minimum/maximum partition key
values required. These ROS containers need to be recreated or merged by the Tuple Mover.

Making Past Partitions Eligible for Elimination

The following procedure lets you make past partitions eligible for elimination. The easiest way to
guarantee that all ROS containers are eligible is to:

1 Create a new fact table with the same projections as the existing table.

2 Use INSERT..SELECT to populate the new table.

3 Drop the original table and rename the new table.

If there is not enough disk space for a second copy of the fact table, an alternative is to:

1 Verify that the Tuple Mover has finished all post-upgrade work; for example, when the
following command shows no mergeout activity:

=> SELECT * FROM TUPLE_MOVER_OPERATIONS;

2 Identify which partitions need to be merged to get the ROS minimum/maximum values by
running the following command:

=> SELECT DISTINCT table_schema, projection_name, partition_key

 FROM partitions p LEFT OUTER JOIN vs_ros_min_max_values v

 ON p.ros_id = v.delid

 WHERE v.min_value IS null;

3 Insert a record into each partition that has ineligible ROS containers and commit.

4 Delete each inserted record and commit again.

At this point, the Tuple Mover automatically merges ROS containers from past partitions.

Verifying the ROS Merge

1 Query the TUPLE_MOVER_OPERATIONS table again:

=> SELECT * FROM TUPLE_MOVER_OPERATIONS;

2 Check again for any partitions that need to be merged:

=> SELECT DISTINCT table_schema, projection_name, partition_key

 FROM partitions p LEFT OUTER JOIN vs_ros_min_max_values v

 ON p.ros_id = v.rosid

 WHERE v.min_value IS null;

Examples

Assume a table that is partitioned by time and will use queries that restrict data on time.

CREATE TABLE time (

 tdate DATE NOT NULL,

 tnum INTEGER)

PARTITION BY EXTRACT(year FROM tdate);

CREATE PROJECTION time_p (tdate, tnum) AS

SELECT * FROM time

ORDER BY tdate, tnum UNSEGMENTED ALL NODES;

Note: Projection sort order has no effect on partition elimination.

-339-

 Working with Table Partitions

INSERT INTO time VALUES ('03/15/04' , 1);

INSERT INTO time VALUES ('03/15/05' , 2);

INSERT INTO time VALUES ('03/15/06' , 3);

INSERT INTO time VALUES ('03/15/06' , 4);

The data inserted in the previous series of commands would be loaded into three ROS containers,
one per year, since that is how the data is partitioned:

SELECT * FROM time ORDER BY tnum;

 tdate | tnum

------------+------

 2004-03-15 | 1 --ROS1 (min 03/01/04, max 03/15/04)

 2005-03-15 | 2 --ROS2 (min 03/15/05, max 03/15/05)

 2006-03-15 | 3 --ROS3 (min 03/15/06, max 03/15/06)

 2006-03-15 | 4 --ROS3 (min 03/15/06, max 03/15/06)

(4 rows)

Here's what happens when you query the time table:

 In the this query, HP Vertica can eliminate ROS2 because it is only looking for year 2004:

=> SELECT COUNT(*) FROM time WHERE tdate = '05/07/2004';

 In the next query, HP Vertica can eliminate both ROS1 and ROS3:

=> SELECT COUNT(*) FROM time WHERE tdate = '10/07/2005';

 The following query has an additional predicate on the tnum column for which no

minimum/maximum values are maintained. In addition, the use of logical operator OR is not
supported, so no ROS elimination occurs:

=> SELECT COUNT(*) FROM time WHERE tdate = '05/07/2004' OR tnum = 7;

Moving Partitions
You can move partitions from one table to another using the MOVE_PARTITIONS_TO_TABLE
function. Use this function as part of creating offline archives of older partitions. By moving
partitions from one table to an intermediate table, you can then create a backup of the new table,
and drop the partition. If you need the historical data later, you can restore the archived partitions,
described in Restoring Archived Partitions (page 341).

If the target table does not exist, the MOVE_PARTITIONS_TO_TABLE function creates a table
definition using the CREATE TABLE statement with its LIKE clause. Creating a table with the LIKE
clause is performed as a DDL operation. HP Vertica does not copy any data from the source table,
and the new table is not connected to its source in any way. The CREATE TABLE statement with
the LIKE clause does not copy contraints, automatic values (such as a sequences and identity
values), or a default values. Corresponding columns will exist in the new table with the same type
as the source table, but the columns will not have constraints or automatic values.

Archiving Steps

These are the steps required to archive partitions:

1 Prepare and move the partitions with the MOVE_PARTITIONS_TO_TABLE function

-340-

Administrator's Guide

2 Create an object-level snapshot of the intermediate table

3 Drop the intermediate table

The next sections describe the archiving steps.

Preparing and Moving Partitions

Before moving partitions to another table, be sure to:

 Create a separate schema for the intermediate table

 Check that the name you plan to use does not conflict with an existing table name

 Use a name that represents the partition values you are moving

 Keep each partition in a different backup table

When you have created a separate schema for the intermediate table, call the
MOVE_PARTITIONS_TO_TABLE function.

If you call move_partitions_to_table and the destination table does not exist, the function
will create the table automatically:

VMART=> select move_partitions_to_table ('prod_trades', '200801', '200801',

'partn_backup.trades_200801');

 move_partitions_to_table

 1 distinct partition values moved at epoch 15. Effective move epoch: 14.

(1 row)

Creating a Snapshot of the Intermediate Table

Creating an object-level snapshot of the intermediate table containing the partitions you want to
archive requires a vbr.py configuration file.

These are the two steps to create an object-level snapshot of an intermediate table so you can
then drop the table:

1 As a best practice, HP Vertica recommends that you create a full database snapshot first,
since you can only restore object-level snapshots into the original database. However, creating
a full snapshot is not a requirement.

2 Create an object-level snapshot of the intermediate table.

For details of setting up backup hosts, creating a configuration file, and taking a snapshot, see
Backing Up and Restoring the Database (page 517).

Copying the Config File to the Storage Location

When vbr.py creates the partition snapshot, it copies it to the archive storage location

automatically.

HP Vertica recommends that you also copy the configuration file for the partition snapshot to the

storage location. You can do this automatically by entering y to the Backup vertica
configurations? question when creating the configuration file for the snapshot.

-341-

 Working with Table Partitions

Drop the Intermediate Table

You can drop the intermediate table into which you moved partitions to archive, as described in
Dropping and Truncating Tables (page 307). Dropping the intermediate table maintains
database K-safety, keeping a minimum K+1 copies of the data, and more if additional projections
exist.

See Also

CREATE TABLE in the SQL Reference Manual

Restoring Archived Partitions

You can restore partitions that you previously moved to an intermediate table, archived as an
object-level snapshot, and then dropped.

NOTE: Restoring an archived partition requires that the original table definition has not

changed since the partition was archived and dropped. If you have changed the table definition,
you can only restore an archived partition using INSERT/SELECT statements, which are not
described here.

These are the steps to restoring archived partitions:

1 Restore the snapshot of the intermediate table you saved when you moved one or more
partitions to archive (see Moving Partitions (page 339)).

2 Move the restored partitions from the intermediate table to the original table.

3 Drop the intermediate table.

See Also

CREATE TABLE in the SQL Reference Manual

-342-

Bulk Loading Data

This section describes different methods for bulk loading data into an HP Vertica database using
the COPY statement. In its basic form, use COPY as follows:

COPY to_table FROM data_source

The COPY statement loads data from a file stored on the host or client (or in a data stream) into a
database table. You can pass the COPY statement many different parameters to define various
options such as:

 The format of the incoming data

 Metadata about the data load

 Which parser COPY should use

 Load data over parallel load streams

 How to transform data as it is loaded

 How to handle errors

HP Vertica's hybrid storage model provides a great deal of flexibility for loading and managing
data.

See the remaining sections here for other options, and the COPY statement in the SQL Reference
Manual for syntax details.

-343-

 Bulk Loading Data

Checking Data Format Before or After Loading

HP Vertica expects all data files being loaded to be in the Unicode UTF-8 format. You can load
ASCII data, which is UTF-8 compatible. Character sets like ISO 8859-1 (Latin1), are incompatible
with UTF-8 and are not supported.

Before loading data from text files, you can use several UNIX tools to ensure that your data is in
UTF-8 format. The file command reports the encoding of any text files.

To check the type of a data file, use the file command. For example:

$ file Date_Dimension.tbl

Date_Dimension.tbl: ASCII text

The file command could indicate ASCII TEXT even though the file contains multibyte
characters.

To check for multibyte characters in an ASCII file, use the wc command. For example:

$ wc Date_Dimension.tbl

 1828 5484 221822 Date_Dimension.tbl

If the wc command returns an error such as Invalid or incomplete multibyte or wide

character, the data file is using an incompatible character set.

This example describes files that are not UTF-8 data files. Two text files have filenames starting
with the string data. To check their format, use the file command as follows:

$ file data*

data1.txt: Little-endian UTF-16 Unicode text

data2.txt: ISO-8859 text

The results indicate that neither of the files is in UTF-8 format.

Converting Files Before Loading Data

To convert files before loading them into HP Vertica, use the iconv UNIX command. For

example, to convert the data2.txt file from the previous example, use the iconv command as
follows:

iconv -f ISO88599 -t utf-8 data2.txt > data2-utf8.txt

See the man pages for file and iconv for more information.

Checking UTF-8 Compliance After Loading Data

After loading data, use the ISUTF8 function to verify that all of the string-based data in the table is
in UTF-8 format. For example, if you loaded data into a table named nametable that has a

VARCHAR column named name, you can use this statement to verify that all of the strings are
UTF-8 encoded:

=> SELECT name FROM nametable WHERE ISUTF8(name) = FALSE;

If all of the strings are in UTF-8 format, the query should not return any rows.

-344-

Administrator's Guide

Performing the Initial Database Load
To perform the initial database load, use COPY with its DIRECT parameter from vsql.

Tip: HP Vertica supports multiple schema types. If you have a Star schema, load the smaller

tables before you load the largest tables.

Only a superuser can use the COPY statement to bulk load data. Two exceptions to the superuser
requirement are to:

1 Run COPY to load from a stream on the host (such as STDIN) rather than a file (see Streaming
Data via JDBC)

2 Use the COPY statement with the FROM LOCAL option.

A non-superuser can also perform a standard batch insert using a prepared statement, which
invokes COPY to load data as a background task.

Extracting Data from an Existing Database

If possible, export the data in text form to a local file or attached disk. When working with large
amounts of load data (> 500GB), HP recommends that you test the load process using smaller
load files as described in Configuration Procedure (page 16) to avoid compatibility or file
formatting issues.

ETL products typically use ODBC or JDBC to extract data, which gives them program-level access
to modify load file column values, as needed.

Database systems typically provide a variety of export methods.

Tip: To export data from an Oracle database, run a SELECT query in Oracle‘s SQL*Plus

command line query tool using a specified column delimiter, suppressed headers, and so forth.
Redirect the output to a local file.

Smaller tables generally fit into a single load file. Split any large tables into 250-500GB load files.
For example, a 10 TB fact table will require 20-40 load files to maintain performance.

Checking for Delimiter Characters in Load Data

The default delimiter for the COPY statement is a vertical bar (|). Before loading your data, make
sure that no CHAR(N) or VARCHAR(N) data values include the delimiter character.

To test for the existence of a specific character in a column, use a query such as this:

SELECT COUNT(*) FROM T WHERE X LIKE '%|%'

If only a few rows contain |, you can eliminate them from the load file using a WHERE clause and
load them separately using a different delimiter.

Tip: For loading data from an Oracle database, use a WHERE clause to avoid problem rows in

the main load file, and the negated WHERE clause with REGEX_REPLACE for problem rows.

Moving Data from an Existing Database to HP Vertica Nodes

To move data from an existing database to HP Vertica, consider using:

-345-

 Bulk Loading Data

 USB 2.0 (or possibly SATA) disks.

 A fast local network connection.

Deliver chunks of data to the different HP Vertica nodes by connecting the transport disk or by
writing files from network copy.

Loading From a Local Hard Disk

USB 2.0 disks can deliver data at about 30 MB per second, or 108 GB per hour. USB 2.0 disks are
easy to use for transporting data from Linux to Linux. Set up an ext3 filesystem on the disk and
write large files there. Linux 2.6 has USB plug-and-play support, so a USB 2.0 disk is instantly
usable on various Linux systems.

For other UNIX variants, if there is no common filesystem format available, use the disk without a
filesystem to copy a single large file. For example:

$ cp bigfile /dev/sdc1

Even without a filesystem on the disk, plug-and-play support still works on Linux to provide a
device node for the disk. To find out the assigned device, plug in the disk and enter:

$ dmesg | tail -40

SATA disks are usually internal, but can be external, or unmounted safely if they are internal.

Loading Over the Network

A 1Gbps (gigabits per second) network can deliver about 50 MB/s, or 180GB/hr. HP Vertica can
load about 30-50GB/hour/node for a 1-Ksafe projection design. Therefore, you should use a
dedicated 1Gbps LAN. Using a LAN with a performance that is < 1Gbps will be proportionally
slower. HP Vertica recommends not loading data across an external network, because the
delays over distance slow down the TCP protocol to a small fraction of its available bandwidth,
even without competing traffic.

Note: The actual load rates you obtain can be higher or lower depending on the properties of
the data, number of columns, number of projections, and hardware and network speeds. Load
speeds can be further improved by using multiple parallel streams.

Loading From Windows

Use NTFS for loading files directly from Windows to Linux. Although Red Hat Linux as originally
installed can read Windows FAT32 file systems, this is not recommended.

Using Load Scripts

You can write and run a load script for the COPY statement using a simple text-delimited file
format. For information about other load formats see Specifying How COPY Loads Data (page
354). HP Vertica recommends that you load the smaller tables before the largest tables. To check
data formats before loading, see Checking Data Format Before or After Loading (page 343).

-346-

Administrator's Guide

Using Absolute Paths in a Load Script

Unless you are using the COPY FROM LOCAL statement, using COPY on a remote client requires an

absolute path for a data file. You cannot use relative paths on a remote client. For a load script,
you can use vsql variables to specify the locations of data files relative to your Linux working
directory.

To use vsql variables to specify data file locations:

1 Create a vsql variable containing your Linux current directory.

\set t_pwd `pwd`

2 Create another vsql variable that uses a path relative to the Linux current directory variable for
a specific data file.

\set input_file '\'':t_pwd'/Date_Dimension.tbl\''

3 Use the second variable in the COPY statement:

COPY Date_Dimension FROM :input_file DELIMITER '|';

4 Repeat steps 2 and 3 to load all data files.

NOTE: COPY FROM LOCAL does not require an absolute path for data files. You can use
paths that are relative to the client's running directory.

Running a Load Script

You can run a load script on any host, as long as the data files are on that host.

1 Change your Linux working directory to the location of the data files.

$ cd /opt/vertica/doc/retail_example_database

2 Run the Administration Tools.

$ /opt/vertica/bin/admintools

3 Connect to the database.

4 Run the load script.

Using COPY and COPY LOCAL
The COPY statement bulk loads data into an HP Vertica database. You can initiate loading one or
more files or pipes on a cluster host. You can load directly from a client system, too, using the
COPY statement with its FROM LOCAL option.

COPY lets you load parsed or computed data. Parsed data is from a table or schema using one or
more columns, and computed data is calculated with a column expression on one or more column
values.

COPY invokes different parsers depending on the format you specify:

 Delimited text (the default parser format, but not specified)

 Native binary (NATIVE) (not supported with COPY LOCAL)

 Native varchar (NATIVE VARCHAR) (not supported with COPY LOCAL)

 Fixed-width data (FIXEDWIDTH)

-347-

 Bulk Loading Data

See Specifying How COPY Loads Data (page 354) for more information.

COPY has many options, which you combine to make importing data flexible. For detailed syntax
for the various options see the SQL Reference Manual.For example:

For this option... See this section...

Read uncompressed data, or data compressed
with GZIP or BZIP.

Specifying COPY FROM

Options (page 350)

Insert data into the WOS (memory) or directly
into the ROS (disk).

Choosing a Load Method
(page 352)

Set parameters such as data delimiters and
quote characters for the entire load operation or,
for specific columns.

Loading UTF-8 Format Data
(page 357)

Transform data before inserting it into the
database.

Transforming Data During
Loads (page 347)

Copying Data from an HP Vertica Client

Use COPY LOCAL to load files on a client to the HP Vertica database. For example, to copy a GZIP

file from your local client, use a command such as this:

=> COPY store.store_dimension FROM LOCAL '/usr/files/my_data/input_file' GZIP;

You can use a comma-separated list to load multiple files of the same compression type. COPY
local then concatenates the files into a single file, so you cannot combine files with different
compression types in the list. When listing multiple files, be sure to specify the type of every input
file, such as BZIP, as shown:

COPY simple_table FROM LOCAL 'input_file.bz' BZIP, 'input_file.bz' BZIP;

You can load on a client (LOCAL) from STDIN, as follows:

COPY simple_table FROM LOCAL STDIN;

Transforming Data During Loads
To promote a consistent database and reduce the need for scripts to transform data at the source,
HP Vertica lets you transform data as part of loading it into the target database. Transforming data
during loads is useful for computing values to insert into a target database column from other
columns in the source database.

To transform data during load, use the following syntax to specify the target column for which you
want to compute values, as an expression:

-348-

Administrator's Guide

COPY [[database-name.]schema-name.]table [(

 [Column as Expression] / column[FORMAT 'format']

 [,...])]

FROM ...

Understanding Transformation Requirements

When transforming data during loads, the COPY statement must contain at least one parsed

column. The parsed column can be a FILLER column. (See Ignoring Columns and Fields in the
Load File (page 372) for more information about using fillers.)

Specify only RAW data in the parsed column source data. If you specify nulls in that RAW data,
the columns are evaluated with the same rules as for SQL statement expressions.

You can intersperse parsed and computed columns in a COPY statement.

Loading FLOAT Values

HP Vertica parses floating-point values internally. COPY does not require you to cast floats
explicitly, unless you need to transform the values for another reason. For more information, see
DOUBLE PRECISION (FLOAT).

Using Expressions in COPY Statements

The expression you use in a COPY statement can be as simple as a single column or as complex

as a case expression for multiple columns. You can specify multiple columns in a COPY

expression, and have multiple COPY expressions refer to the same parsed column. You can
specify COPY expressions for columns of all supported data types.

COPY expressions can use many HP Vertica-supported SQL functions, operators, constants,
NULLs, and comments, including these functions:

 Date/time

 Formatting Functions

 String

 Null-handling

 System information

COPY expressions cannot use SQL meta functions (HP Vertica-specific), analytic functions,

aggregate functions, or computed columns.

For computed columns, all parsed columns in the expression must be listed in the COPY
statement. Do not specify FORMAT or RAW in the source data for a computed column.

Expressions used in a COPY statement can contain only constants. The return data type of the
expression must be coercible to that of the target column. Parsed column parameters are also
coerced to match the expression.

-349-

 Bulk Loading Data

Handling Expression Errors

Errors that occur in COPY expressions are treated as SQL errors, not parse errors. When a parse
errors occur, COPY rejects the row and adds a copy of the row to the rejected data file. COPY also
adds a message to the exceptions file describing why the row was rejected. For example, HP
Vertica does not implicitly cast data types during parsing. If a type mismatch occurs between the

data being loaded and a column type (such as loading a text value for a FLOAT column), COPY
rejects the row, but continues processing.

COPY expression errors are treated as SQL errors and cause the entire load to rollback. For
example, if the COPY statement has an expression with a transform function, and a syntax error
occurs in the function, the entire load is rolled back. The HP Vertica log file will include the SQL
error message, but the reason for the rollback is not obvious without researching the log.

Transformation Example

Following is a small transformation example.

1 Create a table and corresponding projection.

CREATE TABLE t (

 year VARCHAR(10),

 month VARCHAR(10),

 day VARCHAR(10),

 k timestamp

);

CREATE PROJECTION tp (

 year,

 month,

 day,

 k)

AS SELECT * from t;

2 Use COPY to copy the table, computing values for the year, month, and day columns in the
target database, based on the timestamp columns in the source table.

3 Load the parsed column, timestamp, from the source data to the target database.

COPY t(year AS TO_CHAR(k, 'YYYY'),

 month AS TO_CHAR(k, 'Month'),

 day AS TO_CHAR(k, 'DD'),

 k FORMAT 'YYYY-MM-DD') FROM STDIN NO COMMIT;

2009-06-17

1979-06-30

2007-11-26

\.

4 Select the table contents to see the results:

SELECT * FROM t;

 year | month | day | k

------+-----------+-----+---------------------

-350-

Administrator's Guide

 2009 | June | 17 | 2009-06-17 00:00:00

 1979 | June | 30 | 1979-06-30 00:00:00

 2007 | November | 26 | 2007-11-26 00:00:00

(3 rows)

Deriving Table Columns From One or More Columns in the Data File

You can use the COPY statement to derive a table column from the data file to load.

The next example illustrates how to use the year, month, and day columns from the source input to
derive and load the value for the TIMESTAMP column in the target database.

1 Create a table and corresponding projection:

=> CREATE TABLE t (k TIMESTAMP);

=> CREATE PROJECTION tp (k) AS SELECT * FROM t;

2 Use COPY with the FILLER keyword to skip the year, month, and day columns from the
source file.

=> COPY t(year FILLER VARCHAR(10),

 month FILLER VARCHAR(10),

 day FILLER VARCHAR(10),

 k AS TO_DATE(YEAR || MONTH || DAY, 'YYYYMMDD'))

 FROM STDIN NO COMMIT;

>> 2009|06|17

>> 1979|06|30

>> 2007|11|26

>> \.

3 Select from the copied table to see the results:

=> SELECT * FROM t;

 k

 2009-06-17 00:00:00

 1979-06-30 00:00:00

 2007-11-26 00:00:00

(3 rows)

See also Using Sequences (page 57) for how to generate an auto-incrementing value for
columns.

See the COPY statement in the SQL Reference Manual for further information.

Specifying COPY FROM Options

Each COPY statement requires a FROM option to indicate the location of the file or files being
loaded. This syntax snippet shows the available FROM keywords, and their associated file format
options:

-351-

 Bulk Loading Data

FROM { STDIN

...... [BZIP | GZIP | UNCOMPRESSED]

...| 'pathToData' [ON nodename | ON ANY NODE]

...... [BZIP | GZIP | UNCOMPRESSED] [, ...]

...| LOCAL STDIN | 'pathToData'

...... [BZIP | GZIP | UNCOMPRESSED] [, ...]

}

Each of the FROM keywords lets you optionally specify the format of the load file as
UNCOMPRESSED, BZIP, or GZIP.

NOTE: When using COPY in conjunction with a CREATE EXTERNAL TABLE statement, you

cannot use the COPY FROM STDIN or LOCAL options.

Loading from STDIN

Using STDIN for the FROM option lets you load uncompressed data, bzip, or gzip files.

Loading from a Specific Path

Use the 'pathToData' option to indicate the location of the load file, optionally indicating a node

name or ON ANY NODE to indicate which node (or nodes) should parse the load file. You can load
one or more files in the supported formats: UNCOMPRESSED, BZIP, or GZIP.

NOTE: Using the ON ANY NODE clause indicates that the source file to load is on all of the
nodes, so COPY opens the file and parses it from any node in the cluster. Be sure that the
source file you specify is available and accessible on each cluster node.

If pathToData resolves to a storage location, and the user invoking COPY is not a superuser,
these are the required permissions:

 The storage location must have been created with the USER option (see ADD_LOCATION)

 The user must already have been granted READ access to the storage location where the
file(s) exist, as described in GRANT (Storage Location)

Further, if a non-superuser invokes COPY from a storage location to which she has privileges, HP
Vertica also checks any symbolic links (symlinks) the user has to ensure no symlink can access an
area to which the user has not been granted privileges.

Loading with Wildcards (glob) ON ANY NODE

COPY fully supports the ON ANY NODE clause with a wildcard (glob). You can invoke COPY for a
large number of files in a shared directory with a single statement such as this:

COPY myTable FROM '/mydirectory/ofmanyfiles/*.dat' ON ANY NODE

Using a wildcard with the ON ANY NODE clause expands the file list on the initiator node, and
then distributes the individual files among all nodes, evenly distributing the COPY workload across
the entire cluster.

-352-

Administrator's Guide

Loading from a Local Client

To bulk load data from a client, and without requiring database superuser privileges, use the
COPY FROM LOCAL option. You can load from either STDIN, or a specific path, but not from a
specific node (or ON ANY NODE), since you are loading from the client. All local files are loaded and

parsed serially with each COPY statement, so you cannot perform parallel loads with the LOCAL
option. See Using Parallel Load Streams (page 376).

You can load one or more files in the supported formats: UNCOMPRESSED, BZIP, or GZIP.

For specific information about saving rejected data and exceptions files when using COPY from
LOCAL, see Controlling Load Exceptions and Rejections (page 381).

Choosing a Load Method
Depending on what data you are loading, COPY statement has these load method options:

Load Method Description and Use

AUTO Loads data into WOS. Use the default COPY load
method for smaller bulk loads.

DIRECT Loads data directly into ROS containers. Use the
DIRECT load method for large bulk loads (100MB or
more).

TRICKLE Loads only into WOS. Use for frequent incremental
loads, after the initial bulk load is complete.

NOTE: COPY ignores any load method you specify as part of creating an external table.

Loading Directly into WOS (AUTO)

This is the default load method. If you do not specify a load option, COPY uses the AUTO method
to load data into WOS (Write Optimized Store in memory). The default method is good for smaller
bulk loads (< 100MB). Once WOS is full, COPY continues loading directly to ROS (Read
Optimized Store on disk) containers.

Loading Directly to ROS (DIRECT)

Use the DIRECT keyword in the COPY statement to bypass loading data into WOS, and instead,
load data directly into ROS containers. The DIRECT option is best suited for loading large
amounts of data (100MB or more) at a time. Using DIRECT for many loads of smaller data sets

results in many ROS containers, which have to be combined later.

COPY a FROM stdin DIRECT;

COPY b FROM LOCAL STDIN DIRECT;

Note: A large initial bulk load can temporarily affect query performance while HP Vertica

organizes the data.

-353-

 Bulk Loading Data

Loading Data Incrementally (TRICKLE)

Use the TRICKLE load option to load data incrementally after the initial bulk load is complete.

Trickle loading loads data only into the WOS. If the WOS becomes full, an error occurs and the
entire data load is rolled back. Use this option only when you have a finely-tuned load and
moveout process so that you are sure there is room in the WOS for the data you are loading. This
option is more efficient than AUTO when loading data into partitioned tables.

For other details on trickle-loading data and WOS Overflow into the ROS, see Trickle Loading
(page 390).

Loading Data Without Committing Results (NO COMMIT)

Use the NO COMMIT option with COPY (unless the tables are temp tables) to perform a bulk load
transaction without automatically committing the results. This option is useful for executing
multiple COPY commands in a single transaction.

For example, the following set of COPY ... NO COMMIT statements performs several copy
statements sequentially, and then commits them all. In this way, all of the copied data is either
committed or rolled back as a single transaction.

 COPY... NO COMMIT;

 COPY... NO COMMIT;

 COPY... NO COMMIT;

 COPY X FROM LOCAL NO COMMIT;

COMMIT;

Using a single transaction for multiple COPY statements also allows HP Vertica to load the data
more efficiently since it can combine the larger amounts of data from multiple COPY statements
into fewer ROS containers.

HP recommends that you COMMIT or ROLLBACK the current transaction before you use COPY.

You can combine NO COMMIT with any other existing COPY options. The standard transaction

semantics apply. If a transaction is in progress that was initiated by a statement other than COPY

(such as INSERT), using COPY with NO COMMIT adds rows to the existing transaction, rather
than starting a new one. The previous statements are NOT committed.

NOTE: NO COMMIT is ignored when COPY as part of the CREATE EXTERNAL TABLE

FROM COPY statement.

Using NO COMMIT to Detect Constraint Violations

You can use the NO COMMIT option to detect constraint violations as part of the load process.

HP Vertica checks for constraint violations when running a query, but not when loading data. To
detect constraint violations, load data with the NO COMMIT keyword and then test the load using
ANALYZE_CONSTRAINTS. If you find any constraint violations, you can roll back the load
because you have not committed it.

See Analyzing Constraints (Detecting Constraint Violations) (page 319) for detailed
instructions.

-354-

Administrator's Guide

Using COPY Interactively

HP Vertica recommends using the COPY statement in one or more script files, as described in
Using Load Scripts (page 345). You can also use commands such as the following interactively
by piping a text file to vsql and executing COPY (or COPY FROM LOCAL) statement with the
standard input stream as the input file. For example:

$ cat fact_table.tbl | vsql -c "COPY FACT_TABLE FROM STDIN DELIMITER '|' DIRECT";

$ cat fact_table.tbl | vsql -c "COPY FACT_TABLE FROM LOCAL STDIN DELIMITER '|'

DIRECT";

Canceling a COPY Statement

If you cancel a bulk data load, the COPY statement rolls back all rows that it attempted to load.

Specifying How COPY Loads Data
Raw input data must be in UTF-8, delimited text format. By default, COPY uses the DELIMITER
parser to load raw data into the database. Data is compressed and encoded for efficient storage.
Using a different parser can improve load performance. If delimited input data includes binary data
types, COPY translates the data on input. See Using Load Scripts (page 345) and Loading
Binary Data (page 365) for examples. You can also load binary data, but only if it adheres to the
COPY format requirements, described in Appendix: Binary File Formats (page 755).

If your raw data does not consist primarily of delimited text, specify the parser COPY should use to
align most closely with the load data:

 NATIVE

 NATIVE VARCHAR

 FIXEDWIDTH

NOTE: You do not specify the DELIMITER parser directly; absence of a different parser option
indicates the default.

You cannot mix raw data types that require different parsers (such as NATIVE and FIXEDWIDTH)
in a single bulk load COPY statement. To check data formats before (or after) loading, see
Checking Data Format Before or After Loading (page 343).

See also COPY in the SQL Reference Manual, NATIVE and NATIVE VARCHAR keywords.

Specifying Load Metadata

In addition to choosing a parser option, COPY supports other options to determine how to handle
the raw load data. These options are considered load metadata, and you can specify metadata
options at different parts of the COPY statement as follows:

Metadata Option

As a Column or

Expression Option

As a

COLUMN OPTION

As a FROM

Level Option

DELIMITER X X X

-355-

 Bulk Loading Data

ENCLOSED BY X X X

ESCAPE AS X X X

NULL X X X

TRIM X X

RECORD
TERMINATOR

 X

SKIP X

SKIP BYTES X (Fixed-width
only)

TRAILING

NULLCOLS

 X

The following precedence rules apply to all data loads:

 All column-level parameters override statement-level parameters.

 COPY uses the statement-level parameter if you do not specify a column-level parameter.

 COPY uses the default metadata values for the DELIMITER, ENCLOSED BY, ESCAPE AS,
and NULL options if you do not specify them at either the statement- or column-level.

When you specify any metadata options, COPY stores the raw data and its corresponding
metadata in different formats as follows:

Raw data format Metadata Format

Parser

UTF-8 UTF-8 DELIMITER

Binary Binary NATIVE

UTF-8 Binary NATIVE VARCHAR

UTF-8 UTF-8 FIXEDWIDTH

See Also

COPY in the SQL Reference Manual.

Interpreting Last Column End of Row Values

When bulk-loading delimited text data using the default parser (DELIMITED), the last column end
of row value can be any of the following:

 Record terminator

 EOF designator

 Delimiter and a record terminator

NOTE: The FIXEDWIDTH parser always requires exactly a record terminator. No other
permutations work.

-356-

Administrator's Guide

For example, given a three-column table, the following input rows for a COPY statement using a
comma (,) delimiter are each valid:

1,1,1

1,1,1,

1,1,

1,1,,

The following examples illustrate how COPY can interpret different last column end of data row
values.

Using a Single End of Row Definition

To see how COPY interprets a single end of row definition:

1 Create a two-column table two_col, specifying column b with a default value of 5:

VMart=> create table two_col (a int, b int DEFAULT 5);

CREATE TABLE

2 COPY the two_col table using a comma (,) delimiter, and enter values for only one column
(as a single, multi-line entry):

VMart=> copy two_col from stdin delimiter ',';

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.

>> 1,

>> 1,

>> \.

The COPY statement complete successfully.

3 Query table two_col, to display the two NULL values for column b as blank:

VMart=> select * from two_col;

 a | b

---+---

 1 |

 1 |

(2 rows)

Here, COPY expects two values for each column, but gets only one. Each input value is followed
by a delimiter (,), and an implicit record terminator (a newline character, \n). You supply a record
terminator with the ENTER or RETURN key. This character is not represented on the screen.

In this case, the delimiter (,) and record terminator (\n) are handled independently. COPY

interprets the delimiter (,) to indicate the end of one value, and the record terminator (\n) to specify
the end of the column row. Since no value follows the delimiter, COPY supplies an empty string
before the record terminator. By default, the empty string signifies a NULL, which is a valid column
value.

Using a Delimiter and Record Terminator End of Row Definition

To use a delimiter and record terminator together as an end of row definition:

1 Copy column a (a) of the two_col table, using a comma delimiter again, and enter two
values:

-357-

 Bulk Loading Data

VMart=> copy two_col (a) from stdin delimiter ',';

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.

>> 2,

>> 2,

>> \.

The COPY statement again completes successfully.

2 Query table two_col to see that column b now includes two rows with its default value (5):

VMart=> select * from two_col;

 a | b

---+---

 1 |

 1 |

 2 | 5

 2 | 5

(4 rows)

In this example, COPY expects values for only one column, because of the column (a) directive.

As such, COPY interprets the delimiter and record terminator together as a single, valid, last
column end of row definition. Before parsing incoming data, COPY populates column b with its
default value, because the table definition has two columns and the COPY statement supplies
only one. This example populates the second column with its default column list value, while the
previous example used the supplied input data.

Loading UTF-8 Format Data

You can specify these parameters at either a statement or column basis:

 ENCLOSED BY

 ESCAPE AS

 NULL

 DELIMITER

Loading Special Characters as Literals

The default COPY statement escape key is a backslash (\). By preceding any special character
with an escape character, COPY interprets the character that follows literally, and copies it into the
database. These are the special characters that you escape to load them as literals:

Special Character COPY Statement Usage

Vertical bar (|) Default COPY ... DELIMITER character

Empty string ('') Default COPY ... NULL string.

Backslash (\) Default COPY ... ESC character.

Newline and other control characters Various

-358-

Administrator's Guide

To use a special character as a literal, prefix it with an escape character. For example, to include a

literal backslash (\) in the loaded data (such as when including a file path), use two backslashes
(\\). COPY removes the escape character from the input when it loads escaped characters.

Using a Custom Column Separator (DELIMITER)

The default COPY delimiter is a vertical bar (|). The DELIMITER is a single ASCII character used
to separate columns within each record of a file. Between two delimiters, COPY interprets all string
data in load files as characters. Do not enclose character strings in quotes, since quote characters
are also treated as literals between delimiters.

You can define a different delimiter using any ASCII value in the range E'\000' to E'\177'
inclusive. For instance, if you are loading CSV data files, and the files use a comma (,) character
as a delimiter, you can change the default delimiter to a comma. You cannot use the same
character for both the DELIMITER and NULL options.

If the delimiter character is among a string of data values, use the ESCAPE AS character (\ by
default) to indicate that the delimiter should be treated as a literal.

The COPY statement accepts empty values (two consecutive delimiters) as valid input data for

CHAR and VARCHAR data types. COPY stores empty columns as an empty string (''). An empty
string is not equivalent to a NULL string.

To indicate a non-printing delimiter character (such as a tab), specify the character in extended

string syntax (E'...'). If your database has StandardConformingStrings (page 43)

enabled, use a Unicode string literal (U&'...'). For example, use either E'\t' or U&'\0009' to
specify tab as the delimiter.

Using a Custom Column Option DELIMITER

This example, redefines the default delimiter through the COLUMN OPTION parameter.

1 Create a simple table.

=> CREATE TABLE t(

 pk INT,

 col1 VARCHAR(10),

 col2 VARCHAR(10),

 col3 VARCHAR(10),

 col4 TIMESTAMP);

2 Use the COLUMN OPTION parameter to change the col1 default delimiter to a tilde (~).

=> COPY t COLUMN OPTION(col1 DELIMITER '~') FROM STDIN NO COMMIT;

>> 1|ee~gg|yy|1999-12-12

>> \.

=> SELECT * FROM t;

 pk | col1 | col2 | col3 | col4

----+------+------+------+---------------------

 1 | ee | gg | yy | 1999-12-12 00:00:00

(1 row)

-359-

 Bulk Loading Data

Defining a Null Value (NULL)

The default NULL value for COPY is an empty string (''). You can specify a NULL as any ASCII

value in the range E'\001' to E'\177' inclusive (any ASCII character except NUL: E'\000').
You cannot use the same character for both the DELIMITER and NULL options.

When NULL is an empty string (''), use quotes to insert an empty string instead of a NULL. For
example, using NULL " ENCLOSED BY '"':

 1||3 — Inserts a NULL in the second column.

 1|""|3 — Inserts an empty string instead of a NULL in the second columns.

To input an empty or literal string, use quotes (ENCLOSED BY); for example:

NULL ''

NULL 'literal'

A NULL is case-insensitive and must be the only value between the data field delimiters. For
example, if the null string is NULL and the delimiter is the default vertical bar (|):

|NULL| indicates a null value.

| NULL | does not indicate a null value.

When you use the COPY command in a script, you must substitute a double-backslash for each

null string that includes a backslash. For example, the scripts used to load the example database
contain:

COPY ... NULL E'\\n' ...

Loading NULL values

You can specify NULL by entering fields without content into a data file, using a field delimiter.

For example, given the default delimiter (|) and default NULL (empty string) definition, COPY
inserts the following input data:

| | 1

| 2 | 3

4 | | 5

6 | |

into the table as follows:

(null, null, 1)

(null, 2, 3)

(4, null, 5)

(6, null, null)

If NULL is set as a literal ('null'), COPY inserts the following inputs:

null | null | 1

null | 2 | 3

 4 | null | 5

-360-

Administrator's Guide

 6 | null | null

as follows:

(null, null, 1)

(null, 2, 3)

(4, null, 5)

(6, null, null)

Filling Columns with Trailing Nulls (TRAILING NULLCOLS)

Loading data using the TRAILING NULLCOLS option inserts NULL values into any columns

without data. Before inserting TRAILING NULLCOLS, HP Vertica verifies that the column does not

have a NOT NULL constraint.

 To use the TRAILING NULLCOLS parameter to handle inserts with fewer values than data

columns:

1 Create a table:

=> CREATE TABLE z (

 a INT,

 b INT,

 c INT);

2 Insert some values into the table:

=> INSERT INTO z VALUES (1, 2, 3);

3 Query table z to see the inputs:

=> SELECT * FROM z;

 a | b | c

---+---+---

 1 | 2 | 3

(1 row)

4 Insert two rows of data from STDIN, using TRAILING NULLCOLS:

=> COPY z FROM STDIN TRAILING NULLCOLS;

>> 4 | 5 | 6

>> 7 | 8

>> \.

5 Query table z again to see the results. Using TRAILING NULLCOLS, the COPY statement
correctly handled the third row of column c, which had no value:

=> SELECT * FROM z;

 a | b | c

---+---+---

 1 | 2 | 3

 4 | 5 | 6

 7 | 8 |

(3 rows)

Attempting to Fill a NOT NULL Column with TRAILING NULLCOLS

You cannot use TRAILING NULLCOLS on a column that has a NOT NULL constraint. For
instance:

-361-

 Bulk Loading Data

1 Create a table n, declaring column b with a NOT NULL constraint:

=> CREATE TABLE n (

 a INT,

 b INT NOT NULL,

 c INT);

2 Insert some table values:

=> INSERT INTO n VALUES (1, 2, 3);

=> SELECT * FROM n;

 a | b | c

---+---+---

 1 | 2 | 3

(1 row)

3 Use COPY with TRAILING NULLCOLS on table n to see the COPY error due to the column
constraint:

=> COPY n FROM STDIN trailing nullcols abort on error;

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.

>> 4 | 5 | 6

>> 7 | 8

>> 9

>> \.

ERROR: COPY: Input record 3 has been rejected (Cannot set trailing

column to NULL as column 2 (b) is NOT NULL)

4 Query the table to see that the COPY statement values were rejected:

=> SELECT * FROM n;

 a | b | c

---+---+---

 1 | 2 | 3

(1 row)

Changing the Default Escape Character (ESCAPE AS)

The default escape character is a backslash (\). To change the default to a different character,
use the ESCAPE AS option. To use an alternative escape character:

=> COPY mytable FROM '/data/input.txt' ESCAPE AS E('\001');

You can set the escape character to be any ASCII value value in the range E'\001' to E'\177'

inclusive.

Eliminating Escape Character Handling

If you do not want any escape character and want to prevent any characters from being
interpreted as escape sequences, use the NO ESCAPE option as part of the COPY statement.

-362-

Administrator's Guide

Delimiting Characters (ENCLOSED BY)

The COPY ENCLOSED BY parameter lets you set an ASCII character to delimit characters to

embed in string values. You can use any ASCII value in the range E'\001' to E'\177' inclusive

(any ASCII character except NULL: E'\000') for the ENCLOSED BY value. Using double

quotation marks (") is the most commonly used quotation character. For instance, the following
parameter specifies that input data to the COPY statement is enclosed within double quotes:

ENCLOSED BY '"'

With the following input (using the default DELIMITER (|) character), specifying:

"vertica | value"

Results in:

 Column 1 containing "vertica

 Column 2 containing value"

Notice the double quotes (") before vertica and after value.

Using the following sample input data as follows, columns are distributed as shown:

"1", "vertica,value", ",", "'"

 col1 | col2 | col3 | col4

------+---------------+------+-----

 1 | vertica,value | , | '

(1 row)

Alternatively, write the above example using any ASCII character of your choosing:

~1~, ~vertica,value~, ~,~, ~'~

If you use a single quote ('), rather than double quotes (") as the ENCLOSED BY character, you

must escape it using extended string syntax, a Unicode literal string (if
StandardConformingStrings is enabled), or by using four single quotes:

ENCLOSED BY E'\''

ENCLOSED BY U&'\0027'

ENCLOSED BY ''''

Using any of the definitions means the following input is properly parsed:

'1', 'vertica,value', ',', '\''

See String Literals (Character) for an explanation of the string literal formats you can use to
specify the ENCLOSED BY parameter.

Use the ESCAPE AS character to embed the ENCLOSED BY delimiter within character string

values. For example, using the default ESCAPE AS character (\) and double quote as the
ENCLOSED BY character, the following input returns "vertica":

"\"vertica\""

-363-

 Bulk Loading Data

Using ENCLOSED BY for a Single Column

The following example uses double quotes to enclose a single column (rather than the entire row).
The COPY statement also specifies a comma (,) as the delimiter.

=> COPY Retail.Dim (Dno, Dname ENCLOSED BY '"', Dstore)

 FROM '/home/dbadmin/dim3.txt'

 DELIMITER ','

 EXCEPTIONS '/home/dbadmin/exp.txt';

This example correctly loads data such as:

123,"Smith, John",9832

Specifying a Custom End of Record String (RECORD TERMINATOR)

To specify the literal character string that indicates the end of a data file record, use the RECORD

TERMINATOR parameter, followed by the string to use. If you do not specify a value, then HP

Vertica attempts to determine the correct line ending, accepting either just a linefeed (E'\n')

common on UNIX systems, or a carriage return and linefeed (E'\r\n') common on Windows
platforms.

For example, if your file contains comma-separated values terminated by line feeds that you want
to maintain, use the RECORD TERMINATOR option to specify an alternative value:

=> COPY mytable FROM STDIN DELIMITER ',' RECORD TERMINATOR E'\n';

To specify the RECORD TERMINATOR as non-printing characters, use either the extended string

syntax or Unicode string literals. The following table lists some common record terminator
characters. See String Literals for an explanation of the literal string formats.

Extended
String
Syntax

Unicode
Literal
String

Description

ASCII Decimal

E'\b' U&'\0008' Backspace 8

E'\t' U&'\0009' Horizontal tab 9

E'\n' U&'\000a' Linefeed 10

E'\f' U&'\000c' Formfeed 12

E'\r' U&'\000d' Carriage return 13

E'\\' U&'\005c' Backslash 92

If you use the RECORD TERMINATOR option to specify a custom value, be sure the input file
matches the value. Otherwise, you may get inconsistent data loads.

Note: The record terminator cannot be the same as DELIMITER, NULL, ESCAPE,or
ENCLOSED BY.

If using JDBC, HP recommends that you use the following value for the RECORD TERMINATOR:

System.getProperty("line.separator")

-364-

Administrator's Guide

Examples

The following examples use a comma (,) as the DELIMITER for readability.

,1,2,3,

,1,2,3

1,2,3,

Leading (,1) and trailing (3,) delimiters are ignored. Thus, the rows all have three columns.

123,'\\n',\\n,

456
Using a non-default null string, the row is interpreted as:

123

newline

\n

456

123,this\, that\, or the other,something else,456

 The row would be interpreted as:

123

this, that, or the other

something else

456

Loading Native Varchar Data
Use the NATIVE VARCHAR parser option when the raw data consists primarily of CHAR or
VARCHAR data. COPY performs the conversion to the actual table data types on the database
server. This option with COPY LOCAL is not supported.

Using NATIVE VARCHAR does not provide the same efficiency as NATIVE. However, NATIVE

VARCHAR precludes the need to use delimiters or to escape special characters, such as quotes,
which can make working with client applications easier.

Note: NATIVE VARCHAR does not support concatenated BZIP and GZIP files.

Batch data inserts performed through the HP Vertica ODBC and JDBC drivers automatically use
either the NATIVE BINARY or NATIVE VARCHAR formats. ODBC and JDBC use NATIVE
BINARY if the application data types match the actual table data types exactly (including
maximum lengths of CHAR/VARCHAR and precision/scale of numeric data types), which provide
the best possible load performance. If there is any data type mismatch, NATIVE VARCHAR is
used.

-365-

 Bulk Loading Data

Loading Binary Data

You can load binary data using the NATIVE parser option, except with COPY LOCAL, which does
not support this option. Since binary-format data does not require the use and processing of
delimiters, it precludes the need to convert integers, dates, and timestamps from text to their
native storage format, and improves load performance over delimited data. All binary-format files
must adhere to the formatting specifications described in Appendix: Binary File Formats (page
755).

Native binary format data files are typically larger than their delimited text format counterparts, so

use GZIP or BZIP to compress the data before loading it. NATIVE BINARY does not support
concatenated BZIP and GZIP files. You can load native (binary) format files when developing
plug-ins to ETL applications, and completing batch insert commands with ODBC and JDBC.

Note: The ODBC client driver does not perform any data validation. When loading native

(binary) format data with the ODBC client driver, your application should validate the binary
data format before loading to confirm that it conforms to the HP Vertica specifications.

There is no copy format to load binary data byte-for-byte because the column and record
separators in the data would have to be escaped. Binary data type values are padded and
translated on input, and also in the functions, operators, and casts supported.

Loading Hexadecimal, Octal, and Bitstring Data

You can use hexadecimal, octal, and bitstring formats only to load binary columns. To specify
these column formats, use the COPY statement's FORMAT options:

 Hexadecimal

 Octal

 Bitstring

The following examples illustrate how to use the FORMAT option.

1 Create a table:

=> CREATE TABLE t(

 oct VARBINARY(5),

 hex VARBINARY(5),

 bitstring VARBINARY(5));

2 Create the projection:

=> CREATE PROJECTION t_p(oct, hex, bitstring) AS SELECT * FROM t;

3 Use the COPY command from STDIN (not a file), specifying each of the formats:

=> COPY t (oct FORMAT 'octal',

 hex FORMAT 'hex',

 bitstring FORMAT 'bitstring')

 FROM STDIN DELIMITER ',';

4 Enter the data to load, ending the statement with a backslash (\) and a period (.) on a separate
line:

-366-

Administrator's Guide

>>

141142143144145,0x6162636465,011000010110001001100011011001000110010

1

>> \.

5 Use a select query on table t to view the input values results:

=> SELECT * FROM t;

oct | hex | bitstring

-------+-------+-----------

abcde | abcde | abcde

(1 row)

COPY uses the same default format to load binary data, as used to input binary data. Since the
backslash character ('\') is the default escape character, you must escape octal input values.
For example, enter the byte '\141' as '\\141'.

Note: If you enter an escape character followed by an invalid octal digit or an escape character

being escaped, COPY returns an error.

On input, COPY translates string data as follows:

 Uses the HEX_TO_BINARY function to translate from hexadecimal representation to binary.

 Uses the BITSTRING_TO_BINARY function to translate from bitstring representation to
binary.

Both functions take a VARCHAR argument and return a VARBINARY value.

You can also use the escape character to represent the (decimal) byte 92 by escaping it twice; for

example, '\\\\'. Note that vsql inputs the escaped backslash as four backslashes. Equivalent
inputs are hex value '0x5c' and octal value '\134' (134 = 1 x 8^2 + 3 x 8^1 + 4 x 8^0 = 92).

You can load a delimiter value if you escape it with a backslash. For example, given delimiter '|',

'\\001\|\\002' is loaded as {1,124,2}, which can also be represented in octal format as
'\\001\\174\\002'.

If you insert a value with more bytes than fit into the target column, COPY returns an error. For
example, if column c1 is VARBINARY(1):

=> INSERT INTO t (c1) values ('ab');

 ERROR: 2-byte value too long for type Varbinary(1)

If you implicitly or explicitly cast a value with more bytes than fit the target data type, COPY silently
truncates the data. For example:

=> SELECT 'abcd'::binary(2);

 binary

 ab

(1 row)

Hexadecimal Data

The optional '0x' prefix indicates that a value is hexadecimal, not decimal, although not all

hexadecimal values use A-F; for example, 5396. COPY ignores the 0x prefix when loading the
input data.

-367-

 Bulk Loading Data

If there are an odd number of characters in the hexadecimal value, the first character is treated as
the low nibble of the first (furthest to the left) byte.

Octal Data

Loading octal format data requires that each byte be represented by a three-digit octal code. The
first digit must be in the range [0,3] and the second and third digits must both be in the range [0,7].

If the length of an octal value is not a multiple of three, or if one of the three digits is not in the
proper range, the value is invalid and COPY rejects the row in which the value appears. If you
supply an invalid octal value, COPY returns an error. For example:

SELECT '\\000\\387'::binary(8);

ERROR: invalid input syntax for type binary

Rows that contain binary values with invalid octal representations are also rejected. For example,
COPY rejects '\\008' because '\\ 008' is not a valid octal number.

BitString Data

Loading bitstring data requires that each character must be zero (0) or one (1), in multiples of eight
characters. If the bitstring value is not a multiple of eight characters, COPY treats the first n
characters as the low bits of the first byte (furthest to the left), where n is the remainder of the
value's length, divided by eight.

Examples

The following example shows VARBINARY HEX_TO_BINARY(VARCHAR) and VARCHAR
TO_HEX(VARBINARY) usage.

1 Create table t and and its projection with binary columns:

=> CREATE TABLE t (c BINARY(1));

=> CREATE PROJECTION t_p (c) AS SELECT c FROM t;

2 Insert minimum and maximum byte values, including an IP address represented as a character
string:

=> INSERT INTO t values(HEX_TO_BINARY('0x00'));

=> INSERT INTO t values(HEX_TO_BINARY('0xFF'));

=> INSERT INTO t values (V6_ATON('2001:DB8::8:800:200C:417A'));

Use the TO_HEX function to format binary values in hexadecimal on output:

=> SELECT TO_HEX(c) FROM t;

to_hex

 00

 ff

 20

(3 rows)

See Also

COPY in the SQL Reference Manual

Binary Data Types and Formatting Functions in the SQL Reference Manual

-368-

Administrator's Guide

ASCII (http://en.wikipedia.org/wiki/Ascii) topic in Wikipedia for a quick reference table on these
load format values.

Loading Fixed-Width Format Data

Use the FIXEDWIDTH parser option to bulk load fixed-width data. You must specify the COLSIZES
option values to specify the number of bytes for each column. The definition of the table you are
loading (COPY table f (x, y, z)) determines the number of COLSIZES values to declare.

To load fixed-width data, use the COLSIZES option to specify the number of bytes for each input
column. If any records do not have values, COPY inserts one or more null characters to equal the
specified number of bytes. The last record in a fixed-width data file must include a record
terminator to determine the end of the load data.

Supported Options for Fixed-Width Data Loads

Loading fixed-width data supports the options listed in the COPY Option Summary.

These options are not supported:

 DELIMITER

 ENCLOSED BY

 ESCAPE AS

 TRAILING NULLCOLS

Using Nulls in Fixed-Width Data

The default NULL string for a fixed-width load cannot be an empty string, and instead, consists of
all spaces. The number of spaces depends on the column width declared with the COLSIZES

(integer, [,...]) option.

For fixed-width loads, the NULL definition depends on whether you specify NULL at the column or
statement level, as follows:

 Statement level—NULL must be defined as a single-character. The default (or custom) NULL
character is repeated for the entire width of the column.

 Column Level—NULL must be defined as a string whose length matches the column width.

For fixed-width loads, if the input data column has fewer values than the specified column size,
COPY inserts NULL characters. The number of NULLs must match the declared column width. If
you specify a NULL string at the column level, COPY matches the string with the column width.

NOTE: To turn off NULLs, use the NULL AS option and specify NULL AS ''.

Defining a Null Character (Statement Level)

1 Create a two-column table (fw):

VMart=> create table fw(co int, ci int);

CREATE TABLE

2 Copy the table, specifying null as 'N', and enter some data:

http://en.wikipedia.org/wiki/Ascii

-369-

 Bulk Loading Data

VMart=> copy fw from STDIN fixedwidth colsizes(2,2) null as 'N' no commit;

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.

>> NN12

>> 23NN

>> NNNN

>> nnnn

>> \.

3 Select all (*) from the table:

VMart=> select * from fw;

 co | ci

----+----

 | 12

 23 |

 |

 |

 |

(5 rows)

Defining a Custom Record Terminator

To define a record terminator other than the COPY default when loading fixed-width data, take
these steps:

1 Create a table, fw, with two columns, co and ci:

VMart=> create table fw(co int, ci int);

CREATE TABLE

2 Copy table fw, specifying two 2-byte column sizes, and specifying a comma (,) as the record

terminator:

VMart=> copy fw from STDIN fixedwidth colsizes(2,2) record terminator

',';

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.

>> 1234,1444,6666

>> \.

3 Select all (*) from the table:

VMart=> select * from fw;

 co | ci

----+----

 12 | 34

 14 | 44

(2 rows)

The SELECT output indicates only two values. COPY rejected the third value (6666) because it

was not followed by a comma (,) record terminator. Fixed-width data requires a trailing record

terminator only if you explicitly specify a record terminator explicitly.

-370-

Administrator's Guide

Copying Fixed-Width Data

Use COPY FIXEDWIDTH COLSIZES (n [,...) to load files into an HP Vertica database. By

default, all spaces are NULLs. For example, in the simple case:

=> create table mytest(co int, ci int);

=> create projection mytest_p1 as select * from mytest segmented by hash(co) all

nodes;

=> create projection mytest_p2 as select * from mytest segmented by hash(co) all

nodes offset 1;

=> copy mytest(co,ci) from STDIN fixedwidth colsizes(6,4) no commit;

=> select * from mytest order by co;

 co | ci

----+----

(0 rows)

Skipping Content in Fixed-Width Data

The COPY statement has two options to skip input data. The SKIP BYTES option is only for

fixed-width data loads:

SKIP BYTES total Skips the total number (integer) of bytes from

the input data.

SKIP records Skips the number (integer) of records you
specify.

This example uses SKIP BYTES to skip 10 bytes when loading a fixed-width table with two
columns (4 and 6 bytes):

1 Copy a table, using SKIP BYTES to skip 10 bytes of input data:

VMart=> copy fw from stdin fixedwidth colsizes (4,6) SKIP BYTES 10;

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.

>> 2222666666

>> 1111999999

>> 1632641282

>> \.

2 Select all (*) from the table:

VMart=> select * from fw order by co;

 co | ci

------+--------

 1111 | 999999

 1632 | 641282

(2 rows)

The select output indicates that COPY skipped the first 10 bytes of load data, as directed.

This example uses SKIP when loading a fixed-width (4,6) table to skip one (1) record of input data:

1 Copy a table, using SKIP to skip 1 record of input data:

VMart=> copy fw from stdin fixedwidth colsizes (4,6) SKIP 1;

Enter data to be copied followed by a newline.

-371-

 Bulk Loading Data

End with a backslash and a period on a line by itself.

>> 2222666666

>> 1111999999

>> 1632641282

>> \.

2 Select all (*) from the table:

VMart=> select * from fw order by co;

 co | ci

------+--------

 1111 | 999999

 1632 | 641282

(2 rows)

The SELECT output indicates that COPY skipped the first record of load data, as directed.

Trimming Characters in Fixed-Width Data Loads

Use the TRIM option to trim a character. TRIM accepts a single-byte character, which is trimmed at

the beginning and end of the data. For fixed-width data loads, when you specify a TRIM character,
COPY first checks to see if the row is NULL. If the row is not null, COPY trims the character(s). The
next example instructs COPY to trim the character A, and shows the results. Only the last two lines
entered comply to the specified (4, 6) fixed width:

1 Copy table fw, specifying the TRIM character, A:

VMart=> copy fw from stdin fixedwidth colsizes(4,6) TRIM 'A';

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.

>> A2222A444444

>> 2222A444444

>> A22A444444

>> A22AA4444A

>> \.

2 Select all (*) from the table:

VMart=> select * from fw order by co;

 co | ci

----+--------

 22 | 4444

 22 | 444444

(2 rows)

Using Padding in Fixed-Width Data Loads

By default, the padding character is ' ' (a single space). The padding behavior for fixed-width data
loads is similar to how a space is treated in other formats, differing by data type as follows:

-372-

Administrator's Guide

Datatype Padding

Integer Leading and trailing spaces

Bool Leading and trailing spaces

Float Leading and trailing spaces

[var]Binary None. All characters are significant.

[Var]Char Trailing spaces if string is too large

Date

Interval

Time

Timestamp

TimestampTZ

TimeTZ

None. All characters are significant. The COPY

statement uses an internal algorithm to parse
these data types.

Date (formatted)

Use the COPY FORMAT option string to match the
expected column length.

Numerics Leading and trailing spaces

Ignoring Columns and Fields in the Load File
When bulk loading data, your source data may contain a column that does not exist in the
destination table. Use the FILLER option to have COPY ignore an input column and the fields it
contains when a corresponding column does not exist in the destination table. You can also use
FILLER to transform data through derivation from the source into the destination. Use FILLER for:

 Omitting columns that you do not want to transfer into a table.

 Transforming data from a source column and then loading the transformed data to the
destination table, without loading the original, untransformed source column (parsed column).
(See Transforming Data During Loads (page 347).)

Using the FILLER Parameter

Your COPY statement expressions can contain one or more filler columns. You can use any
number of filler columns in the expression. The only restriction is that at least one column must not
be a filler column. You cannot specify target table columns as filler, regardless of whether they are
in the column list.

A data file can consist entirely of filler columns, indicating that all data in a file can be loaded into
filler columns and then transformed and loaded into table columns. The filler column must be a
parsed column, not a computed column. Also, the name of the filler column must be unique within
both the source file and the destination table. You must specify the data type of the filler column as
part of the FILLER parameter.

-373-

 Bulk Loading Data

FILLER Parameter Examples

You can specify all parser parameters for filler columns, and all statement level parser parameters
apply to filler columns.

To ignore a column, use the COPY statement FILLER parameter, followed by its data type. The
next example creates a table with one column, and then copies it using two filler parameters.
Since the second filler column is not part of any expression, it is discarded:

create table t (k timestamp);

copy t(y FILLER date FORMAT 'YYYY-MM-DD', t FILLER varchar(10), k as y) from STDIN

no commit;

2009-06-17|2009-06-17

\.

The following example derives and loads the value for the timestamp column in the target
database from the year, month, and day columns in the source input. The year, month, and day
columns are not loaded because the FILLER parameter specifies to skip each of those columns:

CREATE TABLE t (k TIMESTAMP);

CREATE PROJECTION tp (k) AS SELECT * FROM t;

COPY t(year FILLER VARCHAR(10),

 month FILLER VARCHAR(10),

 day FILLER VARCHAR(10),

 k AS TO_DATE(YEAR || MONTH || DAY, 'YYYYMMDD'))

FROM STDIN NO COMMIT;

2009|06|17

1979|06|30

2007|11|26

\.

SELECT * FROM t;

 k

 2009-06-17 00:00:00

 1979-06-30 00:00:00

 2007-11-26 00:00:00

(3 rows)

See the COPY statement in the SQL Reference Manual for more information about syntax and
usage.

Loading Data into Pre-join Projections
A pre-join projection stores rows of a fact table joined with rows of dimension tables. Storing
pre-join projections improves query performance, since the join does not occur when you query
the data, but is already stored.

To insert a row into the fact table of a pre-join projection, the associated values of the dimension
table's columns must be looked up. Thus, an insert into a pre-join projection shares some of the
qualities of a query. The following sections describe the behaviors associated with loading data
into pre-join projections.

-374-

Administrator's Guide

Foreign and Primary Key Constraints

To ensure referential integrity, foreign and primary key constraints are enforced on inserts into fact
tables of pre-join projections. If a fact row attempts to reference a row that does not exist in the
dimension table, the load is automatically rolled back. The load is also rolled back if a fact row
references more than one dimension row.

Note: Unless it also has a NOT NULL (page 317) constraint, a column with a FOREIGN KEY

(page 314) constraint can contain a NULL value even though the dimension table's primary key
column does not contain a NULL value. This allows for records to be inserted into the fact table
even though the foreign key in the dimension table is not yet known.

The following tables and SQL examples highlight these concepts.

 Fact Table: Employees

 Dimension Table: HealthPlans

 Pre-join Projection: Joins Employees to HealthPlans using the PlanID column

CREATE PROJECTION EMP_HEALTH (EmployeeID, FirstName, LastName, Type)

AS (SELECT EmployeeID, FirstName, LastName, Type

 FROM Employees, HealthPlans

 WHERE Employees.HealthPlanID = HealthPlans.PlanID)

Employees (Fact Table)

 EmployeeID(PK) FirstName LastName PlanID(FK)

---------------+-----------+----------+------------

 1000 | David | Taylor | 01

 1001 | Sunil | Ray | 02

 1002 | Janet | Hildreth | 02

 1003 | Pequan | Lee | 01

HealthPlans (Dimension Table)

 PlanID(PK) Description Type

-----------+-------------+-------

 01 | PlanOne | HMO

 02 | PlanTwo | PPO

The following sequence of commands generate a missing foreign key error that results in a
rollback because the reference is to a non-existent dimension row.

INSERT INTO Employees (EmployeeID, First, Last, PlanID) VALUES (1004, 'Ben',

'Smith', 04);

The following sequence of commands generate a foreign key error that results in a rollback
because a duplicate row in the HealthPlans dimension table is referenced by an insert in the
Employees fact table. The error occurs when the Employees fact table references the HealthPlans
dimension table.

INSERT INTO HealthPlan VALUES(02, 'MyPlan', 'PPO');

INSERT INTO Employee VALUES(1005, 'Juan', 'Hernandez', 02);

-375-

 Bulk Loading Data

Concurrent Loads into Pre-join projections

HP Vertica supports concurrent inserts where two transactions can simultaneously insert rows into
the same table. A transaction inserting records into a pre-join projection can run concurrently with
another transaction inserting records into either the fact table or a dimension table of the pre-join
projection. A load into a pre-join projection cannot run concurrently with updates or deletes on
either the fact or the dimension tables.

When concurrently loading fact and dimension tables, the state of the dimension tables is fixed at
the start of the insert or load into the fact table. Rows that are added to a dimension table after the
start of an insert or load into a fact table are not available for joining because they are not visible to
the fact table. The client is responsible for ensuring that all values in dimension tables are present
before issuing the insert or load statement.

The following examples illustrate these behaviors.

 Fact Table: Sales

 Dimension Table: Employees

 Pre-join Projection: sales join employees on sales.seller=employees.empno

Success

Session A Session B Description
INSERT INTO EMPLOYEES

 (EMPNO, NAME) VALUES

 (1, 'Bob');

COPY INTO SALES (AMT,

 SELLER)

5000 | 1

3500 | 1

.

.

.

 Records loaded by this

COPY command all refer
to Bob's sales (SELLER =
1)

 INSERT INTO EMPLOYEES

 (EMPNO, NAME)VALUES

 (2,'Frank');

7234 | 1 COPY INTO SALES

 (AMT,SELLER)

50 | 2

75 | 2

.

.

.

Records loaded by this

COPY command all refer
to Frank's sales (SELLER
= 2).

COMMIT; COMMIT; Both transactions are
successful.

Failure

Session A Session B Description

INSERT INTO EMPLOYEES

(EMPNO, NAME)

1 | Bob

-376-

Administrator's Guide

2 | Terry COPY INTO SALES

 (AMT,SELLER)

5000 | 1

The transaction in

Session B fails because
the value inserted into the
dimension table in

Session A was not visible
before the COPY into the
pre-join in Session B was

initiated.

Using Parallel Load Streams

You can use COPY for multiple parallel load streams to load an HP Vertica database. COPY
LOCAL parses files serially, and does not support parallel load streams.

These are the options for parallel load streams:

 Issue multiple separate COPY statements to load different files from different nodes.

This option lets you use vsql, ODBC, ADO.net, or JDBC. You can load server-side files, or
client-side files using the COPY from LOCAL statement.

 Issue a single multi-node COPY command that loads different files from different nodes
specifying the nodename option for each file.

 Issue a single multi-node COPY command that loads different files from any node, using the ON
ANY NODE option.

 Use the COPY x WITH SOURCE PloadDelimitedSource option to parallel load using al l
cores on the server node on which the file resides.

Files can be of different formats, such as BZIP, GZIP, and others. The multi-node option is not
available with the COPY from LOCAL parameter.

The single multi-node COPY options (nodename | ON ANY NODE) are possible only using the

vsql command, and not all COPY options support this behavior. However, using this method to

copy data can result in significantly higher performance and efficient resource usage.

See COPY in the SQL Reference Manual for syntax details.

See Using the Parallel Load Library (page 377).

While there is no restriction to the number of files you can load, the optimal number of load
streams depends on several factors, including the number of nodes, the physical and logical
schemas, host processors, memory, disk space, and so forth. Too many load streams can cause
systems to run out of memory. See Best Practices for Managing Workload Resources (page
478) for advice on configuring load streams.

-377-

 Bulk Loading Data

Using the Parallel Load Library

You can use the HP Vertica PloadDelimitedSource library with the COPY statement to
parallel load delimited files. This section refers to the functionality as Pload.

The Pload feature is ideal for loading very large data files (at least 10 GB). The library divides file
parsing tasks across each core on the server node where the data file resides, significantly
reducing file load time. For example, given a 12GB file to load, performance could be 3 - 5 times
faster than loading the file without Pload.

You can specify the file division size (in bytes) by supplying an integer value to the pload
chunk_size parameter.

After installing the library, you can use the COPY statement's WITH SOURCE
PloadDelimitedSource parameter. Using Pload with COPY LOCAL is not supported.

Installing the PLoad Library

You must install the Pload library before using its functions. Be sure the HP Vertica database is
running when you run the install script.

To install the parallel load library:

1 From a terminal, navigate to this directory:

$ cd /opt/vertica/packages/pload/ddl

2 Run the install.sql script:

$ vsql -f install.sql

CREATE LIBRARY

CREATE SOURCE FUNCTION

3 After installing the library, use the library functionality in vsql with the COPY statement as
follows:

vsql_dev=> create table ploadtest (i integer, a varchar(10));

CREATE TABLE

vsql_dev=> \! python -c 'print "\n".join("%d|abcdefg" % (x+1) for x in

xrange(500))' > /tmp/ploadtest.dat # Making sample data

vsql_dev=> copy ploadtest with source

PloadDelimitedSource(file='/tmp/ploadtest.dat');

 Rows Loaded

 500

(1 row)

release=> select * from ploadtest limit 10;

 i | a

----+---------

 4 | abcdefg

 18 | abcdefg

 23 | abcdefg

-378-

Administrator's Guide

 30 | abcdefg

 33 | abcdefg

 34 | abcdefg

 39 | abcdefg

 45 | abcdefg

 50 | abcdefg

 51 | abcdefg

(10 rows)

Uninstalling the PLoad Library

To uninstall the parallel load library:

1 From a terminal, navigate to this directory:

$ cd /opt/vertica/packages/pload/ddl

2 Run the uninstall.sql script:

$ vsql -f uninstall.sql

DROP LIBRARY

Pload Prerequisites

These are the requirements for using Pload:

 Supports only delimited files.

 Does not support compressed files. Do not supply BZIP or GZIP files.

 Excludes UDLs.

 Source file must exist on the server host.

Syntax Summary

The Pload syntax supports a small subset of the COPY statement parameters. As noted, file is
a required argument, and supports wildcards:

COPY [[db-name.]schema-name.]table

...WITH SOURCE PloadDelimitedSource

......({file='/filepath'}

....... [, chunk_size=integer]

....... [, escape = 'char']

....... [, record_terminator='char']

....... [, nodes='node_name' [, ...]]

);

Comparing PLoad Arguments and COPY Parameters

These are the PloadDelimitedSource arguments with COPY statement parameter

counterparts:

Use this argument... For this COPY parameter...

escape escape as

record_terminator record terminator

-379-

 Bulk Loading Data

nodes nodename

Pload ignores any other COPY parameters and issues a warning.

NOTE: The Pload record_terminator and escape arguments must match those in the
COPY statement.

Exceptions and Rejected Data Files

Because Pload splits large files across multiple cores on the server, exceptions and rejected data
files can exist for multiple process threads that COPY creates. The files are not correlated
automatically but are available in the standard location, unless you specify another path with one
or both of the COPY EXCEPTIONS and REJECTED DATA parameters. For more information, see

Controlling Load Exceptions and Rejections (page 381).

Loading Large Data Files with Pload

Call the PloadDelimitedSource function as part of the COPY command. The first example

shows the required argument to supply (the file location):

COPY mytable WITH SOURCE PloadDelimitedSource(file='/tmp/file');

This example additionally includes the optional Pload arguments for escape,

record_terminator, chunk_size, and nodes. Including Pload arguments that represent
COPY parameters requires that you additionally list those parameters following the
PloadDelimitedSource function, as shown:

COPY mytable WITH SOURCE PloadDelimitedSource(file='/tmp/file', escape='#',

record_terminator='$', chunk_size=16, nodes='v_vert_node0002') DELIMITER '|'

ESCAPE '#' ENCLOSED BY '"' RECORD TERMINATOR '$';

NOTE: You can load multiple files in parallel using a wildcard in the Pload file path.

For more information, see COPY and COPY LOCAL in the SQL Reference Manual.

Also, see Bulk Loading Data (page 342) in the Administrator's Guide.

Checking COPY Metrics
You can check COPY load metrics using:

 HP Vertica functions

 LOAD_STREAMS system table

Using HP Vertica Functions

Two meta-functions return COPY metrics for the number of accepted or rejected rows from a
COPY statement:

1 To get the number of accepted rows, use the GET_NUM_ACCEPTED_ROWS function:

VMart=> select get_num_accepted_rows();

 get_num_accepted_rows

-380-

Administrator's Guide

 11

(1 row)

2 To check the number of rejected rows, use the GET_NUM_REJECTED_ROWS function:

VMart=> select get_num_rejected_rows();

 get_num_rejected_rows

 0

(1 row)

Using the LOAD_STREAMS System Table

HP Vertica includes a set of system tables that include monitoring information, as described in
Using System Tables (page 595). The LOAD_STREAMS system table includes information
about load stream metrics from COPY and COPY FROM VERTICA statements, so you can query
table values to get COPY metrics.

To see all table columns:

VMart=> select * from load_streams;

Using the STREAM NAME Parameter

Using the STREAM NAME parameter as part of the COPY statement labels COPY streams
explicitly so they are easier to identify in the LOAD_STREAMS system table.

To use the STREAM NAME parameter:

=> COPY mytable FROM myfile DELIMITER '|' DIRECT STREAM NAME 'My stream name';

The LOAD_STREAMS system table includes stream names for every COPY statement that takes
more than 1-second to run. The 1-second duration includes the time to plan and execute the
statement.

HP Vertica maintains system table metrics until they reach a designated size quota (in kilobytes).
The quota is set through internal processes and cannot be set or viewed directly.

Other LOAD_STREAMS Columns for COPY Metrics

These LOAD_STREAMS table column values depend on the load status:

 ACCEPTED_ROW_COUNT

 REJECTED_ROW_COUNT

 PARSE_COMPLETE_PERCENT

 SORT_COMPLETE_PERCENT

When a COPY statement using the DIRECT option is in progress, the ACCEPTED_ROW_COUNT field

can increase to the maximum number of rows in the input file as the rows are being parsed.

If COPY reads input data from multiple named pipes, the PARSE_COMPLETE_PERCENT field will

remain at zero (0) until all named pipes return an EOF. While COPY awaits an EOF from multiple
pipes, it may seem to be hung. Before canceling the COPY statement, however, check your
system CPU and disk accesses (page 578) to see if any activity is in progress.

-381-

 Bulk Loading Data

In a typical load, PARSE_COMPLETE_PERCENT can either increase slowly to 100%, or jump to

100% quickly if you are loading from named pipes or STDIN, while SORT_COMPLETE_PERCENT is

at 0. Once PARSE_COMPLETE_PERCENT reaches 100%, SORT_COMPLETE_PERCENT increases
to 100%. Depending on the data sizes, a significant lag can occur between the time

PARSE_COMPLETE_PERCENT reaches 100% and the time SORT_COMPLETE_PERCENT begins to
increase.

This example sets the VSQL expanded display, and then selects various columns of data from the
LOAD_STREAMS system table:

=> \pset expanded

Expanded display is on.

=> SELECT stream_name, table_name, load_start, accepted_row_count,

 rejected_row_count, read_bytes, unsorted_row_count, sorted_row_count,

 sort_complete_percent FROM load_streams;

-[RECORD 1]----------+---------------------------

stream_name | fact-13

table_name | fact

load_start | 2010-12-28 15:07:41.132053

accepted_row_count | 900

rejected_row_count | 100

read_bytes | 11975

input_file_size_bytes | 0

parse_complete_percent | 0

unsorted_row_count | 3600

sorted_row_count | 3600

sort_complete_percent | 100

See the SQL Reference Manual for other meta-function details.

See the Programmer's Guide for client-specific documentation.

Controlling Load Exceptions and Rejections
There are many reasons why a bulk load COPY statement can generate processing exceptions
and rejection data. There may be simple pilot errors, such as mistyping a file name or location in
the statement, or an external event or failure, such as network errors or nodes going down. An
invalid COPY statement could:

 Refer to a non-existent file

 Include unsupported parsing options

 Include another database object (such as a user-defined function) that has been dropped

 Point to an external data file on a node that is down

The COPY statement automatically saves files containing records of exceptions and rejected data
events. By default, HP Vertica saves these files in the database catalog subdirectory,
CopyErrorLogs, for instance:

-382-

Administrator's Guide

v_mart_node003_catalog\CopyErrorLogs\trans-STDIN-copy-from-exceptions.1

v_mart_node003_catalog\CopyErrorLogs\trans-STDIN-copy-from-rejected-data.1

You can save one or both files to a location of your choice using the EXCEPTIONS and
REJECTED DATA COPY parameters.

Using COPY Parameters to Handle Exceptions and Rejections

You can specify whether to write load exceptions and/or rejections to a specific file (always
required for COPY LOCAL), or to use the default file on the initiator node.

Several COPY parameters let you determine how strictly the statement handles the anomalies it
encounters when loading data. For instance, you can have COPY fail upon encountering a single
rejected row, or permit a certain number of rejected rows before having the load fail. These are
the associated parameters to save exceptions and rejections to a file of your choice, and to control
load exception handling:

Parameter Description

EXCEPTIONS Indicates the path and file in which to save exceptions that COPY
encounters, and specifies the file path.

If path resolves to a storage location, and the user invoking COPY is not a

superuser, these are the required permissions:

 The storage location must have been created with the USER
usage type (see ADD_LOCATION)

 The user must have been granted access to the storage location
where the file(s) exist, as described in GRANT (Storage Location)

For COPY LOCAL, the exceptions file must be on the client.

REJECTED DATA Indicates the path and file in which to save information about rejected data

that specifies the file path.

If path resolves to a storage location, and the user invoking COPY is not a
superuser, these are the required permissions:

 The storage location must have been created with the USER
usage type (see ADD_LOCATION)

 The user must already have been granted access to the storage
location where the file(s) exist, as described in GRANT (Storage
Location)

For COPY LOCAL, the rejected data file must be on the client.

ENFORCELENGTH Determines whether COPY truncates or rejects data rows of type CHAR,

VARCHAR, BINARY, and VARBINARY that exceed the destination table
size.

REJECTMAX Specifies the maximum number of logical records to reject before a load

fails.

ABORT ON ERROR Indicates that COPY stops loading data when it detects any rejected row
or error.

-383-

 Bulk Loading Data

Enforcing Truncating or Rejecting Rows (ENFORCELENGTH)

The ENFORCELENGTH parameter determines whether COPY truncates or rejects data rows of
type CHAR, VARCHAR, BINARY, and VARBINARY when they do not fit the target table. By
default, COPY truncates offending rows of these data types, but does not reject them.

For example, without using the ENFORCELENGTH parameter, loading 'abc' into VARCHAR(2)

causes COPY to truncate the value to 'ab' and load it. Loading the same value with the
ENFORCELENGTH parameter causes COPY to reject the 'abc' value, rather than to truncate it.

Note: HP Vertica supports NATIVE and NATIVE VARCHAR values up to 65K. If any value

exceeds this limit, COPY rejects the row, even when ENFORCELENGTH is not in use.

Specifying the Maximum Rejections Before Load Fails (REJECTMAX)

Specifies a maximum number of logical records to be rejected before a load fails. A rejection is
data that could not be parsed into the corresponding data type during a bulk load. Rejected data
does not indicate referential constraints.

When the number of rejected records will be greater than the REJECTMAX value (REJECTMAX+1),

the load fails. If you do not specify a value for REJECTMAX, or if the value is 0, REJECTMAX allows
an unlimited number of rejections.

Note: COPY does not accumulate rejected records across files or nodes while data is

loading. If one rejected data file exceeds the maximum reject number, the entire load fails.

Aborting Data Loads for any Error (ABORT ON ERROR)

Using the ABORT ON ERROR parameter is the most restrictive way to load data, because no
exceptions or rejections are allowed. COPY stops if any row is rejected. No data is loaded and HP
Vertica rolls back the command.

If you use the ABORT ON ERROR as part of a CREATE EXTERNAL TABLE AS COPY FROM
statement, the option is used whenever a query references the external table. The offending error
is saved in the COPY exceptions or rejected data file.

Understanding Rejections and Roll Back Errors

Depending on the type of error that COPY encounters, HP Vertica either rejects the row or rolls
back the entire load:

 Rejected rows — When HP Vertica encounters an error parsing records in the input file, it

rejects the offending row and continues the load. For example, HP Vertica rejects a row if it
contains any of the following:

 Incompatible data types

 Missing fields

 Missing delimiters

 Rollback — The following types of errors result in a load rollback:

 Server-side errors (such as lack of memory)

 Violations of primary key or foreign key constraints

 Loading NULL data into a not NULL column

-384-

Administrator's Guide

When an error results in a load rollback, COPY aborts the load, and no data is loaded.

If you specify ABORT ON ERROR with the COPY command, the load is automatically canceled
and rolled back immediately if any row is rejected or an error occurs. The offending row or error is
written to the applicable exceptions or rejected data file.

Specifying an Exceptions File (EXCEPTIONS)

COPY exceptions are warnings and informational messages that describe why the parser rejected
rows of data. The EXCEPTIONS parameter indicates the file to which COPY writes any load
exceptions. Each message indicates the input line number and the reason for each exception in
this format:

COPY: Input record number in <pathofinputfile> has been rejected (reason). Please

see pathtorejectfile, record recordnum for the rejected record.

The default path where COPY stores the exceptions file is:

catalog_dir/CopyErrorLogs/tablename-filename-of-source-copy-from-exceptions

catalog_dir The database catalog files directory

tablename-filename-

of-source
The names of the table and data file

If copying from STDIN, the filename-of-source is STDIN.

NOTE: You can use specific rejected data and exceptions files with one or more of the files you

are loading. Separate consecutive rejected data and exception file names with a comma (,) in
the COPY statement. Do not use the ON ANY NODE option with rejected data and exceptions
files, since ON ANY NODE is applicable only to the load file.

You must specify a filename in the path to load multiple input files. Keep in mind that long table
names combined with long data file names can exceed the operating system's maximum length
(typically 255 characters). To work around file names exceeding the maximum length, use a path
for the exceptions file that differs from the default path; for example,
\tmp\<shorter-file-name>.

For all data loads (except for COPY LOCAL), COPY behaves as follows:

No Exceptions file specified... Exceptions file specified...

For one data source file (pathToData or
STDIN), all information stored as one file in

the default directory.

For one data file, the path is treated as a file,
and COPY stores all information in this file. If

the path is not a file, COPY returns an error.

For multiple data files, all information stored
as separate files, one for each data file in

default directory.

For multiple data files, the path is treated as
a directory and COPY stores all information

in separate files, one for each data file. If
path is not a directory, COPY returns an
error.

-385-

 Bulk Loading Data

 Exceptions files are not stored on the initiator

node.

 You can specify only one path per node. If
you specify more than one path per node,

COPY returns an error.

Specifying a Rejected Data File (REJECTED DATA)

COPY rejections are parser events that prevent the row from being loaded. The REJECTED
DATA parameter indicates the file to which COPY will write any rejected records. As the rejected
file contains each rejected row, the corresponding exceptions file includes messages describing
why the parser rejected a row.

Once the file exists, you can review its contents to resolve any load problems and reload the data.
The default path for the REJECTED DATA option is:

catalog_dir/CopyErrorLogs/tablename-filename-of-source-copy-from-rejections

catalog_dir The database catalog files directory

tablename-filename-

of-source
The names of the table and data file

If copying from STDIN, the filename of source is STDIN.

NOTE: You can use specific rejected data and exceptions files with one or more of the files you

are loading. Separate consecutive rejected data and exception file names with a comma (,) in
the COPY statement. Do not use the ON ANY NODE option with rejected data and exceptions
files, since ON ANY NODE is applicable only to the load file.

You must specify a filename in the path to load multiple input files. Keep in mind that long table
names combined with long data file names can exceed the operating system's maximum length
(typically 255 characters). To work around file names exceeding the maximum length, use a path
for the rejected data file that differs from the default path; for example,
\tmp\<shorter-file-name>.

For all data loads (except for COPY LOCAL), COPY behaves as follows:

No rejected data file specified... Rejected data file specified...

For one data source file (pathToData or STDIN),

all information stored as one file in the default
directory.

For one data file, the path is treated as a file, and

COPY stores all information in this file. If the path is
not a file, COPY returns an error.

For multiple data files, all information stored as
separate files, one for each data file in default
directory.

For multiple data files, the path is treated as a
directory and COPY stores all information in
separate files, one for each data file. If path is not a

directory, COPY returns an error.

-386-

Administrator's Guide

 Rejected data files are not shipped to the initiator

node.

 Only one path per node is accepted. If more than
one is provided, COPY returns an error.

COPY Exception and Rejected Data Files

When executing a multi-node COPY statement, each node processes part of the load data. If the
load succeeds, all exceptions and rejections that occur during the node's load processing are
written to that node's specific exceptions and rejected data files. If the load fails, the file contents
can be incomplete, or empty.

Both exceptions and rejected data files are saved and stored on a per-node basis. This example
uses multiple files as COPY inputs. Since the statement does not include either the EXCEPTIONS
or REJECTED DATA parameters, exception and rejected data files are written to the default
location, the database catalog subdirectory, CopyErrorLogs, on each node:

\set dir `pwd`/data/

\set remote_dir /vertica/test_dev/tmp_ms/

\set file1 '''':dir'C1_large_tbl.dat'''

\set file2 '''':dir'C2_large_tbl.dat'''

\set file3 '''':remote_dir'C3_large_tbl.dat'''

\set file4 '''':remote_dir'C4_large_tbl.dat'''

COPY large_tbl FROM :file1 ON site01,

 :file2 ON site01,

 :file3 ON site02,

 :file4 ON site02

DELIMITER '|';

NOTE: Always use the COPY statement EXCEPTIONS and REJECTED DATA parameters to

save load exceptions. Using the RETURNREJECTED parameter is supported only for internal
use by the JDBC and ODBC drivers. HP Vertica's internal-use options can change without
notice.

Specifying a Path for Exceptions and Rejected Data Files

The COPY EXCEPTIONS and REJECTED DATA parameters 'path' element lets you specify a
non-default path in which to store the files.

If path resolves to a storage location, and the user invoking COPY is not a superuser, these are
the required permissions:

 The storage location must have been created (or altered) with the USER option (see
ADD_LOCATION and ALTER_LOCATION_USE)

 The user must already have been granted READ access to the storage location where the
file(s) exist, as described in GRANT (Storage Location)

Both parameters also have an optional ON nodename clause that uses the specified path:

...[EXCEPTIONS 'path' [ON nodename] [, ...]]

-387-

 Bulk Loading Data

...[REJECTED DATA 'path' [ON nodename] [, ...]]

While 'path' specifies the location of the exceptions and rejected data files (with their

corresponding parameters), the optional ON nodename clause moves any existing exception
and rejected data files on the node to the specified path on the same node.

Saving Exceptions and Rejected Data Files to a Single Server

The COPY statement does not have a facility to merge exception and rejected data files after
COPY processing is complete. To see the contents of exception and rejected data files requires
logging on and viewing each node's specific files.

NOTE: If you want to save all exceptions and rejected data files on a network host, be sure to

give each node's files unique names, so different cluster nodes do not overwrite other nodes'

files. For instance, if you set up a server with two directories, such as /vertica/exceptions

and /vertica/rejections, be sure the corresponding file names for each HP Vertica

cluster node identifies each node, such as node01_exceptions.txt and

node02_exceptions.txt, and so on. In this way, each cluster node's files will reside in one
directory, and be easily distinguishable.

Using VSQL Variables for Exceptions and Rejected Data Files

This example uses vsql variables to specify the path and file names to use with the exceptions

and rejected data parameters (except_s1 and reject_s1). The COPY statement specifies
a single input file (large_tbl) on the initiator node:

\set dir `pwd`/data/

\set file1 '''':dir'C1_large_tbl.dat'''

\set except_s1 '''':dir'exceptions'''

\set reject_s1 '''':dir'rejections'''

COPY large_tbl FROM :file1 ON site01

DELIMITER '|'

REJECTED DATA :reject_s1 ON site01

EXCEPTIONS :except_s1 ON site01;

This example uses variables to specify exception and rejected date files (except_s2 and

reject_s2) on a remote node. The COPY statement consists of a single input file on a remote
node (site02):

\set remote_dir /vertica/test_dev/tmp_ms/

\set except_s2 '''':remote_dir'exceptions'''

\set reject_s2 '''':remote_dir'rejections'''

COPY large_tbl FROM :file1 ON site02

DELIMITER '|'

REJECTED DATA :reject_s2 ON site02

EXCEPTIONS :except_s2 ON site02;

This example uses variables to specify that the exception and rejected data files are on a remote
node (indicated by :remote_dir). The inputs to the COPY statement consist of multiple data

files on two nodes (site01 and site02). The exceptions and rejected data options use

ON nodename clause with the vsql variables to indicate where the files reside (site01 and
site02):

-388-

Administrator's Guide

\set dir `pwd`/data/

\set remote_dir /vertica/test_dev/tmp_ms/

\set except_s1 '''':dir''''

\set reject_s1 '''':dir''''

\set except_s2 '''':remote_dir''''

\set reject_s2 '''':remote_dir''''

COPY large_tbl FROM :file1 ON site01,

 :file2 ON site01,

 :file3 ON site02,

 :file4 ON site02

DELIMITER '|'

REJECTED DATA :reject_s1 ON site01, :reject_s2 ON site02

EXCEPTIONS :except_s1 ON site01, :except_s2 ON site02;

COPY LOCAL Exception and Rejection Files

Invoking COPY LOCAL (or COPY LOCAL FROM STDIN) does not automatically create
exceptions and rejections files. This behavior is different from using COPY, which saves
exceptions and rejected data files automatically, regardless of whether you use the EXCEPTIONS
and REJECTED DATA parameters to specify one or both files explicitly.

Use the EXCEPTIONS and REJECTED DATA parameters with COPY LOCAL and COPY LOCAL
FROM STDIN to save the corresponding data files on the client. If you do not use the REJECTED
DATA and EXCEPTIONS options, exceptions or rejected data events are not retained, even if one
or both occur.

You can load multiple input files using COPY LOCAL (or COPY LOCAL FROM STDIN). If you also
use the REJECTED DATA and EXCEPTIONS options, the statement writes exceptions and
rejected data to a single exceptions file, and to one rejected data file. The respective files contain
all exceptions and rejected data content, regardless of how many input files were loaded.

NOTE: Because COPY LOCAL (and COPY LOCAL FROM STDIN) must write any exceptions

and rejected data files to the client, you cannot use the [ON nodename] clause with either the
exceptions or rejected data options.

To save any exceptions or rejections after a successful load:

1 In the COPY LOCAL (and COPY LOCAL FROM STDIN) statement, use the EXCEPTIONS

'path' and the REJECTED DATA 'path' parameters, respectively.

2 Specify two different file names for the options. You cannot use one file for both the

EXCEPTIONS and REJECTED DATA 'path' parameters.

3 When you invoke COPY LOCAL or COPY LOCAL FROM STDIN, the files you specify do not
need to exist. If they do, COPY LOCAL must be able to overwrite them.

You can specify the path and file names with vsql variables:

\set rejected ../except_reject/copyLocal.rejected

\set exceptions ../except_reject/copyLocal.exceptions

-389-

 Bulk Loading Data

When you use the COPY LOCAL or COPY LOCAL FROM STDIN statement, specify the variable
names for the files with their corresponding parameters:

COPY large_tbl FROM LOCAL rejected data :rejected exceptions :exceptions;

COPY large_tbl FROM LOCAL STDIN rejected data :rejected exceptions :exceptions;

Referential Integrity Load Violation
HP Vertica checks for constraint violations when queries are executed, not when loading data.

If you have a pre-joined projection defined on the table being loaded, HP Vertica checks for
constraint violations (duplicate primary keys or non-existent foreign keys) during the join operation
and reports errors. If there are no pre-joined projections, HP Vertica performs no such checks.

To avoid constraint violations, you can load data without committing it and then use the
ANALYZE_CONSTRAINTS function to perform a post-load check of your data. If the function
finds constraint violations, you can roll back the bulk load because you have not committed it.

See Also

Analyzing Constraints (Detecting Constraint Violations) (page 319) in the Administrator's
Guide

COPY NO COMMIT and ANALYZE_CONSTRAINTS in the SQL Reference Manual

-390-

Trickle Loading Data

Once you have a working database and have bulk loaded your initial data, you can use trickle
loading to load additional data on an ongoing basis. By default, HP Vertica uses the transaction

isolation level of READ COMMITTED, which allows users to see the most recently committed data
without holding any locks. This allows new data to be loaded while concurrent queries are running.

See Change Transaction Isolation Levels (page 34).

Using INSERT, UPDATE, and DELETE

The SQL data manipulation language (DML) commands INSERT, UPDATE, and DELETE
perform the same functions that they do in any ACID compliant database. The INSERT statement
is typically used to load individual rows into physical memory or load a table using INSERT AS
SELECT. UPDATE and DELETE are used to modify the data.

You can intermix the INSERT, UPDATE, and DELETE commands. HP Vertica follows the SQL-92
transaction model. In other words, you do not have to explicitly start a transaction but you must
use a COMMIT or ROLLBACK command (or COPY) to end a transaction. Canceling a DML
statement causes the effect of the statement to be rolled back.

HP Vertica differs from traditional databases in two ways:

 DELETE does not actually delete data from disk storage; it marks rows as deleted so that they
can be found by historical queries.

 UPDATE writes two rows: one with new data and one marked for deletion.

Like COPY, by default, INSERT, UPDATE and DELETE commands write the data to the WOS
and on overflow write to the ROS. For large INSERTS or UPDATES, you can use the DIRECT
keyword to force HP Vertica to write rows directly to the ROS. Loading large number of rows as
single row inserts are not recommended for performance reasons. Use COPY instead.

WOS Overflow

The WOS exists to allow HP Vertica to efficiently batch small loads into larger ones for I/O
purposes. Loading to the WOS is fast because the work of sorting, encoding, and writing to disk is
deferred and performed in the background by the Tuple Mover's moveout process. Since the WOS
has a finite amount of available space, it can fill up and force HP Vertica to spill small loads directly
to disk. While no data is lost or rejected when the WOS gets full, it can result in wasted I/O
bandwidth. Thus, follow the Tuning the Tuple Mover (page 464) guidelines to avoid WOS
overflow.

-391-

Copying and Exporting Data

HP Vertica can easily import data from and export data to other HP Vertica databases. Importing
and exporting data is useful for common tasks such as moving data back and forth between a
development or test database and a production database, or between databases that have
different purposes but need to share data on a regular basis.

Moving Data Directly Between Databases

Two statements move data to and from another HP Vertica database:

 COPY FROM VERTICA

 EXPORT TO VERTICA

To execute either of these statements requires first creating a connection to the other HP Vertica
database.

Creating SQL Scripts to Export Data

Three functions return a SQL script you can use to export database objects to recreate elsewhere:

 EXPORT_CATALOG

 EXPORT_OBJECTS

 EXPORT_TABLES

While copying and exporting data is similar to Backing Up and Restoring the Database (page
517), you should use them for different purposes, outlined below:

Task Backup and Restore COPY and EXPORT
Statements

Back up or restore an entire database, or
incremental changes

YES NO

Manage database objects (a single table

or selected table rows)

YES YES

Use external locations to back up and
restore your database

YES NO

Use direct connections between two
databases

NO YES

Use external shell scripts to back up and
restore your database

YES NO

Use SQL commands to incorporate copy

and export tasks into DB operations

NO YES

The following sections explain how you import and export data between HP Vertica databases.

Note: When importing from or exporting to an HP Vertica database, you can connect only to a

database that uses trusted- (username-only) or password-based authentication, as described
in Implementing Security (page 116). Neither LDAP nor SSL authentication is supported.

-392-

Administrator's Guide

Exporting Data

You can export a table, specific columns in a table, or the results of a SELECT statement to
another HP Vertica database. The table in the target database receiving the exported data must
already exist, and have columns that match (or can be coerced into) the data types of the columns
you are exporting. You can export data from an earlier HP Vertica release, as long as the earlier
release is a version of the last major release. For instance, for Version 6.x, you can export data
from any version of 5.x, but not from 4.x.

Exported data is always written in AUTO mode.

Exporting data fails if either side of the connection is a single-node cluster installed to localhost or
you do not specify a host name or IP address.

Exporting is a three-step process:

1 Use the CONNECT SQL statement to connect to the target database that will receive your
exported data.

2 Use the EXPORT SQL statement to export the data. If you want to export multiple tables or the
results of multiple SELECT statements, you need to use multiple EXPORT statements. All
statements will use the same connection to the target database.

3 When you are finished exporting data, use the DISCONNECT SQL statement to disconnect
from the target database.

See the entries for CONNECT, EXPORT, and DISCONNECT statements in the SQL Reference
Manual for syntax details.

Exporting Identity Columns

When you use the EXPORT TO VERTICA statement, HP Vertica exports Identity (and
Auto-increment) columns as they are defined in the source data. The Identity column value does
not increment automatically, and requires that you use ALTER SEQUENCE to make updates.

Export Identity (and Auto-increment) columns as follows:

 If source and destination tables have an Identity column, you do not need to list them.

 If source has an Identity column, but not the destination, specify both the source and
destination columns.

NOTE: In earlier releases, Identity columns were ignored. Now, failure to list which Identity

columns to export can cause an error, because the Identity column is not ignored and will be
interpreted as missing in the destination table.

The default behavior for EXPORT TO VERTICA is to let you export Identity columns by specifying
them directly in the source table. To disable this behavior globally, set the

CopyFromVerticaWithIdentity configuration parameter, described in Configuration
Parameters (page 36).

Examples of Exporting Data

The following example demonstrates using the three-step process listed above to export data.

-393-

 Copying and Exporting Data

First, open the connection to the other database, then perform a simple export of an entire table to
an identical table in the target database.

=> CONNECT TO VERTICA testdb USER dbadmin PASSWORD '' ON 'VertTest01',5433;

CONNECT

=> EXPORT TO VERTICA testdb.customer_dimension FROM customer_dimension;

Rows Exported

 23416

(1 row)

The following statement demonstrates exporting a portion of a table using a simple SELECT
statement.

=> EXPORT TO VERTICA testdb.ma_customers AS SELECT customer_key, customer_name,

annual_income

-> FROM customer_dimension WHERE customer_state = 'MA';

Rows Exported

 3429

(1 row)

This statement exports several columns from one table to several different columns in the target
database table using column lists. Remember that when supplying both a source and destination
column list, the number of columns must match.

=> EXPORT TO VERTICA testdb.people (name, gender, age) FROM customer_dimension

-> (customer_name, customer_gender, customer_age);

Rows Exported

 23416

(1 row)

You can export tables (or columns) containing Identity and Auto-increment values, but the
sequence values are not incremented automatically at their destination.

You can also use the EXPORT TO VERTICA statement with a SELECT AT EPOCH LATEST
expression to include data from the latest committed DML transaction.

Disconnect from the database when the export is complete:

=> DISCONNECT testdb;

DISCONNECT

Note: Closing your session also closes the database connection. However, it is a good practice
to explicitly close the connection to the other database, both to free up resources and to
prevent issues with other SQL scripts you may run in your session. Always closing the
connection prevents potential errors if you run a script in the same session that attempts to
open a connection to the same database, since each session can only have one connection to
a particular database at a time.

-394-

Administrator's Guide

Importing Data

You can import a table or specific columns in a table from another HP Vertica database. The table
receiving the copied data must already exist, and have columns that match (or can be coerced
into) the data types of the columns you are copying from the other database. You can import data
from an earlier HP Vertica release, as long as the earlier release is a version of the last major
release. For instance, for Version 6.x, you can import data from any version of 5.x, but not from
4.x.

NOTE: Importing and exporting data fails if either side of the connection is a single-node cluster

installed to localhost, or you do not specify a host name or IP address.

Importing is a three-step process:

1 Use the CONNECT SQL statement to connect to the source database containing the data you
want to import.

2 Use the COPY FROM VERTICA SQL statement to import the data. If you want to import
multiple tables, you need to use multiple COPY FROM VERTICA statements. They all use the
same connection to the source database.

3 When you are finished importing data, use the DISCONNECT SQL statement to disconnect
from the source database.

See the entries for CONNECT, COPY FROM VERTICA, and DISCONNECT statements in the
SQL Reference Manual for syntax details.

Importing Identity Columns

You can import Identity (and Auto-increment) columns as follows:

 If source and destination tables have an Identity column, you do not need to list them.

 If source has an Identity column, but not the destination, specify both the source and
destination columns.

NOTE: In earlier releases, Identity columns were ignored. Now, failure to list which Identity
columns to export can cause an error, because the Identity column is not ignored and will be
interpreted as missing in the destination table.

After importing the columns, the Identity column values do not increment automatically. Use
ALTER SEQUENCE to make updates.

The default behavior for this statement is to import Identity (and Auto-increment) columns by
specifying them directly in the source table. To disable this behavior globally, set the

CopyFromVerticaWithIdentity configuration parameter, described in Configuration
Parameters (page 36).

Examples

This example demonstrates connecting to another database, copying the contents of an entire
table from the source database to an identically-defined table in the current database directly into
ROS, and then closing the connection.

=> CONNECT TO VERTICA vmart USER dbadmin PASSWORD '' ON 'VertTest01',5433;

-395-

 Copying and Exporting Data

CONNECT

=> COPY customer_dimension FROM VERTICA vmart.customer_dimension DIRECT;

 Rows Loaded

 500000

(1 row)

=> DISCONNECT vmart;

DISCONNECT

This example demonstrates copying several columns from a table in the source database into a
table in the local database.

=> CONNECT TO VERTICA vmart USER dbadmin PASSWORD '' ON 'VertTest01',5433;

CONNECT

=> COPY people (name, gender, age) FROM VERTICA

-> vmart.customer_dimension (customer_name, customer_gender,

-> customer_age);

 Rows Loaded

 500000

(1 row)

=> DISCONNECT vmart;

DISCONNECT

You can copy tables (or columns) containing Identity and Auto-increment values, but the
sequence values are not incremented automatically at their destination.

Using Public and Private IP Networks
In many configurations, HP Vertica cluster hosts use two network IP addresses as follows:

 A private address for communication between the cluster hosts.

 A public IP address for communication with for client connections.

By default, importing from and exporting to another HP Vertica database uses the private network.

To use the public network address for copy and export activities, configure the system to use the
public network to support exporting to or importing from another HP Vertica cluster:

 Identify the Public Network to HP Vertica (page 395)

 Identify the Database or Node(s) used for Import/Export (page 396)

Identify the Public Network to HP Vertica

To be able to import to or export from a public network, HP Vertica needs to be aware of the IP
addresses of the nodes or clusters on the public network that will be used for import/export
activities. Two scenarios exist:

 Public network IP addresses reside on the same subnet (create a subnet)

 Public network IP addresses are on multiple subnets (create a network interface,

To identify public network IP addresses residing on the same subnet:

-396-

Administrator's Guide

1 Use the CREATE SUBNET SQL statement:

CREATE SUBNET subnet-name with 'subnet prefix'

2 Define the parameters:

subnet-name The name you assign to the subnet.

subnet prefix The routing prefix expressed in quad-dotted
decimal representation. Refer to
v_monitor.network_interfaces system

table to get the prefix for all available IP networks.

You can also change the name of a subnet (ALTER SUBNET), or remove it (DROP SUBNET)
from HP Vertica.

Once you've identified the subnet, you must modify the database to enable export over the subnet.

To identify public network IP addresses residing on multiple subnets:

1 Use the CREATE NETWORK INTERFACE SQL statement:

CREATE NETWORK INTERFACE network-interface-name ON node-name with 'ip

address of node'

Define the parameters:

network-interface-name The name you assign to the network interface.

node-name The name of the node.

IP address of node The IP address of the node.

See also

 Identify the Database or Node(s) used for Import/Export (page 396)

 CREATE SUBNET

 ALTER SUBNET

 DROP SUBNET

 CREATE NETWORK INTERFACE

 ALTER NETWORK INTERFACE

 DROP NETWORK INTERFACE

Identify the Database or Node(s) used for Import/Export

Once you've identified the public network to HP Vertica, you can configure databases and nodes
to use the public network for import/export. You can configure by:

 specifying a subnet for the database.

 specifying a network interface for each node in the database.

-397-

 Copying and Exporting Data

To Configure a Database to Import/Export on the Public Network

Use the ALTER DATABASE SQL statement to specify the subnet name of the public network.

When you do so, all nodes in the database will automatically use the network interface on the
subnet for import/export.

Syntax

ALTER DATABASE database-name EXPORT ON {subnet-name|DEFAULT};

database-name The name of the database that will import/export

subnet-name The name of the subnet of the public network

DEFAULT Sets export for this database back to the default
value. When set to DEFAULT, HP Vertica
assumes that export should go to a private

network.

To Configure Each Individual Node to Import/Export on a Public Network

Use the ALTER NODE SQL statement to specify the network interface of the public network on
each individual node.

Syntax
ALTER NODE node-name EXPORT ON {network-interface-name|DEFAULT};

node-name The name of the node that will import/export.

network-interface-name The network interface name on the node.

DEFAULT Sets export for this database back to the default
value. When set to DEFAULT, HP Vertica
assumes that export should go to a private

network.

See also

 CREATE SUBNET

 ALTER SUBNET

 DROP SUBNET

 CREATE NETWORK INTERFACE

 ALTER NETWORK INTERFACE

 DROP NETWORK INTERFACE

Using EXPORT Functions

HP Vertica provides several EXPORT_ functions that let you recreate a database, or specific
schemas and tables, in a target database. For example, you can use the EXPORT_ functions to
transfer some or all of the designs and objects you create in a development or test environment to
a production database.

-398-

Administrator's Guide

The EXPORT_ functions create SQL scripts that you can run to generate the exported database
designs or objects. These functions serve different purposes to the export statements, COPY
FROM VERTICA (pull data) and EXPORT TO VERTICA (push data). These statements transfer
data directly from source to target database across a network connection between both. They are
dynamic actions and do not generate SQL scripts.

The EXPORT_ functions appear in the following table. Depending on what you need to export, you
can use one or more of the functions. EXPORT_CATALOG creates the most comprehensive SQL
script, while EXPORT_TABLES and EXPORT_OBJECTS are subsets of that function to narrow
the export scope.

Use this function... To recreate...

EXPORT_CATALOG These catalog items:

 An existing schema design, tables, projections,
constraints, and views

 The Database Designer-created schema
design, tables, projections, constraints, and
views

 A design on a different cluster.

EXPORT_TABLES Non-virtual objects up to, and including, the schema of

one or more tables.

EXPORT_OBJECTS Catalog objects in order dependency for replication.

The designs and object definitions that the script creates depend on the EXPORT_ function scope
you specify. The following sections give examples of the commands and output for each function
and the scopes it supports.

Saving Scripts for Export Functions

All of the examples in this section were generated using the standard HP Vertica VMART
database, with some additional test objects and tables. One output directory was created for all
SQL scripts that the functions created:

/home/dbadmin/xtest

If you specify the destination argument as an empty string (''), the function writes the export

results to STDOUT.

NOTE: A superuser can export all available database output to a file with the EXPORT_

functions. For a non-superuser, the EXPORT_ functions generate a script containing only the
objects to which the user has access.

Exporting the Catalog

Exporting the catalog is useful to quickly move a database design to another cluster. The
EXPORT_CATALOG function generates a SQL script to run on a different cluster to replicate the
physical schema design of the source database. You choose what to export by specifying the
export scope:

-399-

 Copying and Exporting Data

To export... Enter this scope...

Schemas, tables, constraints, views, and
projections.

DESIGN
(This is the default scope.)

All design objects and system objects

created in Database Designer, such as
design contexts and their tables.

DESIGN ALL

All tables, constraints, and projections. TABLES

Function Summary

Here is the function syntax, described in EXPORT_CATALOG in the SQL Reference Manual:

EXPORT_CATALOG (['destination'] , ['scope'])

Exporting all Catalog Objects

Use the DESIGN scope to export all design elements of a source database in order dependency.
This scope exports all catalog objects in their OID (unique object ID) order, including schemas,
tables, constraints, views, and projections. This is the most comprehensive export scope, without
the Database Designer elements, if they exist.

NOTE: The result of this function yields the same SQL script as EXPORT_OBJECTS used with

an empty string ('') as its scope.

VMart=> select

export_catalog('/home/dbadmin/xtest/sql_cat_design.sql','DESIGN');

 export_catalog

 Catalog data exported successfully

(1 row)

The SQL script includes the following types of statements, each needed to provision a new database:

 CREATE SCHEMA

 CREATE TABLE

 CREATE VIEW

 CREATE SEQUENCE

 CREATE PROJECTION (with ORDER BY and SEGMENTED BY)

 ALTER TABLE (to add constraints)

 PARTITION BY

Projection Considerations

If a projection to export was created with no ORDER BY clause, the SQL script reflects the default

behavior for projections. <DB_SHORT> implicitly creates projections using a sort order based on
the SELECT columns in the projection definition. The EXPORT_CATALOG script reflects this
behavior.

-400-

Administrator's Guide

The EXPORT_CATALOG script is portable as long as all projections were generated using
UNSEGMENTED ALL NODES or SEGMENTED ALL NODES.

Exporting Database Designer Schema and Designs

Use the DESIGN ALL scope to generate a script to recreate all design elements of a source
database and the design and system objects that were created by the Database Designer:

VMart=> select

export_catalog('/home/dbadmin/xtest/sql_cat_design_all.sql','DESIGN_ALL');

 export_catalog

 Catalog data exported successfully

(1 row)

Exporting Table Objects

Use the TABLES scope to generate a script to recreate all schemas tables, constraints, and

sequences:

VMart=> select

export_catalog('/home/dbadmin/xtest/sql_cat_tables.sql','TABLES');

 export_catalog

 Catalog data exported successfully

(1 row)

The SQL script includes the following types of statements:

 CREATE SCHEMA

 CREATE TABLE

 ALTER TABLE (to add constraints)

 CREATE SEQUENCE

See Also

EXPORT_CATALOG

EXPORT_OBJECTS

EXPORT_TABLES

Exporting Tables (page 400) and Exporting Objects (page 402) in the Administrator's Guide

Exporting Tables

Use the EXPORT_TABLES function to recreate one or more tables, and related objects, on a
different cluster. Specify one of the following options to determine the scope:

-401-

 Copying and Exporting Data

To export... Use this scope...

All non-virtual objects to which the user has access,
including constraints.

An empty string (' ')

One or more named objects, such as tables or
sequences in one or more schemas. You can
optionally qualify the schema with a database prefix,

myvertica.myschema.newtable.

A comma-delimited list of items:
'myschema.newtable,
yourschema.oldtable'

A named database object in the current search path.
You can specify a schema, table, or sequence. If the

object is a schema, the script includes non-virtual
objects to which the user has access.

A single object, 'myschema'

The SQL script includes only the non-virtual objects to which the current user has access.

NOTE: You cannot export a view with this function, even if a list includes the view relations.

Specifying a view name will not issue a warning, but the view will not exist in the SQL script.

Function Syntax
EXPORT_TABLES (['destination'] , ['scope'])

For more information, see EXPORT_TABLES in the SQL Reference Manual.

Exporting all Tables and Related Objects

Specify an empty string ('') for the scope to export all tables and their related objects.

 VMart=> select export_tables('/home/dbadmin/xtest/sql_tables_empty.sql','');

 export_tables

 Catalog data exported successfully

(1 row)

The SQL script includes the following types of statements, depending on what is required to recreate the
tables and any related objects (such as sequences):

 CREATE SCHEMA

 CREATE TABLE

 ALTER TABLE (to add constraints)

 CREATE SEQUENCE

 PARTITION BY

Exporting a List Tables

Use EXPORT_TABLE with a comma-separated list of objects, including tables, views, or
schemas:

VMart=> select

export_tables('/home/dbadmin/xtest/sql_tables_del.sql','public.student,

public.test7');

 export_tables

 Catalog data exported successfully

-402-

Administrator's Guide

(1 row)

The SQL script includes the following types of statements, depending on what is required to create the list of

objects:

 CREATE SCHEMA

 CREATE TABLE

 ALTER TABLE (to add constraints)

 CREATE SEQUENCE

Exporting a Single Table or Object

Use the EXPORT_TABLES function to export one or more database table objects.

This example exports a named sequence, my_seq, qualifying the sequence with the schema
name (public):

VMart=> select export_tables('/home/dbadmin/xtest/export_one_sequence.sql',

'public.my_seq');

 export_tables

 Catalog data exported successfully

(1 row)

Following are the contents of the export_one_sequence.sql output file using a more
command:

[dbadmin@node01 xtest]$ more export_one_sequence.sql

CREATE SEQUENCE public.my_seq ;

Exporting Objects

Use EXPORT_OBJECTS function to recreate the exported objects. Specify one of the following
options to determine the scope:

To export... Use this scope...

All non-virtual objects to which the user has access,
including constraints.

An empty string (' ')

-403-

 Copying and Exporting Data

One or more named objects, such as tables or views

in one or more schemas. You can optionally qualify
the schema with a database prefix,
myvertica.myschema.newtable.

A comma-delimited list of items:

'myschema.newtable,
yourschema.oldtable'

A named database object in the current search path.
You can specify a schema, table, or view. If the
object is a schema, the script includes non-virtual

objects to which the user has access.

A single object, 'myschema'

The SQL script includes only the non-virtual objects to which the current user has access.

The EXPORT_OBJECTS function always attempts to recreate projection statements with the
KSAFE clauses that existed in the original definitions, or with OFFSET clauses, if they did not.

Function Syntax
EXPORT_OBJECTS(['destination'] , ['scope'] , ['ksafe'])

For more information, see EXPORT_OBJECTS in the SQL Reference Manual.

Exporting all Objects

Specify an empty string ('') for the scope to export all non-virtual objects from the source
database in order dependency. Running the generated SQL script on another cluster creates all
referenced objects and their dependent objects.

By default, this function includes the KSAFE argument as true, so the script includes the

MARK_DESIGN_KSAFE statement. Using this function is useful to run the generated SQL script in
a new database so it will inherit the K-safety value of the original database.

NOTE: The result of this function yields the same SQL script as EXPORT_CATALOG with a

DESIGN scope.

VMart=> select export_objects('/home/dbadmin/xtest/sql_objects_all.sql','',

'true');

 export_objects

 Catalog data exported successfully

(1 row)

The SQL script includes the following types of statements:

 CREATE SCHEMA

 CREATE TABLE

 CREATE VIEW

 CREATE SEQUENCE

 CREATE PROJECTION (with ORDER BY and SEGMENTED BY)

 ALTER TABLE (to add constraints)

 PARTITION BY

Here is a snippet from the start of the output SQL file, and the end, showing the KSAFE statement:

CREATE SCHEMA store;

-404-

Administrator's Guide

CREATE SCHEMA online_sales;

CREATE SEQUENCE public.my_seq ;

CREATE TABLE public.customer_dimension

(

 customer_key int NOT NULL,

 customer_type varchar(16),

 customer_name varchar(256),

 customer_gender varchar(8),

 title varchar(8),

 household_id int,

.

.

.

);

.

.

.

SELECT MARK_DESIGN_KSAFE(0);

Exporting a List of Objects

Use a comma-separated list of objects as the function scope. The list can include one or more
tables, sequences, and views in the same, or different schemas, depending on how you qualify the
object name. For instance, specify a table from one schema, and a view from another
(schema2.view1).

The SQL script includes the following types of statements, depending on what objects you include in the list:

 CREATE SCHEMA

 CREATE TABLE

 ALTER TABLE (to add constraints)

 CREATE VIEW

 CREATE SEQUENCE

If you specify a view without its dependencies, the function displays a WARNING. The SQL script
includes a CREATE statement for the dependent object, but will be unable to create it without the
necessary relations:

VMart=> select export_objects('nameObjectsList', 'test2, tt, my_seq, v2');

WARNING 0: View public.v2 depends on other relations

 export_objects

 Catalog data exported successfully

(1 row)

This example includes the KSAFE argument explicitly:

VMart=> select

export_objects('/home/dbadmin/xtest/sql_objects_table_view_KSAFE.sql','v1,

test7', 'true');

 export_objects

-405-

 Copying and Exporting Data

 Catalog data exported successfully

(1 row)

Here are the contents of the output file of the example, showing the sample table test7 and the v1 view:

CREATE TABLE public.test7

(

 a int,

 c int NOT NULL DEFAULT 4,

 bb int

);

CREATE VIEW public.v1 AS

 SELECT tt.a

 FROM public.tt;

SELECT MARK_DESIGN_KSAFE(0);

Exporting a Single Object

Specify a single database object as the function scope. The object can be a schema, table,
sequence, or view. The function exports all non-virtual objects associated with the one you
specify.

VMart=> select

export_objects('/home/dbadmin/xtest/sql_objects_viewobject_KSAFE.sql','v1',

'KSAFE');

 export_objects

 Catalog data exported successfully

(1 row)

The output file contains the v1 view:

CREATE VIEW public.v1 AS

 SELECT tt.a

 FROM public.tt;

SELECT MARK_DESIGN_KSAFE(0);

-406-

Bulk Deleting and Purging Data

HP Vertica provides multiple techniques to remove data from the database in bulk.

Command Description

DROP TABLE Permanently removes a table and its definition. Optionally removes associated
views and projections as well.

DELETE FROM
TABLE

Marks rows with delete vectors and stores them so data can be rolled back to a
previous epoch. The data must eventually be purged before the database can
reclaim disk space. See Purging Deleted Data (page 410).

TRUNCATE TABLE Removes all storage and history associated with a table. The table structure is
preserved for future use. The results of this command cannot be rolled back.

DROP_PARTITION Removes one partition from a partitioned table. Each partition contains a related

subset of data in the table. Partitioned data can be dropped efficiently, and
provides query performance benefits. See Partitioning Tables (page 325).

The following table provides a quick reference for the different delete operations you can use. The
"Saves History" column indicates whether data can be rolled back to an earlier epoch and queried
at a later time.

Syntax Performance Commits Tx Saves History

DELETE FROM base_table Normal No Yes

DELETE FROM temp_table High No No

DELETE FROM base_table WHERE Normal No Yes

DELETE FROM temp_table WHERE Normal No Yes

DELETE FROM temp_table WHERE

 temp_table ON COMMIT PRESERVE

 ROWS

Normal No Yes

DELETE FROM temp_table WHERE

 temp_table ON COMMIT DELETE

 ROWS

High Yes No

DROP base_table High Yes No

TRUNCATE base_table High Yes No

TRUNCATE temp_table High Yes No

DROP PARTITION High Yes No

Choosing the right technique for deleting data

 To delete both table data and definitions and start from scratch, use the DROP TABLE
[CASCADE] command.

-407-

 Bulk Deleting and Purging Data

 To drop data, while preserving table definitions so that you can quickly and easily reload data,
use TRUNCATE TABLE. Note that unlike DELETE, TRUNCATE does not have to mark each
row with delete vectors, so it runs much more quickly.

 To perform bulk delete operations on a regular basis, HP Vertica recommends using
Partitioning.

 To perform occasional small deletes or updates with the option to roll back or review history,
use DELETE FROM TABLE. See Best Practices for DELETE and UPDATE (page 407).

For details on syntax and usage, see DELETE, DROP TABLE, TRUNCATE TABLE, CREATE
TABLE and DROP_PARTITION in the SQL Reference Manual.

Best Practices for DELETE and UPDATE
HP Vertica is optimized for query-intensive workloads, so DELETE and UPDATE queries might not

achieve the same level of performance as other queries. DELETE and UPDATE operations go to
the WOS by default, but if the data is sufficiently large and would not fit in memory, HP Vertica
automatically switches to using the ROS. See Using INSERT, UPDATE, and DELETE (page
390).

The topics that follow discuss best practices when using DELETE and UPDATE operations in HP
Vertica.

Performance Considerations for DELETE and UPDATE Queries

To improve the performance of your DELETE and UPDATE queries, consider the following issues:

 Query performance after large deletes—A large number of (unpurged) deleted rows can

negatively affect query performance.

To eliminate rows that have been deleted from the result, a query must do extra processing. If
10% or more of the total rows in a table have been deleted, the performance of a query on the
table degrades. However, your experience may vary depending on the size of the table, the
table definition, and the query. If a table has a large number of deleted rows, consider purging
those rows to improve performance. For more information on purging, see Purging Deleted
Data (page 410).

 Recovery performance—Recovery is the action required for a cluster to restore K-safety

after a crash. Large numbers of deleted records can degrade the performance of a recovery.
To improve recovery performance, purge the deleted rows. For more information on purging,
see Purging Deleted Data (page 410).

 Concurrency—DELETE and UPDATE take exclusive locks on the table. Only one DELETE or

UPDATE transaction on a table can be in progress at a time and only when no loads (or
INSERTs) are in progress. DELETEs and UPDATEs on different tables can be run concurrently.

 Pre-join projections—Avoid pre-joining dimension tables that are frequently updated.

DELETE and UPDATE operations on pre-join projections cascade to the fact table, causing
large DELETE or UPDATE operations.

-408-

Administrator's Guide

For detailed tips about improving DELETE and UPDATE performance, see Optimizing Deletes

and Updates for Performance (page 408).

Caution: HP Vertica does not remove deleted data immediately but keeps it as history for the
purposes of historical query. A large amount of history can result in slower query performance. For
information about how to configure the appropriate amount of history to retain, see Purging
Deleted Data (page 410).

Optimizing DELETEs and UPDATEs for Performance

The process of optimizing DELETE and UPDATE queries is the same for both operations. Some
simple steps can increase the query performance by tens to hundreds of times. The following

sections describe several ways to improve projection design and improve DELETE and UPDATE
queries to significantly increase DELETE and UPDATE performance.

Note: For large bulk deletion, HP Vertica recommends using Partitioned Tables (page 325)

where possible because they provide the best DELETE performance and improve query
performance.

Projection Column Requirements for Optimized Deletes

When all columns required by the DELETE or UPDATE predicate are present in a projection, the

projection is optimized for DELETEs and UPDATEs. DELETE and UPDATE operations on such
projections are significantly faster than on non-optimized projections. Both simple and pre-join
projections can be optimized.

For example, consider the following table and projections:

CREATE TABLE t (a INTEGER, b INTEGER, c INTEGER);

CREATE PROJECTION p1 (a, b, c) AS SELECT * FROM t ORDER BY a;

CREATE PROJECTION p2 (a, c) AS SELECT a, c FROM t ORDER BY c, a;

In the following query, both p1 and p2 are eligible for DELETE and UPDATE optimization because
column a is available:

DELETE from t WHERE a = 1;

In the following example, only projection p1 is eligible for DELETE and UPDATE optimization

because the b column is not available in p2:

DELETE from t WHERE b = 1;

Optimized Deletes in Subqueries

To be eligible for DELETE optimization, all target table columns referenced in a DELETE or UPDATE

statement's WHERE clause must be in the projection definition.

For example, the following simple schema has two tables and three projections:

CREATE TABLE tb1 (a INT, b INT, c INT, d INT);

CREATE TABLE tb2 (g INT, h INT, i INT, j INT);

The first projection references all columns in tb1 and sorts on column a:

-409-

 Bulk Deleting and Purging Data

CREATE PROJECTION tb1_p AS SELECT a, b, c, d FROM tb1 ORDER BY a;

The buddy projection references and sorts on column a in tb1:

CREATE PROJECTION tb1_p_2 AS SELECT a FROM tb1 ORDER BY a;

This projection references all columns in tb2 and sorts on column i:

CREATE PROJECTION tb2_p AS SELECT g, h, i, j FROM tb2 ORDER BY i;

Consider the following DML statement, which references tb1.a in its WHERE clause. Since both
projections on tb1 contain column a, both are eligible for the optimized DELETE:

DELETE FROM tb1 WHERE tb1.a IN (SELECT tb2.i FROM tb2);

Restrictions

Optimized DELETEs are not supported under the following conditions:

 With pre-join projections on nodes that are down

 With replicated and pre-join projections if subqueries reference the target table. For example,
the following syntax is not supported:

DELETE FROM tb1 WHERE tb1.a IN (SELECT e FROM tb2, tb2 WHERE tb2.e =

tb1.e);

 With subqueries that do not return multiple rows. For example, the following syntax is not
supported:

DELETE FROM tb1 WHERE tb1.a = (SELECT k from tb2);

Projection Sort Order for Optimizing Deletes

Design your projections so that frequently-used DELETE or UPDATE predicate columns appear in

the sort order of all projections for large DELETEs and UPDATEs.

For example, suppose most of the DELETE queries you perform on a projection look like the
following:

DELETE from t where time_key < '1-1-2007'

To optimize the DELETEs, make time_key appear in the ORDER BY clause of all your projections.
This schema design results in better performance of the DELETE operation.

In addition, add additional sort columns to the sort order such that each combination of the sort key
values uniquely identifies a row or a small set of rows. For more information, see Choosing Sort
Orders for Low Cardinality Predicates (page 98). To analyze projections for sort order issues,
use the EVALUATE_DELETE_PERFORMANCE function.

-410-

Administrator's Guide

Purging Deleted Data

In HP Vertica, delete operations do not remove rows from physical storage. Unlike most
databases, the DELETE command in HP Vertica marks rows as deleted so that they remain
available to historical queries. These deleted rows are called historical data. Retention of historical
data also applies to the UPDATE command, which is actually a combined DELETE and INSERT
operation.

The cost of retaining deleted data in physical storage can be measured in terms of:

 Disk space for the deleted rows and delete markers

 A performance penalty for reading and skipping over deleted data

A purge operation permanently removes deleted data from physical storage so that the disk space
can be reused. HP Vertica gives you the ability to control how much deleted data is retained in the
physical storage used by your database by performing a purge operation using one of the
following techniques:

 Setting a Purge Policy (page 410)

 Manually purging data (page 412)

Both methods set the Ancient History Mark (AHM), which is an epoch that represents the time until
which history is retained. History older than the AHM are eligible for purge.

Note: Large delete and purge operations in HP Vertica could take a long time to complete, so
use them sparingly. If your application requires deleting data on a regular basis, such as by
month or year, HP recommends that you design tables that take advantage of table
partitioning (page 325). If partitioning tables is not suitable, consider the procedure described
in Rebuilding a Table (page 459). The ALTER TABLE..RENAME command lets you build a
new table from the old table, drop the old table, and rename the new table in its place.

Setting a Purge Policy

The preferred method for purging data is to establish a policy that determines which deleted data
is eligible to be purged. Eligible data is automatically purged when the Tuple Mover performs
mergeout operations.

HP Vertica provides two methods for determining when deleted data is eligible to be purged:

 Specifying the time for which delete data is saved

 Specifying the number of epochs that are saved

Specifying the time for which delete data is saved

Specifying the time for which delete data is saved is the preferred method for determining which
deleted data can be purged. By default, HP Vertica saves historical data only when nodes are
down.

-411-

 Bulk Deleting and Purging Data

To change the the specified time for saving deleted data, use the HistoryRetentionTime
configuration parameter (page 39):

=> SELECT SET_CONFIG_PARAMETER('HistoryRetentionTime', '{ <seconds> | -1 }');

In the above syntax:

 seconds is the amount of time (in seconds) for which to save deleted data.

 -1 indicates that you do not want to use the HistoryRetentionTime configuration

parameter to determine which deleted data is eligible to be purged. Use this setting if you
prefer to use the other method (HistoryRetentionEpochs) for determining which deleted

data can be purged.

The following example sets the history epoch retention level to 240 seconds:

=> SELECT SET_CONFIG_PARAMETER('HistoryRetentionTime', '240');

Specifying the number of epochs that are saved

Unless you have a reason to limit the number of epochs, HP recommends that you specify the
time over which delete data is saved.

To specify the number of historical epoch to save through the HistoryRetentionEpochs
configuration parameter:

1 Turn off the HistoryRetentionTime configuration parameter:

=> SELECT SET_CONFIG_PARAMETER('HistoryRetentionTime', '-1');

2 Set the history epoch retention level through the HistoryRetentionEpochs configuration

parameter:

=> SELECT SET_CONFIG_PARAMETER('HistoryRetentionEpochs',

'{<num_epochs>|-1}');

 num_epochs is the number of historical epochs to save.

 -1 indicates that you do not want to use the HistoryRetentionEpochs configuration
parameter to trim historical epochs from the epoch map. By default,

HistoryRetentionEpochs is set to -1.

The following example sets the number of historical epochs to save to 40:

=> SELECT SET_CONFIG_PARAMETER('HistoryRetentionEpochs', '40');

Modifications are immediately implemented across all nodes within the database cluster. You do
not need to restart the database.

Note: If both HistoryRetentionTime and HistoryRetentionEpochs are specified,

HistoryRetentionTime takes precedence.

See Epoch Management Parameters (page 39) for additional details.

Disabling Purge

If you want to preserve all historical data, set the value of both historical epoch retention
parameters to -1, as follows:

=> SELECT SET_CONFIG_PARAMETER('HistoryRetentionTime', '-1');

-412-

Administrator's Guide

=> SELECT SET_CONFIG_PARAMETER('HistoryRetentionEpochs', '-1');

Manually Purging Data

Manually purging deleted data consists of the following series of steps:

1 Determine the point in time to which you want to purge deleted data.

2 Set the Ancient History Mark (AHM) to this point in time using one of the following SQL

functions (described in the SQL Reference Manual):

 SET_AHM_TIME() sets the AHM to the epoch that includes the specified TIMESTAMP
value on the initiator node.

 SET_AHM_EPOCH() sets the AHM to the specified epoch.

 GET_AHM_TIME() returns a TIMESTAMP value representing the AHM.

 GET_AHM_EPOCH() returns the number of the epoch in which the AHM is located.

 MAKE_AHM_NOW() sets the AHM to the greatest allowable value (now), and lets you drop
pre-existing projections. This purges all deleted data.

When you use SET_AHM_TIME or GET_AHM_TIME, keep in mind that the timestamp you
specify is mapped to an epoch, which has (by default) a three-minute granularity. Thus, if you
specify an AHM time of '2008-01-01 00:00:00.00' the resulting purge could permanently
remove as much as the first three minutes of 2008, or could fail to remove the last three
minutes of 2007.

Note: The system prevents you from setting the AHM beyond the point at which it would

prevent recovery in the event of a node failure.

3 Manually initiate a purge using one of the following SQL functions (described in the SQL

Reference Manual):

 PURGE_PROJECTION() purges a specified projection.

 PURGE_TABLE() purges all projections on the specified table.

 PURGE() purges all projections in the physical schema.

The Tuple Mover performs a mergeout operation to purge the data.

Manual purge operations can take a long time.

-413-

Managing the Database

-414-

 414

Load Balancing

In HP Vertica, load balancing supports multiple client connections through a single Virtual IP (VIP)
address that is shared among all nodes in a cluster. This is useful for balancing incoming client
requests across nodes, as well as preventing node exclusion from clients in the case of node
failure.

The IP Virtual Server (IPVS) running on a database node provides load balancing for an HP
Vertica database cluster.

IPVS balances the connection streams, and is made up of the following components:

 The Virtual IP (VIP): The IP address that is accessed by all client connections.

 Real server IPs (RIP): The IP addresses of client network interfaces used for connecting
database clients to the database engine.

 Cluster: A cluster of real HP Vertica servers (nodes).

 Virtual server: The single point of entry that provides access to a cluster, based on dynamic
node selection.

The IPVS load balancer is two node stand-by redundancy only. The IPVS redundancy model is
different from HP Vertica database failover safety. See Failure Recovery (page 566) for
information about HP Vertica redundancy.

How load balancing handles client connections

Client connections through a Virtual IP (VIP) are managed by a primary (master) director node,
which is one of the real server nodes (RIP). The master director routes requests by determining
which node in the database cluster has the fewest connections and sends client connections to
that node. If the director node fails for any reason, a failover (slave) director takes over request
routing until the master director comes back online.

For example, if a user connects to node03 in a three-node cluster and node03 fails, the current
transaction rolls back, the client connection fails, and a connection must be reestablished on
another node.

-415-

 Managing the Database

The following graphic illustrates a three-node database cluster where all nodes share a single VIP.
The cluster contains a master director (node01), a slave director (node02), and an additional host
(node03) that together provide the minimum configuration for high availability (K-safety). In this
setup (and in the configuration and examples that follow in this section), node01 and node02 play
dual roles as IPVS directors and HP Vertica nodes.

Subsequent topics in this section describe how to set up two directors (master and slave), but you
can set up more than two directors. See the Keepalived User Guide
http://www.keepalived.org/pdf/UserGuide.pdf for details. See also the Linux Virtual Server
Web site http://www.linux-vs.org/.

Notes

 Load balancing on a VIP is supported for Linux Red Hat Enterprise Linux 5 and 6, 64-bit.

 HP Vertica must be installed on each node in the cluster.

 You can create the database on any node, but only one database can be running on an HP
Vertica cluster at a time.

 Although a 0 K-safety (two-node) design is supported, HP strongly recommends that you
create the load-balancing network using a minimum three-node cluster with K-safety set to 1.
This way if one node fails, the database stays up. See Designing for K-Safety (page 91) for
details.

 When K-safety is set to 1, locate the IPVS master and slave on HP Vertica database nodes
that comprise a buddy projections pair. This is the best way to ensure high-availability
load-balancing. See High Availability Through Projections for details on buddy projections.

 If the node that is the IPVS master fails completely, the slave IPVS takes over load balancing.
However, if the master only partially fails (for example, it loses some of its processes but the
node is still up), you might have to modify IP addresses to direct network traffic to the slave
node. Alternatively, you can try to restart the processes on the master.

Configuring HP Vertica Nodes
This section describes how to configure an HP Vertica cluster of nodes for load balancing. You'll
set up two directors in a master/slave configuration and include a third node for K-safety.

http://www.keepalived.org/pdf/UserGuide.pdf
http://www.linux-vs.org/

-416-

Administrator's Guide

An HP Vertica cluster designed for load balancing uses the following configuration:

 Real IP (RIP) address is the public interface and includes:

 The master director/node, which handles the routing of requests. The master is co-located
with one of the database cluster nodes

 The slave director/node, which communicates with the master and takes over routing
requests in the event of a master node failure. The slave is collocated with another
database cluster node

 n nodes database cluster, such as at least one failover node to provide the minimum
configuration for high availability (K-safety).

 Virtual IP (VIP) address (generally assigned to eth0 in Linux) is the public network interface
over which database clients connect. The VIP must be public so that clients outside the cluster
can contact it.

After you have set up an HP Vertica cluster and created a database, you can choose the nodes
that will be directors. To achieve the best high-availability, load balancing result when K-safety is
set to 1, ensure that the IPVS master node and the slave node are located on HP Vertica database
nodes with a buddy projections pair. (See High Availability Through Projections for information
on buddy projections.)

The instructions in this section use the following node configuration:

Pre-configured IP Node assignment Public IPs Private IPs

VIP shared among all
nodes

10.10.51.180

RIP master director node01 10.10.51.55 192.168.51.1

RIP slave director node02 10.10.51.56 192.168.51.2

RIP failover node node03 10.10.51.57 192.168.51.3

In the above table:

 The private IPs determine which node to send a request to. Private IPs are not the same as the
real IPs (RIPs).

 The VIP must be on the same subnet as the nodes in the HP Vertica cluster.

 Both the master and slave nodes (node01 and node02) require additional installation and
configuration. See Configuring the Directors (page 419) for details.

Tip: Use the command cat /etc/hosts to display a list of all hosts in your database cluster.

Other resources

The following external web sites might be useful. The links worked at the last date of publication,
but be aware that HP Vertica does not manage this content, and it could change:

 Linux Virtual Server Web site http://www.linux-vs.org/

 LVS-HOWTO Page http://www.austintek.com/LVS/LVS-HOWTO/HOWTO/

 Keepalived.conf(5) man page http://linux.die.net/man/5/keepalived.conf

http://www.linux-vs.org/
http://www.austintek.com/LVS/LVS-HOWTO/HOWTO/
http://linux.die.net/man/5/keepalived.conf

-417-

 Managing the Database

 ipvsadm man page
http://at.gnucash.org/.vhost/linuxcommand.org/man_pages/ipvsadm8.html

Set Up the Loopback Interface

This procedure sets up the loopback (lo) interface with an alias on each node.

1 Log in as root on the master director (node01):

$ su - root

2 Use the text editor of your choice to open ifcfg-lo:

[root@node01]# vi /etc/sysconfig/network-scripts/ifcfg-lo

3 Set up the loopback adapter with an alias for the VIP by adding the following block to the end of
the file:

vip device

DEVICE=lo:0

IPADDR=10.10.51.180

NETMASK=255.255.255.255

ONBOOT=yes

NAME=loopback

Note: When you add the above block to your file, be careful not to overwrite the 127.0.0.1

parameter, which is required for proper system operations.

4 Save the ifcfg-lo file.

5 Start the device:

[root@node01]# ifup lo:0

6 Repeat steps 1-4 on each node in the HP Vertica cluster.

Disable Address Resolution Protocol (ARP)

This procedure disables ARP (Address Resolution Protocol) for the VIP.

1 On the master director (node01), log in as root:

$ su - root

2 Use the text editor of your choice to open the sysctl configuration file:

[root@node01]# vi /etc/sysctl.conf

3 Add the following block to the end of the file:

#LVS

net.ipv4.conf.eth0.arp_ignore =1

net.ipv4.conf.eth0.arp_announce = 2

Enables packet forwarding

net.ipv4.ip_forward =1

http://at.gnucash.org/.vhost/linuxcommand.org/man_pages/ipvsadm8.html

-418-

Administrator's Guide

Note: For additional details, refer to the LVS-HOWTO Page

http://www.austintek.com/LVS/LVS-HOWTO/HOWTO/. You might also refer to the Linux
Virtual Server Wiki page
http://kb.linuxvirtualserver.org/wiki/Using_arp_announce/arp_ignore_to_disable_ARP

for information on using arp_announce/arp_ignore to disable the Address Resolution
Protocol.

4 Save the /etc/sysctl.conf file.

5 Use ifconfig to verify that the interface is on the same subnet as the VIP:

[root@node01]# /sbin/ifconfig

In the following output, the eth0 inet addr is the VIP, and subnet 51 matches the private RIP
under the eth1 heading:

eth0 Link encap:Ethernet HWaddr 84:2B:2B:55:4B:BE
 inet addr:10.10.51.55 Bcast:10.10.51.255

Mask:255.255.255.0

 inet6 addr: fe80::862b:2bff:fe55:4bbe/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:91694543 errors:0 dropped:0 overruns:0 frame:0

 TX packets:373212 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:49294294011 (45.9 GiB) TX bytes:66149943 (63.0 MiB)

 Interrupt:15 Memory:da000000-da012800

eth1 Link encap:Ethernet HWaddr 84:2B:2B:55:4B:BF

 inet addr:192.168.51.55 Bcast:192.168.51.255

Mask:255.255.255.0

 inet6 addr: fe80::862b:2bff:fe55:4bbf/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:937079543 errors:0 dropped:2780 overruns:0 frame:0

 TX packets:477401433 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:449050544237 (418.2 GiB) TX bytes:46302821625 (43.1

GiB)

 Interrupt:14 Memory:dc000000-dc012800

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:6604 errors:0 dropped:0 overruns:0 frame:0

 TX packets:6604 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:21956498 (20.9 MiB) TX bytes:21956498 (20.9 MiB)

lo:0 Link encap:Local Loopback

 inet addr:10.10.51.180 Mask:255.255.255.255

 UP LOOPBACK RUNNING MTU:16436 Metric:1

6 Use ifconfig to verify that the loopback interface is up:

http://www.austintek.com/LVS/LVS-HOWTO/HOWTO/
http://kb.linuxvirtualserver.org/wiki/Using_arp_announce/arp_ignore_to_disable_ARP

-419-

 Managing the Database

[root@node01]# /sbin/ifconfig lo:0

You should see output similar to the following:

lo:0 Link encap:Local Loopback

 inet addr:10.10.51.180 Mask:255.255.255.255

 UP LOOPBACK RUNNING MTU:16436 Metric:1

If you do not see UP LOOPBACK RUNNING, bring up the loopback interface:

[root@node01]# /sbin/ifup lo

7 Commit changes to the kernel from the configuration file by running the following command:

[root@node01]# /sbin/sysctl -p

8 Repeat steps 1-6 on all nodes in the HP Vertica cluster.

Configuring the Directors

Now you are ready to install the HP Vertica IPVS Load Balancer package and configure the
master (node01) and slave (node02) directors.

Install the HP Vertica IPVS Load Balancer Package

Before you install the IPVS Load Balancer, make sure you have already downloaded and installed
the HP Vertica Analytics Database package for your version of Red Hat Enterprise Linux (5.x or
6.x).

The following instructions describe how to download and install the HP Vertica IPVS Load
Balancer package for Red Hat Enterprise Linux 5 and Red Hat Enterprise Linux 6. For illustrative
purposes, the procedures use node01 for the master director and node02 for the slave director.

Install the HP Vertica IPVS Load Balancer on Red Hat 5.x:

1 On the master director (node01) log in as root:

$ su - root

2 Download the IPVS Load Balancer package for Red Hat Enterprise Linux 5 from the

my.vertica.com website to a location on the master server, such as to /tmp.

3 Change directory to the location of the downloaded file:

cd /tmp

4 Install (or upgrade) the Load Balancer package using the rpm -Uvh command:

rpm -Uvh vertica-ipvs-load-balancer-<current-version>.x86_64.RHEL5.rpm

5 Repeat steps 1-4 on the slave director (node02).

Install the HP Vertica IPVS Load Balancer Package on Red Hat 6.x:

1 On the master director (node01) log in as root:

$ su - root

2 Download the IPVS Load Balancer package for Red Hat Enterprise Linux 6 from the
my.vertica.com website to a location on the master server, such as to /tmp.

3 Change directory to the location of the downloaded file:

-420-

Administrator's Guide

cd /tmp

4 Run the following command as root:

/sbin/modprobe ip_vs

5 Verify that ip_vs is loaded correctly using this command:

lsmod | grep ip_vs

Install (or upgrade) the Load Balancer package using the rpm -Uvh command:

rpm -Uvh vertica-ipvs-load-balancer-<current-version>.x86_64.RHEL6.rpm

6 Repeat steps 1-6 on the slave director (node02).

Configure the HP Vertica IPVS Load Balancer

The HP Vertica IPVS Load Balancer package contains a script called
configure-keepalived.pl. The script is located in /sbin, and if you run it with no
arguments, it prints a usage summary:

--ripips | Comma separated list of HP Vertica nodes; public IPs (e.g., 10.10.50.116, etc.)

--priv_ips | Comma separated list of HP Vertica nodes; private IPs (e.g., 192.168.51.116, etc.)

--ripport | Port on which HP Vertica runs. Default is 5433

--iface | Public ethernet interface HP Vertica is configured to use (e.g., eth0)

--emailto | Address that should get alerts (e.g., user@server.com)

--emailfrom | Address that mail should come from (e.g., user@server.com)

--mailserver | E-mail server IP or hostname (e.g., mail.server.com)

--master | If this director is the master (default), specify --master

--slave | If this director is the slave, specify --slave

--authpass | Password for keepalived

--vip | Virtual IP address (e.g., 10.10.51.180)

--delayloop | Seconds keepalived waits between healthchecks. Default is 2

--algo | Sets the algorithm to use: rr, wrr, lc (default), wlc, lblc, lblcr, dh, sh, sed, nq

--kind | Sets the routing method to use. Default is DR.

--priority | By default, master has priority of 100 and the backup (slave) has priority of 50

For details about each of the parameters in configure-keepalived.pl, refer to the
ipvsadm(8) - Linux man page
http://at.gnucash.org/.vhost/linuxcommand.org/man_pages/ipvsadm8.html.

About public and private IPs

If your cluster uses private interfaces for spread cluster communication, you must use the
--priv_ips switch to enter the private IP addresses that correspond to the public IP addresses
(or RIPs). The IPVS keepalive daemon uses these private IPs to determine when a node has left
the cluster.

The IP host ID of the RIPs must correspond to the IP host ID of the private interfaces. For
example, given the following IP address mappings:

Public Private (for spread)

10.10.50.116 192.168.51.116

10.10.50.117 192.168.51.117

10.10.50.118 192.168.51.118

you need to enter the IP addresses in the following order:

--ripips 10.10.50.116,10.10.50.117,10.10.50.118

--priv_ips 192.168.51.116,192.168.51.117,192.168.51.118

http://at.gnucash.org/.vhost/linuxcommand.org/man_pages/ipvsadm8.html

-421-

 Managing the Database

You must use IP addresses, not node names, or the spread.pl script could fail.

If you do not specify private interfaces, HP Vertica uses the public RIPs for the MISC check, as
shown in step 3 below.

Set up the HP Vertica IPVS Load Balancer configuration f ile

1 On the master director (node01) log in as root:

$ su - root

2 Run the HP-supplied configuration script with the appropriate switches; for example:

/sbin/configure-keepalived.pl --ripips

10.10.50.116,10.10.50.117,10.10.50.118

--priv_ips 192.168.51.116,192.168.51.117,192.168.51.118 --ripport 5433

--iface eth0 --emailto dbadmin@companyname.com

--emailfrom dbadmin@companyname.com --mailserver mail.server.com

--master --authpass password --vip 10.10.51.180 --delayloop 2

--algo lc --kind DR --priority 100

CAUTION: The --authpass (password) switch must be the same on both the master and
slave directors.

3 Check the keepalived.conf file to verify private and public IP settings for the --ripips

and --priv_ips switches and make sure the real_server IP address is public.

cat /etc/keepalived/keepalived.conf

An entry in the keepalived.conf file should resemble the following:

 real_server 10.10.50.116 5433 {

 MISC_CHECK {

 misc_path "/etc/keepalived/check.pl 192.168.51.116"

 }

 }

4 Start spread:

/etc/init.d/spread.pl start

The spread.pl script writes to the check.txt file, which is rewritten to include only the
remaining nodes in the event of a node failure. Thus, the virtual server knows to stop sending
vsql requests to the failed node.

5 Start keepalived on node01:

/etc/init.d/keepalived start

6 If not already started, start sendmail to allow the directors to send mail messages:

/etc/init.d/sendmail start

7 Repeat steps 1-6 on the slave director (node02), using the same switches, except

(IMPORTANT) replace the --master switch with the --slave switch.

Tip: Use a lower priority for the slave --priority switch. HP currently suggests 50.

/sbin/configure-keepalived.pl --ripips

10.10.50.116,10.10.50.117,10.10.50.118

--priv_ips 192.168.51.116,192.168.51.117,192.168.51.118 --ripport 5433

--iface eth0 --emailto dbadmin@companyname.com

-422-

Administrator's Guide

--emailfrom dbadmin@companyname.com --mailserver mail.server.com

--slave --authpass password --vip 10.10.51.180 --delayloop 2

--algo lc --kind DR --priority 100

See Also

Keepalived.conf(5) -Linux man page http://linux.die.net/man/5/keepalived.conf

Connecting to the Virtual IP (VIP)

To connect to the Virtual IP address using a client like vsql, run a command similar to the following.

$ /opt/vertica/bin/vsql -h 10.10.51.180 -U dbadmin

In the above example, the IP address, which could also be a DNS address, is the Virtual IP (VIP)
address that is shared among all nodes in the HP Vertica cluster.

How to verify connection distribution

To verify connection distribution over multiple nodes, repeat the following statement several times
and observe connection distribution in an lc (least amount of connections) fashion; for example:

$ vsql -h 10.10.51.180 -c "SELECT node_name FROM sessions"

 node_name

 v_ipvs_node01

 v_ipvs_node02

 v_ipvs_node03

(3 rows)

In the above statement, IP address 10.10.51.180 is the virtual server (VIP).

Monitoring Shared Node Connections

If you want to monitor which nodes are sharing connections, view the check.txt file by issuing
the following command at a shell prompt:

watch cat /etc/keepalived/check.txt

Every 2.0s: cat /etc/keepalived/check.txt Wed Nov 3 10:02:20 2012

N192168051057

N192168051056

N192168051055

The check.txt file is located in the /etc/keepalived/ directory, and it gets updated when

you submit changes to the kernel using sysctl -p, described in Disable the Address

Resolution Protocol (ARP) (page 417). For example, the spread.pl script (see Configuring

the Directors (page 419)), writes to the check.txt file, which is then modified to include only
the remaining nodes in the event of a node failure. In this scenario, the virtual server stops sending
client requests to any failed nodes.

http://linux.die.net/man/5/keepalived.conf

-423-

 Managing the Database

You can also look for messages by issuing the following command at a shell prompt:

tail -f /var/log/messages
Nov 3 09:21:00 p6 Keepalived: Starting Keepalived v1.1.17 (11/03,2012)

Nov 3 09:21:00 p6 Keepalived: Starting Healthcheck child process, pid=32468

Nov 3 09:21:00 p6 Keepalived: Starting VRRP child process, pid=32469

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Using LinkWatch kernel netlink reflector...

Nov 3 09:21:00 p6 Keepalived_vrrp: Using LinkWatch kernel netlink reflector...

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Netlink reflector reports IP 10.10.51.55 added

Nov 3 09:21:00 p6 Keepalived_vrrp: Netlink reflector reports IP 10.10.51.55 added

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Netlink reflector reports IP 192.168.51.55 added

Nov 3 09:21:00 p6 Keepalived_vrrp: Netlink reflector reports IP 192.168.51.55 added

Nov 3 09:21:00 p6 Keepalived_vrrp: Registering Kernel netlink reflector

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Registering Kernel netlink reflector

Nov 3 09:21:00 p6 Keepalived_vrrp: Registering Kernel netlink command channel

Nov 3 09:21:00 p6 Keepalived_vrrp: Registering gratuitous ARP shared channel

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Registering Kernel netlink command channel

Nov 3 09:21:00 p6 Keepalived_vrrp: Opening file '/etc/keepalived/keepalived.conf'.

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Opening file '/etc/keepalived/keepalived.conf'.

Nov 3 09:21:00 p6 Keepalived_vrrp: Configuration is using : 63730 Bytes

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Configuration is using : 16211 Bytes

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Activating healthcheckers for service

[10.10.51.55:5433]

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Activating healthcheckers for service

[10.10.51.56:5433]

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Activating healthcheckers for service

[10.10.51.57:5433]

Nov 3 09:21:00 p6 Keepalived_vrrp: VRRP sockpool: [ifindex(2), proto(112), fd(10,11)]

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Misc check to [10.10.51.56] for

[/etc/keepalived/check.pl 192.168.51.56] failed.

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Removing service [10.10.51.56:5433] from VS

[10.10.51.180:5433]

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Remote SMTP server [127.0.0.1:25] connected.

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Misc check to [10.10.51.55] for

[/etc/keepalived/check.pl 192.168.51.55] failed.

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Removing service [10.10.51.55:5433] from VS

[10.10.51.180:5433]

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Remote SMTP server [127.0.0.1:25] connected.

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Misc check to [10.10.51.57] for

[/etc/keepalived/check.pl 192.168.51.57] failed.

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Removing service [10.10.51.57:5433] from VS

[10.10.51.180:5433]

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Remote SMTP server [127.0.0.1:25] connected.

Nov 3 09:21:01 p6 Keepalived_healthcheckers: SMTP alert successfully sent.

Nov 3 09:21:10 p6 Keepalived_vrrp: VRRP_Instance(VI_1) Transition to MASTER STATE

Nov 3 09:21:20 p6 Keepalived_vrrp: VRRP_Instance(VI_1) Entering MASTER STATE

Nov 3 09:21:20 p6 Keepalived_vrrp: VRRP_Instance(VI_1) setting protocol VIPs.

Nov 3 09:21:20 p6 Keepalived_vrrp: VRRP_Instance(VI_1) Sending gratuitous ARPs on eth0 for

10.10.51.180

Nov 3 09:21:20 p6 Keepalived_healthcheckers: Netlink reflector reports IP 10.10.51.180 added

Nov 3 09:21:20 p6 Keepalived_vrrp: Remote SMTP server [127.0.0.1:25] connected.

Nov 3 09:21:20 p6 Keepalived_vrrp: Netlink reflector reports IP 10.10.51.180 added

Nov 3 09:21:20 p6 Keepalived_vrrp: SMTP alert successfully sent.

Nov 3 09:21:25 p6 Keepalived_vrrp: VRRP_Instance(VI_1) Sending gratuitous ARPs on eth0 for 10.10.51.1

Determining Where Connections Are Going

Ipvsadm is the user code interface to the IP Virtual Server that lets you set up set up, maintain, and
inspect the virtual server table in the Linux kernel. Ipvsadm is useful for identifying where user
connections are going.

-424-

Administrator's Guide

How to install ipvsadm

1 Log in to the master director (node01) as root:

$ su - root

2 Install ipvsadm:

[root@node01]# yum install ipvsadm

Loading "installonlyn" plugin

Setting up Install Process

Setting up repositories

Reading repository metadata in from local files

Parsing package install arguments

Resolving Dependencies

--> Populating transaction set with selected packages. Please wait.

---> Downloading header for ipvsadm to pack into transaction set.

ipvsadm-1.24-10.x86_64.rp 100% |=========================| 6.6 kB

00:00

---> Package ipvsadm.x86_64 0:1.24-10 set to be updated

--> Running transaction check

Dependencies Resolved

==

=========

 Package Arch Version Repository

Size

==

=========

Installing:

 ipvsadm x86_64 1.24-10 base

32 k

Transaction Summary

==

=========

Install 1 Package(s)

Update 0 Package(s)

Remove 0 Package(s)

Total download size: 32 k

Is this ok [y/N]: y

Downloading Packages:

(1/1): ipvsadm-1.24-10.x8 100% |=========================| 32 kB

00:00

Running Transaction Test

Finished Transaction Test

Transaction Test Succeeded

Running Transaction

 Installing: ipvsadm #########################

[1/1]

-425-

 Managing the Database

Installed: ipvsadm.x86_64 0:1.24-10

Complete!

3 Run ipvsadm:

[root@node01 ~]# ipvsadm

IP Virtual Server version 1.2.1 (size=4096)

Prot LocalAddress:Port Scheduler Flags

 -> RemoteAddress:Port Forward Weight ActiveConn InActConn

TCP vs-wks1.verticacorp.com:pyrr lc

 -> node03.verticacorp.com:pyr Route 1 1 8

 -> node02.verticacorp.com:pyr Route 1 0 8

 -> node01.verticacorp.com:pyr Local 1 0 8

See Also

ipvsadm man page
http://at.gnucash.org/.vhost/linuxcommand.org/man_pages/ipvsadm8.html

IPVS Troubleshooting Tips

Here are a few things to check if you have issues using the IPVS Load Balancer.

Users cannot connect to the database through the Virtual IP (VIP) address

1 Check if spread is running by running the following command:

$ ps ax | grep spread

11895 ? S<s 4:30 /opt/vertica/spread/sbin/spread -n

N192168051055 -c

 /opt/vertica/config/vspread.conf

29617 pts/3 S+ 0:00 grep spread

1. If spread is not running, start spread as root or use sudo:

[root@node01]# /etc/init.d/spreadd start

2. If spread is running, restart spread as root or use sudo:

[root@node01]# /etc/init.d/spreadd restart

3. Check the spread status as root or use sudo:

[root@node01]# /etc/init.d/spreadd status

4. Run the ifconfig command to check the current IP addresses of the hosts, and verify

that those IP addresses are listed in /opt/vertica/config/vspread.conf.

[root@node01]# ifconfig

If spread fails to start, examine the following files for problems:

/tmp/spread*.log

/var/log/spreadd.log

Permission problems and syntax problems are identified in the log files.

2 Check if keepalived is running by running the following command:

http://at.gnucash.org/.vhost/linuxcommand.org/man_pages/ipvsadm8.html

-426-

Administrator's Guide

$ ps ax | grep keepalived

29622 pts/3 S+ 0:00 grep keepalived

1. If keepalived is not running, start keepalived as root or use sudo:

/etc/init.d/keepalived start

2. If keepalived is running, restart keepalived as root or use sudo:

/etc/init.d/keepalived restart

Users cannot connect to the database.

Try to telnet to the VIP and port:

telnet 10.10.51.180 5433

If telnet reports no route to host, recheck your /etc/keepalived/keepalived.conf file to

make sure you entered the correct VIP and RIPs.

Errors and informational messages from the keepalived daemon are written to the
/var/log/messages file, so check the messages file first by running the following command:

tail -f /var/log/messages

May 18 09:04:32 dell02 Keepalived_vrrp: VRRP_Instance(VI_1) Sending gratuitous

ARPs on eth0 for 10.10.10.100

May 18 09:04:32 dell02 avahi-daemon[3191]: Registering new address record for

10.10.10.100 on eth0.

May 18 09:04:32 dell02 Keepalived_healthcheckers: Netlink reflector reports IP

10.10.10.100 added

The following are the expected e-mail messages from the keepalived daemon

 Upon startup:

Subject: [node01] VRRP Instance VI_1 - Entering MASTER state

=> VRRP Instance is now owning VRRP VIPs <=

 When a node fails:

Subject:[node01] Realserver 10.10.10.1:5433 - DOWN

=> MISC CHECK failed on service <=

 When a node comes back up:

Subject: [node02] Realserver 10.10.10.1:5433 - UP

=> MISC CHECK succeed on service <=

Keepalived Troubleshooting Tips

If you encounter connection or other issues related to the Virtual IP server and Keepalived, try
some of the following tips:

 Set KEEPALIVED_OPTIONS="-D -d" in the /etc/sysconfig/keepalived file to enable
both debug mode and dump configuration.

 Monitor the system log in /var/log/messages. If keepalived.conf is incorrect, the only
indication is in the messages log file. For example:

$ tail /var/log/messages

-427-

 Managing the Database

Tip: Errors and informational messages from the keepalived daemon are also written to the

/var/log/messages files.

 At a shell prompt, type ip addr list and see the configured VIP addresses for eth0. For
example:

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 inet 10.10.51.180/32 brd 127.255.255.255 scope global lo:0

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast

qlen 1000

 link/ether 84:2b:2b:55:4b:be brd ff:ff:ff:ff:ff:ff

 inet 10.10.51.55/24 brd 10.10.51.255 scope global eth0

 inet6 fe80::862b:2bff:fe55:4bbe/64 scope link

 valid_lft forever preferred_lft forever

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast

qlen 1000

 link/ether 84:2b:2b:55:4b:bf brd ff:ff:ff:ff:ff:ff

 inet 192.168.51.55/24 brd 192.168.51.255 scope global eth1

 inet6 fe80::862b:2bff:fe55:4bbf/64 scope link

 valid_lft forever preferred_lft forever

4: sit0: <NOARP> mtu 1480 qdisc noop

 link/sit 0.0.0.0 brd 0.0.0.0

 Check /sbin/iptables and notice the PREROUTING rule on the BACKUP (slave) director.

Even though ipvsadm has a complete list of real servers to manage, it does not route
anything because the prerouting rule redirects packets to the loopback interface.

/sbin/iptables -t nat -n -L

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

Note: On some kernels, the nat tables do not show by default without the -t parameter,

and -n is used to avoid long DNS lookups. See the iptables(8) - Linux man page
http://linux.die.net/man/8/iptables for details.

 During failover, it is normal to expect delays in new connection establishment until the slave
node takes control. The delay could last several minutes, depending on the load on the cluster.
If you cannot connect to the database, try to telnet to the VIP and database port by running a
command like the following:

telnet 10.10.51.180 5433

If telnet reports no route to host, examine the keepalived configuration file

(/etc/keepalived/keepalived.conf) to make sure you entered the correct VIP and
RIPs.

http://linux.die.net/man/8/iptables

-428-

Administrator's Guide

-429-

 429

Managing Nodes

HP Vertica provides the ability to add (page 435), remove (page 441), and replace (page 445)
nodes on a live cluster that is actively processing queries. This ability lets you scale the database
without interrupting users.

You might also consider refreshing or dropping projections.

Elastic Cluster

You can scale your cluster up or down to meet the needs of your database. The most common
case is to add nodes to your database cluster to accommodate more data and provide better
query performance. However, you can scale down your cluster if you find that it is overprovisioned
or if you need to divert hardware for other uses.

You scale your cluster by adding or removing nodes. Nodes can be added or removed without
having to shut down or restart the database. After adding a node or before removing a node, HP
Vertica begins a rebalancing process that moves data around the cluster to populate the new
nodes or move data off of nodes about to be removed from the database. During this process data
may also be exchanged between nodes that are not being added or removed to maintain robust
intelligent K-safety. If HP Vertica determines that the data cannot be rebalanced in a single
iteration due to a lack of disk space, then the rebalance is done in multiple iterations.

To help make data rebalancing due to cluster scaling more efficient, HP Vertica locally segments
data storage on each node so it can be easily moved to other nodes in the cluster. When a new
node is added to the cluster, existing nodes in the cluster give up some of their data segments to
populate the new node and exchange segments to keep the number of nodes that any one node
depends upon to a minimum. This strategy keeps to a minimum the number of nodes that may
become critical when a node fails (see Critical Nodes/K-safety). When a node is being removed
from the cluster, all of its storage containers are moved to other nodes in the cluster (which also
relocates data segments to minimize nodes that may become critical when a node fails). This
method of breaking data into portable segments is referred to as elastic cluster, since it makes
enlarging or shrinking the cluster easier.

The alternative to elastic cluster is to resegment all of the data in the projection and redistribute it
to all of the nodes in the database evenly any time a node is added or removed. This method
requires more processing and more disk space, since it requires all of the data in all projections to
essentially be dumped and reloaded.

-430-

Administrator's Guide

The Elastic Cluster Scaling Factor

In new installs, each node has a "scaling factor" number of local segments. Rebalance efficiently
redistributes data by relocating local segments provided that, after nodes are added or removed,
there are sufficient local segments in the cluster to redistribute the data evenly (determined by
MAXIMUM_SKEW_PERCENT). For example, if the scaling factor = 8, and there are initially 5
nodes, then there are a total of 40 local segments cluster wide. If two additional nodes are added
to bring the total to 7 nodes, relocating local segments would place 5 such segments on 2 nodes
and 6 such segments on 5 nodes, which is roughly a 20% skew. Rebalance chooses this course of
action only if the resulting skew is less than the allowed threshold, as determined by
MAXIMUM_SKEW_PERCENT. Otherwise, segmentation space (and hence data, if uniformly
distributed over this space) is evenly distributed among the 7 nodes and new local segment
boundaries are drawn for each node, such that each node again has 8 local segments.

Note: By default, the scaling factor only has an effect while HP Vertica rebalances the

database. While rebalancing, each node breaks the projection segments it contains into
storage containers, which it then moves to other nodes if necessary. After rebalancing, the data
is recombined into ROS containers. It is possible to have HP Vertica always group data into
storage containers. See Local Data Segmentation (on page 431) for more information.

Enabling and Disabling Elastic Cluster

You enable and disable elastic cluster using functions. See the entries for the
ENABLE_ELASTIC_CLUSTER and DISABLE_ELASTIC_CLUSTER functions in the SQL
Reference Manual.

Note: An elastic projection (a segmented projection created when Elastic Cluster is enabled)

created with a modularhash segmentation expression uses hash instead.

Query the ELASTIC_CLUSTER system table to determine if elastic cluster is enabled:

=> select is_enabled from ELASTIC_CLUSTER;

 is_enabled

 t

(1 row)

Scaling Factor Defaults

The default scaling factor is "4" for new installs of HP Vertica and for upgraded install of HP Vertica
that had local segments disabled. Versions of HP Vertica prior to 6.0 had local segments disabled
by default. The scaling factor is not changed during upgrade on databases upgraded to version
6.0 if local segments were enabled.

Note: Databases created with versions of HP Vertica earlier than version 5.0 have a scaling

factor of 0, which disables elastic cluster. This ensures that HP Vertica handles projection
segmentation the way it did prior to version 5.0. If you want your older database to have better
scaling performance, you need to manually set a scaling factor to enable the new storage
segmenting behavior.

-431-

 Managing the Database

Viewing Scaling Factor Settings

To view the scaling factor, query the ELASTIC_CLUSTER table:

=> SELECT scaling_factor FROM ELASTIC_CLUSTER;

 scaling_factor

 4

(1 row)

=> SELECT SET_SCALING_FACTOR(6);

 SET_SCALING_FACTOR

 SET

(1 row)

=> SELECT scaling_factor FROM ELASTIC_CLUSTER;

 scaling_factor

 6

(1 row)

Setting the Scaling Factor

The scaling factor determines the number of storage containers used to store a projection across
the database. Use the SET_SCALING_FACTOR function to change your database's scaling
factor. The scaling factor can be an integer between 1 and 32.

Note: Setting the scaling factor value too high can cause nodes to create too many small

container files, greatly reducing efficiency and potentially causing a Too Many ROS containers
error (also known as "ROS pushback"). The scaling factor should be set high enough so that
rebalance can transfer local segments to satisfy the skew threshold, but small enough that the
number of storage containers does not exceed ROS pushback. The number of storage
containers should be greater than or equal to the number of partitions multiplied by the number
local of segments (# storage containers >= # partitions * # local segments).

=> SELECT SET_SCALING_FACTOR(12);

 SET_SCALING_FACTOR

 SET

(1 row)

Local Data Segmentation

By default, the scaling factor only has an effect when HP Vertica rebalances the database. During
rebalancing, nodes break the projection segments they contain into storage containers which they
can quickly move to other nodes.

-432-

Administrator's Guide

This process is more efficient than re-segmenting the entire projection (in particular, less free disk
space is required), but it still has significant overhead, since storage containers have to be
separated into local segments, some of which are then transferred to other nodes. This overhead
is not a problem if you rarely add or remove nodes from your database.

However, if your database is growing rapidly and is constantly busy, you may find the process of
adding nodes becomes disruptive. In this case, you can enable local segmentation, which tells HP
Vertica to always segment its data based on the scaling factor, so the data is always broken into
containers that are easily moved. Having the data segmented in this way dramatically speeds up
the process of adding or removing nodes, since the data is always in a state that can be quickly
relocated to another node. The rebalancing process that HP Vertica performs after adding or
removing a node just has to decide which storage containers to relocate, instead of first having to
first break the data into storage containers.

Local data segmentation increases the number of storage containers stored on each node. This is
not an issue unless a table contains many partitions. For example, if the table is partitioned by day
and contains one or more years. If local data segmentation is enabled, then each of these table
partitions is broken into multiple local storage segments, which potentially results in a huge
number of files which can lead to ROS "pushback" (Too Many ROS containers). Consider your
table partitions and the effect enabling local data segmentation may have before enabling the
feature.

Enabling and Disabling Local Segmentation

To enable local segmentation, use the ENABLE_LOCAL_SEGMENTS function. To disable local
segmentation, use the DISABLE_LOCAL_SEGMENTATION function:

=> SELECT ENABLE_LOCAL_SEGMENTS();

 ENABLE_LOCAL_SEGMENTS

 ENABLED

(1 row)

=> SELECT is_local_segment_enabled FROM elastic_cluster;

 is_enabled

 t

(1 row)

=> SELECT DISABLE_LOCAL_SEGMENTS();

 DISABLE_LOCAL_SEGMENTS

 DISABLED

(1 row)

=> SELECT is_local_segment_enabled FROM ELASTIC_CLUSTER;

 is_enabled

 f

(1 row)

-433-

 Managing the Database

Elastic Cluster Best Practices

The following are some best practices with regard to local segmentation and upgrading pre-5.0
databases.

Note: You should always perform a database backup before and after performing any of the

operations discussed in this topic. You need to back up before changing any elastic cluster or
local segmentation settings to guard against a hardware failure causing the rebalance process
to leave the database in an unusable state. You should perform a full backup of the database
after the rebalance procedure to avoid having to rebalance the database again if you need to
restore from a backup.

When to Enable Local Data Segmentation

Local data segmentation (on page 431) can significantly speed up the process of resizing your
cluster. You should enable local data segmentation if

 your database does not contain tables with hundreds partitions.

 the number of nodes in the database cluster is a power of two.

 you plan to expand or contract the size of your cluster.

Local segmentation can result in an excessive number of storage containers with tables that have
hundreds of partitions, or in clusters with a non-power-of-two number of nodes. If your database
has these two features, take care when enabling local segmentation.

Upgraded Database Consideration

Databases created using a version of HP Vertica earlier than version 5.0 do not have elastic
cluster enabled by default. If you expect to expand or contract the database in the future, you may
benefit from enabling elastic cluster by setting a scaling factor. There are two strategies you can
follow:

 Enable elastic cluster now, and rebalance the database. This may take a significant amount
of time to complete,. and make consume up to 50% of the free disk space on the nodes in the
database, since all of the segmented projections are re-written. However, afterwards, adding
and removing nodes will take less time.

 Wait until you need to resize the cluster, then enable elastic cluster just before adding or
removing nodes. Changing the setting does not make the resizing of the cluster any faster, but
later resize operations will be faster.

Which method you choose depends on your specific circumstances. If you might resize your
database on short notice (for example, you may need to load a very large amount of data at once),
you can choose to schedule the downtime needed to enable elastic cluster and rebalance the
database to enable elastic cluster sooner, so the actual add or remove node process will occur
faster.

If you choose to enable elastic cluster for your database, you should consider whether you want to
enable local data segmentation at the same time. If you choose to enable local data segmentation
at a later time, you will need to rebalance the database again, which is a lengthy process.

-434-

Administrator's Guide

Monitoring Elastic Cluster Rebalancing

HP Vertica 6.0 introduces system tables that can be used to monitor the rebalance status of an
elastic cluster and gain general insight to the status of elastic cluster on your nodes.

 The REBALANCE_TABLE_STATUS table provides general information about a rebalance. It
shows, for each table, the amount of data that has been separated, the amount that is currently
being separated, and the amount to be separated. It also shows the amount of data
transferred, the amount that is currently being transferred, and the remaining amount to be
transferred (or an estimate if storage is not separated).

Note: If multiple rebalance methods were used for a single table (for example, the table has

unsegmented and segmented projections), the table may appear multiple times - once for
each rebalance method.

 REBALANCE_PROJECTION_STATUS can be used to gain more insight into the details for a
particular projection that is being rebalanced. It provides the same type of information as
above, but in terms of a projection instead of a table.

In each table, separated_percent and transferred_percent can be used to determine overall
progress.

Historical Rebalance Information

Historical information about work completed is retained, so use the predicate "where is_latest" to
restrict the output to only the most recent or current rebalance activity. The historical data may
include information about dropped projections or tables. If a table or projection has been dropped
and information about the anchor table is not available, then NULL is displayed for the table_id
and "<unknown>" is displayed for the table_name. Information on dropped tables is still useful, for
example, in providing justification for the duration of a task.

-435-

 435

Adding Nodes

There are many reasons for adding one or more nodes to an installation of HP Vertica:

 Increase system performance. Add additional nodes due to a high query load or load latency
or increase disk space without adding storage locations to existing nodes.

Note: The database response time depends on factors such as type and size of the application
query, database design, data size and data types stored, available computational power, and
network bandwidth. Adding nodes to a database cluster does not necessarily improve the
system response time for every query, especially if the response time is already short, e.g., less
then 10 seconds, or the response time is not hardware bound.

 Make the database K-safe (K-safety=1) or increase K-safety to 2. See Failure Recovery
(page 566) for details.

 Swap a node for maintenance. Use a spare machine to temporarily take over the activities of

an existing node that needs maintenance. The node that requires maintenance is known
ahead of time so that when it is temporarily removed from service, the cluster is not vulnerable
to additional node failures.

 Replace a node. Permanently add a node to remove obsolete or malfunctioning hardware.

IMPORTANT: If you installed HP Vertica on a single node without specifying the IP address or

hostname (or you used localhost), you cannot expand the cluster. You must reinstall HP
Vertica and specify an IP address or hostname that is not localhost/127.0.0.1.

Adding nodes consists of the following general tasks:

1 Back up the database (page 537).

HP strongly recommends that you back up the database before you perform this significant
operation because it entails creating new projections, refreshing them, and then deleting the
old projections. See Backing Up and Restoring the Database (page 517) for more
information.

The process of migrating the projection design to include the additional nodes could take a
while; however during this time, all user activity on the database can proceed normally, using
the old projections.

2 Configure the hosts you want to add to the cluster.

See Before you Install HP Vertica in the Installation Guide. You will also need to edit the hosts
configuration file on all of the existing nodes in the cluster to ensure they can resolve the new
host.

3 Add one or more hosts to the cluster (page 437).

4 Add the hosts (page 439) you added to the cluster (in step 3) to the database.

Note: When you add a "host" to the database, it becomes a "node." You can add nodes to your

database using either the Administration Tools or the Management Console (See Monitoring
HP Vertica Using Management Console (page 612).)

-436-

Administrator's Guide

After you add one or more nodes to the database, HP Vertica automatically distributes updated
configuration files to the rest of the nodes in the cluster and starts the process of rebalancing data
in the cluster. See Rebalancing Data Across Nodes (page 449) for details.

-437-

 437

Adding Hosts to a Cluster

After you have backed up the database and configured the hosts you want to add to the cluster,
you can now add hosts to the cluster using the update_vertica script.

You can use MC to add standby nodes to a database, but you cannot add hosts to a cluster using
MC.

Prerequisites and Restrictions

 Follow the instructions in Configure Hostname Resolution to ensure that the newly-added
hosts are reachable by the existing nodes in the cluster.

 If you installed HP Vertica on a single node without specifying the IP address or hostname (you
used localhost), it is not possible to expand the cluster. You must reinstall HP Vertica and
specify an IP address or hostname.

 If your database has more than one node already, you can add a node without stopping the
server. However, if you are adding a node to a single-node, non-localhost installation, you
must shut down both the database and spread. If you do not, the system returns an error like
the following:

$ sudo /opt/vertica/sbin/update_vertica -A node0x0 \

-r vertica_6.1.x.x.x86_64.RHEL5.rpm -u dbadmin -p password123 -P

password123

Vertica 6.1.x.x Installation Tool

Starting installation tasks...

Getting system information for cluster (this may take a while)....

Spread is running on ['node01']. HP Vertica and spread must be stopped

before adding nodes to a 1 node cluster.

Use the admin tools to stop the database, if running, then use the

following command to stop spread:

 /etc/init.d/spread stop (as root or with sudo)

Installation completed with errors.

Installation failed.

Procedure to Add Hosts

From one of the existing cluster hosts, run the update_vertica script with a minimum of the –A
parameter (where host is the hostname or IP address of the system you are adding to the cluster)
and the -r parameter:

/opt/vertica/sbin/update_vertica -A hostname -r rpm_package

Note: See The install_vertica Script for the full list of parameters.

The update_vertica script uses all the same options as install_vertica and:

 Installs the HP Vertica RPM on the new host.

 Performs post-installation checks, including RPM version and N-way network connectivity
checks.

 Modifies spread to encompass the larger cluster.

-438-

Administrator's Guide

 Configures the Administration Tools (page 231) to work with the larger cluster.

 If you must use the -S parameter then stop all databases before you use the -S parameter. If
the databases are not stopped then the -S parameter causes the database to restart.

Important Tips:

 A host can be specified by the hostname or IP address of the system you are adding to the
cluster.

 Do not use include spaces in the hostname list provided with -A if you specified more than one
host.

 If a new RPM is specified, HP Vertica first installs it on the existing cluster hosts before the
newly-added hosts.

 Use the same command line parameters for the database administrator username, password,
and directory path you used when you installed the cluster originally. Alternatively, you can
create a properties file to save the parameters during install and then re-using it on subsequent
install and update operations. See Installing HP Vertica Silently.

 If you are installing using sudo, the database administrator user (dbadmin) must already exist
on the hosts you are adding and must be configured with passwords and home directory paths
identical to the existing hosts. HP Vertica sets up passwordless ssh from existing hosts to the
new hosts, if needed.

 If you initially used the -T option to configure spread to use direct, point-to-point

communication between nodes on the subnet, and you want to continue to do so, use the -T
option when you add the new host. Otherwise, the entire cluster is reconfigured to use the
default UDP broadcast.

Examples:

-A host01

-A 192.168.233.101

-A host02,host03

-439-

 439

Adding Nodes to a Database

Once you have added one or more hosts to the cluster, you can add them as nodes to the
database.

You can add nodes to a database using either these methods:

 The Management Console interface

 The Administration Tools interface

To add nodes to a database using MC

Only nodes in STANDBY state are eligible for addition. STANDBY nodes are nodes included in
the cluster but not yet assigned to the database.

You add nodes to a database on MC's Manage page. Click the node you want to act upon, and

then click Add node in the Node List.

When you add a node, the node icon in the cluster view changes color from gray (empty) to green
as the node comes online. Additionally, a task list displays detailed progress of the node addition
process.

To add nodes to a database using the Administration Tools:

1 Open the Administration Tools. (See Using the Administration Tools (page 222).)

2 On the Main Menu, select View Database Cluster State to verify that the database is
running. If it is not, start it.

3 From the Main Menu, select Advanced Tools Menu and click OK.

4 In the Advanced Menu, select Cluster Management and click OK.

5 In the Cluster Management menu, select Add Host(s) and click OK.

6 Select the database to which you want to add one or more hosts, and then select OK.

A list of unused hosts is displayed.

7 Select the hosts you want to add to the database and click OK.

8 When prompted, click Yes to confirm that you want to add the hosts.

9 When prompted, enter the password for the database, and then select OK.

10 When prompted that the hosts were successfully added, select OK.

11 HP Vertica now automatically starts the rebalancing process to populate the new node with
data. When prompted, enter the path to a temporary directory that the Database Designer can
use to rebalance the data in the database and select OK.

12 Either press enter to accept the default K-Safety value, or enter a new higher value for the
database and select OK.

13 Select whether HP Vertica should immediately start rebalancing the database, (page 449) or
whether it should create a script to rebalance the database later. You should select the option
to automatically start rebalancing unless you want to delay rebalancing until a time when the
database has a lower load. If you choose to automatically rebalance the database, the script is
still created and saved where you can use it later.

14 Review the summary of the rebalancing process and select Proceed.

-440-

Administrator's Guide

15 If you chose to automatically rebalance, the rebalance process runs. If you chose to create a
script, the script is generated and saved. In either case, you are shown a success screen, and
prompted to select OK to end the Add Node process.

-441-

 441

Removing Nodes

Although less common than adding a node, permanently removing a node is useful if the host
system is obsolete or over-provisioned.

Note: You cannot remove nodes if your cluster would not have the minimum number of nodes

required to maintain your database's current K-safety level (3 nodes for a database with a
K-safety level of 1, and 5 nodes for a K-safety level of 2). If you really wish to remove the node
or nodes from the database, you first must reduce the K-safety level of your database.

Removing one or more nodes consists of the following general steps:

1 Back up the database (page 537).

HP recommends that you back up the database before performing this significant operation
because it entails creating new projections, deleting old projections, and reloading data.

2 Lower the K-safety of your database (page 441) if the cluster will not be large enough to
support its current level of K-safety after you remove nodes.

3 Remove the hosts from the database (page 442).

4 Remove the nodes from the cluster (page 443) if they are not used by any other databases.

Lowering the K-Safety Level to Allow for Node Removal

A database with a K-Safety level of 1 requires at least three nodes to operate, and a database with
a K-Safety level 2 requires at least 5 nodes to operate. To remove a node from a cluster that is at
the minimum number of nodes for its database's K-Safety level, you must first lower the K-Safety
level using the MARK_DESIGN_KSAFE function.

Note: HP does not recommend lowering the K-safety level of a database to 0, since doing so

eliminates HP Vertica's fault tolerance features. You should only use this procedure to move
from a K-safety level of 2 to 1.

To lower the K-Safety level of the database:

1 Connect to the database, either through the Administration Tools or via vsql.

2 Enter the command: SELECT MARK_DESIGN_KSAFE(n); where n is the new K-Safety level

for the database (0 if you are reducing the cluster to below 3 nodes, 1 if you are reducing the
cluster to 3 or 4 nodes).

-442-

 442

Removing Nodes from a Database

You can remove nodes from a database using either these methods:

 The Management Console interface

 The Administration Tools interface

Prerequisites

 The node must be empty, in other words there should be no projections referring to the node.
Ensure you have followed the steps listed in Removing Nodes (page 441) to modify your
database design.

 The database must be UP.

 You cannot drop nodes that are critical for K-safety. See Lowering the K-Safety Level to
Allow for Node Removal (page 441).

To remove unused hosts from the database using MC

You remove nodes from a database cluster on MC's Manage page. Click the node you want to act
upon, and then click Remove node in the Node List.

Using MC, you can remove only nodes that are part of the database cluster and which show a
state of DOWN (red). When you remove a node, its color changes from red to clear and MC
updates its state to STANDBY. You can add STANDBY nodes back to the database later.

To remove unused hosts from the database using the Administration Tools:

1 Open the Administration Tools. See Using the Administration Tools (page 222) for
information about accessing the Administration Tools.

2 On the Main Menu, select View Database Cluster State to verify that the database is

running. If the database isn't running, start it.

3 From the Main Menu, select Advanced Tools Menu, and then select OK.

4 In the Advanced menu, select Cluster Management, and then select OK.

5 In the Cluster Management menu, select Remove Host(s) from Database, and then select
OK.

6 When warned that you must redesign your database and create projections that exclude the
hosts you are going to drop, select Yes.

7 Select the database from which you want to remove the hosts, and then select OK.

A list of all the hosts that are currently being used is displayed.

8 Select the hosts you want to remove from the database, and then select OK.

9 When prompted, select OK to confirm that you want to remove the hosts. HP Vertica begins

the process of rebalancing the database and removing the node or nodes.

10 When informed that the hosts were successfully removed, select OK.

-443-

 443

Removing Hosts from a Cluster

If a host that you removed from the database is not used by any other database, you can remove
it from the cluster using the update_vertica script. You can leave the database running (UP)
during this operation.

You can remove hosts from a database (page 442) on the MC interface, but you cannot remove
those hosts from a cluster.

Prerequisites

The host must not be used by any database

Procedure to Remove Hosts

From one of the hosts in the cluster, run update_vertica with the –R switch, where -R specifies

a comma-separated list of hosts to remove from an existing HP Vertica cluster. A host can be
specified by the hostname or IP address of the system.:

/opt/vertica/sbin/update_vertica -R host

For example:

/opt/vertica/sbin/update_vertica -R host01,Host01.vertica.com

Note: See The install_vertica Script for the full list of parameters.

The update_vertica script uses all the same options as install_vertica and:

 Modifies the spread to match the smaller cluster.

 Configures the Administration Tools to work with the smaller cluster.

Important Tips:

 A host does not need to be functional, or even exist, to be removed as long as the database
design no longer includes a node on it. Specify the hostname or IP address that you used
originally for the installation. Adding hosts to and removing them from VM-based clusters can
lead to a situation in which a host doesn't exist.

 If you have identified a node using various forms of the hostname and IP address, you must
identify all the forms you used. For example, you might identify a node with both short and
fully-qualified names. Use a comma-separated list to identify two or more forms of the host
name.

 Do not include spaces in the hostname list provided with -R if you specified more than one

host.

 If a new RPM is specified, HP Vertica will first install it on the existing cluster hosts before
proceeding.

 Use the same command line parameters as those used when you installed the original cluster.
Specifically if you used non-default values for the database administrator username,
password, or directory path, provide the same when you remove hosts; otherwise; the
procedure fails. Consider creating a properties file in which you save the parameters during

-444-

Administrator's Guide

the installation, which you can reuse on subsequent install and update operations. See
Installing HP Vertica Silently.

Examples:

-R host01

-R 192.168.233.101

-R host01,Host01.vertica.com

-445-

 445

Replacing Nodes

If you have a K-Safe database, you can replace nodes, as necessary, without bringing the system
down. For example, you might want to replace an existing node if you:

 Need to repair an existing host system that no longer functions and restore it to the cluster

 Want to exchange an existing host system for another more powerful system

Note: HP Vertica does not support replacing a node on a K-safe=0 database. Use the

procedures to add (page 435) and remove (page 441) nodes instead.

The process you use to replace a node depends on whether you are replacing the node with:

 A host that uses the same name and IP address

 A host that uses a different name and IP address

Prerequisites:

 Configure the replacement hosts for HP Vertica. See Before you Install HP Vertica in the
Installation Guide.

 Read the Important Tips sections under Adding Hosts to a Cluster (page 437) and

Removing Hosts from a Cluster (page 443).

 Ensure that the database administrator user exists on the new host and is configured
identically to the existing hosts. HP Vertica will setup passwordless ssh as needed.

 Ensure that directories for Catalog Path, Data Path, and any storage locations are added to
the database when you create it and/or are mounted correctly on the new host and have read
and write access permissions for the database administrator user. Also ensure that there is
sufficient disk space.

 Follow the best practice procedure below for introducing the failed hardware back into the
cluster to avoid spurious full-node rebuilds.

Best Practice for Restoring Failed Hardware

Following this procedure will prevent HP Vertica from misdiagnosing missing disk or bad mounts
as data corruptions, which would result in a time-consuming, full-node recovery.

If a server fails due to hardware issues, for example a bad disk or a failed controller, upon repairing
the hardware:

1 Reboot the machine into runlevel 1, which is a root and console-only mode.

Runlevel 1 prevents network connectivity and keeps HP Vertica from attempting to reconnect
to the cluster.

2 In runlevel 1, validate that the hardware has been repaired, the controllers are online, and any
RAID recover is able to proceed.

Note: You do not need to initialize RAID recover in runlevel 1; simply validate that it can

recover.

3 Once the hardware is confirmed consistent, only then reboot to runlevel 3 or higher.

-446-

Administrator's Guide

At this point, the network activates, and HP Vertica rejoins the cluster and automatically recovers
any missing data. Note that, on a single-node database, if any files that were associated with a
projection have been deleted or corrupted, HP Vertica will delete all files associated with that
projection, which could result in data loss.

Replacing a Node Using the Same Name and IP Address

To replace a node with a host system that has the same IP address and host name as the original:

1 Backing Up and Restoring the Database (page 517).

2 From a functioning node in the cluster, run the install_vertica script with the -s and -r
parameters:

/opt/vertica/sbin/install_vertica -s host -r rpm_package

Where host is the hostname or IP address of the system you are restoring to the cluster; for

example:

-s host01

-s 192.168.233.101

-r is the name of the rpm package; for example -r
vertica_6.1.x.x.x86_64.RHEL5.rpm

The installation script verifies system configuration and that HP Vertica, spread, and the
Administration Tools metadata are installed on the host.

3 On the new node, create catalog and data directories (unless they both reside in the same
top-level directory, then you just need to create the one directory). These are the same
top-level directories you specified when creating the database.

Note: You can find the directories used for catalog and data storage by querying the

V_MONITOR.DISK_STORAGE system table. You need to create the directories up to the
v_database_node00xx portion of the data and catalog path. For example, if the catalog
storage location is /home/dbadmin/vmart/v_vmart_node0001_catalog/Catalog,

you would need to create the /home/dbadmin/vmart directory to store the catalog.

4 Use the Administration Tools to restart the host you just replaced.

The node automatically joins the database and recovers its data by querying the other nodes
within the database. It then transitions to an UP state.

Note: Do not connect two hosts with the same name and IP address to the same network. If
this occurs, traffic is unlikely to be routed properly.

Replacing a Failed Node Using a Different Name and IP Address

Replacing a failed node with a host system that has a different IP address and host name from the
original consists of the following steps:

1 Back up the database (page 537).

-447-

 Managing the Database

HP recommends that you back up the database before you perform this significant operation
because it entails creating new projections, deleting old projections, and reloading data.

2 Run update_vertica with the –A, -R, -E and -r parameters to replace the failed host:

/opt/vertica/sbin/update_vertica -A NewHostName -R OldHostName -E -r

rpm_package

Where:

 NewHostName is the hostname or IP address of the system you are adding to the cluster.

 OldHostName is the hostname or IP address of the system you are removing from the

cluster.

 The -E parameter forces HP Vertica to drop the failed node from the cluster.

 -r is the name of the rpm package; for example -r
vertica_6.1.x.x.x86_64.RHEL5.rpm

Note: The update_vertica script uses all the same options as install_vertica. See

The install_vertica Script for the full list of parameters.

3 Use the Administration Tools to replace the original host with the new host. If you are using
more than one database, replace the original host in all the databases in which it is used. See
Replacing Hosts (page 448).

4 Use the procedure in Distributing Configuration Files to the New Host (page 452) to
transfer metadata to the new host.

5 Run update_vertica again with just the -R parameter to clear the node that you replaced
from the Administration Tools metadata.

/opt/vertica/sbin/update_vertica -R OldHostName

OldHostName is the hostname or IP address of the system you removed from the cluster.

6 Use the Administration Tools to restart HP Vertica on the host. On the Main Menu, select
Restart Vertica on Host, and click OK. See Starting a Database for more information.

Once you have completed this process, the replacement node automatically recovers the data
that was stored in the original node by querying other nodes within the database.

Replacing a Functioning Node Using a Different Name and IP Address

Replacing a node with a host system that has a different IP address and host name from the
original consists of the following general steps:

1 Back up the database (page 537).

HP recommends that you back up the database before you perform this significant operation
because it entails creating new projections, deleting old projections, and reloading data.

2 Add the replacement hosts to the cluster (page 437).

At this point, both the original host that you want to remove and the new replacement host are
members of the cluster.

3 Use the Administration Tools to shut down the original host.

4 Use the Administration Tools to replace the original host (page 448)with the new host. If
you are using more than one database, replace the original host in all the databases in which it
is used.

-448-

Administrator's Guide

5 Remove the host from the cluster (page 443).

6 Restart HP Vertica on the host.

Once you have completed this process, the replacement node automatically recovers the data
that was stored in the original node by querying the other nodes within the database. It then
transitions to an UP state.

Note: If you do not remove the original host from the cluster and you attempt to restart the
database, the host is not invited to join the database because its node address does not match
the new address stored in the database catalog. Therefore, it remains in the INITIALIZING
state.

Using the Administration Tools to Replace Nodes

If you are replacing a node with a host that uses a different name and IP address, use the
Administration Tools to replace the original host with the new host. Alternatively, you can use the
Management Console to replace a node (page 449).

To replace the original host with a new host using the Administration Tools:

1 Back up the database. See Backing Up and Restoring the Database (page 517).

2 From a node that is up, and is not going to be replaced, open the Administration Tools.

3 On the Main Menu, select View Database Cluster State to verify that the database is

running. If it‘s not running, use the Start Database command on the Main Menu to restart it.

4 On the Main Menu, select Advanced Menu.

5 In the Advanced Menu, select Stop HP Vertica on Host.

6 Select the host you want to replace, and then click OK to stop the node.

7 When prompted if you want to stop the host, select Yes.

8 In the Advanced Menu, select Cluster Management, and then click OK.

9 In the Cluster Management menu, select Replace Host, and then click OK.

10 Select the database that contains the host you want to replace, and then click OK.

A list of all the hosts that are currently being used displays.

11 Select the host you want to replace, and then click OK.

12 Select the host you want to use as the replacement, and then click OK.

13 When prompted, enter the password for the database, and then click OK.

14 When prompted, click Yes to confirm that you want to replace the host.

15 When prompted that the host was successfully replaced, click OK.

16 In the Main Menu, select View Database Cluster State to verify that all the hosts are running.
You might need to start HP Vertica on the host you just replaced. Use Restart Vertica on
Host.

The node enters a RECOVERING state.

-449-

 Managing the Database

Caution: If you are using a K-Safe database, keep in mind that the recovering node counts as
one node down even though it might not yet contain a complete copy of the data. This means
that if you have a database in which K safety=1, the current fault tolerance for your database is
at a critical level. If you lose one more node, the database shuts down. Be sure that you do not
stop any other nodes.

Using the Management Console to Replace Nodes

On the MC Manage page, you can quickly replace a DOWN node in the database by selecting one
of the STANDBY nodes in the cluster.

A DOWN node shows up as a red node in the cluster. Click the DOWN node and the Replace
node button in the Node List becomes activated, as long as there is at least one node in the cluster
that is not participating in the database. The STANDBY node will be your replacement node for the
node you want to retire; it will appear gray (empty) until it has been added to the database, when it
turns green.

Tip: You can resize the Node List by clicking its margins and dragging to the size you want.

When you highlight a node and click Replace, MC provides a list of possible STANDBY nodes to

use as a replacement. After you select the replacement node, the process begins. A node
replacement could be a long-running task.

MC transitions the DOWN node to a STANDBY state, while the node you selected as the
replacement will assume the identity of the original node, using the same node name, and will be
started.

Assuming a successful startup, the new node will appear orange with a status of RECOVERING
until the recovery procedure is complete. When the recovery process completes, the replacement
node will turn green and show a state of UP.

Rebalancing Data Across Nodes

HP Vertica automatically rebalances your database when adding or removing nodes. You can
also manually trigger a rebalance using the Administration Tools or using SQL functions. Users
can rebalance data across nodes through the Management Console interface (see Rebalancing
the Database Using Management Console (page 451) for details).

Whether the rebalance process is started manually or automatically, the process takes the
following steps:

-450-

Administrator's Guide

 For segmented projections, HP Vertica creates new (renamed), segmented projections that
are identical in structure to the existing projections, but which have their data distributed
across all nodes. The rebalance process then refreshes all new projections, sets the Ancient
History Mark (AHM) to the greatest allowable epoch (now), and drops all of the old segmented
projections. All new buddy projections have the same base name so they can be identified as
a group.

NOTE: HP Vertica does not maintain custom projection segmentations defined with a specific
node list. Node rebalancing distributes data across all nodes, regardless of any custom
definitions. However, node rebalancing does maintain projections segmented with a
range-segmentation-clause.

 For unsegmented projections, leaves existing projections unmodified, creates new projections
on the new nodes, and refreshes them.

 After the data has been rebalanced, HP Vertica drops:

 Duplicate buddy projections with the same offset

 Duplicate replicated projections on the same node

K-safety and rebalancing

Before data rebalancing completes, HP Vertica operates with the existing K-safe value. After
rebalancing completes, HP Vertica operates with the K-safe value specified during the rebalance
operation.

You can maintain existing K-safety or specify a new value (0 to 2) for the modified database
cluster. HP Vertica does not support downgrading K-safety and returns a warning if you attempt to

reduce it from its current value: Design k-safety cannot be less than system k-safety

level. For more information, see Lowering the K-Safety Level to Allow for Node Removal
(page 441).

Rebalancing failure and projections

If a failure occurs while rebalancing the database, you can rebalance again. If the cause of the
failure has been resolved, the rebalance operation continues from where it failed. However, a
failed data rebalance can result in projections becoming out of date, so that they cannot be
removed automatically.

To locate any such projections, query the V_CATALOG.PROJECTIONS system table as follows:

=> SELECT projection_name, anchor_table_name, is_prejoin, is_up_to_date

FROM projections WHERE is_up_to_date = false;

To remove out-of-date projections, use the DROP PROJECTION function.

Permissions

Only the superuser has permissions to rebalance data.

Rebalancing Data Using the Administration Tools UI

To rebalance the data in your database:

1 Open the Administration Tools. (See Using the Administration Tools (page 222).)

-451-

 Managing the Database

2 On the Main Menu, select View Database Cluster State to verify that the database is

running. If it is not, start it.

3 From the Main Menu, select Advanced Tools Menu and click OK.

4 In the Advanced Menu, select Cluster Management and click OK.

5 In the Cluster Management menu, select Re-balance Data and click OK.

6 Select the database you want to rebalance, and then select OK.

7 Enter the directory for the Database Designer outputs (for example /tmp) and click OK.

8 Accept the proposed K-safety value or provide a new value. Valid values are 0 to 2.

9 Review the message and click Proceed to begin rebalancing data.

The Database Designer modifies existing projections to rebalance data across all database
nodes with the K-safety you provided. A script to rebalance data, which you can run manually
at a later time, is also generated and resides in the path you specified; for example

/tmp/extend_catalog_rebalance.sql.

IMPORTANT: Rebalancing data can take some time, depending on the number of projections

and the amount of data they contain. HP recommends that you allow the process to complete.
If you must cancel the operation, use Ctrl+C.

The terminal window notifies you when the rebalancing operation is complete.

10 Press Enter to return to the Administration Tools.

See Also

Rebalancing the Database Using Management Console (page 451)

Rebalancing Data Using MC

HP Vertica automatically rebalances the database after you add or remove nodes. If, however,
you notice data skew where one node shows more activity than another (for example, most
queries processing data on a single node), you can manually rebalance the database using MC if
that database is imported into the MC interface.

On the Manage page, click Rebalance in the toolbar to initiate the rebalance operation.

During a rebalance, you cannot perform any other activities on the database cluster, such as start,
stop, add, or remove nodes.

Rebalancing Data Using SQL Functions

There are three SQL functions that let you manually control the data rebalancing process. You can
use these functions to run a rebalance from a script scheduled to run at an off-peak time, rather
than having to manually trigger a rebalance through the Administration Tools.

These functions are:

 REBALANCE_CLUSTER (topic jump)

 START_REBALANCE_CLUSTER (topic jump)

-452-

Administrator's Guide

 CANCEL_REBALANCE_CLUSTER (topic jump)

For more information and examples of using these functions, see their entries in the SQL
Reference Manual.

Redistributing Configuration Files to Nodes

The add and remove node processes automatically redistribute the HP Vertica configuration files.
You may rarely need to redistribute the configuration files to help resolve configuration issues.

To distribute configuration files to a host:

1 Log on to a host that contains these files and start the Administration Tools.

See Using the Administration Tools (page 222) for information about accessing the
Administration Tools.

2 On the Main Menu in the Administration Tools, select Configuration Menu and click OK.

3 On the Configuration Menu, select Distribute Config Files and click OK.

4 Select Database Configuration.

5 Select the database in which you want to distribute the files and click OK.

The vertica.conf file is distributed to all the other hosts in the database. If it previously existed
on a host, it is overwritten.

6 On the Configuration Menu, select Distribute Config Files and click OK.

7 Select SSL Keys.

The certifications and keys for the host are distributed to all the other hosts in the database. If
they previously existed on a host, they are overwritten.

8 On the Configuration Menu, select Distribute Config Files and click OK.

Select AdminTools Meta-Data.

The Administration Tools metadata is distributed to every host in the cluster.

9 Restart the database (page 568).

Changing the IP Addresses of an HP Vertica Cluster

This section describes how to change the IP addresses of the nodes in an HP Vertica cluster.

Note: This process requires that you stop the database on all nodes, then subsequently stop
the database on individual nodes as you update IP addresses.

These instructions assume you will make the standard OS changes to change the IPs (for
example, updating /etc/hosts) in Step 4 of this procedure. These instructions detail only the HP

Vertica-specific IP changes. Consult the documentation for your particular OS platform for details
on changing the IP address of the host.

To change the IP address of one or more nodes in a cluster:

1 Before changing the IP address on the Host, back up the following three files on all nodes:

-453-

 Managing the Database

 /opt/vertica/config/admintools.conf

 /opt/vertica/config/vspread.conf

 /etc/sysconfig/spreadd

2 Stop HP Vertica on all nodes.

3 As root, on each node, stop spread by using the following command:

/etc/init.d/spreadd stop

4 Change the IP addresses of the hosts as required by your operating system platform.

5 On each node edit /opt/vertica/config/admintools.conf and change the IPs as
required.

You can use sed to change each IP in the file, for example to change 10.10.81.8 to

192.168.150.108 issue the command:

sed -i 's/10.10.81.8/192.168.150.108/g'

/opt/vertica/config/admintools.conf

6 On each node edit /opt/vertica/config/vspread.conf:

1. Change the old IPs to the new IPs as required.

2. Locate the N number for each IP and change it to match the new IP. For example, if the old

IP is 10.10.81.8, then the corresponding N number is N010010081008. N numbers
consist of 3 digits for each IP number segment, padded with zeros when appropriate (10

becomes 010, 8 become 008, etc.). If the new IP address is 192.168.150.255, then the

new corresponding N number is N192168250255.

7 On each node edit /etc/sysconfig/spreadd and change the N number to that node's new

N number as you specified in vspread.conf.

8 As root, on each node start spread by using the following command:

/etc/init.d/spreadd start

9 Start the database.

10 Run vsql.

11 In vsql, issue the following query to verify the new IP has been updated:

select host_name from host_resources;

You can also verify IPs with the following shell commands:

 cat /var/log/spreadd.log

 admintools -t list_host

 cat /etc/hosts

12 Update the database to use the new IPs for reporting node status:

1. In vsql, issue the command select node_name, node_address from

v_catalog.nodes; to show you the current node names configured.

a) For each node in the result, change the hostname to the new IP address. Note: the node

must be down to change the IP using the alter node command. You must bring the node
down before altering the NODE_NAME property for that node:

-454-

Administrator's Guide

 Bring the node down that you are going to update (don't bring down the node from which
you are using vsql!). You can bring down the node from the initiator node using admintools.
For example:
admintools -t stop_node -s 192.168.150.255

 Update the IP address by issuing the command: alter node NODE_NAME is

hostname 'new.ip.address'; where NODE_NAME is the node_name and
new.ip.address is the new IP address of that node.

 Bring the node back up, check it's status in the nodes table (select node_name,

node_state from nodes;), and wait for that node's status to be UP. You can use
admintools from the initiator node to restart the node. You must provide the database
name. For example:
admintools -t restart_node -s 192.168.150.255 -d VMart

 Repeat the process for the next node in the result. After all nodes have been updated
except the node from which you are using vsql, log out of vsql, then log into vsql from
another node and update the IP address for the node from which you were previously using
vsql.

See Also

Configure Hostname Resolution

Stopping and Starting Nodes on MC
You can start and stop one or more database nodes through the Manage page by clicking a

specific node to select it and then clicking the Start or Stop button in the Node List.

Note: The Stop and Start buttons in the toolbar start and stop the database, not individual

nodes.

On the Databases and Clusters page, you must click a database first to select it. To stop or start
a node on that database, click the View button. You'll be directed to the Overview page. Click
Manage in the applet panel at the bottom of the page and you'll be directed to the database node

view.

The Start and Stop database buttons are always active, but the node Start and Stop buttons are
active only when one or more nodes of the same status are selected; for example, all nodes are
UP or DOWN.

After you click a Start or Stop button, Management Console updates the status and message
icons for the nodes or databases you are starting or stopping.

-455-

 Managing the Database

-456-

 456

Managing Disk Space

HP Vertica detects and reports low disk space conditions in the log file so that the issue can be
addressed before serious problems occur. It also detects and reports low disk space conditions
via SNMP traps (page 591) if enabled.

Critical disk space issues are reported sooner than other issues. For example, running out of
catalog space is fatal; therefore, HP Vertica reports the condition earlier than less critical
conditions. To avoid database corruption when the disk space falls beyond a certain threshold, HP
Vertica begins to reject transactions that update the catalog or data.

Caution: A low disk space report indicates one or more hosts are running low on disk space or

have a failing disk. It is imperative to add more disk space (or replace a failing disk) as soon as
possible.

When HP Vertica reports a low disk space condition, use the DISK_RESOURCE_REJECTIONS
system table to determine the types of disk space requests that are being rejected and the hosts
on which they are being rejected.

These and the other Using System Tables (page 595) system tables are described in detail in the
SQL Reference Manual.

To add disk space, see Adding Disk Space to a Node (page 456). To replace a failed disk, see
Replacing Failed Disks (page 457).

Monitoring Disk Space Usage

You can use these system tables to monitor disk space usage on your cluster:

System table Description

DISK_STORAGE Monitors the amount of disk storage used by the database on each

node.

COLUMN_STORAGE

Monitors the amount of disk storage used by each column of each
projection on each node.

PROJECTION_STORAGE Monitors the amount of disk storage used by each projection on
each node.

Adding Disk Space to a Node

This procedure describes how to add disk space to a node in the HP Vertica cluster.

Note: If you are adding disk space to multiple nodes in the cluster, then use the following

procedure for each node, one node at a time.

To add disk space to a node:

-457-

 Managing the Database

1 If you must shut down the hardware to which you are adding disk space, then first shut down
HP Vertica on the host where disk space is being added.

2 Add the new disk to the system as required by the hardware environment. Boot the hardware if
it is was shut down.

3 Partition, format, and mount the new disk, as required by the hardware environment.

4 Create a data directory path on the new volume.

For example:

mkdir –p /myNewPath/myDB/host01_data2/

5 If you shut down the hardware, then restart HP Vertica on the host.

6 Open a database connection to HP Vertica and add a storage location to add the new data
directory path. If you are connecting from a different host than the one on which you added
storage, then specify the node in ADD_LOCATION, otherwise ADD_LOCATION assumes you
are referring to the local host.

See Adding Storage Locations (page 501) in this guide and the ADD_LOCATION function in
the SQL Reference Manual.

Note: ADD_LOCATION is a local command, which must be run on each node to which space

is added.

Replacing Failed Disks

If the disk on which the data or catalog directory resides fails, causing full or partial disk loss,
perform the following steps:

1 Replace the disk and recreate the data or catalog directory.

2 Distribute the configuration file (vertica.conf) to the new host. See Distributing
Configuration Files to the New Host (page 452) for details.

3 Restart the HP Vertica on the host, as described in Restart Vertica On Host (page 234).

See Catalog and Data Files (page 457) for information about finding your
DATABASE_HOME_DIR.

Catalog and Data Files

For the recovery process to complete successfully, it is essential that catalog and data files be in
the proper directories.

In HP Vertica, the catalog is a set of files that contains information (metadata) about the objects in
a database, such as the nodes, tables, constraints, and projections. The catalog files are
replicated on all nodes in a cluster, while the data files are unique to each node. These files are
installed by default in the following directories:

/DATABASE_HOME_DIR/DATABASE_NAME/v_db_nodexxxx_catalog/

/DATABASE_HOME_DIR/DATABASE_NAME/v_db_nodexxxx_catalog/

-458-

Administrator's Guide

Note: DATABASE_HOME_DIR is the path, which you can see from the Administration Tools.
See Using the Administration Tools (page 222) in the Administrator's Guide for details on
using the interface.

To view the path of your database:

1 Run the Administration Tools.

$ /opt/vertica/bin/admintools

2 From the Main Menu, select Configuration Menu and click OK.

3 Select View Database and click OK.

4 Select the database you want would like to view and click OK to see the database profile.

See Understanding the Catalog Directory (page 458) for an explanation of the contents of the
catalog directory.

Understanding the Catalog Directory
The catalog directory stores metadata and support files for your database. Some of the files within
this directory can help you troubleshoot data load or other database issues. See Catalog and
Data Files (page 457) for instructions on locating your database's catalog directory. By default, it
is located in the database directory. For example, if you created the VMart database in the
database administrator's account, the path to the catalog directory is:

/home/dbadmin/VMart/v_vmart_nodennnn_catalog

where nodennnn is the name of the node you are logged into. The name of the catalog directory

is unique for each node, although most of the contents of the catalog directory are identical on
each node.

The following table explains the files and directories that may appear in the catalog directory.

Note: Do not change or delete any of the files in the catalog directory unless asked to do so by

HP Vertica support.

File or Directory Description

bootstrap-catalog.lo

g
A log file generated as the HP Vertica server
initially creates the database (in which case, the

log file is only created on the node used to create
the database) and whenever the database is
restored from a backup.

Catalog/ Contains catalog information about the
database, such as checkpoints.

CopyErrorLogs/ The default location for the COPY exceptions

and rejections files generated when data in a
bulk load cannot be inserted into the database.
See Controlling Load Exceptions and

Rejections (page 381) for more information.

DataCollector/ Log files generated by the Data Collector.

-459-

 Managing the Database

debug_log.conf Debugging information configuration file. For HP

use only.

Epoch.log Used during recovery to indicate the latest epoch
that contains a complete set of data.

ErrorReport.txt A stack trace written by HP Vertica if the server
process exits unexpectedly.

Libraries/ Contains user defined library files that have been

loaded into the database See Developing and
Using User Defined Functions in the
Programmer's Guide. Do not change or delete

these libraries through the file system. Instead,
use the CREATE LIBRARY, DROP LIBRARY,
and ALTER LIBRARY statements.

Snapshots/ The location where backup snapshots are
stored. See Using Database Snapshots for more
information.

tmp/ A temporary directory used by HP Vertica's
internal processes.

UDxLogs/ Log files written by user defined functions that

run in fenced mode. See Fenced Mode in the
Programmer's Guide for more information.

vertica.conf The primary configuration file for HP Vertica.

vertica.log The main log file generated by the HP Vertica
server process.

vertica.pid The process ID and path to the catalog directory

of the HP Vertica server process running on this
node.

Reclaiming Disk Space from Deleted Records
You can reclaim the disk space held by deleted records by purging the deleted records (page
410), rebuilding the table (page 459) or dropping a partition (page 328).

Rebuilding a Table

When it is necessary to do large-scale disk reclamation operations, consider rebuilding the table
by following sequence of operations:

1 Create a new table.

2 Create projections for the new table.

3 Populate the new table using INSERT ... SELECT to copy the desired table from the old table.

4 Drop the old table and its projections.

-460-

Administrator's Guide

5 Use ALTER TABLE ... RENAME to give the new table the name of the old table.

Notes

 You must have enough disk space to contain the old and new projections at the same time. If
necessary, you can drop some of the old projections before loading the new table. You must,
however, retain at least one superprojection of the old table (or two buddy superprojections to
maintain K-safety) until the new table is loaded. (See Prepare Disk Storage Locations (page
16) in the Installation Guide for disk space requirements.)

 You can specify different names for the new projections or use the ALTER PROJECTION ...
RENAME command to change the names of the old projections.

 The relationship between tables and projections does not depend on object names. Instead, it
depends on object identifiers that are not affected by rename operations. Thus, if you rename
a table, its projections continue to work normally.

 Manually purging a table continues to retain history for rows deleted after the Ancient History
Mark. Rebuilding the table results in purging all the history of the table, which means you
cannot do historical queries on any older epoch.

 Rather than dropping the old table in Step 4, you might rename it to a different name and use
it as a backup copy. Note, however, that you must have sufficient disk space.

-461-

Managing Tuple Mover Operations
The Tuple Mover (TM) is the HP Vertica database optimizer component that moves data from
memory (WOS) to disk (ROS). The TM also combines small ROS containers into larger ones, and
purges deleted data. During moveout operations, the TM is also responsible for adhering to any
storage policies that are in effect for the storage location. The Tuple Mover runs in the
background, performing some tasks automatically (ATM) at time intervals determined by its
configuration parameters. For information about changing the TM configuration parameters, see
Tuple Mover Parameters (page 38) in the Administrator's Guide for further information.

Under ordinary circumstances, the operations performed by the TM are automatic and
transparent, and are therefore of little or no concern to the database administrator. However, when
loading data, certain conditions require that you stop the Tuple Mover, perform some operations
manually, and restart it. Also, the COPY statement AUTO, DIRECT, and TRICKLE parameters
specify how data is loaded (directly into ROS or WOS). See Choosing a Load Method (page
352), for more information.

This section discusses Tuple Mover operations (page 462) and how to perform TM tasks
manually.

-462-

Administrator's Guide

Understanding the Tuple Mover

The Tuple Mover performs two operations:

 Moveout (page 462)

 Mergeout (page 463)

Each of these operations occurs at different intervals across all nodes. The tuple mover runs
independently on each node, ensuring that storage is managed appropriately even in the event of
data skew.

Moveout

Moveout operations move data from memory (WOS) into a new ROS container. A moveout
"flushes" all historical data from the WOS to the ROS.

The following illustration shows the effect of a projection moveout on a single node:

-463-

 Managing the Database

ROS Containers

A ROS (Read Optimized Store) container is a set of rows stored in a particular group of files. ROS
containers are created by operations like Moveout or COPY DIRECT, and can be observed in the
STORAGE_CONTAINERS system table. The ROS container layout can differ across nodes due to

data variance. Segmentation can deliver more rows to one node than another. Two loads could fit
in the WOS on one node and spill on another.

Mergeout

A mergeout is the process of consolidating ROS containers and purging deleted records. Over
time, the number of ROS containers increases to a degree that it becomes necessary to merge
some of them in order to avoid performance degradation. At that point, the Tuple Mover performs
an automatic mergeout, which combines two or more ROS containers into a single container. This
process can be thought of as "defragmenting" the ROS.

HP Vertica keeps data from different partitions separate on disk. When the Tuple Mover
consolidates ROS containers, it adheres to this policy by not merging ROS containers from
different partitions. When a partition is first created, it is typically the subject of frequent data loads
and requires regular attention from the Tuple Mover. As a partition ages, it commonly transitions to
a read-only workload that requires much less attention.

The Tuple Mover has two different policies for managing these different partition workloads:

 Active partitions are loaded or modified frequently. The Tuple Mover uses a STRATA
mergeout policy that keeps a collection of ROS container sizes to minimize the number of

times any individual tuple is subjected to mergeout. The ActivePartitionCount
parameter identifies how many partitions are being actively loaded.

 Inactive partitions are very infrequently loaded or modified. The Tuple Mover consolidates the
ROS containers to a minimal set while avoiding merging containers whose size exceeds
MaxMrgOutROSSizeMB.

Partitions are not explicitly marked by the user as active or inactive; instead, the Tuple Mover uses
the following algorithm to order the partitions from oldest to newest:

 If one partition was created before the other partition, it is older.

 If two partitions were created at the same time, but one partition was last updated ear lier than
the other partition, it is older.

 If two partitions were created and last updated at the same time, the partition with the smaller
key is considered older.

If you perform a manual mergeout using the DO_TM_TASK function, all partitions are consolidated

into the smallest possible number of containers, regardless of the value of the
ActivePartitionCount parameter.

-464-

Administrator's Guide

Tuning the Tuple Mover

The Tuple Mover comes preconfigured to work for most common workloads. However there are
some situations in which tuning the tuple mover behavior is required. You do so by changing its
configuration parameters. The following section explains the parameters that tune the Tuple
Mover, and the remainder of this section explains how to use them for several situations.

Tuple Mover Configuration Parameters

The following configuration parameters control how the Tuple Mover operates. You can use them
to adjust its operation to suit your needs, as described in the following sections.

Parameters Description Default Example

ActivePartitionCount Sets the number of partitions, called
active partitions, that are currently

being loaded. For information about
how the Tuple Mover treats active (and
inactive) partitions during a mergeout

operation, see Understanding the
Tuple Mover (page 462).

1
SELECT SET_CONFIG_PARAMETER

('ActivePartitionCount',

 2);

MergeOutInterval The number of seconds the Tuple
Mover waits between checks for new

ROS files to merge out. If ROS
containers are added frequently, you
may need to decrease this value.

600
SELECT SET_CONFIG_PARAMETER

('MergeOutInterval',1200);

MoveOutInterval The number of seconds the Tuple

mover waits between checks for new
data in the WOS to move to ROS.

300
SELECT SET_CONFIG_PARAMETER

('MoveOutInterval',600);

MoveOutMaxAgeTime The specified interval (in seconds) after
which the tuple mover is forced to write

the WOS to disk. The default interval is
30 minutes.

Tip: If you had been running the

force_moveout.sh script in previous

releases, you no longer need to run it.

1800
SELECT SET_CONFIG_PARAMETER

('MoveOutMaxAgeTime', 1200);

MoveOutSizePct The percentage of the WOS that can be
filled with data before the Tuple Mover
performs a moveout operation.

0
SELECT SET_CONFIG_PARAMETER

('MoveOutSizePct', 50);

Resource Pool Settings

The Tuple Mover draws its resources from the TM resource pool. Adding more resources (RAM) to

this pool, and changing its concurrency setting, can make the Tuple Mover more effective in
dealing with high load rates.

-465-

 Managing the Database

The TM resource pool concurrency setting, PLANNEDCONCURRENCY, determines how many
merges can occur simultaneously through multiple threads. As a side effect of the concurrency
setting, the Tuple Mover dedicates some threads to aggressively address small ROS containers,
while other threads are reserved to work only on merges of ROS containers in the lower strata.

For the TM pool, PLANNEDCONCURRENCY must be proportional to the size of the RAM, the CPU,
and the storage subsystem. Depending on the storage type, if you increase

PLANNEDCONCURRENCY for the Tuple Mover threads, you might create a storage I/O bottleneck.
Monitor the storage subsystem; if it becomes saturated with long I/O queues, more than two I/O

queues, and long latency in read and write, adjust the PLANNEDCONCURRENCY parameter to keep
the storage subsystem resources below saturation level. In addition, you might need to:

 Partition storage data files

 Adjust block-size optimization on storage subsystems such as RAID 5 or RAID 10

 Identify the optimal number of disks in the RAID array

The following statement illustrates how to increase the size of the TM resource pool and set the

concurrency settings for the pool:

=> ALTER RESOURCE POOL tm MEMORYSIZE '4G' PLANNEDCONCURRENCY 4 MAXCONCURRENCY 5;

The WOSDATA resource pool settings also indirectly affect the Tuple Mover. In automatic mode,

INSERT and COPY commands use the concurrency setting to determine whether data is small
enough to store in WOS or if it should be written to ROS. Therefore, set this value to be the

number of concurrent loads you expect to perform in your database. The WOSDATA resource pool
also determines how much RAM the WOS can use.

=> ALTER RESOURCE POOL wosdata MAXMEMORYSIZE '4G' PLANNEDCONCURRENCY 3;

See Managing Workloads (page 467) and Resource Pool Architecture (page 469) in this guide
and ALTER RESOURCE POOL and Built-in Pools in the SQL Reference Manual.

Loading Data

HP Vertica automatically decides whether the data should be placed in WOS or stored directly in
ROS containers based on the amount of data processed by a COPY or INSERT command. HP
Vertica stores large loads directly to disk and stores smaller loads in memory, which it later moves
to disk.

For low-latency access to data, use small loads. The automatic Tuple Mover settings are the best
option for handling such smaller loads. One exception is for single-node deployments, where a
system failure would cause in-memory data to be lost. In this case, you might want to force all data
loads to go directly to disk.

For high load rates, you might want the Tuple Mover to check for jobs more frequently by changing
the MergeOutInterval and MoveOutInterval configuration parameters. Reduce the

MoveOutInterval if you expect the peak load rate to fill the WOS quickly. Reduce
MergeOutInterval if you anticipate performing many DIRECT loads or inserts.

See COPY and INSERT in the SQL Reference Manual

-466-

Administrator's Guide

Using More Threads

If your database is receiving a large volume of data to load or if it is performing many DIRECT
loads or inserts, consider allowing the Tuple Mover to perform more operations concurrently by
increasing the TM resource pool until the it can keep up with the anticipated peak load rate. For

example:

=> ALTER RESOURCE POOL TM MEMORYSIZE '4G' PLANNEDCONCURRENCY 4 MAXCONCURRENCY 5;

See ALTER RESOURCE POOL and Built-in Pools in the SQL Reference Manual.

Active Data Partitions

By default, the Tuple Mover assumes that all loads and updates for partitioned tables are going to
the same active partition. For example, if a table is partitioned by month, the Tuple Mover expects
that after the start of a new month, no data is loaded into the partition for the prior month.

If loads and updates occur to more than one partition, set the ActivePartitionCount
parameter to reflect the number of partitions that will be loading data. For example, if your
database receives data for the current month as well as updates to the prior month, set

ActivePartitionCount to 2. For tables partitioned by non-temporal attributes, set
ActivePartitionCount to reflect the number of partitions that will be loaded simultaneously.

See Table Partitioning in this guide.

See Also

Best Practices for Managing Workload Resources (page 478)

-467-

Managing Workload Resources
HP Vertica provides a sophisticated resource management scheme that allows diverse,
concurrent workloads to run efficiently on the database. For basic operations, the built-in
GENERAL pool is pre-configured based on RAM and machine cores, but you can customized this
pool to handle specific concurrency requirements.

You can also define new resource pools that you configure to limit memory usage, concurrency,
and query priority. You can then optionally restrict each database user to use a specific resource
pool, which control memory resources used by their requests.

User-defined pools are useful if you have competing resource requirements across different
classes of workloads. Example scenarios include:

 A large batch job takes up all server resources, leaving small jobs that update a web page to
starve, which can degrade user experience.

In this scenario, you can create a resource pool to handle web page requests and ensure
users get resources they need. Another option is to create a limited resource pool for the batch
job, so the job cannot use up all system resources.

 A certain application has lower priority than other applications, and you would like to limit the
amount of memory and number of concurrent users for the low-priority application.

In this scenario, you could create a resource pool with an upper limit on the query's memory
and associate the pool with users of the low-priority application.

You can also use resource pools to manage resources assigned to running queries. You can
assign a run-time priority to a resource pool, as well as a threshold to assign different priorities to
queries with different durations. See Managing Resources at Query Run Time (page 474) for
more information.

For detailed syntax of creating and managing resource pools see the following topics in the SQL
Reference Manual:

Statements

 ALTER RESOURCE POOL alters a resource pool.

 ALTER USER associates a user with the RESOURCE POOL and MEMORYCAP parameters.

 CREATE RESOURCE POOL creates a resource pool.

 CREATE USER adds a name to the list of authorized database users and specifies that user's
RESOURCE POOL and MEMORYCAP parameters.

 DROP RESOURCE POOL drops a user-created resource pool.

 SET SESSION MEMORYCAP sets the limit on amount of memory that any request issued by
the session can consume.

 SET SESSION RESOURCE POOL associates a user session with specified resource pool.

System Tables

 RESOURCE_ACQUISITIONS provides details of resources (memory, open file handles,
threads) acquired by each request for each resource pool in the system.

-468-

Administrator's Guide

 RESOURCE_POOL_DEFAULTS (systab) lists default values for parameters in each internal
and user-defined resource pool.

 RESOURCE_POOL_STATUS provides configuration settings of the various resource pools in
the system, including internal pools.

 RESOURCE_POOLS displays information about the parameters the resource pool was
configured with.

 RESOURCE_QUEUES provides information about requests pending for various resource
pools.

 RESOURCE_REJECTIONS monitors requests for resources that are rejected by the
Resource Manager.

 RESOURCE_REJECTION_DETAILS records an entry for each resource request that HP
Vertica denies. This is useful for determining if there are resource space issues, as well as
which users/pools encounter problems

 SYSTEM_RESOURCE_USAGE provides history about system resources, such as memory,
CPU, network, disk, I/O.

See Also

 Managing Resources at Query Run Time (page 474)

 Analyzing Workloads (page 658)

The Resource Manager

On a single-user environment, the system can devote all resources to a single query, getting the
most efficient execution for that one query. It's more common, however, that your environment will
run several queries at once, which could cause tension between providing each query the
maximum amount of resources (fastest run time) and serving multiple queries simultaneously with
a reasonable run time.

The HP Vertica Resource Manager (RM) provides lets you resolve this tension, while ensuring
that every query eventually gets serviced and that true system limits are respected at all times. For
example, when the system experiences resource pressure, the Resource Manager might queue
queries until the resources become available or a timeout value is reached. Also, when you
configure various RM settings, you can tune each query's target memory based on the expected
number of concurrent queries running against the system.

This section discusses the detailed architecture and operation of the Resource Manager.

Resource Manager Impact on Query Execution
The Resource Manager (RM) impacts individual query execution in various ways. When a query is
submitted to the database, the following series of events occur:

-469-

 Managing the Database

1 The query is parsed, optimized to determine an execution plan, and distributed to the
participating nodes.

2 The Resource Manager is invoked on each node to estimate resources required to run the
query and compare that with the resources currently in use. One of the following will occur:

 If the memory required by the query alone would exceed the machine's physical memory,
the query is rejected - it cannot possibly run. Outside of significantly under-provisioned
nodes, this case is very unlikely.

 If the resource requirements are not currently available, the query is queued. The query will
remain on the queue until either sufficient resources are freed up and the query runs or the
query times out and is rejected.

 Otherwise the query is allowed to run.

3 The query starts running when all participating nodes allow it to run.

NOTE: Once the query is running, the Resource Manager further manages resource

allocation using RUNTIMEPRIORITY and RUNTIMEPRIORITYTHRESHOLD parameters for the

resource pool. See Managing Resources at Query Run Time (page 474) for more
information.

Apportioning resources for a specific query and the maximum number of queries allowed to run
depends on the resource pool configuration. See Resource Pool Architecture (page 469).

On each node, no resources are reserved or held while the query is in the queue. However,
multi-node queries queued on some nodes will hold resources on the other nodes. HP Vertica
makes every effort to avoid deadlocks in this situation.

Resource Pool Architecture

The Resource Manager handles resources as one or more resource pools, which are a
pre-allocated subset of the system resources with an associated queue.

HP Vertica is preconfigured with a set of built-in pools that allocate resources to different request
types, where the GENERAL pool allows for a certain concurrency level based on the RAM and
cores in the machines.

Modifying and creating resource pools

You can configure the build-in GENERAL pool based on actual concurrency and performance
requirements, as described in Guidelines for Setting Pool Parameters (page 478). You can also
create custom pools to handle various classes of workloads and optionally restrict user requests to
your custom pools.

You create a pool using the CREATE RESOURCE POOL command. See the SQL Reference
Manual for details.

-470-

Administrator's Guide

Monitoring Resource Pools and Resource Usage by Queries

The Linux top command http://linux.die.net/man/1/top can be used to determine the overall
CPU usage and I/O waits across the system. However, resident memory size indicated by top is
not a good indicator of actual memory use or reservation because of file system caching and so
forth. Instead, HP Vertica provides several monitoring tables that provide detailed information
about resource pools, their current memory usage, resources requested and acquired by various
requests and the state of the queues.

The RESOURCE_POOLS table lets you view various resource pools defined in the system (both
internal and user-defined), and the RESOURCE_POOL_STATUS table lets you view the current
state of the resource pools.

Examples

The following command returns the various resource pools defined in the system.

VMart=> SELECT name, memorysize, maxmemorysize, priority, runtimepriority,

 runtimeprioritythreshold, runtimecap, maxconcurrency

 FROM V_CATALOG.RESOURCE_POOLS;

 name | memorysize | maxmemorysize | priority | runtimepriority | runtimeprioritythreshold |

runtimecap | maxconcurrency

----------+------------+---------------+----------+-----------------+--------------------------+-

-----------+----------------

 general | | Special: 95% | 0 | MEDIUM | 2 |

|

 sysquery | 64M | | 110 | HIGH | 0 |

|

 sysdata | 100M | 10% | | | |

|

 wosdata | 0% | 25% | | | |

|

 tm | 200M | | 105 | MEDIUM | 60 |

| 3

 refresh | 0% | | -10 | MEDIUM | 60 |

|

 recovery | 0% | | 107 | MEDIUM | 60 |

| 1

 dbd | 0% | | 0 | MEDIUM | 0 |

|

 mypool | 0% | | 0 | MEDIUM | 2 |

|

 ceo_pool | 0% | | 0 | MEDIUM | 2 |

|

(10 rows)

To see only the user-defined resource pools, you can limit your query to return records where
IS_INTERNAL is false.

Note: The user-defined pools below are used as examples in subsequent sections related to

Workload Management.

The following command returns information on user-defined resource pools:

=> SELECT name, memorysize, maxmemorysize, priority, maxconcurrency

 FROM V_CATALOG.RESOURCE_POOLS where is_internal ='f';

 name | memorysize | maxmemorysize | priority | maxconcurrency

--------------+------------+---------------+----------+----------------

http://linux.die.net/man/1/top

-471-

 Managing the Database

 load_pool | 0% | | 10 |

 ceo_pool | 250M | | 10 |

 ad hoc_pool | 200M | 200M | 0 |

 billing_pool | 0% | | 0 | 3

 web_pool | 25M | | 10 | 5

 batch_pool | 150M | 150M | 0 | 10

 dept1_pool | 0% | | 5 |

 dept2_pool | 0% | | 8 |

(8 rows)

The queries borrow memory from the GENERAL pool and show the amount of memory in use from
the GENERAL pool.

The following command uses the V_MONITOR.RESOURCE_POOL_STATUS table to return the
current state of all resource pools on node0001:

=> SELECT pool_name, memory_size_kb, memory_size_actual_kb, memory_inuse_kb,

general_memory_borrowed_kb,

 running_query_count FROM V_MONITOR.RESOURCE_POOL_STATUS where node_name ilike '%node0001';

 pool_name | memory_size_kb | memory_size_actual_kb | memory_inuse_kb | general_memory_borrowed_kb

| running_query_count

-----------+----------------+-----------------------+-----------------+--------------------------

--+---------------------

 general | 15108517 | 15108517 | 0 | 0

| 0

 sysquery | 65536 | 65536 | 0 | 0

| 0

 sysdata | 102400 | 102400 | 4096 | 0

| 0

 wosdata | 0 | 0 | 0 | 0

| 0

 tm | 204800 | 204800 | 0 | 0

| 0

 refresh | 0 | 0 | 0 | 0

| 0

 recovery | 0 | 0 | 0 | 0

| 0

 dbd | 0 | 0 | 0 | 0

| 0

(8 rows)

The following command uses the V_MONITOR.RESOURCE_ACQUISITIONS table to show all

resources granted to the queries that are currently running:

Note: While running vmart_query_04.sql from the VMart example database, notice that
the query uses memory_inuse_kb = 219270 from the GENERAL pool.

=> SELECT pool_name, thread_count, open_file_handle_count, memory_inuse_kb, queue_entry_timestamp,

 acquisition_timestamp FROM V_MONITOR.RESOURCE_ACQUISITIONS WHERE node_name ILIKE '%node0001';

 pool_name | thread_count | open_file_handle_count | memory_inuse_kb | queue_entry_timestamp

| acquisition_timestamp

-----------+--------------+------------------------+-----------------+---------------------------

----+-------------------------------

 sysquery | 4 | 0 | 4103 | 2010-04-12 15:57:05.526678-04

| 2010-04-12 15:57:05.526684-04

 general | 4 | 5 | 219270 | 2010-04-12 15:56:38.95516-04

| 2010-04-12 15:56:38.956373-04

 sysdata | 0 | 0 | 4096 | 2010-04-12 12:58:06.063178-04

| 2010-04-12 13:11:54.930346-04

 wosdata | 0 | 0 | 0 | 2010-04-12 15:22:33.454542-04

| 2010-04-12 15:22:33.454548-04

(4 rows)

-472-

Administrator's Guide

To determine how long a query waits in the queue before it is admitted to run, you can get the
difference between the acquisition_timestamp and the queue_entry_timestamp using

a query like the following:

=> SELECT pool_name, queue_entry_timestamp, acquisition_timestamp,

(acquisition_timestamp-queue_entry_timestamp)

 AS 'queue wait' FROM V_MONITOR.RESOURCE_ACQUISITIONS WHERE node_name ILIKE '%node0001';

 pool_name | queue_entry_timestamp | acquisition_timestamp | queue wait

--------------+-------------------------------+-------------------------------+-----------------

 sysquery | 2010-04-14 10:43:45.931525-04 | 2010-04-14 10:43:45.931532-04 | 00:00:00.000007

 billing_pool | 2010-04-14 10:39:24.295196-04 | 2010-04-14 10:39:24.296469-04 | 00:00:00.001273

 ceo_pool | 2010-04-14 10:40:07.281384-04 | 2010-04-14 10:40:07.29919-04 | 00:00:00.017806

 sysdata | 2010-04-12 12:58:06.063178-04 | 2010-04-12 13:11:54.930346-04 | 00:13:48.867168

 wosdata | 2010-04-12 15:22:33.454542-04 | 2010-04-12 15:22:33.454548-04 | 00:00:00.000006

(5 rows)

See the SQL Reference Manual for detailed descriptions of the monitoring tables described in this
topic.

User Profiles

User profiles are attributes associated with a user that control that user's access to several system
resources. These resources include:

 Resource pool to which a user is assigned (RESOURCE POOL)

 Maximum amount of memory a user's session can use (MEMORYCAP)

 Maximum amount of temporary file storage a user's session can use (TEMPSPACECAP)

 Maximum amount of time a user's query can run (RUNTIMECAP)

You can set these attributes with the CREATE USER statement and modify the attributes later
with ALTER USER.

Two strategies limit a user's access to resources: Setting attributes on the user directly to control
resource use, or assigning the user to a resource pool. The first method lets you fine tune
individual users, while the second makes it easier to group many users together and set their
collective resource usage.

The following examples illustrate how to set a user's resource pool attributes. For additional
examples, see the scenarios described in Using User-defined Pools and User-Profiles for
Workload Management (page 482).

Example

Set the user's RESOURCE POOL attribute to assign the user to a resource pool. To create a user
named user1 who has access to the resource pool my_pool, use the command:

=> CREATE USER user1 RESOURCE POOL my_pool;

To limit the amount of memory for a user without designating a pool, set the user's MEMORYCAP
to either a particular unit or a percentage of the total memory available. For example, to create a
user named user2 whose sessions are limited to using 200 megabytes memory each, use the
command:

-473-

 Managing the Database

=> CREATE USER user2 MEMORYCAP '200M';

To limit the time a user's queries are allowed to run, set the RUNTIMECAP attribute. To prevent
user2's queries from running more than 5 minutes, you can use the command:

=> ALTER USER user2 RUNTIMECAP '5 minutes';

To limit the amount of temporary disk space that the user's sessions can use, set the
TEMPSPACECAP to either a particular size or a percentage of temporary disk space available.
This example creates user3 who is limited to using 1 gigabyte of temporary space:

=> CREATE USER user3 TEMPSPACECAP '1G';

You can combine different attributes into a single command. For example, to limit a user3's
MEMORYCAP and RUNTIMECAP, include both attributes in an ALTER USER command:

=> ALTER USER user3 MEMORYCAP '750M' RUNTIMECAP '10 minutes';

ALTER USER

=> \x

Expanded display is on.

=> SELECT * FROM USERS;

-[RECORD 1]-----+------------------

user_id | 45035996273704962

user_name | release

is_super_user | t

resource_pool | general

memory_cap_kb | unlimited

temp_space_cap_kb | unlimited

run_time_cap | unlimited

-[RECORD 2]-----+------------------

user_id | 45035996273964824

user_name | user1

is_super_user | f

resource_pool | my_pool

memory_cap_kb | unlimited

temp_space_cap_kb | unlimited

run_time_cap | unlimited

-[RECORD 3]-----+------------------

user_id | 45035996273964832

user_name | user2

is_super_user | f

resource_pool | general

memory_cap_kb | 204800

temp_space_cap_kb | unlimited

run_time_cap | 00:05

-[RECORD 4]-----+------------------

user_id | 45035996273970230

user_name | user3

is_super_user | f

resource_pool | general

memory_cap_kb | 768000

temp_space_cap_kb | 1048576

run_time_cap | 00:10

-474-

Administrator's Guide

See Also

ALTER USER and CREATE USER in the SQL Reference Manual

Target Memory Determination for Queries in Concurrent Environments

The resource pool parameters of MEMORYSIZE and PLANNEDCONCURRENCY (CREATE
RESOURCE POOL in the SQL Reference Manual) provide the options that let you tune the target
memory allocated to queries. The query_budget_kb column in the

V_MONITOR.RESOURCE_POOL_STATUS system table shows the target memory for queries
executed on the associated pool. Normally, queries do not require any specific tuning, but if
needed, the general formula for computing query_budget_kb is as follows:

 If MEMORYSIZE is set to 0, in which case the pool borrows all memory as needed from the
GENERAL pool, the target amount of memory for the query is calculated using the Queueing
Threshold of the GENERAL pool / PLANNEDCONCURRENCY.

 If the resource pool for the query has the MEMORYSIZE parameter set, and the pool is
standalone (i.e. cannot borrow from General pool) then the target memory is to use the amount
of memory in the Queueing Threshold of the pool / PLANNEDCONCURRENCY.

 Otherwise, if MEMORYSIZE is set but the pool is not standalone, the target memory is set to
MEMORYSIZE / PLANNEDCONCURRENCY of the pool.

Therefore, by carefully tuning the MEMORYSIZE and PLANNEDCONCURRENCY parameters, it
is possible to restrict the amount of memory used by a query to a desired size.

See Also

MEMORYCAP setting in User Profiles (page 472)

RESOURCE_POOL_STATUS.QUEUEING_THRESHOLD_KB in the SQL Reference Manual

Managing Resources at Query Run Time

The Resource Manager estimates the resources required for queries to run, and then determines
when to run queries and when to queue them.

The Resource Manager also lets you manage resources that are assigned to queries that are
already running using either of these methods:

 Setting Run-Time Priority for the Resource Pool (page 475)--Use resource pool
parameters to set the run time priority for queries running within the resource pool.

 Changing Run-Time Priority of a Running Query (page 476)--Manually change the run
time priority of a running query.

-475-

 Managing the Database

Setting Run-Time Priority for the Resource Pool

For each resource pool, you can manage resources that are assigned to queries that are already
running. You assign each resource pool a run-time priority of HIGH, MEDIUM, or LOW. These
settings determine the amount of run-time resources (such as CPU and I/O bandwidth) assigned
to queries in the resource pool when they run. Queries in a resource pool with a HIGH priority are
assigned greater runtime resources than those in resource pools with MEDIUM or LOW runtime
priorities.

Prioritizing Queries Within a Resource Pool

While run-time priority helps to manage resources for the resource pool, there may be instances
where you want some flexibility within a resource pool. For instance, you may want to ensure that
very short queries run at a high priority, while also ensuring that all other queries run at a medium
or low priority.

The Resource Manager allows you this flexibility by letting you set a run-time priority threshold for
the resource pool. With this threshold, you specify a time limit (in seconds) by which a query must
finish before it is assigned the runtime priority of the resource pool. All queries begin running with
a HIGH priority; once a query's duration exceeds the time limit specified in the run-time priority
threshold, it is assigned the run-time priority of the resource pool.

How to Set Run-Time Priority and Run-Time Priority Threshold

You specify run-time priority and run-time priority threshold when creating or modifying a resource
pool. In the CREATE RESOURCE POOL or ALTER RESOURCE POOL statements, use these
parameters:

Parameter Description

RUNTIMEPRIORITY Determines the amount of run-time resources (CPU, I/O
bandwidth) the Resource Manager should dedicate to queries

already running in the resource pool. Valid values are:

 HIGH

 MEDIUM

 LOW

Queries with a HIGH run-time priority are given more CPU and

I/O resources than those with a MEDIUM or LOW run-time

priority.

RUNTIMEPRIORITYTHRESHOLD Specifies a time limit (in seconds) by which a query must finish
before the Resource Manager assigns to it the
RUNTIMEPRIORITY of the resource pool. All queries begin

runnng at a HIGH priority. When a query's duration exceeds
this threshold, it is assigned the RUNTIMEPRIORITY of the

resource pool.

See also

 CREATE RESOURCE POOL

 ALTER RESOURCE POOL

-476-

Administrator's Guide

Changing Run-Time Priority of a Running Query

The CHANGE_CURRENT_STATEMENT_RUNTIME_PRIORITY function allows you to change a

query's run-time priority. When you run this function, you specify only the transaction ID and the
run-time priority value you want to assign. HP Vertica changes the priority of the query that is
currently running within the transaction.

Note: You cannot change the run-time priority of a query that has not yet begun executing.

Database administrators can change the run-time priority of any query to any level. Users can
change the run-time priority of only their own queries. In addition, users cannot raise the run-time
priority of a query to a level higher than that of the resource pools.

How To Change the Run-Time Priority of a Running Query

1 Use the following statement to see the run-time priority of all queries running in the session.
Note the transaction ID for the query you want to change; you must specify the transaction ID
to change the priority of the current query:

SELECT transaction_id, runtime_priority, transaction_description from

SESSIONS;

2 Run the CHANGE_CURRENT_STATEMENT_RUNTIME_PRIORITY meta-function, specifying
the transaction ID for the query whose run-time priority you want to change:

SELECT CHANGE_CURRENT_STATEMENT_RUNTIME_PRIORITY(45035996273705748,

'low')

Using CHANGE_RUNTIME_PRIORITY

The CHANGE_RUNTIME_PRIORITY function allows you to change the priority of a running
query. Introduced in a previous release, this function required you to specify both the transaction
ID and the statement ID of the query whose priority you wanted to change. With the introduction of

CHANGE_CURRENT_STATEMENT_RUNTIME_PRIORITY, you no longer need to specify the
statement ID, and should therefore begin using
CHANGE_CURRENT_STATEMENT_RUNTIME_PRIORITY instead.

CHANGE_RUNTIME_PRIORITY will be removed in a future release. However, if you choose to
use this function, you can avoid specifying the query statement ID by setting the statement ID
value to NULL.

See also

CHANGE_CURRENT_STATEMENT_RUNTIME_PRIORITY in the SQL Reference Manual.

CHANGE_RUNTIME_PRIORITY in the SQL Reference Manual.

-477-

 Managing the Database

Restoring Resource Manager Defaults

The system table V_CATALOG.RESOURCE_POOL_DEFAULTS stores default values for all
parameters for all built-in and user-defined resource pools.

If you have changed the value of any parameter in any of your resource pools and want to restore
it to its default, you can simply alter the table and set the parameter to DEFAULT. For example, the
following statement sets the RUNTIMEPRIORITY for the resource pool sysquery back to its
default value:

VMart=> ALTER RESOURCE POOL sysquery RUNTIMEPRIORITY DEFAULT;

See also

RESOURCE_POOL_DEFAULTS

-478-

 478

Best Practices for Managing Workload Resources

This section provides general guidelines and best practices on how to set up and tune resource
pools for various common scenarios.

Note: The exact settings for the pool parameters are heavily dependent on your query mix,

data size, hardware configuration, and concurrency requirements. HP recommends performing
your own experiments to determine the optimal configuration for your system.

Basic Principles for Scalability and Concurrency Tuning

An HP Vertica database runs on a cluster of commodity hardware. All loads and queries running
against the database take up system resources, such as CPU, memory, disk I/O bandwidth, file
handles, and so forth. The performance (run time) of a given query depends on how much
resource it has been allocated.

When running more than one query concurrently on the system, both queries are sharing the
resources; therefore, each query could take longer to run than if it was running by itself. In an
efficient and scalable system, if a query takes up all the resources on the machine and runs in X
time, then running two such queries would double the run time of each query to 2X. If the query
runs in > 2X, the system is not linearly scalable, and if the query runs in < 2X then the single query
was wasteful in its use of resources. Note that the above is true as long as the query obtains the
minimum resources necessary for it to run and is limited by CPU cycles. Instead, if the system
becomes bottlenecked so the query does not get enough of a particular resource to run, then the
system has reached a limit. In order to increase concurrency in such cases, the system must be
expanded by adding more of that resource.

In practice, HP Vertica should achieve near linear scalability in run times, with increasing
concurrency, until a system resource limit is reached. When adequate concurrency is reached
without hitting bottlenecks, then the system can be considered as ideally sized for the workload.

Note: Typically HP Vertica queries on segmented tables run on multiple (likely all) nodes of the
cluster. Adding more nodes generally improves the run time of the query almost linearly.

Guidelines for Setting Pool Parameters

This section provides guidelines on setting the various parameters of any resource pool. You
should tune resource pools only to address specific workload issues. The default configuration is
designed for a balanced, high throughput environment. See Using User-defined Pools and
User-profiles for Workload Management (page 482) for examples of situations where you might
want to create your own pools.

-479-

 Managing the Database

 Note: Consider the following computational resources of your database cluster nodes to
ensure that your pool parameter settings optimize the performance of the resource pools:

 CPU

 RAM

 Storage subsystems

 Network bandwidth

Parameter Guideline

MEMORYSIZE Ignore if tuning the GENERAL pool.

For other pools, you can leave the setting to the default (0%),
which allows the pool to borrow memory from the General pool,
as needed. Consider setting this in the following situations:

 To set aside memory for exclusive use of requests issued to

that pool. This memory then cannot be used for other
purposes, even if there are no requests made to that pool.

 In combination with PLANNEDCONCURRENCY, to tune the

memory used by a certain query to a certain size, where
applicable. This is for expert use only.

See Target Memory Determination for Queries in Concurrent
Environments (page 474).

MAXMEMORYSIZE Ignore if tuning the GENERAL pool.

For other pools, use this parameter to set up the resource pool as a

standalone pool or to limit how much memory the resource pool can
borrow from the GENERAL pool. This provides a mechanism to enforce

a hard limit on the memory usage by certain classes of workload; for

example, loads should take up no more than 4GB of total available
memory.

See Scenario: Restricting resource usage and concurrency of

ad-hoc application (page 485)

EXECUTIONPARALLELISM Use this parameter to limit the number of threads that would be used to
process any single query issued in this resource pool. Reducing this

parameter may increase the throughput of short queries issued in the
pool, especially if the queries are executed concurrently. If you choose
the default of AUTO, HP Vertica sets this value for you. If you choose

to manually set this parameter, set it to a value between 1 and the
number of cores.

PRIORITY Use this parameter to prioritize the use of GENERAL pool resources,

either by requests made directly to the GENERAL pool, or by requests

made to other pools borrowing memory from the GENERAL pool.

The PRIORITY for internal pools (SYSQUERY, RECOVERY, and TM)

ranges from –110 to 110. Administrator-created pools have a

PRIORITY range of –100 to 100. Internal pools should always have a

higher priority than created pools.

-480-

Administrator's Guide

Pool PRIORITY is relative; a pool with a higher PRIORITY value has

the same increased access to pool resources as a pool with a lower
PRIORITY value, regardless of the difference between their

PRIORITY values.

When you install HP Vertica, requests made to the RECOVERY pool

have highest priority out of the box so that HP Vertica can
expeditiously provide resources to recover nodes that are down.

Note: The PRIORITY setting has no meaning for a standalone pool,

which does not borrow memory from the GENERAL pool. See examples

in Scenario: Periodic Batch Loads (page 483) and Scenario:
Setting Priorities on Queries Issued by Different Users (page 489).

RUNTIMEPRIORITY Use this parameter to set the priority for running queries in this

resource pool. Any query with a duration that exceeds the value in the
RUNTIMEPRIORITYTHRESHOLD property will be assigned the
run-time priority you specify here.

 If you want to ensure that short queries will always run at a
high priority, set the RUNTIMEPRIORITY parameter to

MEDIUM or LOW and set the

RUNTIMEPRIORITYTHRESHOLD to a small number that will
accommodate your short queries.

 If you want all queries in the resource pool to always run a the

specified value, set the RUNTIMEPRIORITY parameter to

HIGH, MEDIUM, or LOW and also set the
RUNTIMEPRIORITYTHRESHOLD to 0. Setting

RUNTIMEPRIORITYTHRESHOLD to 0 effectively turns off the

RUNTIMEPRIORITYTHRESHOLD feature. All queries will run

with the RUNTIMEPRIORITY of the resource pool.

RUNTIMEPRIORITYTHRESHOLD [Default: 2] Use this parameter to specify the duration (in seconds) of
queries that should always run with HIGH run-time priority. Because all

queries begin running with a RUNTIMEPRIORITY of HIGH, queries
that finish within the specified threshold will run at a HIGH priority; all
other queries will be assigned the runtime priority assigned to the

resource pool.

To disable this feature, set the RUNTIMEPRIORITYTHRESHOLD to
0.

QUEUETIMEOUT Use this parameter to change the timeout of the pool from the 5 -minute
default.

The timeout can be customized if you need different queuing durations

for different classes of workloads. For example, long-running batch
workloads could be configured to run on a pool with high timeout
values, possibly unlimited, since completion of the task is more critical

than response time.

For interactive application queries, the timeouts could be set to low or 0
to ensure application gets an immediate error if the query cannot run.

Note: Be mindful that increased timeouts will lead to longer queue

lengths and will not necessarily improve the overall throughput of the
system.

PLANNEDCONCURRENCY This parameter specifies the typical number of queries running

-481-

 Managing the Database

concurrently in the system. Set PLANNEDCONCURRENCY to AUTO to

specify that HP Vertica should calculate this number. HP Vertica takes
the lower of these two values:

 Number of cores

 Memory/2GB

The minimum value for PLANNEDCONCURRENCY is 4.

HP Vertica advises changing this value only after evaluating

performance over a period of time.

The Tuple Mover draws its resources from the TM pool. For the TM

pool, the PLANNEDCONCURRENCY parameter must be proportional to

the size of the RAM, the CPU, and the storage subsystem. Depending
on the storage type, if you increase PLANNEDCONCURRENCY for the

Tuple Mover threads, you might create storage I/O bottleneck. Monitor
the storage subsystem; if it becomes saturated with long I/O queues,
more than two I/O queues, and long latency in read and write, adjust

the PLANNEDCONCURRENCY parameter to keep the storage subsystem

resources below saturation level. In addition, you might need to:

 Partition storage data files

 Adjust block-size optimization on storage subsystems such as
RAID 5 or RAID 10

Identify the optimal number of disks in the RAID array.

Notes:

 Consider the tradeoff between giving each query its maximum

amount of resources and allowing many concurrent queries to
run in a reasonable amount of time. For more information, see
Target Memory Determination for Queries in Concurrent
Environments (page 474).

 This parameter can be used in combination with
MEMORYSIZE to tune the memory used by a query down to a
specific size.

 For clusters where the number of cores differs on different

nodes, AUTO can apply differently on each
node. Distributed queries run like the minimal effective
planned concurrency. Single node queries run with the
planned concurrency of the initiator.

 If you created or upgraded your database in 4.0 or 4.1, the
PLANNEDCONCURRENCY setting on the GENERAL pool defaults

to a too-small value for machines with large numbers of cores.
To adjust to a more appropriate value:

 => ALTER RESOURCE POOL general PLANNEDCONCURRENCY

<#cores>;

 This parameter only needs to be set if you created a database
before 4.1, patchset 1.

MAXCONCURRENCY Use this parameter if you want to impose a hard limit on the number of
concurrent requests that are allowed to run against any pool, including

the GENERAL pool.

Instead of limiting this at the pool level, it is also possible to limit at the
connection level using MaxClientSessions (page 37).

-482-

Administrator's Guide

RUNTIMECAP Use this parameter to prevent runaway queries. This parameter sets

the maximum amount of time any query on the pool can execute. Set
RUNTIMECAP using interval, such as '1 minute' or '100 seconds' (see

Interval Values for details). This value cannot exceed one year. Setting

this value to NONE means there is no time limit on queries running on
the pool. If the user or session also has a RUNTIMECAP, the shorter

limit applies.

SINGLEINITIATOR This parameter is included for backwards compatibility only. Do not
change the default (false) value.

See Also

CREATE RESOURCE POOL

ALTER RESOURCE POOL

Setting a Run-Time Limit for Queries

You can set a limit for the amount of time a query is allowed to run using the RUNTIMECAP

parameter. You can set this parameter for a:

 User, in the user's profile (See CREATE USER)

 Resource pool (See CREATE RESOURCE POOL)

 Session (See SET SESSION RUNTIMECAP)

In all cases, you set this parameter as an interval value, and the value cannot exceed one year.
When RUNTIMECAP has been set for two or more of these levels, HP Vertica always uses the

shortest value.

Example:

 User1 is assigned to the ad_hoc_queries resource pool

 RUNTIMECAP for User1 is set to 1 hour

 RUNTIMECAP for the ad_hoc_queries resource pool is set to 30 minutes

In this example, HP Vertica terminates any of User1's queries if they surpass the 30-minute
RUNTIMECAP for the resource pool.

See Also

RESOURCE_POOLS

Using User-defined Pools and User-Profiles for Workload Management

The scenarios in this section describe some of the most common workload-management issues
and provide solutions with examples.

-483-

 Managing the Database

Scenario: Periodic Batch Loads

Scenario

You do batch loads every night, or occasionally (infrequently) during the day. When loads are
running, it is acceptable to reduce resource usage by queries, but at all other times you want all
resources to be available to queries.

Solution

Create a separate resource pool for loads with a higher priority than the preconfigured setting on
the build-in GENERAL pool.

In this scenario, nightly loads get preference when borrowing memory from the GENERAL pool.
When loads are not running, all memory is automatically available for queries.

Note: If you are using the WOS, tune the PLANNEDCONCURRENCY parameter of the

WOSDATA pool to the number of concurrent loads. This ensures that AUTO spill to ROS is
configured in an optimal fashion.

Example

Create a resource pool with the PRIORITY of the pool set higher than the GENERAL pool.

For example, to create a pool designated for loads that has a higher priority then the GENERAL
pool, set load_pool with a priority of 10:

=> CREATE RESOURCE POOL load_pool PRIORITY 10;

Edit the WOSDATA pool PLANNEDCONCURRENCY:

=> ALTER RESOURCE POOL WOSDATA PLANNEDCONCURRENCY 6;

Modify the user's resource pool:

=> ALTER USER load_user RESOURCE POOL load_pool;

Scenario: The CEO Query

Scenario

The CEO runs a report every Monday at 9AM, and you want to be sure that the report always runs.

Solution

To ensure that a certain query or class of queries always gets resources, you could create a
dedicated pool for it as follows:

1 Using the PROFILE command, run the query that the CEO runs every week to determine how
much memory should be allocated:

=> PROFILE SELECT DISTINCT s.product_key, p.product_description

-> FROM store.store_sales_fact s, public.product_dimension p

-> WHERE s.product_key = p.product_key AND s.product_version =

p.product_version

-> AND s.store_key IN (

-484-

Administrator's Guide

-> SELECT store_key FROM store.store_dimension

-> WHERE store_state = 'MA')

-> ORDER BY s.product_key;

2 At the end of the query, the system returns a notice with resource usage:

NOTICE: Statement is being profiled.

HINT: select * from v_monitor.execution_engine_profiles where

transaction_id=45035996273751349 and statement_id=6;

NOTICE: Initiator memory estimate for query: [on pool general: 1723648

KB,

minimum: 355920 KB]

3 Create a resource pool with MEMORYSIZE reported by the above hint to ensure that the CEO
query has at least this memory reserved for it:

=> CREATE RESOURCE POOL ceo_pool MEMORYSIZE '1800M' PRIORITY 10;

CREATE RESOURCE POOL

=> \x

Expanded display is on.

=> SELECT * FROM resource_pools WHERE name = 'ceo_pool';

-[RECORD 1]-------+-------------

name | ceo_pool

is_internal | f

memorysize | 1800M

maxmemorysize |

priority | 10

queuetimeout | 300

plannedconcurrency | 4

maxconcurrency |

singleinitiator | f

4 Assuming the CEO report user already exists, associate this user with the above resource pool
using ALTER USER statement.

=> ALTER USER ceo_user RESOURCE POOL ceo_pool;

5 Issue the following command to confirm that the ceo_user is associated with the ceo_pool:

=> SELECT * FROM users WHERE user_name ='ceo_user';

-[RECORD 1]-+------------------

user_id | 45035996273713548

user_name | ceo_user

is_super_user | f

resource_pool | ceo_pool

memory_cap_kb | unlimited

If the CEO query memory usage is too large, you can ask the Resource Manager to reduce it to fit
within a certain budget. See Target Memory Determination for Queries in Concurrent
Environments (page 474).

-485-

 Managing the Database

Scenario: Preventing Run-away Queries

Scenario

Joe, a business analyst often runs big reports in the middle of the day that take up the whole
machine's resources.You want to prevent Joe from using more than 100MB of memory, and you
want to also limit Joe's queries to run for less than 2 hours.

Solution

User Profiles (page 472) provides a solution to this scenario. To restrict the amount of memory
Joe can use at one time, set a MEMORYCAP for Joe to 100MB using the ALTER USER
command. To limit the amount of time that Joe's query can run, set a RUNTIMECAP to 2 hours
using the same command. If any query run by Joe takes up more than its cap, HP Vertica rejects
the query.

If you have a whole class of users whose queries you need to limit, you can also create a resource
pool for them and set RUNTIMECAP for the resource pool. When you move these users to the
resource pool, HP Vertica limits all queries for these users to the RUNTIMECAP you specified for
the resource pool.

Example
=> ALTER USER analyst_user MEMORYCAP '100M' RUNTIMECAP '2 hours';

If Joe attempts to run a query that exceeds 100MB, the system returns an error that the request
exceeds the memory session limit, such as the following example:

\i vmart_query_04.sql

vsql:vmart_query_04.sql:12: ERROR: Insufficient resources to initiate plan

on pool general [Request exceeds memory session limit: 137669KB > 102400KB]

Only the system database administrator (dbadmin) can increase only the MEMORYCAP setting.
Users cannot increase their own MEMORYCAP settings and will see an error like the following if
they attempt to edit their MEMORYCAP or RUNTIMECAP settings:

ALTER USER analyst_user MEMORYCAP '135M';

ROLLBACK: permission denied

Scenario: Restricting Resource Usage of Ad hoc Query Application

Scenario

You recently made your data warehouse available to a large group of users who are not
experienced SQL users. Some of the users run reports that operate on a large number of rows and
overwhelm the system. You want to throttle usage of the system by these users.

-486-

Administrator's Guide

Solution

The simplest solution is to create a standalone resource pool for the ad hoc applications so that
the total MEMORYSIZE is fixed. Recall that in a standalone pool, MAXMEMORYSIZE is set equal
to MEMORYSIZE so no memory can be borrowed from the GENERAL pool. Associate this user
pool with the database user(s) from which the application uses to connect to the database. In
addition, set RUNTIMECAP to limit the maximum duration of an ad hoc query.

Other solutions include limiting the memory usage of individual users such as in the Scenario:
Preventing run-away Queries (page 485).

Tip: Besides adding limits such as the above, it is also a great idea to train the user community

on writing good SQL.

Example

To create a standalone resource pool for the ad hoc users, set the MEMORYSIZE equal to the
MAXMEMORYSIZE:

=> CREATE RESOURCE POOL adhoc_pool MEMORYSIZE '200M' MAXMEMORYSIZE '200M'

 PRIORITY 0 QUEUETIMEOUT 300 PLANNEDCONCURRENCY 4;

=> SELECT pool_name, memory_size_kb, queueing_threshold_kb

 FROM V_MONITOR.RESOURCE_POOL_STATUS w

 WHERE is_standalone = 'true' AND is_internal = 'false';

 pool_name | memory_size_kb | queueing_threshold_kb

------------+----------------+-----------------------

 adhoc_pool | 204800 | 153600

(1 row)

After the pool has been created, associate the ad hoc users with the adhoc_pool:

=> ALTER USER app1_user RESOURCE POOL adhoc_pool;

=> ALTER RESOURCE POOL adhoc_pool MEMORYSIZE '10M' MAXMEMORYSIZE '10M';

\i vmart_query_04.sql

vsql:vmart_query_04.sql:12: ERROR: Insufficient resources to initiate plan

on pool adhoc_pool [Request Too Large:Memory(KB)

Exceeded: Requested = 84528, Free = 10240 (Limit = 10240, Used = 0)]

The query will not borrow memory from the GENERAL pool and gets rejected with a 'Request Too
Large' message.

Scenario: Setting a Hard Limit on Concurrency For An Application

Scenario

For billing purposes, analyst Jane would like to impose a hard limit on concurrency for this
application. How can she achieve this?

-487-

 Managing the Database

Solution

The simplest solution is to create a separate resource pool for the users of that application and set
its MAXCONCURRENCY to the desired concurrency level. Any queries beyond
MAXCONCURRENCY are queued.

Tip: HP recommends leaving PLANNEDCONCURRENCY to the default level so the queries

get their maximum amount of resources. The system as a whole thus runs with the highest
efficiency.

Example

In this example, there are four billing users associated with the billing pool. The objective is to set
a hard limit on the resource pool so a maximum of three concurrent queries can be executed at
one time. All other queries will queue and complete as resources are freed.

=> CREATE RESOURCE POOL billing_pool MAXCONCURRENCY 3 QUEUETIMEOUT 2;

=> CREATE USER bill1_user RESOURCE POOL billing_pool;

=> CREATE USER bill2_user RESOURCE POOL billing_pool;

=> CREATE USER bill3_user RESOURCE POOL billing_pool;

=> CREATE USER bill4_user RESOURCE POOL billing_pool;

=> \x

Expanded display is on.

=> SELECT * FROM users WHERE resource_pool = 'billing_pool';

 user_id | user_name | is_super_user | profile_name | is_locked | lock_time | resource_pool

| memory_cap_kb | temp_space_cap_kb | run_time_cap

-------------------+------------+---------------+--------------+-----------+-----------+---------

------+---------------+-------------------+--------------

 45035996273910978 | bill1_user | f | default | f | | billing_pool

| unlimited | unlimited | unlimited

 45035996273910982 | bill2_user | f | default | f | | billing_pool

| unlimited | unlimited | unlimited

 45035996273910986 | bill3_user | f | default | f | | billing_pool

| unlimited | unlimited | unlimited

 45035996273910990 | bill4_user | f | default | f | | billing_pool

| unlimited | unlimited | unlimited

(4 rows)

=> SELECT reason, resource_type, rejection_count, first_rejected_timestamp,

 last_rejected_timestamp, last_rejected_value

 FROM RESOURCE_REJECTIONS

 WHERE pool_name = 'billing_pool' AND node_name ilike '%node0001';

 reason | resource_type | rejection_count |

first_rejected_timestamp | last_rejected_timestamp | last_rejected_value

---------------------------------------+---------------+-----------------+-----------------------

--------+-------------------------------+---------------------

 Timedout waiting for resource request | Queries | 16 | 2010-04-13

16:28:12.640383-04 | 2010-04-14 09:35:00.056489-04 | 1

(1 row)

If queries are running and do not complete in the allotted time (default timeout setting is 5
minutes), the next query requested gets an error similar to the following:

ERROR: Insufficient resources to initiate plan on pool billing_pool

[Timedout waiting for resource request: Request exceeds limits:

Queries Exceeded: Requested = 1, Free = 0 (Limit = 3, Used = 3)]

-488-

Administrator's Guide

The table below shows that there are three active queries on the billing pool.

=> SELECT pool_name, thread_count, open_file_handle_count, memory_inuse_kb,

 queue_entry_timestamp, acquisition_timestamp

 FROM RESOURCE_ACQUISITIONS

 WHERE pool_name = 'billing_pool';

 pool_name | thread_count | open_file_handle_count | memory_inuse_kb | queue_entry_timestamp

| acquisition_timestamp

--------------+--------------+------------------------+-----------------+------------------------

-------+-------------------------------

 billing_pool | 4 | 5 | 132870 | 2010-04-14

16:24:30.136789-04 | 2010-04-14 16:24:30.138028-04

 billing_pool | 4 | 5 | 132870 | 2010-04-14

16:24:28.119842-04 | 2010-04-14 16:24:28.121261-04

 billing_pool | 4 | 5 | 132870 | 2010-04-14

16:24:26.209174-04 | 2010-04-14 16:24:26.210571-04

(3 rows)

Scenario: Handling Mixed Workloads (Batch vs. Interactive)

Scenario

You have a web application with an interactive portal. Sometimes when IT is running batch
reports, the web page takes a long time to refresh and users complain, so you want to provide a
better experience to your web site users.

Solution

The principles learned from the previous scenarios can be applied to solve this problem. The basic
idea is to segregate the queries into two groups associated with different resource pools. The
prerequisite is that there are two distinct database users issuing the different types of queries. If
this is not the case, do consider this a best practice for application design.

 METHOD 1: Create a dedicated pool for the web page refresh queries where you:

1. Size the pool based on the average resource needs of the queries and expected number of
concurrent queries issued from the portal.

2. Associate this pool with the database user that runs the web site queries. (See Scenario:
The CEO Query (page 483) for detailed procedure on creating a dedicated pool.)

This ensures that the web site queries always run and never queue behind the large batch
jobs. Leave the batch jobs to run off the GENERAL pool.

For example, the following pool is based on the average resources needed for the queries
running from the web and the expected number of concurrent queries. It also has a higher
PRIORITY to the web queries over any running batch jobs and assumes the queries are
being tuned to take 250M each:

CREATE RESOURCE POOL web_pool MEMORYSIZE '250M' MAXMEMORYSIZE NONE

PRIORITY 10 MAXCONCURRENCY 5 PLANNEDCONCURRENCY 1

-489-

 Managing the Database

 METHOD 2: Create a standalone pool to limit the batch reports down to a fixed memory size

so memory is always left available for other purposes. (See Scenario: Restricting Resource
Usage of Ad hoc Query Application (page 485).)

For example:

CREATE RESOURCE POOL batch_pool MEMORYSIZE '4G'

MAXMEMORYSIZE '4G' MAXCONCURRENCY 10:

The same principle can be applied if you have three or more distinct classes of workloads.

Scenario: Setting Priorities on Queries Issued by Different Users

Scenario

You would like user queries from one department to have a higher priority than queries from
another department.

Solution

The solution is similar to the mixed workload case (page 488). In this scenario, you do not limit
resource usage; you set different priorities. To do so, create two different pools, each with
MEMORYSIZE=0% and a different PRIORITY parameter. Both pools borrow from the GENERAL
pool, however when competing for resources, the priority determine the order in which each pool's
request is granted. For example:

=> CREATE RESOURCE POOL dept1_pool PRIORITY 5;

=> CREATE RESOURCE POOL dept2_pool PRIORITY 8;

If you find this solution to be insufficient, or if one department's queries continuously starves
another department‘s users, you could add a reservation for each pool by setting MEMORYSIZE
so some memory is guaranteed to be available for each department.

For example, since both resources are using the GENERAL pool for memory, you could allocate
some memory to each resource pool by using the ALTER RESOURCE POOL command to
change the MEMORYSIZE for each pool:

=> ALTER RESOURCE POOL dept1_pool MEMORYSIZE '100M';

=> ALTER RESOURCE POOL dept2_pool MEMORYSIZE '150M';

Scenario: Continuous Load and Query

Scenario

You want your application to run continuous load streams, but many have up concurrent query
streams. You want to ensure that performance is predictable.

Solution

The solution to this scenario will depend on your query mix; however, below are the general steps
to take:

-490-

Administrator's Guide

1 Determine the number of continuous load streams required. This may be related to the desired
load rate if a single stream does not provide adequate throughput, or may be more directly
related to the number of sources of data to load. Also determine if automatic storage is best, or
if DIRECT is required. Create a dedicated resource pool for the loads, and associate it with the
database user that will perform them. See CREATE RESOURCE POOL for details.

In general, the concurrency settings for the load pool should be less than the number of cores
per node. Unless the source processes are slow, it is more efficient to dedicate more memory
per load, and have additional loads queue. Adjust the load pool's QUEUETIMEOUT setting if
queuing is expected.

2 If using automatic targeting of COPY and INSERT, set the PLANNEDCONCURRENCY
parameter of the WOSDATA pool to the number of concurrent loads expected. Also, set
MEMORYSIZE of the WOS to the expected size of the loaded data to ensure that small loads
don't spill to ROS immediately. See Built-in Pools for details.

3 Run the load workload for a while and observe whether the load performance is as expected. If
the Tuple Mover is not tuned adequately to cover the load behavior, see Tuning the Tuple
Mover (page 464) in Administrator's Guide.

4 If there is more than one kind of query in the system (say some queries that must be answered
quickly for interactive users, and others that are part of a batch reporting process), follow the
advice in Scenario: Handling Mixed Workloads (page 488).

5 Let the queries run and observe the performance. If some classes of queries are not getting
the desired performance, then it may be necessary to tune the GENERAL pool as outlined in
Scenario: Restricting Resource Usage of Ad hoc Query Application (page 485), or to
create further dedicated resource pools for those queries. See Scenario: The CEO Query
(page 483) and Scenario: Handling Mixed Workloads (page 488).

See the sections on Managing Workloads (page 467) and CREATE RESOURCE POOL for
additional details and tips for obtaining predictable results in mixed workload environments.

Scenario: Prioritizing Short Queries at Run Time

Scenario

You recently created a resource pool for users who are not experienced with SQL and who
frequently run ad hoc reports. You have managed resource allocation by creating a standalone
resource pool that will prevent these queries for borrowing resources from the GENERAL pool, but
now you want to manage resources at run time and ensure that short queries always run with a
high priority and are never queued as a result of limited run-time resources.

Solution

Set the RUNTIMEPRIORITY for the resource pool to MEDIUM or LOW. Set the

RUNTIMEPRIORITYTHRESHOLD for the resource pool to the duration of queries you want to
ensure always run at a high priority. For instance, if you set this value to 5, all queries that
complete within 5 seconds will run at high priority. Any other query that exceeds 5 seconds will
drop down to the RUNTIMEPRIORITY assigned to the resource pool (MEDIUM or LOW).

-491-

 Managing the Database

Example

To ensure that all queries with a duration of less than 5 seconds always run at a high priority,
modify adhoc_pool as follows:

 Set the RUNTIMEPRIORITY to MEDIUM

 Set the RUNTIMETHRESHOLD to 5

=> ALTER RESOURCE POOL ad_hoc_pool RUNTIMEPRIORITY medium

RUNTIMEPRIORITYTHRESHOLD 5;

Scenario: Dropping the Runtime Priority of Long Queries

Scenario

You want most queries in a resource pool to run at a HIGH runtime priority; however, you'd like to
be able to drop jobs longer than 1 hour to a lower priority.

Solution

Set the RUNTIMEPRIORITY for the resource pool to LOW and set the
RUNTIMEPRIORITYTHRESHOLD to a number that cuts off only the longest jobs.

Example

To ensure that all queries with a duration of more than 3600 seconds (1 hour) are assigned a low
runtime priority, modify the resource pool as follows:

 Set the RUNTIMEPRIORITY to LOW.

 Set the RUNTIMETHRESHOLD to 3600

=> ALTER RESOURCE POOL ad_hoc_pool RUNTIMEPRIORITY low RUNTIMEPRIORITYTHRESHOLD

3600;

Tuning the Built-in Pools

The scenarios in this section describe how to tune the built-in pools.

Scenario: Restricting HP Vertica to Take Only 60% of Memory

Scenario

You have a single node application that embeds HP Vertica, and some portion of the RAM needs
to be devoted to the application process. In this scenario, you want to limit HP Vertica to use only
60% of the available RAM.

Solution

Set the MAXMEMORYSIZE parameter of the GENERAL pool to the desired memory size. See
Resource Pool Architecture (page 469) for a discussion on resource limits.

-492-

Administrator's Guide

Scenario: Tuning for Recovery

Scenario

You have a large database that contains a single large table with two projections, and with default
settings, recovery is taking too long. You want to give recovery more memory to improve speed.

Solution

Set the PLANNEDCONCURRENCY and MAXCONCURRENCY setting of the recovery pool to 1
so that recovery can take as much memory as possible from the GENERAL pool and run only one
thread at once.

Note: This setting could slow down other queries in your system.

Scenario: Tuning for Refresh

Scenario

When a refresh operation is running, system performance is affected and user queries get
rejected. You want to reduce the memory usage of the refresh job.

Solution

Set the MEMORYSIZE parameter of the refresh pool to a fixed value. The Resource Manager
then tunes the refresh query to only use this amount of memory.

Tip: Remember to reset the refresh pool MEMORYSIZE back to 0% after the refresh operation
completes so memory can be used for other operations.

Scenario: Tuning Tuple Mover Pool Settings

Scenario

During loads, you occasionally notice spikes in the number of ROS containers, and you would like
to make the Tuple Mover more aggressive.

Solution

Increase the MAXCONCURRENCY parameter of the TM pool to 3 or higher. This setting ensures
that the Tuple Mover can run more than one mergeout thread, so if a large mergeout is in
progress, smaller ROS containers can also be merged, thus preventing a buildup of ROS
containers.

-493-

 Managing the Database

Reducing Query Run-time

The run time of queries depends on the complexity of the query, the number of operators in the
plan, data volumes, and projection design. If the system is bottlenecked on either I/O or CPU,
queries could run more slowly than expected. In most cases, high CPU usage can be alleviated by
better projection design, and high I/O is usually due to contention because of operations like joins
and sorts that spill to disk. However, there is no single solution to fix high CPU or high I/O usage,
so queries must be examined and tuned individually.

Two primary ways to determine why a query is slow are:

 Examine the query plan using the EXPLAIN command

 Examine the execution profile by querying the EXECUTION_ENGINE_PROFILES system
table

Examining the query plan usually reveals one or more more of the following:

 Suboptimal sort order of a projection

 Cases where predicate evaluation occurs on an unsorted or unencoded column

Note: Although you cannot see that a partitioned hash join occurred in the plan, you can see

that when the optimizer chose a hash join.

 Presence of group by hash rather than pipeline

See Creating Custom Designs (page 89) to understand projection design techniques. The
Database Designer automatically applies these techniques to suggest optimal designs for queries.

Real-time profiling

HP Vertica provides profiling mechanisms that let you determine how well the database is
performing. For example, HP Vertica can collect profiling data for a single statement, a single
session, or for all sessions on all nodes.

Real-time profiling is always "on", without profiling being explicitly enabled.

For details, see in the Profiling Database Performance (page 716) Administrator's Guide and, in
particular:

 Profiling a Single Statement (page 721)

 Real-time Profiling (page 719)

 Viewing Profiling Data (page 722)

 Viewing Real-time Profiling Data (page 724)

See also EXECUTION_ENGINE_PROFILES in the SQL Reference Manual

Managing System Resource Usage
You can use the Using System Tables (page 595) to track overall resource usage on your
cluster. These and the other system tables are described in the SQL Reference Manual.

-494-

Administrator's Guide

If your queries are experiencing errors due to resource unavailability, you can use the following
system tables to obtain more details:

System Table Description

RESOURCE_REJECTIONS Monitors requests for resources that are rejected by the

Resource Manager.

DISK_RESOURCE_REJECTIO
NS

Monitors requests for resources that are rejected due to
disk space shortages. See Managing Disk Space

(page 456) for more information.

When requests for resources of a certain type are being rejected, do one of the following:

 Increase the resources available on the node by adding more memory, more disk space, and
so on. See Managing Disk Space (page 456).

 Reduce the demand for the resource by reducing the number of users on the system (see
Managing Sessions (page 494)), rescheduling operations, and so on.

The LAST_REJECTED_VALUE field in RESOURCE_REJECTIONS indicates the cause of the
problem. For example:

 The message Usage of a single requests exceeds high limit means that the
system does not have enough of the resource available for the single request. A common
example occurs when the file handle limit is set too low and you are loading a table with a large
number of columns.

See Increase the Maximum Number of Files Open in the Installation Guide for more
information.

 The message Timed out or Canceled waiting for resource reservation usually

means that there is too much contention for the resource because the hardware platform
cannot support the number of concurrent users using it.

See Also

Guidelines for Setting Pool Parameters (page 478)

Managing Sessions

HP Vertica provides powerful methods for database administrators to view and control sessions.
The methods vary according to the type of session:

 External (user) sessions are initiated by vsql or programmatic (ODBC or JDBC) connections
and have associated client state.

 Internal (system) sessions are initiated by the HP Vertica database process and have no client
state.

You can view a list of currently active sessions (including internal sessions) and can interrupt or
close external sessions when necessary, particularly when shutting down the database (page
234).

-495-

 Managing the Database

By default HP Vertica allows 50 client sessions and an additional 5 administrator sessions. You

can modify connection settings with the MaxClientSessions parameter. For example, to

increase the number of MaxClientSessions to 100, issue the following command at a vsql
prompt:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 100);

To prevent new non-dbadmin sessions from connecting, set MaxClientSessions to 0:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 0);

Viewing Sessions

HP Vertica provides the SESSIONS table to view the session status of your database. SESSIONS
contains information about external sessions and returns one row per session. This table is
described in the SQL Reference Manual.

Note: Superuser has unrestricted access to all database metadata. Users have significantly

reduced access to metadata based on their privileges. See Metadata Privileges (page 171).

Interrupting and Closing Sessions

 Interrupting a running statement returns an enclosing session to an idle state, meaning no
statements or transactions are running, no locks are held, and the database is doing no work
on behalf of the session. If no statement is running, you get an error.

 Closing a session interrupts the session and disposes of all state related to the session,
including client socket connections for external sessions.

These actions are provided in the form of SQL functions, described in the SQL Reference Manual:

 INTERRUPT_STATEMENT

 CLOSE_SESSION

 CLOSE_ALL_SESSIONS

 SHUTDOWN

SELECT statements that call these functions return when the interrupt or close message has been
delivered to all nodes, not after the interrupt or close has completed. This means there might be a
delay after the statement returns and the interrupt or close taking effect throughout the cluster. To
determine if the session or transaction has ended, you can monitor the SESSIONS system table.

Controlling Sessions

The database administrator must be able to disallow new incoming connections in order to shut
down the database. On a busy system, database shutdown is prevented if new sessions connect
after the CLOSE_SESSION or CLOSE_ALL_SESSIONS() command is invoked — and before the
database actually shuts down.

One option is for the administrator to issue the SHUTDOWN('true') command, which forces the

database to shut down and disallow new connections. See SHUTDOWN in the SQL Reference
Manual.

Another option is to modify the MaxClientSessions parameter from its original value to 0, in
order to prevent new non-dbadmin users from connecting to the database.

-496-

Administrator's Guide

1 Determine the original value for the MaxClientSessions parameter by querying the
V_MONITOR.CONFIGURATIONS_PARAMETERS system table:

=> SELECT CURRENT_VALUE FROM CONFIGURATION_PARAMETERS WHERE

parameter_name='MaxClientSessions';

 CURRENT_VALUE

 50

(1 row)

2 Set the MaxClientSessions parameter to 0 to prevent new non-dbadmin connections:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 0);

Note: The previous command allows up to five administrators to log in.

3 Issue the CLOSE_ALL_SESSIONS() command to remove existing sessions:

=> SELECT CLOSE_ALL_SESSIONS();

4 Query the SESSIONS table:

=> SELECT * FROM SESSIONS;

When the session no longer appears in the SESSIONS table, disconnect and run the Stop
Database (page 234) command.

5 Restart the database.

6 Restore the MaxClientSessions parameter to its original value:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 50);

See Also

Administrator's Guide

 Configuration Parameters (page 36)

 Stop Database (page 234)

 Shutdown Problems

SQL Reference Manual

 CONFIGURATION_PARAMETERS

 CLOSE_ALL_SESSIONS

 CLOSE_SESSION

 INTERRUPT_STATEMENT

 SESSIONS

 SHUTDOWN

Managing Load Streams

You can use the Using System Tables (page 595) to keep track of data being loaded on your
cluster.

-497-

 Managing the Database

System Table Description

LOAD_STREAMS Monitors load metrics for each load stream on each node.

These and the other SQL Monitoring API system tables are described in detail in the SQL
Reference Manual.

When a COPY statement using the DIRECT option is in progress, the ACCEPTED_ROW_COUNT field

can increase to the maximum number of rows in the input file as the rows are being parsed.

If COPY reads input data from multiple named pipes, the PARSE_COMPLETE_PERCENT field will
remain at zero (0) until all named pipes return an EOF. While COPY awaits an EOF from multiple
pipes, it may seem to be hung. Before canceling the COPY statement, however, check your
system CPU and disk accesses (page 578) to see if any activity is in progress.

In a typical load, PARSE_COMPLETE_PERCENT can either increase slowly to 100%, or jump to

100% quickly if you are loading from named pipes or STDIN, while SORT_COMPLETE_PERCENT is

at 0. Once PARSE_COMPLETE_PERCENT reaches 100%, SORT_COMPLETE_PERCENT increases
to 100%. Depending on the data sizes, a significant lag can occur between the time

PARSE_COMPLETE_PERCENT reaches 100% and the time SORT_COMPLETE_PERCENT begins to
increase.

-498-

Working With Storage Locations

HP Vertica storage locations are the specific paths you designate as places to store data and temp
files. Every node in the cluster requires at least one area in which to store data, and another
separate area in which to store database catalog files. These two storage locations are the
required defaults that must exist on each cluster node. You set up these locations as part of
installation and setup. (See Prepare Disk Storage Locations (page 16) in the Installation Guide
for disk space requirements.)

A storage location consists of an existing path on one or more nodes. HP Vertica recommends
creating the same storage locations on each cluster node, rather than on a single node. Once the
directories exist, you create a storage location using ADD_LOCATION().

This example shows a three-node cluster, each with a vertica/SSD directory for storage.

Calling the add_location() function with that path, and an empty string as the nodes value
(''), creates the storage location on each node:

Other storage locations can be on the HP Vertica cluster nodes, or available on local SANs or
other storage systems as you determine your site's requirements and needs for more storage. You
add storage locations as shown, creating a directory path on every node, and adding the path as a
designated storage location, preferably on every cluster node.

How HP Vertica Uses Storage Locations

Every time you add data to the database, or perform a DML operation, the new data is held in
memory (WOS) and moved to storage locations on disk (ROS) at regular intervals. If the object to
store has no associated storage policy, HP Vertica uses available storage locations and stores
data using its default storage algorithms.

-499-

 Working With Storage Locations

If the object to store has a storage policy, HP Vertica stores the object's data at the default labeled
location. See Creating Storage Policies (page 507).

If storage locations are no longer required at your site, you can retire or drop them, as described in
Retiring Storage Locations (page 516) and Dropping Storage Locations (page 515).

Viewing Storage Locations and Policies
You can monitor information about available storage, location labels, and your site's current
storage policies.

Viewing Disk Storage Information

Query the V_MONITOR.DISK_STORAGE system table for disk storage information on each
database node. For more information, see Monitoring Using System Tables and Altering Storage
Location Use (page 504).

NOTE: The V_MONITOR.DISK_STORAGE system table includes a CATALOG annotation,
indicating that the location is used to store catalog files. You cannot add or remove a catalog
storage location. HP Vertica creates and manages this storage location internally, and the area
exists in the same location on each cluster node.

Viewing Location Labels

Three system tables have information about storage location labels in their location_labels

columns:

 storage_containers

 storage_locations

 partitions

Use a query such as the following for relevant columns of the storage_containers system

table:

VMART=> select node_name,projection_name, location_label from v_monitor.storage_containers;

 node_name | projection_name | location_label

------------------+----------------------+-----------------

 v_vmart_node0001 | states_p_node0001 |

 v_vmart_node0001 | states_p_node0001 |

 v_vmart_node0001 | t1_b1 |

 v_vmart_node0001 | newstates_b0 | FAST3

 v_vmart_node0001 | newstates_b0 | FAST3

 v_vmart_node0001 | newstates_b1 | FAST3

 v_vmart_node0001 | newstates_b1 | FAST3

 v_vmart_node0001 | newstates_b1 | FAST3

 .

 .

 .

Use a query such as the following for columns of the v_catalog.storage_locations

system_table:

VMart=> select node_name, location_path, location_usage, location_label from storage_locations;

 node_name | location_path | location_usage | location_label

------------------+---+----------------+----------------

 v_vmart_node0001 | /home/dbadmin/VMart/v_vmart_node0001_data | DATA,TEMP |

-500-

Administrator's Guide

 v_vmart_node0001 | home/dbadmin/SSD/schemas | DATA |

 v_vmart_node0001 | /home/dbadmin/SSD/tables | DATA | SSD

 v_vmart_node0001 | /home/dbadmin/SSD/schemas | DATA | Schema

 v_vmart_node0002 | /home/dbadmin/VMart/v_vmart_node0002_data | DATA,TEMP |

 v_vmart_node0002 | /home/dbadmin/SSD/tables | DATA |

 v_vmart_node0002 | /home/dbadmin/SSD/schemas | DATA |

 v_vmart_node0003 | /home/dbadmin/VMart/v_vmart_node0003_data | DATA,TEMP |

 v_vmart_node0003 | /home/dbadmin/SSD/tables | DATA |

 v_vmart_node0003 | /home/dbadmin/SSD/schemas | DATA |

(10 rows)

Use a query such as the following for columns of the v_monitor.partitions system table:

VMART=> select partition_key, projection_name, location_label from v_monitor.partitions;

 partition_key | projection_name | location_label

---------------+----------------------+---------------

 NH | states_b0 | FAST3

 MA | states_b0 | FAST3

 VT | states_b1 | FAST3

 ME | states_b1 | FAST3

 CT | states_b1 | FAST3

 .

 .

 .

Viewing Storage Tiers

Query the storage_tiers system table to see the labeled and unlabeld storage containers and

information about both:

VMart=> select * from v_monitor.storage_tiers;

 location_label | node_count | location_count | ros_container_count |

total_occupied_size

----------------+------------+----------------+---------------------+---------

 | 1 | 2 | 17 |

297039391

 SSD | 1 | 1 | 9 |

1506

 Schema | 1 | 1 | 0 |

0

(3 rows)

Viewing Storage Policies

Query the storage_policies system table to view the current storage policy in place.

VMART=> select * from v_monitor.storage_policies;

 schema_name | object_name | policy_details | location_label

-------------+-------------+------------------+-----------------

 | public | Schema | F4

 public | lineorder | Partition [4, 4] | M3

(2 rows)

-501-

 Working With Storage Locations

Adding Storage Locations

Configuring new storage locations provides additional space, and lets you control what type of
data to store at a location. You can add a new storage location from one node to another node, or
from a single node to all cluster nodes. Do not use a shared directory on one node for other cluster
nodes to access.

You can add and configure storage locations (other than the required defaults) to provide
additional storage for these purposes:

 Isolating execution engine temporary files from data files.

 Creating labeled locations to use in storage policies.

 Creating a storage locations based on predicted or measured access patterns.

 Creating USER storage locations for specific users or user groups.

Planning Storage Locations

Adding a storage location requires minimal planning:

 Verify that the directory you plan to use for a storage location destination is an empty directory
with write permissions for the HP Vertica process.

 Plan the labels to use if you want to label the location as you create it.

 Determine the type of information to store in the storage location:

 DATA — Persistent data and temp table data

 TEMP — Temporary files that are generated and dumped to disk such as those generated
by sort, group by, join, and so on

 DATA,TEMP — Both data and temp files (the default)

 USER — Gives access to non-dbadmin users so they can use the storage location after
being granted read or write privileges. You cannot assign this location type for use in a
storage policy.

Tip: Storing temp and data files in different storage locations is advantageous because the two
types of data have different disk I/O access patterns. Temp data is distributed across locations
based on available storage space, while data can be stored on different storage locations
based on predicted or measured access patterns.

Adding the Location

Make a directory at the path to use for storage. For example:

$ mkdir /home/dbadmin/storage/SSD

HP Vertica recommends that you create the same directory path on each cluster node. This is the
path to use when creating a storage location.

Use the ADD_LOCATION() function add a storage location.

1 Specify the new data directory path to the host, the node where the location is available
(optional), and the type of information to be stored. If you specify the node as an empty string

(''), the function creates the storage locations on all cluster nodes in a single transaction.

-502-

Administrator's Guide

NOTE: For user access (non-dbadmin users), you must create the storage location with the

USER usage type. You cannot change an existing storage location to have USER access.
Once a USER storage location exists, you can grant one or more users access to the area.
User areas can store only data files, not temp files. You cannot assign a USER storage
location to a storage policy.

The following example adds a location available on all nodes to store only data:

SELECT ADD_LOCATION ('/secondVerticaStorageLocation/' , '' , 'DATA');

The following example adds a location that is available on only the initiator node to store data
and temporary files:

SELECT ADD_LOCATION ('/secondVerticaStorageLocation/');

2 If you are using a storage location for data files and want to create ranked storage locations,
where columns are stored on different disks based on their measured performance, you
should first:

1. Measure the performance of the storage location (page 513).

2. Set the performance of the storage location (page 514).

Note: Once a storage location exists, you can alter the type of information it stores, with some
restrictions. See Altering Storage Location Use (page 504).

Storage Location Subdirectories

You cannot create a storage location in a subdirectory of an existing location. For example, if you
create a storage location at one location, you cannot add a second storage location in a
subdirectory of the first:

dbt=> select add_location ('/myvertica/Test/KMM','','DATA','SSD');

 add_location

--

 /myvertica/Test/KMM added.

(1 row)

dbt=> select add_location ('/myvertica/Test/KMM/SSD','','DATA','SSD');

ERROR 5615: Location [/myvertica/Test/KMM/SSD] conflicts with existing location

[/myvertica/Test/KMM] on node v_node0001

ERROR 5615: Location [/myvertica/Test/KMM/SSD] conflicts with existing location

[/myvertica/Test/KMM] on node v_node0002

ERROR 5615: Location [/myvertica/Test/KMM/SSD] conflicts with existing location
[/myvertica/Test/KMM] on node v_node0003

Adding Labeled Storage Locations

You can add a storage location with a descriptive label. You use labeled locations to set up
storage policies for your site. See Creating Storage Policies (page 507).

This example creates a storage location on v_vmart_node0002 with the label SSD:

VMART=> select add_location ('/home/dbadmin/SSD/schemas','v_vmart_node0002',

'data', 'SSD');

 add_location

/home/dbadmin/SSD/schemas added.

(1 row)

-503-

 Working With Storage Locations

This example adds a new DATA storage location with a label, SSD. The label identifies the location

when you create storage policies. Specifying the node parameter as an empty string adds the
storage location to all cluster nodes in a single transaction:

VMART=> select add_location ('home/dbadmin/SSD/schemas', '', 'DATA', 'SSD');

 add_location

 home/dbadmin/SSD/schemas added.

(1 row)

The new storage location is listed in the v_monitor.disk_storage system table:

VMART=> select * from v_monitor.disk_storage;

.

.

.

-[RECORD 7]-----------+---

node_name | v_vmart_node0002

storage_path | /home/dbadmin/SSD/schemas

storage_usage | DATA

rank | 0

throughput | 0

latency | 0

storage_status | Active

disk_block_size_bytes | 4096

disk_space_used_blocks | 1549437

disk_space_used_mb | 6053

disk_space_free_blocks | 13380004

disk_space_free_mb | 52265

disk_space_free_percent | 89%

.

.

.

Adding a Storage Location for USER Access

You can create USER storage locations for a non-dbadmin user to access the storage location
once granted appropriate privileges.

The following examples create a storage location, BillyBobStore, with a USER usage
parameter, on node v_mcdb_node0007:

dbadmin=> SELECT ADD_LOCATION('/home/dbadmin/UserStorage/BillyBobStore',

 'v_mcdb_node0007', 'USER');

 ADD_LOCATION

 /home/dbadmin/UserStorage/BillyBobStore' added.

(1 row)

-504-

Administrator's Guide

NOTE: A data location can already exist and be in use before you identify it as a storage

location with the ADD_LOCATION function. For instance, as a superuser, you can set up an

area in which to store and test external tables. When you are ready for user BOB to access the
location, you add a storage location at the path you used for testing and grant BOB the required
privileges.

The following example grants user BillyBob READ/WRITE permissions to the
/BillyBobStore location:

dbadmin=> GRANT ALL ON LOCATION '/home/dbadmin/UserStorage/BillyBobStore' TO

BillyBob;

GRANT PRIVILEGE

For more information about configuring user privileges, see Managing Users and Privileges
(page 143) in the Administrator's Guide and the GRANT (Storage Location) and REVOKE
(Storage Location) functions in the SQL Reference Manual.

Altering Storage Location Use
You can make changes to the type of files that HP Vertica stores at a storage location, with these
restrictions:

 Labeled locations can be used only to store DATA files.

 You cannot change labeled storage to TEMP or DATA, or TEMP.

 Storage locations created with the USER option can store only DATA files.

To modify a storage location, use the ALTER_LOCATION_USE function.

This example alters the storage location on v_vmartdb_node0004 to store only data files:

=> SELECT ALTER_LOCATION_USE ('/thirdVerticaStorageLocation/' ,

'v_vmartdb_node0004' , 'DATA');

USER Storage Location Restrictions

You cannot change a storage location from a USER usage type if you created the location that
way, or to a USER type if you did not. You can change a USER storage location to specify DATA
(storing TEMP files is not supported). However, doing so does not affect the primary objective of a
USER storage location, to be accessible by non-dbadmin users with assigned privileges.

Effects of Altering Storage Location Use

Before altering a storage location use type, at least one location must remain for storing data and
temp files on a node. Data and temp files can be stored in the same, or separate, storage
locations.

Altering an existing storage location has the following effects:

Alter use from: To store only: Has this effect:

Temp and data files (or Temp files Data content eventually merged out through ATM,

per its policies.You can also merge out data from

-505-

 Working With Storage Locations

Data only) the storage location manually using DO_TM_TASK.

The location stores only temp files from that point
forward.

Temp and data files (or

Temp only)

Data files Continues to run all statements that use temp files

(such as queries and loads).

Subsequent statements no longer use the changed
storage location for temp files, and the location

stores only data files from that point forward.

Altering Location Labels
You can add a label to an unlabeled storage location, change an existing label, or remove a label
by specifying an empty string for the location-label parameter. You can also use this function to
perform cluster-wide operations, by specifying an empty string for the function's node parameter
('').

NOTE: If you label an existing storage location that already contains data, and then include the

labeled location in one or more storage policies, existing data could be moved. If the ATM
determines data stored on a labeled location does not comply with a storage policy, the ATM
moves the data elsewhere.

-506-

Administrator's Guide

Adding a Location Label

To alter a location label, use the ALTER_LOCATION_LABEL function. The illustration shows how
to add a location label, ('SSD'), to the existing storage locations on all cluster nodes (''):

Removing a Location Label

The next example removes the SSD label for the storage location on all nodes by specifying empty

strings ('') for both node and location_label parameters:

VMART=> select alter_location_label('/home/dbadmin/SSD/tables','', '');

 alter_location_label

--

 /home/dbadmin/SSD/tables label changed.

(1 row)

NOTE: You cannot remove a location label if the name being removed is used in a storage
policy, and the location from which you are removing the label is the last available storage for its
associated objects.

Effects of Altering a Location Label

Altering a location label has the following effects:

Alter label: To: Has this effect:

No name New label Lets you use the labeled storage within a

storage policy. See note above regarding
data storage being moved to other locations

-507-

 Working With Storage Locations

if you add a label to a storage location with

existing data.

Existing name New name You can use the new label in a storage
policy. If the existing name is used in a

storage policy, you cannot change the label.

Existing name No name You cannot use an unlabeled storage in a
storage policy. If the existing name is used

in a storage policy, you cannot remove the
label.

Creating Storage Policies

You create a storage policy to associate a database object with a labeled storage location using
the SET_OBJECT_STORAGE_POLICY function. Once a storage policy exists, HP Vertica uses the
labeled location as the default storage location for the object data. Storage policies let you
determine where to store your critical data. For example, you can create a storage location with

the label SSD representing the fastest available storage on the cluster nodes, and then create
storage policies to associate tables with that labeled location. One storage policy can exist per
database object.

NOTE: You cannot include temporary files in storage policies. Storage policies are for use only

with data files, and only on storage locations for DATA, not USER locations.

You can create a storage policy for any database object (database, schemas, tables, and partition
ranges). Each time data is loaded and updated, HP Vertica checks to see whether the object has
a storage policy. If it does, HP Vertica automatically uses the labeled storage location. If no
storage policy exists for an object, or its parent entities, data storage processing continues using
standard storage algorithms on available storage locations. If all storage locations are labeled, HP
Vertica uses one of them.

Creating one or more storage policies does not require that policies exist for all database objects.
A site can support objects with or without storage policies. You can add storage policies for a
discrete set of priority objects, and let other objects exist without a policy, so they use available
storage.

Creating Policies Based on Storage Performance

You can measure the performance of any disk storage location (see Measuring Location
Performance (page 513)). Then, using the performance measurements, set the storage location
performance. HP Vertica uses the performance measurements you set to rank its storage
locations and, through ranking, to determine which key projection columns to store on higher
performing locations, as described in Setting Location Performance (page 514).

If you have already set the performance of your site's storage locations, and decide to use storage
policies, any storage location with an associated policy has a higher priority than the storage
ranking setting.

-508-

Administrator's Guide

Storage Levels and Priorities

HP Vertica assigns storage levels to database objects. The database is the highest storage level
(since nothing exists above the database level), and partition min_ and max_key ranges are
considered the lowest level objects. In addition to storage levels, storage priorities exist. The lower
the storage level of an object, the higher its storage priority.

Consider this example of database objects, listed in storage level order, with the highest level,
Sales database, first:

Object Storage Level Storage Policy Storage Priority Labeled Location

Sales (database) Highest YES Lower STANDARD

Region (schema) Medium NO Medium N/A

Income (table) Lower YES Higher/highest FAST

Month (partitions) Lowest NO Highest N/A

Storage policies exist for the database and table objects, with default storage on the locations
STANDARD and FAST, respectively.

When TM operations occur, such as moveout and mergeout, table data has the highest priority (in
this case). The TM moves data from ROS to WOS to the FAST labeled location.

Any schema data changes are prioritized after table data. Since the Region schema has no
storage policy, HP Vertica searches up the storage levels for a policy. In this case, that is the

Sales database itself. If a database storage policy is in effect, Region schema data is moved

from ROS to WOS to the STANDARD storage location, using its parent object's default storage
location.

If the Sales database object had no storage policy, the TM operations would use existing storage
locations and mechanisms.

Using the SET_OBJECT_STORAGE_POLICY Function

To set a storage policy, use the SET_OBJECT_STORAGE_POLICY function.

This example sets a storage policy for the table states to use the storage labeled SSD as its
default location:

VMART=> select set_object_storage_policy ('states', 'SSD');

 set_object_storage_policy

 Default storage policy set.

(1 row)

You can query existing storage policies, listed in the location_label column of the
v_monitor.storage_containers system table:

VMART=> select node_name, projection_name, storage_type, location_label from

v_monitor.storage_containers;

 node_name | projection_name | storage_type | location_label

------------------+----------------------+--------------+---------------

-509-

 Working With Storage Locations

 v_vmart_node0001 | states_p_node0001 | ROS |

 v_vmart_node0001 | states_p_node0001 | ROS |

 v_vmart_node0001 | t1_b1 | ROS |

 v_vmart_node0001 | newstates_b0 | ROS | LEVEL3

 v_vmart_node0001 | newstates_b0 | ROS | LEVEL3

 v_vmart_node0001 | newstates_b1 | ROS | LEVEL3

 v_vmart_node0001 | newstates_b1 | ROS | LEVEL3

 v_vmart_node0001 | newstates_b1 | ROS | LEVEL3

 v_vmart_node0001 | states_p_v1_node0001 | ROS | LEVEL3

 v_vmart_node0001 | states_p_v1_node0001 | ROS | LEVEL3

 v_vmart_node0001 | states_p_v1_node0001 | ROS | LEVEL3

 v_vmart_node0001 | states_p_v1_node0001 | ROS | LEVEL3

 v_vmart_node0001 | states_p_v1_node0001 | ROS | LEVEL3

 v_vmart_node0001 | states_p_v1_node0001 | ROS | LEVEL3

 v_vmart_node0001 | states_b0 | ROS | SSD

 v_vmart_node0001 | states_b0 | ROS | SSD

 v_vmart_node0001 | states_b1 | ROS | SSD

 v_vmart_node0001 | states_b1 | ROS | SSD

 v_vmart_node0001 | states_b1 | ROS | SSD

.

.

.

Effects of Creating Storage Policies

Creating storage policies has the following effects:

Create policy for... Storage effect:

Database The highest storage level and the lowest storage priority. This is
the default policy when no lower-level or higher priority policies

exist. At storage time, HP Vertica uses the database policy for all
objects without storage policies.

Schema The mid-level storage, also with a medium priority, compared to

lower storage level objects. If a table's schema has no policy, the
TM searches the next higher level, the database, using that
policy, if it exists. If it does not, the TM uses existing storage

mechanisms.

Table A lower storage level than a schema, with the highest storage
priority, if no policy exists for the table's partition key ranges. If a

table has no storage policy, HP Vertica checks the next higher
storage level (the schema) for a policy and uses that. If the
schema has no policy, it checks the next higher level, the

database, and uses that. If no database policy exists, the TM
uses existing storage mechanisms.

Partition min_key and max_key
ranges

The lowest level policy that can be in effect. During storage
processing, partition key ranges with a policy have the highest

priority. If no policy exists, the parent table is checked, and so on
as described for the other database objects.

-510-

Administrator's Guide

Moving Data Storage Locations
You can use the SET_OBJECT_STORAGE_POLICY function to move data storage from an existing

location (labeled or not) to another labeled location. Using this function accomplishes two tasks:

1 Creates a new storage policy for the object.

-or-

Updates an existing policy to the target labeled location.

2 Moves all existing data for the specified object(s) to the target storage location.

Moving existing data occurs as part of the next TM moveout activity. Alternatively, you can enforce
the data move to occur in the current transaction using the function's force_storage_move
parameter.

Before actually moving the object to the target storage location, HP Vertica calculates the required
storage and checks available space at the target. If there is insufficient free space, the function
generates an error and stops execution. The function does not attempt to find sufficient storage at
another location.

NOTE: Checking available space on the new target location before starting to move data

cannot guarantee space will continue to exist during a move execution. However, checking
target space does prevent attempts to move any data if insufficient space is available.

Moving Data Storage While Setting a Storage Policy

You can use the SET_OBJECT_STORAGE_POLICY function to update an existing storage policy,

or create a new policy, and move object data to a new or different labeled storage location. The

following example uses the function to set a storage policy for the table object states, and to

move the table's existing stored data to the labeled location, SSD. You force the move to occur
during the function transaction by specifying the last parameter as true:

VMart=> select set_object_storage_policy('states', 'SSD', 'true');

 set_object_storage_policy

--

 Object storage policy set.

Task: moving storages

(Table: public.states) (Projection: public.states_p1)

(Table: public.states) (Projection: public.states_p2)

(Table: public.states) (Projection: public.states_p3)

(1 row)

NOTE: Moving an object's current storage to a new target is a cluster-wide operation, so a
failure on any node results in a warning message. The function then attempts to continue
executing on other cluster nodes.

You can view the storage policies that are in effect:

VMart=> select * from storage_policies;

 schema_name | object_name | policy_details | location_label

-511-

 Working With Storage Locations

-------------+-------------+----------------+----------------

 public | states | Table | SSD

(1 row)

Effects of Moving a Storage Location

Moving an object from one labeled storage location to another has the following effects:

Object type: Effect:

Schema or table If data storage exists, moves data from source to target
destination. Source data can reside on a labeled or unlabeled

storage location, but will be moved to specified labeled
location.

Cluster nodes unavailable when existing data is copied are

updated by the TM when they rejoin the cluster (unless you
enforce data moving as part of the function transaction,
specifying last parameter as true).

If a storage policy was in effect, the default storage location
changes from the source to target location for all future TM
operations, such as moveout and mergeout activities.

Table with specified
partition min-keys and
max_keys

Sets a policy or moves existing data only for the key_min and
key_max ranges. Separate partition key ranges can have
different storage policies from other ranges, or from the

parent table.

Clearing Storage Policies

You can clear a storage policy by object name after you have defined storage policies. To see
existing policies, query the storage_policies system table, described in Viewing Storage
Locations and Policies (page 499).

To clear a storage policy, use the CLEAR_OBJECT_STORAGE_POLICY function, specifying the
object name associated with the labeled location:

release=> select clear_object_storage_policy('lineorder');

 clear_object_storage_policy

 Default storage policy cleared.

(1 row)

Effects on Same-Name Storage Policies

The effects of clearing a storage policy depend on which policy you clear.

For example, consider the following storage. The table lineorder has a storage policy for

default storage to the location label F2, and the table's partition ranges, also lineorder objects,
have storage policies for other default storage locations:

-512-

Administrator's Guide

release=> select * from v_monitor.storage_policies;

schema_name | object_name | policy_details | location_label

------------------+-------------------+------------------+----------------

 | public | Schema | F4

 public | lineorder | Table | F2

 public | lineorder | Partition [0, 0] | F1

 public | lineorder | Partition [1, 1] | F2

 public | lineorder | Partition [2, 2] | F4

 public | lineorder | Partition [3, 3] | M1

 public | lineorder | Partition [4, 4] | M3

(7 rows)

For this example, clearing the storage policy for an objected named lineorder, removes the

policy for the table, while retaining storage policies for its partitions, which have their own policies.

The function determines which lineorder object policy to clear because no partition range

values are specified in the function call:

release=> select clear_object_storage_policy('lineorder');

 clear_object_storage_policy

 Default storage policy cleared.

(1 row)

release=> select * from v_monitor.storage_policies;

 schema_name | object_name | policy_details | location_label

-------------+-------------+------------------+----------------

 | public | Schema | F4

 public | lineorder | Partition [0, 0] | F1

 public | lineorder | Partition [1, 1] | F2

 public | lineorder | Partition [2, 2] | F4

 public | lineorder | Partition [3, 3] | M1

 public | lineorder | Partition [4, 4] | M3

(6 rows)

Further, using a partition key range with the lineorder object name clears the storage policy for
only the specified partition range(s). The storage policy for the parent table objects, and other
partition ranges persist:

release=> select clear_object_storage_policy ('lineorder','0','3');

 clear_object_storage_policy

 Default storage policy cleared.

(1 row)

release=> select * from storage_policies;

 schema_name | object_name | policy_details | location_label

-------------+-------------+------------------+----------------

 | public | Schema | F4

 public | lineorder | Table | F2

 public | lineorder | Partition [4, 4] | M3

(2 rows)

-513-

 Working With Storage Locations

Measuring Storage Performance
HP Vertica lets you measure disk I/O performance on any storage location at your site. You can
use the returned measurements to set performance so that it has a rank. Depending on your
storage needs, you can also use performance to determine the storage locations to use for critical
data as part of your site's storage policies. Storage performance measurements are applicable
only to DATA storage locations, not temporary storage locations.

Measuring storage location performance calculates the time it takes to read and write 1MB of data
from the disk, which equates to:

IO time = time to read/write 1MB + time to seek = 1/throughput + 1/Latency

 Throughput is the average throughput of sequential reads/writes (units in MB per second)

 Latency is for random reads only in seeks (units in seeks per second)

Thus, the I/O time of a faster storage location is less than a slower storage location.

Note: Measuring storage location performance requires extensive disk I/O, which is a

resource-intensive operation. Consider starting this operation when fewer other operations are
running.

HP Vertica has two ways to measure storage location performance, depending on whether the
database is running. Both methods return the throughput and latency for the storage location.
Record or capture the throughput and latency information so you can use it to set the location
performance (see Setting Location Performance (page 514)).

Measuring Performance on a Running HP Vertica Database

Use the MEASURE_LOCATION_PERFORMANCE() function to measure performance for a
storage location when the database is running. This function has the following requirements:

 The storage path must already exist in the database.

 You need RAM*2 free space available in a storage location to measure its performance. For
example, if you have 16GB RAM, you need 32GB of available disk space. If you do not have
enough disk space, the function errors out.

Use the system table DISK_STORAGE to obtain information about disk storage on each database
node.

The following example measures the performance of a storage location on
v_vmartdb_node0004:

=> SELECT

MEASURE_LOCATION_PERFORMANCE('/secondVerticaStorageLocation/','v_vmartdb_node0

004');

WARNING: measure_location_performance can take a long time. Please check logs for

progress

 measure_location_performance

--

-514-

Administrator's Guide

 Throughput : 122 MB/sec. Latency : 140 seeks/sec

Measuring Performance Before a Cluster is Set Up

You can measure disk performance before setting up a cluster. This is useful for verifying that the
disk is functioning within normal parameters. This method requires only that HP Vertica be
installed.

To measure disk performance, use the following vsql command:

opt/vertica/bin/vertica -m <path to disk mount>

For example:

opt/vertica/bin/vertica -m /secondVerticaStorageLocation/node0004_data

Setting Storage Performance
You can use the measurements returned from the MEASURE_LOCATION_PERFORMANCE
function as input values to the SET_LOCATION_PERFORMANCE() function.

Note: You must set the throughput and latency parameters of this function to 1 or more.

The following example sets the performance of a storage location on v_vmartdb_node0004 to a

throughput of 122 MB/second and a latency of 140 seeks/second. These were the values
returned for this location from the MEASURE_LOCATION_PERFORMANCE function.

=> SELECT

SET_LOCATION_PERFORMANCE(v_vmartdb_node0004','/secondVerticaStorageLocation/',

'122','140');

How HP Vertica Uses Location performance Settings

Once set, HP Vertica automatically uses performance data to rank storage locations whenever it
stores projection columns.

HP Vertica stores columns included in the projection sort order on the fastest storage locations.
Columns not included in the projection sort order are stored on slower disks. Columns for each
projection are ranked as follows:

 Columns in the sort order are given the highest priority (numbers > 1000).

 The last column in the sort order is given the rank number 1001.

 The next-to-last column in the sort order is given the rank number 1002, and so on until the first
column in the sort order is given 1000 + # of sort columns.

 The remaining columns are given numbers from 1000–1, starting with 1000 and decrementing
by one per column.

HP Vertica then stores columns on disk from the highest ranking to the lowest ranking, with the
highest ranking columns placed on the fastest disks, and the lowest ranking columns placed on
the slowest disks.

-515-

 Working With Storage Locations

Using Location Performance Settings With Storage Policies

After measuring location performance, and setting it in the HP Vertica database, you can also use
the performance results to determine the fastest storage to use in your storage policies. The
locations with the highest performance can be set as the default locations for critical data. Slower
locations can become default locations for older, or less-important data, or may not require
policies at all if you do not want to specify default locations.

Data is stored as follows, depending on whether a storage policy exists:

Storage Policy

Label

Locations HP Vertica Action

No No Multiple Uses ranking (as described), choosing a
location from all locations that exist.

Yes Yes Single Uses that storage location exclusively.

Yes Yes Multiple Ranks storage (as described) among all
same-name labeled locations.

Dropping Storage Locations
To drop a storage location, use the DROP_LOCATION() function. The following example drops a
storage location on v_vmartdb_node0002 that was used to store temp files:

=> SELECT DROP_LOCATION('/secondVerticaStorageLocation/' ,

'v_vmartdb_node0002');

Dropping a storage location is a permanent operation and cannot be undone. When you drop a
storage location, the operation cascades to associated objects including any granted privileges to
the storage. If the storage was being used for external table access, subsequent queries on the
external table will fail with a COPY COMMAND FAILED message.

Since dropping a storage location cannot be undone, HP recommends that you consider first
retiring a storage location (see Retiring Storage Locations (page 516)). Retiring a storage
location before dropping it lets you verify that there will be no adverse effects on any data access.
Additionally, you can restore a retired storage location (see Restoring Retired Storage
Locations (page 516)).

Altering Storage Locations Before Dropping Them

You can drop only storage locations containing temp files. If you alter a storage location to the
TEMP usage type so that you can drop it, and data files still exist on the storage, HP Vertica
prevents you from dropping the storage location. Deleting data files does not clear the storage
location, and can result in database corruption. To handle a storage area containing data files so
that you can drop it, use one of these options:

-516-

Administrator's Guide

 Manually merge out the data files

 Wait for the ATM to mergeout the data files automatically

 Manually drop partitions (page 328)

Dropping USER Storage Locations

Storage locations that you create with the USER usage type can contain only data files, not temp
files. However, unlike a storage location not designated for USER access, you can drop a USER
location, regardless of any remaining data files.

Retiring Storage Locations
To retire a storage location, use the RETIRE_LOCATION() function.

The following example retires a storage location on v_vmartdb_node0004:

=> SELECT RETIRE_LOCATION('/secondHP VerticaStorageLocation/' ,

'v_vmartdb_node0004');

Retiring a location prevents HP Vertica from storing data or temp files to it, but does not remove
the actual location. Any data previously stored on the retired location is eventually merged out by
the Automatic Tuple Mover (ATM) per its policies.

NOTE: You cannot retire a location if it is used in a storage policy, and is the last available

storage for its associated objects.

Data and temp files can be stored in one, or separate, storage locations. If the location you are
retiring was used to store temp files only, you can remove it. See Dropping Storage Locations
(page 515).

Restoring Retired Storage Locations

You can restore a previously retired storage location that continues to be used in queries. Once
restored, HP Vertica re-ranks the storage location and uses the restored location to process
queries as determined by its rank.

Use the RESTORE_LOCATION() function to restore a retired storage location.

The following example restores a retired storage location on v_vmartdb_node0004:

=> SELECT RESTORE_LOCATION('/secondHP VerticaStorageLocation/' ,

'v_vmartdb_node0004');

-517-

Backing Up and Restoring the Database

HP Vertica supplies a comprehensive utility, the vbr.py Python script. The utility lets you back
up, restore, list backups, and copy your database. You can create full and incremental database
backups, as well as snapshots of specific schemas or tables for use with a multitenant database.
Using vbr.py, you can save your data to a variety of locations:

 A local directory on the nodes in the cluster

 One or more hosts outside of the cluster

 A different HP Vertica cluster (effectively cloning your database)

NOTE: Creating a database backup on a different cluster does not provide Disaster Recovery.

The cloned database you create with vbr.py is entirely separate from the original, and is not
kept in sync with the database from which it is cloned.

Compatibility Requirements for using vbr.py

Creating backups with vbr.py requires restoring backups with the same utility. The vbr.py
script supports creating and restoring backups between 6.x versions. Object-level snapshots were
not supported before HP Vertica 6.x.

HP Vertica does not support restoring a backup created in 5.x after you have upgraded to 6.x.

The backup and restore scripts used in 5.x and earlier, backup.sh and restore.sh, are

obsolete. The vbr.py utility is incompatible with these scripts. If you created snapshots using
the obsolete backup.sh script, you must restore them with restore.sh.

Automating Regular Backups

The vbr.py utility helps to automate backing up your database, because you can configure vbr

with the required runtime parameters in a script. The ability to configure runtime parameters
facilitates adding the utility to a cron or other task scheduler to fully automate regular database
backups.

Understanding VBR Terminology

This section uses several terms that require defining before you continue working with backups,
archives, backup locations, and other aspects and tasks while using vbr.py:

-518-

Administrator's Guide

Term Definition

Backups A consistent image of all objects and data in the database at the
time the backup occurred. Object-level backups consist of a subset
of database objects, selected by the user. They include other

objects in the dependency graph, and associated data in the
database at the time the object-level backup is taken.

You can refer to backups by a user-defined descriptive name, such

as FullDBSnap, Schema1Bak, Table1Bak, and so on.

Archive A number of same-name backups, past and present. Each archive

can have a different retention policy. If TSnap names a snapshot

of table T, and you take the snapshot daily, keeping 7 snapshots in

the archive would let you revert back to any of the last week's
snapshots of table T.

Backup host The computer system(s) on which to store your backups and

archives. For more information about backup hosts, see
Configuring Backup Hosts (page 525).

Backup location The directory location on a backup host where backups are saved.

This location can comprise multiple snapshots, including
associated archives. All snapshots in the same backup location
share data files (through hard links). The snapshots are also
compatible, meaning that after restoring a full database snapshot,

any object snapshot from the same backup location is eligible to be
restored.

NOTE: This section uses the term backup as a noun: a full backup,

and a verb: to back up the database.

Full backup A complete copy of the database catalog, its schemas, tables, and
other objects. A full backup can be used for disaster recovery to
restore a damaged or incomplete database.

Object-level backup One or more schemas or tables, or group of such objects, saved on
a backup host. The conglomerate parts of the object-level snapshot
do not contain the entire database.

In earlier Vertica versions, object-level backups could not exist
because a backup always contained the entire database.

Hard link local backup A full or object-level backup consisting of a complete copy of the

database catalog, and a set of hard file links to corresponding data
files. A hard link local backup must be saved on the file system used
by the catalog and database files.

Incremental backups A successive backup consisting only of new or changed data.

Selected objects The objects chosen to be part of an object-level snapshot. For
example, i f tables T1 and T2 are backed up in a snapshot, these

objects comprise the selected objects.

-519-

 Backing Up and Restoring the Database

Dependent objects Objects that should be part of an object-level snapshot due to their

dependency. For example, a table with a foreign key can exist on its
own, but must be backed up with the primary key table, due to table
constraints. Projections anchored on a table in the selected objects

are also dependent objects.

Principal objects The objects on which both selected and dependent objects depend.
For instance, each table and projection has an owner. The owner is

a principal object.

When to Back up the Database

In addition to any guidelines established by your corporation, HP Vertica recommends that you
back up your database:

 Before you upgrade HP Vertica to another release.

 Before you drop a partition.

 After you load a large volume of data.

 If the epoch in the latest snapshot is earlier than the current ancient history mark (AHM).

 Before and after you add, remove, or replace nodes in your database cluster.

 After recovering a cluster from a crash.

Note: When you restore a database snapshot, you must restore to a cluster that is identical to
the one on which you created the snapshot. For this reason, always create a new snapshot
after adding, removing, or replacing nodes.

Ideally, create regular snapshots to back up your data. You can run the HP Vertica vbr.py from a
cron job or other task scheduler.

-520-

 520

Backup Directory Structure and Contents

The vbr.py utility creates backup directories during its initial execution. Subsequently running
the utility also creates subdirectories, but within the structure defined during the first run, which this
section describes. For information about where to create hard link local backups, see Using Hard
File Link Local Backups (page 522).

Top-Level Directory

The directory structure starts at the location you provide as the backupDir parameter value. In

that directory, vbr.py creates the top-level backup subdirectory using the snapshotName value
in the configuration file. By default (though you can change the file name), the configuration file

name consists of the snapshotName value, with an .ini suffix. Throughout this example, the
configuration file name is objectbak.ini.

 The top level directory consists of the name specified in the backupDir parameter value, and
creates a structure based on the cluster nodes that are listed in the configuration file. In the

following example, the configuration file parameter snapshotName=objectbak, and the

three dbNode parameters specified are v_vmart_node0001, v_vmart_node0002, and

v_vmart_node0003:

 When you create a backup, for each designated node, vbr.py creates a subdirectory below
the node names, also named by the snapshotName parameter from the configuration file:

 Each time you invoke vbr.py to create a backup, the utility verifies the

restorePointLimit value. If the value is greater than 1, the utility checks to see how many

backup and archives exist in each node's snapshot name subdirectory. If no archive files exist,
the utility creates the first backup in a new subdirectory with the snapshot name, one per node.

-521-

 Backing Up and Restoring the Database

 Each backup subdirectory for each node also contains a home subdirectory that includes two

important files, backupname.info and backupname.txt. Among other information, these

files contain the archive OID of each backup (unique across all nodes), and the backup epoch:

 The next time you create a backup, the same verification process occurs regarding the

restorePointLimit value. If vbr.py is to save another snapshot, it gets the OID from the
info file of the existing backup, and saves that backup in an archive subdirectory named with

the backup name (objectbak in this example), and the OID suffix
_archivedatestamp_timestamp.

 The following example lists the snapshot directory, objectbak, with subdirectories for each

node. Each node then has one subdirectory for the backup (objectbak) and one
subdirectory for the first archive backup:

 Thereafter, each time you create a backup, the utility continues this process until the number

of backups and archives together equal the restorePointLimit value. Then, vbr.py
deletes the oldest archive backup, and saves a new backup.

Once you save multiple backups, you can restore directly from the archive of your choice, as
described in Restoring from a Full Backup.

-522-

Using Hard File Link Local Backups
You can use the vbr.py utility hardLinkLocal option to create a full-, or object-level, backup

with hard file links on a local database host.

Creating hard link local backups can provide the following advantages over a remote host backup:

 Speed — Hard link local backups are significantly faster than a remote host backup. In a hard
link local backup, vbr.py does not copy files (as long as the backup directory exists on the

same file system as the database catalog and data directories).

 Reduced network activities — The hard link local backup minimizes network load because it
does not require rsync to copy files to a remote backup host.

 Less disk space — Since the snapshot includes a copy of the catalog and hard file links, the
local backup uses significantly less disk space than a backup with copies of database data
files. However, since a hard link local backup saves a full copy of the catalog each time you run
vbr.py, the disk size will increase with the catalog size over time.

Hard link local backups are useful during experimental designs and development cycles.
Database designers and developers can create hard link local object backups of schemas and
tables on a regular schedule during design and development phases. If any new developments
are unsuccessful, developers can restore one or more objects easily and efficiently.

NOTE: Running vbr.py does not affect active database applications. The vbr.py utility
supports creating backups while concurrently running applications executing DML statements,
including COPY, INSERT, UPDATE, DELETE, and SELECT.

Planning Hard Link Local Backups

If you plan to use hard link local backups as a standard site procedure, consider storing all of the
data files on one file system per node when designing the overall database setup and hardware
configuration. Such a configuration has the advantage of being set up for hard link local backups
automatically. However, using one file system per node to support hard link local backups does
preclude the use of external storage locations on separate file systems.

Specifying Backup Directory Locations

The backupDir parameter of the configuration file specifies the location of the top-level backup

directory. Hard link local backups require that the backup directory be located on the same Linux
file system as the database data and catalog files. The Linux operating system cannot create hard
file links to another file system.

Do not create the hard link local backup directory in a database data storage location. For
example, as a best practice, the database data directory should not be at the top level of the file
system, such as this:

/home/dbadmin/data/VMart/v_vmart_node0001

Instead, HP Vertica recommends adding another subdirectory above the database level, such as
in this example:

/home/dbadmin/data/dbdata/VMart/v_vmart_node0001

You can then create the hard link local backups subdirectory as a peer of dbdata, such as:

-523-

 Backing Up and Restoring the Database

/home/dbadmin/data/backups

Using these guidelines, the directory locations will have a structure similar to the following
example:

/home/dbadmin/data/

dbdata/

backups/

For more information about how vbr.py creates directories for backups and archives, see Backup
Directory Structure and Contents (page 520).

Understanding Hard Link Local Backups and Disaster Recovery

Hard link local backups are only as reliable as the disk on which they are stored. If the local disk
becomes corrupt, so does the hard link local backup. In this case, you will be unable to restore the
database from the hard link local backup, since it is also corrupt.

All sites should maintain full backups externally for disaster recovery. Since hard link local
backups do not actually copy any database files, HP Vertica strongly recommends that you not
use hard link local backups as the sole means of recovery, unless the backups are copied to tape
or other external media, as described in Creating Hard Link Local Backups (page 545).

Viewing and Removing Backups
There are several ways to view backups:

1 Using vbr.py, list the backups that reside on the local or remote backup host (requires a
configuration file).

2 Monitor snapshot information while vbr.py is executing, as described in the
DATABASE_SNAPSHOTS system table description in the SQL Reference Manual.

3 Historical information about backups, use the DATABASE_BACKUPS system table.

NOTE: Since the database_backups system table is historical, it is not updated when you
delete the backups, as described here.

Using vbr.py to List Backups

To list backups on the backup hosts, use the vbr.py --listbackup task, with a specific

configuration file. The following example uses an object-level configuration file, table2bak.ini,
which results in listing the table object backup, test2:

dbadmin@node01 temp]$ /opt/vertica/bin/vbr.py --task listbackup --config-file

/home/dbadmin/table2bak.ini

Found 1 backup(s) with given config file /home/dbadmin/table2bak.ini.

backup epoch objects hosts(nodes)

table2bak_20130516_072002 180 test2 v_vmart_node0001(192.168.223.33),

v_vmart_node0002(192.168.223.33), v_vmart_node0003(192.168.223.33)

The vbr.py output information includes the backup OID, the epoch, which object(s) (if applicable)

were backed up, and the backup host (192.168.223.33) used for each node.

-524-

Administrator's Guide

Querying the database_backups System Table

Use the following query to list historical information about backups. The objects column lists

which objects were backed up in object-level snapshots:

VMart=> select * from v_monitor.database_backups;

-[RECORD 1]----+------------------------------

backup_timestamp | 2013-05-10 14:41:12.673381-04

node_name | v_vmart_node0003

snapshot_name | schemabak

backup_epoch | 174

node_count | 3

objects | public, store, online_sales

-[RECORD 2]----+------------------------------

backup_timestamp | 2013-05-13 11:17:30.913176-04

node_name | v_vmart_node0003

snapshot_name | kantibak

backup_epoch | 175

node_count | 3

objects |

.

.

.

-[RECORD 13]---+------------------------------

backup_timestamp | 2013-05-16 07:02:23.721657-04

node_name | v_vmart_node0003

snapshot_name | objectbak

backup_epoch | 180

node_count | 3

objects | test, test2

-[RECORD 14]---+------------------------------

backup_timestamp | 2013-05-16 07:19:44.952884-04

node_name | v_vmart_node0003

snapshot_name | table1bak

backup_epoch | 180

node_count | 3

objects | test

-[RECORD 15]---+------------------------------

backup_timestamp | 2013-05-16 07:20:18.585076-04

node_name | v_vmart_node0003

snapshot_name | table2bak

backup_epoch | 180

node_count | 3

objects | test2

.

.

.

Removing Database Backups

To remove existing local or remote backup host backups, delete the backup directory. For
example, to remove the sample table2bak snapshot in the following example:

dbadmin@node01 temp]$ /opt/vertica/bin/vbr.py --task listbackup --config-file

/home/dbadmin/table2bak.ini

Found 1 backup(s) with given config file /home/dbadmin/table2bak.ini.

backup epoch objects hosts(nodes)

table2bak_20130516_072002 180 test2 v_vmart_node0001(192.168.223.33),

v_vmart_node0002(192.168.223.33), v_vmart_node0003(192.168.223.33)

1 Get these parameter values from the configuration file:

 snapshotName

-525-

 Backing Up and Restoring the Database

 backupHost

 backupDir

2 Also note the dbNode parameter values, indicating which nodes were backed up.

3 Connect to the backup host.

4 Navigate to the backup directory (the backupDir parameter value in the configuration file).

5 To delete all backups, delete the top-level snapshot directory

-or-

6 To delete an archive, navigate to the subdirectory for each database node, located below the
top-level snapshot directory, and delete the archive directory.

Configuring Remote Backup Hosts
The vbr.py utility lets you back up your database to one or more hosts (called backup hosts), that

can be outside of your database cluster. Using backup hosts external to your database cluster
facilitates offsite data backups.

Note: You can use one or more backup hosts to back up your database. Use the vbr.py

configuration file to specify which backup host each node in your cluster should use. See
Backup Configuration Options (page 559) for details.

Before you back up to hosts outside of the local cluster, configure the target backup locations to
work with the vbr.py utility. The backup hosts you use must:

 Have sufficient backup disk space.

 Be accessible from your database cluster.

 Have passwordless SSH access for the database administrator account.

 Test SSH between cluster nodes and backup node(s).

 Have a copy of the same versions of Python and rsync that were installed by the HP Vertica
installer.

NOTE: The version of rsync included in the HP Vertica installer supports a combined maximum

500 full- and object-level snapshots at one backup location. All backup hosts must use the
rsync version supplied with HP Vertica 6.0.

Configuring Single-Node Database Hosts for Backup

Installing HP Vertica on a single-node database host automatically sets up the node with
passwordless SSH access, as the installation does for cluster nodes. Instructions for performing
this step manually are available in the Installation Guide section, Enable Secure Shell (SSH)
Logins.

The vbr.py utility requires that all database hosts (including single-node hosts) and backup
location hosts have passwordless SSH access, and fulfill other necessary requirements,
described in this section.

-526-

Administrator's Guide

Creating Configuration Files for Backup Hosts

Create separate configuration files for full- or object-level snapshots, using distinct snapshot
names in each configuration file. Also, use the same node, backup host, and directory location
pairs. The backup directory location should be used for the snapshots from only one database.

For optimal network performance when creating a snapshot, HP Vertica recommends having each
node in the cluster use a dedicated backup host.

Estimating Backup Host Disk Requirements

Wherever you plan to save data backups, consider the disk requirements for incremental backups
at your site. Also, if you use more than one archive, it potentially requires more disk space.
Regardless of the specifics of your site's backup schedule and retention requirements, HP Vertica
recommends that each backup host has space for at least twice the database footprint size.

To estimate the database size from the used_bytes column of the storage_containers
system table:

VMart=> select sum(used_bytes) as total_size from v_monitor.storage_containers;

 total_size

 302135743

(1 row)

If your site uses multiple backup host locations, you can estimate the database size requirements
per node with a query such as the following, substituting a backup host name for node_name:

select node_name,sum(used_bytes) as size_in_bytes from

v_monitor.storage_containers group by node_name;

Estimating Log File Disk Requirements

When you run the vbr.py --setupconfig command to create your configuration file (see

Configuring Advanced VBR Parameters (page 533)), one of the parameters is tempDir. This

parameter specifies the backup host location where vbr.py writes its log files, and some other

temp files (of negligible size). The default location is the /tmp/vbr directory on each backup host.
You can change the default by specifying a different path in the configuration file.

The temporary storage directory also contains local log files describing the progress, throughput,
and any errors encountered for each node. Each time you run vbr.py, the script creates a

separate log file, so the directory size increases over time, depending on how frequently you run
the utility. The utility stores older log files in separate subdirectories, each named with a

timestamp. When the vbr.py utility is executing, it updates the current log file each second with
one line of information, so the log file size is proportional to the actual backup transfer size. As a
rough estimate, a one-hour backup will populate the log file with 3600 lines, or approximately

100KB. HP Vertica recommends allotting 1GB disk space on each backup host for the vbr.py log
files.

The vbr.py log files are not removed automatically, so delete older log files manually as
necessary.

-527-

 Backing Up and Restoring the Database

Making Backup Hosts Accessible

To make the backup hosts accessible to your source database cluster, add each of the backup
hosts to the hosts file of all your database nodes, unless you plan on using IP addresses.

Any firewalls between the source database nodes and the target backup hosts must allow
connections for SSH and rsync.

The backup hosts must be running the same Linux distribution and have the same processor
architecture as your database nodes, because each must have identical versions of rsync and
Python as those supplied in the HP Vertica installation package.

Setting Up Passwordless SSH Access

To access a backup host, the database superuser must meet two requirements to run the vbr.py
utility:

 Have an account on each backup host, with write permissions to the backup directory

 Have passwordless SSH access from each cluster host to the corresponding backup host

How you fulfill these requirements depends on your platform and infrastructure.

If your site does not use a centralized login system (such as LDAP), you can usually add a user

with the useradd command, or through a GUI administration tool. See the documentation for your
Linux distribution for details.

If your platform supports it, you can enable passwordless SSH logins using the ssh-copy-id
command to copy a database superuser's SSH identity file to the backup location from one of your
database nodes. For example, to copy the SSH identity file from a node to a backup host named
backup01:

> ssh-copy-id -i dbadmin@backup01

Password:

Now try logging into the machine, with "ssh 'dbadmin@backup01'", and check in:

 ~/.ssh/authorized_keys

to make sure you have not added extra keys that you were not expecting.

> ssh backup01

Last login: Mon May 23 11:44:23 2011 from host01

Repeat the steps to copy a superuser's SSH identity to all backup hosts you will use to back up
your database.

After copying a superuser's SSH identity, you should be able to log in to the backup host from any
of the nodes in the cluster without being prompted for a password.

Testing SSH Access

A best practice after setting up passwordless SSH is to test the SSH connection on each cluster
node, and the backup host.

To test that passwordless SSH is working correctly:

-528-

Administrator's Guide

1 Log into each cluster node and SSH to and from all other cluster nodes. Add the key to the
RSA store as noted above.

2 If you cannot SSH to and from all nodes without entering a password, SSH is not properly set
up.

3 To set up correctly, see Enable Secure Shell (SSH) Logins, in the Installation Guide.

Changing the Default SSH Port on Backup Hosts

Internally, the vbr.py utility uses the default SSH port 22. If your backup hosts are using SSH on

a different port, you can override the default by manually adding the ssh_port_backup
parameter as follows:

1 Open the backup configuration file (backup_file.ini) in your favorite editor.

2 Find the Transmission section.

3 Add the ssh_port_backup parameter to the section, specifying with the backup hosts' SSH
port number:

[Transmission]

encrypt = False

checksum = False

port_rsync = 50000

ssh_port_backup = 25

4 Save the configuration file.

NOTE: The vbr.py utility supports a non-default SSH port with the backup task, but not with
copycluster.

Increasing the SSH Maximum Connection Settings for a Backup Host

If your configuration requires backing up multiple nodes to one backup host (n:1), increase the
number of concurrent SSH connections to the SSH daemon (sshd). By default, the number of

concurrent SSH connections on each host is 10, as set in the sshd_config file with the

MaxStartups keyword. The MaxStartups value for each backup host should be greater than
the total number of hosts being backed up.

To increase the MaxStartups value:

1 Log on as root to access the config file.

2 Open the SSH configuration file (/etc/ssh/sshd_config) in your favorite editor.

3 Locate the #MaxStartups parameter and increase the value.

4 Save the file.

5 Exit from root.

Copying rsync and Python to the Backup Hosts

All backup hosts must use the version of rsync and Python installed by the HP Vertica installation
package.

Copy rsync to the same directory on each of the backup hosts. The rsync file is located here:

/opt/vertica/bin/rsync

-529-

 Backing Up and Restoring the Database

1 Copy the python directory contents recursively to the /opt/vertica/oss/python directory
on each backup host using a command such as this:

> cp -r /opt/vertica/oss/python <backup_host1>/oss/python

2 To preserve the file characteristics (including permissions) on the target backup host, add the

-p option:

> cp -r -p /opt/vertica/oss/python <backup_host1>/oss/python

Note: If you do not use preserve file characteristics (using cp -r -p) when copying the rsync

and Python files, make sure that the permissions are set after you copy the files. The
permissions must enable the database superuser to run rsync and Python on the backup hosts.

-530-

 530

Configuring Hard Link Local Backup Hosts

When specifying the backupHost parameter for your hard link local configuration files, use the
database host names (or IP addresses) as known to Admintools, rather than the actual node
names. These are the host names (or IP addressed) that you used when setting up the cluster. Do
not use localhost for this parameter.

To query host and node names:

VMart=> select node_name, host_name from node_resources;

 node_name | host_name

------------------+----------------

 v_vmart_node0001 | 192.168.223.11

 v_vmart_node0002 | 192.168.223.22

 v_vmart_node0003 | 192.168.223.33

(3 rows)

Since you are creating a local backup, the backupHost value for each [Mappingn] section in

the configuration file should be exactly the same as the node_name or host_name for the node.

The following example shows the mapping sections for a 3-node cluster. The backupHost name

for each section indicates one node (192.168.223.33) is used as the hard link local backup host
for the cluster:

[Mapping0]

dbNode = v_vmart_node0001

backupHost = 192.168.223.33

backupDir = /home/dbadmin/data/backups

[Mapping1]

dbNode = v_vmart_node0002

backupHost = 192.168.223.33

backupDir = /home/dbadmin/data/backups

[Mapping2]

dbNode = v_vmart_node0003

backupHost = 192.168.223.33

backupDir = /home/dbadmin/data/backups

Generating the vbr.py Configuration File
The vbr.py utility uses a configuration file for the information required to back up and restore a

full- or object level snapshot, or to copy a cluster. You cannot run vbr.py without a configuration
file, and no default file exists.

Two important parameters in the configuration file are the name of the snapshot and the backup
directory location:

 snapshotName

 backupDir

-531-

 Backing Up and Restoring the Database

HP Vertica recommends creating different configuration files for full- and object-level backups,
while using the same backup directory on each node for both types of backups.

For example, the full backup configuration file, fullbak.ini would have these parameter
values:

snapshotName=fullbak

backupDir=/home/dbadmin/data/backups

The object-level configuration file, objectbak.ini, would have these:

snapshotName=objectbak

backupDir=/home/dbadmin/data/backups

Saving Multiple Restore Points

You use the restorePointLimit parameter in the configuration file to save more than one

backup from which to restore.

To save multiple local or remote backups, specify the number as a value in the

restorePointLimit parameter in the configuration file. The number you specify indicates the
total number of backups from which you can later restore. For instance, specifying

restorePointLimit = 3 results in 1 current backup, and 3 backup archives. You can create a
backup to a specific archive, and restore from a backup or a archive.

For more information about how vbr.py organizes the backup and archives in the backup
directory, see Creating Hard Link Local Backups (page 545).

Specifying Full or Object-Level Backups

The Objects parameter in the vbr.py configuration file specifies whether the utility creates a full
or object-level backup. Specifying one or more objects (schema or table) for that parameter
creates an object-level backup. Leaving Objects without a value creates a full backup.

Following are the contents of the hard link local full or object-level backups:

Backup Catalog Database files

Full backup Full copy Hard file links to all database files

Object-level backup Full copy Hard file links for all objects listed in the
configuration file, and any of their dependent
objects

Changing the Overwrite Parameter Value

The overwrite parameter is associated with restoring object-level snapshots, but is not included

as a question for required or advanced parameter settings when generating a configuration file. To

change the default overwrite parameter value, edit the configuration file. For more information,
see the VBR Configuration File Reference (page 559).

-532-

Administrator's Guide

Configuring Required VBR Parameters

To invoke the script to set up a configuration file, enter this command:

> vbr.py --setupconfig

The script prompts you to answer the following questions, listing the configuration parameter
associated with your answer after the question. Type Enter to accept the default. For more details,
see the VBR Configuration File Reference (page 559):

Snapshot name: [snapshotName] snapshotName

Backup Vertica configurations? (n)[y/n] verticaConfig

Number of restore points? (1): restorePointLimit

Specify objects (no default): objects

Vertica user name (current user): dbUser

Save password to avoid runtime prompt (n) [y/n] dbPromptForPassword

Password to save in vbr config file (no default): dbPassword

Backup host name (no default): backupHost

Backup directory (no default): backupDir

Config file name (no default): N/A

Change advanced settings? (n) [y/n]: N/A

To change any advanced options, enter y at the last question, Change advanced settings? .

NOTE: If possible, for optimal network performance, set up the backup hosts so that each

cluster node has its own backup host and backup directory.

After successfully completing all of the required questions, vbr.py generates a configuration file
with the information you supplied. Create separate configuration files for a full backup, and for
each object-level snapshot. Use distinct snapshot names in each configuration file.

When the setup completes processing, enter a configuration file name. Use this file name when

you run the --task backup or other commands. The utility uses the configuration file contents

for both backup and restore tasks, as well as for the --copycluster task, described in Copying
the Database to Another Cluster (page 553).

If you do not successfully complete all of the required questions, vbr.py lists error messages and

hints, but does not create a configuration file. You can then run the --setupconfig command
again to respecify any missing or incorrect information.

Sample Session Configuring Required Parameters

Following is a test session showing the required configuration file parameters. The utility detects
the HP Vertica node names in the cluster, so you do not have to supply them
(v_example_node0001, v_example_node0002, and v_exampledb_node0003):

> vbr.py --setupconfig

Snapshot name (snapshotName): ExampleBackup

Backup Vertica configurations? (n) [y/n] y

Number of restore points? (1): 5

Specify objects (no default): dim, dim2

-533-

 Backing Up and Restoring the Database

Vertica user name (current_user): dbadmin

Save password to avoid runtime prompt? (n)[y/n]: y

Password to save in vbr config file (no default): mypw234
Node v_example_node0001

Backup host name (no default): backup01

Backup directory (no default): /home/dbadmin/backups

Node #1

Node name: v_exampledb_node0002

Backup host name: backup02

Backup directory: /home/dbadmin/backups

Node #2

Node name: v_exampledb_node0003

Backup host name: backup03

Backup directory: /home/dbadmin/backups

Config file name: exampleBackup.ini

Change advanced settings? (n)[y/n]: n

Saved vbr configuration to exampleBackup.ini.

Configuring Advanced VBR Parameters

To invoke the script initially, enter this command:

> vbr.py --setupconfig

To continue from advanced settings after completing the Required parameter options, enter y to
the last question:

Change advanced settings? (n)[y/n]: y

Following is a list of the advanced parameter questions, their default values, and the name of the
associated parameter, which will be in the completed configuration file.

Type Enter to accept the default value for any parameter. For more details, see the VBR

Configuration File Reference (page 559):

Questions and default value Configuration parameter

Temp directory (/tmp/vbr): tempDir

Number of times to retry? (2): retryCount

Seconds between retry attempts (1): retryDelay

Encrypt data during transmission? (n) [y/n]: encrypt

Use checksum for data integrity (not file date and size)? (n)

[y/n]:

checksum

Port number for rsync daemon (50000): port_rsync

Transfer bandwidth limit in KBps or 0 for unlimited (0): bwlimit

NOTE: For additional information about the tempDir configuration parameter, see

Configuring Backup Hosts.

-534-

Administrator's Guide

Sample Session Configuring Advanced Parameters

Following is a test session providing some of the advanced configuration file parameters, starting
after the required parameters:

.

.

.

Change advanced settings? (n)[y/n]: y

Temp directory (/tmp/vbr):

Number of times to retry backup? (2): 5

Seconds between retry attempts? (1): 3
Encrypt data during transmission? (n) [y/n] n

Use checksum for data integrity (not file date and size)? (n)[y/n]: n

Port number for Rsync daemon (50000):

Transfer bandwidth limit in KBPS or 0 for unlimited (0): 0

Saved vbr configuration to exampleBackup.ini.

-535-

 535

Configuring the Hard Link Local VBR Parameter

Creating hard link local backups requires manually adding the hardLinkLocal=True parameter
to the [Transmission] section of the vbr.py configuration file.

NOTE: To create a local backup without hard file links, omit the hardLinkLocal=True

parameter from the configuration file. Specify the backupDir parameter as a location on the

same file system as the database catalog and data files. Then, the vbr.py utility creates a
backup by copying the files, even when they are located on the same file system.

If you generate a configuration file using the vbr.py --setupconfig option, it will include a

[Transmission] section. If you have an existing vbr.py configuration file
(backup_name.ini), add the hardLinkLocal parameter to the [Transmission] section.

1 For a configuration file with advanced options, add the hardLinkLocal parameter as the last

entry in the [Transmission] section:

[Transmission]

encrypt = False

checksum = False

port_rsync = 50000

bwlimit = 0

hardLinkLocal = True

2 Save the configuration file.

-or-

1 For a configuration file without advanced options, add the parameter as the sole entry in the

[Transmission] section:

[Transmission]

hardLinkLocal = True

2 Save the configuration file.

Restrictions for Backup Encryption Option

The encrypt parameter is one of the advanced vbr.py configuration file options. However, you

cannot use encryption when creating a hard link local backup. If you hardlinkLocal=true to a

configuration file that includes encrypt=true, vbr.py issues a warning, but ignores the
encryption parameter.

Example Backup Configuration File

The following example configuration file shows most of the options described in Configuring
Required VBR Parameters (page 532) and Configuring Advanced VBR Parameters (page
533). Each node is backed up to a corresponding non-cluster host.

[Misc]

; Section headings are enclosed by square brackets.

; Comments have leading semicolons.

-536-

Administrator's Guide

; Option and values are separated by an equal sign.

snapshotName = exampleBackup

; For simplicity, use the same temp directory location on

; all backup hosts. The utility must be able to write to this

; directory.

tempDir = /tmp/vbr

; Vertica binary directory should be the location of

; vsql & bootstrap. By default it's /opt/vertica/bin

;verticaBinDir =

; include vertica configuration in the backup

verticaConfig = True

; how many times to rety operations if some error occurs.

retryCount = 5

retryDelay = 1

restorePointLimit = 5

[Database]

; db parameters

dbName = exampleDB

dbUser = dbadmin

dbPassword = password

; if this parameter is True, vbr will prompt user for db password every time

dbPromptForPassword = False

;dbPort =

; specifies which host script (and vsql) should connect to

[Transmission]

encrypt = False

checksum = False

port_rsync = 50000

; bandwidth limit in KBPS, 0 for unlimited

bwlimit = 0

; whether local files will be hard linked(true) or copied(false),

; only effective when dbNode sits on backupHost as well

hardLinkLocal = False

[Mapping0]

dbNode = v_exampledb_node0001

backupHost = backup01

; backupDir not used for cluster copy

backupDir = /home/dbadmin/backups

[Mapping1]

dbNode = v_exampledb_node0002

backupHost = backup02

backupDir = /home/dbadmin/backups

[Mapping2]

dbNode = v_exampledb_node0003

backupHost = backup03

backupDir = /home/dbadmin/backups

-537-

 Backing Up and Restoring the Database

Creating Full and Incremental Backups
Before you create a database backup, ensure the following:

 Your database is running. It is unnecessary for all nodes to be up in a K-safe database.
However, any nodes that are down are not backed up.

 All of the backup hosts are up and available (see Configuring Backup Hosts (page 525)).

 The backup location host (either on the database cluster or not) has sufficient disk space to
store the snapshots

 The user account of whoever starts the utility (dbadmin, or other) has write access to the
target directories on the host backup location.

Run the vbr.py script from a terminal using the database administrator account from an initiator
node in your database cluster. You cannot run the utility as root.

NOTE: If you have upgraded from HP Vertica 5.x to 6.x, snapshots created with 5.x are

incompatible with 6.x. Once you have created new snapshots with the 6.x vbr.py utility,
consider removing any snapshots created with 5.x.

Running vbr Without Optional Commands

You can run the vbr.py with only the required commands:

 --task backup

 --config-file config_file

If your configuration file does not contain the database administrator password, vbr.py prompts

you to enter the password, but does not display what you type:

[dbadmin@node02 ~]$ vbr.py --task backup --config-file nuvmartbak.ini

Enter vertica password for user dbadmin:

Preparing...

Found Database port: 5433

.

.

.

Otherwise, the utility requires no further interaction after you invoke it.

To run the vbr.py utility:

1 Use the --task backup and --config-file filename directives as shown in this example:

> vbr.py --task backup --config-file myconfig.ini

Copying...

[==] 100%

All child processes terminated successfully.

Committing changes on all backup sites...

backup done!

By default, there is no screen output, other than the progress bar. To include additional

progress information, use the --debug option, with a value between 1 – 3.

-538-

Administrator's Guide

2 If you do not specify a configuration file, the vbr utility searches for one at this location:

/opt/vertica/config/vbr.ini

3 If the utility does not find a configuration file at this location, it fails with an error and exits.

Object-Level Snapshots

After you create a full backup, you can start adding object-level snapshots, as described in
Creating Schema and Table Backups (page 539).

To see existing full and incremental backups, see Viewing and Removing Backups (page 523).

Snapshot Locations and Storage

Snapshots are stored in the backup directory you specify in the configuration file. The directory
containing the snapshot has a subdirectory for each node backed up to that location. In turn, that
area contains a subdirectory with the name of the snapshot, or multiple snapshot names,
appended with the date and time if you are keeping more than one. The snapshot name reflects

the snapshotName parameter value in the configuration file. See the Backup Directory
Structure and Contents (page 520) for further information.

Saving Incremental Snapshots

Each time you back up your database with the same configuration file, vbr.py creates an
incremental snapshot, copying new storage containers, which can include data that existed the
last time you backed up the database, along with new and changed data since then. By default,

vbr.py saves one archive backup, unless you set the restorePointLimit parameter value in
the configuration file to a value greater than 1.

For creating snapshot files, vbr.py uses the following directory naming conventions:

snapshotname_archivedate_timestamp

snapshotname The value of the snapshotName parameter in the configuration

file. This is the name used as a prefix to the container directory
on the backup host.

_archivedate_timestam
p

The prefix (_archive) indicates the directory contains an

archive. The vbr.py utility appends the date, in the form

date_timestamp to the directory name when the snapshot file is
created. For instance, if you specify the snapshot name as
mysnap, and create backups over three consecutive days,

multiple subdirectories with archive names such as these will
exist:

 mysnap_archive20111111_205841

 mysnap_archive20111112_205844

 mysnap_archive20111113_206841

You can restore from any archive, as described in Restoring from a Full Backup.

-539-

 Backing Up and Restoring the Database

When vbr.py Deletes Older Snapshots

Running the vbr.py utility with the --task backup command deletes the oldest snapshot

whenever the total number of snapshots exceeds the restorePointLimit value in the

configuration file. For instance, if the restorePointLimit = 5, and five archives exist, running

the vbr.py --task backup utility again deletes the snapshot with the oldest date_timestamp,
before the utility completes the current backup command.

When you invoke vbr.py to create a snapshot, this is what occurs:

1 The utility obtains the value of the restorePointLimit parameter value to determine how
many snapshots should exist in the archive.

2 If creating the next snapshot will exceed the restore point limit, vbr.py deletes the oldest
archived snapshot to release space on the backup location.

3 vbr.py continues processing and initially creates the snapshot on the database cluster.

4 When the new snapshot is complete, vbr.py copies it from the database cluster to the
designated backup location.

5 After the new snapshot is successfully copied to the backup location, vbr.py removes the
snapshot from the database cluster.

Creating Schema and Table Backups
You can use the vbr.py script to save object-level snapshots consisting of one or more schemas

and tables. Object-level snapshots are especially useful for multi-tenanted database sites. For
example, an international airport could use a multi-tenanted database to represent different
airlines in its schemas. Then, tables could maintain various types of airline information, including
ARRIVALS, DEPARTURES, and PASSENGER information.

NOTE: Creating object-level snapshots does not support restoring selectively. For example, if

you create a backup of two schemas, schema1 and schema2, and later need to restore

schema1, you cannot do so without also restoring schema2. To support restoring a single
object, create a single object backup.

There are two configuration file parameters for use with object-level snapshots, and described in
VBR Configuration File Reference (page 559):

 Object

 Overwrite

For more information about creating configuration files for full- or object-level backups, see
Configuring Required VBR Parameters. (page 532)

Invoking vbr.py Backup

After creating the configuration file specifying which objects to backup, you can create an object
snapshot. The following command uses the objectbak.ini configuration file:

[dbadmin@node01 ~]$ vbr.py --task backup --config-file objectbak.ini

Preparing...

Found Database port: 5433

-540-

Administrator's Guide

Copying...

[==] 100%

All child processes terminated successfully.

Committing changes on all backup sites...

backup done!

[dbadmin@node01 ~]$

Snapshot Locations and Naming Practices

You can use one top-level backup directory to store both full- and object-level backups. For more
information about directory usage for backups, see Backup Directory Structure and Contents
(page 520).

NOTE: You must use unique names for full- and object-level snapshots stored at one location.

Otherwise, successive snapshots will overwrite the previous version.

To see existing full- and object-level backups, see Viewing and Removing Backups (page 523).

Best Practices for Creating Snapshots

To create one or more object-level snapshots, create a configuration file specifying the backup
location, the object-level snapshot, and a list of objects to include (one or more schemas and
tables). When creating configuration backup files:

 Create one configuration file for each object-level snapshot

 Create a different configuration file to create a full database snapshot

 For best network performance, use one backup host per cluster node

 Use one directory on each backup-node to store successive snapshots

 For future reference, append the major version number to the configuration file name
(mybackup6x)

Using the same backup host directory location for full- and object-level snapshots results in the
snapshots sharing disk space and being compatible when performing a restore. Each cluster node
must also use the same directory location on its designated backup host.

The selected objects of a snapshot can include one or more schemas or tables, or a combination
of both. For example, schema S1 and tables T1 and T2 can comprise the selected objects of a
snapshot. Multiple snapshots can be combined into a single backup. A schema-level snapshot
can be integrated with a database snapshot (and a table snapshot integrated with schema-level
snapshot, and so on).

Naming Conventions

Give each object-level snapshot configuration file a distinct and descriptive name. For instance, at
the airport terminal, schema-based backup configuration files use a naming convention with an
airline prefix, followed by further description, such as:

AIR1_daily_arrivals_snapshot

AIR2_hourly_arrivals_snapshot

AIR2_hourly_departures_snapshot

AIR3_daily_departures_snapshot

-541-

 Backing Up and Restoring the Database

Once database and object-based snapshots exist, you can recover the snapshot of your choice.
For more information, see Restoring Schema and Table Snapshots (page 548).

NOTE: Do not change object names in an object-level configuration file once a snapshot
already exists. When the the snapshot name and backup locations are the same, even if you
change the objects listed in the configuration file, the later snapshot overwrites the first so you
cannot restore to the earlier snapshot. Instead, create a different configuration file.

Creating Snapshots Concurrently

In a multi-tenanted database, you need to create object-level snapshots concurrently. For
example, at the airport terminal, AIR1 and AIR2 both need schema snapshots each hour. To

accomplish this goal without concurrently backing up the same snapshot, the vbr.py utility
currently permits only one instance of the backup script per initiator node.

Due to this present behavior, HP Vertica suggests the following:

 Assign one initiator node to create a given tenant snapshot.

 Give each object backup initiated on a different node a unique snapshot name.

 Start the backup script on different initiator nodes to create their specific tenant snapshots
concurrently.

Determining Snapshot Frequency

HP Vertica recommends a best practice of taking frequent snapshots to avoid snapshot bloating if
database contents diverge in significant ways.

Always take snapshots after any event that significantly modifies the database, such as
performing a rebalance. Mixing many snapshots with significant differences can weaken data
k-safety, such as taking snapshots before a rebalance, and again after the rebalance when the
snapshots are all part of one archive.

Understanding Object-level Snapshot Contents

While a full database snapshot contains a complete collection of the database, with the catalog
and all of its objects, an object-level snapshot comprises only the elements necessary to restore
the schema or table from its snapshot, including the selected, dependent, and principal objects
(see Understanding VBR Terminology (page 517)). In summary, an object-level snapshot
includes the following contents:

 Storage: Data files belonging to the specified object (s)

 Metadata: Including the cluster topology, timestamp, epoch, AHM, and so on

 Catalog snippet: persistent catalog objects serialized into the principle and dependent objects

Some of the elements that comprise AIR2, for instance, include its parent schema, tables, named
sequences, primary key and foreign key constraints, and so on. To create such a snapshot,

vbr.py script saves the objects directly associated with the table, along with any dependencies,
such as foreign key (FK) tables, and creates an object map from which to restore the snapshot.

NOTE: Local temp table data is available only within a session, so temporary tables are

excluded when you create an object-level schema. For a global temporary tables, vbr.py
stores the table's definition.

-542-

Administrator's Guide

Making Changes After an Object-Level Snapshot

After creating an object-level snapshot, dropping schemas and tables from the database means
the objects will also be dropped from subsequent snapshots. If you do not save an archive of the
object snapshots, such objects could be lost permanently.

Changing a table name after creating a table snapshot will not persist after restoring the snapshot.
If you a drop a user after a snapshot, and the user is the owner of any selected or dependent
objects, restoring the snapshot also restores the user.

If you drop a table (t1), and then create a new table, also called t1, restoring an object snapshot
causes an error. While tables in the snapshot and the current database have identical names, their
OIDs differ.

To restore a dropped table from a snapshot:

1 Rename the newly created table from t1 to t2.

2 Restore the snapshot containing t1.

K-safety may have increased after an object snapshot. If this occurs, a snapshot restore will fail if
any table in the snapshot has insufficient projections.

Understanding the Overwrite Parameter

The configuration file Overwrite parameter determines the behavior during object-level restore
when two objects have identical OIDs. Overwrite applies to any objects associated with the
schema and table saved in the snapshot (including users and name sequences), whose OIDs
remain the same. For instance, consider this use of overwriting in a snapshot:

1 Create an object snapshot of mytable.

2 After the snapshot, rename mytable to mytable2.

3 Restoring the snapshot causes mytable to overwrite mytable2 (Overwrite=true).

The overwrite occurs because although the table names differ, their OIDs do not.

Conversely, creating a new table of the same name (with a different OID) is handled differently.

1 Create a table snapshot of mytable.

2 Drop mytable.

3 Create a new table, called mytable.

4 Restoring the snapshot does NOT overwrite the table, and causes an error, since there is an
OID conflict.

Changing Principal and Dependent Objects

If you create a snapshot and then drop a principal object, restoring the snapshot restores the
principal object. For example, if you drop the owner of a table included in a snapshot, restoring the
snapshot recreates the user, along with any permissions that existed when the snapshot was
taken.

Adding dependent objects after backing up a parent object will drop the dependent objects when
the parent is restored. For example, restore will drop a constraint or a projection added to a table
after the table snapshot, as will columns added to a table, or tables added to a schema.

-543-

 Backing Up and Restoring the Database

Identity and auto_increment sequences are dependent objects, since they cannot exist without
their tables. Such objects are backed up along with the tables on which they depend.

Named sequences are not dependent objects, since they exist autonomously. A named sequence
remains after dropping the table in which the sequence is used. In this case, the named sequence
is a principal object that must be backed up with the table and regenerated if it does not already
exist when you restore the table. If the sequence does exist it is used, unmodified. Sequence
values could repeat, if you restore the full database and then restore a table snapshot to a newer
epoch.

Considering Contraint References

You must backup database objects related through constraints together. For example, a schema
with tables whose constraints reference only tables in the same schema can be backed up, but a
schema containing a table with an FK/PK constraint on a table in another schema cannot, unless
you include the other schema in the list of selected objects.

Configuration Files for Object-Level Snapshots

The vbr.py utility automatically associates configurations with different snapshot names, but the

same backup location.

Always create a cluster-wide configuration file and one or more object-level configuration files
pointing to the same backup location. Storage between snapshots is shared, so you will not have
multiple copies of the same data. For object-level snapshots, using the same backup location

causes vbr.py to encounter fewer OID conflict prevention techniques and have less problems
when restoring the snapshot.

By using cluster and object configuration files with the same backup location, the utility includes
additional provisions to ensure that the object-level snapshots can be used following a full cluster
restore. One scenario to complete a full cluster restore is to use a full database snapshot to
bootstrap the cluster. Once the cluster is operational again, you can restore the most recent
object-level snapshots for schemas and tables.

NOTE: Attempting to restore a full database using an object-level configuration file fails,
resulting in this error:

VMart=> /tmp/vbr.py --config-file=Table2.ini -t restore
Preparing...
Invalid metadata file. Cannot restore.
restore failed!

Snapshot Epochs

Each snapshot includes the epoch to which the snapshot contents can be restored. This epoch will
be close to the latest epoch, though the epoch could change during the time the snapshot is being
written. If an epoch change occurs while a snapshot is being written, the storage is split to indicate
the different epochs.

The vbr.py utility attempts to create an object-level snapshot five times before an error occurs
and the snapshot fails.

-544-

Administrator's Guide

Maximum Number of Schema- or Table-Snapshots

There is a limit of 500 full- and object-level snapshots at each backup location. This maximum is
set by rsync, and does not include archived snapshots, so the total number of saved snapshots at
the same location can exceed 500.

For example, if a database has 500 schemas, S1 – S499, the full database, including archives of
earlier database snapshots, can be backed up along with snapshots for each schema.

-545-

 545

Creating Hard Link Local Backups
Before creating a full hard link local database backup, ensure the following:

 Your database is running. All nodes need not be up in a K-safe database for vbr.py to run.
However, keep in mind that any nodes that are down are not backed up.

 The user account of whoever starts the utility (dbadmin, or other) has write access to the
target backup directories.

Run the vbr.py script from a terminal using the database administrator account from a node in

your database cluster. You cannot run the utility as root.

To create a full or object-level backup, enter the following command:

> /opt/vertica/bin/vbr.py --task backup --config fullbak.ini

NOTE: While not required, HP Vertica recommends that you first create a full backup before

creating any object-level backups.

Specifying the Correct Location for Hard Link Local Backups

If you add the hardLinkLocal=True parameter to the configuration file, but specify a backup

directory on a different node, vbr.py issues a warning message and stops processing the
backup. Change the configuration file to include a backup directory on the same host and file
system as the database and catalog files, and run the backup utility again.

If you add the hardLinkLocal=True parameter but specify a backup destination directory on a

different file system from the database and catalog files, but on the same node, vbr.py issues a

warning message and proceeds with the backup by copying the files on the node from one file
system to the other.

Creating Hard Link Local Backups for Tape Storage

You can use hard link local backups as a staging mechanism to backup to tape or other forms of
storage media. You can also use the hard link local backup to restore the hard file links to the
database files.

The following steps present a simplified approach to saving, and then restoring, hard link local
backups from tape storage:

1 Create a configuration file using a command such as this:

/opt/vertica/bin/vbr.py --setupconfig

2 Edit the configuration file (localbak.ini in this example) to include the

hardLinkLocal=True parameter in the [Transmission] section.

3 Run the backup utility with the configuration file:

/opt/vertica/bin/vbr.py --task backup --config-file localbak.ini

4 Copy the hard link local backup directory with a separate process (not vbr.py) to tape or other
external media.

-546-

Administrator's Guide

5 If the database becomes corrupted, create the directory structure that existed when you
created the hard link local backup.

6 Transfer the backup files from tape to their original backup directory.

7 Using the configuration file you used to create the hard link local backup (Step 3), restore the
database using the following command:

/opt/vertica/bin/vbr.py --task restore --config-file localbak.ini

When you restore from a hard link local backup (copied from tape), vbr.py creates hard links
from the backup files to the database directory, if possible, again saving significant disk space,
and time.

Interrupting the Backup Utility

To cancel a backup, use Ctrl+C or send a SIGINT to the Python process running the backup utility.
The utility stops the backup procedure after it has completed copying the data.

The files generated by an interrupted backup process remain in the target backup location
directory. The next backup process picks up where the interrupted process left off.

Backup operations are atomic, so that interrupting a backup operation does not affect the previous
snapshot. The previous snapshot is replaced only as the very last step of backing up your
database.

The restore or copy-cluster operations overwrite the database catalog directory, so

interrupting either of these processes leaves the database unusable until you restart the process
and allow it to finish.

Restoring Full Database Backups
To restore a full database snapshot, you must ensure that:

 The database is down. You cannot restore a full snapshot when the database is running.

 All of the backup hosts are up and available.

 The backup directory exists and contains the snapshots from which to restore.

 The cluster to which you are restoring the backup has the same number of hosts as the one
used to create the snapshot. The node names and the IP addresses must also be identical.

 The database you are restoring already exists on the cluster to which you are restoring data.
The database can be completely empty without any data or schema. As long as the database
name matches the name in the snapshot, and all of the node names match the names of the
nodes, you can restore to it.

If you have saved multiple backup archives, you can restore from either the last backup, or one of
the backup archives.

To begin a full database snapshot restore, log in using the database administrator's account. You
cannot run the utility as root.

-547-

 Backing Up and Restoring the Database

For information about monitoring database restoration, see Monitoring Recovery (page 571).

Attempting to Restore a Node that is UP

During a full database restore, the node must be DOWN. If you start the restore process and the
node is UP, vbr.py displays the following message:

doc:tests/doc/tools $ vbr.py --config-file=doc.ini -t restore

--nodes=v_doc_node0001

Warning: trying to restore to an UP cluster

Warning: Node state of v_doc_node0001 is UP; node must be DOWN for restore; ignoring

restore on this node.

Nothing to do

restore done!

To restore the node, first bring it down, and then run the utility again.

Attempting to Restore to an Alternate Cluster

You can restore a full production snapshot ONLY to a cluster with the node names and IP
addresses used to create the snapshot. The vbr.py utility does NOT support restoring a full
database snapshot to an alternate cluster with different host names and IP addresses.

Attempting to restore a full snapshot to an alternate cluster when the source database is
accessible can render the source database unusable. The snapshot you are restoring contains
critical references to the source database that it uses during the restore process.

Restoring the Most Recent Snapshot

To restore from the most recent snapshot, use the configuration file used to create the snapshot,
specifying vbr.py with the --task restore. If your configuration file does not contain the
database superuser password, the utility prompts you to enter it at run time.

The following example uses the db.ini configuration file, which includes the superuser's
password:

> vbr.py --task restore --config-file db.ini

Copying...

1871652633 out of 1871652633, 100%

All child processes terminated successfully.

restore done!

You can restore a snapshot only to the database from which it was taken. You cannot restore a
snapshot into an empty database.

Restoring an Archive

You can specify a specific backup archive to restore, if you have saved multiple versions. To
restore from one of several archives, use the --archive option, specifying the full snapshot

name with its date and time.

To restore a specific snapshot:

-548-

Administrator's Guide

1 Invoke the utility with the --task restore command and the configuration file with which you

created the backup, followed by the --archive parameter with the date_timestamp suffix of

the directory name to identify which archive to restore. For example:

> vbr.py --task restore --config-file fullbak.ini

--archive=20121111_205841

2 The vbr.py utility restores the snapshot.

The --archive parameter identifies the archive subdirectory, in this example, created on

11-11-2012 (_archive20121111), at time 205841 (20:58:41). Specify only the archive date
and time, because the configuration file identifies the snapshot name of the subdirectory, and the
_archive suffix indicates the backup is an archive.

Restoring Schema and Table Backups
You can restore an object-level backup to the database from which it was taken when the node is
UP. The vbr.py configuration file specifies the snapshot to restore, as described in Creating

Schema and Table Backups (page 539). To restore a full database snapshot, see Restoring
Full Database Backups (page 546).

NOTE: Creating object-level snapshots does not support restoring selectively. For example, if

you create a backup of two schemas, schema1 and schema2, and later need to restore

schema1, you cannot do so without also restoring schema2. To support restoring a single
object, create a single object backup.

Snapshots created in the same backup location are compatible. You can restore object-level
snapshots in the same backup location after a full-database snapshot restore.

NOTE: Using different backup locations in which to create full- or object-level snapshots results

in incompatible object-level snapshots. Attempting to restore an object-level snapshot after
restoring a full database snapshot will fail.

When you restore a full database snapshot, OIDs from each snapshot (including all archived
snapshots) in the same backup are injected into the restored catalog of the full database
snapshot. Additionally, the OID generator and current epoch are set to the respective maximum
OID and epoch from the full database snapshot.

Restoring an object-level snapshot does not affect any schemas or tables that were not included in
the original snapshot you are restoring. For instance, in a multi-tenanted database, if you create
schema snapshots for each of four different tenants, restoring one tenant schema has no effect on
the other three.

Cluster State When Restoring Snapshots

You restore a snapshot by name. An archive can comprise multiple snapshots, including both full-
and object-level snapshots.

You can use only a full database snapshot to restore a database from scratch. You cannot restore
any object-level snapshot into an empty database.

-549-

 Backing Up and Restoring the Database

To perform a full database restore, the cluster must be DOWN. When a node or cluster is DOWN
the expected use case is to return the cluster to its most recent state, by restoring a full database
snapshot. You can restore any full database snapshot from the archive by identifying the name in
the configuration file.

To perform an object-level restore, the cluster must be UP. Once the cluster is UP again after a full
database restore, you can restore the latest object-level snapshot, providing that it was created in
the same backup location as the full snapshot you have just restored.

Node States when Restoring Object-Level Snapshots

There are some restrictions about cluster node availability when restoring a schema- or table-level
snapshot. For instance, you can take an object-level snapshot when a node is DOWN. However,
restoring such a snapshot can only complete successfully when the same nodes that were down
when your took the snapshot remain down during restore.

The process to restore from this snapshot is to:

1 Make sure it is safe to take down a node by first checking for the node in the critical_nodes
table.

2 If it is safe, take down the node that was down when you created the object-level snapshot.

3 Restore the snapshot to the nodes that were UP when you create the snapshot.

4 Once the restore is complete on the nodes that are UP, bring up the node that you took down in
Step 2. Any node that misses the restore node recover affected projection data from scratch.

Restoring to the Same Cluster Topology

You can restore an object-level snapshot only to the same cluster from which it was saved. If you
change the cluster topology in any way after creating an object-level snapshot, you will be unable
to restore it successfully. Changes to the cluster topology include adding or removing nodes, or
altering node names or node IP addresses.

Trying to restore an object-level snapshot after changing the cluster topology causes vbr.py to
display this message:

Preparing...

Topology changed after backup; cannot restore.

restore failed!

Projection Epoch After Restore

All object-level backup and restore events are treated as DDL events. If a table does not
participate in an object-level snapshot, possibly due to a node being down, restoring the snapshot
has this effect on the projection:

 Its epoch is reset to 0

 It must recover from scratch.

-550-

Administrator's Guide

Catalog Locks During Snapshot Restore

When restoring an object-level snapshot into a cluster that is UP, the first part of the process (most
of the work) consists of copying data, managing, and potentially splitting, storage containers. This
part of the object-level snapshot restore does not require any catalog locks.

To complete the object-level snapshot restore process, the vbr.py utility first takes a table object
lock (O-lock), and then a global catalog lock (GCLX). The effect of requiring these locks is that
other operations that hold locks on the associated tables can block the restore process, although
system operations, such as the TM, are canceled to allow a restore to proceed. Once a restore
process acquires a table lock, other operations also requiring a lock on the table are blocked. A
GCLX is held for a minimal duration to guarantee catalog consistency. When the restore locks are
in effect, any concurrent table modifications are blocked until the locks are released.

Catalog Restore Events

Each object-level snapshot includes a catalog snippet containing the selected objects, dependent
objects, and principal objects. This file is similar in nature and format to the database catalog, but
contains only a subset of the catalog. Objects being restored can be read from the catalog snippet
and used to update the global and local catalogs.

Each object in a restored snapshot is updated in the catalog or added to the catalog if it no longer
exists. All dependent objects that are not in the snapshot are dropped from the catalog.

The vbr.py utility uses existing dependency checking methods to check the catalog, and adds a
restore event to the catalog for each restored table. The event also includes the epoch at which
the event occurred. Any node that misses the restore event will recover projections anchored on
the given table from scratch.

A DML statement that references an object being restored must wait for the restore to complete
before being able to lock the table. If a DML statement is in progress when the restore attempts to
place an O-lock on the table, the DML statement must finish before the restore can complete.

-551-

 551

Restoring Hard Link Local Backups
This section describes issues around restoring from hard link local full- and object-level backups.

Restoring Full- and Object-level Hard Link Local Backups

If you have created both full- and object-level backups and the database fails, first restore the full
database backup. You can then restore from the object-level backups.

Avoiding OID and Epoch Conflicts

If you create full- and object-level backups in the same backup directory (recommended), when
you restore a full backup, vbr.py determines the latest OID and epoch of the object-level
backups as well.

Consider the following scenario:

1 Create a full hard link local backup in backup directory /home/dbadmin/backups, with

configuration file mybak.ini:

[dbadmin@node01 ~]$ /opt/vertica/bin/vbr.py --task backup --config-file

mybak.ini

2 Create an object-level hard link local backup for Table1 using the same backup directory, with

configuration file table1bak.ini:

[dbadmin@node01 ~]$ /opt/vertica/bin/vbr.py --task backup --config-file

table1bak.ini

3 Create an object-level hard link local backup for Table2, using the same backup directory,

with configuration file table2bak.ini.

[dbadmin@node01 ~]$ /opt/vertica/bin/vbr.py --task backup --config-file

table2bak.ini

-552-

Administrator's Guide

After creating these hard link local backups, using the /backups directory, the following directory

structure exists:

Given this situation, the following occurs when you need to restore from a hard link local backup:

 When restoring a full DB (when table1 and table2 backups exist in the same backup

directory), vbr.py detects the maximum object ID (OID) and epochs from the object-level
table backups and sets them in the restored database. This prevents OID and epoch conflicts
from occurring when object-level snapshots are restored after the newly restored database.

 If the database and object-level table backups are not in the same backup directory, vbr.py
reverts the maximum OID and epoch for a full database restore back to the table OID and

epoch. Further attempts to restore either table1 or table2 backups will then fail, preventing
any potential conflicts.

Transferring Hard link local Backups to and from Remote Storage

Once a full hard link local backup exists, you can use a utility (other than vbr.py) to transfer the

backup to another storage media, such as tape. Transferring hard link local backups to another
storage media may copy the data files associated with the hard file links. The external media will
then contain copies of the files.

Complete the following steps to restore hard link local backups from external media:

1 If the original backup directory no longer exists on one or more local backup host nodes,
recreate the directory. The directory structure into which you restore hard link backup files
must be identical to what existed when the backup was created. For example, if you created
hard link local backups at the following backup directory, then recreate that directory structure:

-553-

 Backing Up and Restoring the Database

/home/dbadmin/backups/localbak

2 Copy the backup files to their original backup directory, as specified for each node in the

configuration file with the backupHost and backupDir parameters. For example, this

configuration file shows the backupDir parameter for v_vmart_node0001:

[Mapping0]

dbNode = v_vmart_node0001

backupHost = node03

backupDir = /home/dbadmin/backups/localbak

3 To restore the latest version of the backup, move the backup files to this directory:

/home/dbadmin/backups/localbak/node_name/snapshotname

4 To restore a different backup version, move the backup files to this directory:

/home/dbadmin/backups/localbak/node_name/snapshotname_archivedate_ti

mestamp

5 When the backup files are returned to their original backup directory, use the original

configuration file to invoke vbr.py as follows:

>/opt/vertica/bin/vbr.py --task restore --config-file localbak.ini

If the physical files are restored from tape into the correct directories, and you use the

configuration file that specifies hardLinkLocal = true, restoring the backup succeeds.

NOTE: You can use a different directory when you return the backup files to the hard link local

backup host. However, you must also change the backupDir parameter value in the
configuration file before restoring the backup.

Copying the Database to Another Cluster
You can use the vbr.py utility to copy the entire database to another HP Vertica cluster. This

feature makes it easy to perform tasks such as copying a database between a development and a
production environment. Copying your database to another cluster is essentially a simultaneous
backup and restore — the data is backed up from the source database cluster and restored to the
destination cluster in a single operation.

The directory locations for the HP Vertica catalog , data, and temp directories must be identical on
the source and target database. Use the following vsql query to see the source database directory
locations. This example sets expanded display for illustrative purposes, and lists the columns of
most interest, node_name, storage_path, and storage_usage.

VMart=> \x

Expanded display is on.

VMart=> select node_name,storage_path, storage_usage from disk_storage;

-[RECORD 1]-+---

node_name | v_vmart_node0001

storage_path | /home/dbadmin/VMart/v_vmart_node0001_catalog/Catalog

storage_usage | CATALOG

-[RECORD 2]-+---

node_name | v_vmart_node0001

storage_path | /home/dbadmin/VMart/v_vmart_node0001_data

-554-

Administrator's Guide

storage_usage | DATA,TEMP

-[RECORD 3]-+---

node_name | v_vmart_node0001

storage_path | home/dbadmin/SSD/schemas

storage_usage | DATA

-[RECORD 4]-+---

node_name | v_vmart_node0001

storage_path | /home/dbadmin/SSD/tables

storage_usage | DATA

-[RECORD 5]-+---

node_name | v_vmart_node0001

storage_path | /home/dbadmin/SSD/schemas

storage_usage | DATA

-[RECORD 6]-+---

node_name | v_vmart_node0002

storage_path | /home/dbadmin/VMart/v_vmart_node0002_catalog/Catalog

storage_usage | CATALOG

-[RECORD 7]-+---

node_name | v_vmart_node0002

storage_path | /home/dbadmin/VMart/v_vmart_node0002_data

storage_usage | DATA,TEMP

-[RECORD 8]-+---

node_name | v_vmart_node0002

storage_path | /home/dbadmin/SSD/tables

storage_usage | DATA

.

.

.

Notice the directory paths for the Catalog, and Data,Temp storage. These paths are the same on
all nodes in the source database, and must be the same in the target database.

NOTE: Copying a database to another cluster overwrites any existing data on the target

cluster. If the target data is identical to the source database, data is not transferred again.
However, if the target cluster contains data you want to retain, create a full database backup
before invoking the copycluster vbr.py task.

Identifying Node Names for Target Cluster

You need to know the exact names that Admintools supplied to all nodes in the source database
before configuring the target cluster.

To see the node names, run a vsql query such as this:

VMART=> select node_name from nodes:

 node_name

 v_vmart_node0001

 v_vmart_node0002

 v_vmart_node0003

(3 rows)

-or-

-555-

 Backing Up and Restoring the Database

To run admintools from the command line, enter a command such as this for the VMart database:

$ /opt/vertica/bin/admintools -t node_map -d VMART

DATABASE | NODENAME | HOSTNAME

VMART | v_vmart_node0001 | 192.168.223.xx

VMART | v_vmart_node0002 | 192.168.223.yy

VMART | v_vmart_node0003 | 192.168.223.zz

Configuring the Target Cluster

Configure the target to allow the source database to connect to it and restore the database. The
target cluster must:

 Have the same number of nodes the source cluster.

 Have a database with the same name as the source database. The target database can be
completely empty.

 Have the same node names as the source cluster. The nodes names listed in the NODES
system tables on both clusters must match.

 Be accessible from the source cluster. You may need to add the hostnames of the target
cluster to the hosts file of the source cluster. See Configure Hostname Resolution in the
Installation Guide for more information.

 Have the same database administrator account, and all nodes must allow a database
administrator of the source cluster to login through SSH without a password.

Note: Having passwordless access within the cluster is not the same as having passwordless
access between clusters. The SSH ID of the administrator account on the source cluster is
likely not the same as the SSH ID of the administrator account on the target cluster. You need
to configure each host in the target cluster to accept the SSH authentication of the source
cluster. See Configuring Backup Hosts (page 525) for more information.

 Have adequate disk space for the vbr.py --task copycluster command to complete.

Creating A Configuration File to Copy the Database

Create a configuration file specifically for copying your database to another cluster. In the
configuration file, specify the host names of nodes in the target cluster as the backup hosts. When

using the copycluster command, the vbr.py requires that you define the backupHost, but

ignores the backupDir option, and always stores the data in the catalog and data directories of
the target database.

You cannot use an object-level snapshot file with the copycluster command. You must use a
full database backup.

The following example configuration file is set up to copy a database on a three node cluster

(v_vmart_node0001, v_vmart_node0002, and v_vmart_node0003) to another cluster
consisting of nodes named test-host01, test-host02, and test-host03.

[Misc]

snapshotName = CopyVmart

tempDir = /tmp/vbr

restorePointLimit = 5

-556-

Administrator's Guide

verticaConfig = False

retryCount = 5

retryDelay = 1

[Database]

dbName = vmart

dbUser = dbadmin

dbPassword = password

dbPromptForPassword = False

[Transmission]

encrypt = False

checksum = False

port_rsync = 50000

bwlimit = 0

hardLinkLocal = False

[Mapping0]

dbNode = v_vmart_node0001

backupHost = test-host01

; backupDir not used for cluster copy

; backupDir = /home/dbadmin/backups

[Mapping1]

dbNode = v_exampledb_node0002

backupHost = test-host02

; backupDir = /home/dbadmin/backups

[Mapping2]

dbNode = v_exampledb_node0003

backupHost = test-host03

; backupDir = /home/dbadmin/backups

Copying the Database

The target cluster must be stopped before you invoke copycluster.

To copy the cluster, run vbr.py from a node in the source database using the database

administrator account, passing the --task copycluster --config-file CopyVmart.ini

command.

The following example demonstrates copying a cluster using a configuration file located in the
current directory.

> vbr.py --config-file CopyVmart.ini --task copycluster

Copying...

1871652633 out of 1871652633, 100%

All child processes terminated successfully.

copycluster done!

-557-

 Backing Up and Restoring the Database

Restoring to the Same Cluster

Restoring a database on the same cluster from a full-database snapshot consists of following
these general steps:

1 Stopping the database (page 266) you intend to restore.

Note: If you restore data to a single node, the node has already stopped. You do not need to

stop the database.

2 Restoring Full Database Backups (page 546).

3 Starting the database, see Starting the Database (admintools) (page 233) .

Note: If you restored all the nodes using the backup, you are using a manual recovery method,

as described in Failure Recovery (page 566). Administration Tools returns the message,
"Database startup failed," after you attempt to restart the database and then offers to restart
the database from an earlier epoch. Click Yes.

4 After the database starts, connect to it through the Administration Tools and verify that it was
successfully restored by running some queries.

Backup and Restore Utility Reference
This section provides reference information about both the vbr.py utility commands, and its

associated configuration file parameters.

VBR Utility Reference

The HP Vertica utility to back up and restore your database is called vbr.py. The utility is located
in the HP Vertica binary directory (/opt/vertica/bin/vbr.py on most installations).

Syntax
/opt/vertica/bin/vbr.py { command }

... [--archive file]

... [--config-file file]

... [--nodes node1[,...]]

... [--debug level]

... [--showconfig]

Where command is one of the following:

Full Command Short
Command

Description

--help -h Shows a brief usage guide for the command.

-558-

Administrator's Guide

--setupconfig Asks a series of questions and generates a
configuration file. See Configuring the Backup

Script (page 530) for details.

--task {backup

| restore

| copycluster

| listbackup }

-t Performs the specified task:

 backup creates a full -database, or

object-level snapshot, depending on

what you have specified in the
configuration file

 restore restores a full-database, or

object-level snapshot that you specify
in the configuration file

 copycluster copies the database to
another HP Vertica cluster

 listbackup displays the existing

snapshots associated with the
configuration file

Parameters

Parameter Description

--archive file Used with --task backup or --task restore

command, specifies the name of the snapshot to create
(backup) or restore. Use this option with the --task

restore command when you have saved more than

one snapshot restore point, using a command such as:

> vbr.py --task restore --config-file

myconfig.ini

--archive=snapDB20111114_205841

See the restorePointLimit parameter in Backup

Configuration Options (page 559) for details.

--config-file file Indicates the configuration file to use. If you do not
specify a configuration file to use, the utility searches for
/opt/vertica/config/vbr.ini. If this file does not

exist, an error occurs and the utility cannot continue.
The file parameter can be absolute or relative path to the

location from which you start the backup utility.

--nodes node1[,...] Specifies the node, or nodes in a comma-separated list
if more than one, on which to perform the vbr.py task.

The node names in the list are the same ones you
provide in the Mapping section of the configuration file.
See VBR Configuration File Reference (page 559) for

details.

Caution: If you create a snapshot for only some nodes

in the cluster, you are creating a partial database
snapshot. Partial snapshots can result in lost data if not

used correctly. Do not try to restore the entire database
cluster from a partial database snapshot created from a
subset of the nodes.

-559-

 Backing Up and Restoring the Database

--debug level Indicates the level of debugging messages (from 0 to 3)

that the vbr.py utility provides. Level 3 has the most

verbose debugging messages, while level 0 supplies no
messages. The default value when running the utility is

level 0 (no output).

--showconfig The configuration values being used to perform the task.
The parameters are shown in a raw JSON format before

vbr.py starts processing.

VBR Configuration File Reference
The configuration file options are grouped into sections within the configuration file. The following
tables describe each parameter section.

[Misc] Miscellaneous Settings

This section collects basic settings, including the snapshot name, and backup locations. It also
indicates whether you are keeping more than a single snapshot file (restorePointLimit).

Parameter Default Configuration question and Description

snapshotName snapshotName Specifies the name of the top-level directory
vbr.py creates for the full or object-level backup. A
snapshotName can include only alphanumeric

characters, including:

 a — z

 A – Z

 0 – 9

 period (.)

 hyphen (-)

 underscore (_)

tempDir /tmp Specifies an absolute path to a temporary storage
area on the cluster nodes. The vbr.py utility

uses this directory as a temporary location while it
is copying files from the source cluster node to the

destination backup location. See Configuring
Backup Hosts (page 525) for further information.

Note: The tmp path must be the same on all

nodes in the cluster.

verticaBinDir /opt/vertica/bin Specifies a full path to the HP Vertica binary

directory, if the path is something other than the
default.

verticaConfig False Indicates whether the HP Vertica configuration

files are included in the snapshot, in addition to
the database data.

-560-

Administrator's Guide

restorePointLimit 1 Specifies the number of archive snapshots to

retain, in addition to the current backup. For
example, i f you set restorePointLimit=3,

there will be a maximum of three archive

snapshots, in addition to the most recent backup.
By default, HP Vertica maintains a single archive.
Saving multiple snapshots lets you back up

incrementally. Enter a value from 1 - 99.

If you set restorePointLimit to more than 1,

you can save multiple archive snapshots to the
same location, with the benefit that storage
common to multiple snapshots is shared (through

hard links). In this case, each snapshot begins
with the same prefix but has a unique time and
date suffix, such as follows:

mysnapshot_archive20111111_205841

objects None Specifies whether vbr.py creates a full or

object-level backup. If you do not specify any
objects, vbr.py creates a full backup. Otherwise,

specify the object names (schemas or tables) to

include in a backup. To enter more than one
object, enter multiple names in a
comma-separated list.

Object names can include UTF-8 alphanumeric
characters (as for the snapshotName parameter,

above). Object names cannot include escape
characters, single quote (') or double quote (")
characters.

To use non-alphanumeric characters, use a
backslash (\) followed by a hex value. For
instance, if the table name is a my table (my

followed by a space character, then table), enter

the object name as follows:

 objects=my\20table

-561-

 Backing Up and Restoring the Database

overwrite True Specifies whether to overwrite an object of the

same name when restoring a schema- or
table-level snapshot. This parameter is related
only to schema or table snapshots. By default,

conflicting objects are overwritten when you
restore a snapshot and an conflict between object
IDs (OIDs) occurs. To prevent the snapshot from

overwriting the schema or table while restoring
the snapshot, set this parameter to false in the
related object-specific snapshot configuration file.

NOTE: This parameter is not included in the

configuration file you create, even if you specify

one or more values for the preceding objects

parameter, and the default value is in use when

restoring a snapshot. To change the overwrite

default value, edit your configuration file before
restoring the snapshot, and enter overwrite =

false in the file's [MISC] section.

retryCount 2 Indicates the number of times the backup

operation attempts to complete execution after an
error occurs. If the failure continues to occur after
the number of retry attempts, the utility reports an

error and stops processing.

retryDelay 1 Defines the number of seconds to wait between
backup retry attempts in the event of a failure.

[Database] Database Access Settings

Sets options for accessing the database.

Parameter Default Description

dbName N/A Specifies the name of the database to back up. If you

do not supply a database name, the vbr.py utility

selects the current database to back up.

HP Vertica recommends that you provide a database

name.

dbUser Current user
name

Identifies the login name of the person who can run
vbr.py to create a snapshot, or perform other tasks.

The vbr.py utility obtains this information

automatically as the current user of the person who
invoked the --setupconfig command. You must

be logged on as the database administrator to back

up the database.

dbPromptForPasswo

rd
True Controls whether the utility prompts for a password.

If you set this parameter to False (indicating no

prompt at run time), then you must also enter the
database administrator password in the

-562-

Administrator's Guide

dbPassword parameter. If you do not supply a

password in the configuration file, the utility prompts
for one at run time.

dbPassword None Identifies the database administrator's password.

Enter a password if you set
dbPromptForPassword to False, so that you will

not be prompted at runtime, and the utility needs no
further intervention.

The vbr.py utility saves your password as plain

text. Do not include a password unless you are
confident that no unauthorized personnel have
access to the vbr.py configuration file.

Note: You cannot enter an empty string for the

dbPassword in the configuration file. If a

superuser's password consists of an empty string

(not recommended), you must set the
dbPromptForPassword parameter to True, leave

the dbPassword option blank, and enter the empty

string at the prompt each time you run the backup
utility.

[Transmission] Data Transmission During Backup Process

Sets options for transmitting the data when using backup hosts.

Parameter Default Description

encrypt False Controls whether the transmitted data is encrypted
while it is being copied to the target backup location.
Choose this option if you are performing a backup

over an untrusted network (for example, backing up
to a remote host across the Internet).

Note: Encrypting data transmission causes

significant processing overhead and slows transfer.

One of the processor cores of each database node is
consumed during the encryption process. Use this
option only if you are concerned about the security of

the network used when transmitting backup data.

checksum False Controls whether the vbr.py utility has rsync use

the md5 checksum to determine whether files are

identical before and after network transmission. By
default, rsync does not perform checksum. Instead, it
performs minimal file checking, confirming that the

file size and time of last modification are identical
before and after transmission.

Note: Calculating checksum values increases

processor usage during the backup process. For

more details, see Wikipedia rsync

-563-

 Backing Up and Restoring the Database

(http://en.wikipedia.org/wiki/Rsync).

port_rsync 50000 Changes the default port number for the rsync
protocol. Change this value if the default rsync port is
in use on your cluster, or you need rsync to use

another port to avoid a firewall restriction.

bwlimit 0 Indicates the transfer bandwidth limit (in KBs per
second) for data transmission on each node in the

database. If you do not specify a value, then no limit
is imposed.

hardLinkLocal False Creates a full- or object-level backup using hard file

links on the local file system, rather than copying
database files to a remote backup host. Add this
configuration parameter manually to the Transaction

section of the configuration file, as described in
Configuring the Hard Link Local VBR Parameter
(page 535).

ssh_port_backup 22 Overrides the default SSH port setting (22) for the

backup hosts. Enter the required SSH port for your
site.

Changing the default SSH port is supported only
when using the backup and restore tasks. Using a

non-default SSH port with the copycluster task is

not supported.

NOTE: This parameter is not included in the

configuration file automatically. See Configuring

Backup Hosts (page 525) to enter the parameter
manually.

[MappingN]

There is one mapping section for each node in your database cluster. Each heading is numbered
([Mapping1], [Mapping2], etc.) and controls where the indicated node backs up its data. All of
these parameters are required in your configuration file.

Parameter Default Description

backupHost None Indicates the target host name on which to store this
node's backup. The backupHost name is the one

that you use in the /etc/hosts file when you

setup a cluster, as described in the <INSTALLATION
GUIDE> section, Configure Hostname Resolution.

The backupHost name is different from dbNode,

also described in this table.

To store the backup on the current node, supply the
node's hostname at this question. When you create
a configuration file to copy the database to another

HP Vertica cluster (with the copycluster task),

supply the hostname of a node in the target cluster

http://en.wikipedia.org/wiki/Rsync

-564-

Administrator's Guide

here.

backupDir None Identifies the full path to the directory on the backup
host or node where the backup will be stored. This
directory must already exist when you run the utility

with the --task backup option, and must be

writable by the user account used to run the backup
utility. This setting is not used for the copycluster

command.

dbNode None The name of the database node, as recognized by

HP Vertica. This is not the node's host name, but
rather the name HP Vertica uses internally to identify
the node, usually in the form of:

v_databasename_node00xx

To find the names of the nodes in your database,
query the node_name column in the NODES system

table.

-565-

Recovering the Database

Recovering a database can consist of any of the following:

 Restarting HP Vertica on a host (page 568)

 Restarting the database (page 568)

 Recovering the cluster from a backup (page 570)

 Replacing failed disks (page 457)

 Copying the Database to Another Cluster (page 553)

 Exporting a catalog (page 572) for support purposes.

You can monitor a recovery (page 571) in progress by viewing log messages posted to the
vertica.log file on each host.

See Also

Failure Recovery (page 566)

-566-

 566

Failure Recovery

 Recovery is the process of restoring the database to a fully functional state after one or more
nodes in the system has experienced a software- or hardware-related failure. HP Vertica recovers
nodes by querying replicas of the data stored on other nodes. For example, a hardware failure can
cause a node to lose database objects or to miss changes made to the database (INSERTs,
UPDATEs, and so on) while offline. When the node comes back online, it recovers lost objects and
catches up with changes by querying the other nodes.

K-safety is a measure of fault tolerance in the database cluster. The value K represents the
number of replicas of the data in the database that exist in the database cluster. These replicas
allow other nodes to take over for failed nodes, allowing the database to continue running while
still ensuring data integrity. If more than K nodes in the database fail, some of the data in the
database may become unavailable. In that case, the database is considered unsafe and
automatically shuts down.

It is possible for an HP Vertica database to have more than K nodes fail and still continue running
safely, because the database continues to run as long as every data segment is available on at
least one functioning cluster node. Potentially, up to half the nodes in a database with a K-safety
level of 1 could fail without causing the database to shut down. As long as the data on each failed
node is available from another active node, the database continues to run.

Note: If half or more of the nodes in the database cluster fail, the database will automatically

shut down even if all of the data in the database is technically available from replicas. This
behavior prevents issues due to network partitioning.

In HP Vertica, the value of K can be zero (0), one (1), or two (2). The physical schema design must
meet certain requirements. To create designs that are K-safe, HP recommends using the
Database Designer.

Note: You can monitor the cluster state through the View Database Cluster state menu

option.

Recovery Scenarios

Recovery comes into play when a node or the database is started. Depending upon how the node
or database was shut down, and how it is restored, there are three possibilities for a K-Safe
database:

 Recovery of failed nodes: One or more nodes have failed, but the database continues to run

since the remaining nodes in the database are able to fill in for the failed nodes. The failed
nodes can be restarted through the Administration Tools (page 231) using the Restart HP
Vertica on host (page 234) option. The nodes being restarted have a RECOVERING status
while they rebuild some of the data from the remaining nodes. Once rebuilding is finished, the
nodes transition to an UP status. The database can continue to commit transactions during the
recovery process, except for a short period at the end of the recovery process.

-567-

 Recovering the Database

 Recovery after a Clean Shutdown: The database had been shut down cleanly via the

Administration Tools Stop Database option. In this case, the database should be restarted
using the Start Database (page 568) option. Upon restart all nodes that were 'UP' at the time
of shutdown immediately transition to 'UP'. It is possible that at the time of shutdown, the
database had one or more failed nodes. If these nodes are now available, they go through the
'RECOVERING' state as described in 'Recovery of failed nodes" case above.

 Recovery after an Unclean Shutdown (Manual Recovery): The database was not shut

down cleanly, which means that the database became unsafe due to a failure. In this case, the
database possibly did not write all the data from the WOS to disk. There are several reasons
for unclean shutdowns, such as:

 A critical node failed, leaving part of the database's data unavailable.

 A site-wide event, such as a power failure that causes all nodes to reboot.

 HP Vertica processes on the nodes exited due to a software or hardware failure.

When the database is started through the Administration Tools Start Database option,
recovery determines that a normal startup is not possible. It goes on to determine a point in
time in which the data was consistent on all nodes. This is called the Last Good Epoch. As part
of Start Database processing, the administrator is prompted to accept recovery with the
suggested epoch. If accepted, the database recovers and any data changes made after the
Last Good Epoch are lost. If not accepted, startup is aborted and the database is not started on
any of the nodes.

Instead of accepting the given epoch, the administrator can instead choose to recover from a
backup (page 570) or select an epoch for an even earlier point using the Roll Back Database
to Last Good Epoch option in the Administration Tools Advanced Menu. This is useful in
special situations, for example if the failure occurs during a batch of loads, for which it is easier
to go back to the beginning of the batch, rather than starting in the middle, even though some
of the work must be repeated. In most scenarios, it is sufficient and recommended to accept
the given epoch.

Notes

 In HP Vertica 5.0, manual recovery is possible as long as the nodes that are being started can
supply all of the partition segments in the database. This means that more than K nodes can
remain down at startup, and the database can still successfully start as long as all of the data
is available from the remaining nodes in the cluster.

 In HP Vertica 4.1, the default for the HistoryRetentionTime configuration parameter
changed to 0, which means that HP Vertica only keeps historical data when nodes are down.
This default setting effectively prevents the use of the Administration Tools 'Roll Back
Database to Last Good Epoch' option because the AHM remains close to the current epoch
and a rollback is not permitted to an epoch prior to the AHM. If you rely on the Roll Back
option to remove recently loaded data, consider setting a day-wide window for removing
loaded data; for example:

=> SELECT SET_CONFIG_PARAMETER ('HistoryRetentionTime', '86400');

See Epoch Management Parameters (page 39) in the Administrator's Guide.

 Starting in 4.0, manual recovery is possible even if up to K nodes are out of commission; for
example, physically removed for repair or not reachable at the time of recovery. Once the
nodes are back in commission, they recover and rejoin the cluster, as described in the
"Recovery after failure of up to K nodes" section above.

-568-

Administrator's Guide

 IMPORTANT: When a node is down, it can take a full minute or more for the HP Vertica

processes to time out during its attempt to form a cluster when manual recovery is needed.
Wait approximately one minute until the system returns the manual recovery prompt. Do not
press CTRL-C during database startup.

See Also

High Availability and Recovery in the Concepts Guide.

Restarting HP Vertica on a Host
When one node in a running database cluster fails, or if any files from the catalog or data
directories are lost from any one of the nodes, you can check the status of failed nodes using
either the Administration Tools or the Management Console.

Restarting HP Vertica on a host using the Administration Tools

1 Run Administration Tools.

2 From the Main Menu, select Restart HP Vertica on Host and click OK.

3 Select the database host you want to recover and click OK.

Note: You might see additional nodes in the list, which are used internally by the

Administration Tools. You can safely ignore these nodes.

4 Verify recovery state by selecting View Database Cluster State from the Main Menu.

After the database is fully recovered, you can check the status at any time by selecting View
Database Cluster State from the Administration Tools Main Menu.

Restarting HP Vertica on a host using the Management Console

1 Connect to a cluster node (or the host on which MC is installed).

2 Open a browser and connect to MC (page 252) as an MC administrator.

3 On the MC Home page, double-click the running database under the Recent Databases

section.

4 Within the Overview page, look at the node status under the Database sub-section and see if

all nodes are up. The status will indicate how many nodes are up, critical, down, recovering, or
other.

5 If a node is down, click Manage at the bottom of the page and inspect the graph. A failed node

will appear in red.

6 Click the failed node to select it and in the Node List, click the Start node button.

Restarting the Database

If you lose the HP Vertica process on more than one node (for example, due to power loss), or if
the servers are shut down without properly shutting down the HP Vertica database first, the
database cluster indicates that it did not shut down gracefully the next time you start it.

-569-

 Recovering the Database

The database automatically detects when the cluster was last in a consistent state and then shuts
down, at which point an administrator can restart it.

From the Main Menu in the Administration Tools:

1 Verify that the database has been stopped by clicking Stop Database.

A message displays: No databases owned by <dbadmin> are running

2 Start the database by selecting Start Database from the Main Menu.

3 Select the database you want to restart and click OK.

If you are starting the database after an unclean shutdown, messages display, which indicate
that the startup failed. Press RETURN to continue with the recovery process.

An epoch represents committed changes to the data stored in a database between two
specific points in time. When starting the database, HP Vertica searches for last good epoch.

-570-

Administrator's Guide

4 Upon determining the last good epoch, you are prompted to verify that you want to start the
database from the good epoch date. Select Yes to continue with the recovery.

Caution: If you do not want to start from the last good epoch, you may instead restore the data
from a backup and attempt to restart the database. For this to be useful, the backup must be
more current than the last good epoch.

HP Vertica continues to initialize and recover all data prior to the last good epoch.

If recovery takes more than a minute, you are prompted to answer <Yes> or <No> to "Do you
want to continue waiting?"

When all the nodes' status have changed to RECOVERING or UP, selecting <No> lets you exit
this screen and monitor progress via the Administration Tools Main Menu. Selecting <Yes>
continues to display the database recovery window.

Note: Be sure to reload any data that was added after the last good epoch date to which you

have recovered.

Recovering the Cluster from a Backup
To recover a cluster from a backup, refer to the following topics in this guide:

 Backing Up the Database (vbr.py) (page 537)

 Restoring Full Database Backups (page 546)

-571-

 Recovering the Database

Monitoring Recovery
There are several ways to monitor database recovery:

 Log files on each host

 Admintools (View Database Cluster State)

 System tables

This section describes the different ways to monitor recovery.

Viewing Log Files on each Node

During database recovery, HP Vertica adds logging information to the vertica.log on each
host. Each message is identified with a [Recover]string.

Use the tail command to monitor recovery progress by viewing the relevant status messages,
as follows.

$ tail -f catalog-path/database-name/node-name_catalog/vertica.log

01/23/08 10:35:31 thr:Recover:0x2a98700970 [Recover] <INFO> Changing

host node01 startup state from INITIALIZING to RECOVERING

01/23/08 10:35:31 thr:CatchUp:0x1724b80 [Recover] <INFO> Recovering to

specified epoch 0x120b6

01/23/08 10:35:31 thr:CatchUp:0x1724b80 [Recover] <INFO> Running 1 split

queries

01/23/08 10:35:31 thr:CatchUp:0x1724b80 [Recover] <INFO> Running query:

ALTER PROJECTION proj_tradesquotes_0 SPLIT node01 FROM 73911;

Viewing the Cluster State and Recover Status

Use the admintools view_cluster tool from the command line to see the cluster state:

$ /opt/vertica/bin/admintools -t view_cluster

DB | Host | State

---------+--------------+------------

<data_base> | 112.17.31.10 | RECOVERING

<data_base> | 112.17.31.11 | UP

<data_base> | 112.17.31.12 | UP

<data_base> | 112.17.31.17 | UP

Using System Tables to Monitor Recovery

Use the following system tables to monitor recover:

 RECOVERY_STATUS

 PROJECTION_RECOVERIES

Specifically, the recovery_status system table includes information about the node that is

recovering, the epoch being recovered, the current recovery phase, and running status:

-572-

Administrator's Guide

=> select node_name, recover_epoch, recovery_phase, current_completed, is_running

from recovery_status;

 node_name | recover_epoch | recovery_phase | current_completed | is_running

-----------+---------------+-------------------+-------------------+----------

 node01 | | | 0 | f

 node02 | 0 | historical pass 1 | 0 | t

 node03 | 1 | current | 0 | f

The projection_recoveries system table maintains history of projection recoveries. To

check the recovery status, you can summarize the data for the recovering node, and run the same
query several times to see if the counts change. Differing counts indicate that the recovery is
working and in the process of recovering all missing data.

=> select node_name, status , progress from projection_recoveries;

node_name | status | progress

-----------------------+-------------+---------

v_<data_base>_node0001 | running | 61

To see a single record from the projection_recoveries system table, add limit 1 to the query.

Monitoring Cluster Status after Recovery

When recovery has completed:

1 Launch Administration Tools.

2 From the Main Menu, select View Database Cluster State and click OK.

The utility reports your node's status as UP.

Note: You can also monitor the state of your database nodes on the Management Console

Overview page under the Database section, which tells you the number of nodes that are up,
critical, recovering, or down. To get node-specific information, click Manage at the bottom of the
page.

See Also

Monitoring HP Vertica (page 575)

Exporting a Catalog

When you export a catalog you can quickly move a catalog to another cluster. Exporting a catalog
transfers schemas, tables, constraints, projections, and views. System tables are not exported.

Exporting catalogs can also be useful for support purposes.

See the EXPORT_CATALOG function in the SQL Reference Manual for details.

-573-

 Recovering the Database

Best Practices for Disaster Recovery

To protect your database from site failures caused by catastrophic disasters, maintain an off-site
replica of your database to provide a standby. In case of disaster, you can switch database users
over to the standby database. The amount of data loss between a disaster and fail over to the
offsite replica depends on how frequently you save a full database backup.

The solution to employ for disaster recover depends upon two factors that you must determine for
your application:

 Recovery point objective (RPO): How much data loss can your organization tolerate upon
a disaster recovery?

 Recovery time objective (RTO): How quickly do you need to recover the database following

a disaster?

Depending on your RPO and RTO, HP Vertica recommends choosing from the following
solutions:

1 Dual-load: During each load process for the database, simultaneously load a second

database. You can achieve this easily with off-the-shelf ETL software.

2 Periodic Incremental Backups: Use the procedure described in Copying the Database to

Another Cluster (page 553) to periodically copy the data to the target database. Remember
that the script copies only files that have changed.

3 Replication solutions provided by Storage Vendors: If you are using a SAN, evaluate your

storage vendor's replication (SRDF) solutions.

The following table summarizes the RPO, RTO, and the pros and cons of each approach:

 Dual Load Periodic Incremental Storage Replication

RPO
Up to the minute data Up to the last backup Recover to the minute

RTO
Available at all times Available except when backup

in progress
Available at all times

Pros
 Standby database

can have different
configuration

 Can use the standby
database for queries

 Built-in scripts

 High performance due
to compressed file
transfers

Transparent to the

database

Cons
 Possibly incur

additional ETL
licenses

 Requires application
logic to handle errors

Need identical standby
system

 More expensive

 Media corruptions
are also replicated

-574-

Administrator's Guide

-575-

Monitoring HP Vertica

This section describes some of the ways in which you can monitor the health of your HP Vertica
database.

Monitoring Log Files

When a database is running

When an HP Vertica database is running, each node in the cluster writes messages into a file
named vertica.log. For example, the Tuple Mover and the transaction manager write INFO

messages into vertica.log at specific intervals even when there is no WOS activity.

To monitor a running database in real time:

1 Log in to the database administrator account on any or all nodes in the cluster.

2 In a terminal window (such as vsql) enter:

$ tail -f catalog-path/database-name/node-name_catalog/vertica.log

catalog-path The catalog pathname specified when you created the database. See

Creating a Database (page 235) in the Administrator's Guide.

database-name The database name (case sensitive)

node-name The node name, as specified in the database definition. See Viewing a

Database (page 237) in the Administrator's Guide.

When the database / node is starting up

During startup before the vertica log has been initialized to write messages, each node in the
cluster writes messages into a file named dbLog. This log is useful to diagnose situations where

database fails to start before it can write messages into vertica.log. The dblog can be found
at the following path, using catalog-path and database-name as described above:

catalog-path/database-name/dbLog

See also

Rotating Log Files (page 575)

Rotating Log Files
The logrotate utility, which is included with most Linux distributions, helps simplify log file

administration on systems that generate many log files. Logrotate allows for automatic rotation,
compression, removal, and mailing of log files and can be configured to perform these tasks at
specific intervals or when the log file reaches a particular size.

-576-

Administrator's Guide

If logrotate is present when HP Vertica is installed (which is typical for most Linux distributions),
then HP Vertica automatically sets logrotate to look for configuration files in the

/opt/vertica/config/logrotate directory. The utility also creates the file vertica in the
/etc/logrotate.d/ directory, which includes the line:

include /opt/vertica/config/logrotate

If logrotate is not present but installed at a later time, either reinstall the HP Vertica RPM on every

node in the cluster or add a file in the /etc/logrotate.d/ directory that instructs logrotate to
include the logrotate directory contents. For example:

1 Create the file /etc/logrotate.d/vertica.

2 Add the following line:

include /opt/vertica/config/logrotate

When a database is created, HP Vertica creates database-specific logrotate configurations which
are used by the logrotate utility. For example, a file
/opt/vertica/config/logrotate/<dbname> is created for each individual database.

Using Administration Tools Logrotate Utility

The administration tools provide a logrotate option to help configure logrotate scripts for a
database and to distribute it across the cluster. Only a few basic options are supported - how often
to rotate logs, low large the log can get before rotation and how long to keep the logs. For other
options, you can manually create logrotate scripts as described later in this topic.

Example:

The following example sets up log rotation on a weekly schedule and keeps for 3 months (12 logs).

$ admintools -t logrotate -d <dbname> -r weekly -k 12

See Writing Administration Tools Scripts (page 245) for full usage description.

Manually Rotating Logs

To perform manual log rotation, use the following procedure to implement a custom log rotation
process. No log messages are lost during the procedure.

1 Rename or archive the vertica.log file that is produced. For example:

$ mv vertica.log vertica.log.1

2 Send the HP Vertica process the USR1 signal. For example:

$ killall -USR1 vertica

 or

$ ps -ef | grep -i vertica

$ kill -USR1 process-id

Manually Creating Logrotate Scripts

If your needs are not met by the administration tools logrotate utility, you may create your own
scripts. The following script is an example:

-577-

 Monitoring HP Vertica

/mydb/site01_catalog/vertica.log {

 # rotate weekly

 weekly

 # and keep for 52 weeks

 rotate 52

 # no complaining if vertica did not start yet

 missingok

 # compress log after rotation

 compress

 # no creating a new empty log, vertica will do that

 nocreate

 # if set, only rotates when log size is greater than X

 size 10M

 # delete files after 90 days (not all logrotate pkgs support this keyword)

 # maxage 90

 # signal vertica to reopen and create the log

 postrotate

 kill -USR1 `head -1 /mydb/site01_catalog/vertica.pid 2> /dev/null` 2>

/dev/null || true

 endscript

 }

The following script is an example of the typical default setting for the dbLog file:

/mydb/dbLog {

 # rotate weekly

 weekly

 # and keep for 52 weeks

 rotate 52

 # no complaining if vertica did not start yet

 missingok

 # compress log after rotation

 compress

 # this log is stdout, so rotate by copying it aside and truncating

 copytruncate

 }

For details about additional settings, issue the man logrotate command.

See also

Monitoring Log Files (page 575)

Monitoring Process Status (ps)

You can use ps to monitor the database and Spread processes running on each node in the
cluster. For example:

$ ps aux | grep /opt/vertica/bin/vertica

$ ps aux | grep /opt/vertica/sbin/spread

You should see one HP Vertica process and one Spread process on each node for common
configurations. To monitor Administration Tools and connector processes:

$ ps aux | grep vertica

-578-

Administrator's Guide

There can be many connection processes but only one Administration Tools process.

Monitoring Linux Resource Usage
You should monitor system resource usage on any or all nodes in the cluster. You can use System
Activity Reporting (SAR) to monitor resource usage.

Note: HP recommends that you install pstack and sysstat to help monitor Linux resources.

The SYSSTAT package contains utilities for monitoring system performance and usage
activity, such as sar, as well as tools you can schedule via cron to collect performance and
activity data. See the SYSSTAT Web page
http://pagesperso-orange.fr/sebastien.godard/ for details.

The pstack utility lets you print a stack trace of a running process. See the PSTACK man page
http://linux.die.net/man/1/pstack for details.

1 Log in to the database administrator account on any node.

2 Run the top utility

$ top

A high CPU percentage in top indicates that HP Vertica is CPU-bound. For example:

top - 11:44:28 up 53 days, 23:47, 9 users, load average: 0.91, 0.97,

0.81

Tasks: 123 total, 1 running, 122 sleeping, 0 stopped, 0 zombie

Cpu(s): 26.9%us, 1.3%sy, 0.0%ni, 71.8%id, 0.0%wa, 0.0%hi,

0.0%si, 0.0%st

Mem: 4053136 total, 3882020k used, 171116 free, 407688 buffers

Swap: 4192956 total, 176k used, 4192780 free, 1526436 cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

13703 dbadmin 1 0 1374m 678m 55m S 99.9 17.1 6:21.70 vertica

 2606 root 16 0 32152 11m 2508 S 1.0 0.3 0:16.97 X

 1 root 16 0 4748 552 456 S 0.0 0.0 0:01.51 init

 2 root RT -5 0 0 0 S 0.0 0.0 0:04.92

migration/0

 3 root 34 19 0 0 0 S 0.0 0.0 0:11.75

ksoftirqd/0

...

Some possible reasons for high CPU usage are:

 The Tuple Mover runs automatically and thus consumes CPU time even if there are no
connections to the database.

http://pagesperso-orange.fr/sebastien.godard/
http://linux.die.net/man/1/pstack

-579-

 Monitoring HP Vertica

 The pdflush process (a set of worker threads for writing back dirty filesystem data) is
consuming a great deal of CPU time, possibly driving up the load. Adding RAM appears to
make the problem worse. Log in to root and change the Linux parameter swappiness to 0.

echo 0 > /proc/sys/vm/swappiness

 Some information sources:

TechRepublic
http://techrepublic.com.com/5206-6230-0.html?forumID=36&threadID=175191&start
=0

Red Hat https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=150653

Indiana University Unix Systems Support Group
http://www.ussg.iu.edu/hypermail/linux/kernel/0404.3/0744.html

3 Run the iostat utility. A high idle time in top at the same time as a high rate of blocks read in

iostat indicates that HP Vertica is disk-bound. For example:

$ /usr/bin/iostat

Linux 2.6.18-164.el5 (qa01) 02/05/2011

avg-cpu: %user %nice %system %iowait %steal %idle

 0.77 2.32 0.76 0.68 0.00 95.47

Device: tps Blk_read/s Blk_wrtn/s Blk_read

Blk_wrtn

hda 0.37 3.40 10.37 2117723

6464640

sda 0.46 1.94 18.96 1208130

11816472

sdb 0.26 1.79 15.69 1114792

9781840

sdc 0.24 1.80 16.06 1119304

10010328

sdd 0.22 1.79 15.52 1117472

9676200

md0 8.37 7.31 66.23 4554834

41284840

Monitoring Disk Space Usage

You can use these system tables to monitor disk space usage on your cluster:

System table Description

DISK_STORAGE Monitors the amount of disk storage used by the database on each

node.

COLUMN_STORAGE

Monitors the amount of disk storage used by each column of each
projection on each node.

http://techrepublic.com.com/5206-6230-0.html?forumID=36&threadID=175191&start=0
http://techrepublic.com.com/5206-6230-0.html?forumID=36&threadID=175191&start=0
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=150653
http://www.ussg.iu.edu/hypermail/linux/kernel/0404.3/0744.html

-580-

Administrator's Guide

PROJECTION_STORAGE Monitors the amount of disk storage used by each projection on

each node.

See Managing Disk Space (page 456) for more information.

Monitoring Database Size for License Compliance

If your HP Vertica license includes a raw data storage allowance, you should regularly monitor the
size of your database. This monitoring allows you to plan to either schedule deleting old data to
keep your database in compliance with your license agreement, or budget for a license upgrade to
allow for the continued growth of your database.

Viewing the Current License State

HP Vertica periodically runs an audit of the database size to verify that your database remains
compliant with your license. You can view the results of the most recent audit by calling the
GET_COMPLIANCE_STATUS function.

 GET_COMPLIANCE_STATUS

--

 Raw Data Size: 2.00GB +/- 0.003GB

 License Size : 4.000GB

 Utilization : 50%

 Audit Time : 2011-03-09 09:54:09.538704+00

 Compliance Status : The database is in compliance with respect to raw data size.

 License End Date: 04/06/2011

 Days Remaining: 28.59

(1 row)Periodically running GET_COMPLIANCE_STATUS to monitor your database's license
status is usually enough to ensure that your database remains compliant with your license. If your
database begins to near its data allowance, you may want to use the other auditing functions
described below to determine where your database is growing and how recent deletes have
affected the size of your database.

Manually Running an Audit of the Entire Database

You can trigger HP Vertica's automatic audit of your database at any time using the
AUDIT_LICENSE_SIZE SQL function. This function triggers the same audit that HP Vertica
performs periodically. The audit runs in the background, so you need to wait for the audit to
complete. You can then view the audit results using GET_COMPLIANCE_STATUS.

An alternative to AUDIT_LICENSE_SIZE is to use the AUDIT SQL function to audit the size of
your entire database by passing it an empty string. Unlike AUDIT_LICENSE_SIZE, this function
operates synchronously, returning when it has estimated the size of the database.

=> SELECT AUDIT('');

 AUDIT

 76376696

(1 row)

-581-

 Monitoring HP Vertica

The size of the database is reported in bytes. The AUDIT function also allows you to control the
accuracy of the estimated database size using additional parameters. See the entry for the AUDIT
function in the SQL Reference Manual for full details

Note: HP Vertica does not count the results of the AUDIT function as an official audit. It takes

no license compliance actions based on the results.

Targeted Auditing

If your audits find your database to be unexpectedly large, you may want to find which schemas,
tables, or partitions are using the most storage. You can use the AUDIT function to perform
targeted audits of schemas, tables, or partitions by supplying the name of the entity whose size
you want to find. For example, to find the size of the online_sales schema in the VMart example
database, run the following command:

VMart=> SELECT AUDIT('online_sales');

 AUDIT

 35716504

(1 row)

You can also change the granularity of an audit to report the size of each entity in a larger entity
(for example, each table in a schema) by using the granularity argument of the AUDIT function.
See the AUDIT function's entry in the SQL Reference Manual.

Using Management Console to Monitor License Compliance

You can also get information about raw data storage through the Management Console. This
information is available in the database Overview page, which displays a grid view of the

database's overall health.

 The needle in the license meter adjusts to reflect the amount used in megabytes.

 The grace period represents the term portion of the license.

 The Audit button returns the same information as the AUDIT() function in a graphical
representation.

 The Details link within the License grid (next to the Audit button) provides historical information
about license usage. This page also shows a progress meter of percent used toward your
license limit.

Monitoring Shared Node Connections
If you want to monitor which nodes are sharing connections, view the check.txt file by issuing

the following command at a shell prompt:

watch cat /etc/keepalived/check.txt

Every 2.0s: cat /etc/keepalived/check.txt Wed Nov 3 10:02:20 2012

N192168051057

N192168051056

N192168051055

-582-

Administrator's Guide

The check.txt file is located in the /etc/keepalived/ directory, and it gets updated when

you submit changes to the kernel using sysctl -p, described in Disable the Address

Resolution Protocol (ARP) (page 417). For example, the spread.pl script (see Configuring

the Directors (page 419)), writes to the check.txt file, which is then modified to include only
the remaining nodes in the event of a node failure. In this scenario, the virtual server stops sending
client requests to any failed nodes.

You can also look for messages by issuing the following command at a shell prompt:

tail -f /var/log/messages
Nov 3 09:21:00 p6 Keepalived: Starting Keepalived v1.1.17 (11/03,2012)

Nov 3 09:21:00 p6 Keepalived: Starting Healthcheck child process, pid=32468

Nov 3 09:21:00 p6 Keepalived: Starting VRRP child process, pid=32469

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Using LinkWatch kernel netlink reflector...

Nov 3 09:21:00 p6 Keepalived_vrrp: Using LinkWatch kernel netlink reflector...

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Netlink reflector reports IP 10.10.51.55 added

Nov 3 09:21:00 p6 Keepalived_vrrp: Netlink reflector reports IP 10.10.51.55 added

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Netlink reflector reports IP 192.168.51.55 added

Nov 3 09:21:00 p6 Keepalived_vrrp: Netlink reflector reports IP 192.168.51.55 added

Nov 3 09:21:00 p6 Keepalived_vrrp: Registering Kernel netlink reflector

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Registering Kernel netlink reflector

Nov 3 09:21:00 p6 Keepalived_vrrp: Registering Kernel netlink command channel

Nov 3 09:21:00 p6 Keepalived_vrrp: Registering gratuitous ARP shared channel

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Registering Kernel netlink command channel

Nov 3 09:21:00 p6 Keepalived_vrrp: Opening file '/etc/keepalived/keepalived.conf'.

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Opening file '/etc/keepalived/keepalived.conf'.

Nov 3 09:21:00 p6 Keepalived_vrrp: Configuration is using : 63730 Bytes

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Configuration is using : 16211 Bytes

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Activating healthcheckers for service

[10.10.51.55:5433]

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Activating healthcheckers for service

[10.10.51.56:5433]

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Activating healthcheckers for service

[10.10.51.57:5433]

Nov 3 09:21:00 p6 Keepalived_vrrp: VRRP sockpool: [ifindex(2), proto(112), fd(10,11)]

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Misc check to [10.10.51.56] for

[/etc/keepalived/check.pl 192.168.51.56] failed.

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Removing service [10.10.51.56:5433] from VS

[10.10.51.180:5433]

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Remote SMTP server [127.0.0.1:25] connected.

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Misc check to [10.10.51.55] for

[/etc/keepalived/check.pl 192.168.51.55] failed.

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Removing service [10.10.51.55:5433] from VS

[10.10.51.180:5433]

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Remote SMTP server [127.0.0.1:25] connected.

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Misc check to [10.10.51.57] for

[/etc/keepalived/check.pl 192.168.51.57] failed.

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Removing service [10.10.51.57:5433] from VS

[10.10.51.180:5433]

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Remote SMTP server [127.0.0.1:25] connected.

Nov 3 09:21:01 p6 Keepalived_healthcheckers: SMTP alert successfully sent.

Nov 3 09:21:10 p6 Keepalived_vrrp: VRRP_Instance(VI_1) Transition to MASTER STATE

Nov 3 09:21:20 p6 Keepalived_vrrp: VRRP_Instance(VI_1) Entering MASTER STATE

Nov 3 09:21:20 p6 Keepalived_vrrp: VRRP_Instance(VI_1) setting protocol VIPs.

Nov 3 09:21:20 p6 Keepalived_vrrp: VRRP_Instance(VI_1) Sending gratuitous ARPs on eth0 for

10.10.51.180

Nov 3 09:21:20 p6 Keepalived_healthcheckers: Netlink reflector reports IP 10.10.51.180 added

Nov 3 09:21:20 p6 Keepalived_vrrp: Remote SMTP server [127.0.0.1:25] connected.

Nov 3 09:21:20 p6 Keepalived_vrrp: Netlink reflector reports IP 10.10.51.180 added

Nov 3 09:21:20 p6 Keepalived_vrrp: SMTP alert successfully sent.

Nov 3 09:21:25 p6 Keepalived_vrrp: VRRP_Instance(VI_1) Sending gratuitous ARPs on eth0 for 10.10.51.1

-583-

 Monitoring HP Vertica

Monitoring Elastic Cluster Rebalancing

HP Vertica 6.0 introduces system tables that can be used to monitor the rebalance status of an
elastic cluster and gain general insight to the status of elastic cluster on your nodes.

 The REBALANCE_TABLE_STATUS table provides general information about a rebalance. It
shows, for each table, the amount of data that has been separated, the amount that is currently
being separated, and the amount to be separated. It also shows the amount of data
transferred, the amount that is currently being transferred, and the remaining amount to be
transferred (or an estimate if storage is not separated).

Note: If multiple rebalance methods were used for a single table (for example, the table has

unsegmented and segmented projections), the table may appear multiple times - once for
each rebalance method.

 REBALANCE_PROJECTION_STATUS can be used to gain more insight into the details for a
particular projection that is being rebalanced. It provides the same type of information as
above, but in terms of a projection instead of a table.

In each table, separated_percent and transferred_percent can be used to determine overall
progress.

Historical Rebalance Information

Historical information about work completed is retained, so use the predicate "where is_latest" to
restrict the output to only the most recent or current rebalance activity. The historical data may
include information about dropped projections or tables. If a table or projection has been dropped
and information about the anchor table is not available, then NULL is displayed for the table_id
and "<unknown>" is displayed for the table_name. Information on dropped tables is still useful, for
example, in providing justification for the duration of a task.

Monitoring Parameters
The following table describes the monitoring parameters for configuring HP Vertica.

Parameters Description Default Example

SnmpTrapDestinations
List

Defines where HP Vertica
send traps for SNMP. See

Configuring Reporting for
SNMP (page 591).

none
SELECT SET_CONFIG_PARAMETER

('SnmpTrapDestinationsList'

,

'localhost 162 public');

SnmpTrapsEnabled Enables event trapping for
SNMP. See Configuring

Reporting for SNMP (page
591).

0
SELECT SET_CONFIG_PARAMETER

('SnmpTrapsEnabled', 1);

SnmpTrapEvents Define which events HP Low Disk Space,
SELECT SET_CONFIG_PARAMETER

('SnmpTrapEvents', 'Low Disk

-584-

Administrator's Guide

Vertica traps through SNMP.
See Configuring Reporting

for SNMP (page 591).

Read Only File
System, Loss of K

Safety, Current
Fault Tolerance at
Critical Level, Too

Many ROS
Containers, WOS
Over Flow, Node

State Change,
Recovery Failure,
and Stale

Checkpoint

Space, Recovery Failure');

SyslogEnabled Enables event trapping for
syslog. See Configuring
Reporting for Syslog (page

589).

0
SELECT SET_CONFIG_PARAMETER

('SyslogEnabled', 1);

SyslogEvents Defines events that generate
a syslog entry. See
Configuring Reporting for

Syslog (page 589).

none
SELECT SET_CONFIG_PARAMETER

('SyslogEvents', 'Low Disk

Space, Recovery Failure');

SyslogFacility Defines which SyslogFacility
HP Vertica uses. See
Configuring Reporting for

Syslog (page 589).

user
SELECT SET_CONFIG_PARAMETER

('SyslogFacility' , 'ftp');

Monitoring Events
To help you monitor your database system, HP Vertica traps and logs significant events that affect
database performance and functionality if you do not address their root causes. This section
describes where events are logged, the types of events that HP Vertica logs, how to respond to
these events, the information that HP Vertica provides for these events, and how to configure
event monitoring.

Event logging mechanisms

HP Vertica posts events to the following mechanisms:

Mechanism Description

vertica.log All events are automatically posted to vertica.log. See Monitoring the

Log Files (page 575).

ACTIVE_EVENTS This SQL system table provides information about all open events. See
Using System Tables (page 595) and ACTIVE_EVENTS.

-585-

 Monitoring HP Vertica

SNMP To post traps to SNMP, enable global reporting in addition to each individual

event you want trapped. See Configuring Event Reporting (page 589).

Syslog To log events to syslog, enable event reporting for each individual event you
want logged. See Configuring Event Reporting (page 589).

Event severity types

Event names are sensitive to case and spaces. HP Vertica logs the following events:

Event Name Event

Type

Description Action

Low Disk Space 0 The database is running
out of disk space or a

disk is failing or there is a
I/O hardware failure.

It is imperative that you add more disk space
or replace the failing disk or hardware as

soon as possible.

Check dmesg to see what caused the

problem.

Also, use the
DISK_RESOURCE_REJECTIONS system
table to determine the types of disk space

requests that are being rejected and the
hosts on which they are being rejected. See
Managing Disk Space (page 456) within the

Database Administrator‘s Guide for more
information about low disk space.

Read Only File
System

1 The database does not
have write access to the

file system for the data or
catalog paths. This can
sometimes occur if Linux

remounts a drive due to
a kernel issue.

Modify the privileges on the file system to
give the database write access.

Loss Of K Safety 2 The database is no
longer

K-Safe because there
are insufficient nodes
functioning within the

cluster. Loss of
K-safety causes the
database to shut down.

In a four-node cluster, for
example, K-safety=1. If
one node fails, the fault

If a system shuts down due to loss of
K-safety, you need to recover the system.

See Failure Recovery (page 566) in the
Administrator's Guide.

-586-

Administrator's Guide

tolerance is at a critical
level. If two nodes fail,

the system loses
K-safety.

Current Fault
Tolerance at Critical

Level

3 One or more nodes in
the cluster have failed. If

the database loses one
more node, it is no
longer K-Safe and it

shuts down. (For
example, a four-node
cluster is no longer

K-safe if two nodes fail.)

Restore any nodes that have failed or been
shut down.

Too Many ROS
Containers

4 Due to heavy data load
conditions, there are too
many ROS containers.

This occurs when the
Tuple Mover falls behind
in performing mergeout

operations. The resulting
excess number of ROS
containers can exhaust

all available system
resources. To prevent
this, HP Vertica

automatically rolls back
all transactions that
would load data until the
Tuple Mover has time to

catch up.

You might need to adjust the Tuple
Mover's configuration parameters to
compensate for the load pattern or rate.
See Tuning the Tuple Mover (page
464) in the Administrator's Guide for
details.

You can query the
TUPLE_MOVER_OPERATIONS table
to monitor mergeout activity. However,
the Tuple Mover does not immediately
start a mergeout when a projection
reaches the limit of ROS containers, so
you may not see a mergeout in progress
when receiving this error.

If waiting for a mergeout does not
resolve the error, the problem probably
is related to insufficient RAM.. A good
rule of thumb is that system RAM in MB
divided by 6 times the number of
columns in the largest table should be
greater than 10. For example, for a 100
column table you would want at least
6GB of RAM (6144MB / (6 * 100) =
10.24) to handle continuous loads.

WOS Over Flow 5 The WOS cannot hold all

the data that you are
attempting to load. This
means that the copy fails

and the transaction rolls
back.

Note: This event does

not occur in HP Vertica
4.0 or later.

Consider loading the data to disk (ROS)

instead of memory (WOS) or splitting the fact
table load file into multiple pieces and then
performing multiple loads in sequence.

You might also consider making the Tuple
Mover's moveout operation more
aggressive. See Tuning the Tuple Mover

(page 464) in Administrator's Guide.

-587-

 Monitoring HP Vertica

Node State Change 6 The node state has
changed.

Check the status of the node.

Recovery Failure 7 The database was not

restored to a functional
state after a hardware or
software related failure.

The reason for recovery failure can vary. See

the event description for more information
about your specific situation.

Recovery Error 8 The database

encountered an error
while attempting to
recover. If the number of

recovery errors exceeds
Max Tries, the Recovery
Failure event is

triggered. See Recovery
Failure within this table.

The reason for a recovery error can vary.

See the event description for more
information about your specific situation.

Recovery Lock Error 9 A recovering node could
not obtain an S lock on

the table.

If you have a continuous
stream of COPY

commands in progress,
recovery might not be
able to obtain this lock

even after multiple
re-tries.

Either momentarily stop the loads or pick a
time when the cluster is not busy to restart

the node and let recovery proceed.

Recovery Projection
Retrieval Error

10 HP Vertica was unable
to retrieve information
about a projection.

The reason for a recovery projection retrieval
error can vary. See the event description for
more information about your specific

situation.

Refresh Error 11 The database
encountered an error
while attempting to

refresh.

The reason for a refresh error can vary. See
the event description for more information
about your specific situation.

Refresh Lock Error 12 The database
encountered a locking
error during refresh.

The reason for a refresh error can vary. See
the event description for more information
about your specific situation.

Tuple Mover Error 13 The database

encountered an error
while attempting to move
the contents of the Write

Optimized Store (WOS)
into the Read Optimized
Store (ROS).

The reason for a Tuple Mover error can vary.

See the event description for more
information about your specific situation.

Timer Service Task

Error

14 An error occurred in an

internal scheduled task.

Internal use only

Stale Checkpoint 15 Data in the WOS has not
been completely moved
out in a timely manner.

Be sure that Moveout operations are
executing successfully. Check the
vertica.log files for errors related to

-588-

Administrator's Guide

An UNSAFE shutdown
could require reloading a

significant amount of
data.

Moveout.

Event data

To help you interpret and solve the issue that triggered an event, each event provides a variety of
data, depending upon the event logging mechanism used.

The following table describes the event data and indicates where it is used.

vertica.log ACTIVE_EVENTS
(column names)

SNMP Syslog Description

N/A NODE_NAME N/A N/A The node where the event
occurred.

Event Code EVENT_CODE Event Type Event Code A numeric ID that

indicates the type of
event. See Event Types in
the previous table for a list

of event type codes.

Event Id EVENT_ID Event OID Event Id A unique numeric ID that
identifies the specific
event.

Event Severity EVENT_

SEVERITY

Event Severity Event Severity The severity of the event

from highest to lowest.
These events are based
on standard syslog

severity types:

0 – Emergency

1 – Alert

2 – Critical

3 – Error

4 – Warning

5 – Notice

6 – Info

7 – Debug

PostedTimestamp EVENT_

POSTED_

TIMESTAMP

N/A PostedTimestamp The year, month, day, and
time the event was
reported. Time is provided

as military time.

ExpirationTimesta EVENT_ N/A ExpirationTimesta The time at which this

-589-

 Monitoring HP Vertica

mp EXPIRATION mp event expires. If the same
event is posted again prior

to its expiration time, this
field gets updated to a
new expiration time.

EventCodeDescrip

tion

EVENT_CODE_

DESCRIPTION

Description EventCodeDescript

ion

A brief description of the

event and details
pertinent to the specific
situation.

ProblemDescriptio

n

EVENT_PROBL

EM_

DESCRIPTION

Event Short

Description

ProblemDescription A generic description of

the event.

N/A REPORTING_

NODE

Node Name N/A The name of the node
within the cluster that

reported the event.

DatabaseName N/A Database Name DatabaseName The name of the database
that is impacted by the
event.

N/A N/A Host Name Hostname The name of the host

within the cluster that
reported the event.

N/A N/A Event Status N/A The status of the event. It
can be either:

1 – Open

2 – Clear

Configuring event reporting

Event reporting is automatically configured for vertica.log, and current events are
automatically posted to the ACTIVE_EVENTS system table. You can also configure HP Vertica to
post events to syslog (page 589) and SNMP (page 591).

Configuring reporting for syslog

Syslog is a network-logging utility that issues, stores, and processes meaningful log messages. It
is designed so DBAs can keep machines up and running, and it is a useful way to get
heterogeneous data into a single data repository.

To log events to syslog, enable event reporting for each individual event you want logged.
Messages are logged, by default, in /var/log/messages.

-590-

Administrator's Guide

Configuring event reporting to syslog consists of:

1 Enabling HP Vertica to trap events for syslog.

2 Defining which events HP Vertica traps for syslog.

HP strongly suggests that you trap the Stale Checkpoint event.

3 Defining which syslog facility to use.

Enabling HP Vertica to trap events for syslog

To enable event trapping for syslog, issue the following SQL command:

=> SELECT SET_CONFIG_PARAMETER('SyslogEnabled', 1);

 SET_CONFIG_PARAMETER

 Parameter set successfully

(1 row)

To disable event trapping for syslog, issue the following SQL command:

=> SELECT SET_CONFIG_PARAMETER('SyslogEnabled', 0);

 SET_CONFIG_PARAMETER

 Parameter set successfully

(1 row)

Defining events to trap for syslog

To define events that generate a syslog entry, issue the following SQL command, where
Event_Name is one of the events described in the list below the command:

=> SELECT SET_CONFIG_PARAMETER('SyslogEvents', 'Event_Name' , 'Event_Name');

 SET_CONFIG_PARAMETER

 Parameter set successfully

(1 row)

 Low Disk Space

 Read Only File System

 Loss Of K Safety

 Current Fault Tolerance at Critical Level

 Too Many ROS Containers

 WOS Over Flow

 Node State Change

 Recovery Failure

 Recovery Error

 Recovery Lock Error

 Recovery Projection Retrieval Error

 Refresh Error

 Refresh Lock Error

 Tuple Mover Error

 Timer Service Task Error

-591-

 Monitoring HP Vertica

 Stale Checkpoint

The following example generates a syslog entry for low disk space and recovery failure:

=> SELECT SET_CONFIG_PARAMETER('SyslogEvents', 'Low Disk Space, Recovery

Failure');

 SET_CONFIG_PARAMETER

 Parameter set successfully

(1 row)

Defining the SyslogFacility to use for reporting

The syslog mechanism allows for several different general classifications of logging messages,

called facilities. Typically, all authentication-related messages are logged with the auth (or

authpriv) facility. These messages are intended to be secure and hidden from unauthorized

eyes. Normal operational messages are logged with the daemon facility, which is the collector that
receives and optionally stores messages.

The SyslogFacility directive allows all logging messages to be directed to a different facility than
the default. When the directive is used, all logging is done using the specified facility, both
authentication (secure) and otherwise.

To define which SyslogFacility HP Vertica uses, issue the following SQL command:

=> SELECT SET_CONFIG_PARAMETER('SyslogFacility' , 'Facility_Name');

Where the facility-level argument <Facility_Name> is one of the following:

 auth uucp (UUCP subsystem)

 authpriv (Linux only) local0 (local use 0)

 cron local1 (local use 1)

 daemon local2 (local use 2)

 ftp (Linux only) local3 (local use 3)

 lpr (line printer subsystem) local4 (local use 4)

 mail (mail system) local5 (local use 5)

 news (network news
subsystem)

 local6 (local use 6)

 user (default system) local7 (local use 7)

See Also

Event Reporting Examples (page 594) and Configuration Parameters (page 36) in the
Administrator's Guide

Configuring reporting for SNMP

Configuring event reporting for SNMP consists of:

1 Configuring HP Vertica to enable event trapping for SNMP as described below.

-592-

Administrator's Guide

2 Importing the HP Vertica Management Information Base (MIB) file into the SNMP monitoring
device.

The HP Vertica MIB file allows the SNMP trap receiver to understand the traps it receives from
HP Vertica. This, in turn, allows you to configure the actions it takes when it receives traps.

HP Vertica supports the SNMP V1 trap protocol, and it is located in

/opt/vertica/sbin/VERTICA-MIB. See the documentation for your SNMP monitoring
device for more information about importing MIB files.

3 Configuring the SNMP trap receiver to handle traps from HP Vertica.

SNMP trap receiver configuration differs greatly from vendor to vendor. As such, the directions
presented here for configuring the SNMP trap receiver to handle traps from HP Vertica are
generic.

HP Vertica traps are single, generic traps that contain several fields of identifying information.
These fields equate to the event data described in Monitoring Events (page 584). However,
the format used for the field names differs slightly. Under SNMP, the field names contain no
spaces. Also, field names are pre-pended with ―vert‖. For example, Event Severity becomes
vertEventSeverity.

When configuring your trap receiver, be sure to use the same hostname, port, and community
string you used to configure event trapping in HP Vertica.

Examples of network management providers:

 HP Software Network Node Manager
http://openview.hp.com/products/nnm/index.html

 IBM Tivoli

 AdventNet

 Net-SNMP (Open Source)

 Nagios (Open Source)

 Open NMS (Open Source)

See Also

Configuration Parameters (page 36) in the Administrator's Guide

Configuring event trapping for SNMP

The following events are trapped by default when you configure HP Vertica to trap events for
SNMP:

 Low Disk Space

 Read Only File

 System

 Loss of K Safety

 Current Fault Tolerance at Critical Level

 Too Many ROS Containers

 WOS Over Flow

 Node State Change

http://openview.hp.com/products/nnm/index.html

-593-

 Monitoring HP Vertica

 Recovery Failure

 Stale Checkpoint

To configure HP Vertica to trap events for SNMP

1 Enable HP Vertica to trap events for SNMP.

2 Define where HP Vertica sends the traps.

3 Optionally redefine which SNMP events HP Vertica traps.

Note: After you complete steps 1 and 2 above, HP Vertica automatically traps the default
SNMP events. Only perform step 3 if you want to redefine which SNMP events are trapped. HP
strongly suggests that you trap the Stale Checkpoint event even if you decide to reduce the
number events HP Vertica traps for SNMP. The setting has no effect on traps sent to the log.
All events are trapped to the log.

To enable event trapping for SNMP

Use the following SQL command:

=> SELECT SET_CONFIG_PARAMETER('SnmpTrapsEnabled', 1);

To define where HP Vertica send traps

Use the following SQL command, where Host_name and port identify the computer where SNMP
resides, and CommunityString acts like a password to control HP Vertica's access to the server:

=> SELECT SET_CONFIG_PARAMETER('SnmpTrapDestinationsList',

 'host_name port CommunityString');

For example:

=> SELECT SET_CONFIG_PARAMETER('SnmpTrapDestinationsList',

 'localhost 162 public');

You can also specify multiple destinations by specifying a list of destinations, separated by
commas:

=> SELECT SET_CONFIG_PARAMETER('SnmpTrapDestinationsList',

 'host_name1 port1 CommunityString1,hostname2 port2 CommunityString2');

NOTE: Setting multiple destinations sends any SNMP trap notification to all destinations listed.

To define which events HP Vertica traps

Use the following SQL command, where Event_Name is one of the events in the list below the

command:

=> SELECT SET_CONFIG_PARAMETER('SnmpTrapEvents', 'Event_Name, Event_Name');

 Low Disk Space

 Read Only File System

 Loss Of K Safety

 Current Fault Tolerance at Critical Level

 Too Many ROS Containers

-594-

Administrator's Guide

 WOS Over Flow

 Node State Change

 Recovery Failure

 Recovery Error

 Recovery Lock Error

 Recovery Projection Retrieval Error

 Refresh Error

 Tuple Mover Error

 Stale Checkpoint

Note: The above values are case sensitive.

The following is an example that uses two different event names:

=> SELECT SET_CONFIG_PARAMETER('SnmpTrapEvents', 'Low Disk Space, Recovery

Failure');

Verifying SNMP configuration

To create a set of test events that checks SNMP configuration:

1 Set up SNMP trap handlers to catch HP Vertica events.

2 Test your setup with the following command:

SELECT SNMP_TRAP_TEST();

 SNMP_TRAP_TEST

 Completed SNMP Trap Test

(1 row)

Event reporting examples

Vertica.log

The following example illustrates a Too Many ROS Containers event posted and cleared within
vertica.log:

08/14/08 15:07:59 thr:nameless:0x45a08940 [INFO] Event Posted:

Event Code:4 Event Id:0 Event Severity: Warning [4] PostedTimestamp:

2008-08-14 15:07:59.253729 ExpirationTimestamp: 2008-08-14 15:08:29.253729

EventCodeDescription: Too Many ROS Containers ProblemDescription:

Too many ROS containers exist on this node. DatabaseName: QATESTDB

Hostname: fc6-1.verticacorp.com

08/14/08 15:08:54 thr:Ageout Events:0x2aaab0015e70 [INFO] Event Cleared:

Event Code:4 Event Id:0 Event Severity: Warning [4] PostedTimestamp:

-595-

 Monitoring HP Vertica

2008-08-14 15:07:59.253729 ExpirationTimestamp: 2008-08-14 15:08:53.012669

EventCodeDescription: Too Many ROS Containers ProblemDescription:

Too many ROS containers exist on this node. DatabaseName: QATESTDB

Hostname: fc6-1.verticacorp.com

SNMP

The following example illustrates a Too Many ROS Containers event posted to SNMP:

Version: 1, type: TRAPREQUEST

Enterprise OID: .1.3.6.1.4.1.31207.2.0.1

Trap agent: 72.0.0.0

Generic trap: ENTERPRISESPECIFIC (6)

Specific trap: 0

.1.3.6.1.4.1.31207.1.1 ---> 4

.1.3.6.1.4.1.31207.1.2 ---> 0

.1.3.6.1.4.1.31207.1.3 ---> 2008-08-14 11:30:26.121292

.1.3.6.1.4.1.31207.1.4 ---> 4

.1.3.6.1.4.1.31207.1.5 ---> 1

.1.3.6.1.4.1.31207.1.6 ---> site01

.1.3.6.1.4.1.31207.1.7 ---> suse10-1

.1.3.6.1.4.1.31207.1.8 ---> Too many ROS containers exist on this node.

.1.3.6.1.4.1.31207.1.9 ---> QATESTDB

.1.3.6.1.4.1.31207.1.10 ---> Too Many ROS Containers

Syslog

The following example illustrates a Too Many ROS Containers event posted and cleared within
syslog:

Aug 14 15:07:59 fc6-1 vertica: Event Posted: Event Code:4 Event Id:0 Event Severity:

Warning [4] PostedTimestamp: 2008-08-14 15:07:59.253729 ExpirationTimestamp:

2008-08-14 15:08:29.253729 EventCodeDescription: Too Many ROS Containers ProblemDescription:

Too many ROS containers exist on this node. DatabaseName: QATESTDB Hostname: fc6-1.verticacorp.com

Aug 14 15:08:54 fc6-1 vertica: Event Cleared: Event Code:4 Event Id:0 Event Severity:

Warning [4] PostedTimestamp: 2008-08-14 15:07:59.253729 ExpirationTimestamp:

2008-08-14 15:08:53.012669 EventCodeDescription: Too Many ROS Containers ProblemDescription:

Too many ROS containers exist on this node. DatabaseName: QATESTDB Hostname: fc6-1.verticacorp.com

Using System Tables
HP Vertica provides an API (application programming interface) for monitoring various features
and functions within a database in the form of system tables. These tables provide a robust, stable
set of views that let you monitor information about your system's resources, background
processes, workload, and performance, allowing you to more efficiently profile, diagnose, and
view historical data equivalent to load streams, query profiles, tuple mover operations, and more.
Because HP Vertica collects and retains this information automatically, you don't have to manually
set anything.

You can write queries against system tables with full SELECT support the same way you perform
query operations on base and temporary tables. You can query system tables using expressions,
predicates, aggregates, analytics, subqueries, and joins. You can also save system table query
results into a user table for future analysis. For example, the following query creates a table,
mynode, selecting three node-related columns from the V_CATALOG.NODES system table:

-596-

Administrator's Guide

VMart=> CREATE TABLE mynode AS SELECT node_name, node_state, node_address FROM

nodes;

CREATE TABLE

VMart=> SELECT * FROM mynode;

 node_name | node_state | node_address

------------------+------------+----------------

 v_vmart_node0001 | UP | 192.168.223.11

(1 row)

Note: You cannot query system tables if the database cluster is in a recovering state. The
database refuses connection requests and cannot be monitored. HP Vertica also does not
support DDL and DML operations on system tables.

Where system tables reside

System tables are grouped into the following schemas:

 V_CATALOG — information about persistent objects in the catalog

 V_MONITOR — information about transient system state

These schemas reside in the default search path so there is no need to specify schema.table in

your queries unless you change the search path (page 50) to exclude V_MONITOR or
V_CATALOG or both.

The system tables that make up the monitoring API are described fully in the SQL Reference
Manual. You can also use the following command to view all the system tables and their schema:

SELECT * FROM system_tables ORDER BY table_schema, table_name;

How system tables are organized

Most of the tables are grouped into the following areas:

 System information

 System resources

 Background processes

 Workload and performance

HP Vertica reserves some memory to help monitor busy systems. Using simple system table
queries makes it easier to troubleshoot issues. See also SYSQUERY and SYSDATA pools under
Built-in pools topic in SQL Reference Manual.

Note: You can use external monitoring tools or scripts to query the system tables and act upon

the information, as necessary. For example, when a host failure causes the K-safety level to fall
below the desired level, the tool or script can notify the database administrator and/or
appropriate IT personnel of the change, typically in the form of an e-mail.

-597-

 Monitoring HP Vertica

Querying case-sensitive data in system tables

Some system table data might be stored in mixed case. For example, HP Vertica stores
mixed-case identifier names the way you specify them in the CREATE statement, even though
case is ignored when you reference them in queries. When these object names appear as data in
the system tables, you'll encounter errors if you use the equality (=) predicate because the case
must match the stored identifier. In particular, V_CATALOG.TABLES.TABLE_SCHEMA and
V_CATALOG.TABLES.TABLE_NAME columns are case sensitive with equality predicates.

If you don't know how the identifiers are stored, use the case-insensitive operator ILIKE instead of
equality predicates.

For example, given the following schema:

=> CREATE SCHEMA SS;

=> CREATE TABLE SS.TT (c1 int);

=> CREATE PROJECTION SS.TTP1 AS SELECT * FROM ss.tt UNSEGMENTED ALL NODES;

=> INSERT INTO ss.tt VALUES (1);

If you run a query using the = predicate, HP Vertica returns 0 rows:

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE table_schema ='ss';

 table_schema | table_name

--------------+------------

(0 rows)

Using the case-insensitive ILIKE predicate returns the expected results:

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE table_schema ILIKE

'ss';

 table_schema | table_name

--------------+------------

 SS | TT

(1 row)

Examples

The following query uses the vmart example database to obtain the number of rows and size
occupied by each table in the database.

=> SELECT t.table_name AS table_name,

 SUM(ps.wos_row_count + ps.ros_row_count) AS row_count,

 SUM(ps.wos_used_bytes + ps.ros_used_bytes) AS byte_count

 FROM tables t

 JOIN projections p ON t.table_id = p.anchor_table_id

 JOIN projection_storage ps on p.projection_name = ps.projection_name

 WHERE (ps.wos_used_bytes + ps.ros_used_bytes) > 500000

 GROUP BY t.table_name

 ORDER BY byte_count DESC;

 table_name | row_count | byte_count

--------------------+-----------+------------

 online_sales_fact | 5000000 | 171987438

 store_sales_fact | 5000000 | 108844666

 store_orders_fact | 300000 | 9240800

 product_dimension | 60000 | 2327964

 customer_dimension | 50000 | 2165897

-598-

Administrator's Guide

 inventory_fact | 300000 | 2045900

(6 rows)

The rest of the examples illustrate simple ways to use system tables in queries.

=> SELECT table_name FROM columns WHERE data_type ILIKE 'Numeric' GROUP BY

table_name;

 table_name

 n1

(1 row)

=> SELECT current_epoch, designed_fault_tolerance, current_fault_tolerance FROM

SYSTEM;

 current_epoch | designed_fault_tolerance | current_fault_tolerance

---------------+--------------------------+-------------------------

 492 | 1 | 1

(1 row)

=> SELECT node_name, total_user_session_count, executed_query_count FROM

query_metrics;

 node_name | total_user_session_count | executed_query_count

-----------+--------------------------+----------------------

 node01 | 53 | 42

 node02 | 53 | 0

 node03 | 42 | 120

 node04 | 53 | 0

(4 rows)

=> SELECT table_schema FROM primary_keys;

 table_schema

 public

 public

 public

 public

 public

 public

 public

 public

 public

 store

 online_sales

 online_sales

(12 rows)

-599-

 599

Retaining Monitoring Information

When you query an HP Vertica system table (described in Using System Tables (page 595)),
you can get information about currently running queries, the state of various components, and
other run-time information. During query execution, HP Vertica examines the current state of the
system and returns information in the result set.

Data Collector

HP Vertica also provides a utility called the Data Collector (DC), which collects and retains history
of important system activities and records essential performance and resource utilization
counters.

Data Collector extends system table functionality by:

 Providing a framework for recording events

 Making the information available in system tables

 Requiring few configuration parameter tweaks

 Having negligible impact on performance

You can use the information the Data Collector retains to query the past state of system tables and
extract aggregate information, as well as do the following:

 See what actions users have taken

 Locate performance bottlenecks

 Identify potential improvements to HP Vertica configuration

DC does not collect data for nodes that are down, so no historical data would be available for that
node.

Data Collector works in conjunction with the Workload Analyzer (WLA), an advisor tool that
intelligently monitors the performance of SQL queries and workloads and recommends tuning
actions based on observations of the actual workload history. See Analyzing Workloads (page
658) for more information about WLA.

Where is DC information retained?

Collected data is stored on disk in the DataCollector directory under the HP Vertica /catalog
path. This directory also contains instructions on how to load the monitoring data into another HP
Vertica database. See Working with data collection logs (page 602) for details.

DC retains the data it gathers based on retention policies, which a superuser can configure. See
Configuring data retention policies (page 601).

Data Collector is on by default, but a superuser can disable it if performance issues arise. See
Data Collector Parameters (page 44) and Enabling and Disabling Data Collector (page 600).

-600-

Administrator's Guide

DC tables

Caution! Data Collector tables (prefixed by dc_) reside in the V_INTERNAL schema and are

provided for informational purposes only. They are provided as-is and are subject to removal or
change without notice. If you use Data Collector tables in scripts or monitoring tools, you might
need to change your scripts and tools after an HP Vertica upgrade. HP recommends that you
use the Workload Analyzer (page 658) instead of accessing the Data Collector tables directly.

See also

 The data collection control functions in the SQL Reference Manual

 V_MONITOR.DATA_COLLECTOR in the SQL Reference Manual

 ANALYZE_WORKLOAD() and V.MONITOR_TUNING_RECOMMENDATIONS in the SQL
Reference Manual

Enabling and disabling Data Collector

Data Collector is on by default and retains information for all sessions. If performance issues arise,
a superuser can disable Data Collector at any time, such as if performance issues arise.

To disable the Data Collector:

=> SELECT SET_CONFIG_PARAMETER('EnableDataCollector', '0');

To re-enable the Data Collector:

=> SELECT SET_CONFIG_PARAMETER('EnableDataCollector', '1');

See also

Data Collector Parameters (page 44)

Viewing current data retention policy

To view the current retention policy for a Data Collector component, use the
GET_DATA_COLLECTOR_POLICY() function and supply the component name as the function's
argument.

To retrieve a list of all current component names, query the V_MONITOR.DATA_COLLECTOR
system table, which returns Data Collector components, their current retention policies, and
statistics about how much data is retained. For example:

mcdb=> \x

Expanded display is on.

mcdb=> SELECT * from data_collector;

-[RECORD 1

]----------+---

node_name | v_mcdb_node0001

component | AllocationPoolStatistics

table_name | dc_allocation_pool_statistics

description | Information about global memory pools, which generally cannot be recovered

-601-

 Monitoring HP Vertica

without restart

access_restricted | t

in_db_log | f

in_vertica_log | f

memory_buffer_size_kb | 64

disk_size_kb | 256

record_too_big_errors | 0

lost_buffers | 0

lost_records | 0

retired_files | 1429

retired_records | 647358

current_memory_records | 0

current_disk_records | 1493

current_memory_bytes | 0

current_disk_bytes | 215737

first_time | 2012-11-30 07:04:30.000726-05

last_time | 2012-11-30 07:16:56.000631-05

kb_per_day | 24377.3198211312

-[RECORD 2

]----------+---

The following command returns the retention policy for a specific component, NodeState.

=> SELECT get_data_collector_policy('NodeState');

The results let you know that 10KB is retained in memory and 100KB on disk:

 get_data_collector_policy

--

 10KB kept in memory, 100KB kept on disk.

(1 row)

Configuring data retention policies

Data Collector retention policies hold the following information:

 Which component to monitor

 How much memory to retain

 How much disk space to retain

A superuser can modify policies, such as change the amount of data to retain, by invoking the
SET_DATA_COLLECTOR_POLICY() function, as follows:

SET_DATA_COLLECTOR_POLICY('component', 'memoryKB', 'diskKB')

The SET_DATA_COLLECTOR_POLICY() function sets the retention policy for the specified
component on all nodes, and lets you specify memory and disk size to retain in kilobytes. Failed
nodes receive the new setting when they rejoin the cluster.

For example, the following statement specifies that the NodeState component be allocated
50KB of memory and 250KB of disk space:

=> SELECT SET_DATA_COLLECTOR_POLICY('NodeState', '50', '250');

 SET_DATA_COLLECTOR_POLICY

 SET

-602-

Administrator's Guide

(1 row)

Before you change a retention policy, you can view the current setting by calling the
GET_DATA_COLLECTOR_POLICY() function.

You can also use the GET_DATA_COLLECTOR_POLICY() function to verify changed settings.
For example, the following query retrieves a brief statement about the retention policy for the
NodeState component:

=> SELECT GET_DATA_COLLECTOR_POLICY('NodeState');

 GET_DATA_COLLECTOR_POLICY

--

 50KB kept in memory, 250KB kept on disk.

(1 row)

Tip: If you do not know the name of a component, you can query the

V_MONITOR.DATA_COLLECTOR system table to get a a full list. For example, the following
query returns all current Data Collector components and a description of each: => SELECT
DISTINCT component, description FROM data_collector ORDER BY 1 ASC;

See also

GET_DATA_COLLECTOR_POLICY and SET_DATA_COLLECTOR_POLICY in the SQL
Reference Manual

Working with data collection logs

Upon startup, an HP Vertica database creates a DataCollector directory within the /catalog
directory.

The DataCollector directory holds the disk-based data collection logs, where retained data is kept

in files named <component>.<timestamp>.log. HP Vertica might maintain several log files,
per component, at any given time. See Querying Data Collector tables (page 605) for an
example of how to view this information.

Also upon startup, HP Vertica creates two additional files, per component, in the DataCollector
directory. These are SQL files that contain examples on how to load Data Collector data into
another HP Vertica instance. These files are:

 CREATE_<component>_TABLE.sql — contains the SQL DDL needed to create a table into
which Data Collector logs for the component can be loaded.

 COPY_<component>_TABLE.sql — contains example SQL to load (using COPY

commands) the data log files into the table that the CREATE script creates.

Two functions let you manipulate these log files.

I f you want to ... See these topics in the SQL Reference Manual

Clear memory and disk records from Data
Collector retention and reset collection

CLEAR_DATA_COLLECTOR()

-603-

 Monitoring HP Vertica

statistics

Flush the Data Collector logs FLUSH_DATA_COLLECTOR()

Retrieve a list of all current Data Collector
components

V_MONITOR.DATA_COLLECTOR

Clearing the Data Collector

If you want to clear the Data Collector of all memory and disk records and reset the collection
statistics in the V_MONITOR.DATA_COLLECTOR system table, call the
CLEAR_DATA_COLLECTOR() function. You can clear records for all components on all nodes or
you can specify individual components, one at a time.

To clear records on a single component, pass the function the component argument. For example,
the following command clears records for the ResourceAcquisitions component only, returning a
result of CLEAR (success):

=> SELECT clear_data_collector('ResourceAcquisitions');

 clear_data_collector

 CLEAR

(1 row)

The following command clears the Data Collector records for all components on all nodes:

=> SELECT clear_data_collector();

 clear_data_collector

 CLEAR

(1 row)

Note: After you clear the DataCollector log, the information is no longer available for querying.

Flushing Data Collector logs

If you want to flush Data Collector information for all components or for an individual component,
use the FLUSH_DATA_COLLECTOR() function. This function waits until memory logs are moved
to disk and flushes the Data Collector, synchronizing the log with the disk storage:

To flush data collection for all components on all nodes:

=> SELECT flush_data_collector();

 flush_data_collector

 FLUSH

(1 row)

To flush records on a single component, pass a component argument to the function. For
example, the following command flushes the ResourceAcquisitions component:

=> SELECT flush_data_collector('ResourceAcquisitions');

 flush_data_collector

 FLUSH

(1 row)

-604-

Administrator's Guide

See also

Data Collector Functions

V_MONITOR.DATA_COLLECTOR

Monitoring Data Collection components

Query the V_MONITOR.DATA_COLLECTOR system table to get a list of Data Collector
components, their current retention policies, and statistics about how much data is retained and
how much has been discarded for various reasons. DATA_COLLECTOR also calculates the
approximate collection rate, to aid in sizing calculations.

The following is a simple query that returns all the columns in this system table. See
V_MONITOR.DATA_COLLECTOR in the SQL Reference Manual for additional details.

=> \x

Expanded display is on.

=> SELECT * FROM data_collector;

-[RECORD 1]----------+---

node_name | v_vmartdb_node0001

component | AllocationPoolStatistics

table_name | dc_allocation_pool_statistics

description | Information about global memory pools, ...

in_db_log | f

in_vertica_log | f

memory_buffer_size_kb | 64

disk_size_kb | 256

record_too_big_errors | 0

lost_buffers | 0

lost_records | 0

retired_files | 120

retired_records | 53196

current_memory_records | 0

current_disk_records | 1454

current_memory_bytes | 0

current_disk_bytes | 214468

first_time | 2011-05-26 12:25:52.001109-04

last_time | 2011-05-26 12:31:55.002762-04

kb_per_day | 49640.4151810525

-[RECORD 2]----------+---

...

Related Topics

 V_MONITOR.DATA_COLLECTOR and Data Collector Functions in the SQL Reference Manual

Retaining Monitoring Information (page 599) and How HP Vertica Calculates Database Size
(page 112) in this guide

-605-

 Monitoring HP Vertica

Querying Data Collector tables

Caution! Data Collector tables (prefixed by dc_) reside in the V_INTERNAL schema and are
provided for informational purposes only. They are provided as-is and are subject to removal or
change without notice. If you use Data Collector tables in scripts or monitoring tools, you might
need to change your scripts and tools after an HP Vertica upgrade. HP recommends that you
use the Workload Analyzer (page 658) instead of accessing the Data Collector tables directly.

Here's one useful example you can use to check on the state of your database. Upon startup, the
HP Vertica database creates, under its catalog directory, a DataCollector directory. This directory
holds the disk-based data collection logs. The main data is kept in files named
<component>.<timestamp>.log.

When you start your database an entry is created in the dc_startups table. The following is the
result of querying this table.

=> SELECT * FROM dc_startups;

-[RECORD 1]----+---

time | 2011-05-26 17:35:40.588589-04

node_name | v_vmartdb_node0001

version | Vertica Analytic Database v5.0.4-20110526

command_line | /opt/vertica/bin/vertica -C vmartdb -D /home/vmartdb/catalog/vmartdb

 | /v_vmartdb_node0001_catalog -h 10.10.50.123 -p 5608

codename | 5.0

build_tag | vertica(v5.0.4-20110526) built by root@build2 from trunk@69652 on 'Thu

 | May 26 3:37:18 2011' $BuildId$

build_type | 64-bit Optimized Build

compiler_version | 4.1.1 20070105 (Red Hat 5.1.1-52)

server_locale | UTF-8

database_path | /home/vmartdb/catalog/vmartdb/v_vmartdb_node0001_catalog

alt_host_name | 10.10.50.123

alt_node_name |

start_epoch |

-[RECORD 2]----+---

time | 2011-05-26 17:35:40.218999-04

node_name | v_vmartdb_node0004

version | Vertica Analytic Database v5.0.4-20110526

command_line | /opt/vertica/bin/vertica -C vmartdb -D /home/vmartdb/catalog/vmartdb

 | /v_vmartdb_node0004_catalog -h 10.10.50.126 -p 5608

codename | 5.0

build_tag | vertica(v5.0.4-20110526) built by root@build2 from trunk@69652 on 'Thu

 | May 26 3:37:18 2011' $BuildId$

build_type | 64-bit Optimized Build

compiler_version | 4.1.1 20070105 (Red Hat 5.1.1-52)

server_locale | UTF-8

database_path | /home/vmartdb/catalog/vmartdb/v_vmartdb_node0004_catalog

alt_host_name | 10.10.50.126

alt_node_name |

start_epoch |

-[RECORD 3]----+---

time | 2011-05-26 17:35:40.931353-04

node_name | v_vmartdb_node0003

version | Vertica Analytic Database v5.0.4-20110526

command_line | /opt/vertica/bin/vertica -C vmartdb -D /home/vmartdb/catalog/vmartdb

 | /v_vmartdb_node0003_catalog -h 10.10.50.125 -p 5608

codename | 5.0

build_tag | vertica(v5.0.4-20110526) built by root@build2 from trunk@69652 on 'Thu

 | May 26 3:37:18 2011' $BuildId$

build_type | 64-bit Optimized Build

-606-

Administrator's Guide

compiler_version | 4.1.1 20070105 (Red Hat 5.1.1-52)

server_locale | UTF-8

database_path | /home/vmartdb/catalog/vmartdb/v_vmartdb_node0003_catalog

alt_host_name | 10.10.50.125

alt_node_name |

start_epoch |

-[RECORD 4]----+---

...

Configuring PROJECTION_REFRESHES History

Information about a refresh operation—whether successful or unsuccessful—is maintained in the
PROJECTION_REFRESHES system table until either the
CLEAR_PROJECTION_REFRESHES() function is executed or the storage quota for the table is

exceeded. The PROJECTION_REFRESHES.IS_EXECUTING column returns a boolean value that
indicates whether the refresh is currently running (t) or occurred in the past (f).

To immediately purge this information, use the CLEAR_PROJECTION_REFRESHES() function:

=> SELECT clear_projection_refreshes();

 clear_projection_refreshes

 CLEAR

(1 row)

Note: Only the rows where the PROJECTION_REFRESHES.IS_EXECUTING column equals
false are cleared.

See Also

CLEAR_PROJECTION_REFRESHES and PROJECTION_REFRESHES in the SQL Reference
Manual

Monitoring Query Plan Profiles

If you want to monitor real-time flow of data through a query plan, query the
V_MONITOR.QUERY_PLAN_PROFILES system table. Information returned by this table is
useful for letting you know what a query did when, which occurs throughout a plan in a series of
steps, called paths.

See Profiling Query Plan Profiles (page 725) for more information.

Monitoring Partition Reorganization

When you use the ALTER TABLE .. REORGANIZE, the operation reorganizes the data in the
background.

You can monitor details of the reorganization process by polling the following system tables:

 V_MONITOR.PARTITION_STATUS displays the fraction of each table that is partitioned
correctly.

-607-

 Monitoring HP Vertica

 V_MONITOR.PARTITION_REORGANIZE_ERRORS logs any errors issued by the
background REORGANIZE process.

 V_MONITOR.PARTITIONS displays NULLS in the partition_key column for any ROS's that
have not been reorganized.

Note: The corresponding foreground process to ALTER TABLE ... REORGANIZE is

PARTITION_TABLE().

Partitioning, repartitioning, and reorganizing tables (page 333) for more information.

Monitoring Resource Pools and Resource Usage by Queries
The Linux top command http://linux.die.net/man/1/top can be used to determine the overall

CPU usage and I/O waits across the system. However, resident memory size indicated by top is
not a good indicator of actual memory use or reservation because of file system caching and so
forth. Instead, HP Vertica provides several monitoring tables that provide detailed information
about resource pools, their current memory usage, resources requested and acquired by various
requests and the state of the queues.

The RESOURCE_POOLS table lets you view various resource pools defined in the system (both
internal and user-defined), and the RESOURCE_POOL_STATUS table lets you view the current
state of the resource pools.

Examples

The following command returns the various resource pools defined in the system.

VMart=> SELECT name, memorysize, maxmemorysize, priority, runtimepriority,

 runtimeprioritythreshold, runtimecap, maxconcurrency

 FROM V_CATALOG.RESOURCE_POOLS;

 name | memorysize | maxmemorysize | priority | runtimepriority | runtimeprioritythreshold |

runtimecap | maxconcurrency

----------+------------+---------------+----------+-----------------+--------------------------+-

-----------+----------------

 general | | Special: 95% | 0 | MEDIUM | 2 |

|

 sysquery | 64M | | 110 | HIGH | 0 |

|

 sysdata | 100M | 10% | | | |

|

 wosdata | 0% | 25% | | | |

|

 tm | 200M | | 105 | MEDIUM | 60 |

| 3

 refresh | 0% | | -10 | MEDIUM | 60 |

|

 recovery | 0% | | 107 | MEDIUM | 60 |

| 1

 dbd | 0% | | 0 | MEDIUM | 0 |

|

 mypool | 0% | | 0 | MEDIUM | 2 |

|

 ceo_pool | 0% | | 0 | MEDIUM | 2 |

|

(10 rows)

http://linux.die.net/man/1/top

-608-

Administrator's Guide

To see only the user-defined resource pools, you can limit your query to return records where
IS_INTERNAL is false.

Note: The user-defined pools below are used as examples in subsequent sections related to

Workload Management.

The following command returns information on user-defined resource pools:

=> SELECT name, memorysize, maxmemorysize, priority, maxconcurrency

 FROM V_CATALOG.RESOURCE_POOLS where is_internal ='f';

 name | memorysize | maxmemorysize | priority | maxconcurrency

--------------+------------+---------------+----------+----------------

 load_pool | 0% | | 10 |

 ceo_pool | 250M | | 10 |

 ad hoc_pool | 200M | 200M | 0 |

 billing_pool | 0% | | 0 | 3

 web_pool | 25M | | 10 | 5

 batch_pool | 150M | 150M | 0 | 10

 dept1_pool | 0% | | 5 |

 dept2_pool | 0% | | 8 |

(8 rows)

The queries borrow memory from the GENERAL pool and show the amount of memory in use from

the GENERAL pool.

The following command uses the V_MONITOR.RESOURCE_POOL_STATUS table to return the
current state of all resource pools on node0001:

=> SELECT pool_name, memory_size_kb, memory_size_actual_kb, memory_inuse_kb,

general_memory_borrowed_kb,

 running_query_count FROM V_MONITOR.RESOURCE_POOL_STATUS where node_name ilike '%node0001';

 pool_name | memory_size_kb | memory_size_actual_kb | memory_inuse_kb | general_memory_borrowed_kb

| running_query_count

-----------+----------------+-----------------------+-----------------+--------------------------

--+---------------------

 general | 15108517 | 15108517 | 0 | 0

| 0

 sysquery | 65536 | 65536 | 0 | 0

| 0

 sysdata | 102400 | 102400 | 4096 | 0

| 0

 wosdata | 0 | 0 | 0 | 0

| 0

 tm | 204800 | 204800 | 0 | 0

| 0

 refresh | 0 | 0 | 0 | 0

| 0

 recovery | 0 | 0 | 0 | 0

| 0

 dbd | 0 | 0 | 0 | 0

| 0

(8 rows)

The following command uses the V_MONITOR.RESOURCE_ACQUISITIONS table to show all
resources granted to the queries that are currently running:

Note: While running vmart_query_04.sql from the VMart example database, notice that
the query uses memory_inuse_kb = 219270 from the GENERAL pool.

-609-

 Monitoring HP Vertica

=> SELECT pool_name, thread_count, open_file_handle_count, memory_inuse_kb, queue_entry_timestamp,

 acquisition_timestamp FROM V_MONITOR.RESOURCE_ACQUISITIONS WHERE node_name ILIKE '%node0001';

 pool_name | thread_count | open_file_handle_count | memory_inuse_kb | queue_entry_timestamp

| acquisition_timestamp

-----------+--------------+------------------------+-----------------+---------------------------

----+-------------------------------

 sysquery | 4 | 0 | 4103 | 2010-04-12 15:57:05.526678-04

| 2010-04-12 15:57:05.526684-04

 general | 4 | 5 | 219270 | 2010-04-12 15:56:38.95516-04

| 2010-04-12 15:56:38.956373-04

 sysdata | 0 | 0 | 4096 | 2010-04-12 12:58:06.063178-04

| 2010-04-12 13:11:54.930346-04

 wosdata | 0 | 0 | 0 | 2010-04-12 15:22:33.454542-04

| 2010-04-12 15:22:33.454548-04

(4 rows)

To determine how long a query waits in the queue before it is admitted to run, you can get the
difference between the acquisition_timestamp and the queue_entry_timestamp using
a query like the following:

=> SELECT pool_name, queue_entry_timestamp, acquisition_timestamp,

(acquisition_timestamp-queue_entry_timestamp)

 AS 'queue wait' FROM V_MONITOR.RESOURCE_ACQUISITIONS WHERE node_name ILIKE '%node0001';

 pool_name | queue_entry_timestamp | acquisition_timestamp | queue wait

--------------+-------------------------------+-------------------------------+-----------------

 sysquery | 2010-04-14 10:43:45.931525-04 | 2010-04-14 10:43:45.931532-04 | 00:00:00.000007

 billing_pool | 2010-04-14 10:39:24.295196-04 | 2010-04-14 10:39:24.296469-04 | 00:00:00.001273

 ceo_pool | 2010-04-14 10:40:07.281384-04 | 2010-04-14 10:40:07.29919-04 | 00:00:00.017806

 sysdata | 2010-04-12 12:58:06.063178-04 | 2010-04-12 13:11:54.930346-04 | 00:13:48.867168

 wosdata | 2010-04-12 15:22:33.454542-04 | 2010-04-12 15:22:33.454548-04 | 00:00:00.000006

(5 rows)

See the SQL Reference Manual for detailed descriptions of the monitoring tables described in this
topic.

Monitoring Recovery
There are several ways to monitor database recovery:

 Log files on each host

 Admintools (View Database Cluster State)

 System tables

This section describes the different ways to monitor recovery.

Viewing Log Files on each Node

During database recovery, HP Vertica adds logging information to the vertica.log on each
host. Each message is identified with a [Recover]string.

Use the tail command to monitor recovery progress by viewing the relevant status messages,
as follows.

$ tail -f catalog-path/database-name/node-name_catalog/vertica.log

-610-

Administrator's Guide

01/23/08 10:35:31 thr:Recover:0x2a98700970 [Recover] <INFO> Changing

host node01 startup state from INITIALIZING to RECOVERING

01/23/08 10:35:31 thr:CatchUp:0x1724b80 [Recover] <INFO> Recovering to

specified epoch 0x120b6

01/23/08 10:35:31 thr:CatchUp:0x1724b80 [Recover] <INFO> Running 1 split

queries

01/23/08 10:35:31 thr:CatchUp:0x1724b80 [Recover] <INFO> Running query:

ALTER PROJECTION proj_tradesquotes_0 SPLIT node01 FROM 73911;

Viewing the Cluster State and Recover Status

Use the admintools view_cluster tool from the command line to see the cluster state:

$ /opt/vertica/bin/admintools -t view_cluster

DB | Host | State

---------+--------------+------------

<data_base> | 112.17.31.10 | RECOVERING

<data_base> | 112.17.31.11 | UP

<data_base> | 112.17.31.12 | UP

<data_base> | 112.17.31.17 | UP

Using System Tables to Monitor Recovery

Use the following system tables to monitor recover:

 RECOVERY_STATUS

 PROJECTION_RECOVERIES

Specifically, the recovery_status system table includes information about the node that is

recovering, the epoch being recovered, the current recovery phase, and running status:

=> select node_name, recover_epoch, recovery_phase, current_completed, is_running

from recovery_status;

 node_name | recover_epoch | recovery_phase | current_completed | is_running

-----------+---------------+-------------------+-------------------+----------

 node01 | | | 0 | f

 node02 | 0 | historical pass 1 | 0 | t

 node03 | 1 | current | 0 | f

The projection_recoveries system table maintains history of projection recoveries. To

check the recovery status, you can summarize the data for the recovering node, and run the same
query several times to see if the counts change. Differing counts indicate that the recovery is
working and in the process of recovering all missing data.

=> select node_name, status , progress from projection_recoveries;

node_name | status | progress

-----------------------+-------------+---------

v_<data_base>_node0001 | running | 61

To see a single record from the projection_recoveries system table, add limit 1 to the query.

-611-

 Monitoring HP Vertica

Monitoring Cluster Status after Recovery

When recovery has completed:

1 Launch Administration Tools.

2 From the Main Menu, select View Database Cluster State and click OK.

The utility reports your node's status as UP.

Note: You can also monitor the state of your database nodes on the Management Console
Overview page under the Database section, which tells you the number of nodes that are up,
critical, recovering, or down. To get node-specific information, click Manage at the bottom of the
page.

See Also

Monitoring HP Vertica (page 575)

-612-

 612

Monitoring HP Vertica Using MC

Management Console gathers and retains history of important system activities about your
MC-managed database cluster, such as performance and resource utilization. You can use MC
charts to locate performance bottlenecks on a particular node, to identify potential improvements
to HP Vertica configuration, and as a reference for what actions users have taken on the MC
interface.

Note: MC directly queries Data Collector tables on the MC-monitored databases themselves.

See Management Console Architecture in the Concepts Guide.

The following list describes some of the areas you can monitor and troubleshoot through the MC
interface:

 Multiple database cluster states and key performance indicators that report on the cluster's
overall health

 Information on individual cluster nodes specific to resources

 Database activity in relation to CPU/memory, networking, and disk I/O usage

 Query concurrency and internal/user sessions that report on important events in time

 Cluster-wide messages

 Database and agent log entries

 MC user activity (what users are doing while logged in to MC)

 Issues related to the MC process

 Error handling and feedback

About chart updates

MC charts update dynamically with text, color, and messages Management Console receives
from the agents on the database cluster. This information can help you quickly resolve problems.

Each client session on MC uses a connection from MaxClientSessions, a database
configuration parameter that determines the maximum number of sessions that can run on a
single database cluster node. If multiple MC users are mapped to the same database account and
are concurrently monitoring the Overview and Activity pages, graphs could be slow to update
while MC waits for a connection from the pool.

Tip: You can increase the value for MaxClientSessions on an MC-monitored database to
take extra sessions into account. See Managing Sessions (page 494) for details.

-613-

 Monitoring HP Vertica

Viewing MC Home Page
After you connect to MC (page 252) and sign in, the Home page displays. This page is the entry

point to all MC-managed HP Vertica database clusters and users. Information on this page, as
well as throughout the MC interface, will appear or be hidden, based on the permissions (access
levels (page 199)) of the user who is logged in. The following image is what an MC super
administrator sees.

Tasks

Operations you can perform on MC are grouped into the following task-based areas:

 Databases and Clusters. Create, import, manage and monitor one or more databases on

one or more clusters—this includes creating new empty databases and importing existing
database clusters into the MC interface. See Managing Database Clusters on MC (page
253).

 MC Settings. Configure MC and user settings, as well as use the MC interface to install HP

Vertica on a cluster of hosts. See Managing MC Settings (page 257).

 Message Center. View, sort, and search database messages and optionally export messages
to a file. See Monitoring MC-managed Database Messages (page 633).

 Diagnostics. View and resolve MC-related issues, as well as browse HP Vertica agent and

audit logs. See Troubleshooting Management Console (page 259).

-614-

Administrator's Guide

Recent Databases

The area directly below Tasks displays all databases that you created on or imported into the MC

interface. You can install one or more databases, on the same cluster or on different clusters, but
you can have only one database running on a single cluster at a time. UP databases appear in
green and DOWN databases are red. An empty space under Recent Databases means that you
have not yet created or imported a database into the MC interface.

Monitoring Same-name Databases on MC

If you are monitoring two databases with identical names on different clusters, you can determine
which database is associated with which cluster by clicking the database icon on MC's Databases
and Clusters page to view its dialog box. Information in the dialog displays the cluster on which the
selected database is associated.

Monitoring the Database Cluster

For a dynamic, "dashboard" view of your MC-managed database cluster—including resources
(CPU and memory), distribution of query type, query performance, and a summary of database
messages by message type—monitor the MC Overview page. Information on this page updates

every minute, but you can postpone updates by clearing Auto Refresh Charts in the toolbar.

The following image shows all activity on an example cluster and represents what a user with MC
database administrator (ADMIN (db)) (page 207) privileges sees. See About MC Users (page
148) for more information about the MC privilege model.

-615-

 Monitoring HP Vertica

The MC Overview dashboard displays information about the following cluster functionality.

Database

The Database subsection summarizes general information about the selected database cluster.
Content in this area changes only if the database or node state changes; for example if the state
changes from Up to Initializing or Recovering, states that indicate a recovery operation is in
progress. See Failure Recovery (page 566) for more information.

Messages

The Messages subsection displays counts for database-related messages, by severity type, and
lets you quickly identify anything that requires immediate attention. To open the Message Center,
click the Details link. See Monitoring MC-managed Database Messages (page 633).

-616-

Administrator's Guide

Performance

If your queries are performing suboptimally, the Performance subsection on the Overview page

could help you identify issues by providing results from the last Workload Analyzer (WLA) run.
WLA analyzes system information retained in SQL system tables and provides tuning
recommendations through a SQL command you can run, along with the cost (low, medium, or
high) of running the command. Workload Analyzer begins 60 seconds after MC starts and then
runs once per day. If you want WLA to analyze your system workload/queries immediately, click
Analyze. See Analyzing Workloads (page 658) for more information about this utility.

CPU/Memory Usage

The CPU/Memory subsection provides a graph-based overview of cluster resources during the
last hour. The chart displays the number of nodes in the database cluster and plots average and
per-node percentages for both CPU and memory. Click a data point (that represents a node), and
the Node Details page opens. See Monitoring Cluster CPU/Memory (page 618) for more
information.

User Query Type Distribution

The Query Distribution chart provides an overview of user and system query activity and reports
the type of operation that ran, which MC gathers from the production database. Hover your cursor
over chart points for more details. To zoom, adjust the slider bar at the bottom of the chart around
an area of interest. Double clicking any point in the graph opens the Activity page. See Monitoring
Database Activity (page 621) for further details.

See Also

Monitoring Cluster Performance (page 619)

Monitoring Cluster Nodes

For a visual overview of all cluster nodes, click the running database on the Databases and
Clusters page and then click the Manage tab at the bottom of the page to open the cluster status

page.

-617-

 Monitoring HP Vertica

In the following 3-node cluster, one node is down (red), one node is in critical state (yellow), and
one node is up (green). If this were your cluster, you'd probably want to investigate the the two
unhealthy nodes. You can get information about a parcticular node by clicking it, an action that
opens the node details (page 632) page.

Filtering what you see

If you have a large cluster, where it might be difficult to view dozens to hundreds of nodes on the
MC interface, you can filter what you see. The Zoom filter shows more or less detail on the cluster
overall, and the Health Filter lets you view specific node activity; for example, you can slide the bar
all the way to the right to show only nodes that are down. A message next to the health filter
indicates how many nodes in the cluster are hidden from view.

On this page, you can perform the following actions on your database cluster:

 Add, remove and replace nodes

 Rebalance data across all nodes

 Stop or start (or restart) the database

 Refresh the view from information MC gathers from the production database

 View key performance indicators (KPI) on node state, CPU, memory, and storage utilization
(see Monitoring Cluster Performance (page 619) for details)

-618-

Administrator's Guide

Note: Starting, stopping, adding, and dropping nodes and rebalancing data across nodes

works with the same functionality and restrictions as those same tasks performed through the
Administration Tools.

If you don't see what you expect

If the cluster grid does not accurately reflect the current state of the database (for example if the
MC interface shows a node in INITIALIZING state, but when you use the Administration Tools to
View Database Cluster State, you see that all nodes are UP), click the Refresh button in the
toolbar. Doing so forces MC to immediately synchronize with the agents and update MC with new
data.

Don't press the F5 key, which redisplays the page using data from MC and ignores data from the
agent. It can take several seconds for MC to enable all database action buttons.

See Also

Monitoring Node Activity (page 632)

Monitoring Cluster CPU/Memory

On the MC Overview page, the CPU/Memory subsection provides a graph-based overview of
cluster resources during the last hour, which lets you quickly monitor resource distribution across
nodes.

This chart plots average and per-node percentages for both CPU and memory with updates every
minute—unless you clear Auto Refresh Charts in the toolbar. You can also filter what the chart
displays by clicking components in the legend at the bottom of the subsection to show/hide those
components. Yellow data points represent individual nodes in the cluster at that point in time.

Investigating areas of concern

While viewing cluster resources, you might wonder why resources among nodes become skewed,
such as in the example below, at 14:40 PM. To zoom in, use your mouse to drag around the
problem area surrounding the time block of interest (illustrated by the red outline in the image).

-619-

 Monitoring HP Vertica

After you release the mouse, the chart refreshes to display a more detailed view of the selected
area. If you hover your cursor over the node that looks like it's consuming the most resources, a
dialog box summarizes that node's percent usage. For example, in the case below, the problem
node is using almost 72% of its CPU resources, while the other two cluster nodes are using under
30%.

For more information, click a data point (node) on the graph to open MC's node details page. To
return to the previous view, click Reset zoom.

See Also

Monitoring Node Activity (page 632)

Monitoring Cluster Performance

Key Performance Indicators (KPIs) are a type of performance measurement that let you quickly
view the health of your database cluster through MC's Manage page. These metrics, which

determine a node's color, make it easy for you to quickly identify problem nodes.

Metrics on the database are computed and averaged over the latest 30 seconds of activity and
dynamically updated on the cluster grid.

How to get metrics on your cluster

To view metrics for a particular state, click the menu next to the KPI View label at the bottom of the
Manage page, and select a state.

MC reports KPI scores for:

-620-

Administrator's Guide

 Node state—(default view) shows node status (up, down, k-safety critical) by color; you can

filter which nodes appear on the page by sliding the health filter from left to right

 CPU Utilization—average CPU utilization

 Memory Utilization—average percent RAM used

 Storage Utilization—average percent storage used

After you make a selection, there is a brief delay while MC transmits information back to the
requesting client. You can also click Sync in the toolbar to force synchronization between MC and

the client.

Node colors and what they mean

Nodes in the database cluster appear in color. Green is the most healthy and red is the least
healthy, with varying color values in between.

Each node has an attached information dialog box that summarizes its score. It is the score's
position within a range of 0 (healthiest) to 100 (least healthy) that determines the node's color bias.
Color bias means that, depending on the value of the health score, the final color could be slightly
biased; for example, a node with score 0 will be more green than than a node with a score of 32,
which is still within the green range but influenced by the next base color, which is yellow.
Similarly, a node with a score of 80 appears as a dull shade of red, because it is influenced by
orange.

MC computes scores for each node's color bias as follows:

 0-33: green and shades of green

 34-66: yellow and shades of yellow

 67-100: red and shades of red shades

The following image shows a 4-node cluster with one healthy node, one node in relatively poor
health, and two nodes somewhere in between those two states:

If the unhealthy node were to consume additional resources, its color would change from a dull
orange-red to a brighter red.

-621-

 Monitoring HP Vertica

Filtering nodes from the view

The health filter is the slider in the lower left area of page. You can slide it left to right to show or
hide nodes; for example, you might want to hide nodes with a score smaller that a certain value so
the UI displays only the unhealthy nodes that require immediate attention. Wherever you land on
the health filter, an informational message appears to the right of the filter, indicating how many
nodes are hidden from view.

Filtering is useful if you have many nodes and want to see only the ones that need attention, so
you can quickly resolve issues on them.

Monitoring System Resources
MC's Activity page provides immediate visual insight into potential problem areas by giving you

graph-based views of query performance by runtime in milliseconds, current load rates, real-time
hardware and memory impacts, the type of query or operation that the user or system ran,
concurrently-running processes, and system bottlenecks on nodes.

Select one of the following charts in the toolbar menu:

 Queries (page 622)

 Internal Sessions (page 624)

 User Sessions (page 626)

 Memory Usage (page 628)

 Bottleneck Usage (page 629)

How up to date is the information?

System-level activity charts automatically update every five minutes, unless you clear Auto
Refresh in the toolbar. Depending on your system, it could take several moments for the charts to
display when you first access the page or change the kind of resource you want to view.

-622-

Administrator's Guide

Monitoring Query Activity

The Queries chart displays information about query concurrency and average resource usage for
CPU/memory, network activity, and disk I/O percent based on maximum rated bandwidth.

Hover over a data point for more information about percent usage for each of the resource types.

If you click a data point, MC opens a details page for that point in time, summarizing the number of
user queries and system queries. This page can help you identify long-running queries, along with
the query type. You can sort table columns and export the report to a file.

-623-

 Monitoring HP Vertica

Monitoring key events

On the main Queries page, MC reports when a key event occurred, such as a Workload Analyzer
or rebalance operation, by posting a WLA (Workload Analyzer) and/or RBL (rebalance) label on
the resource section of the chart.

Filtering chart results

The default query concurrency is over the last hour. The chart automatically refreshes every five
minutes, unless you clear the Auto Refresh option in the toolbar. You can filter results for 1 hour, 1
day, or up to 1 week, along with corresponding average resource usage. You can also click
different resources in the legend to show or hide those resources; for example, the following
screen shot hides system queries:

To return to the main Queries page, use the slider bar or click the 1h button.

-624-

Administrator's Guide

Viewing more detail

To zoom in for detail, click-drag the mouse around a section or use the sliding selector bar at the
bottom of the chart. After the detailed area displays, hover your cursor over a data point to view the
resources anchored to that point in time.

For more detail about user or system queries, click a data point on one of the peaks. A Detail page

opens to provide information about the queries in tabular format, including the query type, session
ID, node name, query type, date, time, and the actual query that ran.

The bottom of the page indicates the number of queries it is showing on the current page, with
Previous and Next buttons to navigate through the pages. You can sort the columns and export
contents of the table to a file.

To return to the main Queries page, click <database name> Activity in the navigation bar

Monitoring Internal Sessions

The Internal Sessions chart provides information about HP Vertica system activities, such as
Tuple Mover and rebalance cluster operations, along with their corresponding resources, such as
CPU/memory, networking, and disk I/O percent used.

Hover your cursor over a bar for more information. A dialog box appears and provides details, like
in the following example, where a mergeout operation took around 88K milliseconds to complete.

-625-

 Monitoring HP Vertica

Filtering chart results

You can filter what the chart displays by selecting options for the following components. As you
filter, the Records Requested number changes:

 Category—Filter which internal session types (moveout, mergeout, rebalance cluster) appear
in the graph. The number in parentheses indicates how many sessions are running on that
operation.

 Session duration—Lists time, in milliseconds, for all sessions that appear on the graph. The
minimum/maximum values on which you can filter (0 ms to n ms) represent the
minimum/maximum elapsed times within all sessions currently displayed on the graph. After
you choose a value, the chart refreshes to show only the internal sessions that were greater
than or equal to the value you select.

 Records requested—Represents the total combined sessions for the Category and Session
Duration filters.

-626-

Administrator's Guide

Monitoring User Sessions

The User Sessions chart provides information about HP Vertica user activities for all user
connections open to MC.

What chart colors mean

Sessions are divided into two colors, yellow and blue.

 Yellow bars represent user (system) sessions. If you click a yellow bar, MC opens a Detail
page that shows all queries that ran or are still running within that session.

 Blue bars represent user requests (transactions within the session). If you click a blue section
in the graph, MC opens a Detail page that includes information for that query request only.

When you hover your mouse over a transaction bar, a dialog box provides summary
information about that request, such as which user ran the query, how long the transaction
took to complete, or whether the transaction is still running.

-627-

 Monitoring HP Vertica

Chart results

Extremely busy systems will show a lot of activity on the interface, perhaps more than you can
interpret at a glance. You can filter session results by selecting a smaller number of records, a
specific user, or by changing the session duration (how long a session took to run).

As you apply filters, the Records requested number changes to represent the total combined
sessions based on your filters:

 Show records—decide how many records to show in increments of 10.

 User—select the user for which you want to show sessions.

 Session duration—list time, in milliseconds, for all the sessions that appear on the graph. The
minimum/maximum values on which you can filter (0 ms to n ms) represent the
minimum/maximum elapsed times within all sessions currently displayed on the graph. After
you choose a value, the chart refreshes to show only the sessions that were greater than or
equal to the value you select.

 Records requested—represents the total combined user sessions for the User and Session
duration filters.

-628-

Administrator's Guide

Monitoring System Memory Usage

The Memory Usage chart shows how system memory is used on individual nodes over time.
Information the chart displays is stored based on Data Collector retention policies, which a
superuser can configure. See Configuring Data Retention Policies (page 601).

The first time you access the Memory Usage chart, MC displays the first node in the cluster. MC
remembers the node you last viewed and displays that node when you access the Activity page
again. To choose a different node, select one from the Nodes drop-down list at the bottom of the
chart. The chart automatically refreshes every five minutes unless you disable the Auto Refresh
option.

Tip: On busy systems, the Node list might cover part of the graph you want to see. You can

move the list out of the way by dragging it to another area on the page.

Types of system memory

The Memory Usage chart displays a stacking area for the following memory types:

 swap

 free

 fcache (file cache)

 buffer

-629-

 Monitoring HP Vertica

 other (memory in use by all other processes running on the system besides the main Vertica
process, such as the MC process or agents)

 HP Vertica

 rcache (HP Vertica ROS cache)

 catalog

When you hover over a data point, a dialog box displays percentage of memory used during that
time period for the selected node.

Monitoring System Bottlenecks

The System Bottlenecks chart helps you quickly locate performance bottlenecks on a particular
node. The first time you access the Activity page, MC displays the first node in the cluster. To
choose a different node, select one from the Nodes drop-down list at the bottom of the chart.

How MC gathers system bottleneck data

Every 15 minutes, MC takes the maximum percent values from various system resources and
plots a single line with a data point for the component that used the highest resources at that point
in time. When a different component uses the highest resources, MC displays a new data point
and changes the line color to make the change in resources obvious. Very busy databases can
cause frequent changes in the top resources consumed, so you might notice heavy chart activity.

-630-

Administrator's Guide

High memory usage is not necessarily and indicator of a bottleneck, so this component appears as
a bottleneck only when it exceeds 90%. If memory usage is below 90%, MC instead reports the
component using the second highest resources.

The components MC reports on

MC reports maximum percent values for the following system components:

 Average percent CPU usage

 Average percent memory usage

 Maximum percent disk I/O usage

 Percent data sent over the network (TX)

 Percent data received over the network (RX)

How MC handles conflicts in resources

If MC encounters two metrics with the same maximum percent value, it displays one at random. If
two metrics are very close in value, MC displays the higher of the two.

Note: The System Bottlenecks chart reports what MC identifies as the most problematic

resource during a given time interval. This chart is meant to be a starting point for further
investigation and cannot represent everything going on in the system.

-631-

 Monitoring HP Vertica

Example

The following image shows that, over the last three hours, the most-used resources on the
selected node were disk I/O, CPU, and memory. Line colors map to the components in the legend.

According to the above chart, just before 07:40 the maximum resources used changed from CPU
to memory, denoted by a change from green to pink and a new data point. The following image
provides a closeup of the change.

-632-

Administrator's Guide

Monitoring Node Activity

If a node fails on an MC-managed cluster or you notice one node is using higher resources than
other cluster nodes—which you might observe when monitoring the Overview page (page
614)—open the Manage page and click the node you want to investigate.

The Node Details page opens and provides summary information for the node (state, name, total
memory, and so on), as well as resources the selected node has been consuming for the last three
hours, such as average CPU, memory, disk I/O percent usage, network consumption in kilobytes,
and the percentage of disk storage the running queries have been using. You can also browse and
export log-level data from AgentTools and Vertica log files. MC retains a maximum of 2000 log
records.

-633-

 Monitoring HP Vertica

For a more detailed view of node activity, use the mouse to drag-select around a problem area in
one of the graphs, such as the large spike in network traffic in the above image. Then hover over
the high data point for a summary.

See Also

Monitoring the Cluster Overview (page 614)

Monitoring Cluster Performance (page 619)

Monitoring MC-managed Database Messages

You can view an overview of your database-related messages on the Overview page.

If you click the Details link MC opens the Message Center, which lists up to 500 of the most

current messages and reports on the following database-related conditions:

 Low disk space

-634-

Administrator's Guide

 Read-only file system

 Loss of K-safety

 Current fault tolerance at critical level

 Too many ROS containers

 WOS overflow

 Change in node state

 Recovery error

 Recovery failure

 Recovery lock error

 Recovery projection retrieval error

 Refresh error

 Refresh lock error

 Workload Analyzer operations

 Tuple Mover error

 Timer service task error

 Last Good Epoch (LGE) lag

 License size compliance

 License term compliance

Message severity

Messages are color coded to represent the level of severity. For example:

 Red - Emergency, Alert, and Critical

 Orange - Error

 Yellow - Warning

 Green - Notice

 Blue - Informational

The icons that correspond with a message on the interface use the same color conventions.

Viewing message details

Within the Message Center, if you click the arrow next to a message, you can get more information
about the issue, which can help you determine what action to take, if any.

Tip: You can also query the V_MONITOR.EVENT_CONFIGURATIONS table to get

information about events. See the SQL Reference Manual for details.

Search and export messages

You can also search (page 635) and sort database messages, mark messages read/unread and
delete them, filter messages by message type, and export (page 637) messages.

-635-

 Monitoring HP Vertica

Searching MC-managed Database Messages

The Management Console Message Center displays the 500 most recent database messages,
starting with the most recent record. If fewer than than 500 records exist, MC displays all of them.
If more than 500 exist, MC returns a message letting you know that only the most recent 500
entries are being shown, so you have the option to filter.

By default, MC reports on all message types (Emergency, Alert, Critical, Error, Warning, Notice)
except Info. If you want to view Info messages, you must select that type, but because Info
messages could quickly reach the 500-message limit, the Message Center might not have room to
show other message types. You can filter what message types the Message Center returns.

-636-

Administrator's Guide

Changing message search criteria

To specify which messages to retrieve, click Change Search and choose a date range, one or

more message types, or one or more message types within a specific date range.

After you click OK, the Message Center returns up to 500 messages and updates the toolbar with
your search criteria. By default, the Message Center displays, "showing recent entries, all alert
types," but if you requested specific message types the toolbar displays "alert types filtered." The
toolbar will also show the date range if you supplied one.

Specifying date range searches

For date range searches, MC starts at the beginning of the time range and either returns all
messages up to the specified end time or 500 messages, whichever comes first. You can filter
message searches on the following date ranges:

 Any date-to-date period, including hour and minute

 Any time period up to now (forward searches)

 Any time period before now (backward searches)

Based on the likelihood that MC will find more than 500 messages, a date search from <date> to
<now> will return a different set of messages than it would from a ―search recent entries‖ request.

-637-

 Monitoring HP Vertica

After you specify a date range, click Done to close the calendar, and then click OK to see the

results in the Message Center.

Filtering messages client side

In a selection pane at the bottom of the Message Center page, you can further refine search
results through the client interface.

Client-side filtering works only on messages that MC has already returned, whether you can see
them or not. If you select or clear message types in this filter, the toolbar status does not change.
Client-side selections also do not change based on the choices you make in your server-side
search. The goal of client-side filtering is to let you further refine server-side results.

Exporting MC-managed Database Messages and Logs

You can export the contents of database messages, log details, query details, and MC user
activity to a file. Information comes directly from the MC interface. This means that if the last five

minutes of vertica.log information displays on the interface, you can save that five minutes of
data to a file, not the entire vertica.log, for which MC retains a maximum of 2000 records.

Before you can export messages/logs, you first need to search search the logs. Exported log files

have a .log extension and contain all records found within the time range you specify for the
search. See Searching MC-managed Database Messages (page 635) for additional details.

Depending on how you set your browser preferences, when you export messages you can view
the output immediately or specify a location to save the file. System-generated filenames include a
timestamp for uniqueness. If you notice a slight discrepancy between results on the MC interface
and the contents of an exported file, this is because MC handles log searching (both viewing and
exporting) by the minute, and a discrepancy can occur if new information comes in for the search
range's end minute.

The following table shows, by record type, the MC pages that contain content you can export, the
name of the system-generated file, and what that file's output contains:

Message type Where you can export
on MC

System-generated filename Contents of exported file

All db-related
message
types

Message Center
page

vertica-alerts-<timestamp>.

csv
Exports messages in the Message
Center to a .csv file. Message

contents are saved under the

following headings:

 Create time

 Severity

 Database

 Summary (of message)

 Description (more details)

MC log files Diagnostics page mconsole-<timestamp>.log Exports MC log search results
from MC to a .log file under the

-638-

Administrator's Guide

following headings:

 Time

 Type (message severity)

 Component (such as TM,
Txn, Recover, and so on)

 Message

Vertica logs Manage page

Double-click any
node to get to the
details and then

click the VerticaLog
tab.

vertica-vertica-<db>-

<timestamp>.log
Exports vertica log search results
from MC to a .log file under the

following headings:

 Time

 Type (message severity)

 Component (such as TM,
Txn, Recover, and so on)

 Message

Agent logs Manage page

Click any node to

get to the details
and then click the
AgentTools Log

tab.

vertica-agent-<db>-

<timestamp>.log
Exports agent log search results

from MC to a .log file under the

following headings:

 Time

 Type (message severity)

 Component (such as TM,
Txn, Recover, and so on)

 Message

Query details Activity page

Click any query
spike in the graph to
get to the Detail

page.

vertica-querydetails-<db>-

<timestamp>.dat
Exports query details for the
database between <timestamp>

and <timestamp> as a
tab-delimited .dat file. Content is
saved under the following

headings:

 Query type

 Session ID

 Node name

 Started

 Elapsed

 User name

 Request/Query

MC user
activity

Diagnostics page

Click the Audit Log
task

vertica_audit<timestamp>.csv Exports MC user-activity results to
a .csv file. Content is saved

under the following headings:

 Time

 MC User

 Resource

 Target User

 Client IP

 Activity

-639-

 Monitoring HP Vertica

Monitoring MC User Activity

When an MC user makes changes on the MC interface, whether to an MC-managed database or
to the MC itself, their action generates a log entry that records a timestamp, the MC user name,
the database and client host (if applicable), and the operation the user performed. You monitor
user activity on the Diagnostics > Audit Log page.

MC records the following types of user operations:

 User log-on/log-off activities

 Database creation

 Database connection through the console interface

 Start/stop a database

 Remove a database from the console view

 Drop a database

 Database rebalance across the cluster

 License activity views on a database, as well as new license uploads

 Workload Analyzer views on a database

 Database password changes

 Database settings changes (individual settings are tracked in the audit record)

 Syncing the database with the cluster (who clicked Sync on grid view)

 Query detail viewings of a database

 Node changes (add, start, stop, replace)

 User management (add, edit, enable, disable, delete)

 LDAP authentication (enable/disable)

 Management Console setting changes (individual settings are tracked in the audit record)

 SSL certificate uploads

 Message deletion and number deleted

 Console restart from the browser interface

 Factory reset from the browser interface

Background cleanup of audit records

An internal MC job starts every day and, if required, clears audit records that exceed a specified
timeframe and size. The default is 90 days and 2K in log size. MC clears whichever limit is first
reached.

You can adjust the time and size limits by editing the following lines in the
/opt/vconsole/config/console.properties file:

vertica.audit.maxDays=90

vertica.audit.maxRecords=2000

-640-

Administrator's Guide

Filter and export results

You can manipulate the output of the audit log by sorting column headings, scrolling through the
log, refining your search to a specific date/time and you can export audit contents to a file.

If you want to export the log, see Exporting the User Audit Log (page 261).

If you perform a factory reset

If you perform a factory reset on MC's Diagnostics page (restore it to its pre-configured state), MC
prompts you to export audit records before the reset occurs.

-641-

Monitoring HP Vertica Using Ganglia
The HP Vertica Analytics Platform is integrated with Ganglia, a web-based administration console
and monitoring tool that lets you observe the status of an HP Vertica cluster and its running
databases from your client's browser.

Ganglia Architecture

The following diagram illustrates Ganglia architecture on a four-node cluster. The components are
discussed below.

Ganglia architecture

Ganglia architecture is made up of the following components.

-642-

Administrator's Guide

 gmond — The Ganglia MONitor Daemon is a data-collecting agent that you must install on

every node in a cluster. Gmond gathers metrics about the local node and sends information to
other nodes via XML to a browser window. Gmond is portable and collects system metrics,
such as CPU, memory, disk, network and process data. The Gmond configuration file

/etc/gmond.conf controls the Gmond daemon and resides on each node where Gmond is
installed.

 gmetad — The Ganglia METAdata Daemon is a data-consolidating agent that provides a

query mechanism for collecting historical information about groups of machines. Gmetad is
typically installed on a single, task-oriented server (the monitoring node), though very large
clusters could require more than one Gmetad daemon. Gmetad collects data from other
Gmetad and Gmond sources and stores their state in indexed RRDtool (round-robin)
databases, where a Web interface reads and returns information about the cluster. The

Gmetad configuration file /etc/gmetad.conf controls the Gmetad daemon and resides on
the monitoring node.

 RRDtool — RRDTool is an open-source data logging and graphing system that Ganglia uses

to store the collected data and to render the graphs for Web-based reports. Cron jobs that run
in the background to collect information from the HP Vertica monitoring system tables are
stored in the RRD database.

 PHP-based Web interface — The PHP-based Web interface contains a collection of scripts

that both the Ganglia Web reporting front end and the HP Vertica extensions use. The Web
server starts these scripts, which then collect HP Vertica-specific metrics from the RRD
database and generate the XML graphs. These scripts provide access to HP Vertica health
across the cluster, as well as on each host.

 Web server — The Web server uses lighttpd, a lightweight http server that can be any Web

server that supports PHP, SSL, and XML. The Ganglia web front end displays the data stored
by Gmetad in a graphical web interface using PHP.

 Advanced tools — Gmetric, an executable, is added during Ganglia installation. Gmetric
provides additional statistics and is used to store user-defined metrics, such as numbers or
strings with units.

Ganglia Prerequisites
To use the HP Vertica-Ganglia monitoring package, the following must be installed on the server:

 HP Vertica Analytics Platform (available as a download on myVertica portal
http://my.vertica.com/)

 Required package dependencies for all Linux distributions:

 php5

 php5-gd

 ganglia-gmetad

 ganglia-gmond

 rrdtool

http://my.vertica.com/

-643-

 Monitoring HP Vertica

Other packages might be required for Ganglia to work properly. These dependencies come
preinstalled on most Linux distributions, though some could be missing on older Linux distributions
and use php4 instead of php5. See Required Packages for a Ganglia Installation (page 643).

This guide describes the primary required packages and dependencies, but it cannot account for
all possible missing dependencies on all distributions. In the event the packages cannot be
installed, the install script fails with an error message. See Installing the Vertica Monitoring
Package (page 644) for information on obtaining missing dependencies.

What's in the Package

The HP Vertica Monitoring package contains the following files:

 install-vertica-ganglia — Provided as an assistant to the installer for the prerequisites
packages. This script attempts to install dependencies from your configured package
repositories or from a small set of packages available from vertica.com.

 vertica-ganglia-<version>.<arch>.rpm — The distribution-specific version of the
vertica-ganglia monitoring component.

Important Notes:

Before you download the HP Vertica Monitoring package, make sure the version of the rpm
matches the HP Vertica installation on your server. For example:

 HP Vertica 4.1.x databases require vertica-ganglia-4.1.x (ganglia only package)

 HP Vertica 4.0.x databases require vertica-ganglia-4.0.x (ganglia only package)

 HP Vertica 3.5.x databases require vertica-ganglia-3.5.x (ganglia only package)

 HP Vertica 3.0.x databases require vertica-web-3.0.x (ganglia-webmin package)

Note: See Upgrading the Vertica Monitoring Package (page 656) for required upgrade

paths, particularly if you are upgrading from the ganglia-webmin package to a ganglia-only
package.

Before you install the HP Vertica Monitoring Package, you must install php5, if it is not installed
already. See the Required Packages (page 643).

RHEL5 users: A Red Hat subscription is required to access and download dependencies from the

Red Hat site. See the Red Hat Web site http://www.redhat.com/licenses/rhel_us_3.html for
details.

Required Packages for a Ganglia Installation

A number of dependencies must be installed before you can install the vertica-ganglia
package, either from your distribution's package repository or manually.

http://www.redhat.com/licenses/rhel_us_3.html

-644-

Administrator's Guide

IMPORTANT!

If the server does not have an Internet connection at the time you install the
vertica-ganglia package, you must obtain the required dependencies

manually, using the package manager for your distribution (yum on Red Hat, for
example, or yast on SUSE) before you proceed. Read Servers without Internet
Access (page 647) before you begin the install process.

HP does not provide installation instructions for the individual packages. See
their respective Web sites for details. Some links have been provided for your
convenience and have been validated at the time of publication. Note that these
links could change over time.

RHEL5 users: A Red Hat subscription is required to access and download
dependencies from the Red Hat site. See the Red Hat Web site
http://www.redhat.com/licenses/rhel_us_3.html for details.

The following top-level package dependencies are required for all Linux distributions and should
be installed in the order listed. Additional package dependencies could be required, depending on
how the top-level package was built.

 php5

 php5-gd

 ganglia-gmetad

 ganglia-gmond

 rrdtool

Due to variations in the exact version available for each Linux distribution, specific version
numbers are not listed for each package. HP recommends that you install the latest version for

your distribution. The provided install-vertica-ganglia script attempts to install the
dependencies automatically, if possible. However due to your specific repository configuration,
you might need to install additional packages manually. This guide makes some attempt to help
you resolve those missing dependencies but cannot account for every possible scenario on all
distributions.

In general, the basic flow for resolving dependencies is to install php5, run the

install-vertica-ganglia script (except on SuSE), install missing dependencies that the
script could not resolve, and run the install-vertica-ganglia script again.

For distribution-specific instructions, see the following topics:

 RHEL5 (page 645)

 SUSE SLE 10 and 11 (page 646)

Installing the HP Vertica Monitoring Package

On all Linux distributions, the following is the basic installation path:

http://www.redhat.com/licenses/rhel_us_3.html

-645-

 Monitoring HP Vertica

1 Obtain the required packages/dependencies.

2 Install the HP Vertica Monitoring Package.

3 Install gmetad and gmond on the monitoring node.

4 Install gmond on all nodes in the HP Vertica cluster.

IMPORTANT!

To download the HP Vertica Monitoring Package and readily access the
required packages/dependencies, the distribution-specific instructions that
follow assume a server with Internet access. If the server does not have an
Internet connection, see Servers without Internet Access (page 647) and then
refer to the instructions for your particular distribution.

Plan to install the HP Vertica Monitoring package on the same node on which
HP Vertica runs (the monitoring node).

RHEL5

Plan to install the HP Vertica Monitoring package on the same node on which HP Vertica runs (the
monitoring node).

Installing the HP Vertica Monitoring package:

1 IMPORTANT: Before you proceed, read Ganglia Prerequisites (page 642) and Required

Packages for a Ganglia Installation (page 643).

2 Log in as root or sudo on the target server:

su - root

3 Open a Web browser and log in to myVertica portal http://my.vertica.com/.

4 Click the Download tab and save the HP Vertica Monitoring package

(vertica-ganglia-<version>.<arch>.tar.gz) to a location on the server; for example

to /tmp.

Note: Scroll to the bottom of the Downloads page to the section, "Other Software for Use with

HP Vertica Analytic Database 6.1.x"

5 Change directory to the location of the rpm:

cd /tmp

6 Extract the HP Vertica Monitoring package:

tar xzvf vertica-ganglia-<version>.<arch>.tar.gz

In the above command, substitute the version and architecture variables with file information
from the download; for example:

tar xzvf vertica-ganglia-6.1.x.xx.x86_64.RHEL5.tar.gz

7 Run the install-vertica-ganglia script to aid the installer in finding and installing any

missing dependencies.

http://my.vertica.com/

-646-

Administrator's Guide

./install-vertica-ganglia vertica-ganglia-<version>.<arch>.rpm

The above command:

 Installs the Ganglia Web front end.

 Installs gmetad and gmond on the monitoring node.

 Creates a /tmp/vertica-web-download directory on the monitoring node, which

contains files you need to perform additional installation and configuration operations,
including:

– ganglia-gmetad.rpm, installer package for the data consolidator

– ganglia-gmond.rpm, installer package for the data collector

8 Verify that the packages are installed:

rpm -qa | grep ganglia

Output should be:

ganglia-gmond

ganglia-gmetad

vertica-ganglia

9 If Step 6 found missing dependencies that the script could not resolve, install those packages
manually. Refer to Required Packages (page 643), and then run the script again:

./install-vertica-ganglia vertica-ganglia-<version>.<arch>.rpm

The following is an example of a failed dependency:

error: Failed dependencies:

 ganglia-gmetad is needed by vertica-ganglia-1.1.0-1.noarch

 ganglia-gmond is needed by vertica-ganglia-1.1.0-1.noarch

 php is needed by vertica-ganglia-1.1.0-1.noarch

 php-gd is needed by vertica-ganglia-1.1.0-1.noarch

10 Proceed to Configuring Ganglia (page 648).

SuSE SLE 10 and SLE 11

Several packages are not readily available for SuSE SLE 10 and 11 distributions. You can obtain
them from your distribution's media or from publicly-available repositories. See the searchable list
on the openSUSE Build Service http://software.opensuse.org/search Web page.

Plan to install the HP Vertica Monitoring package on the same node on which HP Vertica runs (the
monitoring node).

Installing the HP Vertica Monitoring package:

1 IMPORTANT: Before you proceed, read Ganglia Prerequisites (page 642) and Required

Packages for a Ganglia Installation (page 643).

2 Log in as root or sudo on the target server:

su - root

3 Open a Web browser and log in to myVertica portal http://my.vertica.com/.

4 Click the Download tab and save the HP Vertica Monitoring package

(vertica-ganglia_<version>.<arch>.tar.gz) to a location on the server; for example

to /tmp.

http://software.opensuse.org/search
http://my.vertica.com/

-647-

 Monitoring HP Vertica

Note: Scroll to the bottom of the Downloads page to the section, "Other Software for Use with

HP Vertica Analytic Database 4.0"

5 Change directory to the location of the rpm:

6 # cd /tmp

7 Install the required dependencies in the following order:

 libapr1

 rrdtool

 libmm14-1

 php5

 php5-gd

 php5-fastcgi

 libconfuse0

 libganglia

 ganglia-gmond

 ganglia-gmetad

8 Extract the HP Vertica Monitoring package:

tar xzvf vertica-ganglia-<version>.<arch>.tar.gz

In the above command, substitute the version and architecture variables with file information
from the download; for example:

tar xzvf vertica-ganglia-4.0.12.x86_64.RHEL5.tar.gz

9 Install the HP Vertica Monitoring package.

rpm -Uvh vertica-ganglia-<version>.<arch>.tar.gz

10 Proceed to Configuring Ganglia (page 648).

Servers without Internet Access

IMPORTANT!

This procedure is for servers that do not have an Internet connection; thus the
required packages must be obtained manually, as described in this topic.

HP does not provide installation instructions for the individual packages. See
their respective Web sites for details. Links are provided below for your
convenience, though they could change between HP Vertica releases.

RHEL5 users: A Red Hat subscription is required to access and download
dependencies from the Red Hat site. See the Red Hat Web site
http://www.redhat.com/licenses/rhel_us_3.html for details.

Plan to install the HP Vertica Monitoring package on the same node on which HP Vertica runs (the
monitoring node).

http://www.redhat.com/licenses/rhel_us_3.html

-648-

Administrator's Guide

Installing the HP Vertica Monitoring package on a server without Internet access:

1 IMPORTANT: Before you proceed, read Ganglia Prerequisites (page 642) and Required

Packages for a Ganglia Installation (page 643).

2 On any workstation with Internet access, download the dependencies for your distribution and
transfer them to the target system (the monitoring node).

Note: gmond is required on all nodes, so make note of the directory to which you downloaded

the package; for example, /tmp.

3 Log in as root or sudo on the target server:

su - root

4 Change directory to the location of the rpm:

cd /tmp

5 Using your distributions package management system, install the dependencies in the
required order. For example:

 php5

 php5-gd

 ganglia-gmetad

 ganglia-gmond

 rrdtool

6 Extract the vertica-ganglia package:

tar xzf vertica-ganglia-<version>.<arch>.tar.gz

7 Install the vertica-ganglia package:

rpm –Uvh vertica-ganglia-<version>.<arch>.rpm

8 Verify that the packages are installed:

./install-vertica-ganglia vertica-ganglia-<version>.<arch>.rpm

9 If Step 7 found missing dependencies, you must install those packages now. Refer to
Required Packages (page 643), and then run the script again:

./install-vertica-ganglia vertica-ganglia-<version>.<arch>.rpm

The following is an example of a failed dependency:

error: Failed dependencies:

 ganglia-gmetad is needed by vertica-ganglia-1.1.0-1.noarch

 ganglia-gmond is needed by vertica-ganglia-1.1.0-1.noarch

 php is needed by vertica-ganglia-1.1.0-1.noarch

 php-gd is needed by vertica-ganglia-1.1.0-1.noarch

10 Proceed to Configuring Ganglia (page 648).

Configuring Ganglia

In the previous installation procedure, the final step installed gmetad and gmond on the monitoring
node.

During configuration, you:

1 Install gmond (page 649) on all nodes in the HP Vertica cluster

-649-

 Monitoring HP Vertica

2 Modify the gmetad configuration file (page 649) on the monitoring node

3 Modify the gmond configuration file (page 650) on the monitoring node and on all nodes in
the HP Vertica cluster.

Installing Gmond on All Nodes

IMPORTANT!

gmond must be installed on every node in the cluster.

1 On the monitoring node, change directory to the location of the ganglia-gmond package (or
to the location where you manually did the install):

cd /tmp/vertica-web-downloads

2 Copy the ganglia-gmond package to all nodes in the HP Vertica cluster:

scp ./ganglia-gmond.rpm <hostname>:/tmp/ganglia-gmond.rpm

3 Install gmond on all nodes:

rpm –Uvh ./ganglia-gmond.rpm

The configuration file gmond.conf is created in /etc.

Configuring Gmetad on the Monitoring Node

The role of gmetad is to request summary information from gmond and save it. The saved data is
used by the Web interface to produce the graphs, and the behavior of gmetad is controlled by a
single configuration file, /etc/gmetad.conf.

The following procedure assumes you have already installed the HP Vertica Monitoring
package (page 644).

1 On the monitoring node, use the text editor of your choice to open the gmetad.conf file:

vi /etc/gmetad.conf

Note: The path on SuSE is /etc/ganglia.

2 Scroll or search for the keyword data_source and specify at least one data source name to

include at least the monitoring node.

The data_source keyword specifies the host where tcp_accept_channel is defined and its port.
The format of the data_source line is:

"<data source name>" <host 1> <host 2> .. <host n>. For example:

data_source "HP Vertica_Cluster" 192.168.0.1 192.168.0.2 192.168.0.3

192.168.0.4

 HP recommends that you use IP addresses instead of host names.

 You can list only a few hosts in the data_source setting. Listing numerous hosts does not

mean that gmetad polls all of them for data. If gmetad cannot get data from the first host in
the list you provide, it tries the next one. The order in which you list hosts does not matter.

 If you do not specify a port number, gmetad assumes the default Ganglia port is 8649.

 The data source name is case sensitive.

-650-

Administrator's Guide

3 Add gmetad to the list of services to run:

/sbin/chkconfig --add gmetad

4 Configure the system-run levels on which to start gmetad:

/sbin/chkconfig --level 2345 gmetad on

5 Verify the configuration:

/sbin/chkconfig --list gmetad

GMETAD 0:off 1:off 2:on 3:on 4:on 5:on 6:off

6 Restart gmetad to make the changes effective:

/etc/init.d/gmetad restart

Note: If gmetad is not already running, the shutdown phase shows a FAILED message, which

you can safely ignore.

Configuring Gmond on All Nodes

The role of gmond is to collect, send, and receive data. Once gmond has been installed on each
node in the HP Vertica cluster, edit the configuration file on each node, as described in this
section.

TIPS:

 You can edit gmond.conf on each node, or you can edit the file on the monitoring node and
then copy gmond.conf to /etc on all other nodes in the cluster.

 On SuSE systems, the path is /etc/ganglia/.

 Remember to restart the service each time you edit the configuration file.

About the gmond.conf file

There are three important settings in the gmond.conf file. For details on all available settings,

refer to the gmond.conf Linux man page http://linux.die.net/man/5/gmond.conf, which is
documented below, in part, for your convenience.

 udp_send_channel. You can define as many udp_send_channel sections as you like
within the limitations of memory and file descriptors. If gmond is configured to be mute, then

these sections are ignored. The udp_send_channel has a total of five attributes:
mcast_join, mcast_if, host, port, and ttl.

Note: All nodes require a udp_send_channel section, which notifies gmond where to send

the data it has collected about the local node – even if the data it collects is about itself only.
You can configure this setting to broadcast the information or send it to a particular host and
port. If you specify a particular host, you might want all nodes to send data to the same
location. You can also have each node send the same information to more than one location
for redundancy.

http://linux.die.net/man/5/gmond.conf

-651-

 Monitoring HP Vertica

 udp_recv_channel. You can specify as many udp_recv_channel sections as you like
within the limits of memory and file descriptors, but at least one node must have a

udp_recv_channel section. The udp_recv_channel section has the following attributes:
mcast_join, bind, port, mcast_if, and family.

Data received by this section forms a snapshot of the state of all nodes. You can configure this
setting to receive the data via broadcast or to receive it on a particular IP interface and port.
More than one node could be receiving the same data.

If Ganglia is in use on multiple clusters in your network, you might need to filter which hosts are

being reported on by configuring the udp_recv_channel block in the gmond.conf file to
use an access control list. For example:

udp_recv_channel {

 mcast_join = 239.2.11.71

 bind = 239.2.11.71

 port = 8649

 acl {

 default = "deny"

 access {

 ip = 192.168.0.4

 mask = 32

 action = "allow"

 }

 }

}

 tcp_accept_channel. You can specify as many tcp_accept_channel sections as you
like within the limitations of memory and file descriptors. If gmond is configured to be mute,

then these sections are ignored. The tcp_accept_channel has the following attributes:
bind, port, interface, family, and timeout.

In order to get the most use out of Ganglia, at least one node that has udp_recv_channel

defined must have a tcp_accept_channel setting, as well. This setting describes a
particular IP interface and port where a query can be sent. gmond returns an XML string of the
summary information it has collected.

Edit the gmond.conf file

Perform the following steps on each node where gmond is installed, starting with the monitoring
node.

1 On the monitoring node, use the text editor of your choice to open the gmond.conf file:

vi /etc/gmond.conf

2 Change the name of the cluster to the (case-sensitive) name you specified in gmetad.conf.

cluster {

name = "HP Vertica_Cluster"

owner = "unspecified"

latlong = "unspecified"

url = "unspecified"

}

-652-

Administrator's Guide

3 Add gmond to the list of services to run:

/sbin/chkconfig --add gmond

4 Configure the system-run levels on which to start gmond:

/sbin/chkconfig --level 2345 gmond on

5 Verify the configuration:

/sbin/chkconfig --list gmond

GMOND 0:off 1:off 2:on 3:on 4:on 5:on 6:off

6 Restart gmond to make the changes effective:

/etc/init.d/gmond restart

Note: If gmond is not already running, the shutdown phase shows a FAILED message, which

you can safely ignore.

7 Run the following command to return an XML description of the state of the nodes in your
cluster:

telnet localhost 8649

You can also use localhost 8651.

8 Edit gmond.conf on each node, or you can edit the file on the monitoring node and then copy

gmond.conf to /etc on all other nodes in the cluster.

Tip: Restart the service each time you edit the configuration file.

Multicast IP Support

The server and network must be multicast-enabled to run Ganglia. To check, run
/sbin/ifconfig on the server. If the network interface is flagged with MULTICAST, it is
enabled.

If your machines are all on the same switch

If your machines are all on the same switch, proceed to Edit the gmond.conf file (page 651).

Note: HP recommends that all machines be on the same switch.

If the machines in the cluster are separated by a router

If the machines in the cluster are separated by a router, you must set the multicast Time-To-Live
(TTL) option in /etc/gmond.conf higher than the default of 1.

1 Edit the mcast ttl setting to be one greater than the number of hops (routers) between the
hosts.

2 Make sure that the routers are configured to pass along the multicast traffic. See the Ganglia
documentation http://sourceforge.net/apps/trac/ganglia/wiki for details.

http://sourceforge.net/apps/trac/ganglia/wiki

-653-

 Monitoring HP Vertica

Configuring the Vertica Monitoring Package

This section describes how to configure the HP Vertica-specific extension files that are required
for the Web-reporting front end.

Configuring and Starting lighttpd

The HP Vertica Monitoring package includes lighttpd, a lightweight http server. The package also
installs the startup script verttpd to /etc/init.d.

1 On the node where gmetad is installed (the monitoring node), copy the lighttpd.conf file

into the HP Vertica user directory for each user responsible for running the service, for
example dbadmin:

cp /opt/vertica/www/conf/lighttpd.conf /opt/vertica/config/users/dbadmin

2 Start the service:

/etc/init.d/verttpd start

By default, the server starts on port 9090, but you can modify this setting in the lighttpd
configuration file.

3 Access the URL to verify if the lighttpd is installed

http://xx.xx.xx.xx:9090/

where x is IP address (or host name) of the machine. Alternatively, specify the machine IP
address on which lighttpd is installed.

If you encounter issues with lighttpd installation, see the Lighttpd documentation
http://redmine.lighttpd.net/projects/lighttpd/wiki.

When the browser finishes loading, it displays the HP Vertica Console page with a link to
Monitoring Tools (Ganglia).

Notes

 The directory /opt/vertica/www is not created by the HP Vertica rpm; it is created by the
Ganglia rpm installation.

 Uninstalling Ganglia does not remove /opt/vertica/www, but it does remove some of the
contents of /opt/vertica/www.

Configuring Vertica Extension Files

Before you can monitor HP Vertica, you need to configure the HP Vertica extension files
vertica-dashboard.xml and verticadefines.php. These file reside in the
/opt/vertica/www/htdocs/ganglia/verticaDashboard folder.

Note: The default settings in verticadefines.php are adequate in most environments.

Configuration is now complete, and you can monitor the health of your HP Vertica cluster by
Clicking HP Vertica Monitoring from the Console page.

http://redmine.lighttpd.net/projects/lighttpd/wiki

-654-

Administrator's Guide

Edit the vertica-dashboard.xml file

The following procedure assumes you are still in the
/opt/vertica/www/htdocs/ganglia/verticaDashboard folder.

1 Using the text editor of your choice, open vertica-dashboard.xml:

vi vertica-dashboard.xml

2 Configure the following variables:

 database. Insert an XML tag that specifies the name of the database to be monitored,

along with the password, if required. These variables are case sensitive. For example:

<databases>

 <database name="YourDBName" password=""></database>

</databases>

 hostdetails. Specify complete details about the host that maps the host name used by
both HP Vertica and Ganglia:

– Name, exactly as known by HP Vertica

– Local IP address

– Public IP address

– Fully-qualified domain name (this is the name of the host as understood by HP Vertica)

Ensure that the information is correct or HP Vertica PHP scripts fails to locate the RRD
databases and cannot display statistics. The following is an example.

<clusterdetails>

 <hostdetails name="host01" localip="10.0.0.1"

publicip="xx.xx.xx.xx"

 fqdn="host01.vertica.com"></hostdetails>

</clusterdetails>

You need a <hostdetails/> block for each host in the cluster. If the hosts are on a

private network, the hostdetails can be the privateip. List private network details

under localip and public network details under publicip.

 gmetric. This executable is added during Ganglia installation and is used to store the data

of the user-defined metrics:

<gmetric path="/usr/bin/gmetric"></gmetric>

 cron-hostname. Use the same name that Ganglia uses to refer to this node; for example:

<cron-hostname name="host01.vertica.com"></cron-hostname>

HP Vertica cron jobs run on the machine where the Web front end runs.

cron-hostname collects information about HP Vertica from system tables in HP Vertica.

To identify the name ganglia refers to on the node, check the

/var/lib/ganglia/rrds/<cluster_name> folders for a list of node names. Use the
monitoring node name in the cron-hostname setting.

 debug. Set the debug enable to 1 if you want to enable the logging for cron jobs and for
PHP scripts, specify the directory where the logs are collected, and provide the path where
the lighttpd user has the sufficient privileges; for example:

<debug enable="1" path="/tmp/vertica-ganglia/"></debug>

-655-

 Monitoring HP Vertica

 fqdn: Use the ganglia name identified as above with (or without) domain name

qualification.

3 Log in as dbadmin (not root or the system returns errors), and verify that gmond is running on
all the hosts where HP Vertica is installed and that information about all hosts is present in
order to view the complete statistics about all the hosts:

$ /opt/vertica/bin/admintools –t list_db –d database_name

Note: An optional --no-log option, which must appear before -t, allows the Administration
Tools to run silently (i.e., without logging anything). This setting is useful if, for example, you
are running Ganglia dashboard scripts that run the Administration Tools scripts frequently,

which could cause the size of the adminTools-dbadmin.log file to rapidly increase. If you

add the --no-log switch to vertica-dashboard.xml, logging is disabled.

4 Save and exit vertica-dashboard.xml.

Edit the verticadefines.php file [Optional]

This procedure is optional and included in the event you decide to edit the
verticadefines.php file. In most environments, the default settings are adequate.

1 Using the text editor of your choice, open verticadefines.php:

vi verticadefines.php

2 Configure the following variables.

 vertica_path. Location of the HP Vertica installation with a default value of

/opt/vertica/.

 admintools_path. Location of the admintools installation with a default value of
/opt/vertica/bin/admintools.

 gangliadefault_url. URL where the default Ganglia PHP scripts run; for example,

/ganglia. The gangliadefault_url setting needs to be changed only if the defaults
are not used.

 refresh_time. Time in seconds after which the Web page refreshes and displays HP
Vertica statistics. The default is 300 seconds (5 minutes).

3 Save and exit verticadefines.php.

Add a cron job

In this procedure, create a cron job, which collects data from HP Vertica by running queries
against system tables and returning system statistics in a graphical format.

1 Log in as the DBA user (not as root):

su dbadmin

2 Using the text editor of your choice, insert the following line into the crontab for the DBA user:

crontab –e

3 Add the following line.

-656-

Administrator's Guide

IMPORTANT! Despite how the following code fragment appears in the HTML or PDF output of

this document, it is one long line that must not contain returns. If you copy the code from this
document, paste it first into the text editor of your choice and remove all carriage returns before
you add the line to your cron job. Also manually delete and retype the dash between
vertica-dashboard to prevent the dash from becoming UTF-8 encoded.

*/1 * * * * php /opt/vertica/www/htdocs/ganglia/verticaDashboard/

cronjobs/vertica-dashboard.php -i /opt/vertica/www/htdocs/ganglia/

verticaDashboard/ -c /opt/vertica/www/htdocs/ganglia/

verticaDashboard/vertica-dashboard.xml >

/tmp/vertica-ganglia/cronlogs.log 2>&1

The cron job is now configured to collect data from HP Vertica in one-minute increments. The -i

switch represents the location of verticaDashboard, and the -c switch represents the location of
the configuration file.

You are now ready to use Ganglia to monitor your HP Vertica cluster.

Upgrading the Vertica Monitoring Package

The upgrade path is the same as the install path. See Installing the Vertica Monitoring Package
(page 644) for details.

When you download the current version of Ganglia from HP Vertica (currently
vertica-ganglia-4.1.2.x86_64.<distro>.tar.gz) and upgrade to the latest Ganglia rpm, the metric

ros_count is not updated. In previous versions this metric, which reflects the number of ROS
containers, was named ros_row_count.

The file /opt/vertica/www/htdocs/ganglia/verticaDashboard/config/<dbname>_metrics .xml
(_metrics.xml template) contains the list of metrics that Ganglia uses. Metrics are created only if
they did not previously exist. If you are upgrading your version of Ganglia, the metric for
ros_count is not updated.

To work around this issue, manually modify the metric:

1 Use any text editor to open

/opt/vertica/www/htdocs/ganglia/verticaDashboard/config/<dbname>_met

rics .xml

2 Replace the ros_row_count metric line with the following:

<metric name="ros_count" display="on" type="vertica" total="1000"

threshold="70"></metric>

3 Save the file and exit.

Uninstalling HP Vertica-Ganglia
Depending on which version of the Ganglia package you installed, choose one of the following
paths:

-657-

 Monitoring HP Vertica

If you installed the Webmin-Ganglia combined rpm (vertica-web) provided in HP Vertica
3.0:

rpm --erase vertica-web-<version>.<arch>.rpm

In the above command, replace <version> with the version of the rpm (for example,

3.0.0-20090511050007) and <arch> with your system architecture (for example,
x86_64.RHEL5).

If you installed Vertica-Ganglia rpm (vertica-ganglia) provided in HP Vertica 3.0.7 or later:

rpm --erase vertica-ganglia-<version>.<arch>.rpm

In the above command, replace <version>.<arch> with the version of the rpm and your
system architecture; for example, vertica-ganglia-4.0.12.x86_64.RHEL5.tar.gz.

-658-

 658

Analyzing Workloads

If your SQL queries are performing suboptimally, you can get tuning recommendations and hints
about optimizing specific database objects by using the HP Vertica Workload Analyzer (WLA).

While the database is up, Workload Analyzer runs in the background where it evaluates
information from a combination of database statistics, system and data collector events, SQL
system tables, and database/table/projection design. WLA continually monitors query
performance, workload history, system resources and configurations to help you identify the root
causes of poor query performance. WLA-provided hints let you tune queries without needing
sophisticated skills.

HP Vertica provides two options to run the Workload Analyzer:

 Calling the ANALYZE_WORKLOAD() (page 658) function

 Running Analyze through the Management Console interface (page 661)

Getting Tuning Recommendations Through an API

To get tuning recommendations for queries and database objects, you can call the
ANALYZE_WORKLOAD() function. You can optionally pass the function arguments that instruct
WLA what to analyze when.

Telling WLA what to analyze

The 'scope' argument tells WLA what objects you want to analyze:

 An empty string ('') returns recommendations for all database objects

 'table_name' returns recommendations for the specified table

 'schema_name' returns recommendations on all database objects in the specified schema

Telling WLA when to analyze

The 'since_time' argument tells WLA to limit its recommendations from all events that

specified in 'scope' since the time you specify in this argument, up to the current system status.
For example, the following statement analyzes workloads on all database objects two days before
today (now):

=> SELECT ANALYZE_WORKLOAD('', NOW() - '2 DAYS'::INTERVAL);

If you omit the since_time parameter, ANALYZE_WORKLOAD returns recommendations on

events since the last recorded time that you called ANALYZE_WORKLOAD().

You must explicitly cast strings that you use for the since_time parameter to TIMESTAMP or
TIMESTAMPTZ. The following statements show four different ways of expressing the same query

using different formats for the since_time parameter. All four queries return the same result for
workloads on table t1 since October 4, 2012.

-659-

 Analyzing Workloads

=> SELECT ANALYZE_WORKLOAD('t1', TIMESTAMP '2012-10-04 11:18:15');

=> SELECT ANALYZE_WORKLOAD('t1', '2012-10-04 11:18:15'::TIMESTAMPTZ);

=> SELECT ANALYZE_WORKLOAD('t1', 'October 4, 2012'::TIMESTAMP);

=> SELECT ANALYZE_WORKLOAD('t1', '10-04-12'::TIMESTAMPTZ);

Telling WLA to record the events

Instead of supplying a specific timestamp, you can instruct WLA to record this particular call of

WORKLOAD_ANALYZER() in the system by supplying an optional 'true' parameter along with
the scope. The default value is false (do not record). If recorded, subsequent calls to
ANALYZE_WORKLOAD analyze only the events that have occurred since this recorded time,
ignoring all prior events.

For example, the following statement runs WLA and returns recommendations for all database
objects in all schemas and records this analysis invocation.

=> SELECT ANALYZE_WORKLOAD('', true);

The next invocation of ANALYZE_WORKLOAD() will analyze events from this point forward.

About observation_count and observation_time output

The observation_count column returns an integer that represents the total number of events
WLA observed for this tuning recommendation, so in each case above, WLA is making its first

recommendation, denoted by the integer 1. Null results in the observation_time columns
mean only that the recommendations are from the current system status instead of from a prior
event.

-660-

Administrator's Guide

Knowing what to tune

The tuning_parameter column returns the object on which WLA recommends that you apply

the tuning action. The parameter of release in RECORD 3 of the above example notifies the
DBA to set a password for user release.

The tuning description (recommended action) and command

Workload Analyzer's output returns a brief description of tasks you should consider in the
tuning_description column, along with a SQL command you can run, where appropriate, in

the tuning_command column. In the above fragment for RECORDS 1 and 2, WLA recommends
that you run the Database Designer on two tables and consider setting a user's password in record

3. Note that RECORD 3 also provides the ALTER USER command to run because the tuning action
is a SQL command.

What cost means

The output in the tuning_cost column is based on the type of tuning recommendation WLA has

made. It can be low, medium or high:

 A LOW cost means that running WLA's tuning recommendation has little impact on system
resources. You can perform the tuning operation at any time, like changing a user's password.

 A MEDIUM cost has moderate impact on resources from running the tuning command.

 A HIGH cost means that running the tuning command has the potential for maximum impact
on resources. Depending on the size of your database or table, consider running high-cost
operations after hours instead of during peak load times.

Examples

The following statement tells WLA to analyze all events for a table named locations:

=> SELECT ANALYZE_WORKLOAD('locations');

WLA's recommendation is that you run the Database Designer on the locations table, an
operation that—depending on the table's size—potentially has a high cost.

-[RECORD 1]----------+--

observation_count | 1

first_observation_time |

last_observation_time |

tuning_parameter | public.locations

tuning_description | run database designer on table public.locations

tuning_command |

tuning_cost | HIGH

The following statement analyzes workloads on all tables in the Vmart example database since
one week before today:

=> SELECT ANALYZE_WORKLOAD('', NOW() - INTERVAL '1 week');

Workload Analyzer returns information about two issues through the tuning_description

column: stale statistics (page 675) in RECORD 1 and and an underperforming query in
RECORD 14:

-[RECORD 1]----------+---

-661-

 Analyzing Workloads

observation_count | 4

first_observation_time | 2012-02-17 13:57:17.799003-04

last_observation_time | 2011-04-22 12:05:26.856456-04

tuning_parameter | store.store_orders_fact.date_ordered

tuning_description | analyze statistics on table column store.store_orders_fact.date_ordered

tuning_command | select analyze_statistics('store.store_orders_fact.date_ordered');

tuning_cost | MEDIUM

-[RECORD 2]---------+--

...

-[RECORD 14]---------+--

observation_count | 2

first_observation_time | 2012-02-19 17:52:03.022644-04

last_observation_time | 2012-02-19 17:52:03.02301-04

tuning_parameter | SELECT x FROM t WHERE x > (SELECT SUM(DISTINCT x) FROM

 | t GROUP BY y) OR x < 9;

tuning_description | consider query-specific design on query

tuning_command |

tuning_cost | HIGH

The function's output also provides the action (tuning_command) you can take on the identified
objects. For example, you can bring statistics up to date running ANALYZE_STATISTICS() on the
store.store_orders_fact.date_ordered column:

=> SELECT ANALYZE_STATISTICS('store.store_orders_fact.date_ordered');

Getting recommendations from system tables

You can also view tuning recommendations by querying the system table
V_MONITOR.TUNING_RECOMMENDATIONS, which returns tuning recommendation results
from the last ANALYZE_WORKLOAD() call.

=> SELECT * FROM tuning_recommendations;

System information that WLA uses for its recommendations is held in SQL system tables, so
querying the TUNING_RECOMMENDATIONS system table does not run the Workload Analyzer.

What types of issues trigger a WLA recommendation?

For information about what operations trigger WLA to make a tuning recommendation, see
Understanding WLA Triggering Conditions (page 662).

See also

Collecting Statistics (page 666)

Getting Tuning Recommendations Through MC

On Management Console (MC), the Workload Analyzer automatically begins monitoring data one
minute after the MC process starts. WLA then runs once per day, or immediately after you add a
database to the MC interface, where it continually gathers data in the background, as long as the
database is running. If you haven't created a database yet, or if the database is down, WLA does
nothing until the database is back up.

Tip: You can force the WLA task to run immediately by clicking Analyze over the Cost column.

-662-

Administrator's Guide

You'll find Workload Analyzer on the MC Overview page, which is the 3x2 grid that provides a

snapshot of the database, cluster, performance, database messages, and jobs. WLA's tuning
recommendations are in the Performance subsection on this page, along with the cost of running
the operation.

The following image shows a short list of WLA tuning recommendations. In the output, WLA
suggests that you run the ANALYZE_STATISTICS() function on specific columns in four different
tables and provides the cost estimate of running these operations. WLA also advises that you run
the Database Designer on one of the tables, which has a HIGH cost. When you see a high cost,
you might want to run the recommended tuning action after hours. For additional information about
tuning recommendations and cost see ANALYZE_WORKLOAD() in the SQL Reference Manual.

MC displays five recommendations per page, with arrows to click through additional
recommendations and a message that lets you know where you are within the total number of
recommendations.

For additional information about tuning recommendations and their triggering event, see
Understanding WLA Triggering Conditions (page 662).

Understanding WLA Triggering Conditions
Workload Analyzer (WLA) monitors system activity and returns the following information based on
its observations:

 The tuning description

 The objects WLA will tune if you run the command (tuning recommendation)

 The suggested SQL command for you to run, where appropriate

In rare circumstances, tuning recommendation WLA proposes might not resolve the underlying
problem. The following table lists some of the most common triggering conditions, along with the
recommendations to resolve the issue and a pointer to more information, when available.

-663-

 Analyzing Workloads

The triggering condition What to do about the issue Where to get more information

Internal configuration parameter
is not the same across nodes.

Reset configuration parameter.

SELECT set_config_parameter

 ('parameter ','new_value');

See
SET_CONFIG_PARAMETER in

the SQL Reference Manual

An unused projection meets the
following conditions:

 No queries on

projection for more than
30 days but, projection's
anchor table has been

queried more than 10
times

 Projection's anchor
table is not a temp or
system table

 Projection's table is not
small, where the
number of bytes of disk

storage in use by the
projection (used_bytes)
is more than 10M

Drop the projection (projection-name).

DROP PROJECTION

 public.T1_fact_super_P1_B1;

See the following topics in the
SQL Reference Manual:

 DROP PROJECTION

 PROJECTION_STORAG
E

 PROJECTIONS

 TABLES

User with dbadmin (page

185)/pseudosuperuser (page
186) role has empty password.

Set the password for user.

ALTER USER (user) IDENTIFIED BY

 ('new_password');

See ALTER USER in the SQL

Reference Manual

Table with too many partition

count.

Alter the table's partition expression.

ALTER TABLE (schema.table)

 PARTITION BY

 (new_partition_expression)

 REORGANIZE;

See ALTER TABLE in the SQL

Reference Manual

LGE threshold setting is lower
than the default setting.

Workload Analyzer does not trigger a
tuning recommendation for this

scenario unless you altered settings
and/or services under the guidance of
technical support.

Tuple Mover's MoveOutInterval
parameter is set greater than the
default setting.

Decrease the MoveOutInterval
configuration parameter setting.

SELECT set_config_parameter

('MoveOutInterval',default_value);

See the following topics:

 Monitoring Events (page
584)

 Tuple Mover
Parameters (page 38)

 ACTIVE_EVENTS in the
SQL Reference Manual

Tuple Mover has been disabled. Workload Analyzer does not trigger a
tuning recommendation for this

scenario unless you altered settings
and/or services under the guidance of
technical support.

-664-

Administrator's Guide

Too Many ROS containers since

the last mergeout operation;
configuration parameters are set
lower than the default.

Workload Analyzer does not trigger a

tuning recommendation for this
scenario unless you altered settings
and/or services under the guidance of

technical support.

Too Many ROS containers since
the last mergeout operation; the

TM Mergeout service is
disabled.

Workload Analyzer does not trigger a
tuning recommendation for this

scenario unless you altered settings
and/or services under the guidance of
technical support.

Average CPU usage exceeds
95% for 20 minutes.

Check system processes or change
the settings for
PLANNEDCONCURRENCY and/or

MAXCONCURRENCY for the
RESOURCE POOL.

See the following topics:

 Guidelines for Setting
Pool Parameters (page
478)

 ALTER RESOURCE
POOL and Built-in Pool
Configuration in the SQL
Reference Manual

Partitioned table data is not fully
reorganized after repartitioning.

Reorganize data in partitioned table
public.T1.

ALTER TABLE public.T1 REORGANIZE;

See ALTER TABLE in the SQL
Reference Manual

Table has multiple partition keys

within the same ROS container.

Reorganize data in partitioned table

public.T1.

ALTER TABLE public.T1 REORGANIZE;

See ALTER TABLE in the SQL

Reference Manual

Excessive swap activity;
average memory usage

exceeds 99% for 10 minutes.

Check system processes

A table does not have any
Database Designer-designed

projections.

Run database designer on table
public.T1.

See Creating a Query-specific
Design Using the Database

Designer (page 84)

Statistics are stale (no
histogram or predicate falls

outside histogram).

Run ANALYZE_STATISTICS() on
table column public.<table>.<column>

SELECT analyze_statistics

 ('public.t.a');

See the following topics:

 ANALYZE_STATISTICS(

) in the SQL Reference
Manual

 Collecting Statistics
(page 666) in this guide

Data distribution in segmented

projection is skewed.

Re-segment projection public.t_super

on high-cardinality column(s).

See Designing for

Segmentation (page 91).

GROUP BY spill event. Consider running a query-specific
design on query.

See Creating a Query-specific
Design Using the Database

Designer (page 84)

See Also

ANALYZE_WORKLOAD() in the SQL Reference Manual

-665-

 Analyzing Workloads

-666-

 666

Collecting Database Statistics

The HP Vertica cost-based query optimizer relies on representative statistics on the data, which it
uses to determine the final plan to execute a query.

Various optimizer decisions rely on having up-to-date statistics, where it chooses between:

 Multiple eligible projections to answer the query

 The best order in which to perform joins

 Plans involving different algorithms, such as hash join/merge join or group by hash/group by
pipelined operations

 Data distribution algorithms, such as broadcast and re-segmentation

Without reasonably accurate statistics, the optimizer could choose a suboptimal projection or a
suboptimal join order for a query.

To understand how HP Vertica collects statistics, consider the following common scenario:

Scenario: You have a large table into which you load timestamp data on an ongoing basis (hourly,

daily, etc.). Then you run queries that select the recently-loaded rows from that table.

How the optimizer decides on a plan: You load days 1 through 15 into the table and run the

ANALYZE_STATISTICS() function. When you next run a query that requests yesterday's data by
filtering on the timestamp column, the optimizer chooses an optimized plan. If on the next day, you
load day 16 data and run the same query—but you do not run ANALYZE_STATISTICS()
again—the optimizer might conclude that the predicate results in only one row being returned
because the date range falls outside the histogram range and the data becomes stale. When the
optimizer detects that statistics are not current for a particular predicate (such as when a
timestamp predicate is outside a histogram's boundary), HP Vertica plans those queries using
other considerations, such as FK-PK constraints, when available.

Resolution: Run ANALYZE_STATISTICS() after you load new data,or day 16 in this example.

You can also look for statistics in the EXPLAIN plan; for example, when statistics are off outside a
histogram's boundaries, the EXPLAIN plan is annotated with a status. See Reacting to stale
statistics (page 675) for details.

See the SQL Reference Manual for additional details about functions and system tables described
in the topics in this section.

For information about how to... See ...

Collect a fixed-size statistical data sampling ANALYZE_HISTOGRAM()

Collect a specified percentage of disk data sampling ANALYZE_STATISTICS()

Run a utility that analyzes information held in system
tables and returns query tuning recommendations

ANALYZE_WORKLOAD()

Generate an XML file that contains statistics for the

database

EXPORT_STATISTICS()

-667-

 Collecting Database Statistics

Import statistics from the XML file generated by the

EXPORT_STATISTICS command

IMPORT_STATISTICS()

Remove statistics for a table and optionally specify the
category of statistics to drop

DROP_STATISTICS()

Monitor information about projection columns, such as
encoding type, sort order, type of statistics, and the time at
which columns statistics were last updated

V_CATALOG.PROJECTION_COL
UMNS

Statistics Used by the Query Optimizer
HP Vertica uses the estimated values of the following statistics in its cost model:

 Number of rows in the table

 Number of distinct values of each column (cardinality)

 Minimum/maximum values of each column

 An equi-height histogram of the distribution of values each column

 Space occupied by the column on disk

Note: The HP Vertica query optimizer and the Database Designer both use the same set of

statistics. When there are ties, the optimizer chooses the projection that was created first.

How Statistics are Collected
Statistics collection is a cluster-wide operation that accesses data using a historical query (at
epoch latest) without any locks. Once computed, statistics are stored in the catalog and replicated
on all nodes. The storage operation requires a brief, exclusive lock on the catalog, similar to when
a DDL operation occurs. In fact, these operations require a COMMIT for the current transaction.

HP Vertica provides three ways to manually collect statistics:

 ANALYZE ROW COUNT operation

 ANALYZE_STATISTICS() function

 ANALYZE_HISTOGRAM() function

Using the ANALYZE ROW COUNT operation

ANALYZE ROW COUNT is a lightweight operation that automatically collects the number of rows in
a projection every 60 seconds to collect a minimal set of statistics and aggregate row counts

calculated during loads. You can use the AnalyzeRowCountInterval configuration parameter
to change the default collection interval (60 seconds). See Configuration Parameters (page 36)
for additional information.

-668-

Administrator's Guide

To change the 60-second interval to 1 hour (3600 seconds), use the following command:

=> SELECT SET_CONFIG_PARAMETER('AnalyzeRowCountInterval', 3600);

To reset the interval to the default of 1 minute (60 seconds):

=> SELECT SET_CONFIG_PARAMETER('AnalyzeRowCountInterval', 60);

You can also invoke this function manually using the DO_TM_TASK ('analyze_row_count')
function.

Using ANALYZE_STATISTICS

The ANALYZE_STATISTICS function computes full statistics on all objects or on a per-table or
per-column basis. You must invoke this function explicitly.

The ANALYZE_STATISTICS() function:

 Lets you analyze tables on a per-column basis for improved performance.

 Performs faster data sampling, which expedites the analysis of relatively small tables with a
large number of columns.

 Includes data from WOS.

 Recognizes deleted data, instead of ignoring delete markers.

 Lets you cancel the function mid analysis by issuing CTRL-C on vsql or invoking the
INTERRUPT_STATEMENT() function.

 Records the last time statistics were run for a table so that subsequent calls to the function can
be optimized. See V_CATALOG.PROJECTION_COLUMNS for details.

Using ANALYZE_HISTOGRAM

ANALYZE_STATISTICS() is an alias for ANALYZE_HISTOGRAM(). The difference between the
two functions is that ANALYZE_HISTOGRAM lets you specify what percentage of data to read
from disk, so you have more control over deciding between sample accuracy and speed.

The ANALYZE_HISTOGRAM percent parameter specifies the amount of column data (from 1 -
100%) that the function reads from disk. The default value is 10%, but you can use this parameter

to specify a smaller or larger percentage. Changing the percent value affects both the data
collection time and the histogram accuracy:

 A smaller percent value reads less data off disk. Data collection is faster than with a larger
value, but histogram accuracy decreases, since the function samples less data.

 A larger percent value reads more data off disk. Data collection takes longer than for a
smaller value, but the histogram accuracy increases, since the function samples a larger
percentage of collected data.

Regardless of the percent parameter value, ANALYZE_HISTOGRAM uses at most 128K

(128,000) rows of column data. This sample size (128K) consistently creates an accurate
representation of the sample data, even for columns with more than 1,000,000 rows. The function
constructs a histogram for a column by randomly selecting from the collected data. If the percent
value you specify equates to less than 128K rows, the function rounds the number to at least 128K
rows, so enough data to sample is read from disk. If a column has less than 128K rows,
ANALYZE_HISTOGRAM reads all rows from disk and analyzes the entire column.

-669-

 Collecting Database Statistics

NOTE: The sample data collected in a sample range is not indicative of how data should be

distributed.

Following are some examples of different size columns with the ANALYZE_HISTOGRAM percent
parameter set to the different values:

Column Size Percent Read from disk Sampled rows

<128K rows 20 All rows Entire column

400,000 rows 10 128,000 128K rows

4,000,000
rows

10 400,000 128K rows

NOTE: If the column that you specify for the ANALYZE_HISTOGRAM function is first in a

projection's sort order, the function reads all data from disk to avoid a biased sample.

Examples

In this example, the ANALYZE_STATISTICS() function reads 10 percent of the disk data. This is
the static default value for this function. The function returns 0 for success:

=> SELECT ANALYZE_STATISTICS('shipping_dimension.shipping_key');

 ANALYZE_STATISTICS

 0

(1 row)

This example uses ANALYZE_HISTOGRAM () without specifying a percentage value. Since this
function has a default value of 10 percent, it returns the identical data as the
ANALYZE_STATISTICS() function, and returns 0 for success:

=> SELECT ANALYZE_HISTOGRAM('shipping_dimension.shipping_key');

 ANALYZE_HISTOGRAM

 0

(1 row)

This example uses ANALYZE_HISTOGRAM (), specifying its percent parameter as 100,
indicating it will read the entire disk to gather data. After the function performs a full column scan,
it returns 0 for success:

=> SELECT ANALYZE_HISTOGRAM('shipping_dimension.shipping_key', 100);

 ANALYZE_HISTOGRAM

 0

(1 row)

In this command, only 0.1% (1/1000) of the disk is read:

=> SELECT ANALYZE_HISTOGRAM('shipping_dimension.shipping_key', 0.1);

 ANALYZE_HISTOGRAM

 0

(1 row)

-670-

Administrator's Guide

How statistics are computed
HP Vertica does not compute statistics incrementally or update full statistics during load
operations.

For large tables that exceed 250,000 rows, histograms for minimum, maximum, and column value
distribution are calculated on a sampled subset of rows. The default maximum number of samples
for each column is approximately 2^17 (131702) samples, or the number of rows that fit in 1GB of
memory, whichever is smaller. For example, there could be fewer samples used for large
VARCHAR columns.

HP Vertica does not provide a configuration setting to change the number of samples for analysis.
However, you can decide between a faster or more accurate data sampling by specifying what
percentage of data to read from disk, from 1 to 100 (a full table scan).

See ANALYZE_HISTOGRAM() in the SQL Reference Manual and How Statistics are Collected
(page 667) for information about using the ANALYZE_HISTOGRAM function.

How statistics are reported
HP Vertica supplies hints about statistics in a couple ways:

 The EXPLAIN plan is annotated with a status. See Reacting to Stale Statistics (page 675).

 The last time ANALYZE_STATISTICS() was run for a table is recorded, so that subsequent
calls to the function are optimized. This is useful during the database design process because
if the Database Designer does not collect statistics when adding design tables, it generates a
warning indicating that statistics are old. You can then decide whether to run
ANALYZE_STATISTICS before you proceed with the design.

Two columns in the V_CATALOG.PROJECTION_COLUMNS system table capture statistical
information, as follows:

 STATISTICS_TYPE—Returns the type of statistics the column contains (NONE,
ROWCOUNT or FULL).

 STATISTICS_COLLECTION_TIME—Returns the last time statistics were collected in this
table.

Determining when statistics were last updated

The V_CATALOG.PROJECTION_COLUMNS system table returns information about projection
columns, including the type of statistics, and the the time at which column statistics were last
updated.

-671-

 Collecting Database Statistics

The following example illustrates how you can examine the run status for statistics on your tables.

On a single-node cluster, the following sample schema defines a table named trades, which
groups the highly-correlated columns bid and ask and stores the stock column separately:

=> CREATE TABLE trades (stock CHAR(5), bid INT, ask INT);

=> CREATE PROJECTION trades_p (stock ENCODING RLE, GROUPED(bid ENCODING

 DELTAVAL, ask)) AS (SELECT * FROM trades) ORDER BY stock, bid;

=> INSERT INTO trades VALUES('acme', 10, 20);

=> COMMIT;

Query the PROJECTION_COLUMNS table for table trades:

=> \x

Expanded display is on.

=> SELECT * FROM PROJECTION_COLUMNS WHERE table_name = 'trades';

Notice that the statistics_type column returns NONE for all three columns in the trades

table. Also, there is no value in the statistics_updated_timestamp field because statistics
have not yet been run on this table.

-[RECORD 1]----------------+--------------------

projection_id | 45035996273718838

projection_name | trades_p

projection_column_name | stock

column_position | 0

sort_position | 0

column_id | 45035996273718840

data_type | char(5)

encoding_type | RLE

access_rank | 0

group_id | 0

table_schema | public

table_id | 45035996273718836

table_name | trades

table_column_id | 45035996273718836-1

table_column_name | stock

statistics_type | NONE

statistics_updated_timestamp |

-[RECORD 2]----------------+--------------------

projection_id | 45035996273718838

projection_name | trades_p

projection_column_name | bid

column_position | 1

sort_position | 1

column_id | 45035996273718842

data_type | int

encoding_type | DELTAVAL

access_rank | 0

group_id | 45035996273718844

table_schema | public

table_id | 45035996273718836

table_name | trades

-672-

Administrator's Guide

table_column_id | 45035996273718836-2

table_column_name | bid

statistics_type | NONE

statistics_updated_timestamp |

-[RECORD 3]----------------+--------------------

projection_id | 45035996273718838

projection_name | trades_p

projection_column_name | ask

column_position | 2

sort_position |

column_id | 45035996273718846

data_type | int

encoding_type | AUTO

access_rank | 0

group_id | 45035996273718844

table_schema | public

table_id | 45035996273718836

table_name | trades

table_column_id | 45035996273718836-3

table_column_name | ask

statistics_type | NONE

statistics_updated_timestamp |

Now run statistics on the stock column:

=> SELECT ANALYZE_STATISTICS('trades.stock');

The system returns 0 for success:

-[RECORD 1]------+--

ANALYZE_STATISTICS | 0

Now query PROJECTION_COLUMNS again:

=> SELECT * FROM PROJECTION_COLUMNS where table_name = 'trades';

This time, statistics_type changes to FULL for the trades.stock column (representing full

statistics were run), and the statistics_updated_timestamp column returns the time the

stock columns statistics were updated. Note that the timestamp for the bid and ask columns

have not changed because statistics were not run on those columns. Also, the bid and ask
columns changed from NONE to ROWCOUNT. This is because HP Vertica automatically updates
ROWCOUNT statistics from time to time. The statistics are created by looking at existing catalog
metadata.

-[RECORD 1]----------------+------------------------------

projection_id | 45035996273718838

projection_name | trades_p

projection_column_name | stock

column_position | 0

sort_position | 0

column_id | 45035996273718840

data_type | char(5)

encoding_type | RLE

access_rank | 0

group_id | 0

table_schema | public

table_id | 45035996273718836

-673-

 Collecting Database Statistics

table_name | trades

table_column_id | 45035996273718836-1

table_column_name | stock

statistics_type | FULL

statistics_updated_timestamp | 2012-12-08 13:52:04.178294-05

-[RECORD 2]----------------+------------------------------

projection_id | 45035996273718838

projection_name | trades_p

projection_column_name | bid

column_position | 1

sort_position | 1

column_id | 45035996273718842

data_type | int

encoding_type | DELTAVAL

access_rank | 0

group_id | 45035996273718844

table_schema | public

table_id | 45035996273718836

table_name | trades

table_column_id | 45035996273718836-2

table_column_name | bid

statistics_type | ROWCOUNT

statistics_updated_timestamp | 2012-12-08 13:51:20.016465-05

-[RECORD 3]----------------+------------------------------

projection_id | 45035996273718838

projection_name | trades_p

projection_column_name | ask

column_position | 2

sort_position |

column_id | 45035996273718846

data_type | int

encoding_type | AUTO

access_rank | 0

group_id | 45035996273718844

table_schema | public

table_id | 45035996273718836

table_name | trades

table_column_id | 45035996273718836-3

table_column_name | ask

statistics_type | ROWCOUNT

statistics_updated_timestamp | 2012-12-08 13:51:20.016475-05

If you run statistics on the bid column and then query this system table again, only RECORD 2 is
updated:

=> SELECT ANALYZE_STATISTICS('trades.bid');

-[RECORD 1]------+--

ANALYZE_STATISTICS | 0

=> SELECT * FROM PROJECTION_COLUMNS where table_name = 'trades';

-[RECORD 1]----------------+------------------------------

projection_id | 45035996273718838

-674-

Administrator's Guide

projection_name | trades_p

projection_column_name | stock

column_position | 0

sort_position | 0

column_id | 45035996273718840

data_type | char(5)

encoding_type | RLE

access_rank | 0

group_id | 0

table_schema | public

table_id | 45035996273718836

table_name | trades

table_column_id | 45035996273718836-1

table_column_name | stock

statistics_type | FULL

statistics_updated_timestamp | 2012-12-08 13:52:04.178294-05

-[RECORD 2]----------------+------------------------------

projection_id | 45035996273718838

projection_name | trades_p

projection_column_name | bid

column_position | 1

sort_position | 1

column_id | 45035996273718842

data_type | int

encoding_type | DELTAVAL

access_rank | 0

group_id | 45035996273718844

table_schema | public

table_id | 45035996273718836

table_name | trades

table_column_id | 45035996273718836-2

table_column_name | bid

statistics_type | FULL

statistics_updated_timestamp | 2012-12-08 13:53:23.438447-05

-[RECORD 3]----------------+------------------------------

projection_id | 45035996273718838

projection_name | trades_p

projection_column_name | ask

column_position | 2

sort_position |

column_id | 45035996273718846

data_type | int

encoding_type | AUTO

access_rank | 0

group_id | 45035996273718844

table_schema | public

table_id | 45035996273718836

table_name | trades

table_column_id | 45035996273718836-3

table_column_name | ask

statistics_type | ROWCOUNT

statistics_updated_timestamp | 2012-12-08 13:51:20.016475-05

-675-

 Collecting Database Statistics

You can quickly query just the timestamp column to see when the columns were updated:

=> \x

Expanded display is off.

=> SELECT ANALYZE_STATISTICS('trades');

 ANALYZE_STATISTICS

 0

(1 row)

=> SELECT projection_column_name, statistics_type,

 statistics_updated_timestamp

 FROM PROJECTION_COLUMNS where table_name = 'trades';

 projection_column_name | statistics_type | statistics_updated_timestamp

------------------------+-----------------+-------------------------------

 stock | FULL | 2012-12-08 13:54:27.428622-05

 bid | FULL | 2012-12-08 13:54:27.428632-05

 ask | FULL | 2012-12-08 13:54:27.428639-05

(3 rows)

See V_CATALOG.PROJECTION_COLUMNS in the SQL Reference Manual for more
information.

Reacting to stale statistics
During predicate selectivity estimation, the query optimizer can identify when histograms are not
available or are out of date. If the value in the predicate is outside the histogram's maximum range,
the statistics are stale. If no histograms are available, then no statistics are available to the plan.

When the optimizer detects stale or no statistics, such as when it encounters a column predicate
for which it has no histogram, the optimizer takes these actions:

 Generates a message (and log), recommending that you run ANALYZE_STATISTICS().

 Annotates EXPLAIN plans with a statistics entry.

 Ignores the stale statistics when it generates a query. Here, the optimizer executes queries
using other considerations, such as FK-PK constraints, when available.

The following EXPLAIN fragment shows no statistics (histograms unavailable):

| | +-- Outer -> STORAGE ACCESS for fact [Cost: 604, Rows: 10K (NO STATISTICS)]

The following EXPLAIN fragment shows that the predicate falls outside the histogram range:

| | +-- Outer -> STORAGE ACCESS for fact [Cost: 35, Rows: 1 (PREDICATE VALUE

OUT-OF-RANGE)]

You can get information about which table column has no statistics by querying a system table; for
example, view the timestamp for when statistics were last run by querying
V_CATALOG.PROJECTION_COLUMNS.

-676-

Administrator's Guide

Example

First run full statistics on table 'trades':

=> SELECT ANALYZE_STATISTICS('trades');

 ANALYZE_STATISTICS

 0

(1 row)

Next, query the projection_column_name, statistics_type, and statistics_updated_timestamp
columns:

=> SELECT projection_column_name, statistics_type,

 statistics_updated_timestamp

 FROM PROJECTION_COLUMNS where table_name = 'trades';

 projection_column_name | statistics_type | STATISTICS_UPDATED_TIMESTAMP

------------------------+---

 stock | FULL | 2011-03-31 13:39:16.968177-04

 bid | FULL | 2011-03-31 13:39:16.96885-04

 ask | FULL | 2011-03-31 13:39:16.968883-04

(3 rows)

You can also query the V_CATALOG.PROJECTIONS.HAS_STATISTICS column, which returns
true only when all non-epoch columns for a table have full statistics. Otherwise the column
returns false.

See Also

Analyzing Workloads (page 658)

PROJECTIONS and PROJECTION_COLUMNS in the SQL Reference Manual

Canceling statistics collection

To cancel statistics collection mid analysis, execute CTRL-C on vsql or call the
INTERRUPT_STATEMENT() function.

If you want to remove statistics for the specified table or type, call the DROP_STATISTICS()
function.

Caution: After you drop statistics, it can be time consuming to regenerate them.

-677-

 Collecting Database Statistics

Best practices for statistics collection

The query optimizer requires representative statistics in order to choose the best query plan. For
most applications, statistics need not be accurate to the minute. The ANALYZE ROW COUNT
operation automatically collects partial statistics and supplies sufficient data for many optimizer
choices. You can also invoke this operation by calling the DO_TM_TASK () function and passing it
the 'analyze_row_count' argument. For example, the following command analyzes the row count
on the Vmart Schema database:

vmart=> SELECT DO_TM_TASK('analyze_row_count');
 DO_TM_TASK

row count analyze for projection 'call_center_dimension_DBD_27_seg_temp_init_temp_init'

row count analyze for projection 'call_center_dimension_DBD_28_seg_temp_init_temp_init'

row count analyze for projection 'online_page_dimension_DBD_25_seg_temp_init_temp_init'

row count analyze for projection 'online_page_dimension_DBD_26_seg_temp_init_temp_init'

row count analyze for projection 'online_sales_fact_DBD_29_seg_temp_init_temp_init'

row count analyze for projection 'online_sales_fact_DBD_30_seg_temp_init_temp_init'

row count analyze for projection 'customer_dimension_DBD_1_seg_temp_init_temp_init'

row count analyze for projection 'customer_dimension_DBD_2_seg_temp_init_temp_init'

row count analyze for projection 'date_dimension_DBD_7_seg_temp_init_temp_init'

row count analyze for projection 'date_dimension_DBD_8_seg_temp_init_temp_init'

row count analyze for projection 'employee_dimension_DBD_11_seg_temp_init_temp_init'

row count analyze for projection 'employee_dimension_DBD_12_seg_temp_init_temp_init'

row count analyze for projection 'inventory_fact_DBD_17_seg_temp_init_temp_init'

row count analyze for projection 'inventory_fact_DBD_18_seg_temp_init_temp_init'

row count analyze for projection 'product_dimension_DBD_3_seg_temp_init_temp_init'

row count analyze for projection 'product_dimension_DBD_4_seg_temp_init_temp_init'

row count analyze for projection 'promotion_dimension_DBD_5_seg_temp_init_temp_init'

row count analyze for projection 'promotion_dimension_DBD_6_seg_temp_init_temp_init'

row count analyze for projection 'shipping_dimension_DBD_13_seg_temp_init_temp_init'

row count analyze for projection 'shipping_dimension_DBD_14_seg_temp_init_temp_init'

row count analyze for projection 'vendor_dimension_DBD_10_seg_temp_init_temp_init'

row count analyze for projection 'vendor_dimension_DBD_9_seg_temp_init_temp_init'

row count analyze for projection 'warehouse_dimension_DBD_15_seg_temp_init_temp_init'

row count analyze for projection 'warehouse_dimension_DBD_16_seg_temp_init_temp_init'

row count analyze for projection 'store_dimension_DBD_19_seg_temp_init_temp_init'

row count analyze for projection 'store_dimension_DBD_20_seg_temp_init_temp_init'

row count analyze for projection 'store_orders_fact_DBD_23_seg_temp_init_temp_init'

row count analyze for projection 'store_orders_fact_DBD_24_seg_temp_init_temp_init'

row count analyze for projection 'store_sales_fact_DBD_21_seg_temp_init_temp_init'

row count analyze for projection 'store_sales_fact_DBD_22_seg_temp_init_temp_init'

(1 row)

Running full ANALYZE_STATISTICS on a table is an efficient but potentially long-running
operation that analyzes each unique column exactly once across all projections. You an run it
concurrently with queries and loads in a production environment.

When to gather full statistics

Because statistics gathering consumes resources (CPU and memory) from queries and loads, HP
recommends that you run full ANALYZE_STATISTICS() under the following conditions:

 The table is first loaded (see Bulk Loading Data (page 342)).

 A new projection using a newly-loaded table is created and refreshed. Projections that have no
data never have full statistics. Use the PROJECTION_STORAGE system table to see if your
projection contains data.

 The number of rows in the table changes by 50%.

-678-

Administrator's Guide

 The minimum/maximum values in the table's columns change by 50%.

 New primary key values are added to tables with referential integrity constraints. When this
occurs, both the primary key and foreign key tables should be reanalyzed.

 The relative table size, compared to tables it is being joined to, changes materially. For
example, a table becomes only five times larger than the other, when it was previously 50
times larger.

 There is a significant deviation in the distribution of data, which necessitates recalculating
histograms. For example, an event causes abnormally high levels of trading for a particular
stock. This is application specific.

 There is a down-time window when the database is not in active use.

TIP: You can analyze statistics on a single table column, rather than on the entire table.

Running statistics on a single important column (such as the predicate column) is useful for
large tables, which could take a long time to compute. It's also a good idea to run statistics on a
column after you use ALTER TABLE to add or change a column.

Also consider using the ANALYZE_HISTOGRAM() function. Whereas ANALYZE_STATISTICS
uses a fixed value of 10 percent for the proportion of disk reads, ANALYZE_HISTOGRAM lets you
specify what percent of the disk to read. You can also diagnose and resolve many
statistics-related issues by calling the ANALYZE_WORKLOAD() function, which returns tuning
recommendations.

If you update statistics and find that the query still performs poorly, run your query through the
Database Designer and choose query-specific design as the design type. See Creating a
Query-Specific Design Using the Database Designer (page 84).

Save statistics

Once your system is running well, HP recommends that you save exported statistics for all tables.
In the unlikely scenario that statistics changes impact optimizer plans, particularly after an
upgrade, you can always revert back to the exported statistics. See Importing, exporting and
modifying statistics for details.

See Also

Analyzing Workloads (page 658)

Collecting Statistics (page 666) (Determining When Statistics Were Last Updated (page
670) and Reacting to Stale Statistics (page 675))

Optimizing Query Performance in the Programmer's Guide

The following topics in the SQL Reference Manual:

 ANALYZE_STATISTICS

 PROJECTION_COLUMNS

 PROJECTION_STORAGE

 PROJECTIONS.HAS_STATISTICS

-679-

 679

Using Diagnostic Tools

HP provides several diagnostic tools. In this section, you'll learn how to identify which version of
HP Vertica you are running, use the diagnostics tools, and export a catalog and profiling data.

-680-

 680

Determining Your Version of HP Vertica
To determine which version of HP Vertica is installed on a host, log in to that host and type:

$ rpm -qa | grep vertica

The command returns the name of the installed package, which contains the version and build
numbers, such as in the following example:

[dbadmin@myhost01 ~]$ rpm -qa | grep vertica

vertica-6.1.1-20130116.x86_64

If you are logged in to a database, you can also run a query for the version only, by running the
following command:

dbadmin=> SELECT version();

 version

 Vertica Analytic Database v6.1.2-20130401

(1 row)

Collecting Diagnostics (scrutinize Command)
The diagnostics script, scrutinize, collects information about your Vertica environment, such

as:

 Host diagnostics

 Log files (vertica.log, dbLog, admintools.log, spread.log)

 System table information, such as run-time information, queries executed

 Catalog metadata, such as statistics

 Configuration files (vertica.conf, admintools.conf, vspread.conf)

 Output from net_perf, io_perf, cpu_perf

 Database schema

 Backup information

Note: Although scrutinize might collect information, such as individual values stored in

statistics, the script does not attempt to gather samples of actual data in your database.

Syntax
/opt/vertica/bin/scrutinize [argument ...]

Command line arguments

Argument Description

-h, --help Shows the help message (scrutinize arguments) and exits.

-s, --local_diags [Default all hosts] Gathers diagnostics for specified local
host only. Query the V_MONITOR.NODE_RESOURCES

-681-

 Using Diagnostic Tools

system table for information about hosts in your cluster.

-d dbname,

--database dbname

Gathers diagnostics for the specified database. If your
database has a password, you must also supply the -P

PASSWORD argument.

If you omit the -d argument, scrutinize collects

diagnostics on the running database; otherwise:

 If no database is running, but that database is
defined in the Administration Tools metadata,
collects diagnostics on the stopped database.

 If more than one database is defined but none is

running, scrutinize returns an error. You must
supply the -d parameter for the appropriate

database.

 If multiple databases are running (unsupported in
production environments), scrutinize returns an
error. Only one database can be running during
diagnostics collection.

Tip: Always use the -d argument if you have more than

one database defined on the cluster.

-n HOST_LIST,

--hosts HOST_LIST

[Default all cluster hosts] Gathers diagnostics for the
specified hosts

-m MESSAGE,

--message MESSAGE

[Default no message] Lets you include a message in the

diagnostics output file, such as a reason for
gathering/submitting diagnostics, a support-supplied case
number, or anything that might help your support contact
troubleshoot your case. There is no character limit.

Options are:

 -m "my message"

 -m PROMPT

 -m "/path/to/file"

See the Examples section below for an example of each

of the three inputs.

-o OUTPUT_DIR

--output_dir OUTPUT_DIR

[Default current directory] Redirects output to a location
other than the current directory.

-U USERNAME,

--user USERNAME

[Default current user] Specifies the database user, which
you should include in the command if the Vertica

administrative user is different from the operating system
dbadmin user.

-P PASSWORD,

--password PASSWORD

[Default no password] Specifies the database password,

which you must supply if your database has a password. If
you omit this argument on a password-protected database,
scrutinize fails with error.

Notes:

 Include the -P argument if the Vertica

administrator account (default dbadmin, set during
a Vertica installation) has a non-blank password.

-682-

Administrator's Guide

 You can omit the -d dbname argument if the

database is running or if there is only one database
defined on the cluster.

-t TYPE,

--type TYPE

[Default basic] Specifies the type of diagnostics collection
to perform. Options are:

 basic – omit profiling data

 profiling – gather profiling data

 context – gather important data

-T TASKS,

--tasks TASKS

[Experts only] In collaboration with your technical support
contact, optionally instructs scrutinize to gather

diagnostics for one or more specified tasks.

--tmpdir TMP_DIR [Default /tmp] Temp directory to use on all nodes.

-X EXCLUDE_TASKS,

--exclude-tasks=EXCLUDE_TASK

S

[Experts only] In collaboration with your technical support

contact, optionally instructs scrutinize to exclude

diagnostics gathering from one or more specified tasks.

-U URL,

--url URL

[Default none/do not upload] If specified, posts output of

diagnostics collection to a support-provided URL (http or
ftp).

-z [all | n],

--include_gzlogs NUMGZ

[Default 1] Instructs scrutinize to include n number of

gzipped vertica.log-*.gz files within the

VerticaScrutinize file. To collect all logs, specify

'all.'

Who can run scrutinize

Run scrutinize as the dbadmin user. If run as root, the system returns an error like the following:

[root@host01 ~]# /opt/vertica/bin/scrutinize

Root user is not allowed to use this tool.

Try again as the DB administrative user.

You should run scrutinize as root only if the dbadmin user does not exist. For example, you might
want to gather diagnostics if you encounter issues during an HP Vertica installation, when the
dbadmin account has not yet been created.

How to run scrutinize

You collect general diagnostics about your Vertica environment by running scrutinize without

arguments; for example:

$ /opt/vertica/bin/scrutinize

If you want to include only some information, you can pass a number of different arguments to the
script. One or more arguments, along with the argument for the upload URL, will typically be
provided to you by your support contact. If you specify no arguments, the script prioritizes the
information it gathers, based on context (license size, cluster node count and number of nodes up
or down, configuration parameters, important error messages, and so on).

As the script runs, information is sent to the terminal window and includes the user, database, and
location of the diagnostics output file. For example, the following is similar to what you might see,
depending on the arguments you provide:

-683-

 Using Diagnostic Tools

Vertica Scrutinize Report

Result Dir: /home/dbadmin/VerticaScrutinize.20130128143508

User: dbadmin

Database: mcdb

Running remote worker on v_mcdb_node0001 @ /tmp/VerticaScrutinize.20130128143508/v_mcdb_node0001

Running remote worker on v_mcdb_node0002 @ /tmp/VerticaScrutinize.20130128143508/v_mcdb_node0002

Running remote worker on v_mcdb_node0003 @ /tmp/VerticaScrutinize.20130128143508/v_mcdb_node0003

Cleaning up on node v_mcdb_node0001 (01.02.000.02)

Cleaning up on node v_mcdb_node0002 (01.02.000.03)

Cleaning up on node v_mcdb_node0003 (01.02.000.04)

Gathered diagnostics for

 Customer: Vertica Systems, Inc.

 Database designation: FAMOUS GOLD

 Timestamp: 20130128143508

All results are stored in /home/dbadmin/VerticaScrutinize.20130128143508.zip

Toward the end of the above output is a "Database designation," or in the above example FAMOUS

GOLD. This title is a randomly-generated name that is based on your Vertica license and the

database creation time. This name makes it easier for both you and technical support to
identify/refer to a database cluster, especially if you have multiple databases on the same cluster
or same-name databases on different clusters.

Note: The "database designation" name remains the same until you drop and re-create a new

database, an activity that generates a new randomly-generated name. In the above example,
you would always refer to your database cluster as FAMOUS GOLD when you consult with
technical support.

How scrutinize gathers/packages diagnostics

The scrutinize script runs tasks based on command-line arguments where it collects

information from nodes in the database cluster. Data is staged on individual nodes and then
moved to the initiator node (the server where you ran the command). There, it packages individual

files into the final, tree-structured VerticaScrutinize*.zip file, which is saved to the current
directory. You can specify a different directory with the -o OUTPUT command.

Files take the following name, where the <timestamp> portion is denoted in yyyymmddh24mmss
format and changes with each subsequent scrutinize run:

VerticaScrutinize.<timestamp>.zip.

When scrutinize finishes, it returns a message on the terminal window with the location of the .zip
file. You then upload the diagnostics file using a URL that your support contact provides by
specifying the -u (upload) argument. Each node that is participating in diagnostics collection will
upload diagnostics information directly through that URL.

-684-

Administrator's Guide

The following example shows the directory tree-like structure for full diagnostics collection (no
arguments) in the top panel, along with file size to show the small size of context files on each
node in the database cluster. The bottom panel is an expanded view of contents within the
context.tgz file and shows the types of contextual information scrutinize collects:

Note: Although the database does not need to be running, scrutinize will gather more

comprehensive information if the database is up, which it does withi minimal disruption to
operations.

ow to upload a diagnostics file to support

In most cases, your support contact will provide the commands and -u upload argument for you to
run. The following command is a generic upload example, which gathers all diagnostics and posts
the output from the diagnostics collection to the support-provided URL, which can be http or ftp:

$ /opt/vertica/bin/scrutinize -u "ftp://uploadtosupport.com/xxx"

Examples

The following command gathers diagnostics on the mcdb database and tells the script to include
the three most recent gzipped the log files:

$ /opt/vertica/bin/scrutinize -d mcdb -P dbpassword -z 3

The sample mcdb database has a password, so the scrutinize command must include the -P
argument. If you omit -P on password-protected databases, Vertica returns an error message:

No vertica process appears to be queryable with given settings:

-685-

 Using Diagnostic Tools

vsql: FATAL 3781: Invalid username or password

The following message-type commands (-m argument) illustrate the different ways to include a

message in your diagnostics file:

 Use -m with a double-quoted message text to includes that message in the VerticaScrutinize

output file; for example:
/opt/vertica/bin/scrutinize -m "my message to support"

 Use -m with the PROMPT keyword, and scrutinize reads input until you type a period [.] on a line

by itself to end the message. Scrutinize then writes the message to the VerticaScrutinize file;
for example:

/opt/vertica/bin/scrutinize -m PROMPT

Enter reason for collecting diagnostics; end with '.' on a line by itself:

Slowed query performance

since Saturday

.

 Use -m with a double-quoted path to include contents of the specified message file in

VerticaScrutinize file output; for example:

/opt/vertica/bin/scrutinize -m "/path/to/file/mymessage"

Scrutinize is configurable for different collections. For example, to get a .tgz file of the catalog on
the current node, run a command like the following:

$ /opt/vertica/bin/scrutinize -o . -X all -T

 '[{"type": "File", "files": ["%(catalogDir)s/Catalog"]}]' -s

Vertica Scrutinize Report

Result Dir: /home/dbadmin/VerticaScrutinize.20130124082453

User: dbadmin

Database: mydb

Password: *****

...

Cleaning up on node v_mydb_myhost0001 (00.00.000.02)

Cleaning up on node v_mydb_myhost0002 (00.00.000.03)

Cleaning up on node v_mydb_myhost0003 (00.00.000.04)

All results are stored in /home/dbadmin/VerticaScrutinize.20130124082453.zip

Diagnostics (scrutinize) syntax
If you want to gather diagnostics on your database, run scrutinize as the database administrative
user (typically dbadmin). If the dbadmin user does exist, HP Vertica does not allow you to run
scrutinize as root and returns an error.

Syntax
/opt/vertica/bin/scrutinize [argument ...]

-686-

Administrator's Guide

Command line arguments

Argument Description

-h, --help Shows the help message, which describes scrutinize
arguments.

-s, --local_diags [Default: All hosts] Gathers diagnostics for local host only.

Tip: Query the V_MONITOR.NODE_RESOURCES

system table for information about hosts in your cluster.

-d dbname,

--database dbname

Gathers diagnostics for the database. If you omit the -d

argument, scrutinize collects diagnostics for the running
database by default.

If no database is running but has been defined in the

Administration Tools metadata, scrutinize collects
diagnostics on the stopped database, even if you omit the
-d argument.

If more than one database is defined but none is running,
scrutinize returns an error. You must supply the -d

argument for the appropriate database.

If multiple databases are running (unsupported in
production environments), scrutinize returns an error if -d

is not specified.

Note: Although the database does not need to be

running, scrutinize will gather more comprehensive
diagnostic data if the database is up, which it collects with

minimal disruption to normal operations.

-n HOST_LIST,

--hosts HOST_LIST

[Default: All cluster hosts] Gathers diagnostics for
comma-separated specified hosts only.

-m MESSAGE,

--message MESSAGE

[Default: No message] Lets you include a message in the
diagnostics output file, such as a support-supplied case

number or anything that might help your support contact
troubleshoot your case. There is no character limit.

Options are:

 -m "my message"

 -m PROMPT

 -m "/path/to/file"

See Examples for the scrutinize command (page 691).

-o OUTPUT_DIR

--output_dir OUTPUT_DIR

[Default: Current directory] Redirects output of the

diagnostics file to a location other than the current
directory.

-U USERNAME,

--user USERNAME

Specifies the database administrator‘s username for the

database on which you are collecting diagnostics. You
must supply the -U argument i f the HP Vertica dbadmin

-687-

 Using Diagnostic Tools

user is different from the operating system dbadmin user.

-P PASSWORD,

--password PASSWORD

[Default: No password] Specifies the database password.
You must supply the -P argument if your database has a

password or if the HP Vertica administrator account

(default dbadmin, set during an HP Vertica installation)
has a non-empty password.

Note: You do not need to specify -d with the -P

argument if the database is running or if there is only one
database defined on the cluster.

-t TYPE,

--type TYPE

[Default: Basic] Specifies the type of diagnostics collection
to perform. Options are:

 basic – omit profiling data

 profiling – gather profiling data

 context – gather important data

See How to run scrutinize (page 687) and How

scrutinize collects/packages diagnostics (page 688)
for more information.

-T TASKS,

--tasks TASKS

[Provided by HP Vertica technical support] Optionally
instructs scrutinize to gather diagnostics for one or more
specified tasks.

--tmpdir TMP_DIR [Default: /tmp] Directory to store temporary data on all

nodes; for example where to stage data before it gets

packaged into the final diagnostics file.

-X EXCLUDE_TASKS,

--exclude-tasks=EXCLUDE_TASKS

[Provided by HP Vertica technical support] Optionally
instructs scrutinize to exclude diagnostics gathering from

one or more specified tasks.

-u URL,

--url URL

[Default: Do not upload] If specified, posts output of
diagnostics collection to a support-provided URL (http or

ftp). See How to upload scrutinize results to support
(page 690).

-z [all | n],

--include_gzlogs NUMGZ

[Default: 1, current log and 1 gz before] Instructs scrutinize

to include n number of gzipped vertica.log.*.gz files

within the VerticaScrutinize file. To collect all logs,

specify 'all.'

Tip: Use -z if the issue you want to report occurred a day

or more in the past.

How to run scrutinize

You collect general diagnostics about your HP Vertica environment by running scrutinize without
arguments; for example:

$ /opt/vertica/bin/scrutinize

-688-

Administrator's Guide

In this scenario, the script collects a broad range of diagnostic information from all the nodes in the
cluster, such as:

 Unstructured HP Vertica logs

 Structured database event information

 Run-time state

 Customer schema

 Host configuration data

While such output can diagnose most issues, it intentionally lacks minute profiling data in order to
reduce the upload size.

If you need to specify what information to collect, pass one or more arguments (page 685) to the
scrutinize script.

Note: Specific arguments, along with the argument value for the upload URL, will typically be

provided by your HP Vertica technical support contact.

Although it is not a requirement that the database be running, scrutinize will gather more
comprehensive diagnostic data if the database is up, which it gathers with minimal disruption to
normal operations.

How scrutinize collects/packages diagnostics

When you run scrutinize, the script performs the following operations:

1 Collects information from nodes in the database cluster

2 Stages diagnostics data on individual nodes

3 Moves diagnostics data from cluster nodes to the initiator node (the server where you ran the
script)

4 Packages individual files into the final, tree-structured VerticaScrutinize*.zip file,
which is saved to the current directory.

Tip: You can specify a different directory with the -o OUTPUT argument.

Diagnostics files are given the following name, where the <timestamp> portion is denoted in
yyyymmddh24mmss format, a naming convention that changes with each subsequent scrutinize

run; for example:

VerticaScrutinize.<timestamp>.zip

VerticaScrutinize.20130118132609.zip

VerticaScrutinize.20130131143508.zip

While scrutinize runs

As the scrutinize script runs, it displays a report on the terminal window, which includes the user,
database, path to the diagnostics output file, and other information. For example, the following
screen output is similar to what you might see:

Vertica Scrutinize Report

Result Dir: /home/dbadmin/VerticaScrutinize.20130128143508.zip

-689-

 Using Diagnostic Tools

User: dbadmin

Database: mcdb

Running remote worker on v_mcdb_node0001 @ /tmp/VerticaScrutinize.20130128143508/v_mcdb_node0001

Running remote worker on v_mcdb_node0002 @ /tmp/VerticaScrutinize.20130128143508/v_mcdb_node0002

Running remote worker on v_mcdb_node0003 @ /tmp/VerticaScrutinize.20130128143508/v_mcdb_node0003

Cleaning up on node v_mcdb_node0001 (01.02.000.02)

Cleaning up on node v_mcdb_node0002 (01.02.000.03)

Cleaning up on node v_mcdb_node0003 (01.02.000.04)

Gathered diagnostics for

 Customer: Vertica Systems, Inc.

 Database designation: FAMOUS GOLD

 Timestamp: 20130128143508

All results are stored in /home/dbadmin/VerticaScrutinize.20130128143508.zip

How to identify/refer to your database cluster

Toward the end of the above output, under the "Gathered diagnostics for" section, is a "Database
designation" notation (FAMOUS GOLD in the above sample output). The title is randomly
generated and assigned and is based on your HP Vertica license and the database creation time.
This name makes it easier for both you and technical support to identify and refer to a database
cluster you want to analyze, especially if you have multiple databases on the same cluster or
same-name databases on different clusters. In the above example output, you would always refer
to your database cluster as FAMOUS GOLD when you consult with technical support.

The "Database designation" name remains the same until you drop the database. When you
create a new database and run scrutinize, the script will assign a new randomly-generated
database designation name.

After scrutinize finishes running

At the end of diagnostics collection, scrutinize displays a message on the terminal window with the
location of the VerticaScrutinize*.zip file. If you had passed the -u upload argument to the
script, each node that is participating in diagnostics collection will upload diagnostics information
directly through that URL. See How to upload scrutinize results to support (page 690).

Example

The following image illustrates the tree-like structure of the VerticaScrutinize*.zip file for
full diagnostics collection (no arguments). Note that the file was saved to and opened on a
Windows system.

 The top panel shows the top-level contents of the VerticaScrutinize*.zip file, including

file names and size. The <node>-context.tgz files, which are on each node in the

database cluster, are kept small to optimize upload speed. For example, if you specify the -u
upload argument, each node posts the files directly to the url, sending the smaller context file
first.

 The bottom panel provides an expanded view of a <node>-context.tgz file to show the
types of information scrutinize collects for context.

-690-

Administrator's Guide

How to upload scrutinize results to support
In most cases, your technical support contact will provide arguments for you to run with the
scrutinize script, including the -u upload value.

Before you can run scrutinize with -u:

 The cURL http://curl.haxx.se/ program must be installed and in the path for the user running
scrutinize

 Each node in the cluster must be able to make an http or ftp connection directly to the Internet

When you use the -u argument:

 Scrutinize avoids collecting results into a single VerticaScrutinize<timestamp>.zip
file

 Each node posts the files directly to the url, where a smaller "context" file is posted first, which
means support may be able to look at high-level information while waiting for the larger, more
complete, download to finish. See How scrutinize collects/packages diagnostics (page
688) for an example of a context file.

http://curl.haxx.se/

-691-

 Using Diagnostic Tools

Example

The following command is a generic upload example, which gathers all diagnostics and posts the
output from the diagnostics collection to the support-provided URL:

$ /opt/vertica/bin/scrutinize -P password -u

"ftp://user:password@customers.vertica.com/"

Examples for the scrutinize command

This section provides additional examples for running the scrutinize command.

How to include gzipped log files

The following command gathers diagnostics on the mcdb database and instructs the script to
include the three most recent gzipped log files:

$ /opt/vertica/bin/scrutinize -d mcdb -P dbpassword -z 3

Because the mcdb database has a password, the scrutinize command must include the -P

argument. If you omit -P on password-protected databases, HP Vertica returns an error message:

No vertica process appears to be queryable with given settings:

vsql: FATAL 3781: Invalid username or password

How to include a message in the diagnostics package

The following message-type commands (-m) illustrate different ways you can include a message

in your diagnostics file.

Note: Always include your support case number in the message file.

 Use -m with a double-quoted message string to includes a message in the
VerticaScrutinize output file; for example:

/opt/vertica/bin/scrutinize -m "my support case number and message"

 Use -m with the PROMPT keyword, and scrutinize reads input until you type a period [.] on a line
by itself. Scrutinize then writes the message to the VerticaScrutinize file; for example:

/opt/vertica/bin/scrutinize -m PROMPT

Enter reason for collecting diagnostics; end with '.' on a line by itself:

My support case number

Noticed query performance

degradation on Saturday

starting around 9AM

.

 Use -m with a double-quoted path to include contents of the specified message file in
VerticaScrutinize file output; for example:

/opt/vertica/bin/scrutinize -m

"/path/to/file/mycaseno-messagetosupport"

-692-

Administrator's Guide

How to send results to support

See How to upload scrutinize results to support (page 690).

Collecting Diagnostics (diagnostics Command)

When you run the diagnostics utility with one or more parameters, information about your
database and host configuration is exported to a .zip file.

Syntax
/opt/vertica/bin/diagnostics [argument ...]

Arguments

-h --help Shows a help message that contains all
commands for the diagnostics utility and

exits.

-l --listdbs Lists running and non-running databases.

-s --local_diags Gathers diagnostics for local host only.

-d dbname

--database dbname

Gathers information about the specified
database.

-o OUTPUT_DIR

--output_dir OUTPUT_DIR

Redirects output to a location other than the
default /opt/vertica/log.

-n HOST_LIST,

--hosts HOST_LIST

Gathers diagnostics for the specified hosts.

-z [all | n] Specifies how many vertica.log.*.gz

files to include in diagnostics. The default is
1.

Using the diagnostics utility

Running /opt/vertica/bin/diagnostics without arguments gathers information on all

databases and all nodes in the HP Vertica cluster.

When the diagnostics utility finishes running, it reports a message with the location of the .zip file,

which is in /opt/vertica/log/HP VerticaDiagnostics.<date>.zip. The <date>
variable is automatically assigned a unique ID that represents the date and time you ran
diagnostics. This ID changes with each diagnostics run; for example, here is the command and
resulting filename for a diagnostics run on the mcdb database:

$ /opt/vertica/bin/diagnostics -d mcdb

VerticaDiagnostics.20130117075507.zip

If you make multiple calls to diagnostics, the utility creates a new file with a different <date> field so
that it does not overwrite results from the previous call. For example, if I ran the same command a
few moments later, the filename is as follows:

-693-

 Using Diagnostic Tools

VerticaDiagnostics.20130117075900.zip

Both the -d <dbname> and -n <host list> parameters are required to gather the HP Vertica log

from a specific node. The -d parameter is useful if you have multiple databases on the same
cluster. If you omit -d from the command, diagnostics doesn't know which database you want to
examine and gathers host-level information only.

To include all *.gz files in diagnostics (including all databases on all hosts), use the -z all
parameter; otherwise specify the number of files you want (for example, the last 5 *.gz files). The
gzipped log files are included in the order in which they were last modified, with the most recent
first.

The diagnostics utility uses a diagnostics-<username>.log file instead of the

adminTools-<username>.log file for logging to allow for improved readability of log files

collected during diagnostics. You will find both the diagnostics-<username>.log and
adminTools-<username>.log files in the /opt/vertica/log/ directory.

Tip: If you are having trouble with an installation, run the diagnostics utility as root or sudo. See

Running Diagnostics Utility for failed Installation. For other situations, run the diagnostics utility
as the database administrator.

Examples

The following command uses the -l parameter, which returns a list of running and non-running

databases and notifies you where you can find the output file:

[dbadmin@host01 ~]$ /opt/vertica/bin/diagnostics -l

Running Diagnostics as user: dbadmin

Vertica Diagnostics Report

Using VSQL: /opt/vertica/bin/vsql

Result Dir: /opt/vertica/log/VerticaDiagnostics.20130116111121

Listing databases...

 Running database: mcdb

 Non Running database: vmart

 Non Running database: myotherdb

 Non Running database: onenode

All results are stored in /opt/vertica/log/VerticaDiagnostics.20130116111121.zip

The following command gathers diagnostics information for the PROD01 database on host01 and
host02:

$ /opt/vertica/bin/diagnostics -n host01.acme.com,host02.acme.com -d PROD01

This command includes all vertica*.gz files in the diagnostics output for the PROD01
database:

$ /opt/vertica/bin/diagnostics -d PROD01 -z all

This command includes only the last three .gz files for the PROD01 database in the diagnostics:

$ /opt/vertica/bin/diagnostics -d PROD01 -z 3

-694-

Administrator's Guide

Exporting a Catalog
When you export a catalog you can quickly move a catalog to another cluster. Exporting a catalog
transfers schemas, tables, constraints, projections, and views. System tables are not exported.

Exporting catalogs can also be useful for support purposes.

See the EXPORT_CATALOG function in the SQL Reference Manual for details.

Exporting Profiling Data
The diagnostics audit script gathers system table contents, design, and planning objects from a
running database and exports the data into a file named ./diag_dump_<timestamp>.tar.gz,
where <timestamp> denotes when you ran the script.

If you run the script without parameters, you will be prompted for a database password.

Syntax
/opt/vertica/scripts/collect_diag_dump.sh [command...]

Parameters

command -U User name, typically the database administrator account,
dbadmin.

-w Database password.

-c Includes a compression analysis, resulting in a longer
script execution time.

Example

The following command runs the audit script with all arguments:

$ /opt/vertica/scripts/collect_diag_dump.sh -U dbadmin -w password -c

-695-

 695

Understanding Query Plans

A query plan is a sequence of step-like paths that the HP Vertica cost-based query optimizer
selects to access or alter information in your HP Vertica database.

HP Vertica can execute a query in many different ways to achieve the same results. The query
optimizer evaluates some of the possible plans it can use to return what it considers to be the best
alternative, which is usually a query plan with the lowest cost.

About cost

Cost is an estimate of the resources that the query plan will use for its execution strategy, such as
data distribution statistics, CPU, disk, memory, network, data segmentation across cluster nodes,
and so on. Although such resources correlate to query run time, they are not an estimate of run
time. For example, if Plan1 costs more than Plan2, the optimizer estimates that Plan2 will take less
time to run. Cost does not mean that if Pan1 costs two times more than Plan2, the optimizer
estimates that Plan2 will take half the time to run.

The optimizer does not compute cost across queries. For example, if you run a plan for Query1
and a plan for Query2, a higher cost in Query2 does not indicate that Query2 will take longer than
Query1.

About statistics

Many important optimizer decisions rely on statistics, which the query optimizer uses to determine
the final plan to execute a query. Therefore, it is important that statistics be up to date. Without
reasonably accurate statistics, the optimizer could choose a suboptimal plan, which might affect
query performance.

HP Vertica uses the following statistics to calculate the lowest query plan cost and to create plan
candidates:

 Number of rows in the table

 Number of distinct values of each column (cardinality)

 Minimum/maximum values of each column

 A histogram of the distribution of values in each column

 Disk space that the column occupies

The optimizer also considers the following:

 The access path with the fewest expected I/O operations and lowest CPU, memory, and
network usage

 Multiple eligible projections to answer the query

 Join types of differing algorithms (hash join/merge join or group by hash/group by pipelined)

 The order in which to perform joins

 Query predicates

 Data re-distribution algorithms (broadcast and segmentation) across nodes in the cluster

-696-

Administrator's Guide

HP Vertica provides hints about statistics through the query plan, which is annotated with a
statistics status. See Viewing Statistics Query Plan Output (page 700).

How to view the query plan

Use the EXPLAIN command (page 696) to view the plan that the query optimizer chose.

See also

Collecting Statistics (page 666)

How to Obtain a Query Plan

You can get information about query plans in two ways, running the SQL EXPLAIN command and
querying the QUERY_PLAN_PROFILING system table.

How to get query plan information using EXPLAIN

To view query plan information, preface the query with the EXPLAIN command, such as in the
following example:

=> EXPLAIN SELECT customer_name, customer_state FROM customer_dimension

 WHERE customer_state in ('MA','NH') AND customer_gender = 'Male'

 ORDER BY customer_name LIMIT 10;

Textual output from a query plan is presented in in a tree-like structure, where each step (path)
represents a single operation in the database that the optimizer uses for its execution strategy.
The following example output is based on the previous query:

 QUERY PLAN DESCRIPTION:

 EXPLAIN SELECT

 customer_name,

 customer_state

 FROM customer_dimension

 WHERE customer_state in ('MA','NH')

 AND customer_gender = 'Male'

 ORDER BY customer_name

 LIMIT 10;

 Access Path:

 +-SELECT LIMIT 10 [Cost: 370, Rows: 10] (PATH ID: 0)

 | Output Only: 10 tuples

 | Execute on: Query Initiator

 | +---> SORT [Cost: 370, Rows: 544] (PATH ID: 1)

 | | Order: customer_dimension.customer_name ASC

 | | Output Only: 10 tuples

 | | Execute on: Query Initiator

 | | +---> STORAGE ACCESS for customer_dimension [Cost: 331, Rows: 544] (PATH ID: 2)

 | | | Projection: public.customer_dimension_DBD_1_rep_vmartdb_design_vmartdb_design_node0001

 | | | Materialize: customer_dimension.customer_state, customer_dimension.customer_name

 | | | Filter: (customer_dimension.customer_gender = 'Male')

 | | | Filter: (customer_dimension.customer_state = ANY (ARRAY['MA', 'NH']))

 | | | Execute on: Query Initiator

-697-

 Understanding Query Plans

How to get query plan information using QUERY_PLAN_PROFILES

If you want to observe the real-time flow of data through the plan, query the
V_MONITOR.QUERY_PLAN_PROFILES system table. See Profiling Query Plan Profiles
(page 725) for details.

See also

About EXPLAIN output (page 697)

EXPLAIN and QUERY_PLAN_PROFILES in the SQL Reference Manual

How to Save a Query Plan
If you want to save query plan information to a file, use the vsql \o command.

The following sequence of commands is simplified for illustration purposes only; it wouldn't return
a very good plan:

1 Turn on the \o command.

vmartdb=> \o /home/dbadmin/my-plan-output

2 Run the query using the EXPLAIN command.

vmartdb=> EXPLAIN SELECT * FROM customer_dimension;

3 Turn off \o command.

vmartdb=> \o

If you don't turn off the \o command, HP Vertica continues to save query plan information to the file
you specified. Content is not overwritten but is appended to the previous output. Therefore, the \o
command captures all EXPLAIN output in the file until you issue the \o command again.

About EXPLAIN output

The EXPLAIN command returns the execution strategy for the optimizer's query plan and provides
information that lets you see various optimizer decisions.

EXPLAIN output does not tell you explicitly why a query might be slow; it simply documents the
choices the optimizer has made. If you think your query is not performing as it should, you can run
the Workload Analyzer and or consider running the query through the Database Designer. See
Creating a Query-specific Design Using the Database Designer (page 84) and Analyzing
Workloads (page 658) for details. See also Reducing Run-time of Queries (page 493).

-698-

Administrator's Guide

Textual output of query plans

Textual output from a query plan is presented in in a tree-like structure, where each step (path)
represents a single operation in the database that the optimizer uses for its execution. Depending
on the query and database schema, the output provides the following information:

 Tables referenced by the statement

 The estimated cost of the optimization

 Estimated row cardinality

 The PATH ID, an integer that links to error messages and profiling counters, making it easier
for you to troubleshoot performance issues

 Data operations such as SORT, FILTER, LIMIT, and GROUP BY

 The chosen projections

 Information about statistics, such as if they are current or out of range

 Algorithms chosen for operations into the query, such as hash/merge or group by hash/group
by pipelined

 Data re-distribution (broadcast, segmentation) across nodes in the cluster

Example

In the example EXPLAIN plan output that follows, the optimizer processes the query in three
steps, which are identified by path IDs:

1 Path ID 2: STORAGE ACCESS and FILTER

2 Path ID 1: SORT

3 Path ID 0: LIMIT

-699-

 Understanding Query Plans

Note: A STORAGE ACCESS operation can scan more than the columns in the select list; for

example, columns referenced in WHERE clause, and so on.

The following table shows which portions of the query the three plan steps align with:

Path Associated part of query

STORAGE

ACCESS

FILTER

SELECT customer_name, customer_state

WHERE customer_state in ('MA','NH')

AND customer_gender = 'Male'

SORT ORDER BY customer_name

LIMIT LIMIT 10;

Viewing Cost and Rows Path

One of the first items you'll see in query plan output is Cost, which appears in the plan under its

various operations. See Understanding Query Plans (page 695) for additional information about
how the optimizer estimates cost.

The following EXPLAIN output shows the Cost operator:

 Access Path:

 +-SELECT LIMIT 10 [Cost: 370, Rows: 10] (PATH ID: 0)

 | Output Only: 10 tuples

 | Execute on: Query Initiator

 | +---> SORT [Cost: 370, Rows: 544] (PATH ID: 1)

 | | Order: customer_dimension.customer_name ASC

 | | Output Only: 10 tuples

 | | Execute on: Query Initiator

 | | +---> STORAGE ACCESS for customer_dimension [Cost: 331, Rows: 544] (PATH ID: 2)
 | | | Projection: public.customer_dimension_DBD_1_rep_vmartdb_design_vmartdb_design_node0001

 | | | Materialize: customer_dimension.customer_state, customer_dimension.customer_name

 | | | Filter: (customer_dimension.customer_gender = 'Male')

 | | | Filter: (customer_dimension.customer_state = ANY (ARRAY['MA', 'NH']))

 | | | Execute on: Query Initiator

The Row operator is the number of rows the optimizer estimates the query will return. Letters after
numbers refer to the units of measure (K=thousand, M=million, B=billion, T=trillion), so the output
for the following query indicates that the number of rows to return is 50 thousand.

=> EXPLAIN SELECT customer_gender FROM customer_dimension;

 Access Path:

 +-STORAGE ACCESS for customer_dimension [Cost: 17, Rows: 50K (3 RLE)] (PATH ID: 1)
 | Projection: public.customer_dimension_DBD_1_rep_vmartdb_design_vmartdb_design_node0001

 | Materialize: customer_dimension.customer_gender

 | Execute on: Query Initiator

The reference to (3 RLE) in the STORAGE ACCESS path means that the optimizer estimates that
the storage access operator will return 50K rows, but because the column is run-length (RLE)
encoded, the real number of RLE rows returned is only 3 rows:

-700-

Administrator's Guide

 1 row for female

 1 row for male

 1 row that represents unknown (NULL) gender

Viewing Statistics Query Plan Output

The optimizer might not choose the best plan if statistics are stale or if you haven't collected
statistics at all. For example, HP recommends that you gather full statistics on a particular table
whenever:

 The table is first bulk loaded.

 A new projection using that table is created and refreshed.

 The number of rows in the table changes by 50%.

 The minimum/maximum values in the table's columns change by 50%.

 New primary key values are added to tables with referential integrity constraints. Both the
primary key and foreign key tables should be reanalyzed.

 Relative size of a table, compared to tables it is being joined to, has changed materially; for
example, the table is now only five times larger than the other when previously it was 50 times
larger.

 There is a significant deviation in the distribution of data, which would necessitate recalculation
of histograms. For example, there is an event that caused abnormally high levels of trading for
a particular stock. This is application specific.

 There is a down-time window when the database is not in active use.

HP Vertica provides hints about statistics through the query plan, which is annotated with a status
of either NO STATISTICS or STALE STATISTICS. For example, the following EXPLAIN

fragment indicates that histograms are unavailable (no statistics):

| | +-- Outer -> STORAGE ACCESS for fact [Cost: 604, Rows: 10K (NO STATISTICS)]

The next EXPLAIN fragment indicates that the predicate has fallen outside the histogram range
(stale statistics):

| | +-- Outer -> STORAGE ACCESS for fact [Cost: 35, Rows: 1 (STALE STATISTICS)]

Notes and tips

 You can resolve many issues related to statistics by calling the ANALYZE_STATISTICS()
function for the tables involved.

 If you update statistics and find that the query still performs suboptimally, run your query
through the Database Designer, choosing query-specific design as the design type.

 Projections that have no data never have full statistics. Query the PROJECTION_STORAGE
system table to see if your projection contains data. You can also query the
PROJECTIONS.HAS_STATISTICS table.

 Once your system is running well, HP recommends that you save exported statistics for all
tables. In the unlikely scenario that statistics modifications impact optimizer plans, particularly
after an upgrade, you can always revert back to the exported statistics.

-701-

 Understanding Query Plans

Viewing Projection Path

You can see which projections the optimizer chose for the query plan by looking at the
Projection path in the textual output:

EXPLAIN SELECT

 customer_name,

 customer_state

 FROM customer_dimension

 WHERE customer_state in ('MA','NH')

 AND customer_gender = 'Male'

 ORDER BY customer_name

 LIMIT 10;

 Access Path:

 +-SELECT LIMIT 10 [Cost: 370, Rows: 10] (PATH ID: 0)

 | Output Only: 10 tuples

 | Execute on: Query Initiator

 | +---> SORT [Cost: 370, Rows: 544] (PATH ID: 1)

 | | Order: customer_dimension.customer_name ASC

 | | Output Only: 10 tuples

 | | Execute on: Query Initiator

 | | +---> STORAGE ACCESS for customer_dimension [Cost: 331, Rows: 544] (PATH ID: 2)

 | | | Projection: public.customer_dimension_DBD_1_rep_vmart_vmart_node0001

 | | | Materialize: customer_dimension.customer_state, customer_dimension.customer_name

 | | | Filter: (customer_dimension.customer_gender = 'Male')

 | | | Filter: (customer_dimension.customer_state = ANY (ARRAY['MA', 'NH']))

 | | | Execute on: Query Initiator

The query optimizer automatically picks the best projections, but without reasonably accurate
statistics, the optimizer could choose a suboptimal projection or join order for a query. See
Collecting Statistics (page 666) for details.

HP Vertica considers which projection to choose for a plan by considering the following aspects:

 How columns are joined in the query

 How the projections are grouped or sorted

 Whether SQL analytic operations applied

 Any column information from a projection's storage on disk

As HP Vertica scans the possibilities for each plan, projections with the higher initial costs could
end up in the final plan because they made joins cheaper. For example, a query can be answered
with many possible plans, which the optimizer considers before choosing one of them. For
efficiency, the optimizer uses sophisticated algorithms to prune intermediate partial plan
fragments with higher cost. The optimizer knows that intermediate plan fragments might initially
look bad (due to high storage access cost) but which produce excellent final plans due to other
optimizations that it allows.

If you statistics are up to date but the query still performs poorly, consider run the query through
the Database Designer. See Creating a Query-specific Design Using the Database Designer
(page 84) for details.

Tips

 If you want to test different projections, you can refer to a segmented projection by name in the
query.

-702-

Administrator's Guide

 If you query an unsegmented projection by name, it changes the plan because then data is
used from one node only, where unsegmented projection names include a specific node
name.

 For optimal performance, write queries so the columns are sorted the same way the projection
columns are sorted.

Viewing Join Path

Just like a join query, which contains two or more tables in the statement, the Join step in query

plans has two input branches:

 The left input, which is the outer table of the join

 The right input, which is the inner table of the join

In the following query, table T1 is the left input because it is on the left side of the JOIN keyword,
and table T2 is the right input, because it is on the right side of the JOIN keyword:

SELECT * FROM T1 JOIN T2 ON T1.x = T2.x

Outer versus inner join

Query performance is better if the small table is used as the inner input to the join. The query
optimizer automatically reorders the inputs to joins to ensure that this is the case unless the join in
question is an outer join.

The following example shows a query and its plan for a left outer join:

=> EXPLAIN SELECT CD.annual_income,OSI.sale_date_key

-> FROM online_sales.online_sales_fact OSI

-> LEFT OUTER JOIN customer_dimension CD ON CD.customer_key = OSI.customer_key;

 Access Path:

 +-JOIN HASH [LeftOuter] [Cost: 4K, Rows: 5M] (PATH ID: 1)

 | Join Cond: (CD.customer_key = OSI.customer_key)

 | Materialize at Output: OSI.sale_date_key

 | Execute on: All Nodes

 | +-- Outer -> STORAGE ACCESS for OSI [Cost: 3K, Rows: 5M] (PATH ID: 2)

 | | Projection:

online_sales.online_sales_fact_DBD_12_seg_vmartdb_design_vmartdb_design

 | | Materialize: OSI.customer_key

 | | Execute on: All Nodes

 | +-- Inner -> STORAGE ACCESS for CD [Cost: 264, Rows: 50K] (PATH ID: 3)

 | | Projection:

public.customer_dimension_DBD_1_rep_vmartdb_design_vmartdb_design_node0001

 | | Materialize: CD.annual_income, CD.customer_key

 | | Execute on: All Nodes

The following example shows a query and its plan for a full outer join:

=> EXPLAIN SELECT CD.annual_income,OSI.sale_date_key

-> FROM online_sales.online_sales_fact OSI

-> FULL OUTER JOIN customer_dimension CD ON CD.customer_key = OSI.customer_key;

 Access Path:

-703-

 Understanding Query Plans

 +-JOIN HASH [FullOuter] [Cost: 18K, Rows: 5M] (PATH ID: 1) Outer (RESEGMENT) Inner

(FILTER)

 | Join Cond: (CD.customer_key = OSI.customer_key)

 | Execute on: All Nodes

 | +-- Outer -> STORAGE ACCESS for OSI [Cost: 3K, Rows: 5M] (PATH ID: 2)

 | | Projection:

online_sales.online_sales_fact_DBD_12_seg_vmartdb_design_vmartdb_design

 | | Materialize: OSI.sale_date_key, OSI.customer_key

 | | Execute on: All Nodes

 | +-- Inner -> STORAGE ACCESS for CD [Cost: 264, Rows: 50K] (PATH ID: 3)

 | | Projection:

public.customer_dimension_DBD_1_rep_vmartdb_design_vmartdb_design_node0001

 | | Materialize: CD.annual_income, CD.customer_key

 | | Execute on: All Nodes

Hash and merge joins

HP Vertica has two join algorithms to choose from: merge join and hash join. The optimizer
automatically chooses the most appropriate algorithm given the query and projections in a system.

For the following query, the optimizer chooses a hash join.

=> EXPLAIN SELECT CD.annual_income,OSI.sale_date_key

-> FROM online_sales.online_sales_fact OSI

-> INNER JOIN customer_dimension CD ON CD.customer_key = OSI.customer_key;

 Access Path:

 +-JOIN HASH [Cost: 4K, Rows: 5M] (PATH ID: 1)

 | Join Cond: (CD.customer_key = OSI.customer_key)

 | Materialize at Output: OSI.sale_date_key

 | Execute on: All Nodes

 | +-- Outer -> STORAGE ACCESS for OSI [Cost: 3K, Rows: 5M] (PATH ID: 2)

 | | Projection:

online_sales.online_sales_fact_DBD_12_seg_vmartdb_design_vmartdb_design

 | | Materialize: OSI.customer_key

 | | Execute on: All Nodes

 | +-- Inner -> STORAGE ACCESS for CD [Cost: 264, Rows: 50K] (PATH ID: 3)

 | | Projection:

public.customer_dimension_DBD_1_rep_vmartdb_design_vmartdb_design_node0001

 | | Materialize: CD.annual_income, CD.customer_key

 | | Execute on: All Nodes

TIP: If you get a hash join when you are expecting a merge join, it means that at least one of the
projections is not sorted on the join column (for example customer_key in the above query. To
facilitate a merge join, you might need to create different projections that are sorted on the join
columns.

In this example, the optimizer chooses a merge join. The optimizer's first pass performs a merge
join because the inputs are presorted, and then it performs a hash join.

=> EXPLAIN SELECT count(*) FROM online_sales.online_sales_fact OSI

-> INNER JOIN customer_dimension CD ON CD.customer_key = OSI.customer_key

-> INNER JOIN product_dimension PD ON PD.product_key = OSI.product_key;

 Access Path:

-704-

Administrator's Guide

 +-GROUPBY NOTHING [Cost: 8K, Rows: 1] (PATH ID: 1)

 | Aggregates: count(*)

 | Execute on: All Nodes

 | +---> JOIN HASH [Cost: 7K, Rows: 5M] (PATH ID: 2)

 | | Join Cond: (PD.product_key = OSI.product_key)

 | | Materialize at Input: OSI.product_key

 | | Execute on: All Nodes

 | | +-- Outer -> JOIN MERGEJOIN(inputs presorted) [Cost: 4K, Rows: 5M] (PATH ID:

3)

 | | | Join Cond: (CD.customer_key = OSI.customer_key)

 | | | Execute on: All Nodes

 | | | +-- Outer -> STORAGE ACCESS for OSI [Cost: 3K, Rows: 5M] (PATH ID: 4)

 | | | | Projection:

online_sales.online_sales_fact_DBD_12_seg_vmartdb_design_vmartdb_design

 | | | | Materialize: OSI.customer_key

 | | | | Execute on: All Nodes

 | | | +-- Inner -> STORAGE ACCESS for CD [Cost: 132, Rows: 50K] (PATH ID: 5)

 | | | | Projection:

public.customer_dimension_DBD_1_rep_vmartdb_design_vmartdb_design_node0001

 | | | | Materialize: CD.customer_key

 | | | | Execute on: All Nodes

 | | +-- Inner -> STORAGE ACCESS for PD [Cost: 152, Rows: 60K] (PATH ID: 6)

 | | | Projection:

public.product_dimension_DBD_2_rep_vmartdb_design_vmartdb_design_node0001

 | | | Materialize: PD.product_key

 | | | Execute on: All Nodes

Inequality joins

HP Vertica processes joins with equality predicates very efficiently. The EXPLAIN plan shows
equality join predicates as join condition (Join Cond:).

=> EXPLAIN SELECT CD.annual_income, OSI.sale_date_key

-> FROM online_sales.online_sales_fact OSI

-> INNER JOIN customer_dimension CD

-> ON CD.customer_key = OSI.customer_key;

 Access Path:

 +-JOIN HASH [Cost: 4K, Rows: 5M] (PATH ID: 1)

 | Join Cond: (CD.customer_key = OSI.customer_key)

 | Materialize at Output: OSI.sale_date_key

 | Execute on: All Nodes

 | +-- Outer -> STORAGE ACCESS for OSI [Cost: 3K, Rows: 5M] (PATH ID: 2)

 | | Projection:

online_sales.online_sales_fact_DBD_12_seg_vmartdb_design_vmartdb_design

 | | Materialize: OSI.customer_key

 | | Execute on: All Nodes

 | +-- Inner -> STORAGE ACCESS for CD [Cost: 264, Rows: 50K] (PATH ID: 3)

 | | Projection:

public.customer_dimension_DBD_1_rep_vmartdb_design_vmartdb_design_node0001

 | | Materialize: CD.annual_income, CD.customer_key

 | | Execute on: All Nodes

-705-

 Understanding Query Plans

However, inequality joins are treated like cross joins and can run less efficiently, which you can
see by the change in cost between the two queries:

=> EXPLAIN SELECT CD.annual_income, OSI.sale_date_key

-> FROM online_sales.online_sales_fact OSI

-> INNER JOIN customer_dimension CD

-> ON CD.customer_key < OSI.customer_key;

 Access Path:

 +-JOIN HASH [Cost: 98M, Rows: 5M] (PATH ID: 1)

 | Join Filter: (CD.customer_key < OSI.customer_key)

 | Materialize at Output: CD.annual_income

 | Execute on: All Nodes

 | +-- Outer -> STORAGE ACCESS for CD [Cost: 132, Rows: 50K] (PATH ID: 2)

 | | Projection:

public.customer_dimension_DBD_1_rep_vmartdb_design_vmartdb_design_node0001

 | | Materialize: CD.customer_key

 | | Execute on: All Nodes

 | +-- Inner -> STORAGE ACCESS for OSI [Cost: 3K, Rows: 5M] (PATH ID: 3)

 | | Projection:

online_sales.online_sales_fact_DBD_12_seg_vmartdb_design_vmartdb_design

 | | Materialize: OSI.sale_date_key, OSI.customer_key

 | | Execute on: All Nodes

Event series joins

The INTERPOLATED path denotes an event series join.

=> EXPLAIN SELECT * FROM hTicks h FULL OUTER JOIN aTicks a

-> ON (h.time INTERPOLATE PREVIOUS VALUE a.time);

 Access Path:

 +-JOIN (INTERPOLATED) [FullOuter] [Cost: 31, Rows: 4 (NO STATISTICS)] (PATH ID: 1)
 Outer (SORT ON JOIN KEY) Inner (SORT ON JOIN KEY)

 | Join Cond: (h."time" = a."time")

 | Execute on: Query Initiator

 | +-- Outer -> STORAGE ACCESS for h [Cost: 15, Rows: 4 (NO STATISTICS)] (PATH ID: 2)

 | | Projection: public.hTicks_node0004

 | | Materialize: h.stock, h."time", h.price

 | | Execute on: Query Initiator

 | +-- Inner -> STORAGE ACCESS for a [Cost: 15, Rows: 4 (NO STATISTICS)] (PATH ID: 3)

 | | Projection: public.aTicks_node0004

 | | Materialize: a.stock, a."time", a.price

 | | Execute on: Query Initiator

Viewing path ID path

The PATH ID is a unique identifier that HP Vertica assigns to each operation (path) within a query
plan. The same ID is shared among EXPLAIN plans, join error messages, and
EXECUTION_ENGINE_PROFILES and QUERY_PLAN_PROFILES system table so you can
quickly trace issues to their root cause. See Linking EXPLAIN plan to error messages and
profiling information (page 713) for more information.

-706-

Administrator's Guide

Here's an example of EXPLAIN output, showing the PATH ID for each path in the optimizer's
query plan.

=> EXPLAIN SELECT * FROM fact JOIN dim ON x=y JOIN ext on y=z;

 Access Path:

 +-JOIN MERGEJOIN(inputs presorted) [Cost: 815, Rows: 10K (NO STATISTICS)] (PATH ID: 1)

 | Join Cond: (dim.y = ext.z)

 | Materialize at Output: fact.x

 | Execute on: All Nodes

 | +-- Outer -> JOIN MERGEJOIN(inputs presorted) [Cost: 408, Rows: 10K (NO STATISTICS)] (PATH ID: 2)

 | | Join Cond: (fact.x = dim.y)

 | | Execute on: All Nodes

 | | +-- Outer -> STORAGE ACCESS for fact [Cost: 202, Rows: 10K (NO STATISTICS)] (PATH ID: 3)

 | | | Projection: public.fact_super

 | | | Materialize: fact.x

 | | | Execute on: All Nodes

 | | +-- Inner -> STORAGE ACCESS for dim [Cost: 202, Rows: 10K (NO STATISTICS)] (PATH ID: 4)

 | | | Projection: public.dim_super

 | | | Materialize: dim.y

 | | | Execute on: All Nodes

 | +-- Inner -> STORAGE ACCESS for ext [Cost: 202, Rows: 10K (NO STATISTICS)] (PATH ID: 5)

 | | Projection: public.ext_super

 | | Materialize: ext.z

 | | Execute on: All Nodes

Viewing filter path

The Filter step evaluates predicates on a single table. It accepts a set of rows, eliminates some
of them (based on the criteria you provide in your query), and returns the rest. For example, the
optimizer can filter local data of a join input that will be joined with another re-segmented join input.

The following statement queries the customer_dimension table and uses the WHERE clause to
filter the results only for male customers in Massachusetts and New Hampshire.

EXPLAIN SELECT

 CD.customer_name,

 CD.customer_state,

 AVG(CD.customer_age) AS avg_age,

 COUNT(*) AS count

FROM customer_dimension CD

WHERE CD.customer_state in ('MA','NH')

 AND CD.customer_gender = 'Male'

GROUP BY CD.customer_state, CD.customer_name;

The following fragment is the textual output of the query plan.

 Access Path:

 +-GROUPBY HASH [Cost: 378, Rows: 544] (PATH ID: 1)

 | Aggregates: sum_float(CD.customer_age), count(CD.customer_age), count(*)

 | Group By: CD.customer_state, CD.customer_name

 | Execute on: Query Initiator

 | +---> STORAGE ACCESS for CD [Cost: 372, Rows: 544] (PATH ID: 2)

 | | Projection:

public.customer_dimension_DBD_1_rep_vmartdb_design_vmartdb_design_node0001

 | | Materialize: CD.customer_state, CD.customer_name, CD.customer_age

 | | Filter: (CD.customer_gender = 'Male')

-707-

 Understanding Query Plans

 | | Filter: (CD.customer_state = ANY (ARRAY['MA', 'NH']))

 | | Execute on: Query Initiator

Viewing the GROUPBY PIPELINED and GROUPBY HASH path

The GROUPBY sort operation usually occurs in two passes: 1) groups individually for each
storage container, and 2) combines the results across storage containers.

A GROUPBY operation also has two approaches:

 PIPELINED requires that inputs be presorted on the columns specified in the group, which
means that HP Vertica need only retain data in the current group in memory. Thus, GROUPBY
PIPELINED operations are preferred because they are generally faster and require less
memory than GROUPBY HASH. PIPELINED is especially useful for queries that process large
numbers of high-cardinality group by columns or DISTINCT aggregates.

 GROUPBY HASH input is not sorted by the group columns, so HP Vertica builds a hash table
on those group columns in order to process the aggregates and group by expressions.

The optimizer chooses the faster GROUP BY PIPELINED over GROUP BY HASH if the certain
conditions are met. See Avoiding GROUPBY Hash with Projection Design in the Programmer's
Guide for details.

Here's an example of how GROUPBY operations look in EXPLAIN output.

=> EXPLAIN SELECT COUNT(DISTINCT annual_income)

 FROM customer_dimension;

The output shows that the optimizer chose the less efficient GROUPBY HASH path, so one
assumption is that the projection was not presorted on the annual_income column:

 Access Path:

 +-GROUPBY NOTHING [Cost: 161, Rows: 1] (PATH ID: 1)

 | Aggregates: count(DISTINCT customer_dimension.annual_income)

 | +---> GROUPBY HASH (SORT OUTPUT) [Cost: 158, Rows: 10K] (PATH ID: 2)
 | | Group By: customer_dimension.annual_income

 | | +---> STORAGE ACCESS for customer_dimension [Cost: 132, Rows: 50K] (PATH ID: 3)

 | | | Projection: public.customer_dimension_DBD_1_rep_vmartdb_design_vmartdb_design_node0001

 | | | Materialize: customer_dimension.annual_income

Assuming you had a projection that was already sorted on the customer_gender column, in the

following query, the optimizer chooses the faster pipelined operation:

=> EXPLAIN SELECT COUNT(distinct customer_gender) from customer_dimension;

 Access Path:

 +-GROUPBY NOTHING [Cost: 22, Rows: 1] (PATH ID: 1)

 | Aggregates: count(DISTINCT customer_dimension.customer_gender)

 | Execute on: Query Initiator

 | +---> GROUPBY PIPELINED [Cost: 20, Rows: 10K] (PATH ID: 2)
 | | Group By: customer_dimension.customer_gender

 | | Execute on: Query Initiator

 | | +---> STORAGE ACCESS for customer_dimension [Cost: 17, Rows: 50K (3 RLE)] (PATH ID: 3)

 | | | Projection: public.customer_dimension_DBD_1_rep_vmartdb_design_vmartdb_design_node0001

 | | | Materialize: customer_dimension.customer_gender

 | | | Execute on: Query Initiator

Similarly, the use of an equality predicate, such as in the following query, preserves GROUPBY
PIPELINED:

-708-

Administrator's Guide

=> EXPLAIN SELECT COUNT(DISTINCT annual_income)

 FROM customer_dimension

 WHERE customer_gender = 'Female';

 Access Path:

 +-GROUPBY NOTHING [Cost: 161, Rows: 1] (PATH ID: 1)

 | Aggregates: count(DISTINCT customer_dimension.annual_income)

 | +---> GROUPBY PIPELINED [Cost: 158, Rows: 10K] (PATH ID: 2)
 | | Group By: customer_dimension.annual_income

 | | +---> STORAGE ACCESS for customer_dimension [Cost: 144, Rows: 47K] (PATH ID: 3)

 | | | Projection: public.customer_dimension_DBD_1_rep_vmartdb_design_vmartdb_design_node0001

 | | | Materialize: customer_dimension.annual_income

 | | | Filter: (customer_dimension.customer_gender = 'Female')

Tip: If EXPLAIN reports GROUPBY HASH, you can modify the projection design to force it to

use GROUPBY PIPELINED.

Viewing sort path

The SORT operator sorts the data according to a specified list of columns. The EXPLAIN plan
indicates the sort expressions as well as if the sort order is ascending (ASC) or descending
(DESC).

For example, the following query and its plan show the column list nature of the SORT operator:

EXPLAIN SELECT

 CD.customer_name,

 CD.customer_state,

 AVG(CD.customer_age) AS avg_age,

 COUNT(*) AS count

FROM customer_dimension CD

WHERE CD.customer_state in ('MA','NH')

 AND CD.customer_gender = 'Male'

GROUP BY CD.customer_state, CD.customer_name

ORDER BY avg_age, customer_name;

 Access Path:

 +-SORT [Cost: 422, Rows: 544] (PATH ID: 1)

 | Order: (<SVAR> / float8(<SVAR>)) ASC, CD.customer_name ASC

 | Execute on: Query Initiator

 | +---> GROUPBY HASH [Cost: 378, Rows: 544] (PATH ID: 2)

 | | Aggregates: sum_float(CD.customer_age), count(CD.customer_age),

count(*)

 | | Group By: CD.customer_state, CD.customer_name

 | | Execute on: Query Initiator

 | | +---> STORAGE ACCESS for CD [Cost: 372, Rows: 544] (PATH ID: 3)

 | | | Projection:

public.customer_dimension_DBD_1_rep_vmart_vmart_node0001

 | | | Materialize: CD.customer_state, CD.customer_name, CD.customer_age

 | | | Filter: (CD.customer_gender = 'Male')

 | | | Filter: (CD.customer_state = ANY (ARRAY['MA', 'NH']))

 | | | Execute on: Query Initiator

-709-

 Understanding Query Plans

If you change the sort order, for example to descending, the change appears in the plan:

EXPLAIN SELECT

 CD.customer_name,

 CD.customer_state,

 AVG(CD.customer_age) AS avg_age,

 COUNT(*) AS count

FROM customer_dimension CD

WHERE CD.customer_state in ('MA','NH')

 AND CD.customer_gender = 'Male'

GROUP BY CD.customer_state, CD.customer_name

ORDER BY avg_age DESC, customer_name;

 Access Path:

 +-SORT [Cost: 422, Rows: 544] (PATH ID: 1)

 | Order: (<SVAR> / float8(<SVAR>)) DESC, CD.customer_name ASC

 | Execute on: Query Initiator

 | +---> GROUPBY HASH [Cost: 378, Rows: 544] (PATH ID: 2)

 | | Aggregates: sum_float(CD.customer_age), count(CD.customer_age),

count(*)

 | | Group By: CD.customer_state, CD.customer_name

 | | Execute on: Query Initiator

 | | +---> STORAGE ACCESS for CD [Cost: 372, Rows: 544] (PATH ID: 3)

 | | | Projection:

public.customer_dimension_DBD_1_rep_vmart_vmart_node0001

 | | | Materialize: CD.customer_state, CD.customer_name, CD.customer_age

 | | | Filter: (CD.customer_gender = 'Male')

 | | | Filter: (CD.customer_state = ANY (ARRAY['MA', 'NH']))

 | | | Execute on: Query Initiator

Viewing limit path
The LIMIT path restricts the number of result rows based on the LIMIT clause in the query.

=> EXPLAIN SELECT COUNT(DISTINCT annual_income) FROM customer_dimension LIMIT 10;

 Access Path:

 +-SELECT LIMIT 10 [Cost: 161, Rows: 10] (PATH ID: 0)
 | Output Only: 10 tuples

 | +---> GROUPBY NOTHING [Cost: 161, Rows: 1] (PATH ID: 1)

 | | Aggregates: count(DISTINCT customer_dimension.annual_income)

 | | Output Only: 10 tuples

 | | +---> GROUPBY HASH (SORT OUTPUT) [Cost: 158, Rows: 10K] (PATH ID: 2)

 | | | Group By: customer_dimension.annual_income

 | | | +---> STORAGE ACCESS for customer_dimension [Cost: 132, Rows: 50K] (PATH ID: 3)

 | | | | Projection:

public.customer_dimension_DBD_1_rep_vmartdb_design_vmartdb_design_node0001

 | | | | Materialize: customer_dimension.annual_income

Notes

Since LIMIT specifies the maximum number of result set rows to return, using it in queries with
thousands of rows could increase query performance.

-710-

Administrator's Guide

The optimizer will push LIMIT down as far as possible in queries. A single LIMIT clause in the
query could generate multiple 'Output Only: ' annotations on the plan.

Viewing data redistribution path

The optimizer broadcasts or resegments data, as needed.

Broadcasting sends a complete copy of an intermediate result to all nodes in the cluster.
Broadcast is used for joins when

 One table is very small (usually the inner table) compared to the other

 HP Vertica can avoid other large upstream resegmentation operations

 Outer join or subquery semantics require one side of the join to be replicated

Re-segmenting takes an existing projection or intermediate relation and segments the data evenly
to each node in the cluster. At the end of the resegment operation, every row from the input
relation is on exactly one node. Resegmentation is the operation used most often for distributed
joins in HP Vertica if the data is not already segmented for local joins. See Using Identically
Segmented Projections in the Programmer's Guide.

Resegment example
CREATE TABLE T1 (a INT, b INT) SEGMENTED BY HASH(a) ALL NODES;

CREATE TABLE T2 (x INT, y INT) SEGMENTED BY HASH(x) ALL NODES;

=> EXPLAIN SELECT * FROM T1 JOIN T2 ON T1.a = T2.y;

 QUERY PLAN DESCRIPTION:

 Access Path:

 +-JOIN HASH [Cost: 639, Rows: 10K (NO STATISTICS)] (PATH ID: 1) Inner (RESEGMENT)
 | Join Cond: (T1.a = T2.y)

 | Materialize at Output: T1.b

 | Execute on: All Nodes

 | +-- Outer -> STORAGE ACCESS for T1 [Cost: 151, Rows: 10K (NO STATISTICS)] (PATH ID: 2)

 | | Projection: public.T1_b0

 | | Materialize: T1.a

 | | Execute on: All Nodes

 | +-- Inner -> STORAGE ACCESS for T2 [Cost: 302, Rows: 10K (NO STATISTICS)] (PATH ID: 3)

 | | Projection: public.T2_b0

 | | Materialize: T2.x, T2.y

 | | Execute on: All Nodes

Broadcast example
=> EXPLAIN SELECT * FROM T1 LEFT JOIN T2 ON T1.a > T2.y;

 Access Path:

 +-JOIN HASH [LeftOuter] [Cost: 40K, Rows: 10K (NO STATISTICS)] (PATH ID: 1) Inner (BROADCAST)

 | Join Filter: (T1.a > T2.y)

 | Materialize at Output: T1.b

 | Execute on: All Nodes

 | +-- Outer -> STORAGE ACCESS for T1 [Cost: 151, Rows: 10K (NO STATISTICS)] (PATH ID: 2)

 | | Projection: public.T1_b0

 | | Materialize: T1.a

 | | Execute on: All Nodes

-711-

 Understanding Query Plans

 | +-- Inner -> STORAGE ACCESS for T2 [Cost: 302, Rows: 10K (NO STATISTICS)] (PATH ID: 3)

 | | Projection: public.T2_b0

 | | Materialize: T2.x, T2.y

 | | Execute on: All Nodes

Viewing analytic function path

HP Vertica attempts to optimize multiple SQL-99 analytic functions from the same query by
grouping them together into Analytical Groups that are on the ORDER BY and PARTITION BY

clauses.

For each Analytical Group, HP Vertica performs a distributed sort and resegment of the data, if
necessary.

You can tell how many sorts and resegments are required based on the query plan.

For example the following EXPLAIN plans shows that the FIRST_VALUE() and LAST_VALUE()
functions are in the same Analytic Group because their OVER clause is the same. In contrast,
ROW_NUMBER() has a different ORDER BY clause, so it is in a different Analytic Group. Since

both groups share the same PARTITION BY deal_stage, the data does not need to be
resegmented between groups so only a single 'Group Resegment' appears in the text explain
plan:

EXPLAIN SELECT

 first_value(deal_size) OVER (PARTITION BY deal_stage ORDER BY deal_size) ,

 last_value(deal_size) OVER (PARTITION BY deal_stage ORDER BY deal_size) ,

 row_number() OVER (PARTITION BY deal_stage ORDER BY largest_bill_amount)
 FROM customer_dimension;

 Access Path:

 +-ANALYTICAL [Cost: 1K, Rows: 50K] (PATH ID: 1)

 | Analytic Group

 | Functions: row_number()

 | Group Sort: customer_dimension.deal_stage ASC, customer_dimension.largest_bill_amount ASC
NULLS LAST

 | Analytic Group

 | Functions: first_value(), last_value()
 | Group Filter: customer_dimension.deal_stage

 | Group Sort: customer_dimension.deal_stage ASC, customer_dimension.deal_size ASC NULLS LAST
 | Execute on: All Nodes

 | +---> STORAGE ACCESS for customer_dimension [Cost: 263, Rows: 50K] (PATH ID: 2)

 | | Projection: public.customer_dimension_DBD_1_rep_vmart_vmart_node0001

 | | Materialize: customer_dimension.largest_bill_amount, customer_dimension.deal_stage,

customer_dimension.deal_size

 | | Execute on: All Nodes

See Also

The Window OVER() Clause in the SQL Reference Manual

-712-

Administrator's Guide

Viewing merge path

The MERGE path indicates that the optimizer has performed a MERGE operation between a target

and source table.

=> EXPLAIN MERGE INTO locations l USING new_locations n

 ON (l.user_id = n.user_id

 AND l.location_x = n.location_x AND

 l.location_y = n.location_y)

 WHEN MATCHED THEN UPDATE SET location_count = l.location_count +

n.location_count

 WHEN NOT MATCHED THEN INSERT (user_id, location_x, location_y, location_count,

location_name)

 VALUES (n.user_id, n.location_x, n.location_y, n.location_count,

n.location_name);

 Access Path:

 +-DML MERGE
 | Target Projection: public.locations_b1

 | Target Projection: public.locations_b0

 | Target Prep:

 | Execute on: All Nodes

 | +---> JOIN MERGEJOIN(inputs presorted) [RightOuter] [Cost: 28, Rows: 3 (NO STATISTICS)] (PATH ID:

1) Outer (RESEGMENT) Inner (RESEGMENT)

 | | Join Cond: (locations.user_id = VAL(2)) AND (locations.location_x = VAL(2)) AND

(locations.location_y = VAL(2))

 | | Execute on: All Nodes

 | | +-- Outer -> STORAGE ACCESS for <No Alias> [Cost: 15, Rows: 2 (NO STATISTICS)] (PATH ID: 2)

 | | | Projection: public.locations_b0

 | | | Materialize: locations.user_id, locations.location_x, locations.location_y,

locations.location_count, locations.location_name, locations.epoch

 | | | Execute on: All Nodes

 | | +-- Inner -> SELECT [Cost: 12, Rows: 3 (NO STATISTICS)] (PATH ID: 3)

 | | | Execute on: All Nodes

 | | | +---> STORAGE ACCESS for n [Cost: 12, Rows: 3 (NO STATISTICS)] (PATH ID: 4)

 | | | | Projection: public.new_locations_b0

 | | | | Materialize: n.user_id, n.location_x, n.location_y, n.location_count, n.location_name

 | | | | Execute on: All Nodes

See Also

MERGE in the SQL Reference Manual

Designing for Merge Optimizations (page 97)

Merging Database Records (page 304)

-713-

 Understanding Query Plans

Linking EXPLAIN plan to error messages and profiling

information
The PATH ID is a unique identifier that HP Vertica assigns to each operation (path) within a query

plan. The same ID is shared among EXPLAIN plans, join error messages, and
EXECUTION_ENGINE_PROFILES and QUERY_PLAN_PROFILES system tables so that you
can quickly trace issues to their root cause.

If a query returns a join error similar to the following examples, you can preface the query with
EXPLAIN and look for PATH ID n in the output to see which join in the query had the problem.

ERROR: Join inner did not fit in memory ((B x A)

using B_sp and A_sp (PATH ID: 1))

...

ERROR: Nonexistent foreign key value detected in

FK-PK join Hash-Join(public.fact x public.dim)

using subquery and dim_p (PATH ID: 1); value 15

...

ERROR: Join ((public.ask x public.bid) using ask_super

and bid_super (PATH ID: 2)) inner partition did not

fit in memory; value Null

Example

In the following series of commands, EXPLAIN returns the PATH ID for each plan, PROFILE
profiles the query, and the EXECUTION_ENGINE_PROFILES system table returns operating and
profiling counters, along with the PATH_ID that links back to EXPLAIN:

1 Run EXPLAIN <query>. The command in the example output below returns 5 paths, each
identified by a distinct PATH ID:

=> EXPLAIN SELECT * FROM fact JOIN dim ON x=y JOIN ext on y=z;

 Access Path:

 +-JOIN MERGEJOIN(inputs presorted) [Cost: 815, Rows: 10K (NO

STATISTICS)] (PATH ID: 1)

 | Join Cond: (dim.y = ext.z)

 | Materialize at Output: fact.x

 | Execute on: All Nodes

 | +-- Outer -> JOIN MERGEJOIN(inputs presorted) [Cost: 408, Rows: 10K

(NO STATISTICS)] (PATH ID: 2)

 | | Join Cond: (fact.x = dim.y)

 | | Execute on: All Nodes

 | | +-- Outer -> STORAGE ACCESS for fact [Cost: 202, Rows: 10K (NO

STATISTICS)] (PATH ID: 3)

 | | | Projection: public.fact_super

 | | | Materialize: fact.x

 | | | Execute on: All Nodes

-714-

Administrator's Guide

 | | +-- Inner -> STORAGE ACCESS for dim [Cost: 202, Rows: 10K (NO

STATISTICS)] (PATH ID: 4)

 | | | Projection: public.dim_super

 | | | Materialize: dim.y

 | | | Execute on: All Nodes

 | +-- Inner -> STORAGE ACCESS for ext [Cost: 202, Rows: 10K (NO

STATISTICS)] (PATH ID: 5)

 | | Projection: public.ext_super

 | | Materialize: ext.z

 | | Execute on: All Nodes

2 Run PROFILE <query> to save execution counters to the EXECUTION_ENGINE_PROFILES
table.

=> PROFILE SELECT * FROM fact JOIN dim ON x=y JOIN ext on y=z;

NOTICE: Statement is being profiled.

HINT: select * from v_monitor.execution_engine_profiles

 where transaction_id=45035996273743212 and statement_id=2;

NOTICE: Initiator memory for query: [on pool sysquery: 16384 KB,

minimum: 6020 KB]

NOTICE: Total memory required by query: [16384 KB]

3 Query the EXECUTION_ENGINE_PROFILES system table for the join operations and PATH
ID. The output refers to PATH IDs 1 and 2 in the EXPLAIN output.

=> SELECT node_name, operator_name, counter_name, path_id

 FROM execution_engine_profiles

 WHERE operator_name LIKE 'Join%' AND counter_name LIKE '%rows%';

 node_name | operator_name | counter_name | path_id

-----------+------------------+-------------------------+---------

 e0 | JoinManyFewMerge | rows produced | 1

 e0 | JoinManyFewMerge | rle rows produced | 1

 e0 | JoinManyFewMerge | estimated rows produced | 1

 e0 | JoinManyFewMerge | rows produced | 2

 e0 | JoinManyFewMerge | rle rows produced | 2

 e0 | JoinManyFewMerge | estimated rows produced | 2

 e1 | JoinManyFewMerge | rows produced | 1

 e1 | JoinManyFewMerge | rle rows produced | 1

 e1 | JoinManyFewMerge | estimated rows produced | 1

 e1 | JoinManyFewMerge | rows produced | 2

 e1 | JoinManyFewMerge | rle rows produced | 2

 e1 | JoinManyFewMerge | estimated rows produced | 2

 initiator | JoinManyFewMerge | rows produced | 1

 initiator | JoinManyFewMerge | rle rows produced | 1

 initiator | JoinManyFewMerge | estimated rows produced | 1

 initiator | JoinManyFewMerge | rows produced | 2

 initiator | JoinManyFewMerge | rle rows produced | 2

 initiator | JoinManyFewMerge | estimated rows produced | 2

(18 rows)

-715-

 Understanding Query Plans

Using the QUERY_PLAN_PROFILES table

You can also query the QUERY_PLAN_PROFILES system table, which provides real-time status
for each path in a query plan, where each PATH ID provides the following information:

 Clock time the query spent on a particular path in the plan

 CPU resources used on that path

 Memory used

 Disk/network I/O done

 Path status (started/completed)

 Whether the query is running or finished running

-716-

 716

Profiling Database Performance

When you profile data in your database, you examine where time is spent during query execution.
Unlike the EXPLAIN plan, where the cost and row counts are estimates, the counters and plans
from profiled data reflect what really happened and let you consider some of the following:

 Query plan quality issues

 Projection design issues

 If the query is network bound

 How much memory each operator allocated

 If a query rewrite might speed up the query

 How many threads are executing for each operator

 How the data has flowed through each operator at different points in time over the life of the
query

Real-time profiling is always "on", without profiling being explicitly enabled.

Profiling data is available for:

 Any query that has been explicitly profiled

 Any query that is currently executing

Note: If the data was not being profiled, it will disappear once it completes.

To determine how the database is performing, you can profile the following areas:

 Session—Provides basic session parameters and lock time out data

 Query—Provides general information about queries that ran, such as the query strings used
and the duration of queries

 Execution Engine—Provides detailed information about the execution run of each query

HP Vertica continues to make enhancements to the EXECUTION_ENGINE_PROFILES system
table and the Workload Analyzer, but the profiling methods described in this section can still be a
valuable tool for gaining insight into where time is going.

Syntax and parameters for functions discussed in the following topics can be found in the SQL
Reference Manual:

 Profiling Functions

 SET_CONFIG_PARAMETER()

The following topics provide more information about how to enable and disable profiling for current
and all sessions.

-717-

 Profiling Database Performance

How to Determine if Profiling is Enabled
To determine if profiling is enabled, run the following command:

=> SELECT SHOW_PROFILING_CONFIG();

 SHOW_PROFILING_CONFIG

--

 Session Profiling: Local off, Global on

 EE Profiling: Local off, Global on

 Query Profiling: Local off, Global on

(1 row)

You can enable profiling in the following ways:

 Set local profiling using the Profiling Functions

 Set global profiling using the SET_CONFIG_PARAMETER() function

See the SQL Reference Manual for syntax and parameters.

How to Enable Profiling for the Current Session

To enable profiling for the current session, call the ENABLE_PROFILING() function and pass it a
profiling-type argument, where the profiling-type can be one of the following:

 session — Enables profiling basic session parameters and lock time out data

 query — Enables profiling for general information about queries that ran, such as the query
strings used and the duration of queries

 ee — Enables profiling for query execution runs

Examples

The following statement enables profiling for the execution run of each query:

=> SELECT ENABLE_PROFILING('ee');

 ENABLE_PROFILING

 EE Profiling Enabled

(1 row)

How to Disable Profiling for the Current Session
To disable profiling for all sessions on all nodes, call the DISABLE_PROFILING() function and
pass it a profiling-type argument, where the profiling-type can be one of the following:

 session — Disables profiling basic session parameters and lock time out data

-718-

Administrator's Guide

 query — Disables profiling for general information about queries that ran, such as the query
strings used and the duration of queries

 ee — Disables profiling for query execution runs

Example

The following command disables profiling on query execution runs:

=> SELECT DISABLE_PROFILING('ee');

 DISABLE_PROFILING

 EE Profiling Disabled

(1 row)

How to Enable Profiling for all Sessions

To enable profiling for all sessions on all nodes, call the SET_CONFIG_PARAMETER() function
and pass it a global-type argument, where global-type can be one of the following:

 GlobalSessionProfiling — Enables profiling for sessions

 GlobalQueryProfiling — Enables profiling for queries

 GlobalEEProfiling — Enables profiling for query execution runs

Example

The following command enables query profiling for all sessions and on all nodes:

=> SELECT SET_CONFIG_PARAMETER('GlobalSessionProfiling',1);

How to Disable Profiling for all Sessions
To disable profiling for all sessions on all nodes, call the SET_CONFIG_PARAMETER() function
and pass it a global-type argument, where global-type can be one of the following

 GlobalSessionProfiling — Disables profiling for sessions

 GlobalQueryProfiling — Disables profiling for queries

 GlobalEEProfiling — Disables profiling for query execution runs

Example

The following command disables query profiling for all sessions on all nodes:

=> SELECT SET_CONFIG_PARAMETER('GlobalSessionProfiling',0);

 SET_CONFIG_PARAMETER

 Parameter set successfully

-719-

 Profiling Database Performance

(1 row)

How to Clear Profiling Data
Because HP Vertica stores profiled data is in memory, profiling could be a memory-intensive
operation, depending on how much data you collect.

To clear profiled data from memory, use the SQL CLEAR_PROFILING() function and pass it a
profiling-type argument, where profiling-type can be one of the following:

 session — Clears profiling basic session parameters and lock time out data

 query — Clears profiling for general information about queries that ran, such as the query

strings used and the duration of queries

 ee — Clears profiling for query execution runs

Example

The following command clears profiling on query execution runs:

=> SELECT CLEAR_PROFILING('ee');

 CLEAR_PROFILING

 GLOBAL EE Profiling Cleared

(1 row)

About Real-time Profiling
Real-time profiling provides a way to monitor long-running queries.

Real-time profiling counters are available for all currently executing statements—including internal
HP Vertica operations like mergeout, recovery, and refresh—but only while the statements are
executing. Unless you explicitly enabled profiling using the keyword PROFILE or
ENABLE_PROFILING(), profiling counters are not present after the statement completes.

Tip: In order to view real-time profiling data, queries need, at a minimum, the

transaction_id for the transaction of interest. If multiple statements have been executed

within the transaction, then you also need the Statement_id. The transaction IDs for internal
operations can be found in the vertica.log files.

About profiling counters

The EXECUTION_ENGINE_PROFILES system table lets you view available profiling counters for
internal operations, as well as user statements. Some of the most useful counters are:

 execution time—CPU clock time spent processing the query, in microseconds

 rows produced—Number of logical rows produced by an operator.

-720-

Administrator's Guide

 total merge phases—Number of merge phases an LSort or DataTarget operator must
complete to finish sorting its data. NULL until the operator can compute this value (all data
must first be ingested by the operator). Variants on this value include join inner total merge
phases.

 completed merge phases—Number of merge phases already completed by an LSort or
DataTarget operator. Compare to the total merge phases. Variants on this value include join
inner completed merge phases.

 current size of temp files—For externalizing operators only, the current size of the encoded
and compressed temp data that the operator has written to files. Variants on this value include
join inner current size of temp files (bytes).

Example

To monitor a refresh operation that was initiated on node0001, find the ―select

start_refresh()‖ entry in the vertica.log file on node0001. You'll see something similar to
the following log fragment:

2011-04-21 13:34:56.494 Refresh:0xb9ab5e0 [Refresh] <INFO> Refreshing projection public.fact_p from

buddy

2011-04-21 13:34:56.494 Refresh:0xb9ab5e0 [Refresh] <INFO> Refreshing projection public.fact_p from

buddy, historical epochs 0-12, oid 45035996273713164

2011-04-21 13:34:56.497 nameless:0xb972330 [Txn] <INFO> Begin Txn: a0000000000227 'Refresh through

recovery'

2011-04-21 13:34:56.497 nameless:0xb972330 [Command] <INFO> Performing refresh through recovery on

projection fact_p (45035996273713164) 0-12

2011-04-21 13:34:56.497 nameless:0xb972330 <LOG> @v_db_node0001: 00000: Recover alterSpec

45035996273713164 0-12

2011-04-21 13:34:56.500 nameless:0xb972330 [Command] <INFO> (a0000000000227) Executing the recovery

plan

The transaction ID for this recovery operation is a0000000000227.

To monitor the profiling counters, you can run a command like the following:

=> SELECT * FROM execution_engine_profiles

 WHERE TO_HEX(transaction_id)='a000000000027'

 AND counter_name = 'execution time (us)'

 ORDER BY node_name, counter_value DESC;

In this example, find the operators with the largest execution time on each node:

=> SELECT node_name, operator_name, counter_value execution_time_us

 FROM v_monitor.execution_engine_profiles

 WHERE counter_name='execution time (us)'

 ORDER BY node_name, counter_value DESC;

You can use the Linux watch command to monitor long-running queries with one-second updates:

WATCH -n 1 -d "vsql -c \"select node_name, operator_name, counter_value execution_time_us ... \""

Profiling query plans

If you want to know how much time a query spent on a particular operation in a query plan, you can
observe the real-time flow of data through the plan by querying the QUERY_PLAN_PROFILES
system table. See Profiling Query Plan Profiles (page 725).

-721-

 Profiling Database Performance

How to Profile a Single Statement

To profile a single statement add the PROFILE keyword to the beginning of the SQL statement, a
command that saves profiling information for future analysis:

=> PROFILE SELECT customer_name, annual_income

 FROM public.customer_dimension

 WHERE (customer_gender, annual_income) IN (

 SELECT customer_gender, MAX(annual_income)

 FROM public.customer_dimension

 GROUP BY customer_gender);

A notice and hint display in the terminal window while the statement is executing. For example, the
above query returns the following:

NOTICE: Statement is being profiled.

HINT: select * from v_monitor.execution_engine_profiles where

transaction_id=45035996273740886 and statement_id=10;

NOTICE: Initiator memory estimate for query:

[on pool general: 1418047 KB, minimum: 192290 KB]

NOTICE: Total memory required by query: [1418047 KB]

 customer_name | annual_income

--------------------+---------------

 Meghan U. Miller | 999960

 Michael T. Jackson | 999981

(2 rows)

Tip: Use the statement returned by the hint as a starting point for reviewing the query's profiling
data, such as to see what counters are available.

Real-time profiling example

The following sample statement requests the operators with the largest execution time on each
node:

=> SELECT node_name, operator_name, counter_valueexecution_time_us

 FROM v_monitor.execution_engine_profiles

 WHERE counter_name='execution time (us)'

 ORDER BY node_name, counter_value DESC;

How to use the Linux 'watch' command

You can use the Linux 'watch' command to monitor long-running queries with one-second
updates; for example:

WATCH -n 1 -d "vsql-c \"select node_name, operator_name,

counter_valueexecution_time_us... \""

How to find out which counters are available

To see what counters are available, issue the following command:

=> SELECT DISTINCT(counter_name) FROM EXECUTION_ENGINE_PROFILES;

 counter_name

-722-

Administrator's Guide

 estimated rows produced

 bytes spilled

 rle rows produced

 join inner current size of temp files (bytes)

 request wait (us)

 start time

 intermediate rows to process

 producer wait (us)

 rows segmented

 consumer stall (us)

 bytes sent

 rows sent

 join inner completed merge phases

 encoded bytes received

 cumulative size of raw temp data (bytes)

 end time

 bytes read from cache

 total merge phases

 rows pruned by valindex

 cumulative size of temp files (bytes)

 output queue wait (us)

 rows to process

 input queue wait (us)

 rows processed

 memory allocated (bytes)

 join inner cumulative size of temp files (bytes)

 current size of temp files (bytes)

 join inner cumulative size of raw temp data (bytes)

 bytes received

 file handles

 bytes read from disk

 join inner total merge phases

 completed merge phases

 memory reserved (bytes)

 clock time (us)

 response wait (us)

 network wait (us)

 rows received

 encoded bytes sent

 execution time (us)

 producer stall (us)

 buffers spilled

 rows produced

(43 rows)

See also

Profiling Query Plan Profiles (page 725)

How to View Profiling Data

HP Vertica provides the profiling information it collects in the form of system tables that you can
query using full SELECT support.

-723-

 Profiling Database Performance

System tables

The system tables for profiling are described in the SQL Reference Manual. They are as follows:

Virtual Table Description

EXECUTION_ENGINE_PROFILES Provides profiling information for query
execution runs.

QUERY_PLAN_PROFILES Provides real-time status for each path in a
query plan.

QUERY_PROFILES Provides profiling information for queries.

SESSION_PROFILES Provides profiling information for sessions.

About sample views for counter information

The EXECUTION_ENGINE_PROFILES table contains the data for each profiling counter as a row
within the table. For example the execution time (us) counter is in one row, and the rows produced
counter is in a second row. Since there are many different profiling counters, many rows of
profiling data exist for each operator. Some sample views are installed by default to simplify the
viewing of profiling counters.

Running scripts to create the sample views

The following script creates the v_demo schema and places the views in that schema.

/opt/vertica/scripts/demo_eeprof_view.sql

Viewing counter values

There is one view for each of the profiling counters to simplify viewing of a single counter value.
For example, to view the execution time for all operators, issue the following command from the
database:

=> SELECT * FROM v_demo.eeprof_execution_time_us;

To view all counter values available for all profiled queries:

=> SELECT * FROM v_demo.eeprof_counters;

To select all distinct operators available for all profiled queries:

=> SELECT * FROM v_demo.eeprof_operators;

Combining views

These views can easily be combined:

=> SELECT * FROM v_demo.eeprof_execution_time_us

 NATURAL LEFT OUTER JOIN v_demo.eeprof_rows_produced;

To view the execution time and rows produced for a specific transaction and statement_id
ranked by execution time on each node:

=> SELECT * FROM v_demo.eeprof_execution_time_us_rank

 WHERE transaction_id=45035996273709699

-724-

Administrator's Guide

 AND statement_id=1 order by transaction_id, statement_id, node_name, rk;

To view the top five operators by execution time on each node:

=> SELECT * FROM v_demo.eeprof_execution_time_us_rank

 WHERE transaction_id=45035996273709699

 AND statement_id=1 AND rk<=5

 ORDER BY transaction_id, statement_id, node_name, rk;

What to look for

If you see large amounts of time spent in GroupByHash operators, you might want to revisit the
projection designs so that GroupByPipeline can be used. Use the Database Designer for these
optimizations. (See Designing a Physical Schema (page 76) and Creating Custom Designs
(page 89) in the Administrator's Guide.)

Profiling data can also show data skews if some nodes are processing more data than others. The

rows produced counter in the EXECUTION_ENGINE_PROFILES table shows how many rows

have been processed by each of the operators. Comparing the rows produced across all nodes
for a given operator would reveal if there is a data skew issue.

Note: Some of the profiling operators shown in EXECUTION_ENGINE_PROFILES are
generic, such as Join. The EXPLAIN plan includes more details about the specific join that is
executing.

How to View Real-time Profiling Data
You can query real-time profiling data during execution runs for a long-running query or other

operation. The demo view v_demo.eeprof_execution_time_us_rank is helpful for
viewing the current top five operators by execution time prior to the query completing:

=> SELECT * FROM v_demo.eeprof_execution_time_us_rank

 WHERE transaction_id=45035996273709699 AND statement_id=1 AND rk<=5

 ORDER BY transaction_id, statement_id, node_name, rk;

The Linux watch command is useful for long-running queries or long-running internal operations
by observing which part of the query plan is currently active:

=> watch -d -n 2 ―vsql -c \‖

=> SELECT * FROM v_demo.eeprof_execution_time_us_rank

 WHERE transaction_id=45035996273709699 AND statement_id=1 AND rk<=5

 ORDER BY transaction_id, statement_id, node_name, rk;\‖ ‖

This watch command executes the query every two seconds and highlights the differences

between successive updates.

Tip: Using watch is a convenient way to monitor the currently-executing operators within the

plan on each nodes in the HP Vertica cluster. watch is also a convenient way to monitor
workloads that might be unbalanced between nodes; for example, if some nodes have become
idle while other nodes are still active. Such imbalances could be caused by data skews or by
hardware issues.

-725-

 Profiling Database Performance

See also

Profiling Query Plan Profiles (page 725)

Profiling Query Plan Profiles
If you want to monitor real-time flow of data through a query plan, query the
V_MONITOR.QUERY_PLAN_PROFILES system table. Information returned by this table is
useful for letting you know what a query did when, which occurs throughout a plan in a series of
steps, called paths. Each path has an associated PATH ID, as illustrated in the following EXPLAIN
command fragment.

The same PATH ID is shared among EXPLAIN plans, join error messages, and
EXECUTION_ENGINE_PROFILES and QUERY_PLAN_PROFILES system tables, making it
easy for you to quickly trace issues to their root cause.

For each PATH ID, the QUERY_PLAN_PROFILES system table provides a high-level summary
of:

 The time a particular query operation took to execute

 How much memory that path's operation consumed

 Size of data sent/received over the network

 Whether the path operation is executing

For example, you might observe that a GROUP BY HASH operation executed in 0.2 seconds
using 100MB of memory.

Note: Real-time status is available in QUERY_PLAN_PROFILES system table output only; it is

not available in EXPLAIN plan output.

What you need for query plan profiling

In order to view real-time profiling data, you need, at a minimum, the transaction_id for the
transaction you want to monitor. If multiple statements executed in the same transaction, you also
need the statement_id. You can get both statement and transaction IDs by issuing the PROFILE
<query> command, as well as by querying the CURRENT_SESSION system table. For example:

=> SELECT transaction_id, statement_id from current_session;

 transaction_id | statement_id

-------------------+--------------

 45035996273955001 | 4

(1 row)

-726-

Administrator's Guide

Transaction IDs for internal operations, such as mergeout, recovery, and refresh, are stored in the
vertica.log files.

See also

Understanding query plans (page 695)

Collecting statistics (page 666)

Analyzing Workloads (page 658)

How to Get Query Plan Status for Small Queries

Real-time profiling counters, stored in the EXECUTION_ENGINE_PROFILES system table, are
available for all currently executing statements—including internal operations, such as a
mergeout.

Profiling counters are available after query execution has completed if any of the following
conditions are true:

 The query was run through the PROFILE <query> command

 Systemwide profiling has been enabled through the ENABLE_PROFILING() function

 The query took longer than two seconds to run

Profiling counters are saved in the EXECUTION_ENGINE_PROFILES system table until the
storage quota has been exceeded.

Get query plan status for small queries:

1 Profile the query to get the transaction_id and statement_id from from
EXECUTION_ENGINE_PROFILES; for example:

=> PROFILE SELECT * FROM t1 JOIN t2 ON t1.x = t2.y;

NOTICE 4788: Statement is being profiled

HINT: Select * from v_monitor.execution_engine_profiles where

transaction_id=45035996273955065 and statement_id=4;

NOTICE 3557: Initiator memory for query: [on pool general: 248544 KB,

minimum: 248544 KB]

NOTICE 5077: Total memory required by query: [248544 KB]

 x | y | z

---+---+-------

 3 | 3 | three

(1 row)

2 Query the QUERY_PLAN_PROFILES system table.

Tip: For best results, sort on the transaction_id, statement_id, path_id, and path_line_index

columns.

=> SELECT ... FROM query_plan_profiles

WHERE transaction_id=45035996273955065 and statement_id=4;

ORDER BY transaction_id, statement_id, path_id, path_line_index;

-727-

 Profiling Database Performance

How to Get Query Plan Status for Large Queries
Real-time profiling is designed to monitor large (long-running) queries, so you need to perform just
two steps to monitor plans for large queries:

1 Get the statement and transaction IDs for the query plan you want to profile by querying the
CURRENT_SESSION system table:

=> SELECT transaction_id, statement_id from current_session;

 transaction_id | statement_id

-------------------+--------------

 45035996273955001 | 4

(1 row)

2 Run the query. Note the following is just a short example; it would be a poor candidate for a
long-running query. (See Example section below for a better example.):

=> SELECT * FROM t1 JOIN t2 ON x=y JOIN ext on y=z;

3 Query the QUERY_PLAN_PROFILES system table, and sort on the transaction_id,
statement_id, path_id, and path_line_index columns.

=> SELECT ... FROM query_plan_profiles

WHERE transaction_id=45035996273955001 and statement_id=4;

ORDER BY transaction_id, statement_id, path_id, path_line_index;

You can also use the Linux watch command to monitor long-running queries with two-second
updates. See How to View Real-time Profiling Data (page 724).

Example

The following series of commands creates a table for a long-running query and then runs the
QUERY_PLAN_PROFILES system table:

=> CREATE TABLE longq(x int);

CREATE TABLE

=> COPY longq FROM STDIN;

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.

>> 1

>> 2

>> 3

>> 4

>> 5

>> 6

>> 7

>> 8

>> 9

>> 10

>> \.

=> INSERT INTO longq SELECT f1.x+f2.x+f3.x+f4.x+f5.x+f6.x+f7.x

 FROM longq f1

-728-

Administrator's Guide

 CROSS JOIN longq f2

 CROSS JOIN longq f3

 CROSS JOIN longq f4

 CROSS JOIN longq f5

 CROSS JOIN longq f6 CROSS JOIN longq f7;

 OUTPUT

 10000000

(1 row)

=> COMMIT;

COMMIT

Suppress query output on the terminal window by using the vsql \o command:

=> \o /home/dbadmin/longQprof

Query the new table:

=> SELECT * FROM longq;

Get the transaction and statement IDs:

=> SELECT transaction_id, statement_id from current_session;

 transaction_id | statement_id

-------------------+--------------

 45035996273955021 | 4

(1 row)

Turn off the \o command or HP Vertica will continue to save query plan information to the file you
specified. Alternatively leave it on and examine the file after you query the
QUERY_PLAN_PROFILES system table.

=> \o

Query the QUERY_PLAN_PROFILES system table;

=> SELECT transaction_id, statement_id, path_id, path_line_index, is_executing,

 running_time, path_line

 FROM query_plan_profiles

 WHERE transaction_id=45035996273955021 AND statement_id=4

 ORDER BY transaction_id, statement_id, path_id, path_line_index;

Improving Readability of QUERY_PLAN_PROFILES Output

Output from the QUERY_PLAN_PROFILES table can be very wide because of the path_line
column, so For best results and optimal readability, when you query the
QUERY_PLAN_PROFILES table, consider using one or more of the following methods:

 Sort system table output by transaction_id, statement_id, path_id, and path_line_index; for
example:

=> SELECT ... FROM query_plan_profiles

 WHERE ...

 ORDER BY transaction_id, statement_id, path_id, path_line_index;

 Consider using column aliases to decrease column width, as in the following sample query:

-729-

 Profiling Database Performance

=> SELECT statement_id AS sid,

 path_id AS id,

 path_line_index AS order,

 is_started AS start,

 is_completed AS end,

 is_executing AS exe,

 running_time AS run,

 memory_allocated_bytes AS mem,

 read_from_disk_bytes AS read,

 received_bytes AS rec,

 sent_bytes AS sent,

 FROM query_plan_profiles

 WHERE transaction_id=45035996273910558 AND statement_id=3

 ORDER BY transaction_id, statement_id, path_id, path_line_index;;

 Suppress output from the screen and save profiling data to a file by using the vsql \o
command. For example:

1. Turn on the \o command.

=> \o /home/dbadmin/long-queries

2. Run the query using the EXPLAIN command.

=> EXPLAIN SELECT * FROM customer_dimension;

3. Turn off \o command.

=> \o

See How to Save a Query Plan (page 697) for details.

Managing Query Profiling Data
HP Vertica retains data for queries until the storage quota for the table is exceeded, when it
automatically purges the oldest queries to make room for new ones. You can clear profiled data by
manually calling one of the following functions:

 CLEAR_PROFILING() clears profiled data from memory. For example, the following
command clears profiling for general query-run information, such as the query strings used
and the duration of queries.

=> SELECT CLEAR_PROFILING('query');

 CLEAR_DATA_COLLECTOR() clears all memory and disk records on the Data Collector
tables and functions and resets collection statistics in the V_MONITOR.DATA_COLLECTOR
system table.

 FLUSH_DATA_COLLECTOR() waits until memory logs are moved to disk and then flushes
the Data Collector, synchronizing the DataCollector log with the disk storage.

Configuring data retention policies

HP Vertica retains the historical data it gathers based on retention policies, which a superuser can
configure. See Retaining monitoring information (page 599).

-730-

Administrator's Guide

Reacting to Suboptimal Query Plans

If profiling uncovers a suboptimal query, invoking one of the following functions might help:

 ANALYZE_WORKLOAD() analyzes system information held in system tables and provides
tuning recommendations that are based on a combination of statistics, system and data
collector events, and database-table-projection design.

 ANALYZE_STATISTICS() and ANALYZE_HISTOGRAM() both collect and aggregates data
samples and storage information from all nodes that store projections associated with the
specified table or column with one primary difference:

 ANALYZE_STATISTICS uses a fixed-size statistical data sampling (10% per disk). This
function returns results quickly, but it is less accurate than using ANALYZE_HISTOGRAM
to get a larger sampling of disk data.

 ANALYZE_HISTOGRAM takes a user-specified percentage of disk data sampling (from 1 -
100). If you analyze more than 10 percent data per disk, this function returns more
accurate data than ANALYZE_STATISTICS, but it takes proportionately longer to return
statistics.

You can also run your query through the Database Designer. See Creating a query-specific
design using the Database Designer (page 84).

How to Label Queries for Profiling

If you want to be able to quickly identify queries for profiling and debugging, you can pass a
user-defined label to an HP Vertica query as a hint.

Query labels must have the following characteristics:

 All characters must be alphanumeric with any number of underscores (_) and dollar signs ($)

 The maximum label length is 128 octets

 The label cannot contain space characters

Label syntax

Labels take the following form:

/*+label(label-name)*/

You can use optional spaces before and after the plus sign in label hints (between the /* and the
+). For example, HP Vertica accepts each of the following directives:

/*+label(label-name)*/

/* + label(label-name)*/

/*+ label(label-name)*/

/*+label(label-name) */

-731-

 Profiling Database Performance

Example

Here's an example of some simple label hints and their associated queries:

SELECT /*+label(myselectquery)*/ COUNT(*) FROM t;

INSERT /*+label(myinsertquery)*/ INTO t VALUES(1);

UPDATE /*+label(myupdatequery)*/ t SET a = 2 WHERE a = 1;

DELETE /*+label(mydeletequery)*/ FROM t WHERE a = 1;

After you have added a label to one or more queries, you can query the QUERY_PROFILES
system table to see which queries ran with your supplied labels.

The QUERY_PROFILES system table IDENTIFIER column returns the user-defined label that
you previously assigned to a query. Here's an example of the table's output using the query labels.

=> SELECT identifier, query from query_profiles;

 identifier | query

 ---------------+---

 myselectquery | SELECT /*+label(myselectquery)*/ COUNT(*) FROM t;

 myinsertquery | INSERT /*+label(myinsertquery)*/ INTO t VALUES(1);

 myupdatequery | UPDATE /*+label(myupdatequery)*/ t SET a = 2 WHERE a = 1;

 mydeletequery | DELETE /*+label(mydeletequery)*/ FROM t WHERE a = 1;

 | SELECT identifier, query from query_profiles;

(5 rows)

-732-

About Locales

HP Vertica supports the following internationalization features:

Unicode Character Encoding: UTF-8 (8-bit UCS/Unicode Transformation Format)

HP Vertica 6.1.x stores character data in UTF-8 is an abbreviation for Unicode Transformation
Format-8 (where 8 equals 8-bit) and is a variable-length character encoding for Unicode created
by Ken Thompson and Rob Pike. UTF-8 can represent any universal character in the Unicode
standard, yet the initial encoding of byte codes and character assignments for UTF-8 is coincident
with ASCII (requiring little or no change for software that handles ASCII but preserves other
values).

All input data received by the database server is expected to be in UTF-8, and all data output by
HP Vertica is in UTF-8. The ODBC API operates on data in UCS-2 on Windows systems, and
normally UTF-8 on Linux systems. (A UTF-16 ODBC driver is available for use with the DataDirect
ODBC manager.) JDBC and ADO.NET APIs operate on data in UTF-16. The client drivers
automatically convert data to and from UTF-8 when sending to and receiving data from HP Vertica
using API calls. The drivers do not transform data loaded by executing a COPY or COPY LOCAL
statement.

Locales

The locale is a parameter that defines the user's language, country, and any special variant
preferences, such as collation. HP Vertica uses the locale to determine the behavior of various
string functions as well for collation for various SQL commands that require ordering and
comparison; for example, GROUP BY, ORDER BY, joins, the analytic ORDER BY clause, and so
forth.

By default, the locale for the database is en_US@collation=binary (English US). You can
establish a new default locale that is used for all sessions on the database, as well as override
individual sessions with different locales. Additionally the locale can be set through ODBC,
JDBC, and ADO.net.

See the following topics in the Administrator's Guide

 Implement Locales for International Data Sets (page 29)

 Supported Locales (page 740)

 Appendix (page 732)

Notes

 Projections are always collated using the en_US@collation=binary collation regardless of

the session collation. Any locale-specific collation is applied at query time.

 The maximum length parameter for VARCHAR and CHAR data type refers to the number of
octets (bytes) that can be stored in that field and not number of characters. When using
multi-byte UTF-8 characters, the fields must be sized to accommodate from 1 to 4 bytes per
character, depending on the data.

-733-

 About Locales

 When the locale is non-binary, the collation function is used to transform the input to a binary
string which sorts in the proper order.

This transformation increases the number of bytes required for the input according to this
formula:

result_column_width = input_octet_width * CollationExpansion + 4

CollationExpansion defaults to 5.

Locale Aware String Functions

HP Vertica provides string functions to support internationalization. Unless otherwise specified,
these string functions can optionally specify whether VARCHAR arguments should be interpreted
as octet (byte) sequences, or as (locale-aware) sequences of characters. You do this by adding
"USING OCTETS" and "USING CHARACTERS" (default) as a parameter to the function. The
following is the full list of string functions that are locale aware:

 BTRIM removes the longest string consisting only of specified characters from the start and
end of a string.

 CHARACTER_LENGTH returns an integer value representing the number of characters or
octets in a string.

 GREATEST returns the largest value in a list of expressions.

 GREATESTB returns its greatest argument, using binary ordering, not UTF-8 character
ordering.

 INITCAP capitalizes first letter of each alphanumeric word and puts the rest in lowercase.

 INSTR searches string for substring and returns an integer indicating the position of the
character in string that is the first character of this occurrence.

 LEAST returns the smallest value in a list of expressions.

 LEASTB returns its least argument, using binary ordering, not UTF-8 character ordering.

 LEFT returns the specified characters from the left side of a string.

 LENGTH takes one argument as an input and returns returns an integer value representing
the number of characters in a string.

 LTRIM returns a VARCHAR value representing a string with leading blanks removed from the
left side (beginning).

 OVERLAY returns a VARCHAR value representing a string having had a substring replaced
by another string.

 OVERLAYB returns an octet value representing a string having had a substring replaced by
another string.

 REPLACE replaces all occurrences of characters in a string with another set of characters.

 RIGHT returns the length right-most characters of string.

 SUBSTR returns a VARCHAR value representing a substring of a specified string.

 SUBSTRB returns a byte value representing a substring of a specified string.

 SUBSTRING given a value, a position, and an optional length, returns a value representing a
substring of the specified string at the given position.

 TRANSLATE replaces individual characters in string_to_replace with other characters.

 UPPER returns a VARCHAR value containing the argument converted to uppercase letters.

-734-

Administrator's Guide

UTF-8 String Functions

Starting in Release 5.1, the following string functions treat the the VARCHAR arguments as UTF-8
strings (when "USING OCTETS" is not specified) regardless of the locale setting.

 LOWER returns a VARCHAR value containing the argument converted to lowercase letters.

 UPPER returns a VARCHAR value containing the argument converted to uppercase letters.

 INITCAP capitalizes first letter of each alphanumeric word and puts the rest in lowercase.

 INSTR searches string for substring and returns an integer indicating the position of the
character in string that is the first character of this occurrence.

 SPLIT_PART splits string on the delimiter and returns the location of the beginning of the given
field (counting from one).

 POSITION returns an integer value representing the character location of a specified substring
with a string (counting from one).

 STRPOS returns an integer value representing the character location of a specified substring
within a string (counting from one).

See Also

String Literals in the SQL Reference Manual.

Locale Specification
The locale is a parameter that defines the user's language, country, and any special variant
preferences, such as collation. HP Vertica uses the locale to determine the behavior of various
string functions as well for collation for various SQL commands that require ordering and
comparison; for example, GROUP BY, ORDER BY, joins, the analytic ORDER BY clause, and so
forth.

By default, the locale for the database is en_US@collation=binary (English US). You can

establish a new default locale that is used for all sessions on the database, as well as override
individual sessions with different locales. Additionally the locale can be set through ODBC,
JDBC, and ADO.net.

HP Vertica locale specifications follow a subset of the Unicode LDML
http://www.unicode.org/reports/tr35 standard as implemented by the ICU library.

Locales are specified using long (page 734) or short (page 739) forms.

Long Form

The long form uses full keyname pair/value names.

Syntax
[language][_script][_country][_variant][@keyword=type[;keyword=type]...]

http://www.unicode.org/reports/tr35

-735-

 About Locales

Note: Only collation-related keywords are supported by HP Vertica 4.0.

Parameters

language A two- or three-letter lowercase code for a particular language. For example, Spanish is
"es", English is "en" and French is "fr". The two-letter language code uses the ISO-639
standard.

_script An optional four-letter script code that follows the language code. If specified, it should be
a valid script code as listed on the Unicode ISO 15924 Registry.

_country A specific language convention within a generic language for a specific country or region.

For example, French is spoken in many countries, but the currencies are different in each
country. To allow for these differences among specific geographical, political, or cultural
regions, locales are specified by two-letter, uppercase codes. For example, "FR"

represents France and "CA" represents Canada. The two letter country code uses the
ISO-3166 standard.

_variant Differences may also appear in language conventions used within the same country. For

example, the Euro currency is used in several European countries while the individual
country's currency is still in circulation. To handle variations inside a language and
country pair, add a third code, the variant code. The variant code is arbitrary and

completely application-specific. ICU adds "_EURO" to its locale designations for locales
that support the Euro currency. Variants can have any number of underscored key words.
For example, "EURO_WIN" is a variant for the Euro currency on a Windows computer.

Another use of the variant code is to designate the Collation (sorting order) of a locale.
For instance, the "es__TRADITIONAL" locale uses the traditional sorting order which is
different from the default modern sorting of Spanish.

-736-

Administrator's Guide

keyword Use optional keywords and their values to specify collation order and currency instead of

variants (as desired). If used, keywords must be unique, but their order is not significant. If
a keyword is unknown or unsupported an error is reported. Keywords and values are not
case sensitive.

HP Vertica supports the following keywords:

Keyword Short form Description

collation K If present, the collation keyword modifies how the

collation service searches through the locale data when
instantiating a collator. Collation supports the following
values:

 big5han — Pinyin ordering for Latin, big5
charset ordering for CJK characters (used in
Chinese).

 dict — For a dictionary-style ordering (such as
in Sinhala).

 direct — Hindi variant.

 gb2312/gb2312han — Pinyin ordering for Latin,
gb2312han charset ordering for CJK characters
(used in Chinese).

 phonebook — For a phonebook-style ordering
(such as in German).

 pinyin — Pinyin ordering for Latin and for CJK
characters; that is, an ordering for CJK
characters based on a character-by-character
transliteration into a pinyin (used in Chinese).

 reformed — Reformed collation (such as in
Swedish).

 standard — The default ordering for each
language. For root it is [UCA] order; for each

other locale it is the same as UCA (Unicode
Collation Algorithm
http://unicode.org/reports/tr10/) ordering

except for appropriate modifications to certain
characters for that language. The following are
additional choices for certain locales; they have
effect only in certain locales.

 stroke — Pinyin ordering for Latin, stroke order
for CJK characters (used in Chinese) not
supported.

 traditional — For a traditional-style ordering
(such as in Spanish).

 unihan — Pinyin ordering for Latin, Unihan
radical-stroke ordering for CJK characters
(used in Chinese) not supported.

 binary — the HP Vertica default, providing

UTF-8 octet ordering, compatible with HP
Vertica 3.5.

http://unicode.org/reports/tr10/

-737-

 About Locales

Collation Keyword Parameters

The following parameters support the collation keyword:

Parameter Short form Description

colstrength S Sets the default strength for comparison. This feature is
locale dependant.

Values can be any of the following:

 1 (primary) — Ignores case and accents. Only
primary differences are used during comparison.
For example, "a" versus "z".

 2 (secondary) — Ignores case. Only secondary and

above differences are considered for comparison.
For example, different accented forms of the same
base letter ("a" versus "\u00E4").

 3 (tertiary) — Is the default. Only tertiary and above

differences are considered for comparison. Tertiary
comparisons are typically used to evaluate case
differences. For example "Z" versus "z".

 4 (quarternary) — Used with Hiragana, for example.

 5 (identical) — All differences are considered
significant during comparison.

colAlternate A Sets alternate handling for variable weights, as described in
UCA.

Values can be any of the following:

 Non-ignorable (short form N or D)

 Shifted (short form S)

colBackwards F For Latin with accents, this parameter determines which
accents are sorted. It sets the comparison for the second
level to be backwards.

Note: colBackwards is automatically set for French accents.

If on (short form O), then the normal UCA algorithm is used.

If off (short form X), then all strings that are in Fast C or D
Normalization Form (FCD
http://unicode.org/notes/tn5/#FCD-Test) sort correctly, but

others do not necessarily sort correctly. So it should only be
set off i f the the strings to be compared are in FCD.

colNormalization N If on (short form O), then the normal UCA algorithm is used.

If off (short form X), all strings that are in [FCD] sort correctly,
but others won't necessarily sort correctly. So it should only
be set off if the strings to be compared are in FCD.

colCaseLevel E If set to on (short form O), a level consisting only of case
characteristics is inserted in front of tertiary level. To ignore
accents but take cases into account, set strength to primary

and case level to on. If set to off (short form X), this level is
omitted.

-738-

Administrator's Guide

colCaseFirst C If set to upper (short form U), causes upper case to sort

before lower case. If set to lower (short form L)), lower case
sorts before upper case. This is useful for locales that have
already supported ordering but require different order of

cases. It affects case and tertiary levels.

If set to off (short form X), tertiary weights are not affected.

colHiraganaQuarternary H Controls special treatment of Hiragana code points on

quaternary level. If turned on (short form O), Hiragana
codepoints get lower values than all the other non-variable
code points. The strength must be greater or equal than

quaternary for this attribute to take effect. If turned off (short
form X), Hiragana letters are treated normally.

colNumeric D If set to on, any sequence of Decimal Digits

(General_Category = Nd in the [UCD]) is sorted at a primary
level with its numeric value. For example, "A-21" < "A-123".

variableTop B If set to on, any sequence of Decimal Digits

(General_Category = Nd in the [UCD]) is sorted at a primary
level with its numeric value. For example, "A-21" < "A-123".

Notes

 Locale specification strings are case insensitive. The following are all equivalent: en_us,
EN_US, and En_uS.

 You can substitute underscores with hyphens. For example: [-script]

 The ICU library works by adding options, such as S=1 separately after the long-form locale has
been accepted. HP Vertica has extended its long-form processing to accept options as
keywords, as suggested by the Unicode Consortium.

 Collations may default to root, the ICU default collation.

 Incorrect locale strings are accepted if the prefix can be resolved to a known locale version.

For example, the following works because the language can be resolved:

\locale en_XX

INFO: Locale: 'en_XX'

INFO: English (XX)

INFO: Short form: 'LEN'

 The following does not work because the language cannot be resolved:

\locale xx_XX

xx_XX: invalid locale identifier

 Invalid values of the collation keyword and its synonyms do not cause an error. For example,
the following does not generate an error. It simply ignores the invalid value:

\locale en_GB@collation=xyz

INFO: Locale: 'en_GB@collation=xyz'

INFO: English (United Kingdom, collation=xyz)

INFO: Short form: 'LEN'

 POSIX-type locales, such as en_US.UTF-8 work to some extent in that the encoding part
"UTF-8" is ignored.

-739-

 About Locales

 HP Vertica 4.0 uses the icu4c-4_2_1 library to support basic locale/collation processing with
some extensions as noted here. This does not yet meet the current standard for locale
processing, http://tools.ietf.org/html/rfc5646.

 To learn more about collation options, consult
http://www.unicode.org/reports/tr35/#Locale_Extension_Key_and_Type_Data.

Examples

The following specifies a locale for english as used in the United States:

en_US

The following specifies a locale for english as used in the United Kingdom:

en_GB

The following specifies a locale for German as used in Deutschland and uses phonebook-style
collation.

\locale de_DE@collation=phonebook

INFO: Locale: 'de_DE@collation=phonebook'

INFO: German (Germany, collation=Phonebook Sort Order)

INFO: Deutsch (Deutschland, Sortierung=Telefonbuch-Sortierregeln)

INFO: Short form: 'KPHONEBOOK_LDE'

The following specifies a locale for German as used in Deutschland. It uses phonebook-style
collation with a strength of secondary.

\locale de_DE@collation=phonebook;colStrength=secondary

INFO: Locale: 'de_DE@collation=phonebook'

INFO: German (Germany, collation=Phonebook Sort Order)

INFO: Deutsch (Deutschland, Sortierung=Telefonbuch-Sortierregeln)

INFO: Short form: 'KPHONEBOOK_LDE_S2'

Short Form

HP Vertica accepts locales in short form. You can use the short form to specify the locale and
keyname pair/value names.

Determining the Short Form of a Locale

To determine the short form for a locale, type in the long form and view the last line of INFO, as
follows:

\locale fr

INFO: Locale: 'fr'

INFO: French

INFO: franÃ§ais

INFO: Short form: 'LFR'

Specifying a Short Form Locale

The following example specifies the en (English) locale:

\locale LEN

INFO: Locale: 'en'

-740-

Administrator's Guide

INFO: English

INFO: Short form: 'LEN'

The following example specifies a locale for German as used in Deutschland, and it uses
phonebook-style collation.

\locale LDE_KPHONEBOOK

INFO: Locale: 'de@collation=phonebook'

INFO: German (collation=Phonebook Sort Order)

INFO: Deutsch (Sortierung=Telefonbuch-Sortierregeln)

INFO: Short form: 'KPHONEBOOK_LDE'

The following example specifies a locale for German as used in Deutschland. It uses
phonebook-style collation with a strength of secondary (see "Collation Keyword Parameters" in
Long Form (page 734)).

\locale LDE_KPHONEBOOK_S2

INFO: Locale: 'de@collation=phonebook'

INFO: German (collation=Phonebook Sort Order)

INFO: Deutsch (Sortierung=Telefonbuch-Sortierregeln)

INFO: Short form: 'KPHONEBOOK_LDE_S2'

Supported Locales
The following are the supported locale strings for HP Vertica. Each locale can optionally have a list
of key/value pairs (see Long Form (page 734)).

Locale Name Language or Variant Region

af Afrikaans

af_NA Afrikaans Namibian Afrikaans

af_ZA Afrikaans South Africa

am Ethiopic

am_ET Ethiopic Ethiopia

ar Arabic

ar_AE Arabic United Arab Emirates

ar_BH Arabic Bahrain

ar_DZ Arabic Algeria

ar_EG Arabic Egypt

ar_IQ Arabic Iraq

ar_JO Arabic Jordan

ar_KW Arabic Kuwait

ar_LB Arabic Lebanon

ar_LY Arabic Libya

-741-

 About Locales

ar_MA Arabic Morocco

ar_OM Arabic Oman

ar_QA Arabic Qatar

ar_SA Arabic Saudi Arabia

ar_SD Arabic Sudan

ar_SY Arabic Syria

ar_TN Arabic Tunisia

ar_YE Arabic Yemen

as Assamese

as_IN Assamese India

az Azerbaijani

az_Cyrl Azerbaijani Cyrillic

az_Cyrl_AZ Azerbaijani Azerbaijan Cyrillic

az_Latn Azerbaijani Latin

az_Latn_AZ Azerbaijani Azerbaijan Latin

be Belarusian

be_BY Belarusian Belarus

bg Bulgarian

bg_BG Bulgarian Bulgaria

bn Bengali

bn_BD Bengali Bangladesh

bn_IN Bengali India

bo Tibetan

bo_CN Tibetan PR China

bo_IN Tibetan India

ca Catalan

ca_ES Catalan Spain

cs Czech

cs_CZ Czech Czech Republic

cy Welsh

cy_GB Welsh United Kingdom

da Danish

da_DK Danish Denmark

de German

-742-

Administrator's Guide

de_AT German Austria

de_BE German Belgium

de_CH German Switzerland

de_DE German Germany

de_LI German Liechtenstein

de_LU German Luxembourg

el Greek

el_CY Greek Cyprus

el_GR Greek Greece

en English

en_AU English Australia

en_BE English Belgium

en_BW English Botswana

en_BZ English Belize

en_CA English Canada

en_GB English United Kingdom

en_HK English Hong Kong S.A.R. of
China

en_IE English Ireland

en_IN English India

en_JM English Jamaica

en_MH English Marshall Islands

en_MT English Malta

en_NA English Namibia

en_NZ English New Zealand

en_PH English Philippines

en_PK English Pakistan

en_SG English Singapore

en_TT English Trinidad and Tobago

en_US_POSIX English United States Posix

en_VI English U.S. Virgin Islands

en_ZA English Zimbabwe or South
Africa

en_ZW English Zimbabwe

eo Esperanto

-743-

 About Locales

es Spanish

es_AR Spanish Argentina

es_BO Spanish Bolivia

es_CL Spanish Chile

es_CO Spanish Columbia

es_CR Spanish Costa Rica

es_DO Spanish Dominican Republic

es_EC Spanish Ecuador

es_ES Spanish Spain

es_GT Spanish Guatemala

es_HN Spanish Honduras

es_MX Spanish Mexico

es_NI Spanish Nicaragua

es_PA Spanish Panama

es_PE Spanish Peru

es_PR Spanish Puerto Rico

es_PY Spanish Paraguay

es_SV Spanish El Salvador

es_US Spanish United States

es_UY Spanish Uruguay

es_VE Spanish Venezuela

et Estonian

et_EE Estonian Estonia

eu Basque Spain

eu_ES Basque Spain

fa Persian

fa_AF Persian Afghanistan

fa_IR Persian Iran

fi Finnish

fi_FI Finnish Finland

fo Faroese

fo_FO Faroese Faroe Islands

fr French

-744-

Administrator's Guide

fr_BE French Belgium

fr_CA French Canada

fr_CH French Switzerland

fr_FR French France

fr_LU French Luxembourg

fr_MC French Monaco

fr_SN French Senegal

ga Gaelic

ga_IE Gaelic Ireland

gl Gallegan

gl_ES Gallegan Spain

gsw German

gsw_CH German Switzerland

gu Gujurati

gu_IN Gujurati India

gv Manx

gv_GB Manx United Kingdom

ha Hausa

ha_Latn Hausa Latin

ha_Latn_GH Hausa Ghana (Latin)

ha_Latn_NE Hausa Niger (Latin)

-745-

 About Locales

ha_Latn_NG Hausa Nigeria (Latin)

haw Hawaiian Hawaiian

haw_US Hawaiian United States

he Hebrew

he_IL Hebrew Israel

hi Hindi

hi_IN Hindi India

hr Croation

hr_HR Croation Croatia

hu Hungarian

hu_HU Hungarian Hungary

hy Armenian

hy_AM Armenian Armenia

hy_AM_REVISED Armenian Revised Armenia

id Indonesian

id_ID Indonesian Indonesia

ii Sichuan

ii_CN Sichuan Yi

is Icelandic

is_IS Icelandic Iceland

-746-

Administrator's Guide

it Italian

it_CH Italian Switzerland

it_IT Italian Italy

ja Japanese

ja_JP Japanese Japan

ka Georgian

ka_GE Georgian Georgia

kk Kazakh

kk_Cyrl Kazakh Cyrillic

kk_Cyrl_KZ Kazakh Kazakhstan (Cyrillic)

kl Kalaallisut

kl_GL Kalaallisut Greenland

km Khmer

km_KH Khmer Cambodia

kn Kannada

kn-IN Kannada India

ko Korean

ko_KR Korean Korea

kok Konkani

kok_IN Konkani India

-747-

 About Locales

kw Cornish

kw_GB Cornish United Kingdom

lt Lithuanian

lt_LT Lithuanian Lithuania

lv Latvian

lv_LV Latvian Latvia

mk Macedonian

mk_MK Macedonian Macedonia

ml Malayalam

ml_IN Malayalam India

mr Marathi

mr_IN Marathi India

ms Malay

ms_BN Malay Brunei

ms_MY Malay Malaysia

mt Maltese

mt_MT Maltese Malta

nb Norwegian Bokml

nb_NO Norwegian Bokml Norway

ne Nepali

-748-

Administrator's Guide

ne_IN Nepali India

ne_NP Nepali Nepal

nl Dutch

nl_BE Dutch Belgium

nl_NL Dutch Netherlands

nn Norwegian nynorsk

nn_NO Norwegian nynorsk Norway

om Oromo

om_ET Oromo Ethiopia

om_KE Oromo Kenya

or Oriya

or_IN Oriya India

pa Punjabi

pa_Arab Punjabi Arabic

pa_Arab_PK Punjabi Pakistan (Arabic)

pa_Guru Punjabi Gurmukhi

pa_Guru_IN Punjabi India (Gurmukhi)

pl Polish

pl_PL Polish Poland

ps Pashto

-749-

 About Locales

ps_AF Pashto Afghanistan

pt Portuguese

pt_BR Portuguese Brazil

pt_PT Portuguese Portugal

ro Romanian

ro_MD Romanian Moldavia

ro_RO Romanian Romania

ru Russian

ru_RU Russian Russia

ru_UA Russian Ukraine

si Sinhala

si_LK Sinhala Sri Lanka

sk Slovak

sk_SK Slovak Slovakia

sl Slovenian

sl_SL Slovenian Slovenia

so Somali

so_DJ Somali Djibouti

so_ET Somali Ethiopia

so_KE Somali Kenya

-750-

Administrator's Guide

so_SO Somali Somalia

sq Albanian

sq_AL Albanian Albania

sr Serbian

sr_Cyrl Serbian Cyrillic

sr_Cyrl_BA Serbian Bosnia and

Herzegovina (Cyrillic)

sr_Cyrl_ME Serbian Montenegro (Cyrillic)

sr_Cyrl_RS Serbian Serbia (Cyrillic)

sr_Latn Serbian Latin

sr_Latn_BA Serbian Bosnia and

Herzegovina (Latin)

sr_Latn_ME Serbian Montenegro (Latin)

sr_Latn_RS Serbian Serbia (Latin)

sv Swedish

sv_FI Swedish Finland

sv_SE Swedish Sweden

sw Swahili

sw_KE Swahili Kenya

sw_TZ Swahili Tanzania

ta Tamil

ta_IN Tamil India

-751-

 About Locales

te Telugu

te_IN Telugu India

th Thai

th_TH Thai Thailand

ti Tigrinya

ti_ER Tigrinya Eritrea

ti_ET Tigrinya Ethiopia

tr Turkish

tr_TR Turkish Turkey

uk Ukrainian

uk_UA Ukrainian Ukraine

ur Urdu

ur_IN Urdu India

ur_PK Urdu Pakistan

uz Uzbek

uz_Arab Uzbek Arabic

uz_Arab_AF Uzbek Afghanistan (Arabic)

uz_Cryl Uzbek Cyrillic

uz_Cryl_UZ Uzbek Uzbekistan (Cyrillic)

uz_Latin Uzbek Latin

-752-

Administrator's Guide

us_Latin_UZ Uzbekistan (Latin)

vi Vietnamese

vi_VN Vietnamese Vietnam

zh Chinese

zh_Hans Chinese Simplified Han

zh_Hans_CN Chinese China (Simplified Han)

zh_Hans_HK Chinese Hong Kong SAR China

(Simplified Han)

zh_Hans_MO Chinese Macao SAR China

(Simplified Han)

zh_Hans_SG Chinese Singapore (Simplified

Han)

zh_Hant Chinese Traditional Han

zh_Hant_HK Chinese Hong Kong SAR China
(Traditional Han)

zh_Hant_MO Chinese Macao SAR China
(Traditional Han)

zh_Hant_TW Chinese Taiwan (Traditional
Han)

zu Zulu

zu_ZA Zulu South Africa

Locale Restrictions and Workarounds
The following list contains the known restrictions for locales for international data sets.

Session related:

 The locale setting is session scoped and applies to queries only (no DML/DDL) run in that
session. You cannot specify a locale for an individual query.

 The default locale for new sessions can be set using a configuration parameter

-753-

 About Locales

Query related:

The following restrictions apply when queries are run with locale other than the default
en_US@collation=binary:

 Multicolumn NOT IN subqueries are not supported when one or more of the left-side NOT IN
columns is of CHAR or VARCHAR data type. For example:

=> CREATE TABLE test (x VARCHAR(10), y INT);

=> SELECT ... FROM test WHERE (x,y) NOT IN (SELECT ...);

 ERROR: Multi-expression NOT IN subquery is not supported because a

left hand expression could be NULL

Note: An error is reported even if columns test.x and test.y have a "NOT NULL"
constraint.

 Correlated HAVING clause subqueries are not supported if the outer query contains a GROUP

BY on a CHAR or a VARCHAR column. In the following example, the GROUP BY x in the outer
query causes the error:

=> DROP TABLE test CASCADE;

=> CREATE TABLE test (x VARCHAR(10));

=> SELECT COUNT(*) FROM test t GROUP BY x HAVING x

 IN (SELECT x FROM test WHERE t.x||'a' = test.x||'a');

 ERROR: subquery uses ungrouped column "t.x" from outer query

 Subqueries that use analytic functions in the HAVING clause are not supported. For example:

=> DROP TABLE test CASCADE;

=> CREATE TABLE test (x VARCHAR(10));

=> SELECT MAX(x)OVER(PARTITION BY 1 ORDER BY 1)

 FROM test GROUP BY x HAVING x IN (

 SELECT MAX(x) FROM test);

 ERROR: Analytics query with having clause expression that involves

aggregates

 and subquery is not supported

DML/DDL related:

 SQL identifiers (such as table names, column names, and so on) can use UTF-8 Unicode
characters. For example, the following CREATE TABLE statement uses the ß (German eszett)
in the table name:

=> CREATE TABLE straße(x int, y int);

 CREATE TABLE

 Projection sort orders are made according to the default en_US@collation=binary collation.
Thus, regardless of the session setting, issuing the following command creates a projection
sorted by col1 according to the binary collation:

=> CREATE PROJECTION p1 AS SELECT * FROM table1 ORDER BY col1;

Note that in such cases, straße and strasse would not be near each other on disk.

Sorting by binary collation also means that sort optimizations do not work in locales other than
binary. HP Vertica returns the following warning if you create tables or projections in a
non-binary locale:

WARNING: Projections are always created and persisted in the default

-754-

Administrator's Guide

HP Vertica locale. The current locale is de_DE

 When creating pre-join projections, the projection definition query does not respect the locale
or collation setting. This means that when you insert data into the fact table of a pre-join
projection, referential integrity checks are not locale or collation aware.

For example:

\locale LDE_S1 -- German

=> CREATE TABLE dim (col1 varchar(20) primary key);

=> CREATE TABLE fact (col1 varchar(20) references dim(col1));

=> CREATE PROJECTION pj AS SELECT * FROM fact JOIN dim

 ON fact.col1 = dim.col1 UNSEGMENTED ALL NODES;

=> INSERT INTO dim VALUES('ß');

=> COMMIT;

The following INSERT statement fails with a "nonexistent FK" error even though 'ß' is in the
dim table, and in the German locale 'SS' and 'ß' refer to the same character.

=> INSERT INTO fact VALUES('SS');

 ERROR: Nonexistent foreign key value detected in FK-PK join (fact

x dim)

 using subquery and dim_node0001; value SS

=> => ROLLBACK;

=> DROP TABLE dim, fact CASCADE;

 When the locale is non-binary, the collation function is used to transform the input to a binary
string which sorts in the proper order.

This transformation increases the number of bytes required for the input according to this
formula:

result_column_width = input_octet_width * CollationExpansion + 4

CollationExpansion defaults to 5.

 CHAR fields are displayed as fixed length, including any trailing spaces. When CHAR fields
are processed internally, they are first stripped of trailing spaces. For VARCHAR fields, trailing
spaces are usually treated as significant characters; however, trailing spaces are ignored
when sorting or comparing either type of character string field using a non-BINARY locale.

Loading Representative Data

To effectively test the way the database interacts with your application in a production
environment, load data that is representative of the type of data that might be used in a production
environment. This allows you to effectively test database functionality and performance.

For more information about loading data into an database, see Bulk Loading Data (page 342).

-755-

Appendix: Binary File Formats

Creating Native Binary Format Files
Using COPY to load data with the NATIVE parser requires that the input data files adhere to the
format described below. All NATIVE files must contain:

1 A file signature.

2 A set of column size definitions.

3 The rows of data.

NOTE: You cannot mix Binary and ASCII source files in the same COPY statement.

File Signature

The first part of a NATIVE binary file consists of a file signature. The contents of the signature are
fixed, and listed in the following table.

Byte
Offset

0 1 2 3 4 5 6 7 8 9 10

Hex Value 4E 41 54 49 56 45 0A FF 0D 0A 00

Text
Literals

N A T I V E E'\n' E'\317' E'\r' E'\n' E'\000'

The purpose of the required signature is to ensure that the file has neither been corrupted by a
non-8-bit file transfer, nor stripped of carriage returns, linefeeds, or null values. If the signature is
intact, HP Vertica determines that the file has not been corrupted.

Column Definitions

Following the file signature, the file must define the widths of each column in the file as follows.

Byte
Offset

Length (bytes) Description Comments

11 4 Header area length 32-bit integer in little-endian format that contains the
length in bytes of remaining in the header, not
including itself. This is the number of bytes from the
end of this value to the start of the row data.

15 2 NATIVE file version 16-bit integer in little-endian format containing the version
number of the NATIVE file format. The only valid value is
currently 1. Future changes to the format could be

assigned different version numbers to maintain backward
compatibility.

17 1 Filler Always 0.

18 2 Number of columns 16-bit integer in little-endian format that contains the

-756-

Administrator's Guide

number of columns in each row in the file.

20+ 4 bytes for each
column of data
in the table

Column widths Array of 32-bit integers in little-endian format that define
the width of each column in the row. Variable-width
columns have a value of -1 (0xFF 0xFF 0xFF 0xFF).

Note: All integers in NATIVE files are in little-endian format (least significant byte first).

The width of each column is determined by the data type it contains. The following table explains
the column width needed for each data type, along with the data encoding.

Data Type Length (bytes) Column Content

INTEGER 1, 2, 4, 8 8-, 16-, 32-, and 64-bit integers are supported. All
multi-byte values are stored in little-endian format.

Note: All values for a column must be the width you

specify here. If you set the length of an INTEGER column

to be 4 bytes, then all of the values you supply for that
column must be 32-bit integers.

BOOLEAN 1 0 for false, 1 for true.

FLOAT 8 Encoded in IEEE-754 format.

CHAR User-specified Strings shorter than the specified length must be
right-padded with spaces (E'\040').

 Strings are not null -terminated.

 Character encoding is UTF-8.

 UTF-8 strings can contain multi-byte characters.
Therefore, number of characters in the string
may not equal the number of bytes.

VARCHAR 4-byte integer

(length) + data

The column width for a VARCHAR column is always -1 to

signal that it contains variable-length data.

 Each VARCHAR column value starts with a
32-bit integer that contains the number of bytes
in the string.

 The string must not be null -terminated.

 Character encoding must be UTF-8.

 Remember that UTF-8 strings can contain
multi-byte characters. Therefore, number of
characters in the string may not equal the
number of bytes.

DATE 8 64-bit integer in little-endian format containing the Julian
day since Jan 01 2000 (J2451545)

TIME 8 64-bit integer in little-endian format containing the

number of microseconds since midnight in the UTC time
zone.

TIMETZ 8 64-bit value where

 Upper 40 bits contain the number of

-757-

 Appendix: Binary File Formats

microseconds since midnight.

 Lower 24 bits contain time zone as the UTC

offset in microseconds calculated as follows:
Time zone is logically from -24hrs to +24hrs from
UTC. Instead it is represented here as a number

between 0hrs to 48hrs. Therefore, 24hrs should
be added to the actual time zone to calculate it.

Each portion is stored in little-endian format (5 bytes

followed by 3 bytes).

TIMESTAMP 8 64-bit integer in little-endian format containing the
number of microseconds since Julian day: Jan 01 2000

00:00:00.

TIMESTAMPTZ 8 A 64-bit integer in little-endian format containing the
number of microseconds since Julian day: Jan 01 2000

00:00:00 in the UTC timezone.

INTERVAL 8 64-bit integer in little-endian format containing the
number of microseconds in the interval.

BINARY User-specified Similar to CHAR. The length should be specified in the
file header in the Field Lengths entry for the field. The
field in the record must contain length number of bytes. If

the value is smaller than the specified length, the
remainder should be filled with nulls (E'\000').

VARBINARY 4-byte integer +

data

Stored just like VARCHAR but data is interpreted as

bytes rather than UTF-8 characters.

NUMERIC (precision, scale)

(precision 19 + 1)

 8 rounded up

A constant-length data type. Length is determined by the
precision, assuming that a 64-bit unsigned integer can
store roughly 19 decimal digits. The data consists of a

sequence of 64-bit integers, each stored in little-endian
format, with the most significant integer first. Data in the
integers is stored in base 264. 2's complement is used for

negative numbers.

If there is a scale, then the numeric is stored as numeric
10scale; that is, all real numbers are stored as integers,

ignoring the decimal point. It is required that the scale
matches that of the target column in the database table.
Another option is to use FILLER columns to coerce the

numeric to the scale of the target column.

Row Data

Following the file header is a sequence of records that contain the data for each row of data. Each
record starts with a header:

Length (bytes) Description Comments

4 Row length A 32-bit integer in little-endian format containing the

length of the row's data in bytes. It includes the size of
data only, not the header.

Note: The number of bytes in each row can vary not only

-758-

Administrator's Guide

because of variable-length data, but also because

columns containing NULL values do not have any data in
the row. If column 3 has a NULL value, then column 4's
data immediately follows the end of column 2's data. See

the next

Number of columns 8
rounded up

(CEILING(NumFields / (

sizeof(uint8) * 8));)

Null value bit field A series of bytes whose bits indicate whether a column
contains a NULL. The most significant bit of the first byte

indicates whether the first column in this row contains a
NULL, the next most significant bit indicates whether the
next column contains a NULL, and so on. If a bit is 1

(true) then the column contains a NULL, and there is no
value for the column in the data for the row.

Following the record header is the column values for the row. There is no separator characters for
these values. Their location in the row of data is calculated based on where the previous column's
data ended. Most data types have a fixed width, so their location is easy to determine.
Variable-width values (such as VARCHAR and VARBINARY) start with a count of the number of
bytes the value contains.

See the table in the previous section for details on how each data type's value is stored in the row's
data.

Example

The example below demonstrates creating a table and loading a NATIVE file that contains a single
row of data. The table contains all possible data types.

=> CREATE TABLE allTypes (INTCOL INTEGER,

 FLOATCOL FLOAT,

 CHARCOL CHAR(10),

 VARCHARCOL VARCHAR,

 BOOLCOL BOOLEAN,

 DATECOL DATE,

 TIMESTAMPCOL TIMESTAMP,

 TIMESTAMPTZCOL TIMESTAMPTZ,

 TIMECOL TIME,

 TIMETZCOL TIMETZ,

 VARBINCOL VARBINARY,

 BINCOL BINARY,

 NUMCOL NUMERIC(38,0),

 INTERVALCOL INTERVAL

);

=> COPY allTypes FROM '/home/dbadmin/allTypes.bin' NATIVE DIRECT;

=> \pset expanded

Expanded display is on.

=> SELECT * from allTypes;

-[RECORD 1]--+------------------------

INTCOL | 1

FLOATCOL | -1.11

CHARCOL | one

VARCHARCOL | ONE

BOOLCOL | t

DATECOL | 1999-01-08

-759-

 Appendix: Binary File Formats

TIMESTAMPCOL | 1999-02-23 03:11:52.35

TIMESTAMPTZCOL | 1999-01-08 07:04:37-05

TIMECOL | 07:09:23

TIMETZCOL | 15:12:34-04

VARBINCOL | \253\315

BINCOL | \253

NUMCOL | 1234532

INTERVALCOL | 03:03:03

The content of the allTypes.bin file appears below as a raw hex dump:

4E 41 54 49 56 45 0A FF 0D 0A 00 3D 00 00 00 01 00 00 0E 00

08 00 00 00 08 00 00 00 0A 00 00 00 FF FF FF FF 01 00 00 00

08 00 00 00 08 00 00 00 08 00 00 00 08 00 00 00 08 00 00 00

FF FF FF FF 03 00 00 00 18 00 00 00 08 00 00 00 73 00 00 00

00 00 01 00 00 00 00 00 00 00 C3 F5 28 5C 8F C2 F1 BF 6F 6E

65 20 20 20 20 20 20 20 03 00 00 00 4F 4E 45 01 9A FE FF FF

FF FF FF FF 30 85 B3 4F 7E E7 FF FF 40 1F 3E 64 E8 E3 FF FF

C0 2E 98 FF 05 00 00 00 D0 97 01 80 F0 79 F0 10 02 00 00 00

AB CD AB CD 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 64 D6 12 00 00 00 00 00 C0 47 A3 8E 02 00 00 00

The following table breaks this file down into each of is components, and describes the values it
contains.

Hex Values Description Value

4E 41 54 49 56 45 0A FF

0D 0A 00
Signature NATIVE\n\317\r\n\000

3D 00 00 00 Header area length 61 bytes

01 00 Native file format version Version 1

00 Filler value 0

0E 00 Number of columns 14 columns

08 00 00 00 Width of column 1
(INTEGER)

8 bytes

08 00 00 00 Width of column 2 (FLOAT) 8 bytes

0A 00 00 00 Width of column 3

(CHAR(10))

10 bytes

FF FF FF FF Width of column 4
(VARCHAR)

-1 (variable width column)

01 00 00 00 Width of column 5
(BOOLEAN)

1 bytes

08 00 00 00 Width of column 6 (DATE) 8 bytes

08 00 00 00 Width of column 7

(TIMESTAMP)

8 bytes

08 00 00 00 Width of column 8
(TIMESTAMPTZ)

8 bytes

-760-

Administrator's Guide

08 00 00 00 Width of column 9 (TIME) 8 bytes

08 00 00 00 Width of column 10
(TIMETZ)

8 bytes

FF FF FF FF Width of column 11

(VARBINARY)

-1 (variable width column)

03 00 00 00 Width of column 12
(BINARY)

3 bytes

18 00 00 00 Width of column 13
(NUMERIC)

24 bytes. The size is calculated by
dividing 38 (the precision specified

for the numeric column) by 19 (the
number of digits each 64-bit chunk

can represent) and adding 1. 38

19 + 1 = 3. then multiply by eight to
get the number of bytes needed. 3

 8 = 24 bytes.

08 00 00 00 Width of column 14

(INTERVAL). last portion of
the header section.

8 bytes

73 00 00 00 Number of bytes of data for
the first row. this is the start

of the first row of data.

115 bytes

00 00 Bit field for the null values
contained in the first row of
data

The row contains no null values.

01 00 00 00 00 00 00 00 Value for 64-bit INTEGER

column

1

C3 F5 28 5C 8F C2 F1 BF Value for the FLOAT column -1.11

6F 6E 65 20 20 20 20 20

20 20
Value for the CHAR(10)
column

"one " (padded With

7 spaces to fill the full 10 characters
for the column)

03 00 00 00 The number of bytes in the

following VARCHAR value.

3 bytes

4F 4E 45 The value for the VARCHAR
column

"one"

01 The value for the BOOLEAN
column

True

9A FE FF FF FF FF FF FF The value for the DATE

column

1999-01-08

30 85 B3 4F 7E E7 FF FF The value for the
TIMESTAMP column

1999-02-23 03:11:52.35

40 1F 3E 64 E8 E3 FF FF The value for the
TIMESTAMPTZ column

1999-01-08 07:04:37-05

-761-

 Appendix: Binary File Formats

C0 2E 98 FF 05 00 00 00 The value for the TIME
column

07:09:23

D0 97 01 80 F0 79 F0 10 The value for the TIMETZ

column

15:12:34-05

02 00 00 00 The number of bytes in the
following VARBINARY value

2 bytes

AB CD The value for the
VARBINARY column

Binary data (\253\315 as octal
values)

AB CD 00 The value for the BINARY

column

Binary data (\253\315\000 as octal

values)

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 64 D6 12 00 00 00 00

00

The value for the NUMERIC
column

1234532

C0 47 A3 8E 02 00 00 00 The value for the INTERVAL
column

03:03:03

See Also

COPY in the SQL Reference Manual

-762-

Copyright Notice

Copyright© 2006-2013 Hewlett-Packard, and its licensors. All rights reserved.

Hewlett-Packard

150 CambridgePark Drive

Cambridge, MA 02140

Phone: +1 617 386 4400

E-Mail: info@vertica.com

Web site: http://www.vertica.com
(http://www.vertica.com)

The software described in this copyright notice is furnished under a license and may be used or
copied only in accordance with the terms of such license. Hewlett-Packard software contains
proprietary information, as well as trade secrets of Hewlett-Packard, and is protected under
international copyright law. Reproduction, adaptation, or translation, in whole or in part, by any
means — graphic, electronic or mechanical, including photocopying, recording, taping, or
storage in an information retrieval system — of any part of this work covered by copyright is
prohibited without prior written permission of the copyright owner, except as allowed under the
copyright laws.

This product or products depicted herein may be protected by one or more U.S. or international
patents or pending patents.

Trademarks

HP Vertica™, the HP Vertica Analytics Platform™, and FlexStore™ are trademarks of Hewlett -Packard.

Adobe®, Acrobat®, and Acrobat® Reader® are registered trademarks of Adobe Systems Incorporated.

AMD™ is a trademark of Advanced Micro Devices, Inc., in the United States and other countries.

DataDirect® and DataDirect Connect® are registered trademarks of Pro gress Software Corporation in the
U.S. and other countries.

Fedora™ is a trademark of Red Hat, Inc.

Intel® is a registered trademark of Intel.

Linux® is a registered trademark of Linus Torvalds.

Microsoft® is a registered trademark of Microsoft Corporation.

Novell® is a registered trademark and SUSE™ is a trademark of Novell, Inc., in the United States and other
countries.

Oracle® is a registered trademark of Oracle Corporation.

Red Hat® is a registered trademark of Red Hat, Inc.

VMware® is a registered trademark or trademark of VMware, Inc., in the United States and/or other
jurisdictions.

Other products mentioned may be trademarks or registered trademarks of their respective
companies.

http://www.vertica.com/

-763-

 Copyright Notice

Information on third-party software used in HP Vertica, including details on open-source software,
is available in the guide Third-Party Software Acknowledgements.

	Administrator's Guide
	Syntax Conventions
	Administration Overview
	Configuring the Database
	Configuration Procedure
	Prepare Disk Storage Locations
	Specifying Disk Storage Location During Installation
	Configuring Disk Usage to Optimize Performance
	Using Shared Storage With HP Vertica
	Viewing Database Storage Information

	Disk Space Requirements for HP Vertica
	Disk Space Requirements for Management Console
	Prepare the Logical Schema Script
	Prepare Data Files
	Prepare Load Scripts
	Create an Optional Sample Query Script
	Create an Empty Database
	Creating a Database Name and Password
	Create an Empty Database Using MC
	Create a Database Using Administration Tools

	Create the Logical Schema
	Perform a Partial Data Load
	Test the Database
	Optimize Query Performance
	Complete the Data Load
	Test the Optimized Database
	Set Up Incremental (Trickle) Loads
	Implement Locales for International Data Sets
	Specify the Default Locale for the Database
	Override the Default Locale for a Session
	Best Practices for Working with Locales

	Change Transaction Isolation Levels

	Implement Security
	Configuration Parameters
	Configuring HP Vertica Settings Using MC
	Configuring HP Vertica at the Command Line
	General Parameters
	Tuple Mover Parameters
	Epoch Management Parameters
	Monitoring Parameters
	Profiling Parameters
	Security Parameters
	Internationalization Parameters
	Data Collector Parameters
	Kerberos Authentication Parameters

	Designing a Logical Schema
	Using Multiple Schemas
	Multiple Schema Examples
	Creating Schemas
	Specifying Objects in Multiple Schemas
	Setting Search Paths
	Creating Objects that Span Multiple Schemas

	Tables in Schemas
	About Base Tables
	About Temporary Tables

	Using Named Sequences
	Creating Sequences
	Altering Sequences
	Distributed Sequences
	Loading Sequences
	Dropping Sequences

	Implementing Views
	Creating Views
	Using Views

	Designing a Physical Schema
	Using Database Designer
	Design Types
	Comprehensive Design
	Query-specific Design

	Creating a Comprehensive Design Using Database Designer
	Replicated and Segmented Projections
	Creating a Query-specific Design Using Database Designer
	Deploying Designs
	Deploying Designs Using Database Designer
	Deploying Designs Manually

	Creating Custom Designs
	The Design Process
	Planning Your Design
	Design Requirements
	Determining the Number of Projections to Use
	Designing for K-Safety
	Designing for Segmentation

	Design Fundamentals
	Writing and Deploying Custom Projections
	Anatomy of a Projection
	Designing Superprojections
	Designing Replicated Projections for K-Safety
	Designing Segmented Projections for K-Safety
	Projection Design for Merge Operations
	Maximizing Projection Performance
	Choosing Sort Orders for Low-Cardinality Predicates
	Choosing Sort Orders for High-Cardinality Predicates
	Prioritizing Column Access Speed

	Projection Examples
	New K-Safe=2 Database
	Adding Node to a Database

	Managing Licenses
	Understanding HP Vertica Licenses
	Installing or Upgrading a License Key
	New HP Vertica License Installations
	HP Vertica License Renewals or Upgrades

	Viewing Your License Status
	Calculating the Database Size
	Monitoring Database Size for License Compliance

	Implementing Security
	Implementing Client Authentication
	Password Authentication
	Profiles
	Password Expiration
	Account Locking
	Password Guidelines

	About External Authentication
	How to Create Authentication Records
	Authentication record format
	Authentication Record Formatting Rules
	Configuring LDAP Authentication
	Configuring Ident Authentication
	Example authentication records
	How to Modify Authentication Records

	Implementing Kerberos Authentication
	Configuring authentication through Kerberos and GSS

	Implementing SSL
	SSL Prerequisites
	Generating certifications and keys
	Generating Certifications and Keys for MC
	Importing a new certificate to MC
	Distributing certifications and keys
	Configuring SSL
	Configuring SSL for ODBC clients
	Configuring SSL for JDBC clients

	Requiring SSL for client connections

	Managing Users and Privileges
	About Database Users
	Types of database users
	DBADMIN user
	Object owner
	PUBLIC user

	Creating a database user
	Changing a user's password
	Locking/unlocking a user's database access

	About MC Users
	Creating an MC user
	Managing MC users

	About Database Privileges
	Default privileges for all users
	Privileges required for common database operations
	Privileges that can be granted on objects
	Database privileges
	Schema privileges
	Table privileges
	Projection privileges
	View privileges
	Sequence privileges
	External procedure privileges
	User-defined function privileges
	Library privileges
	Resource pool privileges
	Storage location privileges
	Role, profile, and user privileges
	Metadata privileges
	I/O privileges
	Comment privileges
	Transaction privileges
	Session privileges
	Tuning privileges

	Granting and revoking privileges
	About superuser privileges
	About schema owner privileges
	About object owner privileges
	How to grant privileges
	How to revoke privileges
	Privilege ownership chains

	Modifying privileges
	Changing a table owner
	Changing a sequence owner

	Viewing privileges granted on objects

	About Database Roles
	Types of database roles
	DBADMIN role
	PSEUDOSUPERUSER role
	PUBLIC role
	Default roles for database users

	Using database roles
	Role hierarchy
	Creating database roles
	Deleting database roles
	Granting privileges to roles
	Revoking privileges from roles
	Granting access to database roles
	Revoking access from database roles
	Granting administrative access to a role
	Revoking administrative access from a role
	Enabling roles
	Disabling roles
	Viewing enabled and available roles
	Viewing named roles
	Viewing a user's role

	About MC Privileges and Roles
	MC configuration privileges
	SUPER role (mc)
	ADMIN role (mc)
	IT role (mc)
	NONE role (mc)

	MC database privileges
	ADMIN role (db)
	IT role (db)
	USER role (db)

	Granting database access to MC users
	Mapping an MC user to a database user's privileges
	Adding multiple MC users to a database
	How to find out an MC user's database role
	Adding multiple users to MC-managed databases
	MC mapping matrix

	Using the Administration Tools
	Using the Administration Tools Interface
	K-Safety Support in Administration Tools
	Notes for Remote Terminal Users
	Using the Administration Tools Help
	Password Authentication
	Distributing Changes Made to the Administration Tools Metadata
	Administration Tools and Management Console
	Administration Tools Reference
	Viewing Database Cluster State
	Connecting to the Database
	Starting the Database
	Stopping the Database
	Restarting HP Vertica on Host
	Configuration Menu Item
	Creating a Database
	Dropping a Database
	Viewing a Database
	Setting the Restart Policy

	Advanced Tools Menu Options
	Rolling Back Database to the Last Good Epoch
	Stopping HP Vertica on Host
	Killing the HP Vertica Process on Host
	Upgrading an Enterprise or Evaluation License Key
	Managing Clusters
	Using the Administration Tools
	Administration Tools Metadata

	Writing Administration Tools Scripts

	Using Management Console
	Connecting to MC
	Managing Client Connections on MC
	Managing Database Clusters on MC
	Create an Empty Database Using MC
	Import an Existing Database Into MC

	Using MC on an AWS Cluster
	Managing MC Settings
	Changing MC or Agent Ports
	How to Change the Agent Port
	How to Change the MC Port

	Backing Up MC
	Troubleshooting Management Console
	Viewing the MC Log
	Exporting the User Audit Log
	Restarting MC
	Resetting MC to Pre-configured State
	Avoiding MC Self-Signed Certificate Expiration

	Operating the Database
	Starting and Stopping the Database
	Starting the Database
	Stopping the Database

	Working with the HP Vertica Index Tool
	Running the Reindex Option
	Running the CheckCRC Option
	Handling CheckCRC Errors
	Running the Checksort Option
	Viewing Index Tool

	Working with Tables
	Creating Base Tables
	Creating a Table Like Another
	Creating Temporary Tables
	Creating External Tables
	Validating External Tables
	External Table Support
	Using External Tables
	Altering Table Definitions
	Exclusive ALTER TABLE clauses
	Using consecutive ALTER TABLE commands
	Adding table columns
	Updating associated table views
	Altering table columns
	Adding columns with a default derived expression
	Changing a column's data type

	Adding constraints on columns
	Dropping a table column
	Moving a table to another schema
	Changing a table owner
	Changing a sequence owner
	Renaming tables

	Updating Tables with Records from Other Tables
	Dropping and Truncating Tables

	About Constraints
	Adding Constraints
	Primary Key Constraints
	Foreign Key Constraints
	Unique Constraints
	Not NULL Constraints

	Dropping Constraints
	Enforcing Primary Key and Foreign Key Constraints
	Analyzing Constraints (Detecting Constraint Violations)
	Fixing Constraint Violations
	Reenabling Error Reporting

	Working with Table Partitions
	Defining partitions
	Dropping partitions
	Partitioning and segmenting data
	Partitioning and data storage
	Managing partitions
	Partitioning, repartitioning, and reorganizing tables
	Auto partitioning
	Eliminating Partitions
	Moving Partitions
	Restoring Archived Partitions

	Bulk Loading Data
	Checking Data Format Before or After Loading
	Performing the Initial Database Load
	Using Load Scripts
	Using COPY and COPY LOCAL
	Transforming Data During Loads
	Specifying COPY FROM Options
	Choosing a Load Method
	Specifying How COPY Loads Data
	Interpreting Last Column End of Row Values
	Loading UTF-8 Format Data
	Loading Native Varchar Data
	Loading Binary Data
	Loading Fixed-Width Format Data

	Ignoring Columns and Fields in the Load File
	Loading Data into Pre-join Projections
	Using Parallel Load Streams
	Using the Parallel Load Library
	Checking COPY Metrics
	Controlling Load Exceptions and Rejections
	Specifying an Exceptions File (EXCEPTIONS)
	Specifying a Rejected Data File (REJECTED DATA)
	COPY Exception and Rejected Data Files
	COPY LOCAL Exception and Rejection Files

	Referential Integrity Load Violation

	Trickle Loading Data
	Using INSERT, UPDATE, and DELETE
	WOS Overflow

	Copying and Exporting Data
	Exporting Data
	Importing Data
	Using Public and Private IP Networks
	Identify the Public Network to HP Vertica
	Identify the Database or Node(s) used for Import/Export

	Using EXPORT Functions
	Exporting the Catalog
	Exporting Tables
	Exporting Objects

	Bulk Deleting and Purging Data
	Best Practices for DELETE and UPDATE
	Performance Considerations for DELETE and UPDATE Queries
	Optimizing DELETEs and UPDATEs for Performance

	Purging Deleted Data
	Setting a Purge Policy
	Manually Purging Data

	Managing the Database
	Load Balancing
	Configuring HP Vertica Nodes
	Set Up the Loopback Interface
	Disable Address Resolution Protocol (ARP)

	Configuring the Directors
	Install the HP Vertica IPVS Load Balancer Package
	Configure the HP Vertica IPVS Load Balancer
	Set up the HP Vertica IPVS Load Balancer configuration file

	Connecting to the Virtual IP (VIP)
	Monitoring Shared Node Connections
	Determining Where Connections Are Going
	IPVS Troubleshooting Tips
	Keepalived Troubleshooting Tips

	Managing Nodes
	Elastic Cluster
	Scaling Factor Defaults
	Viewing Scaling Factor Settings
	Setting the Scaling Factor
	Local Data Segmentation
	Enabling and Disabling Local Segmentation

	Elastic Cluster Best Practices
	Monitoring Elastic Cluster Rebalancing

	Adding Nodes
	Adding Hosts to a Cluster
	Adding Nodes to a Database

	Removing Nodes
	Lowering the K-Safety Level to Allow for Node Removal
	Removing Nodes from a Database
	Removing Hosts from a Cluster

	Replacing Nodes
	Replacing a Node Using the Same Name and IP Address
	Replacing a Failed Node Using a Different Name and IP Address
	Replacing a Functioning Node Using a Different Name and IP Address
	Using the Administration Tools to Replace Nodes
	Using the Management Console to Replace Nodes

	Rebalancing Data Across Nodes
	Rebalancing Data Using the Administration Tools UI
	Rebalancing Data Using MC
	Rebalancing Data Using SQL Functions

	Redistributing Configuration Files to Nodes
	Changing the IP Addresses of an HP Vertica Cluster
	Stopping and Starting Nodes on MC

	Managing Disk Space
	Adding Disk Space to a Node
	Replacing Failed Disks
	Catalog and Data Files
	Understanding the Catalog Directory
	Reclaiming Disk Space from Deleted Records
	Rebuilding a Table

	Managing Tuple Mover Operations
	Understanding the Tuple Mover
	Moveout
	Mergeout

	Tuning the Tuple Mover

	Managing Workload Resources
	The Resource Manager
	Resource Manager Impact on Query Execution
	Resource Pool Architecture
	Monitoring Resource Pools and Resource Usage by Queries
	User Profiles
	Target Memory Determination for Queries in Concurrent Environments

	Managing Resources at Query Run Time
	Setting Run-Time Priority for the Resource Pool
	Changing Run-Time Priority of a Running Query

	Restoring Resource Manager Defaults
	Best Practices for Managing Workload Resources
	Basic Principles for Scalability and Concurrency Tuning
	Guidelines for Setting Pool Parameters
	Setting a Run-Time Limit for Queries
	Using User-defined Pools and User-Profiles for Workload Management
	Scenario: Periodic Batch Loads
	Scenario: The CEO Query
	Scenario: Preventing Run-away Queries
	Scenario: Restricting Resource Usage of Ad hoc Query Application
	Scenario: Setting a Hard Limit on Concurrency For An Application
	Scenario: Handling Mixed Workloads (Batch vs. Interactive)
	Scenario: Setting Priorities on Queries Issued by Different Users
	Scenario: Continuous Load and Query
	Scenario: Prioritizing Short Queries at Run Time
	Scenario: Dropping the Runtime Priority of Long Queries

	Tuning the Built-in Pools
	Scenario: Restricting HP Vertica to Take Only 60% of Memory
	Scenario: Tuning for Recovery
	Scenario: Tuning for Refresh
	Scenario: Tuning Tuple Mover Pool Settings

	Reducing Query Run-time

	Managing System Resource Usage
	Managing Sessions
	Managing Load Streams

	Working With Storage Locations
	Viewing Storage Locations and Policies
	Adding Storage Locations
	Altering Storage Location Use
	Altering Location Labels
	Creating Storage Policies
	Moving Data Storage Locations
	Clearing Storage Policies
	Measuring Storage Performance
	Setting Storage Performance
	Dropping Storage Locations
	Retiring Storage Locations
	Restoring Retired Storage Locations

	Backing Up and Restoring the Database
	Understanding VBR Terminology
	When to Back up the Database
	Backup Directory Structure and Contents
	Using Hard File Link Local Backups
	Viewing and Removing Backups
	Configuring Remote Backup Hosts
	Configuring Hard Link Local Backup Hosts
	Generating the vbr.py Configuration File
	Configuring Required VBR Parameters
	Configuring Advanced VBR Parameters
	Configuring the Hard Link Local VBR Parameter
	Example Backup Configuration File

	Creating Full and Incremental Backups
	Creating Schema and Table Backups
	Creating Hard Link Local Backups
	Interrupting the Backup Utility
	Restoring Full Database Backups
	Restoring Schema and Table Backups
	Restoring Hard Link Local Backups
	Copying the Database to Another Cluster
	Restoring to the Same Cluster
	Backup and Restore Utility Reference
	VBR Utility Reference
	VBR Configuration File Reference

	Recovering the Database
	Failure Recovery
	Restarting HP Vertica on a Host
	Restarting the Database
	Recovering the Cluster from a Backup
	Monitoring Recovery
	Exporting a Catalog
	Best Practices for Disaster Recovery

	Monitoring HP Vertica
	Monitoring Log Files
	Rotating Log Files
	Monitoring Process Status (ps)
	Monitoring Linux Resource Usage
	Monitoring Disk Space Usage
	Monitoring Database Size for License Compliance
	Monitoring Shared Node Connections
	Monitoring Elastic Cluster Rebalancing
	Monitoring Parameters
	Monitoring Events
	Event logging mechanisms
	Event severity types
	Event data
	Configuring event reporting
	Configuring reporting for syslog
	Configuring reporting for SNMP
	Configuring event trapping for SNMP
	Verifying SNMP configuration

	Event reporting examples

	Using System Tables
	Retaining Monitoring Information
	Enabling and disabling Data Collector
	Viewing current data retention policy
	Configuring data retention policies
	Working with data collection logs
	Monitoring Data Collection components
	Querying Data Collector tables
	Configuring PROJECTION_REFRESHES History

	Monitoring Query Plan Profiles
	Monitoring Partition Reorganization
	Monitoring Resource Pools and Resource Usage by Queries
	Monitoring Recovery
	Monitoring HP Vertica Using MC
	Viewing MC Home Page
	Monitoring Same-name Databases on MC
	Monitoring the Database Cluster
	Monitoring Cluster Nodes
	Monitoring Cluster CPU/Memory
	Monitoring Cluster Performance

	Monitoring System Resources
	Monitoring Query Activity
	Monitoring Internal Sessions
	Monitoring User Sessions
	Monitoring System Memory Usage
	Monitoring System Bottlenecks

	Monitoring Node Activity
	Monitoring MC-managed Database Messages
	Searching MC-managed Database Messages
	Exporting MC-managed Database Messages and Logs

	Monitoring MC User Activity

	Monitoring HP Vertica Using Ganglia
	Ganglia Architecture
	Ganglia Prerequisites
	Required Packages for a Ganglia Installation
	Installing the HP Vertica Monitoring Package
	RHEL5
	SuSE SLE 10 and SLE 11
	Servers without Internet Access

	Configuring Ganglia
	Installing Gmond on All Nodes
	Configuring Gmetad on the Monitoring Node
	Configuring Gmond on All Nodes
	About the gmond.conf file
	Edit the gmond.conf file
	Multicast IP Support

	Configuring the Vertica Monitoring Package
	Configuring and Starting lighttpd
	Configuring Vertica Extension Files
	Edit the vertica-dashboard.xml file
	Edit the verticadefines.php file [Optional]
	Add a cron job

	Upgrading the Vertica Monitoring Package
	Uninstalling HP Vertica-Ganglia

	Analyzing Workloads
	Getting Tuning Recommendations Through an API
	Getting Tuning Recommendations Through MC
	Understanding WLA Triggering Conditions

	Collecting Database Statistics
	Statistics Used by the Query Optimizer
	How Statistics are Collected
	How statistics are computed
	How statistics are reported
	Determining when statistics were last updated
	Reacting to stale statistics
	Canceling statistics collection
	Best practices for statistics collection

	Using Diagnostic Tools
	Determining Your Version of HP Vertica
	Collecting Diagnostics (scrutinize Command)
	Diagnostics (scrutinize) syntax
	How to run scrutinize
	How scrutinize collects/packages diagnostics
	How to upload scrutinize results to support
	Examples for the scrutinize command

	Collecting Diagnostics (diagnostics Command)
	Exporting a Catalog
	Exporting Profiling Data

	Understanding Query Plans
	How to Obtain a Query Plan
	How to Save a Query Plan
	About EXPLAIN output
	Viewing Cost and Rows Path
	Viewing Statistics Query Plan Output
	Viewing Projection Path
	Viewing Join Path
	Viewing path ID path
	Viewing filter path
	Viewing the GROUPBY PIPELINED and GROUPBY HASH path
	Viewing sort path
	Viewing limit path
	Viewing data redistribution path
	Viewing analytic function path
	Viewing merge path

	Linking EXPLAIN plan to error messages and profiling information

	Profiling Database Performance
	How to Determine if Profiling is Enabled
	How to Enable Profiling for the Current Session
	How to Disable Profiling for the Current Session
	How to Enable Profiling for all Sessions
	How to Disable Profiling for all Sessions
	How to Clear Profiling Data
	About Real-time Profiling
	How to Profile a Single Statement
	How to View Profiling Data
	How to View Real-time Profiling Data
	Profiling Query Plan Profiles
	How to Get Query Plan Status for Small Queries
	How to Get Query Plan Status for Large Queries
	Improving Readability of QUERY_PLAN_PROFILES Output
	Managing Query Profiling Data
	Reacting to Suboptimal Query Plans

	How to Label Queries for Profiling

	About Locales
	Locale Specification
	Long Form
	Short Form

	Supported Locales
	Locale Restrictions and Workarounds
	Loading Representative Data

	Appendix: Binary File Formats
	Creating Native Binary Format Files

	Copyright Notice

