
1

HP UCA Automation

UCA Automation

Version 1.0

 Integrator's Guide

Edition: 1.1

For the Operating Systems:
Linux (RHEL 6.4)

November 2013

© Copyright 2013 Hewlett-Packard Development Company, L.P.

2

Legal Notices

Warranty

The information contained herein is subject to change without notice. The

only warranties for HP products and services are set forth in the express

warranty statements accompanying such products and services. Nothing

herein should be construed as constituting an additional warranty. HP shall

not be liable for technical or editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for

possession, use or copying. Consistent with FAR 12.211 and 12.212,

Commercial Computer Software, Computer Software Documentation, and

Technical Data for Commercial Items are licensed to the U.S. Government

under vendor's standard commercial license.

Copyright Notices

© Copyright 2013 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems

Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both

32 and 64-bit configurations) on all HP 9000 computers are Open Group

UNIX 95 branded products.

Java™ is a trademark of Oracle and/or its affiliates.

Microsoft®, Internet Explorer, Windows®, Windows Server®, and Windows

NT® are either registered trademarks or trademarks of Microsoft Corporation

in the United States and/or other countries.

Firefox® is a registered trademark of the Mozilla Foundation.

Google Chrome® is a trademark of Google Inc.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City,

California.

EnterpriseDB® is a registered trademark of EnterpriseDB.

Postgres Plus® is a registered U.S. trademark of EnterpriseDB, Bedford, MA.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark, and the X device is a trademark of

X/Open Company Ltd. in the UK and other countries.

Red Hat® is a registered trademark of the Red Hat Company.

Linux® is a registered trademark of Linus Torvalds in the U.S. and other

countries.

Neo4j is a trademark of Neo Technology.

3

Contents

Preface ... 5

Chapter 1 ... 7

Introduction ... 7

1.1 Design thoughts behind UCA Automation based resolution 8
1.2 Ground work needed before the implementation begins 9
1.3 Implementation .. 10

Chapter 2 ... 11

Integration with UCA Automation Foundation Value Pack 11

2.1 Integration of PD value pack with UCA Foundation pack 12
2.2 Integration of EVALUATE value pack with UCA Foundation pack 13

Chapter 3 ... 15

Integration with HPSA UCA Automation Controller 15

3.1 Integration with HPSA UCA Automation Controller ... 15
3.2 Integration with HPSA UCA Automation Parser .. 18

Chapter 4 ... 19

Using the demo automation scenario ... 19

4.1 Seeing the demo work ... 19

4

Tables
Table 1 - Software versions ..5

5

Preface

This guide provides an overview of the UCA Automation product and

describes how to create Value Packs for specific domain specializations and

integrate them with the UC Automation product.

Product Name: UCA Automation

Product Version: 1.0

Kit Version: V1.0

Please read this document before installing or using this Software.

Intended Audience

Here are some recommendations based on possible reader profiles:

o System Integrators

o Solution Developers

o Software Development Engineers

o

Software Versions

The term UNIX is used as a generic reference to the operating system,

unless otherwise specified.

The software versions referred to in this document are as follows:

Product Version Supported Operating systems

UCA Automation 1.0 Linux Red Hat Enterprise Linux

Server release 6.4

 Table 1 - Software versions

Typographical Conventions

Courier Font:

o Source code and examples of file contents.

o Commands that you enter on the screen.

o Pathnames

o Keyboard key names

Italic Text:

o Filenames, programs and parameters.

o The names of other documents referenced in this manual.

6

Bold Text:

o To introduce new terms and to emphasize important words.

o

Reference Documents

o [R1] HP UCA Automation V1.0 – Installation Guide V1.1

o [R2] HP UCA Automation V1.0 - Administrator and User Interface Guide V1.1

o [R3] HP UCA EBC Problem Detection V3.0 - Installation Administration and

Dev Guide V1.0

o [R4] HP UCA for Event Based Correlation V3.0 - Value Pack Development

Guide V1.0

o [R5] HP Service Activator Overview.pdf

o [R6] HP Service Activator PuttingServiceActivatorToWork.pdf

o [R7] HP Service Activator Plug-ins.pdf

o

Support

Please visit our HP Software Support Online Web site at

www.hp.com/go/hpsoftwaresupport for contact information, and details about

HP Software products, services, and support.

The Software support area of the Software Web site includes the following:

o Downloadable documentation.

o Troubleshooting information.

o Patches and updates.

o Problem reporting.

o Training information.

o Support program information.

http://www.hp.com/go/hpsoftwaresupport

7

Chapter 1

Introduction

The objective of this document is to provide details on the different interfaces provided by

UCA Automation – to develop a custom automation, to describe and recommend the general

methodology to be used while developing and integrating custom automation. The following

sections of this chapter introduce the user to the purpose of UCA Automation, and then

describe the architecture in brief and finally to describe the concepts and methodology behind

developing and integrating a custom automation.

In any typical service provider environment, there’s always a need for isolation of network

related issues and automated resolutions of the same. UCA Automation Software is

positioned primarily to address this need. It is implemented as a combination of business rules

engine and workflows engine. The system would involve the integration of HP Unified

Correlation Analyzer for Event Based Correlation [UCA EBC] system [which provides

business rules capability] and HP Service Activator [HPSA] [which provides activation

capability] glued via the enterprise service bus called NOM [NGOSS Open Mediation].

Generally, in the resolution solutions available today, there’s no separate layering between

‘what resolution steps’ need to be carried-out upon the incidence of a specific issue and ‘how

these resolution steps are carried out’. This mixed up implementation of processes which

represent both what and how part of the logic on the top of workflow engines OR in some

cases on top of business rules engines, makes the workflows or business rules very complex

to develop, comprehend, debug and maintain [read as ‘modify’ when a business decision

changes – say support a new device type, support a new resolution command on the same

device or support a new format of the output for an existing resolution command with an

upgrade in device firmware].The problem would scale to unimaginable magnitudes

considering the different technologies such as DWDM, SDH, DSL, MPLS, LTE [and

legacies such as ATM, FR and X.25] and different layers / types of networks such as ‘the

transport’, ‘the access’, ‘the core’ , ‘the radio access’ and so on.

UCA Automation Software which is a combination of both business rule engine and the

workflow engine will enable a clear separation of what to automate and how to automate.

All the complexities of actual automation such as how to access a network resource [could be

a network element, an element component or an EMS or NMS], what it’s credentials could be,

which specific transport mechanism to use to connect to the resource, what specific OS

version of the device are to be supported, what specific commands need to be sent, would be

abstracted from the business rules. This would enable the administrators to create-update-

read the business rules with utmost clarity and maintain them efficiently. This would

empower the administrators to store the knowledge gained regarding the automation in the

form of business rules focusing on what part without bothering about the how part. One

another advantage of UCA Automation software is, for most of the resolution automations – it

would require the operator only to know business rules and he need not have knowledge of

the business rules technologies to implement day to day operational changes to the decisions.

Thus UCA Automation System is a platform for building value added resolution automations

based on a judicious combination of business rules and workflows. Following diagram shows

the overall architecture of UCA Automation System.

8

From the above architectural diagram – clearly, the integration interfaces for customized

automations fall under the following category. The grey blocks ‘Network Specific Extension

Value Packs’, optionally ‘Network Specific Evaluate Value Packs’, ‘HPSA Network Specific

Extension value packs’ need to be implemented - to create and integrate custom automations.

Integration with UCA Automation foundation value pack

Integration with UCA Automation evaluate value pack

Integration with HPSA UCA Automation Controller workflow

Decision tree for automation

1.1 Design thoughts behind UCA Automation
based resolution

The two key functionalities but, not limited to - performed by UCA Automation are - problem

isolation and problem resolution. Problem isolation is the responsibility of UCA EBC

Problem Diagnosis value pack – which has the capability to eliminate event storms, false

positives and false negatives and deduce one meaningful single “problem alarm” instead of

hundreds. This information is then passed on to the “decide and act” engine – which identifies

what action needs to be taken for a specific problem. Once the action is executed, the evolved

knowledge / status are sent back to “decide and act” engine for further resolution according to

the decision tree or “evaluate value pack” optionally, to perform predictive, proactive

automation. In addition lots of diagnostic information is gathered automatically to reduce the

MTTR [mean time to resolve].

UCA Automation system would work in the way depicted by the following diagram, starts

with the original problem, performs tests after tests as per the decision tree design and would

either resolve the problem or enrich the problem alarm with complete diagnosis of all the

steps performed and can even create a trouble ticket automatically.

In case of manual resolution, the operator is presented a set of problems, the services they are

9

associated with and the list of the types of devices which could support such services. Once

the above triplet is chosen, the corresponding resolutions are displayed – which can be

invoked manually.

In UCA Automation System, the process of problem resolution happens in the way depicted

by the following diagram. The administrator or integrator of the system has the option to

easily configure the decision tree without the need for any kind of programming. The decide

and act subsystems work based on this configuration. In case the administrator needs to make

advanced decisions based on the results of the previous tests, the platform allows him to write

his own rules in the evaluate block.

1.2 Ground work needed before the
implementation begins

 Identification of domain / service to be automated [e.g. mobile services /

MPLS/ ADSL, LTE, ATM etc.]

o Identify the service for which custom automation needs to be

created

o Identify the network resources which are to be associated with

these services

 Identification of all the problems in that domain and the resolution

mechanisms

o Identify the problem scenario, the root cause problem

characteristics, and the filter to be used to isolate this problem.

o Identify the specific problem / resolution tree for any of the root

cause problems

o Identify all the resolution actions to be taken for each of the sub-

problems in the problem tree.

o Identify the input and output parameters for all the actions

o Identify how the output parameters must be deduced from the

raw-output using the regex / xml parser

10

o Identify all the possible outcomes for the actions; keep in mind

whether the outcomes are binary or n-ary.

o Make a differentiation between the “primary problems” – and the

results of the actions.

 Identify the decision tree to be built using the above set of problems,

actions and outcomes.

1.3 Implementation
 Creation of domain / service to be automated [e.g. mobile services / MPLS/

ADSL, LTE, ATM etc.]

o Creation of the service as per [R2] chapter 7.

o Creation of the network resources as per the [R2] chapter 7

 Creation of all the problems in that domain and the resolution mechanisms

o Create a UCA EBC PD Value pack depicting the identified problem scenario,

with appropriate filters and time-window – as per [R3]. This needs to be

integrated with UCA Automation Foundation value pack as described in

chapter 2.

o Create all the resolution actions identified to handle each of the primary

problems and the outcomes of actions [as per [R2] chapter 7]

o Create appropriate input and output parameters for all the actions

o Choose the appropriate output parameters and their respective parsers. This

needs to be integrated with the UCA Automation as per the chapter 3.

o Create all the primary and secondary problems and associate them with

appropriate actions.

 Create the decision tree with the above set of problems and actions as per the

instructions given in [R2] chapter 8.

11

Chapter 2

Integration with UCA Automation
Foundation Value Pack

HP UCA Automation Foundation value pack performs the functionality of

determining the next resolution action based on the problem passed on to it.

It’s the responsibility of the domain specific PD value pack to determine and

isolate the problem and delegate the alarm object to the UCA Automation

Foundation Value Pack. Once an alarm object with appropriate problem

qualification is received from network specific PD value pack, a look up in the

decision tree present in Neo4J database would be performed and appropriate

action is picked up. Up on this the foundation value pack would send out the

following XML request to UCA Automaton console for the execution of

resolution action:

12

2.1 Integration of PD value pack with UCA
Foundation pack

Once the PD value pack representing the appropriate problem scenario is

designed, complete problem qualification needs to be provided by the PD

value pack to the UCA foundation value pack. In order to perform this, the

generated method ‘whatToDoWhenProblemAlarmIsAttachedToGroup’ -

needs to be overridden to populate various user defined attributes of alarm

objects such as :

 Problem Name [predefined]

 Resource instance [as the resource is understood by the activation

engine]

 Evaluate Value Pack Name [In case the integrator would like to perform

complex integration and complex mechanism to determine the next

possible problem – a network specific evaluate pack needs to be created

and this needs to be provided here]. Once the response for an action is

received, it would be intercepted by the foundation value pack and would

be delegate*d ‘network specific evaluate value pack’ – for further

deduction of the problem.

 Evaluate Value Pack scenario [The specific scenario to which the

response needs to be delegated to].

Following is an example code snippet describing the way to override the

method ‘whatToDoWhenProblemAlarmIsAttachedToGroup’.

13

2.2 Integration of EVALUATE value pack with
UCA Foundation pack

The very creation and integration of ‘network specific evaluate’ value pack is

optional. The integrator is recommended to use this in cases where the

resultant output needs to be interpreted in very specific ways other than a

‘test passed’ or ‘test failed’ paradigm. It could be used to analyze the output

from the previous action and can deduce what could be the next step /

problem to be passed on to the foundation value pack. This value pack can

have several scenarios defined – to interpret different outputs from different

PD scenarios. Mathematically there could be 1Xn relationship between

number of domain specific PD value pack which represent one scenario each

and evaluate value pack which represents ‘n’ scenarios. Note that, writing this

value pack would require UCA EBC rules skill. Following is a code snippet

demonstrating a scenario where an action response with some parameters is

being intercepted and next problem is deduced and delegated to the

foundation value pack for further processing:

14

15

Chapter 3

Integration with HPSA UCA
Automation Controller

The custom automation needs new value packs to be developed using HPSA

framework, which would handle the ‘how’ part of the resolution action. To

have an integrated view UCA Automation provide an controller work flow with

which all the domain specific work flows needs to be integrated. The following

two sections in this chapter talk about the integration with UCA Automation

controller workflow and the integration with parser framework provided by

UCA Automation.

3.1 Integration with HPSA UCA Automation
Controller

As task request (with dispatch type as HPSA) from UCA Automation Console

invokes the UCAController workflow of the HPSA Foundation Value Pack. So

the point of entry for the task request and point of exit for the task response is

the UCAController workflow. All domain specific workflows will be invoked

from this workflow.

In the HPSA inventory the mapping to the child domain specific workflows

can be created from the UCA/ParameterWorkflow Templates view. As an

integrator a mapping of combination of ServiceType, Problem and

ActionName must be created with the child domain specific workflow which is

designed to handle such scenarios. When a task request from the UCA

Automation Console invokes the UCAController workflow, the WorkFlow

Template is looked up automatically to fetch the corresponding child workflow

based on the ServiceType, Problem and ActionName present in the task

request xml message.

16

Illustration of a multi domain solution

It is recommended to have controllers for each of the domains as shown in

the figure above.

The table below shows the list of parameters passed by the UCAController

workflow when the domain workflow is invoked. It also shows the expected

output case packet variables that is expected from the child workflow.

Parameter Input/Output Description

message_data Input The task request message received from the UCA Automation Console

problem_name Input The name of the problem

action_name Input The name of the diagnostic action

major_code Output Status code of the execution of the child workflow.

minor_code Output Status code providing further information on the execution status of the child
workflows

major_description Output Status message of the execution of the child workflow

minor_description Output Status message providing further information on the execution of the child
workflows

Diagnostics Output The raw result output of the execution of the action

response_string Output The output param and parsed values are concatenated in a format defined by
UCA-EBC. This is sent as a value in the outputparameters tag of the response

to UCA–EBC. The format of the string is
<action_name,value,type>,<action_name,value,type>……..<action_name,valu
e,type>

17

The major code standard has to be followed as per the HPSA Foundation

value pack since this is used to drive the state engine in the UCA Automation

Console. There are two set of status code that is to be used while

implementing the domain value packs in HPSA. The major code gives high

level information on the execution status and drives the state engine in the

UCA Automation Console. The major description is the textual meaning of the

code. The minor code and description are secondary codes and give more

information on the status of the execution.

The status code bundles are located at ${SOLUTION_ETC}/

etc/config/messages in the HPSA Foundation value pack. A sample of the

codes is shown below.

200=The test was successfully executed
201=The test was partially executed
210=Workflow execution success
300=Request received
400=Bad request, syntax error
401=Invalid request
500=Internal error
501=The test execution failed

Major codes and description in messages.properties

402=Paramter: {0} cannot be null/empty
403={0}: {1} was not found in inventory
510={0}: {1} Not Found
511={0} has exceeded the threshold value {1}
512=Free {0} is not available

Minor codes and description in messages.properries

The implementer of the HPSA domain value pack is recommended to

maintain the major and minor code message bundles in a similar fashion.

The domain specific major code message bundle should contain all the codes

defined in the HPSA Foundation Value pack since these codes are used to

drive the state engine in the UCA Automation Console. The minor code

message bundle can be defined as per their requirement.

The message bundles support internationalization with the help of the custom

node. The ResourceBundleReader custom node is included along with the

Foundation value pack. The file name of the bundle has to be changed

according to the internatiolization standards, e.g for French regional setting

the file name would be message_fr.properties. By default the

message.proeprties bundle will be picked by the node.

Parameters Input/Output Description

bundle_path Input The path to the message bundle. In the foundation value pack the
bundle_path to the major code messages is
%SOLUTION_ETC%/config/messages/majorcodes

resource_label Input The label of the message bundle. The label in the foundation
value pack is messages

Key Input The key in the resource bundle. The key would be 500 is we want
the description for this major code

output_var Output The variable in which the fetched string is to be stored

param0..n Input This replaces the constant/variable into the string fetched from the
message bundle, param0 will replace occurrence of {0} in the text,
param1 will replace occurrence of {1} in the text

Parameters of the ResourceBundleReader Node

18

3.2 Integration with HPSA UCA Automation
Parser

The parser workflow provides a framework for parsing the diagnostic (raw

result) received from the network resources on execution of an action. Both

regular expression and Xpath based parsing are supported. When defining

an action is the UCA Automation inventory the parser type can be defined.

The parsing information should be maintained in properties files within the

${SOLUTION_ETC} directory. The properties file should contain the mapping

of the expected output parameters (already defined in the inventory for each

diagnostic action) to its respective regular expression or Xpath expressions.

As an example,

Let us consider that the output result of a PING action is to be parsed using

the regular expression parser. We can create the following directory structure

in the solution where <element_type> can be used to distinguish between

various types of the device.

${SOLUTION_ETC}/config/parser/regex/<elementype>/test_bsc_interface/pa

rser.properties.

The parser.properties file is shown below

#REGEX mapping for Action: execute_test_on_bsc
#DOMAIN_NAME = com.hp.ov.ucaautomation (Constant)
#Key -- > DOMAIN_NAME + "." + <ACTION_NAME> + "." + <PARAMETER>
#ACTION_NAME corresponds to the ACTION_ID of AUTOMATION_ACTION table in inventory
#Each ACTION_ID has a list of PARAMETERS in the PARAMETERS table in inventory

#All '\' characters in the regex must be escaped for JAVA
#e.g regex pattern for packetloss
Lost\s=\s\d*\s\((\d*%)\sloss\) ---- > Lost\s=\s\d*\s\((\d*%)\sloss\)
#group id is used to return the input subsequence captured during the match operation
#Key for group id -- > DOMAIN_NAME + "." + <ACTION_NAME> + "." + <PARAMETER> + "." + groupid

com.hp.ucaautomation.test_bsc_interface.packet_loss = (\d*)%\spacket loss,
com.hp.ucaautomation.test_bsc_interface.packet_loss.groupid = 1
com.hp.ucaautomation.test_bsc_interface.min_time = \s*Minimum\s=\s(\d*\w*)
com.hp.ucaautomation.test_bsc_interface.min_time.groupid = 1

When the invoking the Parser workflow the following parameters are mandatory.

Parameter Input/Output Description

parser_bundle_label Input The name of the parser bundle. From the above example the bundle name is parser

parser_bundle_path Input The path where parser bundles are available. From the above example the path is
${SOLUTION_ETC}/config/parser/regex/<elementype>/test_bsc_interface

parser_type Input The type of the parser (regex|xpath). From the above example it is regex

action_name Input Name of the diagnostic action defined in inventory. From the above example the
action name is test_bsc_interface

raw_result Input This is the case packet variable which contains the raw information which needs to
be parsed and the data extracted

message_data Input The actual request message that was received from the UCA Automation Console

parameter_map Output This map variable contains the mapping of each of the output parameters of the
action to its corresponding parsed values

minor_code Output Status of the workflow execution. 210 represents a successful execution

minor_description Output Diagnostic information of the workflow execution

response_string Output The output param and parsed values are concatenated in a format defined bu UCA-
EBC. This is sent as a value in the outputparameters tag of the response to UCA–
EBC. The format of the string is
<action_name,value,type>,<action_name,value,type>……..<action_name,value,type
>

19

Chapter 4

Using the demo automation
scenario

The UCA Automation kit comes with demo automation depicting the following

scenario:

 A series of cell down alarms would be generated

 This storm of alarms is interpreted and the problem is isolated to be BSC

down alarm

 UCA Automation performs a test to see if BSC is really down or it’s a false

positive

 In case the BSC is down, a test is performed to check all the available free

interfaces

 Then an action is triggered to recover the service switching it to an available

interface

 Upon successful recovery the alarm is updated with recovery information and

any open trouble ticket would be closed

 Upon failure of recovery, alarm would be updated with diagnostic information

and a trouble ticket is opened.

4.1 Seeing the demo work
Perform the following steps to see the UCA Automation demo – working:

 Deploy the HPSA demo value pack

UCA_HPSA_DomainExample_VP-X10-1A.zip present in

/opt/UCA_Automation/ UCA_Automation_HPSA_VPs after

installation. Refer [1]

 Deploy the UCA demo value packs

UCA_Automation_DomainExample_UCA_PD-vp-V1.0-1A.zip and

demo evaluate value pack

UCA_Automation_DomainExample_UCA_EV-vp-V1.0-1A.zip, as

per [1]. These value packs would be available at

/opt/UCA_Automation/UCA_Automation_UCA_VPs.

o Database configuration file for the UCA demo value pack.

Create a file MobileServices_Config.properties in

/var/opt/UCA-EBC/instances/default/config. The contents

of the file should be as follows
#contains the Inventory database access parameters

#Set jdbc.database as oracle or postgres.
jdbc.database=postgres
#Default <Postgres DB Port>is 5444 and <Oracle DB Port> is 1521

20

jdbc.postgress.url=jdbc:postgresql://<DB server>:<Postgres DB Port>/<DB schema>
jdbc.oracle.url=jdbc:oracle:thin:@ <DB server>:<Oracle DB Port>:<DB schema>

jdbc.username=<DB User>
jdbc.password=<DB password>

 Generate alarms from TeMIP – which are matching the pattern

present inside the PD value pack

UCA_Automation_DomainExample_UCA_PD-vp-V1.0-1A.zip.

