
Technical white paper

Using R-Functions to Integrate
Custom Analytics into OpsA
Operations Analytics 2.10

May 2014

Table of Contents

Purpose ...2

Setting up the R Language Pack from Vertica ..2

Creating the R Functions that Integrate with OpsA ...2

Registering R function ..4

Using your R Function in an OpsA Dashboard ..6

Limitations ..6

Technical White Paper: Using R-Functions to Integrate Custom Analytics into OpsA

2

Purpose

The purpose of this white paper is to document the steps that custom analytics developers can take to register

custom analytics written using R and make use of them on data being collected by Operations Analytics (OpsA).

Using OpsA 2.10, OpsA users can execute R functions on top of an Analytics Query Language (AQL) function that

fetches entities and some measurements done for them based on data collected by OpsA.

Setting up the R Language Pack from Vertica

OpsA uses Vertica’s R language runtime environment as the runtime environment for any R function you
register with both OpsA and Vertica. It is mandatory that you have the Vertica R language pack set up on each
node of the Vertica cluster used by your OpsA deployment. You must install the following packages on each
node of the Vertica cluster in order to set up the Vertica R language pack:

compat-libgfortran-41-4.1.2-39.el6.x86_64.rpm

vertica-R-lang-6.1.1-0.x86_64.RHEL5.rpm

The former is a pre-requisite for the latter.

Complete the instructions shown in the Use an Existing Vertica Installation and use the R Language Pack from
Vertica section of the Operations Analytics Installation Guide.

Creating the R Functions that Integrate with OpsA

OpsA expects all R functions to conform to the Vertica R UDX framework (R UDX). In order to have a valid R UDX,
Vertica expects the following:

1. R functions must have a corresponding UDX factory function written in R. This function must capture
input, output frame descriptions, and descriptions of optional input parameters to the core R function.

2. If an R function’s output frame does not contain a fixed number of columns with fixed types, then the
factory function needs to specify an output type callback R function that is written by the user. The
output callback function describes the output frame structure to Vertica at runtime.

3. If an R function expects parameters for configuring the behavior of the computation done in the core R
function in question, then those parameters need to be described using a parameter callback R
function and the factory function must specify the same parameters.

4. It is expected that the core R function, the UDX factory R function, any optional output callback R
function and any optional parameter callback R function must all be present in a single .R file that is
used for registering the R function as a valid Vertica R UDX.

Identifying the Statistical Random Variables in an Input Frame for an R function

An R function’s integration with OpsA currently assumes that the R function is written so that it identifies the
statistical random variables in the OpsA domain from the input data frame that is fed to the R function at
runtime. The following information helps you better understand the concept of OpsA random variables and how
to write R code to identify these variables in the input frames.

As noted earlier, one can use OpsA dashboard panes to invoke R functions on an AQL function that results in
OpsA timeseries data.

At runtime, an AQL function is translated to a Vertica SQL. In addition, OpsA’s AQL wraps the Vertica SQL inside
of another Vertica SQL involving the registered R UDX invocation.

The Vertica SQL translated from the AQL function represents the query that Vertica would run to supply the
results as an input data frame to the R function.

AQL also supplies three internal parameters to an R function call in the outer SQL involving the invocation of the
R function: numentityparts, entitypart1columnindex, and timestampcolumnindex. These

parameters should permit R function writers to identify the entities, measurement names combinations, and

Technical White Paper: Using R-Functions to Integrate Custom Analytics into OpsA

3

their corresponding timeseries data. Once entity, measurements, and their corresponding timeseries data are
identified, each entity, measurement combination could be considered a valid random variable backed by the
timeseries data for itself being the observations for the random variable.

OpsA provides some example .R files containing core R functions, their UDX factory R functions, output callback
functions, and parameter callback functions, in the following location:
/opt/HP/opsa/inventory/lib/hp/r-udx-examples.

See the example named MVCorr.R that attempts to do statistical correlation between pairs of such random
variables.
Note: You must provide a parametertypecallback R function in your .R file in order to achieve smooth
passing of these parameters to the R function at runtime. The parametertypecallback R function is

recognized by Vertica UDX framework as an optional function that allows specifying the description of
parameters to UDX framework. For integration with OpsA, this callback is mandatory.

The following snippet from MVCorr.R example, demonstrates the boiler plate code that needs to be written for
the parametertypecallback R function. This snippet also demonstrate how to specify the

parametertypecallback function (in this example the function named mvCorrParamType) in the UDX
factory function (in this example its function named mvCorrFactory).

mvCorrParamType<-function(){

 params <- data.frame(datatype=rep(NA, 3), length=rep(NA,3),

scale=rep(NA,3),name=rep(NA,3))

 params[1,1] = "int"

 params[1,4] = "numentityparts"

 params[2,1] = "int"

 params[2,4] = "entitypart1columnindex"

 params[3,1] = "int"

 params[3,4] = "timestampcolumnindex"

 params

}

mvCorrFactory<-function()

{

 list(name=mvCorr,udxtype=c("transform"),intype=c("any"),

outtype=c("any"),

outtypecallback=mvCorrOutType,parametertypecallback=mvCorrParamType)

}

The various other helper methods in MVCorr.R also illustrates one could write code to identify the random
variables in the input frame based on the parameters passed by AQL.

Take a look at the optional Vertica R UDX framework recognized outtypecallback R function that

attempts to establish the contract with Vertica for the outgoing result or output frame columns. If you want the
frame columns output by specific names or want to specify specialized types for some of these columns, then
you must code the outtypecallback R function and register the same in UDX factory R function.

mvCorrOutType<-function(x,y){

Technical White Paper: Using R-Functions to Integrate Custom Analytics into OpsA

4

 entityStartIndex<-y[['entitypart1columnindex']]

 numEntityParts<-y[['numentityparts']]

 ret <-
data.frame(datatype=rep(NA,(numEntityParts*2+2+1)),lenth=rep(NA,(numEntityParts*2+2+1)),scale=rep(NA,(n
umEntityParts*2+2+1)),name=rep(NA,(numEntityParts*2+2+1)))

 for (i in 0: numEntityParts){

 ret[i+1, 1]="varchar"

 ret[i+1, 4]=paste("rv1",x[entityStartIndex+i, 4],sep="_")

 }

 ret[numEntityParts+1, 1]="varchar"

 ret[numEntityParts+1, 4]="rv1_metric"

 for (i in 0: numEntityParts){

 ret[i + numEntityParts + 2, 1]="varchar"

 ret[i + numEntityParts + 2, 4]=paste("rv2",x[entityStartIndex+i,4],sep="_")

 }

 ret[numEntityParts*2+2, 1]="varchar"

 ret[numEntityParts*2+2, 4]="rv2_metric"

 ret[numEntityParts*2+2+1, 1]="float"

 ret[numEntityParts*2+2+1, 4]="correlation_coeff"

 ret

}

Note: Notice how the input parameters are used by the mvCorrOutType callback function to describe the

output column names and types.

The names used above in the outtypecallback function are directly processed by AQL in its result
processing and sent to the dashboard pane in the OpsA console.

Registering R function

You must register a newly created R Function with both Vertica and OpsA.

Registering your R function with Vertica

1. Prepare the .R file so that it contains the following:

 The core R function implementing your custom analytics logic.

 The Vertica R UDX factory function.

 The parameter type callback R function.

 Any optional output type callback R function.

Technical White Paper: Using R-Functions to Integrate Custom Analytics into OpsA

5

 Any other helper R functions used by the core R function.

2. Run the Vertica R UDX load commands to load the R function into Vertica. At this stage the R function
becomes available as a valid UDX that can be invoked from Vertica SQL.
Note: You must complete these steps as a valid Vertica database user who has the privileges to run
SQL commands and who can create UDX functions in the Vertica database system.

The following are example Vertica SQL commands that load the example R UDX provided by MVCorr.R:

create library mvCorrLib as '/home/dbadmin/functions/MVCorr.R'

language 'R';

create transform function mvCorr as language 'R' name

'mvCorrFactory' library mvCorrLib;

You can also review Vertica documentation on how to load Vertica R UDX functions.

Registering your R function with OpsA

Once the R function is loaded and available in Vertica, you need to tell OpsA about it by registering an R function
module into OPSA.

1. Create an R module specification file. The following example shows the contents of one such module
definition file that defines the R module for the multi-variate correlation R UDX function example from
the /opt/HP/opsa/inventory/lib/hp/r-udx-examples/mvCorr.R file.

module MultiVariate;

/* Does multivariate correlation */

define mvCorr input(any, integer, integer) output(any);

Save the content in a text file. For example, see
/opt/HP/opsa/inventory/lib/hp/r/multivariate.rpsec.

2. Load the R module specification into OPSA by running the following command:

/opt/HP/opsa/bin/opsa-rspec-module-manager.sh -?

 You should see an output similar to the following:

OPSA_HOME is set to /opt/HP/opsa

-t <tenant name> Name of Tenant (mandatory argument except when using –v

option)

-v <file> Validate File

-l modules List Summary of Loaded Modules

-l all List Contents of All Loaded Modules

-l <modulename> List Contents of Module

-i <file> Import File

-a <authorname> Specify Author for Import File

-d <modulename> Delete Module

-? This help message

For example, you could load the R module named MultiVariate previously defined in the

/opt/HP/opsa/inventory/lib/hp/r/multivariate.rpsec file by running the following
command:

/opt/HP/opsa/bin/opsa-rspec-module-manager.sh – t opsa_default -i

/opt/HP/opsa/inventory/lib/hp/r/multivariate.rpsec

Technical White Paper: Using R-Functions to Integrate Custom Analytics into OpsA

6

Using your R Function in an OpsA Dashboard

You can create your AQL function that returns time series data that you can visualize using an OpsA line chart,
heatmap chart, or bar chart UI elements. For more information see About Analytics Query Language (AQL)
Functions in the Operations Analytics Help.

In a dashboard pane, you can visualize the results of the AQL function by using it in the query edit box for the
pane as shown below:

Now surround the AQL function call with a call to an R function as shown below to trigger the invocation of the
registered R function:

Limitations

Only a table visualization of the invoked R function is supported in OpsA 2.10.

You can only invoke R functions on data from a single collection. In other words, only a single AQL function
could be passed as an argument to an R function invoked from a dashboard pane query editor. It is not possible
to invoke R functions from OpsA dashboards on AQL expressions (such as concatenation of multiple AQL
function invokes) representing queries of data from potentially multiple OpsA collections.

Technical white paper: Using R-Functions to Integrate Custom Analytics into OpsA

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with
FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notices

© Copyright 2013–2014 Hewlett-Packard Development Company, L.P.

Trademark Notices

Microsoft, Windows, and Windows NT are U.S. registered trademarks of the Microsoft group of companies.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

UNIX® is a registered trademark of The Open Group.

Support

Visit the HP Software Support web site at:

www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support that HP
Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer,
you can benefit by using the support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches and associated patch documentation

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a
support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

	Purpose
	Setting up the R Language Pack from Vertica
	Creating the R Functions that Integrate with OpsA
	Identifying the Statistical Random Variables in an Input Frame for an R function

	Registering R function
	Registering your R function with Vertica
	Registering your R function with OpsA

	Using your R Function in an OpsA Dashboard
	Limitations
	Legal Notices
	Warranty
	Restricted Rights Legend
	Copyright Notices
	Trademark Notices

	Support

