
HP Performance Engineering Best Practices Series

For Performance Engineers and Managers

Software Version: 12.00

Performance Monitoring Best Practices

Document Release Date: March 2014

Software Release Date: March 2014

2

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices

© Copyright 1992 - 2014 Hewlett-Packard Development Company, L.P..

Trademark Notices

Adobe® is a trademark of Adobe Systems Incorporated.

Java is a registered trademark of Oracle and/or its affiliates.

Microsoft® and Windows® are U.S registered trademarks of Microsoft Corporation.

3

Documentation Updates

The title page of this document contains the following identifying information:

• Software Version number, which indicates the software version.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP
Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.

4

Support

Visit the HP Software Support web site at:

http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and
support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed to manage your business. As
a valued support customer, you can benefit by using the support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many
also require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

5

Table of Contents

Welcome to This Guide ...9
About HP Performance Monitoring ..10
How This Guide Is Organized ...12
Who Should Read This Guide ...13
Additional Online Resources...13

PART I: INTRODUCTION

Chapter 1: Introducing Performance Monitoring17
Overview of Performance Monitoring ..18
Performance Terminology...19
Factors Affecting Performance ..21
Performance Objectives...23
Performance Monitoring Guidelines ..24
Monitoring Misconceptions..26
Bottlenecks and Tuning ..28

Chapter 2: HP Monitoring Solutions ..31
Overview..32
HP LoadRunner ...35
HP Sitescope ..38
HP Diagnostics...39

PART II: OPERATING SYSTEMS

Chapter 3: Windows Monitoring ..45
Overview..45
Architecture ...46
Processor - Most Important Counters ...48
Memory - Most Important Counters...55
I/O - Most Important Counters...66
Network - Most Important Counters ..73

Table of Contents

6

Chapter 4: Monitoring Unix..81
Overview..82
Architecture ...83
Processor - Most Important Counters ...89
Memory - Most Important Counters ..98
I/O - Most Important Counters...105
Network - Most Important Counters ..110

PART III: RUNTIME PLATFORMS

Chapter 5: Runtime Platform Monitoring ..117
Overview..117
Architecture ...119

Chapter 6: Java Platform Monitoring ...123
Overview..124
Most Important Java Counters..126

Chapter 7: .Net Platform Monitoring ...141
Overview..141
Most Important .Net Counters..144

PART IV: WEB SERVER MONITORING

Chapter 8: Apache Monitoring ...161
Overview..162
Architecture ...162
Most Important Apache Counters ..165
Optimization and Tuning ...166

Chapter 9: IIS Monitoring ...169
Overview..169
Architecture ...170
Monitoring ..172
Most Important IIS Counters ..173
Optimization and Tuning ...177

PART V: APPLICATION SERVER MONITORING

Chapter 10: WebLogic Monitoring...181
Overview..181
Architecture ...182
Monitoring ..184
Most Important WebLogic Counters ..185
Optimization and Tuning ...196

Table of Contents

7

Chapter 11: WebSphere Monitoring ..199
Overview..199
Architecture ...200
Monitoring ..202
Most Important Counters ...203
Optimization & Tuning...209

PART VI: DATABASE RESOURCE MONITORING

Chapter 12: Database Resource Monitoring - Introduction.............213

Chapter 13: Oracle Monitoring...215
Overview..215
Architecture ...217
Monitoring ..220
Most Important Oracle Counters ..222
Optimization and Tuning ...226

Chapter 14: MS SQL Server Monitoring ...229
Overview..230
Architecture ...231
Related Windows Counters ...232
Most Important SQL Server Counters ...235

PART VII: VIRTUALIZATION TECHNOLOGIES

Chapter 15: Microsoft Virtualization Monitoring.............................253
Overview..253
Architecture ...255
Monitoring Tools...263
Related Windows Counters ...268
Most Important Counters ...270
Optimization and Tuning ...301

Chapter 16: VMware Monitoring..309
Overview..309
Architecture ...310
Monitoring Tools...316
Most Important VMware Counters ...319
Optimization and Tuning ...335

Table of Contents

8

9

Welcome to This Guide

Welcome to Performance Monitoring Best Practices.

This guide provides concepts, guidelines, and practical examples on best
implementation of performance testing monitoring in various
environments.

This chapter includes:

➤ About HP Performance Monitoring on page 10

➤ How This Guide Is Organized on page 12

➤ Who Should Read This Guide on page 13

➤ Additional Online Resources on page 13

Welcome to This Guide

10

About HP Performance Monitoring

HP is the market leader in the Automated Performance Testing. This is a
discipline that leverages products, people, and processes to reduce the risks
of application, upgrade, or patch deployment. At its core, automated
performance testing is about applying production workloads to pre-
deployment systems while simultaneously measuring system performance
and end-user experience. A well-constructed performance test answers
questions such as:

➤ Does the application respond quickly enough for the intended users?

➤ Will the application handle the expected user performance test and
beyond?

➤ Will the application handle the number of transactions required by the
business?

➤ Is the application stable under expected and unexpected user
performance tests?

➤ Are you sure that users will have a positive experience on go-live day?

By answering these questions, automated performance testing quantifies the
impact of a change in business terms. This, in turn, makes clear the risks of
deployment. An effective automated performance testing process helps you
make more informed release decisions, and prevents system downtime and
availability problems.

HP provides two products in the area of automated performance testing -
HP LoadRunner and HP Performance Center. Each focuses on different
markets, but both are built on the proven and shared foundation of
supported protocols, monitors, and more.

HP LoadRunner enables testing system under controlled and peak
performance test conditions. To generate performance test, LoadRunner
runs thousands of virtual users (Vusers) that are distributed over a network.
The Vusers can run on UNIX- and Windows-based platforms. Using a
minimum of hardware resources, these Vusers provide consistent,
repeatable, and measurable performance test to exercise application under
test (AUT) just as real users would.

Welcome to This Guide

11

HP Performance Center, part of the Application Lifecycle Management
(ALM) suite, is a global cross-enterprise performance testing tool that you
install on your organization’s own infrastructure.

➤ Performance Center enables managing multiple, concurrent performance
testing projects across different geographic locations without any need to
travel between them.

➤ Performance Center administers all internal performance testing needs.

➤ With Performance Center, you can manage all aspects of large-scale
performance testing projects, including resource allocation and
scheduling, from a centralized location accessible through the Web.

➤ Performance Center helps streamline the testing process, reduce resource
costs, and increase operating efficiency.

➤ Performance Center helps pinpoint performance bottlenecks.

➤ Performance Center enables you to determine the number of users the
application under test can scale up to. (This number is the breaking point
after which application's performance starts to degrade.) This information
gives clues as to what can be done to increase the application’s
performance test capacity.

To address the needs of performance monitoring teams, and to reduce time
configuring and deploying relevant monitors, we have prepared the
performance monitoring guidelines contained in this guide, as well as a pre-
built collection of monitors that consists of default metrics, default
thresholds (where applicable) and proactive tests (where applicable). All of
these have been researched using best practice data and expertise from
various sources including HP’s operating system administrators, HP’s
professional services organization, technical documentation, and books
from industry experts. Monitoring system performance using these
guidelines will help in identifying performance bottlenecks that lead to the
root cause of problems in your systems.

The purpose of this guide is to provide easy-to-use, comprehensive
performance monitoring guidelines, without the need for the Performance
Center user or the IT organization to be an expert on the application.

Welcome to This Guide

12

How This Guide Is Organized

HP Performance Monitoring Best Practices contains the following sections:

 Part I Introduction

Introduces performance monitoring and solutions.

 Part II Operating Systems

Provides best practices for monitoring Window and UNIX operating
systems.

 Part III Runtime Platforms

Provides best practices for monitoring Java and .NET runtime platforms.

 Part IV Web Server Monitoring

Provides best practices for monitoring Apache and IIS Web servers.

 Part V Application Server Monitoring

Provides best practices for monitoring WebLogic and WebSphere application
servers.

 Part VI Database Resource Monitoring

Provides best practices for monitoring Oracle and MSSQL Server database
resources.

 Part VII Virtualization Technologies

Provides best practices for monitoring Microsoft Hyper-V and VMWare
hypervisor platforms.

Welcome to This Guide

13

Who Should Read This Guide

This guide is intended for:

➤ Performance Engineers

➤ Performance CoE Managers

➤ QA Managers

➤ QA Engineers

Additional Online Resources

Troubleshooting & Knowledge Base accesses the Troubleshooting page on
the HP Software Support Web site where you can search the Self-solve
knowledge base. Choose Help > Troubleshooting & Knowledge Base. The
URL for this Web site is http://h20230.www2.hp.com/troubleshooting.jsp.

HP Software Support accesses the HP Software Support Web site. This site
enables you to browse the Self-solve knowledge base. You can also post to
and search user discussion forums, submit support requests, download
patches and updated documentation, and more. Choose Help > HP Software
Support. The URL for this Web site is www.hp.com/go/hpsoftwaresupport.

Most of the support areas require that you register as an HP Passport user
and sign in. Many also require a support contract.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport user ID, go to:

http://h20229.www2.hp.com/passport-registration.html

HP Software Web site accesses the HP Software Web site. This site provides
you with the most up-to-date information on HP Software products. This
includes new software releases, seminars and trade shows, customer support,
and more. Choose Help > HP Software Web site. The URL for this Web site
is www.hp.com/go/software.

http://www.hp.com/go/software
http://h20230.www2.hp.com/troubleshooting.jsp
http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html

Welcome to This Guide

14

Part I

Introduction

16

17

1
Introducing Performance Monitoring

Performance monitoring is part of the broader Performance Testing
discipline which deals with measuring the performance of an application
under test.

In addition, performance monitoring is also useful in validating and
verifying other quality attributes of the system, such as scalability,
reliability, and resource usage performance.

This chapter includes:

➤ Overview of Performance Monitoring on page 18

➤ Performance Terminology on page 19

➤ Factors Affecting Performance on page 21

➤ Performance Objectives on page 23

➤ Performance Monitoring Guidelines on page 24

➤ Monitoring Misconceptions on page 26

➤ Bottlenecks and Tuning on page 28

Introducing Performance Monitoring

18

Overview of Performance Monitoring

Performance monitoring ensures that you have up-to-date information
about how your application is operating under performance test. By
analyzing performance data for your system over a multiple performance
tests, you can define a baseline, that is, a range of measurements that
represent acceptable performance under typical operating conditions. This
baseline provides a reference point which makes it easier to identify
problems when they occur.

In addition, when troubleshooting system problems, performance data gives
you information about the behavior of system resources at the time the
problem occurs, which helps in pinpointing the cause.

Finally, monitoring application performance provides you with data to
project future growth and to plan for how changes in your system
configurations might affect future operations.

Performance monitoring helps identify bottlenecks and verify whether the
application meets its performance objectives, by collecting metrics that
characterize the application’s behavior under different workload conditions
(performance test, stress, or single user operation). These metrics should
then correlate with those defined in the performance objectives. Examples
of such metrics can be: response time, throughput, and resource utilization
(i.e. CPU, memory, disk I/O, network bandwidth). Without good
understanding of these metrics, it is very difficult to draw the right
conclusions and/or pinpoint the bottleneck when analyzing performance
results. We strongly recommended that you build the expertise that enables
you to conduct the right analysis.

Configuring and tuning applications for optimal performance are ongoing
concerns among application developers and IT organizations. The ability to
figure out why a particular application is running slowly is a desirable skill
that is part science and part art. Whatever level of skill or artistry you
possess, gathering the performance data is a necessary first step to
diagnosing and resolving a wide range of problems.

Introducing Performance Monitoring

19

Performance Terminology

Quantitative aspects of performance testing are gathered during the
monitoring phase. Let’s take a closer look at main terms used in
performance monitoring.

Two of the most important measures of system behavior are bandwidth and
throughput. Bandwidth is a measure of quantity, which is the rate at which
work can be completed, whereas throughput measures the actual rate at
which work requests are completed.

Throughput can vary depending on the number of users applied to the
system under test. It is usually measured in terms of requests per second. In
some systems, throughput may go down when there are many concurrent
users, while in other systems, it remains constant under pressure but latency
begins to suffer, usually due to queuing. How busy the various resources of a
computer system get is known as their utilization.

The key measures of the time it takes to perform specific tasks are queue
time, service time, and response time.

Service Time and Queue Time
Service time measures how long it takes to process a specific customer work
request.

When a work request arrives at a busy resource and cannot be serviced
immediately, the request is queued. Requests are subject to a queue time
delay once they begin to wait in a queue before being serviced.

Introducing Performance Monitoring

20

Response Time
Response time is the most important metric and will be used consistently
throughout the book to refer to the sum of service time and queue time. It
can be divided into response time at the server or client as follows:

➤ Latency measured at the server. This is the time taken by the server to
complete the execution of a request. This does not take into account the
client-to-server latency, which includes additional time for the request
and response to cross the network.

➤ Latency measured at the client. The latency measured at the client
includes the request queue, the time taken by the server to complete the
execution of the request, and the network latency. Deep application usage
understanding is required in order to build proper mix of activities and
their popularity among the users.

Workload Profile, Capacity, and Scalability
Another important term affecting results of performance monitoring is
workload profile which is a mix of users performing various operations in a
given application under test.

Capacity describes how much work each resource can process at its
maximum level of utilization, while scalability is often defined as the
throughput of the machine or system as a function of the total number of
users requesting service.

Introducing Performance Monitoring

21

Factors Affecting Performance

It has been known for years that although software development constantly
strives towards constant improvement, it will never completely be 100%
perfect. An application’s performance, in turn, can only be as good as in
comparison to its performance objectives.

Performance problems affect all types of systems, regardless of whether they
are client/server or Web application systems. It is imperative to understand
the factors affecting system performance before embarking on the task of
handling them.

Generally speaking, the factors affecting performance may be divided into
two large categories: project management oriented and technical.

Project Management Factors Affecting Performance
In the modern Software Development Life Cycle (SDLC), the main phases
are subject to time constraints in order to address ever growing competition.
This causes the following project management issues to arise:

➤ Shorter coding time in development may lead to a lower quality product
due to a lack of concentration on performance.

➤ Chances of missing information due to the rapid approach may disqualify
the performance objectives.

➤ Inconsistent internal designs may be observed after product deployment,
for example, too much cluttering of objects and sequence of screen
navigation.

➤ Higher probability of violating coding standards, resulting in
unoptimized code that may consume too many resources.

➤ Module reuse for future projects may not be possible due to the project
specific design.

➤ Module may not be designed for scalability.

➤ System may collapse due to a sudden increase in user performance test.

Introducing Performance Monitoring

22

Technical Factors Affecting Performance
While project management related issues have great impact on the output,
technical problems may severely affect the application’s overall
performance. The problems may stem from the selection of the technology
platform, which may be designed for a specific purpose and does not
perform well under different conditions.

Usually, however, the technical problems arise due to the developer’s
negligence regarding performance. A common practice among many
developers is not to optimize the code at the development stage. This code
may unnecessarily utilize scarce system resources such as memory and
processor. Such coding practice may lead to severe performance bottlenecks
such as:

➤ memory leaks

➤ array bound errors

➤ inefficient buffering

➤ too many processing cycles

➤ larger number of HTTP transactions

➤ too many file transfers between memory and disk

➤ inefficient session state management

➤ thread contention due to maximum concurrent users

➤ poor architecture sizing for peak performance test

➤ inefficient SQL statements

➤ lack of proper indexing on the database tables

➤ inappropriate configuration of the servers

These problems are difficult to trace once the code is packaged for
deployment and require special tools and methodologies.

Another cluster of technical factors affecting performance is security.
Performance of the application and its security are commonly at odds, since
adding layers of security (SSL, private/public keys and so on) is extremely
computation intensive.

Introducing Performance Monitoring

23

Network related issues must also be taken into account, especially with
regard to Web applications. They may be coming from the various sources
such as:

➤ Older or unoptimized network infrastructure

➤ Slow web site connections lead to network traffic and hence poor
response time

➤ Imbalanced performance test on servers affecting the performance

Performance Objectives

To successfully monitor system under performance test, both the approach
to monitoring performance and the monitoring itself must be relevant to
the context of the performance project. Therefore the first step in
monitoring as part of Performance Testing Lifecycle (PTLC), should be
defining performance objectives. These refer to data that is collected
through the process of performance testing and that is expected to have
value in determining or improving the quality of the product. However,
these objectives are not necessarily quantitative nor directly related to other
stated performance criteria.

These objectives usually include all or some of the following characteristics:

➤ Contractual. Performance objectives are usually formally defined between
the business customer and the testing entity as:

➤ mandatory. Criteria that are absolutely non-negotiable due to legal
obligations, service level agreements (SLA) or fixed business needs.

➤ negotiable. Criteria that are desired for product release but may be
modified under certain circumstances. These are typically, but not
necessarily, end-user focused.

Introducing Performance Monitoring

24

➤ Precision. The wording in which quantitative aspects of performance
objectives are written:

➤ exact. Criteria should be reached exactly as written in the objectives,
for example, "50% CPU utilization."

➤ approximate. Criteria falls within certain range or has only one limit,
for example, "Memory usage per process not to cross over 50MB",
"Response time of at least 90% of transaction X should be equal or less
than 3 sec."

➤ Boundaries. Performance objectives frequently define certain values in
regard to the application under test:

➤ target. This is the desired value for a resource under a particular set of
conditions, usually specified in terms of response times, throughput
and resource utilization levels.

➤ threshold. This represents the maximum acceptable value for
resources, usually specified in terms of response times, throughput
(transactions per second), and resource utilization levels.

Performance objectives and their service attributes are derived from business
requirements. Monitored metrics, captured by measuring, show the progress
toward or away from performance objectives.

Performance Monitoring Guidelines

There are simple general guidelines to keep in mind when preparing for
performance monitoring:

➤ Start from a standard sampling interval. If the problem is more specific, or
if you are able to pinpoint a suspected bottleneck, then lower the time
period.

➤ Based on the sampling interval, decide on the entire monitoring session
length. Sampling at frequent intervals should only be done for shorter
runs.

➤ Try to balance the number of objects you are monitoring and the
sampling frequency, in order to keep the collected data within
manageable limits.

Introducing Performance Monitoring

25

➤ Pick only monitors that are relevant to the nature of the application
under test in order to comprehensively cover testing scenario, while
avoiding redundancy of deploying similar monitors under different
names.

➤ Too many deployed counters may overburden analysis as well as
performance overheads.

➤ Make sure the correct system configuration (for example, virtual memory
size) is not overlooked. Although this is not exactly a part of the
monitoring discipline, it may greatly affect the results of the test.

➤ Decide on a policy towards remote machines. Either regularly run the
monitor service on each remote machine in order to collect results and
then transfer results to the administrator at the end of the run by bulk, or
rather continuously gather metrics and move over the network to the
administrator. Choose a policy based on the application under test and
the defined performance objectives.

➤ When setting thresholds, consider any "generic" recommendations set by
hardware and/or operating system vendors (for example, Average CPU
usage should be below 80% over a period of time, or disk queue length
should be less than 2) as relevant for any test and application.

This does not mean that not meeting these "generic" recommendations is
always bad, but it does mean that it’s always worth checking the
monitoring results and performance test response times with other
metrics.

➤ Choose the parameters that will monitor the most worthwhile activity of
the application and its objectives. Having too much data can overburden
the analysis process.

➤ Monitoring goals can be achieved not only by using built-in system or
application objects and counters, but also by watching application-
specific logs, scripts, XML files etc.

➤ It may be a good idea to have a small number of basic monitors
constantly running (for example, in HP SiteScope), and more detailed
monitoring defined for the performance testing scenario during test
execution.

Introducing Performance Monitoring

26

Measure metrics not only under performance testing, but also for some
periods before and after the performance test to allow for creating a "local
baseline", and verifying that the application under test goes back to the
baseline once the performance test is complete.

Monitoring Misconceptions

The whole purpose of performance monitoring may be loosely defined as
collecting metric data for later analysis with the ultimate goal of recognizing
the root causes of bottlenecks.

While this statement is usually undisputed, there are some common
misconceptions that can deviate from this goal, produce high overhead and
increase costs. They are:

➤ Monitoring basic infrastructure is enough.
Monitoring system metrics (such as CPU, memory, and disk) is important
but these metrics do not provide adequate information to truly
understand whether actual users or applications are experiencing
performance problems. The causes of most performance problems today
are usually problems with application components, as opposed to
individual pieces of hardware. As a result, system monitoring alone, while
still critical, will not provide an accurate or complete picture of true
application performance.

➤ Monitoring processes or services for an application is enough.
Today’s applications, whether packaged, J2EE, .NET, or customized SOA
applications, are complex and span multiple systems and various
technologies. In order to thoroughly understand application health,
detailed component monitoring and diagnostics are required to
understand the complex interactions between the various services. HP
Diagnostics enables you to start with the end-user business process, then
drill down into application components and system layers, thus ensuring
you can achieve rapid resolution of the problems that have the greatest
business impact, as well as meeting service level agreements.

Introducing Performance Monitoring

27

➤ Monitoring all of the available metrics for a system or application is the
best approach.
Collecting too much data leads to an analysis burden that can distort the
revelation of real performance problems. However 100 percent coverage is
not necessary or even desirable. The famous 80/20 rule - “80 percent of
problems are generally caused by 20 percent of the system’s or
application’s components” - is true for performance monitoring as well.
The solution is in knowing which systems relate to critical business
functions, and which ones do not.

➤ All tests can be done using the same set of metrics.
While some metrics would most probably remain selected for the
majority of performance tests, good performance monitoring includes
various sets of measurements depending on the type of test to be
performed.

➤ Monitoring the web server is usually enough.
When monitoring complex modern applications, understanding its
architecture is essential to getting a realistic picture of the performance
cause. Standard web application deployment consists of at least a web
server, an application server, and a database server, in most cases spread
across multiple physical machines and even physical locations. With SOA
proliferation, even more infrastructure and services may be involved in
generating responses to the end user. Therefore it is very important to
monitor all relevant servers - especially database machines. Sometimes it
may also be necessary to monitor client workstations.

Introducing Performance Monitoring

28

Bottlenecks and Tuning

For applications to comply with performance objectives, their performance
has to be monitored continuously. By monitoring, we obtain performance
data which is useful in diagnosing performance problems under production-
like conditions. This data may indicate the existence of a bottleneck, that is,
a situation where the performance or capacity of an entire system is severely
limited by a single component.

Formally speaking, a bottleneck is located on a system's critical path and
provides the lowest throughput. In client-server and especially Web based
systems, there may be numerous slow points such as CPU, memory,
database, network link and so on. Some of them can be identified through
monitoring the operating system’s relevant counters, while some may only
be pinpointed by instrumenting the application.

Introducing Performance Monitoring

29

HP provides a product, HP Diagnostics for J2EE/.Net, that enables IT
professionals to:

➤ Proactively detect problems in production.

➤ Rapidly isolate problems to system or application tiers.

➤ Pinpoint root causes to specific application components.

An application may perform well in the development and QA environment,
but fail to scale or may exhibit performance problems in production. It is
important to understand the impact of the infrastructure in which the
application runs and the behavior of the many application components as
they interact under performance testing. From the diagnostic perspective, it
is important to be able to isolate the problem by tier of the application
architecture, by application component, and to have progressive drill-down
visibility into J2EE/.Net performance problems, the J2EE/.Net environment,
and into the actual logic with sufficient detail to determine the root cause of
the problems.

From the business perspective though, seeing system resources fully utilized
is the intended goal - after all, all these CPU units, lots of memory and discs
were paid for in order to be busy as much as possible. Therefore an informal
definition of bottleneck would be the situation where a resource is fully
utilized and there is a queue of processes/threads waiting to be served.

Distributed environments are especially vulnerable to bottlenecks due to:

➤ Multitude of operating systems where each of the application
components may reside.

➤ Network configuration between the components.

➤ Firewalls and other security measures.

➤ Database malfunctioning where poor schema design, lack of proper
indexing and storage partitioning may greatly slow the overall system
response time.

➤ Ineffective thread management causing a decrease in concurrent
usage.

➤ Unverified high number of connections.

Introducing Performance Monitoring

30

➤ Fast growing number of threads due to lackluster thread pool size
management.

➤ Database connection pool size misconfiguration.

➤ Unoptimized frequently used SQL statements.

➤ No memory tuning, both physical and shared, which is required for
high volume transaction processing.

As mentioned above, performance monitoring ideally leads to the
identification of bottlenecks and their elimination and/or application
tuning.

Another application of the 80/20 rule mentioned above is that 80% of
resources are consumed by 20% of operations inside any given application.
Needless to say, these most popular operations are most probably the ones
causing bottlenecks. Therefore improving this 20% of the code may greatly
reduce overall performance.

The process of the performance tuning is by itself partly science, partly art as
it may involve intervention at the design level, compile level, assembly
level, and at run time. It usually cannot be done without trade-offs -
normally only one or two aspects can be addressed at the time of
optimization, such as: execution time, memory usage, disk space,
bandwidth, power consumption, or some other resource. For example,
increased caching (and request execution time) leads to greater memory
consumption, multi-processor use may complicate the source code etc.

31

2
HP Monitoring Solutions

HP’s portfolio includes dozens of monitoring solutions for multiple
purposes to address all aspects of monitoring. In the field of performance
validation, HP LoadRunner andHP Performance Center integrate with two
of these solutions—HP Sitescope and HP Diagnostics—to facilitate a
comprehensive and complete monitoring and bottleneck analysis solution.

This chapter includes:

➤ Overview on page 32

➤ HP LoadRunner on page 35

➤ HP Sitescope on page 38

➤ HP Diagnostics on page 39

HP Monitoring Solutions

32

Overview

LoadRunner and Performance Center provide a comprehensive, complete,
and holistic monitoring solution when integrated with HP Sitescope and
HP Diagnostics. This is done by combining the strength of each of these
products:

➤ LoadRunner and Performance Center. Validate performance under
load throughout simulation of typical workload and monitoring user
actions in the form of transactions.

➤ HP Sitescope. Monitors the different layers of the system under test,
collecting meaningful data for focusing on the bottleneck analysis
process.

➤ HP Diagnostics. Isolates performance bottleneck by breaking down
transaction response time into the different application layers, thus
providing actionable data for problem resolution.

HP Monitoring Solutions

33

The following image illustrates the HP Monitoring Solution for the various
layers of a System Under Test:

HP Monitoring Solutions

34

From a practical approach, relevant counters must be chosen for specific
types of monitoring. Various metric types can be grouped under the
following categories:

➤ Application. Application metrics include custom performance
counters.

➤ Platform. Platform metrics are related to .NET common language
runtime (CLR) on Microsoft Windows and JVM in J2EE environments.
An operating system is also considered a platform.

➤ System. System metrics are related to processor, memory, disk I/O, and
network I/O.

➤ Network. Network metrics are related to network bandwidth usage and
latency.

For validation-oriented tests, we recommend monitoring the AUT using
LoadRunner and Sitescope for identifying potential bottlenecks in
transaction response time or in resource utilization. Once such a bottleneck
is identified, we recommend using HP Diagnostics to isolate the issue using
a more focused and shorter test, ending up with providing actionable data
to the development team.

For optimization-oriented tests, we recommend involving HP Diagnostics
from the beginning in order to identify potential optimization points more
quickly. This approach is most suitable for tests such as stress tests, tests run
against a small subsystem of the application, volume tests, and so on.

HP Monitoring Solutions

35

HP LoadRunner

LoadRunner and Performance Center include native monitoring capabilities
that cover the immediate needs of performance testing.

These include:

➤ LoadRunner Data Point monitors. Include transaction monitoring
generated by VuGen scripts and automatically generated data points
such as hits per seconds, throughput, and so on, when running against
a Web-based application.

➤ System Under Test monitors. Include application-related metrics, such
as system resource, Web server, database, and network metrics.

LoadRunner transaction monitors are the basic and most important
monitors that should be applied while running a performance test because
they reflect the end-to-end user experience. This enables transaction
validation from a business perspective, which, in turn, helps focus the
testing and bottleneck analysis effort. It is recommended to use
LoadRunner’s Service Level Agreements to measure actual performance
against performance objectives. The following image illustrates a
LoadRunner script with a transaction marked to measure a web link mouse-
click.

HP Monitoring Solutions

36

Transaction Counters

All transaction counters are available in granularity of a single transaction
and in aggregated values (totals).

Web Resources Related Counters
Other data point-based monitors, provided out of the box by LoadRunner,
are related to Web-based applications. These are vital counters for
assessment of application ability to sustain the simulated workload. Hits per
second

➤ Hits per second

➤ Throughput

➤ HTTP responses per second

➤ Pages downloaded per second

➤ Connections

➤ SSL per second

Counter Description

Transaction response time Different response time values under different
load.

Average response time, maximum, percentile,
and so on.

Transaction per second Number of transactions generated per second.

Transaction success rate Number of transactions that passed, failed, or
stopped.

HP Monitoring Solutions

37

LoadRunner allows generating user-defined data points from VuGen scripts.
This is a very powerful tool that helps create custom, environment-specific
monitors while investing only a small amount of time. This is done using
VuGen’s lr_user_data_point function; metric values can be captured from
different data sources and then displayed in the LoadRunner Controller or
Performance Center online graphs, as well as in LoadRunner Analysis for
offline investigation and correlation with other measurements.

The following image illustrates the JBoss custom monitor. The VuGen script
is configured to correlate data from the JBoss performance statistics page.
The correlated values are then reported to the User-Defined Data Points
graph in the Controller or on the Performance Center run page.

Lastly, as noted above, LoadRunner and Performance Center also allow
monitoring of system resource utilization, databases, Web servers,
application servers, and so on, using native monitors built into the products
or using integration with Sitescope.

HP Monitoring Solutions

38

HP Sitescope

LoadRunner and Performance Center products can be configured to work
together with SiteScope—the industry leading monitoring solution that can
run as a standalone product or as a monitoring module for a variety of
HP products such as HP HP Business Availability Center and the
performance testing solutions we mentioned above.

SiteScope is an agentless monitoring solution designed to ensure the
availability and performance of distributed IT infrastructure, for example,
servers, operating systems, network devices, applications, and application
components. This Web-based infrastructure monitoring solution is
lightweight, highly customizable, and does not require data collection
agents to be installed on your production systems.

With SiteScope, you gain the real-time information you need to verify
infrastructure operations, stay apprised of problems, and solve bottlenecks
before they become critical. SiteScope also includes templates that enable
development of standardized monitoring organization and speeding up of
monitor deployment,. SiteScope also includes alert types that you can use to
communicate and record event information in a variety of media. You can
customize alert templates to meet the needs of your organization.

While native monitoring in Performance Center may cover most of an
organization's average needs, it is SiteScope, with its vast collection of
monitors along with pre-packaged templates, that is built to answer all
possible monitoring requirements. Whether operating system
measurements or application server metrics, various UNIX flavors or files
inspectors—SiteScope has them all.

SiteScope was pioneered as the industry's first agentless monitoring
solution. SiteScope users have benefited from its industry-proven, agentless
monitoring architecture. Unlike agent-based monitoring approaches
SiteScope reduces total cost of ownership by:

➤ Gathering detailed performance data for infrastructure components

➤ Reducing the time and cost of maintenance by consolidating all
monitoring components to a central server

➤ Eliminating the possibility of an unstable agent affecting system
performance

HP Monitoring Solutions

39

HP Diagnostics

HP Diagnostics isolates application performance problems and reduces the
mean time to resolution (MTTR) of your application’s performance
bottlenecks. It provides actionable information to resolve performance
problems.

HP Diagnostics extends LoadRunner and Performance Center to address the
unique challenges of testing complicated J2EE, .NET, Enterprise Resource
Planning (ERP), and Customer Relationship Management (CRM)
applications across the application lifecycle.

HP Diagnostics enables you to:

➤ Find and solve more problems earlier in the lifecycle

➤ Achieve higher quality by finding the most common application
problems before applications go live

➤ Collect concrete data to support a decision to go live with an application

➤ Manage and monitor applications after they have gone live with role-
based visibility to solve problems quickly

During a performance test, HP Diagnostics traces J2EE, .NET, ERP, and CRM
business processes from the client side across all tiers of the infrastructure.
The modules then break down each transaction response time into time
spent in the various tiers and within individual components.

You gain:

➤ An intuitive, easy-to-use view of how individual tiers, components,
memory, and SQL statements impact overall performance of a business
process under load conditions. During or after a performance test, you
can inform the application team that the application is not scaling and
provide actionable data to them.

➤ The ability to triage and find problems effectively with business context,
enabling teams to focus on problems impacting business processes.

HP Monitoring Solutions

40

➤ The ability to more easily find components relevant to a specific business
process under test. Because J2EE, ERP, and CRM applications potentially
use thousands of components, this can be a challenge. HP Diagnostics
software automatically detects which components are "active" when a
given transaction is executed, and collects data on them for analysis.
Components untouched by the business process are filtered out, letting
you focus on getting the job done, rather than configuring the system.

The following diagram illustrates an example of application layers
instrumented by HP Diagnostics:

HP Monitoring Solutions

41

Key features and benefits of HP Diagnostics:

➤ Drills down from slow, end-user transactions to the bottlenecked
component, method or SQL statement, helping to solve memory,
exception, and other common problems

➤ Automatically detects all components touched by a business process and
traces them with no user intervention

➤ Provides complete application visibility across the application lifecycle,
enabling higher application quality when applications go live

➤ Reduces mean time to resolution (MTTR) in your J2EE, .NET, ERP or CRM
(Siebel, Oracle, PeopleSoft, or SAP) environment

➤ Integrates fully with HP HP Business Availability Center, LoadRunner and
Performance Center

HP Monitoring Solutions

42

Part II

Operating Systems

44

45

3
Windows Monitoring

Performance Center provides comprehensive monitoring solutions to
address performance testing behavior of applications running on Windows
platforms.

This chapter includes:

➤ Overview on page 45

➤ Architecture on page 46

➤ Processor - Most Important Counters on page 48

➤ Memory - Most Important Counters on page 55

➤ I/O - Most Important Counters on page 66

➤ Network - Most Important Counters on page 73

Overview

Since a great majority of applications used by IT organizations are Windows
based, using Performance Center enables you to use Windows operating
system performance counters to trace behavior of your application under
test.

This chapter describes preselected collections of monitors that consist of
default metrics and default thresholds (where applicable), all of which have
been researched using best practice data and expertise from various sources
including HP’s operating system administrators, HP’s Professional Services
Organization, technical documentation, and books from industry experts.

Windows Monitoring

46

Modern Windows platforms, starting with Windows 2000 and later, provide
various built-in facilities to gather, display, and reuse performance-related
information. These facilities use a variety of sampling techniques to
generate interval performance monitoring data that is extremely useful in
diagnosing performance problems. They are designed to be efficient enough
that you can run them continuously with minimal impact.

Architecture

Objects
Related performance statistics are organized into objects. For example,
measurements related to overall processor usage, such as Interrupts/sec and
% User Time, are available in the Processor object. There might be one or
more instances of a performance object, where each instance is named so
that it is uniquely identified. For example, on a machine with more than
one processor, there is more than one instance of each set of processor
measurements. Each processor performance counter is associated with a
specific named instance of the Processor object. The instance name is a
unique identifier for the set of counters related to that instance, as shown
below:

Windows Monitoring

47

Counters
The individual performance statistics that are available for each
measurement interval are numeric performance counters. Each performance
counter you select is uniquely identified by its path, usually in the following
syntax:

The Computer_name portion of the path is optional.

For a simple object such as System or Memory that has only a single object
instance associated with it, the use the following syntax:

Types of Counters

Each counter has a counter type. Knowing the counter type is useful because
it indicates how the performance statistic was derived.

Some of the most important counter types are:

➤ Instantaneous counters. Display a simple numeric value of the most
recent measurement

➤ Interval counters. Display an activity rate over time

➤ Elapsed time counters. Gathered on an interval basis and cannot be
summarized

➤ Averaging counters. Provide average values derived for a given interval

\\Computer_name\Object(Parent/Instance#Index)\Counter

\Object\Counter

Windows Monitoring

48

Processor - Most Important Counters

Program execution threads consume processor (CPU) resources. These
threads can be part of user-mode processes or the operating system kernel.
Available performance counters measure how much CPU processing time
threads and other executable units of work consume. These processor
utilization measurements allow you to determine which applications are
responsible for CPU consumption.

Counter Description

% Processor Time Counter Indicates the percentage of elapsed time that the
processor spends to execute a non-idle thread

% Privileged Time
Counter

Indicates the percentage of elapsed time that the
process threads spent executing code in privileged
mode

% Interrupt Time Counter Indicates the time the processor spends receiving
and servicing hardware interrupts during sample
intervals

Processor Queue Length
Counter

Indicates the number of threads in the processor
queue

Context Switches Counter Indicates the combined rate at which all processors
on the computer are switched from one thread to
another

System Up Time Counter Indicates the indicator of overall system availability

Windows Monitoring

49

% Processor Time Counter

Note: Observing heavily utilized processors on a machine does not always
indicate a problem that needs to be addressed. If the other processor-related
counters are increasing linearly such as % Privileged Time or Processor
Queue Length, then high CPU utilization may be worth investigating.

Official Name Processor(_Total)\% Processor Time Counter

Counter Type Interval (% Busy)

Description Overall average processor utilization over the interval.
Every interval in which the processor is not running
the Idle Thread, the processor is presumed to be busy
on behalf of some real workload.

Usage Notes The primary indicator of overall processor usage.
Values fall within the range of 0–100% busy. The
_Total instance of the processor object represents
average total value of all the processor utilization
instances.

Performance Primary indicator to determine whether the processor
is a potential bottleneck.

Operations Sustained periods of 100% utilization might mean a
runaway process. Investigate further by looking at the
Process(n)\% Processor Time counter to see whether a
runaway process thread is in an infinite loop.

Threshold For response-oriented workloads, beware of sustained
periods of utilization above 80–90 percent. For
throughput-oriented workloads, extended periods of
high utilization are seldom a concern, except as a
capacity constraint.

Related Measurements ➤ Processor(_Total)\% Privileged Time (see page 49)

➤ Processor(_Total)\% User Time

➤ Processor(n)\% Processor Time

➤ Process(n)\% Processor Time Thread(n/Index#)\%
Processor Time

Windows Monitoring

50

% Privileged Time Counter

Note: No Privileged mode ratio is good or bad. However, a sudden change in
this ratio for the same workload should trigger interest in finding out what
caused the change.

Official Name Processor(_Total)\% Privileged Time Counter

Counter Type Interval (% Busy)

Description Overall average processor utilization that occurred in
Privileged or Kernel mode over the interval. All
operating system functions run in Privileged mode.
Privileged mode includes device driver code involved
in initiating device Input/Output operations and
deferred procedure calls that are used to complete
interrupt processing.

Usage Notes The _Total instance of the processor object represents
average total value of all the processor utilization
instances. The ratio of % Privileged Time to overall %
Processor Time (Privileged mode ratio) is workload-
dependent.

Performance Secondary indicator to determine whether operating
system functions, including device driver functions,
are responsible for a potential processor bottleneck.

Operations When a runaway process thread is in an infinite loop,
the state of the processor can pinpoint whether a
system module is implicated in the problem.

Threshold A figure that is consistently over 75 % indicates a
bottleneck.

Related Measurements ➤ Processor(_Total)\% Interrupt Time

➤ Processor(_Total)\% DPC Time

➤ Process(n)\% Privileged Time

Windows Monitoring

51

% Interrupt Time Counter

Official Name Processor(_Total)\% Interrupt Time Counter

Counter Type Interval (% Busy).

Description Overall average processor utilization that occurred in
Interrupt mode over the interval. Only Interrupt
Service Routines (ISRs), which are device driver
functions, run in Interrupt mode.

Usage Notes The _Total instance of the Processor objects represents
average total value of all the processor utilization
instances. Interrupt processing by ISRs is the highest
priority processing that takes place. Interrupt
processing is a system function with no associated
process. Excessive amounts of % Interrupt Time can
identify that a device is malfunctioning but cannot
pinpoint which device. Use Kernrate, the kernel
debugger, to determine which ISRs are being
dispatched most frequently.

Performance This counter indicates the percentage of time the
processor spends receiving and servicing hardware
interrupts. This value is an indirect indicator of the
activity of devices that generate interrupts, such as
network adapters. A dramatic increase in this counter
indicates potential hardware problems.

Operations Secondary indicator to determine whether a
malfunctioning device is contributing to a potential
processor bottleneck.

Threshold Depends on the processor.

Related Measurements ➤ Processor(_Total)\Interrupts/sec

➤ Processor(_Total)\% DPC Time

➤ Processor(_Total)\% Privileged Time

Windows Monitoring

52

Processor Queue Length Counter

Official Name System\Processor Queue Length Counter

Counter Type Instantaneous (sampled once during each
measurement period).

Description The number of threads that are observed as delayed in
the processor Ready Queue and waiting to be
scheduled for execution. Threads waiting in the
processor Ready Queue are ordered by priority, with
the highest priority thread scheduled to run next
when the processor is idle.

Usage Notes Many program threads are asleep in voluntary wait
states. The subset of active threads sets a practical
upper limit on the length of the processor queue that
can be observed.

Performance Important secondary indicator to determine whether
the processor is a potential bottleneck.

Operations An indication that a capacity constraint might be
causing excessive application delays.

Threshold On a machine with a single very busy processor,
repeated observations where
Processor Queue Length > 5 is a warning sign
indicating that there is frequently more work available
than the processor can handle readily.
Ready Queue lengths > 10 are a strong indicator of a
processor constraint, again when processor utilization
also approaches saturation. On multiprocessors, divide
the Processor Queue Length by the number of physical
processors. On a multiprocessor configured using hard
processor affinity to run asymmetrically, large values
for Processor Queue Length can be a sign of an
unbalanced configuration.

Related Measurements Thread(parent-process\Index#)\Thread State

Windows Monitoring

53

Context Switches Counter

Official Name System\Context Switches/sec Counter

Counter Type Interval difference counter (rate/second).

Description A context switch occurs when one running thread is
replaced by another. Because Windows supports
multithreaded operations, context switches are normal
behavior for the system. When a User-mode thread
calls any privileged operating system function, a
context switch occurs between the User-mode thread
and a corresponding Kernel-mode thread that
performs the called function in Privileged mode.

Usage Notes Context switching is a normal system function, and
the rate of context switches that occur is a by-product
of the workload. A high rate of context switches is not
normally a problem indicator. Nor does it mean the
machine is out of CPU capacity. Moreover, a system
administrator usually can do very little about the rate
that context switches occur. A large increase in the rate
of context switches/sec relative to historical norms
might reflect a problem, such as a malfunctioning
device. Compare Context Switches/sec to the
Processor(_Total)\Interrupts/sec counter with which it
is normally correlated.

Performance High rates of context switches often indicate
application design problems and might also
foreshadow scalability difficulties.

Operations Context switching happens when a higher priority
thread preempts a lower priority thread that is
currently running or when a high priority thread
blocks. High levels of context switching can occur
when many threads share the same priority level. This
often indicates that there are too many threads
competing for the processors on the system. If you do
not see much processor utilization and you see very
low levels of context switching, it could indicate that
threads are blocked

Windows Monitoring

54

System Up Time Counter

Note: Before measuring performance, ensure that servers and server
applications are up and running and available for use.

Threshold Build alerts for important server machines based on
extreme deviation from historical norms. As a general
rule, context switching rates of less than 5,000 per
second per processor are not worth worrying about. If
context switching rates exceed 15,000 per second per
processor, then there is a constraint.

Related Measurements Thread\Context Switches/sec.

Official Name System\System Up Time Counter

Counter Type Elapsed time.

Description Shows the time, in seconds, that the computer has
been operational since it was last rebooted.

Usage Notes The primary indicator of system availability.

Performance N/A

Operations Reporting on system availability.

Threshold N/A

Related Measurements Process(n)\Elapsed Time

Windows Monitoring

55

Memory - Most Important Counters

Windows maintains physical and virtual memory. A shortage of RAM is
often evident indirectly as a disk performance problem, when excessive
paging to disk consumes too much of the available disk bandwidth.
Consequently, paging rates to disk are an important memory performance
indicator. On 32-bit systems, virtual memory is limited to 4 GB divided
between 2 GB private area and 2 GB shared area. Having large amounts of
physical memory does not prevent from shortage of virtual memory and
may lead to fatal crashes in case of memory leaks when application does not
release allocated memory after usage.

When observing a shortage of available RAM, it is often important to
determine how the allocated physical memory is being used and count
resident pages of a problematic process known as its working set.

Counter Description

Available Bytes Counter Indicates the amount of physical memory available to
processes running on the computer

Working Set Counter Indicates the number of resident pages of each process

Pages/sec Counter Indicates the rate at which pages are read from or
written to disk to resolve hard page faults

Page Reads/sec
Counter

Indicates that the working set of the process is too
large for the physical memory and that it is paging to
disk

Pool Nonpaged Bytes
Counter

Indicates the size of an area of system memory
(physical memory used by the operating system) for
objects that cannot be written to disk, but must
remain in physical memory as long as they are
allocated

Paged Pool Bytes
Counter

Indicates memory leaks

Paged Pool Failures
Counter

Indicates the number of times allocations from the
paged pool have failed

Cache Bytes Counter Indicates the size of the static files cache

Windows Monitoring

56

Available Bytes Counter

System Cache Resident
Bytes Counter

Indicates the number of resident pages allocated to the
System File Cache

Committed Bytes
Counter

Indicates extreme paging leading to slow and irregular
response times

Official Name Memory\Available Bytes Counter

Counter Type Instantaneous (sampled once during each
measurement period).

Description The set of resident pages for a process. The number of
allocated pages in RAM that this process can address
without causing a page fault to occur.

Usage Notes It is calculated by adding the amount of space on the
Zeroed, Free, and Standby memory lists. Free memory
is ready for use; Zeroed memory are pages of memory
filled with zeros to prevent later processes from seeing
data used by a previous process; Standby memory is
memory removed from a process' working set (its
physical memory) on route to disk, but is still available
to be recalled.

Performance If memory is scarce, Process(n)\Working Set tells you
how much RAM each process is using.

Operations N/A

Threshold A consistent value of less than 20–25% of installed
RAM is an indication of insufficient memory.

Related Measurements ➤ Memory\Available Byte

➤ Memory\Committed Bytes

➤ Process(n)\Private Bytes

➤ Process(n)\Virtual Bytes

➤ Process(n)\Pool Paged Bytes

Counter Description

Windows Monitoring

57

Working Set Counter

Official Name Process(*)\Working Set Counter

Counter Type Instantaneous (sampled once during each
measurement period).

Description The set of resident pages for a process. The number of
allocated pages in RAM that this process can address
without causing a page fault to occur.

Usage Notes Process(n)\Working Set tracks current RAM usage by
active processes. Some server applications, such as IIS,
Exchange, and SQL Server, manage their own process
working sets. Monitor Process(_Total)\Working Set in
the Process object to see how RAM is allocated overall
across all process address spaces.

Performance If memory is scarce, Process(n)\Working Set tells you
how much RAM each process is using.

Operations N/A

Threshold Consistent increase of 10% or more warns about
limited physical memory.

Related Measurements ➤ Memory\Available Bytes

➤ Memory\Committed Bytes

➤ Process(n)\Private Bytes

➤ Process(n)\Virtual Bytes

➤ Process(n)\Pool Paged Bytes

Windows Monitoring

58

Pages/sec Counter

Note: Excessive paging can usually be reduced by adding RAM. Disk
bandwidth is finite. Capacity used for paging operations is unavailable for
other application-oriented file operations.

Official Name Memory\Pages/sec Counter

Counter Type Interval difference counter (rate/second).

Description The number of paging operations to disk during the
interval. Pages/sec is the sum of Page Reads/sec and
Page Writes/sec.

Usage Notes Page Reads/sec counters are hard page faults. A
running thread has referenced a page in virtual
memory that is not in the process working set. Nor is it
a trimmed page marked in transition, but rather is still
resident in memory. The thread is delayed for the
duration of the I/O operation to fetch the page from
disk. The operating system copies the page from disk
to an available page in RAM and then redispatches the
thread.

Performance Primary indicator to determine whether real memory
is a potential bottleneck.

Operations Excessive paging can lead to slow and erratic response
times.

Threshold Watch out when Pages/sec exceeds 50 per paging disk.

Related Measurements ➤ Memory\Available Bytes

➤ Memory\Committed Bytes

➤ Process(n)\Working Set

Windows Monitoring

59

Page Reads/sec Counter

Official Name Memory\Page Reads/sec

Counter Type Interval difference counter (rate/second).

Description This counter indicates that the working set of the
process is too large for the physical memory and that it
is paging to disk. It shows the number of read
operations, without regard to the number of pages
retrieved in each operation. Higher values indicate a
memory bottleneck.

Usage Notes If a low rate of page-read operations coincides with
high values for Physical Disk\% Disk Time and
Physical Disk\Avg. Disk Queue Length, there could be
a disk bottleneck. If an increase in queue length is not
accompanied by a decrease in the pages-read rate, a
memory shortage exists.

Performance Primary indicator to determine whether real memory
is a potential bottleneck.

Operations Excessive paging can lead to slow and erratic response
times.

Threshold Sustained values of more than five indicate a large
number of page faults for read requests.

Related Measurements ➤ Memory\Pages/sec

➤ Memory\Page Writes/sec

Windows Monitoring

60

Pool Nonpaged Bytes Counter

Official Name Memory\Pool Nonpaged Bytes Counter

Counter Type Instantaneous (sampled once during each
measurement period).

Description Pages allocated from the Nonpaged pool are always
resident in RAM.

Usage Notes Status information about every TCP connection is
stored in the Nonpaged pool. Divide by the size of a
page to calculate the number of allocated pages.

Performance If memory is scarce, Pool Nonpaged Bytes tells you
how much nonpageable RAM system functions are
using.

Operations N/A

Threshold Watch the value of Memory\Pool Nonpaged Bytes for
an increase of 10 percent or more from its value at
system startup. If it indeed happens, a significant
memory leak is in place.

Related Measurements ➤ Pool Paged Bytes

➤ Pool Paged Resident Bytes

➤ System Cache Resident Bytes

➤ System Code Resident Bytes

➤ System Driver Resident Bytes

➤ Process(_Total)\Working Set

Windows Monitoring

61

Paged Pool Bytes Counter

Note: Some outlaw processes might leak memory in the system’s Paged
pool. The Process(n)\Paged Pool Bytes counter helps you to identify those
leaky applications.

Official Name Memory\Paged Pool Bytes Counter

Counter Type Instantaneous (sampled once during each
measurement period).

Description The number of committed virtual memory pages in
the system’s Paged pool. System functions allocate
virtual memory pages that are eligible to be paged out
from the Paged pool. System functions that are called
by processes also allocate virtual memory pages from
the Paged pool.

Usage Notes Memory\Paged Pool Bytes reports how much virtual
memory is allocated in the system Paged pool.
Memory\Paged Pool Resident Bytes is the current
number of Paged pool pages that are resident in RAM.
The remainder is paged out.

Performance N/A

Operations Primarily used to identify processes that are leaking
memory.

Threshold Process(n)\Paged Pool Bytes increase of more than
10% for a specific process may point to leaking
memory behavior.

Related Measurements ➤ Memory\Commit Limit

➤ Memory\% Committed Bytes in Use

➤ Process(n)\Pool Paged Bytes

➤ Process(n)\Virtual Bytes

Windows Monitoring

62

Paged Pool Failures Counter

Official Name Server\Paged Pool Failures Counter

Counter Type Instantaneous (sampled once during each
measurement period).

Description The cumulative number of Paged pool allocation
failures that the Server service experienced since being
initialized.

Usage Notes The file Server service has a number of functions that
allocate virtual memory pages from the Paged pool. If
a memory leak exhausts the Paged pool, the file Server
service might encounter difficulty in allocating virtual
memory from the Paged pool. If a call to allocate
virtual memory fails, the file Server service recovers
gracefully from these failures and reports on them.
Because many other applications and system functions
do not recover gracefully from virtual memory
allocation failures, this counter can be the only
reliable indicator that a memory leak caused these
allocation failures.

Performance N/A

Operations Primarily used to identify a virtual memory shortage
in the Paged pool.

Threshold Any nonzero value of this counter indicates a
bottleneck.

Related Measurements ➤ Memory\Pool Paged Bytes

➤ Memory\Commit Limit

➤ Memory\% Committed Bytes in Use

➤ Server\Pool Paged Bytes

➤ Process(n)\Pool Paged Bytes

Windows Monitoring

63

Cache Bytes Counter

Official Name Memory\Cache Bytes Counter

Counter Type Instantaneous (sampled once during each
measurement period).

Description The set of resident pages in the system working set.
The number of allocated pages in RAM that kernel
threads can address without causing a page fault to
occur.

Usage Notes The system working set is subject to page replacement
like any other working set.

Performance If memory is scarce, Cache Bytes tells you how much
pageable RAM system functions are using.

Operations N/A

Threshold N/A

Related Measurements ➤ Pool Nonpaged Bytes

➤ Pool Paged Resident Bytes

➤ System Cache Resident Bytes

➤ System Code Resident Bytes

➤ System Driver Resident Bytes

➤ Process(_Total)\Working Set

Windows Monitoring

64

System Cache Resident Bytes Counter

Official Name Memory\System Cache Resident Bytes Counter

Counter Type Instantaneous (sampled once during each
measurement period).

Description The number of resident pages allocated to the System
File Cache. This counter tracks the number of virtual
memory pages from the File Cache that are currently
resident in RAM.

Usage Notes On file print and servers, System Cache Resident Bytes
is often the largest consumer of RAM. It is part of the
system’s working set (Cache Bytes) and is subject to
page trimming when Available Bytes becomes low.

Performance When the System File Cache is not effective,
performance of server applications that rely on the
cache are impacted. These include Server, Redirector,
NTFSs, and IIS.

Operations Primarily used to identify processes that are leaking
memory.

Threshold N/A

Related Measurements Memory\Cache Bytes

Windows Monitoring

65

Committed Bytes Counter

Note: If the Committed Bytes:RAM ratio is close to or rises above 1.5, adding
memory becomes unavoidable.

Official Name Memory\Committed Bytes Counter

Counter Type Instantaneous (sampled once during each
measurement period).

Description The number of committed virtual memory pages. A
committed page must be backed by a physical page in
RAM or by a slot on the paging file.

Usage Notes Committed Bytes reports how much total virtual
memory process address spaces have allocated. If the
Committed Bytes:RAM ratio is > 1, virtual memory
exceeds the size of RAM, and some memory
management will be necessary. As the Committed
Bytes:RAM ratio grows above 1.5, paging to disk will
usually increase up to a limit imposed by the
bandwidth of the paging disks.

Performance The Committed Bytes:RAM ratio is a secondary
indicator of a real memory shortage.

Operations Excessive paging can lead to slow and erratic response
times.

Threshold When Committed Bytes:RAM ratio exceeds 1.5, it
clearly indicates real memory bottleneck.

Related Measurements ➤ Memory\Pages/sec

➤ Memory\Commit Limit

➤ Memory\% Committed Bytes in Use

➤ Memory\Pool Paged Bytes

➤ Process(n)\Private Bytes Process(n)\Virtual Bytes

Windows Monitoring

66

I/O - Most Important Counters

Through the I/O Manager stack, Windows maintains physical and logical
disk operations. A logical disk represents a single file system with a unique
drive letter. A physical disk is the internal representation of specific storage
device - be it SCSI or RAID or SATA or other technology. When using
complex storage systems such as array controllers or RAID, the underlying
physical disk hardware characteristics are not directly visible to the
operating system. These characteristics - namely, the number of disks, the
speed of the disks, their seek time, rotational speed, and bit density as well
as some optimization features such as on-board memory buffers - can have a
major impact on performance. Advance features like memory buffers and
command-queueing can boost the performance by 25–50 percent.

It is important to be proactive about disk performance because it tends to
degrade rapidly, particularly when disk-paging activity occurs.

Counter Description

Avg. Disk secs/transfer
Counter

Indicates physical disk potential bottleneck

% Idle Time Counter Indicates physical disk utilization

Disk Transfers/sec
Counter

Indicates whether physical disk is a potential
bottleneck

Avg. Disk Queue Length
Counter

Indicates, although in conjunction with other
counters, a potential bottleneck of a disk

Split IO/sec Counter Indicates possible defragmentation

Free Megabytes Counter Indicates logical disk space usage

Windows Monitoring

67

Avg. Disk secs/transfer Counter
a

Note: This counter may point to a large amount of disk fragmentation, slow
disks, or disk failure. Multiply the values of the Physical Disk\Avg. Disk
sec/Transfer and Memory\Pages/sec counters. If the product of these
counters exceeds 0.1, paging is taking more than 10% of disk access time, so
there is a need for more RAM.

Official Name Physical Disk(n)\Avg. Disk secs/transfer Counter

Counter Type Average

Description Overall average response time of physical disk requests
over the interval. Avg. Disk secs/transfer includes both
device service time and queue time.

Usage Notes The primary indicator of physical disk I/O
performance. Performance is dependent on the
underlying disk configuration, which is transparent to
the operating system. Individual disks range in
performance characteristics based on seek time,
rotational speed, recording density, and interface
speed. More expensive, performance-oriented disks
can provide 50% better performance.

Performance Primary indicator to determine whether the disk is a
potential bottleneck.

Operations Poor disk response time slows application response
time.

Threshold Depends on the underlying disk hardware, but usually
should not be more than 18 milliseconds.

Related Measurements ➤ Physical Disk(n)\Disk Transfers/sec

➤ Physical Disk(n)\% Idle Time

➤ Physical Disk(n)\Current Disk Queue Length

Windows Monitoring

68

% Idle Time Counter

Note: Calculate disk utilization, disk service time, and disk queue time to
determine whether there is a poor performing disk subsystem, an
overloaded disk, or both.

Official Name Physical Disk(n)\% Idle Time Counter

Counter Type Interval (% Busy).

Description % of time that the disk was idle during the interval.
Subtract % Idle Time from 100 percent to calculate
disk utilization.

Usage Notes Derive disk utilization as follows:

Physical Disk(n)\Disk utilization = 100% – Physical
Disk(n)\% Idle Time.

For disk arrays, divide disk utilization by the number
of disks in the array to estimate individual disk
utilization. Queue time can be expected to increase
exponentially as disk utilization approaches 100%,
assuming independent arrivals to the disk.

Performance Primary indicator to determine whether a physical
disk is overloaded and serving as a potential
bottleneck.

Operations Increased queue time contributes to poor disk response
time, which slows application response time.

Threshold Warning when % Idle Time is less than 20%.

Related Measurements ➤ Physical Disk(n)\Avg

➤ Disk secs/Transfer

➤ Physical Disk(n)\Disk Transfers/sec

➤ Physical Disk(n)\Current Disk Queue Length

Windows Monitoring

69

Disk Transfers/sec Counter

Official Name Physical Disk(n)\Disk Transfers/sec Counter

Counter Type Interval difference counter (rate/second).

Description The rate physical disk requests were completed over
the interval.

Usage Notes The primary indicator of physical disk I/O activity.
Also known as the disk arrival rate. Also broken down
by Reads and Writes:

Physical Disk(n)\Disk Transfers/sec = Physical
Disk(n)\Disk Reads/sec + Physical Disk(n)\Disk
Writes/sec

Used to calculate disk service time from % Idle Time
by applying the Utilization Law.

Performance Primary indicator to determine whether the disk is a
potential bottleneck.

Operations Poor disk response time slows application response
time.

Threshold Depends on the underlying disk hardware.

Related Measurements ➤ Physical Disk(n)\Disk Transfers/sec

➤ Physical Disk(n)\% Idle Time

➤ Physical Disk(n)\Current Disk Queue Length

Windows Monitoring

70

Avg. Disk Queue Length Counter

Official Name Physical Disk(n)\Avg. Disk Queue Length Counter

Counter Type Compound counter.

Description The estimated average number of physical disk
requests that are either in service or are waiting for
service at the disk.

Usage Notes A secondary indicator of physical disk I/O queuing
that requires careful interpretation. Values of the Avg.
Disk Queue Length counter should be interpreted
based on an understanding of the nature of the
underlying physical disk entity. What appears to the
host operating system as a single physical disk might,
in fact, be a collection of physical disks that appear as
a single LUN. Array controllers are often used to create
Virtual LUNs that are backed by multiple physical
disks. With array controllers, multiple disks in the
array can be performing concurrent operations. Under
these circumstances, the physical disk entity should
no longer be viewed as a single server.

% Disk Read Time, % Disk Time, and % Disk Write
Time are derived using the same formulas, except that
the values they report are capped at 100%.

Performance Secondary indicator to determine whether the disk is a
potential bottleneck.

Operations N/A

Threshold Should not be higher than the number of spindles plus
two.

Related Measurements ➤ Physical Disk(n)\% Idle Time

➤ Physical Disk(n)\Avg. Disk secs/Transfer

➤ Physical Disk(n)\Disk Transfers/sec

➤ Physical Disk(n)\Current Disk Queue Length

➤ Physical Disk(n)\% Disk Time

Windows Monitoring

71

Split IO/sec Counter

Note: Defragmenting disks on a regular basis or when the number of split
I/Os is excessive normally improves disk performance, because disks are
capable of processing sequential operations much faster than they process
random requests.

Official Name Physical Disk(n)\Split IO/sec Counter

Counter Type Interval difference counter (rate/second).

Description The rate physical disk requests were split into multiple
disk requests during the interval. Note that when a
split I/O occurs, the I/O Manager measurement layers
count both the original I/O request and the split I/O
request as split I/Os, so the split I/O count accurately
reflects the number of I/O operations initiated by the
I/O Manager.

Usage Notes A primary indicator of physical disk fragmentation.

A split I/O might also result when data is requested in
a size that is too large to fit into a single I/O. Split I/Os
usually take longer for the disk to service, so also
watch for a correlation with Physical Disk(n)\Avg.
Disk secs/Transfer.

Performance Secondary indicator that helps determine how often
there is a need to run disk defragmentation software.

Operations Poor disk response time slows application response
time.

Threshold Warning when split I/Os take more than 20% of Disk
Transfers/sec.

Related Measurements ➤ Physical Disk(n)\Disk Transfers/sec

➤ Physical Disk(n)\Avg. Disk secs/Transfer

➤ Physical Disk(n)\% Idle Time

Windows Monitoring

72

Free Megabytes Counter

Official Name Logical Disk(n)\Free Megabytes Counter

Counter Type Instantaneous (sampled once during each
measurement period).

Description The amount of unallocated space on the logical disk,
reported in megabytes.

Because calculating free megabytes for very large file
systems is time-consuming, the I/O Manager
measurement layers recalculate the value of the
counter approximately once every 5 minutes.

Usage Notes A primary indicator of logical disk space capacity used.

Performance N/A

Operations Running out of space on the file system is usually
catastrophic.

Threshold Alert on this counter value or when Logical Disk(n)\%
Free Space < 10 percent.

Related Measurements Logical Disk(n)\% Free Space.

Windows Monitoring

73

Network - Most Important Counters

Network traffic in Windows is measured at the lowest level hardware
interface and at higher levels of network protocol, such as TCP/IP. Network
interface statistics are gathered by software embedded in the network
interface driver layer. This software counts the number of packets that are
sent and received. Multiple instances of the Network Interface object are
generated, one for every network interface chip or card that is installed.
Higher level counters such as Protocol_Object\Segments Received/sec and
Protocol_Object\Segments Sent/sec are available per supported protocols
such as TCP, UDP, NetBEUI, NWLink IPX, NWLink NetBIOS, NWLink SPX,
and more.

Counter Description

Bytes Total/sec Counter This indicates total throughput

Server Bytes Total/sec This indicates overall server utilization in terms of
network

Datagrams/sec Counter This indicates IP protocol load

Connections Established
Counter

This indicates TCP protocol connection success rate

Segments Received/sec
Counter

This indicates number of TCP data segments received

% Interrupt Time
Counter

This indicates the time the processor spends on
hardware devices interrupts, such as network card

Windows Monitoring

74

Bytes Total/sec Counter

Note: This counter helps identify whether the traffic at a specific network
adapter is saturated and if there is a need to add another network adapter.

Official Name Network Interface(n)\Bytes Total/sec Counter

Counter Type Interval difference counter (rate/second)

Description Total bytes per second transmitted and received over
this interface during the interval. This is the
throughput (in bytes) across this interface.

Usage Notes The primary indicator of network interface traffic.
Calculate network interface utilization:

Network Interface(n)\% Busy = Network
Interface(n)\Bytes Total/sec ÷ Network
Interface(n)\Current Bandwidth

The maximum achievable bandwidth on a switched
link should be close to 90–95% of the Current
Bandwidth counter.

Performance Primary indicator to determine whether the network is
a potential bottleneck.

Threshold Warning when Total Bytes/sec exceeds 80% of line
capacity.

Related Measurements ➤ Network Interface(n)\Bytes Received/sec

➤ Network Interface(n)\Bytes Sent/sec

➤ Network Interface(n)\Packets Received/sec

➤ Network Interface(n)\Packets Sent/sec

➤ Network Interface(n)\Current Bandwidth

Windows Monitoring

75

Server Bytes Total/sec

Official Name Server\Bytes Total/sec Counter

Counter Type Interval difference counter (rate/second)

Description The number of bytes the server has sent to and
received from the network. This value provides an
overall indication of how busy the server is.

Usage Notes This counter indicates the number of bytes sent and
received over the network. Higher values indicate
network bandwidth as the bottleneck. If the sum of
Bytes Total/sec for all servers is roughly equal to the
maximum transfer rates of your network, there is a
need to segment the network

Performance Primary indicator to determine whether the network is
a potential bottleneck.

Threshold Value should not be more than 50% of network
capacity.

Related Measurements Network Interface(n)\Bytes Received/sec

Windows Monitoring

76

Datagrams/sec Counter

Official Name IPvn\Datagrams/sec Counter

Counter Type Interval difference counter (rate/second).

Description Total IP datagrams per second transmitted and
received during the interval.

Usage Notes The primary indicator of IP traffic.

Performance Secondary indicator to determine whether the
network is a potential bottleneck.

Operations Sudden spikes in the amount of IP traffic might
indicate the presence of an intruder.

Threshold Unexpected increase of more than 10% may indicate
overload or security breach.

Related Measurements ➤ IPvn\Datagrams Received/sec

➤ IPvn\Datagrams Sent/sec

➤ Network Interface(n)\Packets/sec

Windows Monitoring

77

Connections Established Counter

Official Name TCPvn\Connections Established Counter

Counter Type Instantaneous (sampled once during each
measurement period).

Description The total number of TCP connections in the
ESTABLISHED state at the end of the measurement
interval.

Usage Notes The primary indicator of TCP session connection
behavior.

The number of TCP connections that can be
established is constrained by the size of the Nonpaged
pool. When the Nonpaged pool is depleted, no new
connections can be established.

Performance Secondary indicator to determine whether the
network is a potential bottleneck.

Operations Sudden spikes in the number of TCP connections
might indicate a Denial of Service attack.

Threshold Unexpected increase of more than 10% may indicate
overload or security breach.

Related Measurements ➤ TCPPvn\Segments Received/sec

➤ TCPPvn\Segments Sent/sec

➤ Network Interface(n)\Packets/sec

➤ Memory\Nonpaged Pool Bytes

Windows Monitoring

78

Segments Received/sec Counter

Official Name TCPvn\Segments Received/sec Counter

Counter Type Interval difference counter (rate/second).

Description The number of TCP segments received across
established connections, averaged over the
measurement interval.

Usage Notes The primary indicator of TCP network load.

Calculate the average number of segments received per
connection:

TCPvn\Segments Received/sec ÷ TCPPvn\Connections
Established/sec

This can be used to forecast future load as the number
of users grows.

Performance Secondary indicator to determine whether the
network is a potential bottleneck.

Operations Sudden spikes in the amount of TCP requests received
might indicate the presence of an intruder.

Threshold Unexpected increase of more than 10% may indicate
overload or security breach.

Related Measurements ➤ TCPPvn\Connections Established/sec

➤ TCPPvn\Segments Sent/sec

➤ IPvn\Datagrams Received/sec

➤ Network Interface(n)\Packets/sec

Windows Monitoring

79

% Interrupt Time Counter

Official Name Processor(_Total)\% Interrupt Time Counter

Counter Type Interval (% Busy).

Description Overall average processor utilization that occurred in
Interrupt mode over the interval. Only Interrupt
Service Routines (ISRs), which are device driver
functions, run in Interrupt mode.

Usage Notes The _Total instance of the Processor objects represents
average total value of all the processor utilization
instances. Interrupt processing by ISRs is the highest
priority processing that takes place. Interrupt
processing is a system function with no associated
process. Excessive amounts of % Interrupt Time can
identify that a device is malfunctioning but cannot
pinpoint which device. Use Kernrate, the kernel
debugger, to determine which ISRs are being
dispatched most frequently.

Performance This counter indicates the percentage of time the
processor spends receiving and servicing hardware
interrupts. This value is an indirect indicator of the
activity of devices that generate interrupts, such as
network adapters. A dramatic increase in this counter
indicates potential hardware problems.

Operations Secondary indicator to determine whether a
malfunctioning device is contributing to a potential
processor bottleneck.

Threshold Depends on the processor.

Related Measurements ➤ Processor(_Total)\Interrupts/sec

➤ Processor(_Total)\% DPC Time

➤ Processor(_Total)\% Privileged Time

Windows Monitoring

80

81

4
Monitoring Unix

HP Performance Center provides comprehensive monitoring solutions to
address performance testing behavior of applications running on various
Unix platforms.

This chapter includes:

➤ Overview on page 82

➤ Architecture on page 83

➤ Processor - Most Important Counters on page 89

➤ Memory - Most Important Counters on page 98

➤ I/O - Most Important Counters on page 105

➤ Network - Most Important Counters on page 110

Monitoring Unix

82

Overview

While there is an undisputed dominance of Windows based systems and
applications, there are still great a deal of legacy and modern applications
built on UNIX platforms. In addition to respected and well known UNIX
flavors such as HP/UX, Sun Solaris, and IBM AIX, the quick expansion of
Linux has caused the creation and porting of popular applications to UNIX
which is known for its stability and expendability. UNIX/Linux have also
became major platforms for J2EE based systems, from Apache Web servers to
WebSphere application servers to Oracle database servers.

Therefore, it is no wonder that HP LoadRunner and HP Performance Center
include tools to access UNIX operating system performance counters in
order to trace the behavior of the application under test.

While UNIX flavors may differ on specific commands and their options,
they all provide various built-in facilities to gather, display and reuse
performance-related information. These facilities use a variety of sampling
techniques to generate interval performance monitoring data that is
extremely useful in diagnosing performance problems. They are designed to
be efficient enough so that you can run them continuously with minimal
impact.

Monitoring Unix

83

Architecture

The architecture of the UNIX operating system consists of three levels: User,
Kernel, and Hardware as shown on the image below:

Monitoring Unix

84

The Kernel level is the core of UNIX and acts as an interface between the
User and the Hardware levels. The Kernel level consists of a set of programs
for various purposes. They include:

➤ System call interface. Processes and executes system calls that are
functions through which a program makes a request to the operating
system.

➤ File system. Coordinates with the process control and the system call
interface and handles input and output of character and block data. The
device driver is responsible for data I/O.

➤ Process control. Coordinates and controls the various processes in UNIX.
A process is a program that is currently being executed on the operating
system. That program is either a user or a system program.

➤ Hardware control. Coordinates with hardware devices, such as keyboard,
monitor, hard disk, and RAM.

➤ Device driver. Communicates with system devices, such as hard disk,
RAM, and printer for I/O.

Memory manager is an integral part of the UNIX architecture. It manages
the amount of memory allocated to different processes running on UNIX. It
is responsible for managing the memory hierarchy. A memory hierarchy
consists of:

➤ Buffer or cache memory. Fast, expensive, and volatile memory with a
capacity of a few kilobytes (KB) or megabytes (MB).

➤ Primary memory or Random Access Memory (RAM). Medium speed,
medium price, and volatile main memory with a capacity of a few
megabytes and gigabytes.

➤ Secondary memory or disk storage. Slow, cheap, and nonvolatile storage
on disks and tapes with a capacity measured in gigabytes.

Monitoring Unix

85

User programs as well as system programs are all termed processes. Their
main objective is to perform a task. The system assigns a unique number
called Process Identification (PID) to each process, and it uses these numbers
to identify and manage processes. Using these numbers, the system assigns a
priority to each process. After the processes are created, they may be run
either in the foreground or in the background. Running a process in the
background allows the system to handle multiple processes simultaneously.

Performance Resources
In UNIX there are 7 major resource types that need to be monitored and
tuned:

➤ CPU

➤ Memory

➤ Disk space and arms

➤ Communications lines

➤ I/O Time

➤ Network Time

➤ Applications programs.

Total Execution Time

Total execution time from a user’s perspective consists of wall clock time. At
a process level this is measured by running the time command. This
provides you with real time (wall clock) user code CPU and system code
CPU. If user + sys > 80%, then there is a good chance the system is CPU
constrained.

The components of total execution time include:

➤ User-state CPU. The actual amount of time the CPU spends running the
program in the user state. It includes time spent executing library calls,
but does not include time spent in the Kernel on its behalf. This value can
be greatly affected by the use of optimization at compile time and by
writing efficient code.

Monitoring Unix

86

➤ System-state CPU. The amount of time the CPU spends in the system
state on behalf of this program. All I/O routines require Kernel services.
The programmer can affect this value by the use of blocking for I/O
transfers.

➤ I/O Time. The amount of time spent servicing I/O requests.

➤ Network Time. The amount of time spent moving data.

➤ Virtual Memory Performance. Includes context switching and swapping.

➤ Time spent running other programs. When the system is not servicing
this application because another application currently has the CPU.

Tools

Most UNIX flavors include built-in statistical information gathered by the
operating system during process execution. Various aspects of these statistics
are accessible using the following UNIX facilities:

➤ rstat. A server/daemon which returns performance statistics obtained
from the Kernel

➤ netstat. Network statistics

➤ nfsstat. NFS statistics

➤ time/timex. Process CPU Utilization

➤ uptime. System Load Average

➤ ps. Process Statistics

➤ iostat. Tool for I/O

➤ sar. Bulk System Activity

➤ vmstat. Tool for Virtual Memory

➤ prof. Process Profiling

➤ trace. Used to get more depth

One of the most useful commands is uptime, which provides the System
Load Average, although it can be used as a rough indicator only as it does
not take scheduling priority into account. When uptime is run, it provides
three load averages - the first is for the last minute, the second is for the last
5 minutes and the third is for the last 15 minutes.

Monitoring Unix

87

The sar command provides a good alternative to uptime when used with the
-q option. It provides statistics on the average length of the run queue, the
percentage of time the run queue is occupied, the average length of the swap
queue, and the percentage of time the swap queue is occupied. The run
queue lists jobs that are in memory and runnable, but does not include jobs
that are waiting for I/O or are sleeping. The run queue size should be less
than 2.

Note: Various UNIX flavors may include specific facilities that simplify
performance monitoring. For example, Sun Solaris was enhanced with rup
and perfmeter commands that are widely used instead of underlying BSD
tools.

Types of Counters

Each counter has a counter type. Knowing the counter type is useful because
it indicates how the performance statistic was derived. Here some most
important categories of counters:

➤ Instantaneous counters. Display a simple numeric value of the most
recent measurement.

➤ Interval counters. Display an activity rate over time.

➤ Elapsed time counters. Gathered on an interval basis and cannot be
summarized.

➤ Averaging counters. Provide average values derived for the interval.

UNIX Monitoring with HP Tools

Unlike with Windows, performance information in UNIX is dispersed
among different processes that collect various statistics. Some of these
processes (daemons) are constantly running while some have to be invoked
to get data.

Monitoring Unix

88

HP LoadRunner and HP Performance Center’s built-in monitoring solution
for UNIX environments uses the rstatd daemon, which is usually already
configured and running on a majority of versions. To verify whether the
rstatd daemon is already configured, execute the rup command which
reports various machine statistics, including rstatd. Using statistics collected
by this daemon, the most popular counters may be obtained from the UNIX
host such as CPU utilization, Context switches rate, Disk rate etc. If there is
a need to get detailed view of the performance measurements, we
recommended that you use the UNIX tools discussed earlier.

Instead of issuing particular commands with arguments varying between
flavors, it makes great sense to deploy HP SiteScope that works in
conjunction with LoadRunner and/or Performance Center.

HP SiteScope provides an adaptive infrastructure that monitors various
UNIX flavors by shielding each variant specifics and grouping counters
according to their purpose. This is done by configuring an adapter file to
support the particular version of UNIX in need for monitoring. SiteScope
uses adapter files to describe the commands that are needed to retrieve a
variety of system resource information from servers running different
versions of the UNIX operating system.

These commands are generic in nature, yet expand on underlying facilities
of certain UNIX variants. The commands cover the wide range of the UNIX
aspects and contains the following, among others:

➤ disk. Takes a disk as an argument and returns the total, free, and
percentage used for the disk.

➤ disks. Returns a list of the file systems on the system.

➤ memory. The amount of used and available swap space.

➤ pageFault. The number of page faults per second. If multiple page fault
lines occur they are added up.

➤ cpu. Returns the wait and idle percentage of the CPU.

➤ process. A list of processes with long process names.

Monitoring Unix

89

SiteScope also groups counters as per purpose (CPU, memory, I/O) as well as
automatically gathers performance data in regard to instance of the group.
For example, it brings CPU utilization totals along with the same data per
installed processors, shows network statistics per installed network interface
cards while providing totals for overall network throughput. This approach
simplifies a performance tester’s workload because it logically merges the
Windows and UNIX worlds when it is usually required to juggle between
environments, sometimes even in one performance test.

Processor - Most Important Counters

Every application makes use of processor (CPU) resources during execution.
Requests to processor resources are divided between user-state and system-
state processing.

User-state processing relates to the actual amount of time the CPU spends
running the users program in the user state. It includes time spent executing
library calls, but does not include time spent in the Kernel on its behalf.

System-state processing indicates the amount of time the CPU spends in the
system state on behalf of this program. All I/O routines require Kernel
services.

It is usually easy to recognize a CPU bottleneck: When the overall CPU
utilization (average across all existing processors) is or near 100%, and there
are always processes waiting to be served. However, it is not always easy to
find out why a CPU bottleneck occurs. Therefore it is very important to
obtain prior knowledge of the application’s behavior during normal times to
use as a baseline when analyzing the load.

Monitoring Unix

90

The counters below relate to system level monitoring where generic
processor parameters are taken into consideration regardless of specific
processes behavior.

Counter Description

CPU Utilization The percentage of overall time that the processor
spends executing a task.

User mode CPU
Utilization

The percentage of elapsed time that the processor
spends executing code in user mode.

System mode CPU
Utilization

The percentage of elapsed time that the processor
spends executing code in system mode

Average Load Average number of processes simultaneously in
Ready state during the last minute.

Interrupt rate The time the processor spends receiving and
servicing hardware interruptions during sample
intervals.

Context switches rate The combined rate at which all processors on the
computer are switched from one process or thread
to another.

Monitoring Unix

91

% CPU Utilization

Official Name CPU Utilization Counter

Counter Type Interval (% Busy)

Description Overall average processor utilization over the interval.
Every interval in which the processor is not running
the Idle Thread, the processor is presumed to be busy
on behalf of some real workload. This counter is a sum
of Idle + User + System utilization (names vary on
different platforms).

Since there is a specific Idle CPU counter on most
platforms (see Related Measurements below), in order
to understand overall CPU consumption, it is
advisable to use the following formula:

CPU Consumption = 100 - Idle CPU (%)

Usage Notes The primary indicator of overall processor usage.
Values fall within the range of 0–100% busy.

Performance Primary indicator to determine whether the processor
is a potential bottleneck.

Operations Sustained periods of nearly 100% utilization might
mean a runaway process. Usually combined with a
significant Run Queue (more than 3) or processes
blocked on priority (more than 3).

Investigate further by looking at the User mode CPU
Utilization counter to see whether it is consumed by
user process or Kernel activities.

Threshold For response-oriented workloads, beware of sustained
periods of utilization above 80–90%.

Related Measurements ➤ CPU Utilization\%idle

➤ CPU Utilization\%usr

➤ CPU Utilization\%sys (Solaris)

➤ Processor\Idle

➤ Processor\Kernel (Linux)

➤ Processor\%idle

➤ Processor\%usr

➤ Processor\%sys (AIX)

Monitoring Unix

92

Note: Heavy utilization of the processors on a machine does not always
indicate a problem that needs to be addressed. However, should CPU Idle
time drop to below 20%, it is worth investigating, and may indicate an error
should it drop below 10%.

User mode CPU Utilization

Official Name User mode CPU Utilization

Counter Type Interval (% Busy)

Description Overall average processor utilization that occurred in
user mode over the interval, i.e. CPU was busy
processing application requests.

Usage Notes If operating system is spending most of its time
executing outside the Kernel, then that’s typically a
good thing. However, its processing power should be
spent on right processes and no important application
should be waiting to get served.

Performance N/A

Operations If process runs in user mode only and makes no system
calls and I/O, then it may be stuck in an infinite loop.
User mode processes with intensive I/O operations
usually perform memory mapping.

If some applications are shown as consuming all the
CPU time at the expense of the application under test,
the application under test would appear as being
blocked on priority.

Threshold A figure that is consistently over 50 percent indicates a
bottleneck.

Related Measurements listed in CPU utilization

Monitoring Unix

93

System mode CPU Utilization

Official Name System mode CPU Utilization

Counter Type Interval (% Busy).

Description Overall average processor utilization that occurred in
system (Kernel) mode over the interval. All operating
system functions run in Kernel mode. System mode
includes device driver code involved in initiating
device I/O operations and deferred procedure calls that
are used to complete interrupt processing.

Usage Notes In most of the cases, high system mode CPU
utilization caused by other reasons.

Majority of time spent by CPU in system mode occurs
due to Context switching - essentially the Kernel
running too many jobs. Another source of this would
be a high Interrupt Rate (more than 30%) with
underlying issues of Disk I/O or network bandwidth.
Memory may be of concern too - if it is completely
utilized, then swapping starts slowing the system
down.

Performance Secondary indicator to determine whether operating
system functions, including device driver functions,
are responsible for a potential processor bottleneck.

Operations If no context switching or high I/O are to be blamed,
then the problem lies with system calls - if it goes over
30%, use operating system tools to drill down to show
stoppers.

Threshold A figure that is consistently over 50 percent indicates a
bottleneck.

Related Measurements listed in CPU utilization

Monitoring Unix

94

Average Load

Official Name Average Load or Run Queue

Counter Type Instantaneous (sampled once during each
measurement period).

Description The number of processes that are observed as delayed
in the processor Ready Queue and waiting to be
scheduled for execution. Threads waiting in the
processor Ready Queue are ordered by priority, with
the highest priority thread scheduled to run next
when the processor is idle. Number of CPU units
makes no effect on the Run Queue.

Usage Notes Many program threads are asleep in voluntary wait
states. The subset of active threads sets a practical
upper limit on the length of the processor queue that
can be observed.

Performance Important secondary indicator to determine whether
the processor is a potential bottleneck.

Operations An indication that a capacity constraint might be
causing excessive application delays.

Threshold On a machine with a single very busy processor,
repeated observations where Average Load > 2 is a
warning sign indicating that there is frequently more
work available than the processor can readily handle.
On multiprocessors, divide the Run Queue Length by
the number of physical processors.

Related Measurements ➤ CPU Utilization

➤ Queue length\runq-sz (Solaris)

➤ Queue Statistics\runq-sz (AIX)

Monitoring Unix

95

Interrupt Rate

Official Name Interrupt Rate

Counter Type Interval (% Busy)

Description Overall average processor utilization that occurred in
Interrupt mode over the interval. Only Interrupt
Service Routines (ISRs), which are device driver
functions, run in Interrupt mode.

Usage Notes Interrupt processing by ISRs is the highest priority
processing that takes place. Interrupt processing is a
system function with no associated process. Excessive
amounts of Interrupt Rate can identify that a device is
malfunctioning but cannot pinpoint which device.

Performance Indicates the percentage of time the processor spends
receiving and servicing hardware interrupts. This value
is an indirect indicator of the activity of devices that
generate interrupts, such as network adapters. A
dramatic increase in this counter indicates potential
hardware problems.

Operations Secondary indicator to determine whether a
malfunctioning device is contributing to a potential
processor bottleneck.

Threshold Start paying attention when this counter goes over
30%.

Related Measurements System mode CPU Utilization

Monitoring Unix

96

Context Switches Rate

Official Name Context Switches Rate

Counter Type Interval difference counter (rate/second).

Description A context switch occurs when one running thread is
replaced by another. Because UNIX supports
multithreaded operations, context switches are normal
behavior for the system. When a User-mode thread
calls any privileged operating system function, a
context switch occurs between the User-mode thread
and a corresponding Kernel-mode thread that
performs the called function in System mode.

Usage Notes Context switching is a normal system function, and
the rate of context switches that occur is a by-product
of the workload. A high rate of context switches is not
normally a problem indicator. Nor does it mean the
machine is out of CPU capacity. Moreover, a system
administrator usually can do very little about the rate
that context switches occur, unless there are some
specific system configuration parameters to tune such
as increasing amount of time each process can hold
CPU by default.

A large increase in the rate of context switches/sec
relative to historical norms might reflect a problem,
such as a malfunctioning device.

Performance High rates of context switches often indicate
application design problems and might also
foreshadow scalability difficulties.

Operations Context switching happens when a higher priority
thread preempts a lower priority thread that is
currently running or when a high priority thread
blocks. In most of the cases, this is caused by processes
created and completed very often - for example, login
using shell commands. This indicates that there are
too many threads competing for the processors on the
system. If you do not see much processor utilization
and you see very low levels of context switching, it
could indicate that threads are blocked.

Monitoring Unix

97

Note: Servers and server applications have to be up and running and
available for use before measuring performance.

Processes Monitoring

UNIX is a powerful and very flexible operating system. It allows users to run
processes as needed, either in the foreground or in the background.
Programs running in the foreground have full read and write access, while
those running in the background don’t have any read access.

Performance counters are available that measure how much CPU processing
time specific threads and other executable units of work consume. These
processor utilization measurements allow you to determine which
applications are responsible for CPU consumption.

While there is no generic facility available on all UNIX flavors, using HP
SiteScope’s Process object gives statistical information per selected
process/thread where the following data is available (not all counters are
available on all variants):

➤ CPU. CPU utilization per selected process in percentage points of overall
CPU usage.

➤ MEMSIZE. Amount of memory consumed by the selected process.

➤ PID. Process ID as registered with the operating system.

➤ THREADS. Number of threads forked by the selected process.

➤ USER. Number of user sessions.

Threshold N/A

Related Measurements N/A

Monitoring Unix

98

If HP SiteScope does not provide satisfactory details of process monitoring,
there is always a possibility to issue built-in UNIX commands:

➤ ps. Shows a static list of currently running processes. In addition, the ps
command shows specific details of processes, such as PID, memory used,
and the command line used to run the processes. In most of the cases,
adding -aux attribute is recommended as it gives data on user and non-
terminal processes

➤ top. Shows a list of all currently running processes and the amount of
memory occupied by them. The top command automatically updates the
list every few seconds to display active processes on the computer.

➤ proc tools. Enables getting even more information about processes. These
tools should be used with caution because they suspend the execution of
processes when executed. Proc tools are located in /var/proc and contain
pfiles (active processes), pflags (the status information and flags for
processes), pldd (all dynamic library files attached to each process), pmap
(address space map for processes), psig (actions taken for various signals
and thread handlers), prun (runs or begins a process), pstack (stack trace),
pstop (suspends the execution of a specific process).

Memory - Most Important Counters

UNIX maintains physical (resident) and virtual memory. Operaing systems
shield the actual amount of memory on hand from applications - hence
they tend to overstate its availability. UNIX uses the term virtual memory
which essentially includes the amount of memory allocated by programs for
all their data, including shared memory, heap space, program text, shared
libraries, and memory-mapped files. The total amount of virtual memory
allocated to all processes on the system roughly translates to the amount of
swap space that will be reserved (with the exception of program text).
Virtual memory actually has little to do with how much actual physical
memory is allocated, because not all data mapped into virtual memory will
be active (‘Resident’) in physical memory. When the program gets an “out of
memory” error, it typically means it is out of reservable swap space (Virtual
memory), not out of physical (Resident) memory.

Monitoring Unix

99

A shortage of RAM is often indirect evidence of a disk performance problem,
when excessive paging to disk consumes too much of the available disk
bandwidth. Consequently, paging rates to disk are an important memory
performance indicator.

It is commonly said that memory today is relatively cheap - hence buying
more memory can solve all problems. However, having large amounts of
physical memory does not prevent a shortage of virtual memory and may
lead to fatal crashes in case of memory leaks when the application does not
release allocated memory after usage. In some cases, if the underlying UNIX
system is set to host a database or similar high volume transaction
processing application, adding a lot of memory may significantly improve
database performance by allowing larger in-memory cache.

When observing a shortage of available RAM, it is often important to
determine how the allocated physical memory is being used and count
resident pages of a problematic process known as its resident memory set.

In addition to the common counters below, it is important to track the
usage of cached and buffered memory - a decline in amount of available
free memory does not necessarily indicate a memory leak as it becomes part
of it (see %rcache/%wcache and bread/s bwrit/s on Solaris and HP/UX and
Cached and Buffers on Linux).

Monitoring Unix

100

Tip: We recommend that you start paying attention to the memory usage
when:

➤ There is a constant rise of overall swap usage in the system over period of
time

➤ Memory consumption may be calculated according to the formula:

➤ A specific process causes constant rise of reservable swap space - in most
cases, it is a clear indication of memory leak by this process.

Used memory = All memory - (Cached + Buffered + Swap)

Counter Description

Percent Used Indicates the total physical memory usage available
to processes running on the computer.

MB Free Indicates the total amount of memory available to
running processes.

Paging Rate Indicates the rate at which pages are read from or
written to disk to resolve hard page faults, per
second.

Page-in Rate Indicates the number of pages read to physical
memory, per second.

Page-out Rate Indicates the number of pages written to pagefile(s)
and removed from physical memory, per second.

Monitoring Unix

101

Percent Used

MB Free

Official Name Percent Used

Counter Type Instantaneous (sampled once during each
measurement period)

Description The amount of allocated pages in RAM that can be
addressed without causing a page fault to occur, in
percentage point relative to all installed memory.

Usage Notes Primary indicator of memory usage.

Performance N/A

Operations N/A

Threshold A consistent value of more than 80 percent of installed
RAM is an indication of insufficient memory. Watch
out when it reaches 90 percent as it may fail running
processes.

Related Measurements Memory\freemem - in bytes (Solaris)

Official Name MB Free

Counter Type Instantaneous (sampled once during each
measurement period)

Description Total number of megabytes of virtual memory free.

Usage Notes Shows how much memory is available for running
processes.

Performance N/A

Operations N/A

Threshold N/A

Related Measurements Memory\swap_free and Memory\swap_avail - in bytes
(Solaris)

Monitoring Unix

102

Paging Rate

Official Name Paging Rate or Pages/sec

Counter Type Interval difference counter (rate/second)

Description The number of paging operations to disk during the
interval. Pages/sec is the sum of Page-in/sec and Page-
out/sec.

Usage Notes When a program touches a virtual address on a page
that is not in physical memory, the result will be a
"page-in". When UNIX needs to make room in
physical memory or when a memory-mapped file is
posted, the result is called "page-out". During page-out,
the whole resident memory sets are transferred to disk
swap areas. In case of page-outs, the process is taken
out of run queue so it gets no CPU.

Performance Primary indicator to determine whether real memory
is a potential bottleneck. Usually, there is no need to
closely monitor page-ins but rather page-outs as they
often point to memory bottleneck.

Another source of high paging rate may be overly large
file system cache buffer.

Operations Excessive paging can lead to slow and erratic response
times.

Threshold Watch out when Paging Rate exceeds 50 per swap
device.

Related Measurements ➤ Page-in Rate

➤ Page-out Rate

Monitoring Unix

103

Notes:

➤ Excessive paging can usually be reduced by adding RAM. Disk bandwidth
is finite. Capacity used for paging operations is unavailable for other
application-oriented file operations.

➤ When computing swap size, it is recommended to have at least as much
"reservable" swap as any application will ever request.

Page-in Rate

Official Name Page-in Rate

Counter Type Interval difference counter (rate/second)

Description This counter indicates that part of the memory the
process needs to access is in virtual memory and needs
to be read into the the physical memory for execution.
It shows the number of read operations, without
regard to the number of pages retrieved in each
operation. Higher values indicate a memory
bottleneck.

Usage Notes This counter is of lesser importance than
corresponding Page-out counter. Unless rises
unexpectedly, no special attention have to be paid all
the time.

Performance Secondary indicator to determine whether real
memory is a potential bottleneck.

Operations Excessive paging can lead to slow and erratic response
times.

Threshold N/A

Related Measurements Paging Rate

Monitoring Unix

104

Page-out Rate

Official Name Page-out Rate

Counter Type Interval difference counter (rate/second)

Description This counter indicates that the resident memory set of
the process is too large for the physical memory and
that it is paging to disk. It shows the number of read
operations, without regard to the number of pages
retrieved in each operation. Higher values indicate a
memory bottleneck.

Usage Notes If a low rate of page-out operations coincides with
high values for physical disk activity, there could be a
disk bottleneck. If an increase in queue length is not
accompanied by a decrease in the page-out rate, a
memory shortage exists.

Performance Primary indicator to determine whether real memory
is a potential bottleneck.

Operations Excessive paging can lead to slow and erratic response
times.

Threshold Watch out when Paging Rate exceeds 50 per swap
device.

Related Measurements Paging Rate

Monitoring Unix

105

I/O - Most Important Counters

Through I/O Manager stack, UNIX maintains physical and logical disk
operations. A logical volume represents a single file system with a unique
drive letter. A physical (raw) volume is the internal representation of specific
storage device - be it SCSI or RAID or SATA or other technology.

When using complex storage systems such as array controllers or RAID, the
underlying physical disk hardware characteristics are not directly visible to
the operating system. These characteristics - namely, the number of disks,
the speed of the disks, their seek time, rotational speed, and bit density as
well as some optimization features such as on-board memory buffers - can
have a major impact on performance. Advance features like memory buffers
and command-queueing can boost the performance by 25–50 percent.

It is important to be proactive about disk performance because it tends to
degrade rapidly, particularly when disk-paging activity occurs.

Notes:

➤ In general, it is better to have many smaller disks than few bigger ones as
this gives more flexibility to move things around and relieve I/O
bottlenecks. Try splitting heavily used logical volumes across several
different disks and I/O channels.

➤ When determining a directory path for applications, keep number of
levels from the file system root to a minimum. Extremely deep directory
trees may impact performance by requiring more lookups to access files.
On the contrary, file access can be slowed when there are too many files
(multiple thousands) in a given directory.

Monitoring Unix

106

Transaction-oriented applications with a lot of I/O activity perform better
when using raw devices instead of file system. This is usually a
recommendation by most database vendors like Oracle. However, recent
improvements in logical volume management brings file system devices to
the level of raw volumes. In any case, it is a good idea to assign independent
applications to unique physical disks to reduce possible impact on each
other.

Counter Description

%Used Indicates relative amount of space used on each
mounted file system.

Free Indicates number of bytes free on each mounted
file system.

Disk Rate Indicates whether physical disk is a potential
bottleneck.

Monitoring Unix

107

%Used

Official Name Filesystsems(n)\%Used

Counter Type Interval (%)

Description Current file system disk utilization in percentage
points of full capacity.

Usage Notes The primary indicator of physical disk I/O
performance. Performance is dependent on the
underlying disk configuration, which is transparent to
the operating system. Individual disks range in
performance characteristics based on seek time,
rotational speed, recording density, and interface
speed. More expensive, performance-oriented disks
can provide 50 percent better performance.

Performance Primary indicator to determine whether the disk is a
potential bottleneck.

Operations Poor disk response time slows application response
time.

Threshold If this metric reaches 90%, it is an indication of
warning, getting over 95% points to errors.

Related Measurements ➤ Filesystsems(n)\Use% (Linux)

➤ Filesystsems(n)\used - in bytes (Solaris)

Monitoring Unix

108

Free

Official Name Filesystsems(n)\Free

Counter Type Instantaneous (sampled once during each
measurement period)

Description The amount of unallocated space on the logical disk,
reported in bytes. Because calculating free megabytes
for very large file systems is time-consuming, the I/O
Management measurement layers recalculate the value
of the counter approximately once every 5 minutes.

Main metric for planning disk usage. If no disk
capacity counter is available (some UNIX flavors do
supply this), using this metric and knowing overall
disk volume, it is possible to calculate utilization.

Usage Notes A primary indicator of logical disk space capacity used.

Performance N/A

Operations Running out of space on the file system is usually
catastrophic.

Threshold Not Available

Related Measurements ➤ Filesystsems(n)\Available

➤ Filesystsems(n)\Used (Linux)

➤ Filesystsems(n)\avail

➤ Filesystsems(n)\used

➤ Filesystsems(n)\capacity (Solaris)

Monitoring Unix

109

Disk Rate

Tips: General tips on improving I/O throughput include:

➤ Spreading disk I/O as much as possible - having 10 disks 10% busy is
better than one disk 100% busy.

➤ Avoiding excessive logging - some applications allow control of log
verbosity levels.

➤ Tuning SCSI devices - it sometimes possible to adjust maximum queue
length for particular device. This usually increases parallelism at the
possible expense of overloading hardware.

Official Name Filesystsems(n)\Disk Rate

Counter Type Interval difference counter (rate/second)

Description The rate physical disk requests were completed over
the interval.

Usage Notes The primary indicator of physical disk I/O activity.
Also known as the disk arrival rate.

Performance Primary indicator to determine whether the disk is a
potential bottleneck.

Operations Poor disk response time slows application response
time.

Threshold Depends on the underlying disk hardware.

Related Measurements N/A

Monitoring Unix

110

Notes: Some facts regarding disks:

➤ The smaller the I/O, the shorter the service time. The longer the I/O, the
longer the service time.

➤ Sequential I/O is faster than random - due to decreased head movement.

➤ Larger I/O sizes allow maximum throughput for sequential I/O.

➤ Crossing various system boundaries such as file system block, buffer
chain or file extent may result in breaking up one I/O request into
smaller ones.

➤ If the busiest disk is a swap device, then most probably there is a memory
bottleneck masquerading as a disk problem - you need to address the
memory issue first.

Network - Most Important Counters

Networking performance has become ever more important today with
proliferation of distributed and cloud applications. However, UNIX
operating system usually provide limited statistics on various levels: At the
lowest level hardware interface, and at higher level of network protocol such
as TCP/IP. Network interface statistics are gathered by software embedded in
the network interface driver layer. This software counts the number of
packets that are sent and received.

Network statistics are gathered through UNIX facilities such as netstat,
netperf and iozone and nfsstat (for NFS monitoring) - one for every network
interface chip or card that is installed. HP products like Network Node
Manager and SiteScope can collect statistics over time to give insight into
the real causes of performance bottlenecks.

Monitoring Unix

111

Networking bottlenecks are tricky to catch and analyze. Packet rates,
collision rates and error rates do not always point to the cause of the
problem:

➤ Only excessive collision rates may indicate network bottleneck. If their
level is relatively low over time, it is usually normal behavior. Collisions
which are essentially errors happen as a result of mismatches in either
duplex or speed settings. When corrected, collision rates go down along
with performance improvement.

➤ Sudden increase in packet rates along with high network output queue
can also be an indication of network bottleneck. However, to reach
informed decision, there is a need to observe pattern behavior over time.

➤ If NFS is extensively used, there is a need to watch data collected by
nfsstat , especially on the server side. If NFS statistics show a lot of activity
caused by one specific client, it is recommended to run the tool on that
client host to identify the process.

➤ There can be a network bottleneck in a situation of high System-mode
CPU utilization or Interrupt Rate on one of the processors while other(s)
are mostly idle. Checking device configuration and hardware may be the
reason.

Counter Description

Incoming packets rate Indicates number of Ethernet packets coming to NIC,
per second.

Outgoing packets rate Indicates number of Ethernet packets sent by NIC,
per second.

Incoming packets error
rate

Indicates number errors in Ethernet packets coming
to NIC, per second.

Outgoing packets error
rate

Indicates number of errors in Ethernet packets sent
by NIC, per second.

Collision rate Indicates number of network collisions.

Monitoring Unix

112

Incoming Packets Rate

Outgoing Packets Rate

Note: These above two counters show throughput (in bytes) across this
interface, and help identify whether traffic at specific network adapters is
saturated and if there is a need to add another network adapter.

Official Name Incoming Packets Rate

Counter Type Interval difference counter (rate/second)

Description Total bytes per second received over this interface
during the interval.

Usage Notes Primary indicator of network interface traffic - along
with Outgoing Packets Rate.

Performance Primary indicator to determine whether the network is
a potential bottleneck.

Threshold Warning when Incoming Packets Rate exceeds 40
percent of line capacity.

Related Measurements Outgoing Packets Rate

Official Name Outgoing Packets Rate

Counter Type Interval difference counter (rate/second)

Description Total bytes per second sent out over this interface
during the interval.

Usage Notes The primary indicator of network interface traffic -
along with Incoming Packets Rate.

Performance Primary indicator to determine whether the network is
a potential bottleneck.

Threshold Warning when Incoming Packets Rate exceeds 40
percent of line capacity.

Related Measurements Incoming Packets Rate

Monitoring Unix

113

Incoming Packets Error Rate

Outgoing Packets Error Rate

Official Name Incoming Packets Error Rate

Counter Type Interval difference counter (rate/second)

Description Number of errors per second received over this
interface during the interval.

Usage Notes One of the important secondary indicators of network
interface traffic - along with Outgoing Packets Error
Rate.

Performance Secondary indicator to determine whether the
network is a potential bottleneck - usually a result of
mismatch duplex and speed configuration.

Threshold Warning when Incoming Packets Error Rate exceeds
0.025 errors per second.

Related Measurements Outgoing Packets Error Rate

Official Name Outgoing Packets Error Rate

Counter Type Interval difference counter (rate/second)

Description Number of errors per second sent out over this
interface during the interval.

Usage Notes One of the important secondary indicators of network
interface traffic - along with Incoming Packets Error
Rate.

Performance Secondary indicator to determine whether the
network is a potential bottleneck - usually a result of
mismatch duplex and speed configuration.

Threshold Warning when Outgoing Packets Error Rate exceeds
0.025 errors per second.

Related Measurements Incoming Packets Error Rate

Monitoring Unix

114

Tip: These above two counters track networking quality. If rates go over the
designated threshold, it may be time to take a look at the network hardware
equipment.

Collision Rate

Official Name Collision Rate

Counter Type Interval difference counter (rate/second)

Description The number of errors happening on the interface per
second.

Usage Notes This counter indicates the number of errors when
sending or receiving data over the network. Higher
values indicate network bandwidth as the bottleneck.
Usually caused by hardware compression problems or
bad physical connector/terminator.

Performance Primary indicator to determine whether the network is
a potential bottleneck. If values go higher than
threshold, it may be a time to reevaluate network
topology as network is overloaded on the segment.

Threshold Value should not be more than 10 percent.

Related Measurements N/A

Part III

Runtime Platforms

116

117

5
Runtime Platform Monitoring

This chapter provides an overview about runtime platform monitoring and
describes the required J2EE and .NET application architecture.

This chapter includes:

➤ Overview on page 117

➤ Architecture on page 119

Overview

Applications are usually developed to run on a specific operating system -
their performance depends on factors that govern the operating system.
Each operating system has its own set of performance parameters to
monitor and tune for better performance.

Performance of applications also depends on the architectural level
monitoring and tuning. However, architectural design is built upon specific
technology. Therefore technology level monitoring and tuning must be
addressed for better results. To achieve all these, proper guidelines must be
enforced at various stages for monitoring and tuning.

While there is a multitude of technologies—general purpose and proprietary
—nowadays, enterprise applications are created using either Java 2
Enterprise Edition (J2EE) or its Microsoft counterpart, the .NET Framework.
Developers can now build business solutions in less time and with more
functionality and robustness than ever before.

Runtime Platform Monitoring

118

Designing these solutions is not necessarily straightforward, and with more
features and functionality, developers have an increased opportunity to
build poor solutions. An application may perform well in the development
and QA environment, but fail to scale or may exhibit performance problems
in production.

It is important to understand the impact of the infrastructure in which the
application runs and the behavior of the many application components as
they interact under load.

The deployment lifecycle for many web-facing J2EE and .NET applications is
compressed, due to increased pressure for quick time-to-market. Boundaries
between development, QA, deployment, and production stages and IT
groups are blurred. Centralized IT organizations may be managing hundreds
of applications, with little depth of each. IT staff skills for J2EE may not be
developed enough.

Many applications have not been sufficiently designed for performance and
scalability, with thorough consideration of design and usage patterns, and
adequate attention to planning and testing performance against well-
defined service objectives. J2EE scalability capabilities, although extensive,
do not substitute for such efforts. The same goes for .NET configuration
settings—for example, buffering, session timeout, application protection
levels and logging configuration can impact your .NET application
performance under load.

Runtime Platform Monitoring

119

Architecture

When J2EE or .NET applications are running, the operating system on
which they run provides various parameters that can be set to specific values
for optimal performance. Such parameters are monitored and measured by
various counters. Knowing the counters that help in tuning the operating
system from a performance point of view is of paramount importance for all
test analysts.

The chapters that follow discuss the important counters related to the
Windows and UNIX systems as most of the applications run on these two
operating systems.

In UNIX, the major resource types that need to be monitored and tuned are
the CPU, memory, disk space, communication lines, I/O time, network
time, and application programs. The UNIX operating system maintains
several counters that keep track of the system resources and their utilization.
Some of these counters are the CPU utilization, buffer usage, disk I/O
activity, tape I/O activity, terminal activity, system call activity, context
switching activity, file access utilization, queue activity, interprocess
communication (IPC), paging activity, free memory and swap space, kernel
memory allocation (KMA), and so on. For details, see Chapter 4,
“Monitoring Unix.”

Windows is a self-tuning operating system. This means that in most cases,
Windows automatically adapts to perform optimally depending on the
environment in which it is running, assuming the hardware is properly
configured. For instance, when Windows is deployed as a Web server, other
services that are also present but are not used are put into a state where they
occupy very few system resources such as CPU and memory. However, like
many other operating systems, performance depends on many outside
factors such as hardware, device drivers, applications, workload, network,
and so on. For details, see Chapter 3, “Windows Monitoring.”

Runtime Platform Monitoring

120

Both J2EE and .NET require the application architecture to be defined in
advance, before the development of the application. These technologies
support their own frameworks for defining the architecture. However, there
are certain architectural similarities between these technologies to define
the system. These similarities help us to define common guidelines for
monitoring performance counters and tuning applications. J2EE and
Microsoft’s .NET technology share a broad common foundation of
standards, and they both have adopted the multi-tiered architecture
approach that typically implements applications in different logical layers,
which separate presentation from internal structure (business logic and data
management):

Runtime Platform Monitoring

121

➤ Both J2EE and .NET architecture models use the object oriented (OO)
approach for mainstream enterprise computing, with powerful OO
frameworks (class libraries) for services such as enterprise components
management, object persistence, transactions, Web services,
asynchronous communication, loosely coupled event services,
messaging, and more.

➤ The use of virtual machine (VM) architecture is common to J2EE and
.NET. Application development tools produce intermediate level code
instead of platform-specific binary code. This means that the VM
interprets the code in real time or performs Just-In-Time (JIT)
compilation.

➤ J2EE and .NET share a broad common foundation that implements the
multi-tiered approach.

During QA cycles, performance testing typically follows integrated
functional and regression testing. You should performance test a complete
application, including all interfaces with external systems, before releasing
the software.

Objectives include estimating scalability and capacity under a load that
realistically represents expected live use, along with gaining visibility into
the internal performance behavior of the application and gathering
actionable data on bottlenecks. This should include a transaction
breakdown of latencies for each J2EE/.NET tier and method, along with
additional specific root cause diagnostic information.

Runtime Platform Monitoring

122

123

6
Java Platform Monitoring

This chapter describes best practices for Java platform monitoring.

This chapter includes:

➤ Overview on page 124

➤ Most Important Java Counters on page 126

Java Platform Monitoring

124

Overview

The Java 2 platform provides comprehensive monitoring and management
support. It not only defines the management interfaces for the Java Virtual
Machine (JVM), but also provides out-of-the-box remote monitoring and
management on the Java platform and of applications that run on it.

Java Platform Monitoring

125

In addition, JDK 5.0 includes the Java Monitoring and Management
Console tool (JConsole). JDK 5.0 uses the extensive instrumentation of the
JVM to provide information on performance and resource consumption of
applications running on the Java platform using Java Management
Extension (JMX) technology. JMX provides a standard way to instrument
the Java runtime environment and applications. The instrumentation is
accessible through the JMX managed bean (MBean) interfaces, which are
registered in the platform MBean server. Applications can also create their
own MBeans and register them in the platform MBean server, which can
serve as a single point for remote access. A JMX-compliant client, such as
JConsole, can connect to the platform MBean server and manage the
application (as well as the Java platform) using JMX technology. Each
platform MBean has a rich set of attributes and operations such as memory
usage, thread CPU usage, garbage collection statistics, and so on.

HP SiteScope provides built-in support for JMX, rendering usage of JConsole
unnecessary and giving a consolidated view of both operating system
counters and Java-specific application measurements. All counters available
through JConsole are also accessible via HP SiteScope.

Java Platform Monitoring

126

Most Important Java Counters

Counter Description

C
o

m
m

o
n

Uptime Indicates how long the JVM has been running

Total compile time Indicates the amount of time spent in just-in-
time (JIT) compilation

Process CPU time Indicates the total amount of CPU time
consumed by the JVM

M
em

o
ry

Current heap size Indicates the number of kilobytes currently
occupied by the heap

Maximum heap size Indicates the maximum number of kilobytes
occupied by the heap

Committed memory Indicates the total amount of memory allocated
for use by the heap

GC time Indicates the cumulative time spent on garbage
collection and the total number of invocations

Th
re

ad
s

Live threads Indicates the current number of live daemon
threads plus non-daemon threads

Peak threads Indicates the highest number of live threads
since JVM started

Daemon threads Indicates the current number of live daemon
threads

Total started threads Indicates the total number of threads started
since JVM started (including daemon, non-
daemon, and terminated)

C
la

ss
es

Current classes loaded Indicates the number of classes currently loaded
into memory

Total classes loaded Total number of classes loaded into memory
since the JVM started, included those
subsequently unloaded

Total classes unloaded Number of classes unloaded from memory since
the JVM started

Java Platform Monitoring

127

Common Counters
This section describes the counters that show common information
pertaining to JVM running on the machine.

Uptime

Official Name Uptime

Counter Type Elapsed time

Description The amount of time passed since JVM started on the
machine

Usage Notes Shows overall status of Java

Performance Important indicator of overall health

Operations The longer JVM is running, the more threads may
remain open if garbage collection is running rarely

Threshold N/A

Java Platform Monitoring

128

Total compile time

Official Name Total compile time

Counter Type Elapsed time

Description The amount of time spent in just-in-time (JIT)
compilation. The JVM implementation determines
when JIT compilation occurs.

Usage Notes Since JVM interprets Java into bytecode, it needs to
compile objects upon load. This counter shows how
much time has been spent overall on such
compilations since JVM started running. Sun’s
Hotspot VM uses adaptive compilation, in which the
VM launches an application using a standard
interpreter, but then analyzes the code as it runs to
detect performance bottlenecks, or "hot spots".

Performance Secondary indicator to determine if a large number of
new objects poses a potential bottleneck

Operations This counter can pinpoint whether a system is
properly deployed and initiated

Threshold N/A

Java Platform Monitoring

129

Process CPU time

Memory Counters
This section describes the counters that usually appear on the Memory tab
of JConsole. They display data about memory consumption, memory pools,
and garbage collection statistics.

The memory pools available depend on the JVM being used. The following
list shows the pools for the HotSpot virtual machine which comes with
standard installation of Sun Java.

➤ Eden Space (heap) Pool. Memory is initially allocated for most objects
from this pool.

➤ Survivor Space (heap) Pool. Contains objects that have survived
garbage collection of the Eden Space pool.

➤ Tenured Generation (heap) Pool. Contains objects that have existed
for some time in the Survivor Space pool.

Official Name Process CPU time

Counter Type Elapsed time

Description The total amount of CPU time consumed by the JVM

Usage Notes One of the main indicators to see how JVM affects
overall operating system behavior

Performance May be used to calculate the percentage of time the
processor spends on Java and all other processes. A
dramatic increase in this counter indicates potential
problems.

Operations This counter may pinpoint necessary changes to scale
up JVM

Threshold Depends on the processor

Java Platform Monitoring

130

➤ Permanent Generation (non-heap) Pool. Holds all the reflective data
of the virtual machine itself, such as class and method objects. With
JVMs that use class data sharing, this pool is divided into read-only
and read-write areas.

➤ Code Cache (non-heap) Pool. The HotSpot JVM also includes a "code
cache" that contains memory used for compilation and storage of
native code.

Each memory pool may have two kinds of memory thresholds for low
memory detection support: a usage threshold and a collection usage
threshold. Either one of these thresholds might not be supported by a
particular memory pool.

➤ Usage threshold. A manageable attribute of a memory pool. It
enables the monitoring of memory use with low overhead. Setting
the threshold to a positive value enables usage threshold checking
for a memory pool. Setting the usage threshold to zero disables
usage threshold checking. The default value is supplied by the JVM.
A JVM performs usage threshold checking on a memory pool at the
most appropriate time, typically during garbage collection and
sometimes at allocation time. If the JVM detects that the current
memory usage exceeds the usage threshold, it will set the
UsageThresholdExceeded attribute to true.

➤ Collection usage threshold. A manageable attribute of some
garbage-collected memory pools. After a JVM has performed garbage
collection on a memory pool, some memory in the pool is still be
occupied by reachable objects. The collection usage threshold allows
you to set a value to check against the memory usage only after
garbage collection. If the JVM detects that the memory usage
exceeded the collection usage threshold, it sets the
CollectionUsageThresholdExceeded attribute to true.

Java Platform Monitoring

131

The JVM manages two kinds of memory which are both created when the
JVM starts:

➤ Heap memory. The runtime data area from which the JVM allocates
memory for all class instances and arrays. The heap may be of a
fixed or variable size. The garbage collector is an automatic memory
management system that reclaims heap memory for objects.

➤ Non-heap memory. Includes a method area shared among all
threads and memory required for the internal processing or
optimization for the JVM. It stores per-class structures such as a
runtime constant pool, field and method data, and the code for
methods and constructors. The method area is logically part of the
heap but, depending on implementation, a JVM may not collect
garbage or compact it. Like the heap, the method area may be of
fixed or variable size. The memory for the method area does not
need to be contiguous.

In addition to the method area, a JVM implementation may require
memory for internal processing or optimization which also belongs
to non-heap memory. For example, the JIT compiler requires
memory for storing the native machine code translated from the
JVM code for high performance.

Current heap size

Official Name Current heap size

Counter Type Instantaneous (sampled once during each
measurement period)

Description The amount of memory currently used

Usage Notes Memory used includes the memory occupied by all
objects including both reachable and unreachable
objects

Performance Important indicator to determine whether the
memory is a potential bottleneck

Operations If this parameter increases over time, it may indicate a
need for reconfiguration

Threshold See explanation above

Java Platform Monitoring

132

Maximum heap size

Official Name Maximum heap size

Counter Type Instantaneous (sampled once during each
measurement period)

Description The maximum amount of memory that can be used
for memory management. Its value may change or be
undefined

Usage Notes A memory allocation may fail if the JVM attempts to
increase the used memory to be greater than
committed memory, even if the amount used is less
than or equal to max (for example, when the system is
low on virtual memory)

Performance Shows upper memory limit - warning if close to
physical memory boundaries

Operations If not implicitly defined, may cause improper memory
allocation

Threshold See explanation above

Java Platform Monitoring

133

Committed memory

Official Name Committed memory

Counter Type Instantaneous (sampled once during each
measurement period)

Description The total amount of memory allocated for use by the
heap

Usage Notes The amount of memory guaranteed to be available for
use by the JVM. The amount of committed memory
may change over time. The JVM may release memory
to the system and the committed memory could be
less than the amount of memory initially allocated at
startup

Performance N/A

Operations N/A

Threshold Committed will always be greater than or equal to
used

Java Platform Monitoring

134

GC time

Official Name GC (Garbage Collection) time

Counter Type Elapsed time

Description The cumulative time spent on garbage collection and
the total number of invocations. It may have multiple
rows, each representing one garbage collector
algorithm used in the JVM.

Usage Notes Garbage collection (GC) is how the JVM frees memory
occupied by objects that are no longer referenced.

It is common to think of objects that have active
references as being alive and of non-referenced
(unreachable) objects as dead. Garbage collection is
the process of releasing memory used by the dead
objects.

Performance The algorithms and parameters used by GC can have
dramatic effects on performance. Sun’s HotSpot VM
garbage collector uses generational garbage collection.
Generational GC utilizes the fact that, in practice,
most programs create:

➤ many objects that have short lives (for example,
iterators and local variables)

➤ some objects that have very long lives (for example,
high-level persistent objects)

So, generational GC divides memory into several
generations, and assigns each a memory pool. When a
generation uses up its allotted memory, the VM
performs a partial garbage collection (also called a
minor collection) on that memory pool to reclaim
memory used by dead objects. This partial GC is
usually much faster than a full GC.

Operations If GC has become a bottleneck, you may want to
customize the generation sizes. Check the verbose GC
output, and then explore the sensitivity of your
individual performance metric to the GC parameters.

Threshold Committed will always be greater than or equal to
used.

Java Platform Monitoring

135

Note: One of the most bothersome experiences for users with less than ideal
memory configurations is GC pauses. There are a number of settings that
affect the way the JVM allocates memory and the behavior of GC. The main
purpose of monitoring GC—and hence tuning—is to reduce the frequency
of major GC events without increasing their accumulating duration.

Thread Counters
A thread relates to a thread of execution in a program. The JVM allows an
application to have multiple threads of execution running concurrently.
Every thread has a priority. Threads with higher priority are executed in
preference to threads with lower priority. Each thread may or may not also
be marked as a daemon. When code running in some thread creates a new
Thread object, the new thread has its priority initially set equal to the
priority of the creating thread, and is a daemon thread if and only if the
creating thread is a daemon.

When a JVM starts up, there is usually a single non-daemon thread (which
typically calls the method named main of some designated class). The JVM
continues to execute threads until either of the following has occurred:

➤ The exit method of class Runtime has been called and the security
manager has permitted the exit operation to take place.

➤ All threads that are not daemon threads have died, either by returning
from the call to the run method or by throwing an exception that
propagates beyond the run method

Java Platform Monitoring

136

Live threads

Peak threads

Official Name Live threads

Counter Type Instantaneous (sampled once during each
measurement period)

Description Shows the current number of live daemon threads plus
non-daemon threads

Usage Notes N/A

Performance Too many threads may cause slow garbage collection
operation

Operations N/A

Threshold Watch when this counter approaches Peak threads
value

Official Name Peak threads

Counter Type Cumulative

Description Highest number of live threads since JVM started

Usage Notes May be helpful in recognizing trending patterns of
JVM behavior

Performance N/A

Operations N/A

Threshold N/A

Java Platform Monitoring

137

Daemon threads

Total started threads

Note: It is usually enough to monitor only one pair of thread counters, such
as Total Started Threads and Live Threads, as the other ones can be derived
from them.

Official Name Daemon threads

Counter Type Instantaneous (sampled once during each
measurement period)

Description Current number of live daemon threads

Usage Notes

Performance Too many threads may cause slow garbage collection
operation

Operations N/A

Threshold Watch when this counter approaches Peak threads
value

Official Name Total started threads

Counter Type Cumulative

Description Total number of threads started since JVM started
(including daemon, non-daemon, and terminated)

Usage Notes May be helpful in recognizing trending patterns of
JVM behavior

Performance N/A

Operations N/A

Threshold N/A

Java Platform Monitoring

138

Tip: To check if your application has run into a deadlock (for example, your
application seems to be hanging), you can invoke the
findMonitorDeadlockedThreads operation from JConsole’s MBeans tab.

Class Counters
This section describes the most important class counters.

Current classes loaded

Total classes loaded

Official Name Current classes loaded

Counter Type Instantaneous (sampled once during each
measurement period)

Description The number of classes currently loaded into memory

Usage Notes

Performance N/A

Operations N/A

Threshold N/A

Official Name Total classes loaded

Counter Type Cumulative

Description Total number of classes loaded into memory since the
JVM started, including those subsequently unloaded

Usage Notes May be helpful in recognizing trending patterns of
JVM behavior

Performance N/A

Operations N/A

Threshold N/A

Java Platform Monitoring

139

Total classes unloaded

Official Name Total classes unloaded

Counter Type Cumulative

Description Shows number of classes unloaded from memory since
the JVM started

Usage Notes May be helpful in recognizing trending patterns of
JVM behavior

Performance Non-zero value of this counter over long period of
time may point to problems with garbage collection
mechanism

Operations N/A

Threshold N/A

Java Platform Monitoring

140

141

7
.Net Platform Monitoring

This chapter describes best practices for .Net platform monitoring.

This chapter includes:

➤ Overview on page 141

➤ Most Important .Net Counters on page 144

Overview

Most of the applications developed in Microsoft technology are in the .NET
framework. This framework provides a good platform for both development
and running of applications. It also provides counters to measure and
monitor performance of the applications.

The .NET Framework has two main components:

➤ The common language runtime

➤ The .NET Framework class library.

The common language runtime (CLR) is the foundation of the .NET
Framework. You can think of the runtime as an agent that manages code at
execution time, providing core services such as memory management,
thread management, and remoting, while also enforcing strict type safety
and other forms of code accuracy that promote security and robustness. In
fact, the concept of code management is a fundamental principle of the
runtime. Code that targets the runtime is known as managed code, while
code that does not target the runtime is known as unmanaged code. The
class library, the other main component of the .NET Framework, is a
comprehensive, object-oriented collection of reusable types.

.Net Platform Monitoring

142

The runtime is designed to enhance performance. Although the common
language runtime provides many standard runtime services, managed code
is never interpreted. A feature called just-in-time (JIT) compiling enables all
managed code to run in the native machine language of the system on
which it is executing. Meanwhile, the memory manager removes the
possibilities of fragmented memory and increases memory locality-of-
reference to further increase performance.

.Net Platform Monitoring

143

Performance counters are organized and grouped into performance counter
categories. In general, just as Windows operating system provides many
predefined performance counters that can be retrieved programmatically or
displayed using the Performance Monitor, in .Net the CLR exposes its own
set of performance counters. They are organized into nine important
categories to help the tester monitor and tune the application’s
performance:

➤ Exceptions. Provide information about the exceptions thrown by the
application.

➤ Memory. Provides information about the garbage collector.

➤ Locks and Threads. Provide information about managed locks and
threads used by the application.

➤ Interop. Provides information about the application’s interaction with
COM components, COM+ services, and type libraries.

➤ JIT. Provides information about code that has been compiled by the
Just In Time compiler.

➤ Loading. Provides information about assemblies, classes, and
AppDomains that have been loaded.

➤ Networking. Provides information about the data sent and received
over the network by the application.

➤ Remoting. Provides information about remote objects used by the
application.

➤ Security. Gives a description about the security checks the CLR
performs on the application.

.Net Platform Monitoring

144

Most Important .Net Counters

When monitoring .Net applications, it is recommended to start monitoring
from operating system counters that measure the utilization of the
processors, the memory, the network, and the I/O devices (see Windows
chapter). Then you can add .Net performance counters that cover every
aspect of the CLR operations ranging from exception processing to security
checking.

Counter Description

Ex
ce

p
ti

on

of Excep Thrown/sec Indicates the number of managed code
exceptions thrown per second

Throw to Catch
Depth/Sec

Indicates the number of stack frames

M
em

o
ry

Large Object Heap
Size

Indicates the current size of the Large Object
Heap in bytes

Bytes in all Heaps Indicates the current memory allocated in bytes
on the GC heaps.

of Pinned Objects Indicates the number of pinned objects
encountered in the last GC.

% Time in GC Indicates the percentage of elapsed time that was
spent in performing a garbage collection (GC)
since the last GC cycle.

Th
re

ad
s

of Current Logical
Threads

Indicates the number of current .NET thread
objects in the application.

of Current Physical
Threads

Indicates the number of native OS threads
created and owned by the CLR.

of Current
Recognized Threads

Indicates the number of threads currently
recognized by the CLR.

of Total Recognized
Threads

Indicates the total number of threads recognized
by the CLR since the start.

Contention Rate/Sec Indicates the rate at which threads in the
runtime attempt to acquire a managed lock
unsuccessfully

.Net Platform Monitoring

145

Exception Counters
This section describes the counters that provide information pertaining to
exceptions thrown by .Net application.

of Excep Thrown/sec

Lo
ad

in
g

Current Assemblies Indicates the number of assemblies that are
loaded in the process.

Rate of Assemblies Indicates the rate at which assemblies are loaded
into the memory per second.

Bytes in Loader Heap Indicates the number of bytes committed by the
class loader.

Se
cu

ri
ty

Total Runtime Checks Indicates the percentage of elapsed time spent in
performing runtime Code Access Security.

Stack Walk Depth Indicates the depth of the stack during that last
runtime Code Access Security check.

Official Name .NET CLR Exception/# of Excep Thrown/sec (_Global_)

Counter Type Instantaneous (sampled once during each
measurement period).

Description This counter displays the number of exceptions
thrown per second. These include both .NET
exceptions and unmanaged exceptions.

Usage Notes This counter includes both handled and unhandled
exceptions. Exceptions should only occur in rare
situations and not in the normal control flow of the
program.

Performance Indicator of potential performance problems due to
large rate of exceptions thrown

Operations This has to be 0 under normal circumstances.

Threshold Error if rate is larger than 100

Counter Description

.Net Platform Monitoring

146

Throw to Catch Depth/Sec

Memory Counters
This section describes the counters that belonging to memory management
of .Net CLR. They provide data about memory consumption, memory pools,
and garbage collection statistics.

The common language runtime's garbage collector (GC) manages the
allocation and release of memory for an application. This automatic
memory management can eliminate common problems, such as forgetting
to free an object and causing a memory leak, or attempting to access
memory for an object that has already been freed.

When .Net application is initialized, the runtime reserves a contiguous
region of address space for the process. This reserved address space is called
the managed heap. When an application is created the first object, memory
is allocated at the base address of the managed heap. When the application
creates the next object, the garbage collector allocates memory for it in the
address space immediately following the first object. As long as address
space is available, the garbage collector continues to allocate space for new
objects in this manner. Allocating memory from the managed heap is faster
than unmanaged memory allocation. Unmanaged resources require explicit
cleanup as GC not always able to trace stack of execution.

Official Name .NET CLR Exception/Throw to Catch Depth/Sec

Counter Type Instantaneous (sampled once during each
measurement period).

Description Displays the number of stack frames traversed from
the frame that threw the .NET exception to the frame
that handled the exception per second.

Usage Notes Resets to 0 when an exception handler is entered; so
nested exceptions would show the handler to handler
stack depth.

Performance Secondary indicator to determine code shortcomings
that may pose a potential bottleneck.

Operations N/A

Threshold N/A

.Net Platform Monitoring

147

To optimize the performance of the garbage collector, the managed heap is
divided into three generations: Gen 0, Gen 1, and Gen 2. The runtime's
garbage collector stores new objects in generation 0. Objects created early in
the application's lifetime that survive collections are promoted and stored in
generations 1 and 2. This scheme allows the garbage collector to release the
memory in a specific generation faster rather than release the memory for
the entire managed heap each time it performs a collection.

Large Object Heap Size

Official Name .NET CLR Memory\Large Object Heap Size

Counter Type Instantaneous (sampled once during each
measurement period)

Description The amount of memory in bytes currently used by
Large Object Heap.

Usage Notes Objects greater than 20 KBytes are treated as large
objects by the Garbage Collector and are directly
allocated in a special heap, , which is measured by
High CPU utilization.

Performance Important indicator to determine code deficiency as
releasing entire heap takes more time than when
generational algorithm works properly. Usually called
Fragmented Large Object heap bottleneck.

Operations Large Objects are not promoted through the
generations

Threshold N/A

.Net Platform Monitoring

148

Bytes in all Heaps

Official Name .NET CLR Memory\# Bytes in all Heaps

Counter Type Instantaneous (sampled once during each
measurement period)

Description Shows the current memory allocated in bytes on the
GC heaps.

Usage Notes This counter is the sum of the Gen 0 Heap Size, Gen 1
Heap Size, Gen 2 Heap Size, and the Large Object Heap
Size counters. This counter indicates the current
memory allocated in bytes on the garbage collection
heaps.

Performance While using large data sets in memory, excess cache
entries, using reg-ex and string parsing, excess view-
state or excessive session objects contribute to the
heavy memory requirement.

Operations You usually start monitoring from this selecting
counter.

An increase in Private Bytes while the # of Bytes in all
heaps counter remains the same indicates unmanaged
memory consumption. An increase in both counters
indicates managed memory consumption.

Threshold Should be less than the Process\Private Bytes counter

.Net Platform Monitoring

149

of Pinned Objects

Official Name .NET CLR Memory\# of Pinned Objects

Counter Type Instantaneous (sampled once during each
measurement period)

Description Displays the number of pinned objects encountered in
the last GC.

Usage Notes A pinned object is one that the Garbage Collector
cannot move in memory. This counter tracks the
pinned objects only in the heaps that were garbage
collected; e.g., a Gen 0 garbage collection would cause
enumeration of pinned objects in the generation 0
heap only.

Performance N/A

Operations N/A

Threshold N/A

.Net Platform Monitoring

150

% Time in GC

Thread Counters
A thread relates to a thread of execution in a program. A .NET logical
thread object is created either implicitly by issuing new
System.Threading.Thread command inside the code or explicitly when an
unmanaged thread enters the managed environment. There are also
physical threads, created and owned by the CLR which are essentially native
OS acting as underlying threads for .NET thread objects. The .Net
application may make usage of recognized threads which are not created by
the CLR - they are created outside the CLR but have since run inside the CLR
at least once.

Official Name .NET CLR Memory\% Time in GC

Counter Type Elapsed time

Description The percentage of elapsed time that was spent in
performing a garbage collection (GC) since the last GC
cycle.

Usage Notes This counter is an indicator of the work done by the
Garbage Collector on behalf of the application to
collect and compact memory.

Performance Allocating large strings to cache, heavy string
operations, etc. leave a lot of memory spaces the GC
has to clean up.

Operations Updated only at the end of every GC, and the counter
value reflects the last observed value; it is not an
average. If there are any spikes in this counter, then
those are accepted.

Threshold Should be in the range of 5-10%

.Net Platform Monitoring

151

of Current Logical Threads

of Current Physical Threads

Official Name .NET CLR LocksAndThreads\# of Current Logical
Threads

Counter Type Instantaneous (sampled once during each
measurement period)

Description Displays the number of current managed thread
objects in the application.

Usage Notes This counter maintains the count of both running and
stopped threads.

Performance Too many threads may cause slow garbage collection
operation

Operations N/A

Threshold

Official Name .NET CLR LocksAndThreads\# of Current Physical
Threads

Counter Type Instantaneous (sampled once during each
measurement period)

Description Represents the number of native operating system
threads created and owned by the common language
runtime to act as underlying threads for managed
thread objects.

Usage Notes This is subset of the threads in the OS process.

Performance N/A

Operations This counter does not include the threads used by the
CLR in its internal operations.

Threshold N/A

.Net Platform Monitoring

152

of Current Recognized Threads

of Total Recognized Threads

Official Name .NET CLR LocksAndThreads\# of Current Recognized
Threads

Counter Type Instantaneous (sampled once during each
measurement period)

Description Shows the number of threads currently recognized by
the CLR.

Usage Notes Only unique threads are tracked.

Performance N/A

Operations Threads with the same thread ID reentering the CLR or
recreated after thread exit are not counted twice.

Threshold N/A

Official Name .NET CLR LocksAndThreads\# of Total Recognized
Threads

Counter Type Cumulative

Description Total number of threads recognized by the CLR since
the start of this application.

Usage Notes Only unique threads are tracked.

Performance N/A

Operations Threads with the same thread ID reentering the CLR or
recreated after thread exit are not counted twice.

Threshold N/A

.Net Platform Monitoring

153

Contention Rate/Sec

Official Name .NET CLR LocksAndThreads\Contention Rate/Sec

Counter Type Instantaneous (sampled once during each
measurement period)

Description Rate at which threads in the runtime attempt to
acquire a managed lock unsuccessfully.

Usage Notes An increase in the contention rate or a significant
increase in the total number of contentions is a strong
indication that an application is encountering thread
contention. To resolve this issue, one has to identify
code that accesses shared resources or uses
synchronization mechanisms.

Performance Along with Total # of Contentions may point to thread
bottleneck.

Operations

Threshold N/A

.Net Platform Monitoring

154

Loading Counters
This section describes the most important loading counters.

Current Assemblies

Rate of Assemblies

Official Name .NET CLR Loading/Current Assemblies (_Global_)

Counter Type Instantaneous (sampled once during each
measurement period)

Description Indicates and records the number of assemblies that
are loaded in the process.

Usage Notes This value is accumulated across all application
domains in the currently running application.

Performance N/A

Operations If the assembly is loaded as domain-neutral from
multiple application domains, this counter is
incremented only once.

Threshold N/A

Official Name .NET CLR Loading/Rate of Assemblies

Counter Type Instantaneous (sampled once during each
measurement period)

Description Rate at which assemblies are loaded into the memory
per second.

Usage Notes This value is accumulated across all application
domains in the currently running application.

Performance N/A

Operations If the assembly is loaded as domain-neutral from
multiple application domains, this counter is
incremented only once.

Threshold N/A

.Net Platform Monitoring

155

Bytes in Loader Heap

Official Name .NET CLR Loading/Bytes in Loader Heap

Counter Type Cumulative

Description Indicates the number of bytes committed by the class
loader across all application domains.

Usage Notes Committed memory is the physical space reserved in
the disk paging file.

Performance This counter has to be in a steady state, or else large
fluctuations in this counter would indicate that there
are too many assemblies loaded per application
domain.

Operations N/A

Threshold N/A

.Net Platform Monitoring

156

Security Counters
This section describes the most important security counters.

Total Runtime Checks

Official Name .NET CLR Security/Total Runtime Checks

Counter Type Cumulative

Description Displays the total number of runtime Code Access
Security (CAS) checks since the application started.

Usage Notes CAS allows code to be trusted to varying degrees and
enforces these varying levels of trust depending on
code identity. Runtime code access security checks are
performed when a caller demands a particular
permission. The runtime check is made on every call
by the caller and examines the current thread stack of
the caller.

Performance When used with the Stack Walk Depth counter, this
counter indicates the performance penalty that occurs
for security checks.

Operations This counter is updated at the end of a runtime
security check

Threshold N/A

.Net Platform Monitoring

157

Stack Walk Depth

Official Name .NET CLR Security/Stack Walk Depth

Counter Type Instantaneous (sampled once during each
measurement period)

Description This counter displays the depth of the stack during
that last runtime Code Access Security check.

Usage Notes The Runtime Code Access Security check is performed
by crawling the stack.

Performance N/A

Operations When used with the Total Runtime Checks counter, this
counter indicates the performance penalty that occurs
for security checks.

Threshold N/A

.Net Platform Monitoring

158

Part IV

Web Server Monitoring

160

161

8
Apache Monitoring

This chapter describes best practices for Apache Monitoring.

This chapter includes:

➤ Overview on page 162

➤ Architecture on page 162

➤ Most Important Apache Counters on page 165

➤ Optimization and Tuning on page 166

Apache Monitoring

162

Overview

The Apache HTTP server is an open source, configurable and extensible,
multi-platform Web server. It was initially developed in 1995 using NCSA
httpd (HTTP daemon) as a base. In time, the Apache HTTP server became
one of the most commonly used Web servers for commercial Web sites and
Web-based applications.

As one of the dominant Web servers it is important to understand Apache's
high level architecture, counters for monitoring, tuning aspects and other
performance related best practices. This chapter summarizes these aspects as
well as making you familiar with LoadRunner and ALM Performance Center
techniques for monitoring the Apache Web server.

Architecture

The function of a Web server is to service requests made through the HTTP
protocol. Typically the server receives a request asking for a specific resource
and returns the resource as a response back to the client. Apache fulfills this
purpose by separating the request handling responsibility to Apache core
and Apache modules:

➤ The core is responsible for defining and following the steps in servicing a
request.

➤ The modules actually implement the different phases involved in
handing a request.

Apache Monitoring

163

This architecture makes Apache a great platform for third parties to override
or extend functionality as well as allow Administrators to tune the server for
best memory management by turning off unused modules.

Apache 2.0 architecture and capabilities are superior to those of Apache 1.3,
even though both series are considered to be production quality versions.
The following describe performance related characteristics in Apache 2.0
architecture:

➤ Multi Processing Modules. Apache 2.0 supports Multi Processing Modules
(MPMs) as opposed to Apache 1.3 which is process-based that forks
several children at startup. MPMs mean that Apache can be configured to
be a pure process-based server, a purely threaded server or a mixture of
those models. Threads are contained inside processes and run
simultaneously and in most cases threaded servers scale better than
process based servers.

➤ Module and filter. As mentioned above, Apache maintains modular
architecture. Apache 2.0 adds an additional extension mechanism: filters.
Filters allow modules to modify the content generated by other modules.
They can encrypt, scan for viruses or compress not only static files but
dynamically generated content.

Apache Monitoring

164

➤ Apache Portable Runtime. Apache 2.0 runs equally well on Windows and
UNIX platforms thanks to the Apache Portable Runtime (APR) library. It
abstracts the differences among operating systems, such as file or network
access APIs. This abstraction layer also provides for platform-specific
tuning and optimization. The APR uses the concept of memory pools,
which significantly simplifies the memory-management code and reduces
the possibility of memory leaks.

In compliancy with Apache architecture, counters exposed by Apache for
understanding and monitoring server status are available from Apache
mod_status module. The status module provides information on server
activity and performance. It exposes the server statistics either in HTML
page in an easily readable form (i.e. http://your.server.name/server-status) or
in a simple machine-readable list (i.e. http://your.server.name/server-
status?auto) oriented for automating the monitoring process. Both modes
can be configured to automatically refresh the status by adding refresh
parameter in the URL query string (for example,
http://your.server.name/server-status?auto&refresh=30 will automatically
refresh the machine-readable status every 30 seconds).

The mod_status module can be configured to provide extended status. By
default it is disabled.

Note: The Apache monitor connects to the Web server in order to gather
statistics, and registers one hit for each sampling. The Apache graph,
therefore, always displays at least one hit per second, even if no clients are
connected to the Apache server.

Apache Monitoring

165

Most Important Apache Counters

The HP LoadRunner / ALM Performance Center Apache monitor is built to
track the counters exposed in the machine-readable page (server-
status?auto). HP Sitescope supports both modes. The Most important
counters are available in the machine-readable page.

Tip: All these counters are available in the server-status?auto page. You can
easily create a VuGen script to parse these counters data on your own and
send it to LoadRunner/ALM Performance Center online using
lr_user_data_point

Counter Description

CPULoad The current percentage of CPU consumed by the
Apache server

ReqPerSec The number of requests per second (a.k.a. hits per
second)

BytesPerSec The number of bytes transferred per second

BytesPerReq The number of bytes transferred per request

BusyWorkers Number of active threads serving requests

IdleWorkers Number of inactive/idle threads

Apache Monitoring

166

Optimization and Tuning

When performance issues are encountered, tuning and optimization are
required to alleviate the issues. It is recommended to act proactively and
prevent these issues from occurring in the first place. This section lists a few
possible tuning parameters, optimization practices, and benchmarking
methods oriented for Apache Web server. Before applying any of these, you
should first validate the relevancy of the configuration to your specific case
by understanding the parameter and the workload generated against your
server.

➤ HostnameLookups directive should be off (off by default). When turned
on DNS lookups will consume a lot of time and slow the server.

➤ KeepAlive directive should be on (on by default). KeepAlive provide
longer HTTP sessions which allow multiple requests to be sent over the
same TCP connection. This has proved to be extremely significant for
speeding up response time.

➤ KeepAliveTimeout directive represents the number of seconds Apache will
wait for a subsequent request before closing a connection. The default
configuration is 15 seconds. The higher the timeout, the more server
threads will be kept occupied waiting on connections with idle clients.

➤ Avoid using .htaccess files. The use of .htaccess files can be disabled
completely by setting the AllowOverride directive to none. When
AllowOverride is set to allow the use of .htaccess files, Apache will look in
every directory for .htaccess files. Permitting .htaccess files causes a
performance hit, whether or not you actually even use them. Also, the
.htaccess file is loaded every time a document is requested.

➤ It is recommended to unload unused modules in order to optimize
memory utilization.

Apache Monitoring

167

➤ MaxKeepAliveRequests directive. A Web server should never have to
swap, as swapping increases the latency of each request beyond a point
that users consider "fast enough". This causes users to hit stop and reload,
further increasing the load. You can, and should, control the MaxClients
setting to prevent your server from spawning so many children that it
starts swapping. The MaxKeepAliveRequests directive specifies the
maximum number of child processes that will be created to serve
requests, and limits the number of simultaneous requests that will be
served. Any connection attempts that are over the MaxClients limit will
normally be queued, up to a number based on the ListenBacklog
directive. You should set this to the maximum number of clients that
your environment can manage without experiencing throughput
degradation or a prohibitive increase of the response time.

Apache Monitoring

168

169

9
IIS Monitoring

This chapter describes best practices for IIS monitoring.

This chapter includes:

➤ Overview on page 169

➤ Architecture on page 170

➤ Monitoring on page 172

➤ Most Important IIS Counters on page 173

➤ Optimization and Tuning on page 177

Overview

Microsoft Internet Information Services (IIS) is the world's second most
popular Web server after the Apache HTTP Server. IIS is available within all
Windows operating system editions in different flavors. It is constantly
evolving and maturing. IIS 6.0 made a major step forward in enabling using
IIS not only as a Web server but also as an application server. IIS 7.0, the
latest IIS release, continues this path by adding important capabilities that
contribute also to performance and reliability.

IIS includes the following servers: FTP/FTPS, SMTP, NNTP, and HTTP/HTTPS.
This chapter focuses on the HTTP/HTTPS server. It covers IIS architecture,
performance monitoring, and some tuning guidelines. The focus in this
chapter is mainly on IIS 6.0, although IIS 7.0 is mentioned where necessary.

IIS Monitoring

170

Architecture

IIS runs a server in one of two distinct request processing models, called
application isolation modes. Application isolation is the separation of
applications by process boundaries that prevents one application or Web site
from affecting another and reduces the time spent restarting services to
correct problems related to applications.

IIS 6.0 supports two application isolation modes. Each mode has a different
configuration:

➤ Worker Process Isolation mode. Supports grouping Web applications into
application pools thus enabling each application to function within a
self-contained worker process. A worker process is user-mode code whose
role is to process requests, such as returning a static page or invoking an
Internet Server API (ISAPI) extension or filter. This mode delivers all the
benefits of IIS 6.0 architecture, including multiple application pools,
health monitoring and recycling, increased security and performance,
improved scalability, and processor affinity.

➤ IIS 5.0 Isolation mode. Provides compatibility for applications that were
designed to run in earlier versions of IIS. When IIS 6.0 is running in this
mode, request processing is almost identical to the request processing in
IIS 5.0. Unless your application does not function in worker process
isolation mode, it is not recommended to use this mode.

Both modes rely on the HTTP protocol stack (HTTP.sys) to receive HTTP
requests and return responses. HTTP.sys listens for HTTP requests, queues
them and return responses after the requests where processed.

HTTP.sys resides in Kernel Mode where operating system code, such as
device drivers, runs. This ensures that the operating system manages HTTP
requests in high priority. The actual processing of the request is done in User
Mode by the relevant Worker process.

IIS Monitoring

171

The following diagram illustrates the Worker Process Isolation mode.

The application pool can host multiple Worker processes, thus provides load
balancing and failover capabilities. This contributes to the performance,
reliability, and scalability of the application. An application pool that
contains more than one Worker processes is called a Web garden.

As mentioned earlier, IIS provides four internet services: the World Wide
Web Publishing Service (WWW service) for hosting Internet and intranet
content; the File Transfer Protocol (FTP) service for hosting sites where users
can upload and download files; the Network News Transfer Protocol (NNTP)
service for hosting discussion groups; and the Simple Mail Transfer Protocol
(SMTP) service for sending and receiving email messages. It is recommended
to disable/uninstall unused services in order to reduce IIS footprint.

IIS Monitoring

172

IIS 7.0 introduces a few architectural enhancements:

➤ A new service, Windows Process Activation Service (WAS), was added.
Enables sites to use protocols other than HTTP/HTTPS.

➤ Integration of request processing pipelines from IIS and ASP.NET. This
capability is related to the application pool modes supported in IIS 7.0.

➤ IIS 5.0 isolation mode is no longer supported

➤ IIS 6.0 Worker Process Isolation mode continues to be supported

➤ A new mode, Integrated Application Pool mode, was added in order
to allow integrated request processing of IIS and ASP.NET

➤ Web Server engine can be customized by adding or removing modules

Monitoring

IIS performance counters are exposed through the Microsoft Windows
performance data helper library (pdh.dll) which is the general monitoring
platform of Windows. This means that each IIS performance counter is
numeric, and is uniquely identified by its path, usually in the following
syntax:

The Computer_name portion of the path is optional.

Both SiteScope and LoadRunner use the Windows pdh interface for
monitoring IIS and ASP/ASP.NET related counters. To invoke the pdh
interface from a remote machine, Windows requires authentication using a
user that has appropriate permissions.

As a best practice, it is recommended to gain good understanding of your
application architecture and deployment. This information is useful while
performing different performance engineering practices throughout the
product lifecycle. For example, there is no reason to have the IIS FTP server
or Frontpage Server extensions running if they are not being used. Also,
there is no reason to monitor Active Server Pages if your application is
completely ASP.NET based.

\\Computer_name\Object(Parent/Instance#Index)\Counter

IIS Monitoring

173

Most Important IIS Counters

The counters listed in this section include the most important counters for
performance and workload characterization. They do not include counters
that are not compatible with IIS 6.0.

Note: When monitoring .NET Web-based applications it is recommended to
monitor .NET CLR as well. For a list of important counters for .NET CLR
monitors, see Chapter 7, “.Net Platform Monitoring.”

WWW Service

The Web Service counters help you determine how well the World Wide
Web Publishing Service (WWW service) processes requests. The WWW
service is a user-mode service. These counters also reflect the processing that
occurs in the kernel-mode driver, HTTP.sys.

You can configure these counters either per Web site or globally for the
entire server by selecting the _Total instance.

Counter Description

Bytes Sent/sec The rate, in seconds, at which data bytes have been
sent by the WWW service

Bytes Received/sec The rate, in seconds, at which data bytes have been
received by the WWW service

Current Connections The number of active connections to the WWW
service

Not Found Errors/sec The rate, in seconds, at which requests were not
satisfied by the server because the requested
document was not found

Locked Errors/sec The rate, in seconds, at which requests were not
satisfied because the requested document was
locked

IIS Monitoring

174

WWW Service Cache

The WWW service and FTP service do not share a common cache. Instead,
the caches are split into two separate performance objects: one for FTP
service and one for the WWW service. WWW service cache counters are
designed to monitor server performance only; therefore, you cannot
configure them to monitor individual sites.

Current ISAPI Extension
Requests

The number of ISAPI extension requests that are
being processed simultaneously by the WWW
service

ISAPI Extension
Requests/sec

The rate, in seconds, at which ISAPI extension
requests are being processed by the WWW service

Counter Description

Current File Cache
Memory Usage

The number of bytes currently used for the user-
mode file cache

Current Files Cached The number of files whose content is currently in
the user-mode cache

Current URIs Cached The number of URI information blocks that are
currently stored in the user-mode cache

Current Metadata Cached The current number of metadata information
blocks in the user-mode cache

Kernel: URI Cache Hits/sec The average number of kernel URI cache hits that
are being made per second

Counter Description

IIS Monitoring

175

ASP.NET

ASP.NET supports the following ASP.NET system performance counters,
which aggregate information for all ASP.NET applications on a Web server
computer, or, alternatively, apply generally to a system of ASP.NET servers
running the same applications.

Note: Not all of these counters are available in all IIS deployments.

Counter Description

Requests Disconnected The number of requests that were disconnected
because a communication failure occurred.

Requests Queued The number of requests in the queue waiting to be
serviced. If this number increases as the number of
client requests increases, the Web server has reached
the limit of concurrent requests that it can process.
The default maximum for this counter is 5,000
requests. You can change this setting in the
computer's Machine.config file.

Requests Rejected The total number of requests that were not executed
because insufficient server resources existed to
process them. This counter represents the number
of requests that return a 503 HTTP status code,
which indicates that the server is too busy.

Errors Total/sec The average number of errors that occurred per
second during the execution of HTTP requests.
Includes any parser, compilation, or run-time errors.

Output Cache Turnover
Rate

The average number of additions to and removals
from the output cache per second. If the turnover is
great, the cache is not being used effectively.

Sessions Active The number of sessions that are active. This counter
is supported only with in-memory session state.

IIS Monitoring

176

Active Server Pages

If you are running Active Server Pages (ASP) on your server, the ASP counters
can help you determine how well the server or site is responding to ASP
requests. The ASP counters are designed to monitor server performance; you
cannot monitor individual ASP applications because ASP counters collect
global data across the entire WWW service.

Transactions/sec The average number of transactions that were
started per second.

Transactions Pending The number of transactions that are in progress.

Counter Description

Errors/sec The average number of errors that occurred per
second.

Requests/sec The average number of requests that were executed
per second.

Requests Executing The number of ASP requests currently executing (for
example, the number of active worker threads).

Requests Queued The number of queued ASP requests that are waiting
to be processed. The maximum number for this
counter is determined by the metabase property
AspRequestQueueMax.

Transactions/sec The average number of transactions that have been
started, per second.

Counter Description

IIS Monitoring

177

Optimization and Tuning

When performance issues are encountered, tuning and optimization are
required to alleviate these issues. In most cases application code
optimization is required, but sometimes fixing a poorly tuned environment
can dramatically improve performance.

This section lists some possible tuning practices. Some are oriented for the
IIS Web server while others are general for any Web server. There are many
other tuning practices that might be more effective for your application.

Tuning requires a long and iterative process of testing and analysis. Any
configuration change requires careful validation. Before applying any of
below practices, you should first validate the relevancy of the configuration
to your specific application by understanding the parameter and the
workload generated against your server.

➤ Tune the connection limit. A large number of connections alongside high
CPU utilization and high processor queue length indicates a CPU
bottleneck. You should either limit maximum connections allowed or
increase CPU power.

➤ Turn off ASP debugging. Verify that both the server and client sides are
turned off by setting AppAllowDebugging and AppAllowClientDebug to
false.

➤ Set AspBufferingOn to true in order to collect the ASP output buffer
before it is sent to the client.

➤ The AspProcessorThreadMax Metabase property specifies the maximum
number of worker threads per processor that IIS can create. To find out
the maximum number of worker threads that IIS allows per ASP process,
multiply this value by the number of processors on your server. If you
decrease this value, monitor performance to make sure that the lower
thread limit does not degrade performance. If it does, increase the value
again.

➤ The AspRequestQueueMax Metabase property specifies the maximum
number of ASP requests that are permitted in a queue. The default value is
3,000, but the optimal setting depends on the behavior of the
application. If the execution time of the request is very short and the time
in the queue is short, it is reasonable to decrease this value.

IIS Monitoring

178

➤ Verify that the keep-alive state for each TCP connection is enabled
(connection = keep-alive). If keep-alive connections are turned off, every
file requires a new TCP connection. For small files, enabling HTTP Keep-
Alives in IIS effectively doubles the number of roundtrips.

➤ Enable HTTP compression to increase efficiency of bandwidth use.

➤ Set HTTP expire headers for all images and for HTML so that proxy servers
and browsers make fewer calls to the Web server.

➤ Remove unnecessary file content. Remove unnecessary empty lines, tabs,
characters, and so on. Bigger files impact the time it takes to transfer a file
over the network.

➤ Use static files wherever possible in order to reduce processor demand as
much as possible.

➤ Establish Web gardens, which are application pools that can run multiple
worker processes.

Part V

Application Server Monitoring

180

181

10
WebLogic Monitoring

This chapter describes best practices for WebLogic monitoring.

This chapter includes:

➤ Overview on page 181

➤ Architecture on page 182

➤ Monitoring on page 184

➤ Most Important WebLogic Counters on page 185

➤ Optimization and Tuning on page 196

Overview

Oracle WebLogic is one of the top J2EE application servers. WebLogic
architecture and infrastructure are oriented for performance and scalability
and allow deployment of many types of distributed applications such as
Web-based applications and Web services. Furthermore, WebLogic’s
complete implementation of Sun Microsystems Java EE 5.0 specification
provides a standard set of APIs for creating distributed Java applications that
can access a wide variety of services, such as databases, messaging services,
and connections to external enterprise systems.

These capabilities, among others, make the WebLogic Application Server an
important environment to become familiar with from the performance
perspective. This chapter describes WebLogic application server high level
architecture, recommended counters for monitoring, and main tuning-
related aspects.

WebLogic Monitoring

182

Architecture

WebLogic has different product configurations:

➤ WebLogic Server. Provides the core services and infrastructure for J2EE
applications.

➤ WebLogic Enterprise. Consists of WebLogic Server and BEA Tuxedo
software.

➤ WebLogic Express. Provides a "lightweight" version, non J2EE, flavor of
WebLogic Server.

This chapter focuses on the WebLogic Server.

In order to understand WebLogic architecture and deployment you need to
become familiar with WebLogic Server domains.

A WebLogic Server domain is a logically related group of WebLogic Server
resources. It includes a special WebLogic Server instance called the
Administration Server and additional WebLogic Server instances called
Managed Servers. A WebLogic Server instance can be deployed either as an
Administration Server or as a Managed Server.

The Administration Server is used solely for the purpose of management and
monitoring of the entire domain while the Managed Servers host and
execute the application logic deployed in them. Each Managed Server runs
under its own Java process, using Oracle JRockit JVM. This also applies to
the Administration Server.

In addition to the Administration and Managed Servers, the domain
contains additional resources and services that the Managed Servers and
applications require. The Node Manager is one such resource. The Node
Manager is associated with a machine and not with a logical entity, and
allows the domain Administration Server to control the Managed Servers
deployed on the machine.

You can use a single WebLogic Server installation to create and run multiple
domains, or you can use multiple installations to run a single domain. It is
important you to understand the considerations that led to the domain
configuration of the WebLogic Server in your environment since it often
impacts performance and scalability.

WebLogic Monitoring

183

Each WebLogic Server can be configured as a Web server utilizing its own
HTTP listener, which supports HTTP 1.1. Alternatively, Apache, Microsoft
IIS, and Netscape Web servers can also be used. The Web server
configuration allows the WebLogic Server to service requests for static HTML
content in addition to dynamic content generated by servlets or JSPs.

The following diagram illustrates a WebLogic domain that consist of three
Managed Servers which are deployed on two machines/nodes.

WebLogic Monitoring

184

Monitoring

The WebLogic Server management system offers management, health, and
performance data through a collection of managed beans (MBeans), based
on Sun's Java Management Extension (JMX) standard. These MBeans can be
queried using either JXM or SNMP. Additionally, the WebLogic Server
records information regarding configuration changes and subsystem failures
in log files. These log files can be useful for investigating critical failures, but
less relevant while applying load.

Recent WebLogic versions include the diagnostics framework, WebLogic
Diagnostics Framework (WLDF). WLDF leverages the MBeans mentioned
earlier and adds additional capabilities, including the following:

➤ Capturing diagnostics snapshots that can be used for post-failure analysis

➤ Archiving data events, log records, and metrics from server instances and
applications

➤ Instrumenting the server and the applications it runs

It is important to thoroughly understand your application's architecture and
deployment when checking performance throughout the product lifecycle.
This is especially true when monitoring the J2EE application deployed on a
WebLogic server. For example, unless your WebLogic server deployment is
configured in cluster mode, the Cluster monitor is irrelevant.

The HP SiteScope WebLogic Solution template is the recommended method
for monitoring WebLogic while using LoadRunner or ALM Performance
Center. SiteScope WebLogic Solution is based on the SiteScope WebLogic
monitor and JMX monitor with a predefined set of counters for monitoring.
It uses the JMX interface for monitoring WebLogic, and therefore requires
security access configuration by the WebLogic administrator.

Alternatively, you can use the SiteScope WebLogic monitor for monitoring
WebLogic 6.x, 7.x, and 8.x and SiteScope JMX monitor for monitoring
WebLogic 9.x or 10.x. The latter requires more manual effort when
configuring the desired counters. Detailed instructions are provided in the
SiteScope User Guide.

WebLogic Monitoring

185

Most Important WebLogic Counters

The list of counters below includes the most important counters for
performance and workload characterization. WebLogic exposes many more;
in order to monitor them you can select them from the relevant MBean.

The counters are classified by different entities and according to the
WebLogic MBeans.

Note: Counters may vary depending on what is installed on the application
server.

Server
As work enters a WebLogic Server, it is placed in an execute queue. This
work is then assigned to a thread within the queue that performs the work.

The following counters help you assess the server ability to handle the
workload and identify whether the Execute Queue or Thread Pool are
related to a potential bottleneck.

WebLogic Mbeans:

Counter Description

MBean: weblogic.management.runtime.ServerRuntimeMBean

OpenSocketsCurrentCount The current number of sockets registered for
socket muxing on this server.

MBean: weblogic.management.runtime.ExecuteQueueRuntimeMBean

ExecuteThreadCurrentIdleCount The number of idle threads assigned to the
queue.

ExecuteThreadTotalCount The total number of execute threads assigned
to the queue.

PendingRequestCurrentCount The number of pending requests in the
queue.

WebLogic Monitoring

186

MBean: weblogic.management.runtime.ThreadPoolRuntimeMBean

ExecuteThreadIdleCount The number of idle threads in the pool. This
count does not include standby threads and
stuck threads. The count indicates threads
that are ready to pick up new work when it
arrives.

ExecuteThreadTotalCount The total number of threads in the pool.

PendingUserRequestCount The number of pending user requests in the
priority queue. The priority queue contains
requests from internal subsystems and users.
This is the count of all user requests.

QueueLength The number of pending requests in the
priority queue. This is the total of internal
system requests and user requests.

Throughput The mean number of requests completed per
second.

StandbyThreadCount Returns the number of threads in the
standby pool. Surplus threads that are not
needed to handle the present workload are
designated as standby and added to the
standby pool. These threads are activated
when more threads are needed.

Counter Description

WebLogic Monitoring

187

EJB
Enterprise JavaBeans are the server-side components that encapsulate the
business logic. This makes them a major candidate for a performance
bottleneck, and therefore are important to monitor.

There are two major types of beans: Session Beans and Message Driven
Beans, where the Session Beans can be either Stateful or Stateless.

WebLogic MBeans:

Counter Description

MBean: weblogic.management.runtime.EJBCacheRuntimeMBean.

Monitors cache counters for Entity Beans and Stateful Beans.

ActivationCount Provides a count of the total number of
beans from this EJB Home that have been
activated.

CacheAccessCount Provides a count of the total number of
attempts to access a bean from the cache.

Note: The sum of the Cache Hit Count
and Cache Miss Count may not add up to
the CacheAccessCount in a running server
because these metrics are retrieved using
multiple calls and the counts could change
between the calls.

CachedBeansCurrentCount Provides a count of the total number of
beans from this EJB Home currently in the
EJB cache.

CacheMissCount Provides a count of the total number of
times an attempt failed to access a bean
from the cache.

Note: The sum of the Cache Hit Count
and Cache Miss Count may not add up to
the CacheAccessCount in a running server
because these metrics are retrieved using
multiple calls and the counts could change
between the calls.

WebLogic Monitoring

188

PassivationCount Provides a count of the total number of
beans from this EJB Home that have been
passivated.

MBean: weblogic.management.runtime.EJBLockingRuntimeMBean

LockEntriesCurrentCount Provides a count of the number of beans
currently locked.

LockManagerAccessCount Provides the total number of attempts to
obtain a lock on a bean. This includes
attempts to obtain a lock on a bean that is
already locked on behalf of the client.

TimeoutTotalCount Provides the current number of threads
that have timed out waiting for a lock on a
bean.

WaiterCurrentCount Provides the current number of threads
that have waited for a lock on a bean.

MBean: weblogic.management.runtime.EJBPoolRuntimeMBean

Monitors EJB instances for Entity Beans, MessageDriven Beans, and Stateless
Beans

AccessTotalCount Provides a count of the total number of
times an attempt was made to retrieve an
instance from the free pool.

BeansInUseCurrentCount Provides a count of the number of bean
instances currently being used from the
free pool.

DestroyedTotalCount Provides a count of the total number of
times a bean instance from this pool was
destroyed due to a non-application
Exception being thrown from it.

MissTotalCount Provides a count of the total number of
times a failed attempt was made to get an
instance from the free pool. An attempt to
get a bean from the pool fails if there are
no available instances in the pool.

Counter Description

WebLogic Monitoring

189

Servlet
WebLogic MBeans:

PooledBeansCurrentCount Provides a count of the current number of
available bean instances in the free pool.

TimeoutTotalCount Provides a count of the total number of
threads that have timed out waiting for an
available bean instance from the free pool.

WaiterCurrentCount Provides a count of the number of Threads
currently waiting for an available bean
instance from the free pool.

MBean: weblogic.management.runtime.EJBTransactionRuntimeMBean

Monitors transaction counters for Entity Beans, MessageDriven Beans, Stateless
Beans, and Stateful Beans

TransactionsCommittedTotalCount Provides a count of the total number of
transactions that have been committed for
this EJB.

TransactionsRolledBackTotalCount Provides a count of the total number of
transactions that have been rolled back for
this EJB.

TransactionsTimedOutTotalCount Provides a count of the total number of
transactions that have timed out for this
EJB.

Counter Description

MBean: weblogic.management.runtime.ServletRuntimeMBean

ExecutionTimeAverage Provides the average amount of time all
invocations of the servlet have executed since
it was created.

Counter Description

WebLogic Monitoring

190

JRockit
These counters are available only if you run a server with JRockit Virtual
Machine and are essential for both characterizing the performance of the
application, as well as for tuning.

Counter Description

MBean: weblogic.management.runtime.JRockitRuntimeMBean

UsedHeap Indicates the amount (in bytes) of Java heap
memory that is currently being used by the
Virtual Machine.

UsedPhysicalMemory Indicates the amount (in bytes) of physical
memory that is currently being used on the
host computer. This value reports the
memory that is being used by all processes on
the computer, and not just by the VM.

TotalNurserySize Indicates the amount (in bytes) of memory
that is currently allocated to the nursery.

The nursery is the area of the Java heap that
the VM allocates to most objects. Instead of
garbage collecting the entire heap,
generational garbage collectors focus on the
nursery. Because most objects die young,
most of the time it is sufficient to garbage
collect only the nursery and not the entire
heap.

If you are not using a generational garbage
collector, the nursery size is 0.

AllProcessorsAvgLoad Displays a snapshot of the average load of all
processors in the host computer. If the
computer has only one processor, this value
is the same as JVM Processor Load.

The value is returned as a double, where 1.0
represents 100% load (no idle time) and 0.0
represents 0% load (pure idle time).

WebLogic Monitoring

191

JDBC Connection Pool
Java Database Connectivity (JDBC) is a standard Java API for interfacing
with database and executing SQL statements.

Database is often a performance bottleneck and it is important to monitor
carefully from all angles. The counters below are relevant for the JDBC
connection pool. They assist in completing the picture of the database
behavior under load.

JVMProcessorLoad Displays a snapshot of the load that the VM
is placing on all processors in the host
computer. If the host contains multiple
processors, the value represents a snapshot of
the average load.

The value is returned as a double, where 1.0
represents 100% load (no idle time) and 0.0
represents 0% load (pure idle time).

TotalNumberOfThreads Indicates the number of Java threads
(daemon and non-daemon) that are currently
running in the VM across all processors.

NumberOfDaemonThreads Indicates the number of daemon Java threads
currently running in the VM across all
processors.

Counter Description

MBean: weblogic.management.runtime.JDBCDataSourceRuntimeMBean

ActiveConnectionsAverageCount Average number of active connections in
this instance of the data source. Active
connections are connections in use by
an application.

ActiveConnectionsCurrentCount The number of connections currently in
use by applications.

Counter Description

WebLogic Monitoring

192

ConnectionDelayTime The average amount of time (in
milliseconds) that it takes to create a
physical connection to the database. The
value is calculated as a sum of all the
times it took to connect, divided by the
total number of connections.

CurrCapacity The current count of JDBC connections
in the connection pool in the data
source.

LeakedConnectionCount The number of leaked connections. A
leaked connection is a connection that
was reserved from the data source but
was not returned to the data source by
calling close().

NumAvailable The number of database connections
currently available (not in use) in this
data source.

NumUnavailable The number of database connections
that are currently unavailable (in use or
being tested by the system) in this
instance of the data source.

PrepStmtCacheHitCount The cumulative, running count of the
number of times that statements from
the cache were used.

PrepStmtCacheMissCount The number of times that a statement
request could not be satisfied with a
statement from the cache.

WaitingForConnectionCurrentCount The number of connection requests
waiting for a database connection.

Counter Description

WebLogic Monitoring

193

JMS
WebLogic JMS is an enterprise-class messaging system that is tightly
integrated into the WebLogic Server platform.

The following counters are relevant only when your application uses
WebLogic JMS. In such case these counters are very useful in determining
whether or not the JMS server is a bottleneck.

WebLogic MBeans:

Counter Description

MBean: weblogic.management.runtime.JMSRuntimeMBean

ConnectionsCurrentCount The current number of connections to
WebLogic Server.

MBean: weblogic.management.runtime.JMSServerRuntimeMBean

BytesCurrentCount The current number of bytes stored on this
JMS server. This number does not include
the pending bytes.

BytesPageableCurrentCount The total number of bytes in all the
messages that are currently available for
paging out, and have not yet been paged
out. The JMS server attempts to keep this
number smaller than the
"MessageBufferSize" parameter.

BytesPendingCount The current number of bytes pending
(unacknowledged or uncommitted) stored
on this JMS server. Pending bytes are over
and above the current number of bytes.

BytesReceivedCount The number of bytes received on this JMS
server since the last reset.

DestinationsCurrentCount The current number of destinations for this
JMS server.

MessagesCurrentCount The current number of messages stored on
this JMS server. This number does not
include the pending messages.

WebLogic Monitoring

194

MessagesPageableCurrentCount The number of messages that are currently
available for paging in this JMS server but
have not yet been paged out.

MessagesPendingCount The current number of messages pending
(unacknowledged or uncommitted) stored
on this JMS server. Pending messages are
over and above the current number of
messages.

MessagesReceivedCount The number of messages received on this
destination since the last reset.

SessionPoolsCurrentCount The current number of session pools
instantiated on this JMS server.

Counter Description

WebLogic Monitoring

195

JTA
One of WebLogic’s fundamental capabilities is transaction management
which provides guarantees that database changes are completed accurately
with high integrity.

The following counters are useful when trying to evaluate the workload that
the server and the application can sustain.

Tip: Evaluate rolled back transactions rates. A rate higher than expected
should be investigated by looking at the reason for the roll back, and then
correlating it with other counters measured in operating system, application
server, database server, and LoadRunner transactions.

Counter Description

MBean: weblogic.management.runtime.JTARuntimeMBean

TransactionTotalCount The total number of transactions
processed. This total includes all
committed, rolled back, and
heuristic transaction completions.

TransactionCommittedTotalCount The number of committed
transactions.

TransactionRolledBackTotalCount The number of transactions that
were rolled back.

TransactionRolledBackTimeoutTotalCount The number of transactions that
were rolled back due to a timeout
expiration.

TransactionRolledBackResourceTotalCount The number of transactions that
were rolled back due to a resource
error.

TransactionRolledBackAppTotalCount The number of transactions that
were rolled back due to an
application error.

WebLogic Monitoring

196

Optimization and Tuning

Optimization and tuning are crucial for resolving performance issues. In
most cases application code optimization is required, but sometimes fixing a
poorly tuned environment can dramatically improve performance.

This section lists a few possible tuning practices. Some are oriented for
WebLogic application server, while others are general for any application
server. There are many other tuning practices that can improve the
performance of your application.

Tuning requires a long and iterative process of testing and analysis. Any
configuration change requires careful validation. Before applying any of the
below practices, validate the relevancy of the configuration to your specific
application by understanding the parameters and workload generated
against your server.

TransactionRolledBackSystemTotalCount The number of transactions that
were rolled back due to an internal
system error.

TransactionHeuristicsTotalCount The number of transactions that
completed with a heuristic status.

TransactionAbandonedTotalCount The number of transaction that
were abandoned.

AverageCommitTime The average amount of time (in
milliseconds) it takes the server to
commit a transaction.

ActiveTransactionsTotalCount The total number of active
transactions on the server.

Counter Description

WebLogic Monitoring

197

Tune Pool Sizes

Tuning EJB, JDBC, and Thread related pools for their appropriate size
increases the server's capacity and it performs better. To tune these pools,
you monitor the relevant counters mentioned in the previous section, and
look for the amount of waits and LoadRunner transaction response time.
Note the optimal response time.

Use the Prepared Statement Cache

The prepared statement cache keeps compiled SQL statements in memory,
thus avoiding a round-trip to the database when the same statement is used
later.

JVM Tuning

➤ Examine which collection algorithm fits your application better:
concurrent or parallel.

➤ Determine the optimal heap size.

➤ Monitor your application under peak load.

➤ Analyze how often collection is taking place. Too frequent
collections with shrinking free memory size may require application
code optimization.

➤ Analyze how long full GC takes. If takes more than 5 seconds, lower
the heap size.

➤ Analyze the average memory footprint. If heap is 85% free after full
GC, its size can be lowered.

Execute Queue

Increase the thread count if the queue length and the CPU are under
utilized. This better utilizes the CPU.

General

➤ Always serve static content such as HTML pages, images, CSS files,
JavaScript files using a Web Server. This will reduce the CPU time spent
on the application server machine, leaving more time to process other
jobs.

➤ Use WebLogic clustering for scalability and high availability.

WebLogic Monitoring

198

199

11
WebSphere Monitoring

This chapter describes best practices for WebSphere platform monitoring.

This chapter includes:

➤ Overview on page 199

➤ Architecture on page 200

➤ Monitoring on page 202

➤ Most Important Counters on page 203

➤ Optimization & Tuning on page 209

Overview

The IBM WebSphere Application Server is the flagship product in the IBM
WebSphere platform. It is one of the top J2EE application servers.
WebSphere architecture and infrastructure are oriented for performance and
scalability, and allow deployment of many types of distributed applications
such as Web-based applications and Web services. Furthermore, WebSphere’s
complete implementation of Sun Microsystems Java EE 5.0 specification
provides a standard set of APIs for creating distributed Java applications that
can access a wide variety of services, such as databases, messaging services,
and connections to external enterprise systems.

These capabilities among others make WebSphere Application Server (WAS)
an important environment to become familiar with from the performance
perspective. This chapterhelps you understand WebSphere Application
Server high-level architecture, recommended counters for monitoring, and
main tuning related aspects.

WebSphere Monitoring

200

Architecture

WebSphere Application Server comes in five different editions:

➤ WebSphere Application Server Network Deployment. Delivers near-
continuous availability, with advanced performance and management
capabilities, for mission-critical applications.

➤ WebSphere Application Server for z/OS. Provides similar capabilities to
the Network Deployment edition, oriented for z/OS and uses, to its
advantage, the z/OS Workload Manager.

➤ WebSphere Application Server. Provides Java EE 5 configuration,
optimized to ease administration in a scalable, single-server environment.

➤ WebSphere Application Server Express. Provides a scaled down version of
the WebSphere Application Server edition.

➤ WebSphere Application Server Community Edition. Provides a
lightweight Java EE 5 application server based on open source Apache
Geronimo.

Each member of the WebSphere Application Server family uses the same
architectural structure with some differences in capabilities, platform
compatibility, and licensing.

The WebSphere Application Server is organized based on the concept of
cells, nodes, and servers. Cells and nodes play an important role when you
reach the Network Deployment configuration.

➤ Servers. A server performs the actual code execution. There are several
types of servers, depending on the configuration: Application servers and
JMS servers. Each server runs on its own JVM.

➤ Nodes. A node is a logical grouping of WebSphere-managed server
processes that share common configuration and operational control. A
node is generally associated with one physical installation of WebSphere
Application Server.

➤ Cells. A cell is a grouping of nodes into a single administrative domain.

WebSphere Monitoring

201

A typical WebSphere cell contains software components that may be
installed on one node or distributed over multiple nodes for scalability and
reliability purposes. These include the following:

➤ A Web server that provides HTTP services

➤ A database server for storing application data

➤ WebSphere Application Server (WAS)

The following diagram illustrates a single WebSphere node architecture.

WebSphere Monitoring

202

Monitoring

WebSphere Application Server provides a performance monitoring
Infrastructure (PMI) which is a server side monitoring infrastructure that
offers client-side API. Using PMI you can monitor the overall health and
performance of the application server. The performance data is made
available via JMX.

Note: PMI is enabled from the WebSphere administrative console.

It is important to thoroughly understand your application's architecture and
deployment when checking performance throughout the product lifecycle.
This is especially true when monitoring the J2EE application deployed on a
WebSphere server. For example, Web Services counters are relevant only if
your application has them as well.

HP SiteScope WebSphere Solution template is the recommended method for
monitoring WebSphere while using LoadRunner or ALM Performance
Center. The Solution template comes with predefined set of counters for
monitoring.

Alternatively, you can use the SiteScope WebSphere monitor. Using this
monitor requires manual configuration the desired counters. Detailed
instructions are provided in the SiteScope User Guide.

WebSphere Monitoring

203

Most Important Counters

The following list of counters includes the most important counters for
performance and workload characterization. WebSphere exposes many
more; in order to monitor them you can select them while you configure
the SiteScope monitor.

The counters below are classified according to the IBM WebSphere
classification.

Note: Counters may vary depending on what is installed on the application
server.

WebSphere Monitoring

204

Enterprise Java Beans

Counter Key Description

ReadyCount beanModule.readyCount The number of concurrently
ready beans (entity and
session). This counter was
called concurrent active in
Versions 3.5.5+ and 4.0.

LiveCount beanModule.concurrentLives The number of concurrently
live beans.

MethodResponseTime beanModule.avgMethodRt The average response time (in
milliseconds) on the bean
methods (home, remote,
local).

ActiveMethodCount beanModule.activeMethods The number of concurrently
active methods - the number
of methods called at the same
time.

MessageCount beanModule.messageCount The number of messages
delivered to the bean
onMessage method (message
driven beans).

MessageBackoutCount beanModule.messageBackoutCount The number of messages that
failed to be delivered to the
bean onMessage method
(message driven beans).

PooledCount beanModule.poolSize The number of objects in the
pool (entity and stateless).

WaitTime beanModule.avgSrvSessionWaitTime The average time taken to
obtain a ServerSession from
the pool (message driven
bean).

WebSphere Monitoring

205

JDBC Connection Pool

Java Virtual Machine (JVM)

Servlet Session

Counter Key Description

Concurrent waiters connectionPoolModule.concurrentWaiters The number of threads
that are currently waiting
for a connection.

Faults connectionPoolModule.faults The total number of
faults, such as timeouts,
in the connection pool.

Percent used connectionPoolModule.percentUsed The average percent of
the pool that is in use.

Counter Key Description

FreeMemory jvmRuntimeModule.freeMemory The free memory in the JVM run
time.

ProcessCpuUsage jvmRuntimeModule.cpuUsage The CPU Usage (in percent) of the
Java virtual machine.

UsedMemory jvmRuntimeModule.usedMemory The used memory in the JVM run
time.

Counter Key Description

ActiveCount servletSessionsModule.activeSessions The number of concurrently active
sessions. A session is active if the
WebSphere Application Server is
currently processing a request.

LiveCount servletSessionsModule.liveSessions The number of local sessions that
are currently cached in memory.

WebSphere Monitoring

206

Transaction

Thread Pool

Counter Key Description

ActiveCount transactionModule.activeGlobalTrans The number of
concurrently active
global transactions.

LocalActiveCount transactionModule.activeLocalTrans The number of
concurrently active local
transactions.

RolledbackCount transactionModule.globalTransRolledBack The total number of
global transactions
rolled back.

LocalRolledbackCount transactionModule.localTransRolledBack The number of local
transactions rolled back.

GlobalTimeoutCount transactionModule.globalTransTimeout The number of global
transactions timed out.

LocalTimeoutCount transactionModule.localTransTimeout The number of local
transactions timed out.

Counter Key Description

ActiveCount threadPoolModule.activeThreads The number of
concurrently active
threads.

PoolSize threadPoolModule.poolSize The average number
of threads in pool.

PercentMaxed threadPoolModule.percentMaxed The average percent
of the time that all
threads are in use.

DeclaredthreadHungCount threadPoolModule.declaredThreadHung The number of
threads declared
hung.

WebSphere Monitoring

207

Web Application

Counter Key Description

ConcurrentRequests webAppModule.servlets.concurrentRequests The number of requests
that are concurrently
processed.

ServiceTime webAppModule.servlets.responseTime The response time (in
milliseconds) of a servlet
request.

ConcurrentRequests webAppModule.url.concurrentRequests The number of requests
processing concurrently
for a URI associated with
a servlet.

ServiceTime webAppModule.url.responseTime The average service
response time (in
milliseconds) for an URI
associated with a servlet.

WebSphere Monitoring

208

System

Counter Key Description

CPUUsageSinceLast
Measurement

systemModule.cpuUtilization The average system CPU
utilization taken over the time
interval since the last reading.

Notes:

➤ Because the first call is required
to perform initialization, a
value such as 0, which is not
valid, will be returned. All
subsequent calls return the
expected value.

➤ On SMP machines, the value
returned is the utilization
averaged over all CPUs.

FreeMemory systemModule.freeMemory The amount of real free memory
available on the system.

Notes:

➤ Real memory that is not
allocated is only a lower bound
on available real memory, since
many operating systems take
some of the otherwise
unallocated memory and use it
for additional I/O buffering.

➤ The exact amount of buffer
memory which can be freed up
is dependent on both the
platform and the application(s)
running on it.

WebSphere Monitoring

209

Optimization & Tuning

Optimization and tuning are crucial for resolving performance issues. In
most cases application code optimization is required, but sometimes fixing
poorly tuned environment can dramatically improve performance.

This section lists a few possible tuning practices. Some are oriented for
WebSphere Application Server, while others are general for any application
server. There are many other tuning practices that can improve the
performance of your application.

Tuning requires a long and iterative process of testing and analysis. Any
configuration change requires careful validation. Before applying any of the
below practices, validate the relevancy of the configuration to your specific
application by understanding the parameters and the workload generated
against your server.

Tune Pool Sizes

Tuning EJB, JDBC and Thread related pools for their appropriate size
increases the server's capacity and it performs better. To tune these pools you
monitor the relevant counters. (see “Most Important Counters” on
page 203) In particular, look for the amount of concurrent requests, waits,
and LoadRunner transaction response time. The application design needs to
be taken into consideration in order to avoid misconfiguration.

Use the Prepared Statement Cache

The prepared statement cache keeps compiled SQL statements in memory,
thus avoiding a round-trip to the database when the same statement is used
later. The prepared statement cache needs to be sized based on the number
of concurrent requests being processed and the design of the application.

WebSphere Monitoring

210

JVM Tuning

➤ Examine which collection algorithm suits your application better:
concurrent or parallel.

➤ Determine the optimal heap size.

➤ Monitor your application under peak load.

➤ Analyze how often collections take place. Too frequent collections
with shrinking free memory size might require application code
optimization.

➤ Analyze how long full GC takes. If it takes more than 5 seconds, lower
the heap size.

➤ Analyze the average memory footprint. If the heap is 85% free after a
full GC, its size can be lowered.

General

➤ Always serve static content such as HTML pages, images, CSS files, and
JavaScript files using a Web server. This will reduce the CPU time spent on
the application server machine, leaving more time to process other jobs.

➤ Disable functions that are not required. For example, if your application
does not use the Web services addressing (WS-Addressing) support,
disabling this function can improve performance.

➤ Ensure that the transaction log is assigned to a fast disk.

Part VI

Database Resource Monitoring

212

213

12
Database Resource Monitoring -
Introduction

The majority of modern applications are designed to run in multi-tiered
architecture, where the functionality of the application is spread across
multiple layers or tiers, each typically executing on its own server. These
layers usually include, but are not limited to, the following:

➤ User Interface. Bridges the communication between the user and the
application.

➤ Business Layer. Associated with all business rules necessary to run an
application.

➤ Data layer. Addresses the data required for managing business
transactions.

This structure provides certain important benefits such as relatively light
client footprint, deployment on the server side only, separation of
functionality, no direct access to the database, thus lowering total cost of
development and ownership of the application.

With this distributed complexity, each of the layers may cause performance
problems. However, more frequently than not, performance engineers find
the root of the end user dissatisfaction with performance in slow responses
from the database tier.

Databases are always in the process of change - be it data, queries, or some
logic. Therefore, it is imperative to ensure optimal performance of the
database as this is essential to any data-driven application of today.

Database Resource Monitoring - Introduction

214

There are many factors affecting overall application performance that
originated on the database side, such as:

➤ Poor database design during the application development

➤ Poor standards followed in table design

➤ Poor indexing of databases

➤ Poor partitioned data across tables

➤ Poor logic used in queries

➤ Inappropriately stored procedures

➤ Poorly configured storage hardware

➤ Database server machines dedicated to multiple applications

215

13
Oracle Monitoring

This chapter describes best practices for Oracle monitoring.

This chapter includes:

➤ Overview on page 215

➤ Architecture on page 217

➤ Monitoring on page 220

➤ Most Important Oracle Counters on page 222

➤ Optimization and Tuning on page 226

Overview

The Oracle database is a relational database management system (RDBMS)
produced by the Oracle Corporation. |The Oracle database is rich with
features that contribute to its high availability, scalability, performance,
manageability, and security. These features make Oracle an enterprise class
RDBMS and one of the top leaders in this realm.

The Oracle database has comprehensive support for application
development owing to different capabilities and features. Oracle also offers
data access methods for both Java and .NET.

Oracle Monitoring

216

The Oracle database comes in several editions, each targeted to different a
scale of usage:

➤ Standard Edition (SE). Contains base database functionality. Oriented
typically for servers running one to four CPUs. If the number of CPUs
exceeds 4 CPUs, the user must convert to an Enterprise license. SE has no
memory limits, and can utilize clustering with Oracle RAC.

➤ Enterprise Edition (EE). Extends the 'Standard Edition', especially in the
areas of performance and security. Oriented for servers running 4 or more
CPUs. EE has no memory limits, and can utilize clustering using Oracle
RAC software.

➤ Standard Edition One. Introduced with Oracle 10g, has some feature-
restrictions comparing to the 'Standard Edition'. Oriented for use on
systems with one or two CPUs. It has no memory limitations.

➤ Express Edition ('Oracle Database XE'). Introduced in 2005, it is free to
distribute on Windows and Linux platforms. It has a footprint of only 150
MB and is restricted to the use of a single CPU and a maximum of 4 GB of
user data. Although it can be installed on a server with any amount of
memory, it is limited to using 1 GB at most.

➤ Oracle Database Lite. Intended to run on mobile devices. The database,
partially located on the mobile device, can synchronize with a server-
based installation.

It is a known fact that the database tier has a great deal of influence on
application performance. Oracle, as one of the top players in the database
field, is an important environment to get familiar with from a performance
perspective. This chapter helps you understand the Oracle database’s high-
level architecture, learn about its monitoring capabilities. It also lists the
most important counters for monitoring and describes some tuning related
practices.

Oracle Monitoring

217

Architecture

The Oracle database consists of an instance and data storage. The instance is
a set of operating system processes and memory structures that interact with
the storage. The memory structure is called the System Global Area (SGA)
and storage is logically stored as tablespaces and physically as data files.
Tablespaces can contain various types of memory segments. Segments, in
turn, comprise one or more extents. Extents comprise groups of contiguous
data blocks and data blocks form the basic units of data storage. At the
physical level, data files comprise one or more data blocks, where the block
size can vary from one data file to another.

Oracle database management tracks its computer data storage with the help
of information stored in the SYSTEM tablespace. The SYSTEM tablespace
contains the data dictionary - and often (by default) indexes and clusters.
A data dictionary consists of a special collection of tables that contain
information about all the user objects in the database.

Oracle Monitoring

218

The following diagram illustrates Oracle database architecture. It displays
the different memory structures on the instance level as well as the data files
on the storage level.

Each Oracle instance uses a System Global Area (SGA), which is a shared
memory area, to store its data and control information. The instance
allocates itself an SGA when it starts, and deallocates it at shutdown time.
The information in the SGA consists of the following elements, each of
which has a fixed size, established at instance startup:

➤ Buffer cache. Stores the most recently used data blocks. This helps Oracle
reduce I/O and improve performance as new requests for the same data
are fetched from the buffer cache and not from the disk.

➤ Redo log buffer. Stores redo entries, that is, a log of changes made to the
database. This helps Oracle recover the instance in case of system failure.

Oracle Monitoring

219

➤ Shared pool. Stores shared memory structures such as shared SQL areas in
the library cache and internal information in the data dictionary. An
insufficient amount of memory allocated to the shared pool can cause
performance degradation.

➤ Library cache. Stores shared SQL, caching the parse tree and the
execution plan for every unique SQL statement. This reduces the
amount of memory needed and reduces the processing time used for
parsing and execution planning.

➤ Data Dictionary cache. Stores information such as user information,
privileges, table names, datatypes, and so on. The data dictionary
helps Oracle parse SQL statements. Performance bottlenecks in the
data dictionary affect all Oracle users.

The Program Global Area (PGA) is a server-side process serving a user
process running on the client machine. The PGA memory area contains data
and control information for Oracle's server processes. The PGA holds
information regarding the user session, the session variables, sorts, bind
variables, and so on.

Oracle typically relies on a group of processes, running simultaneously in
the background and interacting, to monitor the database and enhance its
performance. The following processes are part of a longer list of processes
running on the instance level:

➤ Database writer processes (DBWR). Responsible for writing data to the
disk.

➤ Log-writer process (LGWR). Responsible for writing data to the log.

➤ System monitor process (SMON). Responsible for instance recovery,
deallocation of temporary segments, and merging free space areas.

➤ Process monitor (PMON). Responsible for cleaning up after failed
processes.

➤ Checkpoint process (CKPT). Responsible for signaling about a checkpoint
and updating relevant files that a checkpoint has occurred.

Oracle Monitoring

220

The Java Pool is relevant only when Java code is running on the instance
level and the Large Pool is optional. In the event that the Large Pool is used,
it comes to ease the overhead on the Shared Pool by storing some of the
information that the Shared Pool stores by default.

Oracle architecture comes to provide the optimal performance possible
throughout reducing I/O operations to their minimum. Performance
monitoring and tuning should validate whether the configuration on your
deployment indeed leverages these capabilities.

Monitoring

Oracle provides several tools and utilities for performance monitoring and
tuning.

➤ Automated Database Diagnostics Monitor (ADDM). Allows an Oracle
database to diagnose itself and determine how potential problems could
be resolved. ADDM runs automatically after each Automatic Workload
Repository (AWR) statistics capture, making the performance diagnostic
data readily available. Since AWR captures occur on a regular basis, this
ensures that the database diagnoses its performance, and detects the root
cause. ADDM considers the following issues as problems:

➤ CPU bottlenecks. Is the system CPU bound by Oracle or some other
application?

➤ Undersized memory structures. Are the Oracle memory structures,
such as the SGA, PGA, and buffer cache, adequately sized?

➤ I/O capacity issues. Is the I/O subsystem performing as expected?

➤ High load SQL statements. Are there any SQL statements that are
consuming excessive system resources?

➤ High load PL/SQL execution and compilation, as well as high load Java
usage.

➤ RAC specific issues. What are the global cache hot blocks and objects;
are there any interconnect latency issues?

Oracle Monitoring

221

➤ Sub-optimal use of Oracle by the application. Are there problems with
poor connection management, excessive parsing, or application level
lock contention?

➤ Database configuration issues. Is there evidence of incorrect sizing of
log files, archiving issues, excessive checkpoints, or sub-optimal
parameter settings?

➤ Concurrency issues. Are there buffer busy problems?

➤ Hot objects and top SQL for various problem areas.

This makes ADDM and AWR reports a very meaningful tool for
identifying performance issues and a starting point for tuning.

➤ Oracle Enterprise Manager. Provides a set of systems management tools
for managing the Oracle environment. It has tools to monitor the Oracle
environment and automate tasks.

➤ SQL Trace. Provides performance information on individual SQL
statements. It generates the following statistics for each statement:

➤ Parse, execute, and fetch counts

➤ CPU and elapsed times

➤ Physical reads and logical reads

➤ Number of rows processed

➤ Misses on the library cache

➤ Username under which each parse occurred

➤ Each commit and rollback

➤ TKProf. A utility used to format SQL Trace output into human readable
format. It is very helpful during the effort of SQL statements tuning. It
can also be used for determining execution plans for SQL statements and
for creating an SQL script that stores the statistics in the database.

Oracle Monitoring

222

Oracle stores information relevant for monitoring in different statistics
tables. These tables are also used by the Oracle SQL statement optimizer. For
example:

➤ Session statistics, V$SESSTAT

➤ System statistics, V$SYSSTAT

➤ V$LATCH, V$BUFFER_POOL_STATISTICS

HP monitoring solutions leverage the data in these tables, allowing
accessing the data while running a performance test. It is recommended to
use the HP SiteScope Oracle Database Solution that has recommended built-
in counters.

Most Important Oracle Counters

Counter Description

sorts (disk) (V$SYSSTAT
1/sid) (absolute)

Number of sort operations that required at least one
disk write.

Sorts that require I/O to disk are quite resource
intensive. You might want to increase the size of the
initialization parameter SORT_AREA_SIZE.

sorts (memory)
(V$SYSSTAT 1/sid)
(absolute)

Number of sort operations that were performed
completely in memory and did not require any disk
writes. You cannot do much better than memory
sorts, except maybe no sorts at all. Sorting is usually
caused by selection criteria specifications within
table join SQL operations.

db block gets (V$SYSSTAT
1/sid) (absolute)

Number of blocks accessed in buffer cache for
INSERT, UPDATE, DELETE, and SELECT FOR
UPDATE. Represent block logical reads (from cache).
The logical reads ALWAYS include the physical
reads. Low number of physical reads is preferable.

Oracle Monitoring

223

consistent gets
(V$SYSSTAT 1/sid)
(absolute)

Number of blocks accessed in buffer cache for
normal queries (SELECTs without for update clause).
Represent block logical reads (from cache). The
logical reads ALWAYS include the physical reads.
Low number of physical reads is preferable.

physical reads (V$SYSSTAT
1/sid) (absolute)

Total number of data blocks read from disk. This
number equals the value of physical reads direct
plus all reads into buffer cache. Low number of
physical reads is preferable. This number must be
compared to logical reads to calculate cache hit
ratio. Logical reads is the sum of database block gets
and consistent gets.

physical writes
(V$SYSSTAT 1/sid)
(absolute)

Total number of data blocks written to disk. This
number equals the value of physical writes direct
plus all writes from buffer cache.

redo writes (V$SYSSTAT
1/sid) (absolute)

Total number of writes by LGWR to the redo log
files. redo blocks written divided by this statistic
equals the number of blocks per write.

redo entries (V$SYSSTAT
1/sid) (absolute)

Redo entries contain the information necessary to
reconstruct, or redo, changes made to the database
by INSERT, UPDATE, DELETE, CREATE, ALTER, or
DROP operations. Redo entries are used for database
recovery, if necessary.

Redo entries -> successful redo writes. Ratio Redo
buffer allocation retries / Redo entries should be
less than 1%.

redo buffer allocation
retries (V$SYSSTAT 1/sid)
(absolute)

Total number of retries necessary to allocate space
in the redo buffer. Retries are needed either because
the redo writer has fallen behind or because an
event such as a log switch is occurring.

Redo buffer allocation retries -> failed redo writes.
Ratio Redo buffer allocation retries / Redo entries
should be less than 1%.

Counter Description

Oracle Monitoring

224

redo log space requests
(V$SYSSTAT 1/sid)
(absolute)

Number of times the active log file is full and Oracle
must wait for disk space to be allocated for the redo
log entries. Such space is created by performing a
log switch.

Log files that are small in relation to the size of the
SGA or the commit rate of the work load can cause
problems. When the log switch occurs, Oracle must
ensure that all committed dirty buffers are written
to disk before switching to a new log file. If you
have a large SGA full of dirty buffers and small redo
log files, a log switch must wait for DBWR to write
dirty buffers to disk before continuing.

Also examine the log file space and log file space
switch wait events in V$SESSION_WAIT

parse count (hard)
(V$SYSSTAT 1/sid)
(absolute)

Total number of parse calls (real parses). A hard
parse is a very expensive operation in terms of
memory use, because it requires Oracle to allocate a
workheap and other memory structures and then
build a parse tree.

Should be minimized. The ratio of Hard Parse to
Total should be less than 20%.

parse count (total)
(V$SYSSTAT 1/sid)
(absolute)

Total number of parse calls (hard and soft). A soft
parse is a check on an object already in the shared
pool, to verify that the permissions on the
underlying object have not changed.

The ratio of Hard Parse to Total should be less than
20%.

parse time cpu
(V$SYSSTAT 1/sid)
(absolute)

Total CPU time used for parsing (hard and soft) in
10s of milliseconds.

parse time elapsed
(V$SYSSTAT 1/sid)
(absolute)

Total elapsed time for parsing, in tens of
milliseconds. Subtract parse time cpu from this
statistic to determine the total waiting time for
parse resources.

Counter Description

Oracle Monitoring

225

In addition to the counters mentioned above, it is recommended to monitor
relevant tablespace usage. In the case of less than 2% free space in any of
them, the tablespace size should be increased.

CPU used by this session
(V$SYSSTAT 1/sid)
(absolute)

Amount of CPU time (in tens of milliseconds) used
by a session from the time a user call starts until it
ends. If a user call completes within 10
milliseconds, the start- and end-user call times are
the same for purposes of this statistic, and 0
milliseconds are added.

bytes sent via SQL*Net to
client (V$SYSSTAT 1/sid)
(absolute)

Total number of bytes sent to the client from the
foreground processes. Gives a general indication
regarding the amount of data transferred over the
net.

bytes received via
SQL*Net from client
(V$SYSSTAT 1/sid)
(absolute)

Total number of bytes received from the client over
Oracle Net Services. Gives a general indication
regarding the amount of data transferred over the
net.

logons current
(V$SYSSTAT 1/sid)
(absolute)

Total number of current logons. Useful only in
V$SYSSTAT.

Counter Description

Oracle Monitoring

226

Optimization and Tuning

When performance issues are encountered, optimization and tuning are
required to alleviate the issues. In most cases, application-code optimization
is required, but sometimes fixing poorly tuned environment can
dramatically improve performance.

This section lists a few possible tuning practices. Some are oriented for the
Oracle database, while others are general for any database server, and the
rest for any server. There are many other tuning practices that might be
more effective for your application.

Tuning requires a long and iterative process of testing and analysis. Any
configuration change requires careful validation. Before applying any of the
practices mentioned below, you should first validate the relevancy of the
configuration to your specific application by understanding the parameters
and workload generated against your server.

➤ Make sure Oracle Cost Based Optimizer is running.

➤ Gather optimizer statistics on a regular basis.

➤ Tune SQL statements:

➤ Identify problematic SQL statements (that is, long performing SQL
statements)

➤ Review Oracle optimizer statistics (make sure the cost-based optimizer
is running and statistics are up to date)

➤ Review execution plan

➤ Restructure SQL statement (if necessary)

➤ Restructure index (if necessary)

➤ Maintain execution plans over time

➤ Use bind variables in your SQL statements. This will reduce the amount of
cursors stored in the shared pool.

➤ Use indexes carefully. Not every column should be indexed, only those
that are accessed more using queries.

➤ Assist the SQL optimizer by using optimization hints whenever necessary.
This should be done after analyzing the SQL statement performance.

Oracle Monitoring

227

➤ Tune the memory structure size. The size of the Shared Pool, Buffer
Cache, and other memory structures is critical for the performance of the
database.

➤ Run a typical workload against the application

➤ Monitor waits, buffer hit ratio, system swapping and paging, and so on

➤ The following list includes the most important parameters, among
others, that should be tuned:

Parameter Description

db_cache_size Determines the size of the buffer cache in
the SGA.

db_keep_cache_size This is where the objects are always
present when they are loaded. The
objects that qualify for this cache are
those which are very frequently accessed
and which have to be retained in
memory, for example, small frequently
used lookup tables. This cache is a subset
of default cache defined by parameter
DB_CACHE_SIZE. For any database, the
DB_CACHE_SIZE must be set.

shared_pool_size Determines the size of the shared pool.

pga_aggregate_target Specifies the target aggregate PGA
memory available to all server processes
attached to the instance.

log_buffer Determines the size of the redo log
buffer.

query_rewrite_enabled Determines whether Oracle rewrites an
SQL statement before it is executed.

cursor_sharing Determines what kind of SQL statements
can share the same cursors.

Oracle Monitoring

228

➤ To avoid I/O operations, you should aim for a high buffer-cache-hit ratio.
This should be higher than 80 in an OLTP environment. 99 is the best
value.

➤ The Dictionary cache hit ratio should be around 90%. Entries for
dc_table_grants, d_user_grants, and dc_users should be under 5% each
in the MISS RATE % column.

➤ Monitor Sorts refer to sorts in memory vs. sorts in disk. The ratio between
disk and memory should be less than 10.

➤ Reduce database contention to a minimum. Study the amount of locks
and latches and eliminate whenever possible.

➤ Use the HP Oracle Database machine for complex large-scale data
warehousing workloads.

db_file_multiblock_read_count One of the parameters used to minimize
I/O during full table scans. Specifies the
maximum number of blocks read in one
I/O operation during a sequential scan.

hash_multiblock_io_count Specifies how many sequential blocks a
hash join reads and writes in one I/O.

Parameter Description

229

14
MS SQL Server Monitoring

This chapter describes best practices for Microsoft SQL Server monitoring.

This chapter includes:

➤ Overview on page 230

➤ Architecture on page 231

➤ Related Windows Counters on page 232

➤ Most Important SQL Server Counters on page 235

MS SQL Server Monitoring

230

Overview

Microsoft SQL Server is one of the most widely used database systems. It has
grown from handling small departmental tasks to serving up the largest
databases on the planet. No longer a simple "database", Microsoft SQL Server
is now a complete data architecture solution capable of handling the data
storage and manipulation needs of any organization. Organizations can use
this solution to store and manage many types of data, including XML,
email, time/calendar, file, document, geospatial, and so on, while providing
a rich set of services to interact with the data: search, query, data analysis,
reporting, data integration, and robust synchronization. Developers can
write applications that access SQL Server from a server to a desktop or
mobile device using a variety of technologies, whether Microsoft based or
third party vendors.

SQL Server is available in many editions to help meet the needs of any
organization. From Express and Compact to Workgroup to Standard and
Enterprise, each edition delivers sets of features targeted to specific needs
while maintaining the same level of functionality for developers and end
users.

It used to be said that SQL Server works great right out of the box and
performance is never an issue. However, the advent of cheaper hardware
and the explosion of data is pushing more users against the limits of the
out-of-the-box performance of SQL Server. It is the job of the performance
engineer to find these problems by using various monitoring techniques. In
The SQL Server world, the Enterprise and Standard editions are of most
interest.

MS SQL Server Monitoring

231

Architecture

The performance behavior of almost every component of SQL Server has
been exposed via specific counters which are added to regular Windows
objects and counters once SQL Server is installed. However, you will usually
start from monitoring Windows system resources such as CPU utilization,
disk activity, memory management, and network bandwith (see Chapter 3,
“Windows Monitoring”).

The reason to monitor these resource domains is that they represent the
major hardware components of a server, and each component is involved in
servicing user requests. The timely performance of these components is
directly related to overall perceived application performance. Therefore, a
problem with one or more of these four areas is likely to result in user
complaints. SQL Server relies heavily on CPU performance, available
memory, and disk throughput, whereas the client performance depends
heavily on network performance. Any processor which is consistently busy
for 90 percent of the time or more will result in a work requests queueing,
and performance will likely suffer.

MS SQL Server Monitoring

232

In addition, SQL Server can be very demanding on memory, and
performance can really suffer if physical memory becomes exhausted, when
typically Windows is forced to use the page file. Disk is almost certainly the
slowest component because of its mechanical nature. SQL Server’s need to
retrieve data from disk often means any delays at the disk I/O will impact
overall performance. Finally, your database could be performing perfectly
well, but if there is latency in the network or if packet loss is high, forcing
retransmissions, your server’s brilliant speed will be non-existent in the eyes
of the end user.

Related Windows Counters

When monitoring system resources of a machine with SQL Server installed,
there are some most important counters to be tracked, including additional
recommendations:

➤ CPU. Adding new physical processors is not an easy task, hence it is
important to make sure that all CPU units are equally engaged under
load. Watch the following counters:

Note: For complete details about these counters, see “Processor - Most
Important Counters” on page 48.

➤ % Processor Time. Measures individual processor time to ensure load
balancing between CPUs.

➤ Processor Queue Length. If this counter regularly exceeds the
recommended maximum, but the CPU utilization is not
correspondingly as high (which is typical), then consider reducing the
SQL Server maximum worker threads configuration setting. Doing this
forces thread pooling to start or to take greater advantage of it.

MS SQL Server Monitoring

233

➤ Context Switches/sec. There are two ways to lower this value:

➤ Affinity mask. Under heavy load, specifying which processor runs
which thread improves performance by reducing the number of
times the processor cache needs to be reloaded. Sometimes
excluding some processors from SQL Server’s reach helps improve
handling operating system requests.

➤ Lightweight pooling. When using this SQL Server option, the
database turns to a fiber-based model rather than a default thread-
based model. Fibers are scheduled by the database server instead of
the operating system, so there is less CPU load.

➤ Memory. SQL Server manages its memory dynamically, requesting or
releasing it from the operating system. Make sure that appropriate
dynamic options are selected and that the maximum memory available
for the database is close to physical highest level.

Watch the following counters:

Note: For complete details about these counters, see “Memory - Most
Important Counters” on page 55.

➤ Available Bytes

➤ Pages/sec. Indicates the number of times disk I/O and/or memory
outside SQL Server’s allocated range is accessed. This value should be
ideally be close to 0 with possible spikes for backups and restore.

➤ Page Faults/sec

MS SQL Server Monitoring

234

➤ Disk. Database probably has the most I/O intensive operation of all
application tiers, so monitoring disk activity is critical.

Watch the following counters:

Note: For complete details about these counters, see “I/O - Most
Important Counters” on page 66.

➤ % Disk Time. The percentage of time spent on read/write functions.
You monitor physical disk counters for single disk volume and logical
disk counters for volumes spanning multiple disks. If this value
exceeds 55%, this is a clear indication of I/O bottleneck. In this case,
you may also want to drill down to %Disk Read Time and %Disk Write
Time counters. The sum of these is the value for this counter. Possible
tuning may include adding more and faster disks, getting more cache
to the disk controller, defragmentation, and reconfiguration of RAID
devices.

➤ Avg. Disk Queue. Shows actual queue length for a specific disk,
although this counter may be sort of arbitrary in the age of storage
area networks (SAN). You monitor physical disk counters for single
disk volume and logical disk counters for volumes spanning multiple
disks. Do not add the _Total counter, as this can generalize the result
and mask problems which could lead to you making false assumptions
about disk performance.

Tip: It is a very good practice to separate SQL Server data and log files on
different disks as they have different I/O patterns. It is also recommended
to separate system and user databases onto different disks.

MS SQL Server Monitoring

235

➤ Network. Some applications are designed to be very "chatty" when there
is a lot of data is sent over the network. Watch the following counter:

Note: For complete details , see “Network - Most Important Counters” on
page 73.

➤ Bytes Total/sec. Along with more specific Bytes Received/sec an Bytes
Sent/sec counters, shows actual network card throughput. Possible
tuning may include adding more and faster network cards, using full
duplex option of the card. Reconfigure database settings to remove all
unnecessary protocols, leaving TCP/IP as the primary one on both
server and client.

Most Important SQL Server Counters

SQL Server performance architecture follows Microsoft’s approach
implemented in the Windows operating system and .NET framework. As
such it is organized around objects, instances, and counters (see details
about Windows architecture on page 46). An object is any SQL Server
resource, such as an SQL Server lock or Windows XP process. Each object
contains one or more counters that determine various aspects of the objects
to monitor. Some objects have several instances if multiple resources of a
given type exist on the computer. Counters for the default instance appear
in the format SQLServer:<object name>. Counters for named instances
appear in the format MSSQL$<instance name>:<counter name> or
SQLAgent$<instance name>:<counter name>.

There are quite a few SQL performance objects including:

➤ 20 objects for the SQLServer engine itself

➤ Three objects for Service Broker

➤ Four objects for SQLAgent

➤ Five objects for SQL Replication

MS SQL Server Monitoring

236

The following table lists database engine counters:

Counter Description

C
PU

SQL Compilations/sec Indicates the number of times compilations
occurred per second

SQL Re-Compilations/sec Indicates the number of times re-compilations
occurred per second

Batch Requests/Sec Indicates the number of Transact-SQL command
batches received per second

M
em

o
ry

Total Pages Indicates the number of pages in the buffer pool

Target Pages Indicates the ideal number of pages in the buffer
pool

Total Server Memory
(KB)

Indicates the amount of memory the KB SQL Server
is currently using

Target Server Memory
(KB)

Indicates the amount of memory the KB SQL Server
needs to operate efficiently.

Buffer cache hit ratio Indicates the percentage of pages that were found in
the memory

Page Life Expectancy Indicates the number of seconds a page will stay in
the buffer pool without reference

Stolen Pages Indicates the number of pages used for
miscellaneous server purposes (including procedure
cache)

Cache hit ratio Indicates the ratio between cache hits and lookups

Memory Grants Pending Indicates the total number of processes waiting for a
workspace memory grant

Checkpoint pages/sec Indicates the number of pages flushed to disk per
second by a checkpoint or other operation that
requires all dirty pages to be flushed

Lazy writes/sec Indicates the number of buffers written per second
by the buffer manager's lazy writer

MS SQL Server Monitoring

237

CPU-Related Counters
If sqlserver.exe utilizes most of CPU capacity, this may point to issues inside
SQL Server. In addition to Windows counters explained in “Related
Windows Counters” on page 232, these issues can be revealed using the
following counters:

SQL Compilations/sec

D
is

k

Full Scans/sec Indicates the number of unrestricted full scans per
second

Page Splits/sec Indicates the number of page splits per second that
occur as a result of overflowing index pages

Temp Tables
Creation Rate

Indicates the number of temporary tables/table
variables created per second

Lo
ck

s Average Wait Time
(ms)

Indicates the average amount of wait time (in
milliseconds) for each lock request that resulted in a
wait

Official Name SQLServer:SQL Statistics\SQL Compilations/sec

Counter Type Interval difference counter (rate/second)

Description The number of times per second that SQL Server
compilations have occurred.

Usage Notes A common cause of excessive CPU utilization, which
could be caused by schema problems or low memory
conditions is query execution plan compilation and
re-compilation. When compiled, plans should remain
in memory — unless there is excessive memory
pressure that may cause plans to be dropped from the
cache.

Performance Under steady conditions, you should expect to see at
least 90 percent plan re-use.

Threshold Warning when over 10%

Related Measurements ➤ SQL Re-Compilations/sec

Counter Description

MS SQL Server Monitoring

238

SQL Re-Compilations/sec

Batch Requests/sec

Official Name SQLServer:SQL Statistics\SQL Re-Compilations/sec

Counter Type Interval difference counter (rate/second)

Description The number of times per second that SQL Server re-
compilations have occurred.

Usage Notes If only ad hoc T-SQL is used or queries are not
parameterized properly, SQL Server may not re-use any
plans, or cause plan compilation for every query.

Performance A recompile can cause deadlocks and compile locks
that are not compatible with any locking type.

Threshold Warning when over 10% of SQL Compilations/sec

Related Measurements ➤ SQL Compilations/sec

Official Name SQLServer:SQL Statistics\Batch Requests/sec

Counter Type Interval difference counter (rate/second)

Description The number of Transact-SQL command batches
received per second.

Usage Notes Shows how busy SQL Server’s CPUs are.

Performance If this counter goes above threshold this could mean
that if you are not already experiencing a CPU
bottleneck, you may very well experience one soon. Of
course, this is a relative number, depending on
hardware capabilities.

Threshold Warning when over 1000

Related Measurements N/A

MS SQL Server Monitoring

239

Note: Some performance engineers monitor SQLServer:Databases\
Transaction/Sec: _Total counter which measures activities taken inside
transactions only - not all the activities like the Batch Requests/sec counter
does.

Memory-Related Counters
SQL Server performance and stability are entirely dependent on sufficient
available memory. A memory shortage often results in Windows serving the
virtual address space from the paging file, which usually has an immediate
and very apparent impact on performance.

In addition to the Windows counters explained in “Related Windows
Counters” on page 232, use the following counters to monitor memory-
related issues:

Total Pages

Official Name SQLServer:Buffer Manager\Total Pages

Counter Type Instantaneous (sampled once during each
measurement period).

Description The number of pages in the buffer pool (includes
database, free, and stolen pages).

Usage Notes Shows the total number of pages acquired by SQL
Server from Windows operating system.

Performance Indicates other processes running on the machine,
taking physical memory from SQL Server.

Threshold See tip on page 240

Related Measurements ➤ Target Pages

MS SQL Server Monitoring

240

Target Pages

Tip: If the Target Pages and Total Pages values are the same, the SQL Server
has sufficient memory. If the Target is greater than the Total, it is usually due
to another Windows process which is preventing the SQL Server from
acquiring as much memory as it would like in order to operate.

Total Server Memory (KB)

Official Name SQLServer:Buffer Manager\Target Pages

Counter Type Instantaneous (sampled once during each
measurement period).

Description The ideal number of pages in the buffer pool.

Usage Notes Shows the total number of pages required by SQL
Server to process requests.

Performance N/A

Threshold See tip below

Related Measurements ➤ Total Pages

Official Name SQLServer:Memory Manager\Total Server Memory
(KB)

Counter Type Instantaneous (sampled once during each
measurement period).

Description The amount of memory in Kilobytes that SQL Server is
currently using.

Usage Notes Shows the total number of physical memory acquired
by SQL Server from the Windows operating system.

Performance Should be less than total amount of memory on the
machine.

Threshold See tip on page 241

Related Measurements ➤ Target Server Memory (KB)

MS SQL Server Monitoring

241

Target Server Memory (KB)

Tip: If the value of Total Server Memory (KB) is less than the value of Target
Server Memory (KB), then the SQL Server does not have enough memory to
run efficiently. Consider adding more physical memory.

Official Name SQLServer:Memory Manager\Target Server Memory
(KB)

Counter Type Instantaneous (sampled once during each
measurement period).

Description How much memory SQL Server would like to have in
order to operate efficiently

Usage Notes Shows the total amount of memory required by SQL
Server to process requests.

Performance

Threshold See tip below

Related Measurements ➤ Total Server Memory (KB)

MS SQL Server Monitoring

242

Buffer cache hit ratio

Page Life Expectancy

Official Name SQLServer:Buffer Manager\Buffer cache hit ratio

Counter Type Interval (% Busy)

Description The percentage of pages that were found in the
memory.

Usage Notes The ratio is the total number of cache hits divided by
the total number of cache lookups over the last few
thousand page accesses.

Performance If data pages are not found in the buffer, SQL Server
must read them into the buffer from disk. This is
usually a slow process because of disk latency and seek
times.

Hence, if after configuring the buffer pool to at least
98% of this counter value, the performance is still
poor, consider adding physical memory.

Threshold The higher the value the better. Preferred around the
90% mark.

Related Measurements N/A

Official Name SQLServer:Buffer Manager\Page Life Expectancy

Counter Type Average

Description The number of seconds a page will stay in the buffer
pool without references.

Usage Notes The longer the page life expectancy, the healthier the
server looks from a memory perspective.

Performance Clear indicator of low memory on the server.

Threshold Problematic if less than 300 seconds.

Related Measurements N/A

MS SQL Server Monitoring

243

Stolen Pages

Cache Hit Ratio

Official Name SQLServer:Buffer Manager\Stolen Pages

Counter Type Instantaneous (sampled once during each
measurement period).

Description The number of pages used for miscellaneous server
purposes (including procedure cache).

Usage Notes Stolen pages are those pages in memory which are
stolen by another process on the SQL Server machine.

Performance High quantities of stolen pages are a clear indicatorof
low memory on the server.

Threshold N/A

Related Measurements ➤ Total Pages

Official Name SQLServer:Plan Cache\Cache Hit Ratio

Counter Type Interval (% Busy)

Description Ratio between cache hits and lookups.

Usage Notes Percentage of time that the record was found in cache.

Note: In SQL Server 2000 this counter was found
under Cache Manager object.

Performance This counter is a good indicator of caching mechanism
in SQL Server.

Threshold Should be around 99%. A value of 90% should
generate a warning.

Related Measurements N/A

MS SQL Server Monitoring

244

Memory Grants Pending

Checkpoint Pages/sec

Official Name SQLServer:Memory Manager\Memory Grants Pending

Counter Type Instantaneous (sampled once during each
measurement period).

Description Indicates the total number of processes waiting for a
workspace memory grant.

Usage Notes This is effectively a queue of processes awaiting a
memory grant.

Performance If there are any processes queuing waiting for memory,
you should expect degraded performance. The ideal
situation for a healthy server is no outstanding
memory grants.

Threshold Problematic if not 0.

Related Measurements N/A

Official Name SQLServer:Buffer Manager\Checkpoint pages/sec

Counter Type Interval difference counter (rate/second)

Description Indicates the number of pages flushed to disk per
second by a checkpoint or other operation that require
all dirty pages to be flushed.

Usage Notes The checkpoint operation is performed by SQL Server
and requires all dirty pages to be written to disk.

Performance The checkpoint process is expensive in terms of disk
I/O. When a server is running low on memory, the
checkpoint process will occur more frequently than
usual as SQL Server attempts to create space in the
buffer pool.

Clear indicatorof low memory on the server.

Threshold Problematic if consistent high values are observed over
period of time.

Related Measurements N/A

MS SQL Server Monitoring

245

Lazy Writes/sec

Disk-related Counters
Moving data onto or off disk is almost always the most time-consuming and
expensive operation SQL Server needs to undertake. SQL Server uses built-in
mechanisms to avoid the user having to wait while data is being transferred
between memory and disk because any slight delay in this process is likely
to impact perceived server performance. There are essentially two
mechanisms in SQL Server: a buffer cache with pre-loaded data and a plan
cache that is loaded with optimal plans detailing the most efficient way to
retrieve data. If there are disk performance problems, it may lead you to
review the design and implementation of the storage subsystem.

Official Name SQLServer:Buffer Manager\Lazy Writes/sec

Counter Type Interval difference counter (rate/second)

Description Indicates the number of buffers written per second by
the buffer manager's lazy writer.

Usage Notes The lazy writer is a system process that flushes out
batches of dirty, aged buffers and makes them
available to user processes. This counter records the
number of times per second that SQL Server relocates
dirty pages from the buffer pool (in memory) to disk.

Performance Disk I/O is expensive and you should attempt to
provide SQL Server with enough space for the buffer
pool that lazy writes are as close to zero as possible.

A clear indicatorof low memory on the server.

Threshold Problematic if not 0. If more than 20, you need to
increase buffer pool.

Related Measurements N/A

MS SQL Server Monitoring

246

In addition to the Windows counters explained in “Related Windows
Counters” on page 232, use the following counters to monitor disk-related
issues:

Full Scans/sec

Official Name SQLServer:Access Methods\Full Scans/sec

Counter Type Interval difference counter (rate/second)

Description Indicates the number of unrestricted full scans per
second.

Usage Notes While table scans are a fact of life, and sometimes
faster than index seeks, generally it is better to have
fewer table scans than more. This counter is for an
entire server, not just a single database.

Performance Periodic table scans may be attributed to SQL Server
internal jobs. However, random spikes in this counter’s
values indicate poor or missing indexes.

Threshold Warning when 1. Error when 2 or more.

Related Measurements N/A

MS SQL Server Monitoring

247

Page Splits/sec

Tip: SQL Server enables autogrowth by default and performs data- and log-
file increase when needed. While this may be convenient, it is
recommended to manually adjust the setting on the enterprise systems.

Official Name SQLServer:Access Methods\Page Splits/sec

Counter Type Interval difference counter (rate/second)

Description Indicates the number of page splits per second that
occur as the result of overflowing index pages.

Usage Notes Page splits are an I/O intensive operation that occur
when there is insufficient space in an 8 KB data page
to allow an insert or update operation to complete.
Under this circumstance, a new page is added and the
original data is shared between the two pages before
the insert or update takes place.

Performance While occasional page splitting is normal, excess page
splitting can cause excessive disk I/O and contribute to
slow performance. These can be avoided through
proper index maintenance and good fill factor
selection.

Threshold Warning when over 100.

Related Measurements N/A

MS SQL Server Monitoring

248

Temp Tables Creation Rate

Tip: Size tempdb sufficiently to ensure no autogrowth will be required.

Official Name SQLServer:General Statistics\Temp Tables Creation
Rate

Counter Type Interval difference counter (rate/second)

Description Indicates the number of temporary tables/table
variables created per second.

Usage Notes SQL servers use tempdb as a holding area during join,
sort, and calculation operations as well as by the
version store. Under workloads that make extensive
use of tempdb, its responsiveness can directly affect
the user experience.

Performance Tempdb is a shared global resource. This means that if
one database or application is heavily dependent on it,
other databases within the same instance may suffer
performance problems which are outside their control.

Threshold N/A

Related Measurements N/A

MS SQL Server Monitoring

249

Lock-related Counters
Locks are necessary for concurrency. SQL Server handles locks automatically.
While locks represent the internal behavior of specific database or the whole
SQL Server, and are not related to operating system resources, they have
significant impact on response time. Locks are one of the main reasons for
long running transactions causing end-user complaints.

In most of the cases, SQL Server resolves locks automatically. However, there
are two problematic types of locks - blocking lock and deadlock that need
to be taken care of if they occur consistently:

➤ Blocking lock. Where one process is blocked from locking a resource
because another process has already locked it.

➤ Deadlock. When two processes each hold a lock that the other needs to
continue. If left alone they would wait on each other indefinitely.

Average Wait Time (ms)

Official Name SQL Server:Locks\Average Wait Time (ms)

Counter Type Average

Description Indicates the average amount of wait time (in
milliseconds) for each lock request that resulted in a
wait.

Usage Notes Shows if object locking contributes to slow response
times. You can use this counter to measure the average
wait time of a variety of locks, including database,
extent, key, page, RID, and table.

Performance Watch this counter over time for each of the lock
types, finding average values for each type of lock.
Then use these average values as a point of reference.

Threshold N/A

Related Measurements N/A

MS SQL Server Monitoring

250

Tip: If you can identify one or more types of locks causing transaction
delays, then you should investigate further to see if you can identify what
specific transactions are causing the locking. Use HP Diagnostics software to
catch problematic statements.

Part VII

Virtualization Technologies

252

253

15
Microsoft Virtualization Monitoring

This chapter describes best practices for Microsoft Virtualization server
Hyper-V monitoring.

This chapter includes:

➤ Overview on page 253

➤ Architecture on page 255

➤ Monitoring Tools on page 263

➤ Related Windows Counters on page 268

➤ Most Important Counters on page 270

➤ Optimization and Tuning on page 301

Overview

Microsoft, a well known platform, offers a comprehensive set of
virtualization products that range from the data center to the desktop and
allows assets - both physical and virtual - to be easily managed from a single
platform.

At the center of Microsoft's vision and strategy for virtualization is Microsoft
Hyper-V, the new hardware-assisted virtualization technology that is
included as part of Microsoft Windows Server 2008 x 64 editions.

Hyper-V is a hypervisor-based virtualization platform which is a thin layer
of software running directly on the hardware. It enables multiple operating
systems to run concurrently within partitions, and ensures strong isolation
between the partitions by enforcing access policies for critical system
resources such as memory and processors.

Microsoft Virtualization Monitoring

254

With Hyper-V, Microsoft provides a hypervisor based virtualization platform
that enables flexibility through reducing costs, increasing hardware
utilization, optimizing infrastructure, and improving server availability.

Hyper-V enables virtual machines to take advantage of enhanced security
including hardware-level security features.

Hyper-V is both a robust and highly scalable technology, and it enables
virtualized workloads that previously needed to be run on physical
hardware to achieve the level of performance needed by businesses.

Among Hyper-V features you can find the following:

➤ Live Backup with Volume Shadow Copy Service. Any virtual machine
running a Volume Shadow copy Service(VSS) - aware of guest Windows
operating system (Windows Server 2003 and later) can be backed up in a
live state with minimum downtime.

➤ High Availability Using Failover Clustering. Hyper-V supports Windows
Failover Clustering to implement a high-availability strategy that can
manage both unplanned and planned downtime

➤ Quick Migration. Hyper-V supports Quick Migration which is the ability
to move a virtual machine across cluster nodes without data loss and with
minimal service interruption. To accomplish this, a virtual machine is
placed in saved state, active memory and processor state are captured to
disk, and storage resources ownership is transferred to another node in
the cluster. On the new node, the virtual machine’s active memory and
processor state are reloaded and processing is resumed.

➤ Integration Services. Hyper-V Integration Services (IS) provides support
for five unique components that require a secure interface between a
parent and child partition. These functions are:

➤ Time synchronization

➤ Heartbeat

➤ Shutdown

➤ Key/value pair exchange

➤ Volume Shadow Copy Service (VSS)

Microsoft Virtualization Monitoring

255

➤ Virtual Machine Import and Export. The import and export features in
Hyper-V are meant to move and copy virtual machines between Hyper-V
servers.

➤ Virtual Hard Disk Management. Hyper-V provides several options
(Compact, Convert, Expand, Merge, & Reconnect) to manage virtual hard
disks (VHD), accessible through the Hyper-V Manager console.

➤ Virtual Machine Snapshots. Hyper-V allows you to capture a snapshot of
the configuration and state of a virtual machine at any particular point in
time, and provides you with the ability to reload any existing snapshot
within a matter of seconds.

➤ Virtual Machine Connection. Virtual Machine Connection (VMC) is a
remote administration tool provided with Hyper-V. VMC uses the
Windows Remote Desktop Protocol to allow remote access to the guest
operating system running on a virtual machine.

Architecture

Microsoft Hyper-V comes in two forms: as a role in Windows Server 2008 or
as a stand-alone product called Microsoft Hyper-V Server 2008. Both types
have a very similar architecture.

Hyper-V consists of a set of components that include a hypervisor, called the
Windows hypervisor (Ring -1), kernel mode components (Ring 0), and user
mode components (Ring 3).

There are 3 processor rings that define the privilege level of the instructions,
where ring 0 having the highest privilege and Ring 3 having the lowest
privilege.

➤ Ring 0: Where the kernel of an operating system runs.

➤ Ring 3: Where the user applications run.

➤ Ring -1: Where the hardware virtualization extension runs.

This ring allows the Windows hypervisor to run in its own context and at
a privilege level higher than the Windows kernel, while allowing any
Guest operating system kernel to remain running in processor Ring 0 and
user applications to continue running in processor Ring 3.

Microsoft Virtualization Monitoring

256

When running on top of windows hypervisor there is one parent partition
and one or more child partitions.

➤ The parent partition is the controlling partition in which the
virtualization stack runs. The parent partition is also the partition that
owns the hardware devices and manages resources for the child
partitions.

➤ The Child partition is any partition that has been created by the parent
partition. Guest operating systems and their applications run in the child
partitions.

Partitions communicate with the hypervisor layer by using hypercalls,
which are APIs that partition operating systems used to leverage the
optimizations that the hypervisor provides.

Following are the main components of the Hyper-V architecture related to
each partition and layers: Hypervisor (Ring -1), user-mode (Ring 3), kernel-
mode (Ring 0):

Microsoft Virtualization Monitoring

257

Hypervisor
The windows hypervisor is a software interface that sits between the
physical hardware and one or more operating systems. The Windows
hypervisor controls access to a core hardware and defines isolated execution
environments called partitions.

The primary tasks of the Windows hypervisor are to guarantee isolation
between the partitions, enforce policy restrictions for hardware access and
monitor the partitions.

Parent Partition
The parent partition is the first partition created on the system when the
hypervisor is started. The parent partition is created for the Windows Server
2008 operating system and it serves the following purposes:

➤ The parent partition is used for creating and managing child partitions
including the WMI provider that provides an interface for the remote
administration.

➤ The parent partition manages and assigns hardware devices, except for
processor scheduling and physical memory allocation, which are handled
by the hypervisor.

➤ The hardware resources of the parent partition are shared or allocated for
use by the child partitions.

➤ The parent partition handles power management, plug and play
operations, and logging of any hardware failure events when they occur.

The virtualization components hosted in the parent partition are referred to
collectively as virtualization stack. The virtualization stack runs in the
parent partition and has direct access to the hardware of the underlying
host computer. Besides the virtualization stack components, there are some
more components detailed below.

The Virtualization stack consists of the following components:

➤ Virtual Machine Management Service - VMMS

➤ Virtual Machine Worker Processes

➤ Virtual Devices

Microsoft Virtualization Monitoring

258

➤ Virtualization Infrastructure Driver (VID)

➤ Windows Hypervisor Interface Library

Other components of the parent partition include the following:

➤ Virtualization Service Providers (VSP)

➤ Virtual Machine Bus (VMBus)

Following is a detailed description of the parent partition main component:

Virtual Machine Management Service - VMMS

The Virtual Machine Management Service (VMMS) is a collection of
components that work together to mange virtual machines.

The VMMS is implemented in both user mode and kernel mode as a system
service (VMMS.exe) and is responsible for managing the state of the virtual
machines in child partitions.

This includes managing stopped or offline virtual machines, handling the
creation of snapshots and managing the addition or removal of devices.
When a virtual machine in a child partition is started, the VMMS spawns a
new Virtual Machine worker process, which is used to perform the
management tasks for that virtual machine.

The VMMS also controls which operations can be performed on a virtual
machine in a given state. The VMMS manages the following virtual
machines states: Starting, Active, Not Active, Taking / Applying / Deleting
Snapshot, Merging Disk.

Online virtual machine operations, such as Pause, Save and Power Off - are
not managed by the VMMS. Instead, they are managed by the Virtual
Machine worker process that the VMMS spins up for the virtual machine
being managed.

Microsoft Virtualization Monitoring

259

Virtual Machine Worker Processes

A Virtual Machine worker process (vmwp.exe) is a user mode process that
provides virtual machine management services from the Windows server
2008 instance in the parent partition to the guest operating system in the
child partitions.

The VMMS spawns a separate VM worker process for each running virtual
machine to isolate one virtual machine from another. That way, if one VM
worker process fails, only the virtual machine associated with that VM
worker process is affected.

The VM worker process manages the following aspects of its associated
virtual machine:

➤ Creation, configuration and running of virtual machine

➤ Pausing and resuming the virtual machine

➤ Saving and restoring the virtual machine

➤ Taking snapshots of the virtual machine

In addition, The VM worker processes contains the Virtual
motherboard(VMB) that exposes guest memory, IRQ generation, memory-
mapped and port-mapped I/O to the virtual machine as separate devices.
The VMB is also responsible for the management of virtual devices.

Virtual Devices

Virtual Devices (VDevs) are software modules that provide device
configuration and control for child partitions.

VDevs come in two types:

➤ Core VDevs:

These virtual devices model existing hardware devices and are available to
each virtual machine. They are typically used in a situation where
compatibility is important so that existing software such as the BIOS or
device drivers can work properly without needing modifications. Core
VDevs can be either of the following:

➤ Emulated Devices - These virtual devices emulate a specific hardware
device. For e.g: BIOS, DMA, PCI Bus, keyboard/Mouse controller etc.

Microsoft Virtualization Monitoring

260

➤ Synthetic Devices - These virtual devices do not model specific
hardware devices. They are available only to guest operating systems
that support Integration Services.

➤ Plug-in Vdevs:

These virtual devices do not model existing hardware devices and are used
to instantiate, configure and manage Virtualization Service Providers
running in the parent partition, which is the partition that controls the
hardware.

Plug-in VDevs enable direct communication between the parent and child
partitions through the VMBus.

Virtualization Infrastructure Driver (VID)

The Virtualization Infrastructure Driver (Vid.sys) is the kernel-mode
component of the virtualization stack that provides partition management
services, virtual processor management services and memory management
services for all child partitions. The Vid.sys also enables user-mode
components of the virtualization stack to communicate with the hypervisor.

Windows Hypervisor Interface Library

The Windows Hypervisor Interface Library (WinHv.sys) is a kernel-mode
dynamic link library that loads within the Windows Server 2008 instance
running in the parent partition and within the guest operating system in
any child partition where the guest is Hyper-V aware.

WinHv.sys abstracts the hypercall implementation details and enables the
operating system's drivers to call the hypervisor by using standard Windows
calling conventions.

Virtualization Service Providers (VSP)

Virtual Service Providers (VSPs) are hosted in the parent partition and
provide a way of publishing device services to child partitions by providing
I/O related resources to Virtualization Service Clients (VSCs) running in
child partitions. VSPs are the server endpoint and VSCs are the client
endpoint for client/server communications for device functionality. All the
communication between VSPs and VSCs take place over the VMBus.

Microsoft Virtualization Monitoring

261

Virtual Machine Bus (VMBus)

The Virtual Machine Bus (VMBus) is a logical, channel-based inter-partition
communication mechanism between the parent partition and the child
partitions. The purpose of the VMBus is to provide a high-speed highly
optimized communications mechanism between virtualized partitions
rather than other techniques that are slower because of the higher overhead
that emulation imposes.

Child Partition
The child partition is any partition that has been created by the parent
partition.

Child partitions are software-based representations of physical hardware
and are also referred to as virtual machines. Guest operating systems and
their applications run in child partitions.

Child partitions have no direct access to the real physical hardware of the
server. All they see is virtual hardware and virtual devices presented to them.

Hyper-V supports three types of child partitions:

➤ Child partitions hosting Hyper-V-aware Windows OS.

➤ Child partitions hosting Hyper-V-aware supported-Windows OS.

➤ Child partitions hosting non-Hyper-V-aware operating systems.

Child Partitions Hosting a Hyper-V-Aware Windows OS

Child partitions running Windows operating systems that are hyper-V
aware include the following kernel-mode virtualization components:

Virtualization Service Clients :

VSCs are synthetic devices residing in the child partition that use hardware
resources provided by the VSPs in the parent partition by communicating
over the VMBus.

Microsoft Virtualization Monitoring

262

VSCs are automatically made available for installation when Integration
Services are installed in the child partition, which enables the child
partition to use synthetic devices.

Enlightenments

Modifications made to the guest OS code so that it runs more efficiently
when it detects that it is running as a guest within the a hypervisor
environment.

Hyper-V supports enlightenment of the following resources: storage,
networking, graphics and input subsystems.

Child partitions hosting Hyper-V-aware supported/non-
Windows OS

Child partitions running non-Windows operating systems that are Hyper-V
aware use third-party VSCs to communicate over the VMBus with VSPs in
the parent partition in order to access hardware. These VSCs are provided to
the child partition by installing Integration Services in the partition.

Integration Services are primarily used to address usability issues that occur
because of the isolated environment that is inherent to virtual machines.
Integration Services also provide the components that allow child partitions
to communicate with other partitions and the hypervisor.

Integration Services also provides the following functionalities to the child
partition:

➤ Heartbeat: used to verify that the child partition is responding to requests
from the parent partition.

➤ Key/Value Pair Exchange: registry key pairs exchanged between child and
parent partition.

➤ Time Synchronization: synchronizes the child partition time with the
parent partition.

➤ Shutdown: allows the child partition to respond to shutdown requests
from the parent partition.

Hyper-V includes Integration Services for both x86 and x64 versions of
Windows OS:

Microsoft Virtualization Monitoring

263

Win XP (SP3), Win Vista (SP1), Win Server 03(SP2), Win Server 08, Linux
Enterprise Server 10.

Child partitions hosting non-Hyper-V-aware operating systems.

Child partitions running non Hyper-V-aware operating systems cannot have
Integration Services installed on them.

This means that these guest operating systems must use emulated devices
instead of synthetic devices and suffer the performance hit that is incurred
by the use of such emulated devices.

Monitoring Tools

The following section presents the monitoring tools available by Microsoft
and HP for monitoring a virtualized environment based on Hyper-V server.

Microsoft Monitoring Solutions
Microsoft provides two primary monitoring solutions:

➤ Reliability and Performance Monitor

➤ System Center Operations Manager 2007

These tools provide the ability to investigate and obtain warnings about
potential health issues with the physical host, the Hyper-V parent partition,
and child partitions.

Monitoring the physical host focuses on environmental issues such as
temperature, power, and uptime.

Monitoring the Hyper-V parent partition focuses on logical processors,
system memory usage, system storage performance, system networking
performance, the Windows hypervisor, and parent partition services.

Monitoring the child partitions involves focusing on the allocated virtual
hardware (virtual processors, memory, storage, and network adapters) and
the services and applications running in the child partition.

Microsoft Virtualization Monitoring

264

Reliability and Performance Monitor

The Reliability and Performance Monitor comes standard with full
installations of Windows Server 2008. It is an MMC-based application that
can monitor the local system or a remote system. The Reliability and
Performance Monitor is two tools in one. Reliability Monitor provides
information about system stability and the events that impact reliability,
and Performance Monitor provides detailed real-time performance
information on system components, services, and applications.

Reliability Monitor tracks the history of events like software installation,
application failures, hardware failures, operating system failures, and many
other miscellaneous failures. Data is presented in two forms, the System
Stability Chart and the System Stability Report.

The System Stability Chart displays events over the last 30 days and provides
an index value that ranges from 1 (least stable) to 10 (most stable). The
Stability Index is a weighted measurement derived from the number of
specified failures seen over a rolling historical period.

The System Stability Report provides the details on the actual events or
failures, the activity that happened, the status, and the date that it occurred.

Performance Monitor can operate in two modes: real-time data capture and
logged data capture.

Real time data capture allows you to see the real-time performance
information on selected performance counters. Performance counters are
defined by the operating system, application, or service.

Counters are organized into groups, and a counter can provide a system
performance number or it can consist of multiple instances. For example, if
you look at the performance counter group called LogicalDisk, you will see a
list of 23 counters defined.

The data logging feature of Performance Monitor allows you to capture a
historical view instead of a real-time view of available performance counters.
In real-time collection mode, the data graph will overwrite the last set of
data based on how fast you are collecting data. In order to maintain a
history of the collected data, you must use the data logging mode.

Microsoft Virtualization Monitoring

265

System Center Operations Manager 2007

System Center Operations Manager 2007 is Microsoft's enterprise hardware,
operating system, services, and application monitoring solution. Operations
Manager 2007 uses an agent-based data collection mechanism to gather
information from remote systems and store that data in a SQL database for
analysis. Data collection configuration is based on the concept of a
management pack. Management packs contain the rules, monitors, and
tasks for a specific application, operating system, or hardware.

Rules define how to collect data from various sources, such as Perfmon,
EventLog, SNMP, and log files. That data is then stored in the Operations
Manager database and used for reporting purposes. Monitors are state
machines that define the health of what is being monitored. Monitors can
be in one of two states (green or red) or in one of three states (green, yellow,
and red). The monitor's state changes in response to the monitoring
information. Monitors can define thresholds to watch for in data that rules
collect and then take actions based on the threshold being violated.

For example, a monitor could be defined that looks at the network
throughput of a virtual machine, and if it exceeds a specific throughput
value, a yellow state (warning) is triggered and an alert is sent to the
Operations Manager 2007 Operations Console. A task is a user-initiated
action from the Operations Manager 2007 Operations Console that is run
on a remote server via an Operations Manager agent. Pre-built tasks are
defined in management packs and you have the ability to define additional
custom tasks.

When monitoring a Hyper-V infrastructure with System Center Operations
Manager 2007 SP1, your ability to maintain a healthy system will be based
on the management packs that you import and utilize. At a minimum, you
will need the latest Windows Server Base Operating System management
pack that includes support for Windows Server 2008. This will allow you to
monitor the availability and performance of the operating system, services,
storage, networking, processor, and memory.

The tools you need to monitor Hyper-V servers, virtual machines, and
SCVMM 2008 servers have been combined into a single management pack,
the System Center Virtual Machine 2008 management pack. This
management pack provides you with the ability to monitor and provide
reports on Virtual Server 2005 R2, Hyper-V, and VMware ESX servers.

Microsoft Virtualization Monitoring

266

Note: In order to monitor VMWare ESX servers, they must be SCVMM 2008
managed hosts.

The SCVMM 2008 management pack monitors Hyper-V server performance
for storage, memory, processor, physical network, virtual network, and
things like the number of virtual machines. The SCVMM 2008 management
pack also monitors virtual machine performance for virtual processors,
virtual hard disks and pass-through disks, virtual machine memory
utilization, and virtual networks. This can be done with the Operations
Manager 2007 agent loaded on the Hyper-V server. If you also install the
Operations Manager 2007 agent inside the virtual machine, you can get
application performance information if the associated management pack for
the application has been imported into Operations Manager 2007.

The SCVMM 2008 management pack provides updated monitoring, rules,
and reports:

➤ VM Utilization Report: Provides utilization information about your virtual
machines. For the selected time period, this report shows average usage
and total or maximums for virtual machine processors, memory, and disk
space.

➤ Host Utilization Report: Displays the number of virtual machines running
per host. For the selected time period and host group, this report shows
average, total, and maximum utilization for host processors, memory, and
disk space.

➤ Virtualization Candidates Report: Helps identify physical computers that
are good candidates for conversion to virtual machines. The report
displays average values for a defined set of performance counters for CPU,
memory, and disk usage, along with hardware configuration, including
processor speed, number of processors, and total RAM.

➤ Host Utilization Growth Report: Shows the percentage growth of host
resources and the number of virtual machines running for the selected
time period.

➤ VM Allocation: Provides information you can use to calculate chargeback
to cost centers for virtual machines.

Microsoft Virtualization Monitoring

267

An advanced capability enabled by integrating System Center Virtual
Machine Manager 2008 and System Center Operations Manager 2007 SP1 is
Performance and Resource Optimization (PRO). Performance and Resource
Optimization is a feature of Virtual Machine Manager that utilizes
performance information from Operations Manager 2007 to help customers
ensure that their virtual machine infrastructure is operating in an ideal and
efficient manner. Extending the monitoring capabilities of System Center
Operations Manager 2007, PRO enables administrators to respond to poor
performance of failures of virtualized hardware, operating systems, or
applications.

PRO provides two response options:

➤ The first involves surfacing alerts when a problem exists and providing a
recommended mitigation solution. The administrator has the ability to
implement the recommended mitigation with a single click of a button.
The mitigation might involve a built-in action that migrates virtual
machines from a Hyper-V server that has exceeded a defined processor
utilization threshold to another Hyper-V server. PRO can be extended
with custom actions that could, for example, use Wake-on-LAN to wake
up a pre-built standby Hyper-V server, enabling you to dynamically
expand the pool to meet the new demand.

➤ The second response option is for the system to automatically implement
the recommended action with no interaction from the administrator.

HP Sitescope for monitoring Hyper-V
HP SiteScope provides comprehensive facilities for monitoring Hyper-V
infrastructure.

Hyper-V performance monitor can monitor Hyper-V based servers for root
and child partitions available from SiteScope version 11.0.

During initial monitor creation, the new monitor uses the connection URL
configured to access the software and dynamically discover the object
hierarchy and available performance counters. You can select from these
performance counters to determine which measurements SiteScope should
retrieve for reporting server status.

Microsoft Virtualization Monitoring

268

Related Windows Counters

When monitoring system resources of a machine with Hyper-V installed,
there are the Windows most important counters to be tracked:

➤ CPU. Adding new physical processors is not an easy task, hence it is
important to make sure that all CPU units are equally engaged under
load. Watch the following counters:

➤ % Processor Time/_Total.

➤ Memory. Hyper-V server manages its memory dynamically, requesting or
releasing it from the operating system. Make sure that appropriate
dynamic options are selected and that the maximum memory available
for the database is close to physical highest level.

Watch the following counters:

➤ Available Bytes.

➤ Pages/sec

Microsoft Virtualization Monitoring

269

➤ Disk. Database probably has the most I/O intensive operation of all
application tiers, so monitoring disk activity is critical.

Watch the following counters:

➤ Current Disk Queue Length.

➤ Disk Bytes/sec.

➤ Disk Transfers/sec.

➤ Network. Some applications are designed to be very "chatty" when there
is a lot of data that is sent over the network. Watch the following
counters:

➤ Bytes Total/sec.

➤ Offloaded Connections.

➤ Packets/sec.

➤ Packets Outbound Errors.

➤ Packets Receive Errors.

Microsoft Virtualization Monitoring

270

Most Important Counters

The following table of counters is divided into 5 categories: CPU, Memory,
Networking, Storage & Generic.

Each category includes a list of most important counters for monitoring the
Hyper-V server and its virtual machines performance.

Counter Description

C
PU

%Guest Run Time Indicates the percentage of time spent by the
processor in guest code.

%Hypervisor Run
Time

Indicates the percentage of time spent by the
processor in hypervisor code.

%Idle Time Indicates the percentage of time spent by the
processor in an idle state.

%Total Run Time Indicates the percentage of time spent by the
processor in guest and hypervisor code.

%Guest Run Time
(VPGRT)

Indicates the percentage of time spent by the virtual
processor in guest code.

%Hypervisor Run
Time

Indicates the percentage of time spent by the virtual
processor in hypervisor code.

%Total Run Time
(VPTR)

Indicates the percentage of time spent by the virtual
processor in guest and hypervisor code.

Total Intercepts/sec Indicates the rate of hypervisor intercepts messages

% Processor
time/_Total

Indicates the percentage of elapsed time that the
processor spends to execute a non-Idle thread.

Microsoft Virtualization Monitoring

271

M
em

o
ry

1G GPA Pages Indicates the number of 1G pages present in the
GPA space of the partition.

2M GPA Pages Indicates the number of 2M pages present in the
GPA space of the partition.

Deposited Pages Indicates the number of pages deposited into the
partition.

Virtual Processors Indicates the number of virtual processors present in
the partition.

Physical Pages
Allocated

Indicates the number of physical pages allocated.

Remote Physical
Pages

Indicates the number of physical pages not allocated
from the preferred NUMA node.

Available Bytes Indicates the amount of physical memory, in bytes,
immediately available for allocation to a process or
for system use.

Pages/sec Indicates the rate at which pages are read from or
written to disk to resolve hard page faults.

Counter Description

Microsoft Virtualization Monitoring

272

I/
O

Current Disk Queue
Length

Indicates the number of requests outstanding on the
disk at the time the performance data is collected. It
also includes requests in service at the time of the
collection.

Disk Bytes/sec Indicates the rate bytes are transferred to or from the
disk during write or read operations.

Disk Transfers/sec Indicates the rate of read and write operations on
the disk.

Read Bytes/sec Indicates the number of bytes read per second from
the disks attached to the IDE controller.

Write Bytes/sec Indicates the number of bytes written per second to
the disks attached to the IDE controller.

Read Sectors/sec Indicates the number of sectors read per second
from the disks attached to the IDE controller.

Written Sectors/sec Indicates the number of sectors written per second
to the disks attached to the IDE controller.

Error Count Indicates the total number of errors that have
occurred on this virtual device.

Flush Count Indicates the total number of flush operations that
have occurred on this virtual device.

Read Bytes/sec Indicates the total number of bytes that have been
read per second on this virtual device.

Write Bytes/sec Indicates the total number of bytes that have been
written per second on this virtual device.

Read Count Indicates the total number of read operations that
have occurred on this virtual device.

Write Count Indicates the total number of write operations that
have occurred on this virtual device.

Counter Description

Microsoft Virtualization Monitoring

273

N
et

w
o

rk

Bytes Total/sec Indicates the rate at which bytes are sent and
received over each network adapter, including
framing characters.

Offloaded
Connections

Indicates the number of TCP connections (over both
IPv4 and IPv6) that are currently handled by the
TCP chimney offload capable network adapter.

Packets/sec Indicates the rate at which packets are sent and
received on the network interface.

Packets Outbound
Errors

Indicates the number of outbound packets that
could not be transmitted because of errors.

Packets Receive
Errors

Indicates the number of inbound packets that
contained errors preventing them from being
delivered to a higher-layer protocol.

Bytes/sec Indicates the total number of bytes per second
traversing the virtual switch.

Packets/sec Indicates the total number of packets per second
traversing the virtual switch.

Bytes Dropped Indicates the number of bytes dropped on the
network adapter.

Bytes Sent/sec Indicates the number of bytes sent per second over
the network adapter.

Bytes Received/sec Indicates the number of bytes received per second
on the network adapter.

Bytes/sec Indicates the total number of bytes that have
traversed the network adapter.

Packets/sec Indicates the total number of bytes received per
second by the network adapter.

Counter Description

Microsoft Virtualization Monitoring

274

CPU Counters
This section describes the counters that provide information pertaining to
processor utilization:

G
en

er
ic

Health Ok Indicates the number of virtual machines where
system health is stable.

Health Critical Indicates the number of virtual machines where
system health is in critical state.

Logical Processors Indicates the number of logical processors present in
the system.

Partitions Indicates the number of partitions (virtual
machines) present in the system.

Total Pages Indicates the number of bootstrap and deposited
pages in the hypervisor.

Virtual Processors Indicates the number of virtual processors present in
the system.

Monitored
Notifications

Indicates the number of monitored notifications
registered with the hypervisor.

Counter Description

Microsoft Virtualization Monitoring

275

%Guest Run Time

%Hypervisor Run Time

Official Name Hyper-V Hypervisor Logical Processor\%Guest
Run Time

Counter Type Interval (%Busy)

Description The percentage of time spent by the processor
in guest code.

Usage Notes This is the percentage of time guest code is
running on an LP or for the _Total the average
percentage across all LP. For example if you
have 2LP and one VM running CPU tests you
might see the value be 95% for LP(0), 0% for
LP(1) and 47.5% for the _Total. For this you
can see you VM is running on LP(0).

Performance N/A

Operations N/A

Threshold N/A

Official Name Hyper-V Hypervisor Logical
Processor\%Hypervisor Run Time

Counter Type Interval (%Busy)

Description The percentage of time spent by the processor
in hypervisor code.

Usage Notes This is the percentage of time the Hypervisor
is running on an LP or for _Total the average
percentage across all LP. This is similar to %
Kernal Run Time in the Processor counter set.

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

276

%Idle Time

Official Name Hyper-V Hypervisor Logical Processor\%Idle
Time

Counter Type Interval (%Busy)

Description The percentage of time spent by the processor
in an idle state.

Usage Notes This is the percentage of time the LP is waiting
for work for _Total the average percentage
across all LP. This is similar to % Kernel Run
Time in the Processor counter set.

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

277

%Total Run Time

Official Name Hyper-V Hypervisor Logical Processor\%Total
Run Time (LPTR)

Counter Type Interval (%Busy)

Description The percentage of time spent by the processor
in guest and hypervisor code. This counter is
sometimes called LPTR.

Usage Notes This is just a sum of %Guest Run Time + %
Hypervisor Runtime. This counter can go over
100% just slightly (<0.5%). The problem has
to do with how performance counters are
computed. If you take the current time then
value1 and later the end time and value2 this
means value2 has the potential to increase
between when end time was read and value2 is
read. You would change it to get the start
time then value1 and later value2 and end
time. In this case the number would always be
slightly less than 100.

Performance LPTR gives you an indication of how busy the
logical processors in the host are.

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

278

%Guest Run Time (VPGRT)

Official Name Hyper-V Hypervisor Root Virtual
Processor\%Guest Run Time (VPGRT)

Or

Hyper-V Hypervisor Virtual Processor\%Guest
Run Time (VPGRT)

Counter Type Interval (%Busy)

Description The percentage of time spent by the virtual
processor in guest code.

Usage Notes For guest VM's this is the percentage of time
the guest VP is running in non-hypervisor
code on an LP or for the _Total the total across
all guest VP's. For the root this is the
percentage of time the root VP is running in
non-hypervisor code on an LP or for _Total the
total across all root VP's. If you sum the _Total
for both the guest VP's and root VP's this will
equal the % Guest Run Time _Total of the
Logical Processor counter set.

Performance VPGRT indicates how busy the virtual
processors in the guest are.

These counters suffer from a small amount of
clock skew.

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

279

%Hypervisor Run Time

Official Name Hyper-V Hypervisor Root Virtual
Processor\%Hypervisor Run Time

Or

Hyper-V Hypervisor Virtual
Processor\%Hypervisor Run Time

Counter Type Interval (%Busy)

Description The percentage of time spent by the virtual
processor in hypervisor code.

Usage Notes For guest VM's this is the percentage of time
the guest VP is running in hypervisor code on
an LP or for the _Total the total across all guest
VP's. For the root this is the percentage of
time the root VP is running in hypervisor code
on an LP or for _Total the total across all root
VP's. If you sum the _Total for both the guest
VP's and root VP's this will equal the %
Hypervisor Run Time _Total of the Logical
Processor counter set.

Performance N/A

Operations N/A

Threshold The "% Hypervisor Time" should be below
25%. Any higher than this could indicate you
are not running with integration services
installed.

Microsoft Virtualization Monitoring

280

%Total Run Time (VPTR)

Official Name Hyper-V Hypervisor Root Virtual
Processor\%Total Run Time (VPTR)

Or

Hyper-V Hypervisor Virtual Processor\%Total
Run Time (VPTR)

Counter Type Interval (%Busy)

Description The percentage of time spent by the virtual
processor in guest and hypervisor code.

Usage Notes This is just a sum of %Guest Run Time + %
Hypervisor Runtime on a per VP basis. If you
sum the %Total Run Time across the Root
Virtual Processor and Virtual Processor counter
sets it will equal the sum of %Total Run Time
from all the Logical Processor counters.

Performance VPTR shows you how busy the virtual
processors in the host are.

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

281

Total Intercepts/sec

% Processor time/_Total

Note: This counter is not specific to Hyper-V. This is a regular Windows
Resource counter. See “Related Windows Counters” on page 268.

Official Name Hyper-V Hypervisor Root Virtual
Processor\%Total Intercepts/sec

Or

Hyper-V Hypervisor Virtual Processor\%Total
Intercepts/sec

Counter Type Interval difference counter (rate/second).

Description The rate of hypervisor intercepts messages.

Usage Notes Whenever a guest VP needs to exit is current
mode of running for servicing in the
hypervisor this is called an intercept. Some
common causes of intercepts are resolving
Guest Physical Address (GPA) to Server Physics
Address (SPA) translations, privileged
instructions like hlt / cupid / in / out, and the
end of the VP's scheduled time slice.

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

282

Memory Counters
This section describes the counters that belong to the memory management
of Hyper-V systems. They provide data about memory consumption,
memory pools, and more.

1G GPA Pages

Official Name Hyper-V Hypervisor Partition\1G GPA Pages

Or

Hyper-V Hypervisor Root Partition\1G GPA
Pages

Counter Type Instantaneous (sampled once during each
measurement period).

Description The number of 1G pages present in the GPA
space of the partition.

Usage Notes Whether or not a VM is using large pages
which improves overall VM performance.

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

283

2M GPA Pages

Deposited Pages

Official Name Hyper-V Hypervisor Partition\2M GPA Pages

Or

Hyper-V Hypervisor Root Partition\2M GPA
Pages

Counter Type Instantaneous (sampled once during each
measurement period).

Description The number of 2M pages present in the GPA
space of the partition.

Usage Notes N/A

Performance N/A

Operations N/A

Threshold N/A

Official Name Hyper-V Hypervisor Partition\Deposited Pages

Or

Hyper-V Hypervisor Root Partition\Deposited
Pages

Counter Type Interval (sampled over period of time)

Description The number of pages deposited into the
partition.

Usage Notes How much memory the hypervisor is using for
managing the VM.

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

284

Virtual Processors

Physical Pages Allocated

Official Name Hyper-V Hypervisor Partition\Virtual
Processors

Or

Hyper-V Hypervisor Root Partition\Virtual
Processors

Counter Type Instantaneous (sampled once during each
measurement period).

Description The number of virtual processors present in
the partition.

Usage Notes Lets you know how many virtual processors a
VM is configured to use.

Performance N/A

Operations N/A

Threshold N/A

Official Name Hyper-V VM Vid Partition\Physical Pages
Allocated

Counter Type Interval (sampled over period of time)

Description The number of physical pages allocated.

Usage Notes The total number of guests pages and VID
pages needed to manage the VM

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

285

Remote Physical Pages

Available Bytes

Note: This counter is not specific to Hyper-V. This is a regular Windows
Resource counter. See “Related Windows Counters” on page 268.

Pages/sec

Note: This counter is not specific to Hyper-V. This is a regular Windows
Resource counter. See “Related Windows Counters” on page 268.

Official Name Hyper-V VM Vid Partition\Remote Physical
Pages

Counter Type Interval (sampled over period of time)

Description The number of physical pages not allocated
from the preferred NUMA node.

Usage Notes Let you know on NUMA based systems if a VM
is spanning multiple node. You really want to
avoid this whenever possible.

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

286

I/O Counters
This section describes the counters that belong to Hyper-V storage capacity.

The following I/O counters are not specific to Hyper-V. These are regular
Windows related counters. For details, see “Related Windows Counters” on
page 268.

➤ Current Disk Queue Length

➤ Disk Bytes/sec

➤ Disk Transfers/sec

Read Bytes/sec

Official Name Hyper-V Virtual IDE Controller\Read Bytes /
Sec

Counter Type Interval difference counter (rate/second).

Description Read Bytes/sec is the number of bytes read per
second from the disks attached to the IDE
controller.

Usage Notes The Virtual IDE counters show up in the
"Hyper-V Virtual IDE Controller" counter set.

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

287

Write Bytes/sec

Read Sectors/sec

Official Name Hyper-V Virtual IDE Controller\Write Bytes /
Sec

Counter Type Interval difference counter (rate/second).

Description Write Bytes/sec is the number of bytes written
per second to the disks attached to the IDE
controller.

Usage Notes N/A

Performance N/A

Operations N/A

Threshold N/A

Official Name Hyper-V Virtual IDE Controller\Read Sectors /
Sec

Counter Type Interval difference counter (rate/second).

Description Read Sectors/sec is the number of sectors read
per second from the disks attached to the IDE
controller.

Usage Notes N/A

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

288

Written Sectors/sec

Error Count

Official Name Hyper-V Virtual IDE Controller\Written
Sectors / Sec

Counter Type Interval difference counter (rate/second).

Description Written Sectors/sec is the number of sectors
written per second to the disks attached to the
IDE controller.

Usage Notes N/A

Performance N/A

Operations N/A

Threshold N/A

Official Name Hyper-V Virtual Storage Device\Error Count

Counter Type Interval (sampled over period of time)

Description This counter represents the total number of
errors that have occurred on this virtual
device.

Usage Notes If Integration Services are loaded then you will
see the activity for both virtual IDE and SCSI
in the "Hyper-V Virtual Storage Device"
counter set.

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

289

Flush Count

Read Bytes/sec

Official Name Hyper-V Virtual Storage Device\Flush Count

Counter Type Interval (sampled over period of time)

Description This counter represents the total number of
flush operations that have occurred on this
virtual device.

Usage Notes N/A

Performance N/A

Operations N/A

Threshold N/A

Official Name Hyper-V Virtual Storage Device\Read Bytes /
Sec

Counter Type Interval difference counter (rate/second).

Description This counter represents the total number of
bytes that have been read per second on this
virtual device.

Usage Notes N/A

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

290

Write Bytes/sec

Read Count

Official Name Hyper-V Virtual Storage Device\Write Bytes /
Sec

Counter Type Interval difference counter (rate/second).

Description This counter represents the total number of
bytes that have been written per second on
this virtual device.

Usage Notes N/A

Performance N/A

Operations N/A

Threshold N/A

Official Name Hyper-V Virtual Storage Device\Read Count

Counter Type Interval (sampled over period of time)

Description This counter represents the total number of
read operations that have occurred on this
virtual device.

Usage Notes N/A

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

291

Write Count

Network Counters
This section describes the counters that belong to the network components
of the Windows resources.

The following network counters are not specific to Hyper-V. These are
regular Windows related counters. For details, see “Related Windows
Counters” on page 268.

➤ Bytes Total/sec

➤ Offloaded Connections

➤ Packets/sec

➤ Packets Outbound Errors

➤ Packets Receive Errors

Official Name Hyper-V Virtual Storage Device\Write Count

Counter Type Interval (sampled over period of time)

Description This counter represents the total number of
write operations that have occurred on this
virtual device.

Usage Notes N/A

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

292

Bytes/sec

Packets/sec

Official Name Hyper-V Virtual Switch\Bytes/Sec

Counter Type Interval difference counter (rate/second).

Description This counter represents the total number of
bytes per second traversing the virtual switch.

Usage Notes N/A

Performance N/A

Operations N/A

Threshold N/A

Official Name Hyper-V Virtual Switch\Packets/Sec

Counter Type Interval difference counter (rate/second).

Description This counter represents the total number of
packets per second traversing the virtual
switch.

Usage Notes N/A

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

293

Bytes Dropped

Bytes Sent/sec

Official Name Hyper-V Legacy Network Adapter\Bytes
Dropped

Counter Type Interval (sampled over period of time)

Description Bytes Dropped is the number of bytes dropped
on the network adapter.

Usage Notes You need the Legacy Network Adapter to get a
VM working before installing Integration
Services. Once your VM is working with
Integration Services you should use the
Network Adapter.

Performance N/A

Operations N/A

Threshold N/A

Official Name Hyper-V Legacy Network Adapter\Bytes Sent /
Sec

Counter Type Interval difference counter (rate/second).

Description Bytes Sent/sec is the number of bytes sent per
second over the network adapter.

Usage Notes N/A

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

294

Bytes Received/sec

Bytes/sec

Official Name Hyper-V Legacy Network Adapter\Bytes
Received/ Sec

Counter Type Interval difference counter (rate/second).

Description Bytes Received/sec is the number of bytes
received per second on the network adapter.

Usage Notes N/A

Performance N/A

Operations N/A

Threshold N/A

Official Name Hyper-V Virtual Network Adapter\Bytes / Sec

Counter Type Interval difference counter (rate/second).

Description This counter represents the total number of
bytes that have traversed the network adapter.

Usage Notes N/A

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

295

Packets/sec

Generic Counters
This section describes the counters that belong to Hyper-V system.

Health Ok

Official Name Hyper-V Virtual Network Adapter\Packets /
Sec

Counter Type Interval difference counter (rate/second).

Description This counter represents the total number of
bytes received per second by the network
adapter.

Usage Notes N/A

Performance N/A

Operations N/A

Threshold N/A

Official Name Hyper-V Virtual Machine Health
Summary\Health Ok

Counter Type Instantaneous (sampled once during each
measurement period).

Description This counter represents the number of virtual
machines that with ok health.

Usage Notes If anything is Critical it means some resource
(most likely disk) has been exhausted or other
unrecoverable error has occurred.

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

296

Health Critical

Logical Processors

Official Name Hyper-V Virtual Machine Health
Summary\Health Critical

Counter Type Instantaneous (sampled once during each
measurement period).

Description This counter represents the number of virtual
machines that with critical health.

Usage Notes If you server see "Health Critical" you should
take action to figure out what has happened.

Performance N/A

Operations N/A

Threshold N/A

Official Name Hyper-V Hypervisor\Logical Processors

Counter Type Instantaneous (sampled once during each
measurement period).

Description The number of logical processors present in
the system.

Usage Notes These are the number of cores / HT that the
hypervisor is managing. If you have a dual
proc quad core without HT you will see this
number set to 8. If you also had HT it would
be set to 16. Today this value is fixed after
boot and won't change. In the future we may
support hot add and remove of processors in
which case this will be dynamic.

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

297

Partitions

Official Name Hyper-V Hypervisor\Partitions

Counter Type Instantaneous (sampled once during each
measurement period).

Description The number of partitions (virtual machines)
present in the system.

Usage Notes Each virtual machine on the system is run in a
container called a partition. If you have no
VM's running this value will be set to 1
because the "host OS" called the "root" in
Hyper-V is also running in a partition. So if
you have 2 guest VM's running this value will
be 3. +1 for each guest and +1 for the root.

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

298

Total Pages

Official Name Hyper-V Hypervisor\Total Pages

Counter Type Interval (sampled over period of time)

Description The number of bootstrap and deposited pages
in the hypervisor.

Usage Notes The Hypervisor needs memory in order to
keep track of Virtual Processors, Guest Virtual
address to System Physical Address translation
entries in the virtual TLB, etc. So the total
pages keep track of the total amount of
memory the Hypervisor is using for
management or partitions. A page is 4KBytes.
This is not the total amount used to support a
guest. You would also need to get this by
looking at the size of the worker process
(vmwp.exe) and account for memory in vid.
Since we don't publish numbers on non-RTM
releases I'll have to wait to you the overhead
value (future post). Total Pages can change
based on what guests VM's are running.

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

299

Virtual Processors

Official Name Hyper-V Hypervisor\Virtual Processors

Counter Type Instantaneous (sampled once during each
measurement period).

Description The number of virtual processors present in
the system.

Usage Notes All execution in the root and child partitions
(where guest VM's run) happens on Virtual
Processors (aka VP's). At a minimum you will
see on VP for each Logical Processor (LP).
These account for the root VP's. You will then
see +1 for each VP you have configured to a
guest. So if you have an 8LP system with 1
guest running with 2VP's the count here will
be 10.

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

300

Monitored Notifications

Official Name Hyper-V Hypervisor\Monitored Notifications

Counter Type Interval (sampled over period of time)

Description The number of monitored notifications
registered with the hypervisor.

Usage Notes Monitored notifications are part of an
interrupt coalescing technique Hyper-V uses
to reduce virtualization overhead. For
example when a guest has data to transmit
over the network it could send an interrupt for
each packet to the root VP that will actually do
the I/O or it can send one interrupt to let the
root know data is starting to flow. This
counter is an indication of the number of
"flows" of interrupts being set to the root and
guests.

Performance N/A

Operations N/A

Threshold N/A

Microsoft Virtualization Monitoring

301

Optimization and Tuning

The following section includes best practices and recommendations for
optimizing the performance of Hyper-V host (Server) and Virtual machines.

Server Optimization and Tuning
Configuring Hyper-V server for the best performance requires focusing on
four main areas:

Processor, Memory, I/O and Networking.

CPU Performance Best Practices

➤ To obtain the best processor performance for Hyper-V, it is recommended
that you run the Server Core installation of Windows Server 2008 and the
Hyper-V role or Microsoft Hyper-V Server 2008. Windows Server 2008
with only the Hyper-V role loaded on the parent partition will minimize
the amount of processing power the parent partition requires, providing
more processing power to the child partitions.

➤ It is recommended to supply the server with a processor that has multiple
cores. The latest multicore processors will provide the best performance.

➤ Choosing a processor with larger cache (L2 / L3) will increase the
performance.

Memory Performance Best Practices

➤ For obtaining the fastest memory performance possible on the Hyper-V
server, use the fastest memory available. If the goal is to obtain the best
performance possible but run the maximum number of virtual machines
possible on the server, use the memory that gives you the highest capacity
and compensate with other components, such as faster processors or a
faster speed disk subsystem.

Microsoft Virtualization Monitoring

302

➤ Purchase servers with the highest density modules possible to allow for
further expansion without wasting slots. For example, you can install 16
GB of RAM with 16 ª 1-GB modules, 8 ª 2-GB modules, 4 ª 4-GB modules,
or 2 ª 8-GB modules. By using the 8-GB modules, you obtain the
maximum amount of memory using the fewest slots. This allows you to
expand the server by adding additional memory modules without having
to remove lower density modules.

➤ A minimum of 1 GB of RAM in the physical server should be allocated to
the parent partition when you are calculating how much RAM to put into
the server.

➤ For optimum performance, determine the largest amount of memory that
will be assigned to a virtual machine memory on the NUMA (Non-
Uniform Memory Access) system and then purchase at least that much
memory per processor. You should evenly distribute the memory to each
processor to maximize local node use of memory and reduce the number
of memory calls to another node. Because a virtual machine in Hyper-V
can have a maximum of 64 GB of RAM, it may not be possible to allocate
the maximum amount of memory and have it all reside on a single
processor node.

➤ Utilize Windows Server 2008 Server Core Installation option and the
Hyper-V role over the full installation option for your Hyper-V servers.
This will give you approximately 80 MB more RAM on the server for child
partition usage.

I/O Performance Best Practices

➤ Configure the antivirus application to exclude file extensions or
processes. Using the process exclusion method rather than the file
exclusion method is recommended because it provides better protection.
When configuring the antivirus software to exclude the Hyper-V
management processes, you should exclude the Hyper-V Virtual Machine
Management service (VMMS.exe) and the Virtual Machine Worker
Process service (Vmwp.exe). If your antivirus application does not support
excluding processes, you should add .vhd, .avhd, .vfd, .vsv, and .xml file
extensions to your antivirus file exclusion list so that they are not
scanned.

Microsoft Virtualization Monitoring

303

➤ Use 10,000-RPM (Revolutions per minute) or faster drives in the Hyper-V
server to minimize the data read/write times for virtual machines. Using a
10,000-RPM drive rather than a 7200-RPM drive significantly increases
the number of read and write operations performed per minute.

➤ Use the SATA or SAS drive type in the Hyper-V server to increase
performance by allowing an individual hard disk to queue more than one
I/O request at a time and dynamically modify the order in which the
operations are performed.

➤ For Hyper-V servers that boot using internal hard drives, utilize RAID 1
(Mirroring) to provide fault tolerance for the parent partition and the
Hyper-V configuration settings.

➤ For virtual machines storage, utilize a SAN that provides the redundancy
of RAID 0 (Striping) +1 (Mirroring) configurations, iSCSI target capability,
and the ability to use high RPM command-queued I/O hard drives.
Selecting one that supports SATA and SAS hard drives in the same
enclosure will provide you with the most flexibility. When creating the
RAID 0+1 disk array, you should use as many spindles as feasible to
distribute the I/O load.

Networking Performance Best Practices

➤ Dedicate at least one physical network adapter to Hyper-V management
and backup. Dedicating a network adapter to Hyper-V management
means that the Hyper-V server management and backup network traffic
will not affect the virtual machines traffic.

➤ Dedicate a network adapter for iSCSI communications and utilize an
adapter that provides iSCSI processing support in hardware.

➤ Dedicate a network adapter for cluster communications.

➤ Do not enable TCP Chimney offload on Hyper-V host clusters. Failover
Clustering in Windows Server 2008 does not take advantage of TCP
Chimney offload features.

➤ Enable TCP Chimney offload on non-clustered Hyper-V servers. Even
though physical network adapters bound to external virtual networks will
not take advantage of the TCP offloading engine, other adapters will.

Microsoft Virtualization Monitoring

304

➤ Test application performance before and after TCP Chimney is enabled.
Not all applications can take advantage of TCP Chimney offload, and
some network adapters are not powerful enough to handle the additional
load that comes from TCP Chimney offloading. In either case, enabling
TCP Chimney offload can negatively affect networking performance of
some applications.

➤ Enabling Jumbo frames allows more data to be sent at a time, therefore
reducing the number of packets that need to be sent, which can reduce
the processor overhead and increase the throughput by allowing less
processing of frame headers.

➤ Jumbo frames can provide a significant increase in performance for
applications or protocols that attempt to transmit large amounts of data
across the network.

➤ Disable receive-side load balancing (responding with different MAC
addresses to the ARP requests coming from different clients) on all teamed
network adapters. If you do not, virtual machines connected to external
virtual networks bound to teamed network adapters will not be able to
communicate externally to the Hyper-V server.

Virtual Machine Optimization and Tuning
Configuring a Virtual machine for the best performance requires focusing
on four main areas: Processor, Memory, I/O and Network.

CPU Performance Best Practices

➤ Use Windows Server 2008 or newer versions of server operating systems
to obtain the best performance in the Hyper-V child partitions. Migrate
any Windows 2000 Server or Windows Server 2003 virtual machines to
Windows Server 2008 to improve performance of the virtual machine and
reduce the load on the Hyper-V server.

➤ Integration Services should be installed as one of the first actions for any
supported guest operating system for improving performance and
throughput over emulated devices.

Microsoft Virtualization Monitoring

305

➤ Evaluate processor usage of existing physical servers when migrating to
virtual machines. Physical servers might have been purchased using a
minimum or standard hardware approach. If the processor usage does not
show that more than one processor is being utilized, then configure the
migrated virtual machine to a single processor and monitor processor
utilization.

➤ Remove the virtual CD/DVD drive from the virtual machine if not
needed. The CD/DVD drive must be checked on a regular basis for the
insertion of media, of which uses CPU cycles even if you are not using the
drive.

➤ Utilize the legacy network adapter for PXE boot or for operating systems
that do not have integration services support for the synthetic network
adapter. Legacy network adapters require a higher level of host processor
time to process the packets through the virtual machine worker process.
Legacy network adapters have lower throughput capability than synthetic
adapters because of the path through the virtualization stack.

➤ Virtual machines that require the legacy networking adapter in order to
communicate on a daily basis should be isolated to a separate Hyper-V
server. This prevents additional processor overhead of the legacy adapters
from affecting the performance or scalability of Hyper-V servers running
virtual machines using the synthetic network adapter.

➤ On machines that have the console access restricted to a trusted set of
individuals, disabling the screen saver can save idle processor cycles. For
machines that need the screen saver to lock the console to prevent
unauthorized access, a blank screen saver that shows no images
minimally checks for key sequences.

➤ Perform an analysis of the workload profile of processor, networking, and
disk I/O of a virtual machine to understand what the affects of adding
that virtual machine will have on the existing workload profile.
Combining a series of VMs that overlap their performance & I/O is not
recommended.

➤ If you have virtual machines that need a guarantee that processing power
is available when needed, use the reserved capacity setting (guarantying a
percentage of logical processor).

Microsoft Virtualization Monitoring

306

➤ If you have a Hyper-V server that has virtual machines that experience
spikes in processor activity and are affecting other virtual machines on
the host, use capacity limits to curb those virtual machines and get
predictive performance.

➤ If VPTR is high on the host, but LPTR is low, then there are virtual
machines that do not have enough processing power allocated. Use
VPGRT counters in each virtual machine to determine which virtual
machine is running at high processor utilization and then add an
additional virtual processor to that virtual machine. If the guest operating
system does not support additional virtual processors, then scale out the
application by adding an additional virtual machine and balancing the
workload between the virtual machines.

➤ If LPTR is high and VPTR is low, then there are many virtual machines
running light loads. The context switching between virtual machines is
causing a bottleneck in the host processors. If a virtual machine running
on the host has a spike in processor utilization, then there are two
possible outcomes. Either the virtual machine will get the additional
processing power at the expense of other running virtual machines, or the
VM will not get the additional processing power and its performance will
be affected. Neither outcome is desirable if it is occurring on a regular
basis. Consider adding an additional Hyper-V server and moving virtual
machines to that host.

➤ If both VPTR and LPTR are high, the Hyper-V server processors are
oversubscribed. You should add an additional Hyper-V server and balance
the existing virtual machines between the servers.

Memory Performance Best Practices

➤ Be sure to reserve a minimum of 1 GB of memory for the parent partition.
You should allocate enough memory for a VM to minimize the paging to
disk during normal operations, but not to eliminate it.

➤ If the \Memory\Available Mbytes counter is consistently showing lower
than 10 percent free memory available, and the \Memory\Pages/sec
counter is showing greater than 1000, you should allocate additional
RAM to the virtual machine. If the \Memory\Available Mbytes counter is
consistently showing higher than 50 percent free memory available, and
the \Memory\Pages/sec counter is consistently showing less than 250,
you should consider reducing the RAM allocated to the virtual machine.

Microsoft Virtualization Monitoring

307

I/O Performance Best Practices

➤ Use fixed virtual hard disks (a single file encapsulated virtual hard disk)
for a balanced approach. They offer the fastest combination of
performance, portability, and snapshot support.

➤ Virtual machine data drives should use virtual hard disks connected to
the SCSI controller for best performance and lowest processor overhead.

➤ Place virtual hard disk files on separate physical disks for best
performance.

Networking Performance Best Practices

➤ Load Integration Services and use synthetic network adapters to
maximize network performance - synthetic network adapter
communicates between the child and parent partition through a
dedicated channel on the virtual machine bus (VMBus).

➤ Use legacy network adapters for loading virtual machines via Pre-
Execution Environment, and then switch to synthetic network adapters
(assuming the guest operating system has a supported version of
Integration Services).

➤ Purchase physical network adapters that provide Large Send Offload and
IPv4 TCP checksum offload features for Hyper-V servers. Be sure to
properly enable and configure the options in the driver settings of the
parent partition.

➤ Reduce the processor cycles required for packet processing in the parent
partition and increase the throughput of virtual machines by using
physical network adapters that provide Large Send Offload and IPv4 TCP
checksum offload features for Hyper-V servers. Be sure to properly enable
and configure the options in the driver settings of the parent partition.

➤ In order for VLAN tagging to provide the maximum performance
possible, the physical network adapter should support large send and TCP
checksum offload.

➤ If a virtual machine network adapter output queue is higher than 2 on a
regular basis, the virtual machine needs an additional network adapter to
handle the network load. The additional network adapter can be bound
to the same virtual network or to another virtual network.

Microsoft Virtualization Monitoring

308

➤ To determine if the existing virtual network can handle the additional
traffic, measure the \Network Interface(*)\Output Queue Length
performance counter on the host to determine the queue length. If the
host network adapter queue length is higher than 2, you should add an
additional physical network adapter, create a new external virtual
network bound to it, and reallocate virtual machines to the new external
virtual network to balance the network load.

➤ Configure all the physical and virtual network adapters on a Hyper-V
server to the same maximum transmission unit (MTU).

309

16
VMware Monitoring

This chapter describes best practices for VMware-based virtual machines
monitoring.

This chapter includes:

➤ Overview on page 309

➤ Architecture on page 310

➤ Monitoring Tools on page 316

➤ Most Important VMware Counters on page 319

➤ Optimization and Tuning on page 335

Overview

VMware is one of the global leaders in virtualization solutions from the
desktop to the data center to businesses of all sizes.

VMware offers a wide range of virtualization products, from free software for
virtualizing desktops and servers to comprehensive enterprise-class
platforms for optimizing datacenters and IT infrastructure. These products
address different challenges faced by IT organizations such as server
consolidation, infrastructure optimization, maintaining high availability &
disaster recovery, minimizing down time, automating lab management and
more.

VMware introduces the ESX and ESXi hypervisors for delivering the highest
level of reliability and performance to applications by creating a dynamic
and automated data center.

VMware Monitoring

310

VMware ESX and VMware ESXi are “bare-metal” hypervisors. This means
they may be installed directly on top of a physical server and can be
partitioned into multiple virtual machines. They can run simultaneously,
sharing the physical resources of the underlying server. Each virtual
machine represents a complete system, including processors, memory,
networking resources, storage and BIOS, and can run an unmodified
operating system and applications.

The functionality and performance of VMware ESX and ESXi are the same;
the difference between the two hypervisors reside in their architecture and
operational management. VMware ESXi is the latest hypervisor architecture
from VMware. It has an ultra thin footprint with no reliance on a general-
purpose operating system, setting a new bar for security and reliability. The
small footprint and hardware-like reliability of VMware ESXi enable it to
also be available preinstalled on industry standard x86 servers.

This chapter mainly focuses on the VMWare ESX server, as it is the most
common VMWare platform for virtualization. It’s core purpose is to assist
performance engineers to better understand the architecture of the ESX
server. It also enables the engineers to successfully monitor performance
testing and tune based when required.

Architecture

VMware ESX Server is a hypervisor that runs directly on the physical
hardware and creates logical pools of system resources so that many virtual
machines can share the same physical resources in fully isolated
environments.

ESX Server inserts a virtualization layer between the system hardware and
the virtual machines. This turns the system hardware into a pool of logical
computing resources that the ESX Server can dynamically allocate to any
operating system or application. The guest operating system running on the
virtual machines interact with the virtual resources as if they were physical
resources.

VMware Monitoring

311

VMware Architecture Layers
There are a few components that make up any virtualization environment:

➤ Host machine

➤ Virtualization software

➤ Virtual machine(s)

➤ Guest operating system(s)

The following section describes the components in greater detail.

VMware Monitoring

312

Host Machine

The host machine in a virtual environment provides resources to the virtual
machines. The core resources are: CPU, Memory, NIC, Disk. The more
resources on the host machine, the more virtual machines that can be
hosted.

If the host machine uses some of its own resources, the virtual machines will
use the remaining resources.

Virtualization Software

The virtualization software layer provides each virtual machine access to the
host’s resources. It's also responsible for scheduling the physical resources
among the various virtual machines. The virtualization software is the
cornerstone of the entire virtualization environment. It creates the virtual
machines to be used, manages the resources provided to the virtual
machines, schedules resource usage when there is contention for a specific
resource, and provides a management and configuration interface for the
virtual machines.

VMware provides three versions of virtualization software.

➤ VMware Workstation is a virtualization software package which can be
installed on the operating system of the host computer. The main
limitation with using VMware Workstation is that virtual machines
can only run while being logged on the host workstation. When
logging off, the virtual machines shutdown. VMware Workstation is
mainly a local user tool which means that there are no remote
administration capabilities. This is not suitable for a production
environment.

➤ VMware GSX Server is similar to VMware Workstation as it is also a
virtualization software package which can be installed on the
operating system (either Linux or Windows) of the host computer.
However, VMware GSX Server is a step up from Workstation. It offers
some remote management and remote console access to the virtual
machines. The various virtual machines can be configured to run as
services without any console interaction required. The main limitation
is that it has to use resources from the host hardware through the host
operating system. This really limits the scalability and performance of
GSX since virtual machines do not have direct access to the hardware.

VMware Monitoring

313

➤ VMware ESX Server is a full operating system. ESX Server is completely
designed to give the virtual machines the best performance possible
and allow the administrator to control and shape the way the host
resources are shared and utilized. ESX Server provides a level of
performance for the VMs that simply cannot be found in GSX or
Workstation. It also allows for more advanced resource allocation, fine
tuning of performance, a better VM-to-processor ratio, and more
advanced resource sharing. VMware published an ESX Server Hardware
Compatibility List (HCL). If the hardware you're using for ESX is on
the HCL, then you can be confident that everything will work as
expected. ESX also enables you to eliminate any problems that exist on
the host operating system since host operating systems don't exist
with ESX. The ESX Server is both its own operating system and also the
virtualization software.

VMware Monitoring

314

Virtual Machine

The virtual machine is actually the virtual hardware (or the combined
virtual hardware and the virtual BIOS) presented to the guest operating
system. It's the software-based virtualization of physical hardware. The guest
operating system does not realize that the hardware on which it is installed
is virtual.

All the guest operating systems are aware of the type of processor, that type
of network card, how much memory there is, disk space, etc.

Guest Operating System

The guest operating system is an Intel-based operating system (Windows,
Linux, Novell, DOS, etc.) which runs on a virtual machine.

The guest operating system (or "guest machine" or simply "guest") is the
software that's installed on a VM. After the operating system is setup, you
can install any application which usually runs on that operating system.

Virtualization Software Internals
Let’s concentrate on ESX server architecture, i.e. Virtualization Software
layer described in the previous section. The picture below depicts the main
logical parts of ESX:

VMware Monitoring

315

VMkernel

The VMkernel is a high-performance operating system developed by
VMware that runs directly on the ESX Server host. VMkernel controls and
manages most of the physical resources on the hardware of which include:

➤ Memory

➤ Physical processors

➤ Storage

➤ Networking Controllers

The VMkernel implements the virtualization, resource management, and
hardware interface components of ESX Server.

VMkernel Resource Manager

The resource manager partitions the physical resources of the underlying
server. It uses a proportional share mechanism to allocate CPU, memory,
and disk resources to virtual machines that are powered on.

Users can specify shares, reservations, and limits for each virtual machine.
The resource manager takes that information into account when it allocates
CPU and memory to each virtual machine.

VMkernel Hardware Interface Layer

The hardware interface hides hardware differences from ESX Server (and
virtual machine) users. It enables hardware-specific service delivery and
includes:

➤ Device drivers - interacts directly with hardware devices.

➤ Virtual Machine File System (VMFS) - distributed file system. Optimized
for very large files like virtual machine disks and swap files.

Virtual Machine Monitor (VMM)

The virtual machine monitor (VMM) is responsible for virtualizing the
CPUs. When a virtual machine starts running, control transfers to the VMM,
which begins executing instructions from the virtual machine. The transfer
of control to the VMM involves setting the system state so that the VMM
runs directly on the bare hardware.

VMware Monitoring

316

Service Console

The service console is a limited distribution of Linux based on Red Hat
Enterprise Linux 3, Update 6.

The service console provides an execution environment for monitoring and
administering an ESX Server system. The purpose of the service console is to
boot the physical server machines and administer virtual machines. After
the machine boots into the service console, the VMkernel is loaded and

takes control over the machine. The service console supports devices that
are not performance critical, such as mouse, keyboard, screen, floppy drives,
CD-ROM, COM ports, and parallel ports. The service console also runs
applications that implement support, management and administration
functions.

Monitoring Tools

VMware infrastructure exposes performance counters for measuring
performance, scalability, availability, reliability stability and manageability.
These counters assist in monitoring the resources utilization of both virtual
machines and the underlying physical server machines when running with
ESX Server.

There are various tools you can use to collect these performance counters.
The following section includes a high level description of the tools vendor’s
provide as well as the recommended monitoring tool HP offers.

Virtual Center
The most popular and most user friendly monitoring tool for Data Center
administrator. It allows administrators to monitor and control groups of
VMware servers and virtual machines from a single management console. It
shows resource utilization summaries and also provides historical graphs for
CPU, memory, networking, and disk resources.

Once Virtual Center is installed, you may connect to hosts you would like to
manage and monitor. The hosts will be added within the VC client which
will 'install' an agent on the ESX servers and create a local service account to
enable executing commands from within the VC client.

VMware Monitoring

317

After the hosts are added you can look at its performance data right away.
The metrics are collected every 20 seconds and can be viewed through the
VC Client within the Performance Tab of the host you wish to review. You
can then select the time frame you wish to view (Past Day, Week, Month or
Year) and analyze the data.

Command-line Tools

esxtop

Provides a real-time view of CPU and memory for each virtual machine as
well as the service console and certain VMkernel system services. It also
shows CPU utilization per physical processor, memory utilization, and disk
and networking bandwidth for each physical disk and network device
available to virtual machines.

The esxtop command can be run on the local console of the host operating
system or through an ssh session to the host. The esxtop command is
interactive and updates its metrics every few seconds.

For adding more columns to view, you can hit the 'f' key for getting the
additional metrics to monitor online. In addition to the interactive options
of esxtop, you also have 4 command line arguments available. Using these
command line arguments you can:

➤ set the screen refresh (d)

➤ set the utility to 'secure mode' stopping interactive commands (s)

➤ use 'batch mode' to output the data for logging (b)

➤ specify the number of refreshes you want to be done (n)

vmkusage

Shows historical graphs of resource utilization for a single physical host
running ESX Server and its associated virtual machines. This type of display
can give you a great visual representation of utilization trends.

Data is displayed in recent, daily, weekly, or monthly charts, which provide
trend analyses of both the console operating system and the virtual
machines running on the host. The various data analyses are displayed in
the vmkusage output for each time interval.

VMware Monitoring

318

The vmkusage packages are installed during the ESX install process, but are
not enabled by default. In order to properly configure vmkusage to start
gathering information and generating graphs you should run the command
"vmkusagectl install". This command sets up the proper cron job to run the
vmkusage data collection process every minute to collect the data.

The tool generates the graphs as Web pages that you can view by going to
http://<ESXservername>.<your_company>.com/vmkusage

Management User Interface Status Monitor
Displays simple summaries of physical and virtual machine performance
statistics, but does not provide historical graphs for trending.

The status monitor displays results averaged over the last five minutes. The
20-second samples from the last five minutes are collected and averaged.

For viewing the status monitor, open a browser connected to the server and
type the following: https://<hostname>:8333. After logging in, the status
monitor page appears.

HP SiteScope
HP SiteScope provides comprehensive facilities for monitoring VMware
infrastructure. It is based on VMware’s Virtual Center capabilities and may
supply information about host (physical infrastructure) and guests (logical
machines).

Note: It is not recommended to run performance tools from inside a guest
operating system running on a virtual machine. Such tools assume that the
guest operating system is the only operating system running and does not
take in account situations in which the underlying physical CPU is shared,
whereas critical data might be missed and invalid results might be provided.

VMware Monitoring

319

Most Important VMware Counters

VMware exposes its own counters in many categories including those that
measure the utilization of the processors, the memory, the network, and the
I/O devices. When monitoring, it is recommended to correlate with
operating system counters of the host machine. This may give another angle
on the performance of the virtual machine(s).

Counter Description

C
PU

usage Indicates CPU usage as a percentage over the
interval of collection.

usagemhz Indicates CPU usage in MHz over the interval of
collection.

ready Indicates the time to spend waiting for CPU(s) to
become available in the past update interval.

reservedCapacity Indicates the sum of the reservation properties of
the (immediate) children of the host's root
resource pool.

wait Indicates the time spent waiting for hardware or
VMkernel lock thread locks during the last
update interval.

swapwait Indicates the time spent waiting for memory to
be swapped in.

VMware Monitoring

320

M
em

o
ry

usage Indicates the amount of memory available, in
percentage points.

vmmemctl Indicates the amount of memory which is
claimed by other VMs.

active Indicates the amount of memory in "true" need
by the VM.

granted Indicates the amount of memory that was
granted to the VM by the host.

consumed Indicates the amount of host memory consumed
by the virtual machine for guest memory.

overhead Indicates the memory used by the VMkernel to
maintain and execute the VM.

swapin Indicates the rate at which memory is being
swapped in from disk.

swapout Indicates the total number of threads recognized
by the CLR since the start.

shared Indicates the average amount of shared memory.

I/
O

usage Indicates the sum of the data read and written for
all of the disk instances of the host or virtual
machine.

read Indicates the rate at which data is read from the
disk.

write Indicates the rate at which data is written to the
disk.

numberRead Indicates the number of I/O read operations in
the previous sample period.

numberWrite Indicates the number of I/O write operations in
the previous sample period.

Counter Description

VMware Monitoring

321

CPU Counters
This section describes the counters that provide information pertaining to
processor utilization.

N
et

w
o

rk

usage Indicates the sum of data transmitted and
received for all the NIC instances of the host or
virtual machine.

received Indicates the average network throughput for
received traffic.

transmitted Indicates the average network throughput for
transmitted traffic

droppedRx Indicates the number of received packets that
were dropped over the sample period.

droppedTx Indicates the number of transmitted packets that
were dropped over the sample period.

Counter Description

VMware Monitoring

322

usage

Official Name usage

Counter Type Interval (sampled over period of time).

Description CPU usage as a percentage over the interval of
collection. Applicable to both host and virtual
machine.

Usage Notes Measured in percentage, precision is set to 1/100 of
percentage point, i.e. 1 = 0.01%. This counter range
value is between 0 and 10000.

Performance This metric makes it possible to compare two hosts
with different speeds.

CPU usage can be measured only on VM level.

The value of this counter can be changed significantly
by performing the operations on the host system like
creating a snapshot or removing snapshots for all the
VMs.

Operations N/A

Threshold A value of 100% represents complete usage of all
processor cores on the system.

VMware Monitoring

323

usagemhz

Official Name usagemhz

Counter Type Interval (sampled over period of time).

Description Displays CPU usage in MHz over the interval of
collection. Applicable to both host and virtual
machine.

Usage Notes Measured in MHz

Performance This metric makes it possible to compare two hosts
with different speeds.

CPU usage in MHz can be measured for each VM and
each instance of virtual CPU.

The value of this counter can be changed significantly
by performing the operations on the host system like
creating a snapshot or removing snapshots for all the
VMs.

Operations Physical CPU used by ESXServer and Virtual Machines
can be verified by
HostSystem.summary.quickStats.overallCpuUsage and
VirtualMachine.summary.quickStats.overallCpuUsage.
quickStats don't have an interval. It is the sample of
the value of a particular performance counter at the
time the value was captured by the VI Service.

Threshold N/A

VMware Monitoring

324

ready

reservedCapacity

Official Name ready

Counter Type Interval (sampled over period of time).

Description The time spent waiting for CPU(s) to become available
in the last update interval.

Usage Notes Measured in millisec

Performance This metric makes it possible to compare two hosts
with different speeds.

The cpu.ready counter is reported per CPU instance.

Operations Sometimes, the %ready goes over 100. This is an
indication that the VM needs CPU of which it does
not have access. This is fine if this value goes above
100 only for a short period of time. Otherwise, if
%ready is above100 for a considerable amount of time,
then the VM has been lacking CPU for too long a
period.

Threshold N/A

Official Name reservedCapacity

Counter Type Interval (sampled over period of time).

Description The sum of the reservation properties of the
(immediate) children of the host's root resource pool.

Usage Notes This metric reports host status

Performance N/A

Operations The children's sum of reservations can be larger than
that of the parent only if the parent is marked as
reservationExpandable.

Threshold N/A

VMware Monitoring

325

wait

swapwait

Memory Counters
This section describes the counters that belong to memory management of
VMware systems. They provide data about memory consumption, memory
pools, and more.

Official Name wait

Counter Type Interval (sampled over period of time).

Description Wait time is the time spent waiting for hardware or
VMkernel lock thread locks during the last update
interval.

Usage Notes Measured in millisec.

Performance

Operations This metric can be measured for each instance of a
virtual CPU

Threshold N/A

Official Name swapwait

Counter Type Interval (sampled over period of time).

Description Swap wait time is time that the VM spent waiting for
memory to be swapped in. When the VM is waiting for
memory, it is not active.

Usage Notes Measured in millisec.

Performance N/A

Operations This metric can be measured for each virtual machine.

Threshold N/A

VMware Monitoring

326

usage

vmmemctl

Official Name usage

Counter Type Interval (sampled over period of time).

Description Memory usage as a percentage over the interval of
collection. Applicable to both host and virtual
machine.

Usage Notes Measured in percentage, precision is set to 1/100 of
percentage point, i.e. 1 = 0.01%. This counter range
value is between 0 and 10000.

Performance This metric makes it possible to compare two hosts
with different memory capacity.

Operations N/A

Threshold A value of 100% represents complete usage of all
memory on the system.

Official Name vmmemctl

Counter Type Interval (sampled over period of time).

Description The amount of memory currently claimed by the
balloon driver, meaning that the host starting to take
memory from less needful VMs for those with large
amounts of active memory.

Usage Notes Measured in KB.

Performance This metric can be referred to as the amount of
memory reclaimed due to ballooning. It uses machine
pages rather than physical pages because ballooned
pages are 1:1 mapped.

But if the host is ballooning, check swap rates (swapin
and swapout) which would be indicative of
performance problems.

Operations N/A

Threshold N/A

VMware Monitoring

327

active

granted

Official Name active

Counter Type Interval (sampled over period of time).

Description The amount of memory used by the VM in the past
small window of time.

Usage Notes Measured in KB.

Performance This is the "true" number of how much memory the
VM currently has need of. Additionally, unused
memory may be swapped out or ballooned with no
impact to the guest's performance.

Operations N/A

Threshold N/A

Official Name granted

Counter Type Interval (sampled over period of time).

Description The amount of memory that was granted to the VM by
the host.

Usage Notes Measured in KB.

Performance N/A

Operations N/A

Threshold N/A

VMware Monitoring

328

consumed

overhead

Official Name consumed

Counter Type Interval (sampled over period of time).

Description Amount of host memory consumed by the virtual
machine for guest memory.

Usage Notes Measured in KB.

Performance For VirtualMachine: The amount of host memory
consumed by the virtual machine for guest memory.

For HostSystem: This counter can be calculated as:

total memory of host - free memory

It includes memory reserved for the service console.
Note that the entire memory reserved for the service
console is considered as used.

Operations This counter refers to the machine pages.

Threshold N/A

Official Name overhead

Counter Type Interval (sampled over period of time).

Description The memory used by the VMkernel to maintain and
execute the VM.

Usage Notes Measured in KB.

Performance N/A

Operations N/A

Threshold N/A

VMware Monitoring

329

swapin

swapout

Official Name swapin

Counter Type Interval (sampled over period of time).

Description The rate at which memory is being swapped in from
disk.

Usage Notes Measured in KB.

Performance A large number here represents a problem with lack of
memory and a clear indication that performance is
suffering as a result.

Operations N/A

Threshold N/A

Official Name swapout

Counter Type Interval (sampled over period of time).

Description The rate at which memory is being swapped out to
disk.

Usage Notes Measured in KB.

Performance A large number here represents a problem with lack of
memory and a clear indication that performance is
suffering as a result.

Operations N/A

Threshold N/A

VMware Monitoring

330

shared

I/O Counters
This section describes the counters that belong to I/O management of
VMware systems.

usage

Official Name shared

Counter Type Interval (sampled over period of time).

Description The average amount of shared memory.

Usage Notes Measured in KB.

Performance Shared memory represents the entire pool of memory
from which sharing savings are possible.

Operations N/A

Threshold N/A

Official Name usage

Counter Type Interval (sampled over period of time).

Description The sum of the data read and written for all of the disk
instances of the host or virtual machine.

Usage Notes Measured in KB.

Performance For hosts, this metric can be represented on a per
virtual machine basis as a stacked graph.

Operations N/A

Threshold N/A

VMware Monitoring

331

read

write

Official Name read

Counter Type Interval (sampled over period of time).

Description The disk read rate. It indicates the amount of data read
in the performance interval.

Usage Notes Measured in KB.

Performance This metric can be calculated by multiplying
blocksRead and blockSize.

Operations N/A

Threshold N/A

Official Name write

Counter Type Interval (sampled over period of time).

Description The disk write rate. It indicates the amount of data
written to disk in the performance interval.

Usage Notes Measured in KB.

Performance This metric can be calculated by multiplying
blocksWritten and blockSize.

Operations N/A

Threshold N/A

VMware Monitoring

332

numberRead

numberWrite

Network Counters
This section describes the counters that belong to network capabilities of
VMware systems.

Official Name numberRead

Counter Type Instantaneous (sampled once during each
measurement period).

Description The number of I/O read operations in the previous
sample period.

Usage Notes Number

Performance These operations may be variable sized up to 64 KB.

Operations N/A

Threshold N/A

Official Name numberWrite

Counter Type Instantaneous (sampled once during each
measurement period).

Description The number of I/O write operations in the previous
sample period.

Usage Notes Number

Performance These operations may be variable sized up to 64 KB.

Operations N/A

Threshold N/A

VMware Monitoring

333

usage

received

transmitted

Official Name usage

Counter Type Interval (sampled over period of time).

Description The sum of data transmitted and received for all the
NIC instances of the host or virtual machine.

Usage Notes Measured in KBps.

Performance N/A

Operations N/A

Threshold N/A

Official Name received

Counter Type Interval (sampled over period of time).

Description Average network throughput for received traffic.

Usage Notes Measured in KBps.

Performance N/A

Operations Measured per NIC.

Threshold N/A

Official Name transmitted

Counter Type Interval (sampled over period of time).

Description Average network throughput for received traffic.

Usage Notes Measured in KBps.

Performance N/A

Operations Measured per NIC.

Threshold N/A

VMware Monitoring

334

droppedRx

droppedTx

Official Name droppedRx

Counter Type Interval (sampled over period of time).

Description The number of received packets that were dropped
over the sample period.

Usage Notes Number

Performance N/A

Operations Measured per NIC.

Threshold N/A

Official Name droppedTx

Counter Type Interval (sampled over period of time).

Description The number of transmitted packets that were dropped
over the sample period.

Usage Notes Number

Performance N/A

Operations Measured per NIC.

Threshold N/A

VMware Monitoring

335

Optimization and Tuning

The following best practices and configurations are recommended for
achieving optimal performance.

CPU Performance Best Practices
For applications that are CPU-bound, any CPU virtualization overhead
translates into a reduction in overall performance.

The following practices and configurations are recommended for optimal
CPU performance:

➤ Use as few virtual CPUs as possible - virtual CPUs that are not used still
impose resource requirements on the ESX Server.

➤ Make sure to configure a single-processor virtual machine with a UP
HAL/kernel. Multi-processor virtual machines must be configured with an
SMP HAL/kernel.

➤ Avoid running programs in the service console that consume excessive
amounts of CPU or memory. This can adversely affect performance of the
virtual machines and ESX Server.

➤ ESX 3.0.1 fully supports for 64-bit guest operating systems. 64-bit guests
and applications performance is better than corresponding 32-bit
versions.

➤ The guest operating system timer rate can have an impact on
performance. Different operating systems have different timer interrupts.
The overhead of delivering many virtual clock interrupts can negatively
impact guest performance and increase host CPU consumption. If you
have a choice, use guests that require lower timer rates.

VMware Monitoring

336

Memory Performance Best Practices
There are two kinds of memory related overhead that are incurred by ESX
Server virtual machines: the additional time to access memory within a
virtual machine and the extra memory needed by ESX Server for its own
code and data structures. The memory overhead is comprised of two
components: a fixed system-wide overhead for the service console and the
VMkernel, and an additional overhead for each virtual machine.

For ESX Server 3.0, the service console typically uses 272MB and the
VMkernel uses a smaller amount of memory. Overhead memory includes
space reserved for the virtual machine frame buffer and various
virtualization data structures. Overhead memory depends on the number of
virtual CPUs, the configured memory for the guest operating system, and
whether you are using a 32-bit or 64-bit guest operating system.

The following practices and configurations are recommended for optimal
memory performance:

➤ Make sure the host has more physical memory than the total amount of
memory that will be used by ESX plus the sum of the working set sizes
that will be used by all the virtual machines running at any one time.

➤ Carefully select the amount of virtual memory you allocate to your virtual
machines to allow enough memory to hold the working set of
applications you will run on the virtual machine.

➤ If possible, use less than 896MB of guest physical memory on Linux
virtual machines. Linux uses different techniques to map memory in the
kernel if the amount of physical memory is greater than 896MB. These
techniques impose additional overhead on the virtual machine monitor
and can result in slightly lowered performance.

➤ If you choose to over commit memory with ESX Server, you need to be
sure you have sufficient swap space on your ESX Server. ESX server creates
a swap file per virtual machine that is equal in size to the difference
between the virtual machine's configured memory size and its
reservation. This swap file is created at power on, so there are no
performance implications in its creation. This swap space must be greater
than or equal to the difference between the virtual machine's configured
memory size and its reservation.

VMware Monitoring

337

➤ If swapping cannot be avoided, for better performance ensure that the
virtual machine's swap file is placed on a high speed/bandwidth storage
system. By default, a virtual machine's swap file is created in the same
location where the virtual machine is located. This can be changed by
setting the sched.swap.dir option (in the VI client, Edit Settings > Options
> Advanced > Configuration Parameters) to the appropriate location path.

I/O Performance Best Practices
Storage performance issues are most often the result of configuration issues
with underlying storage devices and are not specific to ESX Server. Many
workloads are very sensitive to the latency of I/O operations. Therefore, it is
very important to have the storage device configured correctly.

The following practices and configurations are recommended for optimal
storage performance:

➤ Make sure I/O is not queueing up in the VMkernel by checking the
number of queued commands reported by esxtop (QUED counter).

➤ To optimize storage array performance, spread I/O loads over the available
paths to the storage (across multiple HBAs and SPs).

➤ Avoid operations that would excessively open/close files on the VMFS, a
distributed file system, partition as they tend to be expensive. If possible
access a file, do all that needs to be done with it and close it, instead of
opening, doing something and closing in a tight loop.

➤ It is always recommended to align VMFS partitions for the host and guess.

➤ Fibre Channel SANs typically yield higher performance than NAS and
iSCSI. Fibre Channel SANs do not suffer from the congestion and
oversubscription problems as readily as NAS and iSCSI because of the
Fibre Channel protocol.

➤ Ensure that heavily-used virtual machines do not all access the same
VMFS volume concurrently and that they are spread across multiple
VMFS volumes. Heavy SAN I/O when a large number of virtual machines
access the same VMFS volume concurrently will cause poor disk
performance.

➤ Avoid operations that require excessive file locks or meta data locks, such
as dynamically growing vmdk files and file permissions manipulation.

VMware Monitoring

338

➤ Configure maximum queue depth for the HBA card.

➤ Increase virtual machines' maximum outstanding disk requests if needed

➤ For iSCSI/NFS, make sure several input Ethernet links are not funneled
into fewer output links, resulting in an oversubscribed link. Any time a
number of links transmitting near capacity are switched to a smaller
number of links, oversubscription is a possibility.

➤ Applications or systems that write a lot of data to storage, such as data
acquisition or transaction logging systems, should not share Ethernet
links to a storage device. These types of applications perform best with
multiple connections to storage devices.

➤ Guest storage drivers typically set the I/O size at 64K as default. If
applications issue I/Os that are larger than 64K then they are split into
64K chunks. Changing the registry settings to issue larger block sizes can
enhance performance.

Networking Performance Best Practices
The following practices and configurations are recommended for optimal
networking performance:

➤ Multiple network adapters from a single vSwitch to the physical network
form a NIC team. Such a NIC team can increase performance by
distributing the traffic across those physical network adapters and provide
passive failover in the event of hardware failure or network outage.

➤ The default virtual network adapter emulated inside 32-bit guests is the
AMD PCnet32 device configured with VMware's vlance driver (e1000 for
64-bit guests). However, vmxnet provides much better performance than
vlance and should be used for optimal performance.

➤ Use separate vSwitches (and consequently separate physical network
adapters) to avoid contention between service console, VMkernel, and
virtual machines, and between virtual machines running heavy
networking workloads.

➤ The VMkernel network device drivers should be configured with the same
specific speed and duplex setting of the network switches otherwise very
low bandwidth problems will appear.

VMware Monitoring

339

➤ To establish a network between two virtual machines that reside on the
same ESX host, connect both virtual machines to the same virtual switch.
If the virtual machines are connected to different virtual switches, traffic
will go through wire and incur unnecessary CPU and network overhead.

➤ In cases that low throughput between virtual machines on the same ESX
Server appears (buffer overflows in the guest driver) increase the number
of receive buffers, reduce the number of transmit buffers, or both.

➤ For the best networking performance, it is recommended that the
network adapter will support the following hardware features:

➤ Checksum offload

➤ TCP segmentation offload (TSO)

➤ Capability to handle high memory DMA (i.e. handle 64-bit DMA
addresses)

➤ Capability to handle multiple Scatter Gather elements per Tx frame

VMware Monitoring

340

	Performance Monitoring Best Practices
	Virtualization Technologies
	Microsoft Virtualization Monitoring
	Overview
	Architecture
	Hypervisor
	Parent Partition
	Child Partition

	Monitoring Tools
	Microsoft Monitoring Solutions
	HP Sitescope for monitoring Hyper-V

	Related Windows Counters
	Most Important Counters
	CPU Counters
	Memory Counters
	I/O Counters
	Network Counters
	Generic Counters

	Optimization and Tuning
	Server Optimization and Tuning
	Virtual Machine Optimization and Tuning

	VMware Monitoring
	Overview
	Architecture
	VMware Architecture Layers
	Virtualization Software Internals

	Monitoring Tools
	Virtual Center
	Command-line Tools
	Management User Interface Status Monitor
	HP SiteScope

	Most Important VMware Counters
	CPU Counters
	Memory Counters
	I/O Counters
	Network Counters

	Optimization and Tuning
	CPU Performance Best Practices
	Memory Performance Best Practices
	I/O Performance Best Practices
	Networking Performance Best Practices

	Database Resource Monitoring
	Database Resource Monitoring - Introduction
	Oracle Monitoring
	Overview
	Architecture
	Monitoring
	Most Important Oracle Counters
	Optimization and Tuning

	MS SQL Server Monitoring
	Overview
	Architecture
	Related Windows Counters
	Most Important SQL Server Counters
	CPU-Related Counters
	Memory-Related Counters
	Disk-related Counters
	Lock-related Counters

	Application Server Monitoring
	WebLogic Monitoring
	Overview
	Architecture
	Monitoring
	Most Important WebLogic Counters
	Server
	EJB
	Servlet
	JRockit
	JDBC Connection Pool
	JMS
	JTA

	Optimization and Tuning

	WebSphere Monitoring
	Overview
	Architecture
	Monitoring
	Most Important Counters
	Enterprise Java Beans
	JDBC Connection Pool
	Java Virtual Machine (JVM)
	Servlet Session
	Transaction
	Thread Pool
	Web Application
	System

	Optimization & Tuning

	Web Server Monitoring
	Apache Monitoring
	Overview
	Architecture
	Most Important Apache Counters
	Optimization and Tuning

	IIS Monitoring
	Overview
	Architecture
	Monitoring
	Most Important IIS Counters
	Optimization and Tuning

	Runtime Platforms
	Runtime Platform Monitoring
	Overview
	Architecture

	Java Platform Monitoring
	Overview
	Most Important Java Counters
	Common Counters
	Memory Counters
	Thread Counters
	Class Counters

	.Net Platform Monitoring
	Overview
	Most Important .Net Counters
	Exception Counters
	Memory Counters
	Thread Counters
	Loading Counters
	Security Counters

	Operating Systems
	Windows Monitoring
	Overview
	Architecture
	Objects
	Counters

	Processor - Most Important Counters
	Memory - Most Important Counters
	I/O - Most Important Counters
	Network - Most Important Counters

	Monitoring Unix
	Overview
	Architecture
	Performance Resources

	Processor - Most Important Counters
	Memory - Most Important Counters
	I/O - Most Important Counters
	Network - Most Important Counters

	Introduction
	Introducing Performance Monitoring
	Overview of Performance Monitoring
	Performance Terminology
	Service Time and Queue Time
	Response Time
	Workload Profile, Capacity, and Scalability

	Factors Affecting Performance
	Project Management Factors Affecting Performance
	Technical Factors Affecting Performance

	Performance Objectives
	Performance Monitoring Guidelines
	Monitoring Misconceptions
	Bottlenecks and Tuning

	HP Monitoring Solutions
	Overview
	HP LoadRunner
	Transaction Counters
	Web Resources Related Counters

	HP Sitescope
	HP Diagnostics

	Welcome to This Guide
	About HP Performance Monitoring
	How This Guide Is Organized
	Who Should Read This Guide
	Additional Online Resources

	Table of Contents

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

