

HP ALM Best Practices Series
For ALM Practitioners

 Entities Sharing Best Practices

Document Release Date: March 2014

Software Release Date: March 2014

2

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices

© Copyright 2014 Hewlett-Packard Development Company, L.P.

Trademark Notices

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

 3

Documentation Updates

The title page of this document contains the following identifying information:

• Software Version number, which indicates the software version.
— The number before the period identifies the major release number.

— The first number after the period identifies the minor release number.
— The second number after the period represents the minor-minor release number.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition, visit the
following URL:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP
Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.

http://h20230.www2.hp.com/selfsolve/manuals�
http://h20229.www2.hp.com/passport-registration.html�

4

Support

You can visit the HP Software support web site at:

www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and
support that HP Software offers.

HP Software online software support provides customer self-solve capabilities. It provides a
fast and efficient way to access interactive technical support tools needed to manage your
business. As a valued support customer, you can benefit by using the support site to:
— Search for knowledge documents of interest
— Submit and track support cases and enhancement requests

— Download software patches
— Manage support contracts
— Look up HP support contacts
— Review information about available services

— Enter into discussions with other software customers
— Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in.
Many also require an active support contract. To find more information about support access
levels, go to the following URL:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport ID, go to the following URL:

http://h20229.www2.hp.com/passport-registration.html

http://www.hp.com/go/hpsoftwaresupport�
http://h20230.www2.hp.com/new_access_levels.jsp�
http://h20229.www2.hp.com/passport-registration.html�

 5

Contents

Welcome To This Guide ... 7

About Entities Sharing... 7

Audience .. 8

Prerequisites ... 8

Structure ... 9

Feedback.. 9

1 Introduction to Entities Sharing .. 10

Importance of Entities Sharing ... 10

Common Entities Sharing Scenarios... 11

2 Preparing for Entities Sharing .. 17

Definition of a Project ... 17

Library Types .. 19

Defining a Library .. 21

Importing and Synchronizing a Library ... 23

Import Status .. 24

3 Making Entities Sharing Work ... 25

Roles and Responsibilities .. 25

Development Scenarios .. 27

Sequential Development .. 28
Parallel Development... 29

Connection to Source Code Control ... 30

Reconciliation Tasks ... 31

6

4 Conclusions .. 33

7

Welcome To This Guide
Welcome to the HP Entities Sharing Best Practices guide.

This guide provides concepts, guidelines, and practical examples for the best
implementation of entities sharing such as requirements, tests, test assets,
and business components in various organizations.

About Entities Sharing

Traditionally, the application quality management market has been focused
on specific testing activities, like load/stress and functional/regression. As the
market shifts, organizations are seeking a combination of greater business
value and agility. Businesses are therefore required to take a more holistic
and agile approach if they hope to attain better quality. To meet their
business objectives, they need to evolve from finding defects to validating
functionality. Such an approach is driven by the need for companies as a
whole (not just their IT divisions), to increase efficiency and productivity so
that they can maintain market leadership and attain a competitive
advantage.

The organizations of today must validate and manage:

— Business functions

Raise user acceptance level and decrease testing costs while providing
maximum requirements coverage.

— Production readiness

How does the application scale? Is it secure?

— Risk status

Increase regulation (for example, data privacy, and compliance) and
security requirements while managing costs.

To manage the process, organizations need to focus on overall governance
rather than specific tasks. In addition, an increase in the complexity of
modern systems, composite applications and Service-Oriented Architecture
(SOA), as well as the growing number of regulations requires more effective
solutions to satisfy quality levels.

8

HP Application Lifecycle Management addresses these needs in a
comprehensive manner. It facilitates all types of application tasks, using a
solid foundation for managing complex initiatives and regulatory
requirements. HP ALM is designed to address the needs of organizations that
are looking to track and manage projects of all sizes, including large
initiatives and enterprise-wide releases. HP ALM can help facilitate a Center
of Excellence approach - a logical or physical entity that drives
standardization and processes across an organization, to improve quality,
consistency, effectiveness, and efficiency.

The purpose of this document is to assist HP ALM customers to assess their
current SDLC practices and successfully build and maintain a quality
methodology using advanced features provided by HP ALM. All aspects of
this process have been researched using best practice data and expertise from
various sources including HP’s operating system administrators, HP’s
professional services organization, technical documentation, books from
industry experts and personal experience of many customer quality
organizations. These guidelines will help reduce in initial creation time and
achieve maximum value in operating the HP ALM.

Audience

This guide is intended for:

• Business Analysts

• Quality CoE Managers

• Quality Automation Engineers

• Development Managers

Prerequisites

To use this book, you should have a good acquaintance with major phases of
Software Development Life Cycle (SDLC). You should also be familiar with
the business processes in actual IT organizations.

Operational knowledge and administrative privileges of HP ALM are
essential in implementing these best practices. It is strongly recommended to
read Libraries and Baselines and Imported Libraries Chapters of

9

HP Application Lifecycle Management User Guide to get general
understanding of libraries, baselines, import and synchronization features
mentioned in this document.

Note: All features discussed in this document are available only in HP
Application Lifecycle Management version 11.00. In HP Quality Center
Starter Edition and HP Quality Center Enterprise Edition these features are
disabled.

Structure

This guide is organized as follows:

• Introduction To Entities Sharing

• Preparing for Entities Sharing

• Making Entities Sharing Work

• Conclusions

Feedback

If you have questions, comments, or valuable best practice information you
want to share, send a message to the following email address:

alm_cust_feedback@hp.com

mailto:alm_cust_feedback@hp.com�

 10

1 Introduction to Entities Sharing

Importance of Entities Sharing

In the world of cross-functional IT initiatives, the same application may be
incorporated into multiple initiatives. It is critical for various IT teams to be
able to share the same set of requirements, tests, test assets, and business
components in order to validate that the new initiative is working as
expected and does not disrupt the behavior of other applications. Instead of
recreating entities, customers should be able to share the same entities
across projects.

Since many industries are heavily regulated and must pass a variety of
compliance-based tests such as SOX and HIPAA, it would be highly
inefficient to duplicate entities across multiple projects especially when these
regulations are updated regularly.

Another factor affecting the behavior of IT organizations is agile
development, the centralization and global distribution of project teams. In
general, conditions for building products have evolved from performing some
isolated steps of Software Development Lifecycle (SDLC) to integrating all
steps of the product’s life cycle – regardless of approach taken. Business
analysts are now more involved at all stages of the development lifecycle.
They prepare general requirements and continuously validate the
requirement coverage and product readiness for production. The project
management staff requires better access to the status of the entire process

11

during each stage of the project. Developers need to understand how their
bugs impact the project schedule.

The reusable library of requirements, tests, test assets, and business
components allows multiple stakeholders to coordinate their efforts to
support enterprise-wide releases. Each team can import the baseline of the
library and work with the assets within their own project.

There are two types of libraries:

— A source library is a library used as the basis for creating another
library.

— A destination library can be created by importing an existing source
library from the same project or from a different project.

Changes made to entities in an imported library, either in the source project,
destination project or both, can be viewed from either project. If desired,
those changes can be synchronized between the two projects to enable
ongoing consistency. A library also enables the organization to reuse
compliance requirements and tests, reduce duplication of effort, and
aggregate metrics across projects using a common set of metrics.
Alternatively, even if all assets are maintained inside one large project, using
entities sharing allows independent work of multiple stakeholders while
ensuring consistency of the data.

Common Entities Sharing Scenarios

Different companies manage various areas of SDLC (such as requirements
management, testing and defects tracking) in a similar manner. Most
companies go through the same path of maturity, while some reach the
higher level and others stop short in the comfort zone of lower effort. No
matter what the level of maturity, when it comes to development processes
and scenarios, companies usually go through these processes:

12

• Compliance

Many organizations—especially those in the finance, healthcare, and
government sectors—are required to comply with specific government
regulations such as HIPAA, Sarbanes-Oxley, US Section 508, and many
others. It is therefore obligatory for their IT divisions to demonstrate
adherence to the highest level of regulatory compliance. The following
steps are usually required by these regulations:

— Sign-off of certain processes and documents after passing necessary
reviews and approvals. In a regulated environment, businesses must
provide proof and reasoning when they make decisions that may
potentially affect compliance with the law and standards.

— Generation of reports in predefined formats that provide sufficient
proof that the organization meets the required level of compliance
with specific government or industry regulations and requirements.

— Auditing of changes that impact regulatory requirements throughout
the application lifecycle to show application consistency.

— Propagation of changes to all repositories that use a certain
application.

13

• IT Initiatives

Mature IT organizations often adopt an approach called business
initiative. An initiative is a set of applications that are developed to
support a common business goal. An example of an initiative is adding
web-based payment solutions such as PayPal to an existing credit card
clearance process. To support this initiative, several new applications
may need to be developed and a large number of the existing software
applications may need to be modified.

The scale of these developments and modifications could not be managed
if each application team works alone in their respective silos. Instead, all
requirements management, development, testing, deployment and
change management processes need to be coordinated across multiple
applications. With each application team introducing their own
requirements, tests, components and defects, the key to a successful
release of an IT business initiative is to enable visibility, coordination,
and collaboration.

There are some major challenges in the implementation of an IT
initiative that are addressed by HP ALM:

— Progress reports provide the vital understanding of the IT initiative’s
current status at any point in time. Multiple applications and even
other related initiatives may depend on the requirements or testing
progress of a project. If each application participating in initiative is
represented by library, then HP ALM provides an easy way to import
several libraries into a single project to manage this initiative.

14

— Proliferation of composite applications dictates the need to test not
only each component individually but also end-to-end business
transactions and communication between all components.

— With so many composite applications and increased SOA usage, one
small change in the requirements or a defect fix may affect the entire
business transaction. Change impact analysis of the initiative and its
hidden dependents across all applications is imperative in reaching
“go”/”no go” decisions early in the cycle.

— If the same application exists in multiple repositories, all relevant
stakeholders must make sure that any changes to an application are
properly synchronized between multiple instances of the application.

15

• Enterprise Release

A common approach among mature IT organizations is to group multiple
initiatives together and release updates periodically – monthly, quarterly
or bi-annually. Each release consists of a number of IT initiatives—each
with its own requirements, dependencies, timelines, and priorities.
Managing an enterprise release is complex: it involves tracking and
reporting the progress of each of the initiatives and their underlying
applications. By sharing entities, the enterprise release management
team can control the data consistency and quality of each of the
“ingredients” of the final package. The release of multiple initiatives
requires even more visibility, coordination, and collaboration. Multiple
stakeholders must be able to assess the quality of each of the inter-
connected projects and measure the overall release status and readiness
at any time.

• Parallel Development

To respond to the demands of a hyper-competitive marketplace, IT
departments today are tasked with increasingly diverse responsibilities.
They must support global, 24x7 operations and integrated supply chains
while quickly delivering applications to market.

To support this, companies often build software by employing parallel
development in one of two modes: the waterfall approach or agile
development. In the waterfall approach, each team may develop separate,
unrelated features and deliver them at the end of the process for final
integration.

16

In agile development:

— development teams must manage an increasing number of rapid
changes,

— business analysts need to learn how to capture requirements in
higher level user stories which are both more flexible and can be
easily interpreted by test and development teams,

— QA organization needs to ensure they are prepared to test the multi-
layered applications delivered by development. Their test plans need
to be flexible enough to accommodate the changes in each iteration.

HP ALM provides tools to achieve these goals including entity sharing
between projects being developed in parallel, regardless of what approach
is taken – waterfall or agile - thus allowing quick synchronization of
changes and traceability.

 17

2 Preparing for Entities Sharing
This chapter describes the basic steps for best using HP ALM for entities
sharing.

Definition of a Project

The first step in implementing HP ALM is to decide what the ALM project
should represent. This decision will have a profound effect on the way the
project is managed, how requirements are written and the approach that is
taken to test the application. Since no two IT shops are identical, the decision
depends largely on considerations such as the company culture, business
processes in place and previous tool limitations (if any). Most ALM projects
(database with resource repository) can present one of the following:

• Application

This is the common case. Each project represents one application, with all
of its requirements, business models, KPIs, test sets, test resources,
defects and reports. This is the natural way to map development
activities, to manage relationships between business analysts, developers
and testers. For example, Billing, CRM and Portal are widespread names
of projects and these are dedicated to their namesake applications. The
situation may get more complex when one application is used as a
component of another application or initiative.

• Version/Model

A major application version generates a new HP ALM project and serves
as a starting point for future development. This is common in ISV circles
where a major version signifies the end of a big cycle and start of a new
one. In this case, the older version enters a maintenance state, and the
new version moves through development milestones towards a release.

HP ALM is implemented in various types of companies. Sometimes a new
project represents a new model (physical entity) of the product, such as a
cell phone, printer or TV set. In this case too, a new project is created
when new model development is started.

18

Consider the fact that the same goal may be achieved by using the
Application usage scenario and employing release and cycles features of
HP ALM to manage new versions.

• (Custom) Project

This is also a common usage pattern found in many IT organizations. For
example, suppose there is a requirement to create a web application to
display the credit rating of a banking customer. To develop this new
feature, a new project is opened to cover all aspects of planning, coding,
testing and bug tracking. Integration of existing components and/or
systems usually falls into this category.

• LOB

In a world of huge companies and endless mergers and acquisitions, one
Line of Business (LOB) may be quite separate from another or just
maintain independent sets of data, thus making the case for this kind of
implementation. Each LOB maintains one project where it keeps all
applications or compliance information.

• Repository

More frequently than not, stakeholders in the application lifecycle elect to
designate one project as a repository/rollout so that master records of
requirements, test, test sets are kept there. While not a “project” in strict
terms, it gives the ability to maintain the “master definitions” part of the
process while all “execution” aspects are stored in other projects.

HP strongly recommends having one repository project when developing
and testing complex or composite applications.

• Everything

Sometimes the company decides to maintain all activities of all teams
inside one rather large project. This type of implementation may indicate
the desire to keep everything in one place and separate various types of
entities by granting certain privileges to certain users. Alternatively,
such projects may be dedicated to one of the various ALM activity types,
for example, a defects-only project or requirements-only project for all
kinds of the applications.

HP would not recommend implementing this scenario due to the
contradiction with the ALM project management capabilities (by default,
the project should have clear start and end) and possible complexity
which would increase over time.

HP ALM allows great flexibility in mapping software development processes
– therefore it is imperative to analyze them prior to implementing the tool.

19

Library Types
A library represents a set of entities in a project and the relationships
between them, such as coverage and requirements traceability. The entities in
a library can include requirements, tests, test assets, and business
components. After creating a library, you also create a baseline in order to
have a snapshot of the library at a specific point in time. You can compare
baselines at all stages of the application lifecycle. Viewing baseline history
enables you to track changes made to individual entities in your library over
time. As development continues, you can view and compare all versions of an
entity that are stored in a baseline. Based on comparison, you may decide to
import a baseline to reuse an existing set of entities, or you may choose to
synchronize the projects to maintain the same level of functionality.

The following sections describe different library types based on the usage
scenarios and origin of the project:

• Compliance Library Type

This library type primarily aims to provide reusable compliance
requirements and generic test case definitions through sharing in
companies that need to address regulatory rules that change over time
such as Sarbanes-Oxley, HIPAA, COBIT, and many others. The library is
usually defined as read-only after its initial creation by importing from
the repository/rollout project. The Compliance Library Type is locked
down via permissions to allow for the extraction of the requirements to
the project library but not modification of the compliancy library itself or
the extracted requirements. When a compliance requirement needs to be
updated within the repository itself, the Compliance Officer (or someone
fulfilling that role such as Library Administrator) makes the
modifications within the library. The changes are applied to the
implementation project using synchronization - a changed icon and alerts

SOX
ISO2700

Project
 SOX

ISO27001

Project
 SOX

ISO27001

Project
 SOX

ISO2700

Project

SOX
ISO27001
Policies

Compliance

20

let the project owners know they should resynchronize the requirements.
A full audit history of library changes is provided by HP ALM.

HP recommends creating a new baseline, ideally with the date of change
in the title, upon modification of the library requirements set. In this
case, change request and exception request workflow are usually
established. When a Compliance Library Type is in use, collisions are not
possible.

HP also recommends keeping a library per each specific compliance
requirement to allow for maximum flexibility. This way you get only the
entities relevant for the selected regulation when importing a library
and/or synchronizing between libraries.

See a detailed explanation of development scenarios and participant roles
later in the document.

• Integration Library Type

This library type’s goal is to provide reusable requirements and test cases
for one-time usage through sharing. It is often used as a repository for
common requirements and artifacts that span multiple projects, for
example, common GUI interface test set, common database or security
requirements, performance requirements/test and so on. This type of
library acts as a "template" library and as such, it is defined as read-only
after its initial creation by importing from the repository/rollout project.
Change request and exception request workflow are rarely established in
this type of library. Changes applied in the integration project are seldom
synchronized with repository/rollout project and vice-versa. With this
library type, collisions are possible but usually discarded in both the
implementation and repository/rollout projects because they can corrupt
the library.

Requirement
Test Case

Project

Requirement
Test Case

Project

Requirement
Test Case

Project

Requirement
Test Case

Project

Project A
Project B
Project C

Integration

21

• Entities Library Type

This library type is intended to manage reusable requirements and test
case definitions that are considered assets to the application. As opposed
to other library types, this library is typically defined as read\write after
its initial creation by importing from the repository/rollout project. The
workflow for change requests and exception requests is established
according to the adopted methodology. Changes are made only to the
implementation project, and the changes are applied to the
repository/rollout project using synchronization. With this library type,
collisions are possible and need to be handled to avoid the corruption of
the library.

These are suggested library types – in actual implementations their usages can
vary.

Defining a Library

Library structure should be planned with future needs and growth in mind.
HP recommends examining granularity of the libraries before creating them.

Smaller libraries give greater flexibility in assembling multiple combinations
of assets for sharing. On the other hand, too many libraries may cause
management overhead and confusion. When creating libraries, you may want
to use filters to select only the relevant informational resources instead of
selecting generic roots. This model gives the user more control over library
content, and helps to define libraries that are not based solely on the
hierarchical structure of the project.

Datamart +
Savings + SAP
Maintenance

Project D

Datamart +
Portal
Feature Pack

Project A
Datamart +
Savings + SAP
Feature Pack

Project B

Datamart +
Portal
Maintenance

Project C

DataMart
Portal
Savings
SAP

Entity

22

Another approach is to define “initial roots” for the libraries and let HP ALM
automatically gather all of the relevant entities based on predefined links (for
example, coverage and requirement traceability).

The capabilities of filtering and auto completion of entities selection were
added in HP ALM 11.00.

HP recommends synchronizing baseline creation time with a major step in
the development process such as the end of a cycle, iteration, or release.

When creating a library, you may prefer to choose requirements coverage
and/or test coverage options that may result in a large population of linked
entities even if you selected a small number of records. To avoid performance
problems, the number of entities recommended for a single library is
calculated based on two site configuration parameters:

— REQUIREMENTS_LIBRARY_FUSE with default value of 3500

– Maximum number of requirements in a library should not exceed
this parameter value, i.e. 3500 entities

— LIBRARY_FUSE with default value of 2500

– Maximum number of tests in a library should not exceed this
parameter value, i.e. 2500 entities

– There is a ratio of 1:4 between tests and resources, i.e. maximum
number of resources should not exceed the quarter of
LIBRARY_FUSE , i.e. 625 entities

– Same rule works for business components, i.e. maximum number
of business components should not exceed the quarter of
LIBRARY_FUSE , i.e. 625 entities

These values are verified when you create baselines, import libraries, or
synchronize libraries. HP strongly recommends limiting the number of
entities in a library to the sum of all sorts of records according to the rules
above.

23

Importing and Synchronizing a Library
We recommend using cross-project customization to make sure that the
fields used in all your projects have common definitions, making it easier to
import and export projects. Shared customization is the preferred way to
introduce custom fields to projects, otherwise they are ignored by the import
and synchronization process. Put all custom fields and values in a template
project and use this template to create new projects. There are more reasons
to establish a template project, such as cross-project reporting and defect
synchronization. As shown in the previous section, in the majority of
implementations customers have more than one project to cover their needs.
Having a template project will help in proactively reducing problems
regardless of the approach taken.

The process of importing the library can be time-consuming. As the import
operation builds the library structure and populates every entity, folder and
link, large libraries could take several hours to import. Moreover, during the
import process, the structure of the library is unstable as more entities are
being created and populated, so we recommend not using the library objects
until the import process is complete. An easy and recommended way to
accomplish this is to perform imports of large libraries overnight, when HP
ALM is not being used for its normal activities.

Similarly, when synchronizing the library that contains entities that are
under version control, it is advisable to verify that all objects on the
destination side are checked-in and not locked.

The first step of the library import or synchronization process is verification.
The verification process includes the following checks:

— Requirement type check. Checks that your project contains the
necessary requirement types.

— Entities compatibility check. Checks that your project has the
necessary extensions enabled. If the source project has an extension
enabled, and the source library includes entities for that extension,
your project must also have that extension enabled.

— Library size check. Checks that the number of entities in the library
does not exceed the maximum defined by site configuration
parameters (see explanation).

The synchronization process is performed based on these rules:

— If entity was changed in both the source and the destination libraries,
the source entity gets overwritten. The change is recorded into
history log of the entity.

24

— If source entity was not changed, but destination was modified, the
destination entity remains untouched.

— When an entity is deleted in the source project, it is placed into the
special obsolete folder in the destination project. This allows
additional verification before final deletion, or it allows entities to be
restored to their original place in the hierarchy. After reviewing the
obsolete folder, the user should remove any entities—only then is the
synchronization process complete.

— The process does not allow schema inconsistency and will fail during
the verification step even before any data is copied. It is therefore
important to keep source and destination projects entities in the same
shape in terms of schema. To ensure consistency, use cross-project
customization as described above.

— There is no way to merge data between source and destination
entities if there is a data conflict. These conflicts may be a result of
the baseline version of the entity taking precedence over the locally
modified copy of the same entity. In this case, the only way to merge
the changes is to do so manually.

Import Status

Import and synchronization processes may become quite complex, especially
when there are many projects participating in the process. To better
understand the status of the entities and the impact their change or deletion
may have, open the “Usage” view, Imported By/From tabs. See Imported
Libraries Chapter of HP Application Lifecycle Management User
Guide for details.

Another option for checking the entities status is to generate a Baseline
Report. This report provides detailed information on the baselines content in
a standard HP ALM report output format. The report was introduced in HP
ALM version 11.00.

25

3 Making Entities Sharing Work
This chapter describes best practices for sharing entities in HP ALM.

Roles and Responsibilities

Similar to the other entities in HP ALM, libraries and baselines have group
permissions, for example, can create and can import. When importing a
library, the importing user must have permissions to create the relevant
entities in the modules, for example, new requirement and new test.

Since the import and synchronization processes may result in data corruption
or loss if not managed properly, permissions should be carefully planned
based on a person’s role in this process. The following are examples of useful
roles that were observed at HP ALM customer sites:

— Library Administrator (LibAdm)

The Library Administrator is responsible for the library and its
contents. They handle synchronizations, provide entities collision
reports, and notify project managers about library usage by other
project managers.

— Implementation Project Manager (ImpPM)

The Project Manager is responsible for an implementation project,
selects and imports libraries, defines milestones, and assigns
reconciliations tasks to subject matter experts working on the
implementation project.

— Repository Project Manager (RepPM)

The Repository Project Manager is responsible for a repository/rollout
project, selects and imports libraries, assigns reconciliations tasks to
subject matter experts working on the implementation/repository
project, and provides stable baselines for import.

— Implementation Project Contributor (ImpPC)

People acting in this capacity are usually business analysts, test
engineers, QA managers and the like. They have access to and control

26

over certain information, like a specific application’s requirements or
test sets.

— Repository Project Contributor (RepPC)

Like the previous role, people in this role handle the portion of the
library tree that the LibAdm assigned to them.

— Library Reconciliation Board (LRB)

This is a board of Library Administrators, Implementation Project
Managers, and Repository Project Managers. They plan reconciliation
activities, and analyze entities collision reports based on their
expertise and input from subject matter experts who are
Implementation Project Contributors and Repository Project
Contributors.

The user who performs the import operation, such as LibAdm, ImpPM and
RepPM, should have permissions for both the origin project and the
destination project. The permissions for both projects do not need to be the
same. For example, a user can be a super-admin in the origin project, and
have limited privileges in the destination project, such as create and update
permissions.

Libraries in the group permission screen have a data hiding filter. This filter
can be used to hide certain libraries from particular users, such as ImpPC
and RepPC. To define specific criteria for the data hiding filter, use user-
defined fields for libraries.

Remember that the above definitions are roles and responsibilities, not people.
One person could fulfill multiple roles within the SDLC organization
structure.

27

Development Scenarios
Libraries and baselines are powerful tools that can be used across the SDLC.
HP recommends following these rules when using these tools in your
organization:

— Use a naming convention and/or custom attributes for libraries to
enable the correct identification of their type, scope, status.

– Type: Compliancy, Entities, etc.

– Scope: description of the contents

– Status: new, ready, under maintenance, etc.

— Use a naming convention and/or custom attributes for baselines to
enable the correct identification of their type.

– Type: after synchronization, after reconciliation, before
synchronization, etc.

It is possible to enforce naming convention by using workflow code.

Part of the LibAdm responsibility is to inform ImpPMs about content changes
so they can choose the proper library and baseline. In some cases, when there
are a large number of entities and widespread use in child projects, consider
implementing an automatic notification feature, such as automatic email to
ImpPMs, for changes in the rollout project.

Before sharing entities, make sure these conditions are met:

— Repository/rollout projects are available and contain all relevant
libraries

— Implementation projects have already been created using the cross
project customization feature and libraries have been imported as
part of project setup

There are two common development scenarios in which entity sharing is an
integral part of the process – sequential development and parallel
development. HP ALM natively supports both scenarios and provides the
means to achieve maximum productivity by using this feature.

28

Sequential Development

This is the most popular way to develop and test software. Tasks come one
after the other and synchronization is performed at certain, predefined points
of time.

Here is a typical flow of events in a sequential development project:

— ImpPM reaches a project milestone that requires the synchronization
of imported libraries (from implementation project into repository
project)

— ImpPM asks ImpPCs to commit a stable revision of assigned entities
(and/or group of entities)

— ImpPM creates the baseline for project milestone

— LRB compares the implementation project baseline and the
repository project baseline to assess the impact

— LRB plans for reconciliation activities and assigns them to ImpPCs
and/or RepPCs

— LibAdm performs library synchronization for the repository project
(gets the latest/stable baseline from repository project)

— Baseline after synchronization is automatically created

— ImpPCs and/or RepPCs perform reconciliation tasks

— LibAdm creates a baseline after reconciliation

In the case of sequential development, more than two projects may
synchronize with a single repository/rollout project.

29

Parallel Development

This ways of development is primarily used by agile teams to speed up
delivery.

Here is the typical flow of events in a parallel development project:

— ImpPM of Project A reaches project milestone that requires the
synchronization of imported libraries (from implementation project to
repository project)

— ImpPM of Project A asks his/her ImpPCs to commit a stable revision
of assigned entities (and/or group of entities)

— ImpPM of Project A creates the baseline for project milestone

— LRB compares the implementation project baseline and the
repository project baseline to assess the impact.

— LRB plans for reconciliation activities and assigns them to ImpPCs of
Project A and/or RepPCs

— LibAdm performs library synchronization for the repository project
(gets the latest/stable baseline from repository project)

— Baseline is automatically created after synchronization

— ImpPCs of Project A and/or RepPCs perform reconciliation tasks

— LibAdm creates a baseline after reconciliation

30

— ImpPM of Project B reaches project milestone that requires the
synchronization of imported libraries (from implementation project to
repository project)

— ImpPM of Project B asks ImpPCs of his/her project to commit a stable
revision of assigned entities (and/or group of entities)

— ImpPM of Project B creates a baseline before synchronization

— ImpPM of Project B performs library synchronization for the
implementation project, i.e. gets latest/stable baseline from repository
project (from repository project to implementation project)

— Baseline is automatically created after synchronization

— ImpPCs of Project B performs reconciliation tasks

— ImpPM of Project B creates baseline for project milestone

— LibAdm performs library synchronization for the repository project,
i.e. gets latest/stable baseline from implementation project (from
implementation project to repository project)

— Baseline is automatically created after synchronization

— ImpPCs of Project B and/or RepPCs perform reconciliation tasks

— LibAdm creates a baseline after reconciliation

Due to the complexity and multiple meeting points, parallel development is
typically used between no more than two projects/development teams.

Connection to Source Code Control

Regardless of the chosen development method – be it sequential or parallel,
in most of the cases the development teams keep source code in a shared
repository managed by Source Code Control (SCC) system. This is vital in
handling the actual source and objects associated with the coding effort.

As with Application Lifecycle Management, managing source code follows a
similar pattern with either a sequential or parallel development. Branching
and merging, creating baselines/check point and many other life cycle
concepts directly apply to SCC tools.

HP ALM can plug into the leading development environments such as
Eclipse and Microsoft Visual Studio and source code control systems such as
Subversion. HP ALM Connector, developed by HP partner company TaskTop,
integrates its task-focused interface technology with HP ALM, resulting in

31

improved developer productivity and interoperability with integrations with
primary commercial and open source ALM platforms.

Even if there is no automatic connectivity between your SCC and HP ALM, it
is still valuable to track the SCC baselines and to relate them to the baselines
created in HP ALM using certain procedures and naming conventions.

HP recommends that every time a baseline in HP ALM is created, a notation
of the SCC tool baseline label or numbering pattern is written in the library
baseline comments. For example, the baseline comments in ALM may contain
"Subversion Release 4.3 beta" or at least "Checkpoint 1.7". This should allow
for an easy correlation of the two related entities. On the other hand, a
reference could also be placed in the SCC checkpoint comments area to
reference its corresponding baseline in HP ALM.

Reconciliation Tasks

As mentioned in previous sections, various data conflicts may arise during
the synchronization process. To ensure data consistency, follow these
guidelines when performing data reconciliation tasks in the repository
project:

— Delete an entity that has been created in repository project

– ImpPC is required to delete the entity

— Restore an entity that has been deleted in repository

– ImpPC is required to move a deleted entity from the
“SYNCH_OBSOLETE_*” folder to its original node (folder or
entity)

— Keep entity in “Baseline after synchronization” (latest revision)

– Nothing has to be done

32

— Keep entity in latest “Baseline before synchronization” (previous
revision)

– ImpPC is required to check-out a previous revision of the entity
and perform an immediate check-in

— Merge entity from both baselines (create a new revision)

– ImpPC is required to check-out a revision of the entity that
represents the best starting point for the reconciliation, (i.e. the
revision containing most of the information that needs to be kept),
apply the changes approved by the LRB, and check-in the entity.

33

4 Conclusions
The wave of application modernization has clearly started showing its power.
Driven by new technologies and the quest for simplification and decreased
costs, modernization touches almost all aspects of IT. It turns local, dedicated
teams into virtual, distributed ones. It reshapes applications from monolithic
blocs of software to composite “systems of systems.” It enriches user
experience and company brand via Web 2.0 and rich Internet applications. It
changes release management from single launches to multi-application
“release trains.” To truly enable business change, IT managers must examine
their approach to planning, developing, deploying, and operating software
applications.

Since applications are no longer encapsulated, projects are no longer
encapsulated. Functionality, performance, and security decisions made
within a project affect IT services throughout the enterprise. Sharing entities
between projects and thus allowing collaboration between various
stakeholders in IT helps keep up the pace of the ever changing essence of
today’s applications. HP ALM provides all of the necessary means for sharing
artifacts. This is particularly vital in larger enterprises where team
collocation is not always viable.

	HP ALM Entities Sharing Best Practices Guide
	Contents
	Welcome To This Guide
	About Entities Sharing
	Audience
	Prerequisites
	Structure
	Feedback

	Introduction to Entities Sharing
	Importance of Entities Sharing
	Common Entities Sharing Scenarios

	Preparing for Entities Sharing
	Definition of a Project
	Library Types
	Defining a Library
	Importing and Synchronizing a Library
	Import Status

	Making Entities Sharing Work
	Roles and Responsibilities
	Development Scenarios
	Sequential Development
	Parallel Development
	Connection to Source Code Control
	Reconciliation Tasks

	Conclusions

