
HP Server Automation
Ultimate Edition

Software Version: 10.10
Platform Developer Guide
Document Release Date: June 30, 2014

Software Release Date: June 30, 2014

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for
technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211
and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items
are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notices

© Copyright 2001-2014 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe® is a trademark of Adobe Systems Incorporated.

Intel® and Itanium® are trademarks of Intel Corporation in the U.S. and other countries.

Microsoft®, Windows®‚ Windows® XP are U.S. registered trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

UNIX® is a registered trademark of The Open Group.

Support

Visit the HP Software Support Online website at:

http://www.hp.com/go/hpsoftwaresupport

This website provides contact information and details about the products, services, and support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can benefit by
using the support website to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support
contract. To register for an HP Passport ID, go to:
2

http://www.hp.com/go/hpsoftwaresupport

http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

Support Matrices

For complete support and compatibility information, see the support matrix for the relevant product release. All support
matrices and product manuals are available here on the HP Software Support Online website:

http://h20230.www2.hp.com/sc/support_matrices.jsp

You can also download the HP Server Automation Support and Compatibility Matrix for this release from the HP Software
Support Online Product Manuals website:

http://h20230.www2.hp.com/selfsolve/manuals

Documentation Updates

All the latest Server Automation product documentation for this release is available from the SA Documentation Library:

http://support.openview.hp.com/selfsolve/document/KM00417675/binary/SA_10_docLibrary.html

Use the SA Documentation Library to access any of the guides, release notes, support matrices, and white papers relevant
to this release or to download the full documentation set as a bundle. The SA Documentation Library is updated in each
release and whenever the release notes are updated or a new white paper is introduced.

How to Find Information Resources

You can access the information resources for Server Automation using any of the following methods:

Method 1: Access the latest individual documents by title and version with the new SA Documentation Library

Method 2: Use the complete documentation set in a local directory with All Manuals Downloads

Method 3: Search for any HP product document in any supported release on the HP Software Documentation Portal

To access individual documents:

1 Go to the SA 10.x Documentation Library:

http://support.openview.hp.com/selfsolve/document/KM00417675/binary/SA_10_docLibrary.html

2 Log in using your HP Passport credentials.

3 Locate the document title and version that you want, and then click go.

To use the complete documentation set in a local directory:

1 To download the complete documentation set to a local directory:

a Go to the SA Documentation Library:

http://support.openview.hp.com/selfsolve/document/KM00417675/binary/
SA_10_docLibrary.html

b Log in using your HP Passport credentials.

c Locate the All Manuals Download title for the SA 10.1 version.

d Click the go link to download the ZIP file to a local directory.
3

http://h20229.www2.hp.com/passport-registration.html
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20230.www2.hp.com/sc/support_matrices.jsp
http://h20230.www2.hp.com/selfsolve/manuals
http://support.openview.hp.com/selfsolve/document/KM00417675/binary/SA_10_docLibrary.html

e Unzip the file.

2 To locate a document in the local directory, use the Documentation Catalog (docCatalog.html), which provides an
indexed portal to the downloaded documents in your local directory.

3 To search for a keyword across all documents in the documentation set:

a Open any PDF document in the local directory.

b Select Edit > Advanced Search (or Shift+Ctrl_F).

c Select the All PDF Documents option and browse for the local directory.

d Enter your keyword and click Search.

To find additional documents on the HP Software Documentation Portal:

Go to the HP Software Documentation Portal:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, click the New users -
please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HP
sales representative for details. See Documentation Change Notes for a list of any revisions.

Product Editions

There are two editions of Server Automation:

• Server Automation (SA) is the Ultimate Edition of Server Automation. For information about Server Automation, see the
SA Release Notes and the SA User Guide: Server Automation.

• Server Automation Virtual Appliance (SAVA) is the Standard Edition of Server Automation. For more information about
what SAVA includes, see the SAVA Release Notes and the SAVA at a Glance Guide.
4

http://h20230.www2.hp.com/selfsolve/manuals
http://h20229.www2.hp.com/passport-registration.html

5

6

Contents
1 Overview .13

Overview of the Server Automation Platform .13

Components of the Server Automation Platform .14

Automation Applications .15

SA Runtime Environment. .15

SA Platform Resources .16

SA Management Network .18

SA Managed Devices .18

Benefits of the SA Platform .19

Powerful Security .19

Rich Services. .19

Easily Accessible to a Broad Spectrum of Programmers .20

SA Platform API Design. .20

Services .20

Objects in the API. .21

Exceptions. .22

Event Cache .22

Searches .22

Security .23

API Documentation and the Twister .23

Constant Field Values .23

Supported Clients .24

2 SA CLI Methods .25

Overview of SA CLI Methods .25

Method Invocation .25

Security .26

Mapping Between API and SA CLI Methods. .26

Differences Between SA CLI Methods and Unix Commands .26

SA CLI Method Tutorial .26

Format Specifiers. .30

Position of Format Specifiers .31

Default Format Specifiers .32

ID Format Specifier Examples .32

Structure Format Specifier Syntax. .32

Structure Format Specifier Examples .33

Directory Format Specifier Examples .35

Value Representation .35

SA Objects in the OGFS .35
 7

Primitive Values .36

Arrays .38

SA CLI Method Parameters and Return Values. .39

Method Context and the self Parameter .39

Passing Arguments on the Command-Line .39

Specifying the Type of a Parameter. .40

Complex Objects and Arrays As Parameters .40

Overloaded Methods. .40

Return Values. .40

Exit Status. .41

Search Filters and SA CLI Methods .42

Search Syntax. .42

Search Examples .42

Searchable Attributes and Valid Operators .44

Example Scripts .44

create_custom_field.sh .44

create_device_group.sh. .45

create_folder.sh. .47

remediate_policy.sh .47

remove_custom_field.sh .48

schedule_audit_task.sh. .50

Getting Usage Information on SA CLI Methods .50

Listing the Services .50

Finding a Service in the API Documentation. .51

Listing the Methods of a Service. .51

Listing the Parameters of a Method .51

Getting Information About a Value Object .51

Determining If an Attribute Can Be Modified .52

Determining If an Attribute Can Be Used in a Filter Query .52

3 Python API Access with Pytwist. .53

Overview of Pytwist .53

Setup for Pytwist .53

Supported Platforms for Pytwist .53

Access Requirements for Pytwist. .53

Installing Pytwist on Managed Servers. .53

Pytwist Examples .54

get_server_info.py .55

create_folder.py. .56

remediate_policy.py .56

Virtualization Pytwist Examples. .58

createVM_WithOSBP.py .59

deployVM.py. .62

Pytwist Details .65

Authentication Modes. .65

TwistServer Method Syntax .66

Error Handling .66
8

Mapping Java Package Names and Data Types to Pytwist .66

4 Creating Automation Platform Extensions (APX) .69

Creating an APX .70

Program APXs. .71

Web APXs. .71

APX User Roles .72

APX Permissions .72

Permission Escalation .73

APX Structure .74

File Structure .74

OGFS Integration .74

APX Interfaces - Defining Categories of APX Extensions .75

The RightClickToRun Interface .76

Using the Interface API .77

The apxtool Command .78

Syntax of apxtool .78

Using Short and Long Command Options .78

Creating a New APX - apxtool new .79

Deleting an APX - apxtool delete .80

Exporting an APX from SA - apxtool export .81

Importing an APX into SA - apxtool import .82

Querying APX Information - apxtool query .83

Setting the Current Version of an APX - apxtool setcurrent .84

Error Handling .85

APX Files .86

The APX Configuration File - apx.cfg .87

The APX Permissions Escalation Configuration File - apx.perm. .87

Showing the Progress of an APX. .88

The apxprogress Command. .88

Example Shell Script that Uses apxprogress .89

Viewing APX Progress. .90

Tutorial: Creating a Web Application APX .90

Tutorial Prerequisites .90

1. Set Permissions and Create the Tutorial Folder .91

2. Create a New Web Application .91

3. Import the New Web Application into SA .93

4. Run the New Web Application. .93

5. Modify the Web Application .94

6. Run the Modified Web Application. .95

Tutorial: Creating a Program APX .96

Tutorial Prerequisites .96

1. Set Permissions and Create the Tutorial Folder .96

2. Create a New Program APX .97

3. Import the New APX into SA .99

4. Run the New APX. .99

5. Modify the APX .99
9

6. Run the Modified APX. 100

7. View the APX Progress in the Twister Interface . 100

5 Agent Tools . 103

Introduction to Agent Tools . 103

Installation Requirements . 104

Operating System Support . 104

Security, Access Control, and Authentication . 104

Other Requirements . 104

Installation . 104

Manually Installing Agent Tools . 105

Installing Agent Tools when Installing an Agent . 105

Upgrading Agent Tools . 105

Agent Tools Scripts . 105

Usage . 105

Sample Agent Tool Scripts . 108

UNIX/Linux . 108

Windows . 108

6 Microsoft Windows PowerShell/SA Integration . 109

Introduction to Microsoft Windows PowerShell. 109

Windows PowerShell Integration with SA . 109

Integrated PowerShell/SA Cmdlets . 110

Installation Requirements . 110

Operating System Support . 110

Installation . 110

Microsoft PowerShell Integration with SA Features . 111

Remote access to Managed Servers . 111

Audit and Snapshots Rules . 111

DSE Script Integration. 111

Sample Sessions . 111

Scenario 1 . 112

Scenario 2 . 115

Scenario 3 . 117

Scenario 4 . 119

7 Java RMI Clients . 123

Overview of Java RMI Clients . 123

Setup for Java RMI Clients . 123

Java RMI Example . 124

Compiling and Running the GetServerInfo Example. 124

8 Web Services Clients . 125

Overview of Web Services Clients. 125

Programming Language Bindings Provided in This Release . 125

URLs for Service Locations and WSDLs . 125

Security for Web Services Clients . 125

Overloaded Operations . 126
10

Java Interface Support . 126

Unsupported Data Types . 126

Invoke setDirtyAtrributes When Creating or Updating VOs . 127

Compatibility With SA Web Services API 2.2. 127

Perl Web Services Clients . 128

Required Software for Perl Clients. 128

Running the Perl Demo Program . 128

Perl Example Code . 129

Construction of Perl Objects for Web Services. 132

C# Web Services Clients . 135

Required Software for C# Clients . 135

Obtaining the C# Client Stubs . 135

Building the C# Demo Program. 135

Running the C# Demo Program . 136

C# Example Code . 136

Password Security with C# . 138

9 Pluggable Checks . 141

Overview of Pluggable Checks . 141

Setup for Pluggable Checks . 141

Pluggable Check Tutorial . 141

Overview of Audit and Remediation. 148

Pluggable Check Creation. 149

Guidelines for Pluggable Checks . 149

Development Process for Pluggable Checks . 151

Pluggable Check Configuration (config.xml) . 151

Audit (get) Scripts . 153

Remediation (set) Scripts. 154

Other Code for Pluggable Checks . 155

Zipping Up Pluggable Checks . 155

Importing Pluggable Checks . 155

Audit Policy Creation . 156

Creating an Audit Policy . 156

Exporting the Audit Policy . 157

Document Type Definition (DTD) for config.xml File. 157

A Search Filter Syntax . 163

Filter Grammar . 163

Usage Notes . 164

B Rebuilding the Apache HTTP Server and PHP . 165

Extending the APX HTTP Environment . 165

Rebuilding PHP. 165

Rebuilding Apache. 166

Index
11

12

1 Overview
Overview of the Server Automation Platform

The Server Automation Platform is a set of APIs and a runtime environment that facilitate the integration
and extension of SA. The Server Automation Platform APIs expose core services such as audit compliance,
Windows patch management, and OS provisioning. The runtime environment executes Global Shell
scripts that can access the Global File System (OGFS).

Using the Server Automation Platform, you can perform the following tasks:

• Build new automation applications and extend SA to improve IT productivity and comply with your IT
policies.

• Exchange information with other IT systems, such as existing monitoring, trouble ticketing, billing,
and virtualization technology.

• Use the SA Model Repository to store and organize critical IT information about operations,
environment, and assets.

• Automate the management of a wide range of applications and operating systems.

• Incorporate existing Unix and Windows scripts with SA, enabling the scripts to run in a secure, audited
environment.
13

Components of the Server Automation Platform

Figure 1 shows the major elements of the Server Automation Platform.

figure 1 Server Automation Platform Components

As Figure 1 shows, the platform comprises the following five key elements. Each of these elements is
discussed in more detail in subsequent sections.

• Automation Applications: The applications users write on top of the platform. These
applications can either be SA-Hosted Applications which run in the context of the running SA or
standalone applications running in the context of existing business and management systems.

• Runtime Environment: Provides a set of powerful, out of the box runtime services and a
corresponding language independent programming model explicitly designed to be easily
accessibility to a broad spectrum of programmers, from script writers to Web developers to
experienced enterprise Java programmers.

• Platform Resources: Provide developers easy access to the platform’s rich data objects,
automation actions (such as patching, provisioning, and auditing), and capabilities (such as remote
access to each managed server’s runtime environment).

• SA Management Network: A powerful set of connectivity, security, and caching technologies
which enable the platform to reach any device regardless of its location, IP address space, bandwidth
availability, and so on.

• SA Managed Devices: The managed servers and network devices connected to the platform by
the SA Management Network.
14 Chapter 1

Automation Applications

As Figure 1 shows, the Automation Applications are at the top of the stack. These are the applications
users write on top of the platform.

Automation applications can either be SA-Hosted Applications, which run in the SA Runtime Environment,
or as standalone applications that run in a completely independent context. Standalone applications
access the platform remotely through Web Services calls.

Simple applications can be written as simple Unix shell scripts in minutes. More complex applications—
such as integration with an existing source control or ticketing system—can take a little longer and might
involve Python or Microsoft .NET or Java coding. In either case, the platform is designed as a
language-independent system easily adopted by a wide variety of developers.

SA Runtime Environment

Next down the platform stack is the SA Runtime Environment, which provides a set of powerful,
out-of-the box runtime services and a corresponding language-independent programming model.
SA-Hosted Applications run in the SA Runtime Environment.

The core of the runtime environment consists of two components: the Global Shell and the Global File
System. Together, these two components organize and provide access to all managed devices in a
familiar Linux/Unix shell file-and-directory paradigm.

Global Shell

The Global Shell is a command-line interface to the Global File System (OGFS). The command-line
interface is exposed through a Linux shell such as bash that runs in a terminal window. The OGFS unifies
the SA data model and the contents of managed servers—including files—into a single, virtual file
system.

Global File System

The OGFS represents objects in the platform data model (such as facilities, customers, and device groups)
and information available on platform managed devices (such as the configuration setting on a managed
network device or the file system of a managed server) as a hierarchical structure of file directories and
text files. For example, in the OGFS, the /opsw/Customer directory contains details about customer
objects and the /opsw/Server directory has information about managed servers. The /opsw/Server
directory also contains subdirectories that reflect the contents (such as file systems and registries) of the
managed servers.

This file-and-directory paradigm allows administrators familiar with shell scripting to easily write scripts
which perform the same task across different servers by iterating through the directories that represent
servers. Behind the scenes, the Global File System securely delivers and executes any logic in the script to
each managed server.

The contents of devices can be accessed through the Global File System, a virtual file system that
represents all devices managed by SA and Network Automation (NA). Given the necessary security
authorizations, both end users and automation applications can navigate through the OGFS to the file
systems of remote servers. On Windows servers, administrators can also access the registry, II metabase,
and COM+ objects.
Overview 15

SA Command Line Interface

The SA Command Line Interface (CLI) provides system administrators and platform automation
applications a way to invoke automation tasks such as provisioning software, patching devices, or running
audits from the command line. A rich syntax allows users to represent rich object types as input or receive
them as output from CLI invocations.

The CLI itself is actually programmatically generated on top of the platform API, discussed in the next
section. The advantage of this is that as soon as developers add a new API to the platform API, a
corresponding CLI method is automatically available for it. In other words, there is no lag time between
the availability of new features in the product and the availability of the corresponding CLI methods in the
platform.

SA Platform API

The SA Platform API is the Win32 API of SA: It defines a set of application programming interfaces to get
and set values as well as perform actions. The SA user interfaces, including the SA Client and the SA
Command Line Interfaces (CLI), are all built on top of the SA Platform API. The API includes libraries for
Java RMI clients and WSDLs for SOAP-based Web Services clients. With Web Services support,
programmers can create clients in popular languages such as Perl, C#, and Python.

SA Platform Resources

SA Platform Resources sit beneath the SA Runtime Environment and give developers access to a rich set
of objects and actions which they can re-use and manipulate in their own applications.

Inventory Model

The Inventory Model provides all the information gathered by the SA about each managed devices such as
make, manufacturer, CPU, operating system, installed software, and so on. Inventory information is made
available through the SA API and also appears as files (in the attr subdirectories) in the Global File
System. The Inventory Model includes objects such as Servers and Network Devices.

Administrators can extend the data associated with inventory objects. For example, if users want to store
a picture of the device or a lease expiration date or the ID of a UPS the device is plugged into, the platform
makes it easy to add those attributes to each device record. Users can then add, delete, and work with
those attributes just as they would the attributes that come out of the box.

Security Model

The Security Model allows developers to leverage the built-in SA authentication and authorization
security systems.

All clients of the platform—management applications, scripts, as well as the end-user interfaces
provided by SA are controlled by the same security framework.

The security administrator — not the developer — creates user roles and grants permissions. Developers
can re-use all of these user roles and permissions in the context of their own applications. For example,
network administrators can write a shell script and share it with other network administrators with the
confidence that those network administrators can only run that script on network devices they are
authorized to manage and no others.

The authorization mechanism controls access at several levels: the types of tasks users can perform, the
servers and network devices accessed by the tasks, and the SA objects (such as software policies).
16 Chapter 1

Environment Model

The Environment Model defines the overall business context in which devices live. In general, devices
belong to one or more customers, are located in a particular facility, and belong to one or more groups.
The platform makes each of these objects — Customers Facilities, Device Groups, and others — available
to application developers.

As with inventory objects, environment objects can easily be extended. This makes it easy, for example,
to define attributes such as the SNMP trap receiver used in a particular data center or printers only
available in a particular facility, or Apache configurations used by only a particular business unit.

Policy Model

The Policy Model gives developers access to all the best practices defined in SA. Policies describe the
desired state on a server or network device. For example, a patch policy describes the patches that should
be on a server, a software policy describes what software should be on a server, and so on.

Subject matter experts define these policies which can be used by any authorized system administrator to
audit devices to discover whether what’s actually on a device differs from what should be on the device.
Programmers have access to this complete library of policies to use in their own applications.

Software policies are organized into folders which can define security boundaries. In other words,
applications will be able to access only those software policies they are permitted to access based on
their user permissions.

Package Repository

The Package Repository gives developers access to all the software and patches stored in SA. These
include operating system builds, operating system patches, middleware, agents, and any other pieces of
software that users have uploaded into SA.

Event Repository

The Event Repository houses the digitally signed audit trails that the SA generates when actions are
performed, either through the user interface or programmatically with the platform. As with other
platform objects, these events are available programmatically.

Automation Actions

Automation Actions allow developers to programmatically launch any of the actions that SA can perform
on managed devices, ranging from running an audit to provisioning software to applying the latest OS
patch.

The platform provides access to the same features available to end-users in the SA Client. These features
include tasks such as installing patches, provisioning operating systems, and installing and removing
software policies. In fact, the SA Client calls the same APIs that are exposed programmatically through
the SA Runtime Environment.

Remote Access

Remote Access gives developers programmatic access to the managed device’s file system (in the case of
servers) and execution environment (in the case of all devices). Developers can easily write applications
which check for the existence of a file or particular software package, run operating system commands to
check disk usage, or run system scripts to perform routine maintenance tasks.
Overview 17

SA Management Network

The Management Network is a powerful combination of technologies which enable developers to securely
access any device under management. The Management Network delivers several key services:

• Connectivity: Allows the platform (and thus automation applications) to reach any managed
device.

• Security: Includes SSL/TLS-based encryption, authentication, and message integrity.

• Address space virtualization: Enables the platform to locate servers across multiple
overlapping IP address spaces. Most complex enterprise networks have multiple private IP address
spaces.

• Availability: Allows system architectures to define redundant paths to any given managed device
so that devices can still be reached despite failures in any given network path.

• Caching: Enables servers to download software and patches from a nearby server rather than a
distant server, saving both time and network connectivity charges.

• Bandwidth throttling: Lets system architectures determine how much bandwidth SA and any
SA applications can consume as it traverses the network to a particular device.

• Least cost routing: Allows system designers to set up rules governing which paths to use to
reach a particular device to minimize network connectivity costs.

SA Managed Devices

At the bottom of the platform stack are the actual devices under management. The platform manages
over 65 server OS versions and over 35 different network device vendors with thousands of device
models/versions supported out of the box.

The list of supported devices is constantly being updated. Platform developers and script writers benefit
directly from this device list since their automation applications can consistently reach an ever growing
list of managed devices in the same, familiar platform programming environment.
18 Chapter 1

Benefits of the SA Platform

The SA Platform has the following key benefits.

Powerful Security

The platform delivers the following comprehensive security mechanisms so developers don’t have to
worry about providing them in their own applications.

• Secure communication channels: End-to-end communication from the automation
applications out to the managed devices is encrypted and authenticated.

• Role-based access control: The platform respects the role-based access controls built into the
SA so developers can easily share their applications with the con.dence that they will run just on
those devices that an administrator has been granted access to.

• Digitally signed audit trail: After an automation application runs, the platform generates a
digitally signed audit trail capturing who ran the application, the time of the application execution,
and the devices on which the application ran.

• Comprehensive reach The platform provides comprehensive reach across all devices so system
administrators and developers don’t have to worry about how to get to a device:

• Market-leading platform coverage: Supported devices include over 65 server OS versions
and more than 1,000 network devices.

• In any physical location: The devices can be located anywhere in the world whether in a major
data center or a retail store or a satellite of.ce.

• In any IP address space: The devices can belong to any IP address space, as the platform
supports multiple overlapping IP address spaces.

• In DMZs: Devices can be located in DMZs or other difficult-to-access network spaces without
requiring the developer or system administrator to worry about the details of reaching the device (for
example, through a bastion host).

Rich Services

The platform exposes practically all the relevant data and actions in the underlying automation system:

• Rich data out-of-the-box: Developers have easy access to a rich set of data generated in part by
the platform itself (such as device inventory data and facility information) and in part by users
interacting with the platform (such as device groups customers, best practices policies, and uploaded
software, patches, and scripts). Developers can easily write applications to read and write this data.

• Extensible data store: Developers can easily extend the native platform objects to include their
own data. Device inventory models can be extended to include attributes the platform does not
natively discover. Customer and facility objects can be extended to include attributes that should
guide the provisioning or auditing of devices related to that customer.

• Automation tasks: The platform exposes nearly all the capabilities of the underlying automation
systems to developers: patching, provisioning, auditing, and others. This enables developers writing
complex work flows that span multiple systems to simply call these actions from the context of an
automation application.
Overview 19

Easily Accessible to a Broad Spectrum of Programmers

The platform is explicitly designed to appeal to a broad range of developers ranging from Unix shell and
Visual Basic script writers to Perl and Python programmers to enterprise .NET or Java programmers. The
platform’s Runtime Services layer makes most platform objects available in a file-and-directory
paradigm and most platform services available from a command-line interface (the SA CLI). This allows
system administrators used to writing shell scripts to instantly use the platform without having to learn a
new programming language and tool. They can get started with their favorite text editor, a familiar Unix
shell, and then quickly develop scripts.

For more complicated applications and integration with existing systems, system programmers can use
whatever programming tools and languages that have Web Services bindings.

SA Platform API Design

The Platform API is defined by Java interfaces and organized into Java packages. To support a variety of
client languages and remote access protocols, the API follows a function-oriented, call-by-value model.

Services

In the Platform API, a service encapsulates a set of related functions. Each service is specified by a Java
interface with a name ending in Service, such as ServerService, FolderService, and
JobService.

Services are the entry points into the API. To access the API, clients invoke the methods defined by the
server interface. For example, to retrieve a list of software installed on a managed server, a client invokes
the getInstalledSoftware method of the ServerService interface. Examples of other
ServerService methods are checkDuplex, setPrimaryInterface, and changeCustomer.

The SA Platform API contains over 70 services – too many to describe here. Table 1 lists a few of the
services that you may want to try out first. For a full list of services, in a browser go to the URL shown in
API Documentation and the Twister on page 23.

table 1 Partial List of Services of the SA API

Service Name Some of the Operations Provided by This Service

AuditTaskService Create, get, and run audit tasks.

ConfigurationService Create application configurations, get the software
policies using an application configuration.

DeviceGroupService Create device groups, assign devices to groups, get
members of groups, set dynamic rules.

EventCacheService Trigger actions such as updating a client-side cache of
value objects. See Event Cache on page 22.

FolderService Create folders, get children of folders, set customers of
folders, move folders.

InstallProfileService Create, get, and update OS installation profiles.

JobService Get progress and results of jobs, cancel jobs, update job
schedules.
20 Chapter 1

Objects in the API

Although the SA Platform API is function-oriented, its design enables clients to create object-oriented
libraries. TheSA data model includes objects such as servers, folders, and customers. These are persistent
objects; that is, they are stored in the Model Repository. In the API, these objects have the following
items:

• A service that defines the object’s behavior. For example, the methods of the ServerService
specify the behavior of a managed server object.

• An object (identity) reference that represents an instance of a persistent object. For example,
ServerRef is a reference that uniquely identifies a managed server. In the ServerService, the
first parameter of most methods is ServerRef, which identifies the managed server operated on by
the method. The Id attribute of a ServerRef is the primary key of the server object stored in the
Model Repository.

• One or more value objects (VOs) that represent the data members (attributes, fields) of a persistent
object. For example, ServerVO contains attributes such as agentVersion and loopbackIP. The
attributes of ServerHardwareVO include manufacturer, model, and assetTag. Most attributes
cannot be changed by client applications. If an attribute can be changed, then the API documentation
for the setter method includes “Field can be set by clients.”

For performance reasons, update operations on persistent objects are coarse-grained. The update
method of ServerService, for example, accepts the entire ServerVO as an argument, not individual
attributes.

NasConnectionService Get host names of NA servers, run commands on NA
servers.

NetworkDeviceService Get information such as families, names, models, and
types, according to specified search filters.

SequenceService Create, get, and run OS sequences to install operating
systems on servers.

ServerService Get information about servers, reconcile (remediate)
policies on servers (install software), get and set
custom fields and attributes, execute OS sequences
(install OS).

SoftwarePolicyService Create software policies, assign policies to servers, get
contents of policies, remediate (reconcile) policies with
servers.

SolPatchService Install and uninstall Solaris patches, add policy
overrides.

VirtualColumnService Manage custom fields and custom attributes.

WindowsPatchService Install and uninstall Windows patches, add policy
overrides.

table 1 Partial List of Services of the SA API (cont’d)

Service Name Some of the Operations Provided by This Service
Overview 21

Exceptions

All of the API exceptions that are specific to SA are derived from one of the following exceptions:

• OpswareException - Thrown when an application-level error occurs, such as when an end-user
enters an illegal value that is passed along to a method. Typically, the client application can recover
from this type of exception. Examples of exceptions derived from OpswareException are
NotFoundException, NotInFolderException, and JobNotScheduledException.

• OpswareSystemException - Thrown when an error occurs within SA. Usually, the SA Administrator
must resolve the problem before the client application can run.

The following exceptions are related to security:

• AuthenticationException - Thrown when an invalid SA user name or password is specified.

• AuthorizationException - Thrown when the user does not have permission to perform an
operation or access an object. For more information on permissions, see the SA Administration
Guide.

Event Cache

Some client applications need to keep local copies of SA objects. Accessed by clients through the
EventCacheService, the cache contains events that describe the most recent change made to SA
objects. Clients can periodically poll the cache to check whether objects have been created, updated, or
deleted. The cache maintains events over a configured sliding window of time. By default, events for the
most recent two hours are maintained. To change the sliding window size, edit the Web Services Data
Access Engine configuration file, as described in the SA Administration Guide.

Searches

The search mechanism of the SA Platform API retrieves object references according to the attributes
(fields) of value objects. For example, the getServerRefs method searches by attributes of the
ServerVO value object. The getServerRefs method has the following signature:

public ServerRef[] getServerRefs(Filter filter)...

Each get*Refs method accepts the filter parameter, an object that specifies the search criteria. A
filter parameter with a simple expression has the following syntax:

value-object.attribute operator value

(This syntax is simplified. For the full definition, see Filter Grammar on page 163.)

The following examples are filter parameters for the getServerRefs method:

ServerVO.hostName = "d04.example.com"
ServerVO.model BEGINS_WITH "POWER"
ServerVO.use IN "UNKNOWN" "PRODUCTION"

Complex expressions are allowed, for example:

(ServerVO.model BEGINS_WITH "POWER") AND (ServerVO.use = "UNKNOWN")

Not every attribute of a value object can be specified in a filter parameter. For example,
ServerVO.state is allowed in a filter parameter, but ServerVO.OsFlavor is not. To find out
which attributes are allowed, locate the value object in the API documentation and look for the comment,
“Field can be used in a filter query.”
22 Chapter 1

Security

Users of the SA Platform must be authenticated and authorized to invoke methods on the SA Automation
Platform API. To connect to SA, a client supplies an SA user name and password (authentication). To
invoke methods, the SA user must belong to a user group with the necessary permissions (authorization).
These permissions restrict not only the types of operations that users can perform, but also limit access
to the servers and network devices used in the operations.

Before application clients can run on the platform, the SA Administrator must specify the required users
and permissions with the Command Center. For instructions, see the User Group and Setup chapter of the
SA Administration Guide. For information about security-related exceptions, see Exceptions on page 22.

Communication between clients and SA is encrypted. For Web Services clients, the request and response
SOAP messages (which implement the operation calls) are encrypted using SSL over HTTP (HTTPS).

API Documentation and the Twister

SA includes API documentation (Javadocs) that describe the SA Platform API. To access the API
documentation, specify the following URL in a browser:

https://<SA_core_host>/twister

The <SA_core_host> is the IP address or host name of the SA core server running the Command Center
component.

The Twister is a program that lets you invoke API methods, one at a time, from within a browser. For
example, to invoke the ServerService.getServerVO method, perform the following steps:

1 Open the API documentation in a browser.

2 In the All Classes pane, select com.opsware.server.

3 In the com.opsware.server pane, select ServerService.

4 In the main pane, scroll down to the getServerVO method.

5 Click Try It for the getServerVO method.

6 Enter your SA user name and password.

7 In the Twister pane for ServerService.getServerVO, enter the ID of a managed server in the
oid field.

8 Click Go. The Twister pane displays the attributes of the ServerVO object returned.

Constant Field Values

Some of the API’s value objects (VOs) have fields with values defined as constants. For example,
JobInfoVO has a status field that can have a value defined by constants such as STATUS_ACTIVE,
STATUS_PENDING, and so forth. The API specifies constants as Java static final fields, but the
WSDLs generated from the API do not define the constants. To view the definitions for constants, in the
API documentation, go to the Constant Field Values page:

https://<SA_core_host>/twister/docs/constant-values.html

For example, the Constant Field Values page defines STATUS_ACTIVE as the integer 1.
Overview 23

Supported Clients

The SA platform supports programmers with different skills, from system administrators who write shell
scripts to .NET and Java programmers familiar with the latest tools and technologies. All supported clients
call the same set of methods, which are organized into the services of the SA Platform. A developer can
create the following types of clients that call methods in the SA Platform API:

• SA Command-Line Interface (CLI): Launched from Global Shell sessions, shell scripts can
access the SA Platform API by invoking the CLI methods, which are executable programs in the OGFS.
Each CLI method corresponds to a method in the API.

• Web Services: Using SOAP over HTTPS, these clients send requests to SA and get responses back.
The Web Services operations (defined in WSDLs) correspond to the methods in the API. Developers
can write Web Services clients in popular languages such as Perl and C#.

• Java RMI: These clients invoke remote Java objects from other Java virtual machines.

• Pytwist: These Python programs can run on an SA Core or managed servers.

The Web Services and Java RMI clients can run on servers different than the SA Core or managed servers.
The CLI methods execute in a Global Shell session on the core server where the OGFS is installed.
24 Chapter 1

2 SA CLI Methods
Overview of SA CLI Methods

End-users access SA through the SA Client. At times, advanced users need to access SA in a command-line
environment to perform bulk operations or repetitive tasks on multiple servers. In SA, the command-line
environment consists of the Global Shell (OGSH), Global File System (OGFS), and SA Command-Line
Interface (CLI) methods.

To perform SA operations from the command line, you invoke the SA CLI methods from within an OGSH
session. An SA CLI method is an executable in the OGFS that corresponds to a method in the SA API. When
you run an SA CLI method, the underlying API method is invoked.

To understand this chapter, you should be familiar with the OGSH and the OGFS. For more information,
see the OGSH in the SA User Guide: Server Automation.

For information on the oupload and odownload commands, see the OCLI 1.0 in the SA User Guide:
Server Automation.

Method Invocation

As shown in Figure 2, when you invoke an SA CLI method in an OGSH session, the following operations
occur:

1 The OGSH parses the command and parameters you entered to determine the API method.

2 The OGSH invokes the underlying API method.

3 An authorization check verifies that the user has permission to perform this operation. SA then
performs the operation.

4 The API method passes the results back to the SA CLI method.

5 The SA CLI method writes the return value to the stdout of the OGSH session. If an exception was
thrown, the SA CLI method returns a non-zero status.

figure 2 Overview of an SA CLI Method Invocation

Global Shell (OGSH) Session

$./getDeviceGroups self:i=12

SA API

getDeviceGroups (ServerRef self)

Core Components

1 2

4

3

5
Accounting App
All Windows Servers
Visalia Vendors

$

6

25

Security

SA CLI methods use the same authentication and authorization mechanisms as the SA Client. When you
start an OGSH session, SA authenticates your SA user. When you run an SA CLI method, authorization is
performed. To run an SA CLI method successfully, your SA user must belong to a group that has the
required permissions. For more information on security, see the SA Administration Guide.

Mapping Between API and SA CLI Methods

The OGFS represents SA objects as directory structures, object attributes as text files, and API methods as
executables. These executables are the SA CLI methods. Every SA CLI method matches an underlying API
method. The method name, parameters, and return value are the same for both types of methods.

For example, the setCustomer API method has the following Java signature:

public void setCustomer(ServerRef self,
 CustomerRef customer)...

In the OGFS, the corresponding SA CLI method has the following syntax:

setCustomer self:i=server-id customer:i=customer-id

Note that the parameter names, self and customer, are the same in both languages. (The :i
notations are called format specifiers, which are discussed later in this chapter.) In this example, the
return type is void, so the SA CLI method does not write the result to the stdout. For information on how
SA CLI methods return strings that represent objects, see Return Values on page 40.

Differences Between SA CLI Methods and Unix Commands

Although you can run both Unix commands and SA CLI methods in the OGSH, SA CLI methods differ in
several ways:

• Unlike many Unix commands, SA CLI methods do not read data from stdin. Therefore, you cannot
insert an SA CLI method within a group of commands connected by pipes (|). (However, SA CLI
methods do write to stdout.)

• Most Unix commands accept parameters as flags and values (for example,
ls -l /usr). With SA CLI methods, command-line parameters are name-value pairs, joined by equal
signs.

• Unix commands are text based: They accept and return data as strings. In contrast, SA CLI methods
can accept and return complex objects.

• With SA CLI methods, you can specify the format of the parameter and return values. Unix commands
do not have an equivalent feature.

SA CLI Method Tutorial

This tutorial introduces you to the SA CLI methods with examples you can try in your own environment.
After completing this tutorial, you should be able to run SA CLI methods, examine the self file of an SA
object, and create a script that invokes SA CLI methods on multiple servers.

Before starting the tutorial, you need the following capabilities:

• You can log on to the SA Client.
26 Chapter 2

• Your SA user has Read & Write permissions on at least one managed server. Typically assigned by a
security administrator, permissions are discussed in the SA Administration Guide.

• Your SA user has all OGSH permissions on the same managed server. For information on these
permissions, see the “aaa Utility” section in the SA User Guide: Server Automation.

• You are familiar with the OGSH and the OGFS. If these features are new to you, before proceeding
with this tutorial, see the Global Shell in the SA User Guide: Server Automation.

The example commands in this tutorial operate on a Windows server named abc.example.com. This
server belongs to a server group named All Windows Servers. When trying out these commands,
substitute abc.example.com with the host name of the managed server you have permission to access.

1 Open an OGSH session.

You can open a Global Shell session from within the SA Client. From the Actions menu, select
Global Shell. You can also open an OGSH session from a terminal client running on your desktop.
For instructions, see “Opening a Global Shell Session” in the SA User Guide: Server Automation.

2 List the SA CLI methods for a server.

The method subdirectory of a specific server contains executable files—the methods you can run for
that server. The following example lists the SA CLI methods for the abc.example.com server:

$ cd /opsw/Server/@/abc.example.com/method
$ ls -1
addDeviceGroups
attachPolicies
attachVirtualColumn
checkDuplex
clearCustAttrs
...

These methods have instance context – they act on a specific server instance (in this case,
abc.example.com). The server instance can be inferred from the path of the method. Methods with
static context are discussed in step 5.

3 Run an SA CLI method without parameters.

To display the public server groups that abc.example.com belongs to, invoke the
getDeviceGroups method:

$ cd /opsw/Server/@/abc.example.com/method
$./getDeviceGroups
Accounting App
All Windows Servers
Visalia Vendors

4 Run a method with a parameter.

Command-line parameters for methods are indicated by name-value pairs, separated by white space
characters. In the following invocation of setCustomer, the parameter name is customer and the
value is 20039. The :i at the end of the parameter name is an ID format specifier, which is discussed
in a later step.

The following method invocation changes the customer of the abc.example.com server from
Opsware to C39. The ID of customer C39 is 20039.

$ cd /opsw/Server/@/abc.example.com
$ cat attr/customer ; echo
Opsware
$ method/setCustomer customer:i=20039
$ cat attr/customer ; echo
SA CLI Methods 27

C39

5 List the static context methods for managed servers.

Static context methods reside under the /opsw/api directory. These methods are not limited to a
specific instance of an object.

To list the static methods for servers, enter the following commands:

$ cd /opsw/api/com/opsware/server/ServerService/method
$ ls

The methods listed are the same as those displayed in step 2.

6 Run a method with the self parameter.

This step invokes getDeviceGroups as a static context method. Unlike the instance context
method shown in step 3, the static context method requires the self parameter to identify the
server instance.

For example, suppose that the abc.example.com server has an ID of 530039. To list the groups of
this server, enter the following commands:

$ cd /opsw/api/com/opsware/server/ServerService/method
$./getDeviceGroups self:i=530039
Accounting App
All Windows Servers
Visalia Vendors

Compare this invocation of getDeviceGroups with the invocation in step 3 that demonstrates
instance context. Both invocations run the same underlying method in the API and return the same
results.

7 Examine the self file of a server.

Within SA, each managed server is an object. However, OGFS is a file system, not an object model. The
self file provides access to various representations of an SA object. These representations are the
ID, name, and structure.

The default representation for a server is its name. For example, to display the name of a server,
enter the following commands:

$ cd /opsw/Server/@/abc.example.com
$ cat self ; echo
abc.example.com

If you know the ID of a server, you can get the name from the self file, as in the following example:

$ cat /opsw/.Server.ID/530039/self ; echo
abc.example.com

8 Indicate an ID format specifier on a self file.

To select a particular representation of the self file, enter a period, then the file name, followed by
the format specifier. For example, the following cat command includes the format specifier (:i) to
display the server ID:

$ cd /opsw/Server/@/abc.example.com
$ cat .self:i ; echo
com.opsware.server.ServerRef:530039

This output shows that the ID of abc.example.com is 530039. The
com.opsware.server.ServerRef is the class name of a server reference, the corresponding
object in the SA API.
28 Chapter 2

The leading period is required with format specifiers on files and method return values, but is not
indicated with method parameters.

9 Indicate the structure format specifier.

The structure format specifier (:s) indicates the attributes of a complex object. The attributes are
displayed as name-value pairs, all enclosed in curly braces. Structure formats are used to specify
method parameters on the command-line that are complex objects. (For an example method call, see
Complex Objects and Arrays As Parameters on page 40.)

The following example displays abc.example.com with the structure format:

$ cd /opsw/Server/@/abc.example.com
$ cat .self:s ; echo
{
managementIP="192.168.8.217"
modifiedBy="spujare"
manufacturer="DELL COMPUTER CORPORATION"
use="UNKNOWN"
discoveredDate=1149012848000
origin="ASSIMILATED"
osSPVersion="SP4"
locale="English_United States.1252"
reporting=false
netBIOSName=
previousSWReg=1150673874000
osFlavor="Windows 2000 Advanced Server"
. . .

The attributes of a server are also represented by the files in the attr directory, for example:

$ pwd
/opsw/Server/@/abc.example.com
$ cat attr/osFlavor ; echo
Windows 2000 Advanced Server

10 Create a script that invokes an SA CLI method.

The example script shown in this step iterates through the servers of the public server group named
All Windows Servers. On each server, the script runs the getCommCheckTime SA CLI method.

First, return to your home directory in the OGFS:

$ cd
$ cd public/bin

Next, run the vi editor:

$ vi

In vi, insert the following lines to create a bash script:

#!/bin/bash
iterate_time.sh

METHOD_DIR="/opsw/api/com/opsware/server/ServerService/method"
GROUP_NAME="All Windows Servers"
cd "/opsw/Group/Public/$GROUP_NAME/@/Server"

for SERVER_NAME in *
do
 SERVER_ID=`cat $SERVER_NAME/.self:i`
SA CLI Methods 29

 echo $SERVER_NAME
 $METHOD_DIR/getCommCheckTime self:i=$SERVER_ID
 echo
 echo
done

Save the file in vi, naming it iterate_time.sh. Quit vi.

Change the permissions of iterate_time.sh with chmod, and then run it:

$ chmod 755 iterate_time.sh
$./iterate_time.sh
abc.example.com
2006/06/20 16:46:56.000
. . .

Format Specifiers

Format specifiers indicate how values are displayed or interpreted in the SA CLI environment. You can
apply a format specifier to a method parameter, a method return type, the self file, and an object
attribute. To indicate a format specifier, append a colon followed by one of the letters shown in Table 2.

If a format specifier is indicated for a file or a method return value, a period must precede the file or
method name. For method return values that have format specifiers, the leading period is not included.

table 2 Summary of Format Specifiers

Format
Specifier Description Valid Object Types

Allowed as Method
Parameter?

:n Name: A string identifying the
object. Unique names are preferred,
but not required. For objects that do
not have a name, this
representation is the same as the ID
representation.

SA objects Yes. If the name is
ambiguous, an error
occurs.

:i ID: A format that uniquely identifies
the object type and its SA ID. Also
known as an object reference.

SA objects;
Dates
(java.util.
Calendar) objects

Yes. If the type is
clear from the
context, the type
may be omitted.

:s Structure: A compact
representation intended for
specifying complex values on the
command-line. Attributes are
enclosed in curly braces.

Any complex object Yes

:d Directory: Represents an
attribute as a directory in the OGFS.

Any complex object that
is an attribute. This
representation cannot
be used for method
parameters or return
values.

No
30 Chapter 2

Position of Format Specifiers

A format specifier immediately follows the item it affects. For files, a format specifier follows the file
name. In the following example, note the leading period:

cat .self:s

When applied to a method return type, a format specifier follows the method name. The following
invocation displays the IDs of the groups returned:

./.getDeviceGroups:i

With method parameters, a format specifier follows the parameter name and precedes the equal sign, as
in the following example:

./setCustomer self:i=9977 customer:i=239

A method parameter with a format specifier does not have a leading period.
SA CLI Methods 31

Default Format Specifiers

Every value or object has a default format specifier. For example, the name format specifier is the default
for the osVersion attribute. The following two cat commands generate the same output:

cd /opsw/Server/@/d04.example.com/attr
cat osVersion
cat .osVersion:n

The name format specifier is the default for SA objects stored in the Model Repository, such as servers
and customers. The structure format specifier is the default for other complex objects.

ID Format Specifier Examples

The next example displays the ID of the facility that the d04.example.com server belongs to:

cd /opsw/Server/@/d04.example.com/attr
cat .facility:i ; echo

(The preceding echo command is optional. It generates a new-line character, which makes the output
easier to read. The semicolon separates bash statements entered on the same line.)

The output of a value with the ID format specifier is prefixed by the Java class name. For example, if the
facility value has an ID of 39, then the previous cat command displays the following output:

com.opsware.locality.FacilityRef:39

The following invocation of the getDeviceGroups method lists the IDs of the public server groups that
d04.example.com belongs to:

cd /opsw/Server/@/d04.example.com/method
./.getDeviceGroups:i

For more ID format examples, see The self File on page 36.

Structure Format Specifier Syntax

The structure format represents complex objects, which can contain various attributes. You might use
this format to specify a method parameter that is a complex object. For examples, see Complex Objects
and Arrays As Parameters on page 40.

The structure format is a series of name-value pairs, separated by white space characters, enclosed in
curly braces. Each name-value pair represents an attribute. The structure format has the following
syntax:

{ name-1=value-1 name-2=value-2 . . . }

Here’s a simple example:

{ version=10.1.3 isCurrent=true }

Any white space character can be used as a delimiter:

{
 version=10.1.3
 isCurrent=true
}

Attributes can be specified as structures, enabling the representation of nested objects. In the following
example, the versionDesc attribute is represented as a structure:
32 Chapter 2

{
program=agent
versionDesc={
 version=10.1.3
 isCurrent=true
 comment="Latest version"
 }
}

To specify an array within a structure, repeat the attribute name. The following structure contains an
array named steps that has three elements with the values 33, 14, and 28.

{ moduleName="Some Initiator" steps=33 steps=14 steps=28 }

Structure Format Specifier Examples

The following example specifies the structure format for the facility attribute:

cd /opsw/Server/@/d04.example.com/attr
cat .facility:s

This cat command generates the following output. Note that customers is an array, which contains an
element for every customer associated with this facility.

{
modifiedBy="192.168.9.246"
customers="Customer Independent"
customers="Not Assigned"
customers="Opsware Inc."
customers="Acme Inc."
. . .
ontogeny="PROD"
createdBy=
status="ACTIVE"
createdDt=-1
realms="Transitional"
realms="C39"
realms="C39-agents"
modifiedDt=1146528752000
name="C39"
displayName="C39"
}

The following invocation of getDeviceGroups indicates the structure format specifier for the return
value:

cd /opsw/Server/@/d04.example.com/method
./.getDeviceGroups:s

This call to getDeviceGroups displays the following output. Because d04.example.com belongs to
two server groups, the output includes two structures. In each structure, the devices array has
elements for the servers belonging to that group.

{
dynamic=true
devices="m302-w2k-vm1.dev.example.com"
devices="d04.example.com"
. . .
status="ACTIVE"
SA CLI Methods 33

public=true
fullName="Device Groups Public All Windows Servers"
description="test"
createdDt=-1
modifiedDt=1142019861000
parent="Public"
}

{
dynamic=true
devices="opsware-nibwp.build.example.com"
devices="glengarriff.snv1.dev.example.com"
devices="millstreet"
. . .
fullName="Device Groups Public z_testsrvgroup"
. . .
}

The structure format specifier is the default for methods that retrieve value objects (VOs). For example,
the following two calls to getServerVO are equivalent:

cd /opsw/Server/@/d04.example.com/method
./.getServerVO:s
./getServerVO

In this example, getServerVO displays the following output:

{
managementIP="192.168.198.93"
modifiedBy=
manufacturer="DELL COMPUTER CORPORATION"
use="UNKNOWN"
discoveredDate=1145308867000
origin="ASSIMILATED"
osSPVersion="RTM"
locale="English_United States.1252"
reporting=false
netBIOSName=
previousSWReg=1147678609000
osFlavor="Windows Server 2003, Standard Edition"
peerIP="192.168.198.93"
modifiedDt=1145308868000
. . .
serialNumber="HVKZS51"
}

This structure represents the ServerVO class of the SA API. Every attribute in this structure corresponds
to a file in the attr directory. In the next example, the getServerVO and cat commands both display
the value of the serialNumber attribute of a server:

cd /opsw/Server/@/d04.example.com
./method/getServerVO | grep serialNumber
cat attr/serialNumber ; echo
34 Chapter 2

Directory Format Specifier Examples

The following command changes the current working directory to the customer associated with the
server d04.example.com:

cd /opsw/Server/@/d04.example.com/attr/.customer:d

The next command lists the name of this customer:

cat /opsw/Server/@/d04.example.com/attr/\
.customer:d/attr/name

The directory specifier can be used only in command arguments that require directory names. The
following cat command fails because it attempts to display a directory:

cat /opsw/Server/@/d04.example.com/attr/.customer:d # WRONG!

However, the next command is legal:

ls /opsw/Server/@/d04.example.com/attr/.customer:d

Value Representation

Because they run in a shell environment (the OGSH), SA CLI methods accept and return data as strings.
However, the underlying API methods can accept and return other data types, such as numbers,
Booleans, and objects. The sections that follow describe how the OGFS and SA CLI methods represent
non-string data types.

SA Objects in the OGFS

The SA data model includes objects such as servers, server groups, customers, and facilities. In the OGFS,
these objects are represented as directory structures:

/opsw/Customer
/opsw/Facility
/opsw/Group
/opsw/Library
/opsw/Realm
/opsw/Server
. . .

The preceding list is not complete. To see the full list, enter ls /opsw.

Object Attributes

The attributes of an SA object are represented by text files in the attr subdirectory. The name of each
file matches the name of the attribute. The contents of a file reveals the value of the attribute.

For example, the /opsw/Server/@/buzz.example.com/attr directory contains the following files:

agentVersion
codeset
createdBy
createdDt
customer
defaultGw
SA CLI Methods 35

description
discoveredDate
facility
hostName
locale
lockInfo
loopbackIP
managementIP
manufacturer
. . .

To display the management IP address of the buzz.example.com server, enter the following
commands:

cd /opsw/Server/@/buzz.example.com/attr
cat managementIP ; echo

Custom Attributes

Custom attributes are name-value pairs that you can assign to SA objects such as servers. In the OGFS,
custom attributes are represented as text files in the CustAttr subdirectory. You can create custom
attributes in an OGSH session by creating new text files under CustAttr. The following example creates
a custom attribute named MyGreeting, with a value of hello there, on the buzz.example.com
server:

cd /opsw/Server/@/buzz.example.com/CustAttr
echo -n "hello there" > MyGreeting

For more examples, see “Managing Custom Attributes” in SA User Guide: Server Automation.

The self File

The self file resides in the directory of an SA object such as a server or customer. This file provides
access to various representations of the current object, depending on the format specifier. (For details,
see Format Specifiers on page 30.)

To list the ID of the buzz.example.com server, enter the following commands:

cd /opsw/Server/@/buzz.example.com
cat .self:i ; echo

For a server, the default format specifier is the name. The following commands display the same output:

cat self ; echo
cat .self:n ; echo

The next command lists the attributes of a server in the structure format:

cat .self:s

Primitive Values

Table 3 indicates how primitive values are converted between the API and their string representations in
SA CLI methods. Except for Dates, primitive values do not support format specifiers. Dates support ID
format specifiers.
36 Chapter 2

table 3 Conversion Between Primitive Types and SA CLI Methods

Primitive
Type Java Equivalent Output from SA CLI Method Input to SA CLI Methods

String java.lang.
String

Character string, presented in the
encoding of the current session.

Character string,
converted to Unicode
from the current
session encoding.

Number byte, short, int,
long, float,
double; and their
object equivalents

Decimal format, not localized.
Scientific notation for very large or
small values.

Examples -
Decimal: 101,
512.34, -104
Hex: 0x1F32, 0x2e40
Octal: 0543
Scientific: 4.3E4,
6.532e-9,
1.945e+02

Boolean boolean, Boolean true or false The string “true” and all
mixed-case variants
evaluate to true. All
other values evaluate to
false.

Binary data byte[], Byte[] Binary string. No conversion from
session encoding.

Binary string. No
conversion to session
encoding.

Date java.util.
Calendar

Date value. By default, presented
in this format:
YYYY/MM/DD HH:MM:SS.mmm
The time is presented in UTC. If an
ID format specifier is indicated, the
value is presented as the number
of milliseconds since the epoch, in
UTC.

Same as output.
SA CLI Methods 37

Arrays

The representation of array objects depends on whether they are standalone (an array attribute file or a
method return value) or contained in the structure of a complex object.

First, standalone array objects are presented according the underlying type, separated by new-line
characters. Within an array element, a new-line character is escaped by \n and a back slash by \\.

Array values can be output or input using any representation supported by the underlying type. For
example, by default, the getDeviceGroups method lists the groups as names:

All Windows Servers
Servers in Austin
Testing Pool

If you indicate the ID format specifier, (.getDeviceGroups:i) the method displays the IDs of the
groups:

com.opsware.device.DeviceGroupRef:15960039
com.opsware.device.DeviceGroupRef:10390039
com.opsware.device.DeviceGroupRef:17380039

Second, an array contained in the structure of a complex object is represented as a set of name-value
pairs, using the attribute as the name. The attribute appears multiple times, once for each element in the
array. The order in which the attributes appear determine the order of the elements in the array. The
following example shows a structure that contains two attributes, a string called subject and a
three-element array of numbers called ranks:

{ subject=”my favorites” ranks=17 ranks=44 ranks=24 }

Arrays can also be represented by directories. Within an array directory, each array element has a
corresponding file (for primitive types) or subdirectory (for complex types). The name of each entry is the
index number of the array element, starting with zero.

For an array that is the attribute of a complex object, you should modify the array by editing its attribute
file. This action completely replaces the array with the contents of the edited file.

For an array containing elements that are complex objects, you should modify the array by changing its
directory representation. To change an element value, edit the element file. For example, suppose you
have an array with five string elements. The ls command lists the elements as follows:

0 1 2 3 4

The following command changes the value of the third element:

echo -n "My new value" > 2
38 Chapter 2

SA CLI Method Parameters and Return Values

This section discusses the details of method context (instance or static), parameter usage, return values,
and exit status.

Method Context and the self Parameter

In the OGFS, a method resides in multiple locations. The location of a method is related to its context,
which is either instance or static.

The method with instance context resides in method directory of a specific SA object. The method
invocation does not require the self parameter. The instance of the object affected by the method is
implied by the method location. The following example changes the customer of the d04.example.com
server:

cd /opsw/Server/@/d04.example.com/method
./setCustomer customer:i=9

A method with static context resides in a single location under /opsw/api. The method invocation
requires the self parameter to identify the instance affected by the method. In the following static
context example, self:i specifies the ID of the managed server:

cd /opsw/api/com/opsware/server/ServerService/method
./setCustomer self:i=230054 customer:i=9

Passing Arguments on the Command-Line

The command-line arguments are specified as name-value pairs, joined by the equal sign (=). The
name-value pairs are separated by one or more white space characters, typically spaces. The names on
the command-line match the parameter names of the corresponding Java method in the SA API.

For example, in the SA API, the setCustomField method has the following definition:

public void setCustomField(CustomFieldReference self,
 java.lang.String fieldName, java.lang.String strValue)...

The following SA CLI method example assigns a value to a custom field of the server with ID 3670039:

cd /opsw/api/com/opsware/server/ServerService/method
./setCustomField self:i=3670039 \
fieldName="Service Agreement" strValue="Gold"

As described in the previous section, a method with an instance context does not require the self
parameter. The following setCustomField example is equivalent to the preceding example:

cd /opsw/.Server.ID/3670039
./setCustomField \
fieldName="Service Agreement" strValue="Gold"

You can specify the command-line arguments in any order. The following two SA CLI method invocations
are equivalent:

./setCustomField fieldName="My Stuff" strValue="abc"

./setCustomField strValue="abc" fieldName="My Stuff"

To specify a null value for a parameter, either omit the parameter or insert a white space after the equal
sign. In the following examples, the value of myParam is null:

./someMethod myField="more info" myParam= anotherParam=9834
SA CLI Methods 39

./someMethod myField="more info" anotherParam=9834

Specifying the Type of a Parameter

If a method has an abstract type for a parameter, you must specify the concrete type as well as the value.
In the following example, the com.opsware.folder.FolderRef type is required:

cd /opsw/api/com/opsware/folder/FolderService/method
./remove self:i="com.opsware.folder.FolderRef:730555"

If you do not specify the concrete type, the following error message is displayed:

Object type type-name is abstract. Specify a concrete sub-type.

Complex Objects and Arrays As Parameters

To pass an argument that is a complex object, enclose the object’s attributes in curly braces, as shown in
the Structure Format Specifier Syntax on page 32.

The following example creates a public server group named AllMine. The create method has a single
parameter, pattern, which encloses the parent and shortName attributes in curly braces. In this
example, getPublicRoot returns 2340555, the ID of the top public group.

cd /opsw/api/com/opsware/device/DeviceGroupService/method
./.getPublicRoot:i ; echo
./create “pattern={ parent:i=2340555 shortName=’AllMine’ }”

Specify array parameters by repeating the parameter name, once for each array element. For example,
the following invocation of the assign method specifies the first two elements in the array parameter
named policies:

cd /opsw/api/com/opsware/swmgmt
cd SoftwarePolicyService/method
./attachPolicies self:i=4220039 \
policies:i=4400335 policies:i=4400942

Overloaded Methods

A Java method name is overloaded if multiple methods in the same class have the same name but
different parameter lists. With overloaded SA CLI methods, the argument names on the command-line
indicate which method to invoke. The setCustomField method, for example, is overloaded to support
the setting of different data types. The following two commands invoke different versions of the method:

./setCustomField \
fieldName="Service Agreement" strValue="Gold"
./setCustomField \
fieldName=hmp longValue=2245

Return Values

If the API method underlying an SA CLI method returns a value, then the SA CLI method outputs the value
to stdout. As with Unix commands, you can redirect a method’s stdout to a file or assign it to an
environment variable.
40 Chapter 2

To change the representation of the return value, insert a leading period and append a format specifier to
the method name. The following example returns server references as IDs, instead of the default names:

cd /opsw/api/com/opsware/server/ServerService/method
./.findServerRefs:i

If you indicate a format specifier that is incompatible with the method’s return type, the file system
responds with an error.

Exit Status

Like Unix shell commands, SA CLI methods use the exit status ($?) to indicate the result of the call. An exit
status of zero indicates success; a non-zero indicates an error. SA CLI methods output error messages to
stderr.

For example, the following bash script checks the exit status of the getDeviceGroups method:

#!/bin/bash

cd /opsw/Server/@/toro.snv1.corp.example.com/method
./getDeviceGroups
cmnd_exit_status=$?

if [$cmnd_exit_status -eq 0]
then
 echo "The command was successful."
else
 echo "The command failed."
 echo "Exit status = " $cmnd_exit_status
fi

An SA CLI method invokes an underlying API method. If the API method throws an exception, the SA CLI
method returns a non-zero exit status. When debugging a method call, you might find it helpful to view
information about a thrown exception. The
/sys/last-exception file in the OGFS contains the stack trace of an exception thrown by the most
recent API call. After this file has been read, the system discards the file contents.

table 4 Exit Status Codes for SA CLI Methods

Exit Status Category Description

0 Success The method completed successfully.

1 Command-Line Parse
Error

The command-line for the method call is malformed and could
not be parsed into a set of options (--option[=value]) and
parameter values (param=value).

2 Parameter Parse Error The parameter values could not be parsed into the object types
required by the API.

3 API Usage Error The call failed because of a usage error, such as an invalid
parameter value.

4 Access Error The user does not have permission to perform the operation.

5 Other Error An error occurred other than those indicated by exit statuses 1-
4.
SA CLI Methods 41

Search Filters and SA CLI Methods

Many methods in the SA API accept object references as parameters. To retrieve object references based
on search criteria, you invoke methods such as findServerRefs and findJobRefs. For example, you
can invoke findServerRefs to search for all servers that have example.com in the hostname
attribute.

Search Syntax

Methods such as findServerRefs have the following syntax:

findobjectRefs filter=’[object-type:]expression’

The filter parameter includes an expression, which specifies the search criteria. You enclose an
expression in either parentheses or curly brackets. A simple expression has the following syntax:

value-object.attribute operator value

(This syntax is simplified. For the full definition, see Filter Grammar on page 163)

Search Examples

Most of the SA object types have associated finder methods. This section shows how to use just a few of
them. To see how searches are used with other SA CLI methods, see Example Scripts on page 44.

Finding Servers

Find servers with host names containing example.com:

cd /opsw/api/com/opsware/server/ServerService/method
./.findServerRefs:i \
filter=’device:{ ServerVO.hostname CONTAINS example.com }’

Find servers with a use attribute value of either UNKNOWN or PRODUCTION:

cd /opsw/api/com/opsware/server/ServerService/method
./.findServerRefs:i \
filter=’{ ServerVO.use IN “UNKNOWN” “PRODUCTION” }’

The following bash script shows how to search for servers, save their IDs in a temporary file, and then
specify each ID as the parameter of another method invocation. This script displays the public groups that
each Linux server belongs to.

#!/bin/bash

TMPFILE=/tmp/server-list.txt
rm -f $TMPFILE

cd /opsw/api/com/opsware/server/ServerService/method

./.findServerRefs:i \
filter='{ ServerVO.osVersion CONTAINS Linux }' > $TMPFILE

for ID in `cat "$TMPFILE"`
do
 echo Server ID: $ID
42 Chapter 2

 ./getDeviceGroups self:i=$ID
 echo
done

Finding Jobs

The examples in this section return the IDs of jobs such as server audits or policy remediations.

Find the jobs that have completed successfully:

cd /opsw/api/com/opsware/job/JobService/method
./.findJobRefs:i filter='job:{ job_status = "SUCCESS" }'

(For a list of allowed values of job_status, see “Job Approval Integration” in the SA Integration Guide.)

Find the jobs that have completed successfully or with warning:

cd /opsw/api/com/opsware/job/JobService/method
./.findJobRefs:i \
filter='job:{ job_status IN "SUCCESS" "WARNING" }'

Find the jobs that have been started today:

cd /opsw/api/com/opsware/job/JobService/method
./.findJobRefs:i \
filter='job:{ JobInfoVO.startDate IS_TODAY "" }'

Find all server audit jobs:

cd /opsw/api/com/opsware/job/JobService/method
./findJobRefs \
filter='job:{ JobInfoVO.description = "Server Audit" }'

Find the jobs that have run on the server with the ID 280039:

cd /opsw/api/com/opsware/job/JobService/method
./.findJobRefs:i filter='job:{ job_device_id = "280039" }'

Find today’s jobs that have failed:

cd /opsw/api/com/opsware/job/JobService/method
./.findJobRefs:i \
filter='job:{ ((JobInfoVO.startDate IS_TODAY "") \
& (job_status = "FAILURE")) }'

Finding Other Objects

This section has examples that search for software policies and packages.

Find the software policies created by the SA user jdoe:

cd /opsw/api/com/opsware/swmgmt/SoftwarePolicyService/method
./.findSoftwarePolicyRefs:i \
filter=’{ SoftwarePolicyVO.createdBy CONTAINS jdoe }’

Find the MSIs with ismtool for the Windows 2003 platforms:

cd /opsw/api/com/opsware/pkg/UnitService/method
./.findUnitRefs:i \
filter='software_unit:{ ((UnitVO.unitType = "MSI") \
& (UnitVO.name contains "ismtool") \
& (software_platform_name = "Windows 2003")) }'

Find the Solaris patches named 117170-01:
SA CLI Methods 43

cd /opsw/api/com/opsware/pkg/solaris/SolPatchService/method
./.findSolPatchRefs:i filter='{name = 117170-01}'

Find the folder with the name that includes the string Test and with a parent folder named My Stuff.

cd /opsw/api/com/opsware/folder/FolderService/method
./.findFolders:s \
filter='((FolderVO.name CONTAINS "Test") \
& (folder_parent_name = "My Stuff"))'

Searchable Attributes and Valid Operators

Not every attribute of a value object can be specified in a search filter. For example, you can search on
ServerVO.use but not on ServerVO.OsFlavor.

To find out which attributes are searchable for a given object type, invoke the
getSearchableAttributes method. The following example lists the attributes of ServerVO that can
be specified in a search expression:

cd /opsw/api/com/opsware/search/SearchService/method
./getSearchableAttributes searchableType=device

The searchableType parameter indicates the object type. To determine the allowed values for
searchableType, enter the following commands:

cd /opsw/api/com/opsware/search/SearchService/method
./getSearchableTypes

To find out which operators are valid for an attribute, invoke the
getSearchableAttributeOperators method. The following example lists valid operators (such as
CONTAINS and IN) for the attribute ServerVO.hostname:

cd /opsw/api/com/opsware/search/SearchService/method
./getSearchableAttributeOperators searchableType=device \
searchableAttribute=ServerVO.hostname

Example Scripts

This section has code listings for simple bash scripts that invoke a variety of SA CLI methods. These
scripts demonstrate how to pass method parameters on the command-line, including complex objects
and the self parameter. If you decide to copy and paste these example scripts, you will need to change
some of the hard-coded object names, such as the d04.example.com server. For tutorial instructions
on creating and running scripts within the OGFS, see step 10 on page 29.

The script remediate_policy.sh on page 47 creates a software policy, adds a package to the policy, and in
the last line, installs the package on a managed server by invoking the startFullRemediateNow
method.

create_custom_field.sh

This script creates a custom field (virtual column), named TestFieldA attaches the field to all servers,
and then sets the value of the field on a single server. Until it is attached, the custom field does not
appear in the SA Client. You can create custom fields for servers, device groups, or software policies. To
create a custom field, your SA user must belong to a user group with the Manage Virtual Columns
permission.
44 Chapter 2

Unlike a custom attribute, a custom field applies to all instances of a type. For an example that creates a
custom attribute in the OGFS, see "Managing Custom Attributes" in the SA User Guide: Server
Automation.

The create_custom_field.sh script has the following code:

#!/bin/bash
create_custom_field.sh

cd /opsw/api/com/opsware/custattr/VirtualColumnService/method

Create a virtual column.
Remember the name because you cannot search for the
displayName.
./create vo=’{ name=TestFieldA type=SHORT_STRING \
displayName="Test Field A" }’

column_id=‘./.findVirtualColumn:i name=TestFieldA‘

echo --- column_id = $column_id

cd /opsw/api/com/opsware/server/ServerService/method

Attach the column to all servers.
All servers will have this custom field.
./attachVirtualColumn virtualColumn:i=$column_id

Get the ID of the server named d04.example.com
devices_id=‘./.findServerRefs:i \
filter=\
’device:{ ServerVO.hostname CONTAINS "d04.example.com" }’‘

echo --- devices_id = $devices_id

Set the value of the custom field (virtual column) for
a specific server.
./setCustomField self:i=$devices_id fieldName=TestFieldA \
strValue="This is something."

create_device_group.sh

This script creates a static device group and adds a server to the group. Next, the script creates a dynamic
group, sets a rule on the group, and refreshes the membership of the group. The last statement of the
script lists the devices that belong to the dynamic group.

Here is the script’s code:

#!/bin/bash
create_device_group.sh

cd /opsw/api/com/opsware/device/DeviceGroupService/method

Get the ID of the public root group (top of hierarchy).
public_root=‘./.getPublicRoot:i‘

Create a public static group.
SA CLI Methods 45

./create "vo={ parent:i=$public_root shortName=’Test Group A’ }"

Get the ID of the group just created.
group_id=‘./.findDeviceGroupRefs:i \
filter=’{ DeviceGroupVO.shortName = "Test Group A" }’ ‘

echo --- group_id = $group_id

cd /opsw/api/com/opsware/server/ServerService/method

Get the ID of the server named d04.example.com
devices_id=‘./.findServerRefs:i \
filter=\
’device:{ ServerVO.hostname CONTAINS "d04.example.com" }’‘

echo --- devices_id = $devices_id

cd /opsw/api/com/opsware/device/DeviceGroupService/method

Add a server to the device group.
./addDevices \
self:i=$group_id devices:i=$devices_id

Create a dynamic device group.
./create \
"vo={ parent:i=$public_root \
shortName=’Test Dyn B’ dynamic=true }"

Get the ID of the device group.
dynamic_group_id=‘./.findDeviceGroupRefs:i \
filter=’{ DeviceGroupVO.shortName = "Test Dyn B" }’ ‘

echo --- dynamic_group_id = $dynamic_group_id

Set the rule so that this group contains servers with
hostnames containing the string example.com.
The rule parameter has the same syntax as the filter
parameter of the find methods.
./setDynamicRule self:i=$dynamic_group_id \
rule=’device:{ ServerVO.hostname CONTAINS example.com }’

By default, membership in dynamic device groups is refreshed
once
an hour, so force the refresh now.
./refreshMembership selves:i=$dynamic_group_id now=true

Display the names of the devices that belong to the group.
echo --- Devices in group:
./getDevices selves:i=$dynamic_group_id
46 Chapter 2

create_folder.sh

This script creates a folder named /Test 1, lists the folders under the root (/) folder, and then creates
the subfolder /Test 1/Test 2. After creating these folders, you can view them under the Library in the
navigation pane of the SA Client.

Here is the code for this script:

#!/bin/bash
create_folder.sh

cd /opsw/api/com/opsware/folder/FolderService/method

Get the ID of the root (top) folder.
root_id=`./.getRoot:i`

Create a new folder under the root folder.
./create vo="{ name='Test 1' folder:i=$root_id }"

Display the names of the folders under the root folder.
./getChildren self:i=$root_id

Get the ID of the folder "/Test 1"
folder_id=`./.getFolderRef:i path="Test 1"`

Create a subfolder.
./create vo="{ name='Test 2' folder:i=$folder_id }"

Get the ID of the folder "/Test 1/Test 2"
folder_id=`./.getFolderRef:i path="Test 1" path="Test 2"`
echo folder_id = $folder_id

remediate_policy.sh

This script creates a software policy named TestPolicyA in an existing folder named Test 2, adds a
package containing ismtool to the policy, attaches the policy to a single server (not a group), and then
remediates the server. The remediation action launches a job that installs the package onto the server.
You can check the progress and results of the job in the SA Client. For examples that search for jobs with
SA CLI methods, see Finding Jobs on page 43.

In this script, in the create method of the SoftwarePolicyService, the value of the platforms
parameter is hard-coded. In most of these example scripts, hard-coding is avoided by searching for an
object by name. In the case of platforms, searching by the name attribute is difficult because if differs
from the displayName attribute, which is exposed in the SA Client but is not searchable. The easiest way
to find a platform ID is by going to the twister and running the PlatformService.findPlatformRefs
method with no parameters.

The update method in this script hard-codes the ID of softwarePolicyItems, an object that can be
difficult to search for by name if the Software Repository contains many packages with similar names.
One way to get the ID is to run the SA Client, search for Software by fields such as File Name and Operating
System, open the package located by the search, and note the SA ID in the properties view of the package.

In the following listing, the update method has a bad line break. If you copy this code, edit the script so
that the vo parameter is on a single line.

Here is the source code for the remediate_policy.sh script:
SA CLI Methods 47

#!/bin/bash
remediate_policy.sh

Get the ID of the folder where the policy will reside.
cd /opsw/api/com/opsware/folder/FolderService/method
folder_id=`./.findFolders:i filter='{ FolderVO.name = "Test 2" }'`

cd /opsw/api/com/opsware/swmgmt/SoftwarePolicyService/method

Create a software policy named TestPolicyA.
This policy resides in the folder located in the preceding findFolders
call.
The platform for this policy is Windows 2008 (ID 160076)
./create vo="{ platforms:i=160076 name="TestPolicyA" \
folder:i=$folder_id lifecycle=AVAILABLE }"

policy_id=`./.findSoftwarePolicyRefs:i \
filter='{ SoftwarePolicyVO.name = "TestPolicyA" }'`

echo --- policy_id = $policy_id

Call the update method to add a package to the software policy.
The package ID for the "ismtool" msi installer is 4010001.

Note that "force = true" is required.

./update self:i=$policy_id force=true \
vo='{ softwarePolicyItems:i=com.opsware.pkg.windows.MSIRef:4010001 }'

cd /opsw/api/com/opsware/server/ServerService/method

Get the ID of the server named d04.opsware.com
devices_id=`./.findServerRefs:i \
filter='device:{ ServerVO.hostname CONTAINS "d04.opsware.com" }'`

echo --- devices_id = $devices_id

Attach the policy to a single server (not a group).
./attachPolicies self:i=$devices_id \
policies:i=$policy_id

Remediate the server to install the package in the policy.
job_id=`./.startFullRemediateNow:i self:i=$devices_id`

echo --- job_id = $job_id

remove_custom_field.sh

Although not common in an operational environment, removing custom fields is sometimes necessary in
a testing environment. Note that a custom field must be unattached before it can be removed.

Here is the code for remove_custom_field.sh:

#!/bin/bash
remove_custom_field.sh
48 Chapter 2

if [! -n "$1"]
 then
 echo "Usage: ‘basename $0‘ <name>"
 echo "Example: ‘basename $0‘ hmp"
 exit
fi

cd /opsw/api/com/opsware/custattr/VirtualColumnService/method

column_id=‘./.findVirtualColumn:i name=$1‘

echo --- column_id = $column_id

cd /opsw/api/com/opsware/server/ServerService/method

Column must be detached before it can be removed.
./detachVirtualColumn virtualColumn:i=$column_id

cd /opsw/api/com/opsware/custattr/VirtualColumnService/method

Remove the virtual column.
./remove self:i=$column_id
SA CLI Methods 49

schedule_audit_task.sh

This script starts an audit task, scheduling it for a future date. With SA CLI methods, date parameters are
specified with the following syntax:

YYYY/MM/DD HH:MM:SS.sss

The method that launches the task, startAudit, returns the ID of the job that performs the audit. For
examples that search for jobs with SA CLI methods, see Finding Jobs on page 43.

Here is the code for schedule_audit_task.sh:

#!/bin/bash
schedule_audit_task.sh

cd /opsw/api/com/opsware/compliance/sco/AuditTaskService/method

Get the ID of the audit task to schedule.

audit_task_id=`./.findAuditTask:i \
filter='audit_task:{ ((AuditTaskVO.name BEGINS_WITH "HW check") \
& (AuditTaskVO.createdBy = "gsmith")) }'`

echo --- audit_task_id = $audit_task_id

Schedule the audit task for Oct. 16, 2013.
In the startDate parameter, note that the last delimiter for the time
is a period, not a colon.

job_id=`./startAudit self:i=$audit_task_id \
schedule:s='{ startDate="2013/10/16 00:00:00.000" }' \
notification:s='{ onFailureOwner="sjones@opsware.com" \
onFailureRecipients="jdoe@opsware.com" \
onSuccessOwner="sjones@opsware.com" \
onSuccessRecipients="jdoe@opsware.com" }'`

echo --- job_id = $job_id

Getting Usage Information on SA CLI Methods

In a future release, the SA CLI methods will display usage information. Until then, you can get the
necessary information from the API documentation or the OGFS with the techniques described in the
following sections.

Listing the Services

The SA API methods are organized into services. To find out what services are available for SA CLI
methods, enter the following commands in an OGSH session:

cd /opsw/api/com/opsware
find . -name "*Service"
50 Chapter 2

To list the services in the API documentation, specify the following URL in your browser:

https://occ_host:1032

The occ_host is the IP address or host name of the core server running the Command Center component.

Finding a Service in the API Documentation

The path of the service in the OGFS maps to the Java package name in the API documentation. For
example, in the OGFS, the ServerService methods appear in the following directory:

/opsw/api/com/opsware/server

In the API documentation, the following interface defines these methods:

com.opsware.server.ServerService

Listing the Methods of a Service

In the OGFS, you can list the contents of the method directory of a service, For example, to display the
method names of the ServerService, enter the following command:

ls /opsw/api/com/opsware/server/ServerService/method

In the API documentation, perform the following steps to view the methods of ServerService:

1 In the upper left pane, select com.opsware.server.

2 In the lower left pane, select ServerService.

3 In the main pane, scroll down to view the methods.

Listing the Parameters of a Method

In the API documentation, perform the steps described in the preceding section. In the Method Detail
section of the service interface page, view the parameters and return types. (For more information about
method parameters, see Passing Arguments on the Command-Line on page 39.)

Getting Information About a Value Object

The API documentation shows that some service methods pass or return value objects (VOs), which
contain data members (attributes). For example, the ServerService.getServerVO method returns a
ServerVO object. To find out what attributes ServerVO contains, perform the following steps:

1 In the API documentation, select the ServerVO link. You can find the this link in several places:

— The method signature for getServerVO

— The list of classes (lower left pane) for com.opsware.server

— On the Index page. A link to the Index page is at the top of the main pane of the API
documentation.

2 On the ServerVO page, note the getter and setter methods. Each getter-setter pair corresponds to
an attribute contained in the value object. For example, getCustomer and setCustomer indicate
that ServerVO contains an attribute named customer.
SA CLI Methods 51

Determining If an Attribute Can Be Modified

Only a few object attributes can be modified by client applications. To find out if an attribute can be
modified, perform the following steps:

1 In the API documentation, go to the value object page, as described in the preceding section.

2 In the Method Detail section of the setter method, look for “Field can be set by clients.”

For SA objects represented in the OGFS, such as servers and customers, you can determine which
attributes are modifiable by checking the access types of the files in the attr directory. The files that
have read-write (rw) access types correspond to modifiable attributes. For example, to list the modifiable
attributes of a server, enter the following commands:

cd /opsw/Server/@/server-name/attr
ls -l | grep rw

Determining If an Attribute Can Be Used in a Filter Query

To find out if an attribute of a value object can be used in a filter query (a search), perform the following
steps:

1 In the API documentation, go to the value object page.

2 In the Method Detail section of the getter method that corresponds to the attribute, look for the
string, “Field can be used in a filter query.”

From within an OGSH session, to find out if an attribute can be searched on, follow the techniques
described in Searchable Attributes and Valid Operators on page 44
52 Chapter 2

3 Python API Access with Pytwist
Overview of Pytwist

Pytwist is a set of Python libraries that provide access to the SA API from managed servers and custom
extensions. (The twist is the internal name for the Web Services Data Access Engine.) For managed
servers, you can set up Python scripts that call SA APIs through Pytwist so that end users can invoke the
scripts as DSEs or ISM controls. Created by HP SA Professional Services, custom extensions are Python
scripts that run in the Command Engine (way). Pytwist enables custom extensions to access recent
additions to the SA data model, such as folders and software policies, which are not accessible from
Command Engine scripts.

This chapter is intended for developers and consultants who are already familiar with the SA data model,
custom extensions, Agents, and the Python programming language.

Setup for Pytwist

Before trying out the examples in this chapter, make sure that your environment meets the following
setup requirements, as detailed in the following sections.

Supported Platforms for Pytwist

Pytwist is supported on managed servers and core servers. For a list of operating systems supported for
these servers, see the SA Release Notes.

Pytwist relies on Python version 2.7.3, the version used by SA Agents and custom extensions.

Unlike Web Services and Java RMI clients, a Pytwist client relies on internal SA libraries. If your client
program needs to access the SA API from a server that is not a managed or core server, then use a Web
Services or Java RMI client, not Pytwist.

Access Requirements for Pytwist

Pytwist needs to access port 1032 of the core server running the Web Services Data Access Engine. By
default, the engine listens on port 1032.

Installing Pytwist on Managed Servers

During an SA installation or upgrade, the Pytwist libraries are placed on the core server with the Command
Engine component. Therefore, you do not need to install Pytwist to use it with custom extensions.
53

Pytwist Examples

The Python code examples in this section show how to get information from managed servers, create
folders, and remediate software policies. Each Pytwist example performs the following operations:

1 Import the packages.

When importing objects of the SA API name space, such as Filter, the path includes the Java package
name, preceded by pytwist. Here are the import statements for the get_server_info.py example:

import sys
from pytwist import *
from pytwist.com.opsware.search import Filter

2 Create the TwistServer object:

ts = twistserver.TwistServer()

See TwistServer Method Syntax on page 65 for information about the method’s arguments.

3 Get a reference to the service.

The Python package name of the service is the same as the Java package name, but without the
leading opsware.com. For example, the Java com.opsware.server.ServerService package
maps to the Pytwist server.ServerService:

serverservice = ts.server.ServerService

4 Invoke the SA API methods of the service:

filter = Filter()
. . .
servers = serverservice.findServerRefs(filter)
. . .
for server in servers:
 vo = serverservice.getServerVO(server)
. . .

get_server_info.py

This script searches for all managed servers with host names containing the command-line argument.
The search method, findServerRefs, returns an array of references to server persistent objects. For
each reference, the getServerVO method returns the value object (VO), which is the data representation
that holds the server’s attributes. Here is the code for the get_server_info.py script:

#!/opt/opsware/agent/bin/python
get_server_info.py

Search for servers by partial hostname.

import sys
from pytwist import *
from pytwist.com.opsware.search import Filter

Check for the command-line argument.
if len(sys.argv) < 2:
 print ’You must specify part of the hostname as the search target.’
 print "Example: " + sys.argv[0] + " " + "opsware.com"
 sys.exit(2)
54 Chapter 3

Construct a search filter.
filter = Filter()
filter.expression = ’device_hostname *=* "%s"’ % (sys.argv[1])

Create a TwistServer object.
ts = twistserver.TwistServer()

Get a reference to ServerService.
serverservice = ts.server.ServerService

Perform the search, returning a tuple of references.
servers = serverservice.findServerRefs(filter)

if len(servers) < 1:
 print "No matching servers found"
 sys.exit(3)

For each server found, get the server’s value object (VO)
and print some of the VO’s attributes.
for server in servers:
 vo = serverservice.getServerVO(server)
 print "Name: " + vo.name
 print " Management IP: " + vo.managementIP
 print " OS Version: " + vo.osVersion

create_folder.py

This script creates a folder named /TestA/TestB by invoking the createPath method. Note that the
path parameter of createPath does not contain slashes. Each string element in path indicates a level
in the folder. Next, the script retrieves and prints the names of all folders directly below the root folder.
The listing for the create_folder.py script follows:

#!/opt/opsware/agent/bin/python
create_folder.py

Create a folder in SA.

import sys
from pytwist import *

Create a TwistServer object.
ts = twistserver.TwistServer()

Get a reference to FolderService.
folderservice = ts.folder.FolderService

Get a reference to the root folder.
rootfolder = folderservice.getRoot()
Construct the path of the new folder.
path = ’TestA’, ’TestB’

Create the folder /TestA/TestB relative to the root.
folderservice.createPath(rootfolder, path)
Python API Access with Pytwist 55

Get the child folders of the root folder.
rootchildren = folderservice.getChildren(rootfolder,
’com.opsware.folder.FolderRef’)

Print the names of the child folders.
for child in rootchildren:
 vo = folderservice.getFolderVO(child)
 print vo.name

remediate_policy.py

This script creates a software policy, attaches it to a server, and then remediates the policy. Several
names are hard-coded in the script: the platform, server, and parent folder. Optionally, you can specify the
policy name on the command-line, which is convenient if you run the script multiple times. The platform
of the software policy must match the OS of the packages contained in the policy. Therefore, if you change
the hard-coded platform name, then you also change the name in unitfilter.expression.

The following listing has several bad line breaks. If you copy this code, be sure to fix the bad line breaks
before running it. The comment lines beginning with "NOTE" point out the bad line breaks.

#!/opt/opsware/agent/bin/python
remediate_policy.py

Create, attach, and remediate a software policy.

import sys
from pytwist import *
from pytwist.com.opsware.search import Filter
from pytwist.com.opsware.swmgmt import SoftwarePolicyVO

Initialize the names used by this script.
foldername = ’TestB’
platformname = ’Windows 2003’
servername = ’d04.example.com’
If a command-line argument is specified,
use it as the policy name
if len(sys.argv) == 2:
 policyname = sys.argv[1]
else:
 policyname = ’TestPolicyA’

Create a TwistServer object.
ts = twistserver.TwistServer()

Get the references to the services used by this script.
folderservice = ts.folder.FolderService
swpolicyservice = ts.swmgmt.SoftwarePolicyService
serverservice = ts.server.ServerService
unitservice = ts.pkg.UnitService
platformservice = ts.device.PlatformService

Search for the folder that will contain the policy.
folderfilter = Filter()
folderfilter.expression = ’FolderVO.name = ’ + foldername
folderrefs = folderservice.findFolderRefs(folderfilter)
56 Chapter 3

if len(folderrefs) == 1:
 parent = folderrefs[0]
elif len(folderrefs) < 1:
 print "No matching folders found."
 sys.exit(2)
else:
 print "Non-unique folder name: " + foldername
 sys.exit(3)

Search for the reference to the platform "Windows Server 2003."
platformfilter = Filter()
platformfilter.objectType = ’platform’
doublequote = ’\"’
Because the platform name contains spaces,
it’s enclosed in double quotes
NOTE: The following code line has a bad line break.
The assignment statement should be on a single line.
platformfilter.expression = ’platform_name = ’ + doublequote + platformname +
doublequote
platformrefs = platformservice.findPlatformRefs(platformfilter)

if len(platformrefs) == 0:
 print "No matching platforms found."
 sys.exit(4)

Search for the references to some software packages.
unitfilter = Filter()
unitfilter.objectType = ’software_unit’
NOTE: The following code line has a bad line break.
The assignment statement should be on a single line.
unitfilter.expression = ’((UnitVO.unitType = "MSI") & (UnitVO.name contains
"ismtool") & (software_platform_name = "Windows 2003"))’
unitrefs = unitservice.findUnitRefs(unitfilter)

Create a value object for the new software policy.
vo = SoftwarePolicyVO()
vo.name = policyname
vo.folder = parent
vo.platforms = platformrefs
vo.softwarePolicyItems = unitrefs

Create the software policy.
swpolicyvo = swpolicyservice.create(vo)

Search by hostname for the reference to a managed server.
serverfilter = Filter()
serverfilter.objectType = ’server’
NOTE: The following code line has a bad line break.
The assignment statement should be on a single line.
serverfilter.expression = ’ServerVO.hostname = ’ + servername
serverrefs = serverservice.findServerRefs(serverfilter)

if len(serverrefs) == 0:
 print "No matching servers found."
Python API Access with Pytwist 57

 sys.exit(5)

Create an array that has a reference to the
newly created policy.
swpolicyrefs = [1]
swpolicyrefs[0] = swpolicyvo.ref

Attach the software policy to the server.
swpolicyservice.attachToPolicies(swpolicyrefs, serverrefs)

Remediate the policy and the server.
NOTE: The following code line has a bad line break.
The assignment statement should be on a single line.
jobref = swpolicyservice.startRemediateNow(swpolicyrefs, serverrefs)
print ’The remediation job ID is %d’ % jobref.id

Virtualization Pytwist Examples

This section provides examples of creating and deploying virtual machines (VMs) using SA API. For more
examples about Virtualization, see the HP Server Automation User Guide: Virtualization Management.

createVM_WithOSBP.py

This basic example creates a VM on a VMware vCenter using CD boot with static IP configuration.

All properties have not been set in these examples. Please refer to API documentation (javadocs) to
understand and set the properties for your use case.

#!/opt/opsware/agent/bin/python
from pytwist import twistserver
from pytwist.com.opsware.locality import CustomerRef, RealmRef
from pytwist.com.opsware.osprov import OSBuildPlanRef
from pytwist.com.opsware.pkg import UnknownPkgRef
from pytwist.com.opsware.v12n import AdapterIPSettings, V12nHypervisorRef, \
 V12nHypervisorService, V12nInventoryFolderRef, V12nResourcePoolRef, \
 V12nResourcePoolRef, V12nVIManagerService, VirtualCpuConfig,
VirtualDevice, \
 VirtualDeviceChangeConfig, VirtualDeviceTypeConstant,
VirtualHardwareConfigSpec, \
 VirtualMemoryConfig, VirtualServerCDProvisioningSpec,
VirtualServerComputeSpec, \
 VirtualServerConfigSpec, VirtualServerCreateSpec,
VirtualStorageDeviceConstant, \
 VirtualStorageDeviceHWConfig
from pytwist.com.opsware.v12n.vmware import V12nDatastoreRef, \
 VmwareVirtualInterfaceBacking, VmwareVirtualNicHWConfig, \
 VmwareVirtualServerDetails, VmwareVirtualServerStorageSpec, \
 VmwareVirtualStorageFileBacking
import time

This is a bare bones example of creating a Virtual Machine on a VMware
vCenter while booting from CD with Static IP configuration. It also
58 Chapter 3

provisions the Virtual Machine with the give OS build Plan. For more
detailed information please refer to the java doc. All the properties have
not been set in the example below, please review the java doc to understand
the set the properties for your use case.

This method constructs the create specification to create the Virtual
Machine and provision it.
def constructCreateSpec():

 # Construct VmwareVirtualServerDetails
 detail = VmwareVirtualServerDetails()
 # Virtual Machine Name
 detail.name = "Test VM"
 # Description for the Virtual Machine
 detail.description = "Sample test create VM"
 # This is the key for the guest operating system that will installed on
 # the Virtual Machine.
 # V12nVIManagerService.getGuestOSList() provides the supported list for
 # the given V12n Manager and hypervisor.
 detail.guestId = "rhel6Guest"
 # This is folder where the VM will reside in you can see the list of
 # folders at V12nInventoryFolderService.findV12nInventoryFolderRefs() it
 # is the inventory location of the Virtual Machine
 folder = V12nInventoryFolderRef(2020001)
 detail.inventoryFolderRef = folder

 # Configure the number of Virtual processors on the Virtual Machine
 cpuConfig = VirtualCpuConfig()
 cpuConfig.virtualCpuCount = 1

 # Configure the Memory for the Virtual Machine
 memoryConfig = VirtualMemoryConfig()
 memoryConfig.size = 1024*1024*1024

 # Configure NICs
 # Construct the virtual device of type network i.e a NIC
 virtualNetworkDevice = VirtualDevice()
 virtualNetworkDevice.type = VirtualDeviceTypeConstant.NETWORK
 # A unique identifier for the virtual device
 virtualNetworkDevice.key = "4001"
 backingNetwork = VmwareVirtualInterfaceBacking()
 # This is the port group that the nic will be assigned to
 backingNetwork.portGroup = "VLAN 625"

 hwConfigNetwork = VmwareVirtualNicHWConfig()
 # The kind of network adapter to use, other options are listed in
 # VmwareVirtualNicHWConfig
 hwConfigNetwork.adapterType = VmwareVirtualNicHWConfig.E1000
 hwConfigNetwork.macAddressIsDynamic = True

 virtualNetworkDevice.hwConfig = hwConfigNetwork
 virtualNetworkDevice.backingInfo = backingNetwork

 virtualNetworkDevice.connected = True
Python API Access with Pytwist 59

 virtualNetworkDevice.startConnected = True

 # Configure Hard Disk
 virtualDiskDevice = VirtualDevice()
 virtualDiskDevice.type = VirtualDeviceTypeConstant.STORAGE

 backingStorage = VmwareVirtualStorageFileBacking()

 # This is Ref for the data store on the hypervisor where the VM will be
 # hosted. The list of datastores associated with the Hypervisors are
 # listed at V12nHypervisorService.getV12nHypervisorVO() under storage
 # config
 dataStoreRef = V12nDatastoreRef(90001)
 backingStorage.datastore = dataStoreRef
 backingStorage.lazyAllocation = True

 hwConfigStorage = VirtualStorageDeviceHWConfig()
 hwConfigStorage.capacity = 10*1024*1024*1024
 hwConfigStorage.usageType =
VirtualStorageDeviceConstant.USAGE_TYPE_DISK_DRIVE

 virtualDiskDevice.hwConfig = hwConfigStorage
 virtualDiskDevice.backingInfo = backingStorage

 # Add both the virtual devices to be created, i.e. the hard disk and the
 # nic
 virtualDvcs_toAdd = []
 virtualDvcs_toAdd.append(virtualNetworkDevice)
 virtualDvcs_toAdd.append(virtualDiskDevice)
 deviceChange = VirtualDeviceChangeConfig()
 deviceChange.addList = virtualDvcs_toAdd

 # Finalize the Config Spec
 configSpec = VirtualServerConfigSpec()
 configSpec.detail = detail
 configSpec.virtualHardware = VirtualHardwareConfigSpec()
 configSpec.virtualHardware.cpuConfig = cpuConfig
 configSpec.virtualHardware.memoryConfig = memoryConfig
 configSpec.virtualHardware.deviceChange = deviceChange

 # Constructing the Compute Spec
 computeSpec = VirtualServerComputeSpec()
 # This is the hypervisor hosting the VM
 hypervisorRef = V12nHypervisorRef(2030001)
 computeSpec.computeProviderRef = hypervisorRef
 # This is resource pool on the hypervisor/cluster that the VM belongs to
 # It can be retrieved it by using hypervisorVO.children or the Cluster
 # children
 resourcePool = V12nResourcePoolRef(2040001)
 computeSpec.resourcePoolRef = resourcePool

 storageSpec = VmwareVirtualServerStorageSpec()
 storageSpec.datastore = dataStoreRef
60 Chapter 3

 # This example deals with provisioning a VM through CD boot and with
 # static IP configuration. The example deals setting the boot ISO and
 # network information to be used.
 # All the information for this is contained in the
 # VirtualServerCDProvisioningSpec

 # Set all the network information
 gateways =[]
 gw ="192.168.135.33"
 gateways.append(gw)
 dnsServers =[]
 dnsServer = "192.168.2.13"
 dnsServers.append(dnsServer)

 interfaces =[]
 interface = AdapterIPSettings()

 # Construct the network interface
 interface.useDHCP=False
 # Note this is the virtual device we have created above, we use the same
 # device key to indicate to provisioning which virtual device is to be
 # used for provisioning
 interface.virtualDeviceKey="4001"
 interface.gateways=gateways
 interface.ipAddress="192.168.135.45"
 interface.netmask="255.255.255.224"
 interface.dnsServerList=dnsServers

 interfaces.append(interface)

 # This is the boot ISO Ref that will be used to get the server into
 # maintenance mode
 # The name and the id need to match the packages on the core.
 # Use the UnitService.findUnitRefs() to find the boot ISO's
 bootISORef = UnknownPkgRef(5340001)
 bootISORef.name="HPSA_linux_boot_cd.iso"
 # The realm assigned to the Virtual Machine will be the realm of the
 # Virtualization Service
 realmRef = RealmRef(30001)
 # The OS Build Plan that needs be run on the Virtual Machine after the VM
 # has been created.
 osbpRef = OSBuildPlanRef(580001)

 provisioningSpec = VirtualServerCDProvisioningSpec()

 provisioningSpec.bootISORef = bootISORef
 provisioningSpec.interfaces = interfaces
 provisioningSpec.realmRef = realmRef
 provisioningSpec.oSBuildPlanRef = osbpRef

 # Finally put together all the information to be set on the Create
 # Specification
 createSpec = VirtualServerCreateSpec()
 createSpec.configSpec = configSpec
Python API Access with Pytwist 61

 createSpec.computeSpec = computeSpec
 createSpec.storageSpec = storageSpec

 createSpec.provisioningSpec = provisioningSpec
 #Set the customer to be associated with the Virtual Machine
 customer = CustomerRef(9)
 createSpec.setCustomerRef(customer)
 return createSpec

def createVirtualMachine():
 twist = twistserver.TwistServer()
 twist.authenticate("hp", "opsware")
 vmService = twist.v12n.V12nVirtualServerService
 createSpec = constructCreateSpec()
 jobRef = vmService.startCreate(createSpec,4*60*60,"Sample create
VM",None, None)

createVirtualMachine()

deployVM.py

This basic example shows how to deploy a VM from a VM template on VMware vCenter and customize the
guest OS of the deployed VM.

All properties have not been set in these examples. Please refer to API documentation (javadocs) to
understand and set the properties for your use case.

#!/opt/opsware/agent/bin/python
from pytwist import twistserver
from pytwist.com.opsware.locality import CustomerRef, RealmRef
from pytwist.com.opsware.osprov import OSBuildPlanRef
from pytwist.com.opsware.pkg import UnknownPkgRef
from pytwist.com.opsware.v12n import AdapterIPSettings, V12nHypervisorRef, \
 V12nHypervisorService, V12nInventoryFolderRef, V12nResourcePoolRef, \
 V12nResourcePoolRef, V12nVIManagerService, VirtualCpuConfig,
VirtualDevice, \
 VirtualDeviceChangeConfig, VirtualDeviceTypeConstant,
VirtualHardwareConfigSpec, \
 VirtualMemoryConfig, VirtualServerCDProvisioningSpec,
VirtualServerComputeSpec, \
 VirtualServerConfigSpec, VirtualServerCreateSpec,
VirtualStorageDeviceConstant, \
 VirtualStorageDeviceHWConfig, V12nVirtualServerTemplateRef, \
 VirtualServerCloneSpec, VirtualServerGuestCustomizationSpec
from pytwist.com.opsware.v12n.vmware import V12nDatastoreRef, \
 VmwareVirtualInterfaceBacking, VmwareVirtualNicHWConfig, \
 VmwareVirtualServerDetails, VmwareVirtualServerStorageSpec, \
 VmwareVirtualStorageFileBacking
import time

This is a bare bones example of deploying a Template VMware vCenter. It
deploys the template and then guest customizes the deployed virtual Machine.
For more detailed information please refer to the java doc. All the
properties have not been set in the example below, please review the java
62 Chapter 3

doc to understand the set the properties for your use case.

This method constructs the deploy specification to deploy the a Template and
customizes it.
def constructDeploySpec(sourceTemplateVO):

 # Construct the Deploy Spec
 clonespec = VirtualServerCloneSpec()

 clonespec.computeSpec = VirtualServerComputeSpec()
 # This is the hypervisor hosting the VM
 targetHypervisorRef = V12nHypervisorRef(2030001)
 clonespec.computeSpec.computeProviderRef = targetHypervisorRef

 computeSpec = VirtualServerComputeSpec()
 # This is resource pool on the hypervisor/cluster that the VM belongs to
 # It can be retrieved it by using hypervisorVO.children or the Cluster
 # children
 targetResourcePoolRef = V12nResourcePoolRef(2040001)
 computeSpec.resourcePoolRef = targetResourcePoolRef
 clonespec.computeSpec.resourcePoolRef = targetResourcePoolRef

 storageSpec = VmwareVirtualServerStorageSpec()
 dataStoreRef = V12nDatastoreRef(90001)
 storageSpec.datastore = dataStoreRef
 clonespec.storageSpec = storageSpec
 # Construct VmwareVirtualServerDetails
 detail = VmwareVirtualServerDetails()
 # Virtual Machine Name
 detail.name = "Test Deploy VM"
 # Description for the Virtual Machine
 detail.description = "Sample Deploy create VM"

 # This is folder where the VM will reside in. you can see the list of
 # folders at V12nInventoryFolderService.findV12nInventoryFolderRefs() it
 # is the inventory location of the Virtual Machine
 targetFolderRef = V12nInventoryFolderRef(2020001)
 detail.inventoryFolderRef = targetFolderRef
 configSpec = VirtualServerConfigSpec()
 configSpec.detail = detail
 clonespec.configSpec=configSpec

 # Create the Guest Customization Spec, this is needed to customized the
 # deployed VM so that it does not use the network settings and host name
 # of the source template
 # In this example all the interfaces are set to DHCP but you can
 # customize each of the interfaces by either providing static or DHCP
 # configuration details
 interfaces = createInterfaces(sourceTemplateVO)
 # The realm assigned to the Virtual Machine will be the realm of the
 # Virtualization Service
 realmRef = RealmRef(30001)

Python API Access with Pytwist 63

 clonespec.guestCustomizationSpec =
createGuestCustomizationSpec("testDeployVM",realmRef,interfaces)
 clonespec.setPowerOn(True)
 # Set the customer to be associated with the Virtual Machine
 customerRef = CustomerRef(9)
 clonespec.customerRef = customerRef
 return clonespec

def createGuestCustomizationSpec(newVmNameVal,realmRef,interfaces):
 gcSpec = VirtualServerGuestCustomizationSpec()
 gcSpec.computerName = newVmNameVal
 gcSpec.interfaces = interfaces
 gcSpec.realmRef = realmRef
 return gcSpec

def createInterfaces(virtualServerVO):
 interfaces = []
 virtualDevices = virtualServerVO.virtualHardware.deviceList
 vNICs = [vd for vd in virtualDevices if vd.type ==
VirtualDeviceTypeConstant.NETWORK]
 for vNIC in vNICs:
 intf = AdapterIPSettings()
 intf.useDHCP = True
 intf.hardwareAddress = vNIC.hwConfig.macAddress
 intf.virtualDeviceKey = vNIC.key
 interfaces.append(intf)
 return interfaces

def deployVirtualMachine():
 twist = twistserver.TwistServer()
 twist.authenticate("hp", "opsware")
 vmTemplateService = twist.v12n.V12nVirtualServerTemplateService
 vmService = twist.v12n.V12nVirtualServerBaseService
 sourceTemplateRef = V12nVirtualServerTemplateRef(1520001)
 sourceTemplateVO =
vmService.getV12nVirtualServerBaseVO(sourceTemplateRef)
 deploySpec = constructDeploySpec(sourceTemplateVO)
 jobRef =
vmTemplateService.startDeploy(sourceTemplateRef,deploySpec,30*60,"Sample
Deploy VM",None, None);

deployVirtualMachine()
64 Chapter 3

Pytwist Details

This section describes the behavior and syntax that is specific to Pytwist.

Authentication Modes

The authentication mode of a Pytwist client is important because it affects the SA features and the
resources that the client can access. A Pytwist client can run in one of the following modes:

• Authenticated: The client has called the authenticate(username, password) method on a
TwistServer object. After calling the authenticate method, the client is authorized as the SA
user specified by the username parameter, much like an end user who logs onto the SA Client.

• Not Authenticated: The client has not called the TwistServer.authenticate method. On a
managed server, the client is authenticated as if it is the device that controls the Agent certificate.
When used within a custom extension, a non-authenticated Pytwist client needs access to the
Command Engine certificate. For more information on custom extensions and certificates, contact
your technical support representative.

TwistServer Method Syntax

The TwistServer method configures the connection from the client to the Web Services Data Access
Engine. (For sample invocations, see Pytwist Examples on page 54.) All of the arguments of
TwistServer are optional. Table 5 lists the default values for the arguments.

When the TwistServer object is created, the client does not establish a connection with the server.
Therefore, if a connectivity problem occurs, it is not encountered until the client calls authenticate or
an SA API method.

table 5 Arguments of the TwistServer Method

Argument Description Default

host The hostname to connect to. twist

port The port number to connect to. 1032

secure Whether to use https for the connection. Allowed
values: 1 (true) or 0 (false).

1

ctx The SSL context for the connection. None. (See also Authentication
Modes on page 65.)
Python API Access with Pytwist 65

Error Handling

If the TwistServer.authenticate method or an SA API method encounters a problem, a Python
exception is raised. You can catch these exceptions in an except clause, as in the following example:

Create the TwistServerobject.
ts = twistserver.TwistServer(’localhost’)
Authenticate by passing an SA user name and password.
try:
 ts.authenticate(’jdoe’, ’secretpass’)
except:
 print "Authentication failed."
 sys.exit(2)

Mapping Java Package Names and Data Types to Pytwist

The Pytwist interface is for Python, but the SA API is written in Java. Because of the differences between
two programming languages a Pytwist client must follow the mapping rules described in this section.

In the SA API documentation, Java package names begin with com.opsware. When specifying the
package name in Pytwist, insert pytwist at the beginning, for example:

from pytwist.com.opsware.compliance.sco import *

The SA API documentation specifies method parameters and return values as Java data types. Table 6
shows how to map the Java data types to Python for the API method invocations in Pytwist.

table 6 Mapping Data Types from Java to Python

Java Data Type in SA API Python Data Type in pytwist

Boolean An integer 1 for true or the integer 0 for false.

Object[]
(object array)

As input parameters to API method calls, object arrays can
be either Python tuples or lists. As output from API method
calls, object arrays are returned as Python tuples.

Map Dictionary

Date A long data type representing the number of milliseconds
since epoch (midnight on January 1, 1970).
66 Chapter 3

4 Creating Automation Platform Extensions
(APX)
This chapter describes how to create and manage Automation Platform Extensions (APX), commonly just
called extensions. APXs provide a framework that allows anyone familiar with script-based programming
tools such as shell scripts, Python, Perl, and PHP, to extend the functionality of SA and create applications
that are tightly integrated into SA. SA provides two types of APXs:

• Program APXs (also called Script APXs) run in the Global File System (OGFS) and can use all of the
OGFS functionality. You can use typical programming practices to leverage the SA API and access a
core’s Managed Servers to implement new custom functionality. For example, you could write an APX
that gathers BIOS information from managed servers and populates custom fields using shell
commands. See Program APXs on page 71.

• Web APXs allow you to create a web-based application, where either an Apache 2.x process or a CGI/
PHP script is called using GET or POST URL. Web APXs can contain static web resources such as
images, and can employ CGI or PHP for dynamic content generation. See Web APXs on page 71.

APXs allow you to access data about your managed environment and share and process that data with
web applications, scripts, programs and other applications. Below are some of the benefits of APXs:

• Listed in the SA Library and can be used from the SA Client.

• Uniquely identified and managed through versioning.

• Secure because they take full advantage of SA’s security model. When needed, APXs can securely and
temporarily escalate a user’s permissions beyond the normal defaults during the APX session.

• Scalable within and across SA cores.

• You can schedule them to be pushed automatically to servers.

• Auditable.

• Able to persist through an upgrade of the SA platform. APXs do not have to be rewritten after an
upgrade.

For information on using APX extensions, see “Running Extensions to SA” in the SA User Guide: Server
Automation. See also the “SA Global Shell” in the SA User Guide: Server Automation because you can
also run APX extensions from the SA Global Shell.
69

Creating an APX

The following diagram shows the basic steps to creating an APX and the corresponding commands to use.
For a tutorial on how to create a web APX, see Tutorial: Creating a Web Application APX on page 90. For
a tutorial on how to create a program APX, see Tutorial: Creating a Program APX on page 96.

figure 3 Creating an APX

1 To create a new APX, use the apxtool new command. This command creates a set of template files
you can edit to create your own APX.

You can optionally register your new APX with the apxtool new command. Registering your
APX reserves the name of your APX in SA. If you do not register your APX at this step, you can
register it with the apxtool import command in step 3 below.

See The apxtool Command on page 78.

2 After creating APX template files, develop your APX code by modifying the template files created by
the apxtool new command and possibly adding your own files. You can test your APX code to make
sure it is running correctly.

3 When your APX code is tested, you must import it into SA with the apxtool import command.

4 Run your APX either from the SA Client or from the Global Shell command line.

— From the SA Client: Select Library > By Type tab > Extensions > Program. Select an APX.
Select the Actions > Run menu.

— From the Global Shell command line: Open the Global Shell from the SA Client by selecting the
Tools > Global Shell menu. Run your APX by entering the command
/opsw/apx/bin/<APX name>.

— For more information, see “Running Extensions to SA” in the SA User Guide: Server Automation
and the “SA Global Shell” in the SA User Guide: Server Automation.

To create an APX extension that is intended to run on VMware ESXi servers, the APX extension must
communicate with the ESXi server remotely using its web services interface. For more information on
VMware ESXi servers, see “Virtual Server Management” in the SA User Guide: Server Automation.
70 Chapter 4

Program APXs

Program APXs, also called Script APXs, are similar to shell commands and are implemented as OGFS
server scripts. You can invoke them from the OGFS command line and pass input arguments to them using
STDIN or command-line arguments. Their output goes to STDOUT and STDERR.

Program APXs are executed inside a Global Shell (OGSH) session and have access to all OGSH features
permissible to the user who invokes the APX. This includes rosh, CLI, OGFS, and more. You can write
Program APXs using any script-based tool, such as shell script, Python, Perl, and so on.

You can invoke Program APXs from the OGSH command prompt. Typically, Program APXs are executed
synchronously, meaning the shell prompt does not return until the Program APX returns. APXs cannot be
scheduled as recurring jobs in either the twister or in OGFS.

Program APXs are located in the OGFS directory /opsw/apx/bin.

During an interactive OGSH session, a user only sees those Program APXs in /opsw/apx/bin that they
have permission to execute. Attempting to invoke a Program APX for which a user has no execution
permission results in a File Not Found error from the shell.

A Program APX can also be invoked by other Web APXs or Program APXs. For example, a CGI program or
PHP script from a Web APX can invoke a Program APX.

Web APXs

Web APXs are implemented using CGI programs or PHP scripts. These CGI programs and PHP scripts are
executed inside a user-specific OGSH session. They may access SA facilities such as rosh, the SA API, CLI,
or any commands allowable from within an OGSH session. Web APXs are served by a built-in Apache web
server with a PHP module enabled.

You can access Web APXs in two ways: using a stand-alone web browser such as Internet Explorer or
Firefox, or from the SA Client. Microsoft ActiveX is not supported.

Invoking a Web APX from a stand-alone Web browser the first time will trigger a login dialog that requires
verification of the SA user credentials. Invoking a Web APX from the SA Client does not require additional
login. Web APXs can be used to build user Interfaces for custom customer applications.

To launch APXs using Microsoft Internet Explorer versions 6 and 7 on Windows Server 2003, 2008 and
2012 with Enhanced Security Configuration enabled, the SAS Web Client URL must first be added to
Internet Explorer’s trusted site list.
Creating Automation Platform Extensions (APX) 71

APX User Roles

There are three general roles of APX users as shown in Table 7:

APX Permissions

APXs requires that you have the SA Client Feature permission Manage Extensions. A user group can
be given one of the permissions:

• Manage Extensions: Read

• Manage Extensions: Read & Write

• Manage Extensions: None

figure 4 APX Feature Permissions

These feature permissions apply only to APX developers and administrators, they do not apply to those
users who only need to run APXs.

• Read permission grants the ability to display the APX source contents or to export (download) the
APX source archives.

• Read & Write permission grants the ability to modify the contents of an APX in addition to read
access.

• None permission denies all access to the APX source.

table 7 APX User Roles

User Role Description

End User Runs APXs. This user typically does not have permission to modify an APX or see
its content.

APX Developer Creates and publishes APXs. This class of users can import and export APXs, and
can modify APX content.

APX
Administrator

Determines APXs users are permitted to run. These users assign executable
permission to run an APX by managing folder permissions. APX Administrators
may not have permission to modify the APX itself, but can have the permission
to view APX content in order to determine which APXs to make executable.
72 Chapter 4

In addition to the SA Client Feature Manage Extensions permission, folder permissions (list, read,
write, execute) must be used to determine which APXs a user has access to.

Table 9 shows a matrix of how permissions are determined based on the combination of the Manage
Extensions feature permissions and folder permissions.

Like other SA features, you can grant a user access to an APX and specify to which managed servers and
or policies the user can apply the APX.

If a user attempts to access a Web APX for which he does not have execution permission, the Web browser
will receive an HTTP 403 Forbidden return code.

For more information on SA permissions, see the SA Administration Guide.

Permission Escalation

When executing an APX, the user has only the privileges to access resources and operations granted in SA.
However, in some cases, it will be necessary to temporarily grant the user escalated permissions,
privileges beyond the SA privileges, while executing an APX. You can explicitly grant certain privileges to
users, over-and-above their default SA privileges, on a temporary basis while running an APX. Permission
escalation is transparent to the user running the APX.

For example, you may want a user to be able to run a BIOS information gathering application on a
managed server, but the user does not have the permissions granted to do so. You can write an APX for a
user without the privileges required to run the BIOS gathering application that temporarily grants that
user the required privileges. The user’s privileges return to the default after the APX ends its run.

Privilege escalation is specified in the file apx.perm file. For more information, see The APX Permissions
Escalation Configuration File - apx.perm on page 87.

table 8 APX Permissions

Permission Description

List Permission to list the system’s APXs.

Read Permission to view APX contents.

Write Permission to modify APX content and to import and export APXs.

Execute Permission to run APXs and view APX properties.

table 9 APX Permission Matrix

Folder
Permission:

Manage Extensions Permission:

 Read Read & Write None

List List APXs List APXs List APXs

Read Export APXs Export APXs List APXs

Write Export APXs Import, export APXs List APXs

Execute Run APXs Run APXs Run APXs
Creating Automation Platform Extensions (APX) 73

APX Structure

An APX has the following attributes:

• APX type: Either Program APX (also called Script APX) or Web APX.

• APX unique name: This is the full name of the APX that must be unique. For example,
com.hp.sa.RestartMyApp.

• APX display name: This is usually a shorter name than the APX unique name. For example,
RestartMyApp.

• APX version: You can maintain multiple versions of your APX by setting a version string or you can let
SA manage versions for you automatically. The APX version can be a simple number such as version
1, 2, 3, and so on, or it can be any alphanumeric string.

See Importing an APX into SA - apxtool import on page 82 and Setting the Current Version of an
APX - apxtool setcurrent on page 84 for more information.

File Structure

To SA, an APX is just a set of files and directories that conform to the contract of the APX type (Program
APX or Web APX) such that the APX runtime can properly execute it. For example, a Web APX may need an
index.html file or an index.php file. A Program APX may require a shell command with the same
name as the APX.

For more information on the files in an APX, see APX Files on page 86.

OGFS Integration

The APX infrastructure depends on the OGFS to manage user sessions and to expose various parts of the
APX in the SA file system. The following sections describe how APX is integrated into the OGFS and its
various applications.

APX Executable Directory

Program APXs are treated as executable programs in the Global Shell, OGSH. These APXs are exposed as
an executable command in the OGSH. This allows a shell user to invoke the APX as if running a shell
command.

The APX executable directory has the following format:

/opsw/apx/bin/{apx_name}

where apx_name is the name of the APX. Running apx_name in /opsw/apx/bin/{apx_name invokes
the current version of apx_name.

APX Runtime Directory

The APX Runtime directory is used by the APX runtime to support execution of an APX. The APX Runtime
directory must have access to the APX source. In addition, users who have developer privileges and have
read permission to an APX can also access the APX. The APX Runtime directory is not available for non-
APX developers in the Global Shell.

The APX Runtime directory references the source of the current version of an APX. It has the format:

/opsw/apx/runtime/{apx_type}/{apx_name}
74 Chapter 4

where apx_type can be script or web.

APX Interfaces - Defining Categories of APX Extensions

APX interfaces enable you to create named categories of APXs and to find all the APXs of a given
category. An interface is the name of the category. For example, you could create a category of APXs that
all take a certain set of input parameters and produces a certain type of output data. Or you could create
a category of APXs that all perform a specific set of operations.

You can also create an APX or an external application that gets the names of all APXs of the desired
category and executes them. Or the APX or application could just present the list of APXs of the desired
category and let the user select one to execute.

An APX interface is a name that defines an informal contract between the caller of an APX and the APX.

• An APX that defines an interface name creates a category of APX with that name.

• An APX that implements an interface declares itself to be an APX of that category.

An Example Interface

SA provides an interface named RightClickToRun. This interface defines a category of APX that takes one
or more devices as input parameters and runs against those devices. In addition, the SA Client displays all
APXs that implement this interface in the Actions > Run Extension menu, which allows users to select
one or more devices and run these APXs against the selected devices. For more information on this
interface, see The RightClickToRun Interface on page 76.

Defining an Interface

An APX interface defines the name of a category of APXs. All APXs that implement the interface belong to
the category and must adhere to the conventions of the interface. To create a new category, you make
your APX “define” the interface.

To make your APX define an interface, perform the following steps.

1 Create the APX with the apxtool new command. For details on this command, see Creating a New
APX - apxtool new on page 79.

2 Locate the files of your new APX and open the file named interfaces in a text editor. The interfaces
file is located in the APX-INF directory of your APX directory.

3 At the end of the interfaces file, add three lines for:

— The name of the interface section in the file. This is the unique name of the interface.

— The display name of the interface.

— A description of the interface.

For example, the following shows the interface section name, the display name and the description
of the interface named “com.hp.sa.MyNewInterface”:

[com.hp.sa.MyNewInterface]
name=MyNewInterface
description=”This is a simple interface for testing purposes.”

4 Save your changes and close the file.

5 Import your modified APX into SA with the apxtool import command. For details on this
command, see Importing an APX into SA - apxtool import on page 82.
Creating Automation Platform Extensions (APX) 75

To upgrade an existing APX to define an interface you must create the interfaces file and add your
interfaces as described above.

Implementing an Interface

An APX interface specifies a category of APX that adheres to the conventions of the interface. To specify
that your APX belongs to a category, you make your APX “implement” the interface. To make your APX
implement an interface, perform the following steps.

1 Create the APX with the apxtool new command. For details on this command, see Creating a New
APX - apxtool new on page 79.

2 Locate the files of your new APX and open the file named apx.cfg in a text editor.

3 Locate the section in your apx.cfg file that discusses the “Implementing” section. This section
briefly describes how to specify the interfaces that your APX implements.

4 Locate the following lines in the file apx.cfg:

[Implementing]
interfaces=

5 Modify the interfaces= line and add the name of your interface at the end of the line. For example,
if your APX implements the interface named “com.hp.sa.MyNewInterface”, the apx.cfg file would
contain the following lines:

[Implementing]
interfaces=com.hp.sa.MyNewInterface

To implement more than one interface, add them to the interfaces line separated by colon, as
follows:

[Implementing]
interfaces=com.hp.sa.MyNewInterface:com.hp.sa.AnotherInterface

6 Save your changes and close the file apx.cfg.

7 Import your modified APX into SA with the apxtool import command. For details on this
command, see Importing an APX into SA - apxtool import on page 82.

You must set the current version of the APX to see the implemented interfaces when viewing the APX in
the SA Client or with the apxtool query command. For more information, see Setting the Current
Version of an APX - apxtool setcurrent on page 84.

To upgrade an existing APX to use an interface you must add your interfaces to your existing apx.cfg
file as described above.

The RightClickToRun Interface

SA provides an interface you can use with your APXs named
com.hp.client.server.RightClickToRun. This interface works only with program APXs, not with
web APXs. Use this interface when you want your APX to do all of the following:

• Take one or more devices as input parameters to the APX. APXs that implement this interface must
take “-d <device id>” as an input argument.

• Appear in the Actions > Run Extension > Select Extension... window.

• Appear in the Actions > Run Extension menu of the SA Client. APXs appear in this menu after they
have been run once using the Actions > Run Extension > Select Extension... menu.
76 Chapter 4

To execute an APX from the Actions > Run Extension menu, the user must have execute permission on
the APX. Any APX the user does not have permission to execute will not appear under this menu item. For
information on permissions, see the SA Administration Guide.

The RightClickToRun interface lets users select one or more devices in the SA Client and run your APX
against those devices.

When you select the Actions > Run Extension menu item, the SA Client displays all of the program APXs
that implement the interface com.hp.client.server.RightClickToRun. When you select an APX, it is run
against all the selected servers. The APX will be invoked once for each selected server.

For instructions on making your APX implement this interface, see Implementing an Interface on page 76.
For details on using an APX that implements this interface, see “Running SA Extensions” in the SA User
Guide: Server Automation.

Using the Interface API

You can use the SA API to integrate your own applications with SA and APXs. Your application can
determine all the APXs that implement a particular interface by using the interface named
APXInterfaceService in the package named com.opsware.apx in the SA API. See API Documentation and
the Twister on page 23 in Chapter 1 for more information on using the SA API.
Creating Automation Platform Extensions (APX) 77

The apxtool Command

Use the apxtool command in an OGFS session to create and manage APXs. The apxtool command is
available in the Global Shell in the directory /opsw/bin/apxtool.

For a tutorial on how to use the apxtool to create a web APX, see Tutorial: Creating a Web Application
APX on page 90.

Syntax of apxtool

Invoke the APX tool from the OGFS command line as follows:

apxtool [-h | --help] {function} arguments

To obtain a complete list of commands and arguments supported by the APX tool, run apxtool from an
OGSH command line with no arguments.

The APX Tool supports the following major functions:

Using Short and Long Command Options

Most of the options to the apxtool command accept a short form or a long form.

• The short form is a single hyphen and a character, for example, “-t“ and “-v”.

• The long format is two hyphens followed by a word, for example, “--type“ and “--view“.

Some options require an argument following the option. For example, “-t webapp“ and “-t
details“. Arguments can be specified in one of four formats, which are all equivalent. To illustrate, the
following commands are equivalent and produce the same results:

apxtool query -t webapp
apxtool query -twebapp

table 10 APX Tool Functions

Function Usage

new Creates a new APX source directory and a new set of template files in the OGFS.
Optionally registers the APX into SA. Registering assigns an APX ID and makes the name
of your APX available to others (with appropriate permissions) using SA. See Creating a
New APX - apxtool new on page 79.

import Imports your APX files into the SA Library and creates a new version of your APX.
Optionally registers the APX into SA. Registering assigns an APX ID and makes the name
of your APX available to others (with appropriate permissions) using SA. See Importing
an APX into SA - apxtool import on page 82.

setcurrent Sets the current version of an APX in the SA Library. You can have multiple versions of
an APX in SA, but only the current version can be executed. See Setting the Current
Version of an APX - apxtool setcurrent on page 84.

query Displays information about an APX. See Querying APX Information - apxtool query on
page 83.

export Copies all of an APXs files from the SA Library to a separate set of files.

delete Deletes an APX from the SA Library.
78 Chapter 4

apxtool query -tw
apxtool query --type webapp
apxtool query --type=webapp

Some options only require typing a minimum number of characters, enough to identify the option
argument. For example, in the query function, the --view option requires argument “list“,
“details“, “versions“. The following commands produce the same result:

apxtool query --view=details
apxtool query --view=d
apxtool query -vdetails
apxtool query -vd

Creating a New APX - apxtool new

You can use the APX tool to create a new APX and optionally register the name of the APX into SA. This
command creates a set of template files for an APX that you can modify. For information on the files that
make up an APX, see APX Files on page 86.

Usage

apxtool new [options] {src_dir}

where the src_dir argument specifies the directory where the template files of the new APX are to be
created. If this argument is omitted, the template files are placed into the current directory.

Table 11 lists the options for creating a new APX:

table 11 Options for apxtool new

Option Usage

-h, --help Show this help message and exit.

-t <type>

--type=<type>

(Required) The APX type. Valid values are: script or
webapp. For example, -ts for script APX, -tw for web APX.
(A script APX is also known as a program APX.)

-u <unique name>

--uniquename=<unique name>

(Required) The unique name of the APX. A unique name
is a dot separated name that conforms to file system
format. It must have at least one dot. Valid characters are:
[a-zA-Z0-9_.].

Example:
com.hp.sa.security.scan_ports

-n <name>

--name=<name>

(Optional) The display name of the APX in a folder. If a
name is not specified, but a unique name is specified, the
last part of the APX unique name is used as the display
name. Note that this name must be unique within the
specified folder.

For example, if the unique name were
com.hp.sa.MyWebExt, the default display name would be
MyWebExt.
Creating Automation Platform Extensions (APX) 79

Deleting an APX - apxtool delete

You can use the APX tool to delete an existing APX from the SA library.

Usage

apxtool delete [options]

Table 12 lists the options for deleting an APX:

-d <description>

--description=<description>

(Required) A brief description of an APX. If the
description is a filename with the extension .txt, the file
is assumed to be a text file and its content is used as the
APX description.

-r

--register

(Optional) Registers the name of the APX into the
system. If you specify this option, you must also specify -f
or --folder.

If you do not specify -r and -f with apxtool new, you must
use -f with apxtool import.

-f <path>

--folder=<path>

(Optional) The SA folder path where the APX will be
registered. This can be a full path, partial path, absolute
path, or relative path, as long as it can uniquely identify a
specific folder. This option is only needed if -r or --
register is used.

If you do not specify -r and -f with apxtool new, you must
use -f with apxtool import.

-Q, --quiet (Optional) Suppresses output messages.

-F, --force (Optional) Suppresses confirmation prompts.

table 11 Options for apxtool new (cont’d)

Option Usage

table 12 Options for apxtool delete

Option Usage

-h

--help

Show this help message and exit.

-t <type>

--type=<type>

(Required) APX type. Valid values are: script or
webapp. For example -ts for script.

--id=<APX id> (Optional) The object identifier of the desired APX.
80 Chapter 4

Exporting an APX from SA - apxtool export

You can use the APX tool to export an APX. Export downloads a specific version of an APX source archive
file and places the files into a directory or into a .zip archive file.

Usage

apxtool export [options] {target_dir}

where the argument target_dir is the directory into which the APX source archive file is copied or into
which the APX source archive content is expanded, depending on whether or not the --archive option
is specified. If omitted, the current directory is used.

Table 13 lists the options for exporting an APX.

-u <unique_name>

--uniquename=<unique_name>

(Optional) The unique name of the APX. A unique name is a
dot separated name that conforms to file system format. It
must have at least one dot. Valid characters are: [a-zA-Z0-
9_.].

Example:
com.hp.sa.security.scan_ports

-n <name>, --name=<name> (Optional) APX display name in a folder.

-f <path>, --folder=<path> (Optional) SA folder path. path can be a full path, partial
path, absolute, or relative, as long as it can uniquely identify a
specific folder.

-Q, --quiet (Optional) Suppresses output messages.

-F, --force (Optional) Suppresses confirmation prompts.

table 12 Options for apxtool delete (cont’d)

Option Usage

table 13 Options for apxtool export

Option Usage

-h, --help Show this help message and exit.

-t <type>, --type=<type> (Required) APX type. Valid values are: script or
webapp. For example, -ts for script.

--id=<APX id> (Optional) The object identifier of the desired APX.

-u <unique_name>,
--uniquename=<unique_name>

(Optional) The unique name of the APX. A unique name is
a dot separated name that conforms to file system format.
It must have at least one dot. Valid characters are:
[a-zA-Z0-9_.].

Example:
com.hp.sa.security.scan_ports
Creating Automation Platform Extensions (APX) 81

Importing an APX into SA - apxtool import

You can use the APX Tool to import APXs. Import publishes a new version of an APX and optionally sets
this version as the current version. If the APX was has not been registered yet, this command also
registers the APX.

Only the current version of an APX can be run. If you do not set the current version, the APX will not be
runnable. You can set the current version with either apxtool import or with apxtool setcurrent.
See Setting the Current Version of an APX - apxtool setcurrent on page 84.

Usage

apxtool import [options] {apx_src}

where apx_src can be an archived APX source file with extension .zip or .jar or it can be the name of
a directory containing the APX files to be published. apx_src may be a relative or absolute path. If
omitted, the current directory is used. The specified directory or archive file must contain the directory
APX-INF.

Table 14 lists the options that are available when importing an APX:

-n <name>, --name=<name> (Optional) APX display name in a folder.

-f <path>, --folder=<path> (Optional) SA folder path. path can be a full path, partial
path, absolute, or relative, as long as it can uniquely
identify a specific folder.

-v v<ersion_string>, --
version=<version_string>

(Optional) This option specifies which APX version to
download. If omitted, the current version is downloaded.

-a, --archive If specified, export the APX source in its original source
archive as a ZIP or JAR file.

-Q, --quiet (Optional) Suppresses output messages.

-F, --force (Optional) Suppresses confirmation prompts.

table 13 Options for apxtool export (cont’d)

Option Usage

table 14 Options for apxtool import

Option Usage

-h, --help Show this help message and exit.

-c, --setcurrent If specified, set the newly published version as the current
version of an APX.

--version=<version_string> The new version of this APX. This option must not be used if
version_string is already specified in apx.cfg. If no
version is specified, one will be assigned automatically.
82 Chapter 4

Querying APX Information - apxtool query

You can use the APX Tool to get and view APX information. You can specify additional options to limit
resulting APXs. Multiple occurrences of the same option form a logical OR expression. If no matching
result is found, this command returns exit code 100.

Usage

apxtool query [options]

Table 15 lists the options that are available when querying APX information:

-f <path>, --folder=<path> (Optional) SA folder path. path can be a full path, partial
path, absolute, or relative, as long as it can uniquely
identify a specific folder.

If you did not specify -r and -f with apxtool new, you
must use -r with apxtool import.

-Q, --quiet (Optional) Suppresses output messages.

-F, --force (Optional) Suppresses confirmation prompts.

table 14 Options for apxtool import (cont’d)

Option Usage

table 15 Options for apxtool query

Option Usage

-h, --help Show this help message and exit.

-v <view>, --view=<view> (Optional) Select one of the predefined views of the
query results. Choices are list (default), details, and
versions.

-v list is a single line representation of APX basic
information presented in tabular format.

-v details is a multiple line representation of APX
information.

-v versions lists all APX versions. You would only need
to specify enough characters for the view type; for
example, -vd, is the same as -v details. If the
versions layout is selected, the query must result in a
single APX object.
Creating Automation Platform Extensions (APX) 83

Setting the Current Version of an APX - apxtool setcurrent

You can use the APX tool to set an APX version as the current version.

-t <type>, --type=<type> (Optional) Specifies the type of APX to display. Valid
values are: script or webapp or interface. The
default is to display all types.

-t script displays all script APXs.

-t webapp displays all web APXs.

-t interface displays all APXs that define one or more
interfaces.

For example, apxtool query -ts displays all the script
APXs.

--id=<APX id> (Optional) The object identifier of the desired APX.

-u <unique_name>
--uniquename=<unique_name>

(Optional) The unique name of the APX. A unique name is
a dot separated name that conforms to file system format.
It must have at least one dot. Valid characters are: [a-zA-
Z0-9_.].

Example:
com.hp.sa.security.scan_ports

-n <name>, --name=<name> (Optional) APX display name in a folder.

-f <path>, --folder=<path> (Optional) SA folder path. path can be a full path, partial
path, absolute, or relative, as long as it can uniquely
identify a specific folder.

--current (Optional) if specified, only query APX objects that have
a current version set.

--format=<format_string> (Optional) This advanced option allows you to specify
custom display formatting for an APX listing.

format_string is a string containing embedded tag
names that are substituted with values at display time. Tag
names must have a format of %(tag_name).

Use the format string “__show_tags__” to display a list
of all the supported tag names.

--csv (Optional) Displays the output in comma-separated
values format. Ignored if the --format option is
specified.

-Q, --quiet (Optional) Suppresses extraneous output messages.

table 15 Options for apxtool query (cont’d)

Option Usage
84 Chapter 4

Only the current version of an APX can be run. If you do not set the current version, the APX will not be
runnable. You can set the current version with either apxtool import or with apxtool setcurrent.
See Importing an APX into SA - apxtool import on page 82.

Usage

apxtool setcurrent [options] {version_str}

where the argument version_str is required to uniquely identify an existing version of an APX.

Table 16 lists the options that are available when setting an APX version:

Error Handling

The APX tool command conforms to the standard POSIX convention and returns 0 on success and a non-
zero value for other errors. The APX tool sends normal output to STDOUT and errors and warnings to
STDERR. When an error occurs, the APX tool typically returns a descriptive message to STDERR.

table 16 Options for apxtool setcurrent

Option Usage

-h, --help Show this help message and exit.

-t <type>, --type=<type> (Required) APX type. Valid values are: script,
webapp. For example, -ts for script.

--id=<APX id> (Optional) The object identifier of the desired APX.

-u <unique_name>,
--uniquename=<unique_name>

(Optional) APX unique name. A unique name is a dot
separated name that conforms to file system format.It
must have at least one dot. Valid characters are It must
have at least one dot.
[a-zA-Z0-9_.].

Example:
com.hp.sa.security.scan_ports

-n <name>, --name=<name> (Optional) APX display name in a folder.

-f <path>, --folder=<path> (Optional) SA folder path. path can be a full path, partial
path, absolute, or relative, as long as it can uniquely
identify a specific folder.

-Q, --quiet (Optional) Suppresses output messages.

-F, --force (Optional) Suppresses confirmation prompts.
Creating Automation Platform Extensions (APX) 85

Error conditions are typically categorized as shown in Table 17:

There may be other undocumented exit codes. The only guarantee is that if the exit code is 0, the
command completed its operation successfully.

APX Files

This section describes the template files created when you run the apxtool new command. The
following table summarizes these files. The sections below describe some of the files in more detail.

table 17 APX Tool Error Conditions

Return
Code Description

0 Success

1 Syntax or usage error

2 Permission related error

3 User canceled operation

4 Runtime error

table 18 APX Files

File Name Description

apx.cfg APX configuration file, contains metadata that fully describes the APX. See The
APX Configuration File - apx.cfg on page 87.

apx.perm APX permissions file, specifies permission escalation rules. See The APX
Permissions Escalation Configuration File - apx.perm on page 87.

description.txt Text description of the APX. Specified with the apxtool new -d option. See
Creating a New APX - apxtool new on page 79.

interfaces APX interface definition file. Specifies the interfaces the APX defines or
implements. See APX Interfaces - Defining Categories of APX Extensions on
page 75.

usage.txt Text description of how to use the APX.

run.sh For program APXs only, this file contains the executable code of the APX. This
file contains the functionality of the program APX. For an example, see Tutorial:
Creating a Program APX on page 96.

index.php For web APXs only, this file contains the PHP source code for the web APX. This
file contains the functionality of the web APX. For an example, see Tutorial:
Creating a Web Application APX on page 90.
86 Chapter 4

The APX Configuration File - apx.cfg

All APXs regardless of type must have a configuration file named apx.cfg. The apxtool new command
creates a template of this file for you to modify. This file contains metadata that fully describes the APX.
The apx.cfg uses a “key=value” format to define the properties of the APX. Multiple lines are joined
together with a line continuation character, “\“.

Table 19 APX Configuration File Attributes describes common attributes for all APXs. APX type specific
attributes are described in the corresponding APX type functional specifications. Note that some of the
attributes may be extracted from the apx.cfg configuration file and managed in SA. For modifiable
attributes such as the description, subsequent updates of the apx.cfg file will update the SA managed
data accordingly.

To see an example apx.cfg file, run the apxtool new command and open the files it creates.

The APX Permissions Escalation Configuration File - apx.perm

Use the file apx.perm to specify permission escalation rules. If this file does not exist, or if it contains no
escalation permissions, the APX will run with the user's default permissions.

table 19 APX Configuration File Attributes

Attribute Modifiable? Description

type No The type of the APX, which must be either webapp or script.
(Script APXs are also known as Program APXs.) Once created,
you cannot change the APX type.

name Yes This is the APX display name and may contain multi-byte
characters. This name can be changed at any time. This name
will be listed in the SA Client APX folders.

unique_name No The unique name of the APX. This name will be used as the file
name for the APX as it appears in the OGFS. This name together
with the type forms a key that uniquely identifies an APX. Once
created, the name cannot be changed. Since this name is used in
the file system, it must conform to the file system naming
specification. Generally, this name should be in ASCII.

version Yes The version string representing the current version of the APX. If
the value begins with the string “auto:”, then SA will
automatically manage the versions using an integer
incremented for each new version.

description Yes A text description of what the APX does. You can alternatively
use the file description.txt instead of this attribute.

usage Yes A text description describing how to use the APX. You can
alternatively use the file usage.txt instead of this attribute.

interfaces Yes One or more interfaces the APX implements. Separate multiple
interfaces with a colon (:) character.

command Yes The executable file the APX is to run when it is invoked.
Creating Automation Platform Extensions (APX) 87

When a new APX is created using the APX Tool’s New command, it generates certain default files,
including a default apx.perm file, which by default has no escalation permissions defined. The default
file does contain some commented out examples which an APX developer can use as templates.

There are three ways to specify escalations, described below.

• No Escalation on page 88.

• All Permissions on page 88.

• With Escalation on page 88.

No Escalation

The escalations attribute is not specified. The APX runtime uses the current user privilege to execute an
APX. If an APX invokes privileged operation which a user does not have, APX execution will terminate with
an error.

All Permissions

This is a special privilege that temporarily grants all operation permissions to a user. It is intended for
development or demo use only. This is a useful tool for speedy proof of concept, or demo, without
worrying fine grain permission tuning. It is a poor choice for a production environment due to its lack of
security.

To grant all permissions, edit file apx.perm with a macro that matches all features with wildcard
characters. For example:

use_feature(name=”*”)

With Escalation

Specify a list of predefined common operations in the apx.perm file. When executing the APX, the APX
runtime temporarily grants these permissions to the APX. SA has a comprehensive list of feature and
resource permissions. To simplify the task of escalating related feature, one can use wildcard characters
to match groups of related features. For example:

@use_feature(name=”Application.*”)

Showing the Progress of an APX

You can use the apxprogress command in your program APX to provide information about the progress
of your APX. This is useful for program APXs that run for a long period of time when you want to give the
user status on the progress of your APX.

You can use a web APX as a front-end to the program APX and display the progress in the web APX.

The apxprogress Command

Use the apxprogress command to define the number of steps in the execution of a program APX and to
record when each step has completed. This lets users of the APX know how far the APX has progressed
and how much is remaining.
88 Chapter 4

Syntax of apxprogress

apxprogress {option}...

Example Shell Script that Uses apxprogress

The following shell script is part of a program APX that uses the apxprogress command. The APX
defines a total of 100 steps and announces its current progress 100 times. Each time it also provides a
message that includes the step number.

#!/bin/sh
##
A simple shell script for a program APX that displays progress
about itself.
Author: <name>
##
echo "This is a simple APX that uses apxprogress."

totalsteps=100
apxprogress -i $totalsteps -c 1

for i in `seq $totalsteps`; do
 apxprogress -c $i -m "APX is running, working on step $i" -d
 sleep 10
done

table 20 Options to the apxprogress Command

Option Description

-i <total number of steps> Specifies the total number of steps the APX takes to run. Use
this option once at the beginning of the APX to specify the total
number of steps the APX will take.

You can use this option multiple times in an APX to increase
the number steps. Each use increments the total number of
steps by the specified value.

-c <current step> Specifies the current step number. Call apxprogress with
this option after each step in the APX code has completed.

-m <message> Specifies a text message describing the status of the APX.

-a <data> Specifies additional information the APX can make available
about itself.

-d Indicates debug mode. Displays the output of the command to
stdout for debugging purposes.

-h Displays help information about the apxprogress command.
Creating Automation Platform Extensions (APX) 89

Viewing APX Progress

You can use the SA API method JobService.getProgress()to access the progress information about
a running APX that calls the apxprogress command. For an example showing this method, see 7. View
the APX Progress in the Twister Interface on page 100, which is part of the Tutorial: Creating a Program
APX on page 96.

Tutorial: Creating a Web Application APX

This tutorial demonstrates how to create, publish, and run a simple web application APX named
mywebapp.

Running the default version of the APX created during this tutorial displays the output of the PHP
command, phpinfo. Later the tutorial shows you how to modify the PHP code so that it displays a list of
managed servers. Because the tutorial provides the source code, prior knowledge of PHP is not required.

Complete the following tasks in order.

1. Set Permissions and Create the Tutorial Folder on page 91

2. Create a New Web Application on page 91

3. Import the New Web Application into SA on page 93

4. Run the New Web Application on page 93

5. Modify the Web Application on page 94

6. Run the Modified Web Application on page 95

Tutorial Prerequisites

To complete this tutorial, you must have the following capabilities and environment:

• The ability to log on to SA as admin or as another member of the Super Administrators group.
Logging on as admin enables you to set permissions.

• The ability to log on to SA as a user who belongs to the Advanced Users group.

Advanced users have permission to create and run the web application. In the example commands
shown in this tutorial, the name of this user is jdoe.

• An understanding of how to set client feature permissions in the SAS Web Client.

For more information about permissions, see the User and Group Setup chapter of the SA
Administration Guide.

• An understanding of how to create folders in the SA Client

For details on folders, see the SA User Guide: Server Automation.

• An understanding of how to open a Global Shell session.

For instructions, see the Global Shell chapter of the SA User Guide: Server Automation.

• An understanding of basic Unix commands such as ls and cd.

• Experience developing web applications that run on HTTP servers.
90 Chapter 4

1. Set Permissions and Create the Tutorial Folder

1 Log on to the SAS Web Client as admin and verify that the Advanced Users group has the
following permission:

– Manage Extensions: Read & Write

You can find this permission on the Client Features tab in the SAS Web Client.

2 Log on to the SA Client as a member of the Advanced Users group and create the following folder
in the SA Library:

/Dev/MyApp

Later in the tutorial, you will upload a web application into the MyApp folder. In the non-tutorial
environment, the name of this folder is arbitrary. You can create or choose any other folder to contain
your web applications.

3 Exit the SA Client.

4 Log on to the SA Client as admin and open the Folder Properties of the MyApp folder.

5 On the Permissions tab of Folder Properties, make sure that the Advanced Users group has
the following permissions:

— List Contents of Folder

— Read Objects Within Folder

— Write Objects Within Folder

— Execute Objects Within Folder

6 Exit the SA Client.

2. Create a New Web Application

1 Open a Global Shell session as an SA user who belongs to the Advanced Users group.

2 In your core’s OGFS home directory, create a directory named mywebapp and then change to that
directory:

$ mkdir mywebapp
$ cd mywebapp

The web application files will be stored in the mywebapp directory.

3 Using the apxtool new command, create the directory structure and default files for the web
application as shown below.

$ pwd
/home/jdoe/mywebapp
$ ls
$
$ apxtool new -tw -d "This is my first app." \
-u com.hp.sa.jdoe.mywebapp
Create source directory /home/jdoe/mywebapp/com.hp.sa.jdoe.mywebapp? Y/N y
Info: Successfully created APX 'mywebapp' source directory: /home/jdoe/
mywebapp.
Creating Automation Platform Extensions (APX) 91

The -tw option indicates that the APX type is a web application, -d specifies a description, and -u
specifies a unique name for the application.

For more information about the apxtool new command options, see the online help:
$ apxtool new -h

4 Change directories into the new directory created by the apxtool new command and list the files
there.

$ pwd
/home/jdoe/mywebapp
$ cd com.hp.sa.jdoe.mywebapp
$ ls
APX-INF cgi-bin css images index.php
$ ls -R
.:
APX-INF cgi-bin css images index.php

./APX-INF:
apx.cfg apx.perm description.txt interfaces usage.txt

./cgi-bin:

./css:
hp_sa.css

./images:

5 Display the contents of the default index.php file:

$ cat index.php
<?php

// Show information about PHP
phpinfo();

?>

As with other web applications, you can replace the index.php file with an index.html file.
However, this tutorial uses the index.php file, which you will modify in a later section.

6 Examine some of the files in the APX-INF directory. For more information see APX Files on page 86.

The APX-INF directory contains information that is specific to APX web applications. As shown by
the following cat command, the description.txt file holds the text you specified with the -d
option of apxtool new.

$ ls APX-INF/
description.txt apx.cfg apx.perm usage.txt
$ cat APX-INF/description.txt
This is my first app $

The following grep command shows some of the properties in apx.cfg, the APX configuration file.
The values for type and uniquename result from the -t and -u options of the apxtool new
command. For details on the APX configuration file, see The APX Configuration File - apx.cfg on
page 87.
92 Chapter 4

$ grep "=" APX-INF/apx.cfg
type=webapp
name=mywebapp
unique_name=com.hp.sa.jdoe.mywebapp

3. Import the New Web Application into SA

Importing the web application performs the following actions:

— Installs the web application on an HTTP server within SA.

— Copies the web application to a folder that appears in the SA Library and in the Global Shell.

— Assigns a version number to the web application.

Enter the apxtool import command and respond to the prompts with y, as shown below. The -f
option specifies the folder in the SA Library where the web application will be stored. The -c option sets
the current version of the web application.

$ pwd
/home/jdoe/mywebapp/com.hp.sa.jdoe.mywebapp
$
$ apxtool import -f "/Dev/MyApp" -c
APX source is not specified.
Do you want to publish current directory: /home/jdoe/mywebapp/
com.hp.sa.jdoe.mywebapp? Y/N y
APX with unique name 'com.hp.sa.jdoe.mywebapp' does not exist.
Register it into the system? Y/N y
Info: Successfully registered APX 'mywebapp' (310001) in folder ‘/Dev/
MyApp’.
Info: Successfully published a new version '1' for APX 'mywebapp'.
Info: Successfully set APX 'mywebapp'(310001) current version as '1'.

4. Run the New Web Application

Now that you have published the web application, you are ready to run it from the SA Client, just as an
end-user would.

1 Log on to the SA Client as a user who belongs to the Advanced Users group.

2 Select the Library tab and the By Type tab.

3 Navigate to the Extensions > Web node where you should see the mywebapp extension.

If you do not see mywebapp, make sure that you have the necessary permissions as described in 1.
Set Permissions and Create the Tutorial Folder on page 91.

4 To run the web application, select mywebapp. and select the Actions > Run menu.
Creating Automation Platform Extensions (APX) 93

The window shown in Figure 5 appears. The web application displays the information generated by
the phpinfo statement of the index.php file.

figure 5 Web Application Version 1

5. Modify the Web Application

Running the default index.php file is a good way to check your development environment, but it does
not take advantage of SA functionality. In this section, you modify the index.php file so that it lists the
names of servers managed by SA.

1 In the Global Shell session, locate the index.php file of the web application.

$ cd /home/jdoe/mywebapp/com.hp.sa.jdoe.mywebapp
$ ls
APX-INF cgi-bin css images index.php

2 Open the index.php file in a text editor such as vi.

3 Replace the contents of index.php with the following lines:

<html>
<head>
<title>Servers</title>
</head>
<body>
94 Chapter 4

<p>List of servers:</p>

<?php
passthru("ls /opsw/Server/@");
?>

</body>
</html>

The passthru statement above runs the ls command and passes stdout (without reinflates) back
to the web page. The ls command lists the names of your managed servers as they appear in the
OGFS.

4 Save the index.php file and exit the text editor.

5 Publish the modified web application.

The following apxtool import command sets the current version to 2. The -F option suppresses
the confirmation prompts.

$ apxtool import -f "/home/jdoe/mywebapp/com.hp.sa.jdoe.mywebapp" \
-c --version=2 -F
Info: Successfully published a new version '2' for APX 'mywebapp'
Info: Successfully set APX 'mywebapp'(310001) current version as '2'.

6. Run the Modified Web Application

1 In the SA Client, use the View > Refresh menu to refresh the view of your web extensions, which
should now contain version 2 of mywebapp.

2 Select mywebapp and select the Actions > Run menu. The output should be similar to Figure 5
except it displays the output of the PHP passthru statement and the OGSH ls statement, which lists
all your managed servers. Note that the passthru statement removes the line feeds that separate
the server names returned by the ls command.
Creating Automation Platform Extensions (APX) 95

Tutorial: Creating a Program APX

This tutorial demonstrates how to create, publish, and run a simple program APX named myshellapp
that runs a simple shell script. Later the tutorial shows you how to modify the shell script to call the
apxprogress command and provide progress information. Because the tutorial provides the source
code, prior knowledge of shell programming is not required.

Complete the following tasks in order.

1. Set Permissions and Create the Tutorial Folder on page 96

2. Create a New Program APX on page 97

3. Import the New APX into SA on page 99

4. Run the New APX on page 99

5. Modify the APX on page 99

6. Run the Modified APX on page 100

7. View the APX Progress in the Twister Interface on page 100

Tutorial Prerequisites

To complete this tutorial, you must have the following capabilities and environment:

• The ability to log on to SA as admin or as another member of the Super Administrators group.
Logging on as admin enables you to set permissions.

• The ability to log on to SA as a user who belongs to the Advanced Users group.

Advanced users have permission to create and run the web application. In the example commands
shown in this tutorial, the name of this user is jdoe.

• An understanding of how to set client feature permissions in the SAS Web Client.

For more information about permissions, see the User and Group Setup chapter of the SA
Administration Guide.

• An understanding of how to create folders in the SA Client

For details on folders, see the SA User Guide: Server Automation.

• An understanding of how to open a Global Shell (OGSH) session and use the Global Shell.

For instructions, see the Global Shell chapter of the SA User Guide: Server Automation.

• An understanding of basic Unix commands such as ls and cd.

1. Set Permissions and Create the Tutorial Folder

1 Log on to the SAS Web Client as admin and verify that the Advanced Users group has the
following permission:

– Manage Extensions: Read & Write

You can find this permission on the Client Features tab in the SAS Web Client.

2 Log on to the SA Client as a member of the Advanced Users group and create the following folder
in the SA Library:

/Dev/MyApp
96 Chapter 4

Later in the tutorial, you will upload a program APX into the MyApp folder. In the non-tutorial
environment, the name of this folder is arbitrary. You can create or choose any other folder to contain
your APX.

3 Exit the SA Client.

4 Log on to the SA Client as admin and open the Folder Properties of the MyApp folder.

5 On the Permissions tab of Folder Properties, make sure that the Advanced Users group has
the following permissions:

— List Contents of Folder

— Read Objects Within Folder

— Write Objects Within Folder

— Execute Objects Within Folder

6 Exit the SA Client.

2. Create a New Program APX

1 Open a Global Shell session as an SA user who belongs to the Advanced Users group.

2 In your core’s OGFS home directory, create a directory named myshellapp and then change to that
directory:

$ mkdir myshellapp
$ cd myshellapp

The program APX files will be stored in the myshellapp directory.

3 Using the apxtool new command, create the directory structure and default files for the program
APX as shown below.

$ pwd
/home/jdoe/myshellapp
$ ls
$
$ apxtool new -ts -d "This is my first program APX." \
-u com.hp.sa.jdoe.myshellapp

Create source directory under ‘/home/jdoe/myshellapp/
com.hp.sa.jdoe.myshellapp’ for APX ‘myshellapp’? Y/N y
Info: Successfully created source directory ‘/home/jdoe/myshellapp/
com.hp.sa.jdoe.myshellapp for APX ‘myshellapp’.

The -ts option indicates that the APX type is a program APX (also called a script APX), -d specifies a
description, and -u specifies a unique name for the application.

For more information about the apxtool new command options, see the online help:
$ apxtool new -h

4 List the files created by the apxtool new command:

$ pwd
/home/jdoe/mywebapp
$ ls
com.hp.sa.jdoe.myshellapp
Creating Automation Platform Extensions (APX) 97

$ cd com.hp.sa.jdoe.myshellapp
$ pwd
/home/jdoe/myshellapp/com.hp.sa.jdoe.myshellapp
$ ls -R
.:
APX-INF run.sh

./APX-INF:
apx.cfg apx.perm description.txt interfaces usage.txt

5 Display the contents of the default run.sh file:

$ cat run.sh
#!/bin/sh

##
APX myshellapp
#
Created by: jdoe
#
##
echo "This is APX myshellapp"

6 Examine some of the files in the APX-INF directory. For more information on these files see APX Files
on page 86.

The APX-INF directory contains information that is specific to APXs. As shown by the following cat
command, the description.txt file holds the text you specified with the -d option of apxtool
new.

$ ls APX-INF/
apx.cfg apx.perm description.txt interfaces usage.txt
$ cat APX-INF/description.txt
This is my first program APX.$

The following grep command shows some of the properties in apx.cfg, the APX configuration file.
The values for type and uniquename result from the -t and -u options of the apxtool new
command. For details on the APX configuration file, see The APX Configuration File - apx.cfg on
page 87.

$ grep "=" APX-INF/apx.cfg
type=script
name=myshellapp
unique_name=com.hp.sa.jdoe.myshellapp
command=run.sh
98 Chapter 4

3. Import the New APX into SA

Importing the APX performs the following actions:

— Copies the APX to a folder that appears in the SA Library.

— Assigns a version number to the APX.

Enter the apxtool import command and respond to the prompts with y, as shown below. The -f
option specifies the folder in the SA Library where the web application will be stored. The -c option sets
the current version of the web application.

$ pwd
/home/jdoe/myshellapp/com.hp.sa.jdoe.myshellapp
$
$ apxtool import -f "/Dev/MyApp" -c
APX source is not specified.
Do you want to publish current directory: /home/jdoe/myshellapp/
com.hp.sa.jdoe.myshellapp? Y/N y
APX with unique name 'com.hp.sa.jdoe.myshellapp' does not exist.
Register it into the system? Y/N y
Info: Successfully registered APX 'myshellapp' (20001).
Info: Successfully published a new version '1' for APX 'myshellapp'
Info: Successfully set APX 'myshellapp'(20001) current version as '1'.

Now that you have published the APX, you are ready to run it from the SA Client, just as another SA user
would.

4. Run the New APX

Now that you have published the APX, you are ready to run it from the SA Client.

1 Log on to the SA Client as a user who belongs to the Advanced Users group.

2 In the navigation pane, select the Library tab, then the By Type tab.

3 Open the Extensions node and select the Program node. This displays all the program APXs in the SA
Library. You should see your APX there. If you do not see myshellapp, make sure that you have the
necessary permissions as described in 1. Set Permissions and Create the Tutorial Folder on page 96.

4 Select your APX.

5 Select the Actions > Run menu item. This displays the Run Program Extension wizard.

6 Select the Next button.

7 Select the Start Job button.

8 When your APX finishes, select the status indicator to display details.

9 Select the Close button.

5. Modify the APX

In this section, you modify the run.sh file and add calls to the apxprogress command to provide
progress information.

1 In the Global Shell session, locate the run.sh file of the APX.

$ cd /home/jdoe/myshellapp/com.hp.sa.jdoe.myshellapp
Creating Automation Platform Extensions (APX) 99

$ ls
APX-INF run.sh

2 Open the run.sh file in a text editor such as vi.

3 Replace the contents of run.sh with the following lines:

echo "This is a simple APX that uses apxprogress."

totalsteps=100
apxprogress -i $totalsteps -c 1

for i in `seq $totalsteps`; do
 apxprogress -c $i -m "myshellapx is running, working on step $i" #-d
 sleep 10
done

These apxprogress commands specify that the APX has 100 steps and it calls apxprogress 100
times, once for each step, waiting ten seconds between calls. For more information, see Showing the
Progress of an APX on page 88.

For debugging, you can change “#-d” to “-d” and run the shell script manually to display the output
from the apxprogress commands on stdout.

4 Save the run.sh file and exit the text editor.

5 Publish the modified APX.

The following apxtool import command loads the new version of the APX and sets the current
version to 2. The -F option suppresses the confirmation prompts.

$ apxtool import -f "/home/jdoe/myshellapp" \
-c --version=2 -F
Info: Successfully published a new version '2' for APX 'myshellapp'
Info: Successfully set APX 'myshellapp'(20001) current version as '2'.

6. Run the Modified APX

Now that you have modified and republished the APX, run it from the SA Client as before.

1 In the SA Client, use the View > Refresh menu to refresh the view of the program extensions, which
should now show version 2 of myshellapp.

2 Select your APX.

3 Select the Actions > Run menu item. This displays the Run Program Extension wizard.

4 Select the Next button.

5 Select the Start Job button.

7. View the APX Progress in the Twister Interface

The apxprogress commands report the progress of the running APX. You can obtain this progress
information by calling the API method JobService.getProgress(). This section shows you how to
run this method from the Twister interface. For more information on the Twister interface to the SA API,
see API Documentation and the Twister on page 23.

1 In the SA Client, select the Jobs and Sessions tab.
100 Chapter 4

2 Locate your APX in the list of jobs.

3 Note the Job ID number of your APX job. You will use this in a later step.

4 Run the SA Twist interface by entering the following URL into a web browser:

https://<core_host>:1032

where <core_host> is the IP address or host name of your SA core server. This displays the
Twist interface to the SA API in the web browser.

5 Select the “Twister” link. This displays the Twister interface to the SA API where you can get complete
information about API interfaces, packages and methods and where you can run methods.

6 Locate and select the JobService interface, which is in the com.opsware.job package.

7 Scroll down and locate the getProgress() method.

8 Select the Try It button just above the getProgress() method.

9 Enter your SA credentials.

10 Select the Login button.

11 In the “id” field, enter the job number of your running APX, from step 3 above.
Creating Automation Platform Extensions (APX) 101

12 Select the Go button. This calls the getProgress() method and displays the current progress
information about your APX from the apxprogress command, as shown below. Notice that the
total number of steps is 100 and the number of completed steps is 94 in this snapshot. For more
information on the output from the getProgress() method, see the Javadocs documentation by
selecting the getProgress() method in the navigation pane of the Twister web browser.
102 Chapter 4

5 Agent Tools
Introduction to Agent Tools

Agent Tools is a suite of shell scripts, batch files, and Python scripts specifically designed to retrieve and
modify information about Managed Servers. The information is retrieved from and modified in the SA
database.

Using the scripts, you can retrieve and modify such data as custom fields, customer assignments, custom
attributes, and more. Given this ability, you can automate many procedures that in the past had to be
accomplished on a server-by-server basis.

In addition, you can incorporate the information the scripts retrieve into customized scripts of your own
design. Since information such as customer assignment and custom attributes varies from managed
server to managed server, the ability to retrieve and use this information on-the-fly in customized scripts
can be very useful.

For example:

• You may have a script that handles post-installation configuration for a certain application that must
be able to discover the Facility name in which the server is registered. Agent Tools provides a script to
get the Facility name and insert it into your post-installation script without manual intervention.

• When installing a monitoring agent, a post-installation script must modify a configuration file to
include the IP address of the monitoring server in that particular facility. Agent Tools provides a script
to discover the monitoring server’s IP address by reading a custom attribute on the Core so that it can
be inserted into the configuration file.

• A DSE can be written to retrieve the EEPROM version from many servers and store that information as
a custom attribute or custom field.

Some other uses of Agent Tools scripts include:

• Gathering information from an SA Core during software installation for use in configuration.

• Storing metadata from managed servers in the SA database while executing a DSE, Global Shell
script, or software installation.

• Retrieving custom attribute information for Managed Servers.
103

Installation Requirements

The Agent Tools suite has the following requirements:

Operating System Support

Agent Tools supports the operating systems supported by the SA Managed Servers. For a list of
supported operating systems, See the SA Simple/Advanced Installation Guide.

Security, Access Control, and Authentication

Agent Tools must be run as the root user on UNIX/Linux systems or as an Administrator on Windows
systems. Agent Tools uses the Server Agent's certificate to connect to the Web Services Data Access
Engine (twist) which is pyTwist’s default behavior, and is granted the privileges that the Web Services
Data Access Engine gives to the Agent. This typically applies to read/write privileges on the server from
which Agent Tools is run, therefore, no user authentication is required.

An exception is the set_customer script. You must have read access to a customer to be able to
associate a server with that customer. Agent certificates do not have read access to other customers,
therefore the user must authenticate when running this script.

Other Requirements

• Access privileges to pyTwist

• Access privileges to the SA API

• Installed Python 2.4 (shipped with the Server Agent)

Installation

Agent Tools is installed in the Core during the normal HP SA Installer Core installation process. However,
you must also install Agent Tools on your Managed Servers to make it available on those servers. This
section describes that process.

Agent Tools is installed on Managed Servers as a set of executable scripts. Depending on your operating
system, these will be shell or batch scripts and Python scripts which are called by the shell and batch
scripts. You can run these scripts from a managed server to retrieve and modify information in the SA
Core. These scripts can be run manually or called from package installation scripts, DSEs, Global Shell
scripts, and so on.

Agent Tools is included as part of the Python SA API Access (pyTwist) software policy. This policy is
located in the directory:

/Opsware/Tools/Python Opsware API Access
104 Chapter 5

Manually Installing Agent Tools

To install Agent Tools on a Managed Server:

1 Launch the SA Client.

2 Go to the Managed Servers list and select the Managed Server(s) on which you want to install
Agent Tools.

3 Right click and select Install Software.

4 Select the Python Opsware API Access software Policy.

5 The Software Policy installation wizard will guide you through the rest of the process.

Installing Agent Tools when Installing an Agent

Alternatively, you can specify the Python SA API Access software Policy ID and specify that it be
remediated during Agent installation. For information about Agent installation, see the SA
Administration Guide.

Upgrading Agent Tools

Since Agent Tools is provided as a software policy (part of the pyTwist software policy), you can upgrade
to newer versions of Agent Tools by performing a remediation after upgrading the core.

When the SA core is upgraded, the Python SA API Access software policy is also updated; any old versions
of Agent Tools are removed and new versions are attached to the policy. After the SA Core upgrade
(during which Agent Tools will be automatically upgraded as part of the core upgrade), you can then
upgrade Agent Tools on the Managed Servers by performing the following tasks:

1 Select the managed servers that have had Agent Tools installed. You can see a list of the servers and
groups attached to the Python SA API Access software policy by opening the policy itself.

2 Right click on the selected servers and choose Remediate.

3 Select the Python Opsware API Access software policy.

4 The old versions of the pyTwist and Agent Tools packages are removed, and the new versions are
installed.

Data Migration

Since Agent Tools keeps no persistent data on the managed server, there's no requirement for data
migration or preservation.

Agent Tools Scripts

Usage

<scriptname>.py|bat|sh --arguments
Agent Tools 105

table 21 Agent Tool Scripts

Script Function

get_all_cust_attr Retrieves all custom attributes for a server record.

Usage: get_all_cust_attr.py [--localonly]
[--mode=python|shell|pretty]

The mode determines the format for the output (such as Python dictionary,
shell statements, etc.). Pretty is the default.

Note: Shell mode does not work when there are multi-line custom
attributes.

get_cust_attr Retrieves the value of a single custom attribute.

Usage:
get_cust_attr.py [--localonly] <custom attribute
name>

set_cust_attr Sets the value of a single custom attribute on the server.

Usage: set_cust_attr.py
<custom attribute name>
<custom attribute value>|--valuefile
<path to file with value in it>

del_cust_attr Deletes a custom attribute from the server's record in the database.

Usage: del_cust_attr.py <custom attribute name>

get_cust_field Retrieves the value of a single custom field.

Usage: get_cust_field.py <custom field name>

set_cust_field Sets the value of a single custom field on the server.

Usage: set_cust_field.py <custom field name> <custom
field value>|--valuefile <path to file with value in
it>

get_customer Retrieves the customer name that the server is associated with.

Usage: ./get_customer.py

set_customer Sets the customer name that the server is associated with.

Usage: set_customer.py <customer name>

get_facility Retrieves the name of the Facility that the server is associated with.

Usage: ./get_facility.py
106 Chapter 5

Formatting for the sub_text_file Script

Text files passed to the sub_text_file script can have any content, however, the script looks for any
lines with two @ characters and will treat the string between and including the @ character pairs as a
token. You can have a single @ character on a line, it will be ignored, however a second @ character on the
same line will cause any text between the two @ characters to be treated as a token.

The tokens are replaced with the value of the custom attribute specified between the @ signs. For
example, the string @dns_server@, is replaced with the value of the custom attribute dns_server. If
this custom attribute does not exist or its value is empty, the token is replaced with an empty string.

Take a text file that contains the entry:

IP: @monitoring_server_ip@

The script will output will look similar to the following:

IP: 82.159.202.117

Where IP is the value retrieved by monitoring_server_ip.

Output

The sub_text_file script outputs to stdout. You can redirect the output to a file if needed. You can
also use a .template file stored in your zip file to format the output. For example:

$AGENTTOOLSPATH/sub_text_file.sh petstore_config.template >
petstore_config.cfg

get_info Prints out all fields for a server (in a format similar to the server's info file in
OGSH).

Usage: get_info.py

get_history Prints out server specific events.

Usage:
get_history.py --startdate <start date in seconds since epoch>

[--enddate <end date in seconds since epoch>]

[--username <SAS user name>] [--password <SAS password>]

sub_text_file Reads in a text file, looks in the file for tokens/parameters, replaces them
with the value of custom attributes, and prints the amended file to
stdout. See below for more info on the expected file format.

Usage: sub_text_file.py [--localonly]
<path to file with tokens in it>

table 21 Agent Tool Scripts (cont’d)

Script Function
Agent Tools 107

Sample Agent Tool Scripts

The following are simple examples of using Agent Tools scripts.

UNIX/Linux

This example puts a message containing the name of the facility in the Message of the Day (MOTD) that
users see when they log into the UNIX server.

. /etc/opt/opsware/pytwist/pytwist.conf
facility_name=`$AGENTTOOLSPATH/get_facility.sh`
echo "You have connected to a server in the $facility_name facility. For
hardware information on this server as stored in Opsware, run $AGENTTOOLSPATH/
get_info.sh." > /etc/motd

Windows

This Windows example puts a text file on all users' desktops with information about the server.

call "C:\Program Files\Common Files\Opsware\etc\pytwist\
pytwist_conf.bat"

call"%AGENTTOOLSPATH%\get_info.bat" > "%SYSTEMDRIVE%\Documents and
Settings\All Users\Desktop\server_info_from_Opsware.txt"

Do not hard code the path to Agent Tools Instead you must do the following:

1. Source the PyTwist configuration file:
UNIX:
./etc/opt/opsware/pytwist/pytwist.conf
Windows:
call
C:\Program Files\Common Files\Opsware\etc\pytwist
\pytwist_conf.bat

2. Use the environment variable:
UNIX:
$AGENTTOOLSPATH
Windows:
%AGENTTOOLSPATH%

Using this method will prevent errors in your scripts should the path to Agent Tools change in future.
108 Chapter 5

6 Microsoft Windows PowerShell/SA
Integration
Introduction to Microsoft Windows PowerShell

Windows PowerShell is an extensible command shell for system administrators and programmers,
integrated with Microsoft’s .Net 2.0 Framework Class Library. It uses the .NET common language runtime
and the .NET Framework, and accepts and returns .NET objects. This enhances the tools and methods
available to manage and configure of Windows.

Windows PowerShell provides numerous cmdlets, which are built into the shell and provide a wide range
of functionality. Cmdlets can be used individually or in combination to perform more complex tasks.

Windows PowerShell not only enables access to a computer’s file system, PowerShell Providers allow you
to access data stores like the registry and digital signature certificate stores. A Provider is a software
module that provides a uniform interface between a service and a data source.

Before you attempt to use the Windows PowerShell with SA, it is assumed that you are familiar with and
comfortable using Microsoft Windows PowerShell. If you need background or instruction in using
PowerShell, see http://www.microsoft.com.

Because the included cmdlets can modify data on your managed servers, it is important that you have a
solid understanding of Windows PowerShell and its use.

Windows PowerShell Integration with SA

SA provides initial integration with Microsoft Windows PowerShell on managed servers running Windows.
PowerShell is available from SA user interfaces and SA data is available from within the standard
PowerShell environment or from within any PowerShell Runspace. A PowerShell Runspace is a hosting
environment for the PowerShell runtime system.

The following PowerShell cmdlets are available with SA:

• Get-SASServer

• Set-SASServer

• Get-SASJob

SA also includes a PowerShell SAS Provider (a component that provides access to the objects in an SA core
in a PowerShell environment).
109

Integrated PowerShell/SA Cmdlets

Table 22 lists and describes the integrated PowerShell/SA cmdlets included with SA.

Installation Requirements

An MSI installer package containing the cmdlets and PowerShell SA Provider assemblies, configuration
and setup files for installation on a System Administrator's Windows desktop.

Operating System Support

• Windows Server 2003

• Windows Server 2008

• Windows Server 2008 R2 x64

• Windows Server 2012

Installation

To implement Microsoft Windows PowerShell/SA integration, you must perform the following tasks:

1 Locate the Microsoft Windows PowerShell/SA Connector MSI package in the OCC Library >
Software Policies.

2 Run the MSI to install the assemblies that define the SA-specific cmdlets and SA Provider. The file
readme.rtf provides last minute information. The Microsoft Windows PowerShell initialization
script, profile.ps1 (similar to .bashrc) and a set of sample PowerShell scripts that show how
to use PowerShell in an SA environment are also installed.

By default, the MSI installs the connector into C:\Program Files\Opsware\PsSas.

The file, SAS-WSAPI.ps1, describes accessing the WS-API directly from PowerShell, without the need
for cmdlets.

table 22 PowerShell Cmdlets

Cmdlet Description Arguments

Get-SASServer Retrieves server data from
specified server(s)

-Credential <PSCredential>
-Core <Hostname|IPAddress>
-Name < ListOfHostnameFragments> |
-Id <ListOfServerIDs>

Get-SASJob Retrieves data for specified
jobs

-Credential <PSCredential>
-Core <Hostname|IPAddress>
-JobFilter <ListOfJobIDs>

Set-SASServer Retrieves a list of managed
servers

-Credential <PSCredential>
-Core <Hostname|IPAddress>
-Server <ServerVO>
110 Chapter 6

Microsoft PowerShell Integration with SA Features

Microsoft PowerShell is available as an option in the following areas:

• Remote access to Managed Servers

• Audit and Snapshots Rules

• DSE Script Integration

Remote access to Managed Servers

From the SA Client, you can open a remote PowerShell session for any managed server (not available for a
group of servers), as you would when opening a remote terminal.

1 Launch the SA Client.

2 From the Navigation pane, select Devices > All Managed Servers.

3 Select a Managed Server and open it.

In the Device Explorer window, from the Actions menu, select Launch Remote PowerShell.

You cannot run a script that contains WMI calls while logged in to a remote PowerShell session. If you try
to run a script containing WMI call, you will get an Access Denied error, even if you are a member of a
group with the necessary permissions to run that script.

Audit and Snapshots Rules

Microsoft PowerShell is integrated with SA auditing. While configuring a custom script rule, Microsoft
PowerShell scripts are now an option along with batch, Python 2 and Visual Basic. For details about Audit
the SA User Guide: Audit and Compliance.

DSE Script Integration

For Managed Servers, you can set up PowerShell scripts that call SA APIs using Pytwist so that end users
can invoke the scripts as DSEs or ISM controls. For more information about writing scripts that invoke
Pytwist APIs, see Python API Access with Pytwist on page 53.

Sample Sessions

This section provides four scenarios that demonstrate using Windows PowerShell/ SA integration.

• Scenario 1 demonstrates extracting managed server data from an SA Core, modifying it, and writing
it back to the core.

• Scenario 2 demonstrates exporting SA managed server data to an Excel spreadsheet using Windows
PowerShell/SA integration.

• Scenario 3 demonstrates mounting the SA core as a Windows PowerShell PSdrive and navigating
around the virtual file system.

• Scenario 4 demonstrates listing all the types of SA objects available to a Windows PowerShell
environment.
Microsoft Windows PowerShell/SA Integration 111

Scenario 1

Authenticating to an SA Core, obtaining data about a managed server, modifying the data, and writing the
data back to the SA Core.

1 Open a PowerShell prompt from the desktop icon.

2 Store the SA Core credentials securely in a PowerShell shell variable. See Figure 6.

figure 6 Storing the SA Credentials in a PowerShell Variable

3 Using the Get-SasServer cmdlet, you can retrieve the SA record representing a server as shown
in Figure 7.

figure 7 Using the Get-SasServer cmdlet

The returned object is stored in a shell variable.

The Get-SasServer cmdlet takes a parameter to identify the SA Core from which the server data
is to be retrieved, a parameter to supply credentials to the SA core for the operation, identifying and
authenticating the SA user account in whose identity the operation is to be attempted, and a
parameter to identify the server being requested.

More information on the Get-SasServer cmdlet arguments or the arguments for any cmdlet can be
obtained by using the PowerShell Get-Help base cmdlet, for example:

Get-Help Get-SasServer -detailed
112 Chapter 6

4 You can now examine the properties of the returned object by entering the name of the shell variable.
See Figure 8.

figure 8 Examining SA Server Properties
Microsoft Windows PowerShell/SA Integration 113

5 List the object’s properties, the types of the properties and the methods that can be called on the
object from a PowerShell script as shown inFigure 9.

figure 9 Listing an Object’s Properties
114 Chapter 6

6 You can modify the object’s Description attribute in Windows PowerShell, then call the Set-
SasServer cmdlet and pass the modified ServerVO object to the cmdlet. This cmdlet will take the
ServerVO object and update the managed server record in the SA Core. The Set-SasServer
cmdlet takes parameters that identify the SA Core to which the updated data is to be written and
credentials identifying the SA user account under whose identity the operation is executed.

At the end of the update operation, the updated ServerVO is returned to Windows PowerShell and
the properties are displayed at the prompt as shown in Figure 10.

figure 10 Modifying an Object’s Description

Scenario 2

This scenario demonstrates retrieving all managed server data from the SA Core and displaying it in
Microsoft Excel.

1 Use the Get-SasServer cmdlet to retrieve ServerVOs for each Linux and Windows managed
server from the SA Core. In the session below, the -name parameter is used to supply a list of name
matching filters, for example, -name linux,win, to the SA Core.
Microsoft Windows PowerShell/SA Integration 115

The Get-SasServer cmdlet returns an array of ServerVOs that is, in this example, 14 items in
length. You can index into this array to examine any one of the ServerVO objects. See Figure 11.

figure 11 Using the Get-SasServer cmdlet with a Name Filter

2 Now you can format the ServerVO data as HTML and save to a temporary file. The temporary file is
created in the TEMP directory. In a PowerShell session, to get the value of the %TEMP% environment
variable, enter $env:temp. See Figure 12.

figure 12 Converting ServerVO Data to HTML and Saving to a Temporary File

3 Using the New-Object base Windows PowerShell cmdlet you can launch Microsoft Excel, then
create a new workbook inside this instance of Excel, and populate the workbook from the contents of
the temporary file. Finally, set the running Excel instance to be visible. This will cause Excel to come
to the foreground. Now you can sort the data by date, column value, etc., to determine, for example,
116 Chapter 6

the date on which each server came under management in the SA Core. SeeFigure 13.

figure 13 Using the New-Object cmdlet to Launch Microsoft Excel

Scenario 3

This scenario demonstrates mounting the SA Core as a Windows PowerShell PSDrive, navigating to the SA

Jobs folder and retrieving its contents.

1 Mount the SA Core as a Windows PowerShell PSDrive. PowerShell allows different data stores or
repositories to be navigated as if they were a file system. In this scenario, you mount the SA Core,
specifically the managed environment data store, as if it were a drive named OPSWorld. The
windows PowerShell base system then calls the PowerShell SAS Provider, -PSProvider
OpswareSas, whenever data is read from or written to this virtual file system — or when the file
system is navigated by a client. See Figure 14.

figure 14 Mounting the SA Core as a Windows PowerShell PSDrive
Microsoft Windows PowerShell/SA Integration 117

2 Change directory to the newly mounted drive and obtain a directory listing. dir is a PowerShell alias
for the Get-ChildItem cmdlet. See Figure 15.

figure 15 DIR as an Alias for the Get-Child cmdlet

3 Change directory to the Jobs folder, get a directory listing, and save the directory listing as a shell
variable. This shell variable will contain an array of JobInfoVO objects from the SA Core into which
you can index. See Figure 16.

figure 16 Save a Directory Listing as a PowerShell Variable
118 Chapter 6

4 Change directory to the C: drive and remove the OPSWorld PSDrive. See
Figure 17.

figure 17 Removing the OPSWorld PSDrive

Scenario 4

This scenario describes examining all the types of SA objects available inside the Windows PowerShell
environment.

1 Locate the .NET assembly containing the PowerShell SAS Provider and cmdlets. See Figure 18.

figure 18 Locating the .NET Assembly Containing the PowerShell SAS Provider and cmdlets
Microsoft Windows PowerShell/SA Integration 119

2 Using .NET Reflection, load the .NET assembly and examine the loaded types. This displays all the SA
types that are available for use in the Windows PowerShell environment. See Figure 19

figure 19 Loading the .NET Assembly and Examining the Types
120 Chapter 6

3 Create an instance of a NetworkDeviceVO. This is a nascent NetworkDeviceVO, showing all of
the attributes of a network device available for scripting, reporting etc. in the PowerShell
environment. See Figure 20.

figure 20 Creating an Instance of a NetworkDeviceVO
Microsoft Windows PowerShell/SA Integration 121

122 Chapter 6

7 Java RMI Clients
Overview of Java RMI Clients

A Java Remote Invocation (RMI) client can call the methods of the SA API from a server that has network
access to the SA core. The server running the client does not have to be an SA core or managed server.
When it connects to the core, the client specifies an SA user name and password, much like an end user
logging on with the SA Client. The group that the user belongs to determines which SA resources and
tasks are available to the client.

This chapter is intended for software developers who are familiar with SA fundamentals and the Java
programming language.

Setup for Java RMI Clients

Before developing Java RMI clients for the SA API, perform the following steps:

1 Install an SA core in a development environment. Do not use a production core.

2 Obtain a development server where you will build and run the Java RMI client.

3 On the development server, install the Java SE 6 SDK.

4 Verify that the development server has a network connection to the SA core server that runs the OCC
component.

5 Download the opswclient.jar file from the SA core server to your development server. The
opswclient.jar file contains the Java RMI stubs for the SA API. You include the opswclient.jar
in the classpath option when compiling and running Java RMI clients.

To download opswclient.jar do one of the following:

a Specify the following URL, where occ_host is the core server running the OCC component:

https://occ_host/twister/opswclient.jar

b Go to the following directory: /opt/opsware/twist/extlib/client.
You also need the spinclient-latest.jar and the opsware_common-latest.jar files. These
files can be obtained from a running SA Core in:

/opt/opsware/twist/lib/

You must also add these .jar files to the classpath parameter when compiling and running these
examples.
123

Java RMI Example

This section describes a simple Java RMI client named GetServerInfo.

The GetServerInfo client searches for managed servers by full or partial host name, which you specify
as a command-line argument. For each managed server found, the client prints out the server’s name,
management IP address, and OS version.

The GetServerInfo client performs the following steps:

1 Connects to SA:

OpswareClient.connect("https", host, (short)port,
userPasswd[0], userPasswd[1], true);

2 Gets a reference to the ServerService interface:

serverSvc = (ServerService)OpswareClient.getService
(ServerService.class);

3 Invokes methods on ServerService:

ServerRef[] serverRefs = serverSvc.findServerRefs(filter);
. . .
ServerVO[] serverVOs = serverSvc.getServerVOs(serverRefs);
. . .
System.out.println(serverVOs[i].getName());

Compiling and Running the GetServerInfo Example

Before compiling and running the example, perform the following tasks:

1 Obtain the opsware_common-latest.jar, spinclient-latest.jar andopswclient.jar
files, as described in Setup for Java RMI Clients on page 123.

2 Download the ZIP file that contains the demo program GetServerInfo.java file.

3 To compile the client, specify the opsware_common-latest.jar, spinclient-latest.jar
and opswclient.jar files for the classpath parameter:

javac -classpath :path/opswclient.jar:path/opsware_common-latest.jar:path/
spinclient-latest.jar GetServerInfo.java

4 To run the client, enter the following command, where target is the full or partial name of a server
managed by SA (note: the Java classpath separator for windows is ";"):

java -classpath .:path/opswclient.jar:path/opsware_common-
latest.jar:path/spinclient-latest.jar \
GetServerInfo [options] target

In the following example, GetServerInfo connects to SA on host c44 (where the OCC core
component runs) and port 443. The program displays information for managed servers with
hostnames that contain the string opsw.

java -classpath .:/home/jdoe/opswclient.jar:/home/jdoe/opsware_common-
latest.jar:/home/jdoe/spinclient-latest.jar \
GetServerInfo --host c44.dev.example.com --port 443 opsw

5 Respond to the prompts for the SA user name and password. The SA user must have read
permissions for the servers that match the target specified on the command line.
124 Chapter 7

8 Web Services Clients
Overview of Web Services Clients

The SA API supports Web Services, a programming environment built on open industry standards such as
SOAP (Simple Object Access Protocol) and WSDL (Web Services Definition Language). You can create Web
Services clients in a variety of programming languages such as Perl and C# (as shown later in this chapter)
or with Web Services-enabled development environments such as Microsoft Visual Studio .NET and BEA
WebLogic Workshop.

This chapter is intended for software developers who are familiar with SA fundamentals and Web Services
development.

Programming Language Bindings Provided in This Release

This release of SA includes Web Services client stubs for C#. Web Services clients written in Perl do not
require client stubs.

This release does not include Web Services client stubs for Java or Python. However, Java clients can
access the SA API through RMI and Python clients through Pytwist, as described in the preceding chapters.

URLs for Service Locations and WSDLs

Clients access the Web Services at URLs with the following syntax, where host is the server running the
OCC core component and port is for the HTTPS proxy. (The default proxy port is 443). The packageName
corresponds to the Java library that the service belongs to.

https://host:port/osapi/packageName/WebServiceName

The WSDL files are at URLs with the following syntax:

https://host:port/osapi/packageName/WebServiceName?WSDL

For example, the following URLs point to the FolderService location and WSDL:

https://occ.c38.example.com:443/osapi/com/opsware/folder/FolderService

https://occ.c39.example.com:443/osapi/com/opsware/folder/
FolderService?wsdl

The SOAP binding style is RPC (Remote Procedure Call) and the transport protocol is HTTPS.

Security for Web Services Clients

Like other clients of the SA API, Web Services clients must be authenticated and authorized to perform
operations in SA. Communication between clients and the Web Services component in the SA core is
encrypted. Access is restricted to HTTPS clients through the HTTPS proxy port of the OCC core component.
(The default port is 443.)
125

Overloaded Operations

The SA API has overloaded operations, but the WSDL 2.0 specifications do not support overloading. An
overloaded operation in the SA API is exposed by the Web Service as a single operation.

Java Interface Support

The SA API uses Java interfaces, but Web Services does not support interfaces. As a workaround, the
WSDL files map interfaces to xsd:anyType. For clients coded in object-oriented programming
languages such as C#, if an API method returns an interface, the return type must be cast to a concrete
class. Arrays of interfaces are converted to Object[]; specific types of the array members are preserved
through serialization/deserialization. For a C# code example, see Handle Interface Return Types on
page 137.

Unsupported Data Types

The following data types are used by the SA API but are not supported by SOAP:

java.util.Properties
com.opsware.common.ModifiableMap
com.opsware.acm.ValueSet
com.opsware.swmgmt.PolicyOverrideFilter

Methods Omitted from Web Services

The following SA API methods use unsupported data types as parameters or return types. As a result,
they are not exposed as operations in the Web Services.

com.opsware.custattr.CustomAttribute.getCustAttrs
com.opsware.custattr.CustomAttribute.setCustAttrs
com.opsware.custattr.CustomField.getCustomFields
com.opsware.custattr.CustomField.setCustomFields
com.opsware.pkg.Patch.getPolicyOverrideRefs

Partial Support for java.util.Map

Axis converts java.util.Map to apachesoap:Map, which is a collection of key-value pairs. With .NET,
this conversion does not work. C# clients, for example, will receive an empty array of key-value pairs.
However, this conversion does work with Soap::Lite in Perl. Therefore, SA API methods that use
java.util.Map are available as operations in the Web Services.

The following methods use java.util.Map as parameters or return types:

com.opsware.acm.GroupConfigurable.getApplicationInstances
com.opsware.acm.ServerConfigurable.getCustAttrsWithRC
com.opsware.compliance.sco.CMLSnapshot.getValueSet
com.opsware.compliance.sco.CMLSnapshot.setValueSet
com.opsware.compliance.sco.SnapshotResultService.remediateCMLSnapshot
com.opsware.custattr.VirtualColumnVO.getConfigInfo
com.opsware.custattr.VirtualColumnVO.setConfigInfo

Methods in VOs With Unsupported Data Types

The following methods of VOs use unsupported data types as parameters or return types:
126 Chapter 8

com.opsware.acm.ApplicationInstanceVO.getValueset
com.opsware.acm.ApplicationInstanceVO.setValueset
com.opsware.acm.ConfigurableVO.getValueset
com.opsware.acm.ConfigurableVO.setValueset
com.opsware.virtualization.VirtualConfigNode.getProperties
com.opsware.virtualization.VirtualConfigNode.setProperties
com.opsware.virtualization.VirtualServerConfig.getProperties
com.opsware.virtualization.VirtualServerConfig.setProperties

Invoke setDirtyAtrributes When Creating or Updating VOs

Web Services clients must invoke setDirtyAttributes before invoking a create or update method
on a service. The setDirtyAttributes method explicitly the marks the attributes (fields) of a VO that
need to be set by the create or update invocation. The attribute names specified by
setDirtyAttributes are case sensitive.

For example, to modify the description attribute of a FolderVO object, the following code invokes
setDirtyAttributes before it invokes update:

// fs is FolderService
FolderVO folderVO = fs.getFolderVO(folderRef);
folderVO.setDescription("credit card processing");
folderVO.setDirtyAttributes(new String[]{"description"});
fs.update(folderRef, folderVO, true, true);

Invoking setDirtyAttributes is required for Web Services clients because of the way Axis
deserializes XML objects from XML. If setDirtyAttributes is not invoked, Axis calls setters on all
attributes of the VO, including read-only attributes, resulting in a ReadOnlyException.

Compatibility With SA Web Services API 2.2

The SA Web Services API 2.2 is not compatible with the SA API described in this guide. The method
signatures, services, WSDLs, and port bindings are not the same. If you are creating new Web Services
clients, be sure to use the SA API, not the SA Web Services API 2.2.
Web Services Clients 127

Perl Web Services Clients

This section contains step-by-step instructions and sample code for creating Perl Web Services clients
that access the SA API.

Required Software for Perl Clients

Your development environment must have the following Perl modules:

• Crypt-SSLeay-0.51

• IO-Socket-SSL-0.95

• Net_SSLeay.pm-1.25

• HTML-Parser-3.35

• MIME-Base64-3.01

• URI-1.30

• libwww-perl-5.76

• SOAP-Lite-0.65_6

Depending on your Perl version, newer versions of these modules could be required.

Running the Perl Demo Program

To run the demo program, perform the following steps:

1 Obtain the ZIP file that contains the demo program uapisample.pl file.

2 Edit the uapisample.pl file, changing the hardcoded values for host, username, password, and
object IDs such as serverID.

3 Run uapisample.pl.

4

If you receive a "Certificate Verify Failed" error, you should uncomment the following line from
the sample file and provide a valid path to the certificate file:

#$ENV{HTTPS_CA_FILE} = "path_to/opsware-ca.crt";

You can find the certificate file from an SA Core in:

/var/opt/opsware/crypto/twist/opsware-ca.crt
128 Chapter 8

Perl Example Code

The following code snippets are from uapisample.pl, a Perl program contained in the ZIP file you
downloaded previously.

Set Up the Service URI

Construct the URI for the service.
#
my $username = "integration";
my $password = "integration";
my $protocol = "https";
my $host = "occ.c38.dev.example.com";
my $port = "443";
my $contextUri = "osapi/com/opsware/";
my $folderServiceName = "folder/FolderService";
my $folderUri = "http://www.example.com/" . $contextUri .
$folderServiceName;

Create a proxy to the FolderService.
#
my $folderProxy = $protocol . "://" . $username . ":" . $password . "@" .
$host . ":" . $port . "/" . $contextUri . $folderServiceName;

Initiate a New Service

my $folderPort = SOAP::Lite
 -> uri($folderUri)
 -> proxy($folderProxy);

Invoke a Service Method

my $root = $folderPort->getRoot()->result();
print 'Got root folder: ' . $root->{'name'} . "\n";

Alternative:
my $root = $folderPort->SOAP::getRoot();
print 'Got root folder: ' . $root->{'name'} . "\n";

Get a VO

$rootVO = $folderPort->getFolderVO(SOAP::Data->name('self')
->value(\SOAP::Data->name('id')->type('long')->value(0)))
->result();

The preceding call to getFolderVO does not pass a FolderRef
parameter. If a method such as FolderService.remove accepts a
FolderRef parameter, use the following code:
#

Web Services Clients 129

my $folderToBeRemoved = SOAP::Data->name('self')
->attr({ 'xmlns:ns_fs' => 'http://folder.example.com/FolderService'}) -
>type('ns_fs:FolderRef')->value(\SOAP::Data->name('id')->type('long') -
>value(123456));
$folderPort->remove($folderToBeRemoved);

To see the Perl representation of the returned VO, you can use
the Dumper method. This will help you understand how to
construct the dirty attributes of a VO for a create or update
method.
#
use Data::Dumper;
print Dumper($folderVO);

Get an Array

Construct $folder, the FolderRef before getting the array.
#
my $folder = SOAP::Data->name('self') ->attr({ 'xmlns:ns_fs' => 'http://
folder.example.com'}) ->type('ns_fs:FolderRef')->value(\SOAP::Data-
>name('id')->type('long') ->value($root->{'id'}));

The getChildren method returns an array of FNodeReference
objects.
#
my $children = $folderPort->getChildren($folder, SOAP::Data->name('type')-
>type('string')->value(''))->result();

foreach $child (@{$children}){
 print 'Get child: ' . $child->{'name'} . "\n";
}

Construct an Object Array

For a function that takes an object array as a parameter,
such the getVOs method, take the following approach:
First, construct the Array object elements individually
and put them in an array.
#
my @refs = [];
foreach my $ref (@{$myRefs}){
 # Assume myRefs was returned from a previous
 # Web Services call.
 my $object = SOAP::Data->name('FacilityRef')
 ->value(\SOAP::Data->name('id')
 ->type('long')
 ->value($ref->{'id'}
)
)->attr({ 'xmlns:facility' => 'http://locality.example.com'})
 ->type('facility:FacilityRef');
 push @refs, $object;
}

130 Chapter 8

Second, construct an Array Object and put the array in it.
#
my $selves = SOAP::Data->name("selves" =>
 \SOAP::Data->name("element" => @refs)-
>type("facility:FacilityRef"))
 ->attr({ 'xmlns:facility' => 'http://locality.example.com'})
 ->type("facility:ArrayOfFacilityRef");

Update or Create a VO

This example updates the description attribute of a ServerVO.
#
my $serverID = 40038;
my $server = SOAP::Data->name('self')->value(\SOAP::Data->name('id')-
>type('long')->value($serverID));

Don’t forget to set dirtyAttributes for the attributes
you want to update. You also need dirtyAttributes for
create methods that pass a VO.
#
my @dirtyAttrs = ('description');
my $serverVO = SOAP::Data->name('vo') ->attr({ 'xmlns:ns_ss' => 'http://
server.example.com'}) ->value(\SOAP::Data->value(SOAP::Data-
>name('description')->value('PERL_UPDATE_DESC')->type('string'), SOAP::Data-
>name('logChange')->value('false')->type('boolean'), SOAP::Data-
>name('dirtyAttributes' => \SOAP::Data->name("element" => @dirtyAttrs)-
>type("string")) ->type("ns_ss:ArrayOf_soapenc_string"),));

my $force = SOAP::Data->name('force')->value('true')->type('boolean');
my $refetch = SOAP::Data->name('refetch')->value('true')->type('boolean');

Call the update method.
#
print 'Invoking method serverWSPort.update...', "\n";
my $updatedServerVO = $serverWSPort->update(
 $server,
 $serverVO,
 $force,
 $refetch)->result();
print "New description: ", $updatedServerVO->{'description'}, "\n";

Handle SOAP Faults

Make sure that you turn off on_fault subroutine in the
"use SOAP::Lite ..." statement.
#
The fault member of a SOAP return will be set if the Web
Service call throws an exception.
The following code tries to get a folder that does not exist:
#
my $testVO = $folderPort->getFolderVO(SOAP::Data->name('self') -
>value(\SOAP::Data->name('id')->type('long')->value(123456)));
Web Services Clients 131

if($testVO->fault){
 print $testVO->faultstring . "\n";
 # This will print the error msg.
 print "ExceptionName: " . getExceptionName($testVO) . "\n"; # A
NotFoundException should be displayed here
 # The code that deals with the error goes here....
}
. . .
The following subroutine extracts the exception name from the
returned faultdetail.
#
sub getExceptionName {
 my $fault = shift; #get the fault object
 if($fault->faultdetail->{'fault'}){
 return ref($fault->faultdetail->{'fault'});
 }
}
. . .
As shown in the preceding code, it’s easier to handle SOAP
faults if you execute functions like this:
#
my $data = $port->function(...);
Not like this:
$port->SOAP::function(...);
$port->function(...)->result;

Construction of Perl Objects for Web Services

Before calling a Web Services operation, a Perl client must set up the data structures that are required for
the input parameters. The information you need for setting up the data structures is in the API
documentation (javadocs) and the service’s WSDL file. The Perl code example in this section shows how to
construct the input parameter for the getServerVO operation. The step-by-step instructions after the
code show where to get the information about the input parameter from the API documentation and the
WSDL file.

Source Code for Calling getServerVO

The following Perl code sets up the input parameter self and then calls the getServerVO operation.
This call retrieves the VO (value object) for the managed server of ID 12345.

Create a top-level SOAP::Data object that represents the
with the name self.
#
$self = SOAP::Data->name(’self’)

The namespace corresponds to the schema of the data type
of the SOAP:Data object. The name chosen (ns_ss) is
arbitrary.
#
$self->attr({’xmlns:ns_ss =>
’http://server.example.com/ServerService’});

Specify the type (ServerRef) for the parameter self, using the
name of the namespace from the preceding statement.
132 Chapter 8

$self->type(’ns_ss:ServerRef’);

Create the value for the parameter. The value is a pointer
to a SOAP::Data object. The number 12345 is the SA ID of # a managed server.
#
my $id = SOAP::Data->name(’id’)->type(’long’)->value(12345);

From the self object, point to the value.
#
$self->value(\$id);

Finally, call getServerVO:
#
my $data = $serverPort->getServerVO($self);
if($data->fault){
 # Handle exceptions here ...
}
else{
 my $serverVO = $data->result;
}
. . .

Location of Information for getServerVO Setup

To get the information needed to write the code for the call to getServerVO, perform the following
steps:

1 In a browser, go to the API documentation (javadocs) at the following URL:

https://occ_host:1032/twister/docs/index.html

The occ_host is the IP address or host name of the core server running the Command Center
component. (For instructions on invoking methods with the Twister, see API Documentation and the
Twister on page 23.)

2 Examine the API documentation to determine the input parameters and return value of the method.

The getServerVO method is defined in the interface com.opsware.server.ServerService. In
the following method signature, note that getServerVO accepts a ServerRef as a parameter and
returns a ServerVO:

public ServerVO getServerVO(ServerRef self)
 throws java.rmi.RemoteException,
 NotFoundException,
 AuthorizationException

3 In a browser, specify the following URL to open the WSDL file for the ServerService:

https://occ_host/osapi/com/opsware/server/ServerService?wsdl

4 In the WSDL file, locate the namespace for the ServerService:

<schema targetNamespace="http://server.example.com" xmlns="http://
www.w3.org/2001/XM
LSchema">
Web Services Clients 133

The following Perl statement (from the code listed previously) specifies the namespace:

$self->attr({’xmlns:ns_ss =>
’http://server.example.com/ServerService’});

5 In the WSDL file, locate the getServerVO operation and note the input message name
getServerVORequest.

<wsdl:operation name="getServerVO" parameterOrder="self">
 <wsdl:input message="impl:getServerVORequest" name="getServerVORequest"/>
 <wsdl:output message="impl:getServerVOResponse" name="getServerVOResponse"/
>
 <wsdl:fault message="impl:NotFoundException" name="NotFoundException"/>
 <wsdl:fault message="impl:AuthorizationException"
name="AuthorizationException"/>
</wsdl:operation>

6 In the WSDL file, locate the getServerVORequest message:

<wsdl:message name="getServerVORequest">
 <wsdl:part name="self" type="impl:ServerRef"/>
</wsdl:message>

The getServerVORequest message element defines the name (self) and type (ServerRef) of
the input parameter of getServerVO. The following Perl statement specifies ServerRef:

$self->type(’ns_ss:ServerRef’);

7 In the WSDL file, locate the complexType for ServerRef:

<complexType name="ServerRef">
 <complexContent>
 <extension base="tns1:ObjRef">
 <sequence>
 <element name="secureResourceTypeName" nillable="true"
type="soapenc:string"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

Note that ServerRef extends ObjRef.

8 In the WSDL file, locate the complexType for ObjRef:

<complexType abstract="true" name="ObjRef">
 <sequence>
 <element name="id" type="xsd:long"/>
 <element name="idAsLong" nillable="true" type="soapenc:long"/>
 <element name="name" nillable="true" type="soapenc:string"/>
 </sequence>
</complexType>

In ObjRef, note the name (id) and type (long). These data types are specified in the following Perl
statement:

my $id = SOAP::Data->name(’id’)->type(’long’)->value(12345);
134 Chapter 8

C# Web Services Clients

This section contains step-by-step instructions and sample code for creating C# Web Services clients that
access the SA API.

Required Software for C# Clients

To develop C# Web Services clients, your development environment must have the following software:

• Microsoft .NET Framework SDK version 1.1

• C# client stubs for SA API

Obtaining the C# Client Stubs

SA provides a stub file for each service, for example, FolderService.cs. All stubs have the same
namespace: OpswareWebServices. In addition to the stubs, SA provides shared.cs, the file that
contains shared classes such as ServerRef.

To obtain a ZIP file containing the C# stubs, specify the following URL, where occ_host is the core server
running the OCC component:

https://occ_host:1032/twister/opswcsharpclient.zip

The constants defined in services and objects are not defined in the C# stubs. To get information about
the constants, use the API documentation (javadocs), as described in Constant Field Values on page 23.

Building the C# Demo Program

To build the demo program, perform the following steps:

1 Obtain the ZIP file that contains the following demo program files:

• App.config - Application settings

• WebServicesDemo.cs - Client code that invokes service methods

• MyCertificateValidation.cs - Certificate validation class

2 Create the following directory:

C:\wsapi

3 From the Visual Studio 2008 Start Page, select New Project and create a project with the following
values:

• Project Type: Visual C# Projects

• Template: Console Application

• Name: WSAPIDemo

• Location: C:\wsapi

This action creates the new directory C:\wsapi\WSAPIDemo, which contains some files.

4 In the new project, delete the default program and AssemblyInfo.cs from the list of objects.

5 Copy the files you obtained in step 1 into the C:\wsapi\WSAPIDemo directory.

6 Download the client stubs from the URL specified in Obtaining the C# Client Stubs on page 135.
Web Services Clients 135

7 Copy the C# client stubs into the C:\wsapi\WSAPIDemo directory.

8 Add the files copied in the preceding two steps to the WSAPIDemo project:

• In Visual Studio, from the Project menu, select Add Existing Item.

• Browse to the directory C:\wsapi\WSAPIDemo, and select all the demo files (.cs and
.config).

9 Add a reference to System.Web.Services.dll:

• In Visual Studio, from the Project menu, select Add Reference.

• Under the .NET tag, browse to Component with Name: System.Web.Services.dll.

• Click System.Web.Services.dll, click Select, and then click OK.

10 If you used a different template when creating the project, you might need to add references to
System, System.XML, and System.Data. Check the Project References to determine if you need to
add these references.

11 In the App.config file, change the values for username, password, host, and the hardcoded
object IDs such as serverID.

12 In Visual Studio, from the Build menu, select Build WSAPIDemo.

Running the C# Demo Program

To run the demo program, perform the following steps:

1 Open the Visual Studio 2008 command prompt:

Start > All Programs > Microsoft Visual Studio 2008 >
Visual Studio Tools > Visual Studio 2008 Command Prompt

2 Change the directory to:

C:\wsapi\WSAPIDemo\bin\Debug

3 Enter the following command:

WSAPIDemo.exe

C# Example Code

The following code snippets are from WebServicesDemo.cs, a C# program contained in the ZiP file you
downloaded previously.

Set Up Certificate Handling

This setup is required just once for the client.
#
ServicePointManager.CertificatePolicy = new MyCertificateValidation();

Assign the URL Prefix

This is the URL prefix for all services.
#

136 Chapter 8

wsdlUrlPrefix = protocol + "://" + host + ":" + port + "/" + contextUri + "/";

Initiate the Service

FolderService fs = new FolderService();
fs.Url = wsdlUrlPrefix + "com.opsware.folder/FolderService";

Invoke Service Methods

FolderRef root = fs.getRoot();
FolderVO vo = fs.getFolderVO(root);

Handle Interface Return Types

In the API, FolderVO.getMembers returns an array of
FNodeReference interfaces, but Web Services does not support
interfaces. In the C# stub, the return type of
FolderVO.members is Object[]. If a returned Object type will
be used as a parameter that must be a specific type, then you
must cast it to that type. For example, the following code
casts elements of the returned array to FolderRef as
appropriate.
#
Object[] members = vo.members;
for(int i=0;i<members.Length;i++)
{
Console.WriteLine("Got object: " + members[i].GetType().FullName + " --> " +
((ObjRef)members[i]).name);
 if(members[i] is FolderRef) {
 Console.WriteLine("I am a FolderRef: " +
 ((FolderRef)members[i]).name);
 }
}

Update or Create a VO

When updating a VO, the changed attributes must be set in
dirtyAttributes. (The VO passed to a create method has
the same requirement.)
#
Note: If you update a VO that was returned from a service
method invocation, such as getFolderVO, then you must
set the logChange attribute of the VO to false:
vo.logChange = false;
#
The following code changes the name of a folder.
#
Console.WriteLine("Changing name from " + vo.name +
" to yo_csharp.");
vo.name = "yo_csharp";
Web Services Clients 137

vo.dirtyAttributes = new String[]{"name"};
Manually set dirty fields being changed.
#
vo = fs.update(folder, vo, true, true);
Console.WriteLine("Folder name changed to: " + vo.name);

Handle Exceptions

.NET converts Web Services faults into SoapExceptions
without trying to deserialize them into application
exceptions first. As a result, your code cannot catch
application exceptions. As a workaround, the C# stubs
provided by SA include SOAPExceptionParser,
a class that enables you to get information from
SOAPExceptions. The following code shows how to get the
exception name and error message by calling the getDetail
method of SOAPExceptionParser.
#
try{
// Try to get a non-existent folder here.
} catch(SoapException e){
 SoapExceptionDetail detail =
 SoapExceptionParser.getDetail(e);
 Console.WriteLine("SoapExceptionDetail.name: " +
 detail.exceptionName);
 Console.WriteLine("SoapExceptionDetail.msg: " +
 detail.message);
...
}

Password Security with C#

The FolderService method reads the user and password pair from the file App.config. The following shows
an example of this method.

User user = new User();
user.username = "user";
user.password = "password";
FolderService fs = new FolderService();
fs.Url = wsdlUrlPrefix + "com.opsware.folder/FolderService";
fs.user = user;

If you do not want to store the password in clear text in the App.config file, you can use the SecureUser
class to encrypt the password. The SecureUser class uses the C# SecureString in .NET 2.0. Passwords are
stored encrypted in a SecureString. Furthermore, the getPassword() method is only visible internally.
SecureUser is a static class, so you only need to set your user name and password once or each time you
switch users.

Each service retrieves the user name and password from SecureUser first and then its user member
variable and then App.config, for backward compatibility. SecureUser takes either a String or a
SecureString for the password. In either case, clients are responsible to clean up the password variable
passed to the SecureUser.setUser() method.
138 Chapter 8

At some point the password will need to be converted to a regular C# string in memory, which will only get
freed when the next garbage collection occurs. Using SecureUser will only ensure internal password
storage is secure.

The following example shows how to set the user name and password securely.

SecureString passwd = new SecureString();
passwd.AppendChar('p');
passwd.AppendChar('a');
passwd.AppendChar('s');
passwd.AppendChar('s');
passwd.AppendChar('w');
passwd.AppendChar('d');
SecureUser.setUser("username", passwd); // that's it, no need to set up user
for each service.
passwd.Dispose(); // resets passwd and frees up memory so no copy remains from
caller.
Web Services Clients 139

140 Chapter 8

9 Pluggable Checks
Overview of Pluggable Checks

The SA Audit and Remediation feature enables you to define and monitor the compliance information for
SA managed servers. Because compliance standards are continuously evolving, SA lets you create
specialized custom checks and policies, and extend those provided with SA. A pluggable check is an audit
rule, which belongs to one or more audit policies. You create a pluggable check in a command-line
environment, upload the check, and then add it to an audit policy with the SA Client.

This chapter is intended for software developers who are familiar with XML and with the Audit and
Remediation feature of SA.

Setup for Pluggable Checks

Before developing pluggable checks, perform the following steps:

1 Install an SA core in a development environment. Do not use a production core.

2 On a server that has an installed Agent, install OCLI 1.0. For information on the OCLI 1.0, see the SA
User Guide: Server Automation.

Pluggable Check Tutorial

This tutorial shows how to create a pluggable check named HelloWorld Check. This simple check verifies
that the /var/tmp/helloworld file exists on a Unix managed server. If the file does not exist, the
remediation script of the pluggable check creates the file.

To develop the HelloWorld Check, perform the following steps:

1 Follow the instructions in Setup for Pluggable Checks on page 141. The server where you install OCLI
1.0 will be the development server for this tutorial.

2 The HelloWorld Check example code is included with the ZIP file that contains the API code examples.

3 Unzip the file you downloaded in the preceding step and verify that the pluggable_checks/
helloworld directory contains the following files:

config.xml
gethelloworld.py
sethelloworld.py

The HelloWorld check is made up of these three files. The config.xml file is a configuration file. The
gethelloworld.py Python script performs the audit. The sethelloworld.py Python script
performs the remediation. In the following steps, you package these files into a ZIP file and then
import the ZIP file into SA.
141

4 On your development server, copy the unzipped helloworld files to a working directory, for
example:

cd /home/jdoe/dev
mkdir helloworld
cd helloworld
cp unzip_dest/pluggable_checks/helloworld/* .

5 Obtain a Globally Unique ID (GUID). Each pluggable check requires a GUID. You can acquire a valid
GUID by using one of the following techniques:

— Log on to web sites such as the following:

http://kruithof.xs4all.nl/uuid/uuidgen

— Download the free Windows tool guidgen from:

http://www.microsoft.com/downloads/details.aspx?FamilyID=94551F58-484F-
4A8C-BB39-ADB270833AFC&displaylang=en

If you programmatically create your GUIDs, then your code should conform to RFC4122 (http://
www.ietf.org/rfc/rfc4122.txt).

6 With a text editor, insert the GUID in the config.xml file, for example:

<checkGUID>6c7ed38c-d8d6-11db-8314-0800200c9a66</checkGUID>

This is the only element in config.xml that you need to modify for this tutorial.

7 In the text editor, save config.xml with the change you made for the GUID.

Keep the text editor open. Throughout this tutorial, you will examine various elements in
config.xml to learn how they map to the Python scripts and the SA Client display fields of the
HelloWorld Check.

8 In the config.xml file, note the following elements, which are related to the audit (get) and
remediation (set) scripts of the HelloWorld Check:

<!-- The name of the script that performs the check. -->
<checkGetScriptName>gethelloworld.py</checkGetScriptName>

<!-- The name of the script that remediates the audit. -->
<checkSetScriptName>sethelloworld.py</checkSetScriptName>

<!-- The exit code of the gethelloworld.py script will be checked.-->
<checkReturnType>EXITCODE</checkReturnType>

<!-- A string argument is passed to gethelloworld.py. -->
<checkGetArgumentType>STRING</checkGetArgumentType>

<!-- The default argument for gethelloworld.py is the name of the file the
script is checking for. -->
<checkGetArgumentDefaultValue>/var/tmp/helloworld
</checkGetArgumentDefaultValue>
142 Chapter 9

<!-- If the helloworld file exists, the exit code of gethelloworld.py is 0.
-->
<checkSuccessExitCodeValue>0</checkSuccessExitCodeValue>

<!-- If the helloworld file does not exist, the exit code of
gethelloworld.py is 1. -->
<checkSuccessExitCodeValue>1</checkSuccessExitCodeValue>

9 Examine the gethelloworld.py script, which performs the audit by checking for the existence of
the file /var/tmp/helloworld. You do not need to edit this script for this tutorial. Later in this
tutorial (step 29 on page 147), when you run the audit in the SA Client, this script executes on a
managed server.

The /var/tmp/helloworld string is the default argument of the script, as indicated by the value
of <checkGetArgumentDefaultValue> in config.xml. The script’s exit code (result)
corresponds to the values specified for <checkSuccessExitCodes>.

Here is the source code for the gethelloworld.py script:

import sys
import os
import string

if __name__ == "__main__":

 if len(sys.argv) != 2:
 sys.stderr.write("No argument found! Please enter a
 file name!\n")
 sys.exit(220)

 filename = sys.argv[1]
 if os.path.isfile(filename) or os.path.isdir(filename):
 result = 0
 else:
 result = 1

 sys.stderr.write("Debugging: Found result %s\n"
 % result)
 sys.stdout.write("%s\n" % result)

 sys.exit(result)

10 Next, examine the remediation script sethelloworld.py, which creates the
/var/tmp/helloworld file. This script runs on a managed server if you decide to remediate the
audit in step 34 on page 147. Do not change the script for this tutorial.

The source code for sethelloworld.py follows:

import sys
import os
import string

if __name__ == "__main__":

 if len(sys.argv) != 2:
Pluggable Checks 143

 sys.stderr.write("No argument found!
 Please enter a file name!\n")
 sys.exit(220)

 filename = sys.argv[1]
 if os.path.isfile(filename) or os.path.isdir(filename):
 # Do nothing because the file already exists.
 pass
 else:
 try:
 fd = open(filename, "w")
 fd.write(" ")
 fd.close()
 except:
 sys.stderr.write("Could not open file %s for
 writing!\n" % filename)
 sys.exit(220)

 # Exit successfully with a 0 exit code.
 sys.stderr.write("Successfully created file\n")
 sys.exit(0)

11 Package the HelloWorld Check.

To package the HelloWorld pluggable check, archive the contents of the working directory into a
single ZIP file, for example:

cd /home/jdoe/dev/helloworld
zip ../helloworld.zip *

12 Verify that the ZIP file contains the two Python scripts and the config.xml file by entering the
following unzip command:

unzip -t ../helloworld.zip
 testing: config.xml OK
 testing: gethelloworld.py OK
 testing: sethelloworld.py OK
No errors detected in compressed data of ../helloworld.zip.

13 Import the pluggable check into SA with the oupload command of OCLI 1.0:

oupload -C"Customer Independent" \
-t"Server Configuration Check" \
--forceoverwrite --old -O"SunOS 5.8" ../helloworld.zip

Note: The platform option (-O) is SunOS 5.8 for all Unix and Linux checks. For Windows checks,
the platform option is Windows 2003.

If oupload does not run successfully, make sure that you have installed the correct version of OCLI
1.0, set the PATH environment variable correctly, and included the login file in your environment.
For details on these requirements, see the OCLI 1.0 in the SA User Guide: Server Automation.
144 Chapter 9

14 Open the SA Client.

In the next few steps, you create a new audit, adding to it the HelloWorld Check you imported with the
oupload command.

15 From the Tools menu, select Update Cache.

16 From the Navigation pane, select Library > By Type > Audits and Remediation >
Audits > Unix.

17 From the Actions menu, select New.

18 In the Audit Window, in the Name field of the Properties pane, enter HelloWorld Audit.

19 In the Views pane, select Rules > File System.

The Content pane should list the HelloWorld Check under Available for Audit, as shown in Figure 21.

figure 21 HelloWorld Check in the Rules for a File System

20 In the config.xml file, note the following elements, which are related to the information displayed
in Figure 21:

<!-- The check name is the rule name shown in the SA Client. -->
<checkName>HelloWorld Check</checkName>

<!-- The category corresponds to the rule hierarchy displayed by the SA
Client. -->
<checkCategory>File System|My Custom Checks</checkCategory>

21 In the Audit Window of the SA Client, under Available for Audit, select HelloWorld Check and click the
plus sign.
Pluggable Checks 145

The Content pane should list the details for HelloWorld Check, as shown in Figure 22.

figure 22 HelloWorld Check Rule Details

22 In the config.xml file, examine the following elements, which are related to the information
displayed under Rule Details in Figure 22:

<!-- The following value appears under Description in the Rule Details of
the SA Client. -->
<checkDefaultDescription>
Check that /var/tmp/helloworld exists.
</checkDefaultDescription>

<!-- The following element corresponds to the Test ID in the SA Client. -->
<checkTestID>helloworld 1</checkTestID>

<!-- This label is under Input Values in the SA Client. -->
<checkGetArgumentDefaultLabel>File Name
</checkGetArgumentDefaultLabel>

<!-- The default argument to the gethelloworld.py script also appears
under Input Values in the SA Client. -->
<checkGetArgumentDefaultValue>/var/tmp/helloworld
</checkGetArgumentDefaultValue>

23 In the Views pane of the SA Client, select Targets.

In the following steps you add a target server to HelloWorld Audit. In later steps, the
gethelloworld.py and sethelloworld.py scripts will run on the target server.

24 In the Contents pane, click Add.

25 In the Select Server window, drill down to a server and click OK.

26 In the Audit window, select File > Save.

At this point, the HelloWorld Audit contains the HelloWorld Check (rule) and is associated with a
target server.
146 Chapter 9

27 In the Audit window, from the Actions menu, select Run Audit.

28 Step through the windows of the Run Audit task.

29 In the Run Audit window, click Start Job.

This action launches the job that runs the gethelloworld.py script on the target server.

30 After the job has completed, click View Results.

31 In the Views pane of the Audit Result window, select Policy Rules (1).

32 In the Content pane of the Audit Result window, open HelloWorld Check.

The Difference Details window should appear, as shown in Figure 23.

figure 23 HelloWorld Check Difference Details

33 In the config.xml file, note the following elements, which are related to the information displayed
in the Difference Details window of Figure 23:

<!-- The following value appears as the Policy Value in the Difference
Details window. -->
<checkSuccessExitCodeDefaultDisplayName>
File exists</checkSuccessExitCodeDefaultDisplayName>

<!-- The next value appears as the Actual Value in the same window. -->
<checkSuccessExitCodeDefaultDisplayName>
File does not exist</checkSuccessExitCodeDefaultDisplayName>

34 If you want to create /var/tmp/helloworld on the target server, on the Differences Window, click
Remediate.

This action runs the sethelloworld.py script. For more information, see the SA User Guide:
Audit and Compliance.
Pluggable Checks 147

Overview of Audit and Remediation

Sarbanes-Oxley (SoX), Information Technology Infrastructure Library (ITIL), and ISO20000 make it urgent
to keep server configurations in compliance. The SA Audit and Remediation feature offers you a well-
organized set of policies to help you address compliance issues. A graphical interface makes it easy for
you to select and run audits against specified servers, and see how well they comply with professional
standards.

Audit and Remediation also simplifies system administration. For example, you might monitor a class of
servers that run a home grown application built by your team, such as a database server or middleware
application. As you configure and monitor the servers that run the application, you keep a list that tracks
the ideal state of the configuration. Such a list might include file, directory, and network share
permissions.

You can create an audit that defines these configurations, then audit the servers after installing the
application. The audit results will confirm whether or not the application is installed and has been
configured successfully according to your criteria. If the configuration is non-compliant, you can create an
ad-hoc audit to troubleshoot the problem. When the audit results indicate an error, you can remediate the
server to match your ideal configuration. To ensure that the configuration change works in production,
you can set the audit to run on a configurable schedule and have a notification sent upon completion.

Showing a window for selecting an audit, Figure 24 includes the following callouts:

• Callout A: Any category listed in the Views panel may have SA non-modifiable capabilities, or
modifiable pluggable checks.

• Callout B: This points to the SA capabilities for dealing with Windows services.

• Callout C: This lists pluggable checks for working with Windows Services.

figure 24 Windows Services Audit Rule

Each check evaluates one rule. Several checks can be bundled together into a policy.
148 Chapter 9

The SA Audit and Remediation feature comes with many out-of-the-box checks. You can run most audits
by selecting the desired check. The choice of audits grows continuously as developers design, code, test,
and add more checks to the system through the HP Live Network. These checks are imported as complete
policies.

However, since every business has unique challenges and unique resources, you may need to determine
compliance against a set of criteria not available for auditing within the SA Audit and Remediation
framework. For this reason, the system provides a way to create your own custom pluggable checks.

The Audit and Remediation feature evaluates, by specific rules, the compliance state of servers under SA
management. This feature can also remediate the servers that do not match the desired configuration
state as defined in the rules. These rules include various server parameters, registry values, file
permissions, application configurations, file existence, COM+ objects, and more.

In the Windows environment, web server rules can also be specified with application configuration, which
is based upon the Microsoft Internet Information Services (IIS) Web server configuration file, UrlScan.ini.
SA can compare partial or full values from specific configuration files, select the desired elements from
the file, and make sure that these values or configuration file entries exist. For more information, see the
SA User Guide: Application Configuration.

SA includes many predesigned audit rules. Each defines a desired state of configuration for a server or
server groups. Some rules are value-based, providing a comparator (<, >, ==, !=, contains, etc.), a value or
set of values, and one or more checks, which spell out the underlying code used to evaluate the state of
the audited item or items. The comparison data determines compliance or non-compliance. A rule may
also contain remediation values if the check supports remediation.

A rule consists of a single check. You can create new functionality by using custom content objects in the
form of pluggable checks. You can also bundle related pluggable checks into audit policies for
convenience.

Pluggable Check Creation

A pluggable check is code that is downloaded to the managed server or servers and is executed by the
Audit and Remediation framework. You can use checks to extend the native Audit and Remediation
properties and to provide additional specialized functionality. Each pluggable check includes a
customized config.xml file and at least one script that compares the audited feature against values
specified in the config.xml file. A pluggable check may also include a script that sets specified variables in
the audited server to the value specified in the config.xml file. You can write pluggable check scripts in
Python, Visual Basic Scripting (VBS), BAT, or shell script. A pluggable check is packaged as a zip archive.

Most of the CIS checks are direct translations of the CIS benchmarks. More information can be found at
http://www.cisecurity.org.

Most types of checks fall into one of the following categories:

• Windows Registry checks

• Unix Services checks

• User checks, which may use password or shadow file information

Guidelines for Pluggable Checks

To simplify server maintenance, adhere to the following guidelines:
Pluggable Checks 149

• When creating a new pluggable check, pay special attention to the names. Describe the purpose of
the check, and replace spaces with an underscore. For example,
Users_Without_Password_Expiration is self-explanatory. This will help you to find a check
quickly when a server acquires several hundred or more checks.

• Write a generic check. This enables you to easily create additional checks of the same execution type
with only a few lines of code change. For example, for most CIS2k3 Windows Service Checks, you can
change a single line of code to create a new check for a new service.

• When naming the audit (get) and remediation (set) scripts, remove the spaces or underscores from
the directory name, and prefix with get or set, as appropriate. For example,
getUsersWithoutPasswordExpiration.sh is a good name for an audit file. Be consistent on
this, even if you think your custom check will not be used by anyone else.

• Pay attention to error checking. Remember that unexpected return values might report an audit as
non-compliant when a script failure occurs. Trap the unexpected error or exception, and write out
information about it to stdout or stderr to simplify troubleshooting.

• Convert most checks to a simple binary case of True or False when possible.

• Always try to handle not only the specific benchmark case, but also its counterpart. For example, you
can easily create a “Disable Service X,” pluggable check at the same time that you create an “Enable
Service X” and reuse most of the code. This can be useful if you decide later to test for the opposite
condition.

• Use the standard exit codes defined by the framework whenever possible. These are:

EXIT_FAILURE=220
EXIT_ERR_USAGE=221
EXIT_ERR_INVALID_OS=222

• When returning disabled or enabled in a Boolean type check, return 0 for disabled, 1 for enabled.

• Package each pluggable check as a ZIP archive. A single file system directory contains the files listed
in Table 23.

The file names for the audit and remediation scripts do not need to begin with get and set, but this
convention simplifies file maintenance.

The following example shows a directory structure for a pluggable check:

./check_name/

./check_name/config.xml

./check_name/getcheckname.py

table 23 Pluggable Check Contents

File Name Description

config.xml (Required) The XML configuration file defining how this pluggable
check executes, returns, and ultimately reports compliance or non-
compliance.

getName. {py | sh | BAT
| vbs}

(Required) The audit script, written in Python, VBS, BAT, or shell,
that evaluates the audited object, and returns text and exit codes
according to the config.xml definitions.

setName. {py | sh | BAT
| vbs}

(Optional) The remediation script, written in Python, VBS, BAT, or
shell, that remediates the condition checked by the audit script.

Additional Code,
Scripts, or Libraries

(Optional) Helper and supplementary scripts used by either the audit
or remediation scripts.
150 Chapter 9

./check_name/setcheckname.py

Development Process for Pluggable Checks

Figure 25 shows an overview for the development process, which takes place in a command-line
environment.

figure 25 Development Process

Pluggable Check Configuration (config.xml)

The config.xml file is a specification file for the pluggable check that contains elements to control how
this check appears in the SA Client, default values, value types for comparison, and the category of the
check. For example, the following element in the config.xml file determines the pluggable check’s rule
category in the SA Client:

<checkCategory>Windows Services</checkCategory>
Pluggable Checks 151

Standard categories, each indicated with its own icon, include hardware, software, operating systems,
users and groups, file systems, and more, as shown by Figure 26.

figure 26 Pluggable Check Categories in the Rule Hierarchy

The following listing shows the template for the config.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE checkConfiguration SYSTEM "check.dtd">
<checkConfiguration version="1.0">
<checkName>$CHECKNAME</checkName>
<checkGUID>$CHECKGUID</checkGUID>
<checkDefaultDescription>$CHECKDESCRIPTION</checkDefaultDescription>
<checkRemediationDefaultDescription> $CHECKREMEDIATIONDESCRIPTION </
checkRemediationDefaultDescription>
<checkGetScriptName>$GETSCRIPTNAME</checkGetScriptName>
<checkGetScriptType>PY</checkGetScriptType><!-- Or SH for shell, BAT for Bat,
VBS for Visual Basic -->
<checkSetScriptName>$SETSCRIPTNAME</checkSetScriptName><!-- Optional -->
<checkSetScriptType>PY</checkSetScriptType><!-- Optional -->
<checkVersion>32b.0-1.0</checkVersion>
<checkReturnType>$RETURNTYPE</checkReturnType> <!-- EXITCODE, STRING, or
NUMBER -->
<checkTestIDs>
<checkTestID>$CHECKTESTID</checkTestID> <!-- Optional -->
</checkTestIDs>
<checkPlatformTypes>
<checkPlatform>$PLATFORMTYPE</checkPlatform> <!-- Currently Unix or Windows --
>
</checkPlatformTypes>
152 Chapter 9

<checkCategories>
<checkCategory>$CATEGORY</checkCategory> <!-- Top-level GUI category -->
</checkCategories>
<checkGetArguments> <!-- All arguments are optional -->
<checkGetArgument>
<checkGetArgumentType>$GETARGTYPE</checkGetArgumentType> <!-- STRING or NUMBER
-->
 <checkGetArgumentDefaultLabel>$GETDEFAULTLABEL</
checkGetArgumentDefaultLabel>
 <checkGetArgumentDefaultDescription>$GETDEFAULTDESCRIPTION</
checkGetArgumentDefaultDescription>
 <checkGetArgumentDefaultValue>$GETDEFAULTVALUE</
checkGetArgumentDefaultValue>
 </checkGetArgument>
</checkGetArguments>
<checkSetArguments> <!-- Also optional -->
<checkSetArgument>
<checkSetArgumentType>$SETARGTYPE</checkSetArgumentType>
 <checkSetArgumentDefaultLabel>$SETDEFAULTLABEL</
checkSetArgumentDefaultLabel>
 <checkSetArgumentDefaultDescription>$SETDEFAULTDESCRIPTION</
checkSetArgumentDefaultDescription>
 <checkSetArgumentDefaultValue>$SETDEFAULTVALUE</
checkSetArgumentDefaultValue>
</checkSetArgument>
</checkSetArguments>
<checkSuccessExitCodes> <!-- Only for EXITCODE type checks, generally at least
two entries -->
 <checkSuccessExitCode>
<checkSuccessExitCodeValue>$EXITCODEVALUE</checkSuccessExitCodeValue>
 <checkSuccessExitCodeDefaultDescription>$EXITCODEDESCRIPTION
 </checkSuccessExitCodeDefaultDescription>
 <checkSuccessExitCodeDefaultDisplayName>$EXITCODEDISPLAYNAME
 </checkSuccessExitCodeDefaultDisplayName>
 </checkSuccessExitCode>
</checkSuccessExitCodes>
</checkConfiguration>

For more details, see Document Type Definition (DTD) for config.xml File on page 157.

Audit (get) Scripts

You can design the audit script, also known as the get script, to obtain a value from a managed server.
The script is executed with optional parameters, as specified in the config.xml file. If the script is
running an EXITCODE check, the result of the script is compared to the exit codes specified in the
config.xml file. For STRING and NUMBER return type checks, the result is compared to what is written
to STDOUT.

An audit script has a set of pre-defined return codes. You can define additional return codes in the check
config.xml file.

The audit script may display informational messages. These messages are useful when troubleshooting
an audit script failure. Review the following sample Python audit script:

import sys
import os
import string
Pluggable Checks 153

if __name__ == "__main__":

 # If there are get arguments they will be loaded into sys.argv

 # Enter the desired check code here
 # Example:
 # Looking for file "/usr/bin/ssh"

 if os.path.isfile("/usr/bin/ssh"):
 result = 1
 else:
 result = 0

 # Case A:
 # If number/string check, the results are grabbed from # stdout.
 # All debugging statements must be sent to stderr so as not
 # to be picked up.

 sys.stderr.write("Debugging: Found result %s\n" % result)

 sys.stdout.write(result)

 # Case B:
 # If exitcode check, the results are returned by the argument
 # passed to sys.exit(). The exitcodes must match the
 # ExitCodeValues defined in the config.xml file.

sys.exit(result)

Remediation (set) Scripts

You can design the remediation script, also known as the set script, to enact a change on the managed
server that would cause the audit script to return success when completed. The script is executed with
optional parameters, as specified in the check config.xml file.

These set scripts are optional, and can vary in character from being very similar to their counterpart get
scripts to entirely different (and longer).

From a shell standpoint, there is nothing special in the script itself, other than the return codes being
used. Most checks display some debug output or information messages. This is not normally seen by
users, except in the event of a script failure, where the messages are useful for troubleshooting
purposes.

As a standard practice, always include at least one parameter to the set script. Also, remember to modify
the config.xml file so that it displays nicely in the SA Client when adding a set script to an already
existing check.

Make sure your remediation scripts exit with exit code 0 to indicate success. All other exit codes will
indicate failure of the remediation operation.

Review the following sample Python set script.

import sys
import os
import string
if __name__ == "__main__":
154 Chapter 9

 # If there are set arguments they will be loaded into
 # sys.argv
 # Enter the desired set code here. Stdout may be used for
 # debugging.
 # Uses exitcode 0 for success, and all other values for
 # failure.
 # enter condition where set script if successful. for this
 # example, use ‘if 1’

 if 1:
 sys.exit(0)

 else:
 sys.exit(-1)

Other Code for Pluggable Checks

Pluggable checks may also contain code other than the get or set scripts. Libraries, executables or
additional scripts can be added to the check, so their set or get scripts can utilize these upon execution.

You can also include additional code in the ZIP file.

Zipping Up Pluggable Checks

After you have created the config.xml file, the audit (get) script, and the optional remediation (set)
script, create a ZIP archive containing these files. The following shell history shows the creation process
in a UNIX environment.

ls
 check_name
cd check_name
zip ../checkname.zip *
 adding: config.xml
 adding: getcheckname.py
 adding: setcheckname.py
unzip -t ../checkname.zip
 testing: config.xml OK
 testing: getcheckname.py OK
 testing: setcheckname.py OK
No errors detected in compressed data of ../checkname.zip.

Importing Pluggable Checks

Import a pluggable check into an SA core or mesh using the OCLI 1.0 utility, which is documented in the SA
Content Utilities Guide. The following shell history provides an example of the import process for Linux:

cp checkname.zip /var/tmp/checks
cd /var/tmp/checks
cp opsware_32.a.692.0-upload/disk001/packages/Linux/3AS/ocli-32a.2.0.5-
linux-3AS .
chmod 755 ocli-32a.2.0.5-linux-3AS
./ocli-32a.2.0.5-linux-3AS
Pluggable Checks 155

. ./ocli/login.sh
export PATH=/opt/opsware/bin:$PATH
oupload -C"Customer Independent" -t"Server Configuration Check" --
forceoverwrite --old -O"SunOS 5.8" your_Pluggable_check.zip

The oupload command uses "SunOS 5.8" to specify that the check falls into the generic Unix category in
the SA Client. To specify a check for the Windows category, use "Windows 2003."

Audit Policy Creation

The audit policy creation procedure is illustrated in Figure 27 below:

figure 27 Audit Policy Creation Procedure

Creating an Audit Policy

Audit policies consist of rules. Each rule consists of one or more checks, which can include the user-
created pluggable check. Audit policies and rules are displayed, created and edited in the SA Client.
Figure 28 shows a list of the audit rules available on a model system.

figure 28 List of Audit Rules

For detailed information on creating an audit policy, see the SA User Guide: Audit and Compliance.
156 Chapter 9

Exporting the Audit Policy

To move a new audit policy to other SA cores, export it from one and import it to another using the DCML
Exchange Tool (DET) command-line utility. Use this tool to populate a newly-installed SA core with
content, such as policies, from an existing core. For detailed instructions on this procedure, see the SA
Content Utilities Guide.

Document Type Definition (DTD) for config.xml File

This file governs SA Client display names and descriptions, default values, comparisons to be performed
upon values returned by the check code, the category of the SA Client displaying these values, and more.

Two elements in the default config.xml file, checkGetArguments and checkSetArguments, are
used to pass data values to the scripts at execution time. If your programmable check does not require
any arguments, delete these elements from your config.xml file.

The following DTD for config.xml is dynamically generated by SA:

<!ELEMENT checkConfiguration (checkName, checkGUID, checkDefaultDescription,
checkRemediationDefaultDescription?, checkGetScriptName?,
checkGetScriptType?, checkSetScriptName?, checkSetScriptType?, checkVersion,
checkAllowRemediationOnFailure?, checkReturnType, checkTestIDs?,
checkPlatformTypes, checkExclusivePlatforms?, checkExcludePlatforms?,
checkCategories, checkGetArguments?, checkSetArguments?,
checkComparisonDefaults?, checkCompareValidValues?, checkSuccessExitCodes?)>
<!ATTLIST checkConfiguration version CDATA #REQUIRED>
<!ELEMENT checkName (#PCDATA)>
<!ELEMENT checkGUID (#PCDATA)>
<!ELEMENT checkDefaultDescription (#PCDATA)>
<!ELEMENT checkRemediationDefaultDescription (#PCDATA)>
<!ELEMENT checkGetScriptName (#PCDATA)>
<!ELEMENT checkGetScriptType (#PCDATA)>
<!ELEMENT checkSetScriptName (#PCDATA)>
<!ELEMENT checkSetScriptType (#PCDATA)>
<!ELEMENT checkVersion (#PCDATA)>
<!ELEMENT checkAllowRemediationOnFailure (#PCDATA)>
<!ELEMENT checkReturnType (#PCDATA)>
<!ELEMENT checkTestIDs (checkTestID+)>
<!ELEMENT checkTestID (#PCDATA)>
<!ELEMENT checkPlatformTypes (checkPlatform+)>
<!ELEMENT checkPlatform (#PCDATA)>
<!ELEMENT checkExclusivePlatforms (checkExclusivePlatform+)>
<!ELEMENT checkExclusivePlatform (#PCDATA)>
<!ELEMENT checkExcludePlatforms (checkExcludePlatform+)>
<!ELEMENT checkExcludePlatform (#PCDATA)>
<!ELEMENT checkCategories (checkCategory+)>
<!ELEMENT checkCategory (#PCDATA)>
<!ELEMENT checkGetArguments (checkGetArgument+)>
<!ELEMENT checkGetArgument (checkGetArgumentType,
checkGetArgumentDefaultLabel, checkGetArgumentDefaultDescription,
checkGetArgumentDefaultValue?, checkGetArgumentValidValues?)>
<!ELEMENT checkGetArgumentType (#PCDATA)>
<!ELEMENT checkGetArgumentDefaultLabel (#PCDATA)>
Pluggable Checks 157

<!ELEMENT checkGetArgumentDefaultDescription (#PCDATA)>
<!ELEMENT checkGetArgumentDefaultValue (#PCDATA)>
<!ELEMENT checkGetArgumentValidValues (checkGetArgumentValidValue+)>
<!ELEMENT checkGetArgumentValidValue (checkGetArgumentValidValueItem,
checkGetArgumentValidValueDisplayName)>
<!ELEMENT checkGetArgumentValidValueItem (#PCDATA)>
<!ELEMENT checkGetArgumentValidValueDisplayName (#PCDATA)>
<!ELEMENT checkSetArguments (checkSetArgument+)>
<!ELEMENT checkSetArgument (checkSetArgumentType,
checkSetArgumentDefaultLabel, checkSetArgumentDefaultDescription,
checkSetArgumentDefaultValue?, checkSetArgumentValidValues?)>
<!ATTLIST checkSetArgument populateFromRule CDATA #IMPLIED>
<!ELEMENT checkSetArgumentType (#PCDATA)>
<!ELEMENT checkSetArgumentDefaultLabel (#PCDATA)>
<!ELEMENT checkSetArgumentDefaultDescription (#PCDATA)>
<!ELEMENT checkSetArgumentDefaultValue (#PCDATA)>
<!ELEMENT checkSetArgumentValidValues (checkSetArgumentValidValue+)>
<!ELEMENT checkSetArgumentValidValue (checkSetArgumentValidValueItem,
checkSetArgumentValidValueDisplayName)>
<!ELEMENT checkSetArgumentValidValueItem (#PCDATA)>
<!ELEMENT checkSetArgumentValidValueDisplayName (#PCDATA)>
<!ELEMENT checkComparisonDefaults (checkComparisonDefaultOperator?,
checkComparisonDefaultValues)>
<!ELEMENT checkComparisonDefaultOperator (#PCDATA)>
<!ATTLIST checkComparisonDefaultOperator not CDATA #IMPLIED>
<!ATTLIST checkComparisonDefaultOperator caseInsensitive CDATA #IMPLIED>
<!ELEMENT checkComparisonDefaultValues (checkComparisonDefaultValue+)>
<!ELEMENT checkComparisonDefaultValue (checkComparisonDefaultValueItem,
checkComparisonDefaultValueDisplayName)>
<!ELEMENT checkComparisonDefaultValueItem (#PCDATA)>
<!ELEMENT checkComparisonDefaultValueDisplayName (#PCDATA)>
<!ELEMENT checkCompareValidValues (checkCompareValidValue+)>
<!ELEMENT checkCompareValidValue (checkCompareValidValueItem,
checkCompareValidValueDisplayName)>
<!ELEMENT checkCompareValidValueItem (#PCDATA)>
<!ELEMENT checkCompareValidValueDisplayName (#PCDATA)>
<!ELEMENT checkSuccessExitCodes (checkSuccessExitCode+)>
<!ELEMENT checkSuccessExitCode (checkSuccessExitCodeValue,
checkSuccessExitCodeDefaultDescription,
checkSuccessExitCodeDefaultDisplayName)>
<!ELEMENT checkSuccessExitCodeValue (#PCDATA)>
<!ELEMENT checkSuccessExitCodeDefaultDescription (#PCDATA)>
<!ELEMENT checkSuccessExitCodeDefaultDisplayName (#PCDATA)>

The following table describes the elements of the config.xml DTD.

table 24 DTD Elements and Attributes

Elements Attributes

checkConfiguration version Set to 1.0, only change if the Audit and Remediation
framework requires it.
158 Chapter 9

checkName The English name that displays in the SA Client for the
check/rule.

checkGUID A standard GUID, for example,

9500A4AE-EE9E-4383-87F2-BAD7DDC26C59

can be generated using the “guidgen” Windows utility,
downloaded from a web site, or by other means.

The GUID MUST be unique or the pluggable check will fail on
upload to core. Once a check is uploaded with its unique
GUID, you MUST NOT change the GUID or it will fail on re-
upload with a "Database Unique Constraint Error" until you
delete the original. Checks are uniquely identified by GUID,
but for upload are solely identified by their name (of the zip
file).

checkDefaultDescription Displays in the SA Client description box. Honors hard
carriage returns and HTML. With HTML, the HTML tags need
to be converted with < and >.

checkRemediationDefaultDescrip
tion

Displays in the SA Client under the Remediation section of
the check/rule.

checkGetScriptName The file name for the get script, for example,
getUsersWithoutPasswordExpiration.sh.

checkGetScriptType The type of code determines the interpreter to be run. Get
and set scripts may be types: SH, VBS, PY, BAT.

checkSetScriptName The file name for the remediation script.

checkSetScriptType The type of code determines interpreter to be run. Set
(remediation) scripts may be of types SH, VBS, PY, BA.

checkVersion This is based on SA and framework build number, such as
32b.0-1.0.

checkAllowRemediationOnFailure Some scripts may fail during the get phase, but you may be
able to correct this condition via the remediation script.
This allows remediation to be performed even in the event
of a script failure. For example, if the non-existence of a
registry key is undefined, you can create and set it in your
set code.

checkReturnType Permissible values are EXITCODE, STRING, or NUMBER:

EXITCODE — Standard script return via Wscript.Quit(), exit,
return, etc.

NUMBER — Audit and Remediation framework will grab
from stdout and interpret it as numeric type.

STRING — Audit and Remediation framework will grab from
stdout and interpret as a string type.

table 24 DTD Elements and Attributes (cont’d)

Elements Attributes
Pluggable Checks 159

checkTestIDs List of test IDs.

checkTestID Used to display the CIS, MSFT, NSA or other Policy standard
nomenclature, for example, CIS-RHEL 8.4. This is a free
form field, and displays in the SA Client, so be consistent in
naming it to correspond with the TON Content.

checkPlatformTypes List of valid platform types for a check.

checkPlatform WINDOWS | UNIX (or both as individual elements)

checkExclusivePlatforms List of exclusive platforms. Audit and Remediation
currently separates things by Windows or Unix by default,
but real world standards as well as limitations and/or
differences across operating systems do not make this
always desirable. You can limit Audit and Remediation to
any platform specified by a platform ID retrieved from the
spin.

This parameter may refer to one of the supported
operating systems listed in the SA Supported Platforms
documentation.

checkExclusivePlatform Individual platform ID.

checkExcludePlatforms List of excluded platforms. If the PlatformType claims
UNIX, you can supply platform IDs to exclude from the UNIX
set (all Linux + all Unixes).

checkExcludePlatform Individual platform ID

checkCategory This is the SA Client Category that a check displays in.
Currently, a check can only display in a single category. If a
category does not exist, it will be created upon upload. The
following standard categories for existing checks should be
used where possible:

Event Logging
File System
Operating System
Operating System|Domain Controller (sub-category)
Operating System|Network (sub-category)
Registry
Services
Users and Groups

checkGetArgument
(checkGetArgumentType,
checkGetArgumentDefaultLabel,
checkGetArgumentDefaultDescrip
tion,
checkGetArgumentDefaultValue?,
checkGetArgumentValidValues?)>

Specifies parameters to the get script.

checkGetArgumentType NUMBER | STRING

table 24 DTD Elements and Attributes (cont’d)

Elements Attributes
160 Chapter 9

checkGetArgumentDefaultLabel SA Client tag next to the input box or drop-down.

checkGetArgumentDefaultDescrip
tion

Hover text with further explanation.

checkGetArgumentDefaultValue Default value for this get parameters.

checkGetArgumentValidValue
(checkGetArgumentValidValueIte
m,
checkGetArgumentValidValueDisp
layName

checkGetArgumentValidValueItem (#PCDATA)>

checkGetArgumentValidValueDisplayName (#PCDATA)>

checkGetArgumentValidValues
(checkGetArgumentValidValue+)

(Optional) Useful for limiting the parameters for example
to 0/disable and 1/enable.

checkSetArguments
(checkSetArgument+)

checkSetArgument (checkSetArgumentType,
checkSetArgumentDefaultLabel,
checkSetArgumentDefaultDescription,
checkSetArgumentDefaultValue?,
checkSetArgumentValidValues?)

setArgument elements are identical to the GetArguments,
but for the remediation/set script if it exists.

The exception is:

checkSetArgument populateFromRule — the set
parameter default should or should not populate itself
from the rule data, versus if any default values were
supplied in config.xml. Generally, this is always set to true.

checkSetArgumentType NUMBER | STRING

checkSetArgumentDefaultLabel SA Client tag next to the input box or drop-down.

checkSetArgumentDefaultDescrip
tion

Hover text with further explanation.

checkSetArgumentDefaultValue Default value for this set parameter.

checkSetArgumentValidValues
(checkSetArgumentValidValue+)

checkSetArgumentValidValue
(checkSetArgumentValidValue
Item,
checkSetArgumentValidValue
DisplayName)>

checkSetArgumentValidValueItem (#PCDATA)>

checkSetArgumentValidValueDisplayName (#PCDATA)>
checkSetArgumentValidValueItem (#PCDATA)>
checkSetArgumentValidValueDisplayName (#PCDATA)>

checkSetArgumentValidValue
Item

(Optional) Useful for limiting the parameters for example
to 0/disable and 1/enable.

checkSetArgumentValidValueDisp
layName

table 24 DTD Elements and Attributes (cont’d)

Elements Attributes
Pluggable Checks 161

<!ELEMENT
checkComparisonDefaults
(checkComparisonDefaultOperato
r?,
checkComparisonDefaultValues)>

checkComparisonDefaultOperator not — negation of
operator specified, TRUE | FALSE

checkComparisonDefaultOperator caseInsensitive — only
valid for STRING types.

<!ELEMENT
checkComparisonDefaultOperator
(#PCDATA)>

List of default values for comparator. Useful for field or
development outside the TON build framework.

checkComparisonDefaultValues
(checkComparisonDefaultValue+)

checkComparisonDefaultValue
(checkComparisonDefaultValueItem,
checkComparisonDefaultValueDisplayName).

checkComparisonDefaultValueIte Value for default, passed to code.

checkComparisonDefaultValueDis
playName

Display name for the value, seen in the SA Client.

checkCompareValidValues
(checkCompareValidValue+)>
checkCompareValidValue
(checkCompareValidValueItem,
checkCompareValidValueDisplayN
ame)>
checkCompareValidValueItem
(#PCDATA)>
checkCompareValidValueDisplayN
ame (#PCDATA)>

checkSuccessExitCodes
(checkSuccessExitCode+)
checkSuccessExitCode
(checkSuccessExitCodeValue,
checkSuccessExitCodeDefaultDes
cription,
checkSuccessExitCodeDefaultDis
playName)>

For a checkReturnType of EXITCODE, you must define the
valid values for proper script operation, which generally
include both the compliant and non-compliant expected
values. Anything returned other than a value specified here
will be seen as a script failure, which is shown differently in
the SA Client, as well as in reporting.

checkSuccessExitCodeValue Value for script completion, for example, 0 (for disabled
typically).

checkSuccessExitCodeDefaultDes
cription

Hover text for the DisplayName/Value.

checkSuccessExitCodeDefaultDis
playName

Value or text shown to user for this value, for example,
Disabled.

table 24 DTD Elements and Attributes (cont’d)

Elements Attributes
162 Chapter 9

A Search Filter Syntax
Filter Grammar

A search filter is a parameter for methods such as findServerRefs. The expression in a search filter
enables you to get references to SA objects (such as servers and folders) according to the values of the
object attributes. The formal syntax for a search filter follows:

<filter> ::= (<expression-junction>)+

<expression-junction> ::= <expression-list-open> <junction>
 (<expression>)+ <expression-list-close>

<expression> ::= <expression-open> <attribute>
 <general-delimiter> <operator> <general-delimiter>
 <value-list> <expression-close>

<attribute> ::= <resource_field>
<vo_member> ::= <text>
<resource_field> ::= <text>
<value-list> ::= (<double-quote> <text> <double-quote>)* |
(<number>)*

<text> ::= [a-z] [A-Z] [0-9]
<number> ::= [0-9] [.]

<junction> ::= <union-junction> |
 <intersect-junction>
<union-junction> ::= ‘|’
<intersect-junction ::= ‘&’
<expression-list-open> ::= ‘(‘
<expression-list-close> ::= ‘)’
<expression-open> ::= ‘(‘ | ‘{‘
<expression-close> ::= ‘(‘ | ‘}’
<general-delimiter> ::= <whitespace>
<whitespace> ::= ‘ ‘
<double-quote> ::= ‘”’
<escape-character> ::= ‘\’

<operator> ::= <equal_to> |...| <contains_or_above>

Valid operators for the preceding line:

<equal_to> ::= ‘=’ | ‘EQUAL_TO’
<not_equal_to> ::= ‘!=’ | ‘<>’ | ‘NOT_EQUAL_TO’
<in> ::= ‘=’ | ‘IN’
<not_in> ::= ‘!=’ | ‘<>’ | ‘NOT_IN’
163

<greater_than> ::= ‘>’ | ‘GREATER_THAN’
<less_than> ::= ‘<‘ | ‘LESS_THAN’
<greater_than_or_equal> ::= ‘>=’ | ‘GREATER_THAN_OR_EQUAL’
<less_than_or_equal> ::= ‘<=’ | ‘LESS_THAN_OR_EQUAL’
<begins_with> ::= ‘=*’ | ‘BEGINS_WITH’
<ends_with> ::= ‘*=’ | ‘ENDS_WITH’
<contains> ::= ‘*=*’ | ‘CONTAINS’
<not_contains> ::= ‘*<>*’ | ‘NOT_CONTAINS’
<in_or_below> ::= ‘IN_OR_BELOW’
<in_or_above> ::= ‘IN_OR_ABOVE’
<between> ::= ‘BETWEEN’
<not_between> ::= ‘NOT_BETWEEN’
<not_begins_with> ::= ‘NOT_BEGINS_WITH’
<not_ends_with> ::= ‘NOT_ENDS_WITH’
<is_today> ::= ‘IS_TODAY’
<is_not_today> ::= ‘IS_NOT_TODAY’
<within_last_days> ::= ‘WITHIN_LAST_DAYS’
<within_last_months> ::= ‘WITHIN_LAST_MONTHS’
<within_next_days> ::= ‘WITHIN_NEXT_DAYS’
<within_next_months> ::= ‘WITHIN_NEXT_MONTHS’
<not_within_last_days> ::= ‘NOT_WITHIN_LAST_DAYS’
<not_within_last_months> ::= ‘NOT_WITHIN_LAST_MONTHS’
<not_within_next_days> ::= ‘NOT_WITHIN_NEXT_DAYS’
<not_within_next_months> ::= ‘NOT_WITHIN_NEXT_MONTHS’
<contains_or_below> ::= ‘CONTAINS_OR_BELOW’
<contains_or_above> ::= ‘CONTAINS_OR_ABOVE’

Usage Notes

The same junction type must be used within each expression junction:

• valid: ((x = y) & (a = y) & (x = a))

• invalid: ((x = y) & (a = y) | (x = a))

A text value needs to have double-quotes surrounding it but a number does not. Any double-quote that is
part of the value must be escaped with a backslash:

• valid number: 123.456

• valid text: "abc"

• invalid text: abc

• valid text: "ab\"c"

• invalid text: "ab"c"

• invalid text: ab"c

Parentheses must surround groups of expressions which will junction with another group of expressions:

• valid grouping: ((x = y) & (a = b)) | (n = r)

• invalid grouping: (x = y) & (a = b) | (n = r)
164 Appendix A

B Rebuilding the Apache HTTP Server and PHP
This appendix describes how to rebuild the Apache HTTP server and PHP and replace them in SA. SA
includes an Apache HTTP server and PHP so this appendix is only needed if you need to use a different
version of the Apache HTTP server or if you need to compile extra libraries or modules into PHP.

SA uses the Apache HTTP server and PHP for web Automation Platform Extensions (APX). For more
information, see Creating Automation Platform Extensions (APX) on page 69.

Extending the APX HTTP Environment

This section describes how you can extend the APX HTTP environment by rebuilding the Apache HTTP
server and PHP.

You must perform these tasks after all core upgrades.

If you have a Multimaster Mesh, these tasks must be performed on each slice in all cores. For more
information on slice component bundles, see the SA Administration Guide.

Rebuilding PHP

Perform the following tasks to rebuild PHP.

1 Download the PHP source from http://www.php.net/.

2 Put the source in a directory on the server where apxproxy is installed, typically under
/opt/opsware/apxproxy.

3 Enter the following commands, replacing the version number if you downloaded a different version
of PHP.

mkdir /build ; cp php-4.4.8.tar.gz /build; cd /build
gzip -dc php-4.4.8.tar.gz | tar xvf -
cd php-4.4.8
./configure --prefix=/opt/opsware/apxphp
--with-pear=/opt/opsware/apxphp/lib/pear
--with-config-file-path=/opt/opsware/apxphp/lib
--with-apxs2=/opt/opsware/apxhttpd/bin/apxs <any other options you>
make clean
make

4 Backup your old copy of libphp4.so:

cp /opt/opsware/apxhttpd/modules/libphp4.so /opt/opsware/apxhttpd/modules/
libphp4.so.backup

5 Copy the new libphp4.so file to the apxhhtps directory:

cp libs/libphp4.so /opt/opsware/apxhttpd/modules/libphp4.so
165

6 Ensure that the complete reference library exists in the tool.list:

ldd ./libs/libphp4.so

For each entry in the output ensure that the file exists in
/etc/opt/opsware/ogfs/tool.list.

If an entry does not exist, add it.

7 Backup the apxphp folder:

mv /opt/opsware/apxphp /opt/opsware/apxphp.orig

8 Install PHP:

make install

9 Reload and relink the OGFS to make sure anything you added to /etc/opt/opsware/ogfs/
tools.list shows up in the OGFS:

/opt/opsware/ogfs/tools/rewink && /opt/opsware/ogfs/
tools/reload

10 Restart apxproxy:

/etc/opt/opsware/startup/apxproxy restart

Rebuilding Apache

Perform the following tasks to rebuild the Apache HTTP server.

1 Download the source code for the Apache HTTP server from http://httpd.apache.org/.

2 Put the source in a directory on the server that hosts the slice component bundle. For more
information on slice component bundles, see the SA Administration Guide.

3 Enter the following commands, replacing the version number if you downloaded a different version
of httpd.

mkdir /build; cp httpd-2.2.8.tar.gz /build; cd /build

gzip -dc httpd-2.2.8.tar.gz | tar xf -

cd httpd-2.2.8

./configure --prefix=/opt/opsware/apxhttpd <any other options you
want>.

SA currently uses:

--enable-mods-shared="actions alias auth_basic auth_digest authn_file
authz_user cgi deflate dir dumpio env expires headers ident logio
log_config mime negotiation rewrite userdir vhost_alias imagemap status"

--disable-dav

--with-port=8021

--with-expat=builtin

--without-pgsql

(On SunOS only) Enter this command:

perl -pi -e 's/#define HAVE_GETADDRINFO 1/#undef HAVE_GETADDRINFO/g' ./
srclib/apr/include/arch/unix/apr_private.h

make
166 Appendix B

4 Make a backup of the apxhttp directory:

mv /opt/opsware/apxhttpd /opt/opsware/apxhttpd.orig

5 Install Apache:

make install

6 Reload and relink the new files into the OGFS:

/opt/opsware/ogfs/tools/rewink && /opt/opsware/ogfs/tools/reload

7 The HTTPD and the .so files in the modules directory may reference external libraries. These
libraries must be visible (or winked in) to the OGFS.

Log in to the OGFS and run LDD on /opt/opsware/apxhttpd/bin/httpd and any .so file in /
opt/opsware/apxhttpd/modules and ensure that all the files listed there exist in the OGFS. If
they do not, add the files to /etc/opt/opsware/ogfs/tool.list (outside the OGFS) and then
re-run step 6 until all files are available to /opt/opsware/apxhttpd/bin/httpd.

8 You must now rebuild PHP. See Rebuilding PHP on page 165.
167

168 Appendix B

Index
A
audit, 156

B
BAT, 149, 150, 152, 159

benchmark, 149, 150

C
CIS, 149, 160

COM, 149

compliance, 148, 149, 150

core, 155, 159

D
DisplayName, 153, 161, 162

DTD, 157

E
error checking, 150

exit code, 150, 153

F
framework, 149, 150, 158, 159, 162

G
globally unique ID number (GUID), 142

GUID, 142, 152, 157, 159

GUID (globally unique ID number), 142

H
HP Live Network, 149

I
IIS (Internet Information Services), 149

Information Technology Infrastructure Library (ITIL), 148

Internet Information Services (IIS), 149

ISO20000, 148

M
mesh, 155

O
OCLI, 155

P
parameter, 149, 153, 154, 160, 161

passwd, 149

platform, 152, 157, 160

S
Sarbanes-Oxley (SoX), 148

SAS Client, 145, 156, 157, 159, 160, 161, 162

services, 148, 160

shadow file, 149

shell, 149, 150, 152, 154, 155

SoX (Sarbane-Oxley), 148

stderr, 150, 154

Stdout, 155

stdout, 150, 153, 154, 159

string, 152, 154, 159, 160, 161, 162

SunOS, 156

U
Unix Services, 149

UrlScan, 149

V
VBS, 149, 150, 152, 159

Visual Basic, 149, 152

W
Windows Registry, 149
 169

170

	HP Server Automation
	Platform Developer Guide
	Contents
	1 Overview
	Overview of the Server Automation Platform
	Components of the Server Automation Platform
	Automation Applications
	SA Runtime Environment
	Global Shell
	Global File System
	SA Command Line Interface
	SA Platform API

	SA Platform Resources
	Inventory Model
	Security Model
	Environment Model
	Policy Model
	Package Repository
	Event Repository
	Automation Actions
	Remote Access

	SA Management Network
	SA Managed Devices

	Benefits of the SA Platform
	Powerful Security
	Rich Services
	Easily Accessible to a Broad Spectrum of Programmers

	SA Platform API Design
	Services
	Objects in the API
	Exceptions
	Event Cache
	Searches
	Security
	API Documentation and the Twister
	Constant Field Values

	Supported Clients

	2 SA CLI Methods
	Overview of SA CLI Methods
	Method Invocation
	Security
	Mapping Between API and SA CLI Methods
	Differences Between SA CLI Methods and Unix Commands

	SA CLI Method Tutorial
	Format Specifiers
	Position of Format Specifiers
	Default Format Specifiers
	ID Format Specifier Examples
	Structure Format Specifier Syntax
	Structure Format Specifier Examples
	Directory Format Specifier Examples

	Value Representation
	SA Objects in the OGFS
	Object Attributes
	Custom Attributes
	The self File

	Primitive Values
	Arrays

	SA CLI Method Parameters and Return Values
	Method Context and the self Parameter
	Passing Arguments on the Command-Line
	Specifying the Type of a Parameter
	Complex Objects and Arrays As Parameters
	Overloaded Methods
	Return Values
	Exit Status

	Search Filters and SA CLI Methods
	Search Syntax
	Search Examples
	Finding Servers
	Finding Jobs
	Finding Other Objects

	Searchable Attributes and Valid Operators

	Example Scripts
	create_custom_field.sh
	create_device_group.sh
	create_folder.sh
	remediate_policy.sh
	remove_custom_field.sh
	schedule_audit_task.sh

	Getting Usage Information on SA CLI Methods
	Listing the Services
	Finding a Service in the API Documentation
	Listing the Methods of a Service
	Listing the Parameters of a Method
	Getting Information About a Value Object
	Determining If an Attribute Can Be Modified
	Determining If an Attribute Can Be Used in a Filter Query

	3 Python API Access with Pytwist
	Overview of Pytwist
	Setup for Pytwist
	Supported Platforms for Pytwist
	Access Requirements for Pytwist
	Installing Pytwist on Managed Servers

	Pytwist Examples
	get_server_info.py
	create_folder.py
	remediate_policy.py

	Virtualization Pytwist Examples
	createVM_WithOSBP.py
	deployVM.py

	Pytwist Details
	Authentication Modes
	TwistServer Method Syntax
	Error Handling
	Mapping Java Package Names and Data Types to Pytwist

	4 Creating Automation Platform Extensions (APX)
	Creating an APX
	Program APXs
	Web APXs
	APX User Roles
	APX Permissions
	Permission Escalation

	APX Structure
	File Structure
	OGFS Integration
	APX Executable Directory
	APX Runtime Directory

	APX Interfaces - Defining Categories of APX Extensions
	An Example Interface
	Defining an Interface
	Implementing an Interface

	The RightClickToRun Interface
	Using the Interface API

	The apxtool Command
	Syntax of apxtool
	Using Short and Long Command Options
	Creating a New APX - apxtool new
	Usage

	Deleting an APX - apxtool delete
	Usage

	Exporting an APX from SA - apxtool export
	Usage

	Importing an APX into SA - apxtool import
	Usage

	Querying APX Information - apxtool query
	Usage

	Setting the Current Version of an APX - apxtool setcurrent
	Usage

	Error Handling

	APX Files
	The APX Configuration File - apx.cfg
	The APX Permissions Escalation Configuration File - apx.perm
	No Escalation
	All Permissions
	With Escalation

	Showing the Progress of an APX
	The apxprogress Command
	Syntax of apxprogress

	Example Shell Script that Uses apxprogress
	Viewing APX Progress

	Tutorial: Creating a Web Application APX
	Tutorial Prerequisites
	1. Set Permissions and Create the Tutorial Folder
	2. Create a New Web Application
	3. Import the New Web Application into SA
	4. Run the New Web Application
	5. Modify the Web Application
	6. Run the Modified Web Application

	Tutorial: Creating a Program APX
	Tutorial Prerequisites
	1. Set Permissions and Create the Tutorial Folder
	2. Create a New Program APX
	3. Import the New APX into SA
	4. Run the New APX
	5. Modify the APX
	6. Run the Modified APX
	7. View the APX Progress in the Twister Interface

	5 Agent Tools
	Introduction to Agent Tools
	Installation Requirements
	Operating System Support
	Security, Access Control, and Authentication
	Other Requirements

	Installation
	Manually Installing Agent Tools
	Installing Agent Tools when Installing an Agent

	Upgrading Agent Tools
	Data Migration

	Agent Tools Scripts
	Usage
	Formatting for the sub_text_file Script
	Output

	Sample Agent Tool Scripts
	UNIX/Linux
	Windows

	6 Microsoft Windows PowerShell/SA Integration
	Introduction to Microsoft Windows PowerShell
	Windows PowerShell Integration with SA
	Integrated PowerShell/SA Cmdlets
	Installation Requirements
	Operating System Support

	Installation
	Microsoft PowerShell Integration with SA Features
	Remote access to Managed Servers
	Audit and Snapshots Rules
	DSE Script Integration

	Sample Sessions
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4

	7 Java RMI Clients
	Overview of Java RMI Clients
	Setup for Java RMI Clients
	Java RMI Example
	Compiling and Running the GetServerInfo Example

	8 Web Services Clients
	Overview of Web Services Clients
	Programming Language Bindings Provided in This Release
	URLs for Service Locations and WSDLs
	Security for Web Services Clients
	Overloaded Operations
	Java Interface Support
	Unsupported Data Types
	Methods Omitted from Web Services
	Partial Support for java.util.Map
	Methods in VOs With Unsupported Data Types

	Invoke setDirtyAtrributes When Creating or Updating VOs
	Compatibility With SA Web Services API 2.2

	Perl Web Services Clients
	Required Software for Perl Clients
	Running the Perl Demo Program
	Perl Example Code
	Set Up the Service URI
	Initiate a New Service
	Invoke a Service Method
	Get a VO
	Get an Array
	Construct an Object Array
	Update or Create a VO
	Handle SOAP Faults

	Construction of Perl Objects for Web Services
	Source Code for Calling getServerVO
	Location of Information for getServerVO Setup

	C# Web Services Clients
	Required Software for C# Clients
	Obtaining the C# Client Stubs
	Building the C# Demo Program
	Running the C# Demo Program
	C# Example Code
	Set Up Certificate Handling
	Assign the URL Prefix
	Initiate the Service
	Invoke Service Methods
	Handle Interface Return Types
	Update or Create a VO
	Handle Exceptions

	Password Security with C#

	9 Pluggable Checks
	Overview of Pluggable Checks
	Setup for Pluggable Checks
	Pluggable Check Tutorial
	Overview of Audit and Remediation
	Pluggable Check Creation
	Guidelines for Pluggable Checks
	Development Process for Pluggable Checks
	Pluggable Check Configuration (config.xml)
	Audit (get) Scripts
	Remediation (set) Scripts
	Other Code for Pluggable Checks
	Zipping Up Pluggable Checks
	Importing Pluggable Checks

	Audit Policy Creation
	Creating an Audit Policy
	Exporting the Audit Policy

	Document Type Definition (DTD) for config.xml File

	A Search Filter Syntax
	Filter Grammar
	Usage Notes

	B Rebuilding the Apache HTTP Server and PHP
	Extending the APX HTTP Environment
	Rebuilding PHP
	Rebuilding Apache

	Index

