
HP UFT Java Add-in Extensibility
For the Windows ® operating systems

Software Version: 12.00

Developer Guide

Document Release Date: March 2014

Software Release Date: March 2014

Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notice
© Copyright 1992 - 2014 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Google™ andGoogleMaps™ are trademarks of Google Inc

Intel® and Pentium® are trademarks of Intel Corporation in the U.S. and other countries.

Microsoft®, Windows®, Windows® XP, andWindows Vista ® are U.S. registered trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using themost recent edition of a document, go to: http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, go to: http://h20229.www2.hp.com/passport-registration.html

Or click theNew users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HP sales representative for details.

Support
Visit the HP Software Support Online web site at: http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed tomanage
your business. As a valued support customer, you can benefit by using the support web site to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HP support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To findmore information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

HP Software Solutions Now accesses the HPSW Solution and Integration Portal Web site. This site enables you to explore HP Product Solutions tomeet your
business needs, includes a full list of Integrations between HP Products, as well as a listing of ITIL Processes. The URL for this Web site is
http://h20230.www2.hp.com/sc/solutions/index.jsp

Developer Guide

HP UFT Java Add-in Extensibility (12.00) Page 2 of 221

Contents
Contents 3

Welcome to HP UFT Java Add-in Extensibility 8

About the UFT Java Add-in Extensibility SDK 8

About the UFT Java Add-in Extensibility Developer Guide 9

Who Should Read This Guide 10

Unified Functional Testing Help 10

Additional Online Resources 11

Part 1: Working with Java Add-in Extensibility 12

Chapter 1: Introducing UFT Java Add-in Extensibility 13

About UFT Java Add-in Extensibility 14

Identifying the Building Blocks of Java Add-in Extensibility 14

DecidingWhen to Use Java Add-in Extensibility 15

Analyzing the Default UFT Support and Extensibility Options for a Sample Custom
Control 16

Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit 21

About Installing the HP UFT Java Add-in Extensibility SDK 22

Pre-Installation Requirements 23

Installing the HP UFT Java Add-in Extensibility SDK 23

Uninstalling the HP UFT Java Add-in Extensibility SDK 26

Troubleshooting and Limitations - Java Add-in Extensibility Eclipse Plug-in 27

Chapter 3: Implementing Custom Toolkit Support 28

About Custom Toolkit Support 29

Introducing Java Add-in Extensibility Terminology 30

Preparing to Create Support for a Custom Toolkit 30

Creating a Custom Toolkit Support Set 31

Understanding the Toolkit Support Class 33

Understanding the Toolkit Configuration File 34

Understanding the Test Object Configuration File 35

How UFT Loads the Test Object Configuration XML 40

Developer Guide

HP UFT Java Add-in Extensibility (12.00) Page 3 of 221

Understanding How UFTMerges Test Object Configuration Files 40

Understanding Custom Support Classes 41

Determining the Inheritance Hierarchy for a Support Class 43

Mapping a Custom Control to a Test Object Class 46

Supporting Identification Properties 46

Supporting Test Object Methods 49

Supporting the Record Option 51

Supporting Top-Level Objects 53

SupportingWrapper Controls 54

Support Class Summary 58

UsingMethods fromMicAPI 59

Deploying and Running the Custom Toolkit Support 59

About Deploying the Custom Toolkit Support 59

Deploying the Custom Toolkit Support 60

Modifying Deployed Support 63

Modifying Identification Property Attributes in a Test Object Configuration File 63

Removing Deployed Support 64

Logging and Debugging the Custom Support Class 65

Workflow for Implementing Java Add-in Extensibility 67

Chapter 4: Planning Custom Toolkit Support 68

About Planning Custom Toolkit Support 69

Determining the Custom Toolkit Related Information 69

Determining the Support Information for Each Custom Class 69

Understanding the Custom Class Support Planning Checklist 70

Custom Class Support Planning Checklist 72

Where Do YouGo from Here? 73

Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In 74

About the UFT Java Add-in Extensibility Eclipse Plug-In 75

New UFT Java Add-in Extensibility Project Wizard 75

UFT Java Add-in Extensibility Project Screen 77

Custom Toolkit Details Screen 79

Developer Guide

HP UFT Java Add-in Extensibility (12.00) Page 4 of 221

Project Summary Screen 83

Modifying UFT Java Add-in Extensibility Project Properties 84

New UFT Custom Support Class Wizard 85

Custom Class Selection Screen 86

Test Object Class Selection Screen 91

Custom Support Test Object Identification Properties Screen 93

Custom Support Test Object Methods Screen 96

Understanding the Test Object Method Dialog Box 99

Custom Control Recording Support Screen 102

New Test Object Class Details Screen 106

Custom Control Support Class Summary Screen 109

New UFT Custom Static-Text Support Class Wizard 110

Custom Static-Text Class Selection Screen 112

Custom Static-Text Support Class Summary Screen 113

Working with UFT Commands in Eclipse 114

Part 2: Tutorial: Learning to Create Java Custom Toolkit Support 122

Chapter 5: Using the UFT Java Add-in Extensibility Tutorial 123

Understanding the Tutorial Lesson Structure 124

Checking Tutorial Prerequisites 125

Chapter 6: Learning to Support a Simple Control 127

Preparing for This Lesson 128

Modifying the Sample Application to Run From Another Location 129

Planning Support for the ImageButton Control 130

Custom Class Support Planning Checklist 133

Creating a New UFT Java Add-in Extensibility Project 133

Understanding Your New Custom Toolkit Support Set 138

Creating a New UFT Custom Support Class 140

Understanding the New Custom Support 148

Understanding the Basics of the ImageButtonCS Class 149

Understanding Identification Property and Test Object Method Support 149

Understanding Event Recording Support 150

Developer Guide

HP UFT Java Add-in Extensibility (12.00) Page 5 of 221

Deploying and Testing the New Custom Toolkit Support 151

Changing the Name of the Test Object 152

Implementing Support for a Test Object Method 154

Implementing Event Handler Methods to Support Recording 155

Lesson Summary 157

Where Do YouGo from Here? 157

Chapter 7: Learning to Support a Custom Static-Text Control 158

Preparing for This Lesson 159

Planning Support for the ImageLabel Control 159

Custom Class Support Planning Checklist 163

Creating the UFT Custom Static-Text Support Class 164

Understanding the New Custom Static-Text Support Class 168

Deploying and Testing the New Custom Static-Text Support Class 168

Completing the Support for the Static-Text Control 170

Optimizing the ImageControls Toolkit Support 173

Creating Support for the ImageControl Custom Class 173

Modifying the ImageControls Toolkit Support Hierarchy 180

Deploying and Testing the New ImageControls Toolkit Support 181

Lesson Summary 182

Where Do YouGo from Here? 182

Chapter 8: Learning to Support a Complex Control 183

Preparing for This Lesson 184

Planning Support for the AllLights Control 185

Custom Class Support Planning Checklist 189

Creating the UFT Java Add-in Extensibility Project 190

Creating the New UFT Custom Support Class 195

Understanding the New Custom Support Files 209

Understanding the AllLightsCS Custom Support Class 209

Understanding the Javaboutique Test Object Configuration File 210

Deploying and Testing the New Custom Toolkit Support 211

Implementing Support for the AllLights Control 214

Developer Guide

HP UFT Java Add-in Extensibility (12.00) Page 6 of 221

Implementing Support for New Identification Properties 214

Implementing Support for New Test Object Methods 215

Implementing Support for Recording 216

Testing the Completed Support 217

Lesson Summary 219

Where Do YouGo from Here? 219

We appreciate your feedback! 220

Developer Guide

HP UFT Java Add-in Extensibility (12.00) Page 7 of 221

HP UFT Java Add-in Extensibility (12.00) Page 8 of 221

Welcome to HP UFT Java Add-in Extensibility
HP UFT Java Add-in Extensibility is an SDK (Software Development Kit) package that enables you
to support testing applications that use third-party and custom Java controls that are not supported
out-of-the-box by the UFT Java Add-in.

This chapter includes:

About the UFT Java Add-in Extensibility SDK 8

About the UFT Java Add-in Extensibility Developer Guide 9

Who Should Read This Guide 10

Unified Functional Testing Help 10

Additional Online Resources 11

About the UFT Java Add-in Extensibility SDK
The UFT Java Add-in Extensibility SDK installation provides the following:

l An API that enables you to extend the UFT Java Add-in to support custom Java controls.

l A plug-in for the Eclipse Java development environment, which provides wizards and
commands that help you create and edit custom toolkit support sets.

l The Java Add-in Extensibility Help, which includes the following:

n A developer guide, including a step-by-step tutorial in which you develop support for a sample
custom control.

n An API Reference.

n A Toolkit Configuration SchemaHelp.

n The UFT Test Object SchemaHelp.

The Help is available from Start > All Programs > HP Software > HP Unified Functional
Testing > Extensibility > Documentation

l A printer-friendly Adobe portable document format (PDF) version of the developer guide
(available from Start > All Programs > HP Software > HP Unified Functional Testing >
Extensibility > Documentation and in the <Unified Functional Testing
installation>\help\Extensibility folder).

l A set of sample applications and completed Java Add-in Extensibility projects that extend
support for these applications.

HP UFT Java Add-in Extensibility (12.00) Page 9 of 221

Accessing UFT Java Add-in Extensibility in Windows 8 Operating Systems
UFT files that were accessible from theStartmenu in previous versions of Windows are accessible
inWindows 8 from theStart screen or theApps screen.

l Applications (.exe files). You can access UFT applications inWindows 8 directly from the
Start screen. For example, to start UFT, double-click theHP Unified Functional Testing
shortcut.

l Non-program files. You can access documentation from theApps screen.

Note: As in previous versions of Windows, you can access context sensitive help in UFT
by pressing F1, and access complete documentation and external links from theHelp
menu.

About the UFT Java Add-in Extensibility Developer
Guide

This guide explains how to set up UFT Java Add-in Extensibility and use it to extend UFT GUI
testing support for third-party and custom Java controls.

This guide assumes you are familiar with UFT functionality, and should be used together with the
following documents, provided in the Java Add-in Extensibility Help (Start > All Programs >
HP Software > HP Unified Functional Testing > Extensibility > Documentation > Java Add-
in Extensibility Help):

l API References

l Toolkit Configuration SchemaHelp

l Test Object SchemaHelp

These documents should also be used in conjunction with the following UFT documentation,
available with the UFT installation (Help > HP Unified Functional Testing Help from the UFT
main window):

l HP Unified Functional Testing User Guide

l The Java section of theHP Unified Functional Testing Add-ins Guide

l HP UFT Object Model Reference for GUI Testing

HP UFT Java Add-in Extensibility (12.00) Page 10 of 221

Note:

The information, examples, and screen captures in this guide focus specifically on working
with UFT GUI tests. However, much of the information in this guide applies equally to
business components.

Business components are part of HP Business Process Testing. For more information, see the
HP Unified Functional Testing User Guide and theHP Business Process Testing User Guide.

When working inWindows 8, access UFT documentation and other files from theApps
screen.

Who Should Read This Guide
This guide is intended for programmers, QA engineers, systems analysts, system designers, and
technical managers who want to extend UFT GUI testing support for Java custom controls.

To use this guide, you should be familiar with:

l Major UFT features and functionality

l The UFT Object Model

l UFT Java Add-in

l Java programming

l XML (basic knowledge)

Unified Functional Testing Help
The Unified Functional Testing Help provides a single-point of access for UFT documentation.

You can access the Unified Functional Testing Help by using the following:

l In UFT, select Help > HP Unified Functional Testing Help.

l In the Start menu on the UFT computer, select All Programs > HP Software > HP Unified
Functional Testing > Documentation > HP Unified Functional Testing Help.

Note:Whenworking inWindows 8, access UFT documentation and other files from the
Apps screen.

l Click in selected UFT windows and dialog boxes or press F1.

l View a description, syntax, and examples for a UFT test object, method, or property by placing
the cursor on it (in UFT) and pressing F1.

HP UFT Java Add-in Extensibility (12.00) Page 11 of 221

Additional Online Resources
The following additional online resources are available:

Resource Description

Troubleshooting
& Knowledge
Base

The Troubleshooting page on the HP Software Support Web site where you
can search the Self-solve knowledge base. The URL for this Web site is
http://h20230.www2.hp.com/troubleshooting.jsp.

HP Software
Support

The HP Software Support Web site. This site enables you to browse the
Self-solve knowledge base. You can also post to and search user
discussion forums, submit support requests, download patches and updated
documentation, andmore. The URL for this Web site
www.hp.com/go/hpsoftwaresupport.

l Most of the support areas require that you register as an HP Passport
user and sign in. Many also require a support contract.

l To findmore information about access levels, go to:
http://h20230.www2.hp.com/new_access_levels.jsp

l To register for an HP Passport user ID, go to:
http://h20229.www2.hp.com/passport-registration.html

HP Software
Web site

The HP SoftwareWeb site. This site provides you with themost up-to-date
information on HP Software products. This includes new software releases,
seminars and trade shows, customer support, andmore. The URL for this
Web site is www.hp.com/go/software

http://h20230.www2.hp.com/troubleshooting.jsp
http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html
http://www.hp.com/go/software

HP UFT Java Add-in Extensibility (12.00) Page 12 of 221

Part 1: Working with Java Add-in
Extensibility

Chapter 1: Introducing UFT Java Add-in
Extensibility

Welcome to UFT Java Add-in Extensibility.

UFT Java Add-in Extensibility enables you to provide high-level support for third-party and custom
Java controls that are not supported out-of-the-box by the UFT Java Add-in.

This chapter includes:

About UFT Java Add-in Extensibility 14

Identifying the Building Blocks of Java Add-in Extensibility 14

DecidingWhen to Use Java Add-in Extensibility 15

HP UFT Java Add-in Extensibility (12.00) Page 13 of 221

About UFT Java Add-in Extensibility
The UFT Java Add-in provides built-in support for a number of commonly used Java objects. You
use UFT Java Add-in Extensibility to extend that support and enable UFT to recognize additional
Java controls.

When UFT learns an object in the application, it recognizes the control as belonging to a specific
test object class. This determines the identification properties and test object methods of the test
object that represents the application's object in UFT.

UFT can learn Java controls that are not supported out-of-the-box by the Java Add-in without using
Extensibility. However, when UFT learns a Java control that is not supported, it recognizes the
control as a generic Java test object. This type of Java test object might not have certain
characteristics that are specific to the Java control. Therefore, when you try to create test steps
with this test object, the available identification properties and test object methods might not be
sufficient.

For example, consider a custom control that is a special type of button that UFT recognizes as a
plain JavaObject. JavaObject test objects do not support simpleClick operations. The
JavaObject.Clickmethod requires the coordinates of the click as arguments. To create a test step
that clicks this custom control, you would have to calculate the button's location and provide the
coordinates for the click.

By creating support for a Java control using Java Add-in Extensibility, you can direct UFT to
recognize the control as belonging to a specific test object class, and you can specify the behavior
of the test object. You can also extend the list of available test object classes that UFT is able to
recognize. This enables you to create tests that fully support the specific behavior of your custom
Java controls.

Identifying the Building Blocks of Java Add-in
Extensibility

The sections below describe themain elements that comprise UFT object support. These elements
are the building blocks of Java Add-in Extensibility. By extending the existing support of one or
more of these elements, you can create the support you need to createmeaningful and
maintainable tests.

Test Object Classes
In UFT, every object in an application is represented by a test object of a specific test object class.
The Java Add-in maps each supported class to a specific test object class. UFT determines which
test object class to use according to this mapping.

When UFT learns a control of a Java class that is not yet supported (a custom class), it selects the
test object class to represent the control based on the class inheritance hierarchy. UFT searches
for the closest ancestor of the class that is supported, and uses the test object class mapped to this
class. For example, if the custom class extends java.awt.Applet, UFT recognizes the control as a
JavaApplet test object. If the custom class extends the java.awt.Canvas, UFT recognizes the
control as a JavaObject test object.

Developer Guide
Chapter 1: Introducing UFT Java Add-in Extensibility

HP UFT Java Add-in Extensibility (12.00) Page 14 of 221

The icon that is used to represent this type of object in UFT, for example in the Keyword View and
Object Repository, is also determined by the test object class.

Test Object Names
WhenUFT learns an object, it uses data from the object to generate a name for the test object. A
descriptive test object name enables you distinguish between test objects of the same class and
makes it easier to identify them in your object repository and in tests.

When UFT learns a control of a Java class that is not yet supported and therefore uses a test object
class mapped to one of its ancestors, the test object name is based on the rules defined for that test
object class. In many cases, this is not the ideal name for the custom control.

Test Object Identification Properties
The test object class that is mapped to the Java class determines the list of identification properties
for a test object. It also determines which of these identification properties are used to uniquely
identify the object, which identification properties are available for checkpoints (in the Checkpoint
Properties dialog box), and which are selected by default for checkpoints. However, the actual
values of the identification properties are derived from the definition of the custom class. Therefore,
several custom classes that aremapped to the same test object may have different definitions for
the same identification property.

Test Object Methods
The test object class that is mapped to the Java class determines the list of test object methods for
a test object. However, the actual behavior of the test object method depends on the definition of
the specific custom support class. This means that the same test object methodmay operate
differently for different custom classes that aremapped to the same test object class.

Recording Events
Oneway to create UFT GUI tests is by recording user operations on the application. When you
start a recording session, UFT listens for events that occur on objects in the application and
registers corresponding test steps. Each Java object class defines which events UFT can listen
for. The Java Add-in determines what test step to record for each event that occurs.

Deciding When to Use Java Add-in Extensibility
The UFT Java Add-in provides a certain level of support for every Java control. Before you extend
support for a custom Java control, analyze it from aUFT perspective to view the extent of this
support and to decide which elements of support you need tomodify.

When you analyze the custom control, use the Object Spy, Keyword View, Editor, and the Record
option. Make sure you examine each of the elements described in " Identifying the Building Blocks
of Java Add-in Extensibility" on the previous page.

Developer Guide
Chapter 1: Introducing UFT Java Add-in Extensibility

HP UFT Java Add-in Extensibility (12.00) Page 15 of 221

If you are not satisfied with the existing object identification or behavior, your control is a candidate
for Java Add-in Extensibility, as illustrated in the following situations:

l UFTmight recognize the control using a test object class that does not fit your needs. You can
use Java Add-in Extensibility to map the custom class to another existing test object class or to
a new test object class that you create.

l The test object class mapped to the control might be satisfactory, but you would like to
customize the behavior of certain test object methods or identification properties. You can use
Java Add-in Extensibility to override the default implementation of these properties andmethods
with your own custom implementation.

l Youmay find that the test object names UFT generates for all controls of a certain Java class
are identical (except for a unique counter) or that the name used for the control does not clearly
indicate the object it represents. You can use Java Add-in Extensibility to modify how UFT
names test objects for that Java class.

l UFTmay identify individual sub-controls within your custom control, but not properly identify
your main control. For example, if your main custom control is a digital clock with edit boxes
containing the hour andminute digits, youmight want changes in the time to be recognized as
SetTime operations on the clock control and not as Set operations on the edit boxes. You can
use Java Add-in Extensibility to treat a custom control as awrapper object for the controls it
contains. UFT does not learn the individual controls contained in a wrapper object.

l During a record session, when you perform operations or trigger events on your control, UFT
may not record a step at all, or it may record steps that are not specific to the control's behavior.
Alternatively, UFT may recordmany steps for an event that should be considered a single
operation, or it may record a step when no step should be recorded. You can use Java Add-in
Extensibility to modify the events to listen for and the test steps to record for specific events.

Analyzing the Default UFT Support and Extensibility
Options for a Sample Custom Control

The following example illustrates how you can use Java Add-in Extensibility to improve the UFT
support of a custom control.

Developer Guide
Chapter 1: Introducing UFT Java Add-in Extensibility

HP UFT Java Add-in Extensibility (12.00) Page 16 of 221

The AllLights control shown below is a game application that is not specifically supported on UFT.

This application operates as follows:

l Clicking in the grid area turns different lights on (or off), according to an internal set of rules, and
updates the LightOn and LightOff counters.

l Clicking theRESTART button turns off all of the lights. The LightOn and LightOff counters are
updated accordingly.

l Clicking in other areas has no effect.

l The object of the game is to turn on all of the lights, at which point a congratulatory message is
displayed.

Developer Guide
Chapter 1: Introducing UFT Java Add-in Extensibility

HP UFT Java Add-in Extensibility (12.00) Page 17 of 221

If you point to this control using the Object Spy, UFT recognizes it as a generic JavaApplet named
AllLights (the name of the custom class). The icon shown is the standard JavaApplet class icon.

If you record on the AllLights control without implementing support for it, the Keyword View looks
like this:

In the Editor, the recorded test looks like this:

Developer Guide
Chapter 1: Introducing UFT Java Add-in Extensibility

HP UFT Java Add-in Extensibility (12.00) Page 18 of 221

Note that only generic Click steps are recorded, with arguments indicating the low-level recording
details (x- and y-coordinates and themouse button that performed the click). These steps are
difficult to understand andmodify.

If you use Java Add-in Extensibility to support the AllLights control, the result is moremeaningful.
UFT recognizes the control as an AllLights test object named Lights and uses a customized icon.
The identification properties include relevant information, such as oncount and onlist, which
provide the total number of all lights that are on at a givenmoment and their ordinal locations in the
grid.

When you are ready to create a test on the control, theClickLight andRestartmethods are
supported. Thesemethods can be recorded or you can select themmanually in theOperation
column of the Keyword View. You can also create a checkpoint to check the value of identification
properties, for example, gameover (that indicates whether all lights are on, meaning that you won
the game).

Developer Guide
Chapter 1: Introducing UFT Java Add-in Extensibility

HP UFT Java Add-in Extensibility (12.00) Page 19 of 221

In the Keyword View, a test may look like this:

In the Editor, the test looks like this:

This test is easier to understand andmodify.

Developer Guide
Chapter 1: Introducing UFT Java Add-in Extensibility

HP UFT Java Add-in Extensibility (12.00) Page 20 of 221

Chapter 2: Installing the HP UFT Java Add-in
Extensibility Software Development Kit

This chapter lists the pre-installation requirements and explains how to install the HP UFT Java
Add-in Extensibility SDK.

This chapter includes:

About Installing the HP UFT Java Add-in Extensibility SDK 22

Pre-Installation Requirements 23

Installing the HP UFT Java Add-in Extensibility SDK 23

Uninstalling the HP UFT Java Add-in Extensibility SDK 26

Troubleshooting and Limitations - Java Add-in Extensibility Eclipse Plug-in 27

HP UFT Java Add-in Extensibility (12.00) Page 21 of 221

About Installing the HP UFT Java Add-in Extensibility
SDK

The HP UFT Java Add-in Extensibility SDK enables you to design UFT support for custom Java
controls. The SDK installation includes:

l An API that you can use to create support for custom Java controls

l A plug-in for the Eclipse IDE (integrated development environment) for Java developers that
provides:

n Wizards that guide you through the process of creating custom toolkit support sets

The Java Add-in Extensibility wizards in Eclipse create all of the required files, classes, and
methods. These wizards also providemethod stubs for methods that youmay need to
implement.

n Commands for editing the files after they are created

l A set of sample applications and completed Java Add-in Extensibility projects that extend
support for these applications. (The sample applications and their support sets are installed in
the <Java Add-in Extensibility SDK installation folder>\samples folder.)

Using the UFT Java Add-in Extensibility Samples
You can use the samples provided as part of the Java Add-in Extensibility SDK to learnmore about
designing Java Add-in Extensibility support sets.

The samples assume that the SDK is installed in the%ProgramFiles%\HP\Unified Functional
Testing folder, on a 32-bit operating system.

If this is not the case, you need tomake the following adjustments in the sample toolkit support
sets before you can use them onUFT.

If your SDK is not installed in%ProgramFiles%\HP\Unified Functional Testing:

1. For each sample, in the toolkit configuration XML file located in theConfiguration folder (in the
<Java Add-in Extensibility SDK installation folder>\samples\<SampleName>Support
folder), update theSupportClassPath property with the current UFT installation path.

2. For each sample, in the .classpath file located in the <Java Add-in Extensibility SDK
installation folder>\samples\<SampleName>Support folder, update all relevant file paths
according to the current UFT installation path.

If your SDK is installed on a 64-bit operating system, make the following additional change for
each sample: In the .classpath file, modify the path to themic.jar file from C:/Program
Files/HP/Unified Functional Testing/bin/java/classes/mic.jar to <Java Add-in
Extensibility SDK installation folder>/bin/java/classes64/mic.jar.

Developer Guide
Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit

HP UFT Java Add-in Extensibility (12.00) Page 22 of 221

Pre-Installation Requirements
Before you install the UFT Java Add-in Extensibility SDK, do the following:

l Make sure that the Eclipse IDE for Java developers is installed on your computer if you plan to
work with the Java Add-in Extensibility Eclipse plug-in. You can download the Eclipse IDE, free
of charge, from http://www.eclipse.org/downloads. For a list of supported Eclipse versions, see
theHP Unified Functional Testing Product Availability Matrix, available from the Unified
Functional Testing Help or the root folder of the Unified Functional Testing DVD.

When you install the Eclipse IDE, make sure to note the installation location on your computer.
You need to enter this information when installing the Java Add-in Extensibility SDK.

Note: The Java Add-in Extensibility Eclipse plug-in is required to perform the tutorial
described in "Tutorial: Learning to Create Java Custom Toolkit Support" on page 122.
Additionally, it is recommended to use this plug-in to design at least the skeleton of your
toolkit support.

l (Optional) Make sure that UFT with the Java Add-in is installed on the same computer. This
enables the Java Add-in Extensibility Eclipse plug-in to interact with UFT, enabling you to work
more efficiently when debugging and testing your custom toolkit support. For example, if you
use the Java Add-in Extensibility Eclipse plug-in on a UFT computer, you can deploy the toolkit
support to UFT for debugging by simply clicking a button.

Note: If you do not install UFT and the Java Add-in before you install the UFT Java Add-in
Extensibility SDK, any Java Add-in Extensibility Eclipse plug-in functionality that requires
interaction with UFT will not be available.

Installing the HP UFT Java Add-in Extensibility SDK
Use the Unified Functional Testing Setup program to install the HP UFT Java Add-in Extensibility
SDK on your computer.

To install the UFT Java Add-in Extensibility SDK:

1. Close all instances of Eclipse and UFT.

2. Insert the Unified Functional Testing DVD into the CD-ROM/DVD drive. The Unified
Functional Testing Setup window opens. (If the window does not open, browse to the DVD and
double-click setup.exe from the root folder.)

3. Click Add-in Extensibility and Web 2.0 Toolkits. The Unified Functional Testing Add-in
Extensibility andWeb 2.0 Toolkit Support screen opens.

4. Click HP UFT Java Add-in Extensibility SDK Setup.

Developer Guide
Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit

HP UFT Java Add-in Extensibility (12.00) Page 23 of 221

http://www.eclipse.org/downloads

TheWelcome screen of the HP UFT Java Add-in Extensibility SDK SetupWizard opens.

5. Click Next. The End-User License Agreement screen opens.

Note: If theModify, Repair, or Remove Installation screen opens, the SDK is already
installed on your computer. Before you can install a new version, youmust first uninstall
the existing one, as described in "Uninstalling the HP UFT Java Add-in Extensibility SDK"
on page 26.

Read the license agreement and select I accept the terms in the License Agreement.

6. Click Next. The Custom Setup screen opens.

Developer Guide
Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit

HP UFT Java Add-in Extensibility (12.00) Page 24 of 221

n All of the features displayed in the Custom Setup screen are installed automatically during
the setup.

n This screen displays the location in which the UFT Java Add-in Extensibility SDK will be
installed.

If you install the UFT Java Add-in Extensibility SDK on a computer on which UFT is
installed, the UFT installation folder is selected by default.

You can select a different location for the installation by clickingBrowse, choosing a folder,
and then clickingOK.

n If you click Disk Usage, a window opens displaying the amount of free disk space on your
computer and the amount required for this installation. The space required for the installation
includes space required for the UFT Java Add-in Extensibility SDK files and folders (on the
disk that you select for this installation) and additional space required on the system disk
(the disk on which the operation system is installed), which is used only during the
installation process.

7. Click Next. The Ready to Install screen opens.

8. Click Install. The Setup program installs the UFT Java Add-in Extensibility SDK and displays
a dialog box in which you specify the location of the Eclipse installation on your computer.

The Java Add-in Extensibility Eclipse plug-in is installed on Eclipse according to the location
you specify.

Note: You can install the Java Add-in Extensibility Eclipse plug-in on additional Eclipse
installations after you finish the UFT Java Add-in Extensibility SDK installation process.
To do this, browse to the <UFT Java Add-in Extensibility SDK installation
folder>\eclipse folder, and run deploysdkplugins.exe. Enter an Eclipse installation
folder in the dialog box that opens, and click OK.

Developer Guide
Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit

HP UFT Java Add-in Extensibility (12.00) Page 25 of 221

If you do not plan to use this plug-in, click Cancel and proceed to the next step. Otherwise,
click Browse, navigate to the Eclipse installation folder, and select the root eclipse folder.
Click OK. Then click OK to accept the Eclipse installation location.

9. In the final screen, if you select theShow Readme check box, the UFT Java Add-in
Extensibility Readme file opens after you click Finish. The Readme file contains the latest
technical and troubleshooting information. To open the Readme file at another time, select
Start > All Programs > HP Software > HP Unified Functional Testing > Extensibility >
Documentation > Java Add-in Extensibility Readme.

Click Finish to exit the SetupWizard.

Tip: If you do not see the UFTmenu or toolbar in Eclipse after the installation, run the
command line <Eclipse installation folder>\eclipse -clean on your computer to
refresh the Eclipse plug-in configuration, and then reopen Eclipse.

Note:Whenworking inWindows 8, access UFT documentation and other files from the
Apps screen.

Uninstalling the HP UFT Java Add-in Extensibility SDK
You can uninstall the HP UFT Java Add-in Extensibility SDK by usingAdd/Remove Programs as
you would for other installed programs. Alternatively, you can use the Unified Functional Testing
Setup program.

Considerations when uninstalling the SDK:

l When you uninstall the HP UFT Java Add-in Extensibility SDK, the Java Add-in Extensibility
Eclipse plug-in is removed from all Eclipse installations.

If you still see the UFTmenu or toolbar in Eclipse after uninstalling, run the command line
<Eclipse installation folder>\eclipse -clean on your computer to refresh the Eclipse
plug-in configuration, and then reopen Eclipse.

l If you use the setup program to uninstall the SDK, youmust use the same version of the setup
program as you used for the original installation.

l Youmust be logged on with Administrator privileges to uninstall the UFT Java Add-in
Extensibility SDK.

To uninstall the HP UFT Java Add-in Extensibility SDK:

1. Close all instances of Eclipse and UFT.

2. Insert the Unified Functional Testing DVD into the CD-ROM/DVD drive. The Unified
Functional Testing Setup window opens. (If the window does not open, browse to the DVD and

Developer Guide
Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit

HP UFT Java Add-in Extensibility (12.00) Page 26 of 221

double-click setup.exe from the root folder.)

3. Click Add-in Extensibility and Web 2.0 Toolkits. The Unified Functional Testing Add-in
Extensibility andWeb 2.0 Toolkit Support screen opens.

4. Click HP UFT Java Add-in Extensibility SDK Setup. TheWelcome screen of the HP UFT
Java Add-in Extensibility SDK SetupWizard opens.

Note: If you have a previous version of the SDK installed, the HP QuickTest Professional
Java Add-in Extensibility SDK Setup wizard opens. Using this wizard, follow the
instructions below to uninstall the old SDK version.

5. Click Next. TheModify, Repair, or Remove Installation screen opens.

6. Follow the instructions in the wizard to remove the HP UFT Java Add-in Extensibility SDK.

Troubleshooting and Limitations - Java Add-in
Extensibility Eclipse Plug-in

This section describes troubleshooting and limitations when working with the UFT Java Add-in
Extensibility.

When the Java Add-in Extensibility plug-in is installed on Eclipse 3.3, using the software update
options in the Eclipse Helpmenumay fail.

Workaround:Save the eclipse\features\com.mercury.qtjext.PluginFeature_1.0.0\feature.xml
file in UTF-8 format instead of ANSI format.

Developer Guide
Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit

HP UFT Java Add-in Extensibility (12.00) Page 27 of 221

Chapter 3: Implementing Custom Toolkit Support
You implement Java Add-in Extensibility by creating a custom toolkit support set for each Java
toolkit you want to support. The custom toolkit support set is comprised of Java classes and XML
configuration files. The Java classes you create extend existing Java Add-in classes and the
support they provide, by overriding their methods and defining new ones.

This chapter explains how to create support for a custom toolkit. It explains what files you have to
create for the custom toolkit support set, the structure and content of these files, and where they
should be stored.

This chapter includes:

About Custom Toolkit Support 29

Introducing Java Add-in Extensibility Terminology 30

Preparing to Create Support for a Custom Toolkit 30

Creating a Custom Toolkit Support Set 31

Understanding the Toolkit Support Class 33

Understanding the Toolkit Configuration File 34

Understanding the Test Object Configuration File 35

Understanding Custom Support Classes 41

Deploying and Running the Custom Toolkit Support 59

Logging and Debugging the Custom Support Class 65

Workflow for Implementing Java Add-in Extensibility 67

HP UFT Java Add-in Extensibility (12.00) Page 28 of 221

About Custom Toolkit Support
When you extend UFT support of a custom toolkit, you create an API that is based on the existing
UFT Java Add-in and supplements it. This API, or custom toolkit support set, is composed of Java
classes and XML configuration files. It provides an interface between UFT and the Java application
being tested, enabling UFT to identify the Java controls in the application and correctly perform
operations on those controls.

This chapter describes the different files, classes, methods, and definitions that youmust include in
a custom toolkit support set. For more information, see theUFT Java Add-in Extensibility API
Reference (available with the Java Add-in ExtensibilitySDK Help).

Before you begin to create a custom toolkit support set, youmust plan it carefully. For more
information, see "Planning Custom Toolkit Support" on page 68.

The UFT Java Add-in Extensibility SDK provides a plug-in for the Eclipse Java development
environment, which provides wizards that help you create custom toolkit support sets. This plug-in
also provides a set of commands that you can use to edit the files after they are created.

When you use the Java Add-in Extensibility wizards to create the custom toolkit support, the
wizards create all of the required files, classes, and basic methods. They also providemethod
stubs for additional methods that youmay need to implement.

To gain a better understanding of designing custom toolkit support sets before you begin to design
your own, perform the lessons in "Tutorial: Learning to Create Java Custom Toolkit Support" on
page 122. In these lessons you use the Java Add-in Extensibility wizards in Eclipse to create
custom support for sample custom controls.

Even if you do not regularly use Eclipse to develop Java software, it is recommended that you use it
for Java Add-in Extensibility, at least for performing the tutorial. It is generally simpler to create the
skeleton of the custom toolkit support with the help of the Java Add-in Extensibility wizards than to
do it manually. After you have completed this initial stage, you can continue the design of the toolkit
support in the development environment of your choice.

For information on setting up Eclipse and the UFT Java Add-in Extensibility Eclipse plug-in, as well
as using the plug-in, see "Installing the HP UFT Java Add-in Extensibility Software Development
Kit" on page 21.

If you choose not use the Java Add-in Extensibility wizards in Eclipse, you can still extend full
support for the custom toolkit manually by using the information in this chapter.

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 29 of 221

Introducing Java Add-in Extensibility Terminology
The following terminology, specific to UFT Java Add-in Extensibility, is used in this guide:

l Basic user interface component:

n In the AWT toolkit: java.awt.Component

n In the SWT toolkit: org.eclipse.swt.widgets.Widget

l Custom class. A Java class that extends java.awt.Component or
org.eclipse.swt.widgets.Widget for which you create UFT support.

l Custom toolkit. A set of classes, all extending the basic user interface component of the same
native toolkit.

l Custom toolkit support. Extends UFT ability to recognize controls in a custom toolkit as test
objects, view and check their properties, and run tests on them. (In this guide, custom toolkit
support is also referred to as custom support or toolkit support.)

l Native toolkit. A toolkit that implements drawing using native API.

n Abstract Windows Toolkit (AWT) and StandardWidgets Toolkit (SWT) are native toolkits.

n Java Foundation Classes (JFC) is not a native toolkit, as it extends AWT.

Preparing to Create Support for a Custom Toolkit
You can extend UFT support for any toolkit containing classes that extend java.awt.Component or
org.eclipse.swt.widgets.Widget.

When you create a custom toolkit support set for each custom toolkit, the first step is to determine
the set of classes that comprise your custom toolkit. For the purpose of Extensibility, a custom
toolkit is a set of classes that extend the basic user interface component of the same native toolkit.

This does not prevent you from creating support for a toolkit containing classes that extend
java.awt.Component, as well as those that extend org.eclipse.swt.widgets.Widget. Such a
toolkit is simply seen as two separate custom toolkits, and youmust create support separately for
each set of classes.

Similarly, if you have user interface control classes that extend the basic user interface component
of the same native toolkit, and are packaged in separate Java archives or class folders, you can
treat them as one custom toolkit. This means you can create a single custom toolkit support set for
all those classes.

Within a custom toolkit, you extend UFT support for each control (or group of similar controls)
separately. You do this by creating custom support classes for the different custom control
classes in the toolkit. (In this guide, custom support classes are also referred to as support
classes.)

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 30 of 221

Before you extend UFT support for a custom control make sure you have full access to the control
and understand its behavior. Youmust have an application in which you can view the control in
action, and also have access to the class that implements it.

You do not need tomodify any of the custom control's sources to support it in UFT, but you do need
to be familiar with them. Make sure you know whichmembers (fields andmethods) you can access
externally, the events for which you can listen, and so forth. You use this information when you
design the support class. To implement the interface between UFT and the custom class, the
support class uses custom class members. The support class can only access themembers of the
custom class that are defined as public.

In addition, you need access to the compiled classes in a Java archive or class folder because you
add them to the classpath when compiling the support classes.

Creating a Custom Toolkit Support Set
After you determine the set of custom classes for which you want to extend UFT support, you
create the custom toolkit support set.

A Java Add-in Extensibility custom toolkit support set comprises the following java classes and
XML configuration files:

l One toolkit support class, described on page 33.

l One toolkit configuration file, described on page 34.

l One ormore test object configuration classes (if this support set introduces new test object
classes or extends existing ones), described on page 35.

l Custom support classes (mapped to the custom classes), described on page 41.

The Java classes of the custom toolkit support set are packaged in a toolkit root package named
com.mercury.ftjadin.qtsupport.<Custom Toolkit Name>. Within this package, the custom
support classes are stored in a sub-package named com.mercury.ftjadin.qtsupport.<Custom
Toolkit Name>.cs. The configuration files are stored under the UFT installation folder and
reference the java packages. For more information, see "Deploying and Running the Custom
Toolkit Support" on page 59.

To create a custom toolkit support set:

1. Choose a unique name to represent the custom toolkit.

You use the custom toolkit name to compose the name of the toolkit support class and its
packaging. The namemust start with a letter and can contain only alphanumeric characters
and underscores.

After you develop the support and deploy it to UFT, UFT displays the custom toolkit name in all
of the dialog boxes that display lists of add-ins or supported environments. For example, when

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 31 of 221

UFT opens, it displays the custom toolkit name as a child of the Java Add-in in the Add-in
Manager dialog box and the UFT user can specify whether to load support for that toolkit.

Providing unique toolkit names allows a single UFT installation to support numerous custom
toolkit support sets simultaneously. For this reason, a name such as MyToolkit is not
recommended.

2. Create the toolkit root package: com.mercury.ftjadin.qtsupport.<Custom Toolkit Name>.

3. Create the toolkit support class in the toolkit root package. Name the class
<Custom Toolkit Name>Support.java.
For information on the content of this class, see "Understanding the Toolkit Support Class" on
the next page.

4. Create the toolkit configuration file. Name the file: <Custom Toolkit Name>.xml.
For information on the content of this file, see "Understanding the Toolkit Configuration File" on
page 34.

Note: The custom toolkit name that UFT displays (in the Add-in Manager and other dialog
boxes) is derived from this file name.

5. Consider the behavior (fields andmethods) of the custom controls, andmap the custom
controls to a UFT test object class. For more information, see "Mapping a Custom Control to a
Test Object Class" on page 46.

If you require any new UFT test object classes tomap to controls in the custom toolkit, create
the test object configuration file. Name the file <Custom Toolkit Name>TestObjects.xml.

For information on the content of this file and the locations in which to store it, see
"Understanding the Test Object Configuration File" on page 35.

Note: In most cases, a custom toolkit support set has only one test object configuration
file, named <Custom Toolkit Name>TestObjects.xml. However, you could store the
definitions for different test object classes in different test object configuration files. You
create all of the test object configuration file according to theHP UFT Test Object Schema
Help (available with the Java Add-in ExtensibilitySDKHelp). All of the test object
configuration files must be located in the same folders, specified in "Deploying and
Running the Custom Toolkit Support" on page 59.

When UFT opens, the UFT user can select (in the Add-in Manager dialog box) the
environments or custom toolkits for which to load support. UFT then loads the test object
class definitions (from the test object configuration files) for all custom Java toolkits
whose support is loaded. This enables you to use the same test object class definitions
when supporting different custom Java toolkits.

6. Create the com.mercury.ftjadin.qtsupport.<Custom Toolkit Name>.cs support class sub-

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 32 of 221

package.

7. In the support class sub-package, create the custom support classes for the classes you want
to support.

In most cases, you name the custom support class <Custom Class Name>CS. If your
custom toolkit contains classes from different packages, youmight have custom classes with
the same name. In this case, youmust provide different names for the custom support
classes, because they are stored in one package. For information on the content of support
classes, see "Understanding Custom Support Classes" on page 41.

The following example illustrates the structure of the java classes in the custom toolkit support
set for the custom toolkit named javaboutique. Within this toolkit, two custom classes are
supported: AllLights andAwtCalc:

8. If you develop the custom support using the Java Add-in Extensibility wizard, the wizard
defines the required environment variables. If you do not use the wizard, youmust add the
following items to the build path (the classpath used by the compiler):

n <Java Add-in Extensibility SDK installation folder>\bin\Java\sdk\
eclipse\plugins\com.mercury.java.ext.lib_1.0.0\mic.jar

n <Java Add-in Extensibility SDK installation folder>\bin\Java\sdk\
eclipse\plugins\com.mercury.java.ext.lib_1.0.0\jacob.jar

n The locations of the compiled custom classes (these locations can be class folders or Java
archives)

Note:
o The build pathmust also include the locations of all parent classes of the custom

classes. Add these locations manually to the build path if any custom classes are not
derived directly from SWT, AWT, or JFC (Swing) and the parent classes are not
located in the same location as the custom classes.

o If, at any time, the custom controls aremodified in a way that might affect the
support, youmust recompile the support classes, adjusting them if necessary.

Understanding the Toolkit Support Class
When all of the classes in a custom toolkit extend the basic user interface class of another toolkit
(for example java.awt.Component) we say the custom toolkit extends that toolkit (in this example:

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 33 of 221

AWT). Every custom toolkit support set has one toolkit support class that indicates the native
toolkit that the custom toolkit extends.

By extending the custom toolkit support class from the correct native toolkit support set, you
ensure that your toolkit inherits all of the necessary utility methods for basic functionality (such as
event handling and dispatching).

The UFT Java Add-in provides custom toolkit support classes for AWT, SWT, and JFC (Swing).
When you create new Java Add-in Extensibility custom toolkit support classes you extend one of
these, or the custom toolkit support class of other existing Extensibility custom toolkit support sets.

The inheritance hierarchy of toolkit support classes reflects the hierarchy of the custom toolkits. For
example, the JFCSupport class extends the class AWTSupport. A toolkit support class of a toolkit
that extends JFC will extend JFCSupport thereby inheriting AWTSupport functionality. No further
implementation is required in this class.

For example, this is the toolkit support class for the Javaboutique custom toolkit, which extends
theAWT native toolkit:

package com.mercury.ftjadin.qtsupport.javaboutique;
import com.mercury.ftjadin.support.awt.AwtSupport;
public class JavaboutiqueSupport extends AwtSupport {}

The following table shows which toolkit support class to extend, if you want to extend the toolkit
support classes provided for AWT, SWT, or JFC:

To extend the toolkit support class for: Extend:

AWT com.mercury.ftjadin.support.awt.AwtSupport

JFC11 (Swing) com.mercury.ftjadin.support.jfc.JFCSupport

SWT com.mercury.ftjadin.support.swt.SwtSupport

Understanding the Toolkit Configuration File
Every custom toolkit support set has one toolkit configuration file named
<Custom Toolkit Name>.xml, which is stored under the UFT installation folder. This file provides
the information that UFT needs to find the classes of the custom toolkit support set.

The toolkit configuration file specifies:

l The location of the toolkit support class

l The location of the compiled support classes (a class folder or Java archive)

UFT adds this location to the Java application classpath when the application runs, enabling the
application to find the required support classes.

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 34 of 221

l The support toolkit description

UFT displays the description in the Add-in Manager when a user selects the custom toolkit's
name in the list of available add-ins. If you are developing this toolkit support set for distribution,
include aProvided by clause in this description, specifying the relevant person or company.

l A mapping of each custom class to its custom support class

A single custom support class can bemapped tomore than one custom class, but each custom
class can bemapped to only one custom support class.

The following example illustrates the configuration file of the javaboutique toolkit support, with one
supported custom class—AwtCalc:

<?xml version="1.0" encoding="UTF-8"?>
<Controls
 class="com.mercury.ftjadin.qtsupport.javaboutique.
javaboutiqueSupport"
 SupportClasspath="C:\JE\workspace\javaboutiqueSupport\bin"
 description="Javaboutique toolkit support.">
 <Control Type="org.boutique.toolkit.AwtCalc">
 <CustomRecordReplay>
 <ImplementationClass>
 com.mercury.ftjadin.qtsupport.javaboutique.cs.AwtCalcCS
 </ImplementationClass>
 </CustomRecordReplay>
 </Control>
</Controls>

You can validate your toolkit configuration file against:
<UFT installation folder>\bin\java\sdk\eclipse\plugins\
com.mercury.qtjext.plugin.QTJavaExt_1.0.0\ToolkitSchema.xsd

For information on the structure and syntax of the toolkit configuration file, see theUFT Java Add-in
Extensibility Toolkit Configuration SchemaHelp (available with the Java Add-in ExtensibilitySDK
Help).

For information on where to store the toolkit configuration file, see "Deploying and Running the
Custom Toolkit Support" on page 59.

Understanding the Test Object Configuration File
If youmap custom controls to new (or modified) test object classes, youmust create one or more
test object configuration files in the custom toolkit support set. For more information, see "Mapping
a Custom Control to a Test Object Class" on page 46.

In a test object configuration XML, you define the test object classes (for example, the test object
methods they support, their identification properties, and so on).

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 35 of 221

You can also create a definition for an existing test object class in the test object configuration
XML. This definition is added to the existing definition of this test object class, affecting all test
objects of this class. It is therefore not recommended tomodify existing test object classes in this
way. For example:

l If you add a test object method, it appears in the list of test object methods in UFT, but if you use
the test object method in a test, and it is not implemented for the specific object, a run-time error
occurs.

If you add test object methods to existing test object classes, youmight add a prefix to the
method name that indicates the toolkit support for which you added themethod (for example,
CustomButtonClick, CustomEditSet). This enables test designers to easily identify the
custommethods and use them in test steps only if they know that the custommethod is
supported for the specific object.

l If you add an identification property, it appears in UFT in the list of properties for all test objects
of this class, but has no value unless it is implemented for the specific supported object.

In the test object configuration XML file, you create aClassInfo element for each test object class
that you want to define. In addition, you define the name of the environment or custom toolkit for
which the test object classes are intended (in thePackageName attribute of the TypeInformation
element), and the UFT add-in which these test object classes extend (in theAddinName attribute
of the TypeInformation element).

If the relevant add-in is not loaded when UFT opens, UFT does not load the information in this XML.
Similarly, if the name of the environment or custom toolkit is displayed in the Add-in Manager dialog
box and its check box is not selected, the information in this XML is not loaded.

For more information, see "How UFT Loads the Test Object Configuration XML " on page 40.

The sections below describe the information that you can include in a test object class definition.

Class Name and Base Class
The name of the test object class and its attributes, including the base class—the test object class
that the new test object class extends (relevant only when defining new test object classes). A new
test object class extends an existing JavaUFT test object class, directly or indirectly. The base
class may be a class delivered with UFT or a class defined using Java Add-in Extensibility.

By default, the base class is JavaObject.

The test object class namemust be unique among all of the environments whose support a UFT
user might load simultaneously. For example, when defining a new test object class, do not use
names of test object classes from existing UFT add-ins, such as JavaButton, JavaEdit, and so on.

Note:

l A test object class inherits the base class' test object operations (methods and properties),
generic type, default operation, and icon. Identification properties are not inherited.

l If you create test object classes that extend test object classes defined in another toolkit
support set, you create a dependency between the two toolkit support sets. Whenever you

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 36 of 221

select to load the extending toolkit support set in the UFT Add-in Manager, youmust also
select to load the toolkit support set that it extends.

Generic Type
The generic type for the test object class, if you are defining a new test object class and you want
the new test object class to belong to a different generic type than the one to which its base class
belongs. (For example, if your new test object class extends JavaObject (whose generic type is
object), but you would like UFT to group this test object class with the edit test object classes.)

Generic types are used when filtering objects (for example, in the StepGenerator's Select Object
for Step dialog box and when addingmultiple test objects to the object repository). Generic types
are also used when creating documentation strings for the Documentation column of the Keyword
View (if they are not specifically defined in the test object configuration file).

Test Object Operations
A list of operations for the test object class, including the following information for each operation:

l The arguments, including the argument type (for example, String or Integer), direction (In or
Out), whether the argument is mandatory, and, if not, its default value.

l The operation description (shown in the Object Spy and as a tooltip in the Keyword View and
StepGenerator).

l The Documentation string (shown in theDocumentation column of the Keyword View and in
the StepGenerator).

l The return value type.

l A context-sensitive Help topic to open when F1 is pressed for the test object operation in the
Keyword View or Editor, or when theOperation Help button is clicked for the operation in the
StepGenerator. The definition includes the Help file path and the relevant Help ID within the file.

Default Operation
The test object operation that is selected by default in the Keyword View and StepGenerator when
a step is generated for an object of this class.

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 37 of 221

Identification Properties
A list of identification properties for the test object class. You can also define:

l The identification properties that are used for the object description.

l The identification properties that are used for smart identification. (This information is relevant
only if smart identification is enabled for the test object class. To enable smart identification, use
the Object Identification dialog box in UFT.)

l The identification properties that are available for use in checkpoints and output values.

l The identification properties that are selected by default for checkpoints (in the UFT Checkpoint
Properties dialog box).

Icon File
The path of the icon file to use for this test object class. (Optional. If not defined, the base class'
icon is used.) The file can be a .dll, .exe, or .ico file.

Help File
A context-sensitive Help topic to open when F1 is pressed for the test object in the Keyword View
or Editor. The definition includes the .chm Help file path and the relevant Help ID within the file.

Note:When youmodify a test object configuration file, the changes take effect only after you
restart UFT.

You can practice creating support for a custom control that is mapped to a new test object class in
the tutorial lesson "Learning to Support a Complex Control" on page 183.

You can validate your test object configuration file against:
<UFT installation folder>\bin\java\sdk\eclipse\plugins\
com.mercury.qtjext.plugin.QTJavaExt_1.0.0\ClassesDefintions.xsd

For information on the structure and syntax of a test object configuration file, see theHP UFT Test
Object SchemaHelp (available with the Java Add-in Extensibility SDKHelp).

For information on the location in which to store the test object configuration file, see "Deploying
and Running the Custom Toolkit Support" on page 59.

Test Object Configuration File Example
The following example shows parts of the test object configuration file that defines theCalculator
test object class definition for the javaboutique custom toolkit:

<TypeInformation Load="true" PackageName="javaboutique"
AddinName="Java">

 <ClassInfo BaseClassInfoName="JavaApplet"
DefaultOperationName="Calculate" Name="Calculator">

 <IconInfo
IconFile="C:\Program Files\HP\Unified Functional

Testing\samples\Javaboutique\Calculator_3D.ico"/>

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 38 of 221

 <TypeInfo>
 <Operation ExposureLevel="CommonUsed" Name="Calculate"

PropertyType="Method">
 <Description>Builds the whole calculation process</Descripti
on>
 <Documentation><![CDATA[Perform %a1 operation with

%a2 and %a3 numbers]]></Documentation>
 <Argument Direction="In" IsMandatory="true" Name="operator">
 <Type VariantType="Variant"/>
 </Argument>
 <Argument Direction="In" IsMandatory="true" Name="num1">
 <Type VariantType="Variant"/>
 </Argument>
 <Argument Direction="In" IsMandatory="true" Name="num2">
 <Type VariantType="Variant"/>
 </Argument>
 </Operation>
 ...
 </TypeInfo>
 <IdentificationProperties>
 <IdentificationProperty ForVerification="true"

ForDefaultVerification="true "Name="value"/>
 <IdentificationProperty ForVerification="true" Name="objects cou
nt"/>
 <IdentificationProperty Name="width"/>
 <IdentificationProperty ForDescription="true" Name="toolkit clas
s"/>
 ...
 </IdentificationProperties>
 </ClassInfo>
</TypeInformation>

This example shows that theCalculator test object class extends the JavaApplet test object
class. It uses theCalculator_3D.ico icon file, and its default test object method is Calculate
(which has threemandatory input parameter of typeVariant:operator, num1 and num2).

ThePackageName attribute in the TypeInformation element indicates that theCalculator test
object class is created for the javaboutique toolkit support.

The following identification properties are defined for theCalculator test object class:

l value. Available for checkpoints and selected by default in the Checkpoint Properties dialog box
in UFT.

l objects count. Available for checkpoints but not selected by default.

l toolkit class. Used for the test object description but not available for checkpoints.

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 39 of 221

How UFT Loads the Test Object Configuration XML
Each time you run UFT, it reads all of the test object configuration files andmerges the information
for each test object class from the different files into one test object class definition. For more
information, see "Understanding How UFTMerges Test Object Configuration Files" below.

The following attributes of the Identification Property element in the test object configuration file
specify information that can bemodified in UFT (using the Object Identification dialog box):
AssistivePropertyValue, ForAssistive, ForBaseSmartID, ForDescription,
ForOptionalSmartID, andOptionalSmartIDPropertyValue. These attributes determine the lists
of identification properties used for different purposes in UFT.

Therefore, by default, UFT reads the values of these attributes from the XML only once, to prevent
overwriting any changes a user makes using the Object Identification dialog box. In this way, UFT
provides persistence for the user defined property lists. For more information, see "Modifying
Identification Property Attributes in a Test Object Configuration File" on page 63.

Understanding How UFT Merges Test Object Configuration Files

Each time you open UFT, it reads all of the test object configuration files located in the <UFT
installation folder>\dat\Extensibility\<UFT add-in name> folders. UFT thenmerges the
information for each test object class from the different files into a single test object class definition,
according to the priority of each test object configuration file.

UFT ignores the definitions in a test object configuration file in the following situations:

l The Load attribute of the TypeInformation element is set to false.

l The environment relevant to the test object configuration file is displayed in the Add-in Manager
dialog box, and the UFT user selects not to load the environment.

Define the priority of each test object configuration file using thePriority attribute of the
TypeInformation element.

If the priority of a test object configuration file is higher than the existing class definitions, it
overrides any existing test object class definitions, including built-in UFT information. For this
reason, be aware of any built-in functionality that will be overridden before you change the priority of
a test object configuration file.

Whenmultiple test object class definitions exist, UFT must handle any conflicts that arise. The
following sections describe the process UFT follows whenClassInfo, ListOfValues, and
Operation elements are defined inmultiple test object configuration files. All of the
IdentificationProperty elements for a specific test object class must be defined in only one test
object configuration file.

ClassInfo Elements

l If aClassInfo element is defined in a test object configuration file with a priority higher than the
existing definition, the information is appended to any existing definition. If a conflict arises

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 40 of 221

betweenClassInfo definitions in different files, the definition in the file with the higher priority
overrides (replaces) the information in the file with the lower priority.

l If aClassInfo element is defined in a test object configuration file with a priority that is equal to
or lower than the existing definition, the differing information is appended to the existing
definition. If a conflict arises betweenClassInfo definitions in different files, the definition in the
file with the lower priority is ignored.

ListOfValues Elements

l If a conflict arises between ListOfValues definitions in different files, the definition in the file
with the higher priority overrides (replaces) the information in the file with the lower priority (the
definitions are not merged).

l If a ListOfValues definition overrides an existing list, the new list is updated for all arguments of
typeEnumeration that are defined for operations of classes in the same test object
configuration file.

l If a ListOfValues is defined in a configuration file with a lower priority than the existing definition,
the lower priority definition is ignored.

Operation Elements

l Operation element definitions are either added, ignored, or overridden, depending on the priority
of the test object configuration file.

l If anOperation element is defined in a test object configuration file with a priority higher than the
existing definition, the operation is added to the existing definition for the class. If a conflict
arises betweenOperation definitions in different files, the definition in the file with the higher
priority overrides (replaces) the definition with the lower priority (the definitions are not merged).

For more information, see theHP UFT Test Object SchemaHelp (available with the Java Add-in
Extensibility SDK Help).

Understanding Custom Support Classes
In a custom toolkit support set, there is a custom support class for each supported custom class.
The custom support class provides the actual interface between the custom class methods and the
UFT capabilities, thus providing the UFT Java Add-in Extensibility.

A single custom support class can provide support for more than one custom class. The support
class can bemapped (in the toolkit configuration file described on page 34) to more than one
custom class. This support class then provides support for the custom classes that aremapped to
it, and for their descendants.

The first step in creating the support classes is determining the class inheritance hierarchy. This
includes deciding the order in which you create support for classes within the custom toolkit, and
determining which existing support class the new support class must extend. For more information,
see "Determining the Inheritance Hierarchy for a Support Class" on page 43.

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 41 of 221

The second step is deciding what test object class tomap to the custom control. For more
information, see "Mapping a Custom Control to a Test Object Class" on page 46.

After youmake the preliminary decisions regarding hierarchy and test object class, you are ready to
write themain part of the UFT Java Add-in Extensibility—the custom support class.

Each custom support class determines what test object class is mapped to the custom control it
supports and how the identification properties and test object methods are implemented.

The custom support class inherits themethods of its superclass. You can use the super
implementation, override themethods, or add new ones, as needed. In support classes, you use
the following types of methods:

l Identification property support methods. Used to support identification properties. For more
information, see "Supporting Identification Properties" on page 46.

l Reply methods. Used to support test object methods. For more information, see "Supporting
Test Object Methods" on page 49.

l Event handler methods. Used to provide support for recording on the custom control. This part
of the Extensibility is optional. Even if you do not implement support for recording, you still have
full support for the basic UFT capabilities on the custom control (for example, learning the
object, running tests on it, checking properties and values, and so forth).
If the custom class extends SWT, you cannot create support for the UFT recording capability.
For more information, see "Supporting the Record Option" on page 51.

l Utility methods. Used to control the Extensibility. Thesemethods do not support the specific
functionality of the custom class; they control the interface between UFT and the custom
application. Different utility methods are used for different purposes.

You can find a list of the available utility methods in the "Support Class Summary" on page 58.
Themethods are described in detail, in the following sections: "Supporting the Record Option", "
Supporting Top-Level Objects" on page 53, and "SupportingWrapper Controls" on page 54.

When you implement thesemethods in the custom support class, you can use different methods
supplied in theMicAPI. For more information, see "UsingMethods fromMicAPI" on page 59 and
theUFT Java Add-in Extensibility API Reference (available with the Java Add-in Extensibility
SDKHelp).

For a short summary of the types of methods a custom class contains, see "Support Class
Summary" on page 58.

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 42 of 221

Determining the Inheritance Hierarchy for a Support
Class

Within the custom toolkit for which you create UFT support, youmust decide:

l Which custom classes must havematching support classes, and which can be supported by
the support classes of their superclasses.

l Which existing support class each new support class extends.
(This also determines the order in which support classes must be created.)

Understanding the Hierarchy of Support Classes
The hierarchy of the support classes must reflect the hierarchy of the custom classes.

The following example illustrates the hierarchy of the TextField class support. The column on the
left illustrates the hierarchy of the TextField support class, TextFieldCS. The column on the right
illustrates the hierarchy of the TextField class in the AWT toolkit:

In this example, a support class exists for every custom class, but this is not mandatory.

When UFT learns an object, it can always identify the class name of the object. According to the
class, UFT determines the inheritance hierarchy of this class. UFT then searches the toolkit
configuration files for the support class that is mapped to that class. If no support class is found,
UFT searches for a support class that is mapped to the support class' immediate superclass, and
so on, until a matching support class is found. Support classes can be provided by HP or any other
vendor. If no other support class is found, AWT objects are supported by theComponentCS class;
SWT objects are supported by theWidgetCS class.

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 43 of 221

The following example illustrates the hierarchy of the ImageButton class support. The column on
the left illustrates the hierarchy of the ImageButton support class, ImageButtonCS. The column on
the right illustrates the hierarchy of the ImageButton class in the AWT toolkit:

No support class is mapped to the superclass of ImageButton, ImageControl. Therefore, the
support class for ImageButton extends the support class mapped to the higher level—CanvasCS.

Determining Which Support Classes to Create
When determining which custom classes require support classes, youmust consider the
functionality and hierarchy of the custom classes.

If the support provided for a custom class' superclass is sufficient to support this custom class
(meaning the custom class has no specific behavior that needs to be specifically supported), there
is no need to create a support class for it.

Otherwise, youmust create a new support class that extends the superclass' support class and
map it to the custom class (in the toolkit configuration file described on page 34). In the new support
class you need to implement only those elements of support that are not sufficiently supported by
the superclass' support class.

If more than one custom class extends the same superclass, and they share an identification
property or test object method that requires the same support, provide this support in a support
class for the superclass, and not separately in each class' support class.

Determining Which Classes the New Support Classes Extend
To determine the existing support class that your new support class needs to extend, you examine
the hierarchy of the custom class and check which support classes aremapped to its
superclasses.

When you use the Java Add-in Extensibility wizards to create the custom toolkit support, the New
Custom Support Class wizard determines which class to extend for each support class you create.
It displays the custom class hierarchy and informs you which existing support class is the base
(superclass) for the new support class. For more information, see "Custom Class Selection
Screen" on page 86.

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 44 of 221

To determine the support class inheritance without the help of the Java Add-in
Extensibility wizard:

1. Determine the inheritance hierarchy of the custom class.

2. Search the toolkit configuration files for a support class that is already mapped to a superclass
of the custom class.

Youmust search the toolkit configuration files that are part of the UFT Java Add-in, as well as
in those that are part of Extensibility custom toolkit support. These files are located in <UFT
Installation Folder> bin\java\classes\builtin and in <UFT Installation Folder>
bin\java\classes\extension, respectively.

3. Create the support class for the custom class, extending the support class that you found
mapped to its closest superclass.

Note: If the closest support class you found is part of the UFT Java Add-in, it is located in
the com.mercury.ftjadin.support package. In this case, instead of extending it directly,
youmust extend the class with the same name provided in the
com.mercury.ftjadin.qtsupport package.

The example below uses the ImageButton custom control to illustrate the process of
determining the hierarchy of a support class.

This is the hierarchy of the ImageButton class:

ImageButton's nearest superclass, com.demo.ImageControl, is not mapped to a support
class. The next superclass, java.awt.Canvas is mapped to
com.mercury.ftjadin.support.awt.cs.CanvasCS. This is part of the UFT Java Add-in, so
ImageButtonCS will extend theCanvasCS class in the qtsupport package:
com.mercury.ftjadin.qtsupport.awt.cs.CanvasCS. This is the ImageButtonCS class
definition:

package com.mercury.ftjadin.qtsupport.imagecontrols.cs;
import com.mercury.ftjadin.qtsupport.awt.cs.CanvasCS;
...
public class ImageButtonCS extends CanvasCS {};

Note: If you design your support classes to extend support classes from another toolkit
support set, you create a dependency between the two toolkit support sets. Whenever you

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 45 of 221

select to load the extending toolkit support set in the UFT Add-in Manager, youmust also
select to load the toolkit support set that it extends.

Mapping a Custom Control to a Test Object Class
The test object class that is mapped to a custom control determines the identification properties
and test object methods that UFT uses for the control. The values and behavior of these properties
andmethods are determined by support methods implemented in the custom control's support
class.

You canmap the custom control to an existing test object class that has all of the identification
properties and test object methods relevant to the custom control. Alternatively, you can create a
new test object class definition (in a test object configuration file) andmap the custom control to the
new test object class.

Each new test object class is based on an existing one, extending its set of identification properties
and test object methods. All test object classes extend the JavaObject class. If an existing test
object class definition includes some, but not all, of the identification properties and test object
methods that you need, create a new test object class that extends it. (It is not recommended to
add identification properties and test object methods to an existing test object class because that
would affect all of the test objects of this class.)

Youmap the custom control to a test object class by implementing the to_class_attrmethod in the
support class, to return the name of the relevant test object class. If the test object class returned
by the inherited to_class_attrmethod is appropriate for the custom control, you do not have to
override the to_class_attrmethod in the new support class.

The to_class_attrmethod provides the value for theClass Name identification property. When
UFT learns an object, it finds the support class to use for this object, as described in
"Understanding the Hierarchy of Support Classes" on page 43. UFT then uses theClass Name
identification property to determine which test object class is mapped to this control. UFT then uses
this test object class name to find the test object definition, which can be taken from either an
existing UFT test object, or from a new test object configuration file that you create.

For more information, see "Understanding the Test Object Configuration File" on page 35.

Supporting Identification Properties
The identification properties of a custom control are defined in the test object class. This can be an
existing UFT test object class or one you define in a test object configuration file.

Support for the identification properties is provided in the support class by implementing amethod
with the following signature for each identification property:

public String <identification property name>_attr(Object obj)

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 46 of 221

Themethod namemust contain only lowercase letters (even if the property name in the test object
configuration file contains uppercase letters). The obj argument is the object that represents the
custom control.

Within themethod, you return the value of the required property by using the custom class's public
members. (Note that the support class can access only those custom class members that are
defined as public.)

For example, thewidth_attrmethod implements support for awidth identification property:

public String width_attr(Object obj) {
 return Integer.toString(((Component) obj).getBounds().width);
}

When your support class extends the support class of a functionally similar control, you do not have
to implement support for those identification properties that apply without change to the custom
control. For example, many controls have a label property. If the implemented support of the label
property adequately supports the custom control, you do not need to override the parent's method.

Youmight inherit (or create) support methods for identification properties that are not included in the
test object class definition. These identification properties are not displayed in UFT in the Object
Spy or in the Checkpoint Properties dialog box. You can access these identification properties by
using theGetROPropertymethod. For more information on theGetROPropertymethod, see the
HP UFT Object Model Reference for GUI Testing.

To support identification properties of the custom control that are not supported by the parent
support class, add new methods in your support class. To support identification properties that
have the same name as supported ones, but a different implementation, override the parent
methods.

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 47 of 221

Reserved Identification Properties
UFT uses a number of identification properties internally and expects them to have a specific
implementation:

l UFT supports the following identification properties for every test object class and uses these
properties to retrieve specific information about the object. Do not override UFT's
implementation of these identification properties in your toolkit support set: index (or class_
index), class (or class_name), to_class, toolkit_class.

l In JavaTree and JavaList test objects, there are identification properties named tree_content
and list_content (respectively) that are used in checkpoints. UFT calculates these properties
based on the count identification property and theGetItem test object method, as follows: UFT
retrieves the count identification property, and calls theGetItem test object method for each
item in the tree or list (from zero to count-1).

If you override the implementation of count_attr orGetItem_replayMethod, youmust make
sure that they return the type of information that UFT expects. For example, count_attrmust
return a numeric value andGetItem_replayMethodmust return an item for each index from
zero to count-1.

If youmap a custom control to the JavaTree or JavaList test object classes, and the custom
support class does not inherit the count_attr andGetItem_replayMethodmethods, youmust
implement them to return the information that UFT expects.

Common Identification Property Support Methods
The following basic identification property support methods are commonly used when creating
support classes. In "Tutorial: Learning to Create Java Custom Toolkit Support" on page 122, you
can practice using some of thesemethods:

l The to_class_attrmethod (described in "Mapping a Custom Control to a Test Object Class" on
page 46) supports theClass Name identification property. It provides themapping of the
custom control to a test object class, by returning the name of the relevant test object class.
UFT uses this property to determine which test object class is mapped to the custom control.

l The name of a test object is determined by its tag property. All AWT support classes extend
ObjectCS. ObjectCS implements the tag_attrmethod to check a set of properties in a specified
order and to return the first valid value it finds. A valid value is one that is not empty and does not
contain spaces.

In the ObjectCS class, the tag_attrmethod checks the following properties (in the order in which
they are listed):

n label

n attached_text (for more details, see below)

n unqualified custom class (the name of the class without the package name)

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 48 of 221

To change the name of a custom control test object, do not override the tag_attrmethod in the
support class. Instead, make use of its existing implementation and override themethod label_
attr.

l ObjectCS, which all AWT support classes extend, also implements the attached_text_attr
method. It searches for adjacent static-text objects close to the custom control and returns their
text. This mechanism is useful for controls such as edit boxes and list boxes, which do not have
their own descriptive text, but are accompanied by a label.

You can create support for a custom static-text control to enable UFT to use its label property
as the attached text for an adjacent control. For more information, see "New UFT Custom
Static-Text Support Class Wizard" on page 110.

l The class_attrmethod returns the name of the test object's generic type (object, button, edit,
menu, static_text, and so forth). This is not the specific test object class mapped to the object,
but the general type of test object class. If you are creating a support class for a static-text
control, youmust implement the class_attrmethod to return the string static_text. Otherwise,
do not override it.

l The value_attrmethod is not mandatory, but it implements the value identification property,
which is commonly used to represent the current state of the control. For example, the value_
attrmethodmay return the name of the currently selected tab in a tab control, the path of the
currently selected item in a tree, the currently displayed item in amenu, and so forth. If you are
creating a new test object class, and the term current state is relevant, implement support for a
value identification property. If your support class inherits a value_attrmethod, verify that its
implementation is correct for the supported control.

Supporting Test Object Methods
The test object methods of a custom control are defined in the test object class. This can be an
existing UFT test object class or one you define in a test object configuration file.

Support for the test object methods is provided in the support class by implementing a replay
method with the following signature for each test object method:

public Retval <test object method name>_replayMethod(Object obj, <... list of
String arguments>)

The obj argument is the object that represents the custom control.

Replay methods accept only strings as arguments, and UFT passes all arguments to them in a
string format. To use the boolean or numeric value of the argument, useMicAPI.string2int.

Within the replay method, you carry out the required operation on the custom control by using the
custom class public methods or by dispatching low-level events usingMicAPI methods. (Note that
the support class can access only those custom class methods that are defined as public.) For
more information, see theUFT Java Add-in Extensibility API Reference (available with the Java
Add-in Extensibility SDK Help).

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 49 of 221

For example, Click_replayMethod (in the ImageButtonCS class), supports theClick test object
method on an ImageButton custom control:

public Retval Click_replayMethod(Object obj) {
 ImageButton button = (ImageButton) obj;
 MicAPI.mouseClick((Object) button, button.getWidth() / 2,

button.getHeight() / 2);
 Return Retval.OK;
}

All replay methods must return aMicAPI.Retval value. TheRetval value always includes a return
code, and can also include a string return value. The return code provides information to UFT about
the success or failure of the test object method. The return value can be retrieved and used in later
steps of a UFT GUI test.

For example, the GetItem_replayMethod in the SearchBoxCS class (that supports the SearchBox
custom control) returns the name of a specified item in addition to the return codeOK:

public Retval GetItem_replayMethod(Object obj, String Index) {
 SearchBox sb = (SearchBox) obj;
 int indexint;
 String item;
 indexint = MicAPI.string2int(Index);
 if (indexint == MicAPI.BAD_STRING) {
 return Retval.ILLEGAL_PARAMETER;
 }
 if (indexint < 0 || indexint > sb.getItemCount() - 1) {
 return Retval.OUT_OF_RANGE;}
 item = sb.getItem(indexint);
 return new Retval(RError.E_OK, item);
}

Formore information on theMicAPI.Retval values recognized by UFT, see theUFT Java Add-in
Extensibility API Reference (available with the Java Add-in Extensibility SDK Help).

When your support class extends the support class of a functionally similar control, you do not have
to implement support for those test object methods that apply without change to the custom control.
For example, many controls have aClick test object method. If the implemented support of the
Click test object method adequately supports the custom control, you do not need to override the
parent's method.

To support test object methods of the custom control that are not supported by the parent support
class, add new methods in your support class. To support test object methods that have the same
name as supported ones, but a different implementation, override the parent methods.

Do not override the implementation of fundamental UFT methods, such as: CheckProperty,
FireEvent, GetRoProperty, GetTOProperty, SetTOProperty, andWaitProperty.

Note:When supporting JavaTree and JavaList test objects, youmust make sure that the

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 50 of 221

count_attr andGetItem_replayMethodmethods return the type of information that UFT
expects. For more information, see "Reserved Identification Properties" on page 48.

Supporting the Record Option
You can extend UFT support of the recording option only for controls that extend AWT.

If you do not implement support for recording, you still have full support for all of the other UFT
capabilities on the custom control, for example, learning the object, running tests on it, checking
properties and values, and so forth.

To support recording on a custom control, the custom support class must:

l Implement listeners for the events that you want to trigger recording.

l Register the listeners on the custom controls when the are created.

l Send Record events to UFT when the relevant events occur.

l Override low-level recording if you want to recordmore complex operations. For example, if you
want to record a JavaEdit.Set operation, youmust override the recording of individual keyboard
inputs. If you want to record selecting an option in amenu, youmust override recording of mouse
clicks.

In "Tutorial: Learning to Create Java Custom Toolkit Support" on page 122, you can practice
creating support for recording on custom controls.

To add support for recording to a custom support class:

1. Include the listeners in the support class signature. For example, the ImageButton support
class ImageButtonCS listens for Action events:

public class ImageButtonCS extends CanvasCS implements ActionListener {}

2. Use a constructor for the support class to generate a list containing all of the listeners that you
want to register on the custom control, and themethods used to add and remove these
listeners.

You do this by calling the utility method addSimpleListener for each listener. This method
accepts three arguments of type String: The name of the listener, the name of the registration
method, and the name of themethod used to remove the listener.

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 51 of 221

In the example below, the Action listener is listed for registration on ImageButton custom
controls:

public ImageButtonCS() {
 addSimpleListener("ActionListener", "addActionListener", "removeActionL
istener");
}

The first time UFT identifies the custom control, it creates an instance of the support class for
this custom control. This instance of the support class is used to support all subsequent
controls of this custom class. Whenever a custom class instance is created, the support class
registers the required listeners on the object using the registrationmethods you specified.

3. Override low-level recording (optional):

To override recording of low-level mouse events:

protected Object mouseRecordTarget(MouseEvent e) {
 return null;
}

To override recording of low-level keyboard events:

protected Object keyboardRecordTarget(KeyEvent e) {
 return null;
}

4. Implement the relevant event handler methods from the listener interface, to send record
messages to UFT, using theMicAPI.recordmethods.

For information on how to useMicAPI.record, see theUFT Java Add-in Extensibility API
Reference (available with the Java Add-in Extensibility SDK Help).

For example, the following event handler method is implemented in ImageButtonCS, the
support class for ImageButton:

public void actionPerformed(ActionEvent e)
{
 try {
 if (!isInRecord())
 return;
 MicAPI.record(e.getSource(), "Click");
 } catch(Throwable tr)

{ tr.printStackTrace();

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 52 of 221

 }
}

When an Action event occurs on an ImageButton, UFT records aClick operation on the
ImageButton.

The try ... catch block prevents unnecessary activity if this code is reached when the Java
application is running while UFT is idle. The stack trace is printed to the same log file as other
Java Add-in Extensibility logmessages, enabling you to determine when this method was
called inadvertently. For more information, see "Logging and Debugging the Custom Support
Class" on page 65.

For information on recording on wrapper controls, see "SupportingWrapper Controls" on the
next page.

Note: IfMicAPI.record is called when there is no active UFT recording session, nothing
happens. If you perform additional calculations or assignments before calling
MicAPI.record, make sure that you first call isInRecord to determine whether a recording
session is active. If no recording session is active, youmay want to avoid certain
operations.

Supporting Top-Level Objects
If you want UFT to recognize the custom control as the highest Java object in the test object
hierarchy, you need to inform UFT that this Java control is a top-level object. You do this by
overriding the utility method isWindow(Object obj) in the support class to return true. In the
following example, the JavaApplet AllLights is a top-level Java object.

Only a container object can be a top-level object. A container object is one that extends
java.awt.container if it is AWT-based, or org.eclipse.swt.widgets.Composite if it is SWT-based.

If the control is a top-level object only in some situations, you can implement the isWindowmethod
to return true in some situations and false in others. For example, an applet can be a standalone
application or an object within aWeb browser.

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 53 of 221

Supporting Wrapper Controls
A wrapper control is a container control that groups the controls within it and represents them as a
single control. An example of wrapper control is the AwtCalc calculator control.

When UFT learns a wrapper control, it does not learn the controls within it separately as
descendants. If you record a test on a wrapper control, events that occur on the controls within it
are recorded as operations on the wrapper control.

Note: Only AWT-based controls can be supported on UFT as wrapper controls. If the custom
control is SWT-based, it is always learned with all of its descendants.

For example, the AwtCalc calculator control contains simple buttons for digits and operators. In a
recording session on this control, youmight want simpleClick operations to be interpreted as more
meaningful calculator-oriented operations. You can use Java Add-in Extensibility to instruct UFT to
record clicks on digit buttons as Calculator.SetValue steps, and clicks on operator buttons as
Calculator.SetOperator steps.

Understanding How UFT Handles Wrapper Controls

Wrapper controls must register themselves as wrappers for the types of controls that they wrap.

Before UFT learns a control as a descendant, UFT checks if any wrappers are registered for this
type of control. If there are registered wrappers, UFT searches for the one to which this particular
control belongs. UFT performs this search by calling the checkWrappedObjectmethod of each
registered wrapper. If UFT finds a relevant wrapper, UFT does not learn the descendant control. If
no relevant wrapper is found, UFT learns the descendant control.

When a control is learned separately (by clicking on the specific control), UFT does not check for
wrappers.

Similarly, before UFT records an operation on a control, UFT checks if any wrappers are registered
for this type of control. If there are registered wrappers, UFT searches for the one to which this
particular control belongs. If UFT finds a relevant wrapper, UFT passes the recordmessage to the

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 54 of 221

wrapper control before adding a step to the test. If no relevant wrapper is found, the operation is
recorded as is.

When the wrapper receives a recordmessage (triggered by an operation performed on one of its
wrapped objects), it can do one of the following:

l Discard themessage to prevent the recording of the operation.

l Modify themessage to record a different operation.

l Leave themessage as is to record the operation without intervention.

The following section describes how this mechanism is implemented, using the AwtCalc wrapper
control as an example. After support for the AwtCalc control is implemented, a test recorded on the
control could look like this:

Implementing Support for Wrapper Controls

If you want to support a wrapper control, youmust implement the
com.mercury.ftjadin.infra.abstr.RecordWrapper interface inMicAPI. This interface includes the
followingmethods:

l public void registerWrapperInspector()

l public Object checkWrappedObject(Object obj)

l public RecordMessage wrapperRecordMessage(RecordMessage message, Object
wrapper)

l public boolean blockWrappedObjectRecord()

The sections below describe each of thesemethods in detail.

public void registerWrapperInspector()
The registerWrapperInspectormethod is used to register as a wrapper for the relevant types of
controls.

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 55 of 221

For example, the AwtCalcCS support class registers itself as a wrapper of Button:

public void registerWrapperInspector() { MicAPI.registerWrapperInspector(
Button.class, this);}

The AwtCalcCS is registered as a wrapper forButton controls only, therefore operations on the
AWT Calculator label or on the edit box will be recorded without any wrapper intervention. In
addition, when the AwtCalc control is learned, the label and edit box are learned as its descendants.

public Object checkWrappedObject(Object obj)
UFT calls the checkWrappedObjectmethod to check whether a specific object belongs to the
custom control. The support class implements this method to return the specific wrapper instance if
obj is wrapped by the custom control. Otherwise, it returns null.

For example, the checkWrappedObjectmethod in AwtCalcCS is implemented, as follows:

public Object checkWrappedObject(Object obj) {
Component comp = (Component)obj;
if (comp.getParent().getClass().getName().equals("org.boutique.toolkit.AwtCa
lc"))
 return comp.getParent();
return null;
}

public RecordMessage wrapperRecordMessage(RecordMessage
message, Object wrapper)
UFT calls thewrapperRecordMessagemethod during a recording session when a wrapped object
sends a recordmessage. UFT passes the recordmessage to the wrapper control before adding a
step to the test.

This method returns one of the following:

l null, indicating that this message should be ignored and no step should be recorded

l amodified recordmessage to be sent instead of the original one

l the original recordmessage

For example, in thewrapperRecordMessagemethod in AwtCalcCS, if the operation to record is
on a button, themethod replaces it with the appropriate operation to record—Reset, Enter,
SetOperator or SetValue (with the appropriate parameters). If the operation in the recordmessage is
on a label or text field, AwtCalc does not interfere with the recording.

public RecordMessage wrapperRecordMessage(RecordMessage message, Object wrap
per) {

 Object subject = message.getSubject();

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 56 of 221

 if (subject instanceof Button) {

 // Get the label of the button

 String value = ((Button) subject).getLabel().trim();

 String operation;

 // Select what method will be recorded and with what parameters

 if (value.equals("=")) {

 return RecordMessage.getRecordMessageInstance(wrapper,"Enter");

 }

 if (value.equals("C")) {

 return RecordMessage.getRecordMessageInstance(wrapper,"Reset");

 } else {

 if (value.equals("+") || value.equals("-") || value.equals("x")

 || value.equals("/") || value.equals("^")

 || value.equals("sqrt"))

 operation = "SetOperator";

 else

 operation = "SetValue";

 }

 String params[] = new String[1];

 params[0] = value;

 RecordMessage res =
RecordMessage.getRecordMessageInstance(wrapper, operation,
params, AgentRecordMode.NORMAL_RECORD);

 return res;

 }

 // AwtCalc does not interfere if the message is not from a button

 return message;

}

boolean blockWrappedObjectRecord()
When the blockWrappedObjectRecordmethod returns false, the controls contained in the
wrapper generate recordmessages in response to events as if they were independent controls.
UFT then calls wrapperRecordMessage to pass the recordmessages it receives from wrapped
controls to the wrapper. The wrapper can then decide whether to discard themessage, modify it, or

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 57 of 221

record the operation as is.

When the blockWrappedObjectRecordmethod returns true, it causes all of the controls
contained in the wrapper to ignore all events. The wrapped controls do not send any record
messages to UFT, andwrapperRecordMessage is never called.

If blockWrappedObjectRecord returns null, and you want the wrapper to record events that occur
on the objects it contains, the wrapper itself must register new event listeners on the wrapped
objects. Then it must handle the events to generate the appropriate test steps (using
MicAPI.record) during a recording session.

Support Class Summary
The following table summarizes the types of methods you use in a custom support class. For more
information, see theUFT Java Add-in Extensibility API Reference (available with the Java Add-in
Extensibility SDK Help).

Method Type Syntax Common Methods

Identification
property
methods

public String <identification property
name>_attr(Object obj)

to_class_attr

tag_attr

label_attr

attached_text_attr

class_attr

value_attr

Test Object
Methods

public Retval <test object method name>_
replayMethod(Object obj, <... list of
String arguments>)

Event
Handling
methods

Dependent on the listener that is being
implemented.

Call MicAPI.record from
the event handler
methods.

Utility
methods to
use

protected void addSimpleListener(String listenerName, String
addMethodName, String removeMethodName)

public static final boolean isInRecord()

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 58 of 221

Method Type Syntax Common Methods

Utility
methods to
override

public boolean isWindow(Object obj)

protected Object mouseRecordTarget(MouseEvent e)

protected Object keyboardRecordTarget(KeyEvent e)

public boolean blockWrappedObjectRecord()

public void registerWrapperInspector()

public Object checkWrappedObject(Object obj)

public RecordMessage wrapperRecordMessage(RecordMessage message,
Object wrapper)

Using Methods from MicAPI
MicAPI contains several sets of methods that you can use in the custom support classes to provide
the following types of functionality:

l Dispatching low-level events. Thesemethods includeMouseClick, KeyType, and postEvent.
Thesemethods are commonly used in replay methods.

l Recording custom control operations on UFT. Thesemethods are commonly used in event
handler methods.

l Loggingmessages and errors from the support classes. Thesemethods are used throughout the
custom support class, to print log and error messages. For more information, see "Logging and
Debugging the Custom Support Class" on page 65.

To use themethods provided inMicAPI, add an import com.mercury.ftjadin.custom.MicAPI;
statement in your code. For details on thesemethods, see theUFT Java Add-in Extensibility API
Reference (available with the Java Add-in Extensibility SDK Help).

Deploying and Running the Custom Toolkit Support
The final stage of extending UFT support for a custom toolkit is deployment. This means placing all
of the files you created in the correct locations, so that the custom toolkit support is available to
UFT.

You can also deploy the toolkit support during the development stages, to test how it affects UFT
and debug the custom toolkit support set that you are creating.

About Deploying the Custom Toolkit Support
From the UFT user's perspective, after you deploy the toolkit support set on a computer on which
UFT is installed, the toolkit support set can be used as a UFT add-in.

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 59 of 221

WhenUFT opens, it displays the custom toolkit name in the Add-in Manager, as a child node under
the Java Add-in node. Select the check box for your custom toolkit to instruct UFT to load support
for the toolkit using the toolkit support set that you developed.

Note: Only applications that are opened after loading or unloading support for the custom
toolkit are affected.

If you do not load the support for your custom toolkit, the code that you designed in your toolkit
support set does not run.

If you load support for your custom toolkit:

l UFT recognizes the controls in your custom toolkit and can run test steps on them.

l UFT displays the name of your custom toolkit in theEnvironment list in all of the dialog boxes
that display lists of add-ins or supported environments.

l UFT displays the list of test object classes defined by your toolkit support set in dialog boxes
that display the list of test object classes available for each add-in or environment. (For example:
Define New Test Object dialog box, Object Identification dialog box.)

Note: Test object classes defined in a toolkit support set that was developed using a Java
Add-in Extensibility SDK version earlier than 10.00 are displayed in the UFT dialog boxes
as Java test object classes. To cause UFT to display these test object classes under the
correct environment name, change thePackageName attribute in the test object
configuration file to the name of the custom toolkit, as it appears in the Add-in Manager.
Additionally, if an index identification property is implemented for any test object classes in
the toolkit support set, remove this implementation to enable the use of theGenerate
Scripts button in the Object Identification dialog box.

Deploying the Custom Toolkit Support
The following table describes the appropriate location for each of the toolkit support files:

File Name Location

<Custom Toolkit Name>.xml <UFT Installation
Folder>\bin\java\classes\extension

<Custom Toolkit Name>TestObjects.xml
Optional. Required only if mapping custom
classes to new test object classes.

Note: This file name convention is used by the
Java Add-in Extensibility wizard. You can
havemore than one test object configuration
file, and name them as you wish.

l <UFT Installation
Folder>\Dat\Extensibility\Java

l <Unified Functional Testing Add-in for
ALM Installation Folder>\Dat\
Extensibility\Java
(Optional. Required only if Unified Functional
Testing Add-in for ALM is installed.)

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 60 of 221

File Name Location

<Custom Toolkit Name>Support.class All of the compiled Java support classes can be
packaged in class folders or Java archives on
the computer on which UFT is installed, or in an
accessible network location.

Specify the location in <Custom Toolkit
Name>.xml.

<CustomClass>CS.class

Icon files for new test object classes
(optional)

The file can be a .dll or .ico file, located on the
computer on which UFT is installed, or in an
accessible network location.

Specify the location in <Custom Toolkit
Name>TestObjects.xml.

Deploying Custom Support During the Development Stage
During the design stages of the custom toolkit support, the support class files can remain in your
workspace. You deploy the custom toolkit support by placing the toolkit configuration files
(including the test object configuration file) in the correct locations, and by specifying the location of
the compiled support classes in the toolkit configuration (XML) file. In addition, if your new test
object classes use specific icons, specify their locations in the test object configuration file.

Note: Compile the support classes before deploying and check for compilation errors, to avoid
run-time failure.

If youmodify attributes of Identification Property elements in the test object configuration file, it is
recommended to keep theDevelopmentMode attribute of the TypeInformation element set to
true during the design stages of the custom toolkit support. For more information, see "Modifying
Identification Property Attributes in a Test Object Configuration File" on page 63.

If you develop custom toolkit support using the UFT Java Add-in Extensibility plug-in in Eclipse,
and UFT is installed on your computer, you deploy toolkit support by clicking theDeploy Toolkit

Support Eclipse toolbar button, or by choosingUFT > Deploy Toolkit Support. The XML
configuration files are copied to the correct UFT locations, while the Java class files remain in the
Eclipse workspace. (The actual locations of the toolkit support class and the custom support
classes are listed in the toolkit configuration file.) For details on deploying support using the Eclipse
plug-in, see "Deploy Toolkit Support " on page 115.

If you do not use the UFT Java Add-in Extensibility plug-in in Eclipse, or if UFT is installed on
another computer, youmust perform the deployment manually, according to the information in the
table on page 59.

To deploy custom support manually during the development stages:

1. Make sure that the compiled support classes (toolkit support class and custom support
classes) are in a location that can be accessed by UFT.

2. Update the configuration files with the correct locations of the compiled support classes and

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 61 of 221

icon files (if relevant).

3. Copy the configuration files to the appropriate folders, as described in the table on page 59.

Deploying Custom Support After the Design is Completed
When the custom toolkit support is fully designed, you can deploy it to any computer on which UFT
is installed.

If you set theDevelopmentMode attribute of the TypeInformation element in the test object
configuration file to truewhile developing the custom toolkit support, make sure to remove this
attribute (or set it to false) before deploying the custom support for regular use. For more
information, see "Modifying Identification Property Attributes in a Test Object Configuration File" on
the next page.

To deploy custom support after the design is completed:

1. Place the compiled support classes (toolkit support class and custom support classes) in their
permanent location. The classes can be in class folders or in a Java archive, in a location that
can be accessed by UFT.

In addition, if you have new test object classes using specific icons, place the icon files in a
location that can be accessed by UFT.

2. Update the toolkit configuration file with the correct location of the compiled support classes.

If necessary, update the test object configuration file with the correct location of the icon files.

3. Copy the configuration files to the appropriate folders, as described in the table on page 59.

Running an Application with Supported Custom Controls
After you deploy the custom toolkit support, you can perform UFT operations on an application that
contains the supported custom controls to test the effects of the support.

You can run the application in any way you choose.

If you run an SWT application from Eclipse using a version earlier than 3.3, Eclipse overrides the
Java library path to add the SWT dll. Therefore, youmust add the jvmhook.dll path (required by the
Java Add-in) to the library pathmanually.

To add the jvmhook.dll path to the library path (when working with Eclipse versions earlier
than 3.3):

1. Right-click the application file in the Eclipse Package Explorer. Select Run As >
SWT Application.

2. In the Eclipse toolbar, select Run > Run. The Run dialog box opens.

3. Select the SWT application in theConfigurations list.

4. Click theArguments tab.

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 62 of 221

5. In the VM arguments area, enter:

-Djava.library.path=<System Folder>\system32

(For example: -Djava.library.path=c:\WINNT\system32)

6. Close the application and run the application again. (Right-click the application file in the
Eclipse Package Explorer and select Run As > SWT Application).

Modifying Deployed Support
If youmodify a toolkit support set that was previously deployed to UFT, the actions youmust
perform depend on the type of change youmake, as follows:

l If youmodify the toolkit configuration file or a test object configuration file, youmust deploy the
support.

l If youmodify a test object configuration file, youmust reopen UFT after deploying the support.

l Whether youmodify the configuration files or only the Java support classes, youmust re-run the
Java application for the changes to take effect.

Modifying Identification Property Attributes in a Test Object
Configuration File

The following attributes of the Identification Property element in the test object configuration file
specify information that can bemodified in UFT (using the Object Identification dialog box):
AssistivePropertyValue, ForAssistive, ForBaseSmartID, ForDescription,
ForOptionalSmartID, andOptionalSmartIDPropertyValue. These attributes determine the lists
of identification properties used for different purposes in UFT. For more information, see theUFT
Test Object SchemaHelp, available in the UFT Java Add-in Extensibility Help.

Therefore, by default, UFT reads the values of these attributes from the XML file only once, to
prevent overwriting any changes a user makes using the Object Identification dialog box. In this
way, UFT provides persistence for the user defined property lists.

If the user clicks theReset Test Object button in the Object Identification dialog box, the attributes'
values are reloaded from the XML.

If the XML changed since the last time it was loaded (based on the file's modification date in the
system), UFT reads the attributes from the XML. UFT adds identification properties to the relevant
lists (and adjusts their order if necessary) according to the values of these attributes, but does not
remove any existing identification properties from the lists.

To instruct UFT to completely refresh the identification property lists according to the attributes
defined in the XML each time UFT is opened, set theDevelopmentMode attribute of the
TypeInformation element in this test object configuration file to true.

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 63 of 221

Considerations When Modifying Identification Properties Attributes

l If youmodify attributes of Identification Property elements in the test object configuration file,
keep theDevelopmentMode attribute of the TypeInformation element set to true during the
design stages of the custom toolkit support. This ensures that UFT uses all of the changes you
make to the file.

l Before you deploy the toolkit support set for regular use, be sure to remove the
DevelopmentMode attribute of the TypeInformation element (or set it to false). Otherwise,
every time UFT opens it will refresh the property lists based on the definitions in the test object
configuration file. If UFT users change the property lists using the Object Identification dialog
box, their changes will be lost when they reopen UFT.

l Though UFT does not remove existing properties from the property lists when reading amodified
test object configuration file (unless theDevelopmentMode attribute is set to true), it does add
properties and adjust the order of the lists based on the definitions in the file. If UFT users
removed properties from the lists or modified their order using the Object Identification dialog
box, those changes will be lost when amodified file is loaded.

If you provide the custom toolkit support set to a third party, and you deliver an upgrade that
includes amodified test object configuration file, consider informing the UFT users about such
potential changes to their identification property lists.

Removing Deployed Support
When opening UFT, the UFT user can use the Add-in Manager to instruct UFT whether to load the
support provided for any particular toolkit. If the support for your custom toolkit is not loaded, the
code that you designed in your toolkit support set does not run, and the test object classes that you
defined in the test object configuration file are not available in UFT.

l If you want to remove support for a custom toolkit from UFT after it is deployed, youmust delete
its toolkit configuration file from: <UFT Installation Folder> bin\java\classes\extension

l If none of the test object class definitions in a test object configuration file aremapped to any
custom controls (meaning they are no longer needed), you can delete the file from:
<UFT Installation Folder>\Dat\Extensibility\Java (and <Unified Functional Testing Add-in
for ALM Installation Folder>\Dat\Extensibility\Java if relevant).

l If you want to remove only parts of the custom toolkit support that you created, consider the
following:

n To remove support for a specific custom class, delete its custom support class, and remove
the references to this support class from the toolkit configuration file.

Before you delete a custom support class, make sure that no other custom support classes
extend it.

n To remove a new test object class that you defined, remove its definition from the test object
configuration file.

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 64 of 221

Before you remove the definition of a test object class, make sure that no custom classes are
mapped to this test object class and that no other test object classes extend it.

n To remove support for test object methods or identification properties that you added, remove
the relevant support methods from your custom support class.

Removing support for test object methods or identification properties from the support class
does not remove them from the test object class definition. They are available in UFT when
editing tests but are not supported for this custom class.

n To remove your custom support for test object methods or identification properties whose
implementation you overrode, remove the relevant support methods from your custom
support class.

n To remove test object methods or identification properties from the test object class
definition, remove them from the test object configuration file.

Logging and Debugging the Custom Support Class
When you design your support classes, it is recommended to include writingmessages to a log file,
to assist in debugging any problems that may arise.

Use theMicAPI.logLinemethod to sendmessages to the log file. For more information, seeUFT
Java Add-in Extensibility API Reference (available with the Java Add-in Extensibility SDK Help).

To control the printing of the logmessages (to prevent all messages from being printed at all times),
you create debug flags in each support class. When you callMicAPI.logLine, you provide the
appropriate debug flag as the first argument.MicAPI.logLine prints the logmessages only when
the debug flag that you specified is on.

The following example illustrates how to print logmessages in a support class:

private static final String DEBUG_ALLLIGHTSCS = "DEBUG_ALLLIGHTSCS";
public String light_on_positions_attr(Object obj) {
 AllLights lights = (AllLights) obj;
...
 for (int i = 0; i < 5; i++) {
 for (int j = 0; j < 5; j++) {
 if(lights.isSet(j, i)) {
 MicAPI.logLine(DEBUG_ALLLIGHTSCS, "Light "+i+":"+j+" is se
t");
...
 }
 }
 }
}

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 65 of 221

In UFT, you create a test with the following two lines and run it to control the logging. Within the
test, list the flags to turn on and the file to which themessages should be written:

javautil.SetAUTVar "sections_to_debug", "DEBUG_ALLLIGHTSCS"
javautil.SetAUTVar "debug_file_name", "C:\JavaExtensibility\Javalog.txt"

If you want to turn onmore than one flag simultaneously, enter all of the flag strings consecutively
in the second argument (separated by spaces), as in the following example:

javautil.SetAUTVar "sections_to_debug", "DEBUG_ALLLIGHTSCS DEBUG_AWTCALC"

Themessages printed by MicAPI.logLine, according to the flags you set, are printed to the
specified file when the support class runs. To change the flags controlling the log printing, or to
change the file to which they are written, run the UFT GUI test again with the appropriate
arguments.

Debugging Your Custom Toolkit Support
The Java support classes run in the context of the application you are testing. Therefore, if you
want to debug your support classes, you can do so in the sameway as you would debug the
application itself.

To begin debugging, place breakpoints within the support classes, run the application as though you
were debugging it, and perform different UFT operations on the application to reach the different
parts of the support classes.

If the application code is stored in Eclipse, you can run it in debugmode from Eclipse. (Right-click
the application file and select Debug As > Java Applet (orApplication) orDebug As > SWT
Application.)

If the application code is not stored in Eclipse, use remote debugging on the application to debug
the support classes. For information on remote debugging, see theEclipse Help.

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 66 of 221

Workflow for Implementing Java Add-in Extensibility
The following workflow summarizes the steps you need to perform to create UFT Java Add-in
Extensibility support for a custom toolkit, and the order in which you need to perform them. Follow
these steps for each custom toolkit you want to support:

* You can use the wizards in the UFT Java Add-in Extensibility Eclipse plug-in to create the custom
toolkit support project, the custom classes, and all of the required files. Alternatively, if you choose
not to use the wizards, youmust create the necessary packages and files manually, as described
in "Creating a Custom Toolkit Support Set" on page 31. In addition, if you then decide tomap
custom classes to new test object classes, youmust define the new test object classes in a test
object configuration file.

Developer Guide
Chapter 3: Implementing Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 67 of 221

Chapter 4: Planning Custom Toolkit Support
Before you begin to create support for a custom toolkit, youmust carefully plan the support.
Detailed planning of how you want UFT to recognize the custom controls enables you to correctly
build the fundamental elements of the custom toolkit support. It is important to plan all of the details
before you begin. Making certain changes at a later stagemight require intricate manual changes, or
even require you to recreate the custom support.

Note: This chapter assumes familiarity with the concepts presented in "Implementing Custom
Toolkit Support" on page 28.

This chapter includes:

About Planning Custom Toolkit Support 69

Determining the Custom Toolkit Related Information 69

Determining the Support Information for Each Custom Class 69

Where Do YouGo from Here? 73

HP UFT Java Add-in Extensibility (12.00) Page 68 of 221

About Planning Custom Toolkit Support
Creating custom toolkit support is a process that requires detailed planning. To assist you with this,
the sections in this chapter include sets of questions related to the implementation of support for
your custom toolkit and its controls. When you are ready to create your custom toolkit support, you
will be implementing support for it based on the answers you provide to these questions.

The first step is determining general information related to your custom toolkit, after which you will
define the specific information related to each custom class you want to support.

Determining the Custom Toolkit Related Information
To plan the details related to the custom toolkit answer the following questions:

l What is the name of the custom toolkit?

Provide a unique name for the custom toolkit. After you develop the support and deploy it to
UFT, UFT displays the custom toolkit name in all of the dialog boxes that display lists of add-ins
or supported environments. For example, when UFT opens, it displays the custom toolkit name
as a child of the Java Add-in in the Add-in Manager dialog box and the UFT user can specify
whether to load support for that toolkit.

l What custom classes are included in the custom toolkit?

List the locations of the custom classes. The locations can be Eclipse projects, Java archive
files or class folders.

For the rules on grouping custom classes into toolkits you can support, see " Preparing to Create
Support for a Custom Toolkit" on page 30.

l What native toolkit (or existing supported toolkit) does the custom toolkit extend?

Note:When all of the classes in a custom toolkit extend the basic user interface class of
another toolkit (for example java.awt.Component) we say the custom toolkit extends that
toolkit (in this example: AWT).

l In what order do you want to create support for the different classes within the toolkit?

For information on how to answer this question, see "Determining the Inheritance Hierarchy for a
Support Class" on page 43.

Determining the Support Information for Each Custom
Class

Before you begin planning the support for a custom class, make sure you have full access to the
control and understand its behavior. Youmust have an application in which you can view the control

Developer Guide
Chapter 4: Planning Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 69 of 221

in action, and also have access to the custom class that implements it.

You do not need tomodify any of the custom control's sources to support it in UFT, but you do need
to be familiar with them. Make sure you know whichmembers (fields andmethods) you can access
externally, the events for which you can listen, and so forth.

When planning custom support for a specific class, carefully consider how you want UFT to
recognize controls of this class—what type of test object you want to represent the controls in
UFT GUI tests, which identification properties and test object methods you want to use, and so
forth. The best way to do this is to run the application containing the custom control and to analyze
the control from aUFT perspective using the Object Spy, the Keyword View, and the Record
option. This enables you to see how UFT recognizes the control without custom support, and helps
you to determine what you want to change.

To view an example of analyzing a custom control using UFT, see "Analyzing the Default UFT
Support and Extensibility Options for a Sample Custom Control" on page 16.

Understanding the Custom Class Support Planning
Checklist

When you plan your custom support for a specific class, youmust ask yourself a series of
questions. These are explained below and are available in an abbreviated, printable checklist on
page 72.

Note: Questions 1, 4, and 5 are fundamental to the design of the custom toolkit support.
Changing the answers to these questions after creating support may require you tomake
complex manual changes, or even to recreate the custom support.

1. Make sure you select the correct custom class to support:

a. Does the custom class have a superclass for which UFT custom support is not yet
available?

b. Does the custom control have identification properties or test object methods that require
the sameUFT support as other controls that extend the same superclass?

If so, consider creating support for the superclass first.

2. Make sure you have access to custom class sources and to an application that runs the
custom control on a computer with UFT installed.

3. Make sure you have access to the compiled custom class on the computer on which you are
programming. The classes can be in class folders, a Java archive, or an Eclipse project.

4. Is there an existing Java test object class which adequately represents the custom control? If
so, which one?

Developer Guide
Chapter 4: Planning Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 70 of 221

5. If not, you need to create a new test object class:

a. Is there an existing Java object class which can be extended to represent the custom
control? If so, which one? If not, your new test object class needs to extend the
JavaObject class.

Note: If you create test object classes that extend test object classes defined in
another toolkit support set, you create a dependency between the two toolkit support
sets. Whenever you select to load the extending toolkit support set in the UFT Add-in
Manager, youmust also select to load the toolkit support set that it extends.

b. Do you want UFT to use a different icon for the new test object?
If so, make sure the icon file is available in an uncompressed .ico format.

c. Specify one or more identification properties that can be used to uniquely identify the
control (in addition to the test object class and the fully qualified Java class name of the
control).

d. Specify the default test object method to be displayed in the Keyword View and Step
Generator when a step is generated for an object of this class.

6. Do you want UFT to recognize the custom control as a top-level Java test object?

7. Does the custom control contain objects that are significant only in the context of this control
(meaning, is it a wrapper)? (For example, a Calculator object is a wrapper for the calculator
button objects.)

8. Specify the basis for naming the test object that represents the control.

9. List the identification properties you want to support.

If you are creating a new test object class, also decide which properties should be selected by
default in the Checkpoint Properties dialog box in UFT.

10. List the test object methods you want to support. Specify themethod argument types and
names, and whether it returns a value in addition to the return code.

11. If the custom control is AWT-based, do you want to provide support for creating UFT GUI tests
by using the Record option?

If so, list the events you want to record on the custom control during a UFT recording session.

Developer Guide
Chapter 4: Planning Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 71 of 221

Custom Class Support Planning Checklist
Use this checklist to plan your custom class toolkit support.

Custom Class Support Planning Checklist

q Does the custom class have a superclass for which UFT custom support is not yet
available? Yes /No

q If so, should I first extend support for a control higher in the hierarchy? Yes /No

q Do I have an application that runs the custom control on a computer with UFT
installed? Yes /No

q The sources for this custom control class are located in:

q Which existing Java test object matches the custom control?

q If none, create a new Java test object class named:

l New test object class extends: (Default—JavaObject)

l Icon file location (optional):

l Identification property for description:

l Default test object method:

q Should UFT recognize the custom control as a top-level Java test object? Yes /No

q Is the custom control a wrapper? Yes /No

q Specify the basis for naming the test object:

q List the identification properties to support, andmark default checkpoint properties:

q List the test object methods to support (include arguments and return values if required):

q Provide support for recording? (AWT-based only) Yes /No

q If so, list the events that should trigger recording:

Developer Guide
Chapter 4: Planning Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 72 of 221

Where Do You Go from Here?
After you finish planning the custom toolkit support, you create the custom toolkit support set to
support the custom toolkit as per your plan. You can create all of the required files, classes, and
basic methods using the UFT Java Add-in Extensibility wizards in Eclipse. The wizards also
providemethod stubs for additional methods that youmay need to implement. For more
information, see "Using the UFT Java Add-in Extensibility Eclipse Plug-In" on page 74.

If you choose not to use the Java Add-in Extensibility wizard in Eclipse, you can still extend full
support for the custom toolkit manually using the information in "Implementing Custom Toolkit
Support" on page 28.

Developer Guide
Chapter 4: Planning Custom Toolkit Support

HP UFT Java Add-in Extensibility (12.00) Page 73 of 221

Chapter 5: Using the UFT Java Add-in Extensibility
Eclipse Plug-In

The UFT Java Add-in Extensibility SDK includes a plug-in for the Eclipse Java development
environment. This plug-in provides wizards that you can use to create custom toolkit support sets
and commands for editing the files after they are created.

If you choose not use the Java Add-in Extensibility wizards, you can skip this chapter. In this case,
you can extend full support for the custom toolkit manually, as described in "Implementing Custom
Toolkit Support" on page 28.

This chapter includes:

About the UFT Java Add-in Extensibility Eclipse Plug-In 75

New UFT Java Add-in Extensibility Project Wizard 75

Modifying UFT Java Add-in Extensibility Project Properties 84

New UFT Custom Support Class Wizard 85

New UFT Custom Static-Text Support Class Wizard 110

Working with UFT Commands in Eclipse 114

HP UFT Java Add-in Extensibility (12.00) Page 74 of 221

About the UFT Java Add-in Extensibility Eclipse Plug-In
When you install the UFT Java Add-in Extensibility SDK, the UFT Java Add-in Extensibility plug-in
is added to Eclipse. This plug-in provides wizards that you can use to create custom toolkit support
sets and commands for editing the files after they are created. For information on installing and
uninstalling the Java Add-in Extensibility SDK, see "Installing the HP UFT Java Add-in
Extensibility Software Development Kit" on page 21.

You can use the wizards supplied by the UFT Java Add-in Extensibility plug-in in Eclipse to create
and deploy custom toolkit support. The wizards create all of the necessary files, classes, and
methods, based on details you specify about the custom classes and the required support. The
wizards also providemethod stubs for the additional methods youmay need to implement.

This chapter assumes that you have read the "Implementing Custom Toolkit Support"chapter of
this guide (on page 28), which explains the elements that comprise custom toolkit support and the
workflow for creating this support.

When you create support for a custom toolkit, you first use the New Project Wizard to create an
Eclipse project containing the packages and files for the custom toolkit support.

Then you create support classes for the relevant custom classes using the New Custom Support
Class Wizard (described on page 85). To create a support class for a custom static-text class, you
use the New Custom Static Text Support Class Wizard (described on page 110).

After the wizard creates the support class according to your specifications, youmust complete the
design of the custom support. To do this, you implement themethod stubs created by the wizard to
match the needs of the custom control.

The UFT Java Add-in Extensibility Eclipse plug-in also provides commands that you can use to edit
the support you are designing, and to deploy it to UFT for debugging. These commands are
described in "Working with UFT Commands in Eclipse" on page 114.

Caution:While you are working with the wizard, do not rename or delete any of the files that
the wizard creates. When the wizard performs the commands you specify, it searches for the
files according to the names it created. When the custom toolkit support set is complete and
you are performing the final deployment, you can rename the configuration files. In the final
deployment stage, you can also divide the test object configuration file into more than one file.
Place the custom toolkit support set files in the appropriate folders, as specified in "Deploying
Custom Support After the Design is Completed" on page 62.

New UFT Java Add-in Extensibility Project Wizard
You use the New UFT Java Add-in Extensibility Project wizard to create a new project in Eclipse
containing the files that comprise the support set for a specific custom toolkit. After you specify the
details of the custom toolkit, the wizard creates the necessary toolkit support files.

After you create the New UFT Java Add-in Extensibility project, you can create support for each of
the custom toolkit classes. To do this, you use the New Custom Support Class Wizard, described
on page 85 (or the New Custom Static Text Support Class Wizard, described on page 110).

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 75 of 221

To open the New UFT Java Add-in Extensibility Project wizard in Eclipse:

1. Select File > New > Project. The New Project dialog box opens.

2. Expand theUnified Functional Testing folder and select UFT Java Add-in Extensibility
Project.

3. Click Next. The New Project Screen opens (described on page 77).

Tip: You can shorten this process by customizing Eclipse to provideUFT Java Add-in
Extensibility Project as an option in theNewmenu. To do this, perform the following:
SelectWindow > Customize Perspective. In the Shortcuts tab in the dialog box that
opens, select theUnified Functional Testing andUFT Java Add-in Extensibility
Project check boxes. Click OK.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 76 of 221

UFT Java Add-in Extensibility Project Screen
In the UFT Java Add-in Extensibility Project screen, you can create a UFT Java Add-in
Extensibility project and define the project layout. The details on this screenmay vary, depending
on the version of Eclipse that you are using.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 77 of 221

Perform the following:

1. In theProject name box, enter a name for the project.

2. In theProject Layout area, select Create separate folders for sources and class files. (In
earlier Eclipse versions this option is namedCreate separate source and output folders.)

3. Click Next to continue to the Custom Toolkit Details Screen (described on page 79).

For information on the options available in this Eclipse wizard screen, see theEclipse Help.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 78 of 221

Custom Toolkit Details Screen
In the Custom Toolkit Details screen, you provide the details of the custom toolkit so that the
wizard can generate a corresponding custom toolkit support set. When you click Finish the Project
Summary screen described on page 83 opens.

In this wizard screen you specify the following details:

l Unique custom toolkit name. A name that uniquely represents the custom toolkit for which
you are creating support. UFT displays this name in all of the dialog boxes that display lists of
add-ins or supported environments. Providing unique toolkit names enables a single UFT

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 79 of 221

installation to support numerous custom toolkit support sets simultaneously.

The namemust begin with an English letter and contain only alphanumeric characters and
underscores.

The wizard uses this namewhen it creates the new toolkit support set. For example:

n The toolkit support class is named <custom toolkit name>Support.

n The toolkit configuration file is named <custom toolkit name>.xml. (The custom toolkit
name that UFT displays in the Add-in Manager and other dialog boxes is derived from the
name of this file.)

n If the wizard creates a test object configuration file, it enters the custom toolkit name in the
PackageName attribute of the TypeInformation element. This enables UFT to associate the
new test object classes to the correct custom toolkit.

You cannot specify the name of a custom toolkit whose support is already deployed to UFT.
If you want to create a new project using the wizard, and use this project to replace existing
custom toolkit support, youmust first manually delete the existing support. To do this,
browse to <UFT Installation Folder> bin\java\classes\extension, delete the toolkit
configuration file, and then use theReload Support Configuration command described on
page 116.

l Support toolkit description. A sentence describing the support toolkit. The description is
stored in the toolkit configuration file.

l Base toolkit. The toolkit that the custom toolkit extends. A toolkit can be considered the base
toolkit of a custom toolkit if all of the custom controls in the custom toolkit extend controls in the
base toolkit.

TheBase toolkit list contains a list of toolkits for which UFT support already exists. After you
create and deploy support for your own toolkits, they are displayed in the list as well.

When the wizard creates the new custom toolkit support set, it creates a new toolkit support
class. This new toolkit support class extends the toolkit support class of the base toolkit you
select. As a result, the new custom toolkit support inherits all of the necessary utility methods
for basic functionality (for example, event handling and dispatching) from the base toolkit
support.

Custom toolkit class locations. A list of the locations of the custom classes you want to support
in this project. You can specify Eclipse projects, .jar files, and Java class folders (the file system
folders containing the compiled Java classes).

When the new Java Add-in Extensibility project is built, these locations are added to the project
build path.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 80 of 221

The build pathmust also include the locations of all parent classes of the custom classes. Add
these locations manually to the build path in your project if any custom classes are not derived
directly from SWT, AWT, or JFC (Swing) and the parent classes are not located in the same
location as the custom classes.

l The "Custom Class Selection Screen" on page 86 in the "New UFT Custom Support Class
Wizard" on page 85 (shown on page 86) displays the custom classes from the locations you
list in this box. This enables you to select the required custom class when creating a
custom support class. (You create custom support classes after the new Java Add-in
Extensibility project is built.)

l To add or remove custom class locations in a Java Add-in Extensibility project after it is
created, use the Properties dialog box for UFT Java Add-in Extensibility projects described
on page 84.

To add custom toolkit class locations to the list:
Add the locations of the custom toolkit classes using one or more of the following options:

l Click Add project to select an Eclipse project. The Select Project dialog box opens and
displays the projects in the current Eclipse workspace:

Select the check box for the appropriate project and click OK to add it to theCustom toolkit
class locations box.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 81 of 221

l Click Add Jar to add a Java archive (.jar) file. TheOpen dialog box opens.

Browse to the appropriate Java archive file, select it, and click OK to add it to theCustom
toolkit class locations box.

l Click Add Class Folder to add a class folder. The Select Folder dialog box opens.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 82 of 221

Browse to the appropriate folder, select it, and click OK to add it to theCustom toolkit class
locations box.

Note: Select the root folder that contains the compiled class packages. For example, the
file ImageButton.java defines the class com.demo.ImageButton. When you compile this
class and store the result in the bin folder, the class file ImageButton.class location is:
bin\com\demo\ImageButton.class. If you want to select the location of this class for the
Custom toolkit class locations, select the bin folder.

To remove custom toolkit class locations from the list:
Select the location in theCustom toolkit class locations box and click Remove.

Project Summary Screen
Before the wizard creates the custom toolkit support files, the Project Summary screen
summarizes the specifications you provided for the new Java Add-in Extensibility project.

Review the information. If you want to change any of the data, click Cancel to return to the
"Custom Toolkit Details Screen" on page 79 (described on page 79). Use theBack andNext
buttons to open the relevant screens andmake the required changes.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 83 of 221

If you are satisfied with the definitions, click OK. The wizard creates new UFT Java Add-in
Extensibility project, containing the following items:

l The toolkit root package: com.mercury.ftjadin.qtsupport.<Custom Toolkit Name>
containing:

n The toolkit support class in the toolkit root package: <Custom Toolkit Name>Support.java

For information on the content of this class, see "Understanding the Toolkit Support Class" on
page 33.

n The support class sub-package:
com.mercury.ftjadin.qtsupport.<Custom Toolkit Name>.cs

l A folder for configuration files namedConfiguration. It contains:

n The <Custom Toolkit Name>.xml toolkit configuration file. For information on the content of
this file, see "Understanding the Toolkit Configuration File" on page 34.

n The TestObjects folder for test object configuration files.

Note: If you havemore than one Java Run-time Environment (JRE) installed on your
computer, and one or more of the custom toolkit class locations you specified were Eclipse
projects, make sure that the custom toolkit projects and the new Java Add-in Extensibility
project are using the same JRE. If they are not, modify the JRE for one or more of the
projects so that all of the projects use the same JRE.

Modifying UFT Java Add-in Extensibility Project
Properties

In the Eclipsemenu bar, select Project > Properties. The Properties dialog box opens. In the left
pane, select UFT Support from the list of property types. (The items in this list may vary,
depending on the version of Eclipse that you are using.) TheUFT Support properties are displayed
in the right pane.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 84 of 221

For information on the options in this dialog box, see "Custom Toolkit Details Screen" on page 79.

After the Java Add-in Extensibility project is created, you cannot change theUnique custom
toolkit name or theBase toolkit.

You can change theSupport toolkit description. You can also add or remove locations in the
Custom toolkit class locations list. When youmodify this list, youmust modify the project's build
path accordingly.

You can click theRestore button to restore the settings in this dialog box to themost recently
saved values.

New UFT Custom Support Class Wizard
You use the New UFT Custom Support Class wizard to create each support class within a Java
Add-in Extensibility project. After you specify the details of the custom class and the required UFT
support, the wizard creates the support class and all of the necessary methods, accordingly. The
wizard also provides method stubs for any additional methods you need to implement.

To open the New UFT Custom Support Class wizard in Eclipse:

1. In the Eclipse Package Explorer tab, select a UFT Java Add-in Extensibility project. Then
select File > New > Other. The New dialog box opens.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 85 of 221

2. Expand theUnified Functional Testing folder and select UFT Custom Support Class.

3. Click Next. The Custom Class Selection Screen opens.

Tip: You can shorten this process by customizing Eclipse to provideUFT Custom
Support Class as an option in theNewmenu. To do this, perform the following: Select
Window > Customize Perspective. In the Shortcuts tab in the dialog box that opens,
select theUnified Functional Testing andUFT Custom Support Class check boxes.
Click OK.

Custom Class Selection Screen
The Custom Class Selection screen is the first screen in the New UFT Custom Support Class
wizard. In this screen, you select the custom class you want to support and set the relevant
options. The wizard automatically determines which existing support class the new support class
must extend, based on the custom class inheritance hierarchy.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 86 of 221

When you click Next, the Test Object Class Selection Screen described on page 91 opens.

Note: Selecting the class to support is fundamental to creating a custom support class. If you
make changes in later screens and then return to this screen and select a different class, those
changes will be discarded.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 87 of 221

Themain area of this screen contains the following options:

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 88 of 221

l Custom toolkit tree. Displays all of the classes in the custom toolkit that are candidates for
support (taken from the custom toolkit class locations you listed in the New UFT Java Add-in
Extensibility Project wizard). Use the expand (+) and collapse (-) signs to expand and collapse
the tree, and to view its packages and classes.

Only classes that fulfill the following conditions are displayed:

n Classes that extend java.awt.Component or org.eclipse.swt.widgets.Widget.

n Classes for which UFT support has not yet been extended. If support for a custom class was
previously deployed to UFT, or if support for a custom class is being developed in the current
Eclipse project, the custom class does not appear in this tree.

Note: If you think a certain class meets all of the requirements above, but it still does not
appear in the tree, try to update your environment by using theReload Support
Configuration command (described on page 116).

For example, if you delete custom support in an Eclipse Java Add-in Extensibility project
to create new support for the same custom control, youmust reload the support
configuration. This enables the custom class to appear in theCustom toolkit tree.

l Custom class inheritance hierarchy. Displays the inheritance hierarchy of the class selected
in theCustom toolkit tree. Gray nodes indicate classes that are not included in this toolkit.
Black nodes indicate classes that are part of the custom toolkit.

You can select the custom class you want to extend in theCustom toolkit tree or theCustom
class inheritance hierarchy. (In theCustom class inheritance hierarchy you can select only
black nodes, and only classes that do not have UFT support.)

l Base support class. The support class that the new support class must extend. You cannot
modify this information. The wizard selects the support class of the closest ancestor in the
hierarchy that has UFT support. (If support for a custom class was previously deployed to UFT,
or if support for a custom class is being developed in the current Eclipse project, the wizard
recognizes the custom class as having UFT support.)

When UFT recognizes a Java object that is not mapped to a specific support class, it uses the
support class mapped to the object's closest ancestor. Therefore, the base support class is the
class that would provide support for the custom control if it were not mapped to a specific
support class. In the new custom support class, you need to implement (or override) only the
support that the base support class does not adequately provide.

You can use the information displayed in theCustom class inheritance hierarchy andBase
support class to help you decide whether you should first extend support for another custom
class, higher in the hierarchy. Before you decide, consider the following:

n Is there a custom class higher in hierarchy that does not have UFT support?

n If so, does the custom class have elements that need to be supported in a similar manner for

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 89 of 221

more than one of its descendants?

If you answered "yes" to the above, consider creating support for the higher class first. This will
enable its support class to be used as theBase support class. If the class is displayed as a
black node in the hierarchy, you can select it in this screen and create support for it in this
session of the wizard. If the class appears as a gray node, it is not part of this toolkit, and you
cannot create support for it within the current UFT Java Add-in Extensibility project.

If the higher class extends the base toolkit of the current support project, you can add it to the
scope of this project by adding it to the custom toolkit. For information on base toolkits, see
"Custom Toolkit Details Screen" on page 79. For information on adding a custom class to an
existing support project, see " Modifying UFT Java Add-in Extensibility Project Properties" on
page 84.

Otherwise, if you want to create support for the higher class first and then use its support class
as a base support class, youmust perform the procedure described on page 91.

The bottom of the Custom Class Selection screen contains the following options:

l Controls of this class represent top-level objects. Enables you to specify that UFT may be
expected to recognize the control as the highest Java object in the test object hierarchy. For
more information see, " Supporting Top-Level Objects" on page 53.

If you select this check box, the wizard implements the isWindowmethod in the new custom
support class. This method returns true.

This option is available only if the class you selected to support is a container class, meaning
that it extends java.awt.container or org.eclipse.swt.widgets.Composite. The check box is
selected by default if the new support class extends one of the following support classes:
ShellCS (SWT),WindowCS (AWT), AppletCS (AWT).

l Change custom support class name. Enables you tomodify the default name the wizard
provided for the support class, if needed.

By default, the name for a support class is <custom class name>CS. In most cases, there is
no need to change the default name. However, if your custom toolkit contains classes from
different packages, youmight havemore than one custom class with the same name. In this
case, youmust provide different names for the custom support classes because they are stored
in one package.

Tomodify the custom support class name, select theChange custom support class name
check box and then enter the new name.

Note: The options in the Custom Class Selection screen are identical to the options available
in the Custom Static-Text Class Selection screen in the "New UFT Custom Static-Text
Support Class Wizard" on page 110 (described on page 110).

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 90 of 221

To create support for a higher class that is not part of this custom toolkit and use this
support as a base support class:

1. Create support for the higher class in another UFT Java Add-in Extensibility project.

2. Deploy the support to UFT.

3. Reopen the original UFT Java Add-in Extensibility project. Select UFT > Reload Support

Configuration or click theReload Support Configuration button.

4. Open the "New UFT Custom Support Class Wizard" on page 85 (described on page 85). The
wizard now selects the new support class you created as theBase support class.

Test Object Class Selection Screen
In the Test Object Class Selection screen, youmap the custom class to a test object class. In
UFT GUI tests, the custom class controls are represented by test objects of the selected test
object class. In the custom support class, the wizard adds a to_class_attr property method that is
implemented to return the test object class you select in this screen. This enables the support class
to inform UFT what test object class is mapped to the custom class.

When you click Next, the Custom Support Test Object Identification Properties Screen described
on page 93 opens.

Note: Selecting the test object class tomap to the custom class is fundamental to creating a
custom support class. If youmake changes in later screens and then return to this screen and
select a different test object class, those changes will be discarded.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 91 of 221

In this wizard screen you select one of the following options:

l Same as base support class.Maps the custom class to the test object class returned by the
to_class_attr property method of the base support class. (If you select this option, the wizard
does not add a to_class_attrmethod to the new support class that it creates. The new support
class inherits the base support class' method.)

In the Custom Class Selection Screen (described on page 86), you determined the base support
class, which is the support class that the new support class extends. The custom class
supported by the base support class is mapped to a specific test object class. If this test object
class is also a logical test object for your custom class, select theSame as base support
class option.

The following examples illustrate when to select theSame as base support class option:

n Youwant to support a custom control that is similar to the one supported by the base support
class. Controls are considered similar if they have the same set of identification properties
and test object methods, but the properties andmethods are implemented differently. In this
case, the test object class returned by the to_class_attr property method of the base support
class is appropriate for your custom control.

n You are creating a support class for other support classes to extend—not to support actual
controls. In this case, you can select this option because it is not important which test object
class youmap to the custom class. To view an example of this type, see "Creating Support
for the ImageControl Custom Class" on page 173.

l Existing test object class. Enables you tomap the custom class to an existing test object
class that is already supported by UFT. This list contains all of the Java object types that UFT
supports. If you define new test object classes for custom support, they are also included in the
list.

If you defined new test object classes in the current Eclipse workspace, they are displayed in
this list immediately. Otherwise, new test object classes are displayed in the list only after they
are deployed to UFT and you reload the configuration (for more information, see "Reload Support
Configuration" on page 116).

If you select a test object class that is not defined within your project, its test object class
definitionmust also be deployed to UFT for your support to function properly.

When you select this Existing test object class option, youmust also select the appropriate
existing test object class from the list.

Tip: Select this option only if this test object class includes all of the identification
properties and test object methods of the custom control. If you need to add additional
properties or methods, select New test object class.

l New test object class. Enables you tomap the custom control to a new test object class that
you create. Select this option if none of the existing test object classes include all of the
identification properties and test object methods of the custom control. Then enter a name for

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 92 of 221

the new test object class. The test object class namemust begin with a letter and contain only
alphanumeric characters and underscores.

If you select this option, theExtends existing test object option is enabled.

Extends existing test object. Each new test object class is based on an existing one,
extending its set of identification properties and test object methods. All test object classes
extend the JavaObject class. You can choose amore specific existing test object class to
extend by selecting it from the list. This list is identical to the list of existing test object classes
provided for theExisting test object class option.

If you select theNew test object class option, you define additional details about the new test
object class in the New Test Object Class Details Screen (described on page 106). The wizard
then adds the definition of the new test object class to the test object configuration file. For
information on the structure and content of this file, see theHP UFT Test Object SchemaHelp
(available with the Java Add-in Extensibility SDK Help).

Custom Support Test Object Identification Properties
Screen

The Custom Support Test Object Identification Properties screen displays the identification
properties supported by the base support class you are extending, as well as additional properties
that are defined in the test object class you selected, but are not yet supported. It enables you to
select properties whose support you want to implement or override with new functionality. It also
enables you to add new properties.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 93 of 221

When you click Next, the Custom Support Test Object Methods Screen described on page 96
opens:

Properties Inherited from Base Support Class
The left pane displays all of the identification properties implemented by the base support class.
These are the identification properties that will be inherited by the support class you are creating.
You can select any identification properties whose support you want to override with a different
implementation.

Note: Some of these identification properties are not included in the test object class definition.
Therefore, they are not displayed in UFT in the Object Spy or in the Checkpoint Properties
dialog box. You can access those identification properties by using theGetROProperty
method. For more information on theGetROPropertymethod, see theHP UFT Object Model
Reference for GUI Testing.

When the wizard creates the support class file, it adds a support method stub, named
<identification property name>_attr, for each of the identification properties you select. The
support method stubs return the same values as the support methods in the base support class.
You can implement the new support methods tomatch the needs of your custom control.

Additional Properties Required for Test Object Class
The right pane displays the identification properties that are defined in the test object class you
selected, but are not supported by the base support class. You canmodify this list using theAdd,
Remove, andModify buttons.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 94 of 221

For each of the identification properties in this pane, the wizard adds a support method stub to the
support class it creates. The support method stubs return null until you implement them tomatch
the needs of your custom control.

If you add identification properties to this list, the wizard adds them to the test object class
definition in the test object configuration file. For information on the structure and content of this file,
see theHP UFT Test Object SchemaHelp (available with the Java Add-in Extensibility SDK Help).

Note: If you selected theSame as base support class option in the Test Object Class
Selection Screen (on page 91), the wizard does not know which test object class is mapped to
the custom control. As a result, no identification properties are displayed in the right pane. If
you add an identification property, the wizard adds the appropriate support method stub to the
support class it creates. However, the identification property is not added to any test object
class definition.

Considerations for Adding and Removing Properties from the List

l If you add identification properties to this list, they are added to the test object class definition.
This means that the new properties appear in the list of identification properties in UFT for all test
objects of this class.

Therefore, if you plan to add properties, it is recommended to create a new test object class
based on the existing one, instead of using the existing test object class.

l If you remove an identification property from the list, it is no longer supported for this custom
class. However, it is still part of the test object class definition. Therefore, although it still
appears in the list of identification properties shown in the UFT Object Spy, it will have no value.

l Modifying an identification property is equivalent to removing it and adding a new one.

Managing the List of Identification Properties

The procedures below describe how to add, remove, andmodify identification properties in the list
of additional properties required for the test object class.

To add an identification property:

1. In theAdditional properties required for test object class pane, click Add. The
Identification Property dialog box opens.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 95 of 221

2. Enter a name for the new identification property and click OK. (The identification property name
must begin with a letter and contain only alphanumeric characters and underscores.)

To remove an identification property:

1. In theAdditional properties required for test object class pane, select the property you
want to remove.

2. Click Remove. Then click Yes to confirm.

Tomodify an identification property:

1. In theAdditional properties required for test object class pane, select the property you
want to rename.

2. Click Modify. The Identification Property dialog box opens.

3. Modify the identification property name and click OK.

Tip: To add identification properties after the support class is created, use theAdd

Identification Property button or select UFT > Add Identification Property in
Eclipse.

Custom Support Test Object Methods Screen
The Custom Support Test Object Methods screen displays the test object methods defined for the
test object class youmapped to the custom control. You use this screen to select test object
methods whose support you want to implement or override with new functionality and to add new
test object methods.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 96 of 221

When you click Next, one of the following screens open:

l If you are creating support for an AWT-based custom control, the Custom Control Recording
Support Screen (described on page 102) opens.

l If you are creating support for an SWT-based custom control, and youmapped a new test object
class to the custom control, the New Test Object Class Details Screen (described on page 106)
opens.

l If neither of the previous conditions is met, the Custom Control Support Class Summary Screen
(described on page 109) opens.

Methods Inherited from Base Support Class
The left pane displays all of the test object methods that are defined for the test object class you
selected and are implemented by the base support class. These are the test object methods that
will be inherited by the support class you are creating. You select any test object methods whose
support you want to override with a different implementation.

When the wizard creates the support class file, it adds a support method stub, named <test object
method name>_replayMethod, for each test object method you selected. The support method
stubs return the same values as the support methods in the base support class. You can implement
the new support methods tomatch the needs of your custom control.

Note: If you selected theSame as base support class option in the "Test Object Class
Selection Screen" (on page 91), the wizard does not know which test object class is mapped to
the custom control. As a result, no test object methods are displayed in the left pane. After the
wizard creates the new support class, you can override any of the replay methods that it
inherits from the base support class by adding them to the class manually.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 97 of 221

Additional Methods Required for Test Object Class
The right pane displays the test object methods that are defined in the test object class you
selected, but are not supported by the base support class.

You canmodify the list in this pane using theAdd, Remove, andModify buttons.

Note that modifying the name of amethod is equivalent to removing themethod and adding a new
one. For more information, see "Understanding the Test Object Method Dialog Box" on the next
page.

Tip: To add test object methods after the support class is created, use theAdd Test Object

Method button or select UFT > Add Test Object Method in Eclipse.

For each of the test object methods in this pane, the wizard adds support method stubs to the
support class it creates. The support method stubs return the error valueRetval.NOT_
IMPLEMENTED until you implement them tomatch the needs of your custom control.

If you add test object methods to this list, the wizard adds them to the test object class definition in
the test object configuration file. For information on the structure and content of this file, see the
HP UFT Test Object SchemaHelp (available with the Java Add-in Extensibility SDK Help).

Note: If you selected theSame as base support class option in the "Test Object Class
Selection Screen" (on page 91), the wizard does not know which test object class is mapped to
the custom control. As a result, no test object methods are displayed in the right pane. If you
add a test object method, the wizard adds the appropriate replay method stub to the support
class it creates. However, the test object method is not added to any test object class
definition.

Considerations for Adding and Removing Test Object Methods to the List

l If you add test object methods to this list, they are added to the existing test object class. This
means that the new methods appear in UFT for all test objects of this class, regardless of
whether or not they are supported for these objects. In a UFT GUI test, if you call a test object
method for an object, and that method is not supported, a run-time error occurs.

Therefore, if you plan to add test object methods to support a custom control, it is recommended
to create a new test object class based on the existing one, instead of using the existing test
object class.

l If you remove a test object method from this list, it is no longer supported for this custom class.
However, it is still part of the test object class definition. Therefore, it still appears in the list of
test object methods in UFT.

If you use this test object method on a custom control in UFTGUI tests, a run-time error occurs.
For example, although a drop-down-list control is supported as a List test object, if you select
the select_range test object method for a drop-down-list control, and it is not supported, a run-
time error occurs.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 98 of 221

Understanding the Test Object Method Dialog Box
When you click Add orModify in the Custom Support Test Object Methods Screen"Custom
Support Test Object Methods Screen" (described on page 96), the Test Object Method dialog box
opens.

The Test Object Method dialog box enables you to specify details for the test object methods listed
in theAdditional methods required for test object class pane in the Custom Support Test
Object Methods screen.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 99 of 221

The Test Object Method dialog box contains the following items:

Option Description

Method name The name of the test object method as it appears in UFT GUI tests. The name
should clearly indicate what the test object method does so that a user can
select it from the StepGenerator or in the Keyword View. Method names
cannot contain non-English letters or characters. In addition, method names
must begin with a letter and cannot contain spaces or any of the following
characters:
! @ # $ % ^ & * () + = [] \ { } | ; ': " , / < > ?

Note:
l Modifying the name of amethod is equivalent to removing themethod

and adding a new one.

Arguments A list of the test object method arguments and their types.

Use the following buttons tomodify the list:

l Remove. Removes the selected argument from the list.

l Up.Moves the selected argument up in the list.

l Down.Moves the selected argument down in the list.

Note:
l The first argument of every test object methodmust be obj (Object).

You cannot remove, modify, or move this argument.

Method returns
a string value

Indicates that this test object method returns a string value in addition to the
return code. (The return value can be retrieved and used in later steps of a
UFT GUI test.)

If you select this check box:

l the wizard adds theReturnValueType element to the test object method
definition that it creates in the test object configuration file.

l themethod stub that the wizard creates in the new support class, returns
the object Retval(""), which includes the return codeOK and an empty
string.
When you implement the replay method for this test object method, you
can use different types of Retval. If themethod succeeds, returnOK and
an appropriate string value. Otherwise, return only the relevant error code.
For more information, see theUFT Java Add-in Extensibility API
Reference (available with the Java Add-in Extensibility SDK Help).

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 100 of 221

Option Description

Description The tooltip that is displayed when the cursor is positioned over the test object
method in the StepGenerator, in the Keyword View, and when using the
statement completion functionality in the Editor.

Documentation A sentence that describes what the step that includes the test object method
actually does. This sentence is displayed in theStep documentation box in
the StepGenerator and in theDocumentation column of the Keyword View.

You can insert arguments in theDocumentation text by clicking and
selecting the relevant argument. The arguments are then replaced
dynamically by the relevant values.

Adding or Modifying an Argument for a Test Object Method
When you click Add orModify in the Test Object Method dialog box, the Test Object Method
Argument dialog box opens. The Test Object Method Argument dialog box enables you to specify
the details for each of the arguments you list in the Test Object Method dialog box:

The Test Object Method Argument dialog box contains the following items:

Option Description

Name The name of the argument as it appears in UFT GUI tests. The argument name
should clearly indicate the value that needs to be entered for the argument.
Argument names must contain only alphanumeric characters. In addition, argument
names must begin with a letter and cannot contain spaces or any of the following
characters:
! @ # $ % ^ & * () + = [] \ { } | ; ' : " , / < > ?

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 101 of 221

Option Description

Type Instructs UFT to do one of the following:

l RequireString values for this argument in test steps with this test object
method

l Allow Variant values

Even if you define the Type as Variant, all arguments are passed to the replay
methods as strings. In addition, when you record test steps, the arguments are
always registered as strings.

Note: If you want to define a list of possible values for an argument, youmust
do somanually. In the test object configuration file, define the list of values and
change the argument's type to ListOfValues.

For more information, see theHP UFT Test Object SchemaHelp (available with
the Java Add-in Extensibility SDK Help).

Mandatory
argument

Instructs UFT whether to require the person writing the test to supply a value for the
argument.

In the list of arguments, mandatory arguments cannot follow optional arguments.

Default
value

If an argument is optional, you can provide a default value that UFT uses if no other
value is defined.

This option is not available for mandatory arguments.

Custom Control Recording Support Screen

Note: The Custom Control Recording Support screen does not open if you are creating a
support class for an SWT-based custom class.

To support recording on a custom control, the support class must implement listeners for the events
that trigger recording.

The Custom Control Recording Support screen displays the event handler methods implemented
by the support class you selected to extend.

The Custom Control Recording Support screen enables you to:

l Select methods whose implementation you want to override with new functionality

l Add new event listeners to implement

l Set recording-related options

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 102 of 221

For information on how the wizard implements the details you specify in this screen, see
"UnderstandingWhat theWizard Adds to the Support Class" on page 105.

After you complete the recording-related support information:

l If youmapped a new test object class to the custom control, click Next to continue to the "New
Test Object Class Details Screen" (described on page 106).

l Otherwise, click Finish to continue to the "Custom Control Support Class Summary Screen"
(described on page 109).

Methods Inherited from Base Support Class
The left pane displays the event handler methods implemented by the base support class. You can
select themethods you want to override.

Additional Methods Required for Test Object Class
In the right pane, you specify the listeners you want to add for the new support class. Each listener
you select implies a set of event handler methods you can implement.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 103 of 221

To add a listener to the list:

1. Click Add and select the appropriate listener from the Listener dialog box that opens.

The list contains the listeners that can be registered on the custom control. The wizard compiles
this list by identifying listener registrationmethods in the custom class and its superclasses.
The wizard identifies as registrationmethods, only methods named add<XXX>Listenerwhose
first argument extends java.util.EventListener.

If your custom class uses a registrationmethod that does not comply with this definition, you
cannot add the corresponding listener using the wizard. You can implement the required support
manually after the wizard creates the new custom support class.

2. If the selected listener has more than one registrationmethod, select amethod from the
Registration method list.

3. Click OK. The listener you selected and all of the event handler methods it includes are added
to the list.

To remove a listener from the list:

Select a listener or one of its event handler methods and click Remove.

Tip: To add event handlers after the support class is created, use theAdd Event Handler

button or select UFT > Add Event Handler in Eclipse.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 104 of 221

Custom Control Recording Support Screen Options
The Custom Control Recording Support screen contains the following options:

Option Description

Treat controls of
this class as
wrapper controls

Instructs the wizard to implement the
com.mercury.ftjadin.infra.abstr.RecordWrapper interface in the new
support class.

If the custom control extends java.awt.container, this check box is
selected by default. Otherwise, it is not available.

For more information, see "Wrapper Implementation in the Support
Class" on the next page.

Override low-level
mouse event
recording

Instructs the wizard to implement themouseRecordTargetmethod in
the new support class so that it returns null.

This instructs UFT not to record low-level mouse events (coordinate-
based operations), so you can recordmore complex operations, such as,
selecting an option in amenu.

Override low-level
keyboard event
recording

Instructs the wizard to implement the keyboardRecordTargetmethod in
the new support class, so that it returns null.

This instructs UFT not to record low-level keyboard events, enabling you
to recordmore complex events, such as, setting a value in an edit box.

The options listed in the table above are available only in the wizard (and not in the Eclipse UFT
commands that you can use to edit a support class after it is created). If you do not select these
options when you create the support class, and you want to implement them later, you will have to
do somanually.

Understanding What the Wizard Adds to the Support Class

The following sections describe themethods that the wizard adds to the support class it creates,
based on the definitions in Custom Control Recording Support screen:

Listener Implementation in the Support Class

In the support class file it creates, the wizard implements the listeners and options you specified,
as follows:

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 105 of 221

l The implemented listener interfaces are added to the support class signature.

l A constructor is added to the support class, listing all of the listeners that need to be registered
on the custom control. It also lists themethods used to add and remove the listeners. This is
done by calling addSimpleListener for each listener.

l A method stub is added to the support class for each of the event handler methods you selected
in the left pane. Themethod stubs call the corresponding event handler methods in the base
support class. You can implement the new event handler methods tomatch the needs of your
custom control.

Some of the event handler methods are implemented in existing support classes as final
methods, which cannot be overridden. If you select one of thesemethods in the left pane, the
wizard adds an underscore at the beginning of themethod name in themethod stub that it
creates. For example, if you select focusGained, focusLost, keyTyped, keyPressed, or
keyReleased, the wizard creates _focusGained, _focusLost, _keyTyped, _keyPressed, or _
keyReleased, respectively. Each one of the final methods is implemented to call _<method
name> after performing its basic functionality. Therefore, you can override the _<method
name>methods to add functionality to these final methods.

l A method stub is added to the support class for each of the event handlers listed in the right
pane. Youmust implement the event handler methods to callMicAPI.record. (Eachmethod
stub includes a comment to remind you to do this, and a basic skeleton which provides a
recommendation for themethod's structure.) For more information, see "Supporting the Record
Option" on page 51.

Wrapper Implementation in the Support Class

You select the Treat controls of this class as wrapper controls check box if you are creating
support for a container control that groups the controls within it and represents them as a single
control. If you select this check box, the wizard adds the followingmethod stubs to the support
class:

l blockWrappedObjectRecord. (Returns False.)

l registerWrapperInspector. (A comment is added to remind you to implement this method to
register this class as a wrapper of specific control types.)

l checkWrappedObject. (Returns null.)

l wrapperRecordMessage. (Returns the recordmessage sent by the wrapped control without
performing any intervention.)

You can implement thesemethods to achieve the required wrapping functionality. For more
information, see "SupportingWrapper Controls" on page 54.

New Test Object Class Details Screen
If youmapped a new test object class to the custom control, you define additional details about the
new test object class in the New Test Object Class Details screen.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 106 of 221

When you click Finish, the "Custom Control Support Class Summary Screen" described on page
109 opens.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 107 of 221

The New Test Object Class Details screen contains the following options:

Option Description

Test object icon The path of the icon file to use in the Keyword view for this test object
class. The icon file must be in an uncompressed .ico format.

This is optional. If you do not define an icon file, the JavaObject icon is
used.

Identification
property for unique
description

Specifies the identification property that UFT uses to uniquely identify
the control (in addition to the toolkit_class and index properties).

You can select an identification property from the list or leave the
property the wizard selected by default.

Default test object
method

Specifies the default test object method displayed in the Keyword View
and StepGenerator when a step is generated for an object of this
class.

Select a test object method from the list.

Default checkpoint
properties

Specifies the identification properties that are selected by default when
you create a checkpoint for an object of this class.

Select the check boxes for the appropriate properties. Click Select All
orClear All to select or clear all of the check boxes.

When the wizard creates the new support class, it adds the new test object type to the test object
configuration file. The options you specify in the New Test Object Class Details screen are
recorded in this file. For information on the structure of this file, see theHP UFT Test Object
SchemaHelp (available with the Java Add-in Extensibility SDK Help).

If you want UFT to include additional identification properties in the test object description, you
must manually specify this in the test object configuration file. The wizard adds the test object
class definition to the test object configuration file. For each property that you want to add to the
test object description, find the line that describes it in the file. Between the words Property and
Name, add the words ForDescription="true".

The list of identification properties in the test object description can bemodified in UFT using the
Object Identification dialog box. Therefore, by default, UFT reads this information from the test
object configuration file only once, to prevent overwriting any changes a user makes in UFT. For
information on how to ensure UFT reads modifications youmake to the ForDescription attribute,
see "Modifying Identification Property Attributes in a Test Object Configuration File" on page 63.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 108 of 221

Custom Control Support Class Summary Screen
Before the wizard creates the custom support class file, the Custom Support Class Summary
screen summarizes the specifications you provided for the new support class:

If you want to change any of the data, click Cancel to return to the previous wizard screen. Use the
Back andNext buttons to open the relevant screens andmake the required changes.

If you are satisfied with the definitions, click OK. The wizard creates the new support class with all
of the requiredmethods, according to your specifications.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 109 of 221

In addition, the wizard adds the test object class definition to the test object configuration file if one
of the following conditions is met:

l Youmapped a new test object class to the custom control.

l You added identification properties or test object methods to an existing test object class.

Note: If the test object configuration file does not exist, the wizard creates it at this time. For
information on the structure of the test object configuration file, see theHP UFT Test Object
SchemaHelp (available with the Java Add-in Extensibility SDK Help).

Completing the Custom Class Support

After you finish creating a custom support class (using the "New UFT Custom Support Class
Wizard"), you need to perform the following additional steps:

l Save the class.

In Eclipse, the new class file is opened and displayed in a tab in the right pane. Until you save
the class, an asterisk (*) is displayed in the tab next to the support class file name. The changes
made by the wizard are codependent and need to be saved to prevent discrepancies.

l Implement any method stubs that the wizard created in the new custom support class. For more
information, see "Understanding the Toolkit Support Class" on page 33.

If you added new test object methods or identification properties to the test object class, the
wizard adds them to the test object class definition in the test object configuration file.

If you remove (or do not implement) the support methods that the wizard created in the support
class, the test object methods or identification properties remain part of the test object class
definition. They are available in UFT when editing tests but are not supported for this custom
class.

l Deploy the toolkit support to UFT to enable the support to be available. For more information,
see "Deploying and Running the Custom Toolkit Support" on page 59.

New UFT Custom Static-Text Support Class Wizard
You use the New UFT Custom Static-Text Support Class wizard to create a support class for a
custom static-text class within a Java Add-in Extensibility project. Supporting a static-text class
enables UFT to use its label property as the attached text for an adjacent control.

The only thing that you need to specify in this wizard is which custom class you want to support as
a static-text class (and the controls of this class represent top-level objects, if relevant). The
wizard creates the new support class with themethods required for the support of static-text
objects. Thesemethods are described in "Custom Static-Text Support Class Summary Screen" on
page 113.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 110 of 221

After the wizard creates the new support class, you complete its implementation as described in
"Completing the Custom Static-Text Class Support" on page 114.

In most cases, it is not necessary to support any additional identification properties or test object
methods for a static-text control. However, after the wizard creates the new support class, you can
add additional methods to the class, providing support for additional identification properties or test
object methods, or for recording. You can add thesemethods manually, or by using the commands
described in "Working with UFT Commands in Eclipse" on page 114.

To open the New UFT Custom Static-Text Support Class wizard in Eclipse:

1. In the Eclipse Package Explorer tab, select a UFT Java Add-in Extensibility project. Then
select File > New > Other. The New dialog box opens.

2. Expand theUnified Functional Testing folder and select UFT Custom Static-Text Support
Class.

3. Click Next. The Custom Static Text Class Selection Screen opens.

Tip: You can shorten this process by customizing Eclipse to provideUFT Custom Static-
Text Support Class as an option in theNewmenu. To do this, perform the following:
SelectWindow > Customize Perspective. In the Shortcuts tab in the dialog box that
opens, select theUnified Functional Testing andUFT Custom Static-Text Support
Class check boxes. Click OK.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 111 of 221

Custom Static-Text Class Selection Screen
The options in the Custom Static-Text Class Selection screen are identical to the options in the
"Custom Class Selection Screen" (described on page 86). When you click Finish, the "Custom
Static-Text Support Class Summary Screen" (described on page 113) opens.

Select the custom class you want UFT to recognize as static-text and set the relevant options.

Static-text controls do not normally have any identification properties or test object methods that
are relevant for UFT GUI tests. Therefore, no additional specifications are required in this wizard.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 112 of 221

Custom Static-Text Support Class Summary Screen
Before the wizard creates the custom support class file, the Custom Static-Text Support Class
Summary screen summarizes the specifications you provided for the new support class.

If you want to change any of the data, click Cancel to return to the "Custom Static-Text Class
Selection Screen", described above.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 113 of 221

If you are satisfied with the definitions, click OK. The wizard creates the new support class with the
followingmethods, which are required for the support of static-text objects:

l class_attr. Returns the string static_text, enabling UFT to recognize objects of this class as
static-text controls.

l label_attr. Returns the label property of the superclass.

When the label property for a Java control is empty, UFT looks for an adjacent static-text
control and uses its label property for the test object name. Therefore youmay want to
implement the label_attrmethod to return the appropriate name, for example, the string
displayed by the static-text control.

l tag_attr. Returns the tag property of the superclass (which returns the label property value) with
the suffix (st). This method provides the test object name for the static-text control itself, while
the label_attrmethod provides the name used for adjacent controls.

For example, if you implement the label_attrmethod to return MyButton, the tag_attrmethod
returns MyButton(st).

Formore information, see "Common Identification Property Support Methods" on page 48.

l value_attr. Returns the label property.

The value property represents a control's test object state. For static-text controls, the label
property adequately represents this state.

You can practice creating support for a custom static-text control in the tutorial lesson "Learning to
Support a Custom Static-Text Control" on page 158.

Completing the Custom Static-Text Class Support

After you finish creating a custom support class for a custom static-text class (using the "New UFT
Custom Static-Text Support Class Wizard"), you need to perform the following additional steps:

l Save the class.

In Eclipse, the new class file is opened and displayed in a tab in the right pane. Until you save
the class, an asterisk (*) is displayed in the tab next to the support class file name. The changes
made by the wizard are codependent and need to be saved to prevent discrepancies.

l Implement the label_attrmethod, if needed.

l Deploy the toolkit support to UFT to enable the support to be available. For more information,
see "Deploying and Running the Custom Toolkit Support" on page 59.

Working with UFT Commands in Eclipse
After you install the UFT Java Add-in Extensibility SDK, which includes the Java Add-in

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 114 of 221

Extensibility Eclipse Plug-in, a toolbar with the following buttons is added to Eclipse:

Button Definition Button Definition

Deploy Toolkit Support Add Identification Property

Reload Support Configuration Add Test Object Method

Delete Custom Support Add Event Handler

A new UFTmenu is also added to Eclipse, with these same commands. The commands are
described in detail in the following sections.

Deploy Toolkit Support

TheDeploy Toolkit Support command is available in Eclipse when you select a UFT Java
Add-in Extensibility project (or elements within it) in the Eclipse Package Explorer tab.

Note: TheDeploy Toolkit Support command is not available if you installed the UFT Java
Add-in Extensibility SDK before installing UFT and the Java Add-in. To solve this problem,
uninstall the UFT Java Add-in Extensibility SDK and install it again. For more information, see
"Installing the HP UFT Java Add-in Extensibility Software Development Kit" on page 21.

You use theDeploy Toolkit Support command to deploy the toolkit support during the
development stages. To use this command, UFT and the UFT Java Add-in Extensibility Eclipse
Plug-in must be installed on the same computer.

This command copies the toolkit configuration file and the test object configuration file to the
appropriate UFT folders. In the toolkit configuration file, the location specified for the compiled
support classes is the Eclipse workspace. The next time you run the Java application, the support
you developed is available on UFT. For more information, see "Deploying and Running the Custom
Toolkit Support" on page 59.

Note: The deploy command compiles the Java classes before deploying, but does not validate
compilation results. Save the support classes before deploying and check for compilation
errors, to avoid run-time failure.

TheDeploy Toolkit Support command copies only the test object configuration file that is named
<Custom Toolkit Name>TestObjects.xml. If you create additional test object configuration files
youmust copy them to the appropriate folders, specified in "Deploying and Running the Custom
Toolkit Support" on page 59.

TheDeploy Toolkit Support command validates the configuration files against their
corresponding XSD files, and only deploys them if their format meets the requirements (or you
specify that you want to deploy in spite of the displayed discrepancies). For information on the
structure of the configuration files, see theUFT Java Add-in Extensibility Toolkit Configuration
SchemaHelp and theHP UFT Test Object SchemaHelp (both available with the Java Add-in
Extensibility SDK Help).

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 115 of 221

The toolkit configuration file is validated against:
<UFT installation folder>\bin\java\sdk\eclipse\plugins\
com.mercury.qtjext.plugin.QTJavaExt_1.0.0\ToolkitSchema.xsd

The test object configuration file is validated against:
<UFT installation folder>\bin\java\sdk\eclipse\plugins\
com.mercury.qtjext.plugin.QTJavaExt_1.0.0\ClassesDefintions.xsd

Reload Support Configuration

TheReload Support Configuration command is available in Eclipse when you select a UFT
Java Add-in Extensibility project (or elements within it) in the Eclipse Package Explorer tab.

Note: TheReload Support Configuration command is not available if you installed the UFT
Java Add-in Extensibility SDK before installing UFT and the Java Add-in. To solve this
problem, uninstall the UFT Java Add-in Extensibility SDK and install it again. For more
information, see "Installing the HP UFT Java Add-in Extensibility Software Development Kit"
on page 21.

TheReload Support Configuration command instructs the UFT Java Add-in Extensibility
Eclipse plug-in to update the plug-in's list of supported Java classes and test object classes by
reloading:

l the selected project's configuration files and support classes

l all of the toolkit configuration files and test object configuration files from the UFT installation
folder

TheReload Support Configuration command affects the following items in the New UFT
Custom Support Class wizard:

l The list of custom classes displayed in the custom toolkit tree in the "Custom Class Selection
Screen" (described on page 86).

l The wizard's selection of the base support class in the "Custom Class Selection Screen"
(described on page 86).

l The list of existing test object classes displayed in the "Test Object Class Selection Screen"
(described on page 91).

The following examples demonstrate situations that require reloading the support configuration:

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 116 of 221

l Youmodified the test object configuration file in the UFT Java Add-in Extensibility project,
adding or removing test object classes. You now want the wizard's list of existing test object
methods to reflect these changes.

l Youmanually deployed support of a custom toolkit to UFT, and you want the wizard to
recognize that the classes are supported.

l Youmanually deleted support for some classes from UFT, and you want these classes to be
removed from the list of supported classes in the Eclipse plug-in.

l You created a custom toolkit support set (named Support Set A) in one Eclipse project and
deployed it. You are now creating a custom toolkit support set (named Support Set B) for
another custom toolkit in a different Eclipse project. You want to use a support class from
Support Set A as the base support class for a support class in Support Set B.

Delete Custom Support

TheDelete Custom Support command is available in Eclipse when you select a UFT Java
Add-in Extensibility custom support class in the Eclipse Package Explorer tab.

Note: The command is available only if this class was created as a UFT Java Add-in
Extensibility custom support class in this Eclipse workspace.

You use this command to delete support for a specific custom class. The support class is deleted,
as well as its listing in the toolkit configuration file. If you created a new test object class for this
support class, it is not deleted from the test object configuration file because other support classes
can use it.

If you delete the support class using the Eclipse Delete command, instead of theDelete Custom
Support, youmust manually remove themapping of the custom control to this support class in the
toolkit configuration file.

Tip: If you want to delete a support class you have just created, make sure you save the
support class first.

After deleting a support class, if you previously deployed support for this custom class to UFT, you
must re-deploy the toolkit support. This replaces the toolkit configuration file with the updated one,
removing the support for this custom class from UFT as well.

If you delete a support class that serves as the base support class for another, youmust manually
change the inheritance of this other class. For example: InheritedCS extends ToDeleteCS that
extends BuiltInCS. If you delete ToDeleteCS, youmust manually change InheritedCS to extend
BuiltInCS.

You cannot remove support of a complete toolkit using the UFT Java Add-in Extensibility Eclipse
Plug-in commands. To do this you have tomanually delete the toolkit configuration files from their
locations in the UFT folders. For more information, see "Deploying and Running the Custom Toolkit
Support" on page 59.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 117 of 221

Add Identification Property

TheAdd Identification Property command is available in Eclipse when you select a UFT
Java Add-in Extensibility custom support class in the Eclipse Package Explorer tab.

Note: This command is available only if this class was created as a UFT Java Add-in
Extensibility custom support class in this Eclipse workspace.

You use this command to add an identification property after the support class is created.

Youmust deploy the toolkit support for the changes to take effect on UFT.

If you add an identification property to the test object class definition, it appears in the list of
identification properties in UFT for all test objects of this class. It is for this reason that, if you plan
to add properties, you create a new test object class based on the existing one, instead of
modifying an existing test object class.

To add an identification property:

1. Click theAdd Identification Property button in the UFT toolbar in Eclipse. The
Identification Property dialog box opens.

2. Enter a name for the new identification property and click OK.

3. A confirmation box opens notifying you that in addition to adding the new identification property
to the support class, the property will also be added to the definition of the test object class
mapped to the supported control. This identification property will then appear in the list of
identification properties in UFT for all test objects of this class.

Click Yes if you want to continue. (If you click No, the new identification property is discarded.)

A support method stub for the identification property you defined, named
<identification property name>_attr, is added to the support class. Themethod stub returns
null until you implement themethod tomatch the needs of your custom control.

4. Another message box prompts you to select whether you want the new identification property
to be selected by default in checkpoints.

After youmake your selection, the new identification property is added to the test object class
definition in the test object configuration file.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 118 of 221

If you clickedYes, the ForDefaultVerification attribute is added to the identification property
definition and set to true. Otherwise, the ForDefaultVerification is not added. (In both cases,
the ForVerification attribute is added and set to true, so that the new identification property is
always available for checkpoints.)

If you add an identification property that you want to be part of the unique test object
description, you have tomanually define this in the test object configuration file. In the row for
this identification property, between the words Property and Name add the words
ForDescription="true". This adds the ForDescription attribute to theProperty element
and sets it to true.

For more information, see theHP UFT Test Object SchemaHelp (available with the Java Add-
in ExtensibilitySDKHelp).

Add Test Object Method

TheAdd Test Object Method command is available in Eclipse when you select a UFT Java
Add-in Extensibility custom support class in the Eclipse Package Explorer tab.

Note: This command is available only if this class was created as a UFT Java Add-in
Extensibility custom support class in this Eclipse workspace.

You use this command to add a test object method after the support class is created.

Youmust deploy the toolkit support for the changes to take effect on UFT.

If you add a test object method to an existing test object class, the new methods appear in UFT for
all test objects of this class, regardless of whether or not they are supported for these objects. In a
UFT GUI test, if you call a test object method for an object, and that method is not supported, a run-
time error occurs.

Therefore, if you plan to add test object methods to support a custom control, it is recommended to
create a new test object class based on the existing one, instead of modifying an existing test
object class.

To add a test object method:

1. Click theAdd Test Object Method button in the UFT toolbar in Eclipse. The Test Object
Method Dialog box opens.

2. Define the details of the test object method you want to add, and click OK. For more
information, see "Understanding the Test Object Method Dialog Box" on page 99.

3. A confirmation box opens notifying you that in addition to adding new test object method to the
support class, the test object method will also be added to the definition of the test object class
mapped to the supported control. The test object method will then appear in UFT for all test
objects of this class.

Click Yes if you want to continue. (If you click No, the new test object method is discarded.)

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 119 of 221

A support method stub for the test object method you defined, named <test object method
name>_replayMethod, is added to the support class. This method stub returns the error value
Retval.NOT_IMPLEMENTED until you implement it to match the needs of your custom
control.

In addition, the test object method is added to the test object class definition in the test object
configuration file. For information on the structure and content of this file, see theHP UFT Test
Object SchemaHelp (available with the Java Add-in ExtensibilitySDKHelp).

Add Event Handler

TheAdd Event Handler command is available in Eclipse when you select an AWT-based
UFT Java Add-in Extensibility custom support class in the Eclipse Package Explorer tab.

Note: This command is available only if this class was created as a UFT Java Add-in
Extensibility custom support class in this Eclipse workspace.

You use this command to add an event handler to the support class after it is created.

The following options are available in the Custom Control Recording Support wizard screen when
you create a new support class:

l Treat controls of this class as wrapper controls

l Override low-level mouse event recording

l Override low-level keyboard event recording

If you did not select them when you created the support class, and you want to implement them,
you have to do somanually. For information on how to do this, see "Supporting the Record Option"
on page 51.

To add event handler methods:

1. Click theAdd Event Handler button in the UFT toolbar in Eclipse. The Listener dialog
box opens:

2. Select a listener from the list.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 120 of 221

If the selected listener has more than one registrationmethod, select amethod from the
Registration method list.

3. Click OK.

The listener you selected is added to the signature of the support class.

A constructor is added to the support class (or modified, if it already exists) to call the
addSimpleListenermethod for the listener you selected. This adds the listener to the list of
listeners that need to be registered on the custom control, and specifies themethods used to
register and remove it.

Method stubs for all of the event handler methods that comprise the listener you selected are
added to the support class. A comment is added to eachmethod stub, reminding you to
implement the event handler to callMicAPI.record to send a recordmessage to UFT. For
more information, see "Supporting the Record Option" on page 51.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In

HP UFT Java Add-in Extensibility (12.00) Page 121 of 221

HP UFT Java Add-in Extensibility (12.00) Page 122 of 221

Part 2: Tutorial: Learning to Create Java
Custom Toolkit Support

Chapter 5: Using the UFT Java Add-in Extensibility
Tutorial

The UFT Java Add-in Extensibility tutorial comprises lessons that will familiarize you with the
process of creating, testing, and deploying custom toolkit support. After completing the tutorial, you
can apply the skills you learn to create UFT support for your own custom toolkits and controls.

This chapter includes:

Understanding the Tutorial Lesson Structure 124

Checking Tutorial Prerequisites 125

HP UFT Java Add-in Extensibility (12.00) Page 123 of 221

Understanding the Tutorial Lesson Structure
This tutorial is divided into lessons. Each lesson assumes that you have already performed the
previous lessons or have an equivalent level of experience. In each lesson, you learnmore about
the capabilities and techniques available with UFT Java Add-in Extensibility. It is recommended to
perform the lessons in order.

In each lesson in this tutorial, you extend UFT support for a different custom control, using the UFT
Java Add-in Extensibility Eclipse plug-in. The custom controls are provided in sample custom
toolkits that you can find in the <Java Add-in Extensibility SDK installation folder>\samples
folder.

This folder also contains the custom toolkit support sets required to support these custom controls
and additional examples of custom toolkits and their support. If you deploy the sample custom
toolkit support sets manually, youmust compile the Java classes before deploying.

Each lesson in the tutorial explains the Java Add-in Extensibility wizard options that you need to
use in that specific lesson. For more information on these wizards, see "Using the UFT Java Add-in
Extensibility Eclipse Plug-In" on page 74.

About Learning to Support a Simple Control
The lesson, "Learning to Support a Simple Control" on page 127, uses a basic custom Java control
named ImageButton to teach you the fundamental elements of custom support. This lesson guides
you through the steps required to create a custom toolkit support project containing one custom
support class. Through this lesson, you will learn to recognize and understand the files and
methods that comprise custom support.

In this lesson, you use two of the wizards provided by the UFT Java Add-in Extensibility Eclipse
plug-in: the New UFT Java Add-in Extensibility Project wizard and the New UFT Custom Support
Class wizard.

About Learning to Support a Custom Static-Text Control
The lesson, "Learning to Support a Custom Static-Text Control" on page 158, uses the ImageLabel
control to teach you how to support a static-text control. This lesson guides you through the steps
required to create a support class for a static-text control in an existing custom toolkit support
project. (The ImageLabel control belongs to the same custom toolkit as the ImageButton control
that you used in the previous lesson.) Through this lesson, you will learn about the basic methods
that are required in a support class for a static-text control.

In this lesson, you use the New UFT Custom Static-Text Support Class wizard provided by the
UFT Java Add-in Extensibility Eclipse plug-in.

About Learning to Support a Complex Control
The lesson, "Learning to Support a Complex Control" on page 183, uses the custom Java control
AllLights to teach youmore about custom support. AllLights is a complex control with unique
behavior that requires a new test object class definition. The lesson guides you through the steps of
creating a custom support class containing new identification properties and test object methods
that did not exist in the parent support class. You will also learn to understand the test object
configuration file.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Tutorial

HP UFT Java Add-in Extensibility (12.00) Page 124 of 221

Checking Tutorial Prerequisites
Before you begin to perform the lessons in this tutorial, make sure that the requirements described
in this section aremet.

System Requirements
Youmust have the following items installed on a computer on which support has not yet been
implemented for the custom toolkits and controls in this tutorial. If such support has already been
implemented, remove the support as described in "Deploying and Running the Custom Toolkit
Support" on page 59.

Eclipse
For a list of supported Eclipse versions, see theHP Unified Functional Testing Product Availability
Matrix, available from the Unified Functional Testing Help or the root folder of the Unified Functional
Testing DVD.

Java Add-in Extensibility SDK
For information on installing Eclipse or the Java Add-in Extensibility SDK see "Installing the
HP UFT Java Add-in Extensibility Software Development Kit" on page 21.

Unified Functional Testing, including the Java Add-in
For information on installing Unified Functional Testing (UFT), see theHP Unified Functional
Testing Installation Guide.

If your UFT installation is not on the same computer as Eclipse, you can still perform the lessons in
this tutorial. However, when you are instructed to deploy the toolkit support to UFT, youmust
manually transfer the custom support class files and configuration files to the correct folders on the
UFT computer as described in "Deploying and Running the Custom Toolkit Support" on page 59.

Knowledge Requirements
The lessons in this tutorial assume you have the background knowledge described below:

Familiarity with major UFT features and functionality
You should have a thorough understanding of the following: test objects, object repository, Object
Spy, Keyword View, and Editor. You should also have experience recording, editing, and running
tests. For more information, see theHP Unified Functional Testing User Guide.

Experience with Java programming
You should be familiar with the concepts related to Java programming (class, package, interface,
inheritance, and so on) and know how to write and compile Java classes.

Familiarity with XML
You should be familiar with the concepts of elements and attributes and feel comfortable working
with schemas and editing XML files.

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Tutorial

HP UFT Java Add-in Extensibility (12.00) Page 125 of 221

A basic understanding of the concepts described in the Implementing
Custom Toolkit Support chapter
This tutorial assumes familiarity with the concepts described in "Implementing Custom Toolkit
Support" (beginning on page 28).

Developer Guide
Chapter 5: Using the UFT Java Add-in Extensibility Tutorial

HP UFT Java Add-in Extensibility (12.00) Page 126 of 221

Chapter 6: Learning to Support a Simple Control
In this lesson you create support for the ImageButton control within the ImageControls toolkit.
Adding support for the ImageButton control requires only minimal customization, allowing you to
learn the basics of creating a custom toolkit support set.

Before you perform this lesson, ensure that you have read the "Implementing Custom Toolkit
Support" and "Planning Custom Toolkit Support"chapters in this guide and that youmeet the tutorial
prerequisites as described in "Using the UFT Java Add-in Extensibility Tutorial" on page 123.

This lesson guides you through the following stages:

Preparing for This Lesson 128

Planning Support for the ImageButton Control 130

Creating a New UFT Java Add-in Extensibility Project 133

Creating a New UFT Custom Support Class 140

Understanding the New Custom Support 148

Deploying and Testing the New Custom Toolkit Support 151

Changing the Name of the Test Object 152

Implementing Support for a Test Object Method 154

Implementing Event Handler Methods to Support Recording 155

Lesson Summary 157

HP UFT Java Add-in Extensibility (12.00) Page 127 of 221

Preparing for This Lesson
Before you extend UFT support for a custom control, youmust:

l Make sure you have full access to the control.

l Understand its behavior and what functionality needs to be tested.

l Have an application in which you can see and operate the control.

l Have access to the class that implements it. (Although you do not modify any of the custom
control classes when creating your custom support, you reference the compiled classes, and
rely on information you can gain from the source files.)

Perform the following procedure to create an Eclipse project containing the ImageControls custom
toolkit classes and a sample application containing the custom controls.

Note: The sample application is designed to run from the default <UFT Java Add-in
Extensibility SDK installation>\samples folder. If you install the SDK to another location,
you need tomodify the sample application slightly before you begin this lesson. For
information, see "Modifying the Sample Application to Run From Another Location" on the next
page.

To create a new Java project with the ImageControls sample in Eclipse:

1. Run Eclipse and select File > New > Project. The New Project dialog box opens.

2. Select Java Project and click Next. The New Java Project dialog box opens.

3. Enter ImageControls in theProject name box.

4. Select theCreate project from existing source option.

5. Click theBrowse button and browse to the <UFT Java Add-in Extensibility SDK
installation folder>\samples\ImageControls\src folder. Click OK to return to the New Java
Project dialog box.

6. Click Finish. A new Java project is created with the ImageControls sample source files. The
new project, named ImageControls, is displayed in thePackage Explorer tab.

Note: The steps for creating a new project in Eclipsemay vary, depending on the Eclipse
version that you use.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 128 of 221

Expand the ImageControls project to view its content. The ImageControls\src package folder
contains two packages:

l The com.sample package contains the sample application: SampleApp.

l The com.demo package contains three custom controls: ImageButton, ImageControl and
ImageLabel.

The following diagram shows the inheritance hierarchy of the classes in the com.demo package.

The functionality provided by the classes in this package is as follows:

l ImageControl. This class extends theCanvas class, and displays an image on the control.

l ImageLabel. This class extends the ImageControl class, and allows writing additional text
over the image displayed on the control.

l ImageButton. This class extends the ImageControl class, and draws a button-like rectangle
around the control. It listens for low-level events on the control, and triggers anAction event
when the button is clicked.

Modifying the Sample Application to Run From Another
Location

If the UFT Java Add-in Extensibility SDK is installed under a folder other thanC:/Program
Files/HP/Unified Functional Testing, youmust modify the sample application before performing
this lesson.

To modify the sample application:

1. After you copy the ImageControls source files into Eclipse, browse to the package
ImageControls\src\com.sample in Eclipse and open theSampleApp.java file.

2. Locate the code containing the image file paths:

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 129 of 221

C:/Program Files/HP/Unified Functional Testing/samples/ImageControls/image
s/
mercury.gif
C:/Program Files/HP/Unified Functional Testing/samples/ImageControls/image
s/
JavaExt1.gif

3. Replace C:/Program Files/HP/Unified Functional Testing in these paths with the
actual installation folder to enable the sample application to function properly.

Planning Support for the ImageButton Control
In this section, you analyze the current UFT support of the ImageButton control, determine the
answers to the questions in the "Understanding the Custom Class Support Planning Checklist" on
page 70, and fill in the "Custom Class Support Planning Checklist " on page 133, accordingly.

The best way to do this is to run the application containing the custom control, and analyze it from a
UFT perspective using the Object Spy, Keyword View, and Record option.

1. Run the SampleApp application and open UFT.

a. In the Eclipse Package Explorer tab, right-click SampleApp. Select
Run As > Java Application. The SampleApp application opens.

b. Open UFT and load the Java Add-in.

2. Use the Object Spy to view the ImageButton properties.

a. In UFT, open aGUI test and select Tools > Object Spy or click theObject Spy toolbar

button to open theObject Spy dialog box. Click theProperties tab.

b. In the Object Spy dialog box, click the pointing hand , then click the button in the
SampleApp application.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 130 of 221

The ImageButton control is based on a custom class that UFT does not recognize.
Therefore, it recognizes the button as a generic JavaObject named ImageButton, and the
icon shown is the standard JavaObject class icon.

c. Close the Object Spy.

3. Record an operation on the ImageButton control.

a. In UFT select Record > Record and Run Settings to open the Record and Run Settings
dialog box. In the Java tab, select Record and run test on any open Java application.
If theWeb Add-in is also loaded, click theWeb tab and select Record and run test on
any open browser. Click OK.

b. Click theRecord button or select Record > Record. Click the button in the SampleApp
application. The counter value in the edit box increases by one.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 131 of 221

A new step is added to the test.

c. Click theStop button or select Record > Stop to end the recording session.

TheClick operation recorded on the ImageButton JavaObject is a generic click, with
arguments indicating the low-level recording details (x and y coordinates and themouse
button that performed the click).

4. Determine the custom toolkit to which the ImageButton control belongs.

When you extend UFT support for a control you always do so in the context of a toolkit. For the
purpose of this tutorial, three classes that share the same ancestor, java.awt.Canvas, are
grouped to form the custom toolkit named ImageControls: ImageButton, ImageLabel, and their
superclass ImageControl.

In this lesson you create support for the ImageControls toolkit, initially supporting only the
ImageButton class.

5. Complete the custom class support planning checklist.

Youwant UFT to treat the ImageButton as a special kind of button and you want it to support
the operation it performs. Therefore it makes sense to create Extensibility support for this
control.

The custom class ImageButton extends another custom class, ImageControl, for which UFT
also does not provide support. At this point, there does not seem to be any functionality
requiring special UFT support, which ImageButton shares with other classes that extend
ImageControl. Therefore it is sufficient to extend support directly to the ImageButton class.

When fully supported, UFT should recognize the ImageButton control as a JavaButton test
object. You want JavaButton test objects representing controls of this type to be named
according to the name of the image file that the control displays.

The custom support should also include support for the simple Click-on-the-button operation.
(Note that in UFT, the simple JavaButtonClick operation has an optional argument that
specifies whichmouse button performed the click.) The ImageButton custom class listens for
low-level mouse events and substitutes them with events that aremore relevant to button
behavior, in this case anAction event. Therefore, to recordmouse clicks, the support class
must listen forAction events.

On the next page, you can see the checklist, completed based on the information above.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 132 of 221

Custom Class Support Planning Checklist

Custom Class Support Planning Checklist

Does the custom class have a superclass for which UFT custom support is not yet
available? No

If so, should I first extend support for a control higher in the hierarchy? N/A

Do I have an application that runs the custom control on a computer with UFT
installed? Yes

The sources for this custom control class are located in:
an Eclipse project called ImageControls

Which existing Java test object matches the custom control? JavaButton

If none, create a new Java test object class named: N/A

l New test object class extends: (Default—JavaObject)

l Icon file location (optional):

l Identification property for description:

l Default test object method:

Is the custom control a top-level object? No

Is the custom control a wrapper? No

Specify the basis for naming the test object: its image file name

List the identification properties to support, andmark default checkpoint properties:

nothing special

List the test object methods to support (include arguments and return values if required):

Click(button)

Provide support for recording? (AWT-based only) Yes

If so, list the events that should trigger recording:

ActionEvents

Creating a New UFT Java Add-in Extensibility Project
In this section you create a new project for the ImageControls toolkit support. To do this, you use
one of the wizards provided by the UFT Java Add-in Extensibility plug-in in Eclipse.

HP UFT Java Add-in Extensibility (12.00) Page 133 of 221

1. Open the New UFT Java Add-in Extensibility Project wizard.

a. In Eclipse, select File > New > Project. The New Project dialog box opens. Expand the
Unified Functional Testing folder and select UFT Java Add-in Extensibility Project.

b. Click Next. The UFT Java Add-in Extensibility Project screen opens. The details on this
screenmay vary, depending on the version of Eclipse that you are using.

2. Enter the UFT Java Add-in Extensibility project details.

a. In theProject name box, enter ImageControlsSupport. Select Create separate folders
for sources and class files. (In earlier Eclipse versions this option is namedCreate
separate source and output folders.) For more information on this dialog box, see the
Eclipse Help.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 134 of 221

b. Click Next. The Custom Toolkit Details screen opens.

3. Enter the custom toolkit details.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 135 of 221

In this screen, you provide the details of the ImageControls toolkit so that the wizard can
generate a corresponding custom toolkit support set.

a. Define the following information:

o In theUnique custom toolkit name box, you enter a name that uniquely represents the
custom toolkit for which you are creating support. The new toolkit support class is given
this name plus the suffix-word Support. Providing unique toolkit names allows a single
UFT installation to support numerous custom toolkit support sets simultaneously.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 136 of 221

After you develop the support and deploy it to UFT, UFT displays the custom toolkit
name in all of the dialog boxes that display lists of add-ins or supported environments.

Enter the name ImageControls.

o In theSupport toolkit description box enter: ImageControls toolkit support.

o TheBase toolkit list contains a list of toolkits for which UFT support already exists.
After you create support for your own toolkits, they are displayed in the list as well.

The ImageButton custom class extends anAWT component, so keep the default
selectionAWT as theBase toolkit.

o Youmust specify the location of the custom classes you want to support in this toolkit.
When the new Java Add-in Extensibility project is built, these classes are added to the
project build path. You can specify .jar files or file system folders for the class location.

In theCustom toolkit class locations area, click Add project to select the Eclipse
Java project containing the custom classes for the ImageControls toolkit. The Select
Project dialog box opens and displays the projects in the current Eclipse workspace.

b. Select the ImageControls check box. Click OK. The ImageControls project is added in the
Custom toolkit class locations box.

c. Click Finish. The Project Summary screen opens.

4. View the Project Summary wizard screen.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 137 of 221

Review the details of the project and click OK.

The wizard creates a new Java Add-in Extensibility project named ImageControlsSupport,
containing the basic files required for custom toolkit support.

Understanding Your New Custom Toolkit Support Set
Your new Java Add-in Extensibility project is displayed in the Package Explorer tab.

Note: If you havemore than one JRE installed on your computer, make sure that the
ImageControls project and the ImageControlsSupport project are using the same JRE version.
If they are not, modify the JRE for one of the projects so that they use the same version.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 138 of 221

Expand the ImageControlsSupport project to view its content.

The src folder contains the following packages:

l com.mercury.ftjadin.qtsupport.imagecontrols

This package contains the new toolkit support class file, ImageControlsSupport.java, which
defines the new toolkit support class, ImageControlsSupport:

public class ImageControlsSupport extends AwtSupport {
}

The ImageControls toolkit for which you are creating support extends AWT. Therefore, the
ImageControls toolkit support class extends the built-in UFTAwtSupport. No additional
implementation is needed in this class.

l com.mercury.ftjadin.qtsupport.imagecontrols.cs

This package is currently empty. When you create the individual custom control support
classes, they are stored in this package.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 139 of 221

TheConfiguration folder contains the following items:

l The TestObjects folder.

This folder is currently empty. If you create new test object classes to represent the custom
controls in your toolkit, a test object configuration file is created in this folder. This is not relevant
for this lesson.

l The toolkit configuration file: ImageControls.xml.

Open the file to view its content.

<Controls
 class="com.mercury.ftjadin.qtsupport.imagecontrols.
ImageControlsSupport"
 SupportClasspath="C:\JavaExtensibility\Workspace_final\
ImageControlsSupport\bin"
 description="ImageControls toolkit support.">
</Controls>

At this point, the XML file contains a singleControls element that declares the toolkit support
class by providing values for the class, SupportClasspath, and description attributes.

When you create the individual custom control support classes, themapping of each custom
control to its support class is added to this configuration file.

Notice that the support class location is currently in your Eclipse workspace. This is appropriate
for the development phase of the custom support. When the support is fully implemented and
tested, you store the support classes in amore permanent location on a UFT computer and
update the values in the toolkit configuration file appropriately. For more information, see
"Deploying and Running the Custom Toolkit Support" on page 59.

For a complete understanding of the structure of this file, see theUFT Java Add-in
ExtensibilityToolkit Configuration SchemaHelp(available with the Java Add-in Extensibility
SDK Help).

Creating a New UFT Custom Support Class
In this section you create a custom support class for the ImageButton control, as part of the
ImageControls toolkit support. To do this, you use one of the wizards provided by the UFT Java
Add-in Extensibility plug-in in Eclipse. The details you specify in each wizard screen reflect the
decisions youmade when planning the custom support. In the subsequent sections you implement
themethods that the wizard creates in this class.

Note: The following sections describe only the options in the wizard screens that are relevant
to this lesson. For a complete description of all options available in the wizard screens, see
"Using the UFT Java Add-in Extensibility Eclipse Plug-In" on page 74.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 140 of 221

1. Open the New UFT Custom Support Class wizard.

a. In the Eclipse Package Explorer tab, select the new UFT Java Add-in Extensibility project,
ImageControlsSupport. Select File > New > Other. The New dialog box opens.

b. Expand theUnified Functional Testing folder and select UFT Custom Support Class.

c. Click Next. The Custom Class Selection screen opens.

2. Select the custom class to support, and set the options for the support class.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 141 of 221

a. Expand the com.demo package and select the ImageButton class.

In theCustom toolkit tree pane, you can see the structure of the ImageControls project,
which you selected for the custom toolkit class location, in "Creating a New UFT Java
Add-in Extensibility Project" on page 133. The com.demo package contains the
ImageControls custom toolkit, with its custom classes, as described in "Preparing for This
Lesson" on page 128.

Note: The com.sample package is included in the ImageControls sample project,
only to provide convenient access for running the sample application. Themain
content of the ImageControls project is the ImageControls custom toolkit, contained in
com.demo package.

In theCustom class inheritance hierarchy pane, you can see the hierarchy of the
ImageButton class you have selected. It extends the ImageControl class, which is part
of the same toolkit, and is therefore shown in black.

The ImageControl custom class is not supported, but theCanvas class does have a
matching support class, provided in the com.mercury.ftjadin.support.awt.cs package.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 142 of 221

Therefore theBase support class for the ImageButton support class you are creating is
CanvasCS. This is the class that your new support class extends.

TheControls of this class represent top-level objects option is disabled because the
ImageButton class is not a container class.

The name for the ImageButton support class is, by default, ImageButtonCS. It is
recommended to keep the default name.

b. Click Next. The Test Object Class Selection screen opens.

3. Select a test object class to represent the custom control.

In this screen, youmap the custom control to a test object class. In UFT tests, the custom
class controls are represented by test objects of this test object class. This is the first and
most important decision youmake when creating a custom support class.

In the previous screen, you determined the support class that the new support class extends.
When the test object mapped to the class whose support you are extending is also a logical
test object for the custom class, you select Same as base support class. The
ImageButtonCS class extends CanvasCS, whose test object class does not adequately
represent ImageButton controls.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 143 of 221

The existing JavaButton test object does answer the needs of your custom support.

a. Select theExisting test object class option and select JavaButton from the list. The list
of existing test objects contains all of the Java objects that UFT currently supports. If you
define new test objects for custom support, they are included in the list as well.

b. Click Next. The Custom Support Test Object Identification Properties screen opens.

4. Determine the set of test object identification properties to implement in
ImageButtonCS.

This screen displays the identification properties supported by the base support class you are
extending, as well as additional properties that are defined in the test object class you
selected, but are not yet supported. It enables you to select properties whose support you want
to implement or override with new functionality and to add new properties.

The left pane shows all of the identification properties whose support is implemented by
CanvasCS, and therefore inherited by the new ImageButtonCS support class. For most of the
properties in this list, the default implementation is sufficient.

a. Select the label property by clicking the check box. After you finish generating the support
files using the wizard, you will override the existing support for this property with a custom
implementation that matches the needs of the custom control.

b. Click Next. The Custom Support Test Object Methods screen opens.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 144 of 221

5. Determine the set of test object methods to implement in ImageButtonCS.

This screen displays the test object methods defined in the test object class you selected. It
enables you to select methods whose support you want to implement or override with new
functionality and to add new methods.

The left pane shows all of the test object methods (defined in the test object class you
selected) whose support is implemented by CanvasCS, and therefore inherited by
ImageButtonCS. This existing implementation is sufficient for ImageButton so there is no need
to select any methods to override.

In the right pane, you can see the test object methods that are defined for the JavaButton test
object class, but are not supported by CanvasCS.

a. Note that there is only one suchmethod—Click(Object obj, String button). After you
finish generating the support files using the wizard, you will implement the ImageButton
support for this method.

b. Click Next. The Custom Control Recording Support wizard screen opens.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 145 of 221

6. Determine the set of events for which to listen, to support recording on the
ImageButton control.

This screen displays the event listeners implemented by the support class you are extending.
It enables you to select event handler methods whose implementation you want to override
with new functionality and to add new event listeners to implement.

In the left pane, you can see the listeners implemented by CanvasCS. You do not have to
override any of these for the ImageButtonCS custom support class.

In the right pane, you specify the listeners you want to add for ImageButtonCS. Each listener
you select implies a set of event handler methods that the wizard adds to the support class.

Perform the following:

a. Click Add to add theActionListener.

The Listener dialog box opens.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 146 of 221

b. If it is not already selected, select java.awt.event.ActionListener from the Listener list. If
the selected listener hadmore than one registrationmethod, you would also select a
method from theRegistration method list.

c. Click OK. The Listener dialog box closes and theActionListener, and all of the event
handler methods it includes, are added to the list in the right pane of the wizard screen.

d. On the Custom Control Recording Support screen, select theOverride low-level mouse
event recording check box to prevent low-level events (coordinate-based operations) from
being recorded instead of the events you want to record. For more details on this option,
see "Understanding Event Recording Support" on page 150.

e. Click Finish. The Custom Control Support Class Summary screen opens.

7. View the custom control support class summary.

Review the planned content of the custom support class, and click OK.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 147 of 221

The following changes aremade in the ImageControlsSupport project:

n A new UFT custom support class, ImageButtonCS, is created in the
com.mercury.ftjadin.qtsupport.imagecontrols.cs package. The file is opened and
displayed in a tab in the right pane.

n A new ImageControlsTestObjects.xml file is created in theConfiguration\TestObjects
folder.

n The ImageControls.xml file is modified.

For a detailed explanation of these changes, see "Understanding the New Custom Support"
below.

The asterisk (*) next to the ImageButtonCS file name (in the ImageButtonCS tab) indicates
that it has not been saved. The changes made by the wizard are codependent, andmust be
saved to prevent discrepancies. Select File > Save, or click theSave button.

Understanding the New Custom Support
Your new UFT Java Add-in Extensibility custom toolkit support set is composed of:

l One toolkit support class: ImageControlsSupport, which is created by the wizard when the
ImageControlsSupport project is created, and not changed.

l One toolkit configuration file: ImageControls.xml. This file is created by the wizard when the
ImageControlsSupport project is created. It is updated with each support class you add for
this toolkit.

The ImageControls.xml file is now updated tomap the com.demo.ImageButton custom
control, to its support class, com.mercury.ftjadin.qtsupport.imagecontrols.cs.ImageButtonCS.

l One test object configuration file: ImageControlsTestObjects.xml. Since you did not add any
identification properties or test object methods to this the JavaButton test object class, this file
does not currently contain any significant information.

For a complete understanding of the structure of this file, see theHP UFT Test Object Schema
Help(available with the Java Add-in ExtensibilitySDKHelp).

l Custom support classes, one per custom class. In this case, you created one custom support
class: ImageButtonCS.

The following sections explain the elements that the wizard creates in the ImageButtonCS
class.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 148 of 221

Understanding the Basics of the ImageButtonCS Class
The UFT Java Add-in Extensibility wizard creates the custom support class based on the
specifications you entered, and registers it in the toolkit support configuration file.

The twomost basic characteristics of a support class are:

l The support class it extends

l The test object class mapped to the custom control

Open ImageButtonCS.java to review the support class that the wizard created for ImageButton.

The first declaration reflects your selection in the wizard to extend the CanvasCS class:

public class ImageButtonCS extends CanvasCS implements ActionListener {
 private static final String DEBUG_IMAGEBUTTONCS = "DEBUG_IMAGEBUTTONCS";
...
}

Note: DEBUG_IMAGEBUTTONCS is defined to control printing logmessages. For more
information, see "Logging and Debugging the Custom Support Class" on page 65.

The to_class property, implemented by the to_class_attrmethod, defines the test object class
selected to represent this custom control. UFT decides the set of identification properties and test
object methods for the test object based on this mapping.

 public String to_class_attr(Object obj) {
 return "JavaButton";
 }

This implementation is sufficient to provide initial recognition of the custom control in UFT.

Understanding Identification Property and Test Object
Method Support

Each identification property that can be learned for a particular custom control is represented in the
support class, by amethod called <property name>_attr. Each test object method that can be
supported for the control is represented by amethod called <test object method name>_
replayMethod.

When the wizard creates the support class, it inserts stubs for the requiredmethods, according to
the identification properties and test object methods that you selected to implement.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 149 of 221

The followingmethod stub was added because you selected to override the label identification
property, inherited from CanvasCS, in "Creating a New UFT Custom Support Class" on page 140:

 public String label_attr(Object arg0) {
 return super.label_attr(arg0);
 }

The followingmethod stub was added because you selected to implement theClick(Object obj)
test object method, in "Creating a New UFT Custom Support Class" on page 140:

 public Retval Click_replayMethod(Object obj, String button) {
 return Retval.NOT_IMPLEMENTED;
 }

Understanding Event Recording Support
In the ImageButtonCS class, the following elements provide the basis for event recording:

l Low-level recording override (enables recording of higher-level events):

 protected Object mouseRecordTarget(MouseEvent e) {
 return null;
 }

This method is added because you selected theOverride low-level mouse event recording
check box in "Creating a New UFT Custom Support Class" on page 140.

l Listing ActionListener for registration on the ImageButton control:

public ImageButtonCS() {
 addSimpleListener("ActionListener", "addActionListener",
 "removeActionListener");
 }

This constructor method is added because in "Creating a New UFT Custom Support Class" on
page 140, you added theActionListener to the list of listeners you want to implement.

The constructor calls the addSimpleListenermethod to add theActionListener to the list of
listeners that need to be registered on the custom control.

l Action event handler implementation:

public void actionPerformed(ActionEvent arg0) {
 try {

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 150 of 221

 if (!isInRecord())
 return;
 // TODO: Uncomment and edit the call to MicAPI.record
 // MicAPI.record(arg0.getSource(), <Operation>, new
 // String[]{<Parameters>});
 } catch (Throwable th) {
 }
 }

The wizard creates this method stub without any actual implementation. You implement it when
you get to the step for "Implementing Event Handler Methods to Support Recording" on page
155. Themethod stub contains the try ... catch block and the isInRecord check, providing a
recommendation for this method's structure. For more information, see "Supporting the Record
Option" on page 51.

Deploying and Testing the New Custom Toolkit Support
In this part of the lesson, you use the UFTDeploy Toolkit Support command in Eclipse to deploy
the ImageControls toolkit support to UFT. Currently only one control in this toolkit, the ImageButton
control, is supported. The toolkit support is not yet complete, but you can already test the support
created up to this point.

1. Deploy the ImageControls toolkit support to UFT.

In the Eclipse Package Explorer tab, select the ImageControlsSupport project.

Click theDeploy Toolkit Support button, or select UFT > Deploy Toolkit Support. In
the confirmationmessages that open, click Yes and thenOK.

The toolkit configuration file and the test object configuration file are copied to the relevant
folders in your UFT installation folder. The custom support will be available the next time you
open UFT and start the custom application.

For more information on deploying custom toolkit support, see "Deploying and Running the
Custom Toolkit Support" on page 59.

2. Open UFT and load the Java Add-in and the custom toolkit support.

OpenUFT. The Add-in Manager dialog box displays ImageControls as a child of the Java
Add-in in the list of available add-ins. (If the Add-in Manager dialog box does not open, see the
HP Unified Functional Testing Add-ins Guide for instructions.)

Select the check box for ImageControls and click OK. UFT opens and loads the support you
designed.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 151 of 221

3. Run the SampleApp application.

UFT establishes its connection with an application when the application opens. Therefore, if
the SampleApp application is open, youmust close and re-run it.

In the Eclipse Package Explorer tab, right-click SampleApp. Select Run As > Java
Application. The SampleApp application opens.

4. Test the new custom support.

View the ImageButton control with the UFT Object Spy and try to record aClick operation on
it. For details, see the steps in "Planning Support for the ImageButton Control" on page 130.

n UFT recognizes the ImageButton as a JavaButton named ImageButton.

n The new support class (ImageButtonCS) inherited some identification properties from the
base support class (CanvasCS) that are not included in the JavaButton test object class
definition. These properties are displayed in the Custom Support Test Object Identification
Properties screen (described on page 144), but they are not displayed in UFT in the Object
Spy or in the Checkpoint Properties dialog box. You can access these identification
properties by using theGetROPropertymethod. For more information on the
GetROPropertymethod, see theHP UFT Object Model Reference for GUI Testing.

n Because you have overridden the low-level recording, but have not yet implemented the
actionPerformed(ActionEvent arg0) event handler method, UFT currently does not record
anything when you click the button.

Changing the Name of the Test Object
In this part of the lesson, you extend UFT support of the ImageButton control to recognize its name
as per your plan ("Planning Support for the ImageButton Control" on page 130). To do this, you will
learn about the special property methods implemented in ObjectCS: tag_attr and attached_text_
attr.

The name of a test object is determined by its tag property. All AWT support classes extend
ObjectCS. ObjectCS implements the tag_attr method to check a set of properties in a specified
order, and return the first valid value it finds. A valid value is one that is not empty, and does not
contain spaces.

In the tag_attrmethod in the ObjectCS class, the following properties are checked, in the order in
which they are listed:

l label

l attached_text (for more detail see below).

l unqualified custom class

The label property is implemented in the custom support class with the label_attrmethod. In
ImageButtonCS, this method currently returns null, as does its superclass, CanvasCS.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 152 of 221

The attached_text_attrmethod is also implemented by ObjectCS. It searches for adjacent static-
text objects near the object, and returns their text. This mechanism is useful for controls like edit
boxes and list boxes, which do not have their own descriptive text, but are accompanied by a label.

Note: You can teach UFT to recognize custom static-text objects using the UFT Custom
Static-Text Support Class Wizard, which you access from the Eclipse New dialog box. For
more information, see "Learning to Support a Custom Static-Text Control" on page 158.

In ImageButton, the attached_text property is empty, so UFTmust use a fallback mechanism. It
uses the unqualified custom class, which is the name of the class, without the package name. In
this case, the custom class: com.demo.ImageButton resulted in the name ImageButton for test
object.

To change the name of a custom control test object, do not override the tag_attrmethod in the
support class. Instead, make use of its existing implementation, and override themethod label_
attr.

1. Override the label_attr method in the ImageButtonCS class.

a. In Eclipse, in the ImageButtonCS.java file, in the label_attrmethod stub, replace return
super.label_attr(arg0);with the following code, so that it returns the name of the
image file used for the ImageButton (without the full path):

ImageButton ib = (ImageButton)arg0;
String res = ib.getImageString();
if(res == null || res.length() == 0)
 return null;
int last = res.lastIndexOf('/');
if(last == -1)
 return res;
return res.substring(last+1);

b. Click theSave button, or select File > Save to save your changes.

Note: You do not have to deploy the toolkit support to UFT again because you
changed only Java class files and not configuration files.

2. Test the new custom support.

Run the application and view the ImageButton control with the UFT Object Spy, as described
in "Planning Support for the ImageButton Control" on page 130.

Note: You can use an open UFT session (running with the ImageControls custom toolkit
support loaded), but youmust close the SampleApp application, and run it again, for the

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 153 of 221

changes youmade in the custom support to take effect.

UFT now recognizes the ImageButton as a JavaButton named JavaExt1.gif.

Implementing Support for a Test Object Method
In this section you extend UFT support of the ImageButton, to support a Click-the-button test object
method. To do this, youmust implement theClick_replayMethod in the custom support class, to
call the appropriate MicAPI function.

1. Test the current functionality of the Click method on an ImageButton.

a. In UFT, create a new GUI test, add the JavaExt1.gif button to the object repository, and
add a step with this object. For instructions on how to do this, see theHP Unified
Functional Testing User Guide.

The ImageButton is recognized as a JavaButton item (note the icon used) named
JavaExt1.gif. TheClick operation is the default operation for this item, as it is for all
JavaButton items.

b. Click theRun button or select Run > Run. The Run dialog box opens.

c. Select New run results folder. Accept the default results folder name.

d. Click OK to close the Run dialog box.

UFT runs the test, and an error message is displayed. Click Details on themessage box.
The following information is displayed:

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 154 of 221

The reason for this error is that to run theClick operation, the UFT calls Click_
replayMethod, which is currently implemented in the ImageButtonCS to return the error
code NOT_IMPLEMENTED.

e. Click Stop, to stop running the test.

2. Implement the Click_replayMethod method in ImageButtonCS.

a. Replace theClick_replayMethodmethod stub, with the following code:

public Retval Click_replayMethod(Object obj, String button) {
 ImageButton ib = (ImageButton) obj;
 MicAPI.mouseClick((Object) ib, ib.getWidth() / 2,
 ib.getHeight() / 2);
 return Retval.OK;
 }

Note:When the wizard created the ImageButtonCS.java file, it automatically added
the importcom.mercury.ftjadin.custom.MicAPI, required to support this code.

b. Click theSave button, or select File > Save.

Note: This implementation ignores the button argument. For an implementation that
takes this argument into account, you could call a differentMicAPI.mouseClick
method. For more information, see theUFT Java Add-in Extensibility API Reference
(available with the Java Add-in Extensibility SDK Help).

3. Test the new custom support.

Note: You do not have to deploy the toolkit support to UFT again because you changed
only Java class files and not configuration files.

a. Close the SampleApp application and run it again.

b. In UFT, run the test you created above. The test run completes successfully. As you can
see, the click counter in the edit box is increased when the test executes theClick
operation.

Implementing Event Handler Methods to Support
Recording

Because you planned to support recording on the ImageButton control, you suppressed low-level
recording on this object, and registered to listen for Action events on this control.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 155 of 221

In this section, you implement the actionPerformed listener method, to callMicAPI.record, and
record theClick operation on the ImageButton object.

1. Implement the actionPerformed listener method to record Click operations.

a. In Eclipse, in the ImageButtonCS.java file, in the actionPerformed listener method stub,
modify the code to look like this:

public void actionPerformed(ActionEvent arg0)
{
 try {
 if (!isInRecord())
 return;
 MicAPI.record(arg0.getSource(), "Click");
 } catch (Throwable th)

{
 MicAPI.logStackTrace(th);
 }
}

TheMicAPI.logStackTracemethod prints a stack trace to the log file containing all of the
other Java Add-in Extensibility logmessages, and allows you to determine when the
actionPerformedmethod was called inadvertently. For more information, see "Logging
and Debugging the Custom Support Class" on page 65.

b. Click theSave button, or select File > Save.

Note: You do not have to deploy the toolkit support to UFT again because you
changed only Java class files and not configuration files.

2. Test the new custom support.

a. Close the SampleApp application and run it again.

b. Create a new GUI test and click theRecord button or select Record > Record. If the
Record and Run Settings dialog box opens, make sure theRecord and run test on any
open Java application option is selected, and click OK. Click the button in the
SampleApp application.

A simpleClick operation is recorded on the JavaExt1.gif JavaButton.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 156 of 221

The ImageButton custom control is now fully supported, according to the specifications you
decided on when planning your custom support.

Lesson Summary
In this lesson you created support for the ImageButton control, allowing UFT to recognize it as a
JavaButton test object. Youmodified the object name, and supported theClick operation.

l You learned how to create a toolkit support project, with one custom support class.

l You learned to recognize and understand the files that make up the toolkit support.

l You learned to use the following identification property support methods:

n to_class_attr

n tag_attr

n label_attr

n attached_text_attr

l Youmade use of the following functions:

n addSimpleListener

n mouseRecordTarget

n MicAPI.mouseClick

n MicApi.record

Where Do You Go from Here?
Formore information on the structure and content of a custom toolkit support set, see
"Implementing Custom Toolkit Support" on page 28.

For more information on the toolkit configuration file, see theUFT Java Add-in Extensibility Toolkit
Configuration SchemaHelp (available with the Java Add-in Extensibility SDK Help).

For more information on theMicAPI methods, see theUFT Java Add-in Extensibility API
Reference (available with the Java Add-in Extensibility SDK Help).

In the next lesson you learn how to create support for a static-text custom control. Static-text
controls normally do not have to support any specific operations; they simply provide a label for
adjacent controls. In the support class for a static-text control, simply implementing a set of
specific methods provides the necessary support. The "New UFT Custom Static-Text Support
Class Wizard" is specifically dedicated to creating custom support for static-text custom controls.

Developer Guide
Chapter 6: Learning to Support a Simple Control

HP UFT Java Add-in Extensibility (12.00) Page 157 of 221

Chapter 7: Learning to Support a Custom Static-
Text Control

In this lesson you create support for the ImageLabel control within the ImageControls toolkit. The
ImageLabel control does not have any specific identification properties or test object methods that
need to be supported. Its main purpose is to serve as a label. Therefore, you create support for the
ImageLabel as a static-text object.

This lesson assumes that you already performed the lesson "Learning to Support a Simple Control"
on page 127, in which you created the custom toolkit support set for the custom toolkit
ImageControls. In this lesson, you create another support class in the same custom toolkit support
set.

This lesson guides you through the following stages:

Preparing for This Lesson 159

Planning Support for the ImageLabel Control 159

Creating the UFT Custom Static-Text Support Class 164

Understanding the New Custom Static-Text Support Class 168

Deploying and Testing the New Custom Static-Text Support Class 168

Completing the Support for the Static-Text Control 170

Optimizing the ImageControls Toolkit Support 173

Lesson Summary 182

HP UFT Java Add-in Extensibility (12.00) Page 158 of 221

Preparing for This Lesson
The ImageControls Java project that you created in Eclipse when you prepared for the lesson
"Learning to Support a Simple Control" on page 127, contains the ImageLabel class. The sample
application that you ran in that lesson displays the ImageLabel control (to the left of the
ImageButton). The purpose of the ImageLabel control in this application is to provide a label for the
text box below it, which does not have a label identification property of its own.

Open Eclipse and locate the ImageControls Java project.

Planning Support for the ImageLabel Control
In this section, you analyze the current UFT support of the ImageLabel control and the adjacent text
box, determine how you want UFT to recognize the controls, and fill in the "Custom Class Support
Planning Checklist" on page 163, accordingly.

1. Open UFT and load the Java Add-in and the custom toolkit support.

a. Open UFT. The Add-in Manager dialog box displays ImageControls (for which you
created support in the previous lesson) as a child of the JavaAdd-in in the list of available
add-ins. (If the Add-in Manager dialog box does not open, see theHP Unified Functional
Testing Add-ins Guide for instructions.)

b. Make sure that the check boxes for both Java and ImageControls are selected, and click
OK.

2. Run the SampleApp application.

In the Eclipse Package Explorer tab, right-click SampleApp. Select
Run As > Java Application. The SampleApp application opens:

3. Use the Object Spy to view the ImageLabel properties.

a. In UFT, open aGUI test and select Tools > Object Spy or click theObject Spy toolbar

button to open theObject Spy dialog box. Click theProperties tab.

b. In the Object Spy dialog box, click the pointing hand , then click the image on the
left in the SampleApp application.

HP UFT Java Add-in Extensibility (12.00) Page 159 of 221

The ImageLabel control is based on a custom class that UFT does not recognize.
Therefore, it recognizes the button as a generic JavaObject object named ImageLabel,
and the icon shown is the standard JavaObject class icon. The label identification property
is empty:

4. Use the Object Spy to view the text box properties.

a. In the Object Spy dialog box, click the pointing hand , then click the text box in the
SampleApp application.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 160 of 221

The text box is based on a standard TextField class; therefore UFT recognizes it as a
JavaEdit test object. However, the label identification property is empty and UFT does not
recognize any adjacent controls as static-text controls. Therefore, the JavaEdit test object
is named according to its class name—TextField:

b. Close the Object Spy.

5. Complete the custom class support planning checklist.

The ImageLabel control is a static-text control. You want UFT to recognize this fact, and use
the ImageLabel's label property as attached text for adjacent controls that do not have their
own label property.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 161 of 221

The ImageLabel displays an image file optionally accompanied by additional text. When the
control does not display any text, the name of the test object that represents the control can be
based on the name of the image file that the control displays.

The ImageLabel itself does not have any additional identification properties or test object
methods that need to be identified in UFTGUI tests. In addition, there is no need to record any
operations on the ImageLabel control.

On the next page, you can see the checklist, completed based on the information above.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 162 of 221

Custom Class Support Planning Checklist

Custom Class Support Planning Checklist

Does the custom class have a superclass for which UFT custom support is not yet
available? No

If so, should I first extend support for a control higher in the hierarchy? N/A

Do I have an application that runs the custom control on a computer with UFT
installed? Yes

The sources for this custom control class are located in:
an Eclipse project called ImageControls

Which existing Java test object matches the custom control? JavaStaticText

If none, create a new Java test object class named: N/A

l New test object class extends: (Default—JavaObject)

l Icon file location (optional):

l Identification property for description:

l Default test object method:

Is the custom control a top-level object? No

Is the custom control a wrapper? No

Specify the basis for naming the test object: its text or (if there is no text) its
image file name

List the identification properties to support, andmark default checkpoint properties:

nothing special

List the test object methods to support (include arguments and return values if required):

nothing special

Provide support for recording? (AWT-based only) No

If so, list the events that should trigger recording: N/A

HP UFT Java Add-in Extensibility (12.00) Page 163 of 221

Creating the UFT Custom Static-Text Support Class
In the lesson "Learning to Support a Simple Control", you created the ImageControlsSupport UFT
Java Add-in Extensibility project (as described on page 133). In that project, you created the
custom support class for the ImageButton control.

In this section you create another custom support class in the same project to support the
ImageLabel control.

In most cases, static-text controls do not have identification properties or test object methods that
need to be identified in UFT tests. In addition, there is usually no need to record any operations on a
static-text control. Therefore, the UFT Java Add-in Extensibility Eclipse plug-in provides a special
wizard for creating support classes for static-text controls.

In this wizard, all you have to do is select the ImageLabel class to be supported as a static-text
control. The wizard creates the new support class with all the requiredmethods. After the wizard
creates the new support class, youmodify themethods that the wizard creates to complete the
support.

1. Open the New UFT Custom Static-Text Support Class wizard.

a. In the Eclipse Package Explorer tab, select the UFT Java Add-in Extensibility project,
ImageControlsSupport. Select File > New > Other. The New dialog box opens.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 164 of 221

b. Expand theUnified Functional Testing folder and select UFT Custom Static-Text
Support Class.

c. Click Next. The Custom Class Selection screen opens.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 165 of 221

2. Select the custom class to support, and set the options for the support class.

a. Expand the com.demo package and select the ImageLabel class.

Since you are creating support for a class in the ImageControls custom toolkit, the
Custom toolkit tree pane looks similar to the one in the lesson "Learning to Support a
Simple Control", as shown in "Creating a New UFT Custom Support Class". TheCustom
toolkit tree represents the list of classes that you can select to support. The ImageButton
class does not appear in this list because you already created support for it.

In theCustom class inheritance hierarchy pane, you can see the hierarchy of the
ImageLabel class you have selected. It extends the ImageControl class, which is part of
the same toolkit, and is therefore shown in black.

The ImageControl custom class is not supported, but theCanvas class does have a
matching support class, provided in the com.mercury.ftjadin.support.awt.cs package.
Therefore theBase support class for the ImageLabel support class you are creating is
CanvasCS. This is the class that your new support class extends.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 166 of 221

TheControls of this class represent top-level objects option is disabled because the
ImageLabel class is not a container class.

The name for the ImageLabel support class is, by default, ImageLabelCS. It is
recommended to keep the default name.

b. Click Finish. The Custom Static-Text Support Class Summary screen opens.

3. View the custom static-text control support class summary.

Review the planned content of the custom static-text support class, and click OK.

The following changes aremade in the ImageControlsSupport project:

n The ImageControls.xml file is modified tomap the ImageLabel custom class to its support
class—ImageLabelCS.

n A new UFT custom support class, ImageLabelCS, is created in the ImageLabelCS.java
file in the com.mercury.ftjadin.qtsupport.imagecontrols.cs package. The file is opened
and displayed in a tab in the right pane.

For a detailed explanation of the content of the ImageLabelCS class, see "Understanding
the New Custom Static-Text Support Class" on the next page.

The asterisk (*) next to the ImageLabelCS file name (in the ImageLabelCS tab) indicates that it
has not been saved. The changes made by the wizard are codependent, andmust be saved to
prevent discrepancies. Select File > Save, or click theSave button.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 167 of 221

Understanding the New Custom Static-Text Support
Class

Examine the contents of the new ImageLabelCS.java file. The ImageLabelCS custom static-text
support class extends CanvasCS.

In the new support class, the wizard created stubs for the followingmethods:

l class_attr. Returns the string static_text.

This informs UFT that the ImageLabel control is a JavaStaticText object. This means that the
UFTmechanism that searches for attached text can use the ImageLabel's label property as
attached text for adjacent controls.

l label_attr. Returns the label property of the superclass (in this case CanvasCS).

This method defines ImageLabel's label identification property. The text in this identification
property is used for adjacent controls' attached text. The wizard includes a comment in this
method stub, reminding you to implement it to return the appropriate text.

l tag_attr. This method supports the tag property, which represents the name of the static-text
test object.

In the lesson "Learning to Support a Simple Control", in the section "Changing the Name of the
Test Object", you learned how the tag property is implemented. The tag_attrmethod in the
support class that the wizard creates returns super.tag_attr(obj)with the added suffix (st).
This means that the name for the static-text test object is derived by using the same logic as for
regular test objects (label, attached text or unqualified class name), and adding (st) at the end.

l value_attr. Returns the label property.

The value property represents a control's test object state. For static-text controls, the label
property adequately represents this state.

For more information on these special identification properties, see "Common Identification
Property Support Methods" on page 48.

Deploying and Testing the New Custom Static-Text
Support Class

In this section, you use the UFTDeploy Toolkit Support command in Eclipse to deploy the
ImageControls toolkit support to UFT. This adds the ImageLabel support to UFT, in addition to the
ImageButton control whose support you deployed previously. The ImageLabel support is not yet
complete, but you can already test the support created up to this point.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 168 of 221

1. Deploy the ImageControls toolkit support to UFT.

In the Eclipse Package Explorer tab, select the ImageControlsSupport project.

Click theDeploy Toolkit Support button, or select UFT > Deploy Toolkit Support. In
the confirmationmessages that open, click Yes and thenOK.

The toolkit configuration file and the test object configuration file are copied to the relevant
folders in your UFT installation folder. The custom support will be available the next time you
start the custom application. (The test object configuration file was not modified. Therefore, it
is not necessary to reopen UFT.)

For more information on deploying custom toolkit support, see "Deploying and Running the
Custom Toolkit Support" on page 59.

2. Test the new custom support.

Run the application and view the ImageLabel control and text box with the UFT Object Spy, as
described in "Planning Support for the ImageLabel Control" on page 159.

Note: UFT establishes its connection with an application when the application opens.
Therefore, although you can use an open UFT session (running with the ImageControls
toolkit support loaded) to test the changes, youmust close the SampleApp application,
and run it again.

UFT recognizes the ImageLabel as a JavaStaticText object named ImageLabel(st).

CanvasCS, which ImageLabelCS extends, does not provide support for the label identification
property. Therefore, ImageLabel's label property is empty (as is its attached text property). As
a result, the superclass tag property returns ImageLabel's class name, and ImageLabel's tag
property is ImageLabel(st).

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 169 of 221

UFT still identifies the text box as a JavaEdit test object named TextField (its class name)
because the label property of the adjacent static-text object, ImageLabel, is still empty.

Completing the Support for the Static-Text Control
In this part of the lesson, you implement the label_attrmethod in the ImageLabelCS class to return
the name of the image file used for the ImageLabel. This enables UFT to use the ImageLabel's
label property as attached text for adjacent controls. In addition, implementing the ImageLabel's
label property provides the ImageLabel test object with amore specific name.

1. Implement the label_attr method in the ImageLabelCS class.

a. In Eclipse, in the ImageLabelCS.java file, in the label_attrmethod stub, replace return
super.label_attr(obj);with the following code:

ImageLabel il = (ImageLabel)obj;
String res = il.getText();
if(res != null && res.length() > 0)
 return res;
res = il.getImageString();
if(res == null || res.length() == 0)
 return null;
int last = res.lastIndexOf('/');
if(last == -1)
 return res;
return res.substring(last+1);

The label identification property returns the text on the label (if it exists) or the name of the
image file used for the ImageLabel (without the full path).

b. Click theSave button, or select File > Save to save your changes.

Note: You do not have to deploy the toolkit support to UFT again because you
changed only Java class files and not configuration files.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 170 of 221

2. Test the new custom support.

Run the application and view the ImageLabel control and the text box with the UFT Object Spy,
as described in "Planning Support for the ImageLabel Control" on page 159.

Note: You did not modify the test object configuration file. Therefore, you can use an open
UFT session (running with the ImageControls custom toolkit support loaded). However,
youmust close the SampleApp application and run it again, for the changes youmade in
the custom support to take effect.

UFT now recognizes the ImageLabel as a JavaStaticText test object namedUFT Java(st),
with the label property UFT Java.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 171 of 221

UFT now recognizes the text box as a JavaEdit test object namedUFT Java. The label
property of the JavaEdit test object is empty. The ImageLabel's label property provides the
text for the JavaEdit's attached text property, which is used as the test object name:

Note: If youmodify the SampleApp application and remove the line imageLb.setText
("QuickTest Java");, the ImageLabel will not display any text. UFT will then recognize the
ImageLabel as a JavaStaticText test object namedmercury.gif(st), with the label property
mercury.gif. UFT will recognize the text box as a JavaEdit test object namedmercury.gif.

The ImageLabel static-text custom control is now fully supported, according to the specifications
you determined when planning your custom support. The support for the ImageControls toolkit is
now complete. You can find a ready-made example of this support in the
<UFT Java Add-in Extensibility SDK installation folder>\samples\ImageControlsSupport
folder. (If you deploy this examplemanually, youmust compile the Java classes before deploying.)

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 172 of 221

Optimizing the ImageControls Toolkit Support
Note that the implementation you used for the label identification property in the ImageLabel class
is very similar to the implementation of the label identification property in the ImageButton class.
Since both of these classes extend the ImageControl class, it might have been preferable to
implement support for the label identification property in a support class for the ImageControl
(ImageControlCS).

This means that when planning support for the ImageButton and ImageLabel controls, the answer
to the second question in the "Custom Class Support Planning Checklist" on page 163 would have
beenYes (I should first extend support for a control higher in the hierarchy). ImageButtonCS and
ImageLabelCS would then extend ImageControlCS, and in ImageLabelCS you would fine-tune the
label property by overriding the inherited label_attrmethod.

In the following sections youmodify the ImageControls toolkit support set to prevent the duplicate
implementation of the label_attrmethod. The changes do not affect the functionality of the support.
You create the ImageControlCS support class andmodify ImageButtonCS and ImageLabelCS to
extend ImageControlCS.

Creating Support for the ImageControl Custom Class
In this section, you create a custom support class for the ImageControl class in the
ImageControlsSupport project.

1. Open the New UFT Custom Support Class wizard.

a. In the Eclipse Package Explorer tab, select the new UFT Java Add-in Extensibility project,
ImageControlsSupport. Select File > New > Other. The New dialog box opens.

b. Expand theUnified Functional Testing folder, select UFT Custom Support Class and
click Next. The Custom Class Selection screen opens.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 173 of 221

2. Select the custom class to support, and set the options for the support class.

a. Expand the com.demo package and select the ImageControl class:

In theCustom toolkit tree pane, you can see that the ImageControl class is the only class
in the com.demo package that is not yet supported.

In theCustom class inheritance hierarchy pane, you can see the hierarchy of the
ImageControl class you have selected. The ImageControl class extends
java.awt.Canvas, therefore theBase support class for the ImageControl support class
you are creating is CanvasCS.

Leave the default name, ImageControlCS, for the ImageControl support class.

b. Click Next. The Test Object Class Selection screen opens.

3. Select a test object class to represent the custom control.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 174 of 221

You are creating the ImageControlCS support class only to use it as a base support class for
other support classes, not to support actual controls. Therefore, it is not important to which test
object class youmap the ImageControl custom class.

Perform the following:

a. Select Same as base support class. This maps the ImageControl custom class to
whichever test object class is mapped to java.awt.Canvas. No direct mapping takes place.
The new support class does not implement a to_class_attrmethod, but inherits it from the
base support class.

b. Click Next. The Custom Support Test Object Identification Properties screen opens.

4. Determine the set of test object identification properties to implement in
ImageControlCS.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 175 of 221

This screen displays the identification properties supported by the base support class you are
extending, as well as additional properties that are defined in the test object class you
selected, but are not yet supported.

The left pane displays all of the identification properties whose support is implemented by
CanvasCS, and therefore inherited by the new ImageControlCS support class. It enables you
to select properties whose support you want to override with new functionality.

In the Test Object Class Selection screen (on page 175), you did not select a specific test
object class. Therefore, the wizard does not know which test object class is mapped to the
ImageControl custom control. As a result, no identification properties are displayed in the right
pane.

a. Select the label property by clicking its check box. After you finish generating the support
files using the wizard, you will override the existing support for this property with a custom
implementation that matches the needs of the custom control.

b. Click Next. The Custom Support Test Object Methods screen opens.

5. Determine the set of test object methods to implement in ImageControlCS.

This screen displays the test object methods defined in the test object class you selected.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 176 of 221

In the Test Object Class Selection screen (on page 175), you did not select a specific test
object class. Therefore, the wizard does not know which test object class is mapped to the
ImageControl custom control. As a result, no test object methods are displayed in this screen.

a. Consider that the ImageControl custom control does not have any test object methods that
need to be supported.

b. Click Next. The Custom Control Recording Support wizard screen opens.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 177 of 221

6. Determine the set of events for which to listen, to support recording on the
ImageControl control.

This screen displays the event listeners implemented by the support class you are extending.
It enables you to select event handler methods whose implementation you want to override
with new functionality and to add new event listeners to implement.

In the left pane, you can see the listeners implemented by CanvasCS. You do not have to
override any of these for the ImageControlCS custom support class.

a. Consider that you are creating the ImageControlCS support class only to use it as a base
support class for other support classes, not to support actual controls. Therefore, it is not
necessary to support recording on ImageControl controls.

b. Click Finish. The Custom Control Support Class Summary screen opens.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 178 of 221

7. View the custom control support class summary.

Review the planned content of the custom support class, and click OK.

The following changes aremade in the ImageControlsSupport project:

n The ImageControls.xml file is modified tomap the ImageControl custom class to its
support class—ImageControlCS.

n A new UFT custom support class, ImageControlCS, is created in the
ImageControlCS.java file in the com.mercury.ftjadin.qtsupport.imagecontrols.cs
package. The file is opened and displayed in a tab in the right pane.

The ImageControlCS class extends CanvasCS and contains only onemethod stub—label_
attr.

The asterisk (*) next to the ImageControlCS file name (in the ImageControlCS tab) indicates
that it has not been saved. The changes made by the wizard are codependent, andmust be
saved to prevent discrepancies. Select File > Save, or click theSave button.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 179 of 221

8. Implement the label_attr method in the ImageControlCS class.

a. In Eclipse, in the ImageControlCS.java file, in the label_attrmethod stub, replace return
super.label_attr(obj);with the following code, so that it returns the name of the image
file used for the ImageControl (without the full path):

ImageControl ic = (ImageControl)arg0;
String res = ic.getImageString();
if(res == null || res.length() == 0)
 return null;
int last = res.lastIndexOf('/');
if(last == -1)
 return res;
return res.substring(last+1);

b. Click theSave button, or select File > Save to save your changes.

Modifying the ImageControls Toolkit Support Hierarchy
The hierarchy of the support classes must match the hierarchy of the custom classes. Now that the
ImageControl class is mapped to the support class ImageControlCS, the support classes for the
ImageControl descendants must extend ImageControlCS.

Both ImageButtonCS and ImageLabelCS inherit label_attrmethod. ImageLabelCS needs to
override this method to fine-tune its support of the label property.

1. Modify the ImageButtonCS class to extend ImageControlCS.

a. Open the ImageButtonCS.java file in the ImageControlsSupport project in Eclipse, and
locate the ImageButtonCS class signature:

public class ImageButtonCS extends CanvasCS implements ActionListener

b. Modify the signature so that ImageButtonCS extends ImageControlCS:

public class ImageButtonCS extends ImageControlCS implements ActionLis
tener

c. Remove the label_attrmethod from the ImageButtonCS class.

d. Save the ImageButtonCS.java file.

2. Modify the ImageLabelCS class to extend ImageControlCS.

a. In the ImageLabelCS.java file, replace public class ImageLabelCS extends
CanvasCSwith public class ImageLabelCS extends ImageControlCS.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 180 of 221

b. Replace the following lines in the label_attrmethod in the ImageLabelCS class:

ImageLabel il = (ImageLabel)obj;
res = il.getImageString();
if(res == null || res.length() == 0)
 return null;
int last = res.lastIndexOf('/');
if(last == -1)
 return res;
return res.substring(last+1);

with:

return super.label_attr(obj);

c. Save the changes.

Deploying and Testing the New ImageControls Toolkit
Support

When you created the new ImageControlCS support class, the wizardmodified the
ImageControls.xml file to map the ImageControl class to the ImageControlCS support class.
Therefore, youmust redeploy the ImageControls toolkit support for your changes to take effect.

1. Deploy the ImageControls toolkit support to UFT.

In the Eclipse Package Explorer tab, select the ImageControlsSupport project.

Click theDeploy Toolkit Support button, or select UFT > Deploy Toolkit Support. In
the confirmationmessages that open, click Yes and thenOK.

2. Test the modified custom support.

Repeat the procedures in "Planning Support for the ImageButton Control" on page 130 and
"Planning Support for the ImageLabel Control" on page 159, to re-run the SampleApp
application and to ensure that the support for ImageButton and ImageLabel is functioning
properly.

Note: You did not change any test object configuration files, therefore you can use an
open session of UFT (running with the ImageControls custom toolkit support loaded).

The changes youmade to the custom toolkit support set do not affect the way UFT recognizes
and tests the ImageLabel and ImageButton controls. However, the support for the label
identification property for both of these controls is now inherited from the ImageControlCS

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 181 of 221

class. If additional custom classes that extend ImageControl are created, their label property
will be similarly supported on UFT with no additional effort required.

You can find a ready-made example of the improved support for the ImageControls toolkit in the
<UFT Java Add-in Extensibility SDK installation
folder>\samples\ImageControlsSupportAdvanced folder. (If you deploy this examplemanually,
youmust compile the Java classes before deploying.)

Lesson Summary
In this lesson you created support for the ImageLabel control, allowing UFT to recognize it as a
static-text object and use its label property as attached text for adjacent controls.

You then created support for the ImageControl class to improve the flexibility of the toolkit support,
andmodified the hierarchy of the ImageControls toolkit support set accordingly.

l You learned how to create a support class for a custom static-text control, using the following
identification property support methods:

n class_attr

n tag_attr

n label_attr

n value_attr

l You used theSame as base support class option in the Test Object Class Selection screen,
and learned about the effects of that selection.

Where Do You Go from Here?
Formore information on the identification properties that you used in this lesson, see "Common
Identification Property Support Methods" on page 48.

In the next lesson you learn how to create support for a custom control that needs to bemapped to a
new test object class. You will define special identification properties and test object methods for
the new test object class, and implement support for them.

Developer Guide
Chapter 7: Learning to Support a Custom Static-Text Control

HP UFT Java Add-in Extensibility (12.00) Page 182 of 221

Chapter 8: Learning to Support a Complex Control
In this lesson you create support for the AllLights control within the Javaboutique toolkit. This is a
complex control, with unique behavior, that requires a new test object class definition.

In the lesson "Learning to Support a Simple Control" on page 127, you learned to create support for
a simple custom control. You are now familiar with the basics of Java Add-in Extensibility, therefore
this lesson explains only themore advanced information.

This lesson guides you through the following stages:

Preparing for This Lesson 184

Planning Support for the AllLights Control 185

Creating the UFT Java Add-in Extensibility Project 190

Creating the New UFT Custom Support Class 195

Understanding the New Custom Support Files 209

Deploying and Testing the New Custom Toolkit Support 211

Implementing Support for the AllLights Control 214

Lesson Summary 219

HP UFT Java Add-in Extensibility (12.00) Page 183 of 221

Preparing for This Lesson
Before you extend UFT support for a custom control, youmust have access to its class and an
application that runs it.

In this section, you create an Eclipse project containing the Javaboutique custom toolkit classes.
The AllLights class can run as an Applet, so there is no need for an additional application containing
the custom control.

To create a new Java project with the Javaboutique sample in Eclipse:

1. Run Eclipse and select File > New > Project. The New Project dialog box opens.

2. Select Java Project and click Next. The New Java Project dialog box opens.

3. Enter Javaboutique in theProject name box.

4. Select theCreate project from existing source option.

5. Click theBrowse button and browse to the <UFT Java Add-in Extensibility SDK
installation folder>\samples\Javaboutique\src folder. Click OK to return to the New Java
Project dialog box.

6. Click Finish. A new Java project is created with the Javaboutique sample source files. The
new project, named Javaboutique, is displayed in the Package Explorer tab.

Note: The steps for creating a new project in Eclipsemay vary, depending on the Eclipse
version that you use.

After you create the Javaboutique project, expand the project to view its content. The
Javaboutique\src package folder contains the org.boutique.toolkit package. This package
contains three custom controls: AllLights, AwtCalc andETextField.

In this lesson, you create the UFT Java Add-in Extensibility project for the Javaboutique custom
toolkit and the support class for AllLights.

You can find a ready-made example of the support for AllLights and for AwtCalc in the <UFT Java
Add-in Extensibility SDK installation folder>\samples\JavaboutiqueSupport folder. (If you
deploy this examplemanually, youmust compile the Java classes before deploying.)

Run the AllLights application to become familiar with the behavior of the AllLights control:

HP UFT Java Add-in Extensibility (12.00) Page 184 of 221

In the Eclipse Package Explorer tab, right-click theAllights.java class in the org.boutique.toolkit
package and select Run As > Java Applet. The AllLights application opens:

Click different locations in the frame:

l Clicking in different parts of the grid area turns different lights on (or off), according to an internal
set of rules, updating the LightOn and LightOff counters.

l Clicking theRESTART button turns off all of the lights. The LightOn and LightOff counters are
updated accordingly.

l Clicking in other areas has no effect.

l The object of the game is to turn on all of the lights, at which point a congratulationmessage is
displayed.

Planning Support for the AllLights Control
In this section, you analyze the current UFT support of the AllLights control, determine the answers
to the questions in the "Understanding the Custom Class Support Planning Checklist" on page 70,
and fill in the "Custom Class Support Planning Checklist " on page 189, accordingly.

The best way to do this is to run the application containing the custom control, and analyze it from a
UFT perspective using the Object Spy, Keyword View, and Record option:

1. Run the AllLights application and open UFT.

a. If the AllLights application is already running, select Applet > Restart from the application
toolbar so the application looks like the image shown above. Otherwise, right-click
AllLights.Java in the Eclipse Package Explorer tab, and select Run As > Java Applet to
run it.

b. Open UFT and load the Java Add-in.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 185 of 221

2. Use the Object Spy to view the AllLights properties and methods.

a. In UFT, open aGUI test and select Tools > Object Spy or click theObject Spy toolbar

button to open theObject Spy dialog box. Click theProperties tab.

b. In the Object Spy dialog box, click the pointing hand , then click the AllLights
application.

The AllLights control extends JavaApplet, for which UFT support is built in, therefore it
recognizes the application as a JavaApplet, namedAllLights. The icon shown is the
standard JavaApplet class icon:

c. Close the Object Spy.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 186 of 221

3. Record operations on the AllLights control.

a. In UFT, select Record > Record and Run Settings to open the Record and Run Settings
dialog box. In the Java tab, select Record and run test on any open Java application.
If theWeb Add-in is also loaded, click theWeb tab and select Record and run test on
any open browser. Click OK.

b. Click theRecord button or select Record > Record. Click on different locations in the
AllLights application: the grid, theRESTART button, and one of the counters.

With each click, a new step is added to the test:

c. Click theStop button or select Record > Stop to end the recording session.

TheClick operation on the AllLights JavaApplet is a generic click, with arguments
indicating the low-level recording details (x and y coordinates and themouse button that
performed the click).

4. Determine the custom toolkit to which the AllLights control belongs.

When you extend UFT support for a control you always do so in the context of a toolkit. For the
purpose of this tutorial, three classes that extend AWT are grouped to form the custom toolkit
named Javaboutique: AllLights, AwtCalc, and ETextField.

In this lesson you create support for the Javaboutique toolkit, initially supporting only the
AllLights class.

5. Complete the custom class support planning checklist.

In this step you plan the required support for the AllLights control and summarize the
information in the support planning checklist.

a. Decide which custom class to support:

The AllLights custom class extends the Applet class, supported on UFT by AppletCS.

You want UFT to treat the AllLights as a special kind of Applet. You want it to support the
special operations it performs, and to recognize its properties. Therefore it makes sense to
create Extensibility support for this control.

b. Map a test object class to the custom control:

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 187 of 221

The JavaApplet test object class provides basic support for the AllLights control, but does
not support all of the necessary identification properties and test object methods. Therefore
you create a new test object class extending JavaApplet, named AllLights andmap it to the
AllLights custom control.

c. Decide the details for the new test object class:

o The new test object class is represented by the icon file:
<UFT Java Add-in Extensibility SDK Installation
folder>\samples\Javaboutique\AllLights_icon.ico

o The identification properties used by default to uniquely define the test object (label,
class, and index) are sufficient.

o The default test object method is ClickLight.

o The new identification properties to support are: OnCount, OnList, andGameOver.
They should all be selected by default in the UFT Checkpoint Properties dialog box.

d. Determine whether the control is a top-level object or a wrapper, and decide how to name
the test objects:

o AllLights controls are top-level objects, but not wrappers.

o The name of the test object itself should be Lights.

e. Determine the identification properties that need to be supported:

o OnCount. Specifies the number of lights that are on, at the givenmoment.

o OnList. Lists the location of the lights that are on, at the givenmoment. The lights are
numbered 0 through 24, starting from the upper left corner and numbering row by row.
The list contains the numbers of the lights that are on, each preceded by a space.

o GameOver. A Yes orNo string, indicating whether all lights are on or not.

f. Determine the test object methods that need to be supported:

o ClickLight. Simulates clicking a specific light in the grid. This method requires two
arguments, Row andColumn, specifying the location of the light to click.

o Restart. Simulates clicking the Restart button.

g. Determine how to support recording:

o Override low-level mouse event recording.

o Listen for mouse events. Based on the location of the click, send a recordmessage to
record ClickLight or Restart operations.

On the next page you can see the checklist, completed based on the information above.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 188 of 221

Custom Class Support Planning Checklist

Custom Class Support Planning Checklist

Does the custom class have a superclass for which UFT custom support is not yet
available? No

If so, should I first extend support for a control higher in the hierarchy? N/A

Do I have an application that runs the custom control on a computer with UFT
installed? Yes

The sources for this custom control class are located in:
an Eclipse project called Javaboutique

Which existing Java test object matches the custom control? None

If none, create a new Java test object class named: AllLights

l New test object class extends: (Default—JavaObject) JavaApplet

l Icon file location (optional): <UFT Java Add-in Extensibility SDK Installation
folder>\samples\Javaboutique\AllLights_icon.ico

l Identification property for description: label

l Default test object method: ClickLight

Is the custom control a top-level object? Yes

Is the custom control a wrapper? No

Specify the basis for naming the test object: Use the name: "Lights"

List the identification properties to support, andmark default checkpoint properties:

OnCount, OnList, GameOver (all selected by default in checkpoints)

List the test object methods to support (include arguments and return values if required):

ClickLight(Variant Row, Variant Column)

Restart (no arguments)

Provide support for recording? (AWT-based only) Yes

If so, list the events that should trigger recording:

MouseEvents

HP UFT Java Add-in Extensibility (12.00) Page 189 of 221

Creating the UFT Java Add-in Extensibility Project
In this section you create a new project for the Javaboutique toolkit support. Do this using one of
the wizards provided by the UFT Java Add-in Extensibility plug-in in Eclipse:

1. Open the New UFT Java Add-in Extensibility Project wizard.

a. In Eclipse, select File > New > Project. The New Project dialog box opens. Expand the
Unified Functional Testing folder and select UFT Java Add-in Extensibility Project.

b. Click Next. The UFT Java Add-in Extensibility Project screen opens. The details on this
screenmay vary, depending on the version of Eclipse that you are using.

2. Enter the UFT Java Add-in Extensibility project details.

a. In theProject name box, enter JavaboutiqueSupport. Select Create separate folders
for sources and class files. (In earlier Eclipse versions this option is namedCreate

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 190 of 221

separate source and output folders.) For more information on this dialog box, see the
Eclipse Help.

b. Click Next. The Custom Toolkit Details screen opens.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 191 of 221

3. Enter the custom toolkit details.

In this screen, you provide the details of the Javaboutique toolkit so that the wizard can
generate a corresponding custom toolkit support set.

Enter the following details:

a. In theUnique custom toolkit name enter Javaboutique.

b. In theSupport toolkit description box enter: Javaboutique toolkit support.

c. The AllLights custom class extends an AWT component, so keep the default selection AWT

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 192 of 221

as theBase toolkit.

d. In theCustom toolkit class locations area, click Add project to select the Eclipse Java
project containing the custom classes for the Javaboutique toolkit. The Select Project
dialog box opens and displays the projects in the current Eclipse workspace:

e. Select the Javaboutique check box. Click OK. The Javaboutique project is added in the
Custom toolkit class locations box. Click Finish. The Project Summary screen opens.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 193 of 221

4. View the Project Summary wizard screen.

Review the details of the project and click OK.

The New UFT Java Add-in Extensibility project JavaboutiqueSupport is created, with the basic
packages and files of the custom toolkit support set:

n The package com.mercury.ftjadin.qtsupport.javaboutique, containing the new toolkit
support class file, JavaboutiqueSupport.java

n The package com.mercury.ftjadin.qtsupport.javaboutique.cs

n TheConfiguration folder, containing the TestObjects folder and the new toolkit
configuration file: Javaboutique.xml

Note: If you havemore than one JRE installed on your computer, make sure that the
Javaboutique project and the JavaboutiqueSupport project are using the same JRE
version. If they are not, modify the JRE for one of the projects so that they use the same
version.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 194 of 221

Creating the New UFT Custom Support Class
In this section you create a custom support class for the AllLights control, as part of the
Javaboutique toolkit support. To do this, you use one of the wizards provided by the UFT Java Add-
in Extensibility plug-in in Eclipse. The details you specify in each wizard screen reflect the
decisions youmade when planning the custom support. In the subsequent sections you implement
themethods that the wizard creates in this class.

Note: The following sections describe only the options in the wizard screens that are relevant
to this lesson. For a complete description of all options available in the wizard screens, see
"Using the UFT Java Add-in Extensibility Eclipse Plug-In" on page 74.

1. Open the New UFT Custom Support Class wizard.

a. In the Eclipse Package Explorer tab, select the new UFT Java Add-in Extensibility project,
JavaboutiqueSupport. Select File > New > Other. The New dialog box opens.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 195 of 221

b. Expand theUnified Functional Testing folder and select UFT Custom Support Class.

c. Click Next. The Custom Class Selection screen opens.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 196 of 221

2. Select the custom class to support, and set the options for the support class.

a. Select theAllLights class in the org.boutique.toolkit package.

The AllLights custom class extends java.applet.Applet, which is supported on UFT. The
AllLights support class therefore extends theBase support class:
com.mercury.ftjadin.qtsupport.awt.cs.AppletCS. As a result, theControls of this
class represent top-level objects check box is selected by default.

b. Leave this check box selected, because you want UFT to recognize the AllLights controls
as the highest Java test objects in the test object hierarchy.

c. Keep the default custom support class name: AllLightsCS.

d. Click Next. The Test Object Selection screen opens.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 197 of 221

3. Select a test object class to represent the custom control.

In this screen, youmap the custom control to a test object class. In UFT GUI tests, the
custom class controls are represented by test objects of this test object class.

In "Planning Support for the AllLights Control" on page 185, you decided tomap the AllLights
custom control to a new test object class, AllLights, that extends JavaApplet.

a. Select theNew test object class option and enter AllLights as the name for the test
object class.

b. In theExtends existing test object list, select JavaApplet. This list contains all of the
Java objects that UFT currently supports. If you define new test objects for custom
support, they are included in the list as well.

c. Click Next. The Custom Support Test Object Identification Properties screen opens.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 198 of 221

4. Determine the set of test object identification properties to implement in AllLightsCS.

This screen displays the identification properties supported by the base support class you are
extending, as well as additional properties that are defined in the test object class you
selected, but are not yet supported. It enables you to select properties whose support you want
to implement or override with new functionality and to add new properties.

a. The left pane shows all of the identification properties whose support is implemented by
AppletCS, and therefore inherited by the new AllLightsCS support class. For most of the
properties in this list, the default implementation is sufficient.

Select the label check box. After you finish generating the support files using the wizard,
you will override the existing support for this property with a custom implementation that
matches the needs of your custom control.

b. The identification properties displayed in the right pane are JavaApplet properties that are
not supported by AppletCS. These properties are not required for the AllLights support.
Select them, click Remove, and then click Yes to confirm.

These identification properties are part of the AllLights test object class definition that is
created based on the JavaApplet test object class. Removing the properties from this list
means that they are not supported for AllLights controls. They will still appear in the list of
identification properties shown in the UFT Object Spy, but will have no value.

c. In "Planning Support for the AllLights Control" on page 185, you decided to support new
identification properties on AllLights test objects. In the next step you add these properties

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 199 of 221

to the list of additional properties required for the test object class. After you finish
generating the support files using the wizard, you will implement support for these
properties.

The identification properties are added to the test object class definition. This means that
the new properties appear in the list of identification properties in UFT for all test objects of
this class. This is the reason you are creating the new AllLights test object class.

5. Add the new test object identification properties you want to implement in
AllLightsCS.

a. Click Add in theAdditional properties required for test object class pane. The
Identification Property dialog box opens.

b. In theName box, enter OnCount. Click OK to add the new Identification Property to the list.

c. Repeat this procedure to add the properties OnList andGameOver.

d. Click Next. The Custom Support Test Object Methods screen opens.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 200 of 221

6. Determine the set of test object methods to implement in AllLightsCS.

This screen displays the test object methods defined in the test object class you selected. It
enables you to select methods whose support you want to implement or override with new
functionality, and to add new methods.

The left pane shows all of the test object methods (defined in the test object class you
selected) whose support is implemented by AppletCS, and therefore inherited by AllLightsCS.
There is no need to select any methods to override.

The right pane displays the test object methods that are defined for the AllLights test object
class, but are not supported by AppletCS. There are no suchmethods currently defined.

In "Planning Support for the AllLights Control" on page 185, you decided to support new test
object methods on AllLights test objects. You now need to add thesemethods to the list of
additional test object methods required for the test object class. After you finish generating the
support files using the wizard, you will implement support for themethods you add.

The test object methods are added to the existing test object class. This means that the new
methods appear in UFT for all test objects of this class, regardless of whether or not they are
supported for these objects. In a UFT GUI test, if you call a test object method for an object,
and that method is not supported, a run-time error occurs. This is the reason you are creating
the new AllLights test object class.

a. Click Add in theAdditional test object methods required for test object class pane.
The Test Object Method dialog box opens.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 201 of 221

o In theMethod Name box, enter: Restart. The Restart test object method does not
require any arguments other than themandatory obj (Object) that represents the
custom control.

o Leave theMethod returns a string value check box cleared. This method returns only
a return code.

o In theDescription box, enter: Clicks the RESTART button.

o In theDocumentation box, enter: Click the RESTART button.

o Click OK to close the Test Object Method dialog box and add the Restart method to the
list.

b. Add another test object method by clickingAdd once again. In the Test Object Method
dialog box that opens, perform the following:

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 202 of 221

o In theMethod Name box, enter: ClickLight.

o Add the Row and Column arguments to the ClickLight method:

o In theArguments area, click Add. The Test Object Method Argument dialog box
opens.

In theName box, enter: Row.

In the Type box, select Variant. (If you select String, then when you add steps in
UFTGUI tests with the ClickLight method, you have to enclose the row number
argument in quotes.)

Leave theMandatory argument check box selected.

Click OK to close the Test Object Method Argument dialog box and add the Row
argument to the list of arguments for the ClickLight test object method.

o Repeat this procedure to add the Column argument to the list.

o Leave theMethod returns a string value check box cleared.

o In theDescription box, enter: Clicks the specified light.

o In theDocumentation box, enter: Click the light in row <Row> column

<Column>. Enter the <Row> and <Column> arguments in the sentence by clicking
and selecting the relevant argument. The final text in theDocumentation box will be:
Click the light in row %a1 column %a2.

o Click OK to close the Test Object Method dialog box and add the ClickLight method to
the list.

c. Click Next. The Custom Control Recording Support wizard screen opens.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 203 of 221

7. Determine the set of events for which to listen, to support recording on the AllLights
control.

This screen displays the event listeners supported by the support class you selected to
extend. It enables you to select listeners whose implementation you want to override with new
functionality and to add new event listeners to implement:

In the left pane, you can see the listeners implemented by AppletCS. You do not have to
override any of these for the AllLightsCS custom support class.

In the right pane, you specify the listeners you want to add for AllLightsCS. Each listener you
select implies a set of event handler methods you add to the custom support class.

a. Click Add to add theMouseListener.

The Listener dialog box opens:

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 204 of 221

Select java.awt.event.MouseListener from the Listener list and click OK. The Listener
dialog box closes and theMouseListener, and all of the event handler methods it includes,
are added to the list in the right pane of the wizard screen.

b. On the Custom Control Recording Support screen:

o Clear the Treat controls of this class as wrapper controls check box. It is selected,
by default, because the AllLights class extends java.awt.container.

o Select theOverride low-level mouse event recording check box to prevent low-level
events (coordinate-based operations) from being recorded instead of the events you
want to record.

c. Click Next. The New Test Object Class Details screen opens.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 205 of 221

8. Define the details for the new test object class AllLights.

In this screen you define the details of the new test object class you are creating tomap to the
custom control.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 206 of 221

Perform the following:

a. For the Test object icon, click Browse, locate the <UFT Java Add-in Extensibility
SDK Installation folder>\samples\Javaboutique folder, and select theAllLights_
icon.ico file.

b. In the Identification property for unique description box, leave the selected label
property.

Note: If you wanted to include additional identification properties in the test object
description, you would have tomanually specify this in the test object configuration
file. For more information, see "New Test Object Class Details Screen" on page 106.

c. In theDefault test object method list, select ClickLight.

d. In theDefault checkpoint properties box, leave the selected properties and select also
theGameOver, OnCount, andOnList check boxes.

e. Click Finish. The Custom Control Support Class Summary screen opens.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 207 of 221

9. View the custom control support class summary.

Review the planned content of the custom support class, and click OK.

The following changes aremade in the JavaboutiqueSupport project:

n A new UFT custom support class, AllLightsCS, is created in the
com.mercury.ftjadin.qtsupport.Javaboutique.cs package. The file is opened and
displayed in a tab in the right pane.

n A new JavaboutiqueTestObjects.xml file is created in theConfiguration\TestObjects
folder.

n The Javaboutique.xml file is modified. An element is added to the file, mapping the
AllLights custom class to theAllLightCS support class. For information on the structure of
this file, see theUFT Java Add-in ExtensibilityToolkit Configuration SchemaHelp(available
with the Java Add-in Extensibility SDK Help).

For a detailed explanation of the AllLightsCS class and the JavaboutiqueTestObjects.xml
file, see "Understanding the New Custom Support Files" on the next page.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 208 of 221

The asterisk (*) next to theAllLightsCS file name (in the AllLightsCS tab) indicates that it has
not been saved. The changes made by the wizard are codependent, andmust be saved to
prevent discrepancies. Select File > Save, or click theSave button.

Understanding the New Custom Support Files
When you completed the process of the New UFT Custom Support Class, the wizard registered
the new class in the toolkit configuration file, and created the following files:

l AllLightsCS.java. This file contains the new AllLightsCS support class.

l JavaboutiqueTestObject.xml. This file contains the new test object classes defined for the
Javaboutique toolkit support. At this point, there is only one such test object class: AllLights.

The following sections explain the content that the wizards created in these files.

Understanding the AllLightsCS Custom Support Class
After having performed the lesson "Learning to Support a Simple Control" on page 127, you are
familiar with the basic elements that the wizard creates in a new custom support class. Examine
the contents of the new AllLightsCS.java file, and locate the followingmethods and declarations:

l The declaration of theAllLightsCS support class, which indicates that it extends theAppletCS
support class and implements theMouseListener interface.

l The declaration of theDEBUG_ALLLIGHTSCS flag, which can be used to control printing log
messages.

l TheAllLightsCS constructor method, which calls addSimpleListener to addMouseListener
to the list of listeners that need to be registered on theAllLights control.

l The to_class_attrmethod, which returns the new test object class name: AllLights.

l A method stub for label_attr returning super.label_attr, which you can replace with amore
specific label.

l Method stubs for the oncount_attr, onlist_attr, and gameover_attrmethods, which youmust
implement to support the identification properties you added. Until you do so, thesemethods
return null, because these are new methods that you added and they are not implemented in the
superclasses that AllLightsCS extends.

Note: You can use uppercase letters in the identification property names that you provide in
the wizard screen. These names are written as is in the test object configuration file.
However, in the names of the support methods for these identification properties, the wizard
replaces uppercase letters with lowercase ones. In UFT, the identification property names
are displayed in lowercase letters only.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 209 of 221

l Method stubs for theRestart_replayMethod andClickLight_replayMethodmethods, which
youmust implement to support the test object methods you added. Until you do so, these
methods return the error code NOT_IMPLEMENTED.

l ThemouseRecordTargetmethod, which returns null to override recording of low-level mouse
events.

l Method stubs for the event handler methods defined by theMouseListener interface:
mouseClicked,mouseEntered,mouseExited,mousePressed, andmouseReleased. These
method stubs contain comments reminding you to implement them as necessary, calling
MicAPI.record to send recordmessages to UFT.

l The isWindowmethod, returning true, was added to theAllLightsCS support class because
you selected theControls of this class represent top-level objects check box, on the
Custom Class Selection screen. When learning the test object, UFT calls the isWindow
method to determine whether to look for a parent object or view this object as the highest Java
object in the hierarchy.

Understanding the Javaboutique Test Object
Configuration File

The wizard builds the test object class definition in the test object configuration file based on the
details you specify.

Open the new JavaboutiqueTestObject.xml file and examine its contents. For information on the
structure of this file, see theUFT Test Object SchemaHelp (available with the Java Add-in
Extensibility SDK Help).

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 210 of 221

Locate the following elements in the test object configuration file:

l The names of the custom toolkit and the add-in to which the test object classes in this file belong
(in the TypeInformation element):

PackageName="Javaboutique" AddinName="Java"

l The test object class that the new test object class extends (in theClassInfo element):

BaseClassInfoName="JavaApplet"

l The name of the new test object class and its default test object method (in theClassInfo
element):

DefaultOperationName="ClickLight" Name="AllLights"

l The location of the icon file (in the IconInfo element):

IconFile="<UFT Java Add-in Extensibility SDK Installation folder>\samples\J
avaboutique\AllLights_icon.ico"

l The definition of the new test object methods you added, and their description, documentation,
and arguments (in the <TypeInfo> element).

l The definition of the identification properties for this test object class (in the
<IdentificationProperties> element). Note the identification properties marked
ForVerification, ForDefaultVerification, and ForDescription.

Deploying and Testing the New Custom Toolkit Support
In this part of the lesson, you use the UFTDeploy Toolkit Support command in Eclipse to deploy
the Javaboutique toolkit support to UFT. Currently only one control in this toolkit, the AllLights
control, is supported. The toolkit support is not yet complete, but you can already test the support
created up to this point.

1. Deploy the Javaboutique toolkit support to UFT.

a. In the Eclipse Package Explorer tab, select the JavaboutiqueSupport project.

b. Click theDeploy Toolkit Support button, or select UFT > Deploy Toolkit Support.
In the confirmationmessages that open, click Yes and thenOK.

The toolkit configuration file and the test object configuration file are copied to the relevant
folders in your UFT installation folder. The custom support will be available the next time
you open UFT and start the custom application.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 211 of 221

Formore information on deploying custom toolkit support, see "Deploying and Running the
Custom Toolkit Support" on page 59.

2. Open UFT and load the Java Add-in and the custom toolkit support.

a. Open UFT. The Add-in Manager dialog box displays Javaboutique as a child of the Java
Add-in in the list of available add-ins. (If the Add-in Manager dialog box does not open, see
theHP Unified Functional Testing Add-ins Guide for instructions.)

b. Select the check box for Javaboutique and click OK. UFT opens and loads the support you
designed.

3. Test the new custom support.

Repeat the steps in "Planning Support for the AllLights Control" on page 185 to perform the
following:

n Run the application. (UFT establishes its connection with an application when the
application opens. Therefore, youmust close the SampleApp application, and run it again.)

n View the AllLights control with the UFT Object Spy.

n Try to record aClick operation on the AllLights control.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 212 of 221

UFT recognizes the AllLights control as an AllLights test object (according to the to_class_attr
method) named AllLights (the name of the custom class). TheObject Spy displays the icon
you specified in the wizard for this test object class:

Because you have overridden the low-level recording, but have not yet implemented the
mouseClicked (MouseEvent arg0) event handler method, UFT currently does not record
anything when you click in the application frame.

In UFT, add the AllLights object to the object repository, and create a test step with this object
in the Keyword View:

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 213 of 221

The ClickLight test object method is selected, by default, as the step Operation. If you provide
the required arguments for this method and run the test with this step, a run-time error occurs,
because theClickLight_replayMethodmethod returns .NOT_IMPLEMENTED.

Implementing Support for the AllLights Control
In this part of the lesson, youmodify the AllLightsCS class to extend UFT support of the AllLights
control, as per your plan ("Planning Support for the AllLights Control" on page 185).

Open theAllLightsCS.java file. In the label_attrmethod, replace the code: return
super.label_attr(obj);with the code: return "Lights"; to change the name of the test
object. Then perform the following procedures:

l " Implementing Support for New Identification Properties" (described on page 214)

l "Implementing Support for New Test Object Methods" (described on page 215)

l "Implementing Support for Recording" (described on page 216)

l " Testing the Completed Support" (described on page 217)

Implementing Support for New Identification Properties
In this section, you implement themethods that support the new identification properties you
defined for the AllLights test object class.

Analyze the AllLights custom class to see the properties it supports. Determine which properties
you can access from the new support class to provide the relevant identification properties to UFT.

Notice the public methods GetcounterOn, which allows you to check how many lights are on at a
given time, and isSet, which tells you the status of a particular light.

1. Implement the oncount_attr method.

In the oncount_attr method, replace the code return null;with
return String.valueOf(((AllLights)obj).GetcounterOn());

This implementation retrieves the counter from the AllLights custom class and returns it to
UFT.

2. Implement the onlist_attr method.

In the onlist_attr method, delete the code return null; and implement themethod as
follows to scan all of the lights and create a list of all the lights that are on:

public String onlist_attr (Object obj) {
 AllLights lights = (AllLights) obj;

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 214 of 221

 StringBuffer buffer = new StringBuffer();
 for (int i=0; i<5; i++)
 for (int j=0;j<5;j++)
 if (lights.isSet(j,i)) {
 buffer.append (" ");
 buffer.append (i*5+j+1);
 }
 return buffer.toString();
}

3. Implement the gameover_attr method.

In the gameover_attr method, delete the code return null; and implement themethod as
follows to return Yes or No depending on whether or not all of the lights are on:

public String gameover_attr(Object obj) {
 if (((AllLights) obj).GetcounterOn() == 25)
 return "Yes";
 return "No";
}

Select File > Save or click theSave button to save theAllLightsCS.java file.

Implementing Support for New Test Object Methods
In this section, you implement themethods that support the new test object methods you defined
for the AllLights test object class.

Analyze the AllLights custom class methods to determine what actions the class performs when a
user clicks theRestart button or a light in the grid. You want to simulate these actions when UFT
runs the test object methods.

1. Implement the Restart_replayMethod method.

When a user clicks within the borders of theRESTART button, the AllLights custom class
calls init and update(lights.getGraphics()) to initialize and redraw the application. The
Restart_replayMethodmethod needs to simulate this behavior by calling the samemethods.

To do this, delete the code: return Retval.NOT_IMPLEMENTED; and implement themethod as
follows:

public Retval Restart_replayMethod (Object obj){
 AllLights lights = (AllLights) obj;
 lights.init();

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 215 of 221

 lights.update(lights.getGraphics());
 return Retval.OK;
}

2. Implement the ClickLight_replayMethod method.

The AllLights custom class performs the algorithm of turning lights on or off in response to a
click, when it receives amouseUp event. Therefore, when UFT runs the ClickLight_
replayMethod, and you want to simulate a click on a specific light, you can simply send the
AllLights object amouseUp event with the appropriate coordinates.

In themethodClickLight_replayMethod, delete the code return Retval.NOT_
IMPLEMENTED; and implement themethod as follows:

public Retval ClickLight_replayMethod(Object obj, String Row, String Colu
mn) {
 AllLights lights = (AllLights) obj;
 int col_num = Integer.valueOf(Column).intValue();
 int row_num = Integer.valueOf(Row).intValue();
 /* Row and column are 40 pixels wide*/
 Event event = new Event (lights, System.currentTimeMillis(),
Event.MOUSE_UP, col_num *40, row_num *40, 0, 0);

 lights.mouseUp(event, col_num *40, row_num *40);
 return Retval.OK;
}

Note: To support this code, import java.awt.Event inAllLightsCS.java.

Select File > Save or click theSave button to save theAllLightsCS.java file.

Implementing Support for Recording
Because you planned to support recording on the AllLights control, you suppressed low-level
recording on this object, and registered to listen for mouse events on this control.

The only mouse event that you want to trigger recording on the AllLights control is amouse click.
Therefore, in this section, you implement only themouseClicked (MouseEvent arg0) event
handler method and leave the other mouse event handler methods empty.

Implement themouseClickedmethod as follows and save theAllLightsCS.java file:

public void mouseClicked(MouseEvent arg0) {
 AllLights lights = (AllLights) arg0.getSource();
 int x = arg0.getX();

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 216 of 221

 int y = arg0.getY();
 try{
 if (!isInRecord())
 return;
 /* If click is within the Restart button borders*/
 if ((x > 210) && (x < 270) && (y > 165) && (y < 185)) {
 MicAPI.logLine(DEBUG_ALLLIGHTSCS, "Record Restart operation");
 MicAPI.record(lights, "Restart");
 }

 /* If click is within the borders of the grid, record ClickLights*/
 if ((x >= 0) && (x < 200) && (y >= 0) && (y < 200)) {
 MicAPI.logLine(DEBUG_ALLLIGHTSCS, "Record ClickLight operation");
 MicAPI.record(lights, "ClickLight", new String[]

{String.valueOf(y/40), String.valueOf(x/40)});
 }

 } catch (Throwable th) { MicAPI.logStackTrace(th);}
}

Note:When the wizard created theAllLightsCS.java file, it automatically added the
importcom.mercury.ftjadin.custom.MicAPI, required to support this code.

In this event handler method, you callMicAPI.record in different ways. To record the Restart
operation you provide only the object and the operation name. To record the ClickLight operation
you provide additional arguments as well, specifying the coordinates of the clicked light.

The isInRecordmethod is called avoid carrying out any unnecessary operations if UFT is not
currently recording.

TheMicAPI.logLinemethod prints themessage to the log file only when the DEBUG_
ALLLIGHTSCS flag is on. For more information, see "Logging and Debugging the Custom Support
Class" on page 65.

The try ... catch block prevents unnecessary activity if this code is reached when the Java
application is running while UFT is idle. TheMicAPI.logStackTracemethod prints a stack trace to
the same log file as other Java Add-in Extensibility logmessages, enabling you to determine when
thismouseClickedmethod was called inadvertently.

Testing the Completed Support
In this section you test the Javaboutique toolkit support you have just completed. You do this by
analyzing its effect on how UFT views the AllLights control.

You do not have to deploy the toolkit support to UFT again to test it because you changed only Java
class files and not configuration files. You can use an open UFT session (running with the
Javaboutique toolkit support loaded), but youmust close the AllLights application, and run it again,
for the changes youmade in the custom support to take effect.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 217 of 221

1. Test the new custom support in the Object Spy.

a. Close the AllLights application and run it again.

b. Open UFT and load the Java Add-in and the Javaboutique toolkit support.

c. Open aGUI test and use theObject Spy to view the AllLights properties andmethods. The
AllLights test object is now named Lights.

d. Close the Object Spy.

2. Create and run a UFT test on the AllLights control.

a. Add the AllLights control to the test object repository.

b. Create a test that clicks in two locations in the grid, checks that the game is not over, and
clicks Restart.

The test you create looks something like this:

Note: The ClickLight_replayMethod, does not check the argument values tomake
sure they are valid. If you provide arguments that are out of bounds (column or row
higher than 4) a run-time error will occur.

c. Run the test and see that it operates correctly (if you defined the checkpoint to check only
that the game is not over—it succeeds).

3. Record operations on the AllLights control.

a. In UFT, create a new GUI test and select Record > Record and Run Settings to open
the Record and Run Settings dialog box. In the Java tab, select Record and run test on
any open Java application. If theWeb Add-in is also loaded, click theWeb tab and
select Record and run test on any open browser. Click OK.

b. Click theRecord button or select Record > Record. Click on different locations in the
AllLights application: the grid, theRESTART button, and one of the counters.

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 218 of 221

When you click in the grid, a ClickLight step is added to the test, with the relevant
arguments. When you click the RESTART button, a Restart step is added. When you click
anywhere else, no operation is recorded (because you disabled low-level mouse event
recording). The recorded test looks something like this:

c. Click theStop button or select Record > Stop to end the recording session.

The AllLights custom control is now fully supported, according to the specifications you decided on
when planning your custom support.

Lesson Summary
In this lesson you created a new test object class, AllLights, defining its identification properties
and test object methods. You created support for the AllLights control, allowing UFT to recognize it
as an AllLights test object.

l You learned to understand the test object configuration file.

l You learned to support new identification properties and test object methods in the custom
support class.

l Youmade use of the isWindow utility method, and called theMicAPI.recordmethod with
additional parameters.

Where Do You Go from Here?
Now that you have performed the lessons in this tutorial, you are ready to apply the Java Add-in
Extensibility concepts and the skills you learned to creating your own custom toolkit support.

For more information on the structure and content of a custom toolkit support set, see
"Implementing Custom Toolkit Support" on page 28.

For more information on the structure and content of the test object configuration file, see the
HP UFT Test Object SchemaHelp (available with the Java Add-in Extensibility SDK Help).

Developer Guide
Chapter 8: Learning to Support a Complex Control

HP UFT Java Add-in Extensibility (12.00) Page 219 of 221

We appreciate your feedback!
If you have comments about this document, you can contact the documentation team by email. If
an email client is configured on this system, click the link above and an email window opens with
the following information in the subject line:

Feedback on Developer Guide (UFT Java Add-in Extensibility 12.00)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a webmail client,
and send your feedback to sw-doc@hp.com.

HP UFT Java Add-in Extensibility (12.00) Page 220 of 221

mailto:sw-doc@hp.com?subject=Feedback on Developer Guide (UFT Java Add-in Extensibility 12.00)

	Contents
	Welcome to HP UFT Java Add-in Extensibility
	About the UFT Java Add-in Extensibility SDK
	About the UFT Java Add-in Extensibility Developer Guide
	Who Should Read This Guide
	Unified Functional Testing Help
	Additional Online Resources

	Part 1: Working with Java Add-in Extensibility
	Chapter 1: Introducing UFT Java Add-in Extensibility
	About UFT Java Add-in Extensibility
	Identifying the Building Blocks of Java Add-in Extensibility
	Deciding When to Use Java Add-in Extensibility
	Analyzing the Default UFT Support and Extensibility Options for a Sample Cust...

	Chapter 2: Installing the HP UFT Java Add-in Extensibility Software Development Kit
	About Installing the HP UFT Java Add-in Extensibility SDK
	Pre-Installation Requirements
	Installing the HP UFT Java Add-in Extensibility SDK
	Uninstalling the HP UFT Java Add-in Extensibility SDK
	Troubleshooting and Limitations - Java Add-in Extensibility Eclipse Plug-in

	Chapter 3: Implementing Custom Toolkit Support
	About Custom Toolkit Support
	Introducing Java Add-in Extensibility Terminology
	Preparing to Create Support for a Custom Toolkit
	Creating a Custom Toolkit Support Set
	Understanding the Toolkit Support Class
	Understanding the Toolkit Configuration File
	Understanding the Test Object Configuration File
	How UFT Loads the Test Object Configuration XML
	Understanding How UFT Merges Test Object Configuration Files

	Understanding Custom Support Classes
	Determining the Inheritance Hierarchy for a Support Class
	Mapping a Custom Control to a Test Object Class
	Supporting Identification Properties
	Supporting Test Object Methods
	Supporting the Record Option
	Supporting Top-Level Objects
	Supporting Wrapper Controls
	Support Class Summary
	Using Methods from MicAPI

	Deploying and Running the Custom Toolkit Support
	About Deploying the Custom Toolkit Support
	Deploying the Custom Toolkit Support
	Modifying Deployed Support
	Modifying Identification Property Attributes in a Test Object Configuration File

	Removing Deployed Support

	Logging and Debugging the Custom Support Class
	Workflow for Implementing Java Add-in Extensibility

	Chapter 4: Planning Custom Toolkit Support
	About Planning Custom Toolkit Support
	Determining the Custom Toolkit Related Information
	Determining the Support Information for Each Custom Class
	Understanding the Custom Class Support Planning Checklist
	Custom Class Support Planning Checklist

	Where Do You Go from Here?

	Chapter 5: Using the UFT Java Add-in Extensibility Eclipse Plug-In
	About the UFT Java Add-in Extensibility Eclipse Plug-In
	New UFT Java Add-in Extensibility Project Wizard
	UFT Java Add-in Extensibility Project Screen
	Custom Toolkit Details Screen
	Project Summary Screen

	Modifying UFT Java Add-in Extensibility Project Properties
	New UFT Custom Support Class Wizard
	Custom Class Selection Screen
	Test Object Class Selection Screen
	Custom Support Test Object Identification Properties Screen
	Custom Support Test Object Methods Screen
	Understanding the Test Object Method Dialog Box
	Custom Control Recording Support Screen
	New Test Object Class Details Screen
	Custom Control Support Class Summary Screen

	New UFT Custom Static-Text Support Class Wizard
	Custom Static-Text Class Selection Screen
	Custom Static-Text Support Class Summary Screen

	Working with UFT Commands in Eclipse

	Part 2: Tutorial: Learning to Create Java Custom Toolkit Support
	Chapter 5: Using the UFT Java Add-in Extensibility Tutorial
	Understanding the Tutorial Lesson Structure
	Checking Tutorial Prerequisites

	Chapter 6: Learning to Support a Simple Control
	Preparing for This Lesson
	Modifying the Sample Application to Run From Another Location

	Planning Support for the ImageButton Control
	Custom Class Support Planning Checklist

	Creating a New UFT Java Add-in Extensibility Project
	Understanding Your New Custom Toolkit Support Set

	Creating a New UFT Custom Support Class
	Understanding the New Custom Support
	Understanding the Basics of the ImageButtonCS Class
	Understanding Identification Property and Test Object Method Support
	Understanding Event Recording Support

	Deploying and Testing the New Custom Toolkit Support
	Changing the Name of the Test Object
	Implementing Support for a Test Object Method
	Implementing Event Handler Methods to Support Recording
	Lesson Summary
	Where Do You Go from Here?

	Chapter 7: Learning to Support a Custom Static-Text Control
	Preparing for This Lesson
	Planning Support for the ImageLabel Control
	Custom Class Support Planning Checklist

	Creating the UFT Custom Static-Text Support Class
	Understanding the New Custom Static-Text Support Class
	Deploying and Testing the New Custom Static-Text Support Class
	Completing the Support for the Static-Text Control
	Optimizing the ImageControls Toolkit Support
	Creating Support for the ImageControl Custom Class
	Modifying the ImageControls Toolkit Support Hierarchy
	Deploying and Testing the New ImageControls Toolkit Support

	Lesson Summary
	Where Do You Go from Here?

	Chapter 8: Learning to Support a Complex Control
	Preparing for This Lesson
	Planning Support for the AllLights Control
	Custom Class Support Planning Checklist

	Creating the UFT Java Add-in Extensibility Project
	Creating the New UFT Custom Support Class
	Understanding the New Custom Support Files
	Understanding the AllLightsCS Custom Support Class
	Understanding the Javaboutique Test Object Configuration File

	Deploying and Testing the New Custom Toolkit Support
	Implementing Support for the AllLights Control
	Implementing Support for New Identification Properties
	Implementing Support for New Test Object Methods
	Implementing Support for Recording
	Testing the Completed Support

	Lesson Summary
	Where Do You Go from Here?

	We appreciate your feedback!

